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Research papers 

An efficient renewable hybridization based on hydrogen storage for peak 
demand reduction: A rule-based energy control and optimization using 
machine learning techniques 
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A R T I C L E  I N F O   
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A B S T R A C T   

The present study proposes and thoroughly examines a novel approach for the effective hybridization of solar 
and wind sources based on hydrogen storage to increase grid stability and lower peak load. The parabolic trough 
collector, vanadium chloride thermochemical cycle, hydrogen storage tank, alkaline fuel cells, thermal energy 
storage, and absorption chiller make up the suggested smart system. Additionally, the proposed system includes a 
wind turbine to power the electrolyzer unit and minimize the size of the solar system. A rule-based control 
technique establishes an intelligent two-way connection with energy networks to compensate for the energy 
expenses throughout the year. The transient system simulation (TRNSYS) tool and the engineering equation 
solver program are used to conduct a comprehensive techno-economic-environmental assessment of a Swedish 
residential building. A four-objective optimization utilizing MATLAB based on the grey wolf algorithm coupled 
with an artificial neural network is used to determine the best trade-off between the indicators. According to the 
results, the primary energy saving, carbon dioxide reduction rate, overall cost, and purchased energy are 80.6 %, 
219 %, 14.8 $/h, and 24.9 MWh at optimal conditions. From the scatter distribution, it can be concluded that fuel 
cell voltage and collector length should be maintained at their lowest domain and the electrode area is an 
ineffective parameter. The suggested renewable-driven smart system can provide for the building’s needs for 70 
% of the year and sell excess production to the local energy network, making it a feasible alternative. Solar 
energy is far less effective in storing hydrogen over the winter than wind energy, demonstrating the benefits of 
combining renewable energy sources to fulfill demand. By lowering CO2 emissions by 61,758 kg, it is predicted 
that the recommended smart renewable system might save 7719 $ in environmental costs, equivalent to 6.9 ha of 
new reforestation.   

Nomenclature 

A Area (m2) 
ACSR Annual cost saving rate (%) 
celectrcity Electricity price ($) 
cheat Heat price ($) 
CDE Carbon dioxide emission (kg) 
CDERR Carbon dioxide emission reduction rate (%) 
CIPY cost indexes at the present year 
CIRY cost indexes at the reference year 
CRF Capital recovery factor 
Ė Electricity (kWh) 

i Interest rate 
ṁ Mass flow rate (kg/h) 
n Plant’s operation years 
PESR Primary energy saving rate (%) 
Q̇ Heat (kWh) 
TCR Total cost rate ($/h) 
V Volume (m3) 
Ẇ Power (kW) 
Z The investment cost of components ($) 

ŻCI
k Capital investment cost rate ($/hr) 

ŻOM
k Operating and maintenance cost rate ($/hr) 
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Subscript and abbreviations 

AC Alternating current 
AFC Alkaline fuel cell 
ANN Artificial neural network 
CuCl2 Copper chlorine 
DC Direct current 
EES Engineering equation solver 
EEA European environment agency 
IEA International energy agency 
MgCl2 Magnesium chloride 
MOGWO Multi-objective grey wolf optimization 
PTC Parabolic trough collectors 
PID Proportional–integral–derivative 
TES Thermal energy storage 
VCl3 vanadium chloride 

Greek symbols 

ηE Local plant’s electrical efficiency (%) 
ηgrid Energy transmission efficiency (%) 
ηH Local plant’s heating efficiency (%) 
λelectricty Carbon dioxide emission indices for electricity production 

(kg/MWh) 
λheat Carbon dioxide emission indices for heating production (kg/ 

MWh) 
γ Operating and maintenance cost coefficient 
τ Model’s operation hours 

1. Introduction 

1.1. Background 

Global energy use has increased remarkably in the last decade (100 
% growth between 2010 and 2020) [1]. The International Energy 
Agency (IEA) recently reported annual global energy use of 22,000 kWh 
per capita. Such growth is expected to continue due to population 
growth and life quality improvement [2]. Approximately 85 % of this 
energy is produced by fossil fuels such as coal, oil, and gas that emit 
greenhouse gases [3]. Renewable sources are the most effective and 
viable alternative for attaining large reductions in greenhouse gas 
emissions and dealing with the global energy demand sustainably. Ac-
cording to the information provided by the European Environment 
Agency (EEA), if renewable forms of energy had not been employed 
since 2005, the present value of carbon dioxide emission would have 
been >10 % greater [4]. 

1.2. Literature survey 

Solar power is one of the cleanest and greenest renewable energies 
available [5]. Parabolic trough collectors (PTCs) are incredibly impor-
tant among various solar-driven technologies because they operate at 
higher temperatures, leading to lower costs for hot storage systems [6]. 
The collector’s trough design lets it gather more solar radiation 
compared to a flat panel [7]. The techno-economic comparison of a PTC- 
based combined heating and power system against solar power plants 
was evaluated by Wang et al. [8], reporting 9.5 % higher electricity 
production and 8.5 % lower energy costs. The feasibility of using PTCs as 
a prime mover of an ejector cooling and power system was assessed by 
Bechir et al. [7], considering Tunisian weather conditions. The simula-
tion outcomes obtained by TRNSYS software resulted in 60 % higher 
performance efficiency than the conventional system. Kumaresan et al. 
[9] studied the performance evaluation of a solar power system con-
sisting of PTC and thermal energy storage (TES) in India. They demon-
strated a maximum efficiency of 63 %, which is considerable. 

Hydrogen, the most abundant element in the universe, is another 

potential alternative to fossil fuels due to its highest energy value and a 
major contribution to sustainable development compared to other en-
ergy resources [10]. With increasing environmental contamination and 
fossil fuel depletion in recent years, hydrogen production from renew-
able waste heat/electricity has attracted considerable attention since it 
releases no greenhouse gas emissions [11]. In comparison to other 
recently developed methods of hydrogen generation, thermochemical 
water-splitting cycles outperform in terms of efficiency, cost, and envi-
ronmental friendliness [12]. Numerous researchers have examined the 
techno-economic-environmental aspects of high-temperature solar- 
based thermochemical hydrogen production cycles. The potential of 
PTCs for hydrogen generation considering different regions of Algeria 
was evaluated and compared by Ouagued et al. [13]. According to their 
results, using a CuCl2 (copper chlorine) thermochemical cycle integrated 
with PTC leads to annual hydrogen production of 84 tons in the south 
part of the country. A thermochemical hydrogen production cycle run by 
a high-temperature solar system was proposed by Yilmaz and Selbas 
[14], obtaining total performance efficiencies of 32.76 % and 34.56 %, 
respectively. Balta et al. [15] examined the influence of ambient con-
ditions and main operational parameters on performance indicators of a 
PTC-based hydrogen production system consisting of the MgCl2 (mag-
nesium chloride) thermochemical cycle. The findings demonstrated that 
the MgCl2 cycle has a lot of promise, with total cycle efficiencies above 
50 %. Temiz and Dincer [16] studied the performance of a multi- 
generation system consisting of PTCs and CuCl2 thermochemical 
hydrogen cycle. They achieved a promising payback period of 6 years 
for yearly hydrogen generation of 297 tons. The thermodynamic in-
dicators of various chloride cycles were studied and compared by Balta 
et al. [17]. Their findings showed that the VCl3 (vanadium chloride) 
cycle is the most efficient and promising method for producing 
hydrogen. 

Although solar-driven technologies have attained an adequate level 
of technological maturity, there are still several obstacles to overcome, 
including the high investment cost and the intermittent nature of their 
energy production [18]. On the other hand, wind power is recognized as 
one of the most abundant and sustainable renewable resources widely 
used for domestic applications due to the low price of energy production 
[19]. As a result, combining solar and wind sources to generate cost- 
effective, clean, and reliable energy output can be a prudent approach 
in terms of both sources’ availability. In the literature, several works 
have investigated the hybridization of solar-driven technologies and 
wind power systems for the multi-generation of hydrogen, electricity, 
heating, and cooling from techno-economic-environmental viewpoints. 
An innovative multi-generation system based on a wind turbine and 
high-temperature solar collector integrated with a CuCl2 thermochem-
ical hydrogen cycle was introduced and analyzed by Ishaq et al. [20], 
obtaining an acceptable performance efficiency of 50 %. Hasan and 
Genç [21] assessed the economic aspects of a hybrid solar-wind system 
combined with electrolyzers. According to their results, the hydrogen 
generation cost could be reduced by around 0.03 $/m3 by selling the 
surplus power to the local electricity grid. In another study, Wang et al. 
[22] proposed a green thermochemical hydrogen cycle based on trough 
collectors and wind powers and achieved an annual carbon dioxide 
reduction rate of 835 tons. Al-Buraiki and Al-Sharafi [23] designed a 
wind-solar system based on hydrogen production and consumption for 
Dhahran city, Saudi Arabia. According to their outcomes, the suggested 
system could supply the building’s electricity demand independent of 
the electricity network with a significant carbon dioxide emission 
reduction of 9.6 tons for 1 year. A novel off-grid power system driven by 
photovoltaic panels and wind turbine charging the fuel cell for power 
generation and electrolyzer for hydrogen production was introduced by 
Wang et al. [24], obtaining >10 kW and 0.22 kg/h power and hydrogen 
production with the efficiency of 57 %. 

Among different energy systems, fuel cells are the most effective 
device for converting the chemical energy of various fuels like hydrogen, 
natural gas, and syngas directly into useful electricity and heating in a 
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wide range of applications [25]. In comparison to typical combustion 
engines, fuel cells have reduced costs and emissions and improved 
dependability and overall efficiency. Alkaline fuel cells (AFCs) have 
several advantages over other types of hydrogen fuel cells, including the 
ability to operate at higher efficiencies and lower temperatures, as well 
as being less sensitive to fuel impurities and being well-suited to dy-
namic operating modes [26]. Wei et al. [27] investigated the thermo-
dynamic aspects of adding AFCs to a combined system driven by solar 
panels and a wind turbine using TRNSYS software. The proposed system 
could produce >755 MWh of useful energy with an acceptable conver-
sion efficiency. Li et al. [26] introduced and evaluated a novel solar- 
based system consisting of an AFC and an electrolyzer. They demon-
strated that in addition to considerable electricity production with low 
exergy destruction, the waste heat of AFC could be used for the cogen-
eration of electricity through the Stirling engine and cooling via an 
absorption chiller. More recently, Wang et al. [28] presented a green and 
efficient system for electricity and cooling production and showed that 
the total efficiency of 77.5 % is attained thanks to the high hydrogen-to- 
electricity conversion rate and waste heat recovery from AFCs. Shen 
et al. [29] proposed a green and usable energy system based on 
hydrogen consumption/generation consisting of AFCs and an electro-
lyzer driven by a wind turbine. They showed that carefully balancing the 
quantity of electricity needed and the capacity of the AFC and wind 
turbine through proper sizing of the hydrogen storage tank would result 
in considerable primary energy savings and cost mitigation. The tran-
sient simulation of an off-grid solar-based hydrogen generation system 
integrated with AFCs to supply the electricity demand in northeast In-
dian states was investigated by Pal and Mukherjee [30]. They resulted in 
a low levelized electricity cost of 0.5 $/kWh, indicating the significance 
of efficient renewable integration. 

In addition to integrating renewable energy-driven devices effi-
ciently, and implementing performance improvement techniques, opti-
mizing the energy system is critical for attaining sustainability, 
enhanced performance, and low cost [31,32]. Izadi et al. [33] optimized 
a hybrid solar-wind system comprising a wind turbine, fuel cell, and PV 
panels for the cogeneration of electricity and hydrogen. They revealed 
that finding a proper tank size through a neural network-genetic algo-
rithm approach results in considerable power loss and carbon dioxide 
emission mitigations. Mehrpooya et al. [34] applied a genetic algorithm- 
based multi-objective optimization to find the best operating condition 
of a CHP system driven by PTC. Thanks to the optimization, they ob-
tained a higher efficiency of 19.5 % and a lower annual product cost rate 
of 3.8 million dollars. Sadeghi et al. [35] optimized a solar CuCl2 ther-
mochemical cycle through a non-dominated sorting genetic algorithm-II 
to maximize the exergy efficiency while reducing product energy costs. 
Lately, Alirahmi et al. [36] combined the artificial neural network and 
different multi-criteria optimization methods to find the best operating 
condition of a high-temperature solar-based hydrogen generation/stor-
age system considering the case of Los Angeles. Their outcomes 
concluded that the Pareto envelope-based selection algorithm II is the 
best optimization approach due to the lowest product energy cost and 
simultaneously highest exergetic round trip efficiency. Li et al. [37] 
optimized a hybrid wind- and solar-based energy system by applying an 
implicit stochastic optimization method. According to their outcomes, 
net energy generated and guaranteed rate were increased by 5 % and 4 
%, respectively. 

On the other hand, a high computation time is one of the significant 
challenges of optimization problems. An artificial neural network (ANN) 
strategy is implemented as a form of the machine learning model to 
solve the problem in the shortest amount of time [38]. Balafkandeh et al. 
[39] designed and optimized a hydrogen generation system equipped 
with fuel cells. They revealed that the combination of the machine 
learning approach and data-driven optimization results in considerably 
lower running time compared to the standalone optimization. Razmi 
et al. [40] implemented the artificial neural network in a PTC-driven 
hydrogen system, resulting in decreased optimization time. Behzadi 

et al. [12] recently applied the machine learning technique to optimize a 
solar-driven hydrogen production/usage system in a lower computation 
time. 

1.3. Scientific contribution 

In spite of the significant amount of effort and work that has been put 
into improving renewable-based multi-generation systems, the existing 
body of research is still struggling with a few serious challenges. The 
high investment cost that building owners must bear is one of the most 
challenging difficulties that solar-powered building energy systems must 
overcome. Even though this capital returns to the owners within a short 
time, the initial cost remains a significant obstacle. Improving the effi-
ciency of solar thermal systems and reducing heat loss is another critical 
problem that should be a top priority to lower trade barriers and 
improve high-quality products. In order to reduce the price of energy 
and boost the incentive to use renewable-driven technology, it is also 
necessary to implement active and passive energy enhancement ap-
proaches that are both desirable and realistic. One example of this would 
be making use of low-temperature waste heat. Achieving these targets 
will help ensure a sustainable shift to an efficiently integrated, cost- 
effective renewable-based energy system. The present paper in-
troduces an innovative and fully renewable-based cooling, heating, and 
power system driven by a high-temperature trough collector integrated 
with a thermochemical hydrogen cycle. The following is a list of the 
article’s significant contributions:  

• The system is equipped with an electrolyzer unit charged by a wind 
turbine to produce the extra hydrogen not only to reduce the solar 
system size but also to supply the demand when there is no solar 
availability.  

• An efficient hybridization of renewable energy sources (solar and 
wind) with hydrogen production/storage ideas is presented and 
thoroughly examined from techno-economic-environmental aspects 
to enhance grid reliability and peak load shaving.  

• Carbon dioxide is eliminated by using hydrogen rather than natural 
gas as a fuel cell’s primary energy source, making the suggested 
hybrid systems more environmentally friendly.  

• The waste heat recovery process as a passive energy enhancement 
method is added by exploiting the fuel cells’ extra heat to generate 
cooling via the absorption chiller and supply the heating demands 
through heat exchangers and thermal energy storage tank.  

• A rule-based control strategy is established to obtain a smart two- 
way interaction with electricity and district heating networks to 
effectively reimburse energy costs over the year. By this clever 
interaction, the battery with a high investment cost could be elimi-
nated, making the proposed system as inexpensive yet efficient as 
possible.  

• An artificial neural network is used for training, and an innovative 
grey wolf four-objective optimization technique that has not yet been 
utilized in any energy system is applied to contribute to Europe’s 
green transition in the most optimal way possible.  

• In order to ensure that the results are as thorough as feasible, the 
practicality of the proposed system under optimal conditions is 
assessed for a residential building complex in Lund, which has 
abundant solar and wind resources in Sweden. 

In essence, the comparison of the present work with the same system 
driven by solar and wind resources published in the literature is listed in 
Table 1. As indicated, the performance of the proposed model and 
similar systems is compared based on the energy source, useful products, 
modeling, controllers, optimization methods, and the number of objec-
tive functions. According to the table, none of the papers in the literature 
have investigated and optimized the hybridization of solar and wind 
resources for electricity/hydrogen/heating/cooling productions, 
considering four conflictive objectives. Another distinguishing 
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characteristic of the present work is establishing an optimal rule-based 
control strategy and machine-learning technique for cost reduction, 
energy saving, and running time mitigation. 

2. Methodology 

2.1. The proposed smart system 

Fig. 1 demonstrates the schematic representation of the introduced 
smart multi-generation system. As depicted, the solar energy absorbed 
by the high-temperature trough collectors as the primary mover of the 
system runs the thermochemical vanadium chloride cycle for hydrogen 
production. In order to reduce the solar system size and provide the 
building demands when there is no solar radiation, the wind turbine 
integrated with an Alkaline electrolyzer is added for extra electricity and 

hydrogen generation. Monitoring the hydrogen tank capacity, the 
auxiliary heater mode, and building electricity needs, the controllers 
determine whether the electricity generated by the wind turbine should 
charge the electrolyzer, run the auxiliary heater, supply the demand, or 
be sold to the local grid. According to Fig. 1, the hydrogen stored in the 
tank and the air consisting of nitrogen and oxygen go into the anode and 
cathode to start the thermochemical reaction for electricity generation 
in the Alkaline fuel cell. The produced electricity could either supplies 
the building’s demand or be sold to the local grid to compensate for the 
energy cost. Afterward, the waste heat of low-temperature outlet gases 
exiting the fuel cell is recovered in the heat exchanger to increase the 
cooling water temperature. Based on the cooling demand, the controller 
commands the flow diverter to transfer the hot water from the heat 
exchanger to the cooling or heating system. If there is a cooling need, the 
hot water drives the single-effect absorption chiller to satisfy the load. 

Table 1 
The comparison of the present work with similar systems in the above literature.  

Ref. Source Useful outputs Dynamic 
modeling 

Controller Machine learning-assisted 
optimization 

Number of objective 
functions 

Solar Wind 

[20] ✓ ✓ Electricity/hydrogen/heating × × × ×

[21] ✓ ✓ Electricity/hydrogen ✓ × × ×

[22] ✓ ✓ Electricity/hydrogen × × × 2 
[23] ✓ ✓ Electricity/hydrogen ✓ × × 1 
[24] ✓ ✓ Electricity/hydrogen/heating ✓ × × ×

[27] ✓ ✓ Electricity/hydrogen ✓ Traditional on/off × ×

[28] ✓ × Electricity/hydrogen/ 
heating/cooling 

✓ × × ×

[29] × ✓ Electricity/hydrogen ✓ × × ×

[30] ✓ ✓ Electricity/hydrogen ✓ × × 2 
[33] ✓ ✓ Electricity/hydrogen ✓ Traditional on/off ✓ 3 
[35] ✓ × Electricity/hydrogen × × ✓ 2 
[41] ✓ × Electricity/hydrogen ✓ × ✓ 2 
[37] ✓ ✓ Electricity ✓ × × 2 
[12] ✓ × Electricity/hydrogen/fresh 

water 
✓ Traditional on/off ✓ 3 

[40] ✓ × Electricity/hydrogen ✓ × ✓ 3 
The present 

work 
✓ ✓ Electricity/hydrogen/ 

heating/cooling 
✓ Rule-based advanced 

strategy 
✓ 4  

Fig. 1. Schematic representation of the studied hybrid system.  
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Otherwise, it goes into the botting cycle to meet the space heating or 
domestic hot water needs. Tracking the tank capacity and building 
heating demand, the controller ascertains the direction of the hot water. 
If the tank is not filled, the priority is to charge the tank and provide the 
domestic hot water need at 60 ◦C (assuming the case of Sweden) [42]. 
Otherwise, the hot water enters the space heating heat exchanger to 
provide the heating load or be sold to the local district heating network. 
In the space heating heat exchanger, the proportio-
nal–integral–derivative (PID) controller is implemented to regulate the 
cold side mass flow rate to obtain the supply temperature of 80 ◦C. As 
mentioned, the proposed smart system has a two-way interaction with 
the local energy networks. Therefore, the energy network supplies the 
building’s demand when there is no access to renewable resources and 
the hydrogen tank is vacant. Also, the battery, a significant component 
cost, might be deleted thanks to this ingenious strategy, resulting in 
lower investment costs and making the owner adopt renewable-based 
energy systems. 

2.2. The building case 

The studied building is a residential multi-family apartment located 
in Lund in southwest Sweden, with a high abundance of solar and wind 
resources compared to other cities. The building consists of 10 flats with 
an area of 150 m2 (10 m × 15 m) on ten floors. The heating and cooling 
loads are calculated using TRNBuild as a part of the TRNSYS package 
considering the room comfort temperature of 23 ◦C for all seasons. For 
this, the necessary information, including building characteristics, 
comfort criteria, hourly variation of solar radiation, ambient tempera-
ture, and wind speed, are given as input to the software. Fig. 2 illustrates 
Lund’s hourly changes in ambient temperature over 1 year. The figure 
indicates that while the maximum ambient temperature reaches 26.9 ◦C 
in July (the warmest hour of 4839 h), it drops to − 13.85 ◦C in January 
(the coldest hour of 281 h). 

Fig. 3 illustrates the variation of solar radiation and wind speed 
range which are other required local information to perform the simu-
lation and calculate the demand profiles. Fig. 3(a) shows that the 
maximum solar radiation (788.5 W/m2) is attained in hour 4237 at the 
end of June. The figure further demonstrates that while for around 5 
months of the year, the maximum hourly solar radiation is below 500 
W/m2, it reaches acceptable high values from the middle of spring to the 
end of summer. What stands out from Fig. 3(b) is that the wind speed 
varies from 0.2 m/s to 20.1 m/s. Moreover, from the average wind speed 
of about 7 m/s, it can be concluded that Lund has a high potential for 
installing wind-driven technologies since, most of the year, the wind 
speed is above 4 m/s. 

2.3. Transient simulation 

The transient simulation is conducted by linking TRNSYS with the 
engineering equation solver (EES) program. TRNSYS software with 
various components, as a potent tool for modeling smart energy systems, 

has been used to design and validate mathematical models for trough 
collectors, wind turbines, electrolyzers, fuel cells, absorption chillers, 
heat exchangers, and thermal energy storage tank. Since there is no 
component for modeling the VCl cycle in TRNSYS, the EES program with 
an extensive library of thermodynamics properties of various fluids is 
applied to compute the mass and energy balance formulations of the 
heat-driven hydrogen production unit. In Fig. 4, the structure of the 
model in the TRNSYS simulation studio is illustrated. 

Table 2 describes the key components and their related TRNSYS 
models, including trough collector, VCl cycle, electrolyzer, fuel cell, 
hydrogen tank, power conditioner, wind turbine, absorption chiller, and 
hot storage tank. Moreover, the proposed smart system has several hy-
draulics components comprising pumps and valves. A single-speed 
pump with the ability to maintain a constant outlet mass flow rate is 
modeled by Type 114. In this component, the maximum mass flow rate 
is user-specified, and the maximum electricity use is determined by an 
input control signal with a value that ranges from one to zero. Types 11b 
and 11f represent the externally controlled tempering valve and flow 
diverter, respectively. It is possible to control the split ratio of outlets in 
type 11f using an input signal as well as a set point temperature. Type 11 
h is a tee piece that combines two separate water streams into a single 
stream. In order to establish an intelligent two-way interaction between 
the system and energy networks and develop a rule-based strategy, 
several controllers, including hydrogen, ON/OFF, and PID controllers, 
are used, as depicted in Fig. 4. The hydrogen controller (type 100a) is 
implemented to cleverly monitor and manage the integration of the 
wind turbine, electrolyzer, H2 storage tank, and fuel cells as a part of an 
integrated mini-grid system. It is designed to work with variable power 
in two modes of operation. When the electrolyzer is ON, its set point 
power equals the maximum excess power from the wind turbine and the 
idle power. Otherwise, the electrolyzer is OFF, and the set point power is 
equal to the idle power. ON/OFF differential controllers (type 2b) create 
control functions with a possible value of one or zero determined by 
comparing the difference between upper/lower temperatures and two 
dead band temperature differences. At each timestep, the control func-
tion’s new value is determined by the preceding timestep’s input control 
function value. The hysteresis effect is created by connecting the con-
troller’s input control signal to its output control signal. However, 
hysteresis in this component can be achieved by using control signals 
from other components as the input controller. Besides, this controller 
includes a high-limit cutout for safety purposes. If the high limit con-
dition is surpassed, the control function will be reset to zero, regardless 
of whether or not there is a dead band. The PID controller (type 23) is 
applied to determine the control signal that is necessary to keep the 
controlled variable at the setpoint. The tracking error and its integral 
and derivative affect the control signal proportionally. It is based on 
state-of-the-art discrete algorithms for PID controllers and implements 
anti-windup for the integrator. 

Furthermore, Type 90 evaluates the wind turbine power output 
based on the power/wind speed characteristic curve provided by the 
manufacturers. Fig. 5 indicates the characteristic curve of a proposed 
wind turbine designed by the Wattuneed company and used for resi-
dential applications. According to the figure, at the speed of 13.54 m/s, 
the turbine power reaches the maximum value of 3500 W. The impact of 
air density variation and the wind speed increment with height change is 
also considered for turbine modeling. 

Finally, since there is no component to model the vanadium chloride 
cycle, its thermodynamic coding should be developed in external soft-
ware. Here, the thermochemical cycle’s mass and energy balance 
equations are computed in the EES program, linked to the TRNSYS 
through Type 166a. According to Fig. 6, this cycle consists of three re-
actions at different temperatures. 

According to Eq. (1), Vanadium (III) chloride is broken down into 
vanadium (II) chloride and chlorine gas. Eq. (2) indicates the second 
stage, in which the chlorine gas created in the first step combines with 
steam to form hydrogen chloride and oxygen gases (see Fig. 8). Fig. 2. The variation of ambient temperature over a year for the city of Lund.  
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Eventually, interactions between hydrogen chlorine gas and vanadium 
(II) chlorine in the solid form result in the production of hydrogen (the 
desirable element) and vanadium(III) chloride, as shown in Eq. (3) [12]. 

2VCl3(s)→2VCl2(s)+Cl2(g) (1)  

H2O(g)+Cl2(g)→2HCl(g)+ 0.5O2(g) (2)  

2VCl2(s)+ 2HCl(g)→2VCl3(s)+H2(g) (3) 

Table 3 indicates the input parameters required to perform the 
simulation in TRNSYS. The criteria for sizing the system are to supply 
the average annual electricity demand of the studied building complex. 
In this regard, the fuel cell system is first sized to generate the maximum 
electricity equal to the building’s average demand. Then, the size of the 
solar system and wind turbine is determined to produce the required 
hydrogen to charge the fuel cell and obtain a reasonable profile for 
electricity and heating production. 

2.4. Techno-economic-environmental indicators 

After performing a throughout transient simulation of the proposed 
smart system, the specific cost theory is applied to accomplish the eco-
nomic assessment. Based on the concept, the costs of each component 
are separated into two categories: operating and maintenance and 
capital investment, as shown in Eq. (4) [40]. 

Żk = ŻOM
k + ŻCI

k (4)  

ŻOM
k =

(γk
τ

)
Zk (5)  

ŻCI
k =

(
CRF
τ

)

Zk (6)  

CRF =
i(1 + i)n

(1 + i)n − 1
(7)  

where γ, τ, CRF, i, and n are the cost coefficient associated with the 
component’s operating and maintenance, the model’s operation hours 
over the year, the capital recovery factor, the interest rate, and the 
working years, respectively. In order to compute the component price at 
the present year, Marshal and Swift’s correlation is implemented as 
indicated below [43]: 

ŻPY
k = Żk ×

CIPY
CIRY

(8) 

In this equation, CIPY and CIRY are the cost indexes at the present and 
reference years, respectively. In the present study, CIPY equals 681.5, 
considering 2021 as the most recent year. The value/correlation of each 
equipment’s purchased cost (Zk) of the studied smart multi-generation 
system is listed in Table 4. According to the table, Ẇ, LHV, A, V, and 
Q̇ are the power production/usage, lower heating value, area, volume, 
and heat in kWh, kW, m2, m3, and kWh, respectively. Moreover, the 
interest rate, operating system years, and working hours are 10 %, 20, 
and 7446, respectively, as listed in Table 4. In the present study, the cost 
of replacing fuel cells is taken into account and assessed in the economic 
analysis. This is done assuming that fuel cells are operational for about 
20,000 h. 

Furthermore, as an essential economic indicator to analyze the cost- 
effectiveness of the proposed smart energy system, the total cost rate in 
$/h, which is the sum of component costs, is computed as follows: 

TCR =
∑nk

k=1
Żk (9) 

The total energies sold to and bought from the local electricity and 
district heating networks are calculated (Eq. (10) and Eq. (11)) to 
investigate the benefits of having two-way interaction with the grids to 
compensate for the energy costs and improve grid reliability and peak 
load shaving. 

Bought energy = ĖBought + Q̇Bought (10)  

Sold energy = ĖSold + Q̇Sold (11) 

In these equations, ĖBought and Q̇Bought are the electricity and heating 
bought from the local electricity grid and district heating network, 
respectively. ĖSold and Q̇Sold are the electricity and heating sold to 
regional energy networks. Moreover, the primary energy saving rate 
(PESR), which is a key performance metric, is computed to investigate 
and compare the proposed solar- and wind-driven system against the 
conventional system in Sweden with separate production as follows 
[47]: 

PESR =
FConventional − FSystem

FConventional × 100 (12)  

FConventional =
ĖDemand

ηEηgrid
+
Q̇Demand

ηHηgrid
(13)  

FSystem =
ĖBought

ηEηgrid
+
Q̇Bought

ηHηgrid
− ĖSold − Q̇Sold (14) 
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Fig. 3. The variation of a) solar radiation and b) wind speed over a year for the city of Lund.  
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where ηE, ηH, and ηgrid are the local plant’s electrical and heat effi-
ciencies and energy transmission efficiency. After calculating each 
components cost and primary energy saving, the annual cost savings rate 
is determined to compare the proposed renewable-driven system against 
the reference system as follows [47]: 

ACSR =
ACConventional − ACSystem

ACConventional × 100 (15)  

ACConventional = ĖDemand × celectricty + Q̇Demand × cheat (16)  

ACSystem =

(

ĖBought − ĖSold

)

× celectricty +
(

Q̇Bought − Q̇Sold

)

× cheat (17) 

In which, celectrcity and cheat are the prices for electricity and heat in 

Sweden, which are 175 $/MWh and 50.72 $/MWh, respectively [48]. 
Eventually, environmental assessment has become more critical than 
ever because of the alarming increase in environmental contamination 
and the potentially dangerous impact of global temperature increases 
caused by carbon dioxide emissions. The carbon dioxide emission 
reduction rate (CDERR) is estimated using Eq. (18) to compare and show 
the effectiveness of the suggested renewable-driven building multi- 
generation system against traditional systems [47]. 

CDERR =
CDEConventional − CDESystem

CDEConventional × 100 (18) 

Here CDEConventional and CDESystem are the emissions of the conven-
tional system with the conventional system and proposed renewable- 
driven smart model, expressed in kilograms, and are calculated as 

Fig. 4. The TRNSYS simulation studio project of the proposed smart multi-generation system.  
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follows: 

CDEConventional = ĖDemand × λelectricty + Q̇Demand × λheat (19)  

CDESolar =

(

ĖBought − ĖSold

)

× λelectricty +
(

Q̇Bought − Q̇Sold

)

× λheat (20) 

Sweden’s carbon dioxide emission indices for electricity (λelectricty) 
and heating (λheat) are 5.1 kg/MWh and 8 kg/MWh, respectively [49]. 

2.5. Optimization procedure 

Optimization aims to find the best possible operating conditions in 
terms of a set of restrictions or key parameters. In contrast to single- 
objective optimization, multi-objective optimization improves the 

concept of optimization by addressing many objectives simultaneously. 
Fig. 7 depicts the optimization strategy used in this study. As illustrated, 
TRNSYS (version 18) software and the EES (version 11.368) program are 
used to model the thermodynamic, economic, and environmental 
equations. However, since TRNSYS and EES cannot address multi- 
objective optimization problems, MATLAB (version 2021a) is used to 
implement the optimization procedure. An artificial neural network 
(ANN) technique is introduced to the optimization process because the 
coupling of TRNSYS-EES with MATLAB necessitates a considerable run 
time. ANN contains numerous processing elements that are inspired by 
the real neurons that make up the brains of mammals and birds. An ANN 
is a computer algorithm that relies on a network of interconnected 
neurons to transmit information back and forth. Because of its capacity 
to tackle nonlinear problems with high precision and low cost, ANN is 
widely used as a powerful computational method in various fields, 
including smart energy system optimization. The controlling mechanism 
used by ANNs seeks, through iterative repetition, the connections be-
tween the input, hidden, and output layers that have the greatest like-
lihood of success. According to Fig. 7, based on 1000 random input data 
points (the significant operational parameters), techno-economic- 
environmental analyses in TRNSYS-EES are carried out to generate the 
main objective functions (outputs). Subsequently, ANN with six hidden 
layers is used to fit the input and predict the output. This is followed by a 
training process determining the mathematical relationship between the 
design parameters and the anticipated objectives. Finally, in order to 
begin the optimization process, the multi-objective optimization 

Table 2 
The description of significant components and their corresponding model in 
TRNSYS.  

Component Type Description 

Trough 
collector 

1257 Type 1257 models the parabolic trough collector with 
maximum compatibility for high-temperature 
applications. It is separated into a series of nodes 
analyzed based on a user-defined time step. Assuming 
that the high-temperature fluid is incompressible, the 
properties only vary with the temperature, and its effect 
is described as a quadratic equation. The transient 
equation is solved numerically for all nodes through the 
second-order Runge–Kutta algorithm. 

Electrolyzer 160a This type simulates the alkaline electrolyzer by applying 
basic thermodynamics principles, heat transfer formulas, 
and chemical correlations extracted experimentally. The 
dynamic model is calculated through a current-voltage 
curve as a function of temperature for a given pressure 
and a Faraday efficiency correlation. 

Fuel cell 173a Type 173a models a low-temperature hydrogen-fueled 
alkaline fuel cell with air as the cathode agent using an 
experimental correction for the current-voltage 
characteristic at the cell’s operating temperature. 

Hydrogen tank 164a Type 164a simulates a compressed gas storage tank used 
in hydrogen storage and production systems based on the 
thermodynamic laws for an ideal gas. 

Power 
conditioner 

175b This type simulates a power conditioning unit to 
calculate the corresponding input power considering the 
known output power. The model is based on 
experimental efficiency curves for electrically 
converting/inverting direct current/direct current (DC/ 
DC) or alternating current/direct current (AC/DC). 

Absorption 
chiller 

718 Type 718 simulates a single-effect, hot water-driven 
absorption chiller reading catalog performance data 
provided by the user. Based on the present cooling 
capability, the machine delivers the user-specified set 
point temperature for the chilled water stream. The 
capacity is determined by the chilled water set point 
temperature and the temperature of the intake cooling 
water. 

Hot storage 
tank 

158 Type 158 represents a fluid-filled storage tank with a 
constant volume and vertical position. The fluid in the 
storage tank interacts with the surrounding environment 
and two flow streams that enter and exit the tank at any 
given time. The tank consists of isothermal temperature 
nodes to approximate the stratification seen in storage 
tanks. The user specifies the number of nodes to control 
the level of stratification in the tank. 

Auxiliary 
heater 

6 Type 6 simulates the electrically-driven auxiliary heater 
controlled either by internal or external function to raise 
the temperature of a stream to a user-specified value. 
This component operates like a furnace, generating heat 
at a maximum rate while keeping the outflow 
temperature below the set point value. 

Heat exchanger 91b Type 91b models the constant effectiveness heat 
exchanger. This component’s maximum heat transfer is 
computed using the minimum capacity rate fluid and the 
cold and hot fluids’ input temperatures independent of 
the system configuration.  

Fig. 5. The power curve of the proposed 3500 W residential wind turbine.  

Fig. 6. The pictorial representation of chemical reactions that occurred in the 
VCl cycle. 
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algorithm receives the extracted training network as a fitness function. 
The multi-objective grey wolf optimization (MOGWO) algorithm is 

applied to find the best sizing of the components considering four 
conflictive objectives simultaneously. These include minimizing the 
undesirable techno-economic metrics like the bought energy and total 
cost rate while maximizing the favorable performance and environ-
mental indicators such as primary energy saving and carbon dioxide 
emission reduction rates. The main design parameters for optimization 
and their domain are as follows: 

300 < fuel cell current (A) < 500. 
30 < collector length (m) < 45. 
40 < H2 tank volume (m3) < 70. 
5<fuel cell voltage (V)<7.5 
0.65<Electrolyzer electrode area (m2)<0.95 

The cooperative nature of grey wolves during the hunting process 
inspired the MOGWO technique as a powerful optimization tool. 
MOGWO beats other multi-objective approaches regarding techno- 

economic aspects, such as reliability, convergence, lower processing 
costs, and spacing. Recent research by Behzadi et al. [12] indicated that 
the multi-objective grey wolf method is superior to the non-dominated 
genetic and particle swarm optimization algorithms. The algorithm’s 
results are divided into three groups: alpha (α), beta (β), and delta (δ) 
wolves, with alpha wolves being the best. These wolves generate the 
Pareto frontier of the optimal solution points as they mimic and lead the 
optimization issue toward convergence. The optimization algorithm 
should first create and apply the following terms to describe the sur-
rounding behavior of grey wolves: 

D→=

⃒
⃒
⃒C
→
.X→P(t) − X→(t)

⃒
⃒
⃒ (21)  

X→(t+ 1) = X→P(t) − A→.D→ (22)  

A→= 2 a→. r→1 − a→ (23)  

C→= 2. r→2 (24) 

The current iteration is represented by t. The prey position vector is 
denoted by X→P while the single wolf position vector is denoted by X→. 
Moreover, A→ and C→ denote the coefficient-related vectors as follow: 

Table 3 
The input parameters used for the TRNSYS simulation.  

Parameter Value Parameter Value 

Solar collector Electrolyzer 
Collector width (m)  5 Electrode area (m2)  0.25 
Collector length (m)  38 Number of cells is series (− )  21 
Inner diameter of 

absorber tube (m)  
0.07 Number of stacks in parallel 

(− )  
1 

Focal length for collector 
(m)  

1.8 Maximum allowable current 
density (mA/cm2)  

300 

Mirror Accuracy (− )  0.98 Maximum allowable 
temperature (◦C)  

80 

Mirro reflectivity (− )  0.93 Minimum allowable cell 
voltage (V)  

1.4 

Envelope transmittance 
(− )  

0.96 Thermal resistance (K/W)  0.167 

Absorptance of receiver 
coating (− )  

0.95 Cooling water inlet 
temperature (◦C)  

15 

Number of collectors in 
series (− )  

0.5 Cooling water flow rate (m3/ 
h)  

0.25 

Number of collector 
nodes (− )  

0.05 Fuel cell 

Tracking efficiency factor 
(− )  

0.99 Number of modules in series 
(− )  

3 

Mirror cleanliness factor 
(− )  

0.95 Number of modules in 
parallel (− )  

2 

Receiver glass dusting 
factor (− )  

098 Electrode area (cm2)  1000 

Bellows shading factor 
(− )  

0.97 Faraday efficiency (− )  0.987 

Miscellaneous efficiency 
factor (− )  

0.96 Fuel cell voltage (V)  5.6 

Wind turbine Ohmic resistance (ohm)  0.0116 
Site elevation (m)  86 Minimum allowable cell 

voltage (V)  
0.1 

Hub height (m)  46 Fuel cell current (A)  401 
Number of the turbine 

(− )  
2 Hydrogen tank 

Site shear exponent (− )  0.14 Tank volume (m3)  70 
Thermal energy storage Maximum allowable pressure 

(bar)  
500 

Tank volume (m3)  3 Initial pressure level (− )  0.8 
Tank height (m)  1.8 Absorption chiller 
Number of tank nodes 

(− )  
6 Design capacity (kW)  7 

Top loss coefficient (W/ 
(m2K)  

0.7 Chilled water inlet 
temperature (◦C)  

12.2 

Edge loss coefficient (W/ 
(m2K)  

0.7 Cooling water inlet 
temperature (◦C)  

29.4 

Bottom loss coefficient 
(W/(m2K)  

0.7 Condensate outlet 
temperature (◦C)  

75 

Fluid thermal 
conductivity (W/(mK)  

0.62 Chilled water set point (◦C)  6.6  

Table 4 
The equipment’s purchased cost to calculate the operating/maintenance/in-
vestment formulas [43–46].  

Equipment Zk ($) 

Electrolyzer ZElectrolyzer = c1 × ẆElectrolyzer 

c1 = 1246 $/kWh 
Fuel cell ZFuel cell = c2 × ẆFuel cell 

c2 = 3115 $/kWh 
VCl cycle ZVCl = c3 × ṁHydrogen × LHVHydrogen 

c3 = 0.125 $/kW 
Trough collectors ZCollectors = c4 × ATotal 

c4 = 240 $/m2 

Wind turbine ZTurbine = c5 × NTurbine 
c5 = 8163 $/Number 

Hydrogen tank ZHydrogen tank = c6 × VHydrogen tank 

c6 = 245 $/m3 

Hot water tank ZWater tank = c7 × VWater tank 

c7 = 7872 $/m3 

Absorption chiller ZChiller = c8 × Q̇Cooling 

c8 = 707 $/kWh 
Heat exchanger ZHeat exchanger = c9 × A0.6

Heat exchanger 

c9 = 750 $/m1.2 

Pump ZPump = c10 × Ẇ0.71
Pump 

c10 = 3540 $/kWh0.71 

Valve ZValve = 140 $/unit 
Controller ZController = 276.6 $/unit 

i = 10 %, τ = 20, and n = 7446. 

Fig. 7. The optimization procedure applied to the proposed smart system.  
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A→= 2 a→. r→1 − a→ (25)  

C→= 2. r→2 (26)  

in which r1 and r2 are random vectors between zero and one. The 
MOGWO only considers the first three best solutions. Search agents are 
also required to adjust their positions following previously stated solu-
tions by this algorithm. The following equations must be used in the 
algorithm to keep track of the position: 

D→i =

⃒
⃒
⃒
⃒C
→

m.X
→

i − X→
⃒
⃒
⃒
⃒ (27)  

X→m = X→i − A→m⋅
(
D→i

)
(28)  

X→(t+ 1) =
X→1 + X→2 + X→3

3
(29)  

i could be alpha, beta, or delta, while m is 1, 2, or 3 for the alpha, beta, 
and delta wolves. Further details on grey wolf optimization can be found 
in Reference [50]. Finally, decisions are made using various criteria to 
find the best optimization point, which simultaneously meets conflicting 
objectives. In the present study, the TOPSIS technique as a multi-criteria 
decision-making method is used to finalize the optimization results. 
Yoon and Hwang [51] pioneered the use of the TOPSIS (Technique for 
Order Preference Similarity to Ideal Solution) method. The process of 
TOPSIS implementation consists of seven steps. First, a decision matrix 
for the ranking should be established. Then, the decision matrix is 
normalized as follows: 

rij = xij

̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i− 1
x2
ij

√

i = 1, 2,…,m and j = 1, 2,…, n (30) 

Third, the weighted normalized value of the decision matrix is 
evaluated as shown by Eq. (31): 

vij = rij ×Wj i = 1, 2,…,m and j = 1, 2,…, n (31) 

In this equation, Wj denotes the weight of the jth criterion. Afterward, 
the ideal and negative ideal solutions are determined as below, 
respectively: 

A* =
{(

maxvij | j ∈ Cb
)
,
(
minvij | j ∈ CC

)}
=

{
v*
j | j = 1,2,…,m

}
(32)  

A− =
{(

maxvij | j ∈ Cb
)
,
(
minvij | j ∈ CC

)}
=

{
v−j | j = 1,2,…,m

}
(33) 

Subsequently, the m-dimensional Euclidean distance should be used 
to compute the distances. The following criteria assess each option’s 
distance from the positive and negative ideal solutions: 

S*
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
vij − v*

j
)2

√
√
√
√ j = 1, 2,…,m (34)  

S−i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
vij − v−j

)2

√
√
√
√ j = 1, 2,…,m (35) 

Afterward, the relative closeness to the ideal solution is evaluated as 
follows: 

RC*
i =

S−i
S*
i + S−i

i = 1, 2,…,m (36) 

Eventually, the preference order will be ranked to determine the best 
optimization answer. 

3. Results and discussion 

TRNSYS software, which is distinguished by a wide library of com-
ponents for transient modeling of smart energy systems, is used to study 
the system’s performance from thermodynamic, economic, and envi-
ronmental points of view. In addition, a parametric analysis is carried 
out to investigate the impact of major design variables on key metrics 
from different aspects. Afterward, the grey wolf approach is used to 
apply four-objective optimization to the proposed system in order to 
increase primary energy saving and carbon dioxide emission reduction 
rates and simultaneously decrease cost rate and energy bought from the 
network. Besides, the scatter distribution of major design variables is 
shown to better represent the system’s behavior at the optimal condi-
tion. Finally, the hourly, monthly, and annual variations of significant 
performance indicators from various perspectives are analyzed for the 
optimal operating condition achieved by the grey wolf algorithm. 

3.1. Parametric results 

Since the collector’s physical appearances play a significant part in 
the solar system’s efficiency, Fig. 8 indicates the impact of collector 
length on bought energy, total cost rate, and primary energy saving and 
carbon dioxide reduction rate. 

The higher collector length results in more received solar radiation 
and, thereby a higher produced hydrogen by the thermochemical cycle. 
Therefore, the dependence on solar energy to fill the hydrogen tank 
rises, and the electrolyzer electricity use will decrease. Fig. 8 shows that 
the PESR and CDERR will increase about 17 % and 25 %, respectively, 
when the collector length increases from 30 m to 45 m. This is reason-
able because higher electricity is sold to the local network by decreasing 
the electrolyzer required energy (take a look at Eq. (12) and Eq. (18)). 
Fig. 8 further demonstrates that as the size of the collector gets larger, 
the total cost also increases by about 4 $/h, which is not ideal from an 
economic standpoint. This makes sense, given that the cost of purchas-
ing a collector rises in proportion to the area it covers. Eventually, from 
Fig. 8, it can be concluded that by increasing the collector length, the 
energy bought from the local electricity and heating networks over a 
year increases slightly (about 100 kWh), which is negligible. The 
importance of four-objective optimization, which identifies the ideal 
operating condition where all objectives are met, is revealed by the 
simultaneous increase in favorable (PESR and CDERR) and unfavorable 
(total cost rate and bought energy) indicators. 

In Fig. 9, the variation of bought energy from the networks, primary 
energy saving and carbon dioxide reduction rates, and total cost rate 
with electrolyzer electrode area is demonstrated. Fig. 9 reveals that the 
amount of energy bought from networks increases by about 150 kWh if 
the area rises from 0.1 m2 to 0.25 m2. This is justified because a bigger 

Fig. 8. The impact of collector length on techno-economic- 
environmental metrics. 
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electrode requires higher input electricity to split the water into 
hydrogen and oxygen. Therefore, extra required electricity must be 
supplied from the electricity grid (not the wind turbine) since the rest 
components’ size, including the wind turbine, is fixed. According to the 
figure, when the electrode area increases from 0.1 m2 to 0.25 m2, PESR 
increases to a certain value and then falls. The figure further depicts that 
the CDERR is highly sensitive to electrode area. In this regard, by 
growing the electrode area from 0.1 m2 to 0.25 m2, the CDERR increases 
0.5 %, then decreases by 0.25 %, and finally rises to 211.5 %. What 
stands out from Fig. 9 is that since CDERR and PESR vary by <1 %, it 
may be concluded that the electrode area does not affect these param-
eters. The figure finally presents that picking up a higher electrode area 
is not economically favorable due to the increment in the total cost rate. 
This is rational because the electrolyzer investment cost is directly 
proportional to the electricity use. 

Fig. 10 illustrates the variation of the proposed smart building energy 
system indicators from the techno-economic and environmental aspects 
with the hydrogen tank volume. The more hydrogen tank capacity leads 
to a lower electrolyzer power use, so more electricity generated by the 
wind turbine could be sold to the local grid. According to Fig. 10, the 
increase in hydrogen tank volume is techno-environmentally desirable 
because higher PESR and CDERR are achieved. The total cost rate, on the 
other hand, rises as the hydrogen tank’s purchasing cost rises with the 
tank’s capacity. As depicted, the total cost rate rises by about 0.2 $/h by 
increasing the tank volume from 40 m3 to 70 m3. Furthermore, it can be 
obtained that the system’s dependence on renewable resources will in-
crease because the bought energy is reduced by rising the tank volume. 

Furthermore, Fig. 10 demonstrates that the system’s reliance on 
renewable resources would increase because the bought energy is 
reduced by increasing the tank volume. The conflicting variance be-
tween the targets reveals the necessity of multi-objective optimization, 
such as increasing the total cost rate while lowering bought energy. 

The influence of fuel cell current on the proposed smart system is 
investigated and presented in Fig. 11. As shown, the current has a sig-
nificant impact on techno-environmental metrics. Higher hydrogen is 
consumed in the fuel cell by increasing the current from 300 A to 500 A. 
Therefore, a higher power is generated, and considerable electricity and 
heating could be sold to the local energy networks. According to Fig. 11, 
the increment of current leads to around a 50 % increase in PESR, which 
is significant. In addition, Fig. 11 exhibits that the majority of energy 
cost paid by the owner could be mitigated since the annual energy 
bought from local networks decreases by about 5MWh by picking up the 
fuel cell current. The figure further demonstrates that bringing the 
current up from 300 A to 420 A will increase the total cost rate. Ac-
cording to Table 4, this assertion is plausible because the formula for the 
purchasing cost of the fuel cell is proportionate to the power it generates. 
Subsequently, Fig. 11 shows that the total cost rate falls about 0.15 $/h 
when the current increases from 420 A to 500 A. This is defendable 
because the investment cost decrement of other components due to 
decreased size/energy is higher than the purchased cost increment of the 
fuel cell. Eventually, Fig. 11 indicates that when the current increases, 
the CDERR rises dramatically and subsequently decreases slightly. 

Fig. 12 shows the impact of fuel cell voltage, a crucial parameter that 
highly affects the fuel cell and the entire system performance from 
techno-economic and environmental points of view. A higher cell 
voltage leads to a higher power generated by the Alkaline fuel cell stack; 
ergo, the net electricity sold to the local grid will increase. Conversely, 
lower waste heat could be recovered from the fuel cell by increasing the 
cell voltage. Therefore, the net produced heating will decrease, and 
higher energy must be bought from the district heating network to 
supply the building’s load, as shown in Fig. 12. Moreover, the figure 
depicts that considerably higher PESR and CDERR of 65 % and 150 %, 
respectively, are achieved by increasing the cell voltage from 3.5 V to 
7.5 V because the increase in energy electricity sold to the local grid is 
higher than the increment of heat purchased from the district heating 
network. The rise in cell voltage is economically undesirable because of 
the fuel cell unitless investment cost growth, which is a function of the 
electricity production, as displayed in Fig. 12. According to the figure, as 
the cell voltage increases from 3.5 V to 7.5 V, the total cost rate increases 
from 16 $/h to 18.25 $/h. 

Fig. 9. The impact of electrolyzer electrode area on techno-economic- 
environmental metrics. 

Fig. 10. The impact of hydrogen tank volume on techno-economic- 
environmental metrics. 

Fig. 11. The impact of fuel cell current on techno-economic- 
environmental metrics. 
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3.2. Optimization results 

Following a thorough parametric analysis, the four-objective grey 
wolf optimization method is used in MATLAB to test the effectiveness of 
the proposed technique and identify the best possible solution points 
from various perspectives. Fig. 13 demonstrates the four-dimensional 
Pareto frontier diagram of techno-economic-environmental objectives 
comprising the total cost rate, bought energy, and primary energy saving 
and carbon dioxide emission reduction rates. As indicated, many con-
flicting optimum points can be found in the Pareto diagram, graded 
according to the strategies of the decision-makers. While the bought 
energy and total cost rate reach the maximum values of 15.5 MWh and 
13.6 $/h at Point A, the highest PESR and CDERR of 81.3 % and 238.5 % 
corresponds to Point B. According to Fig. 13, it is impossible to spot an 
optimal position with the greatest PESR and CDERR and the least total 
cost rate and energy bought from the local networks due to the con-
flicting values of objective functions. Hence, the optimum locations are 
ranked using the TOPSIS approach, a multi-criteria decision-making 
method, regarding their distance from the ideal and negative-ideal so-
lutions. Using this method, the best optimization point is the TOPSIS 
point (see Fig. 13), which simultaneously meets four conflicting 
objectives. 

Table 5 provides specific information regarding the values of the 
objective functions, the most important design parameters, and other 
performance indicators at Points A, B, and TOPSIS. According to the 

table, at the TOPSIS point, the optimum value of the total cost rate, 
bought energy, and primary energy saving and carbon dioxide emission 
reduction rates are 14.8 $/h, 24.9 MWh, 80.6 %, and 219 %. This 
condition is achieved by choosing the fuel cell current, electrode area, 
H2 tank volume, collector length, and fuel cell voltage of 303.3 A, 0.17 
m2, 49.7 m3, 30.2 m, and 6.4 V, respectively. However, the optimization 
results are constrained by several factors that make improving primary 
energy and CO2 savings difficult even when the cost rate and bought 
energy are brought down to the optimized levels. The first limitation is 
the amount of sunlight availability, in addition to the high rate of heat 
loss and low energy conversion rate that occurs within the solar system. 
The next limitation includes the decision parameters range that has a 
maximum allowable increase or decrease and is therefore fixed at a 
specific domain. 

In order to get a better insight into the distribution of optimum points 
across the population size, the histogram diagram is illustrated in 
Fig. 14. Fig. 14(a) demonstrates that the fuel cell current should be kept 
below 320 A to achieve the optimal techno-economic-environmental 
condition. What stands out from Fig. 14(b) is that the electrode area is 
insensitive since its optimal points are scattered throughout the whole 
domain. According to s 14(c) and 14(d), H2 tank volume and collector 
length are effective variables, and their change will substantially impact 
the performance metrics because the bulk of optimal points is close to 
the lowest range. Eventually, Fig. 14(e) shows that the fuel cell voltage 
optimum points are scattered between 3.5 V and 5 V, most of which are 
close to the lower limit. 

3.3. Transient results 

After the parametric study and four-objective optimization, hourly, 
monthly, and seasonal variations of significant performance indicators 
under optimal conditions are investigated in the following figures. As 
mentioned above, two-way interaction with the local energy networks 
through a rule-based controller strategy is one of the most important 
aspects of the proposed smart building system. For this, the hourly 
variation and time duration curve of the net energy sold/bought to/from 
the electricity and district heating networks are demonstrated in Fig. 15. 
According to the figure, most of the time (70 % of the year), the net 
energy is positive, which means that the proposed renewable-driven 

Fig. 12. The impact of fuel cell voltage on techno-economic- 
environmental metrics. 

Fig. 13. Four-dimensional Pareto frontier diagram of the total cost rate, bought 
energy, and primary energy saving and carbon dioxide emission reduc-
tion rates. 

Table 5 
Detailed optimization outcomes extracted from the Pareto frontier diagram at 
Pint A, Point B, and TOPSIS.   

Parameter Point A Point B TOPSIS 

Components’ best 
size 

Fuel cell current (A)  500  300  303.3 
Electrolyzer 
electrode area (m2)  

0.16  0.1  0.17 

H2 tank volume (m3)  43.5  70  49.7 
Collector length (m)  30  30  30.2 
Fuel cell voltage (V)  3.5  7.4  6.4 

Objective 
functions 

Total cost rate ($/h)  13.6  15.8  14.8 
CDERR (%)  107  238.4  219 
PESR (%)  56  81.3  80.6 
Bought energy 
(MWh)  

15.5  27.7  24.9 

Other 
performance 
indicators 

Hydrogen produced 
by electrolyzer (m3/ 
h)  

3755.8  1703.5  1663.2 

Hydrogen produced 
by VCl cycle (m3/h)  

19,671.6  19,671.6  19,796.2 

Power generated by 
fuel cell (MWh)  

1.8  40.6  32.9 

Power generated by 
wind turbine (MWh)  

17.5  17.5  17.5 

Cooling generated by 
chiller (MWh)  

9.8  9.8  9.8 

Total heat generation 
(MWh)  

57.3  25.6  32.3 

ACSR (%)  108.2  164.7  160.8  
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smart system can autonomously supply the building’s demand and sell 
the surplus production to the local network. The figure further depicts 
that while the maximum energy bought from the networks in the 
absence of solar and wind resources is 10.37 kWh, the highest value of 
energy sold reaches up to 20.55 kWh, which is considerable. 

Furthermore, it can be observed that the proposed system can sell at 
least 3.7 kWh electricity and heating to the local networks for >55 % of 
the year, revealing the significance of the proposed intelligent strategy 
to compensate for the building’s energy bill. From the hourly variation, 
it can be concluded that the building’s dependence on the local energy 
networks is higher in the cold hours since there is a lack of solar avail-
ability to run the smart system. Consequently, the net energy is below 
the x-axis in most of winter and autumn, as indicated in Fig. 15. 

In order to have a better overview of the effect of solar and wind 
availability on the proposed system’s performance, Fig. 16 presents the 
variation of average hourly net energy sold/bought to/from the net-
works over each month. According to the figure, the system must be 
wholly supplied by the local electricity and district heating networks 
because the average hourly energy is always negative in January and 
February. The figure further shows that the average hourly values are 
positive from April to October because abundant available solar and 
wind resources generate hydrogen for storage in the tank. Therefore, the 
proposed building energy system could not only operate off-grid but also 
sell the extra generation to the networks. According to the figure, the 
highest average hourly sold and bought energies are 9.139 kWh and −
5.465 kWh at 6:00 and 22:00 in July and January, respectively. 

Fig. 17 presents the monthly variation of hydrogen produced by the 
electrolyzer and VCl cycle to reflect the contribution of solar and wind 
resources in providing the building’s energy demand over the year. 
According to the figure, increasing the temperature and radiation from 
January to June increases the share of solar energy, and higher hydrogen 
is generated through the VCl cycle. From the figure, it can also be 
concluded that, in warm months, a higher power generated by a wind 
turbine is sold to the electricity grid since the solar energy can supply the 
H2 tank standalone. In contrast, the figure reveals that in cold months 
the share of wind energy in hydrogen storage is considerably higher than 
the solar resource. It demonstrates the importance of hybridizing two 
different renewable resources to obtain a building energy system with 
the lowest dependent on local energy networks. According to Fig. 17, the 
contribution of wind energy to hydrogen production is >75 %, 45 %, 
and 25 % in January, February, and March, respectively. 

Fig. 18 indicates the monthly and seasonal power and heating gen-
eration via renewable resources for the proposed building energy system 
in Lund, Sweden. According to the figure, the highest monthly heating 
and power production of 19 MWh alludes to August. The figure further 
shows that the minimum monthly heating and power generation of 2.6 
MWh are attained in January. Moreover, Fig. 18 reveals that while the 
highest total renewable energy of 48.7 MWh is produced during the 
summer, the minimum seasonal generation corresponds to winter with 
the value of 8.6 MWh. 

As previously noted, compared to conventional systems, environ-
mental friendliness is one of the superiority of the proposed smart 
building system because it does not use fossil fuels for power, heating, 
and cooling needs. Fig. 19 illustrates the techno-economic- 
environmental benefits of the proposed smart system considering a 
neighborhood with 100 building complexes in Lund. According to 
Fig. 19, the suggested smart system has several environmental advan-
tages. In Sweden, for every MWh of electricity and heating produced, 
CO2 emissions of 8 kg and 5.09 kg are generated in the traditional system 
[49]. Therefore, using the suggested smart system for the Lund case 
study can minimize 13,920 kg and 47,838 kg of CO2 emissions for 
electricity and heating generation based on an annual total electricity 
and heating production of 1740 MWh and 9380 MWh, respectively. 
Moreover, it is estimated that each kilogram of CO2 emissions costs 
0.125 dollars to the environment, considering Sweden [52]. In other 
words, establishing the proposed system saves the environment 7719 

Fig. 14. The histogram diagram of the main operational parameters.  

Fig. 15. The hourly variation and time duration curve of net energy sold/ 
bought to/from the networks. 
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dollars a year for electricity and heating production, equivalent to 
adding 6.9 ha of new green space and plants, as depicted in Fig. 19. 

4. Conclusion 

This paper present and thoroughly investigates an innovative, clean, 
and effective smart hydrogen production/storage system driven by solar 

and wind resources for shaving the peak load and stabilizing the grid. A 
rule-based control method is created to establish an intelligent two-way 
interaction with district heating and electricity networks to offset the 
yearly energy costs and motivate householders to move toward their 
own renewable-based energy plant. Moreover, as a passive performance 
enhancement approach, the low-temperature waste heat is recovered 
from the Alkaline fuel cells to provide the heating and cooling demands. 
The practicality of the suggested system is evaluated for a multi-family 
building complex in Lund, Sweden, from techno-economic and envi-
ronmental points of view. Transient simulation is performed through 
TRNSYS and the engineering equation solver program to calculate the 

Fig. 16. The monthly variation of net energy sold/bought to/from the networks.  
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Fig. 17. The monthly variation of hydrogen produced by the electrolyzer and 
VCl cycle. 

Fig. 18. Monthly and seasonal variations of heating and electricity produced 
by renewable resources. 
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most significant performance indicators and compare them with the 
existing system. Subsequently, the smart system is optimized via an 
artificial neural network combined with the grey wolf algorithm in 
MATLAB software to mitigate the system’s cost while improving the 
techno-environmental conditions simultaneously. The main outcomes 
could be outlined as follows:  

• The simultaneous increase in desirable (primary energy saving and 
carbon dioxide emission reduction rate) and unfavorable (total cost 
rate and bought energy) indicators highlights the significance of 
four-objective optimization to meet more than three conflictive 
metrics.  

• The optimal values for primary energy saving, carbon dioxide 
emission reduction rate, total cost rate, and the bought energy at the 
four-objective optimization point using the grey wolf optimizer are 
80.6 %, 219 %, 14.8 $/h, and 24.9 MWh, respectively. 

• What stands out from the scatter distribution of main design pa-
rameters the electrode area is insensitive because its ideal points are 
dispersed throughout the entire domain. However, it is recom-
mended to maintain the H2 tank volume and collector length at their 
minimum levels.  

• Thanks to the two-way interaction with the local energy networks via 
a rule-based control strategy, the suggested renewable-driven smart 
system can autonomously supply the building’s needs and sell the 
excess production to the local network at 70 % of the year.  

• In the winter, wind energy constitutes a far larger portion of 
hydrogen storage than solar energy, highlighting the benefits of 
integrating different renewable energy sources to create a building 
energy system that is least reliant on regional energy grids. 

• The proposed renewable-based smart system can reduce CO2 emis-
sions by 13,920 kg for electricity generation and 47,838 kg for 
heating generation, resulting in a reduction of 7719 dollars in 
environmental costs, equivalent to 6.9 ha of reforestation in Lund. 

Eventually, a couple of recommendations for continuing or 
improvement of the current research could be suggested as follows:  

• Performing exergy/exergoeconomic assessment to analyze and 
compare the proposed smart system from the irreversibility aspect.  

• Comparing the techno-economic-environmental indicators of the 
proposed model with the same system equipped with photovoltaic 
panels instead of the wind turbine.  

• Establishing advanced control approaches like model predictive 
control to more effectively monitor and manage the energy pro-
duction/usage/storage and different operation modes. 
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