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A B S T R A C T   

In the residential sector, the building heating system is an energy-intensive consumer. Heat 
pumps are energy-efficient devices to integrate renewable power into buildings and provide 
flexibility for energy systems. Heat pump controllers assist in the release of flexibility potentials of 
thermal inertia and storage while meeting residents’ comfort. The heat controllers optimize the 
operation of building thermal dynamics which are stated by differential equations mathemati
cally. The differential equations include dynamic thermal characteristics, i.e., thermal resistance 
and capacity, which are specified by estimation methods. The precision of the estimation methods 
affects the operation of heat controllers significantly. In this paper, the dynamic thermal char
acteristics of residential buildings are estimated using two grey-box models, i.e., the Continuous- 
Time Stochastic Model (CTSM) and Bayesian Optimization (BO), in R and Python software, 
respectively. Then, the estimated thermal characteristics are exported to UPPAAL-STRATEGO 
software to unlock the heat-to-power flexibility of heat pumps. The heat flexibility is generated 
using the probabilistic FlexOffer concept considering uncertain weather variables. Finally, the 
suggested approaches are examined on a 150 m2 family house with four temperature zones. Based 
on the simulation results, the BO exhibits an average of 31% higher accuracy in the estimation of 
dynamic thermal characteristics than the CTSM. Also, the FlexOffer concept generates 39.03 kWh 
and 36.93 kWh energy flexibility for the residential building using the BO and the CTSM with a 
gap of 5.38%.  

Nomenclature** (In this table, the main notations of the mathematical models are stated. In some cases, to clarify the 
mathematical models, the notations are introduced right after the formulations in the body text) 

Acronyms 
ODE Ordinary Differential Equation 
S-SM Steady-State Methods 
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AM Active Methods 
W-BM White-Box Models 
B-BM Black-Box Models 
G-BM Grey-Box Models 
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MPC Model Predictive Control 
BO Bayesian Optimization 
CTSM Continuous-Time Stochastic Model 
SMBO Sequential Model-Based Global Optimization 
PDF Probability Distribution Function 
CDF Cumulative Distribution Function 

Indices/Sets 
n Index of rooms, n = 1, …,N 
t Index of time 

Variables and Parameters 
θa Ambient temperature (oC) 
mn Mass flow (kg/s) 
θn

in Inflow mass temperature (oC) 
θn

out Outflow mass temperature (oC) 
Cn

i Heat capacity of indoor air (kWh/oC) 
Cn

e Heat capacity of walls/envelopes (kWh/oC) 
Cn

h Heat capacity of heater (kWh/oC) 
Rn

i,e Heat resistance between indoor air and walls/envelops (oC/kW) 
Rn

i,h Heat resistance between indoor air and heater (oC/kW) 
Rna

e Heat resistance between envelope and outdoor (oC/kW) 
Rnz

e Heat resistance between common envelopes between rooms n and z (oC/kW) 
θn

h Temperature of heater (oC) 
θn

e Temperature of walls (oC) 
ρn Coefficient of solar irradiation captured by room n 
πn

S Power of solar irradiation (W) 
πn

h Heat consumption of heater (W) 
cm Specific heat capacity of thermal mass 
θn

i Indoor temperature of rooms (oC)  

1. Introduction 

1.1. Problem description and motivation 

By increasing the environmental concerns about climate change, the EU Commission is committed to emitting 55% fewer 
greenhouse gases by 2030 and becoming climate-neutral by 2050. To fulfill the aims, different energy sectors, including residential, 
industrial, agricultural, and commercial, should be decarbonized gradually. Generally, decarbonization is addressed for the economy 
and energy systems. The framework to decarbonize the economy aims to design and monitor policies to achieve climate change targets 
on one hand and boost social growth and cohesion on the other hand [1]. In energy systems, decarbonization aims to increase the 
penetration of low-carbon energy generation and a consequent reduction in the use of fossil fuels [2]. This increases the dominance of 
renewable energies, i.e., wind, solar power, and biomass. In 2020, residential buildings consumed 36% of global energy demand and 
contributed to 37% of energy-related CO2 emissions [3]. Therefore, to achieve the Paris Agreement, net-zero buildings [4] and 
building decarbonization are critical issues. 

In buildings, heating systems are energy-intensive consumers which contributed to 62.8% and 14.5% of EU household energy 
consumption for space heating and water heating in 2020, respectively [5]. Energy flexibility refers to the capability of energy con
sumers to modify their energy consumption, including shift, curtailment, and adjustment, in response to external signals based on their 
comfort preferences, activities, and socioeconomic factors. Based on IEA-EBC Annex 67 [6] and research study [7], “the energy 
flexibility of buildings must be harnessed across a cluster of buildings or at a district scale to provide an aggregated amount that is 
sufficiently impactful for the operation of energy grids”. 

To unlock the energy flexibility of heating systems, heat controllers can optimize heat consumption in response to renewable power 
availability on the supply side. Controllers satisfy the residents’ comfort while counterbalancing renewable power fluctuations. 
Mathematically, the heat controllers optimize the thermal dynamic of buildings by solving Ordinary Differential Equations (ODEs). 
The dynamic thermal characteristics, i.e., heat resistance and capacity, depend on the building component properties like insulation 
quality, envelope/wall material, and window dimension. The thermal parameters are specified for target buildings to design heat 
controllers. In this way, sensor data are used to train machine learning algorithms. The crux of the matter is that the estimated thermal 
dynamics affect the heat controller’s performance. To estimate dynamic thermal characteristics, two major issues are pointed out as 
follows: 
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(1) Building sensor data: a high volume of building sensor data is required to estimate the dynamic thermal characteristics. The data 
includes indoor air temperature, outdoor air temperature, solar irradiation, and heat energy consumption of the buildings. In 
Scandinavian countries, especially in Denmark, most buildings are supplied by district heating. Therefore, the buildings are 
equipped with radiators or floor heating. To calculate the energy consumption of radiators/floor pipes, more sensors should be 
installed to measure mass flow, inflow temperature, and outflow temperature. Generally, flow meters are expensive to install. 
Moreover, many residents are unwilling to install such sensors and reveal their occupancy patterns. As a result, it is quite 
complex to achieve such complete sensor data.  

(2) Estimation algorithms: apart from the sensor data, different methods are stated in the literature to estimate the dynamic thermal 
characteristics, including steady-state methods, dynamic methods, and active methods. Regarding the dynamic methods, white- 
box, black-box, and grey-box models are surveyed in the literature. Some estimation algorithms show higher accuracy and 
robustness against noisy sensor data. 

This paper takes advantage of (1) using a case study with complete sensor data (2) using two grey-box models to estimate the 
dynamic thermal characteristics. So, both the case study and the grey-box models are the positive points of the current study. These are 
the main motivations behind this study to develop machine learning-based algorithms for thermal dynamic estimation. Finally, the 
interactions between thermal dynamic estimation and energy flexibility of heating systems are investigated. 

1.2. Literature review 

In the literature, many studies have been conducted to discuss thermal dynamic estimation for residential buildings. Recently, heat 
controllers are more heeded to facilitate renewable power integration into heating systems. Many heat controllers optimize the ODEs 
of target buildings. The interactions of thermal dynamics and heat controllers are the cruxes of the matter. Regarding the thermal 
dynamic estimation, the building models are classified into three main categories as follows:  

1. Steady-State Methods (S-SM)  
2. Dynamic Methods (DM)  
3. Active Methods (AM) 

The S-SMs are applied to studies where simplicity is a key factor and a significant amount of input data is available. These are 
common approaches in standard protocols, e.g., ISO 8990 [8] and ISO 9869-1 [9], in experimental measurements of buildings pa
rameters. The average method and infrared thermography are two widely used approaches in this class [10]. The former uses averaged 
measurement data as an approximation under steady-state conditions [11]. The latter is addressed to estimate the thermal trans
mittance of building envelopes under stationary conditions [12]. 

In contrast to S-SMs, the DMs are introduced with more complexity and dynamics. In this method, the measurement data include 
more dynamic states and fluctuations in heat and temperature. Generally, the DMs are divided into three main categories as follows 
[13]:  

1. White-Box Models (W-BM)  
2. Black-Box Models (B-BM)  
3. Grey-Box Models (G-BM) 

The W-BMs are analytical approaches that normally include physical models and mathematical formulations of buildings. The 

Table 1 
Key characteristics of the estimation methods for building thermal dynamics.  

Estimation 
Method 

Key Factors Pros and Cons Research 
Studies 

S-SM Common approach for standardized methods and 
protocols  

(1) Simplicity  
(2) Require long measurement time series  
(3) Sensitive to weather conditions 

[23–25] 

DM W- 
BM  

(1) Physical and mathematical equations of 
energy systems  

(2) Analytical models  

(1) High computational cost  
(2) Strong relation between building size and computational 

time  
(3) Requires detailed information on the building’s structure 

and heating system 

[26–28] 

B- 
BM  

(1) Model-free approach  
(2) No physical models  
(3) Statistical or data-driven based models  

(1) Easy to model  
(2) Require a large amount of data to train the algorithm  
(3) Depends on a large amount of sensor data  
(4) Low applicability with data scarcity 

[29–31] 

G- 
BM 

Combination of physical and statistical approaches  (1) Most accurate and robust for building models  
(2) Improved performance of building models  
(3) Fit heat controllers, especially MPC 

[32–34] 

AM Using artificial thermal loads  (1) Faster convergence  
(2) Less sensitive to weather conditions  
(3) Require fewer input data 

[35–37]  
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constant parameters of mathematical formulations must be estimated; therefore, the complexity of the model increases with increasing 
the number of temperature zones [13]. Also, identification of the exact thermal dynamic is difficult due to data unavailability and noisy 
data [14]. An iterative reduction methodology is developed to reduce the model complexity of residential buildings using W-BM [15]. 
Meanwhile, due to model complexity, the computational time needed to solve the problem remains normally high. 

The B-BMs are known as mathematical model-free and data-driven approaches. These models are based on available data and are 
much easier to implement in comparison to W-BMs. The main limitation of B-BMs is that they need a large amount of building data to 
train machine learning algorithms. In practice, such sensors data may not be available due to limitations in sensors installation or 
residents’ consent. As a result, the application is mainly dependent on data availability. Artificial Neural Networks [16], Genetic 
Algorithms [17], and Support Vector Machines [18] are well-known approaches that are proposed in recent studies. 

The G-BMs are hybrid approaches that are a combination of W-BMs and B-BMs. The G-BMs are comprised of mathematical models 
and data-driven approaches to overcome the complexity of W-BM and the applicability limitation of B-BMs. The resultant building 
models from the G-BM approach are appropriate for heat controllers, especially Model Predictive Control (MPC) [19]. Moreover, the 
G-BMs provide the most accurate and robust building models in comparison to W-BM and B-BM [20]. 

In contrast to S-SM and DM, the AMs are using artificial thermal loads to achieve (i) less computation time and (ii) less sensitivity to 
weather conditions [10]. Harmonic thermal loads are addressed in a research study to estimate the thermal dynamics of buildings [21]. 
A triangular thermal load is used to estimate thermal resistance, capacity, and conductivity parameters [22]. Based on study results, 
the dependency on long input data and outdoor conditions decreases. To provide a general insight into the fundamentals of thermal 
dynamic estimation, Table 1 surveys the main characteristics of the aforementioned methods. 

The thermal dynamics of buildings are normally used in heat controllers to provide joint heat-power flexibility for upstream energy 
networks. In a residential building, the heat demand includes space heating [38] and hot water consumption [39]. To unlock heat 
flexibility, heat controllers encounter two different residents’ preferences including fixed temperature setpoints and flexible tem
perature intervals [40]. In the former, the controller aims to provide a fixed indoor temperature. As a result, low flexibility is expected 
from the residents’ behavior. Adversely, in the latter, the heat flexibility stems from the lower and upper thresholds of indoor tem
perature. The thermal inertia of buildings provides flexibility to maintain the indoor temperature within comfort bound [41]. In this 
state, when the heat network faces an energy shortage (excess) and/or when the energy price is high (low), the heat controller adjusts 
the indoor temperature close to the lower (upper) comfort bound [42]. In addition, thermal storage plays a key role in providing heat 
flexibility. Thermal storage devices, e.g., water tanks, can store heat energy when the energy price is low and supply the heat demands 
when the energy price is high [43]. 

Recently, an advanced controller is designed by a Matlab-TRNSYS co-simulator to apply predictive strategy planning models on the 
HVAC systems of residential buildings [44]. The MPC strategies are developed to harness the price and carbon-based energy flexibility 
of residential heating systems [45]. The simulation results showed a 16% reduction in the operation cost and a 10% reduction in the 
emission production. The rule-based control approach is addressed to improve the energy flexibility performance of an Italian resi
dential building [46]. Based on the results, the operation cost and CO2 emissions are reduced by up to 10% and 79%, respectively. The 
energy flexibility of residential buildings is evaluated in terms of comfort, capacity, efficiency, and shifting using short-term heat 
storage [47]. The simulation results revealed that the different scenarios of modulation cause cost saving from 3% up to 10%. 

Fig. 1 sketches the flexibility potentials of residential buildings in terms of space heating and domestic hot water consumption. 

1.3. Paper contributions and organization 

This study focuses on the interactions of thermal dynamic accuracy and energy flexibility of building heating systems. Also, the 
probability distribution of building energy flexibility is evaluated under uncertain weather conditions. To achieve the aims, this paper 
compares the competence of two grey-box models in estimating the thermal dynamic of residential buildings. The Continuous-Time 
Stochastic Model (CTSM) and Bayesian Optimization (BO) are applied to estimate the thermal parameters of the residential dwell
ing, including thermal resistance and capacity. Thermal dynamics are presented in the form of ODEs and developed mathematically to 
address the heat flux between internal envelopes of buildings with multi-temperature zones. The CTSM and BO are coded in R and 

Fig. 1. Heat flexibility of residential buildings stems from upper and lower thresholds of residents’ comfort.  
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Python software, respectively. The estimation results of the thermal dynamics are exported to the UPPAAL-STRATEGO software to 
generate FlexOffers for individual heat pumps. Also, it evaluates the impacts of the thermal dynamics estimation accuracy on the 
energy flexibility of the building heating system. The FlexOffers unlock the heat-to-power flexibility of the heat pumps by considering 
optimistic and pessimistic energy consumption patterns, i.e., lower and upper residents’ comfort thresholds. All in all, the main 
contributions of the proposed study can be stated as follows:  

1. Developing machine learning-based algorithms for thermal dynamic estimations for buildings with different temperature zones. 
The heat flux between internal envelopes is addressed in the thermal dynamic model.  

2. Comparing the accuracy of grey-box methods, i.e., the CTSM and BO, in estimating the thermal dynamic of residential buildings. 
The constant coefficients of ODEs are specified using the two methods and the results are compared.  

3. Unlocking joint heat-power flexibility of residential heat pumps through generating probability distribution of energy flexibility, 
called probabilistic FlexOffers, in the UPPAAL-STRATEGO software considering weather conditions uncertainty. The FlexOffer 
generates the probability distribution function of energy flexibility under uncertain weather conditions regarding minimum and 
maximum household energy consumption patterns.  

4. Investigating the impacts of thermal dynamics estimation accuracy on energy flexibility extraction from building heating systems. 
The energy flexibility of a Danish test house is quantified using the estimated thermal dynamics and the results are compared for the 
two grey-box models. 

The rest of the paper is organized as follows. In section 2, the problem methodologies are explained for the CTSM, BO, and FlexOffer 
generation approaches. Section 3 presents the case studies, discussion, and simulation results. Finally, Section 4 concludes the study 
and states the main limitations as well as suggestions for future works. 

2. Problem methodology 

In this section, the fundamentals of the suggested approaches are formulated mathematically. First, the ODEs of thermal dynamics 
are stated in section 2.1. This section elaborates on the mathematical formulations of thermal dynamics in buildings. The CTSM and BO 
are explained in sections 2.2 and 2.3, respectively. The two estimation methods are formulated mathematically. Finally, section 2.4 
illustrates the probabilistic FlexOffers. It describes how probabilistic energy flexibility is generated under uncertain weather forecasts. 

2.1. Thermal dynamics of buildings 

In this study, the dynamic thermal characteristics are referred to the thermal behavior of building components when it is subject to 
variable conditions, e.g., variable heat flow and boundary temperatures. The thermal dynamic model describes the mathematical 
formulations of the thermal behavior of the building which is stated in terms of ODEs. The ODEs are comprised of a set of dynamic 
thermal characteristics. The characteristics are classified into constant coefficients, i.e., thermal resistance and capacities, and ther
modynamic variables, i.e., the internal temperature of rooms and heat energy. The constant coefficients are estimated for buildings 
using two grey-box models. Then, they are used to calculate the thermodynamic variables of the building under different weather 
conditions. The thermal dynamic model of the buildings is presented in the form of the RC network based on frequent sensor data of 
heat consumption, indoor temperature, and weather conditions [48]. In the RC model, different parts of the buildings are described by 
specific elements, e.g., heat resistance and heat capacity. Considering a building with N rooms, in which n is the index of rooms, n ∈ 1, 
2, …,N, it is assumed that the target room n is surrounded by N − 1 internal envelopes and K external envelopes. The internal and 
external envelopes indicate the walls surrounded by other rooms and outdoors, respectively. Therefore, the building structure can be 
depicted in Fig. 2. 

Mathematically, the thermal dynamics of room n can be stated as the following ODEs [49]: 

Fig. 2. Schematic structure of the buildings with internal and external envelopes: room n at time t.  
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Cn
i ×

dθn
i

dt
=

(
1

Rn
i,h
×
(
θn

h − θn
i

)
+

1
Rn

i,e
×
(
θn

e − θn
i

)
+
(
ρn × πn

S

)
)
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dθn
e

dt
=

⎛

⎜
⎜
⎜
⎜
⎝

(
θn

i − θn
e

)

Rn
i,e

+
∑N

z=1

z∕=n

(
θz

i − θn
e

)

Rnz
e

+
∑K

k=1

(
θa − θn

e

)

Rna
e

⎞

⎟
⎟
⎟
⎟
⎠

(2)  

Cn
h ×

dθn
h

dt
=

(
θn

i − θn
h

)

Rn
i,h

+ πn
h (3) 

The ODEs (1)–(3) describe the θi θe θh approach of the RC network in which θi, θe, and θh stand for the indoor, envelope, and heater 
temperature, respectively. Ci, Ce, and Ch are the heat capacities of indoor air, envelope, and heater, respectively. Ri,h is the heat 
resistance between the indoor air and heater, and Ri,e is the heat resistance between the indoor air and envelopes. πS and πh are solar 
power and heat consumption, respectively. ρn states the fraction of solar power absorption and θa is the ambient temperature. 

In Eq. (1), the absorption of solar power is presented by the third right term. In Eq. (2), the second and third terms explain the heat 
exchange of room n with internal and external envelopes, respectively. In Eq. (3), the heat consumption of the heater affects the indoor 
temperature. Note that the heat consumption of the heater (radiators) is extracted from the following equation: 

πn
h = cm ×mn ×

(
θn

in − θn
out

)
(4)  

where θin, θout describe inflow and outflow temperatures, respectively; cm is the specific heat capacity of thermal mass and mn is mass 
flow. 

Eq. (4) describes the heat consumption of the heater based on mass flow and inflow/outflow temperature. 

2.2. Continuous-Time Stochastic Model 

In the ODEs, dynamic thermal characteristics, including heat resistance, heat capacity, and the fraction of solar power absorption, 
are dependent on the physical characteristics of the building, e.g., room dimension, quality of insulation, and envelope material. 
Therefore, the set of constant coefficients which are subject to estimation is stated as follows: 

Φ = {R,C, ρ}

s.t. ∀n = 1, ...,N : R ∈
{

Rn
i,h,Rn

i,e,Rnz
e ,Rna

e

}
, C ∈

{
Cn

i ,C
n
e ,C

n
h

} (5) 

To estimate the set Φ, the sensor data of the building is measured as follows: 

Ψ = {θ, π}
s.t. ∀n = 1, ...,N : θ ∈

{
θn

i , θa
}
, π ∈

{
πn

S, πn
h

} (6) 

The set of sensor data Ψ is used to estimate the set of thermal coefficients Φ. 
The CTSM is a grey box that combines the physical model of buildings with a statistical approach. The physical model includes the 

three ODEs Eqs. (1)–(3). The statistical approach, the so-called data-driven method, uses the information embedded in the sensor data. 
The data-driven approach addresses the discrete-time measurement as follows [48]: 

ψk = Tik + εk

s.t. ψk ∈ {Ψ}
(7)  

where k is the point in the measurement time, ψk is the measurement (sensor) data which is the indoor temperature, and εk is the 
measurement error. 

Afterward, the CTSM uses the maximum likelihood function to estimate the thermal parameters. Let us assume N measurements as 
follows: 

ψN = [ψN ,ψN , ...,ψ1,ψ0] (8) 

Then, the likelihood function is stated as a joint probability density function: 

L(λ;ψN)=

(
∏N

k=1
p(ψk|ψk− 1, λ)

)

p(ψ0|λ) (9)  

where p(ψk|ψk− 1,λ) is a conditional density stating the probability of measurement ψk given the previous observations and the pa
rameters λ and p(ψ0|λ) denote the initial conditions. Consequently, the maximum likelihood estimates of the thermal parameters are 
obtained as follows: 
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λ= argmax
λ

{L(λ;ψN)} (10) 

Due to the linear model, the density function Eq. (10) is considered a Gaussian. Kalman filter can be used to calculate the likelihood 
function. The abovementioned structure is discussed theoretically in the research paper [48]. Also, the CTSM software is developed by 
the Technical University of Denmark and is publicly available [50]. 

2.3. Bayesian Optimization approach 

Sequential Model-Based Global Optimization (SMBO) algorithms have been widely used in many applications [51,52] where the 
evaluation of the fitness function is expensive. In SMBO, the fitness function f: Rn → R is approximated by a surrogate probability 
distribution p(y|x) cheaper to evaluate. Fig. 3 shows the pseudo-code for a generic SMBO algorithm. In the algorithm, x represents the 
set of coefficients of the ODEs that is subject to estimation, equivalent to set Φ stated in Eq. (5), while f (x) represents the Root Mean 
Square Error (RMSE) between the estimated temperatures computed through the ODEs with coefficients x and the observed data. 
Parameter z is the number of iterations which is set to 10,000 in this study. The term GetBestY is a generic function that depends on the 
SMBO variant and it returns a scalar value among the f (x) collected in Δ. The core of the SMBO algorithm is the expected improvement 
which is stated in Line 5 of the pseudo-code. 

Classical Bayesian optimization algorithms [53] use Gaussian processes to model p(y|x) (see Line 5, Fig. 3), while in more recent 
methods such as Tree-structured Parzen Estimator (TPE) [54], the model is built by applying the Bayesian rule on p(y|x) = p(x|y)p 
(y)/p(x). Here, TPE is used and the conditional probability p(x|y) is defined as follows: 

p
(

x
⃒
⃒
⃒
⃒y
)

=

{
l(x) if y < y∗
g(x) if y ≥ y∗ (11) 

In TPE, the GetBestY in line 4 is replaced with some quantile γ of the observed y values in Δ, so that p(y < y*) = γ. In our case, 
parameter γ is set γ = 0.25. Furthermore, the expected improvement in Line 5 can be simplified as follows [54]: 

EI∗y [x]∝
(

γ +
g(x)
l(x)

(1 − γ)
)− 1

(12) 

By maximizing Eq. (12), it is possible to retrieve another set x* of ODEs’ coefficients, i.e., set Φ stated in Eq. (5). Note that ℓ(x) and g 
(x) are arbitrarily distributions depending on the observed x values in Δ. For ℓ(x) and g(x), an independent Parzen estimator is used for 
each coefficient. Since y* provides a partition of Δ, i.e., Δℓ and Δg, the Parzen estimators are constructed by summing and normalizing 
Gaussian distributions centered in each x in Δℓ and Δg, respectively. The standard deviations for the Gaussian distributions are set to 
the greater distances to the left and right neighbors but are clipped to remain in a reasonable range. 

2.4. Probabilistic FlexOffer generation 

“FlexOffer is the concept that has been developed in the EU FP7 project MIRABEL [55,56]. It allows exposing demand and supply 
loads with associated flexibilities in time and amount for energy trading, load balancing, and other use cases. FlexOffers are generic 
entities and can accommodate various types of consumers (e.g., electric vehicles, heat pumps, household equipment, industry) and 
producers (discharging electric vehicles, solar panels)”. A FlexOffer is characterized by a maximum and a minimum amount of energy 
that can be consumed (or provided) by a prosumer, and this flexibility is what is traded with other peers, including prosumers and 
energy service providers. Probabilistic FlexOffers are an interesting extension to this concept, where stochastic variables, e.g., weather 
conditions, are also kept into consideration during the FlexOffers generation process. Therefore, in this study, the energy bounds are no 
more deterministic but are described by a Probability Distribution Function (PDF). Regarding the probabilistic bounds, a success 
function is defined as follows: 

fsucc(x)=MinCDF(x) − MaxCDF(x) (13)  

where the MinCDF and MaxCDF describe minimum and maximum consumption distributions for energy input x associated with Cu
mulative Distribution Function (CDF). 

The success function states the probability that the consumption schedule associated with the given FlexOffers can be respected by 
the offering party. Fig. 4 gives a schematic insight into the probabilistic FlexOffer approach. 

The FlexOffer concept is coded in UPPAAL-STRATEGO. “UPPAAL is an integrated tool environment for modeling, validation, and 
verification of real-time systems modeled as networks of timed automata and is developed in collaboration between the Uppsala 

Fig. 3. Pseudo-code for Sequential Model-Based Global Optimization (SMBO) algorithms.  
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University, Sweden, and the Aalborg University, Denmark” [57]. “UPPAAL-STRATEGO facilitates the generation, optimization, 
comparison as well as consequence and performance exploration of strategies for stochastic priced timed games in a user-friendly 
manner” [58]. 

In this study, the building thermal dynamic model is mapped into timed automata and imported into UPPAAL-STRATEGO where 
the built-in query system allows the computing of the two consumption schedules. The consumption schedules maximize and minimize 
the electric energy consumption of the heating system, keeping into consideration the comfort constraints set by residents. The 
consumption strategy optimizations are constrained by the upper and lower thresholds of the indoor temperatures of the building 
rooms. Therefore, the queries used to generate these schedules are described as the following: 

In lines 1 and 2 of Fig. 5, two strategies are computed that respectively minimize and maximize the expected energy consumption, 
πh (kWh), for a time horizon equal to H (t = 1,2, …, H). Function E denotes the expectation operator. Then, in lines 3 and 4, the 
minimum and maximum values of the expected energy consumption are extracted by simulating the system evolution following the 
two strategies computed in the previous steps. The two simulations are run N times to evaluate the PDF of the FlexOffer energy bounds. 
To address the weather uncertainty, the baseline forecasted data, including the ambient temperature and solar irradiation, is blended 
with stochastic noise with limited error. Hereby, the Gaussian Distribution is addressed to generate the weather data stochasticity. 
Considering the aforementioned facts, the suggested approach takes the following steps to generate FlexOffers: 

Step 1. Receive the weather data forecast, including θa and πS, for the time horizon H, e.g., the next 24 h, from the meteorological 
office. 

Step 2. Add weather data stochasticity by a PDF, e.g., Normal Distribution with mean μ and variance σ2, to the forecasted data. 

Step 3. Set the indoor temperature θn
i to the lower threshold of residents’ comfort and calculate the minimum energy consumption of 

the heating system as min. E (πh) (optimistic energy consumption pattern). 

Step 4. Set the indoor temperature θn
i to the upper threshold of residents’ comfort and calculate the maximum energy consumption of 

the heating system as max. E (πh) (pessimistic energy consumption pattern). 

Step 5. Fit the PDF of the energy consumption for the minimum and maximum energy consumption patterns, i.e., Steps 3 and 4, to 
generate FlexOffers. 

Step 6. Calculate the energy flexibility potential of the heating system as the existing gap between the minimum and maximum 
energy consumption patterns: Energy Flexibility= (max. E (πh) – min. E (πh)) corresponding to Eq. (13). 

Finally, the whole procedure of the suggested approaches, from sensor data collection to generate FlexOffers, is described in Fig. 6. 

3. Numerical study 

In this section, the case studies and simulation results are presented. First, the test building, physical characteristics, and input data 

Fig. 4. Probabilistic FlexOffer with minimum and maximum consumption density distributions [61].  

Fig. 5. UPPAAL-STRATEGO optimization queries.  
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are described. Afterward, the thermal dynamics of the test building are estimated by the CTSM and BO approaches. Estimation ac
curacy is the core of comparisons. Finally, the estimated thermal dynamics are used to generate FlexOffers. The impacts of the thermal 
dynamic estimation on the energy flexibility of the test building are investigated. 

3.1. Case study and input data 

The test residential building is a detached Danish family house with four rooms, with an overall size of 150 m2. The building is 
comprised of a kitchen, living room, bedroom, and bathroom. Based on [59], building materials and parameter values are chosen 
following the Danish building regulations from 2010 [60]. Rooms 1,2, and 4 are wood flooring and room 3 is light concrete flooring. 
The height of the rooms is 2.5 m. Room 1 has two windows with dimensions of 6.5 × 2 m2 and 1 × 2 m2; room 2 has two windows with 
dimensions of 4.5 × 2 m2 and 1 × 1 m2; room 3 has one window with dimensions of 1 × 2 m2 and room 4 has two windows with 
dimensions of 1 × 2 m2 and 1 × 1 m2. The windows are double-layered with 80% transparency of the provided dimensions. The 
material of the walls is lightweight concrete plus insulation. The ceilings are made of gypsum and insulation. The model is extracted 
from the non-proprietary, object-oriented, equation-based modeling language Modelica [59]. 

Fig. 7 describes the floor plan of the test building with 4 rooms. In this study, in addition to the original 4-room plan, the internal 
envelopes between rooms are removed and a one-room building model is created. 

The input data include indoor temperature, mass flow, and inflow/outflow temperature as well as the weather data, including 
ambient temperature and solar irradiation. The data is recorded for one month (30 days) on a minute basis. Fig. 8 depicts a part of the 
input data for one week on an hourly basis. The input data include indoor air temperature, solar irradiation, and outdoor temperature. 

To investigate the competence of the estimation approaches, the test building is evaluated in two case studies:  

1. The building with four temperature zones, i.e., the original floor plan.  
2. The equivalent single-room model of the building. 

The former is normally used to design heat controllers. The temperature setpoints of rooms are defined separately based on oc
cupancy patterns and residents’ comfort. The temperature zones should be identified individually to unlock heat flexibility based on 

Figure:6. The integration of suggested approaches to generate FlexOffers for residential buildings.  

Fig. 7. The original floor plan of the building with 4 temperature zones.  
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occupancy patterns. In the latter, the test house is considered a single-room building with an average temperature for the whole in
ternal air. This model is addressed in heat network studies where the whole building is observed as a single heat consumer despite the 
different internal temperature zones. The assumptions of the case studies are stated as follows:  

1. The heat pump with 2.5 kW nominal power and a Coefficient of Performance (COP) of 3.7.  
2. The initial indoor temperatures of the 4 rooms are [20.2, 21.0, 19.8, 20.0] ◦C.  
3. The upper and lower thresholds of the indoor temperature are considered 18 ◦C and 22 ◦C, respectively. 

3.2. Simulation results 

In this section, two types of simulation results are discussed. First, the competence of the CTSM and BO approaches are compared to 
estimate the constant coefficients for the 4-rooms and single-room buildings. Afterward, the estimated coefficients are used to generate 
FlexOffers for the heating system. Both the CTSM and BO are trained with 15 days of input data and tested over the next 15 days. The 

Fig. 8. The input data of the test building for 4 rooms (a) Indoor temperature (b) Solar irradiation (c) Inflow/outflow temperature (d) Ambient temperature [62].  

Table 2 
The results of thermal coefficients estimation for the 4-room model conducted by the CTSM and BO.  

Coefficients Room1 Room2 Room3 Room4 

BO CTSM BO CTSM BO CTSM BO CTSM 

ρn 0.017 0.010 0.044 6.734e-08 0.049 0.051 0.054 0.008 
Mf n 3.405 3.542 12.260 7.768 5.114 2.962 21.738 19.344 
Ωn

ie 30.554 14.731 43.948 0.742 8.521 12.386 41.471 0.970 
Ωn

ih 14.131 11.063 13.143 2.588 9.948 12.401 18.972 2.371 
Ψn

e 6.940 2.728 99.935 42.584 28.934 6.843 30.824 272.210 
Ψn

h 17.464 16.450 6.217 1.689 71.064 68.610 15.974 2.213 
Ωna

e 2.300 0.544 1.468 8.736 16.222 0.194 0.541 8.897 
Ωnz

e 22.057 0.226 29.058 16.945 26.123 0.070 0.627 5.460 
Ωnz

e 22.790 0.314 12.322 3.602 20.190 0.075 23.023 14.818 
dθn

i
dt

= Ωn
ih × (θn

h − θn
i )+ Ωn

ie × (θn
e − θn

i )+ (ρn × πn
S)

dθn
e

dt
=

Ωn
ie

Ψn
e
× (θn

i − θn
e )+ Ωnz

e × (θz
i − θn

e )+ Ωna
e × (θa − θn

e )

dθn
h

dt
=

Ωn
ih

Ψn
h
× (θn

i − θn
h)+ Mf n × πn

h  
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results of thermal coefficient estimation for the 4-room model are stated in Table 2. Also, the graphical results of the thermal coefficient 
estimation are described in Fig. 9. As the figures reveal, the estimation accuracy of the two models varies for different rooms. To 
elaborate on the estimation accuracy, five conventional error criteria are calculated in Table 3. The error criteria include Mean Ab
solute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Bias Error (MBE), Normalized Mean Bias Error (NMBE), and 
Coefficient of Variation of The Root Mean-Square Error (CVRMSE). 

In Table 3, the winner cases are pointed out with bold fonts. Based on the table, in some cases, the BO outperforms the CTSM and 
vice versa. However, the total error (the sum of the absolute values for each column) is typically lower for the BO than the CTSM. The 
BO exhibits 11.43%, 9.39%, 65%, 63.52%, and 4.74% better accuracy in MAE, MAPE, MBE, NMBE, and CVRMSE, respectively. This 
could be explained by the fact that the BO allows to jointly learn (and therefore exploits potential correlation among the rooms) the 
coefficients for all the rooms and the different temperatures simultaneously. Moreover, as a further advantage, the BO does not require 
to specify an initial starting point which is a requirement for the CTSM. 

Fig. 10 explains the box plots of the estimation error for the 4-room model. As can be seen, the BO shows lower error variances than 
the CTSM. 

The estimated coefficients for the one-room model are described in Table 4. The graphical comparison between the forecasted and 
actual temperatures is presented in Fig. 11. Note that the average temperature of the single-room model is calculated based on the 
simple average of four rooms. As the graphs reveal, both the CTSM and BO exhibit lower accuracy than the 4-room model. The reason is 
that the average temperature does not describe the precise distribution of indoor temperature in different rooms. Although the two 
estimation models track the actual temperature reasonably well, the estimation error increases at some points. To elaborate on this 
issue, Table 5 explains the error values. Based on the results, the BO shows 6.17%, 8.17%, and 7.38% better accuracy than the CTSM in 
MAE, MAPE, and CVRMSE, respectively. In contrast, the CTSM exhibits 7.61% and 3.33% better estimation than the BO in MBE and 
NMBE, respectively. The interesting point is that the CTSM improves the estimation performance in the one-room model in comparison 

Fig. 9. Comparison of measured and predicted room temperatures for the 4-room model between days 25–30 (a) CTSM (b) Bayesian Optimization.  
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Table 3 
Error criteria of thermal dynamic estimation by BO and CSTM for the 4-room model.  

Data Location MAE MAPE MBE NMBE CVRMSE 

BO CTSM BO CTSM BO CTSM BO CTSM BO CTSM 

Indoor Temperature Room 1 0.75 0.86 3.29 3.84 0.19 ¡0.17 0.77 − 0.83 4.50 4.72 
Room 2 0.63 0.65 2.85 2.95 ¡0.05 − 0.06 ¡0.22 − 0.26 3.70 3.64 
Room 3 0.56 0.24 2.56 1.08 0.05 − 0.20 0.24 − 0.92 2.98 1.24 
Room 4 0.91 0.56 4.11 2.53 − 0.30 ¡0.18 − 1.36 ¡0.82 4.70 2.98 

Heater Temperature Room 1 0.91 0.90 3.64 3.60 ¡0.01 − 0.05 ¡0.24 − 0.34 5.05 4.79 
Room 2 0.83 0.96 3.36 3.89 0.39 0.90 1.52 3.65 4.16 4.76 
Room 3 0.48 1.70 1.86 6.56 0.23 1.70 0.88 6.56 2.19 6.79 
Room 4 0.66 0.60 2.63 2.37 ¡0.04 0.34 ¡0.15 1.37 3.25 3.13 

Total Summation 5.73 6.47 24.30 26.82 1.26 3.60 5.38 14.75 30.53 32.05  

Fig. 10. Box plots of the estimation error for the 4-room model (a) CTSM (b) BO (the red points are the outliers). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 4 
The results of thermal coefficients estimation for the one-room model conducted by the CTSM and BO.  

Coefficients BO CTSM 

ρn 0.065 0.012 
Mf n 1.310 2.238 
Ωn

ie 6.110 0.940 
Ωn

ih 42.615 10.182 
Ωna

e 20.431 0.374 
Ψn

h 269.200 23.326 
Ψn

e 96.882 35.075  

Fig. 11. Comparison of measured and predicted room temperatures for the one-room model between days 15–30 (a) CTSM (b) Bayesian Optimization.  

N. Cibin et al.                                                                                                                                                                                                           



Journal of Building Engineering 65 (2023) 105683

13

to the 4-room model. 
In this section, the impacts of the estimated thermal dynamic on the building’s heat flexibility are evaluated. The two building 

models, i.e., the 4-room and one-room, are imported into UPPAAL software to generate FlexOffers. Fig. 12 compares the temperature 
evolution and heat consumption of the 4-room model in the minimum energy consumption. Therefore, the indoor temperature is 
scheduled near the lower threshold of 18 ◦C. The optimal values of energy consumption and indoor temperature are depicted for each 
room individually. The strategies are optimized for the next 24-h horizon. 

Fig. 13 describes the temperature evolution and the heat consumption for the maximum energy consumption. By comparing the 
graphical performances of the CTSM and BO models, two interesting points can be demonstrated. First, in the minimum energy 
consumption (Fig. 12), the temperature graph of the BO is more fluctuating than the CTSM. Second, in the maximum energy con
sumption (Fig. 13), the heat consumption of the CTSM is more fluctuating than the BO. The two abovementioned issues show that the 
thermal coefficients extracted by the BO have more correlation with the weather conditions. As a result, in Fig. 12, the indoor tem
perature of the BO model is much more affected by ambient temperature and solar irradiation. A similar pattern is seen in the heat 
consumption of the BO model in Fig. 13. The heat consumption has a downward trend from morning to midday; consequently, the 
minimum heat consumption coincides with the high solar irradiation and the highest ambient temperature at hour 12. The UPPAAL 
optimizer minimizes heat consumption to prevent violating the upper threshold of the indoor temperature. Although the heat con
sumption of CTSM follows a similar downward trend, it exhibits more fluctuations than the BO. 

These discrepancies are even more evident if the weather uncertainties are taken into consideration through probabilistic Flex
Offers. To elaborate more on this issue, Fig. 14 explains the PDF and success functions of the FlexOffers considering the weather 
condition stochasticity [61]. Table 6 presents the mean and variance of the fitted normal distributions. Regarding the 4-room model, 
the mean value of the CTSM is 2.26 kWh (2.83%) and 4.37 kWh (3.68%) lower than the BO for minimum and maximum energy 
consumption patterns, respectively. In contrast, the BO exhibits more variance than the CTSM in both energy consumption patterns. It 
confirms that the thermal dynamics of the BO model are more affected by the weather conditions than the CTSM. 

In the one-room model, two interesting points are seen. First, the variance of the PDFs decreases noticeably in comparison to the 4- 
room model. The main reason is that the correlation between indoor temperature and weather conditions is lost due to the over
simplification of the one-room model. Second, the existing gaps between the mean values of the CTSM and BO models increase by 7.64 
kWh (8.90%) and 33.12 kWh (18.81%) for the minimum and maximum energy consumption, respectively. 

Finally, the flexibility potentials of the building models are shown in Fig. 15. The energy flexibility of the building models is 
quantified based on the mean values of the PDFs generated by FlexOffer. Based on the graph, the BO and CTSM provide 39.03 kWh and 
36.93 kWh energy flexibility in the 4-room model, respectively. For the one-room model, the energy flexibility increases to 81.28 kWh 
and 55.8 kWh, respectively. While there is just a 5.38% difference between the flexibility of the CTSM and BO in the 4-room model, the 
flexibility gap increases to 31.34% for the one-room model. The results show that both the CTSM and BO provide consistent flexibility 
potentials in the 4-room model; adversely, there is a wide gap between the flexibility potentials in the one-room due to the building 
model simplification. In this state, the BO shows a higher error in comparison with the CTSM. 

3.3. Discussions, limitations, and future works 

This study compared the competence of the CTSM and BO in estimating the dynamic thermal characteristics of buildings. The 
probabilistic FlexOffer concept was developed to generate energy flexibility under stochastic weather conditions. Through this, the key 
results can be surveyed as follows:  

(1) The BO exhibited higher estimation accuracy for thermal dynamic coefficients. In the 4-room model, the BO showed 11.43%, 
9.39%, 65%, 63.52%, and 4.74% better accuracy for MAE, MAPE, MBE, NMBE, and CVRMSE, respectively. In the one-room 
model, the CTSM obtained 7.61% and 3.33% more precise estimations than the BO for MBE and NMBE, respectively. The 
estimation results confirmed that both estimation algorithms provide accurate and competitive results for building thermal 
characteristics.  

(2) The dynamic thermal characteristics extracted from the BO model had more correlation with weather conditions in comparison 
with the CTSM. The temperature evolution of the CTSM model presents more robust behavior against weather condition 
fluctuations.  

(3) The computation time of both BO and CTSM is quite competitive. The suggested CTSM calculated thermal dynamics for each 
room individually. Hereby, the thermal coefficients are calculated in approximately 10–12 min for each room using an Intel 
CPU Core i7 at 2 GHz and 16 GB of RAM (less than 48 min for four rooms in total). In the BO, the estimation approach was 
converged for four rooms simultaneously in less than 1 h. 

Table 5 
Error criteria of thermal dynamic estimation by BO and CSTM for the one-room model. (winners are pointed out with grey background).  

Data MAE MAPE MBE NMBE CVRMSE 

BO CTSM BO CTSM BO CTSM BO CTSM BO CTSM 

Indoor Temperature 0.65 0.83 3.16 4.08 0.29 − 0.52 1.39 − 2.56 3.91 4.90 
Heater Temperature 1.02 0.95 4.37 4.12 0.84 0.53 3.57 2.24 5.37 5.12 
Total summation 1.67 1.78 7.53 8.20 1.13 1.05 4.96 4.80 9.28 10.02  
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Fig. 12. Temperatures evolution and heat consumption of the 4-room building model in the minimum energy consumption pattern (a) CTSM [61] and (b) BO.  

Fig. 13. Temperatures evolution and heat consumption of the 4-room building model in the maximum energy consumption pattern (a) CTSM [61] and (b) BO.  
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(4) The FlexOffer concept could quantify the energy flexibility of the building heating system. The FlexOffer generated heat 
flexibility to meet occupants’ comfort bound, including the lower and upper thresholds of indoor temperature. In the 4-room 
model, the BO and CTSM provided 39.03 kWh and 36.93 kWh energy flexibility with a gap of 5.38%. In the one-room model, the 
flexibility gap between the two estimation algorithms increased to 31.34%. 

The main limitation of the current study stems from the building input data. In buildings with water-sources heat pumps, the 
required data include mass flow, inflow/outflow temperature, and indoor temperature. Generally, mass flow sensors and control 
devices are costly installations. Also, many occupants are reluctant to record the indoor temperature due to revealing the occupancy 

Fig. 14. Computed probabilistic FlexOffer for different estimated thermal dynamics* (*Note: The red and blue lines describe the probability density on the left axis 
and the green line shows the probability values of the success function on the right axis). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

Table 6 
Characteristics of PDFs for the generated FlexOffers in the CTSM and BO models* *(The Normal Distribution is presented with N(μ,σ2): μ is the mean value and σ2 is the 
variance).  

Building Model Minimum Energy Consumption Maximum Energy Consumption 

CTSM BO CTSM BO 

Four-Room (77.37,0.61)N (79.63,0.79)N (114.30,0.63)N (118.66,0.85)N 
One-Room (78.20,0.32)N (85.84,0.36)N (134.00,0.31)N (167.12,0.37)N  

Fig. 15. Flexibility potentials of the CTSM and BO models generated by FlexOffer for 4-room and one-room models.  
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patterns. For these reasons, although, the current study used fined-grained building data to extract thermal dynamics, one may work on 
new algorithms to extract the thermal dynamics by using coarse-grained data. This is a key issue for future research. The suggested 
probabilistic FlexOffer concept in UPPAAL gives a software tool to quantify energy flexibility in heating systems with uncertain 
variables. This approach is not limited to building heating systems and can be extended to other flexible energy systems, e.g., com
mercial refrigerators with uncertain electricity prices. 

Note that this study compared the results of the CTSM and BO approaches in one test building: therefore, the obtained results are 
specific to the target case study and may not be interpreted as general outcomes. 

4. Conclusion 

In this paper, a comparative analysis is conducted to estimate the dynamic thermal characteristics of residential buildings using the 
CTSM and BO algorithms in R and Python software, respectively. The thermal dynamic model is presented using three-state ordinary 
differential equations, including indoor air, envelope, and heater temperatures. The estimation algorithms are examined on a high- 
fidelity four-temperature-zone building and its single-room equivalent. Afterward, the estimated thermal dynamics are exported to 
UPPAAL-STRATEGO software to provide heat-to-power flexibility. The software develops the probabilistic FlexOffer concept to 
generate probability distributions of energy flexibility under stochastic weather conditions. 

The simulation results show that both the CTSM and BO algorithms are competent to estimate the thermal dynamics. Regarding the 
estimation accuracy, although the CTSM obtains better accuracy in some points, the BO shows around 31% lower absolute error than 
the CTSM. The CTSM and BO converge to the optimal solutions in less than 60 min. 

To generate FlexOffers, both the CTSM and BO algorithms unlock the energy flexibility of the buildings while meeting the lower 
and upper thresholds of residents’ comfort. The BO shows more correlation between indoor temperature and weather fluctuations. In 
contrast, the CTSM presents more robustness against outdoor conditions. It means that the estimated indoor temperatures using the 
CTSM show fewer fluctuations in response to outdoor weather variations. To quantify the energy flexibility of the heating system, the 
probability distributions of energy flexibility are generated using the FlexOffer concept under weather conditions stochasticity. The 
results reveal that the BO and CTSM can provide up to 39.03 kWh and 36.93 kWh energy flexibility with a gap of 5.38%. 

The main limitation of the current study emanates from building data scarcity. In real applications and living lab studies, often 
limited indoor temperature and/or mass flow data are available regardless of the number of temperature zones. Therefore, future 
works will focus on developing coarse-grained thermal dynamics than fine-grained ones. Although the FlexOffer approach is examined 
on the residential heating system, other energy systems, e.g., commercial refrigerators and ice banks, are potential candidates to 
unleash energy flexibility with uncertain electricity prices. 
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[39] A. Pérez-Fargallo, D. Bienvenido-Huertas, S. Contreras-Espinoza, L. Marín-Restrepo, Domestic hot water consumption prediction models suited for dwellings in 

central-southern parts of Chile, J. Build. Eng. 49 (2022), 104024, https://doi.org/10.1016/j.jobe.2022.104024. 
[40] H. Golmohamadi, K.G. Larsen, Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating, J. Build. Eng. 

(2021), 103286, https://doi.org/10.1016/j.jobe.2021.103286. 
[41] H. Golmohamadi, K.G. Larsen, P.G. Jensen, I.R. Hasrat, Hierarchical flexibility potentials of residential buildings with responsive heat pumps: a case study of 

Denmark, J. Build. Eng. 41 (2021), 102425, https://doi.org/10.1016/j.jobe.2021.102425. 
[42] H. Golmohamadi, K.G. Larsen, P.G. Jensen, I.R. Hasrat, Integration of flexibility potentials of district heating systems into electricity markets: a review, Renew. 

Sustain. Energy Rev. 159 (2022), 112200, https://doi.org/10.1016/j.rser.2022.112200. 
[43] Z. Li, Z. Sun, Q. Meng, Y. Wang, Y. Li, Reinforcement learning of room temperature set-point of thermal storage air-conditioning system with demand response, 

Energy Build. 259 (2022), 111903, https://doi.org/10.1016/j.enbuild.2022.111903. 
[44] N. Alibabaei, A.S. Fung, K. Raahemifar, Development of Matlab-TRNSYS co-simulator for applying predictive strategy planning models on residential house 

HVAC system, Energy Build. 128 (2016) 81–98, https://doi.org/10.1016/j.enbuild.2016.05.084. 

N. Cibin et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S2352-7102(22)01689-8/sref4
http://refhub.elsevier.com/S2352-7102(22)01689-8/sref4
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
http://www.annex67.org
https://doi.org/10.1016/j.buildenv.2022.109461
http://refhub.elsevier.com/S2352-7102(22)01689-8/sref8
http://refhub.elsevier.com/S2352-7102(22)01689-8/sref9
http://refhub.elsevier.com/S2352-7102(22)01689-8/sref9
https://doi.org/10.1016/j.enbuild.2020.110346
https://doi.org/10.1016/j.enbuild.2015.06.071
https://doi.org/10.1016/S0378-7788(01)00105-0
https://doi.org/10.1016/S0378-7788(01)00105-0
https://doi.org/10.3390/en15041328
https://doi.org/10.1145/3307772.3328316
https://doi.org/10.3390/en12122448
https://doi.org/10.1016/j.enbuild.2022.112098
https://doi.org/10.1016/j.enconman.2005.09.011
https://doi.org/10.1016/j.enbuild.2020.109795
https://doi.org/10.1016/j.enbuild.2018.03.057
https://doi.org/10.1016/j.enbuild.2018.02.048
https://doi.org/10.1016/j.enbuild.2019.01.035
https://doi.org/10.1016/j.apenergy.2019.113539
https://doi.org/10.1016/j.buildenv.2019.05.001
https://doi.org/10.1016/j.enbuild.2018.11.028
https://doi.org/10.1016/j.buildenv.2018.12.056
https://doi.org/10.1016/S0378-7788(00)00114-6
https://doi.org/10.1016/S0378-7788(00)00114-6
https://doi.org/10.1109/JIOT.2018.2861831
https://doi.org/10.1109/IECON.2018.8591845
https://doi.org/10.1016/j.enbuild.2021.110889
https://doi.org/10.1109/JIOT.2020.3042783
https://doi.org/10.1016/j.apenergy.2021.117227
https://doi.org/10.1016/j.enbuild.2020.110236
https://doi.org/10.1109/ACCESS.2020.2972965
https://doi.org/10.1016/j.enbuild.2021.110775
https://doi.org/10.1016/j.enbuild.2020.110130
https://doi.org/10.1016/j.enbuild.2016.03.009
https://doi.org/10.1016/j.enbuild.2013.12.060
https://doi.org/10.1016/j.jobe.2020.101581
https://doi.org/10.1016/j.jobe.2022.104024
https://doi.org/10.1016/j.jobe.2021.103286
https://doi.org/10.1016/j.jobe.2021.102425
https://doi.org/10.1016/j.rser.2022.112200
https://doi.org/10.1016/j.enbuild.2022.111903
https://doi.org/10.1016/j.enbuild.2016.05.084


Journal of Building Engineering 65 (2023) 105683

18
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