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Abstract: In this study, we investigated the use of empirical mode decomposition (EMD)-based
features extracted from electrocardiogram (ECG) RR interval signals to differentiate between dif-
ferent levels of cardiovascular autonomic neuropathy (CAN) in patients with type 2 diabetes mel-
litus (T2DM). This study involved 60 participants divided into three groups: no CAN, subclinical
CAN, and established CAN. Six EMD features (area of analytic signal representation—ASRarea;
area of the ellipse evaluated from the second-order difference plot—SODParea; central tendency
measure of SODP—SODPCTM; power spectral density (PSD) peak amplitude—PSDpkamp; PSD band
power—PSDbpow; and PSD mean frequency—PSDm f req) were extracted from the RR interval signals
and compared between groups. The results revealed significant differences between the noCAN and
estCAN individuals for all EMD features and their components, except for the PSDm f req. However,
only some EMD components of each feature showed significant differences between individuals with
noCAN or estCAN and those with subCAN. This study found a pattern of decreasing ASRarea and
SODParea values, an increasing SODPCTM value, and a reduction in PSDbpow and PSDpkamp values
as the CAN progressed. These findings suggest that the EMD outcome measures could contribute to
characterizing changes associated with CAN manifestation in individuals with T2DM.

Keywords: electrocardiogram (ECG); heart rate variability; diabetes; cardiovascular autonomic
neuropathy; empirical mode decomposition

1. Introduction

According to the International Diabetes Federation (IDF) [1], it is estimated that
537 million people are living with diabetes mellitus (DM), which represents 10.5% of
the world’s population. DM is a chronic disorder that occurs when the body cannot
produce enough insulin or cannot effectively use the insulin it produces, resulting in raised
blood glucose levels [2]. The metabolic disorders of DM lead to diffuse and widespread
damage to the peripheral and autonomic nerves and small vessels. Among these, damage
to the autonomic nerve fibers that innervate the heart and blood vessels is known as
cardiovascular autonomic neuropathy (CAN), resulting in abnormalities in heart rate and
vascular dynamics [3]. CAN prevalence is estimated at 17–66% among patients with type
1 DM and 31–73% in patients with type 2 DM [4].

The gold standard for CAN diagnosis is the series of cardiac autonomic reflex tests
(CARTs), which measure the heart rate and blood pressure responses to simple interventions
such as deep breathing, the Valsalva maneuver, and lying-to-standing [5]. These responses
are compared to normal and age-adjusted cut-off values [6]. Nevertheless, CAN has a
silent presentation and may exhibit no symptoms or have subtle symptoms, making it
challenging to identify and diagnose in the initial stages with only the CARTs [7]. In
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addition, CARTs must follow consistent and standardized protocols, which require active
patient collaboration [8]. Early or subclinical CAN is limited to baroreceptor abnormalities
and changes in heart rate variability (HRV) [4]. Hence, HRV indices are a different approach
to CARTs for assessing autonomic function, as they are easier and quicker than CARTs,
patient-independent, and sensitive to early dysfunction [9]. HRV refers to the time elapsed
between two successive R-waves of the QRS complex on the electrocardiogram (ECG) (i.e.,
the RR interval) [10]. HRV indices are amongst the simplest and most reliable ways to
assess CAN and are obtained by time- and frequency-domain methods, which measure,
respectively, the overall magnitude of the fluctuations of the RR interval between each
heartbeat around the average values and the magnitude of fluctuations in a predetermined
range of frequency [11]. Despite having a wide basis of evidence for the supportive value
of HRV analysis in CAN diagnosis and risk stratification in diabetic individuals [12–14],
HRV methods and indices for decision-making and, most importantly, CAN severity
quantification remain an active and expanding research topic [15].

HRV reflects the dynamic changes of the autonomic nervous system’s regulation and
is determined by the combined inputs of the sympathetic and parasympathetic systems [5].
HRV signals involve nonlinear contributions and are essentially non-stationary [10]. Thus,
measures from information and invariant domains that can accurately describe the nonlin-
ear properties of HRV signals are strongly recommended to be used in conjunction with
traditional techniques because they may provide supplementary information about the
underlying mechanisms involved in cardiovascular regulation [16,17]. Several studies
have demonstrated the usefulness of the nonlinear analysis of HRV for assessing cardiac
abnormalities and have explored techniques such as the correlation dimension, Poincare
plots, entropy parameters, recurrence plots, and detrended fluctuation analysis [18–22].

Among these techniques, a nonlinear method that has been explored for HRV analysis
is empirical mode decomposition (EMD). EMD is a data analysis method proposed by
Huang et al., (1998) [23] that decomposes a time series into a set of simpler and more inter-
pretable oscillatory modes called intrinsic mode functions (IMFs). The Hilbert transform
can be applied to IMFs to obtain their analytical signal, from which additional information
can be calculated, such as the instantaneous frequency and the amplitude and phase mod-
ulation of the IMF [24]. EMD is an adaptive and data-driven technique, which makes it
well-suited to analyzing signals that have complex, nonlinear, and non-stationary charac-
teristics. Compared to other methods of time-frequency analysis of signals, EMD addresses
some limitations. For example, the Fourier transform is a linear technique that assumes
the signal is stationary over time [24], which is not the case for HRV signals that exhibit
nonlinear interactions between different frequency components [15]. On the other hand,
the Wavelet transform is a frequency-based method that selects an appropriate wavelet
basis function and scale, while EMD is a time-based method that does not require a priori
knowledge of the signal frequency content [24].

As a result of its different approach and the advantages over the analysis of complex
and nonlinear time-series signals, the use of the EMD technique has gained increasing
attention and has been adopted for a variety of biomedical signals, such as the electroen-
cephalogram for epileptic seizure classification [25,26], emotion recognition [27,28], and
the identification of autism severity level [29], electromyography for the analysis of amy-
otrophic lateral sclerosis [30,31] or for the classification of neuromuscular disorders [32,33],
and ECG signals for the classification of cardiovascular diseases [34], ECG denoising [35,36],
the classification of ventricular arrhythmias [37], the prediction of sudden cardiac death [38],
and the detection of hypertension [39] or the extraction of fetal ECG [40].

The study by Echeverria et al. [41] was one of the first to propose the application of
EMD to HRV analysis, concluding that EMD and the associated Hilbert spectral representa-
tion are powerful techniques for HRV time-frequency analysis due to their capabilities of
independently isolating the main frequency components and dealing with non-stationary
and nonlinear features of the ECG signal. Subsequently, a study by Souza Neto et al. [42]
also showed that EMD is a flexible processing method that enhances the assessment of
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cardiovascular autonomic control, overcoming the limitations posed by the linearity and
stationarity assumptions inherent in traditional spectral techniques. Pachori et al. [43]
proposed a set of EMD-based features applied to the RR interval signals that allowed
differentiation between subjects with and without diabetes. In the same context, Pachori
et al. [44] presented a methodology for screening patients with DM by applying the EMD
method to decompose HRV signals, achieving a classification accuracy of 95.63%. To iden-
tify and classify normal and congestive heart failure, Acharya et al. [45] subjected HRV
signals to the EMD technique, obtaining an accuracy of 97.01%. Sood et al. [46] proposed
a methodology for discriminating between normal and coronary artery disease subjects
using heart rate signals, showing statistically significant EMD-based features.

Similarly, Shi et al. [47] investigated EMD-based features applied to HRV signals on
sudden cardiac death (SCD), predicting subjects at risk earlier with an accuracy of 96.1%
and outperforming the classical linear estimators of SCD. These studies highlighted that
analyzing HRV signals using the EMD technique provides relevant information about
overall cardiac abnormalities. Furthermore, within the context of DM, the scope of these
studies is limited to characterizing DM and distinguishing between normal and diabetic
patients, with no studies analyzing the progression of CAN.

Therefore, our study’s significance is based on four complementary aspects: (a) the
importance of identifying parameters that characterize the subtle changes occurring in the
early stages of CAN (i.e., the subclinical phase, where the disease is present but symptoms
are not yet evident or are very mild), enabling the initiation of preventive treatment to
control symptoms and potentially slow or reverse the disease progression [4,5]; (b) a novel
application of the EMD method; to the best of our knowledge, the EMD method has not
been applied to analyze HRV signals of DM patients with CAN at different levels of severity;
(c) proposing the utilization of HRV indices as a replacement for CARTs in diagnosing
CAN, offering the advantages of time-effectiveness, patient-independence, and providing
quantitative measurements; and (d) contributing to ongoing research on the relevance of
nonlinear HRV analysis approaches in investigating the neural control of the cardiovascular
system in the presence of CAN.

Therefore, our research aims to investigate the relevance of the EMD-based features
extracted from HRV signals to differentiate between progression levels of cardiovascular
autonomic neuropathy among type 2 DM patients (i.e., no CAN, subclinical CAN, and
established CAN).

The paper is organized as follows: Section 2 delineates the methodology, which
includes: (i) a description of participants and the inclusion criteria, (ii) the data acquisition
process and data pre-processing, (iii) the EMD method and feature extraction, and (iv) the
statistical analysis. Sections 3 and 4 present the results and discussion, respectively. Finally,
Section 5 concludes the paper.

2. Materials and Methods

A block diagram of our proposed methodology for CAN investigation based on the
EMD method applied to HRV signals is presented in Figure 1 and will be further explained
in the following sections.
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Figure 1. A block diagram illustrating the proposed methodology for investigating cardiovascular
autonomic neuropathy (CAN) in individuals with type 2 diabetes mellitus (T2DM) through the
application of empirical mode decomposition (EMD) to heart rate variability (HRV) signals. The
participants’ electrocardiogram (ECG) and photoplethysmography (PPG) signals were collected. In
the pre-processing stage, the ECG signals underwent bandpass filtering, followed by the derivation of
the HRV signals. The feature extraction stage involved applying EMD to the HRV signals to obtain the
first four intrinsic mode functions (IMFs) components. From these IMFs, the following features were
calculated: ASRarea—area of the analytical signal; SODParea—area of the second-order difference
plot; SODPCTM—the central tendency measure of the second-order difference plot; PSDpkamp—peak
amplitude of the power spectral density estimation; PSDbpow—band power of the power spectral
density estimation; and PSDm f req—mean frequency of the power spectral density estimation. The
final stage involved conducting the statistical analysis to compare the mean differences of all the
features among the different CAN severity level groups: noCAN—individuals with T2DM without
CAN; subCAN—individuals with T2DM and subclinical CAN; and estCAN—individuals with T2DM
and established CAN. The PPG signal was used for CAN classification purposes.

2.1. Participants

An a priori sample size estimation was performed in G*Power [48], assuming a statisti-
cal power of 0.80 and a significance level of 0.05. For a one-way ANOVA with three groups
and a moderate effect size (Cohen’s d = 0.05), the study required a minimum sample size
of 42 participants. However, to ensure robustness and address potential limitations, sixty
participants diagnosed with type 2 DM were recruited from the Professor Polydoro Ernany
University Hospital of the Federal University of Santa Catarina—HU/UFSC/EBSERH (see
Table 1). The inclusion criteria specified that participants were 18–75 years old and of any
gender. The exclusion criteria included the diagnosis of retinopathy, chronic infectious or
inflammatory diseases, use of an implantable electronic device (e.g., a cardiac pacemaker),
and use of drugs that can affect cardiovascular function (e.g., beta-blockers). The insti-
tutional research ethics committee approved the study (protocol number 3.326.385), and
participants only entered the study after informed consent.

Table 1. Demographic and clinical data of the participants.

noCAN subCAN estCAN

n 20 20 20
Age (yrs) 60.1 ± 4.5 62.0 ± 7.0 57.0 ± 8.4
Gender 7F/13M 12F/8M 10F/10M

DM duration (yrs) 13.2 ± 9.5 13.9 ± 9.8 17.6 ± 9.3
HbA1c (mmol/mol) 89 ± 22 71 ± 31 99 ± 19

Note: Values are presented as mean ± SD. Abbreviations: DM—diabetes mellitus; noCAN—individuals with type
2 DM without cardiac autonomic neuropathy; subCAN—individuals with type 2 DM with subclinical cardiac
autonomic neuropathy; estCAN—individuals with type 2 DM and established cardiac autonomic neuropathy;
HbA1c—glycated hemoglobin.

The anthropometric and clinical data (e.g., age, DM duration, use of medications,
presence of complications, and the last results of the glycated hemoglobin (HbA1c) test—a
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blood test that shows the average blood sugar (glucose) level over the past two to three
months) were obtained from previous ECG and photoplethysmography (PPG) data. The
participants were given cardiac autonomic reflex tests (CARTs) and baroreflex sensitivity
(BRS) analyses to classify them into three levels of CAN (i.e., noCAN—no presence of
CAN, subCAN—subclinical CAN, and estCAN—established CAN). The CARTs comprised
tests for heart rate response, including the RR interval to paced breathing, the Valsalva
maneuver, and postural change from lying to standing [4]. The standardized CARTs
used in this study are the gold standard method recommended for CAN assessment in
patients with diabetes [7]. Furthermore, BRS is a quantitative description of the arterial
baroreflex, a critical determinant of the neural regulation of the cardiovascular system,
relying on the analysis of spontaneous fluctuations of beat-by-beat arterial pressure and
cardiac interval [49]. BRS is a sensitive indicator of CAN in type 2 DM [49,50] and an
accurate screening tool for staging CAN, even in the subclinical phase when the usual
clinical tests do not detect alteration due to the absence of overt symptoms [51].

The CARTs were performed according to the O’Brien tests [6], based on Ewing [52],
and incorporated a composite score (CS). The CARTs were evaluated as normal (i.e., CS up
to 1) or abnormal (i.e., CS greater than 2). For the BRS analysis, two steps were performed:
(i) an estimation of systolic blood pressure (SBP) from ECG and PPG signals based on a
model proposed by Rajala et al. [53]; and (ii) a BRS value estimation from the estimated
SBP and the RR intervals based on the sequence method [54]. The mean values of BRS
were compared against age-adjusted reference values to determine normal or abnormal
results [55,56]. Subsequently, the noCAN group was defined when the CARTs and BRS
analysis were considered normal, and the subCAN group was defined when the CARTs
were normal and the BRS analysis was abnormal. Finally, estCAN was defined when both
the CART and BRS results were abnormal.

2.2. ECG and PPG Recording and Processing

The ECG and PPG signals were recorded using a custom-made acquisition system
developed by the Federal University of Santa Catarina’s Institute of Biomedical Engineering
with a sampling frequency of 500 Hz. The ECG data were obtained following a bipolar
three-lead configuration using disposable adhesive electrodes (3M, Red Dot, 2560). The
PPG was measured with a pulse oximeter sensor on the index finger.

The ECG signals were bandpass-filtered (fourth-order Butterworth FIR filter, 0.5–40 Hz)
to remove high-frequency noise, including power line interference and baseline wander.
Subsequently, the RR intervals between successive R peaks of QRS complexes were detected
and calculated based on the Pan–Tompkins algorithm [57]. Lastly, the RR sequence was
inspected to remove spurious RR peaks where the RR intervals changed more than 20%
within a median value window of the following five and the previous five RR intervals [58].
The corrected HRV signals proceeded for analysis.

2.3. Feature Extraction

The HRV segments were analyzed using the original EMD method outlined in [23]
with the official MATLAB code (R2018a, MathWorks, MA, USA). Custom software was
created in MATLAB to extract features from the EMD modes, including the area of the
analytical signal (ASRarea), the area of the second-order difference plot (SODParea), the
central tendency measure of the second-order difference plot (SODPCTM), and the features
extracted after power spectral density estimation: peak amplitude (PSDpkamp), band power
(PSDbpow), and mean frequency (PSDm f req). The following section further describes the
details of the EMD technique and the extracted features.

2.3.1. Empirical Mode Decomposition

The EMD method is an adaptive data analysis method applicable to nonlinear and
non-stationary signals [23]. The EMD model decomposes data into finite intrinsic mode
functions (IMFs) based on directly extracting the energy associated with various intrinsic
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time scales. With the Hilbert transform, the IMFs yield instantaneous frequencies as func-
tions of time that give sharp identifications of embedded structures. The final presentation
of the results is an energy-frequency-time distribution, designated as the Hilbert spectrum,
which accurately represents non-stationary and nonlinear signals [23].

Unlike Fourier analysis or wavelet transforms, EMD breaks down a time signal into
a set of base signals derived from the data itself; this unique approach allows EMD to
preserve the full non-stationarity of the signal [24]. In addition to contrasting the Fourier
analysis that produces a series of sine and cosine functions of fixed amplitudes to represent
each frequency constituent in the signal, the IMFs are oscillatory modes whose amplitude
and frequency vary over time [23].

The EMD of a time-series signal x(t) can be represented as a sum of IMFs, IMFi(t), and
a residue component, rN(t), as represented in Equation (1):

x(t) = ∑N
i=1 IMFi(t) + rN(t) (1)

The algorithm to extract the IMFs of a time-series signal using EMD follows an iterative
process known as the sifting process, summarized as follows [23]:

(i) Identify the signal maxima and minima;
(ii) Compute the interpolated upper and lower envelopes and the instantaneous local

mean of the envelopes;
(iii) Subtract the obtained local mean from the original signal x(t) to obtain the first

component IMFi(t);
(iv) Check whether the component IMFi(t) satisfies the two basic conditions of the IMF:

a. The number of extrema—maxima and minima—and the number of zero-crossings
in a signal should be either equal or differ by a maximum of one;

b. At any point, the mean value of two envelopes, one formed by connecting local
maxima and the other by local minima, should be zero.

(v) Repeat steps (i)–(iii) until it satisfies the conditions of the IMF (or by applying a
stopping criterion such as the number of repetitions);

(vi) Repeat steps (i)–(iii) again for the calculation of the next IMFs, until no more compo-
nents can be extracted (or by removing criteria such as the number of required IMFs).

After the signal decomposition, the Hilbert transformation applied to the obtained
IMFs provides an analytical signal representation (ASR) of IMFs (i.e., a complex-valued
function with no negative frequency components). Any complex signal, z(t), can be
considered the sum of its real part, IMFi(t), and its imaginary part, Im(t), and rewritten in a
polar coordinate system, as demonstrated in Equation (2). Equations (3) and (4) denote the
instantaneous amplitude A(t) and phase θ(t) of the complex analytic signal, respectively:

z(t) = IMFi(t)+jIm(t) = A(t) ejθ(t) (2)

A(t) =
√

IMFi(t)
2 + Im(t)2 (3)

θ(t) = tan−1(
Im(t)

IMFi(t)
) (4)

When applied to HRV analysis, the RR interval is decomposed into amplitude and
frequency-modulated (AM–FM) signal components, the IMFs. The study in [41] demon-
strated that the isolation of the first four components of the EMD is necessary to recognize
the spectral bands of the autonomic modulation. Thus, this study limited the decomposition
to four IMFs, considering they held the most significant signal variation.
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2.3.2. The Features of EMD-Derived IMFs

The features extracted from the EMD-derived IMFs were as follows: the area of an-
alytical signal representation (ASRarea), the second-order difference plot area (SODParea),
and the central tendency measure of the second-order difference plot (SODPCTM). Fur-
thermore, the features extracted after power spectral density estimation of the IMFs were:
peak amplitude (PSDpkamp), band power (PSDbpow), and mean frequency (PSDm f req). The
specifics of how these features were obtained are explained below.

• The area of analytical signal representation (ASRarea)

The IMF analytic signal s(n) can be plotted as the imaginary part, Im{s(n)}, against
the real part, R{s(n)}. This IFM analytical signal representation (ASR) plot shows a circular
pattern with a unique center of rotation [59]. Thus, a feature of the area can be estimated.
One of the standard methods to summarize graph information is the central tendency
measure (CTM). The CTM is computed by selecting a circular region of radius r around the
origin, counting the number of points within the radius, and dividing by the total number
of points N, as in [60]. This procedure is demonstrated in Equations (5) and (6):

CTM =
∑N

n=1 D(n)
N

(5)

D(n) = 1 if ([R{s(n)}]2 + [Im{s(n)}]2)
0.5

< r
0 otherwise

(6)

The radius of the plot is computed using the CTM. In this work, a radius of 95% CTM
was chosen to calculate the ASR area. Finally, the ASRarea is computed as in Equation (7).

ASRarea = πr2 (7)

• The second-order difference plots (SODParea and SODPCTM)

The second-order difference plots (SODPs) are centered around the origin representing
the variability rate; they help model biological systems, such as heart rate variations, to
characterize the degree of theoretical chaos [60]. The SODPs extract the rate of the data
variability (e.g., they assess the variability present in the IMFs of the RR interval signals)
and provide a graphical representation of successive differences in the same series when
plotted against each other [29,43].

The SODP graph of a given signal x(n) can be obtained by plotting X(n) versus Y(n),
as defined in Equations (8) and (9), respectively:

X(n) = IMFi(n + 1)−IMFi(n) (8)

Y(n) = IMFi(n + 2)−IMFi(n + 1) (9)

Once the SODP is obtained, we used the 95% confidence ellipse area of the SODP
graph to obtain the SODParea. The procedure to calculate the ellipse area is given as the
following process [26,61].

Compute Sx, Sy, and Sxy, according to Equations (10)–(12):

Sx=

√
1
N ∑N−1

n=0 X(n)2 (10)

Sy=

√
1
N ∑N−1

n=0 Y(n)2 (11)

Sxy=
1
N ∑ X(n) Y(n) (12)



Appl. Sci. 2023, 13, 7824 8 of 19

Compute D, a, and b parameters according to Equations (13)–(15):

D =

√(
S2

x + S2
y

)
− 4
(

S2
xS2

y − S2
xy

)
(13)

a = 1.7321
√

S2
x + S2

y + D) (14)

b = 1.7321
√

S2
x + S2

y − D) (15)

From parameters a and b, the SODParea is calculated as in Equation (16):

SODParea = πab (16)

In addition, the CTM method was applied to the SODP graphs. The CTM was
calculated for each IMF’s fixed circular region around the SODP origin point. Therefore, a
low-variable plot will have points clustered around the origin. Additionally, the diseased
state of the heart exhibits a greater degree of chaos [60]. The SODPCTM is defined as the
ratio between the number of points within the fixed radius and the total number of points.
The radius was defined by visual inspection as 0.02, 0.01, 0.002, and 0.001 for the 1st to 4th
IMF, respectively.

• Power spectral density estimation (PSDpkamp, PSDbpow, and PSDm f req)

The power spectral density (PSD) estimation describes the power distribution over
frequency contained in a signal. The x-axis represents frequency, while the y-axis represents
the magnitude or power of the signal at that frequency in units expressed in decibels
(dB) or squared units of the original signal. Welch’s method was used to estimate the
PSD. In brief, it is an averaging method that divides the signal into overlapping segments,
computes the periodogram of each segment, and averages these periodograms to obtain an
estimate of the PSD over a certain frequency range [62]. In this study, the adopted frequency
range was 0–0.5 Hz. Welch’s PSD was estimated for each of the four extracted IMFs. The
PSD peak amplitude (PSDpkamp) was defined as the absolute maximum height of the PSD
waveform. The PSD band power (PSDbpow) was calculated as the average power computed
by integrating the PSD estimate curve, and, finally, the PSD mean frequency (PSDm f req),
as the average frequency of the spectrum, was calculated as the weighted average of the
frequencies, with the weights being the PSD values at each frequency.

2.4. Statistical Analysis

A one-way analysis of variance (ANOVA) was conducted to compare mean differences
between CAN severity level groups (i.e., noCAN, subCAN, and estCAN). The homogeneity
of variances and the normality assumptions were verified through Levene’s test and
Shapiro–Wilks’s test, respectively. As a result of the non-normal distribution, variables were
log-transformed to perform the analysis. Pairwise multiple comparisons were performed
with Tukey (equal variances assumed) or the Games–Howell test for unequal variances.
The results are shown as mean ± standard deviation, and the significance level 0.05 was
adopted. The statistical analysis was performed with R 4.2.0 (R Core Team, 2022).

3. Results

The results of the Shapiro–Wilk test of normality indicate that the distributions were
non-normal for the variables ASRarea, SODParea, PSDpkamp, and PSDbpow while the vari-
ables SODPCTM and PSDm f req were normally distributed. The same results were observed
for the four IMF components of each feature. The results of Levene’s homogeneity of
variances test indicate equal variances for all features except for the SODPCTM of the 1st,
2nd, and 4th IMF components.

A representative illustration of the resulting EMD applied to decompose the RR
interval signal in a subject with no diagnosis of CAN is illustrated in Figure 2. The top
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row shows the original RR interval signal. The following rows demonstrate the first four
IMFs and the residual component. As expected, the higher the IMF index, the lower its
frequency content.
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Figure 2. The first row represents the original RR interval signal, followed by its first four intrinsic
mode functions and the residual obtained after empirical mode decomposition from a subject with
no diagnosis of cardiovascular autonomic neuropathy.

The univariate ANOVA shows a significant difference between the CAN groups for the
variables log(ASRarea), log(SODParea), SODPCTM, log(PSDbpow), and log(PSDpkamp) and
their components (i.e., IMF1, IMF2, IMF3, and IMF4) (p < 0.01). In contrast, there was no
significant difference between the CAN groups for the PSDm f req variable and its EMD
components. The feature values are presented in Table 2.

The analytic signal and the second-order difference plots of the IMFs for the three
groups (noCAN, subCAN, and estCAN) are demonstrated in Figures 3 and 4, respectively.
From Figure 3, it can be observed that the spread of the analytic signal is lower for the
estCAN group in all IMFs, resulting in a larger number of points inside the radius and,
therefore, a larger ASRarea. Similarly, Figure 4 reveals that the second-order difference plot
exhibits a greater dispersion in the noCAN group but becomes progressively more clustered
in the subCAN group and even more in the estCAN group. This result is reflected by the
decrease in the SODParea and an increase in the SODPCTM, which calculate the ellipse area
and the grouping of points around the origin.
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Table 2. Feature values (mean ± standard deviation) for ASRarea—the area of the analytical signal;
SODParea—the area of the second-order difference plot (SODP); SODPCTM—the central tendency
measure of SODP; PSDbpow—the power spectral density (PSD) band power; PSDpkamp—the PSD
peak amplitude; and PSDm f req—the PSD mean frequency for the four intrinsic mode functions
decomposed from the empirical mode decomposition technique of each group; noCAN—individuals
with type 2 DM without cardiac autonomic neuropathy; subCAN—individuals with type 2 DM with
subclinical cardiac autonomic neuropathy; and estCAN—individuals with type 2 DM and established
cardiac autonomic neuropathy. Significance levels are a p < 0.05 when comparing noCAN to subCAN,
b p < 0.05 when comparing noCAN to estCAN and c p < 0.05 when comparing subCAN to estCAN.

Feature Group IMF1 IMF2 IMF3 IMF4

log (ASRarea )
noCAN −6.777 ± 0.770 b −7.399 ± 0.338 b −7.424 ± 0.287 b −7.300 ± 0.432 ab

subCAN −7.199 ± 0.540 c −7.580 ± 0.282 −7.609 ± 0.204 −7.616 ± 0.263 a

estCAN −7.655 ± 0.382 bc −7.739 ± 0.268 b −7.694 ± 0.450 b −7.712 ± 0.224 b

log (SODParea )
noCAN −0.654 ± 0.665 b −1.878 ± 0.609 b −2.810 ± 0.488 ab −3.598 ± 0.527 ab

subCAN −1.957 ± 0.802 c −2.374 ± 0.740 c −3.294 ± 0.584 a −4.071 ± 0.557 ac

estCAN −1.086 ± 0.759 bc −2.963 ± 0.703 bc −3.733 ± 0.733 b −4.551 ± 0.621 bc

SODPCTM

noCAN 0.773 ± 0.268 b 0.887 ± 0.173 b 0.317 ± 0.180 ab 0.694 ± 0.234 ab

subCAN 0.887 ± 0.209 0.941 ± 0.105 0.531 ± 0.276 ac 0.868 ± 0.143 ac

estCAN 0.981 ± 0.037 b 0.987 ± 0.029 b 0.750 ± 0.253 bc 0.947 ± 0.089 bc

log
(

PSDbpow )
noCAN −3.480 ± 0.574 b −3.839 ± 0.432 b −3.921 ± 0.370 ab −3.912 ± 0.390 ab

subCAN −3.897 ± 0.668 c −4.166 ± 0.564 c −4.288 ± 0.388 ac −4.314 ± 0.382 ac

estCAN −4.492 ± 0.654 bc −4.749 ± 0.622 bc −4.687 ± 0.612 bc −4.655 ± 0.527 bc

log
(

PSDpkamp )
noCAN −2.562 ± 0.617 b −2.771 ± 0.435 b −2.613 ± 0.379 ab −2.392 ± 0.403 ab

subCAN −3.028 ± 0.692 c −3.094 ± 0.570 c −2.975 ± 0.368 ac −2.793 ± 0.391 ac

estCAN −3.667 ± 0.724 bc −3.741 ± 0.626 bc −3.349 ± 0.644 bc −3.106 ± 0.551 bc

PSDm f req

noCAN 0.290 ± 0.051 0.097 ± 0.019 0.041 ± 0.010 0.018 ± 0.003
subCAN 0.266 ± 0.054 0.090 ± 0.029 0.039 ± 0.121 0.019 ± 0.006
estCAN 0.285 ± 0.0463 0.098 ± 0.031 0.039 ± 0.008 0.017 ± 0.004
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Figure 3. The analytic signal representation (ASR) of the first four intrinsic mode functions obtained
after the empirical mode decomposition analysis of the RR interval signals for the three groups:
noCAN—individuals with type 2 diabetes (T2DM) without cardiovascular autonomic neuropathy
(CAN); subCAN—individuals with T2DM with subclinical CAN; and estCAN—with T2DM with
established CAN. Note: The zoomed plots of the estCAN group are presented in the top corner of
each IMF plot.

Welch’s power spectral density estimation plots of the intrinsic mode functions for the
three groups (noCAN, subCAN, and estCAN) are demonstrated in Figure 5; the frequency
content decreases as the IMF index increases. The power of all IMFs shows a decreasing
trend from the noCAN group to the subCAN group and further to the estCAN group.
When examining each group’s IMFs individually, the noCAN group exhibits a higher power
in IMF1, while the subCAN and estCAN groups show higher powers in IMF3 and IMF4.
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Figure 4. The second-order difference plots for the first four intrinsic mode functions (IMFs) obtained
after empirical mode decomposition analysis of the RR interval signal for the three groups are as
follows: noCAN—individuals with type 2 diabetes (T2DM) without cardiovascular autonomic neu-
ropathy (CAN); subCAN—individuals with T2DM with subclinical CAN; and estCAN—individuals
with T2DM with established CAN. Note: The zoomed plots of the estCAN group are presented in the
top corner of each IMF plot.
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Figure 5. The power spectral density (PSD) estimation for the first four intrinsic mode functions
(IMFs) was obtained after the empirical mode decomposition analysis of the RR interval signals
for the three groups: noCAN—individuals with type 2 diabetes (T2DM) without cardiovascu-
lar autonomic neuropathy (CAN); subCAN—individuals with T2DM with subclinical CAN; and
estCAN—individuals with T2DM with established CAN. Note: The plots have different scales on
the y-axis for better visualization.
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All features derived from the four EMD-extracted IMF components exhibited signifi-
cant differences between the extreme groups (noCAN and estCAN). When comparing the
noCAN and subCAN groups, the third and fourth components were particularly effective
in distinguishing between them. Furthermore, for the subCAN and estCAN groups, certain
EMD components of each feature presented a significant ability to distinguish between the
groups. The following paragraphs provide a more detailed description of these results.

Regarding the log(ASRarea) of the four EMD components of each group, the posthoc
analysis demonstrates that there was a significant difference between the noCAN and
estCAN groups (p < 0.01) for all components, a significant difference between the subCAN
and estCAN groups (p < 0.05) in the fourth component, and a significant difference between
the noCAN and subCAN groups (p < 0.05) in the first component (see Table 2 and Figure 6a).
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Figure 6. The comparison of parameters for cardiovascular autonomic neuropathy (CAN) groups for
the four IMFs of the RR interval signals (mean ± standard error of the mean): noCAN—individuals
with type 2 diabetes (T2DM) without CAN; subCAN—individuals with T2DM with subclinical CAN;
and estCAN—individuals with T2DM with established CAN. (a) ASRarea—the area of analytic signal
representation. (b) SODParea—the area of the second-order difference plot (SODP). (c) SODPCTM—
the central tendency measure of SODP. (d) PSDbpow—the power spectral density (PSD) band power.
(e) PSDpkamp—the PSD peak amplitude. * p < 0.05—significant group difference.

Considering the log(SODParea), the posthoc analysis of the four EMD components of
each group also revealed a significant difference between the noCAN and estCAN groups
(p < 0.01) for all components. Additionally, a significant difference between the noCAN and
subCAN (p < 0.05) groups was found for the log(SODParea) of the third and fourth IMFs,
and a significant difference between subCAN and estCAN (p < 0.05) for all components,
except for the third one (p < 0.09) (see Table 2 and Figure 6b).

The estCAN group shows a significantly higher SODPCTM mean value (p < 0.01) for
all components compared to the noCAN group, as well as a significantly higher mean value
(p < 0.05) for the 3rd and 4th IMF components compared to the subCAN group. Similarly,
the estCAN group exhibited a significantly higher SODPCTM mean value (p < 0.05) for the
third and fourth components compared to the subCAN group (see Table 2 and Figure 6c).



Appl. Sci. 2023, 13, 7824 14 of 19

Lastly, the posthoc analysis of PSD-derived features demonstrates significantly re-
duced log (PSDbpow) (p < 0.05) and log (PSDpkamp) (p < 0.05) mean values for the estCAN
group compared to the noCAN and subCAN groups for all IMFs. Similarly, the subCAN
group presented significantly reduced mean values for the log (PSDbpow) (p < 0.05) and log
(PSDpkamp) (p < 0.05) parameters compared to the noCAN group for the 3rd and 4th IMF
components (see Table 2, Figure 6d,e).

4. Discussion

In summary, it was observed that all features (except the PSDm f req) calculated from
the four EMD-extracted IMF components differed significantly between the extreme groups
(i.e., noCAN and estCAN). More importantly, the specific IMF components of each feature
could effectively distinguish individuals without a CAN diagnosis or with an established
CAN from those with subclinical CAN (refer to Figure 6).

This research explores a new approach for analyzing the RR interval signals acquired
from type 2 DM individuals at different stages of cardiovascular autonomic neuropathy.
We used the EMD method, which decomposes non-stationary and nonlinear signals into
IMFs. The findings of this study suggest that employing the nonlinear EMD method
enables the extraction of several parameters from heart rate variability that hold promise in
identifying changes associated with the manifestation and progression of CAN. Specifically,
the complex plane plots from the analytical signal representation and the second-order
difference plot of the first four IMFs were used to extract the ASRarea, SODParea and
SODPCTM features, while the power spectral density of the IMFs was used to obtain
the PSDbpow, PSDpkamp and PSDm f req features. These parameters were compared across
subjects at distinct stages of CAN (noCAN, subCAN, and estCAN). The main results
were as follows: (a) decreased IMF variability and (b) decreased IMF power distribution,
according to CAN progression.

The autonomic nervous system (ANS) maintains homeostasis by regulating arterial
pressure and all significant cardiovascular variables through the sympathetic and parasym-
pathetic divisions [63]. The ANS imbalance manifesting as CAN in the diabetic population
is an important predictor of cardiovascular events [7], as reflected in the abnormal HRV
indices. The nonlinear analysis methods of HRV allow a more subtle characterization of
autonomic balance and are reliable markers of morbidity and mortality in patients with
cardiovascular disease [7]. Furthermore, nonlinear HRV indices in diabetic populations
may have diagnostic and prognostic potential for identifying asymptomatic CAN and
cardiovascular events [21]. A recent study found that prediabetes and T2DM patients
were independently associated with lower HRV (both in the time and frequency domains),
strongly suggesting that the HRV indices could help identify subclinical CAN [64]. In
another study, T2DM patients presented an overall decrease in HRV and decreased sympa-
thetic and parasympathetic activity [15]. Correspondingly, BRS is also a sensitive indicator
of CAN in DM patients [65] and can be associated with cardiovascular events [9].

Previous studies [66,67] have demonstrated a correlation between the first four IMFs
extracted by EMD and the HRV frequency components (VHF, HF, LF, and VLF, respectively).
The HRV oscillatory components are usually divided into the following spectral profiles:
(a) very-high-frequency (VHF, 0.4 to 1 Hz); (b) high-frequency (HF, 0.15 to 0.40 Hz); (c)
low-frequency (LF, 0.04 to 0.15 Hz); (d) very-low-frequency (VLF, <0.04 Hz) bands [68].
However, in short-term recordings (5–10 min), the spectral analysis of HRV holds three
main frequency bands: HF, LF, and VLF [68]. By examining the power spectrum density of
the HRV signal’s EMD components (Figure 5), we could observe the energy distribution
according to the different frequency components and associate IMF1 with the HF com-
ponent, IMF3 with the LF component, and IMF4 with the VLF band. IMF2 is not clearly
defined between the LF and HF components. Importantly, each frequency component can
be related to the different activities of the autonomic nervous system. The HF band reflects
parasympathetic activity and is a marker of cardiac vagal modulation. In contrast, the
LF band modifies the parasympathetic and sympathetic nervous systems and indicates
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baroreceptor activity during resting conditions [68]. We noticed that the mean values of
PSDbpow and PSDpkamp decrease as CAN progresses. This effect was more evident when
comparing the estCAN group to the noCAN or subCAN groups, as all EMD components
were significant. This reduction was less noticeable when comparing the noCAN group to
the subCAN group, as only the 3rd and 4th IMFs were significant. These results demon-
strated reduced sympathetic and parasympathetic activity and baroreceptor activity as the
disease progressed.

In the subCAN group, the sympathetic activity (IMF2, IMF3, and IMF4) had a higher
amplitude than the parasympathetic activity (mainly IMF1). In contrast, in the noCAN
group, the parasympathetic modulation was higher. This result was expected since auto-
nomic nerves are affected in a length-dependent manner [69,70]. The first manifestation
of CAN often occurs due to damage in the vagus nerve, the longest nerve of the ANS,
disrupting the parasympathetic activity and, consequently, increasing the sympathetic
tone [69,71]. This fact is reflected in the results, where the HF components of HRV, as
represented by IMF1 and partly by IMF2, were not significantly different between the
noCAN and subCAN groups, while the LF components represented by IMF3 and IMF4
were significantly different. Therefore, for the CAN subclinical assessment, it would be
more important to use parameters derived from the lower frequency contents of the HRV.

Considering the features obtained from the analytical signal representation and the
second-order difference plot, we evaluated the presence and extent of variability in the
IMFs of RR intervals in the CAN groups. It was observed that the ASRarea and SODParea
values decreased in the IMFs of the subCAN group compared to noCAN and decreased
further in the IMFs of the estCAN group compared to the others, indicating a pattern of
decreasing variability according to CAN progression. In contrast, the SODPCTM values
increase in the noCAN group compared to subCAN, and a further increase in the estCAN
group. The lower values of the SODPCTM indicate higher dispersion as the signal is spread
and the number of points within the same radius is reduced. Thus, similar to ASRarea and
SODParea, the SODPCTM parameter is associated with decreased variability in IMFs for
more severe levels of CAN. The heart rate response test is still preserved in the subclinical
stage, and symptoms are absent. However, baroreflex sensitivity tests present alterations
and could explain why only the ASRarea, SODParea, and SODPCTM of some IMFs could
distinguish subtle changes in the RR interval of the subCAN group.

Several studies [18,21,22,43,72–78] have demonstrated the effectiveness of nonlinear
HRV methods in evaluating the progression of CAN. However, many of these approaches
have addressed CAN as a binary classification problem, distinguishing only between no
CAN and CAN [21,73,74]. Others have examined cardiovascular function in healthy indi-
viduals and those with DM [18,22,43]. As a result, they fail to capture the distinct stages
of disease progression. Nonetheless, some works [72,76–78] evaluated CAN as a multi-
class problem, separating the groups by levels of severity, which aligns with the approach
proposed in our work. For example, Selvan et al. [76] evaluated time segments of ECG
recordings from individuals with different disease severities and healthy individuals using
complexity analysis, specifically computing the fractal dimension. Similarly, Cornforth
et al. [77] and Jelinek et al. [78] categorized the participants into three CAN groups (i.e.,
without, early, and definite) and applied techniques such as multiscale entropy, multifractal
detrended fluctuation analysis, and Renyi entropy to sets of RR intervals. Additionally,
Khandoker et al. [72] introduced a novel HRV parameter named tone-entropy, which
demonstrated the ability to differentiate between stages of CAN progression. In contrast
to our study, these studies have certain limitations. Firstly, they relied solely on CARTs to
classify participants, whereas we employed CARTs and BRS measurements. Secondly, they
had relatively small or disproportional sample sizes, potentially impacting the generaliz-
ability of their findings. Lastly, there was a lack of diabetes clinical data available (e.g., DM
type and duration) for the participants, which restricts further analysis possibilities.
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5. Conclusions

In this work, we investigated the relevance of EMD-based features extracted from
RR intervals to identify changes between different levels of CAN severity. We observed
a gradual reduction in the IMF variability and power distribution over the frequency
correlated to the stages of CAN severity, indicating the loss of complexity and decrease in
autonomic nervous system tones as CAN progressed. All the features, except PSDm f req,
could distinguish between individuals with no CAN and those with either subclinical or
established CAN. We highlight that the specific IMF components of each feature could
effectively distinguish individuals without a CAN diagnosis or with established CAN from
those with subclinical CAN. Subclinical CAN detection is essential for timely interventions
to improve prognostics and potentially reverse disease progression. Thus, this study’s find-
ings suggest that EMD-based outcome measures are promising in characterizing changes
associated with CAN progression in individuals with T2DM.

A limitation of our study is that we did not compare the proposed features with the
standard HRV features to determine whether they offer superior performance or contribute
to better differentiation between the groups. Nonetheless, this method can be further
developed by combining a larger sample size with other HRV-based indices and user-
independent classification algorithms. Future studies could also explore the progression
of CAN in individuals with type 1 DM and gestational DM. These could contribute to
developing diagnostic tools for a more accurate assessment of CAN progression.
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49. Borowik, E.; Grabowicz, W.; Grycewicz, T.; Lubiński, A. Clinical Usefulness of Baroreflex Sensitivity Test in the Detection of
Cardiovascular Autonomic Neuropathy in Patients with Type 2 Diabetes Mellitus. Pol. Merkur. Lek. 2015, 39, 277–280.

50. Kück, J.-L.; Bönhof, G.J.; Strom, A.; Zaharia, O.-P.; Müssig, K.; Szendroedi, J.; Roden, M.; Ziegler, D. Impairment in Baroreflex
Sensitivity in Recent-Onset Type 2 Diabetes without Progression over 5 Years. Diabetes 2020, 69, 1011–1019. [CrossRef]

51. Petry, D.; de Godoy Marques, C.M.; Marques, J.L.B. Baroreflex Sensitivity with Different Lags for the Evaluation of Cardiovascular
Autonomic Neuropathy in Subjects with Diabetes. Comput. Biol. Med. 2020, 127, 104098. [CrossRef]

52. Ewing, D.J.; Campbell, I.W.; Clarke, B.F. Assessment of Cardiovascular Effects in Diabetic Autonomic Neuropathy and Prognostic
Implications. Ann. Intern. Med. 1980, 92, 308–311. [CrossRef] [PubMed]

53. Rajala, S.; Lindholm, H.; Taipalus, T. Comparison of Photoplethysmogram Measured from Wrist and Finger and the Effect of
Measurement Location on Pulse Arrival Time. Physiol. Meas. 2018, 39, 075010. [CrossRef] [PubMed]

54. Kuusela, T. Methodological Aspects of Baroreflex Sensitivity Analysis. In Heart Rate Variability (HRV) Signal Analysis: Clinical
Applications; Kamath, M.V., Watanabe, M.A., Upton, A.R.M., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 43–58. [CrossRef]

55. Tank, J.; Baevski, R.M.; Fender, A.; Baevski, A.R.; Graves, K.F.; Ploewka, K.; Weck, M. Reference Values of Indices of Spontaneous
Baroreceptor Reflex Sensitivity. Am. J. Hypertens. 2000, 13, 268–275. [CrossRef] [PubMed]

56. Kardos, A.; Watterich, G.; de Menezes, R.; Csanády, M.; Casadei, B.; Rudas, L. Determinants of Spontaneous Baroreflex Sensitivity
in a Healthy Working Population. Hypertension 2001, 37, 911–916. [CrossRef] [PubMed]

57. Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230–236. [CrossRef]
58. Vest, A.N.; Da Poian, G.; Li, Q.; Liu, C.; Nemati, S.; Shah, A.J.; Clifford, G.D. An Open-Source Benchmarked Toolbox for

Cardiovascular Waveform and Interval Analysis. Physiol. Meas. 2018, 39, aae021. [CrossRef]
59. Lai, Y.-C.; Ye, N. Recent Developments in Chaotic Time Series Analysis. Int. J. Bifurc. Chaos 2003, 13, 1383–1422. [CrossRef]
60. Cohen, M.E.; Hudson, D.L.; Deedwania, P.C. Applying Continuous Chaotic Modeling to Cardiac Signal Analysis. IEEE Eng. Med.

Biol. Mag. 1996, 15, 97–102. [CrossRef]
61. Cavalheiro, G.L.; Almeida, M.F.S.; Pereira, A.A.; Andrade, A.O. Study of Age-Related Changes in Postural Control during Quiet

Standing through Linear Discriminant Analysis. Biomed. Eng. Online 2009, 8, 35. [CrossRef]

https://doi.org/10.1016/j.bspc.2019.04.005
https://doi.org/10.1016/j.bspc.2017.09.020
https://doi.org/10.1016/j.bbe.2018.01.005
https://doi.org/10.1007/s13748-021-00250-6
https://doi.org/10.3390/app13063569
https://doi.org/10.1016/j.compbiomed.2020.103630
https://doi.org/10.1371/journal.pone.0256154
https://doi.org/10.1007/BF02345370
https://doi.org/10.1055/s-0038-1633836
https://www.ncbi.nlm.nih.gov/pubmed/15026839
https://doi.org/10.1016/j.eswa.2015.01.051
https://doi.org/10.1142/S0219519416400030
https://doi.org/10.1007/s00521-016-2612-1
https://doi.org/10.1142/S0219519416400029
https://doi.org/10.3389/fphys.2020.00118
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.2337/db19-0990
https://doi.org/10.1016/j.compbiomed.2020.104098
https://doi.org/10.7326/0003-4819-92-2-308
https://www.ncbi.nlm.nih.gov/pubmed/7356219
https://doi.org/10.1088/1361-6579/aac7ac
https://www.ncbi.nlm.nih.gov/pubmed/29794339
https://doi.org/10.1201/b12756
https://doi.org/10.1016/S0895-7061(99)00172-7
https://www.ncbi.nlm.nih.gov/pubmed/10777031
https://doi.org/10.1161/01.HYP.37.3.911
https://www.ncbi.nlm.nih.gov/pubmed/11244017
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1088/1361-6579/aae021
https://doi.org/10.1142/S0218127403007308
https://doi.org/10.1109/51.537065
https://doi.org/10.1186/1475-925X-8-35


Appl. Sci. 2023, 13, 7824 19 of 19

62. Subasi, A. Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach; Academic
Press: Cambridge, MA, USA, 2019.

63. Orini, M.; Barbieri, R.; Nardelli, M.; Scilingo, E.P.; Valenza, G. Introduction to Complex Cardiovascular Physiology. In Complexity
and Nonlinearity in Cardiovascular Signals; Barbieri, R., Scilingo, E.P., Valenza, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 3–44.
ISBN 9783319587097.

64. Coopmans, C.; Zhou, T.L.; Henry, R.M.A.; Heijman, J.; Schaper, N.C.; Koster, A.; Schram, M.T.; van der Kallen, C.J.H.; Wesselius,
A.; den Engelsman, R.J.A. Both Prediabetes and Type 2 Diabetes Are Associated with Lower Heart Rate Variability: The Maastricht
Study. Diabetes Care 2020, 43, 1126–1133. [CrossRef]

65. Frattola, A.; Parati, G.; Gamba, P.; Paleari, F.; Mauri, G.; di Rienzo, M.; Castiglioni, P.; Mancia, G. Time and Frequency
Domain Estimates of Spontaneous Baroreflex Sensitivity Provide Early Detection of Autonomic Dysfunction in Diabetes Mellitus.
Diabetologia 1997, 40, 1470–1475. [CrossRef]

66. Pan, W.; He, A.; Feng, K.; Li, Y.; Wu, D.; Liu, G. Multi-Frequency Components Entropy as Novel Heart Rate Variability Indices in
Congestive Heart Failure Assessment. IEEE Access. 2019, 7, 37708–37717. [CrossRef]

67. Chen, M.; He, A.; Feng, K.; Liu, G.; Wang, Q. Empirical Mode Decomposition as a Novel Approach to Study Heart Rate Variability
in Congestive Heart Failure Assessment. Entropy 2019, 21, 1169. [CrossRef]

68. Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [CrossRef]
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