

Aalborg Universitet

Verification and Validation of UML/OCL Object Componenets Models

Bhutto, Arifa

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bhutto, A. (2018). Verification and Validation of UML/OCL Object Componenets Models. Aalborg
Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2024

https://vbn.aau.dk/en/publications/90546613-90a9-4bdb-842c-57e99783fa89

A
r

ifA B
h

u
tto

VEr
ifiC

Atio
N

 A
N

D
 VA

LiD
Atio

N
 o

f u
M

L/o
C

L o
B

JEC
t C

o
M

Po
N

EN
t M

o
D

EL

VErifiCAtioN AND VALiDAtioN of
uML/oCL oBJECt CoMPoNENt MoDEL

By
ArifA Bhutto

Dissertation submitteD 2018

3

VERIFICATION AND VALIDATION OF

UML/OCL OBJECT COMPONENT

MODEL

by

Arifa Bhutto

Dissertation Submitted 2018

.

Dissertation submitted: September 2018

PhD supervisor: Associate Prof. D.M. Akber Hussain,
 Aalborg University, Denmark

PhD committee: Associate Professor Daniel Ortiz-Arroyo,
 Aalborg University

 Prof. Dr. Engr. Syed Hyder Abbas Musavi
 Indus University

 Associate Professor Dr. Sadiq Ali Khan,
 University of Karachi Pakistan (UoK)

PhD Series: Faculty of Engineering and Science, Aalborg University

Department: Department of Energy Technology

ISSN (online): 2446-1636
ISBN (online): 978-87-7210-194-1

Published by:
Aalborg University Press
Langagervej 2
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Arifa Bhutto

Printed in Denmark by Rosendahls, 2018

5

CV

Work Address:

Institute of Information and Communication Technology

 University of Sindh, Jamshoro, Pakistan.

 Cell No: +92-346-8964209

Email: arifa.bhutto@usindh.edu.pk

Work Experience:

2006 to Present: Assistant Professor,

 IICT, University of Sindh, Jamshoro, Pakistan.

Research Interest:

Currently doing PhD studies at Department of Energy and Technology, Aalborg

University, Denmark.

Software Engineering is my field of interest, major focused on Verification and

Validation of Software development models. My research topic is Verification

and Validation of UML/OCL Object Components models.

mailto:arifa.bhutto@usindh.edu.pk

VERIFICATION AND VALIDATION OF UML/OCL OBJECT COMPONENT MODEL

6

ENGLISH SUMMARY

Modern software application development is a complex and difficult process. In

development of applications, specification and verification are the key components;

both specification and verification are part of the development process for any project.

Various techniques are used for the components’ development; however, in general

there are well-established methods available for specification based on mathematical

theories. These methods are used and practiced for every step involved in the

development of a software project. Modern systems are hybrid; meaning they are

composed of software and hardware. The correct functioning of any hardware is

dependent on the software running on it.

Traditional design specification is illustrated using UML, a graphical notation,

contacting numerous types of diagrams that enable modeling of different aspects of

the design related challenges. The aim of our research is to use existing model

checking tools and techniques to analyze and verify the properties of the design

system. These system specifications are designed using the UML object components

diagrams, integrated with the OCL constraints, which enables a more semantically

specification focusing on structural and behavioral properties of the system so that the

object components’ concepts are accompanied with an application to an industrial case

study.

The thesis is a combination of two parts: Part I defines the Introduction of the problem,

state of art methods including case study, and Part II appendix consisting of

publications related to the topic “Verification and validation of UML/OCL object

components’ models”.

7

DANSK RESUME

Moderne software applikationsudvikling er en kompleks og vanskelig proces. Ved

udvikling af applikationer er specifikation og verifikation nøglekomponenterne, både

specifikation og verifikation er en del af udviklingsprocessen for ethvert projekt.

Forskellige teknikker anvendes til komponentudviklingen; Men generelt er der

veletablerede metoder til rådighed til specifikation, der er baseret på matematiske

teorier. Disse metoder anvendes / praktiseres for hvert trin involveret i udviklingen af

et software projekt. Moderne systemer er hybrid betyder, at de består af software og

hardware. Korrekt funktion af enhver hardware er afhængig af den software, der kører

på den.

Traditionel designspecifikation er illustreret ved hjælp af UML, en grafisk notation,

der kontakter flere typer diagrammer, der gør det muligt at modellere forskellige

aspekter af de designrelaterede udfordringer. Vores forskningsmål bruger

eksisterende modelkontrolværktøjer og teknikker til at analysere og verificere

designsystemets egenskaber. Disse systemspecifikationer og design ved hjælp af

UML-objektkomponentdiagrammerne, der er integreret med OCL-begrænsningerne,

muliggør en mere semantisk specifikation med fokus på systemets strukturelle og

adfærdsmæssige egenskaber, objektkomponenter koncepter ledsages af en ansøgning

til en industriel casestudie.

Afhandlingen er en kombination af to dele: Del I definerer indledningen, problemet,

tilstanden og metoderne, herunder casestudier og bilag, der indeholder publikationer

relateret til emneverifikation og validering af UML / OCL objektkomponenter.

8

ACKNOWLEDGEMENTS

Pursuing a PhD is a painful and enjoyable experience. It is just like a sitting in the

roller coaster with full of excitement, energy, fear, trust to not step down. When I

found myself on top to view the beautiful scenery, I realized that it was teams work

without that this cannot be achievable.

First and foremost, I deeply grateful to my supervisor Assoc. Prof. Dil Muhammad

Akbar Hussain who invited me as PhD student Energy and Technology, Aalborg

University, Denmark. I always respect his research enthusiasm and micro-viewing

ability; he has lots of patience and always give meaningful guidelines during the

supervision.
He is always encouraging, supportive and believes on freedom and trust, which create

a bond between us. Specially he helpful in all circumstances when I was sick he was

available all the time he supports me morally a lot. He believes in me for completing

my PhD studies.

I would like to thanks, to all my colleague, John Kim Pedersen and Jens Bo holm

Nielson and supporting staff, Mette Skjarbek, Tina Larsen, Corina they have been very

kind, cooperative and supportive during my PhD studies.

However, I cannot share this great moment with my parents (Mother and Father).

Indeed, it was one of their dreams, which come true, Baba; it was your dream that I

must do PhD. I started on this mission to fulfill your dream. Nevertheless, destiny had

other ways. I wish you were here with me to see that I have completed my thesis. I

know that wherever you are you will be very proud and happy that I finished what I

started. You were the driving force behind me, instilling courage and determination

in all my difficult moments. Ammi, I know my PhD means to you, I miss you on this

special moment, I know you both look at me and I received your blessings wherever

you are.

I owe my deepest gratitude to my husband Shahid Hussain Soofi, thank you for being

understanding and cooperative specially whenever I was not able to spend quality

time with the family, especially when I was sick and writing my thesis work. I am

extremely grateful to my kids Shah Fahad Hussain and Annabel Saeeda both were

so well behaved and cooperative and never fussed about me to not being able spend

time with them.

I would like to thank Department of Energy and Technology, Aalborg University

Denmark awarding a scholarship as a Tuition fees wavier for my PhD studies and

University of Sindh, Jamshoro for awarding the stipend scholarship to complete my

PhD.

9

Last but not the least I thank to my colleagues and friends Dr. Kamran Taj Pathan,

Imran Ujan and Mehran, who give their precious time and support and encouraged

me to finalize my PhD thesis in my hard time.

Thanks all.

Arifa Bhutto

Aalborg University, 2018

10

Thesis Details

Title:

Verification and Validation of UML/OCL Object Component Model

PhD Student:

Arifa Bhutto

Supervisor:

Associate Professor, Dil Muhammad Akber Hussain

The main body of this thesis consists of following papers:

A. Arifa Bhutto, D.M. Akbar. “Formal Verification of UML Profile” in

Australian Journal of Basic and Applied Sciences, 5(6): 1594-1598, 2011.

B. Arifa Bhutto, D. M. Akber Hussain. Imran Anwar Ujan, Mehran Syed,”

Formal Approach for UML components based Development Profile”

University of Sindh, Journal of Information and Communication

Technology, 2(2): 125-129, 2018.

C. Arifa Bhutto, D.M. Akbar Hussain, “Validate UML model and OCL

Expressions using USE Tool” Pertanika J.Sci.& Technology, 26(3):1465-

1480,2018.

http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2

026%20(3)%20Jul.%202018/39%20JST(S)-0444-2018-3rdProof.pdf

D. Arifa Bhutto, D.M. Akber Hussain “An Android Based Cooperative

Knowledge Acquiring Application” Mehran University Research Journal of

Engineering and Technology, 37(3): 453-460, July 2018
DOI: 10.22581/muet1982

publications.muet.edu.pk/index.php/muetrj/article/download/486/211/

E. Sobia Mansoor, Arifa Bhutto, “Improvement of Students Abilities for

Quality of Software Through Personal Software Process” Abilities for

Quality of Software Through Personal Software Process”, International
Conference on Innovation in Electrical Engineering and Computational

Technologies (ICIEECT), 2017, IEEE

DOI: 1109/ICIEECT/2017.7916550

Copyright:

This thesis has been submitted for assessment in partial fulfillment of the PhD degree.

The thesis is based on the submitted or published scientific papers, which are listed

above. Parts of the papers are used directly or indirectly in the extended summary of

thesis. This thesis, in its present form, is not acceptable for open publication but only

in limited and closed circulation.

11

TABLE OF CONTENTS
CV .. 5

English Summary ... 6

Dansk Resume .. 7

Acknowledgements ... 8

Table Of Contents .. 12

List Of Figures .. 13

List Of Tables ... 15

Chapter 1. Introduction ... 15

1.1. Motivation ... 15

1.2. Background and Related Work ... 16

1.3. Challenges and Contribution ... 19

1.4. Thesis Outline ... 19

Part –I ... 20

Part- II .. 20

1.5. List Of Publications ... 20

Chapter 2. Applied Theories And Notations .. 22

2.1. Unified Modeling Language ... 22

2.1.1. Class Diagram For Modeling Structure 23

2.1.2. Associations and Dependencies ... 25

2.1.3. Object Diagram .. 27

2.1.4. Component Diagram .. 28

2.1.5. Sequence Diagram For Modeling Interaction 30

2.2. Object Constraints Language (OCL) ... 30

2.3. USE- UML Based Enviornment .. 31

Chapter 3. Case Study.. 32

3.1. Components Model ... 33

3.3. USE Specification In Textual Form .. 36

12

3.4. Verification And Validation Process Using Use 42

3.5. Use Supports Sequence Diagram .. 46

Chapter 4. Conclusion and Future Work... 49

Literature List .. 50

List Of The Papers ... 58

13

LIST OF THE FIGURES

Figure 2.1 UML 2.2 Diagrams Overview. Source https://www.uml-diagrams.org/uml-22-
diagrams.html.. 23

Figure 2.1.1.1: The class Student represented as (a) a rectangle with the class name,(b) a

rectangle with class name and two empty compartments and (c) as an abstract class rectangle

with class name in italic and two empty compartments...24

Figure 2.1.1.2: The class student illustrated with (a) design level information on attributes and

Operations and (b) implementation level detail including visibility..25

Figure 2.1.2.1 The types of relations between classes..26

Figure 2.1.2.2 Example define the classes structure, attributes, operations and association....27

Figure 2.1.3.1 Example of Object Diagram represent the instance of the class diagram.........28

Figure 2.1.4.1 UML notation of Components and relationship..29

Figure 2.1.4.2 UML Components diagram with receiver and sender notations.......................29

Figure 2.1.4.3 Components diagram represent the interface class..29

Figure 2.1.5.1 A sequence diagram illustrate department employee raise their salary sequence

on the object time parameter...30

Figure 3.1 Verification and Validation of UML/OCL Object Components Model..................33

Figure 3.1.1 UML Components diagram View of PMS of SYSbuild.......................................34

Figure 3.2.1 UML 2.2 Class dependency Diagram of PMS of SYSland....................................35

Figure 3.3.1 UML Class Interface Model of Case study ...37

Figure 3.3.2 USE Specification Environment of Graphical view of Class Diagrams including
Relationships, variants, pre-post conditions..37

Figure 3.3.3 Invariants check by shows green to validate correctly..41

Figure 3.4.1 USE Object Diagram represented the object Data inserted..................................43

Figure 3.4.2 USE Object diagram with red line represent the links counts..............................44

Figure 3.4.3 Sequence Diagram for satisfying the operation call ...46

 Figure 3.5.2 Communication Diagram including Object relationships.....................................47

Figure 3.5.3 USE Specification Model diagrams of the Case study..48

https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html

14

LIST OF TABLE

Table 1-1 Summary of methods using for V&V of UML models …………….……......17/18

Table 3-1 Classes, Attributes, and Operations Define In USE Textual

Specification.. 36

15

CHAPTER 1. INTRODUCTION

This chapter highlighted the goals and objectives of the research and summarized

the existing literature available related to the verification and validation of

UML/OCL object components model.

The main findings of this chapter is based on Paper [A].

1.1. MOTIVATION

Our daily routines are guided and guarded by automaticity of systems, which are

becoming inherently more and more complex and incorporates constantly in our

environment.

The span of the science and the field of technological knowledge has long been

too vast for most people to comprehend at a level needed for satisfying demands.

Engineers must today be highly specialized and educated in order to master the

relevant skills and the numbers of special engineering branches are almost as

vast as the industrial sections where engineering is needed.

 Software Engineering Development is one of the fields having very complex

framework, because development of software is based on right way of

integration of all components in one application that control and accurately run

the system. In such scenario, designing and specification identifying of the

software applications is very critical and difficult process. In software

development, Unified Modeling Language (UML) have been used successfully.

UML models represent different level of system development structures. The

UML models are based on the “Object- Oriented” methodology for creating

graphically notations of the systems [1]. UML has been created for several

domains including software system engineering, component development

specification and software process modeling, all above modeling techniques are

based on the model –driven development process [2],[59].

However using UML some problems are identified in design techniques, like

separation of correctness, accuracy and time parameters [3]. In this regard, UML

models are encrypted with the Object Constraints Language (OCL). This type of

specification now-a-days exists in the form of Components Based Software

Development (CBD), which is, based on the Object-Oriented software

development design methodologies (OOD) [4]. Most of the existing OOD are

based on formal methods such as UML/OCL [3], [4], [5].

16

We also look for the structural and behavioral part of the designed models, by

applying the constraints to check the model correctness, consistency and

accuracy [10]. However, for the verification and validation, a process is required

to reason rigorously on formal specification, verification of design patterns, their

applications, compositions and evolutions [6], [7].

Our research methodology is to analyze UML/OCL analytical and theoretical

based models in order to elicit sound semantic foundations for object

components system modeling. We then plan to proceed to a constructive phase,

using the foundation to verify concrete examples in a number of experiments in

the form of a case study which is presented in chapter 4.

1.2. BACKGROUND AND RELATED WORK

Mostly research is going on verification and validation on UML/OCL class

object models which is available worldwide. The author first time introduced the

visualization modeling methodology by B method, but because of non-

availability of semantics in B method in research community it is not much

popular [8], [58], although author has the precision to support formal verification

of models using the animation. However, lack of semantics support many

practitioners received B notation as an actions supported by the constraint

parameter for the UML models, which look like UML models are translated into

the B [8],[9],[42]. However, UML-B profile [8] provides supports to UML

model interim for refinement and visualization of the Object behavioral models.

The most and popular use of UML -B [9] is used for the industrial applications

that have found very concrete results [42],[47].

A somehow similar idea has been proposed by authors in UML to CSP [3],[11].

UML to CSP tool is used for the formal methodology in verification of UML to

OCL models. “Given a UML class diagram annotated with OCL constraints,

UML to CSP” [3],[11],[12] tool checks automatically system models

correctness properties, for example strong, weak and satisfiability of the models

by checking redundant constraints on the UML to CSP which basically is

formation of constraints programming paradigm underlying the constraints

solver on Eclipse environment for the verification[32],[33]. As a software

developer, Eclipse environment is not easy to use for most researcher’s

engineering development, hence complexity of the system design researcher

find difficulty in using this approach [13],[14]

The most popular and well-defined methods are used in constraints

programming, but we know that the constraints programming can only be

utilized if we want to verify or validate object class model of UML. The authors

define the way out to declare full class model in specification language and then

apply the constraints on it. Usually all researchers do manually in all tools and

17

methods. Over all up to now, compliance of the diagram with respect to

correctness properties of the models are verified [18],[16],[17],[19],[48].

This is also the case when authors describing in [2], [6], [15], [16], [18] the

various formal verification methods like First Order Logic methodology[2],

which is itself is very much expensive way of describing the model verification

of UML class diagrams annotated with OCL constraints, However, first-order

logic (FOL) itself is more mathematically reasoning mechanism [20],[21]. In

general, OCL is more expressive than FOL. Therefore, to avoid ambiguity, we

need to define limit in the UML-OCL diagrams or we keep more emphasis to

adopt more graphical form of visualization of models at run time

[20],[21],[22],[23].

Table 1.2 Summary of methods using for V&V of UML models

UML

Notations

Formal

methods for

Verification

and validation

process

Analysis of the methods.

Class

Diagram

Object Oriented

Modeling

Techniques.

The authors provide UML models

can access graphical view of

models and communication of

various models using the animation

and verification.[3],[28].

Class

Diagram

OCL

constraints

This method checks automatically

various properties like correctness,

strong and weak, according to the

system models, but method lacks

redundant constraints checking

[29],[30],[31].

Class

Diagram

Constraints

Programming

Using this methods authors define

approach of Model Driven

Development where the UML models

are the key models of the design and

development framework. This method

having an automatic uses of OCL

constraints programming to check the

UML class diagram annotated with

OCL Constraints [32], [33],[34].

18

Class

Diagram

Communicating

Extended

Timed

Automata

(CETA),

verification

tools.

The authors present a technical tool

for validating UML models and

verifying through the simulation

[59]. The CETA verification

methods check the system

properties and operations, which

are part of the inheritance and

polymorphism including the state

machine models having the well-

defined semantic profile for

communication sequences and

concurrency checking among the

different objects. In the CETA,

authors define the UML profile

representation of timing constraints

[35],[36],[37],[39].

State

charts

HTA

hierarchical

timed automata

In this tool authors define the

formal logical language which

included the real time properties

with the formal representation by

using TCTL. The Timed

 computational Temporal

Logic is unambiguous but it

validates and verifies the possible

class diagram of the

system.[38],[45],[46]

Sequence,

State

Machine

, class

and

Package

Diagrams

UML 2.0 and

SysML

According to this method, authors

define V&V based on formal

verification and model checking of

the desired system by the flow

analysis of data and control

constraints. Overall analysis is

based on the abstraction level of

interpretation [40],[41],[43],[44].

However, many authors believe that in software engineering, Model Driven

Development is growing and helps the developer community to trust on such

methods for the software design and specification level [26],[57] as they are

never aware to find out specification and design errors until reached at the phases

of development or implementation of the systems [25]. The formal reasoning is

not used because until the implementation stage, it increases the cost of the

19

development process. In Table 1.1 we described the currently adopted UML

notations, formal methods tools and techniques [24], [27]. However, not all of

above define the one complete method for the UML/OCL object components

model graphical verification and validation process.

1.3. CHALLENGES AND CONTRIBUTION

The objective of this research study is to investigate the UML Object-Oriented

and components-based design models and defines the specification and

verification of object class model by semi-formal methods, which visually and

graphically check the correctness, relationship and dependency of the models.

The scientific challenges that we see in analyzing the Object Components-based

development modeling applications are the following:

• An analysis and verification of the structural, behavioral properties of

the UML/OCL Object Component methodology using model checking

tools and techniques.
• To analyze, verify and suggest compensation mechanisms for some

concrete case study.
• Study and learn the state of the art techniques in the area of specification

and verification of UML models like objects, class and components

model, so that we can apply and utilize the relevant knowledge.

The above-mentioned objectives are the key points towards the scientific

contribution in the area of my research. I am confident that this will provide

further enhancement towards knowledge contribution and it will be very

beneficial for those who wish to do research/development in this area either in

this university or elsewhere.

However, there are still numerous challenges regarding how to integrate

UML/OCL with formal specification language like Z or object- Z that are

directly connected and that generate UML models.

1.4. THESIS OUTLINE

The organization of this thesis is in two parts. Part – I of the thesis is from

research work and background of the research, Part-II is produced publications,

which is part of PhD research work.

20

PART –I

The organization of Part-I follows:

Chapter 1. Representation of introduction, background literature and

contributions.

Chapter 2. Illustration of the applied theories and notations used for research

work.

Chapter 3. Development of Case Study.

Chapter 4. Submission of Conclusion and Future Work.

PART- II

1.5. LIST OF PUBLICATIONS

A list of publications is given below that is included in thesis Part- II:

A. Arifa Bhutto, D.M. Akbar. “Formal Verification of UML Profile”

in Australian Journal of Basic and Applied Sciences, 5(6): 1594-1598, 2011.

B. Arifa Bhutto, D. M. Akber Hussain. Imran Anwar Ujan, Mehran Syed,”

Formal Approach for UML components based Development Profile”

University of Sindh, Journal of Information and Communication

Technology, 2(2): 125-129, 2018.

C. Arifa Bhutto, D.M. Akbar Hussain, “Validate UML model and OCL

Expressions using USE Tool” Pertanika J.Sci.& Technology, 26(3):1465-

1480,2018

http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2

026%20(3)%20Jul.%202018/39%20JST(S)-0444-2018-3rdProof.pdf

D. Arifa Bhutto, D.M. Akber Hussain “An Android Based Cooperative

Knowledge Acquiring Application” Mehran University Research Journal of

Engineering and Technology, 37(3): 453-460, July 2018
DOI: 10.22581/muet1982

publications.muet.edu.pk/index.php/muetrj/article/download/486/211/

21

E. Sobia Mansoor, Arifa Bhutto, “Improvement of Students Abilities for

Quality of Software Through Personal Software Process” Abilities for

Quality of Software Through Personal Software Process”, International
Conference on Innovation in Electrical Engineering and Computational
Technologies (ICIEECT), 2017, IEEE

DOI: 1109/ICIEECT/2017.7916550

 In addition to the main papers included in the thesis work, the following

 publications have also been made:

1. I. A. Ujan, Arifa Bhutto, “An Overview of Health Information

System” Published in 11th International Conference on Statistical

Sciences at Islamia College Peshawar on March 5th to 8th 2018.

2. I. A. Ujan, A. Bhutto, M. M. Rind, M. A. Shamimi “Acceptance of

HMIS by Healthcare Professionals of Private Sector Hospitals “

Sindh University Research Journal (Science Series) Vol. 48 (4D)

165-168 (2016)

3. Arifa Bhutto, Mehran Shah, Dr. Kamran Taj “Online Doctor

Appointment System” http://ibt.edu.pk/ibt/jurnals/1_ibt.biztek.(2018).

http://ibt.edu.pk/ibt/jurnals/1_ibt.biztek.(2018)

22

CHAPTER 2. APPLIED THEORIES AND

NOTATIONS

In this chapter theories and notations are defined which serve the purpose of

research. Setting on notation is a matter of preference and understanding more

than anything else. To make the message clear it is important that the chosen

notation conventionally can express what is required and that it is well

established so that other parties will be able to participate in the evaluation of the

contribution.

The most widely used notation in the software engineering industry is UML [49].

It is the main contribution in designing the system structure by the UML

notations. Our research is focused on how we can verify and validate the UML

integrated with the OCL constraints to verify and validate object components

models at the design level. As UML is the modeling notation and design model

diagrams and OCL is the constraints language, which applies constraints on the

class diagram, but both are not able to verify and validate the model at the design

level to check correctness, association and constraints applied on the models. For

that reason we propose verification and validation of UML/OCL [49], [50]

diagrams by UML Based Specification Environment (USE) [52]. Using USE

tool, we verify and validate the UML/OCL models at design level [53].

The main findings of this chapter are based on Papers [A], [B] and [D].

2.1. UNIFIED MODELING LANGUAGE

Unified Modeling Language or UML [18] was initiated as the unification of three

notations for designing of Object-Oriented software systems. In the early 1990s,

James Ram Baugh and Grady Brooch, in each of their affiliation, worked on

methods for supporting the development of object-oriented software, before they

in 1994 joined the Force at Rational Software and so merged their methodologies

and produced unified modeling Language and Rational Rose Unified Process.

Since 1996, the standardization of UML has been organized by Object

Management Group (OMG) which is a non-profit organization of researchers

interested in the development of UML and other projects.

UML 2.2 is the most recently published version of UML, which provides thirteen

different kinds of diagrams that are used to model structural, behavioral and

interaction aspects of software systems as defined in Fig 2.1.

23

Figure 2.1 UML 2.2 Diagrams Overview. Source https://www.uml-diagrams.org/uml-
22diagrams.html

Structural Diagrams: Class Diagram, Object Diagram, Component Diagram,

Composition Structure Diagram, Deployment Diagram, Profile Diagram

Behavioral Diagrams: Use Case Diagram, Activity Diagram, State Machine

Diagram

Interaction Diagrams: Sequence Diagram, Communication Diagram,

Interaction Overview Diagram, Timing Diagram

The UML diagrams in combination are used to model different views of a

software system on a level of richness that is beyond the scope of this work. In

section 2.1.1 through 2.1.3 Class Diagram, Object Components Diagram and

Sequence Diagrams will be presented, as this subset of the UML language

provides a sufficient syntax for reasoning about verification and validation of

UML models.

2.1.1. CLASS DIAGRAM FOR MODELING STRUCTURE

The Class Diagram is used to model relationships between classes of objects, i.e.

the structural design of the system. In Class Diagram, therefore, we can represent

https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html
https://www.uml-diagrams.org/uml-22-diagrams.html

24

it as a graph. Using the graph, nodes show the classes, and two types of edges

that represent the relationships are called association and dependencies.

Class

A class is a set of objects that has the same semantics, attributes, operations and

constraints.

The attributes of a class relate instances of the class to values of the attributes

types. Attributes may represent a navigable end of a binary association, which

will be described further. Operation of an object manipulates attributes, which

might cause the further operation to call to other such objects.

Figure 2.1.1.1: The class Student represented as (a) a rectangle with the class

name, (b) a rectangle with the class name and two empty compartments and (c)

as an abstract class rectangle with the class name in italic and two empty

compartments.

A class is illustrated using a rectangle that is optionally divided horizontally. If

the class is illustrated as a simple rectangle, this rectangle contains the name of

the class, as shown in Figure. 2.1.1.1(a). If the rectangle is subdivided, as it

usually happens because the rectangle contains three compartments as shown in

Figure 2.1.1.1 (b), the more compartments can be used. The top compartments

specify the class name. If the class name is written using an italic font, as in

Figure 2.1.1.1(c), the class is abstract. That class abstract means that no object

instances of the class is created.

The two additional compartments illustrated in Figure 2.1.1.2 (a) and 2.1.1.2(b)

are used to make more detailed specifications of the class properties. The middle

compartment is used to specify class attributes and the bottom compartment is

used to specify which operations the class offers. The level of the detail is

illustrated in Figure 2.1.1.2(a), where attributes and operations are specified in

the class description and are called the design level.

Student Student

 (a) Class
Representation
n with class

(b) Class
representation with
name and empty
compartments.

c) (Abstract
Class

representation
with name and

25

(a) Class With Attributes (b) Class With attributes,
Operations and Visualization of
Symbols .

At the implementation level, shown in Figure 2.1.1.2(b), attributes and operation

visibility is included. The visibility of attributes and operations is stated by

prefixing the name, usually with:

Figure 2.1.1.2: The class student illustrated with (a) design level information on attributes and

operations and (b) implementation level detail including visibility

+ for public element (object, attributes, operations etc.) that are visible /

accessible for object that can access the namespaces that the public element

belongs to.

for protected element that are visible to objects that have a generalization

relation to the namespaces that the protected element belongs to.

_ for Private element that are only visible inside the namespace it belongs to.

~ for package element that are visible to objects of the same package that its

namespaces belong to.

2.1.2. ASSOCIATIONS AND DEPENDENCIES

In UML four different types of relations are defined: aggregation, association,

generalization and dependency. However, the relations are represented as shown

in Figure 2.1.2.1.

Association relation: An association relation reflects that objects are aware of

the existence of each other and are aware of the association that exists between

them. Thus links constitute the association and it is only valid as long as both

objects agree on it unless one object ceases to exist, the association or link is

naturally discontinued.

Student

+Attribute1: Type
+Attribute2: Type
+Operation1(parameter: Type)
+Operation2(): Type

Student

#Attribute1: Type
-Attribute2: Type
+Operation1(parameter: Type)
+Operation2(): Type

26

The UML specification allows two different ways to represent navigability

between objects, using arrows to indicate the direction and crosses to indicate

un-navigable association end.

The association relation is annotated with the symbols specified the multiplicity,

i.e. the number of objects that are participating in the association. The Figure

2.1.2.2 shows association relationships with different annotations.

Figure 2.1.2.1: The types of relations between classes.

The association relation is an interpretation of the Class Diagram. The fact that

the Class Diagram refers to relations between objects could be misleading as

objects have a dynamic nature in them being instances of classes. A dynamic

view on the associations is however problematic. When, e.g. an association is

navigable in both directions and the multiplicity is one in both ends, the mutual

awareness among the involved objects should be established instantaneously in

order to fulfill the obligation of the association. Such instantaneous creation of

association and objects is hard to achieve; thus Class Diagram provides a static

view or a view when no object instantaneous are in progress.

Inheritance relation: The inheritance relation is used when classes have

common attributes and/or operations. These common features are then

generalized in parent super class, which may be abstract from which the child

class inherits. It can extend or redefine the set of operation and attributes of the

present class.

Aggregation relation: The aggregation relation is used where it is relevant to

model a whole from its parts. In this case, the whole class relates to its parts. A

special type of aggregation is composition where the square symbol is filled. The

difference in the two aggregation types is multiplicity as the composition relation

27

indicates that at least one object must be present. It is the responsibility of objects

of the object of the composite class.

Dependency relation: The dependency relation is the weakest relation between

classes in UML and can be considered an abstraction of associations. The

dependency relation models a “client” and “supplier” relationship between

classes. The semantics of the client part depends on the supplier, and if the

attributes or operations of the supplier change the client may have to be changed

too. As the constraints on the dependency relations are so weak that they could

substitute all other relation in a design.

We define in Figure 2.1.2.2 as an example of classes, attributes, operations and

relationships. Further detail of the class diagram and relationships we define

using a case study in Chapter 3.

Figure 2.1.2.2 Example defines the classes structure, attributes, operations and

association.

2.1.3. OBJECT DIAGRAM

Use of UML Object Diagram is dependent on the class diagram, in other way

object diagram is the instance of the class diagram. An object diagram is another

static view of the class diagram of the instances. An Example is shown in the

Figure 2.1.3.1 which represents the notations in the UML object diagram.

28

The importance of the object diagram can be defined as:

- It shows the object relationship of the system.
- A static view of the system interactions is explored.
- To understand the object behavior in the system and relationship of the

interaction as a practical form.

-

Figure 2.1.3.1 Example of Object Diagram- Represents the instance of the class

diagram.

2.1.4. COMPONENT DIAGRAM

The UML Components Model represents the various software component that

will be built and form one complete system. Component Model usually builds

from the class model as we know that Components Model is part of the Object

Oriented Methodology-based. Components model is the high level of the design

of the system which shows the overall architecture of the system.

Components Notation: In UML 2.2, Components Diagram is represented with

the notation of the rectangle box and in the corner two further boxes are drawn

as shown in Figure 2.1.4.1 which represents the example of the UML

Components Model notation.

29

Figure 2.1.4.1 UML notation of Components and relationship

Components relationship Interface: Using UML 2.2 Components Diagram is

connected through the interface in the form of relationship that is represented

with the sender and receiver in the form of a circle and half circle as notation

form. In practical, the component interface is defined by the class diagram. Using

an example, we represent the same in Figure 2.1.4.2 which shows UML 2.2

Components Diagram notation whereas Figure 2.1.4.3 shows the internal

interface of the components diagram.

Figure 2.1.4.2 UML Components diagram with receiver and sender notations.

Figure 2.1.4.3 Components diagram represent the interface class.

30

2.1.5. SEQUENCE DIAGRAM FOR MODELING INTERACTION

The interaction between objects models can be modeled in UML by Sequence

Diagram. Sequence Diagrams are used to model the sequence, i.e. the time

ordering of events between the objects of a system. The objects of focus are

shown as boxes at the top of the diagram, each box with a dashed line descending

from it that illustrates a timeline. Events are drawn between the objects related

to each other in time. A sample sequence diagram is given in Figure 2.1.5.1

Figure 2.1.5.1 A sequence diagram illustrates department employee raise their salary

sequence on the object time parameter.

2.2. OBJECT CONSTRAINTS LANGUAGE (OCL)

The Object Constraints Language (OCL) is a standard for the UML models’

checking and validation. The OCL was first developed in 1995 inside IBM as an

evolutionary language but later on it became an important factor for the Model-

driven environment. Initially OCL was only used for the constraints language for

model correctness parameters, but later on OCL constraints usually were applied

on the class model, which were encrypted during the design of the structure of

the class diagram [3].

OCL is a general-purpose formal language, which is currently a standard by the

OMG group [15].

OCL is a specification language which is a declarative way of defining the rules

on the UML models. OCL is integrated with many other applications but most

popular is to define constraints on the UML class diagram in the form of

Invariants, variants and pre-post conditions.

31

The important features are following:

- Initialization of the class

- Initialization of the class properties

- Using Invariants to check all conditions must have satisfied for the

model.

- Pre- Postcondition

- Query Operations.

2.3. USE- UML BASED ENVIORNMENT

The USE tool is UML-based Environment for Specification [53]. It is a tool for

UML models checking and execution. It applies the OCL constraints to design

the model-driven development for software. USE tool assists developers to

perform work as a mediator for a subset of UML models and OCL constraints.

USE is a utilization process for case studies, teaching, development and analysis

[5],[54],[55].

USE in textual form describes class diagrams and its attribute, operations, and

association with its centric role of the system; it allows object diagrams to check

the behavioral part of the UML models to apply the restrictions in the form of

pre- and post-conditions.

In command shell of USE, a user can visualize the class diagram and its

association as well as it generates the sequence diagram by applying the object

data values in object forms. Model checker utilities always check the model

consistency by applying the invariants restriction to validate the model. The USE

tool checks that the Pre- and post-conditions are satisfied and analyzed in detail

[55].

Model Structure: It validates the class attributes, relationships and structure by

applying the variants and constraints.

Model Behavior: It verifies and validates the operations by applying the pre and

post-conditions.

However, more practically adoptable knowledge is described in case study

produced in chapter 3 which illustrates detailed framework of our research

methodology.

32

CHAPTER 3. CASE STUDY

In this chapter, we illustrate the Verification and Validation of UML/OCL object

Components model by presenting a case study. The case study represented the

running example of the application of the organization in Hyderabad SYS builds

of Employee Project Management System Application.

The main findings of this chapter are based on Paper [C].

In order to test our methodology, we define the following procedures for the

solution of the problem.

Step 1. The design of the application described by the structure model

in UML class, components model diagram and behavior of the

system including the constraints by the OCL.

Step 2. Using the USE specification, we illustrated the UML classes,

write the schema in textual format in any editor, that schema

consists of attributes, operations, and associations in OCL

textual language.

Step 3. Define constraints in OCL language in form of invariants,

relationships and pre and post-conditions.

Step 3. Open the USE specification textual file and generate the

graphical view of the class model, inherited with attributes,

operations, relationships, variants, and invariants.

Step 4. Verify the model structure if it is correct to verify the

behavioral properties of the system model by analyzing the

object model that automatically further generates the sequence

model in connection.

Step 5. The USE environment checks the UML class, sub-class,

associations, operations, aggregations, composition.

 Further USE model validates OCL constraints and verifies the

constraints by applying the query to the class model.

The methodology of the research is represented in Figure 3.1

in detail.

33

 EPMS

Figure 3.1.1 Verification and Validation of UML/OCL Object Components Model [C]

3.1. COMPONENTS MODEL

The Employee Project Management System is the application for the

management of the Land projects of an organization, which is running locally at

the Hyderabad. The SYS build is the building company they need to develop

their Employee, project management system. In this regard, we found the

following requirements of the system in the main module of the PMS application:

1. Admin has to manage the major three components:
 i. Expenses ii. Set head of department iii. set head of

components 2. In the PMS there is Payment mode which manages the:
 i. Employees payment ii. General

Payment 3.Employee are of different types:
 i. staff ii. Labor

 4. Opening the new project has a type:
 i. Site Area ii. Building Project

34

Figure 3.1.2 UML Components diagram View of PMS of SYSbuild

According to the above requirement, we first design the UML components

Model diagram, which described the overall structural view of the system shown

in Figure 3.1.2, and section 3.2 describes the class diagram including the

interface diagram of the EPMS.

35

3.2. CLASS INTERFACE REPRESENTATION OF COMPONENTS

The UML2.2 Components diagram is the top level of the model and internal

structural model is represented in the classes and interface of the receiver and

sender classes. In Figure 3.2.1 the class interface of the PMS case study is further

described in the form of USE textual specification by applying the constraints

language by OCL.

Figure 3.2.1 UML 2.2 Class dependency Diagram of PMS of SYSland

36

3.3. USE SPECIFICATION IN TEXTUAL FORM

In this section, we illustrated the USE specification in the textual representation

of the classes that include the attributes, operations and associations, which are

further integrated with the OCL invariants, pre-post conditions to enforce the

rules checking and verification and validation of the operations applying on the

system models.

In table 2, we define the PMS SYS Land where class Admin having three

attributes and one operation can be viewed when it runs this specification using

USE tool. Model checker checks automatically the structure of the model as well

as defines how many classes, variants, invariants, associations and post-pre

conditions are available in the model. Figure 3.3.1 represents the class interface

model and Figure 3.3.2 shows the USE environment class diagrams that validate

the structure of the model to show in the following window with the correct

command message structure.

Class name Attributes and types Operations

Admin adminid : Integer

name : String
password : String

creatNewAccount(account :

Real) : Real

Expenses adminid : Integer

expenseid: nteger

expense : String

expenseType: string

add (a : Expenses)
remove (a : Expenses)

Payment expenseid : Integer

paymentid : Integer

payment : Real

sender(p: Employeepayment)
reciever(p : Employeepayment)

Employee

Payments
paymentid : Integer

employeeid : Integer

empname : String salary

: Real

salary(p : Payments)
advance(p : Payments)

General Payments paymentid : Integer

generalpaymentid : Integer

pattycash : Real

recievedamount(p: Payments)
dailexpenses(p : Payments)

Table 3.1. Classes, attributes, and operations defined in USE Textual specification

37

Figure 3.3.1 UML Class Interface Model of Case study

Figure 3.3.2 USE Specification Environment of Graphical view of Class Diagrams

 including relationships, variants, pre-post conditions.

38

Below is the list of the USE specification textual commands in which classes,

attributes, Operations, associations, and pre-post condition are defined.

-- $ProjectHeader: use 0.393 Wed, 15 March 2018 14:10:28 +0200$
-- Example illustrating pre- and postconditions

 Model BuildingManagementSystem

-- classes

class Admin

attributes
 adminid :

Integer

 name : String

 password : String

operations

creatNewAccount(account : Real) :

Real

end

class Expenses

attributes

 adminid :

Integer

 expenseid : Integer

 expense : String

 expenseType : String

operations
 add (a :

Expenses)

 remove (a : expenses)

end

class

Payments

attrib

utes
 expenseid :

Integer

 paymentid :

Integer

 payment : Real
operations

39

 sender(p :

Employeepayment)

 reciever(p : Employeepayment)

end

class Employeepayment

attributes
 paymentid :

Integer

 employeeid :

Integer

empname :

String

salary : Real

operations
 salary(p : Payments)

 advance(p :

Payments)

end

class

Generalpayments

attributes
 paymentid : Integer

 generalpaymentid : Integer

pattycash : Real
operations

 recievedamount(p :

Payments)

 dailexpenses(p :

Payments)

end

Association in USE Specification by OCL constraints:

The following are the association defined with the applied multiplicity

constraints using OCL language and the association Depends between many to

one relationship of payments class to Employee payment.

association Depends between

 Payments[*]
 Employeepayment[1..*]

40

end
In similar way, association Having Expenses between Payment class many to

many relationship is as under:

association Having between

 Expenses[*]
 Payments[*]
End

In a similar way, Class Expenses Controls between Emplyeepayment and

Between Generalpayments many to many relationship is as under:

association Controls between

 Expenses[*]

 Employeepayment[*]

 Generalpayments[*]
end
In a similar way, Class Admin Creates between Expenses many to many

relationship is shown as under:

association Create between
 Admin[*]

 Expenses[*]
End

Constraints applying by USE OCL Model

The list of the constraints as defined below by the OCL invariants is applied on

the Payment and Expenses class in the figure 3.3.3 which shows that the

invariants checked directly as is shown in graphical model.

-- constraints

constraints

context Payments

inv: paymentid = 1

context Expenses

inv: expenseid=

1

 context

Generalpayments

41

inv: pattycash >=

context Employeepayment

inv: employeeid =

paymentid

Figure 3.3.3 “3 Invariants check by showing in green to validate correctly”

Pre-Post Conditions OCL Constraints:

Here the way of applying constraints in USE specification by applying OCL Pre-

Post conditions on the structural model is produced. Following is the list of

commands which shows constraints applied on the class structure of Payments

that checks if payment should be received by the employee; but before the

payment is made, checks the Pre condition weather payment is defined or not.

Below is the list of constraints which checks that the model is well defined:

.

42

 constraints context Payments::reciever(p :

Employeepayment) pre recieverPre1:

p.isDefined() context Payments::sender(p :

Employeepayment) pre senderPre:

employeepayment->includes(p) post senderPost:

employeepayment->excludes(p) context

Admin::creatNewAccount(account : Real) : Real

post creatNewAccountPost:
 account = account@pre * (1.0 +

account) post resultPost:

result = name

3.4. VERIFICATION AND VALIDATION PROCESS USING USE

In section 3.4 we define the verification and validation process by using the USE

graphical environment which gives more reliability and accuracy of Model

Driven Development Environment. Figure 3.4.1 shows the USE object diagram

of PEM by creating the object and sets the data whose mean time can be

visualized by clicking the object Diagram.

Below is the list of the commands which creates two objects and a graphical view

in the Figure:

use> !create nd:Admin

use> !set nd.name

:='mehran' use> !set

nd.password :='eris' use>

!create np:Payments

use> !set

np.payment:=100000

43

Figure 3.4.1 USE Object Diagram represented the inserted object Data

We invoke the operation Receiver on the receiver object new payment and pass

the object empty as one of the parameter. We also check that the preconditions

also satisfy the condition and that the object model is working correctly.

use> !openter np reciever(empay)

precondition `recieverPre1' is

true use> info opstack

Payments::reciever(self:np, p:empay) [caller: openter

 np reciever(empay)@<input>:1:0]

The above commands finally view the object model with the red line shown in

Figure 3.4.2 between two objects ensures that the correctness properties are

tested.

44

Figure 3.4.3 USE Object diagram with red line represent the links counts

Now we have to verify the binding of the self-variable to identify the parameter
P which represents the Employee payment = empty, as a result we find the

graphical view of the object and the binding variable is shown as red link in
Figure. 3.4.4.3.

use> info vars

[frame 1]
 p : Employeepayment = empty
 self : Payments = np
[frame 0]

empty
[object variables] ad : Admin =

ad emp : Employeepayment =

emp empty :

Employeepayment = empty
 exp : Expenses = exp

expen : Expenses =

expen gp :

Generalpayments = gp

nd : Admin = nd np :

45

Payments = np p :

Payments = p

Operation Effects on classes:
In this section, we simulate and execute the operations which are defined by the

system state. Using USE, system state can be visualized with the help of the state

model. Now we check the pre-condition of the receive operation which is

required by the requires in our model. We have link between the person class

and the company class which can be visualized directly. In model we set the

salary of the new employee to check the operation effects on classes’ behavior.

use> !insert (np,empay) into

Depends use> !create

expen:Expenses use> !insert

(nd,expen) into Create use>

!insert (ad,exp) into Create

use> !insert (exp,p) into Having
use> !insert (p,emp) into Depends

Following are the steps to verify and validate the optional and required

operations with a result value:

1. Using USE tool active operation is available in the call stack.

2. After viewing the call stack, if optional active result value is already

provided , then the special OCL variable by default bound with the

value of "result" variable is produced.

3. With this, all pre condition operation is satisfied, and as a result, answer

appeared as true.

4. Now the local variable automatically cleared because it did not find the

bonding value.

In our example, the precondition Receiver is satisfied by applying the

following commands. use> info vars p : Employeepayment = empty self

: Payments = np

We call the operation AddNewAccount on the new employee newemp. The

operation raise salary is given the new employee raise by the 10%.

46

use> !openter np reciever(empay)

precondition `recieverPre1' is true The

above result we found that reciverPre1 is

true check the operation is correctly

working.

3.5. USE SUPPORTS SEQUENCE DIAGRAM

The USE methods identify and visualize a sequence of operations by calling the

methods same as UML sequence models. Figure 3.5.1, Figure 3.5.2 and Figure

3.5.3 show design case study of PMS SYS Land which shows the sequence of

objects call and response of the operations can be viewed. In this method,

validation process is done in parallel automatically when we update each

operation by applying the valid data.

Figure 3.5.1 Sequence Diagram for satisfying the operation call

47

Figure 3.5.2 Communication Diagram including Object relationships.

48

Figure 3.5.3 USE Specification Model diagrams of the Case study

49

CHAPTER 4. CONCLUSION AND

FUTURE WORK

In this thesis, the concept of Verification and Validation of UML/OCL object

Components model formally has been presented along with the framework for

applying USE graphically specification methods.

The concept has been illustrated with structural and behavioral models of

UML/OCL that are applied in a case study focusing on designed software for

PMS SYS Land organization, using Model Driven Design Environment.

Discussion and Future Work

Development of systems that are based on the Model Driven Design Architecture

indirectly supports the object oriented paradigm. Nowadays, OOD methodology

is more popular and difficult to design. The verification and validation of models

at design level are still very complicated and in this regard, the given

methodology to some extent gives positive results but still numerous challenges,

leading towards finding the right solution for various domains, need to be

addressed.

A substantial part of the research regarding verification and validation of UML

Object components model has focused on an efficient solution to architectural

design challenges. One step in this direction is the illustration of object

components model hypothesis presented in our research paper B. In contrast to

the verification and validation of Object class diagram, we use the formal

graphical method which gives more accurate and correct results at design level

by enforcing some formal rules on the system design.

As far as matter of applying the supporting tools is concerned, it is clarified that

we have formally not designed any new tool because it is beyond the scope of

this research and due to complexity in achieving a satisfactory semantically

description of design models, we have focused to utilize already available tool

integrated with a new methodology for our case study. In such a scenario, OCL

best fits in the problem and we have achieved the positive results produced in

the case study in chapter 3 with the integration of UML/OCL by the USE

graphical specification environment.

An additional interesting topic of research is to define and integrate more formal

specification languages with UML modeling diagrams which can be easily

developed and can generate the results commercially in software engineering

field.

50

LITERATURE LIST

[1] Baresi, L., Blohm, G., el. Formal verification and validation of

embedded systems: the UML-based MADES approach. Software &

Systems Modeling, 14(1), 343-363. 2016

[2] Alawneh, L., Debbabi, M., Hassaine, F., Jarraya, Y., & Soeanu, A.

(2006, March). A unified approach for verification and validation

of systems and software engineering models. In Engineering of

Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE

International Symposium and Workshop on(pp. 10-pp). IEEE.

[3] Cabot, J., Claris, R., & Riera, D. (2008, April). Verification of

UML/OCL class diagrams using constraint programming. In

Software Testing Verification and Validation Workshop, 2008.

ICSTW'08. IEEE International Conference on (pp. 73-80). IEEE.

[4] Martin Gogolla and Khanh-Hoang Doan. Visualizing and

Analyzing Discrete Sets with a UML and OCL Software Design

Tool. In Yuri Sato and Zohreh Shams, editors, Proc. 6th Workshop

Set Visualization and Reasoning (SetVR 2018). CEUR Proceedings,

2018.

[5] Ober, I., Graf, S., & Ober, I. Validating timed UML models by

simulation and verification. International Journal on Software

Tools for Technology Transfer, 8(2), 128-145. 2006

[6] David, A., Möller, M. O., & Yi, W. (2002, April). Formal

verification of UML state charts with real-time extensions. In

International Conference on Fundamental Approaches to Software

Engineering (pp. 218-232). Springer, Berlin, Heidelberg.

[7] Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., & Drechsler,

R. Verifying UML/OCL models using Boolean satisfiability. In

Proceedings of the Conference on Design, Automation and Test in

Europe (pp. 1341-1344). European Design and Automation

Association. March 2010

[8] Snook, C., & Butler, M. UML-B: Formal modeling and design

aided by UML. ACM Transactions on Software Engineering and

Methodology (TOSEM), 15(1), 92-122. 2006

[9] Marcano, R., and N. Levy. "Using B formal specifications for

analysis and verification of UML/OCL models." In In Workshop on

consistency problems in UML-based software development. 5th

51

International Conference on the Unified Modeling Language, pp.

91-105. 2002.

[10] Cabot, J., Claris, R., & Riera, D. Verification of UML/OCL class

diagrams using constraint programming. In Software Testing

Verification and Validation Workshop, 2008.

ICSTW'08. IEEE International Conference on (pp. 73-80). IEEE.

[11] Daniel Varro, Mark Asztalos, ..el. Transformation of UML Models

to CSP: A Case Study for Graph Transformation Tools. In Andy

Schürr, Manfred Nagl, and Albert Zündorf, editors, Proc. 3rd Int.

Workshop Applications of Graph Transformation with Industrial

Relevance (AGTIVE '07), pages 540-565. Springer, Berlin, LNCS

5088, 2008.

[12] Beato, M.E., Barrio-Solórzano, M., Cuesta, C.E. and de la Fuente, P.,

UML automatic verification tool with formal methods. Electronic

Notes in Theoretical Computer Science, 127(4), pp.3-16.2005.

[13] Karsai, G., Agrawal, A., Shi, F. and Sprinkle, J., On the use of graph

transformation in the formal specification of model interpreters. J.

UCS, 9(11), pp.1296-1321.2003

[14] Hazra, Rumpa, Shouvik Dey, and Jayashree Singha. "Modeling,

analysis and verification of real-time resource access control

protocols: a formal approach." International Journal of Computers

and Applications (2017): 1-10.

[15] Ober, I., Graf, S., & Ober, I. Validating timed UML models by

simulation and verification. International Journal on Software Tools

for Technology Transfer, 8(2), 128-145.2006

[16] Evans, A., France, R., Lano, K., & Rumpe, B.. The UML as a formal

modeling notation. In International Conference on the Unified

Modeling Language (pp. 336-348). 1998 Springer, Berlin,

Heidelberg.

[17] D. Karlsson, P. Eles and Z. Peng. Formal verification of component-

based design. In Lecture Notes in Electrical Engineering Volume 10,

2008, DOI: 10.1007/978-1-4020-8297-9

[18] Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., &

Pourzandi, M. Formal verification and validation of UML 2.0

sequence diagrams using source and destination of messages.

Electronic Notes in Theoretical Computer Science, 254, 143-160.

2009

[19] Sengupta, Souvik, and Ranjan Dasgupta. "Use of semi-formal and

formal methods in requirement engineering of ILMS." ACM

SIGSOFT Software Engineering Notes 40, no. 1 (2015): 1-13.

52

[20] Dania, C., & Clavel, M. OCL2MSFOL: a mapping to many-sorted

first-order logic for efficiently checking the satisfiability of OCL

constraints. In Proceedings of the ACM/IEEE 19th International

Conference on Model Driven Engineering Languages and Systems

(pp. 65-75). ACM. (2016, October).

[21] Sengupta, Souvik, and Ranjan Dasgupta. "Use of semi-formal and

formal methods in requirement engineering of ILMS." ACM

SIGSOFT Software Engineering Notes 40, no. 1 (2015): 1-13.

[22] Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H. and

Wimmer, M., September. ProMoBox: A framework for generating

domain-specific property languages. In International Conference on

Software Language Engineering (pp. 1-20). Springer, Cham. 2014

[23] Wu, D. and Schnieder, E., Scenario-based system design with colored

petri nets: an application to train control systems. Software & Systems

Modeling, 17(1), pp.295-317, 2018.

[24] Guerson, John, Tiago Prince Sales, Giancarlo Guizzardi, and João

Paulo A. Almeida. "OntoUML lightweight editor: a model-based

environment to build, evaluate and implement reference ontologies."

In Enterprise Distributed Object Computing Workshop (EDOCW),

2015 IEEE 19th International, pp. 144-147. IEEE, 2015.

[25] Gu-Beom Jeong and Guk-Boh Kim - A Framework for Security

Assurance in Component Based Development. Computational

Science and Its Applications – ICCSA 2005Lecture Notes in

Computer Science 2005.

[26] Heidenreich F, Johannes J, Karol S, Seifert M, Thiele M, Wende C,

Wilke C. Integrating OCL and textual modeling languages.

InInternational Conference on Model Driven Engineering Languages

and Systems 2010 Oct 3 (pp. 349363). Springer, Berlin, Heidelberg.

[27] Latella, Diego, Istvan Majzik, and Mieke Massink. "Automatic

verification of a behavioural subset of UML statechart diagrams

using the SPIN model-checker." Formal aspects of computing 11, no.

6 (1999): 637-664.

[28] Hilken, F. and Gogolla, M., Verifying Linear Temporal Logic

Properties in UML/OCL Class Diagrams Using Filmstripping. In

Digital System Design (DSD), 2016 Euromicro Conference on (pp.

708-713). IEEE. 2016

53

[29] Gabmeyer, S., Kaufmann, P., Seidl, M., Gogolla, M. and Kappel, G.,

A feature-based classification of formal verification techniques for

software models. Software & Systems Modeling, pp.1-26. 2017

[30] Shaikh, Asadullah, and Uffe Kock Wiil. "Overview of Slicing and

Feedback Techniques for Efficient Verification of UML/OCL Class

Diagrams." IEEE Access (2018).

[31] Przigoda, N., Soeken, M., Wille, R., & Drechsler, R. Verifying the

structure and behavior in UML/OCL models using satisfiability

solvers. IET Cyber-Physical Systems: Theory & Applications, 1(1),

49-59. 2016

[32] Elsayed, E.K. and El-Sharawy, E.E., Detecting Design Level Anti-

patterns; Structure and Semantics in UML Class Diagrams. Journal

of Computers, 13(6), pp.638-655. 2018

[33] Cunha, Alcino, A. Garis, and D. Riesco. "Translating between Alloy

specifications and UML class diagrams annotated with OCL."

Journal of Software and System Modeling (SOSYM), Vol 14(1), 5-

25,2015.

[34] Dang, D.H. and Gogolla, M., An OCL-Based Framework for Model

Transformations. VNU Journal of Science: Computer Science and

Communication Engineering, 32(1).2016

[35] Khanh-Hoang Doan and Martin Gogolla. Extending a UML and OCL

Tool for Multi-levels: Applications Towards Model Quality

Assessment. In Loli Burgueno and et al., editors, Proc. Workshop

Multi-Level Modelling (MULTI 2017), pages 251-251. CEUR

Proceedings 2018, 2017.

[36] Salem, Mohamed Oussama Ben, Olfa Mosbahi, Mohamed Khalgui,

and Georg Frey. "R-UML: An UML Profile for Verification of

Flexible Control Systems." In International Conference on Software

Technologies, pp. 118-136. Springer, Cham, 2015.

[37] Belghiat, Aissam, Allaoua Chaoui, and Mokhtar Beldjehem.

"Capturing and verifying dynamic program behaviour using UML

communication diagrams and pi-calculus." In Information Reuse and

Integration (IRI), 2015 IEEE International Conference on, pp. 318-

325. IEEE, 2015.

[38] Bennama M, Bouabana-Tebibel T. A CTL-based OCL extension

using CPN ML for UML validation. International Journal of Critical

Computer-Based Systems. 2016;6(4):30221.

54

[39] Rahim, M., Hammad, A., & Ioualalen, M. A methodology for

verifying SysML requirements using activity diagrams. Innovations

in Systems and Software Engineering, 13(1), 19-33. 2017

[40] Soeken, Mathias, Robert Wille, Mirco Kuhlmann, Martin Gogolla,

and Rolf Drechsler. "Verifying UML/OCL models using Boolean

satisfiability." In Proceedings of the Conference on Design,

Automation and Test in Europe, pp. 1341-1344. European Design and

Automation Association, 2010.

[41] Ben Abdessalem Karaa, Wahiba, Zeineb Ben Azzouz, Aarti Singh,

Nilanjan Dey, Amira S Ashour, and Henda Ben Ghazala. "Automatic

builder of class diagram (ABCD): an application of UML generation

from functional requirements." Software: Practice and Experience

46, no. 11 (2016): 1443-1458.

[42] Hu, S. and Zhang, H., Modeling of aircraft brake system in UML-B.

In Reliability Systems Engineering (ICRSE), 2015 First International

Conference on (pp. 1-7). IEEE.

[43] Mayvan, Bahareh Bafandeh, and Abbas Rasoolzadegan. "Design

pattern detection based on the graph theory." Knowledge-Based

Systems 120 : 211-225. 2017

[44] Babkin, E. A., and N. O. Ponomarev. "Analysis of the consistency of

enterprise architecture models using formal verification methods."

Business Informatics 3 (2017): 41.

[45] Alagar, V. and M. Mohammad, Specification and verification of

trustworthy component-based real-time reactive system, In

Procedings of SAVCBS’07, Dubrovnik, Croatia, 2007.

[46] M. Friedl , A. Kellner, L. Weingartner, "Integration of domain

specific simulation models into descriptive system models by using

SysML", Systems Engineering Symposium (ISSE) 2017 IEEE

International, pp. 1-5, 2017.

[47] Lano, K., Clark, D. and Androutsopoulos, K., UML to B: Formal

verification of object-oriented models. In International Conference

on Integrated Formal Methods (pp. 187-206). Springer, Berlin,

Heidelberg. 2007

[48] Mukherjee, D., Shekhar, D., & Mall, R. Proposal for A Structural

Integration Test Coverage Metric for ObjectOriented Programs. ACM

SIGSOFT Software Engineering Notes, 43(1), 1-4. 2018.

55

[49] Kuhlmann, M., Hamann, L. and Gogolla, M., Extensive validation of

OCL models by integrating SAT solving into USE. In International

Conference on Modelling Techniques and Tools for Computer

Performance Evaluation(pp. 290-306). 2011.Springer, Berlin,

Heidelberg.

[50] Chimiak-Opoka, J.D., Demuth, B., Awenius, A., Chiorean, D., Gabel,

S., Hamann, L. and Willink, E., OCL tools report based on the

ide4OCL feature model. Electronic Communications of the EASST,

44. 2011

[51] Csertán, György, Gábor Huszerl, István Majzik, Zsigmond Pap,

András Pataricza, and Dániel Varró. "VIATRA-visual automated

transformations for formal verification and validation of UML

models." In Automated Software Engineering, 2002. Proceedings.

ASE 2002. 17th IEEE International Conference on, pp. 267-270.

IEEE, 2002.

[52] Loli Burgueno, Antonio Vallecillo, and Martin Gogolla. Teaching

UML and OCL Models and their Validation to Software Engineering

Students: An Experience Report. Journal on Computer Science

Education, Taylor and Francis, UK, 2018.

[53] Frank Hilken, Philipp Niemann, Robert Wille, and Martin Gogolla.

Towards a Base Model for UML and OCL Verification. In Frédéric

Boulanger, Michalis Famelis, and Daniel Ratiu, editors, Proc. 11th

Int. Workshop on Model Driven Engineering, Verification and

Validation Workshop (MODEVVA'2014), pages 59-68,

http://ceurws.org/Vol-1235/, 2014. CEUR Proceedings, Vol. 1235

[54] Loli Burgueno, Frank Hilken, Antonio Vallecillo, and Martin

Gogolla. Generating Effective Test Suites for Model Transformations

using Classifying Terms. In Huseyin Ergin, Richard F. Paige, Eugene

Syriani, Steffen Zschaler, and Moussa Amrani, editors, Proc.

Workshop Verification of Model Transformation (VOLT 2016), pages

48-57. CEUR WS Proceedings 1693, 2016.

[55] Mira Balaban, Phillipa Bennett, Khanh-Hoang Doan, Geri Georg,

Martin Gogolla, Igal Khitron, and Michael Kifer. A Comparison of

Textual Modeling Languages: OCL, Alloy, FOML. In Achim D.

Brucker, Jordi Cabot, and Adolfo Sanchez-Barbudo Herrera, editors,

Proc. Workshop OCL and Textual Modelling (2016), pages 57-72.

CEUR WS Proceedings 1756, 2016.

56

[56] Przigoda N, Wille R, Przigoda J, Drechsler R. Automated Validation

& Verification of UML/OCL Models Using Satisfiability Solvers.

Springer; 2018 Jan 22.

[57] Abdul Hafeez, Syed Hyder Abbas Mussavi, Aqeel-Ur Rehman,

“Ontology-Based Finite Satisfiability of UML Class Model”, IEEE

Access, Vol. PP, Issue 99, December 2017.

[58] H. He, Z. Wang, Q. Dong, W. Zhang, and W. Zhu, “Ontology-based

semantic verification for UML behavioral models,” Int. J. Softw. Eng.

Knowl. Eng., vol. 23, no. 2, pp. 117–145, 2013.

[59] R. Drechsler, “Verifying the structure and behavior in UML/OCL

models using satisfiability solvers,” IET Cyber-Physical Syst. Theory

Appl., vol. 1, no. 1, p. 49–59(10), Dec. 2016.

[60] Straeten, R.V.D, “Inconsistency Management in Model-Driven

Engineering”, Ph.D. Dissertation, Dept. of Comp. Sci., Vrije Uni.

Brussels, September 2005.

[61] M. Balaban and A. Maraee, “Finite satisfiability of UML class

diagrams with constrained class hierarchy,” ACM Trans. Softw. Eng.

Methodol., vol. 22, no. 3, p. 1, 2013.

[62] I. Traor and D. B. Aredo, “Enhancing structured review with model-

based verification,” IEEE Trans. Softw. Eng., vol. 30, no. 11, pp.

736–753, 2004

[63] M. E. Beato, M. Barrio-Solórzano, C. E. Cuesta, and P. de la Fuente,

“UML automatic verification tool with formal methods,” Electron.

Notes Theor. Comput. Sci., vol. 127, no. 4, pp. 3–16, 2005.

[64] UML role in MDA, (March, 2017),

http://www.omg.org/mda/faq_mda.htm#uml role in mda

[65] Dark Matter Systems Ltd., Overview of Unified Modeling Language

in MDA, (2017), http://www.ultradark.com/01mda07umlintro.htm

[66] J. Cabot and R. Clarisó, “UML-OCL verification in practice,” in

Models Workshops, 2008, vol. 5421

57

PART –II

PAPERS

LIST OF THE PAPERS

A. Arifa Bhutto, D.M. Akbar. “Formal Verification of UML Profile” in

Australian Journal of Basic and Applied Sciences, 5(6): 1594-1598, 2011.

B. Arifa Bhutto, D. M. Akber Hussain. Imran Anwar Ujan, Mehran Syed,”

Formal Approach for UML components based Development Profile”

University of Sindh, Journal of Information and Communication

Technology, 2(2): 125-129, 2018.

C. Arifa Bhutto, D.M. Akbar Hussain, “Validate UML model and OCL

Expressions using USE Tool” Pertanika J.Sci.& Technology, 26(3):1465-

1480,2018.

http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2

026%20(3)%20Jul.%202018/39%20JST(S)-0444-2018-3rdProof.pdf

D. Arifa Bhutto, D.M. Akber Hussain “An Android Based Cooperative

Knowledge Acquiring Application” Mehran University Research Journal of

Engineering and Technology, 37(3): 453-460, July 2018
DOI: 10.22581/muet1982

publications.muet.edu.pk/index.php/muetrj/article/download/486/211/

E. Sobia Mansoor, Arifa Bhutto, “Improvement of Students Abilities for

Quality of Software Through Personal Software Process” Abilities for

Quality of Software Through Personal Software Process”, International
Conference on Innovation in Electrical Engineering and Computational
Technologies (ICIEECT), 2017, IEEE

DOI: 1109/ICIEECT/2017.7916550

http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2026%20(3)%20Jul.%202018/39%20JST(S)-0444-2018-3rdProof.pdf
http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2026%20(3)%20Jul.%202018/39%20JST(S)-0444-2018-3rdProof.pdf

A
r

ifA B
h

u
tto

VEr
ifiC

Atio
N

 A
N

D
 VA

LiD
Atio

N
 o

f u
M

L/o
C

L o
B

JEC
t C

o
M

Po
N

EN
t M

o
D

EL

ISSN (online): 2446-1636
ISBN (online): 978-87-7210-194-1

	Blank Page
	Blank Page
	Blank Page

