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A B S T R A C T   

Improving the energy conversion efficiency of piezoelectric energy harvesters is of great impor-
tance, and one approach is to make more uniform use of the working material by ensuring a 
uniform strain state. To achieve better performance, this paper presents a four-point bending 
piezoelectric energy harvester with extensive investigation and modeling to identify the influ-
ential parameters. An electromechanical analytical model is presented and verified by experi-
mental data. The frequency-domain method extracts the solutions for a general time-variable 
force and impact. Four-point bending is compared with the standard cantilever harvesters 
regarding voltage generation, mechanical strain, and figure of merit. Strain contours are analyzed 
and interpreted for this innovative approach, and the power generation by the optimal resistance 
load is studied. Dimensionless parameters are introduced and investigated to find the optimal 
operating conditions for the four-point bending harvester. Finally, the four-point bending per-
formance and the best figure of merit are discussed with a view to the long-term fatigue life of the 
harvester. The results show that in the best four-point bending energy conversion conditions; the 
energy conversion coefficient is more than three times higher than that of typical cantilever 
energy harvesters. The results also illustrate that the axial strain experienced in a standard 
cantilever harvester is more than three times higher than that of the four-point bending harvester, 
suggesting the latter device may have favorable fatigue performance. Overall, the presented 
piezoelectric harvester has improved energy conversion efficiency and experiences a reduced and 
uniform surface strain, making it appropriate for high-efficiency energy harvesting systems.   

1. Introduction 

Piezoelectric materials, benefiting from electrical-mechanical conversion ability, act as actuators for electrical to mechanical 
conversion or sensors for mechanical to electrical conversion. The latter can also be used as energy harvesting devices by exploiting the 
generated electrical energy. Piezoelectric Vibration Energy Harvesting (PVEH) has received much attention from industrial [1] to 
biomedical [2] applications. By moving toward self-powered electronics by PVEH, electronic devices can be installed in remote areas 
using the wasted available energy, reducing pollution, production costs, and battery changing costs [3]. 

In the energy harvesting area, the piezoelectric energy harvester’s (PEH) power density, which is the power per unit PEH volume, is 

* Corresponding author. 
E-mail address: mad@energy.aau.dk (M. Khazaee).  

Contents lists available at ScienceDirect 

Journal of Sound and Vibration 

journal homepage: www.elsevier.com/locate/jsvi 

https://doi.org/10.1016/j.jsv.2022.117492 
Received 28 July 2022; Received in revised form 30 November 2022; Accepted 6 December 2022   

mailto:mad@energy.aau.dk
www.sciencedirect.com/science/journal/0022460X
https://www.elsevier.com/locate/jsvi
https://doi.org/10.1016/j.jsv.2022.117492
https://doi.org/10.1016/j.jsv.2022.117492
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2022.117492&domain=pdf
https://doi.org/10.1016/j.jsv.2022.117492
http://creativecommons.org/licenses/by/4.0/


Journal of Sound and Vibration 548 (2023) 117492

2

significant. The electrical energy generation over the PEH volume should be maximized for high power density. There is a direct link 
between the mechanical strain and the electrical charge flow in the piezoelectric material. In other words, piezoelectric strain cor-
responds to electrical energy generation. Efforts have been carried out to enhance power generation by changing strain, such as shape 
optimization [4] or nonlinear piezoelectric coupling with magnetic forces [4]. On the other hand, in the most used PEH configuration, 
the clamped-free beam, the strain is non-uniform and small on average over the whole volume [5]. The maximum strain is in the 
clamped-end region, gradually reducing to zero at the free-end. Thus, a significant harvester volume is ineffective due to the negligible 
mechanical strain. This low power density issue is specifically problematic where limited volume is available for the PVEH system 
installation [6]. 

There have been innovative approaches for improving strain distribution. Modifying the PEH’s stiffness by changing the Piezo-
electric fiber orientation in the piezoelectric composite harvesters has been investigated [5]. Although this method improved surface 
strain contour, manufacturing piezoelectric composites with non-zero fiber orientation is challenging, and commercially such samples 
are unavailable. Changing the location of the piezoelectric material in the cantilevered PEH will change the beam stiffness and affect 
the surface strain [7]; however, the non-uniform strain in the cantilevered PEH is still present. Strain-engineered material has also been 
proven effective [8]; however, these laboratory-manufactured materials are not available on large-scale. This work was also tested on a 
typical cantilevered PEH configuration suffering from non-uniform strain [8]. Nonlinear PEH with the nonlinear substrate structure, 
auxetic multiple-rotating-cube substrate [9], and perforated substrate [10] under the base excitation have improved PEH performance. 
Auxetic properties of the piezoelectric material [11] and piezoelectric thickness and poling direction [12] have also been investigated 
under the cantilevered boundary condition toward improving the PEH performance. Moreover, the PEH shape profile [13] can 
improve energy generation. The literature shows that most studies have tested or applied innovative PEH designs in the cantilevered 
boundary condition, even in the new bistable [14] and magnetic-piezoelectric coupled [15] systems. Clamped-clamped beams with a 
center mass have also been investigated in both flat-shape [9] and M-shaped configurations [16]. Therefore, it can be concluded that 
great attention has been given to the piezoelectric material development or PEH structure modifications for surface strain improve-
ment. In contrast, limited investigation has been given to finding a new setup or boundary condition. 

Providing a constant strain over the PEH surface can lead to better material usage and less strain concentration, leading to better 
energy conversion PEH efficiency. The present study introduces a new way to investigate the uniform surface strain by developing an 
innovative boundary condition configuration, which is different from the state-of-the-art, focusing on the material/layup improve-
ments. Four-point bending (FPB) is a boundary condition that provides uniform surface strain between the inner clamps; therefore, it is 
ideal for providing uniform conditions along the length of the PEH. The FPB boundary condition is the leading study focus and can be 
combined with state-of-the-art innovations in piezoelectric material [5,7] and geometrical [13,16]. The FPB-PEH has not been 
investigated, despite its great potential for energy harvesting technologies. The present study indicates improvement in the energy 
conversion efficiency of piezoelectric energy harvesters with the new FPB configuration and enhances the power density generation by 
piezoelectric materials. This innovative method with uniform surface strain is also significant because of reduced mechanical strain 
concentration, better long-term performance, and better usage of the piezoelectric material. 

The present study explores an innovative boundary condition for PEHs toward better performance by uniform power generation 
over the whole PEH surface. This study originates this boundary condition fundamentally, and since this paper’s focus is introducing 
this new boundary design, it studies a standard rectangular piezoelectric case study for sensitivity analysis. Nonetheless, the present 
fundamental idea can be applied to advanced piezoelectric materials (such as functionally graded piezoelectric [17] and piezo-
composite materials [18]) and configurations (such as non-uniform [19], variable thickness [20], and hybrid piezo-magnetic har-
vesters) for complex and high-performance energy conversion systems. Analytical modeling of the PEHs under the FPB condition is 
presented for a piezoelectric composite material. The rest of the study is categorized as follows. Section 2 first introduces the concept of 
FPB and its importance. Then, the electromechanically coupled analytical modeling of the FPB harvester is presented with closed-form 
solutions. Dimensionless parameters and a Figure of Merit (FoM) for the performance evaluation are presented. The results and dis-
cussions are presented in Section 3. The strain contours, the sensitivity analysis concerning dimensionless parameters, comparisons 
with the cantilevered-PEH, and the conversion performance of the FPB-PEH are discussed in Section 3. Concluding remarks and future 
directions are presented in Section 4. Comparisons of FPB and cantilevered PEHs show that the energy conversion efficiency of the FPB 
configuration is higher. The experimental tests were carried out to verify the FPB-PEH analytical model. The results also suggest an 
improved design of the FPB-PEH for better long-term working. 

2. Methodology 

2.1. A new energy harvesting configuration: four-point bending 

The cantilevered boundary condition is the most common configuration of PEH [21]; it has non-uniform stress and high-stress 
regions near the clamp line. These two conditions cause low power generation for low-stress areas, and structural failure becomes 
imminent for the high-stress parts, making the cantilevered configuration sub-optimal for energy harvesters. Here, numerical results 
from COMSOL Multiphysics software for the cantilevered beam are compared with the proposed new energy harvesting configuration. 
Both cantilever and FPB harvesters are analyzed under a static force considering electromechanical coupling effects. The top and 
bottom of the piezoelectric are covered by electrodes, providing a uniform surface voltage. 

Fig. 1(a) shows the von Mises stress of a cantilever PEH with 1 N tip static force, indicating a non-uniform stress distribution over 
the length; approximately one-third of the beam length is under high stress, and the rest is under low stress. This non-uniform stress 
distribution leads to non-uniform voltage generation in PEHs; a significant part of the beam does not contribute to the voltage 
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generation, which will be considered a nonoptimal material usage [5]. 
To overcome the non-uniform stress distribution, the four-point bending (FPB) boundary conditions are proposed. As shown in 

Fig. 1 (b), the PEH is under pin-pin boundary conditions, and the force is applied at two points from the top of the beam. The free 
diagram of the beam shows a uniform bending moment between the two top forces. Unlike the cantilevered beam, this uniform 
bending moment leads to a consistent voltage generation in PEHs. Thus, the proposed FPB boundary condition presents a better usage 
of piezoelectric material for energy generation. 

Apart from the uniformity, the stress amplitude near the cantilevered clamp is considerably higher than the FPB harvester. as can be 
interpreted from Fig. 1(a) and (b). Note that the local stress at single-point forces in FPB depends on the boundary condition; however, 
considerably lower than the stress near the cantilever harvester. Therefore, by the FPB design, minor stress is applied to the material 
under the same load, which may benefit the long-term fatigue life of PEHs. 

One can design various layouts for the FPB PEH. This study focuses on an impact force on the FPB configuration; thus, considering a 
simple but practical FPB configuration, a two-clamp design is a valuable way to apply the four-point mechanical boundary conditions 
in PEHs. The bottom clamp applies the pin-pin free-rotation boundary condition, while the top clamp is for using the load. This two- 
clamp configuration is shown in Fig. 2. The piezoelectric layer partially covers the substrate shim, so the applied force and the 
boundary clamps act on the substrate shim. These features avoid direct contact force applied to the piezoelectric material, which will 
be especially beneficial for fragile piezoceramics. 

By applying a dynamic force F(t) to the top clamp (TC), this force is divided into two forces FB(t) at point-B and FC(t) at point-C, 
where these forces are calculated from the dynamic equations. For the top clamp, it can be written that 

(
∑

Fz = m
∂2z
∂t2

)

TC
→ − F(t) + FB(t) + FC(t) = m

∂2z
∂t2 (1)  

(
∑

M = I
∂2θ
∂t2

)

TC
→ − F(t).U1 + FC(t).L = I

∂2θ
∂t2 (2)  

where M is the moment, m is mass, I is the rotation inertia, “COR” stands for the center of rotation, θ is the angular rotation around 
COR, and U1 is the distance between the applying force and COR in an asymmetric case. Note that COR is point-B in the setup shown in 
Fig. 2. According to Eqs. (1) and (2), the top-clamp mass and inertia effects should be considered for modeling purposes. In Eq. (2), 

Fig. 1. (a) Typical Piezoelectric energy harvester (PEH) and its von Mises stress under 1 N static force, and (b) Four-point bending PEH and its von 
Mises stress under a total static force of 1 N. 
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∂2θ
∂t2 ∕= 0 means that the top clamp rotates during the force application, which is undesirable. For having M = 0, the rotation inertia 
should be zero (trivial condition), or the clamp conditions should be symmetric. Therefore, the symmetric four-point bending energy 
harvesters were used in our experiments to minimize rotation, while the general unsymmetric case is considered for the mathematical 
modeling. 

2.2. Modeling the piezoelectric beam under the four-point bending condition 

2.2.1. Mechanical vibration equation 
This section presents the electromechanical-coupled vibration equation in the four-point bending (FPB) boundary condition. As a 

general case, the piezoelectric element is a multi-layered beam with active embedded piezoelectric layers. Thus, the vibration equation 
is first presented for a broad multi-layered beam, and later for cases of unimorph and bimorph, the detailed vibration equation is then 
examined. 

The FPB condition is shown in Fig. 3(a). The PEH rests on two pins. The beam is subjected to perpendicular time-dependent external 
forces, FB and FC, The piezoelectric beam in this boundary condition is a 31-mode energy harvester, where the poling is in the thickness 
direction (3 direction), and the mechanical strain of interest is in the length direction (1 direction). The two output PEH wires are 
connected to a purely resistive electrical load, RL. In this paper’s notation, δ(x) is Dirac delta function and U1 is the distance between 
the applying force and the center of rotation in an asymmetric case. Note that for the symmetric case U1 = U2 = L

2. 
The PEH’s cross-section for multi-layered, unimorph, and bimorph layup is shown in Fig. 3 (b). Note the neutral axis location, 

which affects the beam’s structural properties. The neutral axis is located at the substrate middle line for symmetric layups. The neutral 
axis location for nonsymmetric layups shall be calculated numerically from the material and thickness variables. 

The total force distribution along the beam can be expressed by: 

Q(x, t) = FA(t).δ(x) − FB(t).δ(x − a1) − FC(t).δ(x − (LT − a2)) + FD(t).δ(x − LT) (3) 

The force distribution can be further simplified using the relations between the FA, FB, FC, and FD components, as given by: 

Fig. 2. A two-clamp configuration for the FPB harvester.  
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Fig. 3. (a) Four-point bending piezoelectric energy harvester (FPB-PEH) and (b) side-view of the harvester with multi-layered, unimorph, and bimorph configurations.  
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Q(x, t) =
((

1 −
a1 + U1

LT

)

δ(x) −
(

1 −
U1

L

)

δ(x − a1) −

(
U1

L

)

δ(x − (LT − a2))+

(
a1 + U1

LT

)

δ(x − LT)
)

F(t) (4) 

The general equation of motions for a bending beam based on the Euler-Bernoulli beam theory can be expressed as [22]: 

∂2M(x, t)
∂x2 + C a

∂w(x, t)
∂t +m∗∂

2w(x, t)
∂t2 = Q(x, t) (5)  

where m∗ is the harvester mass per length expressed by m∗ =
∑N

i=1bhiρi. 
Internal bending moment, M(x, t), for a multi-layered harvester is calculated by the axial stress, as given by 

M(x, t) = − b

⎛

⎝
∑N

i=1

∫Z i+1

Z i

TxxZ dz

⎞

⎠ (6)  

wherein Z is the distance from the neutral axis and Txx is the axial stress. 
The axial stress (Txx) is related to the beam deformation w(x, t) by the constitutive and strain-deformation equations. The linear 

constitutive equations for the piezoelectric and substrate elastic layers are respectively given by [23] 

Tpxx = cE11εxx − e31Ez (7.a)  

Tsxx = Ysεxx (7.b)  

where εxx is the axial strain, Ez is the electric field, and e31 is the piezoelectric coupling coefficient. The terms in Eqs. (7.a) and (7.b) 
shall be further elaborated as follows:  

• εxx: In the linear framework of a pure bending beam, the axial strain at a certain level z from the neutral axis can be obtained from 
the beam curvature, as given by 

εxx(x, z, t) = − z
∂2w(x, t)

∂x2 (8)    

• Ez: Under a constant electrical field, Ez can be related to the voltage and piezoelectric layer’s thickness. The electrical field for a 
single piezoelectric layer is Ez = − VR

hp
. In the multilayer configuration, note the reverse electric field signs for the piezoelectric 

layers above and below the neutral axes. For series connection Ez = − VR
2hp 

and for parallel connection Ez = − VR
hp 

[24]. 

Substituting Eqs. (7.a), (7.b), and Eq. (8) into Eq. (6) gives the general form of the beam bending stiffness as: 

M(x, t) = YI
∂2w(x, t)

∂x2 + P VR(t)
(
H (x − xi) − H

(
x − xf

))
(9)  

where YI is the bending stiffness, P is the electromechanical coupling factor, and H (x) is the Heaviside function. Note that H (x − xi)

− H (x − xf ) ensures that the piezoelectric layer spans from xi to the xf . In our case studies, xi = 0 and xf = LT. 
Substituting Eq. (9) into the beam vibration equation, Eq. (5), the differential equations of motion can be expressed as a function of 

the relative beam deflection, as given by: (note that dH (x)
dx = δ(x)) 

YI
∂4w(x, t)

∂x4 + C a
∂w(x, t)

∂t +m∗∂
2w(x, t)

∂x2 + P VR(t)
(

dδ(x − xi)
dx

−
dδ

(
x − xf

)

dx

)

= Q(x, t) (10) 

The four-point bending (Fig. 3) boundary conditions for Eq. (10) are expressed with, 

At x = 0 →w(x= 0, t) = 0 and M(x= 0, t) = 0 (11.a)  

At x = LT →w(x=LT , t) = 0 and M(x=LT , t) = 0 (11.b) 

From the bending moment definition in Eq. (9), the bending moment boundary condition can also be given by: 

∂2w(x, t)
∂x2 |x=0, LT = −

P VR(t)
YI

(11.c) 

In practice, |P | is in the range of 10− 5 to 2 × 10− 5 C, and YI is in the range of 5 × 10− 3 to 2 × 10− 2 N.m2 for the unimorph and 
bimorph, respectively. These values suggest that | P VR(t)

YI | is negligible, at about 1% for a 10 V voltage generation (VR=10 V) for the 
unimorph and bimorph, respectively. Therefore, approximately, the bending moment boundary conditions can be simplified into 
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∂2w(x, t)
∂x2 |x=0 and LT = 0 (11.d) 

The beam deflection is expanded as an infinite series of mode shapes for solving the differential equation, Eq. (10), as given by: 

w(x, t) =
∑∞

n=1
Πn(t) ϕn(x) (12)  

where mode shapes, ϕn(x), should satisfy the boundary conditions, and Πn(t) is the time-dependent mode contribution. For the 
boundary conditions in Eqs. (11.a) and (11.b), the mode shapes are given by [25]: 

ϕn(x) = Cnsin
(

nπ x
LT

)

(13) 

Note that the modal orthogonality is satisfied by the mode shapes, i.e., 
∫LT

0

ϕm(x)ϕn(x)dx = δmn (Kronecker delta). The constant Cn is 

a normalization coefficient for satisfying modal orthogonality. For the symmetric boundary condition, the deflection at B and C are the 
same ([w@B = w]@C) and therefore, only the odd selections of n are valid. 

Substituting Eq. (12) into the differential Eq. (10) gives: 

m∗
∑∞

n=1
ϕn(x)Π̈n(t) + C a

∑∞

n=1
ϕn(x)Π̇n(t) + YI

(
nπ
LT

)4 ∑∞

n=1
ϕn(x)Πn(t) + P VR(t)

(
dδ(x − xi)

dx
−

dδ
(
x − xf

)

dx

)

= Q(x, t) (14) 

Multiplying Eq. (14) by ϕm(x)/m* from the left side and integrating from 0 to LT, Eq. (14) will simplifies to 

Π̈n(t) + 2ζnωnΠ̇n(t) + ω2
nΠn(t) + γnVR(t) =

1
m∗

σnF(t) (15)  

where ζn is the modal damping coefficient, ωn is the natural frequency and γn is the modal electromechanical coupling factor, which is 
given by: 

ω2
n =

(
n2π2

L2
T

)2YI
m∗

(16.a)  

ζn =
C a

2m∗ωn
(16.b)  

γn =
P

m∗

(
dϕn(x)

dx

]x=xf

x=xi

)

(16.c) 

For the force coefficient, there will be only two non-zero elements in Q(x,t), because ϕn(x = 0) = ϕn(x = LT) = 0; therefore, Q(x,t)
= −

( (
1 − U1

L

)
δ(x − a1) +

( U1
L

)
δ(x − LT + a2)

)
F(t). Consequently, the force coupling coefficient becomes: 

σn = −

((

1 −
U1

L

)

.ϕn|x=a1
+
U1

L
.ϕn|x=a1+L

)

(17)  

2.2.2. The electrical equation for voltage output 
The electrical equation for a single Piezoceramic layer is derived. Then, the equivalent electrical equation can be obtained ac-

cording to the electrical connections of multiple piezoceramic layers (series or parallel). 
According to Gauss’ law, 

d
dt

⎛

⎝
∫∫

A

D→. n→ dA

⎞

⎠ =
d
dt

⎛

⎝
∫∫

A

D3 dA

⎞

⎠ =
VR(t)
RL

(18)  

where D→ is the electrical displacement vector, A is the surface of one electrode, and n→ is the unit normal vector to the A. 
The piezoelectric constitutive equation for the electrical displacement states that [23] 

D3 = e31εxx + ϵ33Ez (19)  

wherein ϵ33, the permittivity constant at constant strain is obtained from the permittivity constant (ϵT
33) at constant stress by ϵT

33 = ϵ33 

− e2
31/cp

11. 
For a constant electric field across the piezoelectric thickness, the electric field in the z-direction is Ez = − VR

hp
. 

Substituting εxx in Eq. (8) into Eq. (18), Gauss’ law yields: 
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Fig. 4. (a) side-view of the unimorph and bimorph PEHs with (b) their equivalent circuits.  

M
. Khazaee et al.                                                                                                                                                                                                      



Journal of Sound and Vibration 548 (2023) 117492

9

ϵ33b
(
xf − xi

)

hp
dVR(t)

dt
+

VR(t)
RL

= − Z pe31b
∫xf

xi

∂3w(x, t)
∂t∂x2 dx (20) 

Note that Z p is the distance of the piezoelectric mid-plane to the neutral axis. Analogous to the load-capacitor electrical circuit 
equations, the piezoelectric capacitance coefficient from Eq. (20) is the multiplier of dVR(t)

dt . 
The mechanical coupling term of Eq. (20) is simplified using the modal expansion assumption in Eq. (12), as given by 

∫xf

xi

∂3w(x, t)
∂t∂x2 dx =

∑∞

n=1

⎛

⎝
∫xf

xi

d2ϕn(x)
dx2 dx

⎞

⎠Π̇n(t) =
∑∞

n=1

(
dϕn(x)

dx
]xfxi

)

Π̇n(t) (21) 

Therefore, the electrical equation is simplified to: 

CP
dVR(t)

dt
+

VR(t)
RL

= Ip(t) (22)  

wherein the piezoelectric layer capacitance (CP), the modal coupling factor (Λn), and the piezoelectric current source are respectively 
given by Eqs. (23)–(25). 

CP =
ϵ33b

(
xf − xi

)

hp
(23)  

Λn = − Z pe31b
(

dϕn(x)
dx

]xfxi

)

(24)  

Ip(t) =
∑∞

n=1
ΛnΠ̇n(t) (25) 

Eq. (22) is derived for one piezoelectric layer. An equivalent electrical circuit can be considered for multiple piezoelectric layers. 

2.2.3. Special cases of unimorph and bimorph harvesters 
The previous sections presented the analysis of multi-layered piezoelectric energy harvesters. In many practical energy harvesters, 

a single piezoelectric layer (unimorph) or double piezoelectric layers (bimorph) are employed; thus, these two cases are separated 
here. 

Fig. 4(a) shows the piezoelectric unimorph and bimorph harvesters’ side-view with the thickness properties. The neutral axis 
location is shown for them. Moreover, the electrical circuits for unimorph and bimorph (series and parallel connections) are shown in 
Fig. 4 (b). These different electrical circuits can be transformed into an equivalent circuit, allowing a unified electrical equation. 

The internal bending moment for the unimorph and bimorph is given by 

Unimorph : M(x, t) = − b

⎛

⎜
⎝

∫− Z b

− Z a

Tsxxzdz+
∫Z c

− Z b

Tpxxzdz

⎞

⎟
⎠ (26.a)  

Bimorph : M(x, t) = − b

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∫−
hs
2

−
hs
2 − hp

Tpxxzdz+
∫
hs
2

−
hs
2

Tsxxzdz+
∫
hs
2 +hp

hs
2

Tp
xxzdz

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(26.b) 

The bending stiffness and coupling factors for the unimorph and bimorph beams are simplified into:=

Unimorph : YI = b/3
[
Ys
(
Z

3
b − Z

3
a

)
+ cE11

(
Z

3
c − Z

3
b

)]
.

P = −
e31b
2hp

[
Z

2
c − Z

2
b

]
(27.a)  

Bimorph : YI = 2b/3
[
Ysh3

s

/
8+ cE11

((
hp + hs/2

)3
− h3

s

/
8
)]

(27.b)  

− Series Connection P =
e31b
2hp

[
h2

s

/
4 −

(
hp + hs/2

)2
]
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− Parallel Connection P =
e31b
hp

[
h2

s

/
4 −

(
hp + hs/2

)2
]

Regarding the electrical equation simplification for unimorph and bimorph, the distance of the piezoelectric center line to the 
neutral axis is Z p = (hs +hp)/2, and thus the coupling term in the electrical equation is: 

Λn = −

(
hs + hp

)

2
e31b

(
dϕn(x)

dx
]xf
xi

)

(28) 

The equivalent circuit elements for the unimorph and bimorph harvesters, as shown in Fig. 4 (b), are given by: 

UnimorphCP,eff = CP, Reff = RL (29.a)  

Bimorph in series connectionCP,eff = CP, Reff = RL (29.b)  

Bimorph in parallel connectionCP,eff = CP, Reff = 2RL (29.c)  

2.2.4. Closed-form solutions for the mechanical and electrical responses 
Frequency domain analysis is employed for the closed-form solutions under a general load. In the frequency domain analysis, it is 

considered that the external force is represented by a series of harmonic functions using the Fourier Transform (FT): 

F̂(ω) =

∫∞

− ∞

F(t) e− jωtdt (30)  

wherein F̂(ω) is the external force FT. 
In the linear framework, the mechanical displacement Π(t) and the output voltage VR(t) can be extracted by summing up the output 

from each harmonic ω, starting from − ∞ to + ∞. Individual harmonic components of mechanical displacement and voltage are 
denoted by ηω and VR,ω, respectively. Therefore, the overall mechanical vibration and electrical equations can be obtained by inte-
gration, as 

Π(t) =
∫∞

− ∞

Πωejωtdω ≅
∑∞

r=− ∞
Πωr .ejωr tΔωr (31.a)  

VR(t) =
∫∞

− ∞

VR,ωejωtdω ≅
∑∞

r=− ∞
VR,ωr .ejωr tΔωr (31.b)  

wherein Πωr is the mechanical response and VR,ωr is the piezoelectric voltage response due to a nominal harmonic excitation with ωr 

frequency. Note that the over-bar indicates the magnitude. 
For obtaining Πωr and VR,ωr , the harmonic solution of the piezoelectric energy harvester differential equations should be obtained. 

The governing differential equations are: 

Π̈n,ω(t) + 2ζnωnΠ̇n,ω(t) + ω2
nΠn,ω(t) + γnVR,ω(t) =

σn F̂(ω)

2πm∗
ejωt (32.a)  

CP,eff
dVR,ω(t)

dt
+

VR,ω(t)
Reff

=
∑∞

n=1
ΛnΠ̇n,ω(t) (32.b) 

By substituting series representations of the mechanical and the output voltage from (31), the steady-state relationships can be 
given by, 

(
ω2
n − ω2 + j2ζnωnω

)
Πn,ω + γnVR,ω =

σn F̂(ω)

2πm∗
(33.a)  

(
1
Reff

+ jCP,effω
)

VR,ω =
∑∞

n=1
jωΛnΠn,ω (33.b) 

Eliminating the mechanical response ηn,r between Eqs. (33.a) and (33.b), the output voltage can be expressed as, 

VR,ω =
F̂(ω)

2π Ψ
(
ω,Reff

)
(34)  

wherein Ψ(ω,Reff) is the energy conversion term defined by 
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Ψ
(
ω,Reff

)
=

1
m∗ jω

∑∞
n=1Λnσnαn,ω

1
Reff

+ jωCP,eff + jω
∑∞

n=1Λnγnαn,ω
(35) 

This energy conversion term is frequency- and load-dependent, in addition to depending on the material and geometrical prop-
erties. Furthermore, the mechanical frequency response function (FRF), αn,ω, is defined by: 

αn,ω =
1

ω2
n − ω2 + j(2ζnωnω)

(36) 

Substituting Eq. (34) into Eq. (33.a), the mechanical response can be obtained, as expressed by 

Πn,ω =
F̂(ω)

2π αn(ω)
[σn

m∗
− γnΨ

(
ω,Reff

)]
(37) 

Because of the FRF properties at the resonance αn(ωr = ωn)>>αn(ωr ∕= ±ωn) [26], the main contributions in the sampled frequency 
ωr are those at the natural frequencies of the harvester. This so called the modal assumption, implies that the contribution of me-
chanical and voltage responses of the piezoelectric beam is prominent at the modal frequencies. Considering the harvester’s natural 
frequencies, the αn and Ψ can be simplified by the modal assumption, as 

αn(ω=ωn) =
1

j
(
2ζnω2

n

) (38.a)  

Ψ
(
ω=ωn,Reff

)
=

1
m∗

∑

n=1,…,∞

∑∞
n=1

Λnσn
2ζnωn

1
Reff

+ jCP,effωn +
∑∞

n=1
Λnγn
2ζnωn

(38.b) 

In the impact case, the external force takes the form of a Dirac impulse function F(t) = F0δ(t − t0), and the Fourier Transform is 
F̂(ω) = F0e− jωt0 . By applying the modal assumption for the impact force, the force-normalized voltage output and the maximum beam 
deflection are given by, respectively 

VR(t)
F0

=
1

2π
∑N

n=1
Ψ
(
ωn,Reff

)
(39)  

w(x, t)|max
F0

∼
1

2π
∑N

n=1
αn(ωn)

[σn

m∗
− γnΨ

(
ωn,Reff

)]
(40) 

Wherein N is the maximum mode number in consideration. 
The force-normalized axial stress from Eq. (8) can be calculated using this beam deflection function, as given by, 

εxx(x, z, t)|max
F0

= − z
1
F0

∂2w(x, t)
∂x2 =

Z max π
2L2

T

∑N

n=1
αn(ωn)

[σn

m∗
− γnΨ

(
ωn,Reff

)]
(41) 

Two parameters are defined for assessing the FPB harvester performance: λ (the energy conversion index) and FoM (Figure of 
Merit). As a metric for demonstrating the voltage generation per unit strain, λ is defined as the ratio of open-circuit voltage to the 

Fig. 5. The reference four-point bending (FPB) Piezoelectric energy harvester and dimensionless parameters.  
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Fig. 6. (a) Experimental hammer setup for model verification and (b) two FPB cases with different force applying spans with the dimensionless parameters.  
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maximum strain, as expressed by 

λ =
VOC

max(εxx)
(42) 

A higher λ means higher voltage generation for a given strain on the PEH. Greater λ is advantageous for energy harvesting ap-
plications. Nevertheless, λ only considers the harvester’s performance, not the voltage generated. Thus, the FoM is defined as the 
product of λ and V; in other words, it is the product of voltage generation and energy conversion. For the sake of unit compatibility, the 
FoM is defined by the square root of the product, as given by 

FoM =
̅̅̅̅̅̅̅̅̅̅̅
λVOC

√
(43)  

3. Results and discussion 

3.1. The reference energy harvester 

The result section employs a reference energy harvester in the four-point bending (FPB) boundary condition. Fig. 5 shows this 
reference piezoelectric energy harvester sample and FPB condition with its dimensions. Moreover, the harvesters’ dimensionless 
parameters are defined to provide dimension-independent results. The energy harvester consists of a Macro-Fiber-Composite (MFC), a 
copper substrate shim, and a double-layer tape as the bonding layer. The impact is applied for two upper clamp spans, with a variable 
span, e.g., L. The reference energy harvester force span is L=90 mm (κ=0.83). For L> 85 mm, the impact force is not applied to the 
piezoelectric composite material, so there will be less local impact strain on the MFC and the bending moment over the MFC is 
constant. The reason for selecting MFC as a harvesting element is that the MFC is a flexible material, not fragile, with reasonably good 
conversion efficiency. The choice of the bonding layer is due to this material’s low material damping, as previously shown by the 

Table 1 
The comparison of undamped natural frequencies between the presented method, COMSOL software, and high-order Finite Element model [29].   

Undamped natural frequencies (Hz)   
COMSOL software Finite element numerical model The current method (presented in Section 2.2) Error (%) 

First bending mode 48.7 49.6 48.4 0.6 
Second bending mode 196.7 198.7 193.4 1.7 
Third bending mode 448.4 448.4 435.2 2.9 
Fourth bending mode 807.7 799.7 773.7 4.2  

Fig. 7. (a) A typical force and piezoelectric voltage measurements at κ =0.88 (L=90 mm) span, and (b) various impact force levels for κ =0.88 
(L=90 mm) and κ =0.44 (L=45 mm). 
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authors in Ref. [27], resulting in higher power output. 

3.2. The beam model verification by experimental and finite element results 

The presented FPB model is verified against experimental data in this section. The PEH rests on a two-round-end clip; therefore, the 
beam’s vertical motion is restrained, but the rotation is free. A two-round-end clip from the top applies the impact force (see Fig. 6). 
The upper clamp clip contacts the PEH only when providing the impact force, so the upper clip weight does not act on the PEH. A force 
transducer measures the hammer’s impact, and the National Instrument voltage input module measures the piezoelectric output 
voltage. Fig. 6(a) shows the hammer experimental verification setup. Two FPB cases have been applied to the unimorph reference 
harvester, shown in Fig. 6 (b). 

Specific experimental errors are common in this type of hammer impact. The exact impact locations are set visually and thus 
exposed to human error, as there might be slight differences in the intended and actual areas. Second, since there are two lines of 
contact on the upper clip for applying the load, if the upper clamp clip is not horizontal, the impacts from these two lines might not be 
transferred simultaneously. Third, the energy harvester weight is less than 0.007 kg, so there is a possibility that the harvester slips on 
the clamp or has in-plane motion. Lastly, even thin wires, the electrical connection wires can interfere with the harvester’s free vi-
bration after impact. The first and second errors can be diminished by careful test operator and modal hammer skills. The third and 
fourth errors are unavoidable, and their contributions shall be carefully tracked; however, by connecting thin wires, the wire effects 
can be reduced. 

The following material properties are employed in the modeling: The Young’s moduli are 24.8 and 111.4 GPa for the piezoelectric 
and substrate, respectively. The corresponding densities are 5540 and 8960 kg/m3. The damping coefficient is derived from the au-
thor’s previous experimental study on the same energy harvester sample [27] and considers frictional energy dissipation [28]. The 
relative dielectric coefficient and piezoelectric constant d31 are 1800 and − 170×10− 12C/N, respectively. 

For this energy harvester, the undamped natural frequencies from the current model are compared with COMSOL software and a 
high-order Finite Element model [29] in Table 1. The natural frequencies for the four bending modes agree with the error below 5%. 
Significantly, the first natural frequency has less than 1% error compared with the COMSOL software result. 

Hammer impacts were varied from small to significant impact magnitudes to study the piezoelectric output voltage resulting from 
the input force. Fig. 7(a) shows a typical force measurement for κ=0.88 (L=90 mm) span. The impact duration is approximately 0.05 s, 
and the voltage generation peaks after the impact. The force-time plot shows that the hammer impact force is a single hit, which 
corresponds to the analytical impact assumption. Fig. 7 (b) shows the impact force level at different tests κ=0.88 and κ=0.44. For 
κ=0.88, if the upper clamp span is close to the supports, the supports’ responses are more severe; therefore, the measured force on the 
hammer becomes larger. That is why the measured force for the κ =0.88 span is 1–8 N while for κ=0.44, the range is 0.2–1.1 N. 

Fig. 8 compares the model and experimental voltage data for κ=0.44 and κ=0.88 spans. Two trends are discernible: the linear 
voltage generation increases with force impact amplitude, and the span (κ) has the effect that smaller κ leads to higher voltages. Both 
trends agree with the presented model. The experimental data confirm that the peak generated voltage increases approximately 

Fig. 8. The comparison of FPB modeling results and experimental data under the impact with κ=0.44 and κ=0.88 spans.  
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Fig. 9. Strain contour in the reference FPB energy harvester over the length-thickness plane.  
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linearly with impact magnitude. The agreement between the model and data is reasonable for both κ=0.44 and κ=0.88 spans. In 
addition, the voltage generation for κ=0.44 is higher than for the κ=0.88 case because of the higher bending moment. This feature, 
further elaborated in Section 3.4, validates the model. 

3.3. Strain distribution in the FPB energy harvester 

The strain distribution is a metric for the voltage generated in the PEHs and can be employed to optimize the energy generation 
over the PEH volume. The strain distribution is dictated by the boundary conditions imposed on the PEH. Fig. 9 shows strain contours 
through the thickness and over the length of the harvester. As expected, the regions above and below the neutral axis have different 
signs since one area is under compression (negative strain), and one is under tension (positive strain). In addition, the greater distance 
to the neutral axis leads to greater strain magnitude; therefore, the axial strain at the MFC surface (piezoelectric layer) is maximum 
because of the MFC’s surface location and thickness. 

The mode-shapes impose onion-like layers in the strain contours (influenced by the boundary condition). These layered patterns are 
defined by the mode shapes, as depicted in Fig. 9, especially by the first mode shape, which is the most significant mode. Fig. 9 shows 
the strain patterns for three bending modes. Moreover, high strain values are found over most of the length of the PEH, ξ=10% to 
ξ=90%, and over 50% of the harvester thickness, thus occupying a considerable volume fraction of the PEH. Quantitatively, 48% of the 
piezoelectric volume is under at least 40% max(εxx); showing that in the FPB a significant part of the piezoelectric layer contributes to 
the energy generation. Note that the piezoelectric volume contribution to the energy generation is approximately 33% for the can-
tilevered boundary condition. 

Fig. 10. (a) Voltage and current outputs and (b) power output versus load for the reference FPB harvester.  
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3.4. Power generation and optimum electrical resistance load 

Voltage and current peak outputs for the reference FPB harvester are investigated by the presented model with different resistance 
load connections and plotted in Fig. 10(a). As expected, voltage and current have converse trends. The power generation versus 
resistance load is plotted in Fig. 10 (b). An optimum load leads to the highest power generation, similar to the typical power-load plots 
obtained for other piezoelectric energy harvesting systems. The maximum peak power under a unit impact was 6.7 mW/N2 with the 
optimum load of 29kΩ. 

3.5. Sensitivity analysis of the FPB energy harvester 

This section provides the sensitivity analysis of the FPB boundary condition parameters. Results are from the dynamic numerical 
solution of the analytical model for an impact force. Two dimensionless parameters are investigated, dimensionless force span κ and 
piezoelectric length Lp parameters. 

3.5.1. Effect of force span (L or dimensionless parameter κ) 
One central aspect of this FPB energy harvester is the top clamp span which affects the load transfer into the energy harvester and 

imposes notable change to the harvester dynamic. Thus, the effect of force span is studied here by varying the dimensionless parameter 
κ. 

For a static force, Fig. 11(a) and (b) compare the shear force and bending moment in the reference FPB harvester for the κ=0.88 
(reference harvester) and κ=0.44 cases. The bending moment in FPB from point B to point C is constant, depending on the force 
magnitude and acting distance, e.g., A-B distance (η). Since η κ=0.44 > η κ=0.88, the bending moment from B to C is greater for κ = 0.44. 
This is equally valid for the dynamic impact case. Recalling the modal force coefficient σn from Eq. (17), σn links to the mode shape at 
force contact points, e.g., ϕn|B and ϕn|C. Therefore, force contact points close to end-clamps have smaller modal force coefficient, 

Fig. 11. Comparing (a) shear force, (b) bending moment, (c) axial strain in the FPB, (d) maximum axial strain, and (e) beam deformation of the 
reference FPB harvester with κ = 0.44 and κ = 0.88 spans. 
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leading to smaller force transfer to the structure. 

σn = −

((

1 −
U1

L

)

.ϕn|B +
U1

L
.ϕn|C

)

(17) 

Thus, reducing κ will increase the bending moment and the axial strain on the PEH. This is shown in Fig. 11 (c), where the axial 
strain in different z is plotted for the κ = 0.44 and κ = 0.88 cases under a unit impact force. The strain contours have the same patterns; 
however, the strain amplitude for the κ = 0.44 case is considerably greater than the κ = 0.88 case. The axial strain depends on beam 
curvature and distance to the neutral axis, e.g. εxx∝z and εxx∝∂2w

∂x2 [30]. By distancing from the neutral axis, the axial strain increases 
linearly, and for a given z (distance from the neutral axis), axial stress depends upon the beam curvature. Thus, from beam deformation 

equation in Eq. (12), the axial strain has a sinusoidal form, e.g. ∂2w
∂x2 ∝sin

(
nπ x

LT

)
; therefore, is zero at the two external contact points and is 

maximum in beam mid-length. The strain contours are similar to the COMSOL software simulation of an FPB beam under 1 N static 
load in Fig. 1 (b). Fig. 11 (d) shows the axial strain for τ = 1 (maximum thickness), demonstrating that the axial strain resembles the 
beam curvature in Fig. 11 (e). 

Like the strain, the beam deformation is influenced by κ. The maximum deflection with κ = 0.44 is 1.61 mm, which is approxi-
mately four times greater than 0.41 mm for κ = 0.88. The more significant deformation and strain for smaller κ is due to the modal 
force coefficient given in Eq. (17). The variation of deformation and strain with force span is nonlinear, as the mode-shapes are 
nonlinear. 

If one is interested in the voltage generation per unit strain, the λ index can be compared between these two spans, as given in 
Table 2. Greater λ implies better use of material for energy generation. As presented in Table 2, λκ=0.88 is 25% greater than λκ=0.44, 
demonstrating that a better energy conversion performance is obtained for greater κ though the peak voltage is lower. These opposite 
trends indicate that the best energy conversion mechanism differs according to the objective of voltage generation or energy con-
version, and both aspects should be considered by designers. 

By investigating the variation of the λ =
Vp

max(εxx)
coefficient with the non-dimensional load span (κ), the best energy conversion 

design can be demonstrated. λ is plotted against the span κ in Fig. 12. By increasing κ up to 0.83, the λ coefficient increases, indicating 
that the energy harvester will generate a higher voltage per unit strain. However, for κ > 0.83, λ shows a slight decline. 

3.5.2. Effect of piezoelectric layer length (Lp or dimensionless parameter ϑ) 
Fig. 13(a) shows maximum power density under a unit impact for five different piezoelectric layer length values, characterized by 

ϑ= 0.75, 0.79, 0.83, 0.86, and 0.9. Note that the MFC-piezoelectric layer is symmetrically centered, and ϑ indicates the fraction of the 
harvester length occupied by the piezoelectric layer. Increasing the piezoelectric layer length means more piezoelectric material, 
generating more power. This expected power density increase is obvious in Fig. 13(a); increasing piezoelectric length increases the 
power density. In addition, the optimum load is slightly reduced by the piezoelectric length increase. 

A piezoelectric length increase will enhance the power density, as expected. However, this increase is not linear because of the 
nonlinear strain in the FPB harvester, as the 1st bending mode is shown in Fig. 13(a). The power density variation due to the 
piezoelectric size is also given in Fig. 13 (b); overall, increasing piezoelectric length by 3 to 4% increases the power density by over 

Table 2 
The PEH performance for κ = 0.44 and κ = 0.88 cases.  

Performance under the unit impact force max(w) max(εxx) Peak voltage Vp (V) λ =
Vp

max(εxx)

κ = 0.44 1.61 mm 4.32×10− 4 57.79 V 1.34×105 V 
κ = 0.88 0.41 mm 1.12×10− 4 18.81 V 1.68×105 V  

Fig. 12. The λ =
Voltage

Axial strain coefficient versus the span of applying force for the reference FPB harvester.  
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Fig. 13. (a) The optimum resistance load and power density for different normalized piezoelectric length values, ϑ= 0.75, 0.79, 0.83, 0.86, and 0.9, (b) power density versus ϑ, and (c) power density 
variation for different normalized piezoelectric length values. 
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10%. In addition, increasing the piezoelectric size changes the electromechanical conversion efficiency, leading to a slight reduction of 
the optimum load. 

3.6. Comparison of four-point bending and cantilevered harvesters 

This section compares the FPB energy harvester with the typical cantilevered harvesters concerning the mechanical stress and the 
harvester voltage generation. Results are calculated from the presented model under an impact force. 

Fig. 14 compares the performance of FPB and cantilevered harvesters; Fig. 14(a) indicates the voltage and maximum stress on the 
piezoelectric material, and Fig. 14 (b) presents the λ coefficient. The x-axis variable is the force span dimensionless parameter κ. 

From Fig. 14(a), in the FPB boundary condition, increasing the normalized force span, κ, reduces the force transmission to the 
energy harvester (applied load moves closer to supports), as described in Section 3.4. This phenomenon reduces the mechanical stress 

Fig. 14. The comparison between the four-point bending (FPB) and cantilevered harvesters versus the span of applying load, (a) voltage and 
maximum stress for the Piezoelectric layer, and (b) the λ =

Voltage
Axial strain coefficient. 
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on the piezoelectric layers and leads to voltage reduction. Note that for the extreme case of κ = 1, the inner and outer clamps reach 
each other; thus, force is not transferred to the harvester, resulting in zero voltage generation. On the other hand, in the cantilevered 
beam, increasing the force span increases the stress on the piezoelectric material (load moves away from support), leading to higher 
voltage generation. 

From Fig. 14(a), the maximum stress at the highest voltage generation in the cantilevered is 32.7 MPa/N, which is considerably 
higher than 12.9 MPa/N for the FPB harvester. Typical cantilevered harvesters under the base excitations work at the highest stress 
point. Moreover, the stress in the cantilevered harvester dramatically soars by changing the force span. Regarding the voltage gen-
eration, the maximum cantilevered voltage output is 13.5% higher than the FPB voltage output, though this increase comes with a 
price of withstanding a 250% higher mechanical stress. Overall, the power generation performance for the FPB harvester is comparable 
with that of the cantilevered harvester, while the FPB boundary conditions result in substantially reduced stress. 

As an energy conversion per unit strain metric, the λ coefficient is plotted in Fig. 14 (b) against the force span. Overall, λ for the FPB 
harvester is substantially higher than for the cantilevered harvester, demonstrating a better energy conversion in the FPB device. 
Moreover, λ is linked to the force span, increasing with span in the FPB harvester, while λ reduces with span increase for the 

Fig. 15. The overall performance of the presented four-point bending (FPB)-PEH in terms of (a) voltage generation, (b) energy conversion per-
formance (λ =

Voltage
Axial strain), and (c) Figure of Merit. 
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Fig. 16. A comparison of the strain between the proposed FPB and cantilevered energy harvesters.  
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cantilevered harvester. The cantilevered harvester undergoes smaller strain by reducing span. From the λ metric, the FPB harvester 
with κ=0.83 force span appears optimal. The best energy conversion coefficient is λ=1.67×105 V/ε for the FPB harvester, which is 
315% higher than the typical cantilevered harvester λ=0.54×105 V/ε. 

3.7. FPB conversion performance and figure of merit 

The overall performance of the FPB-PEH is demonstrated in Fig. 15 by plotting Voltage, λ (the energy conversion index), and FoM 
(Figure of Merit) versus the normalized force span. The best voltage generation with κ=0.1 corresponds to the lowest energy con-
version performance, meaning that a substantial part of the mechanical energy is wasted. On the other hand, the best energy con-
version (the highest λ) point generates small voltage compared to the maximum available voltage. Considering these two parameters, 
the best Figure of Merit (FoM) corresponds to moderate energy conversion performance and voltage generation. The maximum FoM 
occurs at κ=0.53, giving the energy conversion index of λ=1.45×105 V/ε and VOC=54.4 V/N. 

The energy harvester’s reliability is significant since autonomous self-powering systems require reliable long-term performance. 
Therefore, the harvester’s fatigue life plays a vital role in the harvester’s design. The reliable upper limit of the dynamic strain for the 
MFC is estimated to be 600 με, and above 1000 με cracks will initiate [31]. The accelerated life fatigue tests have demonstrated that 
reducing the applied stress by 21% can double an MFC’s cyclic life [32]. This study proposes a novel four-point-bend boundary 
condition that has reduced the applied strain. Thus, the presented FPB harvester may increase the cyclic life of piezoelectric energy 
harvesters. Fig. 16 compares the maximum strain for the FPB harvester and a typical cantilevered harvester. As shown in Fig. 16, the 
strain in the FPB harvester with the best Figure of Merit is ϵxx=374.5 με/N, while a typical PEH cantilever design has a strain value of 
above ϵxx=1214.9 με/N. Therefore, while the FPB harvester can withstand a safe cyclic life with 1.6 N load, a typical cantilevered 
harvester will be damaged by 1 N load. The strain in the piezoelectric material can be significantly reduced by this innovative 
boundary condition, while maintaining performance. Hence this will significantly improve the reliability of piezoelectric energy 
harvesters. 

This study introduces the four-point bending energy harvester (FPB-EH) as an important performance piezoelectric harvester and 
demonstrates the impact-based FPB-EH. This energy harvester setting can potentially apply in kinetic systems with considerable 
displacement/deformation. Fig. 17 shows the two such systems. In Fig. 17(a), the shaft rotation motion is converted to a linear motion, 
which acts as the impact on the FPB-EH sample. The Scotch Yoke mechanism can be designed to optimize power generation. Another 
potential application is the walking tile, Fig. 17 (b), where the walking force is applied as an impact to the FPB-EH. This method causes 
less stress on the piezoelectric material with a good energy conversion performance. 

4. Concluding remarks and future works 

This paper proposes a new piezoelectric energy harvester (PEH) design with a better energy conversion performance. The four- 
point-bend piezoelectric energy harvester (FPB-PEH) distributes strain more uniformly than typical cantilevered harvesters. This 
results in a reduced strain magnitude, demonstrating an improved use of the material for energy conversion. An electromechanical 
coupled model of the FPB-PEH and analytical expressions for the energy harvester’s voltage, mechanical deformation, and strain were 
obtained. The model has been verified against experimental data and Finite Element results. A reference FPB-PEH with one Macro 
Fiber Composite (MFC) piezoelectric layer was studied. 

Fig. 17. Prospect of applications for the FPB-EH, (a) rotating shafts by Scotch Yoke rotation-to-linear conversion and impact on the piezoelectric 
sample and (b) direct impact on the piezoelectric harvester, an example of walking tile. 
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Strain fields over the PEH volume were analyzed, and it was concluded that 48% of the piezoelectric contributes significantly to 
energy harvesting, which is a considerable improvement relative to a cantilevered PEH. An energy conversion coefficient per unit 
strain, λ, was used as a performance metric. Comparisons between the performance of the FPB and cantilevered PEHs were made, and 
the superiority of the proposed FPB was identified in energy conversion per unit strain and energy generation uniformity. The per-
formance metric λ was studied for the FPB and cantilevered PEHs under different applied load spans. Sensitivity analyses for the 
piezoelectric layer length, the piezoelectric layer’s location, and the applied force span were presented. This paper contributes to the 
development of better and more reliable piezoelectric energy harvesters and innovative designs for impact-based energy harvesters. 
More experimental investigations of the contact regions and clamp types are proposed for future work. Moreover, further studies on the 
parameters of the energy harvesters, such as thickness and multi-layered designs, and various material investigations are needed. 
Combining this innovative boundary condition with advanced piezoelectric materials and optimized geometrical configurations will 
help to elaborate this approach’s application. 
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