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Research article 

Insight on physicochemical properties governing peptide MS1 response in 
HPLC-ESI-MS/MS: A deep learning approach 

Naim Abdul-Khalek , Reinhard Wimmer , Michael Toft Overgaard , Simon Gregersen Echers * 

Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark   
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A B S T R A C T   

Accurate and absolute quantification of peptides in complex mixtures using quantitative mass spectrometry 
(MS)-based methods requires foreground knowledge and isotopically labeled standards, thereby increasing 
analytical expenses, time consumption, and labor, thus limiting the number of peptides that can be accurately 
quantified. This originates from differential ionization efficiency between peptides and thus, understanding the 
physicochemical properties that influence the ionization and response in MS analysis is essential for developing 
less restrictive label-free quantitative methods. Here, we used equimolar peptide pool repository data to develop 
a deep learning model capable of identifying amino acids influencing the MS1 response. By using an encoder- 
decoder with an attention mechanism and correlating attention weights with amino acid physicochemical 
properties, we obtain insight on properties governing the peptide-level MS1 response within the datasets. While 
the problem cannot be described by one single set of amino acids and properties, distinct patterns were repro-
ducibly obtained. Properties are grouped in three main categories related to peptide hydrophobicity, charge, and 
structural propensities. Moreover, our model can predict MS1 intensity output under defined conditions based 
solely on peptide sequence input. Using a refined training dataset, the model predicted log-transformed peptide 
MS1 intensities with an average error of 9.7 ± 0.5% based on 5-fold cross validation, and outperformed random 
forest and ridge regression models on both log-transformed and real scale data. This work demonstrates how 
deep learning can facilitate identification of physicochemical properties influencing peptide MS1 responses, but 
also illustrates how sequence-based response prediction and label-free peptide-level quantification may impact 
future workflows within quantitative proteomics.   

1. Introduction 

Mass spectrometry (MS) is a very powerful method for the identifi-
cation and quantification of a wide range of biomolecules present in 
complex mixtures and has become a cornerstone in the studies of pro-
teins and peptides [1–6]. In proteomics and peptidomics analyses, MS is 
often used in combination with other technologies, particularly 
chromatography-based methods such as high performance liquid chro-
matography (HPLC). Initially, analytes are ionized, usually by soft 
ionization methods such as electrospray ionization (ESI), and then 
discriminated by the mass analyzer based on the mass-to-charge ratio 
(m/z) [7]. However, limitations for absolute quantification remain due 
to variability in the ionization efficiency between different bio-
molecules, directly implying that MS is not inherently quantitative 
[8–10]. Nevertheless, by development of data normalization strategies, 
it is possible to develop methods for label-free, relative quantification of 

proteins using MS [11,12]. In contrast, absolute quantification by MS 
requires prior knowledge about the compound(s) to be quantified to 
develop targeted approaches. Moreover, a standard series or the addi-
tion of isotopically labelled reference standards in known concentra-
tions is required to quantify each compound. Thus, absolute 
quantification methods introduce restraints and limitations to the 
number of compounds that can be quantified, but also introduce higher 
analytical complexity and cost for MS analysis [13–16]. While efforts 
have been made towards absolute, label-free quantification on the 
protein-level [17,18], these approaches rely on fundamental assump-
tions regarding the sample composition and thus limits the applicable 
range to protein-level quantification for samples of certain origin. Ulti-
mately, there is a need to develop new and universally applicable 
methods for absolute MS-based quantification on the peptide-level 
without a priori knowledge of the mixture composition. Raw MS1 in-
tensities have been used as a rough pseudo-estimate of peptide 
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abundance [19–21], using the same basis of assumptions employed in 
quantitative summary-based methods for protein-level quantification 
[22]. Nevertheless, such an approach does not alleviate the large un-
certainties associated with differential ionization efficiency (occasion-
ally referred to as unequal measurability of peptides [23]) in a 
satisfactory manner. To address this challenge, artificial intelligence 
(AI) is making headway for bringing novel solutions to the field of 
MS-based proteomics [24]. 

AI is a branch of computer science that focuses on developing sys-
tems able to perform tasks which require human like capabilities [25]. 
More specifically, machine learning (ML) and deep learning (DL) are 
data-centric approaches to develop models to perform specifics tasks. In 
the field of protein science, ML and DL have facilitated substantial ad-
vances for the prediction of e.g., protein structure, protein function, and 
protein-protein interactions [26–28], but is also becoming increasingly 
popular within MS-based proteomics. For example, ML- and DL-models 
have been developed predict peptide retention time, MS/MS fragmen-
tation spectra, and post-translational modifications [24,29,30]. 
Currently, there are no computational methods to perform absolute 
peptide quantification based on MS response, since the ionization effi-
ciency, and thus MS response, varies widely between individual peptides 
[24]. In addition to the physicochemical properties of the analytes (e.g. 
peptides), the experimental setup is bound to influence the results ob-
tained [31]. 

Within ML and DL, recurrent neural networks (RNNs) are of partic-
ular interest within MS-based proteomics. These network architectures 
consider not only the current element of input but also previous ones, 
making RNNs ideal for sequential and time-series data [25]. 
Sequence-to-sequence RNNs (Seq2Seq) is an arrangement of RNNs that 
has shown great success in problems like language translation [32]. A 
Seq2Seq consists of two components: an encoder and a decoder. The 
encoder initially receives and transforms the inputs to generate the 
context vector. The transformation performed by the encoder can serve 
different purposes such as feature extraction and/or dimension reduc-
tion. Then, the decoder uses the context vector to generate the output. In 
Seq2Seq RNNs, the encoder is responsible for compressing the input data 
into a fixed-dimensional vector that the decoder uses to sequentially 
generate the output. However, compressing large quantities of infor-
mation into a single vector can be a computationally heavy task. This 
could be improved by an attention mechanism., which enables the 
decoder to access all encoder outputs and focus only on the most rele-
vant elements when predicting each element of the output sequence 
[33]. An encoder-decoder with an attention mechanism has previously 
been applied on peptide-level MS data for prediction of peptide frag-
mentation spectra and retention times [34], and may also be suitable to 
predict the peptide precursor intensity response (MS1) for application in 
peptide quantification. Although not a sequence-to-sequence problem 
but more a sequence-to-scalar problem, the attention mechanism can 
focus on specific elements within the sequence and thus provide deeper 
insight into how peptide composition affects the MS response. 

In recent years, a number of tools have been developed that exploit 
ML and DL for prediction of proteotypic peptides, such as AP3 [35], 
PeptideRanger [36], CONSeQuence [37,38], and d::pPop [39,40]. Pro-
teotypic peptides are peptides that are well suited for MS analysis as they 
are released through common sample preparation (i.e., tryptic digest) 
and are likely to be ionizable and detectable [41]. This makes such 
peptides optimal choices for e.g., relative quantification between sam-
ples in targeted/data-independent analysis or as isotopically labeled 
surrogates for absolute quantification [42,43]. These tools were trained, 
in part, using computed physicochemical properties based on amino 
acid sequences, which allow them to predict peptide detectability. While 
the models find hidden patterns in data related to e.g. certain physico-
chemical properties, they do not provide any direct insight into these 
patterns nor provide explicit quantitative information. Repurposing of 
repository data to build sufficiently large datasets suitable for DL may 
represent a key step for further development towards label-free absolute 

quantification on the peptide-level [44]. Compiling repositories as well 
as systematic metadata annotation, data extraction, and preprocessing 
has therefore also become increasingly important and popular [45]. 

In this study, we investigate the current largest repository collection 
of equimolar peptide MS data [34,46,47]. a DL model (encoder-decoder 
with an attention mechanism) that uses amino acid (AA) composition 
only to predict MS1 intensity and provide insight on the physicochem-
ical properties that govern peptide MS1 response in HPLC-ESI-MS/MS 
analysis. Thus, instead of using computed physicochemical properties, 
as in previous studies, our model will identify the relevancy of each AA 
through its attention weight. The attention weights can then be corre-
lated with their correspondent physicochemical properties using the 
AAindex1 (Amino Acid Index) database [48]. This database is a public 
collection of 566 indices that describe the physicochemical or structural 
properties and propensities of individual AAs. Each index consists of a 
set of 20 values that correspond to a specific property of each AA. The 
results obtained in this study provide a better fundamental under-
standing of the behavior of peptides within the mass spectrometer. 
Moreover, we developed a model to predict peptide MS1 response as a 
function of AA composition. The presented work is of great relevance for 
the development of more advanced models to predict e.g., peptide 
detectability and to facilitate advances in label-free, absolute peptide 
quantification. 

2. Materials and methods 

2.1. Data 

The experimental data used in this study was collected from the 
PRIDE repository with the identifiers PXD004732 [46], PXD010595 
[34], and PXD021013 [47]. The datasets were originally obtained by 
analyzing pools of approximately 1000 synthetic peptides with equi-
molar concentrations. The data originates from development of Prosit 
[34] and ProteomeTools [46,47], with the intention of boosting peptide 
identification rates and improving sensitivity in tandem MS by appli-
cation of DL for predicting fragmentation spectra. Due to the equimolar 
nature of the analyzed pools, the datasets serve as an excellent basis for 
investigating sequence-dependent responses. RAW data was analyzed 
using either specific, semi-specific, or unspecific in silico digestion set-
tings in MaxQuant and with Trypsin, LysN, or AspN as specified prote-
ase. In all studies, peptide pools were subjected to liquid 
chromatography using a Dionex 3000 HPLC system (Thermo Fisher 
Scientific) coupled inline with an Orbitrap Fusion Lumos mass spec-
trometer (Thermo Fisher Scientific) [34,46,47]. This ensured experi-
mental comparability between studies and was a prerequisite for 
inclusion in the database compiled for this study. From the peptide-level 
MaxQuant output files (peptides.txt, summary.txt) and sample and data 
relationship file (SDRF), several data features were extracted and pro-
cessed using a custom Python (v.3.8.8) script. Each pool analyzed had a 
corresponding zip file containing the peptide.txt and summary.txt files. 
The final results of each analysis were extracted from the peptide.txt file 
(sequence of identified peptides, MS1 intensities, PEP scores, etc.) while 
the specified enzyme and enzyme mode settings were extracted from the 
summary.txt files. The SDRF files contains information relating each 
pool zip file with its specific experimental setups. A unique CSV file was 
generated for each pool unifying the information in the previously 
mentioned files, and subsequently merged into a single CSV file 
comprising all the information of the repositories PXD004732, 
PXD010595 and PXD021013. Artificial datasets were also generated to 
build proof-of-concept models, representing simple linear datasets and 
datasets with larger variability between contributions (see supplemen-
tary material for a detailed description). 

2.2. Data filtering and pre-processing 

To build the best possible model, the data (4016,044 identified 

N. Abdul-Khalek et al.                                                                                                                                                                                                                         



Computational and Structural Biotechnology Journal 21 (2023) 3715–3727

3717

peptides) was initially filtered with the intention of reducing noise, 
thereby improving data quality for the training and testing process of the 
models. The artificial data did not require filtering. The data was 
initially filtered using quality-based criteria:  

- All peptide sequences with a PEP score equal to or higher than 
0.01were removed (587,374 peptides).  

- Reverse sequences were excluded (414 peptides).  
- Peptides determined as potential contaminants were not considered 

(22,257 peptides).  
- Peptides with intensity measurement equal to zero were discarded 

(40,798 peptides). 

Following initial filtering, the dataset was further processed and 
filtered using replication- and variation-based criteria:  

• Peptide replicates across different pools were merged (2316,063 
peptides). For each peptide, the median intensity was used for the 
analysis.  

• Peptides with intensity values comprising a coefficient of variation 
(CV) higher than 0.3 (standard deviation divided by mean) were 
excluded (728,397 peptides). 

The final dataset consisted of 320,741 unique peptide entries with 
replicate values. 

2.2.1. Further data segmentation 
To further improve the model’s performance, we segmented the data 

according to specified MaxQuant settings, restricting focus to tryptic 
peptides with repeated measurements:  

• Peptides that were not searched with “Specific Enzyme” mode were 
removed (1598,623 peptides).  

• Non-tryptic peptides were discarded (184,918 peptides)  
• Replicate peptide measurements were merged (1177,976 peptides). 

For each peptide, the median intensity was used for the analysis.  
• Peptides with intensity values with a coefficient of variation higher 

than 0.3 were dismissed (224,462 peptides). 

The final number of peptides in the tryptic dataset was 179,222. 

2.2.2. Transformation, scaling, and splitting 
Following filtering, peptide intensity values (which are continuous 

values) were log-transformed (natural logarithm) because intensity 
values show an exponential behavior over a large dynamic range. The 
log transformation generates a distribution closer to normal. The in-
tensity values were scaled between a specific range of values, using the 
MinMaxScaler function from Scikit-learn library [49], which was opti-
mized (the same was done to artificial data) by trying different ranges to 
improve model performance. Log-transformation and scaling of in-
tensity data is commonly used to obtain a more normal distribution in 
MS-based proteomics data [50–54]. To validate reproducibility of model 
performance, a 5-fold cross-validation was performed, where the dataset 
was split into 5 groups of equal size, then each unique group was used as 
test set while the remaining 4 groups were used as training sets. Thus, 
80% of the data was used for training, and 20% for testing. From the 
training data, 20% was randomly subset and used as a validation dataset 
to control overfitting. The test dataset was used to evaluate the gener-
alization capacity, to give an unbiased evaluation of the models, and to 
obtain the results. 

2.3. Model architecture 

The model architecture is an RNN encoder-decoder with attention 
mechanism [55,56]. The function and purpose of the different elements 
of the architecture are presented below and a description of the 

complete end-to-end pipeline is available in the supplementary 
information. 

2.3.1. Recurrent neural networks (RNNs) 
RNNs process input data by iterating through the elements of the 

input, while keeping a memory or state from previous elements of the 
input [25]. RNNs take an input sequence X = {x1, x2, x3, …, xT} one 
element at a time to compute an output sequence Y= {y1, y2, y3, …, yT}. 
The output yt at step t (which can represent time-resolved data or other 
sequential inputs) is defined as: 

yt = f (xt, ht− 1)

where ht-1 is the previous hidden state and f is a non-linear function. 
The three most common type of RNNs are the simple RNNs, the long 

short-term memory neural network (LSTM), and the gated recurrent unit 
neural network (GRU) [33]. The simple RNNs iterates over elements in a 
sequence, considering the previous state and current input to generate 
the current output and then uses the current output as the state of the 
next element in the sequence. Simple RNNs have problems keeping 
long-term dependencies when working with long sequences due to the 
vanishing gradient problem [57], which is why LSTM and later GRU 
were developed. LSTM and GRU layers can keep information for longer, 
thereby improving the predictive capabilities. While displaying com-
parable performances, GRU layers are simpler and easier to train [33, 
55]. 

A GRU consists of cells that contain gates, which are responsible of 
determining which information is relevant and should be retained and 
which is irrelevant and can be forgotten. GRU layers have two gates 
(update gate z, reset gate r), a candidate hidden state h’, and a hidden 
state at the current time step h. The update gate determines how much of 
past information is relevant now. The reset gate, in contrast, decides 
how much of the past information to forget. The hidden state at the 
current step is a linear interpolation between the previous hidden state 
and the current candidate hidden state [55]. 

2.3.2. Sequence to sequence RNNs 
Seq2Seq RNNs consist of an encoder RNN and a decoder RNN [32, 

58]. When given an input sequence X = {x1, x2, x3, …, xT} the Seq2Seq 
maps the prediction to an output sequence Y= {y1, y2, y3, …, yN} with 
potentially different lengths. The input sequence X is passed to the 
encoder RNN one step at a time, in order to generate a context vector c. 
The context vector is a fixed-dimensional vector that encodes the input 
sequence. The context vector is passed to the decoder RNN, which un-
folds it, one step at a time, to generate the output sequence Y. 

2.3.3. Attention mechanism 
An encoder-decoder arrangement, such as Seq2Seq, has certain 

limitations due the fact that the encoder needs to compress all the input 
data into the context vector, which can lead to loss of information, which 
may ultimately affect the performance. Thus, the attention mechanism 
was developed which allows the model to focus on the most relevant 
elements of the input sequence based on the determined attention 
weights [59]. Particularly, Bahdanau attention [60] calculates a linear 
combination of the encoder and decoder states. The attention weights 
represent the degree of attention that should be given to each input 
element at a particular decoding stage. At each stage, the context vector 
is generated using all the hidden states from the encoder and the pre-
vious hidden state from the decoder. The context vector ci is calculated 
as the weighted sum of the encoder hidden states: 

ci =
∑T

j=1
αijhj  

where the attention weight αij of each hidden state hj is calculated as: 
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αij =
exp

(
eij
)

∑T

k=1
exp(eik)

and the attention scores eij is defined as: 

eij = a
(
si− 1, hj

)

where a is a function that generates the attention scores (eij) that assign 
how well si-1 and hj match. si-1 is the decoder hidden estate (before 
generation the output at i) and hj in the encoder hidden state at j. 

The model architecture used in this study is an encoder-decoder 
based on a bi-directional recurrent neural network layer with Gated 
Recurrent Units (BiGRU) and with an attention mechanism (Fig. 1). The 
encoder consists in one BiGRU layer. All hidden states of the encoder and 
the last hidden state of the decoder are used to compute the attention 
weights and subsequently the context vector. The context vector is then 
concatenated with the one-hot-encoded start element for the decoder to 
generate the decoder input. The decoder also has one BiGRU in addition 
to a dense layer with one unit corresponding to the predicted intensity. 
The first and only initial state of the decoder is the last hidden state of 
the encoder. The hidden states ht depicted on Fig. 1 are simplified for 
visualization but correspond to the hidden states of the forward and 
backward run. The decoder only performs one interaction since it is not 
predicting a sequence but rather a scalar value, otherwise in each iter-
ation the context vector and next decoder input would be recalculated 
using all hidden states from the encoder and the previous output from 
the decoder. The recurrent layers have the same number of units. The 
number of units and batch sizes differ in the models generated in this 
study as they were optimized individually during training (Tables S3, 
S5, and S10). 

2.4. Training and testing 

The implementation was done in Python (v.3.8.8) with TensorFlow 

[61] (v. 2.5.0) using the following libraries: Scikit-learn [49] (0.24.1), 
[62]Pandas [63] (v.1.2.4), Matplotlib [64] (v.3.3.4), Seaborn [65] 
(v.0.11.1), SciPy [66] (v.1.6.2), and NumPy [67] (v.1.20.1). 

Initially, the proof-of-concept models were trained and optimized to 
determine the model performance with the artificial data as well as its 
capacity to determine the relevancy of each unique sequence element in 
the predicted output. For the initial proof-of-concept models, one-hot- 
encoded inputs were applied. Two formats of sequences were gener-
ated with a maximum length of 8 and 40, respectively, and input di-
mensions of batch size x 8 × 10 and batch size x 40 × 21, respectively. 
Padding was applied to shorter sequences. An detailed description of 
data and model performance for proof-of-concept models is found in the 
supplementary material. 

Subsequently, the architecture was used for training and optimizing 
the models using the full repository dataset after filtering. The inputs for 
the models were one-hot-encoded peptides sequences with a maximum 
length of 40 residues, where shorter peptides were padded. Thus, the 
input matrix has a dimension of batch size x 40 × 21, where the 20 AAs 
and one padding character are included. The data was split into 5 
smaller subsets for K-fold cross-validation, where each subset was used 
as test dataset once while the remaining dataset was used for training. 

To investigate the underlying physicochemical properties that in-
fluence the MS1 response for peptides, the attention weights for the 20 
AAs were determined. The assigned attention weights for each sequence 
element were extracted for each intensity prediction. Then, these 
weights were averaged for each AA, first within the same sequence (in 
case there are repeated AAs within the peptide sequence) and subse-
quently across all the sequences. The relevancy of the physicochemical 
properties was determined by computing the Pearson correlation coef-
ficient (PCC) between the average attention weights of AAs and each of 
the 566 AAindex1 indices [48], representing a physicochemical prop-
erty. An AAindex1 index was considered significant if PCC ≤ − 0.7 or 
PCC ≥ 0.7, corresponding to p-values < 1E-3. For the proof-of-concept 
models, the average attention weights were correlated with the fixed 
contribution assigned to each element of the corresponding sequence 

Fig. 1. General scheme of the architecture used in this study: An encoder-decoder with attention mechanism. The encoder consists of one BiGRU layer, which takes 
the inputs (xi,…,xT) and generates the encoder hidden states (hi,…,hT). All the hidden states from the encoder and the last hidden state from the decoder is used by 
the attention mechanism to compute the context vector, which together with the start character for the decoder are used as the decoder input. The decoder consists of 
one BiGRU layer and a dense layer. The first and only initial state of the decoder is the last hidden state of the encoder. The decoder only performs one iteration since 
the decoder output is a scalar and not a sequence. 
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format in a similar manner (see supplementary information). 
Once the relevant physicochemical properties were identified, the 

data was further subset to improve model performance for predicting 
MS1 intensity. The performance of the final model was compared with 
the performance obtained with a RF and a RR model, using the same 
dataset. 

Different loss functions were evaluated, however the mean squared 
error (MSE) [68,69] was found to work best as the Loss function. The 
accuracy measurement during model training was done using the mean 
absolute error (MAE) to observe the distance between real and predicted 
intensities. Model performance was expressed by the mean absolute 
percentage error (MAPE) [70,71] to more clearly depict the unbiased 
difference between prediction and real values, as the intensity outputs 
span a large dynamic range. Adam [72] was the optimizer chosen after 
different optimizers were evaluated, using its default settings which 
performed better. The models were trained on NVIDIA Quadro T2000 
GPU for 5–30 epochs. 

Ultimately, the final model performance was benchmarked by 
comparing with the performance of more classical algorithms; namely a 
Random Forest (RF) and a Ridge Regression (RR). For RF and RR, the 
data required additional processing. The input sequence data was con-
verted into tabular data, by generating 840 variables. Each variable 
corresponds to a combination of the 20 possible AA plus the padding 
character and the position of the AA in the sequence (from 1 to 40). If an 
AA is present in a particular position within the sequence, the variable 
for that particular AA in that position is assigned a value of 1, otherwise 
is assigned a value of 0. 

3. Results and discussion 

To ensure satisfactory performance of the fundamental architecture, 
the model was initially developed using artificial datasets with known 
ground truth (see supplementary material). Overall, the model 

architecture performed excellently across the four artificial datasets 
designed, with MAPE < 1% for simple data and/or data with linear 
correlation for element contribution. For the more complex artificial 
dataset representing non-linear element contributions and a large dy-
namic range of values, designed to emulate real data (Proof-of-concept 
model 4), the MAPE was slightly higher (~3%) but still displaying 
highly accurate predictions. In all cases, the model architecture obtained 
excellent correlation with the ground truth, illustrated by a PCC > 0.98 
for predicted and calculated values. Moreover, the attention mechanism 
successfully identified the elements with the highest contribution to the 
scalar output (i.e. the value representing the MS1 intensity). 

3.1. Dataset clean-up and initial model implementation 

After the model architecture was proven effective using artificial 
datasets, the model was trained with real data. For this purpose, we 
extracted the MaxQuant [73] output datafiles from the PROSIT and 
ProteomicsDB datasets (PRIDE identifiers PXD004732 [46], PXD010595 
[34], and PXD021013 [47]), that were produced by Orbitrap analysis of 
synthetic, equimolar peptide pools. To ensure optimal training of DL 
models, the noise in the datasets should be reduced. Therefore, we 
initially inspected the datasets with the aim of investigating variability 
and data quality. The cumulative database consists of 4016,044 peptide 
identifications representing 1331,904 unique peptides. As commonly 
applied in proteomics studies, reverse sequences were eliminated as 
false positives and potential contaminants removed to improve data 
reliability. Because the majority of peptides (865,325 or 64.97%) were 
analyzed and identified in more than one pool, this allowed us to 
investigate the variability of the MS1 intensity data by computing the 
coefficient of variation (CV) for the different intensity measurements of 
the same peptides (Fig. 2A). MS1 intensities show a high variability with 
CVs exceeding 400% for some peptides. Thus, the CV was used to filter 
peptides with high variability (CV > 30%) from the initial dataset. In 

Fig. 2. Initial exploration of the cumulated dataset. A. Distribution of coefficient of variation (CV) for peptides with more than one measurement (Bin size ≈ 0.010). 
B. Distribution for raw MS1 intensities for filtered data (Bin size ≈1.8 ×109. C. Distribution of log-transformed MS1 intensity data for filtered data (Bin size ≈ 0.036). 
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MaxQuant output data, there are additional metrics commonly 
employed for downstream filtering and processing prior to further 
analysis. Some metrics relate to quality of identification, such as the 
posterior error probability (PEP). While PEP is used in the calculation of 
the peptide/protein score by the MaxQuant built-in search engine 
Andromeda [74], other factors are also accounted for when calculating 
this score [75]. The score is directly applied in the filtering during initial 
MaxQuant analysis through the false discovery rate (FDR), assigned by 
the user. Consequently, the PEP may also be used as a stand-alone metric 
to perform further quality-based filtering. As such, we used PEP as a 
parameter to remove potentially false positive peptides by defining a 
maximum threshold of 1% (i.e., removing peptides with PEP > 0.01). 

The filtered dataset consisted of 320.741 unique peptides for which 
the MS1 intensity output was log-transformed with the natural loga-
rithm. This reduced the dynamic range of intensity outputs, thereby 
reducing the impact of high-intensity peaks, and generating a distribu-
tion closer to normal (Fig. 2B, C). In addition to noise reduction, the 
overall effect of filtering was primarily a reduction in size of the dataset 
without affecting the distribution or dynamic range substantially 
(Fig. S5). 

During initial model training and optimization, two consistent pat-
terns were observed in the obtained attention weights for each of the 20 
AAs. While the patterns are quite different, the performance of the 
different models were comparable, with MAPEs generally in the range 
from 12% to 17% (see supplementary information). The first pattern 
frequently highlighted the influence of bulky hydrophobic (i.e., leucine 
(Leu), isoleucine (Ile), and valine (Val)) and aromatic (i.e., tryptophan 
(Trp), phenylalanine (Phe), and tyrosine (Tyr)) AAs. In contrast, the 
second pattern primarily highlighted a high contribution by positively 
charged AAs (i.e., arginine (Arg) and lysine (Lys), and to a lesser extent 
histidine (His)). Although these patterns were frequently observed 
during the training and optimization process, the exact results, namely 
the attention weights and their distribution, were not consistently 
reproducible due to the stochastic nature of the algorithm. In other 
words, the order of the AAs occasionally shuffled, but the overall pattern 
remained intact. After computing the correlation between the attention 
weights and the parameters contained in AAindex1, certain physico-
chemical properties were reproducibly identified for the highly 

contributing AAs within the two different patterns emerging. To illus-
trate this, representative models were selected for further analysis. 

3.2. Representative model 1: Bulky hydrophobic and aromatic amino 
acids 

In the first representative model, the highest attention weights were 
given mainly to bulky hydrophobic and aromatic AAs (Fig. 3 and 
Table S6). Trp received the highest attention of all AAs followed by Leu, 
Phe, and Ile. Tyr received lower attention compared to the other aro-
matic AAs Furthermore, proline (Pro) and sulphur-containing AAs (i.e., 
cysteine (Cys) and methionine (Met) also received some attention from 
the model. 

Computing the correlation between AA attention weights and 
AAindex1, parameters related with hydrophobicity (Tables 1 and S7) 
were found of significant relevance (p < 5E-4) as indicated by a high 
PCC and correspondingly low p-values. This indicates a strong correla-
tion between hydrophobicity and the MS1 intensity measurement. That 
Tyr received the lowest attention of the aromatic AAs can be explained 
by the hydroxyl group on the aromatic moiety. As hydrophobicity ap-
pears to be a key factor, the hydroxyl group increases side chain polarity 
and thus reduce overall hydrophobicity of the side chain. While Phe is 
generally considered more hydrophobic than Trp, Trp contains a bulkier 
side chain and thus overall size/volume, which could indicate bulkiness 
may be of relevance. But more importantly, Trp is also known to func-
tion as a gas-phase charge stabilizer through the indole moiety [76,77]. 
This improves stability of the precursor ion, adding to the overall in-
fluence on the MS1 response. 

Retention coefficients and hydrophobicity indices were often identified 
as relevant indices. In reverse phase (RP) chromatography with applied 
solvent gradients going from high towards low polarity, higher peptide 
retention times are a result of higher peptide hydrophobicity. As 
acetonitrile, which is commonly used as the organic phase in LC-MS/MS- 
based proteomics, has a higher vapor pressure than water, it is sub-
stantially more volatile. Thus, when peptides with higher retention 
times (i.e., eluting late) reach the ion source, the solvent is easier to 
evaporate. Moreover, hydrophobic peptides are generally more inclined 
to be in the organic phase [78], explaining why partition coefficient was 

Fig. 3. Graphical representation of the attention weights of each AA for representative model 1. The color coding indicates the assigned contribution of each AA to 
the prediction of the MS1 intensity output from high contribution (yellow) gradually decreasing to low contribution (dark blue). 

Table 1 
Top 5 relevant physicochemical properties from the AAindex1 identified by correlating the indices with the attention weights of representative model 1.  

Accession number Data description Correlation Score p-value 

MEEJ810102 Retention coefficient in NaH2PO4 (Meek-Rossetti, 1981)  0.94 4.1E-10 
MEEJ810101 Retention coefficient in NaClO4 (Meek-Rossetti, 1981)  0.94 8.3E-10 
BULH740101 Transfer free energy to surface (Bull-Breese, 1974)  -0.93 1.7E-09 
GUOD860101 Retention coefficient at pH 2 (Guo et al., 1986)  0.93 3.0E-09 
PARJ860101 HPLC parameter (Parker et al., 1986)  -0.93 4.1E-09  
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another relevant property identified. Furthermore, hydrophobic pep-
tides are usually located towards the surface of the droplets [79,80], 
which is also reflected by the identification of different transfer free en-
ergy properties as relevant. These factors illustrate why more hydro-
phobic peptides generally have a better ionization efficiency in gradient 
RP-HPLC. Other studies have found a direct empirical correlation be-
tween ionization efficiency and peptide retention times in RP-HPLC, 
corroborating our findings [78,80,81]. While Cys is not considered 
bulky, the thiol has been alkylated (carbamidomethyl), increasing the 
size of the side chain substantially. The attention weights were, how-
ever, modest, which could be explained by Cys being in the form of 
carbamidomethylcysteine, increasing the overall polarity of the side 
chain compared to aliphatic AAs of similar size/volume. The importance 
of AA size/volume can also explain why alanine (Ala) received sub-
stantially lower attention than more bulky hydrophobic AAs (i.e. Val, 
Leu, and Ile). 

Other computational approaches have found results similar to our 
findings [35,37,39,82,83]. Jarnuczak et al. (2016) found that in com-
plex mixtures, there is a weak non-linear relationship between ioniza-
tion efficiency and hydrophobicity, which they argue might be linear in 
a simpler mixture [84]. The authors also showed that ionization effi-
ciency is hampered at very low and high organic concentration of the 
mobile phase, as “weak flyers” were observed at both low and high 
organic concentration of the mobile phase. They state that at very high 
organic concentrations, there is an increased basicity in acetonitrile 
within the gas phase, which interferes with the ionization of peptides. 
Thus, previous studies also indicate that peptide hydrophobicity has an 
influence on ionization efficiency and thus MS1 response in 
RP-HPLC-ESI-MS/MS, thereby corroborating our findings. 

As the hydrophobicity and retention coefficients were determined to 
be highly relevant for peptide response, we investigated if this was 
directly reflected in the filtered dataset. While two indices showed 
higher correlations with the attention weights from representative 
model 1 (Table 1), these are retention coefficient in solvents not com-
mon employed in ESI-MS. Consequently, we computed the next three 
indices (BULH740101, GUOD860101, and PARJ860101) for all peptides 
as both sum and mean and plotted against the peptide MS1 intensity 
(Fig. S6). No direct correlation was observed and thus, intensity 
response cannot be predicted based solely on hydrophobicity. While 
higher responses were observed in certain ranges for the different met-
rics, these merely represent a higher density of datapoints. Nevertheless, 
the model identified hydrophobicity as relevant, but the property is not 
descriptive as a stand-alone variable, and hence the model is finding 
more complex patterns within the data. 

3.3. Representative model 2: Positively charged amino acids 

In the second commonly observed pattern, high relevance of AAs 
with positively charge side chains (Arg, Lys, and to a lesser extent, His) 

was observed (Fig. 4 and Table S8). Correlating attention weights with 
AAindex1, parameters related with peptide charge were, not surpris-
ingly, found to be very important for this model. Positive charge and net 
charge had PCCs of 0.93 and 0.74 were found to be statistically signifi-
cant with p-values of < 2E-09 and < 2E-04, respectively (Table S9). 
Since the samples were originally analyzed in positive mode ESI-MS 
using an acidified solvent (0.1% formic acid), that makes positive 
charge a very intuitive property. The parameter precisely points to those 
AAs that most likely will be positively charged due to side chain pro-
tonation at acidic pH. Thus, the presence of Arg, Lys, and His in a peptide 
most likely will increase the probability of getting a positively charged 
ion during ionization. Other studies have also found this particular 
property of high relevance [39,84,85]. 

To investigate if the relevance of positive charge was directly re-
flected in the filtered dataset, the number of positively charged AAs 
(Arg, Lys, and His), net charge at pH 7, and net charge at pH 3 (reflecting 
the acidic environment used during positive mode ESI-MS) was deter-
mined for individual peptides and plotted against MS1 intensity 
(Fig. S7A-D). Moreover, these charge-related metrics were also deter-
mined in a length-normalized version (charge/length) to investigate the 
interplay between the two physicochemical properties (Fig. S7E-F)). As 
found for hydrophobicity descriptors in relation to representative model 
1, there was no direct correlation between charge and MS1 intensity, 
also indicating a more complex interplay between different variables, 
which the model is able to identify. We also investigated different 
combinations of hydrophobicity indices and charge (i.e., ratios and 
products), but also here found these metrics insufficient to describe MS1 
intensity (data not shown). 

3.3.1. Sub-distributions and search parameter-based data subsetting 
The distribution of the log transformed MS1 intensities in the filtered 

dataset (Fig. 2C) was to no extent normally distributed and appeared to 
contain more than one distribution. To investigate this, the dataset was 
subset according to variable parameters in the MaxQuant metadata 
related to specified enzymatic digestion and search parameters. When 
grouping the data based on the specified enzyme and the enzyme mode 
(i.e., specific, semi-specific, or unspecific in silico digestion) [34,46,47], 
the presence of sub-distributions was evident. 

Peptides searched with a specific enzyme digestion (Trypsin, LysN, 
and AspN) displayed a higher median value of intensity than peptides 
searched with unspecific or semi-specific digestion (Fig. 5A, B and  
Table 2). Trypsin generates peptides with a C-terminus constituted by 
Arg or Lys, LysN produces peptides with a N-terminal Lys, while AspN 
releases peptides with an N-terminal aspartic acid (Asp). While all these 
specific terminal AAs have charged side chains, Arg and Lys are posi-
tively charged while Asp is negatively charged. Distribution of log 
transformed MS1 intensities seem to suggest that charged AAs, espe-
cially when located at the peptide termini, may have a direct effect on 
the intensity output in MS1. However, Asp was not identified as high 

Fig. 4. Graphical representation of the attention weights of each AA for representative model 2. The color coding indicates the assigned contribution of each AA to 
the prediction of the MS1 intensity output from high contribution (yellow) gradually decreasing to low contribution (dark blue). 
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relevance (Fig. 4). Asp will not be charged under acidic pH used in 
positive mode ESI-MS, and therefore constitute an unchanged, polar 
residue. As such, the higher median intensity of this subset may reflect a 
potential proximity effect of carboxylic acid moiety and the N-terminal 
charged amine but may also represent that the peptide composition in 
the subset is indigenously more suitable for MS detection and hence 
provides higher MS1 response. 

It is important to highlight that peptides searched with semi-specific 
setting may have shown lower intensity values (Fig. 5B) for two reasons. 
Firstly, the pools used for these analyses contained longer peptide 
(average > 25 AAs [47]) than in the other datasets, which can generate a 
reduction of the intensity measurement due to a bias against longer 
peptides in the orbitrap mass analyzer [84,86–88]. Secondly, the search 
mode acilitated identification of full-length synthetic peptides as well as 
truncations obtained as incomplete synthesis products [47]. As the pool 

equimolarity correspond to the full-length peptide, the abundance of 
truncated forms is expected in substantially lower, thus reducing the 
intensity values of the detected truncated sequences (Fig. S8C, D). This 
directly compromises the equimolar prerequisite for the 
sequence-centric analysis performed in this study and ultimately intro-
duce bias and reduced reliability of the dataset. This becomes particu-
larly evident through the mean length of the identified peptides using 
semi-specific searches (Table 2), as this (19 AAs) is substantially lower 
than the reported average length for the peptide pools (> 25 AAs). For 
unspecific in silico digestion (Fig. 5B), there does not clearly seem to be 
higher response for peptides with a C-terminal Arg or Lys, although 
tryptic peptides identified in unspecific searches do represent the high 
responders, too (Fig. S9A). The apparent bimodal distribution indicates 
that additional properties account for the segregation of this subset in to 
(at least) two additional subsets. Interestingly, there seems to be a more 

Fig. 5. Histograms of log-transformed peptide MS1 intensity outputs by “Enzyme” and “Enzyme Mode”. A. Histogram of peptides quantified using “specific 
digestion”. B. Histogram with peptides grouped by MaxQuant “enzyme mode” and distinguishing between tryptic or non-tryptic peptides using “specific digestion”. 

Table 2 
Median values of log-transformed intensities and mean length of peptides (whole dataset) grouped by “Enzyme Mode” and “Enzyme” specified in MaxQuant metadata.  

Enzyme Mode/Enzyme Median of Log-transformed Intensities Mean Length 

Specific/Trypsin  20.03  13.25 
Specific/AspN  20.13  14.79 
Specific/LysN  20.76  14.87 
Unspecific  18.05  11.10 
Semi specific  17.05  19.00  
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consistent increase in MS1 intensity for peptides containing Arg or Lys 
(anywhere in the sequence) in comparison to those that do not 
(Fig. S9B). This observation further substantiates the importance of 
positively charged AAs for an increased ionization efficiency and thus 
MS1 response (thereby corroborating the findings from representative 
model 2), while length itself does not seem to correlate directly with 
MS1 response in general terms (Fig. S8A, C). While length does seem to 
influence response to some degree, this may simply be related to the fact 
that these lengths are in general overrepresented in the dataset 
(Fig. S8B, D). 

3.4. The influence of structural properties on the peptide level 

In addition to hydrophobicity and charge, a number of physico-
chemical properties were identified as relevant in the two representative 
models, which relate to protein and peptide structural properties 
(Tables S7 and S9). These parameters were found with a high PCC and p- 
values considerably lower than 0.05. Although many of these properties 
are also related to e.g., hydrophobicity, they also contain information on 
structural aspects, as these are often related. For instance, one of the 
properties showing high correlation with attention weights is the Atom- 
based hydrophobic moment. This parameter quantifies the strength of the 
periodicity in the polar or hydrophobic nature of the constituent amino 
acids of a sequence, which is related to the stability and type of structure 
as well as its functions [89]. Other properties such as Entropy of forma-
tion, solvation free energy, and Weights from the IFH scale were also found 
relevant. These properties are related to the thermodynamics of protein 
and peptide conformation and stability [90–92]. Energy transfer from out 
to in (95%buried) and Buriability “provides a quantitative measure of the 
driving force for the burial of a residue”, thereby describing 
polarity-driven, tertiary conformational properties [93]. While the Iso-
electric point is a parameter related to charge, it also describes electro-
static interactions between AA side chains, which affect protein and 
peptide structure [94,95]. 

There were, however, also important properties identified that more 
directly relate to structural aspects of peptides and proteins. For 
instance, the Helix termination parameter at position j-2,j-1,j refers to the 
formation probability of secondary structures, here specifically α-heli-
ces, in peptides [95]. Peptides and proteins can form secondary and 
tertiary structures not only in solution, but also in the gas phase [96–98]. 
Studies have shown that peptides with stable α-helical and β-sheet 
structures in solution have lower intensity response than corresponding 
structurally disturbed analog peptides (L- to D-AA substitution) in 
MALDI-MS [99]. This indicates that peptide solution-phase structure has 
a significant influence on the MS1 response. Moreover, it has been 
observed that the fragmentation of protonated peptides is influenced by 
the peptide’s gas-phase secondary structure and in particular acid-base 
interactions and charge solvation in the gas phase [100]. This sub-
stantiates that proximity-based intramolecular interactions are indeed 
of importance for precursor stability during MS analysis, why peptides 
with N-terminal Asp (AspN) were generally found to show high median 
intensities (Table 2). Consequently, the identification of a peptide is 
influenced by both the peptide primary structure and the consequential 

secondary structure in the gas phase. In-source fragmentation would 
lead not only to a lower MS1 response, but also a reduced proportion of 
the precursor peptide available for MS/MS identification. Furthermore, 
studies using MALDI-MS have shown that the conformation of peptides 
in the gas-phase is not necessarily the same than in solution-phase [101]. 
While ionization method in these studies differs from ESI considered 
here, the phase transition is still highly relevant and considered of 
importance in relation to ionization efficiency and thus peptide MS1 
response in ESI-MS/MS. Moreover, other studies with computational 
approaches have similarly found structural properties of significant 
relevance for MS analysis [35,37,39,83,84]. Based on these findings, 
peptide structure appears a key factor affecting the MS1 response and an 
important source of variability in intensity measurements. 

3.5. Model performance optimization and sequence-based intensity 
prediction 

The presented models were evaluated with the test datasets and their 
performances were expressed through MAPE, showing the percentual 
distance between the real and predicted MS output intensities. The 
proof-of-concept models displayed a MAPE between 0.56% and 3.2% 
(Tables S3 and S5) with an almost perfect correlation between expected 
and predicted values (Figs. S2 and S4) with p-values < 1E-5 and as low 
as 3E-23 for proof-of-concept model 3 (Tables S3 and S5). This shows 
that the models have an exceptional performance with the artificial data, 
not only identifying the average contribution of each unique elements of 
the sequence but also predicting the expected output. Using the re-
pository MS data, initially all the filtered data was used to train and test 
the two representative models, obtaining an average MAPE of 14.8% for 
log-transformed intensities (Table S10). The low standard deviations (<
0.5%) from the 5-fold cross validation show that the model architecture 
is capable of reproducibly finding descriptive patterns in the data. 
Nevertheless, there are substantial differences in intensity distributions 
based on the applied enzyme and enzyme mode setting used during the 
data search (Fig. 5B). Therefore, to improve the model performance, the 
model was trained and tested only using a specific subset of the data, 
namely the Specific/Tryptic peptides, as the remaining subsets had 
substantial uncertainties, as previously discussed. 

When doing this, the MAPE was reduced to 9.7% (Table S10), 
resulting in a relative reduction in the error of 35% for log-transformed 
intensities but also an impressive 56% for raw intensities (MAPE=98%) 
compared to the average MAPEs for the two representative models 
(average MAPE=219%). Moreover, when comparing the performance of 
the final model against random forest and ridge regression models, we 
observe similar MAPEs for the log-transformed intensities, but our 
model has higher significantly PCC for the log-transformed (PCC = 0.68) 
and real scale (PCC = 0.64) predictions as well as a much lower MAPE 
for real scale predictions (Table 3 and Fig. 6B, C). Thus, this indicates 
that our model has a better performance than the more classical algo-
rithms used for benchmarking in this study, as the predictions made by 
our model seem to be more adjusted to real values (higher PCC), and 
thus more translatable to real scale values. 

The attention weights of the final model consistently focused on the 

Table 3 
Performance metrics (expressed as MAPE (%) and PCC on real and log-transformed scale) for the final model on the specific/tryptic data subset. For benchmarking of 
the model performance, random forest and ridge regression models were included for comparison. All metrics represent average ± standard deviation for 5-fold cross 
validation.   

Log-Transformed Data Real Scale Data 

Model MAPEa (%) PCCb MAPEa (%) PCCb 

Encoder-decoder with attention mechanism (Final model)  9.67 ± 0.53  0.68 ± 0.01  97.5 ± 6.2  0.64 ± 0.01 
Random Forest  9.09 ± 0.07  0.57 ± 0.01  251,4 ± 16.4  0.56 ± 0.01 
Ridge Regression  9.19 ± 0.08  0.54 ± 0.01  269.3 ± 18.6  0.55 ± 0.01  

a Mean absolute percentage error. 
b Pearson correlation coefficient. 
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bulkier hydrophobic and aromatic AAs (Fig. 6A and Table S11), thereby 
showing similar attention patterns as representative model 1 did for the 
whole filtered dataset, and thus giving higher relevance to the 
hydrophobicity-related properties from AAindex1 (Table S12). This 
shows that the transition of peptides from liquid to gas phase and charge 
stabilization are key factors in sequence-based variability for MS1 in-
tensity measurements. Moreover, this observation is likely a result of 
further dataset segmentation meaning that the model is now focusing on 
these properties as all the peptides in the particular data subset are 
tryptic. As all peptides feature a C-terminal Arg/Lys, charge may not be 
of descriptive relevance. In turn, this indicates that representative model 
2 in fact focus more on identification of the specific/tryptic subset, as 
these peptides overall show a higher MS1 intensity compared to the 
semi-specific and unspecific subsets (Table 2). To investigate this 
further, we determined charge-related metrics for these subset peptides 
and investigated the correlation with the intensity outputs (Fig. S10). 
Here we found that neither charge nor number of positively charged AAs 
seem to in any way be descriptive of MS1 intensity variation between 
peptides, as observed in the previous models. Moreover, the relationship 
between MAPE (%) of each prediction and peptide length was investi-
gated showing no correlation, indicating that the model had no bias 
regarding peptide length (Fig. S11). 

When evaluating model performance, it is important to take into 
consideration that the models were trained only providing the sequence 
information and the corresponding MS1 intensity output without 
explicitly defining any physicochemical properties to be important. 
Nevertheless, the models identified certain underlying properties by 
themselves, which align with previous empirical studies. Furthermore, 

as there was a clear correlation between predicted and real MS1 in-
tensity outputs (both raw and log-transformed), this shows that the 
models are effectively extracting meaningful information from the 
peptide sequences to predict intensity. Nonetheless, there is a limit to 
how much the information from the sequences can explain the MS1 
intensity output, since there are other sources of variability. Such limi-
tation arise from sources such reproducibility in sampling and sample 
preparation [102–104], the type of MS technology employed [1,84, 
104–107], as well as the pipeline used for raw data processing [108, 
109]. Moreover, it is essential to consider that there is high variability in 
the MS1 intensity output for the same peptides across different pools 
within this particular dataset. Such variability is highly affected by the 
competition for ionization between co-eluting peptides [110,111]. 
While co-elution is generally considered a major concern in MS2 and 
thus for peptide identification, particularly in data-dependent acquisi-
tion, it may still be a potential source of variability in MS1. Peptide 
identification rates may be further improved by e.g. expanding the 
model to independent acquisition strategies such as DIA [112], SWATH 
[113,114] or BoxCar [115]. A potential way for alleviating the problem 
while directly reducing co-elution, thereby improving quality of MS1 
response data, could be to look towards longer gradients and particu-
larly pre-MS1 separation by ion mobility [116,117]. The presented 
model architecture in this work does not explicitly account for 
co-elution and the effect on MS1 response, however, by using median 
MS1 intensities across multiple pools, input data reflects a more 
“average state” for each peptide. In future development of peptide-level 
quantitative models, this could be investigated and potentially dealt 
with by implementation of modules that can predict peptide co-elution 

Fig. 6. Attention weights and model performance results for the final mode (Specific/Tryptic peptides only). A. Graphical representation of the attention weights of 
individual AAs. The color coding indicates the assigned contribution of each AA to the MS1 intensity output given by the model. B. Scatter and density plot of the 
measured vs the predicted intensities (log-transformed). C. Scatter and density plot of the measured vs the predicted intensities (real scale). 
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through e.g. retention time prediction [34,118]. Consequently, building 
more robust datasets and designing standardized experimental protocols 
that allows to generate more consistent measurements are key factors to 
building models that can accurately predict peptide MS1 intensities and 
account for intrinsic variability. Such models can ultimately be applied 
to estimate absolute peptide quantification without the need of isoto-
pically labeled surrogate peptides and illustrates potential for devel-
oping fundamentally new approaches within the field of label-free BUP. 

4. Conclusions 

In this study, a deep learning neural network with attention mech-
anism was used to determine the relevance of each of the 20 natural 
amino acids on the MS1 signal response from peptides in HPLC-ESI-MS/ 
MS analysis of equimolar peptide pools. The initial models were capable 
of predicting log-transformed peptide intensity with an average MAPE of 
14.8%. The attention weights from the models were correlated with the 
physicochemical property indices contained in AAindex1 to identify 
which physicochemical properties play an important role in the 
behavior of peptides in MS, as well as their impact on MS1 intensity 
measurements. Hydrophobicity, charge, and peptide gas-phase structure 
were identified as important relevant properties governing the peptide 
MS1 responses. These parameters were not directly reflected in the data, 
but extractable using the presented model architecture through the in-
clusion of an attention mechanism. Following further segmentation of 
the dataset, the model was trained on only specific/tryptic peptides, 
thereby improving the model performance, and reducing MAPE for log 
intensity prediction to 9.7%. The model showed high reproducibility 
through K-fold cross-validation and overall outperformed classical 
random forest and ridge regression models. The model performance is 
likely to be improved by generating more accurate and robust datasets 
as well as experimental protocols to normalize between individual MS 
runs. Overall, the information generated in this study is of great rele-
vance to understand the key factors influencing the results obtained in 
HPLC-ESI-MS/MS peptide analysis. This understanding can also be used 
to build more advanced models for peptide detectability and peptide 
quantification and may ultimately find use for development of new 
protein-level quantification strategies in label-free proteomics. 
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