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Abstract

Rapid individual cognitive phenotyping holds the potential to revolutionize domains as wide-ranging
as personalized learning, employment practices, and precision psychiatry. Going beyond limitations
imposed by traditional lab-based experiments, new efforts have been underway toward greater ecolog-
ical validity and participant diversity to capture the full range of individual differences in cognitive
abilities and behaviors across the general population. Building on this, we developed Skill Lab, a
novel game-based tool that simultaneously assesses a broad suite of cognitive abilities while provid-
ing an engaging narrative. Skill Lab consists of six mini-games as well as 14 established cognitive
ability tasks. Using a popular citizen science platform (N = 10,725), we conducted a comprehen-
sive validation in the wild of a game-based cognitive assessment suite. Based on the game and val-
idation task data, we constructed reliable models to simultaneously predict eight cognitive abilities
based on the users’ in-game behavior. Follow-up validation tests revealed that the models can dis-
criminate nuances contained within each separate cognitive ability as well as capture a shared main
factor of generalized cognitive ability. Our game-based measures are five times faster to complete
than the equivalent task-based measures and replicate previous findings on the decline of certain cog-
nitive abilities with age in our large cross-sectional population sample (N = 6369). Taken together,
our results demonstrate the feasibility of rapid in-the-wild systematic assessment of cognitive abili-
ties as a promising first step toward population-scale benchmarking and individualized mental health
diagnostics.

Keywords: Cognitive abilities; Gamification; Stealth assessment; Crowdsourcing; Big data

1. Introduction

Individual cognitive phenotyping holds the potential to revolutionize domains as wide-
ranging as personalized learning, employment practices, and precision psychiatry. To get
there, it will require us to rethink how we study and measure cognitive abilities. Much of what
cognitive and behavioral scientists know about cognitive abilities and psychological behav-
ior has been gleaned from studying small, homogeneous groups in the laboratory. Recent
pushes to increase the number and diversity of participants (Bauer, 2020) are revolutionizing
standards for power and generalizability across the cognitive and behavioral sciences. These
advances have been enabled in part by moving from in-person testing to online equivalents,
which are less costly for experimenters and more convenient for participants (Birnbaum,
2004). The maturation of these tools will be critical to realizing the promise of individual
cognitive phenotyping, customizable diagnostics, and a revamp of intelligence research in
general.

Going online with more convenient digital versions of traditional tasks makes it possible
to scale up participant recruitment via crowdsourcing. Examples include projects, such as
LabintheWild (Reinecke & Gajos, 2015), Volunteer Science (Radford et al., 2016), and Test-
MyBrain (Germine et al., 2012), which offer a broad suite of digitized tasks from cognitive
and behavioral science to volunteers from the general public. The success of these scientific
platforms’ in crowdsourcing data from customizable tasks has established them as a fruitful
alternative to laboratory studies.
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Online digital participation also allows for the possibility of developing novel forms of cog-
nitive assessment that are gamified. Gamified assessment offers the potential to engage larger
and more diverse participant pools in cognitive experiments than traditional tasks and, thus,
amplifies the benefits of online crowdsourcing (Baniqued et al., 2013; Lumsden, Edwards,
Lawrence, Coyle, & Munafò, 2016). Part of the allure of adding the gamified assessment
to crowdsourcing is that it motivates players by framing the activity as an entertaining and
playful way to contribute to a meaningful scientific question (Jennett et al., 2014; Sagarra,
Gutiérrez-Roig, Bonhoure, & Perelló, 2016).

The gamified approach can take different directions. In one direction, the traditional task
for measuring cognitive abilities is preserved as much as possible, and game-like elements,
such as graphics, points, and narratives, are added to frame the task as a game. Lumsden,
Skinner, Woods, Lawrence, and Munafò (2016) is an excellent example of this, where the
Go/No-Go task is gamified by adding wild west illustrations and framing the task as a game,
where the villains should be shot and the innocent left alive. These game-like tasks have been
shown to be more engaging, at least according to players’ self-report, compared to their more
traditional counterpart while producing similar results (Hawkins, Rae, Nesbitt, & Brown,
2013).

In another direction, new games are designed through an evidence-centered design process,
whereby assessment tasks are designed to evoke behaviors that reveal targeted competencies
(Mislevy, Almond, & Lukas, 2003). By designing a complete game from scratch around spe-
cific cognitive abilities, researchers can obtain richer information than the traditional pen
and paper version (Hagler, Jimison, & Pavel, 2014). The games can be more complex and
dynamic, which allows for more interesting cognitive modeling (Leduc-McNiven, White,
Zheng, D McLeod, & R Friesen, 2018). Moreover, cognitive assessment games often apply
stealth assessment (Shute, Wang, Greiff, Zhao, & Moore, 2016), where the cognitive ability
measures are derived from the players’ in-game behavior. Thus, the players are immersed in
the game experience rather than being constantly aware of being tested (Shute et al., 2016;
Valladares-Rodríguez, Pérez-Rodríguez, Anido-Rifón, & Fernández-Iglesias, 2016).

Prominent examples of games built for cognitive assessment and applied at a large scale
are Sea Hero Quest (Coughlan et al., 2019) and The Great Brain Experiment (H. R. Brown
et al., 2014). Sea Hero Quest delivers a casual game experience and has reached 2.5 million
participants, which yielded important insights into spatial navigation impairments in adults
at risk of Alzheimer’s disease (Coutrot et al., 2018). That said, Sea Hero Quest is by design
only intended to measure spatial navigation; thus, if the goal is to measure a portfolio of
distinct cognitive abilities, it would be a considerable effort to perform similar studies for
each cognitive ability of interest. In contrast, The Great Brain Experiment is a collection
of smaller games that assess multiple cognitive abilities. Through a large-scale deployment,
the games have yielded new insights into age-related changes in working memory perfor-
mance (McNab et al., 2015) and patterns of bias in information-seeking behavior (Hunt, Rut-
ledge, Malalasekera, Kennerley, & Dolan, 2016). While demonstrating the viability of large-
scale cognitive ability testing (H. R. Brown et al., 2014), the two above-mentioned studies
have relied subsequently on small, laboratory-based samples to validate their gamified cogni-
tive ability measures originally derived from large-scale data collection. Ideally, it would be
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1
Central Executive

Functioning

5
Simple 

Reaction Time

6
Choice 

Reaction Time

7
Response
Inhibition

8
Cognitive 
Flexibility

9
Planning

2
Written Language
Comprehension

3
Visual

Processing 

10
Color Perception

11
Categorical 

Visual Perception

4
Visual 

Working Memory

12
Recognition

13
Mental Rotation

Fig. 1. The 13 cognitive abilities that we aim to measure through Skill Lab. The relationship between the cognitive
abilities shown here is for illustrative purposes only. This is not a complete representation of all possible cognitive
abilities, and we have not mapped all the possible relations between the components.

preferred to have the same person play the game as well as perform the validation tasks. This,
thus, raises an important question: How can robust within-subject validation of game-based
cognitive ability measures be achieved by motivating large groups of players to both play the
games as well as perform the less entertaining and more time-consuming traditional cognitive
tasks?

Here, we present Skill Lab, an original suite of games that takes advantage of the demon-
strated power of online recruitment to validate novel gamified assessments of a broad portfolio
of cognitive abilities. Our comprehensive mapping of multiple abilities within the same game
allows us to assess their interrelations, as well as correlations with participant demographic
factors, in a broad cross-section of a national population. Finally, whereas this study is based
on current theoretical considerations, the benefits of the gamified approach discussed above
could, in the long run–when combined with appropriate clinical tests–provide the level of sys-
tematic mapping of cognitive and psychological demographics (e.g., central executive func-
tioning or personality traits) and individualized profiling required toward population-scale
benchmarking and individualized mental health diagnostics.

2. Game development

2.1. Theoretical considerations

With the aim to contribute new knowledge to the assessment of cognitive abilities in the
wild, we designed an ambitious suite of games that would simultaneously test a broad set
of cognitive abilities. This process started by identifying how cognitive abilities have been
operationalized and measured in laboratories. From this literature search, we selected 13 cog-
nitive abilities (Fig. 1) suitable for gamification while ensuring broad coverage of important
areas for everyday cognitive functioning (Lezak, Howieson, Bigler, & Tranel, 2012). To deter-
mine the suitability for gamification of a cognitive ability, we had several iterative workshop
sessions with game designers in which we brainstormed game-mechanics that could acti-
vate the specific ability. The cognitive abilities we selected have generally been investigated
as relatively distinct aspects of cognition: executive functioning, language, and visual func-
tion, with indications of more nuanced subcomponents (Carroll, 1993; Deary, 2011; Jensen,
1998; Knopik, Neiderhiser, DeFries, & Plomin, 2017; Mackintosh, 1998). Table 1 contains
our descriptions for each of the 13 cognitive abilities (see Supplementary Information for
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Fig. 2. The six games making up Skill Lab. (a) Rat Catch is designed to test response inhibition, simple reaction
rime, and choice reaction time, (b) Shadow Match to test visuospatial reasoning in 3D, (c) Robot Reboot to test
reading comprehension and instruction following, (d) Relic Hunt to test visuospatial reasoning and executive
functions for simple strategy making in 2D visuospatial scenarios, (e) Electron Rush to test how people navigate
and make decisions, and (f) Chemical Chaos to measure visual working memory.

overviews of all the tasks used to measure the different cognitive abilities–Sections 3 and
4–and how they are operationalized–Sections 5 and 6).

2.2. The game–Skill Lab

With the theoretical model as a starting point, we held multiple brainstorming sessions
with game designers to identify game mechanics that could activate the different cognitive
abilities. The game mechanics that were found during the brainstorming sessions were com-
bined into six games through an evidence-centered design process: Rat Catch, Relic Hunt,
Electron Rush, Shadow Match, Robot Reboot, and Chemical Chaos (Fig. 2a–f, see Supple-
mentary Information Section 7 for complete descriptions of the designs). These six games
were collected into a single application called Skill Lab. Skill Lab contained an overarch-
ing structure and a detective narrative theme intended to motivate and guide the participant
between the games. For this paper, we limit the scope of our analysis to the measures derived
from participants’ behavior within the six games and the validation tasks.

The games were designed to measure the cognitive abilities via stealth assessment (Shute
et al., 2016). We created the games with the distinctive feel of a casual game while activat-
ing the targeted cognitive abilities. A consequence of this design choice is that the games
are not a one-to-one redesign of any particular standard cognitive task. However, there are
significant shared elements allowing connections to be drawn between the cognitive abili-
ties most likely to be activated. We could, as an example, take the relationship between the
classic Go/No-Go task (Lee, Yost, & Telch, 2009) and the Rat Catch game (Fig. 2b). The
Go/No-Go task, typically administered in test batteries, measures response inhibition, simple
reaction time, and choice reaction time (when facing distractors) by presenting a participant
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8 of 27 M. K. Pedersen et al. / Cognitive Science 47 (2023)

with a series of stimuli. If the stimulus is the correct type, the participant must react as quickly
as possible; otherwise, the participant should refrain from reacting. This test procedure has
an analog in the first two levels of Rat Catch. In the first level, a rat appears for a limited
time at a random position; the player is asked to tap the rat as quickly as possible, providing
simple reaction time measures. The rats disappear faster and faster as the level progresses.
Once the player misses three rats, this level of play ends. In the second level of the game,
there is a 50% chance that an “angry” red rat will appear. The player is instructed not to
react to red rats but to still tap all other rats as quickly as possible. The level then follows
the same progression as the first level, ending after three errors have been made (either tap-
ping a red rat or not tapping the other rats before the timer runs out). This taps into choice
reaction time and response inhibition. Further, Rat Catch levels add variations, such as an
increasing number of stimuli or moving targets that have no analog in the Go/No-Go task.
These additions give indicators of visuospatial reasoning components, such as 2D spatial
representation and movement perception. Finally, relevant game indicators, such as aver-
age reaction time and accuracy in different levels, were identified via cognitive task analysis
(Newell, 1966; Newell & Simon, 1972; Shute et al., 2016), where we mapped cognitive abili-
ties required to achieve specific player behavior in the games (see Supplementary Information
Section 8).

3. Methods

3.1. Participants

Participant engagement typically has an exponential fall-off (Lieberoth, Pedersen, Marin,
& Sherson, 2014), and in this case, a substantial player effort was needed to play both the
games and complete the validation tasks; thus, broad and efficient recruitment was essen-
tial. Skill Lab was, therefore, launched publicly in Denmark in collaboration with the Public
Danish Broadcast Company (Danmarks Radio, DR) on the 4th of September 2018 on (https:
//www.scienceathome.org/games/skill-lab-science-detective/, Retrieved: 2020-07-07), Apple
Appstore, and Google Play. The Committee of Research Ethics for Region Midtjylland (Den-
mark) exempted the study from ethical oversight, and the project received ethical approval
from the Institutional Review Board at Cornell University (Protocol ID: 1808008201). The
study was conducted in accordance with all ethical requirements. Thus, the players provided
informed consent before taking part in the study and any data were recorded. The players
were made aware that they could, at any time, leave the study and request their data to be
anonymized.

To attract the broadest possible audience, we drew attention to the project through a series
of DR news articles with themes varying from artificial intelligence and technology to psy-
chology and computer games (https://www.dr.dk/nyheder/viden/nysgerrig/tema/danmarks-
nye-superhjerne, Retrieved: 2020-07-07). Furthermore, Skill Lab was part of an educational
event across classes at 208 high schools during the first week of December 2018. This event
accounts for the spike of users at age 16 (Fig. 3).
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Fig. 3. Age distribution by gender for players who played at least one game in the wild. There are no qualitative
differences in the age and gender distribution between those who played the game on mobile devices and those
who played it on computers.

All in all, more than 16,000 people signed up to play the publicly available version. The
game was available in versions running either on mobile devices or in the browser of per-
sonal computers. Since the required user interactions were different between mobile and
computer versions, each version was separately validated (Drucker, Fisher, Sadana, Her-
ron, & Schraefel, 2013; Muender et al., 2019; Watson, Hancock, Mandryk, & Birk, 2013).
This paper focuses primarily on the mobile version since it had the broadest reach. The
results presented in the paper are based on the sample of 6524 players from the in-the-
wild data set that played at least one game on the mobile version. We also test the gen-
erated models on a sample of 4201 players from the in-the-wild data set that played at
least one game on the computer version of which 603 also had cognitive abilities from the
tasks.

The participants who played at least one game on the mobile version represent a broad
cross-section of the Danish population (Danmarks Statistik, 2020) in terms of gender (3181
female, 3296 male, and 47 other1; or 49%, 50%, and 1%, respectively) and age (Fig. 3),
starting at age 16 years—the minimum age for granting informed consent according to the
EU’s General Data Protection Regulations. For demographic distribution of the computer
players, the players in the validation sample, and the players not in the validations sample,
see Supplementary Information Section 9.

3.2. Measuring convergent validity of the game-based cognitive measures

Many traditional cognitive tasks aim to assess a limited number of targeted cognitive abil-
ities under strict conditions that minimize distractions and maximize experimental control
(Salthouse, 2011). In contrast, the Skill Lab games are designed to engage multiple cognitive
processes, simultaneously measuring multiple abilities within a convenient, engaging, and
scalable package that aims to increase the external validity of the cognitive measures by cre-
ating a more realistic context and gameplay compared to traditional tasks (Schmuckler, 2001;
Valladares-Rodríguez et al., 2016).

To test the convergent validity of the cognitive abilities’ measures from the six games, we
administered 14 standard cognitive tasks in a separate section of Skill Lab (see Supplementary
Information Section 4 for full descriptions):

 15516709, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13308 by A

alborg U
niversity L

ibrary, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 27 M. K. Pedersen et al. / Cognitive Science 47 (2023)

(Continued)

• Corsi Block (Kessels, van Zandvoort,
Postma, Kappelle, & de Haan, 2000)

• Deary-Liewald (Deary et al., 2011)
• Eriksen-Flanker (Davelaar & Stevens, 2009)
• Groton Maze (Papp, Snyder, Maruff,

Bartkowiak, & Pietrzak, 2011)
• Mental Rotation (Ganis & Kievit, 2015)
• Go/No-Go (Lee et al., 2009)
• Stop Signal (Verbruggen & Logan, 2008)

• Stroop (Zysset, Müller, Lohmann, & von
Cramon, 2001)

• Token Test (Turkyılmaz & Belgin, 2012)
• Tower of London (Kaller et al., 2011)
• Trail Making (Fellows, Dahmen, Cook, &

Schmitter-Edgecombe, 2017)
• Visual Pattern (L. A. Brown et al., 2006)
• Visual Search Letters (Treisman, 1977)
• Visual Search Shapes (Treisman, 1977)

To obtain quantifiable measures of the players’ ability levels, we identified indicators of the
cognitive abilities assessed (e.g., number of errors in a task) in both the games (45 indicators,
see Supplementary Information Section 8) and the tasks (68 indicators, see Supplementary
Information Section 6). The game indicators were identified through a cognitive task analysis
(Newell, 1966; Newell & Simon, 1972), whereby the stimuli in the games were connected to
the corresponding actions a player could make and how the player’s cognitive abilities could
influence these actions. The full theoretical mapping between cognitive abilities, games, and
validation tasks can be found in Fig. 4.

Since many tasks conceptually measure aspects of the same cognitive abilities, combining
the observations from different tasks with a strong theoretical overlap can give rise to more
robust composite measures of cognitive abilities. Measures of cognitive abilities from tasks
can be defined on a spectrum of computational granularity; pure indicators (Salthouse, 2011),
linear combinations of indicators (Bollen & Bauldry, 2011), all the way to methods like gen-
erative models (Guest & Martin, 2021). Here, we form linear combinations of indicators,
combining indicators from multiple tasks according to a standard theoretical interpretation,
as it is the simplest way to take advantage of the overlap among the indicators. We recog-
nize that the association between any particular combination of indicators is open to debate
and offer the specific aggregation of indicators here as the most straightforward theoretical
proposal. (For a list of the standard task indicators associated with each of the 13 cognitive
abilities, see Supplementary Information Section 6).

3.3. Modeling cognitive abilities with games and validation tasks

To be included in the validation process, a player had to complete at least one specific
combination of validation tasks for a given cognitive ability. From 6369 players on the mobile
version, we obtained a large sample of wild players (N = 1385) that had taken the right
combination of validation tasks to measure at least one cognitive ability (e.g., the three tasks
Visual Pattern, Groton Maze, and Corsi Block had to be completed for us to evaluate the
ability visual working memory).

We trained a linear model that uses game data to predict players’ cognitive abilities, where
cognitive abilities are operationalized by measurements from the validation tasks (Fig. 5). We
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Shadow Match

Robot Reboot

Electron Rush

Chemical Chaos

Rat Catch

Relic Hunt

Color Preception

Written Language Comprehension

Cognitive Flexitbility

Choice Reaction Time

Simple Reaction Time

Response Inhibition

Planning

Categorical Visual Perception

Mental Rotation

Central Executive Functioning

Visual Processing

Visual Working Memory

Recognition

Groton Maze

Token

Stroop

Deary Liewalrd

Go / No-Go

Stop Signal

Tower of London

Eriksen-Flanker

Mental Rotation

Trail Making

Corsi Block

Visual Pattern

Visual Search Letters

Visual Search Shapes

Fig. 4. Map of task, cognitive abilities, and game connection from a theoretical point of view. In the first column
are all the tasks, in the second are all the cognitive abilities, and in the third are all the games. Each task measures a
series of indicators informing about a cognitive ability. Each connection between the first and the second columns
means that there is at least one indicator of a task informing about a cognitive ability. The connections between
the second and the third column identify a theoretical link from the task analysis between a cognitive ability and a
game.
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Cognitive Ability
game Cognitive Ability

task

g
1

g
i

g
n

t
1

t
i

t
n

ε ε

ε

ε

ε

β
1

β
i

β
n

(-)1

(-)1

(-)1

Fig. 5. Illustration of the predictive model that we test. On the right-hand side, the cognitive abilities from tasks are
theoretically constructed via reflective indicators from the tasks with weights (−1 or 1) derived from theory. On
the left-hand side, cognitive abilities from games are estimated using the elastic net that handles the collinearities
between the game indicators.

started by defining cognitive ability measures by combining indicators–that measure the same
construct–from different tasks. To determine which indicators to combine, we reviewed the
tasks and identified the indicators ti (see Theoretical Considerations) of a cognitive ability
that had a theoretical overlap (Beaujean & Benson, 2019; Mayo, 2018). For each of the 68
task indicators ti, we assigned 13 coefficients αij ∈ {−1,0,1} depending on its theoretical
contribution to each of the cognitive abilities Cj by assigning: 0 if there is no contribution, 1
if there is a positive correlation between the task indicator and the cognitive ability, and −1 if
there is a negative correlation (see Supplementary Information Section 5 for a comprehensive
list of coefficients and justifications). The task indicators were standardized and combined
into measures of cognitive abilities (Bollen & Bauldry, 2011) by taking weighted averages.

Cj =
∑68

i=1 αi jti
∑68

i=1

∣
∣αi j

∣
∣
.

For the games, we identified 45 indicators gi from the six games that contained information
pertaining to the cognitive abilities. Before any modeling was performed, all game indicators
and cognitive ability measures were standardized to mean = 0 and SD = 1. Only players who
had produced all the task indicators associated with the respective cognitive ability (see Sup-
plementary Information Section 6) and at least one game indicator were included in the sam-
ple used to fit the linear regression models predicting the cognitive abilities measured from
the tasks with game indicators (for sample sizes, see Table 3). Any missing game indicators
were imputed using multivariate imputation with chained equations (Buuren & Groothuis-
Oudshoorn, 2011), which generated one common imputation model for the entire data set.
The imputation model was generated from game indicators only and contained no informa-
tion about task indicators or demographic information. To prevent overfitting, an elastic-net
model (Zou & Hastie, 2005) was used.

Elastic-net models combine ridge (Hoerl & Kennard, 1988) and lasso (Tibshirani, 1996)
regression by adding two penalty terms (regularization) to the loss function when fitting the
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coefficients of a linear model

β̂ ≡ argmin
β

(‖y − Xβ‖2 + λ2‖β‖2 + λ1‖β‖1
)
,

where β are the coefficients of a linear model, and λ1, λ2 are determining how much of the,
respectively, lasso and ridge penalties to apply. Both ridge and lasso regression prevent over-
fitting; ridge regression by shrinking the values of the collinear coefficients closer to zero,
that is, grouping collinear game indicators, and lasso by forcing some of the coefficients to be
exactly zero, that is, automatic variable selection. The elastic net model increases the relia-
bility of the model over ordinary least squares regressions, as it can handle multi-collinearity
among the indicators by shrinking the coefficients or zeroing redundant indicators. Thus, one
must be careful when interpreting the coefficients resulting from the elastic-net model as a
small or zero coefficient could be either a redundant or irrelevant indicator, and therefore, not
an unequivocally sign that the indicator contains no information about the cognitive ability.
As our focus is to generate a predictive model of cognitive abilities that can be used with new
participant samples, we prioritized increasing the reliability of the model over confirming
theoretical relationships between cognitive abilities and game indicators.

To further reduce the overfitting of the model beyond what can be achieved by the reg-
ularization performed by the elastic-net model, we used 100 times repeated five-fold cross-
validation (Burman, 1989). The standardization and imputation is performed separately for
the training set in each of the cross-validations. The trained models ({β1j,…,β45j}, kj) (see
Supplementary Information Section 12) are the result of fitting the elastic net model to the
entire training set with the best hyper parameters determined by the cross-validation. If a sin-
gle game indicator or the cognitive ability measured by tasks was more than 3 SD’s from
the mean, the player was excluded from the fitting, as the fitting would be sensitive to such
outliers.

We utilized the scikit learn library (Pedregosa et al., 2011) with Python 3.8.13 to perform
the imputation, fit the elastic net model, and perform the cross-validation. Scikit learn defines
the hyperparameters of the elastic net model that control the regularization (α, L1) such that λ1

= αL1 and λ2 = α(1-L1). For the elastic net hyperparameter tuning, we used the recommended
L1 ratios (0.1, 0.5, 0.7, 0.9, 0.95, 0.99, and 1), and let the elastic net function determine the
appropriate α (Sklearn.Linear_model.ElasticNetCV, 2022).

3.4. Factor analysis of cognitive abilities from games and validation tasks

To identify the extent to which our predictive models rely on a generalized cognitive ability,
we perform an exploratory factor analysis on the cognitive abilities measured from the tasks
and predicted from the games.

For this, we apply the FactorAnalyser library (Biggs & Madnani, 2022) using principal
factor extraction without any rotation. To evaluate the similarity of the main factor loadings
(Fg,i and Ft,i), we compute the cosine similarity cos(θ ) =

∑
Fg,iFt,i

|Fg||Ft | . If the cosine similarity is
0, the main factors are orthogonal, and if it is 1, they are completely identical.
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Table 2
Cronbach α for the task-measured cognitive abilities

Cognitive ability n Cronbach α

Central executive functioning 383 0.73
Written language comprehension 426 0.96
Visual processing 313 0.25
Visual working memory 276 0.80
Simple reaction time 233 0.75
Choice reaction time 90 0.83
Response inhibition 147 0.70
Cognitive flexibility 222 0.70
Planning 198 0.71
Color perception 426 N/A
Categorical visual perception 1199 N/A
Recognition 237 0.70
Mental rotation 446 0.90

4. Results

4.1. Reliability of task measured cognitive abilities

The cognitive abilities measured from the task are formed by averaging the theoretically
chosen reflective indicators with equal weights. Thus, the internal reliability of the cognitive
abilities can be assessed by computing Cronbach α. The Cronbach α of all but Visual Pro-
cessing is above 0.7 (Table 2), which indicates good reliability. Categorical Visual Perception
and Color Perception both contain only one indicator. Thus, Cronbach α cannot be computed.

4.2. Cognitive modeling

The fitting and cross-validation process resulted in eight accepted (rcv > .2) prediction
models with medium to strong effect sizes and five rejected models (Table 3). This cutoff
turned out to align with whether the model significantly predicts more than an intercept-only
model (pcv < .05). More specifically, we accepted models of choice reaction time, categorical
visual perception, central executive functioning, simple reaction time, response inhibition,
visual processing, cognitive flexibility, and visual working memory. The coefficients of the
models and brief interpretations of the relationships between game indicators and cognitive
abilities can be found in Supplementary Information Section 12.

The cutoff at 0.2 for the estimated out-of-sample prediction strengths might seem like
a low bar; however, the estimates are conservative compared to the full sample correla-
tion. To remove the bias from overfitting the data in the full models’ correlation with the
tasks, we estimated an out-of-sample prediction strength (rcv, Table 3), that is, what the
correlation between the model-predicted and the task-measured cognitive abilities would
be in an entirely new data set. The estimate is the average correlation between the model
predictions and the task-measured cognitive abilities on the test samples for each of the
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Table 4
Correlation between predicted and measured cognitive abilities for players on the computer version using models
trained on data from the mobile version

Cognitive ability n r r−rcv 95% Confidence interval for r p

Choice reaction time 49 .68 .09 [0.50, 0.81] <.001
Central executive functioning 137 .52 −.02 [0.39, 0.64] <.001
Simple reaction time 97 .60 .06 [0.46, 0.71] <.001
Categorical visual perception 516 .44 −.07 [0.37, 0.51] <.001
Response inhibition 72 .64 .19 [0.48, 0.76] <.001
Visual working memory 141 .36 −.03 [0.21, 0.50] <.001
Cognitive flexibility 93 .37 .08 [0.18, 0.53] <.001
Visual processing 102 .40 .18 [0.22, 0.55] <.001

repeated cross-validation test sets. If we were to evaluate the models in a less conserva-
tive manner, all but one of the full sample correlations between the game-predicted and
task-measured cognitive abilities (r, Table 3) would be medium to very-strong correlations
(Cohen, 1988).

4.2.1. Model generalizability with data from computer version
The analysis above only considered the players on the mobile devices as the interface dif-

ferences to computers could affect the measurement of the cognitive abilities (Drucker et al.,
2013; Muender et al., 2019; Watson et al., 2013). However, if the accepted models that we
have trained on the data from the mobile devices represent a mapping between cognitive
abilities and game indicators, then applying them on the data collected from players of the
computer version will provide a test of the generalizability. To account for systematic inter-
face differences, we standardized the game and task indicators anew with only the computer
data. We then computed the cognitive abilities from the task indicators for all the players who
had taken the right combinations and correlated them with the predicted cognitive abilities
from the models trained on mobile data (Table 4).

The eight accepted mobile-trained models predict the cognitive abilities for the players
of the computer version, with correlation strengths of similar and on average higher magni-
tude as the out-of-sample prediction strength. This test constitutes powerful support for the
reliability of the models.

4.3. Assessing the models’ predictive power

4.3.1. Generalized cognitive ability
Since the cognitive abilities are related in the theoretical framework (Fig. 1), it is essen-

tial to look at shared variation contributing to the observed predictive power. Therefore, we
performed a pair of exploratory factor analyses, one on the cognitive abilities computed from
validation tasks, and one on cognitive abilities predicted from game data. This allowed us to
identify the main factor in both sets, interpretable as a generalized cognitive ability (Knopik
et al., 2017).
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(a)

(b)

Fig. 6. (a) Proportion of variance covered by each factor. (b) Loadings of each cognitive ability on the factors.

The factor analysis’s exclusion criterion was whether the cognitive ability measure was
more than 3 SD’s from the population mean. This criterion was different from the one applied
during the fitting procedure, as a single outlier among the game indicators could potentially be
compensated for in the predictive model, either by all the other nonoutliers or that a particular
game indicator is irrelevant for that particular model. Thus, we decided to exclude based on
the predicted value rather than at the game indicator level. The same criterion is used for all the
following analyses in this paper. This meant that, for cognitive abilities measured by games,
the factor analysis included 6546 players. For cognitive abilities measured by validation tasks,
82 out of the 84 players with all cognitive abilities measured by the tasks were included. The
relatively low task participant number reflects that the completion of all 14 validation tasks
was required to be included in the analysis.

Results of the factor analyses revealed that, for both game-based and validation-based mea-
sures, the components in the framework are not orthogonal, and unsurprisingly, there is a large
shared main factor across all cognitive abilities (Fig. 6).

The fact that the percentage of variance explained is higher for games (Fig. 6a) was
expected, since the number of indicators used to evaluate the cognitive abilities had decreased
from 68 task indicators to 45 game indicators. Therefore, if we make a simplified evaluation
of the amount of absolute rather than the proportional variance explained by the main fac-
tors, it is 36.72 (68 task indicators with unit variance • 54%) for the tasks and 37.35 (45 task
indicators with unit variance • 83%) for the games, which is similar to each other.
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Fig. 7. The proportion of the models’ predictive strength is not explained by the main factor. The full correlations
are similar to, but not exactly equal to, the r values found in Table 3. A table with values of the full and partial
correlation can be found in the Supplementary Information Section 16.

The main factor loadings are very similar across all cognitive abilities, with our predictive
game-based model yielding similar results as the validation tasks (cosine similarity = 0.98).
For both games and tasks, the main factor corresponds approximately to the mean of all the
cognitive abilities (Fig. 6b).

4.3.2. Discriminant validity of the models
As shown above, the main factor is responsible for explaining a high percentage of variance

for both games and validation tasks. Therefore, in order to demonstrate that our model has dis-
criminative power beyond being driven by the main factor, we computed partial correlations
between the games and validation tasks while controlling for the games’ main factor. These
partial correlations thus reveal the extent to which our models can predict the nuances con-
tained within each separate cognitive ability that goes beyond a generalized cognitive ability.
Fig. 7 illustrates the fraction of the correlation between the task and the game-based measures
that is not explained by the main factor. For all eight cognitive models, we find that 23–63%
of the correlation is not due to the main factor, demonstrating the discriminative validity of
the models. In other words, we clearly document that each of our models tap significantly into
aspects beyond just the general abilities factor.

4.4. Skill Lab as a potential cognitive diagnostics tool

One of Skill Lab’s potential use cases is as a low-cost test battery that could be used to
track cognitive impairments. We are, therefore, interested in the time it takes compared to
current cognitive batteries. The average time taken to complete all six games was 14 min (SD
= 5 min), in comparison with 72 min needed to complete all the validation tasks (SD = 7).
In other words, the Skill Lab games could model cognitive abilities in one-fifth of the time as
required by the traditional set of cognitive tests.

To further demonstrate the potential of Skill Lab as a diagnostic tool, we use the
trained models to illustrate the cross-sectional cohort distributions of cognitive abilities
by age for the Danish population (Fig. 8 and Figs. S45–S53). Examining the distribu-
tions obtained from the games across ages, we observed the expected increase in all
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(a) (b)

Fig. 8. Cognitive abilities across age groups for (a) simple reaction time (ntask = 225, nwild = 6277) and (b) central
executive functioning (ntask = 372, nwild = 6281). The shaded areas around the curves are the standard error of
the mean. The y-axis represents simple reaction time and central executive functioning standardized across the
population, thus, higher values on the y-axis correspond to faster reaction times (the curves for the remaining cog-
nitive abilities can be found in the Supplementary Information Chapter 14). Each age point in the graph includes
at least 30 players. The points were generated by starting at age 16 and checking whether 30 players of that age
whose data provided a cognitive ability measure. If there were enough players, the following point was generated
starting with those 1 year older; if not, the following ages were added 1 year at a time until a sample size of 30
was reached.

cognitive abilities from age 16 to 20 years, followed by a gradual decline from age 20
years.

5. Discussion

We designed the Skill Lab games to simultaneously engage and measure multiple cognitive
abilities in a more realistic gameplay context within a single convenient, engaging, and scal-
able package. One of this project’s main contributions is a demonstration that we were able
to achieve a large-scale in-the-wild within-sample validation of our cognitive assessment. We
first constructed predictive models of cognitive abilities based on data from 1351 participants
who had completed a sufficient number of both games and tasks, then validated the perfor-
mance of these models based on data from 6369 players who played at least one game on
mobile devices. We were also able to further validate our model based on the data from the in
total 603 players who played the game and took the validation tasks on computers.

It should be mentioned that there was no nudging toward the tasks within Skill Lab and
no requirement to do so; thus, there were no expectations from a data collection perspec-
tive toward the in-the-wild players completing all tasks. In particular, it should be noted that
such a large fraction of the players identified sufficiently with the scientific purpose of the
games (to help the researchers better understand human cognition) that they spent so much
time performing the rather tedious validation tasks without any form of extrinsic reward. Our
study achieves both exemplary breadth of different abilities and depth of volunteer partici-
pation compared to other game-based population-scale assessment studies, such as SeaHero
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Quest and The Great Brain Experiment (H. R. Brown et al., 2014; Coughlan et al., 2019;
Coutrot et al., 2018; Hunt et al., 2016; McNab & Dolan, 2014; McNab et al., 2015; Rutledge,
Skandali, Dayan, & Dolan, 2014; Rutledge et al., 2016; Smittenaar et al., 2015; Teki, Kumar,
& Griffiths, 2016). This is a positive step toward comprehensive citizen involvement in the
construction of complex cognitive studies in the future.

In line with the goals of our design process, results from the study demonstrated good con-
vergent validity of the game-based cognitive measures, where eight of the models predicting
the cognitive abilities from game indicators correlated well with the task-based measures. The
factor analysis revealed a main factor for cognitive abilities that could be interpreted as a gen-
eral cognitive ability for both games and tasks (Fig. 6) in line with a priori expectations during
the design phase (Fig. 1). Via partial correlations (Fig. 7), we demonstrated that the shared
information from the main factor is insufficient to explain a substantial proportion of each
cognitive ability’s observed agreement between task and game estimates. Each of our mea-
sures, therefore, captures some of the nuances of the cognitive abilities beyond the dominant
factor.

5.1. Limitations

While showing exciting potential for future applications, our current study is limited in that
people were only recruited to play the game once. In order to be considered as a potential clin-
ical tool in one-off as well as longitudinal applications, a follow-up test-retest study is needed
to assess the robustness of our cognitive ability estimates. In such a test-retest setup, we could
control the time between playthroughs to neutralize learning effects and ensure all the games
have been played in both playthroughs. It is not unreasonable to expect that we could achieve
even more consistent estimates by training models dependent on the playthrough number,
compensating for learning effects due to the player familiarizing themselves with the tasks.
Another consideration regarding reliability is the fact that our validation population set exhib-
ited a slightly different gender distribution compared to the overall data set (64% vs. 49%
females overall, see Supplementary Information Section 9 for full demographic breakdown).

In addition, our sample population, while diverse in age, comes primarily from Denmark.
If we want to establish more general demographic norms than those we have collected on
the Danish population, we would naturally have to expand our recruitment efforts. As part of
these efforts, we have prepared a Spanish translation of Skill Lab in addition to the Danish
and English translations that already existed, with plans to launch the game internationally in
the future.

5.2. Future directions and applications

As an example of what our Skill Lab models are currently able to do, we used our popula-
tion sample to replicate previous findings regarding the age distribution of cognitive abilities.
Our study offers a cross-sectional snapshot of the Danish population, comprising the largest
open normative data set of these cognitive abilities. The observed patterns (Fig. 8) follow
the previously established expectations (Lindenberger, 2014; Salthouse, 2019), which sup-
ports Skill Lab’s validity as an assessment tool. This of course comes with the caveat that the
age-related decline we observed in the present study could have also been confounded by

 15516709, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13308 by A

alborg U
niversity L

ibrary, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



M. K. Pedersen et al. / Cognitive Science 47 (2023) 21 of 27

factors such as technological familiarity, which we did not measure. With appropriate future
work to account for such confounds, our data set may serve as a normative benchmark for
future applications, not only within psychology but also for the social sciences, clinical appli-
cations, and education. These finely stratified age norms will be of particular importance when
Skill Lab addresses questions that require age-based controls.

An alternative to the computational approach we present in this paper of aggregating indica-
tors from multiple tasks is testing the feasibility of predicting individual task indicators from
game data, which is more in line with the conventional literature (Salthouse, 2011). However,
predicting individual indicators is not very robust, so we made the pragmatic choice of defin-
ing aggregated cognitive abilities measures (Bollen & Bauldry, 2011) while only combining
task indicators associated with a cognitive ability in the theory to strengthen its interpretation.
The eight accepted models already represent a broad, strong, and rapid testing battery. We
exposed these choices to potential disconfirmation in the current work by examining their
agreement across independent estimates; rejecting 3 of 13 while accepting 10. Since the data
set is open, it is also open for potential explorations of alternative choices. We have taken
preliminary steps in this direction by pursuing a theory-driven approach, in which we only
include the game indicators that are theoretically associated with a specific cognitive ability
during the fitting process. The results are qualitatively similar to the ones presented here but
somewhat lower in quantitative effects as expected from a restricted model. Further work in
this direction may help the iterative development toward games that are optimally suited for
high-quality assessment of each ability.

In conclusion, the models developed through our work with Skill Lab illustrate the viability
of a crowdsourcing approach in validating a cognitive assessment tool, which has several key
implications. First, it allows scientists to create better human cognition models and test and
validate cognitive abilities, potentially providing efficient ways to scale insights into particular
cognitive abilities and how they are related to solving problems (Woolley, Chabris, Pentland,
Hashmi, & Malone, 2010). Second, we have generated a unique and open data set, which
includes normative benchmarks, that can be used as a basis for other studies. Finally, Skill
Lab allows normative data for diverse populations, cultures, and languages to be collected in
the future, facilitating the much-needed broadening of the samples typically tested in psycho-
logical and social science studies (Henrich, Heine, & Norenzayan, 2010). An advantage of
Skill Lab over traditional tests is that it is faster to play all six games once than to go through
all the traditional cognitive tasks. Thus, the games could provide a low-cost self-administered
test suitable for extensive deployment. This could be of great value to, for example, the psy-
chiatric sector in which current cognitive test batteries are burdensome to administer (Baune
et al., 2018), leading to cognitive impairments often going unrecognized (Groves, Douglas,
& Porter, 2018; Jaeger, Berns, Uzelac, & Davis-Conway, 2006).
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Availability of data, code, and materials

Skill Lab is available on the Apple App Store, Google Play, and online at (https://webgl.
scienceathome.org/slsd/, Retrieved: 2023-06-06).

The raw and processed data that support the findings of this study are available together
with the data processing scripts on the Open Science Framework (https://doi.org/10.17605/
OSF.IO/PNW5Z, Retrieved: 2023-06-06).

Note

1 For the sake of transparency, we are using the term “other” here as that was the
multiple-choice answer option given to the participant, rather than add an interpreta-
tion such as nonbinary, nonconforming, or any other term that would have been more
appropriate.
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