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Abstract: Stable grasping is essential for assistive robots aiding individuals with severe motor–
sensory disabilities in their everyday lives. Slip detection can prevent unstably grasped objects from
falling out of the gripper and causing accidents. Recent research on slip detection focuses on tactile
sensing; however, not every robot arm can be equipped with such sensors. In this paper, we propose
a slip detection method solely based on data collected by a RealSense D435 Red Green Blue-Depth
(RGBd) camera. By utilizing Farneback optical flow (OF) to estimate the motion field of the grasped
object relative to the gripper, while also removing potential background noise, the algorithm can
perform in a multitude of environments. The algorithm was evaluated on a dataset of 28 daily objects
that were lifted 30 times each, resulting in a total of 840 frame sequences. Our proposed slip detection
method achieves an accuracy of up to 82.38% and a recall of up to 87.14%, which is comparable
to state-of-the-art approaches when only using camera data. When excluding objects for which
movements are challenging for vision-based methods to detect, such as untextured or transparent
objects, the proposed method performs even better, with an accuracy of up to 87.19% and a recall of
up to 95.09%.

Keywords: slip detection; assistive robots; stable grasping; semi-autonomous grasping;
tongue-controlled robot

1. Introduction

Reacting to slippage or adjusting unstable grasps of handheld objects is a subconscious
task that happens automatically for most individuals [1]. Nondisabled individuals can use
their sense of touch and vision to react to slippage or even predict when the held object is
likely to slip. Making adjustments stabilizes the grip, and the grasp can be re-evaluated [2].
For individuals with severe sensory–motor disabilities, grasping tasks can be achieved with
the help of assistive robot arms, which can be controlled via remaining bodily functions,
such as tongue movements [3]. Developing such an interface for these robot manipulators
is a complex task [4], and therefore, supporting the control with autonomy of the robot to
reduce the complexity is of great importance. While grasping points for grasping tasks of
robotic arms can be synthesized well with modern computer vision methods [5], the grasp
might still be unstable, causing objects to slip out of the gripper during the pickup or midair
during an executed task. Due to the nature of the setup and the user group, there is little to
no chance for them to react in time to a slip event. This can be detrimental to the confidence
and trust the user develops in the rehabilitative device and ultimately the desire to use the
system for everyday aid [6]. Detecting these slip events and having the gripper react fully
autonomously to those events can improve the robustness of—and increase the trust of the
user in—the system.

In the last two decades, research on slip detection has primarily focused on industrial
applications [7]. With the continuous improvement of machine learning methods, these
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strategies remain a current area of research [8,9]. However, it is essential to note that
these methods have mainly been developed and trained on controlled environments for
industrial settings. In contrast, in everyday life, assistive devices must cope with various
outside influences and noises. As a result, assistive robot arms, although more lightweight
and affordable, are often equipped with very few sensors.

The general research on slip detection mostly focuses on imitating the sense of touch
of the human hand [7,10]. This sense of touch is replicated through sensors like multiaxial
force sensors, sensors detecting microvibrations, thermal microflux sensors, and optical
sensors [7,10]. With only visual data and a machine learning approach, Li et al. [8] achieve
up to an 80.92% slip detection accuracy when providing the image difference sequence as
input to their deep neural network (DNN) and 53.68% when giving the raw image sequence
as input. In their work, Li et al. [8] equip a WSG-50 parallel gripper with a GelSight tactile
sensor. They propose a method based on a DNN to classify and detect slip. When including
the tactile data, the DNN achieves an accuracy of up to 88.03% using the pretrained
Inception-V3 model. With the utilization of a CNN-LSTM (convolutional neural network–
long short-term memory), Yan et al. [9] achieve up to 67.96% accuracy using only visual
data. When including tactile data, they achieve a classification accuracy of up to 88.75%.
Zhang et al. [11] reported an 88.03% detection accuracy with combined tactile and visual
data. By utilizing interpolation of deformation fields detected by their custom-built sensors,
they achieved an accuracy of 97.62%. In a recent study [12] by Gao et al., an accuracy of up
to 96.96% was claimed. They performed visuo-tactile fusion using a multiscale temporal
convolutional network (MS-TCN) to extract both visual and tactile data. It is noteworthy
that all four of these studies used controlled environments with minimal background noise
to train and evaluate their models for slip detection. Jiang et al. [13] developed a method
for computer vision-guided robot arms to detect and grasp transparent objects. In their
work, they also made use of the GelSight sensor and employed a poking strategy to help
identify the transparent objects. With their strategy, Jiang et al. [13] achieved a grasping
success rate of up to 85.2%.

We want to introduce a robust slip detection method for assistive applications in
everyday tasks that makes use of minimal sensory data, is easy to implement, and only
uses cheap, commercially available products. At the same time, the proposed method
should be robust against noise such as movement in the background surrounding the
object, from outside influences or from movements of the robot arm itself. This is crucial,
as most current slip detection methods are developed in a controlled environment, which
is not representative of the environments faced in everyday life of a user in need of robotic
assistance, and thus might not be robust enough. The proposed method tackles these issues
by removing background noise of any sorts. Further, we want to compare the proposed
method with the performance of the state of the art. Section 2 describes the experimental
setup as well as the methods used in the proposed algorithm. In Section 3, the results
of the conducted experiment are presented. Section 4 discusses the results, as well as
the limitations and potential improvements of the proposed method. The final Section 5
summarizes the work.

2. Methods
2.1. Setup

The JACO 2 (Kinova, Boisbriand, Quebec, Canada), a 6 degrees of freedom (DoF)
robot arm, is attached to a motorized wheelchair and equipped with a RealSense d435
Red Green Blue-Depth (RGBd) camera (Intel, Santa Clara, CA, USA), as shown in Figure 1.
The robot arm features an underactuated 2-Finger, 4-DoF gripper designed for grasping
tasks. Each finger can be opened and closed with a single command, and the angle of
the joint between the two links is dependent on the closure of the fingers and cannot be
actuated manually. Control of the arm is facilitated through a fully integrated inductive
tongue computer interface (TCI) [14]. The TCI provides semi-autonomous control, allowing
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the user to give inputs with their tongue via an inductive plate placed on the roof of the
mouth, as illustrated in Figure 2.

The interface used is multimodal, allowing the user to control the end effector via a
virtual joy-stick-like environment and switch modes to semi-autonomously grasp objects.
Grasping intent prediction is accomplished by identifying the closest object to the palm-side
of the gripper [5]. A grasping point is then determined by approximating the shape of the
object with a virtual cylinder. While the user retains control over the grasping process and
can signal to grasp or release via the TCI, they also have the ability to interrupt the process
at any given time. The remaining path planning and grasping of the object are executed
autonomously. Previous experiments revealed instances of slippage occurring during
both the initial lifting of the object and while the object was already in-hand. With our
proposed method, we aim to react to these slip events using the existing setup, avoiding
the need to incorporate additional sensors and complexities into the system. This work
aims to evaluate the proposed slip detection method, since there are already publicly
available datasets published, we did not conduct experiments of our own, which would
involve the TCI. To evaluate the performance of the proposed method, we conducted tests
on a dataset consisting of 28 daily objects, each lifted 30 times [9], resulting in a total of
840 frame sequences.

Figure 1. The JACO 2 robot arm attached to a wheelchair. A RealSense D435 Red Green Blue-Depth
(RGBd) camera is attached to the end effector, which is holding a tea carton. The robot arm is
controlled semi-autonomously by the user via a tongue–computer-interface (TCI).

Figure 2. The tongue–computer interface individually fit for each user. Two conductive plates serve
as interfaces. One to move the robot arm, the other to act as a menu to switch between manual and
semi-autonomous mode. More detail on the TCI can be found in [14].
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2.2. Object Recognition

In the presented setup, the RGBd camera was attached to the end effector, ensuring
no relative movement of the grasped object was introduced by moving the robot arm.
However, movement in the background and the robot arm itself could introduce noise that
would negatively impact the performance of any displacement-based approach. To over-
come this challenge, the grasped object was detected, effectively removing the background
influences. This step was crucial for enhancing the system’s robustness against environmen-
tal influences. Since immediate object-specific information was not required, a method was
developed to approximate the outline of the grasped object, regardless of its size, shape,
or texture.

The depth information from the RGBd camera was unable to be calculated accurately
at distances closer than 30 cm [15]. As a result, the camera considered every object closer
than 30 cm to be at a 0 cm distance. This characteristic was utilized to create a binary
mask that removed all pixels at distances greater than 30 cm from the camera, effectively
removing the background. To further enhance the method’s robustness against background
noise at the same distance, the gripper’s metadata were used to interpolate the closure
of the fingers to the visual equivalent in the raw RGB image. This step removed the
background to the left and right of the grasped object. A script was developed to create a
cubic spline, correlating the closure of each finger to the horizontal pixel position of the
finger’s contact point with the grasped object. Since the gripper in use was underactuated,
the closure indicated by the gripper’s metadata was not solely dependent on the size of
the grasped object but also on the grasping force applied. A larger grasping force resulted
in a greater closure readout, leading to a reduced estimation of the horizontal size of an
object with increased grasping force. Considering the limited possibilities of the setup
and no significant advantage in having extremely accurate estimates of the grasping force,
the object’s weight was used to correct for the larger closure readouts caused by higher
grasping forces. This correction was achieved by estimating the grasped object’s weight
through the moment arms resulting from the joint torques and positions relative to the
robot’s base.

The remaining noise in the resulting binary mask (Figure 3) was further reduced by
employing morphological image manipulation techniques [16]. Initially, the image was
dilated to eliminate noise present inside the approximate boundaries of the object. Subse-
quently, erosion was applied to remove noise found outside the object’s boundaries. Finally,
another dilation step was performed to restore the mask’s size to approximately match the
object size. The boundaries of the resulting shapes were then calculated, and the largest of
those boundaries was extracted. As these boundaries were found to be significantly noisy
in terms of their shape, a decision was made to fit an ellipse to the estimated boundary
(Figure 4).

Figure 3. Example of a still noisy grayscale image of an object with the background mostly removed.
Here, objects and movements close to the grasped object could cause the boundary of the objects to
extend and include some of the background in the boundary estimation.
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Figure 4. The resulting binary mask (left) and the original RGB image with the ellipse estimating
its size (right). The ellipse results from fitting it to the largest boundary of the binary mask. For this
specific setup, since the gripper is at the very bottom of the frame, the assumption can be made that
the object is also always at the bottom. Hence, a half-dome shape was used by point rotation of the
mask by 180◦ and fitting the ellipse to it.

The accuracy of the object boundary estimation did not need to be extremely precise
for the proposed slip detection method to function effectively; the primary objective was
the robust removal of the background. As the fitted ellipse slightly varied in shape for each
frame, the resulting ellipse mask was utilized for optical flow (OF) estimation. Both the
current frame and the last frame were compared using this ellipse mask to facilitate the
comparison of frames. This prevented the changing shape of the mask from influencing
the optical flow estimation.

2.3. Slip Detection
2.3.1. Optical Flow

The slip detection process relied on optical flow estimation between two frames, which
were masked by the ellipse to approximate the general outline of the object. The magnitude
and direction of the flow were then calculated to approximate the motion field of the object.
For the optical flow calculations, the open-source computer vision library, OpenCV [17], was
utilized. To accommodate less textured objects, the Farneback optical flow algorithm [18]
was chosen over alternative methods like Lucas–Kanade [19], which would have been
computationally less intensive. The Farneback algorithm is described in more detail in the
next paragraph. Feature-based methods work effectively on printed or textured surfaces;
however, many everyday objects lack stable features, especially since the exact borders
of the object are often not included after the masking. In contrast, for textured objects,
feature-based flow estimation is a viable alternative that is computationally less intensive.
Nonetheless, the Farneback algorithm for dense optical flow estimation proved to be fast
enough to run in near real time. The chosen parameters for the Farneback optical flow are
as follows :

• Pyramid Scale: 0.5;
• Level: 3;
• Window Size: 15;
• Iterations: 3;
• Poly n: 5;
• Poly σ: 1.2.

2.3.2. Farneback Optical Flow

To estimate the motion field of a scene from two consecutive images, one approach is
to make the assumption that the pixel intensities do not change from one frame to the other
(Equation (1)).

I(x, y, t) = i(x + dx, y + dy, t + dt) (1)

Another assumption made is that neighboring pixels have the same motion, indicating
that they belong to the same object. To capture motion at different scales, an image pyramid
of downsampled versions of the original image is created. Through polynomial expansion,
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the algorithm fits a quadratic function to the pixel intensities between the two frames and
calculates coefficients that minimize the difference for each layer. The coarser layers aid
in estimating the optical flow of the less coarse layers. After upsampling the result to
the original image size, the flow direction can be estimated for each pixel, resulting in a
good approximation of the actual motion field of the scene. However, this method has
some limitations. Changes in lighting can refute the first assumption, as they may cause
optical flow to be detected even when there is no actual motion. Conversely, when objects
with smooth surfaces are moved (e.g., a ball is rotated), the pixel intensities do not change,
and no optical flow is detected, despite actual motion occurring.

2.3.3. Optical Path Occlusion and Remaining Background Noise

To address potential optical path occlusion, a voting system was implemented
(Algorithm 1). Pixels within the ellipse that estimates the object dimensions and have
a magnitude of zero were excluded from consideration. This step was necessary to enable
the voting system to function effectively on minimally textured objects, where large por-
tions of the objects might not exhibit visual changes, even during slip events. These regions
needed to be excluded to prevent false positives. Subsequently, the pixels were sorted
based on their optical flow (OF) magnitude, and a threshold was set. The majority of the
pixels needed to surpass this threshold for a slip event to be qualified as such. The voting
system allowed for optical path occlusion by up to 50% of the grasped object’s size. Even
with such occlusions, the slip detection algorithm continued to work efficiently and still
detected slip events accurately (Figure 5).

Figure 5. A pencil occluding the optical path of the camera to the object without causing slip to be
detected. If an actual slip case would occur, more than 50% of the non-zero-magnitude pixel would
show optical flow (OF) above the threshold, triggering slip to be detected even if the obstructing
object is still.

There was a trade-off in determining the necessary majority of pixels that must vote for
slip detection. Setting a lower percentage made the algorithm more sensitive to occlusions,
potentially leading to false positives triggered by occlusions themselves. However, this
lower percentage also required less of the object to be unoccluded in order to detect slip.

Algorithm 1 Optical flow detection algorithm

MAJORITY = 0.5
while True do

f low = calcOpticalFlowFarneback
non_zero_OF = f low > 0
inv(sort(non_zero_OF))
majority = sorted[0 : length ∗ MAJORITY]
if majority[end] > THRESHOLD then

slip = True
else if majority[end] < THRESHOLD then

slip = False
end if

end while
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On the other hand, a higher percentage reduced the possibility of false positives
caused by occlusions, as a larger portion of the object needed to be unoccluded for slip to
be detected. However, this also made slip detection more challenging in cases where the
occlusion in front of the object was relatively small.

The approach described has its inherent limitations, which are typical for vision-based
methods. One potential solution to address the occlusion problem could involve using
multiple cameras from different angles to obtain a more comprehensive view of the scene.
However, in the specific use case described, the use of multiple cameras from different
angles might be impractical or infeasible.

2.3.4. Dealing with Compliant Objects

One of the major challenges of using visual data and optical flow for slip detection
lies in dealing with compliant objects. When grasping compliant objects, the grippers
deform the object, leading to additional optical flow, which may trigger false positives in
the algorithm. The grippers move only in one dimension relative to the camera, causing the
optical flow resulting from grasp-induced deformations to be primarily horizontal, while
the optical flow caused by slip (translational and rotational) is mostly vertical (Figure 6).

Figure 6. The original image with the approximated image boundaries and slip direction (left) and
the HSV representation of the OF direction (right). The hue represents the direction of the flow,
and the value represents the magnitude. A typical slip case: the green color indicates an angle of
90◦, which in this case shows the object slipping downwards, which is indicated by the arrow on the
left image.

The Farneback optical flow (OF) method not only estimates the OF magnitude for
each pixel but also the angle of the flow. These flow angles were utilized to calculate the
mean direction of the slip that triggered the detection. To achieve this, the angles were
first converted from polar coordinates to unit vectors. This conversion was necessary
to prevent false calculations of the mean angle around 0 or 2π. Without converting to
unit vectors, the general direction of OF angles pointing to the right could erroneously
result in the mean direction pointing to the left. Furthermore, OF angles falling within the
horizontal alignment range of ±25◦ (Figure 7) were excluded from being classified as slip.
This exclusion allowed the algorithm to detect possible slip cases, both translational and
rotational, while effectively avoiding the classification of OF caused by the deformation of
the object due to gripper action as slip.

The conversion from polar coordinates to a unit vector for all pixels was computation-
ally expensive and unnecessary for estimating the general direction of the flow. Instead,
a more efficient approach was adopted, wherein only the 10,000 pixels with the highest
magnitude of optical flow were used to calculate the flow direction (Algorithm 2).

Algorithm 2 Flow direction algorithm

MAX_CALCULATIONS = 10,000
sort_by_magnitude(OF_angles)
limit_size(OF_angles, MAX_CALCULATIONS)
unit_vectors = (cos(OF_angles); sin(OF_angles))
mean = mean(unit_vectors)
direction = normalize(mean)
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Figure 7. Optical flow angles when represented as an HSV image; the marked areas are the angles of
OF that do not trigger slip detection to prevent the deformation of compliant objects from triggering
the detection of optical flow.

2.3.5. Dealing with False Positives

An essential aspect of slip detection is the subsequent reaction of the robot to prevent
the slip of the object and maintain a stable grasp, thereby preventing the object from
falling out of the gripper. Achieving the fastest possible reaction time requires careful
consideration of several factors. Minimizing computation delay is crucial, which means
avoiding processes that introduce delays, such as temporal filtering. Addressing noise
introduced by external influences is also important. To strike a balance, the proposed
method applied a threshold that had to be chosen carefully. It needed to be low enough to
detect slip cases while remaining high enough to avoid classifying noise as slip, reducing
the occurrence of false positives. However, setting such a threshold might prevent the
detection of slip cases with low magnitudes, as they could be lower in magnitude than the
noise. To address these conflicting requirements, the algorithm utilized multiple temporal
layers of slip detection. Instead of solely comparing the most recent frame with the previous
one, the most recent frame was also compared with past frames at increasing temporal
distances. This approach amplified the magnitude of slow slip cases, allowing them to
reach the threshold. However, this amplification also affected noise. To mitigate this effect,
the magnitude of the optical flow was filtered with a first-order Butterworth filter. The filter
had a sampling frequency of 1000 Hz and a cutoff frequency of 20 Hz. It introduced a delay
dependent on the camera’s frame rate (Equation (2)). In the case of the RealSense D435
camera operating at 30 fps [15], this resulted in an additional delay of approximately 0.033 s
for the extra layers.

η =
temporal distance

f rame rate
(2)

The layering approach introduced an additional 0.03̄ s of delay per frame in temporal
distance. Although the added delay was undesirable, it was primarily introduced for the
detection of slip cases with very low magnitudes. In this context, the accuracy of slip
detection took precedence over the reaction time. For the proposed method, a total of
four layers of optical flow calculation were added to the algorithm, comparing the current
frame to frames at 1, 2, 4, and 8 time steps in the past. This temporal layering allowed
the algorithm to effectively detect slip events of varying magnitudes while accounting for
potential noise and occlusions.

The layers are visually represented in Figure 8. The initial comparison of the current
frame with the preceding frame introduced the minimally necessary reaction delay, which
was dependent on the frame rate and resulted in approximately 0.03̄ s of delay, along
with the time for the algorithm’s calculations, which were negligible. The subsequent
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layers, representing frame distances of −2, −4, and −8, respectively, introduced additional
delays of approximately 0.09̄ s, 0.16̄ s, and 0.29̄ s. This layering approach allowed for a fast
reaction time with minimal delay for most slip cases while ensuring robustness to noise
and providing a timely reaction for slip cases with low magnitudes.

Figure 8. Frames stacked at increasing temporal distances, each being compared with the current
frame (0) for optical flow calculation. For every step in temporal distance, extra delay is added;
however, the reaction time does not have to be fast. The example frames are taken from the dataset
published under open access in Ref. [20].

2.4. Evaluation

The algorithm’s performance was evaluated using a dataset specifically designed for
slip detection research, which was previously utilized in a paper on slip detection via
machine learning by a research group at Waseda University, Tokyo [9]. Unfortunately,
a similar dataset from the Massachusetts Institute of Technology (MIT), which could have
provided additional comparisons, was not available, and the researchers did not respond
to inquiries at the time of writing this paper. The dataset used for evaluation consisted
of 35 everyday items that were lifted by a “Nicebot” robot arm equipped with a WSG-50
parallel gripper.

The objects (Figure 9) were subjected to 30 grasping and lifting trials, each with
different opening distances, resulting in a total of 1050 image sequences. These image
sequences were then labeled to indicate slip or nonslip cases. It is important to note that all
objects used in the experiments were within the gripper’s maximum opening distance in
size. The gripper was equipped with a 6 × 4 matrix uSkin tactile sensor, and a RealSense
D345i RGBd camera was positioned in front of the gripper.

As the camera was not directly attached to the end effector, the captured image data
needed to be stabilized relative to the gripper’s movement for comparability. To achieve
this, template matching was applied to a portion of the gripper in each frame (Figure 10).
However, rounding errors resulting from the template matching process introduced high-
frequency noise. To mitigate this noise, a temporal filter was applied. The filter utilized
a second-order Butterworth filter [21] with a sampling frequency of 1000 Hz and a cutoff
frequency of 10 Hz. The resulting transfer function and difference equation can be seen in
Equations (3) and (4).

H(z) =
0.0026 + 0.0052z−1 + 0.0026z−2

1 − 1.7402z−1 + 0.8008z−1 (3)

y[n] = 0.0026x[n] + 0.0052x[n − 1] + 0.0026x[n − 2]

− 1.7402y[n − 1] + 0.8008y[n − 2]
(4)
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Seven of the objects in the dataset had instances where the gripper left the frame
during some or all of the image sequences, making it impossible to stabilize the frames
relative to the gripper’s movement. Consequently, these objects were excluded from the
evaluation, leaving a total of 840 image sequences used for the algorithm’s evaluation.

Regarding the slip detection algorithm’s threshold, it was initially chosen through trial
and error. However, after the evaluation, the threshold was optimized using a two-step pro-
cess. First, a grid search was conducted over a range of thresholds. Then, a gradient descent
was performed on the three thresholds that resulted in the highest classification rates.

Figure 9. The objects of the open access dataset [20] used for the evaluation. Seven objects had to be
excluded, since the gripper left the frame during the lifting task, making it impossible to stabilize the
frames relative to the gripper.

Figure 10. The ellipse estimating the object boundaries is stabilized relative to the gripper by matching
a template. The black rectangles represent where in the image the template was found. The image is
part of the dataset published under open access in Ref. [20].

3. Experimental Results

The results of the evaluation, along with threshold optimization, are summarized in
Table 1. The algorithm’s accuracy on the entire dataset with the optimized threshold is
82.38%. However, it is important to consider the limitations of optical flow when evaluating
its performance. Specifically, transparent objects like glasses, bottles, and vases can lead
to false positives, as background movements behind the object can be registered as slip
events. On the other hand, objects without texture, such as plain mugs, opaque bottles,
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and unprinted cardboard, present the opposite challenge, as no change in pixel values is
detected even when the object slips. To address these challenges, the dataset was split into
two groups based on the presence of texture. A total of 19 objects were categorized as
textured, while 9 objects were categorized as untextured, based on subjective judgment
by the conductor of the experiment. When transparent objects and objects without much
texture were excluded, the algorithm’s accuracy improved to 87.19%. On the excluded
objects, an accuracy of 67.67% was achieved.

Table 1. Performance when optimized on Accuracy.

Objects All Textured Untextured

Accuracy 82.38% 87.19% 67.67%
Precision 87.99% 83.13% 76.77%

Recall 75.00% 93.33% 50.67%
F1 Score 80.98% 87.93% 61.04%

An additional argument can be made regarding the cost of false positives and false
negatives in the slip detection algorithm. While false positives may not have a significant
impact as they result in the gripper grasping the object tighter, for very compliant objects,
this could be problematic. On the other hand, false negatives have a much greater cost,
as they can lead to the object being dropped and potentially damaged or cause the contents
of the held object, such as water in a mug, to be spilled. Therefore, it is crucial to examine
the recall, which indicates the percentage of actual slip cases that were correctly identified.

The algorithm achieves a recall of 75.00% on the entire dataset. However, when
evaluated with only textured objects, the recall increases to 93.33%. On the other hand,
when tested with untextured or transparent objects, the recall drops to 50.67%. To improve
the recall and reduce the occurrence of false negatives, a further optimization of the
algorithm’s threshold was performed. A weighted optimization was used to strike a
balance between recall and accuracy. The recall was given twice the weight of accuracy,
and the threshold was adjusted accordingly. The result of the weighted optimization can
be found in Table 2. After optimization, the recall of the algorithm increased by 13.14%
to 87.14%, while the accuracy decreased by 3.57%, resulting in an accuracy of 78.81%.
The greatest gain in recall was observed for untextured objects, with an increase of 12.66%.
For textured objects, a smaller gain of 1.76% was achieved.

Table 2. Performance with a weighted optimization on Recall and Accuracy at a 2:1 ratio

Objects All Textured Untextured

Accuracy 78.81% 81.23% 66.33%
Precision 74.69% 74.45% 67.38%

Recall 87.14% 95.09% 63.33%
F1 Score 80.44% 83.51% 65.29%

4. Discussion

The proposed slip detection algorithm based on classical optical flow calculations using
only visual data addresses common issues like optical path occlusion and compliant objects,
while also being robust to outside influences through background removal. The results of
the evaluation demonstrate that the performance of the proposed method is comparable
to the state-of-the-art approaches (Table 3). While other methods achieve slightly higher
accuracy when including tactile data, attaching tactile sensors to the gripper might not
always be feasible. Many existing methods utilize bulky parallel grippers to attach tactile
sensors, which can add additional thickness to the gripper, making it less suitable for
some applications. It is evident from the evaluation that the algorithm’s performance
is highly dependent on the object being grasped. Two main issues are apparent: First,
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objects with smooth surfaces and no printed texture do not show any change in pixel value
when they move relative to the camera. Although a motion field exists on the object’s
surface, it cannot be detected visually. This makes it challenging to detect slip events solely
through visual information, especially if there is no background or gripper to relate the
motion to. This distinguishes the proposed method from others, as it applies background
removal for increased robustness, but it may sacrifice some information about relative
motion to the background. Secondly, transparent objects present an additional challenge.
They not only lack a detectable motion field even though one exists but also allow the
background of the scene to be visible through the object itself. This causes false positives
to be detected when the background moves due to environmental movements or robot
arm motions. The low recall of 50.67% for untextured and transparent objects indicates a
significant number of false negatives in the results. In conclusion, the proposed algorithm
offers a viable approach for slip detection with minimal sensory data and is effective in
many scenarios. However, further improvements may be necessary to address challenges
related to objects with smooth surfaces and transparent objects to enhance the algorithm’s
overall performance and reliability.

Table 3. Comparison of the results of the proposed method with the current literature. These are
the results achieved with only visual data, except for [11], which also includes tactile data, as no
experiment with visual data only was conducted in their work. Ref. [13] achieves a grasping success
rate of 85.20%, which is not directly comparable.

Article Proposed [8] [9] [11] [12]

Accuracy 78.81% 80.92% 67.96% 88.03% 96.00%
Precision 74.69% N/A N/A N/A 92.69%

Recall 87.14% N/A N/A N/A 100.00%
F1 Score 80.44% N/A N/A N/A 96.21%

Generally, the algorithm appears to have an easier time detecting slips than detect-
ing nonslip cases. This can be observed in the recall and accuracy of both optimization
approaches (see Tables 1 and 2). The recall is significantly higher than the accuracy, in-
dicating that false positives occur more frequently than false negatives. In the context
of the application, this is generally acceptable, as a false positive would only require an
adjustment or tightening of the grasp, whereas a false negative could result in dropping the
object. By optimizing the algorithm for higher recall, false negative cases can be minimized
without sacrificing too much accuracy. Since the works of the research groups we are
comparing our proposed method with all use learning methods that process image data but
are trained in a controlled environment [8,9,11–13], it is possible that the proposed method
performs better in uncontrolled environments. The performance of DNNs or convolutional
neural networks (CNNs) that are trained on images with a consistent white background and
tested in the same environment might be affected by a changing background. For industrial
applications, this limitation might not be relevant, but for using the robot as an assistive
device in daily life, the ability to perform regardless of the environment is essential. Our
work proposes the first method tailored to this specific use case in assistive robots. Despite
the limitations of our proposed method, it still performs at a comparable level to the state
of the art, regardless of the environment (see Table 3).

The dataset we used to evaluate the performance of our algorithm is not perfect, as the
camera setup differed from ours. In our setup, the camera was attached to the end effector,
but in the dataset, it was stationary and placed in front of the setup. This necessitated
stabilizing the frames relative to the end effector movements, which could potentially have
influenced the results. However, the fact that our algorithm performed well on artificially
stabilized image data suggests that potential applications with a stationary or non-end-
effector-attached camera, like the EXOTIC Exoskeleton [22], are feasible. The EXOTIC
Exoskeleton is a 5-DoF upper limb exoskeleton, controlled by a tongue–computer interface,
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where the camera is located on the user’s shoulder, rather than the end effector or wrist.
To make the slip detection algorithm applicable to this setup, the collected camera data
would need to be stabilized. One approach could involve template matching a part of the
exoskeleton close to the object in each recorded frame. Another option could be calculating
the end effector position from the joint angles via forward kinematics and projecting it onto
the two-dimensional camera plane to obtain its position in pixel coordinates. Combining
both methods might lead to the most accurate estimation of the grasped object in the
recorded frame.

The method we employed to separate the object from the background is somewhat
specific to our setup. With the continuous improvement of AI, segmentation models
have become increasingly effective. Utilizing such segmentation models could improve
the accuracy of extracting the object held by the robot arm and separating it from the
background more precisely. However, some of the more sophisticated models may have
longer calculation times, making them unsuitable for real-time applications. For our
algorithm to work effectively, the segmentation accuracy needs to be extremely high to
avoid false positives. Conversely, if the object extraction is overly accurate, comparing
two cut-out subframes at the same coordinates becomes challenging. When estimating the
motion of the grasped object with optical flow, perfectly extracted subframes around the
object in the current frame would have to be applied to the last frame to calculate the optical
flow between the frames. In the event of a slip, part of the background would appear in the
past frame, which could potentially cause issues, although the voting part of the algorithm
should minimize this effect.

4.1. Limitations

Apart from the limitations related to untextured and transparent objects, the algorithm
has several other constraints. Changes in lighting conditions could cause the algorithm to
detect optical flow, even when no actual motion of the object is occurring, leading to false
positives. However, this should not significantly impact the recall, which is considered
more crucial in the application of our device. A fundamental drawback of our proposed
method is that it solely relies on data from the RGBd camera and is based on frame-to-frame
comparisons, lacking the ability to predict incipient slip events. Unfortunately, this is an
inherent limitation of our approach. While the algorithm includes a mechanism to handle
optical path occlusion, it is limited to approximately 50% occlusion of the object, and
the frame itself can experience more occlusion. This limitation arises due to the nature of
purely vision-based approaches and can only be addressed to some extent.

Regarding the handling of compliant objects, our proposed method is simple but
effective. However, there is considerable room for improvement, as we currently make
strong assumptions about the optical flow direction resulting from the deformation of the
grasped object by the gripper. Instead of directly using the flow direction, we could consider
the coherency of the flow direction. Slip can generally be categorized into two types:
translational and rotational slip. For purely translational slip, the estimated motion field
by the optical flow exhibits high coherence, with all pixels having the same flow direction.
In rotational slip cases, the motion field’s coherence depends on the distance of the pixels
from the point of rotation, which is determined by the gripper’s contact point, whose
position is known. The motion field of compliant objects being deformed is less coherent,
or at least it shows a different pattern. By excluding these patterns instead of solely relying
on horizontal optical flow, we might be able to improve the handling of compliant objects.

4.2. Future Work

Improving the algorithm would involve optimizing the parameters used in optical
flow estimation, flow direction calculation, and temporal layering of the optical flow.
A multidimensional grip search followed by gradient descent could be performed on these
parameters, leading to a re-evaluation of the algorithm using the dataset presented above.
Furthermore, evaluating the algorithm on similar datasets from comparable studies would
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provide a better understanding of its performance and enhance the comparison with those
studies. Regarding the optical path occlusion strategy, merely eliminating pixels with
zero optical flow might not be sufficient. Pixels with very small optical flow magnitudes
could still skew the majority vote toward false negatives. This issue is particularly relevant
for objects with high texture at the image borders but little texture inside, such as some
packaging materials. To address this, an additional threshold on the lower end of the
optical flow magnitude spectrum could be implemented to remove these pixels, allowing
more “relevant” pixels to vote on slip cases. This enhancement would improve the algo-
rithm’s robustness in handling the optical path occlusion of such objects. To obtain a more
accurate estimation of the grasping force, we could utilize not only the weight estimation
of the grasped object but also the grasping force estimated from the current applied to the
underactuated gripper during the grasping process. This additional information could be
incorporated into a more sophisticated grasping strategy that uses force feedback to adjust
the robot arm’s grip, leading to improved grasping performance.

5. Conclusions

In this paper, we introduce a slip detection method for assistive robotic arms that
offers several advantages, including minimal resource usage, reliance on classical and
easy-to-implement methods, and the use of affordable and readily available materials.
The approach leverages optical flow to estimate the motion field of grasped objects and
addresses common challenges encountered in vision-based approaches. While the method
is not as effective as tactile sensors, it achieves accuracy comparable to state-of-the-art
learning-based methods. The proposed method effectively handles common issues as-
sociated with purely vision-based slip detection methods, such as optical path occlusion
or compliant objects. By manipulating the optical flow estimation resulting from frame
comparisons, a voting system of pixels enables successful slip detection, even with up to
50% occlusion of the grasped object’s optical path. Additionally, the algorithm discrim-
inates specific optical flow patterns to prevent false triggers caused by deformations of
compliant objects resulting in optical flow changes. However, predictive or incipient slip
detection is not feasible due to the nature of the method, which relies on comparing two
frames. An important advantage of the proposed method is its robustness against changes
in the environment and robot arm movements achieved by removing the background of
the camera-recorded scene. This feature proves crucial in everyday tasks that take place
in diverse and dynamic environments. To further enhance the algorithm’s performance,
future improvements could focus on parameter optimization and the development of
strategies to address challenges related to untextured and transparent objects.
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Abbreviations
The following abbreviations are used in this manuscript:

OF Optical Flow
OpenCV Open Computer Vision
DoF Degrees of Freedom
TCI Tongue–Computer Interface
RGBd Red Green Blue Depth
DNN Deep Neural Network
CNN Convolutional Neural Network
MS-TCN Multi-Scale Temporal Convolutional Network
LSTM Long Short-Term Memory
MIT Massachusetts Institute of Technology
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