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Abstract

We are witnessing a global trend towards urbanization that creates larger
and larger cities. This development results in increased demands for mobil-
ity. At the same time, it also brings with it increased congestion, increased
greenhouse gas emissions, and reduced air quality.

Meanwhile, with the increasingly digitalization of vehicular transporta-
tion, notably the deployment of GPS devices, e.g., in smartphones and vehi-
cle navigation devices, and sensors embedded in roads, massive volumes of
data are generated that capture the traffic state of a road network. This data
foundation and the above problems call for new data analysis techniques
that enable high-resolution vehicular transportation services that contribute
to addressing the problems.

In this thesis, we adopt an uncertain time series (UTS) approach to capture
both uncertainty and temporal dependency. We solve the following three
problems: 1) data sparseness in UTSs in a road network; 2) decision making
among several UTSs at each time interval; and 3) future forecasting for UTSs
with spatio-temporal correlations.

First, traffic data is uncertain and spatio-temporally sparse. It is com-
mon that one road segment may be traversed by several vehichles at different
speeds at the same time such that an uncertain or stochastic weight is the
most appropriate way of capturing the travel time. Yet, it is also normal
that some road segments have no vehicle traversals during some time peri-
ods, and it is an almost impossible task to collect enough traversal data to
cover all edges in a road network with stochastic weights at all times. All
time-dependent stochastic weights on edges can be modeled as UTSs, we call
this problem data sparseness in UTSs in a road network. To address this prob-
lem, we provide a general, data-driven Graph Convolutional Weight Com-
pletion (GCWC) framework to assign a stochastic weight to each edge. We
further improve the performance of GCWC by incorporating contextual in-
formation.

Second, UTSs on edges in a road network result in multiple UTSs for a
pair of an origin and a destination since multiple candidate paths exist for
the same pair. Therefore, we address the problem of selecting the optimal
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paths from the set of all candidates, which we call decision making among sev-
eral UTSs at each time interval. We develop techniques to find optimal paths
with non-dominated costs that take the risk preferences of users into consid-
eration. We investigate the relationships among risk preferences, categories
of utility function, and different kinds of stochastic dominance. To improve
the efficiency of comparing multiple UTSs, we propose a grouping strategy
and a merge-sort like procedure.

Finally, given a partitioning of a road network into regions, we construct
UTSs for Origin-Destination (OD) pairs. To estimate the future stochastic
weights of any OD pair, we consider the problem of future forecasting for UTSs
with spatio-temporal correlations. We propose a stochastic OD matrix forecast-
ing framework that encompasses factorization, forecasting and recovery. We
use machine learning techniques to address the data spareness problem in
historical OD matrices and temporal dynamics in forecasting; specifically, we
utilize Fully-Connected (FC) layers and Gated Recurrent Units (GRU), respec-
tively, in a basic generic framework. Finally, we propose a dual-stage graph
convolutional, recurrent neural network to better capture the spatio-temporal
correlations in an advanced framework.

We evaluate the proposed methods and frameworks by utilizing of five
real data sets, four of which are traffic data sets from three different countries,
specifically Denmark, China, and U.S.A., and four different places, specif-
ically Aalborg, Chengdu City, highway toll gate in China, and New York
City. Moreover, the data includes both GPS taxi data and loop detector data,
which are two important sources of traffic data. The experiments conducted
in each paper offer detailed insight into the efficiency and effectiveness of the
proposed approaches.



Resumé

Vi oplever en igangværende udvikling mod en urbanisering der skaber større
og større byer. Denne udvikling har resulteret i større efterspørgsel til mo-
bilitet, og som konsekvens af dette forekommer en øget overbelastning,og en
større mængde drivhusgasser udledes der reducerer luftkvaliteten.

I takt med digitaliseringen af køretøjer skabes store mængder af data der
indkapsler tilstande for vejnetværk. Dette er især tilfældet gennem udbre-
delsen af GPS-enheder i eksempelvis smartphones og navigationsenheder,
samt vej-indlejrede sensorer. Dette data-fundament og ovenstående prob-
lemstillinger skaber efterspørgsel efter nye analyseteknikker der muliggør
køretøjs- og transport-services af høj opløsning, som kan bidrage til at adres-
sere problemerne. I denne tese anvender vi uncertain time series (UTS) til at
indfange både usikkerhed og temporal afhængighed. We løser følgende tre
problemer: 1) Data sparsomhed i UTS for vejnetværk; 2) Beslutningstagen på
tværs af flere UTS for hvert tidsinterval; 3) Fremtidig prognose af UTS med
spatio-temporale korrelationer.

Først og fremmest er trafikdata er usikkert og spatio-temporalt tyndt. Det
er normalt at et vejsegment bliver traveseret af flere køretøjer med forskel-
lige hastigheder på samme tidspunkt således at en usikker eller stokastisk
vægt er den passende måde at indfange rejsetid på. Samtidig er det også
typisk at nogle vejsegmenter ikke har opmålte traverseringer over alle tidsin-
tervaller, og det er en næsten umulig opgave at indsamle nok data til at
dække alle kanter i et vejnetværk med stokastiske vægte over alle tidsin-
tervaller. Alle tidsafhængige stokastiske vægte forbundet med kanter kan
modelleres som UTS, dette problem kaldes data sparsomhed i UTS for et
vejnetværk. For at adressere dette problem præsenterer vi et generaliseret,
data-drevet Graph Convolutional Weight Completion (GCWC) framework til
at tildele en stokastisk vægt til hver kant. Dernæst forbedrer vi GCWC’s
ydeevne yderligere ved at inkorporere kontekstuelle oplysninger.

For det andet resulterer UTS på kanter i et vejnetværk i flere UTS’er for
hver kombination af kilde og destination da der findes mange valg af stier fra
A til B. Derfor løser vi problemet med at udvælge den optimale sti fra et sæt
af kandidater, som vi kalder beslutningstagen på tværs af flere UTS’er over
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hvert tidsinterval. Vi udvikler teknikker til at finde optimale stier med ikke-
dominerede omkostninger der tager højde for brugerens risikopræferencer.
Vi undersøger forholdet mellem risikopræferencer, kategorier af hjælpefunk-
tionalitet, og forskellige typer af stokastisk dominans. For mere effektisk at
kunne sammenligne UTS’er udvikler vi en grupperingsstrategi og en merge-
sort-lignende procedure.

Endelig konstruerer vi UTS for Origin-Destination (OD) par ved hjælp af
en partitionering af vejnetværket. For at estimerer de fremtidige stokastiske
vægte for et givet OD par, undersøger vi hvordan man kan lave prognoser for
fremtidige UTS’er ved hjælp af spatio-temporale korrelationer. Vi foreslår et
stokastisk OD matrix prognose framework, der omfatter faktorisering, prog-
noser og genoprettelse. Vi bruger maskinlæringsteknikker til at adressere
datasparsomhed i historiske OD matricer og temporale dynamikker i prog-
noser; mere specifikt udnytter vi Fully-Connected (FC) lag, og Gated Recur-
rent Units (GRU) i et grundlæggende generisk framework. Til slut foreslår
vi et to-stadies Graph Convolutional, Recurrent neuralt netværk for bedre at
kunne indfange de spatio-temporale korrelationer i et avanceret framework.
Vi evaluerer de foreslåede metoder og frameworks ved at anvende fem aut-
entiske dataset, hvoraf fire af sættene er fra tre forskellige lande, Danmark,
Kina og USA, og fire forskellige steder: Aalborg, Chengdu City, en beskat-
ningsport på en motorvej i Kina, og New York City. Derudover inkluderer
dette data også både GPS taxi data, og loop detektor data, som er to vigtige
kilder til trafikdata. Eksperimenterne der udføres i hver artikel tilbyder de-
taljeret indsigt i effektiviteten af de foreslåede tilgange og metoder.
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Thesis Summary
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Chapter 1

Introduction

1.1 Background and Motivation

Transportation is an integral part of our daily lives. With the rapidly expan-
sion of cities and sharply increasing populations, many more traffic induced
problems are likely to occur in cities all around the world, e.g., traffic conges-
tion [1], greenhouse gas (GHG) emissions [2], and degraded air quality [3].
In 2014, traffic congestion has caused citizens of 370 urban regions in U.S.A.
to spend a total of 6.9 billion extra hours to travel, which amounts to a 159
billion dollar congestion cost [4].

Meanwhile, massive transportation data is being generated from GPS de-
vices in vehicles and by traffic sensors in roads that capture the travel of
people. This data is a very valuable information source: if we are able to
successfully analyze this data, this can offer a foundation for more intelligent
transportation. Recently, there has been many innovations in transportation,
e.g., mobility-on-demand services, autonomous vehicles, and advanced trav-
eler information systems (ATIS) [1], that all seek to address these traffic in-
duced problems.

In most previous studies [5–7], a road network is modeled as a graph [23],
and the average travel cost of a road segment, e.g., travel time or speed, is
specified as a weight of the corresponding graph edge. However, this ap-
proach is not accurate since it ignores the presence of uncertainty. The uncer-
tainty comes from the randomness in the underlying data. Notably, different
cars on the same road segment have different travel speeds, sensor measure-
ments may be imprecise and map matching methods may be imperfect [8].
Moreover, traffic data also shows strong temporal dynamics, i.e., current data
is correlated with the data that is generated before and after.

These two characteristics, uncertainty and temporal dynamics, are funda-
mental to the research topic of this thesis—uncertain time series (UTS). We
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Chapter 1. Introduction

construct an UTS for each road segment such that a travel cost distribution is
used to describe the travel cost, e.g., travel time or fuel consumption, during
different intervals of time.

Example 1.1.1 (Road Network and UTS)
Figure 1.1(a) shows a road network that consists of 5 vertices and 5 di-
rected edges. We have two paths, P1 = {e5, e1, e3} and P2 = {e5, e2, e4, e3},
from A to E. Based on historical observations, we can have two corre-
sponding travel time distributions for the two paths: Path P2 has a travel
time histogram {[40, 50) : 0.3, [50, 60] : 0.7} which means that P2 offers 0.3
probability of arriving within 40 to 50 minutes and 0.7 probability of arriv-
ing within 50 to 60 minutes; thus, the expected travel time is 52 minutes.
Path P1 has histogram {[40, 50) : 0.6, [50, 60) : 0.3, [60, 70] : 0.1}, and the
expected travel time is 50 minutes. Therefore, if we only consider the ex-
pected travel time, P1 is the best path because it has the shorter expected
travel time. However, if a user needs to arrive at v3 within 60 minutes, the
user runs a risk of arriving late if choosing P1, while P2 can guarantee an
on-time arrival.

Figure 1.1(b) illustrates the travel time UTS of edge e5. We can observe
that the probability that the travel time falls into [15, 25) minutes is increas-
ing gradually after 8:15 since the morning peak hour ends. This example
also illustrates how traffic data demonstrates temporal dynamics.
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(b) UTS for e5.

Fig. 1.1: Motivating Example(p denotes probability and TT denotes travel time in minutes).

In this thesis, we address the following three problems.
1) Data Sparseness. A necessity condition for enabling high-resolution

travel costs for all road network paths is that every edge in the road network
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graph has a stochastic weight at each considered time interval such that it can
capture uncertain traffic dynamics [2, 9]. To enable such time-dependent and
stochastic weights on each edge, different kinds of traffic data, e.g., GPS data,
loop detector data, and traffic camera data, can be collected [10, 11]. Yet, it
is still an almost impossible task to cover all edges with stochastic weights at
each time interval due to two reasons. First, GPS data is skewed [12, 13]. It is
quite normal that there always are taxis on downtown roads, while there is
barely any taxi appears in a given suburban area; Second, loop detectors are
only deployed on some roads. Since a loop detector needs to be embedded
into the road, it is expensive to install and maintain loop detectors, so these
can only provide data for a small portion of edges [7]. Furthermore, if we
split the available data temporally, e.g., split it into 15 minutes intervals, the
data spareness problem becomes much more severe [14].
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(a) UTS for e1.
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(c) UTS for e4.

Fig. 1.2: Examples of Data Sparseness in UTS(p denotes probability and TT denotes the travel
time in minutes).

Example 1.1.2 (Data Sparseness)
In Figure 1.2, several time intervals are marked with “?” because they do
not have any observations. This illustrates the data sparseness problem.
Consider the time interval 8:15–8:30. In this interval, the stochastic travel
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time (in minutes) for edge e2 can be represented as {[40, 50): 0.2, [50, 60):
0.4, [60, 70]: 0.4}, which means that there is 0.2 probability that the travel
time falls into [40, 50), 0.4 probability that it falls into [50, 60), and 0.4
probability that it falls into [60, 70], and the stochastic travel time for edge
e4 is {[5, 15): 0.4, [15, 25]: 0.6}. Yet, there is no stochastic weight for e1 since
no observations are available.

2) Decision Making under Uncertainty. When we have filled the gaps
in the edge weights in a road network, we can construct an uncertain travel
cost for any path. The question is how to select the optimal path under
uncertainty, which is different from selecting the optimal path in a setting
with deterministic travel costs.

Example 1.1.3 (Path Selections)
Figure 1.3 shows UTSs for paths P1 and P2 from A to E. Both UTSs have
stochastic travel times for all time intervals. Example 1.1.1 describes the
situation shown here for the time interval from 8:30 to 8:45, where the
two paths do not dominate each other. So, what is the optimal choice for
each of the two time intervals? The answer is P1 because it stochastically
dominates P2. No matter what deadline is considered, P1 always has a
higher probability of arriving on time.
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(a) UTS for p1.
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(b) UTS for p2.

Fig. 1.3: Example of UTSs for Paths(p denotes probability and TT denotes the travel time in
minutes).

3) Spatio-Temporal Correlations. Traffic data is spatio-temporally corre-
lated. It is quite intuitive that if an accident happens on one edge, this may
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Fig. 1.4: Example of UTSs Forecasting of Path P1(p denotes probability and TT denotes the travel
time in minutes).

affect the future travel costs of the neighbor edges. Similarly, this correlation
is also embedded in the traffic data from region to region. However, such
spatio-temporal correlations are quite complex and are hard to capture in a
well-defined model [15].

Example 1.1.4 (Spatio-Temporal Correlations)
Figure 1.4 shows an example of forecasting the stochastic travel time of
path P1 at 8:45-9:00. It is a safe bet that it is better to consider the historical
observations on e1, e2, and e4 together than considering those of e1 and
e4 independently, since their observations during 8:00–8:15, 8:15–8:30, and
8:30–8:45 are incomplete. We need to take into account spatio-temporal
correlations to enable better forecasting.

1.2 Thesis Structure

The thesis adopts an UTS approach to analyzing big traffic data, the goal be-
ing of providing a foundation that can contribute to enabling high-resolution
intelligent transportation applications, such as risk aware path selection, stoc-
hastic travel time prediction, and eco-routing. As already mentioned in the
previous section, we aim to address three challenges in the thesis, whose
overall structure is illustrated in Figure 1.5. First, we propose a generic data-
driven deep learning stochastic weight completion framework to associate a
stochastic weight with each road network edge, which addresses the data
sparseness problem. Assuming that the costs of different candidate paths are
modeled as UTSs, we conduct a stochastic optimal analysis over the UTSs to
identify the optimal paths during different intervals. Finally, we construct an
OD matrix to represent the stochastic travel costs, e.g., travel speed or travel
flows, between any pair of regions, i.e., a cell in the OD matrix contains
stochastic weights that capture travel from an origin region to a destination
region. Then we solve the stochastic OD matrix forecasting problem to con-
tend with spatio-temporal correlations.
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How to address data 
sparseness in the UTSs for a 

road network?

How to choose the best paths 
when the costs of paths are 

modeled as UTSs?

How to forecast UTSs with 
spatio-temporal correlations?

Paper A

Paper B

Paper C
Stochastic OD 

Matrix Forecasting

Stochastic Weight 
Completion

Stochastic Optimality 
Analysis for UTSs

Motivations

Managing and Analyzing Big Traffic Data—an UTS Approach

Fig. 1.5: Thesis Structure. Paper A proposes a stochastic weight completion framework to ad-
dress the data sparseness problem in a road network. To obtain the optimal paths from a set
of paths with different UTSs, Paper B proposes a risk-aware path selection method. Further,
assuming that we use an OD matrix to store the UTSs of the optimal paths, we investigate the
problem of stochastic OD matrix forecasting while taking spatio-temporal correlations into con-
sideration. The recommended order to go through the thesis is Paper A then Paper B then Paper
C.
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Chapter 2

Stochastic Weight
Completion

This chapter gives an overall introduction of Paper A [14]. The chapter reuses
content from the paper when that was considered most effective.

2.1 Problem Motivation and Statement

We first consider the problem setting. Given a road network where a subset of
edges have stochastic weights, our goal is to associate all edges with accurate
stochastic weights. We call this the stochastic weight completion problem. The
following example is reproduced from [14].

Example 2.1.1 (Example of Stochastic Weight Completion)
Continuing with Example 1.1.2, Figure 2.1 shows the stochastic weight
completion process. To ease the process, the prior information is converted
into a matrix representation where each row denotes the stochastic weight
of an edge such that we get a stochastic weight matrix W ∈ R6×3, whose
first four rows are denoted as “?” due to data sparseness for e1, · · · , e4
and the stochastic weights for e5 and e6 are displayed in the last two rows.
We aim to estimate the stochastic weights for e1, · · · , e4 such that we ob-
tain a new matrix Ŵ that contains meaningful stochastic weights for all the
edges.

Existing studies have focused on the data sparseness problem in road net-
works and have converted it into a regression problem [7, 16, 17]. Those
studies try to learn the discrepancies of the weights among adjacent edges
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Fig. 2.1: Example of Stochastic Weight Completion [14]. c© 2019 IEEE

by using regression, so that the weights of the edges covered by traffic data
can be propagated to their adjacent edges that are not covered by traffic data.
However, due to the data being sparse, the dependencies among edges can-
not be captured accurately by only considering similarities of weights among
adjacent edges. Moreover, these existing studies only consider determinis-
tic weights, e.g., average travel speeds, and converting these into stochastic
weights, e.g., travel speed distributions, is not a trivial task [14].

To cope with the above mentioned problems, in Paper A, we propose
a data-driven framework to address the problem using graph convolutional
neural networks (GCNN) [14]. Specifically, we first utilize a GCNN to encode
the sparse stochastic weights embedded in a road network in a latent space
using spectral graph theory [18]. Then we recover stochastic weights for all
edges in this latent space. To satisfy the problem definition, we construct loss
functions on the edges with data in the input only such that learning occurs in
a unsupervised/semi-supervised manner [14]. When the training data is big
enough, the relationships between latent feature and all edges can be learned
such that it can be employed to accomplish the task of stochastic weight com-
pletion. Moreover, we can consider additional contextual information, e.g.,
peak/off-peak hour, weekdays, and weather, to improve the performance of
this framework [14].

The contributions of this work can be characterized as follows.

• A stochastic weight completion problem is formalized;

• A data-driven framework is proposed to address the problem by using
graph convolution neural networks;

• Additional contextual information is included into the framework to
further improve accuracy;

• Extensive experiments with different data sources, specifically GPS data

10



2.2. Stochastic Weight Completion

and loop detector data, are conducted to offer insight into the frame-
work and its effectiveness.

2.2 Stochastic Weight Completion

We first need to represent the relationships between edges in the content
of graph, so we derive an edge graph from a road network. The following
definitions and examples in this section are reproduced from [14].

Definition 2.2.1
A road network is a directed graph H = (V, E), where V = {v1, · · · , v|V|} is
a vertex set contains all road intersections in the road network; E ⊆ V × V
is an edge set, where an edge ek from vertex vi to vertex vj is represented as
ek = (vi, vj), where 1 ≤ i, j ≤ |V| and 1 ≤ k ≤ |E|.

Definition 2.2.2
An edge graph is an undirected graph G = (E, A), where E is an edge set
that has the same definition as above, and A ∈ R|E|×|E| is an adjacent matrix
that describes the connectivity between edges. Specifically, if ei and ej are
connected—either from ei to ej or the other way around—then Ai,j = 1; oth-
erwise, Ai,j = 0. Thus, A is a symmetric matrix, which also indicates that the
edge graph is undirected.

Fig. 2.2: Road Network and Its Edge Graph [14]. c© 2019 IEEE

Example 2.2.1 (Constructing Edge Graph)
Figure 2.2 gives an example of how to construct an undirected edge graph
and its corresponding adjacent matrix from a directed road network. For
instance, after going through edge e5, e2 can be a consecutive edge meaning
that e2 and e5 are connected in the edge graph [14], i.e., A2,5 = A5,2 = 1.
However, e1 and e2 cannot be consecutive edges for each other, so A2,1 =
A1,2 = 0.

To capture the temporal dynamics of traffic, we accumulate the data in
every 15 minute interval as stochastic weights and obtain 96 intervals for a
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day. Our end goal is to have one stochastic weight function as follows, which
is reproduced from [14].

F : E× TI→ D,

where TI is set of time intervals that we are interested in, and D is the corre-
sponding stochastic weights. Specifically, F (ei, Tj) gives the stochastic weight
for edge ei in time interval Tj.

Due to data sparseness, given a time interval Tj, we first partition all edges
into two subsets: Ec and Em, which denote the edges covered by data and
the edges not covered (“missing”) by data, respectively. They are mutually
exclusive and collectively exhaustive, i.e., Ec ∪ Em = E and Ec ∩ Em = ∅ [14].
In the example in Figure 2.1, Ec = {e5, e6} and Em = {e1, e2, e3, e4} at [8:15,
8:30], so F (e5, [8:15, 8:30]) and F (e6, [8:15, 8:30]) can be instantiated, while
this is not possible for the edges in Em [14]. Therefore, our main problem can
be converted to that of instantiating F (em, Tj), ∀em ∈ Em [14].

Definition 2.2.3
An equi-width histogram is a set, HIST = {(b1, p1), · · · , (bm, pm)}, where
pair (bi, pi) denotes a bucket and the corresponding probability, and m is
the total number of buckets in the histogram. Bucket bi = [li, ui) is a range,
where li and ui are the lower and upper bounds, respectively. If we fix the
buckets, the histogram can be represented as a vector of size m: [p1, · · · , pm].

Example 2.2.2 (Construct Stochastic Weight)
In Figure 2.1, we can observe that the probability that the speed falls into
[5, 10) is 0.3, [10, 15) is 0.5, and [15, 20] is 0.2 meaning that the speed
histogram of edge e5 is {([5, 10), 0.3), ([10, 15), 0.5), ([15, 20), 0.2)}. If we
use the same buckets for all edges, the stochastic speed for e5 can be given
by [0.3, 0.5, 0.2].

Paper A uses equi-width histograms and same bucket size to represent
the stochastic weights for all edges such that we can use a vector to represent
the stochastic weight for an edge. Assume that the number of edges in the
road network is n and number of bucket is m. Then we can use a matrix
W ∈ Rn×m to represent the the stochastic weights of all edges in interval
Tj, where each row vector wi· corresponds to the stochastic weight for edge
ei [14]. If an edge ei ∈ Em then wi· is an empty vector [14]. Therefore, the first
four rows in W in Figure 2.1 that are marked with “?” are empty vectors.
Paper A uses the zero-vector, i.e., the vector where all values are zero, to
capture missing edges.
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Problem Formulation

The Stochastic Weight Completion problem can be formulated as follows, which
is reproduced from [14]: given a time interval Tj and an incomplete stochastic
weight matrix W whose rows have spatial correlations, we aim to produce a
full stochastic weight matrix Ŵ that contains meaningful stochastic weights.

2.3 Graph Convolutional Weight Completion
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Fig. 2.3: System Architecture for GCWC [14]. c© 2019 IEEE

As mentioned above, we construct an edge graph to describe the spatial
correlations among edges. The intuition behind Paper A is that the stochastic
weights on one edge can be propagated to its connected edges [7, 19] such
that a set of latent space features C = {Ci}

f
i=1 can be encoded from the incom-

plete stochastic matrix W [14]. We can then decode the latent features C to
obtain a full stochastic weight matrix Ŵ [14]. This process is called an auto-
encoder [20, 21]. Using this approach, we construct a basic model called Graph
Convolutional Weight Completion (GCWC) to solve the stochastic weight
completion problem [14], whose system architecture is shown in Figure 2.3.

In this architecture, we take as input an incomplete stochastic matrix
W and an adjacency matrix A that describes the spatial correlations among
rows [14]. The input is processed by the GCNN to map useful features from
edges with data to the edges with no data, through which we generate a total
number of f feature maps. The feature maps are then encoded via graph
clustering based max pooling to generate a set of encoded features C. In the
decoding process, we utilize a fully connected layer to determine the relation-
ship between the encoded state C and the prior-output state Z. We call the
latter a prior-output state because it does not meet the requirement of being
a stochastic weight matrix: (1) for each ŵi,j ∈ Ŵ, 0 ≤ ŵi,j ≤ 1, with 1 ≤ i ≤ n
and 1 ≤ j ≤ m; (2) ∑j ŵi,j = 1 [14]. Therefore, we apply a softmax function to
Z such that we have an output Ŵ that satisfies the above-mentioned property.
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During training, we take matrix W as input and output label to make our
framework perform unsupervised/semi-supervised learning. We define the
loss function used in the framework as the average KL-divergence between
Ŵ and W on the edges with data [14]. Then, back-propagation is applied to
learn the parameters in the framework.

2.4 Context Aware Graph Convolutional Weight
Completion

To further improve the performance of the GCWC, we propose an advanced
model called A-GCWC that takes into account contextual information [14];
the framework is shown in Figure 2.4.

Fig. 2.4: Context Aware Graph Convolution Neural Network [14]. c© 2019 IEEE

Since the stochastic weight matrix W is instantiated by giving a time inter-
val Tj, we can derive two kinds of time-related contextual information: time
of the day XT and day of the week XD [14]. In addition, we can use row flag
XR as another context to indicate whether a row in W is empty or not. The
following example shows the construction of these contextual information
which is reproduced from [14].
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Example 2.4.1 (Construct Contextual Information)
If we select 15 minutes as the interval length, we get 96 intervals in one day,
which can be represented as a one-hot vector with 96 bits, XT ∈ R96. Sim-
ilarly, we can use another one-hot vector XD ∈ R7 with 7 bits to represent
the day of the week. For example, we need to instantiate a stochastic weight
for [0:15, 0:30), Thursday. Then, XT [2] = 1 and XD[4] = 1, and all other
positions in the two vectors are zero. In the example in Figure 2.1, where
only e5 and e6 are covered with data in W, we have XR = [0, 0, 0, 0, 1, 1].

In Figure 2.4, the A-GCWC is composed of three modules: a Latent Space
module, a Context Space module, and a Bayesian Inference module. The La-
tent Space module is identical to what we already presented in the GCWC
framework. The intuition here is to learn initial stochastic weight without
contextual information [14]. In the Context Space module, we convert the
one-hot vectors into probability vectors, e.g., P(XT), P(XD) and P(XR), via
an embedding layer or a fully connected layer followed by a softmax layer,
which can be regarded as the prior probability for the corresponding contex-
tual information [14]. To ease the process, we make the dimensionality of the
probability vectors the same as that of P(Z), the output from the Latent Space
module. Next, we process P(Z) with P(XT) via a conditional probability
CNN (CP-CNN) operation to generate the posterior probability of stochastic
weight Z on the time of the day context, P(Z|XT) [14]. The same process is
applied to P(XD) and P(XR) to obtain P(Z|XD) and P(Z|XR), respectively.

Finally, all the outputs from the Latent Space and Context Space modules
are taken as input to the Bayesian Inference module [14]. The equation we
adopt is displayed in Equation 2.1, whose mathematical derivation is given
in Paper A; this equation corresponds to Equation 10 in Paper A [14] and Eq.
10 in Figure 2.4.

P(Z|XT , XD, XR) =
P(Z|XT)P(Z|XD)P(Z|XR)

[P(Z)]2
, (2.1)

According to Equation 2.1, we can obtain more accurate stochastic weights
given all the types of context from the A-GCWC, denoted as P(Z|XT , XD, XR),
which is different from Ŵ = P(Z) returned from the GCWC.

2.5 Experimental Evaluation

To study the effectiveness of GCWC and A-GCWC, we use two real traffic
data sets: Highway Tollgate Network (HW) and City Road Network (CI) [14]. In
all the experiments, we use eight buckets for histograms, with each bucket
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having length 5 m/s, thus covering the range [0, 40]. Then, we compare
our proposed frameworks GCWC and A-GCWC with 6 baseline methods:
1) Historical Average (HA): we use all the historical travel speed records on
that edge from the training data to construct its corresponding histogram; 2)
Gaussian Process (GP): a Gaussian process regression model; 3) Random For-
est (RF): a random forest regression model; 4) Latent Space Model (LSM) [7]:
the state-of-the-art method to complete the deterministic missing weights in
a road network; 5) Convolutional Neural Network (CNN): a classical convo-
lutional neural network that replaces GCNN with CNN in GCWC; 6) Diffu-
sion convolutional Recurrent Neural Network (DR) [15]: the state-of-the-art
method in predicting deterministic edge weights in a network [14].

We first evaluate that accuracy of the results from GCWC and A-GCWC
for stochastic weight estimation and prediction, respectively. To quantify
the differences among different methods, we introduce two measurements:
Mean Kullback-Leibler divergence Ratio (MKLR) and Fration of Likelihood
Ratio (FLR) [14]. The detailed definitions for the two metrics are found in
Paper A [14]. For MKLR, a lower value is prefered, and for FLR, we prefer
a higher value. We show the results of estimation on CI data set for both
metrics in Tables 2.1 and 2.2, respectively. We can observe that A-GCWC and
GCWC outperform other baselines by a clear margin in all the settings with
different removal ratios rm.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 0.96 1.08 0.55 0.85 0.48 0.48
0.6 1.00 0.97 1.17 0.59 0.68 0.50 0.49
0.7 1.00 0.98 1.26 0.58 0.55 0.50 0.49
0.8 1.00 0.99 1.35 0.66 0.61 0.49 0.49

Table 2.1: MKLR for the CI Dataset, Estimation [14]. c© 2019 IEEE

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.52 0.61 0.10 0.78 0.75 0.84 0.85
0.6 0.52 0.61 0.11 0.78 0.75 0.83 0.84
0.7 0.51 0.60 0.10 0.81 0.81 0.83 0.84
0.8 0.52 0.60 0.11 0.77 0.78 0.85 0.83

Table 2.2: FLR for the CI Dataset, Estimation [14]. c© 2019 IEEE

We can change the input and output a little bit to adapt to the setting
of prediction which is detailed introduced in Paper A. We show the MKLR
results when performing prediction using the CI data set in Table 2.3. We
observe that A-GCWC and GCWC are the best methods in this setting [14].
However, the performance of DR and CNN are much better than the estima-
tion setting, which are close to those of our methods.

Finally, we modify our framework by replacing the two softmax functions
with sigmoid functions to support the estimation of missing deterministic

16



2.5. Experimental Evaluation

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.09 0.97 4.18 0.50 0.48 0.45 0.43
0.6 1.12 0.97 4.15 0.50 0.49 0.46 0.46
0.7 1.16 0.98 4.16 0.54 0.54 0.49 0.48
0.8 1.24 0.98 4.30 0.59 0.53 0.50 0.49

Table 2.3: MKLR for the CI Dataset, Prediction [14]. c© 2019 IEEE

values. The result when using the CI data set is shown in Table 2.4, where
the mean average percentage error (MAPE) is used to quantify the accuracy—
the lower the better [14]. We observe that A-GCWC performs overall the best
across all removal ratios.

rm LSM CNN DR GCWC A-GCWC
0.5 31.0% 10.9% 11.3% 11.6% 10.8%
0.6 37.3% 11.2% 12.5% 12.2% 11.2%
0.7 44.7% 11.5% 13.6% 12.2% 11.4%
0.8 52.1% 13.0% 11.5% 12.1% 11.5%

Table 2.4: MAPE for the CI Dataset, Average [14]. c© 2019 IEEE
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Chapter 3

Stochastic Optimality
Analysis for UTS

This chapter gives an introduction to Paper B [23] and reuses content from
the paper when that was found to be most effective.

3.1 Problem Motivation and Statement

To satisfy the increasing needs of making path selection decisions algorith-
mically and optimally, it is desirable to be able to take the time varying and
uncertain nature of travel costs of candidate paths into account [10, 23]. The
underlying applications include autonomous vehicles, mobility-on-demand,
efficient logistics, etc.

Origin-destination (OD) matrices [22] are widely used in logistics and
transportation companies. To support the use of OD matrices, we partition a
road network in a city or country into N zones such that we obtain a matrix
with dimensionality N×N in which an element (i, j) contains the “best” path
from zone i to zone j [23].

As explained in the previous chapter, the sparseness of vehicle travel data
in a road network can be addressed by the A-GCWC and GCWC frameworks.
In particular, given an origin and a destination (i, j), it is possible to derive
time-dependent, stochastic weights for several candidate paths from the ori-
gin to the destination. We need to find the best paths for each (i, j). It is
desirable to model the travel costs of path as being time varying and uncer-
tain [19, 23, 24], which is also the topic of this Ph.D. thesis—uncertain time
series (UTS): 1) we select 15 minutes as the time interval length such that
we have 96 intervals in one day; 2) the travel costs of a path within a time
interval are collected to construct a travel cost distribution that captures the
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Chapter 3. Stochastic Optimality Analysis for UTS

Fig. 3.1: Motivating Example [23]. c© Springer 2018

uncertainty in the travel costs.
It is common that logistics companies need to arrange deliveries, and flex

transportation companies receive travel requests at any time during a day.
Therefore, identifying efficiently the paths with the best stochastic weights
at any time during a day is important functionality. For example, find the
“best” path among P1, P2, and P3 at all the time intervals is illustrated in
Figure 3.1. The following example is reproduced from [23].

Example 3.1.1 (Motivating Example)
Figure 3.1 shows an example of three candidate paths P1, P2, and P3 that
go from zone i to zone j. We can see that each path has different travel
time histograms for different departure time periods, e.g., [8:00, 8:15), [8:15,
8:30), and [8:30, 8:45) [23]. Of course, the discrete distributions can be
replaced with continuous distributions, e.g., Gaussian mixture models [24].

To obtain the “best” paths for different intervals, it is quite intuitive to
compare the three paths at each time interval separately. Take time interval
[8:00, 8:15) as an example. The stochastic travel times of P1, P2, and P3 are
listed in Table 3.1.

Example 3.1.2 (Stochastic Weights at [8:00, 8:15))
In Table 3.1, the distribution for path P1 indicates that it gives 0.25 probabil-
ity of arriving after 80 minutes of travel which is the shortest time among
the three paths, a probability of 0.5 of arriving after 90 minutes, and 0.25
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3.1. Problem Motivation and Statement

probability of arriving after 120 minutes, which yields a “wide” distribu-
tion. In contrast, the distribution for path P2 is “narrow” and offers 0.5
probability of arriving after 90 minutes of travel and 0.5 probability of ar-
riving after 100 minutes. Therefore, P2 offers a more stable travel time but
is slower than P1. Path P3 needs at least 100 minutes to arrive with 0.5
probability, and arrival after 120 minutes of travel has 0.5 probability.

Travel time (mins) 70 80 90 100 110 120

P1 0 0.25 0.50 0 0 0.25
P2 0 0 0.50 0.50 0 0
P3 0 0 0 0.50 0 0.50

Table 3.1: Uncertain Travel Times, [8:00, 8:15) [23]. c© Springer 2018

Different users may have different preferences: risk-loving users may pre-
fer an early arrival with a risk of a late arrival, while risk-averse users may
prefer a more predictable arrival time [23]. For example, in order to catch an
early flight, it may be preferable to choose a so-called risk-loving path, while
some users may choose a risk-averse path to be sure to catch the last flight of
the day [23].

Moreover, emergency services such as ambulances may choose risk-loving
paths [23, 25, 26], while risk-averse paths may be preferable when transporting
perishable goods [27]. Example 3.1.3 shows an example of how to choose
paths for different risk preference users, which is reproduced from [23].

Example 3.1.3 (Example of Path Selection)
In the example in Table 3.1, P1 is for risk-loving users while P2 is for risk-
averse users. A risk-neutral user may choose either P1 or P2. Path P3 is not
interesting to any user, risk-loving, risk-averse, or risk-neutral, as it offers
no benefits over paths P1 and P2.

We model the stochastic weights for a path Pi as an UTS that is reproduced
from [23]:

Ti = 〈X
(1)
i , X(2)

i , · · · , X(N)
i 〉,

where X(j)
i is the stochastic weight of Pi in the j-th time interval, N is the

length of, or total number of intervals in, Ti.
Then, UTSs from all candidate paths can be collected as TS = {T1, T2, . . . ,

Tk}, where k is the number of candidate paths [23]. Next, a set RVS(j) =

{X(j)
1 , X(j)

2 , . . . , X(j)
k }, 1 ≤ j ≤ N represents all paths’ stochastic weights in
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Chapter 3. Stochastic Optimality Analysis for UTS

the j-th time interval [23]. Further, Ox(RVS(j)) denotes the optimal choices
among RVS(j) regarding to a risk preference x.

Example 3.1.4 (Example of Optimal Choice)
Figure 3.1 shows a set of UTS collections TS = {T1, T2, T3} for paths P1,
P2, and P3. Next, we select 15 minutes as the time interval length to get
3 time intervals from 8:00 to 8:45. Then RVS(1) = {X(1)

1 , X(1)
2 , X(1)

3 } is a
set of stochastic weights for path P1, P2, and P3 at the first time inter-
val. According to Example 3.1.3, Ol(RVS(j)) = {X(1)

1 } for risk-loving users,

Oa(RVS(j)) = {X(1)
2 } for risk-averse users, and On(RVS(j)) = {X(1)

1 , X(1)
2 }

for risk-neutral users.

Paper B first provides a comprehensive analysis of stochastic dominance,
user risk preferences, and utility functions [23]. Next, it proposes efficient
methods for checking stochastic dominance between two random variab-
les [23]. Further, paper B offers two random variable grouping methods
to efficiently compute temporal dominance queries on multiple UTSs [23].
Finally, extensive experimental evaluations with one real world and one syn-
thetic UTS collections are covered that suggest that effectiveness and effi-
ciency of the proposed methods [23].

3.2 Stochastic Optimality

3.2.1 Decision Making under Uncertainty

We first introduce the notion of utility function that we use to capture a user’s
risk preferences. Since low travel times are preferred in our problem setting,
a utility function should be non-increasing. We employ the expected utility
principle [28, 29] to contend with the stochastic weights as follows, which is
reproduced from [23]:

EU(Xi) =
∫ Xi.max

Xi.min
u(x) · fXi (x)dx, (3.1)

where u(x) is a utility function, fXi (x) is a probability density function (con-
tinuous case) or probability mass function (discrete case) of stochastic weight
Xi, and Xi.min and Xi.max are the minimum and maximum values in the
range of Xi, respectively.

Here is a reproduced example from [23] of how to compare paths P1, P2,
and P3 from Table 3.1 by taking advantage of the utility function, u(x) =
120− x as follows.
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3.2. Stochastic Optimality

(a) Convex (b) Concave (c) Other

Fig. 3.2: Categorization of Utility Functions [23]. c© Springer 2018

Example 3.2.1 (Expected Utility of P1, P2, and P3.)
According to Equation 3.1, the expected utility of P1, P2, and P3 can be
calculated as follows: EU(P1) = 0.25 · (120− 80) + 0.5 · (120− 90) + 0.25 ·
(120− 120) = 25, EU(P2) = 25, and EU(P3) = 10. Therefore, P1 or P2 are
optimal since their expected utility values are the highest.

As is suggested in Section 3.1, the risk preferences of different users can
be classified into three categories: risk-loving, risk-averse, and risk-neutral [23].
Next, we investigate the relationships between risk preferences and different
categories of utility functions: convex utility functions are for risk-loving
users, concave functions are for risk-averse users, and risk neutral users only
care about the non-increasing property of utility functions, which we name
other [23]. Three examples of the different categories of utility functions are
shown in Figure 3.2.

Example 3.2.2 (Expected Utility Values for Different Utility Functions)
To better exemplify the relationships between risk preferences and utility
functions, we show the expected utility values of P1, P2, and P3 for different
utility functions (in Figure 3.2) in Table 3.2, where the optimal values are
highlighted in bold.

Here, we observe that we have conclusions that align with exam-
ple 3.1.3. P1 has the largest expected utility value for uC(·) and is the
best option for risk-loving users, P2 has the largest expected utility value
for uV(·) and is the most favorable option for risk-averse users. P3 is not
interesting to any user and does not have the best expected utility value
for any of the three utility functions.

Further, we introduce a notion of stochastic dominance to compare stoch-
astic weights. We introduce a stochastic dominance relationship for each of
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P1 P2 P3 Optimal

uC 850 650 200 P1
uV 1650 1850 800 P2
uO 450 450 200 P1, P2

Table 3.2: Expected Utilities for Paths P1, P2, and P3 [23]. c© Springer 2018

(a) cdf, FXi (x) (b) Integral of cdf, F̂Xi (x) (c) Integral of cdf, F̃Xi (x)

Fig. 3.3: Distributions of P1, P2, and P3 [23]. c© Springer 2018

the three different categories of utility functions and associate their relation-
ships with different risk preferences. Table 3.3 shows the relationships.

Risk Attitudes Utility Functions Stochastic Dominance
Risk-neutral Non-increasing First order
Risk-loving Non-incr., Convex Second convex order
Risk-averse Non-incr., Concave Second concave order

Table 3.3: Risk preferences, Utility Functions, and Stochastic Dominance [23]. c© Springer 2018

To ease the understanding of the following definitions and theorems, we
declare three probability functions from [23] and show the corresponding
example paths P1, P2, and P3 from Figure 3.3:
1) FX(x), the cumulative distribution function (cdf) of X;
2) F̂X(x) =

∫ x
0 FX(t)dt, the integral of cdf FX from 0 to x;

3) F̃X(x) =
∫ +∞

x FX(t)dt, the integral of cdf FX from x to +∞.

3.2.2 Stochastic Dominance

We define three kinds of stochastic dominance. The following definitions,
theorems, and lemmas are reproduced from [23].

Definition 3.2.1
First Order Stochastic Dominance (FSD). Given two random variables X1 and
X2, if ∀a ∈ R+, FX1(a) > FX2(a), X1 first order stochastically dominates X2,
denoted by X1�fsdX2.

Theorem 3.2.1
Given a non-increasing utility function u(a) where a ∈ R+, if X1 �fsd X2 then
the expected utility of X1 is no smaller than that of X2, i.e., EU(X1) > EU(X2).
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The proof of Theorem 3.2.1 is provided in paper B. The theorem demon-
strates that the expected utility value of X1 is always larger than or equal to
that of X2 as long as the utlity function is non-increasing [23]. We say that X1
first order stochastic dominates X2, i.e., X1�fsdX2. Recall the running exam-
ple with paths P1, P2, and P3 in Table 3.2. This theorem provides theoretical
support for the finding that P3 is of no interest because P1 and P2 first order
stochastic dominate P3 [23].

Definition 3.2.2
Second Convex Order Stochastic Dominance (SSD). Given random variables X1

and X2, if ∀a ∈ R+, F̂X1(a) > F̂X2(a), X1 second convex order stochastically
dominates X2, denoted by X1�ssdX2.

Definition 3.2.3
Second Concave Order Stochastic Dominance (SCSD). Given two random vari-
ables X1 and X2, if ∀a ∈ R+, F̃X1(a) > F̃X2(a), X1 second concave order stochas-
tically dominates X2, denoted by X1�scsdX2.

Based on the definitions of SSD and SCSD, we are able to derive theorems
that guarantee the following: (1) A user with a risk-loving utility function,
i.e., a convex function, is not interested in choosing X2 if X1 �ssd X2, no
matter the specific form of the convex function [23]. (2) A user with a risk-
averse utility function, i.e., a concave function, is not interested in choosing
X2 if X1 �scsd X2, no matter the specific form of the concave function [23].
In our example, P1 is the optimal choice for risk-loving users, and P2 is the
optimal choice for risk-averse users [23].

3.2.3 Temporal Dominance Query

On the basis of the above-mentioned concepts, we formulate our problem as
a temporal dominance query as follows, which is reproduced from [23]:

Q : x× R× TS→ q,

where x is a stochastic dominance relationship, which can be mapped to a
risk preference of a user, R = [s, e] is the time interval from s to e, and TS
is the set of UTS collections. Next, q = 〈q(s), q(s+1). . . . , q(e)〉 is the output of
the query, where q(j) = Ox(RVS(j)), s 6 j 6 e, which means that q(j) is a set
of optimal (i.e., non-dominated) stochastic weights w.r.t. the given stochastic
dominance relationship x among all stochastic weights in RVS(j) [23].

3.3 Checking Stochastic Dominance

We first propose efficient means of checking the three kinds of stochastic
dominance between two random variables [23]. Then, we further improve the
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Chapter 3. Stochastic Optimality Analysis for UTS

performance of checking the stochastic dominance between two UTSs [23].
For brevity, we exemplify the core ideas of checking SSD for both cases. Pa-
per B offers details on checking FSD and SCSD between two random vari-
ables [23]. The following lemmas are reproduced from [23] and we omit their
proofs, which can be found in Paper B.

3.3.1 Checking SSD between Two Random Variables

Lemma 3.3.1
If X1 �ssd X2 then X1.min 6 X2.min and E(X1) 6 E(X2).

Lemma 3.3.1 offers an initial checking method by exploiting its contrapos-
itive lemma:

Lemma 3.3.2
If X1.min > X2.min or E(X1) > E(X2) then X1 �ssd X2.

Thus, X1 cannot second convex order stochastic dominate X2 if it meets one
of the two conditions.

Next, we propose a speed-up algorithm to check the SSD relationship be-
tween two random variables , which follows the idea of divide-and-conquer [23].

(a) Case 1 (b) Case 2

Fig. 3.4: Speedup Algorithm for Checking SSD [23]. c© Springer 2018

The speed-up algorithm first takes as input X1, X2, and a range [s, e].
Then, we graph F̂X1(x) and F̂X2(x) within [s, e] in one figure. According to
Definition 3.2.3, the curve of F̂X1(x) should always be above F̂X2(x) if X1
is to dominate X2 w.r.t. SSD. For ease of describing the intuition, we in-
troduce four endpoints that correspond to F̂X1(x) and F̂X2(x), respectively:
A = (s, F̂X1(s)), B = (e, F̂X1(e)), C = (s, F̂X2(s)) and D = (e, F̂Xe(e)) [23].
Next, we construct a line lA: y = F̂′X1

(s)(x − s) through point A and line
lB: y = F̂′X1

(e)(x− e) through point B. Thus, we obtain an intersection point
E = (xE, yE) of lA and lB. Further, we define a point M = (xE, F̂X2(xE))
on lB. On the basis of these points, we derive the following lemma that is
reproduced from [23].
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Lemma 3.3.3
If yE > F̂X2(xE) then F̂X1(x) > F̂X2(x), ∀x ∈ [s, e].

Figure 3.4 gives an example of how to use this lemma with two cases:
Case 1: Figure 3.4(a) shows exactly the situation described in Lemma 3.3.3:

Point E is above M, and thus we can safely say X1 dominates X2 w.r.t. SSD.
Case 2: Figure 3.4(b) exemplifies the other situation: Point M is above E. It

does not satisfy Lemma 3.3.3’s condition such that we cannot get a conclusion
in [s, e]. Therefore, we divide [s, e] by xE into two sub-ranges: [s, xE] and
[xE, e] [23]. Afterwards, we apply the the speed-up algorithm using [s, xE]
and [xE, e] as range input.

3.3.2 Checking SSD between Two UTSs

The speed-up algorithm enables checking of SSD between two random vari-
ables. An additional step is needed to be able to check SSD between two
UTSs T1 = 〈X(1)

1 , X(2)
1 , · · · , X(N)

1 〉 and T2 = 〈X(1)
2 , X(2)

2 , · · · , X(N)
2 〉 [23]. The

most intuitive idea is to treat two UTSs as N separate pairs of random vari-
ables, X(j)

1 and X(j)
2 , 1 ≤ j ≤ N, and then apply the speed-up algorithm to

each pair independently. However, such approach is not efficient, especially
when N is large.

To better contend with the situation of large N, we propose the idea of
grouping: we first split the N pairs of random variables into several groups
based on some criteria, and then we compare the groups separately. Specifi-
cally, if the lower boundary curve of F̂X(x) for one group is always above the
upper boundary curve of F̂X(x) for another group then all the random vari-
ables in former group dominate all the random variables in the latter group,
and we do not need to determine the dominance relationships for multiple
intervals separately, which improves the efficiency [23].

Example 3.3.1 (Intuition for Grouping.)
We have two UTSs with three time intervals: T1 = 〈X(1)

1 , X(2)
1 , X(3)

1 〉 and

T2 = 〈X(1)
2 , X(2)

2 , X(3)
2 〉. Figure 3.5(a) shows an example of how each F̂(j)

Xi
(x),

i = 1, 2 and j = 1, 2, 3, looks. Intuitively, we can pick out X(3)
1 and X(3)

2

since F̂(3)
X1

(x) and F̂(1)
X2

(x) intersect. Then the remaining two pairs can be

assigned to one group: (X(1)
1 , X(1)

2 ) and (X(2)
1 , X(2)

2 ), which is shown in Fig-

ure 3.5(b). In this group, we can clearly observe that the worse interval X(2)
1

in T1 (dashed and red color) dominates the better interval X(1)
2 in T2 (solid

and blue color). Therefore, we can conclude that X(1)
1 dominates X(1)

2 and

that X(2)
1 dominates X(2)

2 w.r.t. SSD, without checking them independently.
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Fig. 3.5: Intuition for the Grouping Strategy [23]. c© Springer 2018

Next, we design a general grouping framework that is capable of identify-
ing groups with appropriate sizes. We then propose two techniques to check
the dominance relationships between two groups—boundary checking and
checking using lower and upper bounds. Paper B provides more details [23].

3.3.3 Checking SSD among multiple UTSs

Finally, we offer insight into the problem of checking dominance among a
collection TS that have multiple UTSs, |TS| > 2. Two methods are proposed
to address this problem: (1) Checking every pair using the already covered
means of checking SSD between two UTSs; (2) Employing a merge-sort-like
procedure to compare UTS pairs and use the intermediate comparison re-
sults to construct the final result [23]. The following example is reproduced
from [23].

Example 3.3.2 (Checking SSD with multiple UTSs)
Considering TS = {T1, T2, T3, T4}, the first method checks the dominance
relationships for every pair: (T1, T2), (T1, T3), (T1, T4), (T2, T3), (T2, T4),
and (T3, T4). The second method first checks (T1, T2) and (T3, T4), whose
results are utilized to construct the final result.

3.4 Experimental Evaluation

Setup: We consider two different collections of UTSs: real UTSs (RU) and
synthetic UTSs (SU) [23]. For RU, we use a large GPS data set in Denmark
from January 2007 to December 2008, which contains more than 180 million
GPS records [23]. For SU, we construct UTSs from a publicly available deter-
ministic time series data set1.
Methods: To evaluate the efficiency of our methods on random variables, we
consider the following 4 methods: (1) NAI: the naive algorithm that follows

1academic.udayton.edu/kissock/http/Weather
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the definition only; (2) NAI+IC: the naive algorithm that also takes advantage
of Lemma 3.3.1; (3) SPE: the speed-up algorithm; (4) CPS: a linear program-
ming method using the CPLEX package2 [23, 30].

To evaluate our grouping methods, we consider the following four meth-
ods: (1) NAI: applies the naive method on each interval independently;
(2) SPE: applies the speed-up method on each interval independently; (3) GRP:
uses the grouping strategy but does not use the merge-sort-like procedure;
(4) MSG: uses both the grouping strategy and the merge-sort-like proce-
dure [23].
Results: First, we investigate the checking SSD between two random vari-
ables. For brevity, we only report results w.r.t. the number of histogram bins,
b; more details can be found in paper B. Figure 3.6 shows that the proposed
speed-up algorithm, SPE, has the lowest runtime. In addition, SPE also has
stable performance and is insensitive to b [23].

(a) RU (b) SU

Fig. 3.6: Efficiency, Random Variables [23]. c© Springer 2018

(a) Runtime of SSD (b) Effectiveness

Fig. 3.7: Efficiency and Effectiveness, UTS, RU [23]. c© Springer 2018

Next, we evaluate the performance of checking SSD among multiple UTSs.
Figure 3.7(a) shows the runtime of the different methods w.r.t. the cardinality
of UTSs, |TS|, on RU [23]. GRP and MSG that adopt the grouping strategy
are over one order of magnitude faster than SPE and over three orders of
magnitude faster than NAI. These findings offer evidence of the efficiency of

2https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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our grouping strategy [23]. Further, MSG performs better than GRP when
the cardinality increases, which indicates that the merge-sort-like procedure
can further improve performance.

Finally, we use the ratio Non−Dominated
Total to evaluate the effectiveness of the

proposed temporal dominance queries, where Non-Dominated indicates the
number of non-dominated random variables and Total indicates the total
number of random variables [23]. Thus, the lower the better. Figure 3.7(b)
shows that the ratios w.r.t. FSD and SSD go down when the cardinalities of
the UTSs increase [23]. We can observe when the cardinality is larger than 2,
more than half of the random variables can be pruned safely on average [23].
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Chapter 4

Stochastic Origin-Destination
Matrix Forecasting

This chapter gives an introduction to Paper C [31]. The chapter reuses content
from the paper when that was found to be most effective.

4.1 Problem Motivation and Statement

In the previous chapter, we addressed the problem of finding stochastic op-
timal UTSs among several candidates from zone i to zone j. Here, we in-
vestigate a follow-up question: how to capture the temporal dynamics of
the optimal UTSs from any zone i to any zone j in an OD-matrix. We call
this problem stochastic origin-destination matrix forecasting: we need to forecast
future OD-matrices on the basis of historical stochastic OD-matrices. The
following example illustrates this problem and is reproduce from [31].

Example 4.1.1 (OD Matrix Forecasting)
Figure 4.1(a) shows an example of using three historical stochastic OD-
matrices for intervals T(t−2), T(t−1), and T(t) to predict three future stochas-
tic OD-matrices for intervals T(t+1), T(t+2), and T(t+3), where a three-
dimensional tensor is employed to represent one stochastic OD-matrix.

Figure 4.1(b) shows an example of one stochastic OD-matrix being a
R8×8×3 tensor: 8 origin regions occur in the first dimension, 8 destination
regions occur in the second dimension, and 3 stochastic weights occur in
the third dimension. In this example, the stochastic weights is constructed
with three speed ranges (km/h): [10, 20), [20, 30), and [30, 40]. There-
fore, the stochastic speed from region 7 to 8 can be represented as a vec-
tor [0.3, 0.5, 0.2] that represents the travel speed histogram {([10, 20), 0.3),
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([20, 30), 0.5), ([30, 40], 0.2)}.
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(a)

(b)

T(t-2) T(t-1) T(t) T(t+1) T(t+2) T(t+3)

0.3 0.5 0.2

0.2 0.3 0.5

[10, 20)
[20, 30)

[30, 40]
[10, 20) [20, 30) [30, 40]

[10, 20) [20, 30)[30, 40]

Fig. 4.1: Stochastic Origin-Destination Matrix Forecasting [31].

Therefore, our problem can be stated as follows. Given s sparse OD
stochastic speed tensors M(t−s+1), . . ., M(t) during s historical time intervals
T(t−s+1), . . ., T(t), we aim to predict the stochastic speeds for the next h time
intervals T(t+1), . . ., T(t+h) in the form of h full OD stochastic speed tensors
M(t+1), . . ., M(t+h) by learning the following function f [31].

f : [M(t−s+1), . . . , M(t)]→ [M(t+1), . . . , M(t+h)]

It is not trivial to solve this problem, due to the following two reasons.
(1) Data Sparseness. We need substantial trajectory data for each region

pair during a time interval to construct a stochastic OD-matrix [31]. As men-
tioned in Section 1.1, however, data sparseness is prevalent in traffic data
since GPS data is skewed and loop detectors are deployed only on some
roads. Given even massive trajectory data, as this data is invariably spatially
and temporally skewed [1, 5, 6, 13, 32], it is an almost impossible task to
collect enough data to cover all region pairs for all intervals [31]. Here is a
reproduced example from [31] as follows.

Example 4.1.2 (Sparseness Problem in NYC data.)
New York City taxi data set1 that we use in paper C contains more than
14 million trips occurred on Manhattan during November and December
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2013. Yet, this large trip set is unable to cover all “taxizone” pairs that are
obtained by splitting Manhattan into 67 subregions, resulting in a total of
67× 67 = 4489 pairs. Specifically, only 65% of these pairs can be covered
with data. If we distribute this data to different time intervals, e.g., 15
minute interval, the data spareness will be far more severe.

Figure 4.1(b) shows an example of data sparseness, with missing elements
marked with “?”. Our task is to forecast future full OD-matrices by taking
advantage of historical sparse OD-matrices [31].
(2) Spatio-temporal Correlations. It is easy to understand that traffic data is
spatio-temporally correlated [31]. For example, if one region has congestion
during a time interval then regions next to it have a high probability of being
congested in the previous and subsequent time intervals. So we need to take
both spatial and temporal correlations into consideration to achieve accurate
stochastic OD forecasting. Figure 4.2 shows two ways, grid-based partition-
ing and road-based partitioning, of partitioning a region into sub-regions.
Regardless of which partitioning method is utilized, we cannot guarantee
that the region identifiers of two adjacent regions are consecutive, e.g., re-
gions 1 and 4 are adjacent in Figure 4.2(a), and regions 4 and 7 are adjacent
in Figure 4.2(b) [31]. Therefore, we need to invent a mechanism that allows
spatial correlations to be taken into account for both the origin and the des-
tination dimensions in the OD matrix. Furthermore, we need to capture the
temporal dynamics to achieve better forecasting.

1 2 3

4 5 6

7 8 9

(a) Grid-based Partition

1

2

3

4 5

7

6

8

(b) Road-based Partition

Fig. 4.2: Partition a City into Regions [31].

To forecast future full OD-matrices, in paper C, we propose a data-driven,
end-to-end deep learning framework that addresses the problems of data
sparseness and spatio-temporal correlations [31].
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Fig. 4.3: Framework Overview [31].

4.2 Stochastic Speed Forecasting

The basic framework for stochastic origin-destination matrix forecasting is
shown in Figure 4.3, which is composed of three steps: Factorization, Forecast-
ing, and Recovery. We take as input s sparse OD matrices M(t−s+1), . . ., M(t)

that are instantiated from historical time intervals T(t−s+1), . . ., T(t) [31]. For
each input tensor M(t−i+1), we first utilize a fully connected layer to factorize
it into two smaller tensors R(t−i+1) ∈ RN×β×K and C(t−i+1) ∈ Rβ×N′×K,
respectively, where 1 ≤ i ≤ s and β � N, N′ [31]. Next, the resulting
smaller tensors are fed into two gated recurrent unit neural networks (GRUs)

to forecast corresponding tensors R̂
(t+j) ∈ RN×β×K and Ĉ

(t+j) ∈ Rβ×N′×K,
1 ≤ j ≤ h [31]. Then, we employ matrix multiplication to recover M(t+j) =

R̂
(t+j) × Ĉ

(t+j)
. To make each cell M(t+j)

o,d,: ∈ R1×K meaningful, it should meet

two requirements: 1) M(t+j)
o,d,k ∈ [0, 1], ∀k ∈ [1, K]; 2) ∑K

k=1 M(t+j)
o,d,k = 1, we

apply a softmax function to M(t+j)
o,d,: , defined as follows, which is reproduced

from [31].

M̂
(t+j)
o,d,: = softmax(M(t+j)

o,d,: ), ∀o ∈ [1, N], ∀d ∈ [1, N′], ∀j ∈ [1, h]. (4.1)

The loss function `(·) is defined as the sum of the errors between the
recovered future tensor and the ground-truth future tensor plus the regular-

ization errors of the predicted factors R̂
(t+j)

and Ĉ
(t+j)

as follows, which is
reproduced from [31].

`(F, b) =
h

∑
j=1

[λ||R̂(t+j)||2F + λ||Ĉ(t+j)||2F+

||Ω(t+j) ◦ (M(t+j) − M̂
(t+j)

)||2F],

(4.2)
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where F and b are training parameters in the framework, λ is a regularization
parameter, Ω(t+j) ∈ RN×N′×K is an indication tensor, where Ω(t+j)

o,d,k = 1 if

M(t+j)
o,d,: is not empty, which means it contains the ground truth [31]. Further,
◦ denotes element-wise multiplication, and || · ||F is the Frobenius-norm.

4.3 Forecast with Spatial Dependency
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Fig. 4.4: Spatial Factorization for R [31].

We proceed to explain how to account for spatio-temporal correlations in
the framework.

4.3.1 Spatial Correlation

To capture the spatial correlations among origin regions and destination re-
gions, we employ the notion of a proximity matrix [15, 31]. For brevity, we
only demonstrate this idea on the origin regions; the same applies to the
destination regions.

Since we have N origin regions, we can construct an adjacency matrix
A ∈ RN×N to capture connectivity, i.e., Au,v = 1 if origin region i and j
share a boundary; otherwise, Au,v = 0 [31]. Next, we can derive a weighted
proximity matrix W (α,σ) ∈ RN×N , where α is a parameter that captures adja-
cency hops and σ denotes standard deviation. In particular, W (α,σ)

u,v = e−x2/σ2

if region u can reach v in α hops, where x is the centroid distance between
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u and v; otherwise, W (α,σ)
u,v = 0. It is obvious that W (α,σ) is symmetric and

non-negative [31].

4.3.2 Spatial Factorization

After obtaining the weighted proximity matrix, we perform factorization via
the GCNN such that spatial correlation can be taken into consideration. Fig-
ure 4.4 shows an example of the operations for obtaining row factoriza-
tion R(t−i+1) from M(t−i+1) [31]. In Figure 4.4(a), we first slice M(t−i+1) ∈
RN×N′×K into N matrices along the origin dimension, i.e., slice(M(t−i+1)) =

[M(t−i+1)
1,:,: , · · · , M(t−i+1)

N,:,: ] [31]. Next, we apply the same GCNNs to each sliced

matrix to obtain the result [R(t−i+1)
1,:,: , · · · , R(t−i+1)

N,:,: ] [31]. Then, we obtain

R(t−i+1) ∈ RN×β′×K through concatenation. Figure 4.4(b) exemplifies the
GCNNs operation on a sliced matrix M(t−i+1)

j,:,: , j ∈ [1, N], which transforms

M(t−i+1)
j,:,: ∈ RK×N′ into R(t−i+1)

j,:,: ∈ RK×β′ via Filtering and Pooling [31].

4.3.3 Spatial Forecasting

To better contend with spatio-temporal correlations, we construct a spatial
forecasting that employs three GCNNs within each GRU, yielding CNRNNs.
Since the signals encoded in R(t) and C(t) are different, we utilize different
CNRNNs to process each factorization. For example, the processing of R(t)

at time interval T(t) can be formulated as follows, which are reproduced
from [31].

S(t+1) = σ(GS ⊗ [H(t) : R(t)] + bS) (4.3)

U(t+1) = σ(GU ⊗ [H(t) : R(t)] + bU) (4.4)

H(t+1) = tanh(GH ⊗ [R(t) : (S(t+1) ◦H(t))] + bH) (4.5)

R̂
(t+1)

= U(t+1) ◦R(t) + (1−U(t+1)) ◦H(t+1), (4.6)

where GS, GU, and GH are graph convolution filters; R(t) and R̂
(t+1)

are the
input and output of a CNRNN cell at time interval T(t), respectively; S(t)

and U(t) are reset and update gates, respectively; symbol ⊗ denotes graph
convolution whose definition can be found to be Definition 8 in [31]; sym-
bol ◦ denotes the Hadamard product between two tensors; σ(·) is a sigmoid
function and tanh(·) is a tanh function [31].

Similarly, we apply the other CNRNN to C(t). Therefore, we have the fol-

lowing spatial forecasting results: [R̂
(t+1)

, . . . , R̂
(t+h)

] and [Ĉ
(t+1)

, . . . , Ĉ
(t+h)

],
which have the same dimensionality as introduced in previous section [31].
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Finally, we use the same recovery operation as in previous section and

obtain h future full OD stochastic speed tensors: M̂
(t+1)

, . . . , M̂
(t+h)

[31].

4.3.4 Loss Function

Similar to Equation 4.2, we define the loss function as follows, which is re-
produced from [31].

`(G, b) =
h

∑
i=1

[λ||R̂(t+j)||2W + λ||Ĉ(t+j)||2W ′+

||Ω(t+j) ◦ (M(t+j) − M̂
(t+j)

)||2F],

(4.7)

where G and b denote the GCNN weights parameters and || · ||2W is the
Dirichlet norm under proximity matrix W . Other symbols are explained in
the context of Equation 4.2.

4.4 Experimental Evaluation

Setup: We consider two taxi trip data sets to study the proposed framework:
the New York City Data Set (NYC) and the Chengdu Data Set (CD). NYC
contains 14 million taxi trips collected from 2013-11-01 to 2013-12-31 in Man-
hattan, New York City [31]. CD contains 1.4 billion GPS records from 14,864
taxis collected from 2014-08-03 to 2014-08-30 in Chengdu, China2 [31].
Methods: We evaluate the effectiveness of our proposed basis framework
(BF) and advanced framework (AF), while considering also five baselines: (1)
Naive Histograms (NH): we construct a histogram for each OD pair using
all the travel speed records on the corresponding OD pair in the training
set, which is then utilized to be the future forecasting results [31]. Next,
we consider three time series forecasting methods: (2) Support Vector Re-
gression (SVR) [33], (3) Vector Auto-regression (VAR) [34], and (4) Gaussian
Process regression (GP) [35], (5) Fully Connected (FC): we apply a fully con-
nected layer directly to obtain a single dense tensor to replace the factoriza-
tion step in BF [31].
Results: Table 4.1 shows forecasting accuracy results when varying h for
s = 3. To quantify the differences among different methods, we employ
three measurements: Kullback-Leibler divergence (KL), Jensen-Shannon di-
vergence (JS) and earth mover’s distance (EMD). The detailed definitions of
these are given in Paper C [31], and lower values are preferred for all three.

We first observe that the deep learning based methods FC, BF, and AF
have better performance than the other baselines in most cases [31]. Next, BF

2https://goo.gl/3VsEym
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Data Metric h NH SVR VAR GP FC BF AF

NYC

KL
1 0.592 0.704 0.554 0.522 0.446 0.427 0.311
2 0.592 0.713 0.562 0.535 0.438 0.417 0.313
3 0.592 0.720 0.577 0.545 0.438 0.415 0.314

JS
1 0.439 0.530 0.440 0.391 0.332 0.322 0.299
2 0.439 0.537 0.452 0.400 0.327 0.317 0.302
3 0.439 0.543 0.471 0.408 0.327 0.316 0.305

EMD
1 0.293 0.452 0.305 0.266 0.250 0.246 0.214
2 0.293 0.455 0.313 0.270 0.247 0.243 0.216
3 0.293 0.458 0.317 0.274 0.247 0.243 0.217

CD

KL
1 0.697 0.818 0.699 0.674 0.694 0.582 0.549
2 0.709 0.836 0.715 0.687 0.689 0.586 0.555
3 0.700 0.822 0.780 0.684 0.807 0.792 0.626

JS
1 0.580 0.672 0.814 0.597 0.517 0.438 0.435
2 0.584 0.677 0.869 0.599 0.513 0.442 0.444
3 0.592 0.692 0.875 0.619 0.590 0.571 0.500

EMD
1 0.441 0.543 0.799 0.439 0.360 0.307 0.289
2 0.443 0.539 0.871 0.434 0.361 0.313 0.295
3 0.464 0.574 0.787 0.471 0.423 0.378 0.311

Table 4.1: Forecast Accuracy with Varying h, s = 3 [31].

beats the other baselines in most settings, which means that using factoriza-
tion and forecasting are effective for OD matrix forecasting when having to
contend with data sparseness [31]. Further, AF improves performance and
outperforms the other methods significantly, which offers evidence of the ef-
fectiveness of our proposed dual-stage graph convolutional, recurrent neural
network capturing spatio-temporal correlations and improving forecasting
accuracy. Moreover, we also observe that the results on NYC are better than
those on CD since the regions in Manhattan are more homogeneous than
those in CD that has diverse regions that make forecasting much more com-
plex and challenging [31]. Finally, we notice that the accuracy of AF becomes
worse when increasing h. This is reasonable in that it is harder to forecast
accurately in the far future.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis offers an uncertain time series (UTS) approach to analyzing big
traffic data, which addresses the data sparseness problem in road networks,
enables risk-aware path selection with UTSs, and enables forecasting in the
context of UTSs with spatio-temporal correlations. Each problem is formu-
lated and addressed in one paper, and three papers are included in the thesis.
A summary of each paper is given below.

• Paper A [14] defines and studies the problem of stochastic weight com-
pletion such that each edge in a road network is assigned a UTS to de-
scribe its time varying stochastic travel cost weights. It first proposes a
basic graph convolutional weight completion (GCWC) framework to as-
sign stochastic weights to edges with missing weights. Then the frame-
work is extended to take into account contextual information, yielding
context aware graph convolutional weight completion (A-GCWC). Ex-
tensive experiments with two real data sets, highway loop detector data
and city GPS taxi data, are conducted to demonstrate that the proposed
models are able to outperform baselines and the state-of-the-art meth-
ods in all considered settings.

• Paper B [23] studies the retrieval of stochastically optimal paths in a
UTS setting. The paper first conducts extensive investigations of the
relationships among stochastic dominance, risk preferences, and utility
functions. Next, it proposes speedup algorithms to check three different
kinds of stochastic dominance relationships, each of which corresponds
to a particular kind of risk preference. Then, a grouping strategy is put
forward to improve the performance on two UTSs for different kinds
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of stochastic dominance. Finally, it employs a merge-sort-like proce-
dure to further improve the performance of finding optimal paths from
multiple UTSs. Extensive experiments are performed to verify the effi-
ciency of checking stochastic dominance between two uncertain objects,
two UTSs, and multiple UTSs, respectively. The results show that the
efficiency of the proposed algorithms is better than that of baselines in
all considered settings.

• Paper C [31] formulates the problem of instantiating future full OD ma-
trices from historical sparse OD matrices. To address the data sparse-
ness problem while taking into consideration of spatio-temporal cor-
relations, a data-driven, end-to-end deep learning framework is pro-
posed. The paper first proposes a basic framework that is composed
of three steps: factorization, forecasting, and recovery. In this frame-
work, spatial correlations during factorization and forecasting cannot
be captured well. Then, the framework is extended to empoly graph
convolution on factorization and forecasting to contend better with spa-
tial correlations and improve performance. Finally, the paper reports
on extensive experiments with two real data sets, NYC and CD, to of-
fer insight its performance , showing that its performance excels over
different baselines and the state-of-the-art methods in all considered
settings.

5.2 Future Work

In future work, it is of interest to extend the frameworks proposed in this
thesis to support continuous distribution models, especially Gaussian mix-
ture models. Next, it is also of interest to explore distributed and parallel
computing frameworks [36, 37]. Then, these frameworks can be utilized by
current real time routing systems while providing high-resolution travel cost
information. Further, these frameworks can be integrated with reinforcement
learning, the goal being to make autonomous vehicles more intelligent [38].
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Abstract

Innovations in transportation, such as mobility-on-demand services and autonomous
driving, call for high-resolution routing that relies on an accurate representation of
travel time throughout the underlying road network. Specifically, the travel time
of a road-network edge is modeled as a time-varying distribution that captures the
variability of traffic over time and the fact that different drivers may traverse the same
edge at the same time at different speeds. Such stochastic weights may be extracted
from data sources such as GPS and loop detector data. However, even very large
data sources are incapable of covering all edges of a road network at all times. Yet,
high-resolution routing needs stochastic weights for all edges.

We solve the problem of filling in the missing weights. To achieve that, we provide
techniques capable of estimating stochastic edge weights for all edges from traffic data
that covers only a fraction of all edges. We propose a generic learning framework
called Graph Convolutional Weight Completion (GCWC) that exploits the topology
of a road network graph and the correlations of weights among adjacent edges to
estimate stochastic weights for all edges. Next, we incorporate contextual information
into GCWC to further improve accuracy. Empirical studies using loop detector data
from a highway toll gate network and GPS data from a large city offer insight into
the design properties of GCWC and its effectiveness.

c© 2019 IEEE, Reprinted, with permission, from Jilin Hu, Chenjuan Guo, Bin
Yang, Christian S. Jensen, “Stochastic Weight Completion for Road Networks
using Graph Convolutional Networks,” ICDE 2019, 12 pages (to appear).



A.1. Introduction

A.1 Introduction

We are witnessing increasing needs for high-resolution routing that takes
into account the dynamics and uncertainty of traffic [1, 2]. For instance,
consider a person taking an autonomous taxi to catch a flight. If the taxi
takes into account the travel speed distributions of different candidate paths,
rather than just average speeds, it is able to choose the path with the highest
probability of arriving on time [3]. Using only average speeds often leads
to unreliable path choices [4]. Consider an example where two paths P1
and P2 lead to the airport. Based on the speed distributions of the edges in
the paths, we are able to derive the paths’ travel time distributions: P1 has
travel time distribution {(30, 0.2), (40, 0.8)}, meaning that traversing P1 may
take 30 or 40 mins with probabilities 0.2 and 0.8, respectively; and P2 has
distribution {(30, 0.5), (40, 0.3), (50, 0.2)}. If the passenger needs to arrive in
the airport within 40 mins, taking P1 is the best since it guarantees an on-time
arrival. In contrast, taking P2 has a 0.2 probability of arriving late. However,
if considering only average travel times, P2 is recommended since its average
37 mins is smaller than that of P1, i.e., 38 mins.

Such high-resolution routing calls for a road network graph where every
edge has a time-dependent, stochastic edge weight that captures uncertain
traffic dynamics [5, 6]. Various types of traffic data, ranging from GPS data to
loop detector data [7, 8], can be used to obtain time-dependent and stochastic
edge weights. However, such traffic data often lacks the coverage needed to
assign weights to all edges. Loop detectors are typically deployed only on
some edges due to high deployment costs; and some loop detectors may be
malfunctioning during some periods [9]. Next, a recent study shows that
GPS data is often skewed, making it almost impossible to collect sufficient
GPS data to cover all edges, during all time intervals [10, 11]. We call this the
data sparseness problem.

In this paper, we formalize a stochastic weight completion problem. Given a
traffic data set that only covers a subset of the edges in a road network, the
objective is to associate each edge with accurate stochastic weights. Consider
the example in Figure A.1 where the road network has 6 directed edges.
Assume that during [8:15, 8:30], only edges e5 and e6 are covered by GPS
data and can be associated with stochastic weights in this interval. These
weights are represented as travel speed histograms, as shown in the figure.
For instance, when traversing edge e5 during [8:15, 8:30], it may take 5 m/s
to 10 m/s with probability 0.3, 10 m/s to 15 m/s with probability 0.5, and
15 m/s to 20 m/s with probability 0.2. The weights for the remaining edges,
i.e., e1, e2, e3, and e4, are missing. During other intervals, different edges may
have GPS data and thus can be assigned weights, while the remaining edges
cannot.
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Fig. A.1: Example of Stochastic Weight Completion.

We convert this information into a matrix representation to facilitate pro-
cessing, where each row represents the stochastic weight of an edge. For
example, the first four rows in W are empty since weights for e1, · · · , e4 are
missing. The 5-th and 6-th rows represent the stochastic weights of e5 and
e6. The goal of the stochastic weight completion is to estimate the stochastic
weights for the edges that are not covered by traffic data, i.e., e1, · · · , e4. The
final result is a new matrix Ŵ, where the empty rows in W are filled with
values so that the stochastic weights are available for all edges.

Travel speeds of different edges in a road network exhibit high depen-
dencies. In particular, studies addressing the data sparseness problem of-
ten assume that adjacent edges [9, 12, 13] tend to have similar (travel speed
based) weights. Thus, the weights of the edges covered by traffic data can
be propagated to their adjacent edges that are not covered by traffic data,
using regression with judiciously designed loss functions that consider the
discrepancies of the weights between the adjacent edges.

However, similarity assumptions may not always be true, since the cor-
relations among the travel speeds of different edges can be very complex.
Considering only the weight similarities between adjacent edges is unable to
model complex correlations accurately. Further, existing studies only con-
sider deterministic weights (e.g., average travel speeds). It is non-trivial to
extend them to support stochastic weights such as travel speed distributions.
A data driven approach that is able to capture complex correlations and to
support stochastic weights is desirable.

We propose a data-driven, deep learning based framework, with the goal
of capturing complex correlations among edge weights in a road network
which in turn helps us estimate stochastic weights for edges without data.
In particular, we first encode the topology of a road network using spectral
graph theory [14] into a graph convolutional neural network (GCNN). Then,
we feed available traffic data into the GCNN as both the input and the labeled
output to let the GCNN learn complex correlations of edge weights in an “un-
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supervised” manner, i.e., without requiring additional labeled data as output.
The learned GCNN is then employed to complete stochastic weights for the
edges without data. Further, we propose an advanced model that takes as
input additional context information, e.g., time intervals, day of week, etc.,
which is able to further improve accuracy of the completed weights. The
proposed framework is generic in the sense that it is able to support both
stochastic and deterministic edge weights, and it also outperforms the state-
of-the-art method when completing deterministic edge weights.

To the best of our knowledge, this is the first study of stochastic weight
completion. In particular, we make four contributions. First, we formalize
the stochastic weight completion problem. Second, we propose a data-driven
framework using a graph convolution neural network to solve this problem.
Third, we extend the framework by taking into account additional contextual
information, which further improves accuracy. Fourth, we conduct extensive
experiments using both GPS and loop detector data sets to provide insight
into the effectiveness of the framework.

The remainder of the paper is organized as follows. Section A.2 covers
related work. Section A.3 defines the setting and formalizes the problem.
Section A.4 and Section A.5 detail the framework of graph convolutional
weight completion (GCWC) and context aware graph convolutional weight
completion (A-GCWC), respectively. Section A.6 reports experiments and
results. Section A.7 concludes.

A.2 Related Work

Data Spareness in Road Networks: Although traffic prediction has been
studied extensively [15, 16], only a few studies [9, 12, 13, 17] consider the
data sparseness problem in road networks. The basic ideas of the trajectory
regression problem [12, 13, 17] have been covered in Section B.1. More recently,
a latent space model (LSM) is proposed to estimate the weights of edges that
are not covered by loop detector data [9]. Non-negative matrix factorization
is used as an encoder to learn the latent space features, which helps estimate
the weights of edges without data. LSM is the state-of-the-art method.

All existing studies that address the data sparseness problem only con-
sider deterministic weights and cannot be extended to support stochastic
weights in a straightforward manner. In addition, they all employ linear mod-
els to cope with correlations among edge weights. However, such correlations
can be highly non-linear [18]. We propose a graph convolutional weight com-
pletion framework that enables stochastic weight annotation while consider-
ing non-linear weight correlations.
Deep Learning in Transportation: RNNs with auto-encoders are proposed
to enable traffic forecasts using traffic sensor data [18]. However, this pro-
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posal ignores spatial correlations among the sensors. To address this prob-
lem, another method uses diffusion convolutional networks, which are able to
model spatial correlations, together with RNNs to enable traffic forecasts [19].
Alternatively, classic convolutional networks can also model sensor correla-
tions [20]. However, these methods are restricted to deterministic traffic val-
ues and do not support stochastic values. In addition, it is assumed that suf-
ficient traffic data is available to cover all edges in a road network while our
proposal considers the case when data is sparse. A more recent study focuses
on travel time estimation for origin-destination pairs, but not for edges [21],
using multi-task learning. Multi-task learning is also applied to distinguish
trajectories from different drivers [22]. To the best of our knowledge, this
paper proposes the first deep learning framework for stochastic weight com-
pletion in road network graphs.

A.3 Preliminaries and Problem Formulation

A.3.1 Road Network

A road network is often represented as a directed graph H = (V, E), where
vertex set V represents road intersections and edge set E ⊆ V ×V represents
directed edges. We model a road network as an edge graph G = (E, A),
where E is the edge set, and A is an |E| × |E| adjacency matrix that captures
how the directed edges are connected. In particular, Ai,j = 1 if travel is
possible from edge ei to edge ej or from edge ej to edge ei via a single vertex;
otherwise, Ai,j = 0. This makes matrix A symmetric and the edge graph
undirected.

Figure A.2 shows a road network and its corresponding edge graph and
adjacency matrix. For example, A5,2 = 1 because a vehicle can travel from
e5 to e2 by traversing one vertex in the road network. However, since travel
from e2 to e1 and travel from e1 to e2 via a single vertex are not possible, we
have A2,1 = 0.

Fig. A.2: Road Network and Its Edge Graph.
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A.3.2 Stochastic Weights

To capture time-dependent traffic, we partition a day into a number of inter-
vals, e.g., 96 15-min intervals. Based on this, we introduce a stochastic weight
function F : E× TI → D, where TI is the whole time domain of interest and
D is a set of all possible speed distributions. Given a specific edge ei ∈ E
and a time interval Tj ∈ TI, function F (ei, Tj) returns a stochastic weight that
represents the speed distribution on edge ei during interval Tj.

To instantiate the weight function F , we need to assign stochastic weights
to all edges for each interval Tj ∈ TI. In the following discussion, we focus
on instantiating F for a specific interval Tj.

We first identify the traffic data available in Tj. Next, we partition all edges
into subsets Ec and Em, the edges with and without traffic data, respectively.
This means that Ec ∪ Em = E and Ec ∩ Em = ∅. In Figure A.1, we have
Ec = {e5, e6} and Em = {e1, e2, e3, e4} for interval [8:15, 8:30].

For each edge ec ∈ Ec, which is covered by traffic data, we are able to
derive a stochastic weight and thus able to instantiate F (ec, Tj). However,
we are unable to instantiate F (em, Tj) if edge em ∈ Em. For example, during
[8:15, 8:30], GPS trajectories exist for edges e5 and e6, and thus we are able
to use them to build speed distributions, i.e., stochastic weights for e5 and
e6, during [8:15, 8:30], thus instantiating F (e5, [8:15, 8:30]) and F (e6, [8:15,
8:30]).

We use equi-width histograms to represent speed distributions. In partic-
ular, an equi-width histogram is a set of bucket-probability pairs {(bi, pi)}.
A bucket bi = [li, ui) represents the speed range from li to ui, and all buck-
ets have the same range size. Next, pi is the probability that the speed falls
into range bi. For example, the speed histogram {([0, 20), 0.5), ([20, 40), 0.3),
([40, 60), 0.2)} for edge e5 means that the probability that the speed (m/s) on
e5 falls into [0, 20), [20, 40), and [40, 60) is 0.5, 0.3, and 0.2, respectively.

We use the same finest bucket range size for all edges’ speed histograms.
Thus, we can ignore the buckets and represent the speed histogram of each
edge as a vector. For example, when choosing 20 m/s as the bucket range
size, e5’s speed histogram can be represented as 〈0.5, 0.3, 0.2〉.

Assume that we have n = |E| edges in the road network and we use a
histogram with m buckets to present a stochastic weight. Then, the stochastic
weights of all edges in interval Tj can be represented as an n×m matrix W.
A row vector wi· in W corresponds to the vector representation of edge ei’s
stochastic weight, i.e., its speed histogram. If an edge ei ∈ Em, wi· is an empty
vector. For example, the first four rows in W in Figure A.1 are empty vectors.
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A.3.3 Problem Formulation

Consider a time interval Tj of a day. Given the instantiated stochastic weight
matrix W, the stochastic weight completion problem is that of completing the
empty rows in W to produce a new stochastic weight matrix Ŵ without
empty rows. This is equivalent to instantiating F (em, Tj) for each edge em ∈
Em that is not covered by traffic data.

To ease the presentation, Table B.2 lists important notation that we use
throughout this paper.

Notations Definition

G Edge graph of a road network
E, V Edge set, Vertex set
A Adjacency matrix of G
n Total number of edges
m Total number of buckets in a histogram
W Input Weight Matrix
WG Ground Truth Weight Matrix
Ŵ, W̃ Estimated, complete weight matrix
Xi A context variable

Table A.1: Notation.

A.3.4 Solution Overview

Fig. A.3: System Architecture for GCWC.

We propose a basic model and an advanced model to solve the problem.
The basic model takes as input an instantiated, incomplete stochastic weight
matrix W and the edge adjacency matrix A. The basic model is able to learn
correlated edge features from W and A using graph convolution filters and
thus derives a complete stochastic weight matrix Ŵ.

However, the basic model does not make use of important contextual in-
formation, e.g., time intervals and the day of the week. For example, traffic
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in peak vs. off-peak intervals may be different and traffic on weekdays vs.
weekends may also be different. To better utilize such contexts that are miss-
ing in the basic model, but may be useful for completing weights, we propose
the advanced model. This model also takes as input the available contexts
and applies a Bayesian inference model to construct dependency relation-
ships between contextual features and the output of the basic model with the
goal of improving the accuracy of the complete Ŵ.

We present the basic and the advanced models in Sections A.4 and A.5,
respectively.

A.4 Graph Convolutional Weight Completion

A.4.1 Intuitions and Framework Overview

Since traffic on one edge may influence traffic on many other edges [9, 17], it
is intuitive to assume that stochastic weights of different edges share corre-
lated features. We model such features by transform stochastic weight matrix
W into a set C = {Ci}

f
i=1 of latent variables that captures correlations among

the weights of edges. Based on the latent variables in C, we construct a new
stochastic weight matrix Ŵ without empty rows. The whole process can be
regarded as an auto-encoder [23, 24], where we first encode incomplete weight
matrix W into a set of features C in a latent space and then decode C back to
a complete weight matrix Ŵ.

Figure A.3 shows an overview of the basic model for Graph Convolutional
Weight Completion, denoted as GCWC, where we adopt the intuition of the
auto-encoder.

We provide stochastic weight matrix W and adjacency matrix A to GCWC
as input. Next, we use convolutional and max pooling layers to encode W
into a set of features C, which can be regarded as the encoding process.
Finally, we map the encoded features C to the final output layer with the
help of a fully connected layer and thus obtain an estimated weight matrix Ŵ,
where each edge has a stochastic weight. This corresponds to the decoding
process.

In the training phase, input matrix W is also used as a source of labels
for conducting back-propagation. We learn the parameters of our framework
with the objective of minimizing a loss function that is defined based on
the KL-divergence between the estimated stochastic weights and the ground
truth stochastic weights, i.e., the instantiated stochastic weights of the edges
that are covered by traffic data (details to be provided in Section A.4.5).
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A.4.2 Convolutional Layer

In classical convolutional neural networks (CNNs), 2D convolutional filters
are applied in convolutional layers based on the assumption that nearby el-
ements in the input matrix share local features [14]. For example, when
representing an image as a matrix, nearby elements, e.g., pixels, share local
features, e.g., represent parts of the same object. However, in our setting, the
input stochastic weight matrix may not always satisfy this assumption—two
adjacent rows in matrix W may represent two geometrically distant road net-
work edges and may not share any features. In Figure A.1, although the rows
for e5 and e6 are adjacent in W, e5 and e6 are not adjacent in the road network.
This renders classical 2D convolutional filters ineffective in our setting and
calls instead for new filters that take into account the topology of the road
network, e.g., through the use of adjacency matrix A. Our solution utilizes
recently invented graph convolutional neural networks (GCNNs) [14, 25].
Background on GCNNs: In GCNNs, graph convolutional filters [14, 25, 26],
which take into account the topology of a road network based on spectral
graph theory, are employed to replace the classic 2D convolutional filters
in the convolutional layers. Graph convolutional filters consider that topo-
logically adjacent elements in a graph share local features. By using graph
convolutional filters, we can “propagate” the input stochastic weights to ad-
jacent, correlated edges during convolutions via the road network topology.
In the literature, different variations of graph convolutional filters exist. We
use Simplified ChebNet [26], due to its efficiency and effectiveness.
Simplified ChebNet: Since graph convolutional filters are based on spectral
graph theory, the central component of a graph filter is the graph Lapla-
cian [14, 26]. To construct the graph Laplacian L, we utilize adjacency matrix
A that captures the topology of the edge graph of a road network (see Sec-
tion A.3). In particular, L = D − A, where D is the diagonal degree matrix
with Di,i = Σj Ai,j. Next, we derive the scaled Laplacian L̃ = 2L/λmax − I,
where λmax is the maximum eigenvalue of L and I is an identify matrix.

In the convolution layer, we apply graph convolutional filters to the input
stochastic weight matrix W by using scaled Laplacian L̃. Recall that column
vector w·j ∈ Rn×1 of the input stochastic weight matrix W represents the
weights of all n edges in the j-th bucket (where j ∈ [1, m]). Based on w·j and
L̃, we first generate a matrix Yj ∈ Rn×k and Yj = [x̂0, x̂1, · · · , x̂k−1], where
x̂i ∈ Rn×1 is a column vector and k is a hyper-parameter. Specifically, we
have x̂0 = w·j, i.e., the original input column vector. Next, x̂1 = L̃x̂0. When
k ≥ 2, x̂k is defined recursively: x̂k = 2L̃x̂k−1 − x̂k−2. Further, we define a
filter τ as an Rk×1 matrix, and we use a total of f filters.

Based on the above, the convolution using graph convolutional filters on
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an input vector w·j is defined based on τ and Yj using Equation A.1.

Hj = tanh(Yj · τ + b) = tanh([x̂0, x̂1, · · · , x̂k−1] · τ + b) (A.1)

Here, · denotes matrix multiplication, and thus we have Hj ∈ Rn×1.
The example in Figure A.1 features 6 edges and 3 buckets, which yields

the first column vector w·1 = [0, 0, 0, 0, 0.3, 0.2]T for the [5, 10) bucket (i.e.,
the first bucket). Assuming k = 2, we construct the corresponding Y1 from
adjacency matrix A as

(
0 0 0 0 0.3 0.2
−0.3 −0.3 −0.2 −0.2 0.3 0.2

)T . Next, we apply a filter
τ = [1,−1]T to Y1 and get H1 = [0.3, 0.3, 0.2, 0.2, 0, 0]T . Thus, data for edges
e5 and e6 are propagated to edges e1, · · · , e4 by means of graph convolution.

Given an input stochastic weight matrix W, we apply all f filters, τ1, . . . , τf ,
to each column vector w·j in W, j ∈ [1, m]. Thus, for each column vector w·j,

we obtain its f corresponding matrices H1
j , . . . , H f

j . Next, for each filter τl ,
1 ≤ l ≤ f , we concatenate the convoluted matrices of all column vectors as
an Rn×m matrix Ql = [Hl

1, . . . , Hl
m]. Thus, we obtain a total of f matrices,

Q = [Q1, . . . , Q f ], as the final result from the convolutional layer. Referring
back to the auto-encoder model, here the f filters will eventually construct a
set of f features in the latent space.

A.4.3 Pooling Layer

Although the convolutional layer tries to propagate stochastic weights to the
edges that are not covered by traffic data, some edges may still have zero
values. Therefore, we further compress the convoluted results, i.e., Q1, Q2,
. . ., Q f , via max-pooling layers, which follows the design principles of tradi-
tional CNNs. Specifically, we employ a multi-level graph-based pooling algo-
rithm [14] to first identify clusters of edges using the graph topology and dis-
tributions of available stochastic weights, and then the identified clusters are
used as pools to perform max-pooling operations. For example, Figure A.3
shows an example where e1, e2, e4, e5 are clustered into one pool and e3 and e6
are clustered into another pool. Based on the pools, each convoluted matrix
Ql is further compressed into a more compact matrix Cl , where 1 ≤ l ≤ f .
Now, we regard such compact matrices as the feature set C = {C1, C2, . . . , C f }
in the latent space.

A.4.4 Output Layer

After pooling, we obtain compact matrices that capture representative fea-
tures of input matrix W. Next, we perform decoding that uses the compact
matrices to produce a new stochastic weight matrix Ŵ. We first utilize a fully-
connected (FC) layer to obtain a matrix Z, representing stochastic weights of
all edges decoded from feature set C. In particular, Z = [z1·, · · · , zn·]T , where
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n is the total number of edges, and zi· ∈ Rm, with m being the number of
buckets in histograms, is used to estimate the stochastic weight vector for the
i-th edge.

The final output Ŵ ∈ Rn×m must meet two requirements to be a mean-
ingful histogram: (1) for each value ŵi,j of Ŵ, we have 0 ≤ ŵi,j ≤ 1, with
1 ≤ i ≤ n and 1 ≤ j ≤ m; (2) ∑j ŵi,j = 1, meaning that the sum of values
in a histogram for the i-th edge equals 1, thus aligning with our definition of
stochastic weights (see Section A.3.2).

To this end, a softmax function is applied to every zi·:

ŵi· = softmax(zi·), 1 ≤ i ≤ n, (A.2)

where ŵi· is the estimated histogram for the i-th edge. Thus, we have Ŵ =
[ŵ1·, · · · , ŵn·]T .

A.4.5 Loss Function

The loss function L(W, Ŵ) of GCWC measures the discrepancy between
the input stochastic weight matrix W ∈ Rn×m and the estimated stochas-
tic weight matrix Ŵ ∈ Rn×m using KL-divergence, as shown in Equation A.3.

L(W, Ŵ) =
n

∑
i=1

Ii · KL(wi·||ŵi·), where

KL(wi·||ŵi·) =
m

∑
j=1

ŵij · log
ŵij + ε

wij + ε
. (A.3)

Specifically, we have n edges in total and the function focuses on the edges
that are covered by traffic data, i.e., the non-empty rows in W, since we use
the loss function to measure whether the estimated weights are similar to the
original weights. Thus, we apply an indicator Ii, and we set Ii = 1 if the i-th
edge is covered by traffic data; otherwise, we set Ii = 0.

Then, the KL-divergence measures the divergence of the estimated weight
ŵi· from the actual stochastic weight wi· on the i-th edge, where wij and ŵij
are the actual and estimated weights for the i-th edge at the j-th bucket. In
total, we have m buckets. We apply a positive small value ε to prevent having
a zero when using the log function.

A.5 Context Aware Graph Convolutional Weight
Completion

A.5.1 Context Aware Graph Convolution Neural Network

We proceed to present how contexts can be integrated into GCWC to enable
an advanced model A-GCWC, as presented in Figure A.4.
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When we consider stochastic weight matrix W that is instantiated during
time interval Tj of a day, we can consider a set X of contexts. Specifically, we
consider three contexts—time interval XT , day of the week XD, and row flag
XR.

Assume that a day is partitioned into 96 15-min intervals. We are able
to use a one-hot vector with 96 bits to represent a specific time interval. For
example, if a weight matrix W is instantiated during [0:15, 0:30], the 2-nd
bit in the vector is set to 1 and all remaining bits are set to 0. This vector
is used as the time interval context XT . Next, we use a 7-bit vector for XD
to represent the week days. Finally, the row flag XR of a weight matrix W
indicates the non-empty rows. In particular, XR is a vector with n bits, where
n is the number of edges. If the k-th edge is not empty, the k-th bit in XR is
set to 1; otherwise, it is set to 0.

Figure A.4 gives an overview of the A-GCWC framework, which consists
of a basic GCWC, a context embedding module, and a Bayesian inference module.

Fig. A.4: Context Aware Graph Convolution Neural Network.

The basic GCWC takes as input an incomplete weight matrix W and an
adjacency matrix A, and it outputs an estimated complete weight matrix. The
intuition is to learn stochastic weights of all edges without considering the
contexts. Recall that in GCWC, we apply a softmax function on the output
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of the fully connected layer, i.e., Z, to produce a valid weight matrix Ŵ.
Here, we use P(Z) to denote the output of GCWC Ŵ where P(·) denotes
the softmax function (see Section A.4.4), which can also be interpreted as a
probability function.

The context embedding module first embeds the provided contexts XT ,
XD, and XR into a space with the same dimensionality. Then, together with
the output from the GCWC, i.e., P(Z), it represents the conditional prob-
ability of having weight matrix Z conditioned on each context, denoted as
P(Z|XT), P(Z|XD), and P(Z|XR), respectively.

The Bayesian inference module takes as input P(Z) from the GCWC, and
P(Z|XT), P(Z|XD), and P(Z|XR) from the context embedding module, and
it infers the conditional probability for all contexts. Thus, more accurate
stochastic weights given all types of context can be learned as P(Z|XT , XD,
XR). We denote the estimated weight matrix from A-GCWC as W̃ = P(Z|XT ,
XD, XR), which is different from the estimated matrix from the basic GCWC,
Ŵ = P(Z).

A.5.2 Context Embedding Module

The proposed context embedding module is generic—although we only use
three types of context, the module is extendable to include, e.g., weather con-
ditions, wind speeds and traffic flows, that may further improve the overall
accuracy, if they are available.

Due to different representations of XT , XD, and XR, we apply two differ-
ent models, i.e., an embedding layer and a fully connected layer, to incorpo-
rate the different types of contexts into A-GCWC.

Embedding Layer

We apply an embedding layer (EL) for time interval context XT and day of
the week context XD, since both are represented as one-hot vectors. The
embedding method [27] was initially proposed in order to effectively trans-
form a categorical value represented by a high-dimensional, one-hot vector
into a low-dimensional vector. As a result, neural network can process the
categorized value more efficiently.

For generality, we assume that a total of α time intervals are considered.
Thus, we have vector XT ∈ Rα×1 as the one-hot representation for the time
interval. The embedding layer is able to transform XT into X̂T ∈ Rβ×1 where
β � α. Next, we apply the softmax activation function to compute a distri-
bution for XT using X̂T , denoted as P(XT). Specifically, P(XT) represents the
probability of having each embedded context value in X̂T . Similarly, we are
able to derive P(XD).
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Fully Connected Layer

A row flag vector XR may have more than one occurrence of “1”. Since some
embedding methods, especially those based on lookup tables [28], require
inputs represented as one-hot representations, we instead apply a fully con-
nected layer (FCL) to embed XR ∈ Rn×1 into a smaller space X̂R ∈ Rβ×1,
where β� n, as follows.

P(XR) = œ(X̂R) where X̂R = M× XR + b, (A.4)

where M ∈ Rβ×n is a weight matrix, b ∈ Rβ×1 is a bias vector, and σ is a
softmax function. Based on the above, P(XR) represents the probability of
each value occurring in X̂R.

Computing Conditional Probabilities

We utilize a conditional probability convolutional neural network (CP-CNN)
to capture the dependency between the stochastic weight of an edge zj· and
each type of context, as shown in Figure A.5. To simplify our discussion, we
use Xi to denote a context, where Xi can be XT , XD, or XR, in the following.

Fig. A.5: Conditional Probability CNN (CP-CNN).

As shown in Figure A.5(a), we multiply P(Xi) with P(zj·), where P(Xi) ∈
Rβ×1 is the probability distribution of the embedded context values for con-
text Xi and P(zj·) ∈ R1×m is the estimated stochastic weight for the j-th edge
obtained by GCWC, with m being the bucket size. As a result, we obtain
a matrix, denoted as P(zj·, Xi) ∈ Rβ×m, that associates each bucket of the
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j-th edge’s weight with each embedded context value in context Xi, based on
which we learn whether a bucket and an embedded context value exhibit a
dependency.

Next, we capture such possible dependencies using classical convolu-
tional filters. Following the running example in Figure A.1, we have m = 3
buckets as [0, 20), [20, 40), and [40, 60). If we apply a filter of size 2× 2 to the
4 shadowed squares in the leftmost matrix of Figure A.5(b), we are able to
capture the dependency between 2 buckets, e.g., [0, 20), [20, 40), and 2 values
of context Xi. This is intuitive, since the probabilities of speeds falling into
[0, 20) and [20, 40) influence each other, and they may also be influenced by
similar contexts, e.g., intervals [8:00, 8:15] and [8:15, 8:30].

As shown in Figure A.5(b), we utilize f ′ filters and obtain a total of f ′

matrices, each of the same sizes as Rβ×m. Next, a classical max-pooling layer
with window size 2 is applied to learn more representative dependencies,

giving rise to a total of f ′ matrices, each of the same size as R
β
2×m. We apply

a fully connected layer to concatenate f ′ matrices into an R1×m matrix as the
conditional probability between the stochastic weight of the j-th edge and
context Xi, denoted as P(zj·|Xi).

After we conduct the same procedure for all n edges, we obtain P(Z|Xi),
i.e., the weight matrix when considering context Xi.

A.5.3 Bayesian Inference

We utilize the Bayesian Inference module to derive a probability distribution
for weight matrix Z given all types of contexts XT , XD, and XR.

For generality, we assume that we have N types of contexts X1, . . . , XN
and that we have obtained P(Z|X1), . . ., P(Z|XN) as the conditional probabil-
ity of Z given each context Xi, where i ∈ [1, N] (cf. Section A.5.2). Further, we
have obtained P(Z) from the basic GCWC. We aim to infer P(Z|X1, . . . , XN)
as the stochastic weight W̃, i.e., the conditional probability of Z given all
contexts X1, . . . , XN , from P(Z|X1), . . ., P(Z|XN) and P(Z).

To this end, we make the assumption that different contexts are indepen-
dent, and thus we have P(X1, . . . , XN) = ∏N

i=1 P(Xi). This is a reasonable
assumption because, for example, time intervals, day of week, and row flags
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do not have obvious correlations. Then, we have

P(Z|X1, . . . , XN) (A.5)

=
P(Z, X1, . . . , XN)

P(X1, . . . , XN)
=

P(Z, X1, . . . , XN)

∏N
i=1 P(Xi)

(A.6)

=
P(Z)P(X1, . . . , XN |Z)

∏N
i=1 P(Xi)

=
P(Z)∏N

i=1 P(Xi|Z)
∏N

i=1 P(Xi)
(A.7)

=
∏N

i=1(P(Xi|Z)P(Z))
[P(Z)](N−1) ∏N

i=1 P(Xi)
=

∏N
i=1

P(Xi ,Z)
P(Xi)

[P(Z)](N−1)
(A.8)

=
∏N

i=1 P(Z|Xi)

[P(Z)](N−1)
(A.9)

Here we keep using Bayesian rule and the independence assumption in Equa-
tions A.6, A.7, and A.8.

According to Equation (A.9), we compute W̃ = P(Z|XT , XD, XR) using
Equation (A.10).

P(Z|XT , XD, XR) =
P(Z|XT)P(Z|XD)P(Z|XR)

[P(Z)]2
, (A.10)

where P(Z|XT , XD, XR) is the estimated stochastic weight given context XT ,
XD, and XR, which is further normalized to get W̃. The normalization makes
sure that: (1) for each w̃i,j ∈ W̃, 0 ≤ w̃i,j ≤ 1, with 1 ≤ i ≤ n and 1 ≤ j ≤ m;
(2) ∑j w̃i,j = 1.

A.5.4 Loss Function

The loss function for A-GCWC is based on KL-divergence—we compute
L(W, W̃) using Equation A.3.

A.6 Experiments

A.6.1 Experimental Setup

Data sets

We use two traffic data sets for studying the effectiveness of the proposed
models. In both data sets, we report results on the setting of HIST-8, where
a histogram has 8 buckets. In particular, the bucket length is 5 m/s, and the
range is from 0 to 40 m/s, yielding a total of 8 buckets. Due to the space
limitation, we do not report results for the setting of HIST-4 where 4 buckets
are used. This setting yields similar results as the HIST-8 setting.
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Highway Tollgates Network (HW): HW consists of 1.07 million travel time
records from loop detectors located in n = 24 links in a highway tollgate
network. The records cover the period from 19/07/2016 to 31/10/2016. This
data is obtained from a big data challenge. We partition a day into 96 15-
min intervals. Given the m = 8 buckets used in HIST-8, each input matrix
W ∈ Rn×m, i.e., the stochastic weights, is an R24×8 matrix, and we have a
total of 96 matrices per day. For each matrix W, we use the corresponding
time interval, day of the week, and row flag vector of W as the contexts of
the matrix.
City Road Network (CI): CI consists of 1.4 billion GPS records from 14,864
taxis obtained in the period from 03/08/2014 to 30/08/2014 in Chengdu,
China. This data is obtained from a big data competition. To get reliable
results, we use n = 172 connected road segments with sufficient GPS data in
the experiments. In particular, we choose a dense subgraph with 172 edges
where almost all edges have GPS data in most time intervals. This design
decision is made because we need to ensure that each edge has sufficient
data to derive ground truth weights, such that we can evaluate the accuracy
of the estimated weights. Specifically, 1) we select edges with the top-5000
largest amounts of GPS records; 2) we derive the connected subgraphs using
the 5000 edges; 3) we use the largest connected subgraph with 172 edges in
the experiments.

Similarly, we have 96 time intervals per day in CI. Each interval has a
stochastic weight matrices W ∈ R172×8, which is associated with three types
of context.

Ground Truth and Input Data

We first introduce ground truth weight matrix WG and then show how we
generate input matrix W from WG.

Given a time interval, we are able to instantiate a ground truth matrix WG
from the available traffic data. We only instantiate weights for edges with at
least 5 speed records. Next, we randomly select n × rm edges from a total
of n edges, where rm is a removal ratio. We set the stochastic weights of the
chosen edges in WG to be zeros, giving rise to the incomplete input matrix
W. We use four values for rm: 0.5, 0.6, 0.7, and 0.8. Taking W as input, we
use a method to estimate a complete weight matrix Ŵ that covers all edges.
Then we evaluate the accuracy of Ŵ by comparing Ŵ with the ground truth
matrix WG.

Note that the matrix WG may already have empty rows for some edges
since the available traffic data in an interval may not cover these edges. Al-
though there are edges with empty rows, we do not estimate a complete
weight matrix based on WG directly. If we simply did so, although we would
be able to fill in weights for the edges without data, we are not able to eval-
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uate the accuracy of the estimated weights. This is why we instead remove
n× rm edges’ weights from WG to create input matrices.

For each data set, we order all input matrices in ascending time order,
and we partition these into 5 equal-sized portions. Then we use 5-fold cross
validation in all the experiments—in each run, 4 folds of matrices are used
for training and validating, and the remaining 1 fold of matrices are used for
testing. We run this workload 5 times in total, so that each fold of matrices is
used for testing once.

Model Functionalities

The proposed models, GCWC and A-GCWC, are generic and extendable, and
they are able to support different functionalities when changing the config-
urations slightly. Here, we consider three different functionalities: estimation
and prediction of stochastic weights, in the form of histograms, and estimation
of average speeds, in the form of deterministic values. We use W@T to denote
weight matrix W during interval T.

Estimation: Given input matrix W@Ti that represents stochastic weights at
time interval Ti, where some edges do not have weights, we estimate Ŵ@Ti
that has the estimated stochastic weights at Ti for all edges.

During training, we have a set of training matrices {W@Tk}. For each
training matrix in {W@Tk}, we use the matrix itself as a label to train the
two models. During testing, given input matrix W@Ti, the estimated Ŵ@Ti
is compared with the ground truth matrix at Ti, i.e., ŴG@Ti, to evaluate the
accuracy.

Prediction: Given input matrix W@Ti that represents stochastic weights at
time interval Ti, where some edges do not have weights, we predict Ŵ@Ti+1
that contains the predicted stochastic weights in the next time interval Ti+1
for all edges.

During training, we have a set of training matrices {W@Tk}. For each
training matrix W@Tk, we use the ground truth matrix in the next interval,
i.e., WG@Tk+1, as a label to train the two models. We make sure that WG@Tk+1
has the same rm as the input matrix W@Tk. For example, when rm is 0.6, both
the input matrix W@Tk and label matrix WG@Tk+1 have 60% empty edges.
During testing, given input matrix W@Ti, the estimated Ŵ@Ti+1 is compared
with the ground truth weight matrix at Ti+1, i.e., ŴG@Ti+1, to evaluate the
accuracy. Table A.2 summarizes the settings of estimation and prediction.

Training Testing
Input Label Input Ground Truth

Estimation W@Tk W@Tk W@Ti WG@Ti
Prediction W@Tk WG@Tk+1 W@Ti WG@Ti+1

Table A.2: Settings, Estimation vs. Prediction.
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Average: This setting is similar to Estimation. Given input matrix W@Tj, we
estimate a deterministic average speed value for each edge during the same
interval Tj, rather than a speed histogram. To achieve this, we replace the
softmax function in Equation (A.2) of Section A.4.4 with the sigmoid func-
tion and thus obtain P(Z) ∈ Rn×1 in the latent space (see Figure A.4). We
also replace the normalization on P(Z|XT , XD, XR) in Equation (A.10) of Sec-
tion A.5.3 with the sigmoid function so that the output Ŵ ∈ Rn×1 represents
the estimated average speeds for all edges in time interval Tj. The ground
truth matrix WG@Tj of average speeds during Tj is derived by averaging all
speed records for each edge.

Model Settings

Model Construction: We present hyperparameters of all models in Table C.2.
We refer to the models constructed for the estimation and prediction of
speed histograms as being of type HIST, and for the average as being of
type AVG. For both types, we describe the hyperparameters used for GCWC
and A-GCWC, including the learning rate (LR), learning rate decay (Decay),
Dropout, and regularization (Regul). The column with header “#Para” in-
dicates the total number of parameters used in a deep learning model (e.g.,
parameters for convolution filters, full-connected layers, biases used in activa-
tion functions, etc.). This reflects the complexity of different neural networks.
The higher the value is, the more complex the corresponding neural network
is. The #Para column in Table C.2 shows that the total number of parameters
in CNN, GCWC, and A-GCWC are similar, meaning that, compared to clas-
sical CNN, the proposed GCWC and A-GCWC do not significantly increase
the model complexity.

We use the following notation to describe the model construction: Ck1×k2
f

denotes a convolution layer that has f filters, each of which is a k1× k2 matrix;
Pk denotes a pooling layer of size and stride k; FCk denotes a fully connected
layer with k hidden units. For example, GCWC for HW, HIST is constructed
as C8×1

16 -P4-C8×1
16 -P2-FCn, where n is the number of edges, which varies across

data sets.
Further, β, the dimension of the embedded context space, is set to 4 for

A-GCWC for all data sets.
We obtain an optimal set of hyperparameters with Bayesian optimization

using Gaussian Processes search.
Model Complexity: The time complexity of the training of GCWC and A-
GCWC is O((F2K + n2F)× m× S) and O((F2K + n2F + nKF)× m× S), re-
spectively, where F is the maximum number of convolutional filters, K is the
maximum size of the convolutional filters, n is the number of edges, S is
the batch size, and m is the number of histogram buckets. The average run-
ning time on CI for training is 36 ms (16 ms) per training batch for A-GCWC
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Type Data Model Configuration #Para

HIST

HW
CNN C8×1

16 -P4-C8×1
16 -P2-FC24 18,840

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

8 39,680
GCWC C8×1

16 -P4-C8×1
16 -P2-FC24 19,224

A-GCWC C8×1
16 -P4-C8×1

16 -P2-FC24 + C2×2
4 -P2-C2×2

8 -P2-FC1 20,184

CI
CNN C8×1

8 -P2-C4×1
8 -P2-FC172 32,412

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

8 39,680
GCWC C8×1

8 -P2-C4×1
8 -P2-FC172 46,860

A-GCWC C8×1
8 -P2-C4×1

8 -P2-FC172 + C2×2
4 -P2-C2×2

8 -P2-FC1 48,296

AVG

HW
CNN C8×1

16 -P4-C8×1
16 -P2-FC24 3,384

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

1 33,520
GCWC C8×1

16 -P4-C8×1
16 -P2-FC24 3,768

A-GCWC C8×1
16 -P4-C8×1

16 -P2-FC24 + C2×2
4 -P2-C2×2

8 -P2-FC1 4,728

CI
CNN C8×1

8 -P2-C4×1
8 -P2-FC172 30,088

DR C8×1
16 -C8×1

16 -C8×1
16 -C8×1

1 33,520
GCWC C8×1

8 -P2-C4×1
8 -P2-FC172 44,536

A-GCWC C8×1
8 -P2-C4×1

8 -P2-FC172 + C2×2
4 -P2-C2×2

8 -P2-FC1 45,972
Type Data Model LR Decay Dropout Regul

HIST

HW
CNN 3.5e-3 0.95 0.3 0.001
DR 6.4e-3 0.92 0.0 0.004

GCWC 0.999 0.17 0.001
A-GCWC 5.0e-4 0.98 0.2 0.045

CI
CNN 0.97 0.12 0.001
DR 0.01 1.0 0.6 0.1

GCWC 1.5e-3 0.99 0.13 0.002
A-GCWC 1.0e-3 0.99 0.19 0.004

AVG

HW
CNN 3.5e-3 0.95 0.3 0.001
DR 0.1 0.9 0.0 0.1

GCWC 2.0e-4 0.999 0.17 0.001
A-GCWC 5.0e-4 0.98 0.2 0.045

CI
CNN 2.2e-3 0.97 0.12 0.001
DR 0.013 0.9 0.6 0.1

GCWC 1.5e-3 0.99 0.13 0.002
A-GCWC 1.0e-3 0.99 0.19 0.004

Table A.3: Model Construction and Hyperparamter Selection.
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(GCWC), where each training batch has 20 training instances, i.e., 20 input
matrices. The average running time on HW for training is 19 ms (14 ms)
per training batch for A-GCWC (GCWC), where each training batch has 20
training instances.

Baselines

We compare GCWC and A-GCWC with six baselines: (1) Historical Average
(HA): for each edge, we use all the travel speed records on the edge in the
training data to derive a histogram. The histogram is used as the estimated
histogram in the testing phase. (2) GP: a Gaussian process regression model.
(3) RF: a random forest regression model. (4) LSM [9]: the state-of-the-art
for filling in missing weights in road networks using a latent space model.
Note that GP, RF, and LSM are originally only able to fill in deterministic
weights. To support filling in stochastic weights, we fill in values for each
bucket separately. For example, in the setting of HIST-8, we consider 8 in-
dividual regression problems, where each regression is able to fill in values
for each bucket. (5) CNN: classical convolutional neural network, whose
hyper-parameters are set by following the same notations as for GCWC and
A-GCWC, as shown in Table C.2. (6) DR: diffusion convolutional recurrent
neural network [19], which is the state-of-the-art for predicting deterministic
edge weights based on historical data.

Evaluation Metrics

We describe the metrics for evaluating the estimation, prediction, and average
functions.
Estimation and Prediction: To assess the effectiveness of the models for esti-
mation and prediction, we use the Mean Kullback-Leibler divergence Ratio
(MKLR) and the Fraction of Likelihood Ratio (FLR) to measure the accuracy
of the estimated (or predicted) stochastic weights Ŵ.

Specifically, MKLR is defined as follows.

MKLR =
∑T

i=1 ∑n
j=1 IijKL(wG

(i)
j· ||ŵ

(i)
j· )

∑T
i=1 ∑n

j=1 IijKL(wG
(i)
j· ||HAj·)

, (A.11)

where T is the total number of testing time intervals, n is the total number of
edges, and Iij ∈ [0, 1], with i ∈ [1, T] and j ∈ [1, n], is an indicator of whether
the stochastic weight of the j-th edge at the i-th time interval needs to be
evaluated. In particular, we set set Iij = 0, if in the i-th interval, edge ej is

not covered by traffic data; otherwise, we set Iij = 1. Next wG
(i)
j· and ŵ(i)

j· are
the ground truth and estimated (or predicted) stochastic weights for the j-th
edge at the i-th time interval, respectively.

68



A.6. Experiments

Function KL(·||·) computes the KL-divergence between two distributions,
i.e., two stochastic weights represented as histograms. The lower a KL-
divergence value is, the more similar the two stochastic weights are, indicat-
ing more accurate estimation or prediction. However, since KL-divergences
range from 0 to ∞, it is hard to judge how small a KL-divergence value must
be for an estimation or prediction to be considered accurate.

To solve this problem, we use HAj· as a reference stochastic weight for the
j-th edge, which is derived from all speed records in the training data that
traversed the j-th edge, i.e., using the HA baseline. Here, we interpret HAj· as
the worst estimation or prediction of the stochastic weight for the j-th edge.
Next, we derive a ratio MKLR between the KL-divergence of another method
and the KL-divergence of HA. This ratio suggests how much a method can
improve over HA. Lower MKLR values indicate higher improvements over
HA.

We also measure the accuracy of estimated or predicted stochastic weights
using FLR, defined as follows.

FLR =
∑T

i=1 ∑n
j=1 Iij|LRij > 1|

∑T
i=1 ∑n

j=1 Iij
, (A.12)

where the meanings of T, n, and Iij are the same as those in Equation (A.11),
and LRij denotes the likelihood ratio [29] on the j-th edge in the i-th testing time

interval. Specifically, LRij =
∑

Nij
k=1 log(Pŵ(ok)+ε)

∑
Nij
k=1 log(PHA(ok)+ε)

, where Nij is the total number

of ground truth speed records on the j-th edge in the i-th test time interval,
ok is the k-th ground truth speed record, and ε is a small value introduced to
avoid zeros in log functions.

Given the j-th edge in the i-th testing time interval, we have an estimated
or predicted stochastic weight ŵ(i)

j· and the reference stochastic weight HAj·.
We compute Pŵ(ok)

and PHA(ok) as the likelihoods of observing ok from the

two distributions, i.e., ŵ(i)
j· and HAj·. Here, if LRij > 1, the estimated (or

predicted) weight ŵ(i)
j· has a higher likelihood of observing the ground speed

records than the reference weight HAj·, thus indicating a more accurate pre-

diction of ŵ(i)
j· than when using HAj·. We set |LRij > 1| as 1 if the LRij value

exceeds 1; otherwise, it is set to 0.
Average: We use Mean Absolute Percentage Error (MAPE) to measure the
accuracy of the estimated average speeds.

MAPE =
∑T

i=1 ∑n
j=1 Iij

|yij−ŷij |
yij

∑T
i=1 ∑n

j=1 Iij
× 100%, (A.13)

where T, n, and Iij have the same meaning as before. Further, yij and ŷij
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represent the ground truth and estimated average speeds for the j-th edge in
the i-th time interval, respectively.

A.6.2 Experimental Results

We proceed to cover experimental results using data sets CI and HW with
different removal ratios rm. We compare our models for estimation and pre-
diction with baseline approaches and report MKLR and FLR values for both
data sets. We also compare our models for the average function with the base-
line approaches and report MAPE values. Finally, we report on a study of
the scalability of the proposed models.

Estimation

Tables A.4 and A.5 show MKLR values on HW and CI, respectively. As lower
MKLR values indicate higher accuracy, we highlight the least MKLR values
in each rm setting. A-GCWC has the best accuracy under all settings.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 0.91 1.54 0.45 0.48 0.43 0.43
0.6 1.00 0.93 1.57 0.47 0.52 0.44 0.43
0.7 1.00 0.95 1.58 0.49 0.52 0.45 0.44
0.8 1.00 0.98 1.61 0.56 0.57 0.52 0.46

Table A.4: MKLR for the HW Dataset, Estimation.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 0.96 1.08 0.55 0.85 0.48 0.48
0.6 1.00 0.97 1.17 0.59 0.68 0.50 0.49
0.7 1.00 0.98 1.26 0.58 0.55 0.50 0.49
0.8 1.00 0.99 1.35 0.66 0.61 0.49 0.49

Table A.5: MKLR for the CI Dataset, Estimation.

For both data sets, the MKLR values of all methods increase as the re-
moval ratio rm increase. The reason is that as the rm value increase, fewer
edges are covered with traffic data, and therefore more edges need to be as-
signed estimated stochastic weights, which is more challenging. We observe
that LSM, the state-of-the-art method in weight completion, fails in the con-
sidered settings, since all MKLR values exceed 1, meaning that HA is better
than LSM. This suggest that LSM cannot be extended to support stochastic
weights and LSM cannot deal with the case where many edges lack traffic
data.

The MKLR values reported for CNN vary significantly as rm increases,
while those reported by GCWC and A-GCWC, especially A-GCWC, are rather
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stable. This is because CNN is unable to capture the spatial correlations of a
road network well, while GCWC and A-GCWC are.

DR achieves much better accuracy on HW than on CI—in particular, DR
has MKLR as large as 0.85 at rm = 0.5 on CI. This indicates that although DR
has good propagation abilities on small graphs, this ability is weakened on
large graphs.

Finally, GCWC and A-GCWC show stable accuracy, and they double the
accuracy of HA, i.e., the MKLR values of below 0.5 for both data sets. A-
GCWC reports more stable MKLR values when rm values increase and higher
accuracy, i.e., lower MKLR values, than GCWC.

Next, we report FLR values for each rm setting, as show in Tables A.6
and A.7. We highlight the highest FLR values for each rm setting since higher
FLR values indicate higher accuracy.

For both data sets, we observe that the FLR values of all methods decrease
as rm increases, which is because the tasks become more challenging. LSM
also fails and reports FLR values less than 0.5, meaning that HA behaves
better than LSM in most cases. In most settings, GCWC and A-GCWC can
achieve the highest FLR values, and A-GCWC outperforms GCWC, which
is consistent with the results reported by the MKLR values. CNN slightly
outperforms our models given rm = 0.5 in HW data set. This is because
for a small road network, e.g., for HW, and when many edges are covered
with traffic data, e.g., rm = 0.5, CNN may be able to capture some latent
correlations among the stochastic weights of edges. DR shows consistent
trends—it achieves good accuracy on HW and performs significantly worse
on CI.Overall, A-GCWC achieves the best FLR.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.52 0.78 0.21 0.90 0.86 0.88 0.89
0.6 0.50 0.76 0.20 0.88 0.88 0.88 0.92
0.7 0.48 0.74 0.20 0.88 0.89 0.89 0.91
0.8 0.47 0.67 0.22 0.85 0.87 0.84 0.88

Table A.6: FLR for the HW Dataset, Estimation.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.52 0.61 0.10 0.78 0.75 0.84 0.85
0.6 0.52 0.61 0.11 0.78 0.75 0.83 0.84
0.7 0.51 0.60 0.10 0.81 0.81 0.83 0.84
0.8 0.52 0.60 0.11 0.77 0.78 0.85 0.83

Table A.7: FLR for the CI Dataset, Estimation.
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Prediction

Tables A.8 and A.9 show MKLR values for HW and CI, respectively. We
highlight the least MKLR values given each rm setting.

Most observations for estimation also hold for prediction. On HW, as rm
increases, the MKLR values of all methods, except GP and RF, follow an
increasing trend. In contrast, on CI, the MKLR values do not follow an in-
crease trend when rm increases. This is because CI is a larger, city network
with more uncertainty and less dependency among different time intervals
than in the case of HW, which is a highway toll gate network. Nevertheless,
GCWC and A-GCWC outperform the other methods in almost all settings
for both data sets, and A-GCWC behaves more stable and has lower MKLR
values than does GCWC.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 2.61 1.00 1.56 0.45 0.47 0.46 0.43
0.6 2.59 1.00 1.60 0.45 0.46 0.46 0.44
0.7 2.52 0.99 1.62 0.46 0.46 0.47 0.43
0.8 2.60 0.98 1.67 0.46 0.49 0.47 0.45

Table A.8: MKLR for the HW Dataset, Prediction.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.09 0.97 4.18 0.50 0.48 0.45 0.43
0.6 1.12 0.97 4.15 0.50 0.49 0.46 0.46
0.7 1.16 0.98 4.16 0.54 0.54 0.49 0.48
0.8 1.24 0.98 4.30 0.59 0.53 0.50 0.49

Table A.9: MKLR for the CI Dataset, Prediction.

Next, we report FLR in Tables A.10 and A.11. In this setting, we use real
speed observations during the testing intervals to compute the likelihood
ratios. Recall that higher FLR values indicate higher accuracy.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.29 0.55 0.23 0.93 0.93 0.96 0.92
0.6 0.31 0.55 0.22 0.93 0.93 0.96 0.92
0.7 0.32 0.58 0.23 0.93 0.94 0.93 0.93
0.8 0.35 0.59 0.24 0.93 0.93 0.93 0.92

Table A.10: FLR for the HW Dataset, Prediction.

We observe that LSM also fails, with all values being below 0.5. However,
we cannot observe a clear trend with the increase of rm for both data sets.
Further, we observe that GCWC and A-GCWC achieve the best results in
most settings, the exception being when rm = 0.7 (Table A.10). Overall, the
performance improvements of GCWC and A-GCWC over DR are less obvious
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rm GP RF LSM CNN DR GCWC A-GCWC
0.5 0.50 0.58 0.12 0.84 0.82 0.86 0.85
0.6 0.49 0.58 0.12 0.83 0.83 0.84 0.85
0.7 0.49 0.58 0.13 0.84 0.82 0.84 0.84
0.8 0.47 0.57 0.14 0.82 0.82 0.84 0.83

Table A.11: FLR for the CI Dataset, Prediction.

for prediction, because DR models temporal dependency explicitly by using
RNNs, yielding more accurate predictions the edges with data. However, the
overall accuracies of GCWC and A-GCWC are still better due to ability of
these to propagate weights to edges without data.

We also observe that the FLR values for CNN, DR, GCWC, and A-GCWC
are closer and higher for HW than those for CI, because speed observations
for CI have more uncertainty than for HW, making predictions for CI more
challenging.

Average

Tables A.12 and A.13 show MAPE when estimating average speeds for CI and
HW with different rm values, respectively. In this setting, LSM is the state-of-
the-art linear solution [9] and DR [19] can be regarded as the state-of-the-art
non-linear solution.

We have the following observations. (1) A-GCWC performs overall best
on both data sets; (2) LSM seems to not work on the CI dataset. The rea-
son may be that the citywide road network is much more complex than the
highway road network, meaning that linear modeling is unable to capture
the latent attributes of this system. On the HW dataset, LSM does a much
better job when the rm value is 0.5, compared to on the CI dataset. However,
the performance falls markedly when the rm value increases, meaning that
LSM falls short when many edges are not covered by traffic data. Note that
in the original paper [9], LSM shows good accuracy when up to 30% of the
edges lack average speeds, i.e., when rm ≤ 0.3. (3) CNN and DR also per-
forms better than LSM, suggesting that it the linear modeling correlations is
the key problem. (4) While DR is the state-of-the-art when the data is not
sparse, it performs worse than the proposed GCWC and A-GCWC when the
data is sparse.

rm LSM CNN DR GCWC A-GCWC
0.5 25.5% 12.9% 14.5% 13.0% 12.8%
0.6 28.5% 13.0% 13.5% 13.0% 12.9%
0.7 33.5% 13.0% 13.3% 12.1% 12.9%
0.8 48.3% 13.0% 13.5% 12.4% 12.9%

Table A.12: MAPE for the HW Dataset, Average.
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rm LSM CNN DR GCWC A-GCWC
0.5 31.0% 10.9% 11.3% 11.6% 10.8%
0.6 37.3% 11.2% 12.5% 12.2% 11.2%
0.7 44.7% 11.5% 13.6% 12.2% 11.4%
0.8 52.1% 13.0% 11.5% 12.1% 11.5%

Table A.13: MAPE for the CI Dataset, Average.

Scalability

We conduct this experiment to investigate the scalability of GCWC and A-
GCWC on large road networks. Due to the unavailability of large road net-
works with sufficient amount of traffic data that cover most edges during
most intervals, we manually enlarge the road network of CI by scales of 10,
20, 30, 40, and 50 such that the largest road network has a total number of
172× 50 = 8, 600 edges. Of course, the road network can be enlarged further,
e.g., 60 or higher. However, we found that this is the largest road network
that one single K80 GPU can deal with in our setting.

If the road network is too large to fit into a single machine, we can divide
the network into smaller sub-networks and process them either in parallel on
multiple computers [30, 31] or in sequence on a single computer. To simulate
the case of a very large road network, we consider two settings: (1) processing
a single road network using GCWC and A-GCWC; and (2) partitioning the
road network into two small road networks and processing the two small
road networks in sequence, denoted as GCWC-M2 and A-GCWC-M2.

Figure B.7(a) shows the average training time for one batch with batch
size 20. This is the time it takes to finish an entire back propagation using 20
training instances, i.e., 20 input matrices. We observe that training A-GCWC
takes more time than GCWC, which is reasonable since A-GCWC needs to
train an extra CP-CNN. Further, if we partition a large road network into two
small sub-networks and train them in sequence, this takes less time. However,
this normally results in lower accuracy since the partitioning destroys some
adjacency relationships in the original road network.

Figure B.7(b) shows that the average testing time for one instance, e.g.,
estimating or predicting a weight matrix Ŵ, is very fast (less than 15 ms),
and there is little difference between A-GCWC and GCWC.

A.7 Conclusions and Outlook

High-resolution vehicle routing calls for road network models where each
edge has a time-varying travel-time distribution. Even with massive volumes
of vehicle data, it is generally impossible to construct distributions, also called
stochastic weights, for all edges and times. We define and study the problem
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Fig. A.6: Scalability.

of stochastic weight completion in this setting. A data-driven deep learning
model, graph convolutional weight completion (GCWC), is proposed to fill
in missing stochastic weights. In addition, an advanced GCWC model that
takes into account contextual information is proposed to further improve
accuracy. Empirical studies with two different, real datasets—highway loop
detector data and citywide taxi GPS data—suggest that the proposed models
are capable of outperforming other methods in all the experimental settings
considered.

In future work, it is of interest to exploit temporal correlations to further
improving the accuracy of the stochastic weights and to support continuous
distribution models such as Gaussian mixture models. It is also of interest to
integrate GCWC with existing routing algorithms [32, 33] to enhance routing
quality.
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Abstract

We address the problem of choosing the best paths among a set of candidate paths between the
same origin-destination pair. This functionality is used extensively when constructing origin-
destination matrices in logistics and flex transportation. Because the cost of a path, e.g., travel
time, varies over time and is uncertain, there is generally no single best path. We partition
time into intervals and represent the cost of a path during an interval as a random variable,
resulting in an uncertain time series for each path. When facing uncertainties, users generally
have different risk preferences, e.g., risk-loving or risk-averse, and thus prefer different paths.

We develop techniques that, for each time interval, are able to find paths with non-
dominated lowest costs while taking the users’ risk preferences into account. We represent
risk by means of utility function categories and show how the use of first-order and two kinds
of second-order stochastic dominance relationships among random variables makes it possible
to find all paths with non-dominated lowest costs. We report on empirical studies with large
uncertain time series collections derived from a 2-year GPS data set. The study offers in-
sight into the performance of the proposed techniques, and it indicates that the best techniques
combine to offer an efficient and robust solution.

Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, The VLDB Journal, “Risk-aware path selection with time-varying,
uncertain travel costs: a time series approach,” Jilin Hu, Bin Yang, Chenjuan Guo,
Christian S. Jensen, c© Springer 2018



B.1. Introduction

B.1 Introduction

Due to a combination of factors, including developments in autonomous vehicles, the
emergence of mobility-on-demand, flex transportation, and increasing needs for more
efficient logistics, it is a safe bet that path selection decisions will increasingly be made
algorithmically while taking into account time-varying and uncertain travel costs of
candidate paths [1].

For example, in logistics, exemplified by PostNord1, and in flex transportation, ex-
emplified by FlexDanmark2, origin-destination matrices (OD-matrices) [2, 3] are often
used to schedule trips. In particular, a city or a country is partitioned into N zones,
e.g., according to administrative districts or simply using a uniform grid, yielding an
N × N matrix where element (i, j) records the “best” path, along with its travel time,
from zone i to zone j [4, 5].

To obtain an OD-matrix, we need to select the best path for each origin-destination
pair. Given such a pair, the best path is often chosen from among a few candidate
paths connecting the origin zone and the destination zone. As an example, we may
choose among three paths, P1, P2, and P3, that connect zone i to zone j, as shown in
Figure B.1.

Fig. B.1: Motivating Example.

An intuitive strategy is to choose a path with the minimum average travel time.
However, the use of average costs has shortcomings. Specifically, the travel time of
a path varies across time, e.g., due to traffic and the weather; and even at a single
point in time, different drivers may travel at different speeds, e.g., due to personal
preferences and traffic lights. In other words, travel time is time varying [6] and

1http://www.postnord.dk/
2https://www.flexdanmark.dk/
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uncertain [7]. Therefore, it is commonplace to model the travel time of a path as an
uncertain time series (UTS) [8]: (1) time is first partitioned into fixed-length intervals,
e.g., 15-min intervals; (2) a random variable is then recorded for each interval to
capture the travel time distribution of using the path when the departure time falls
into the interval.

Figure B.1 illustrates the UTSs of our three paths. The UTS of a path contains a
random variable that represent the path’s travel time distribution for each departure
time interval, e.g., [8:00, 8:15), [8:15, 8:30), and [8:30, 8:45). A random variable is rep-
resented as a discrete distribution using a histogram in Figure B.1, but it can also be
represented as a continuous distribution using, e.g., Gaussian mixture models [7]. In
particular, the histogram modeling the travel time during [8:00, 8:15) for path P1 indi-
cates the total travel time of path P1 may be 80, 90, and 120 minutes with probabilities
0.25, 0.5, and 0.25, respectively.

Since a logistics company generally needs to make deliveries at any time during
a day and a flex transportation company generally receives requests for travel at any
time during a day, it is useful to compute the best paths for all departure intervals.
Thus, the problem becomes one of identifying, for each interval, the “best” path in
the interval according to the travel-time distributions of the candidate paths, e.g., P1,
P2, and P3 for the example in Figure B.1.

When travel time is uncertain, there may be no unique best path. Table B.1 shows
the travel times of the three paths for the departure time falls in the interval [8:00,
8:15). The first row states the above-mentioned probabilities of different travel times
for path P1.

Travel time (mins) 70 80 90 100 110 120

P1 0 0.25 0.50 0 0 0.25
P2 0 0 0.50 0.50 0 0
P3 0 0 0 0.50 0 0.50

Table B.1: Uncertain Travel Times for P1, P2, and P3, [8:00, 8:15).

Path P1 has a “wide” distribution, implying that a delivery may arrive at the des-
tination very early, but may also arrive very late. Path P2 has a “narrow” distribution,
thus offering a more predictable delivery time, but also no chance of an early delivery.

A key question is then which path to choose. Some users may prefer to run the
risk of making a late delivery in order to have the possibility of making an early
delivery, while other users may prefer a more predictable delivery time.

For example, one airport delivery may choose a so-called risk-loving path in order
to connect with an early flight among several options, while another delivery may
choose a risk-averse path in order to make sure to catch the last flight of the day.
Further, there is evidence that emergency services such as ambulances may choose
risk-loving paths [9, 10] and that transports involving perishables may prefer risk-
averse paths [11]. It is important to provide integrated support for different risk
preferences in a framework such as the one proposed in this paper.

In the example in Table B.1, path P1 is risk-loving while path P2 is risk-averse. A
risk-neutral user may choose either P1 or P2. Path P3 is not interesting to any user,
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risk-loving, risk-averse, or risk-neutral, as it offers no benefits over paths P1 and P2.
The problem now becomes the following: given a set of candidate paths, a time

horizon of interest, e.g., a day, a week, or a month, and a risk preference, e.g., risk-
loving, risk-averse, or risk-neutral, identify, for each interval in the time horizon, the
“best” path w.r.t. the given risk preference.

We show how different risk preferences can be modeled by means of utility func-
tion categories when assuming that the paths with the highest utility are preferred.
Further, we provide a connection between stochastic dominance relationships and
utility function categories. In short, having chosen a risk preference, and thus a util-
ity function category, if one random variable dominates another random variable, this
means that the former random variable must have at least the same expected utility
as the latter, no matter which specific utility function in the category is considered.
Thus, the path represented by the dominated random variable is uninteresting to any
user whose risk preference is captured by the utility function category.

Based on the above, we provide a generic framework that aims to maximally help
users with different risk preferences choose paths. In short, the framework compares
the random variables of paths and returns exactly the paths with non-dominated ran-
dom variables. When a user has a risk-loving or a risk-averse preference, thus having
a convex or a concave utility function, we compare the random variables of paths us-
ing the notions of second convex order and second concave order stochastic dominance to
compare random variables. Further, if a user has no clear preference, i.e., has a risk-
neural preference, the user may use any monotonous utility function. In this case, we
use first order stochastic dominance to compare the random variables of paths.

We provide all necessary techniques for checking first order, second convex or-
der, and second concave order stochastic dominance between two random variables.
These are then used as building blocks for techniques that enable the checking of dom-
inance for each interval among different uncertain time series. Further, with the goal
of improving efficiency, we present a grouping strategy that groups similar random
variables from different intervals, and we provide an optimized group dominance
checking technique. If one group dominates another group, all random variables in
the former group dominate all random variables in the latter group. When domina-
tion between groups occurs, fewer random variables have to be compared.

To the best of our knowledge, this is the first study that provides a comprehensive
analysis of the relationship between decision making under uncertainty with utility
functions that represents different risk preferences, on the one hand, and different-
order stochastic dominance, on the other hand; and it is the first study that enables
temporal dominance checking among multiple uncertain time series. In particular,
we make four contributions. First, we provide a comprehensive analysis of the rela-
tionships among risk preferences, utility functions, and stochastic dominance, and we
formulate a novel temporal dominance query on uncertain time series. Second, we
present a complete set of techniques for checking first-order, second convex order, and
second concave order dominance between two random variables. Third, we present a
general grouping strategy and techniques for checking dominance between random
variable groups. Fourth, we report on empirical studies based on two large uncertain
time series collections that indicate that the proposed techniques are efficient.

The remainder of the paper is organized as follows. Section 2 defines the setting
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and formalizes the problem. Section 3 covers stochastic dominance relations. Section 4
and Section 5 detail the algorithms for checking dominance between random variables
and between random variable groups, respectively. Section 6 reports on the empirical
study. Related work is coved in Section 7, and Section 8 concludes.

B.2 Preliminaries

B.2.1 Uncertain Time Series
A road network is modeled as a graph where vertices represent road intersections or
road ends and edges represent road segments. A path is a sequence of adjacent edges
that represent connected road segments.

We model the travel time of a path as a uncertain time series (UTS): the time horizon
is partitioned into intervals, and each interval is associated with a random variable
that represents the path’s total travel time when the departure time belongs to the
interval. We denote path Pi’s UTS as

Ti = 〈X
(1)
i , X(2)

i , · · · , X(N)
i 〉,

where X(j)
i is the random variable associated with the j-th interval. The length of UTS

Ti, denote as |Ti|, is the number of random variables, or equivalently, the number of
intervals in the UTS, i.e., |Ti| = N.

Consider the example shown in Figure B.1, where three candidate paths exist that
connect a source zone and a destination zone. Thus, we consider three UTSs, T1,
T2, and T3, representing the time-varying uncertain travel times of paths P1, P2, and
P3, respectively. Assuming that the time horizon is partitioned into 15-min intervals

and we consider a time horizon of a week, each UTS Ti = 〈X
(1)
i , X(2)

i , · · · , X(672)
i 〉,

1 6 i 6 3, has length 7*24*4 = 672, or equivalently, has 672 different departure time

intervals. In particular, random variable X(j)
i , 1 6 j 6 672, represents the travel time

distribution of path Pi when the departure time falls into the j-th interval.
The random variables in an UTS may be dependent and may also be independent of

each other. To achieve a generic solution that cover both cases, the paper’s solution
do not make any assumptions on the dependency among the random variables in an
UTS, e.g., the independence or Markov assumption. This has the effect that the pro-
posed solution works both when the random variables are independent or dependent
of each other.

B.2.2 Constructing UTSs from Trajectory Data
We use map-matched [12] GPS trajectories to derive UTSs for paths, as sketched below.

After map-matching, a GPS trajectory, 〈r1, r2, . . . , rn〉, is represented as a sequence
of trajectory records that capture a trip made by a vehicle. A trajectory record ri = (ti,
ei, mi) indicates a trip on edge ei that started at time ti and took travel time mi.

Given an interval I and an edge e, we are able to obtain a multiset of travel-time
measurements MI,e = {ri.mi|ri.ei = e ∧ ri.ti ∈ I} from the trajectory records that
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occurred on edge e during interval I. Next, a random variable that represents the
travel-time distribution on edge e during interval I can be learned from the travel-
time measurements in MI,e [7, 13]. For example, if M[8:00,8:15),ei

= {80, 90, 120, 90,
120, 90, 80, 90}, we are able to learn a discrete random variable {(80, 0.25), (90, 0.50),
(120, 0.25)} that then represents the travel-time distribution for edge ei when the
departure time falls into interval [8:00, 8:15). It is also possible to learn a continuous
random variable [7]. The techniques we propose later accommodate both discrete and
continuous random variables.

Based on the above, for each edge and each interval, we are able to derive a
random variable, thus obtaining a UTS for each edge. Next, given a path, we are
able to construct a random variable for each interval by “summing up” the random
variables of the edges in the path, thus obtaining a UTS for the path. Specifically, the
travel time distribution of path Pi = 〈e1, e2, . . . , eM〉 during departure time interval Ij

is given by �M
k=1RV(ek, Iek ), where � denotes convolution of two distributions and

RV(ek, Iek ) denotes the travel time distribution of edge ek during interval Iek , where
Iek is the departure time interval on edge ek, which may differ from the departure
time interval of the path Ij and needs to be progressively updated according to the
travel times of ek’s predecessor edges. The details of constructing random variables
for paths are covered elsewhere [7, 14, 15].

B.2.3 Problem Definition
Recall the problem exemplified in the introduction. Given a set of candidate paths, a
time horizon of interest, e.g., a day, a week, or a month, and a risk preference, e.g.,
risk-loving, risk-averse, or risk-neutral, we aim at identifying, for each interval in the
time horizon of interest, the “best” path w.r.t. the given risk preference.

Since the travel time of a path is represented by UTS, we consider a UTS collection

TS = {T1, T2, . . ., Tk}, where each UTS Ti = 〈X(1)
i , X(2)

i , . . ., X(N)
i 〉, 1 6 i 6 k,

corresponds to a path. The time horizon of interest can be mapped to an interval
range R = [s, e] from the s-th interval to the e-th interval.

Next, let RVS(j) = {X(j)
1 , X(j)

2 , . . ., X(j)
k } denote the set of the random variables

during the j-th interval in TS. Given a user risk preference, we aim at identifying, for
each interval j, where s 6 j 6 e, the “optimal” random variables among the random
variables in RVS(j) for the given risk preference. Thus, the path that corresponds
to the optimal random variable is chosen as the best path for the j-th interval. For
example, if X5

2 is the optimal random variable, then P2 is chosen as the best path in
the 5-th interval in the OD-matrix.

Shortly, in Section B.3, we explain (1) how different user risk preferences can be
connected to different-order stochastic dominance relationships and (2) how optimal
random variables can be defined under a specific stochastic dominance relationship.

Based on the above, we study the temporal dominance query Q(x, R, TS) that takes as
input a stochastic dominance relationship x that corresponds to a user risk preference,
an interval range R = [s, e], and a UTS collection TS. The query returns a sequence
of optimal random variable sets q = 〈q(s), q(s+1), . . ., q(e)〉, where q(j) is a set of
optimal random variables w.r.t. the given stochastic dominance relationship x among
all random variables in RVS(j), where s 6 j 6 e. A formal definition of the temporal
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dominance query is given in Section B.3.3 after we define different orders of stochastic
dominance.

Frequently used notation is listed in Table B.2.

Notation Definition

Xi, Xj Random variables
E(Xi) The expectation of Xi
Xi.min The minimum value in the range of Xi
Xi.max The maximum value in the range of Xi
u(a) A non-increasing utility function
u′(a) The first derivative of function u(a)
u′′(a) The second derivative of function u(a)
EU(Xi) The expected utility of Xi
fXi (x) The probability density function (pdf) of Xi
FXi (x) The cumulative distribution function (cdf) of Xi
F̂Xi (x)

∫ x
0 FXi (t)dt, the integral of FXi from 0 to x

F̃Xi (x)
∫ +∞

x FXi (t)dt, the integral of FXi from x to +∞
Xi �fsd Xj Xi first order dominates Xj
Xi �ssd Xj Xi second convex order dominates Xj
Xi �scsd Xj Xi second concave order dominates Xj
TS A collection of uncertain time series
Ti An uncertain time series
RVS A set of random variables
RVS(j) A set of the random variables in the j-th interval in TS
Ofsd(RVS) The first order optimal random variable set of RVS
Ossd(RVS) The second convex order optimal random variable set of RVS
Oscsd(RVS) The second concave order optimal random variable set of RVS

Table B.2: Notation.

B.3 Stochastic Optimality

We explain how user risk preferences, utility functions, and stochastic dominance are
connected and define the notion of optimal random variable.

B.3.1 Decision Making Under Uncertainty

Utility Functions

We model decision making as a utility maximization problem. Utility is computed
by a utility function that takes measurements as input. Without loss of generality, we
assume that smaller measurements (e.g., smaller travel times) are preferred. Thus, we
consider non-increasing utility functions.

Following the example in Section B.1, we first consider a simple, deterministic case
where the average travel time of paths P1, P2, and P3 are 100, 110, and 120 minutes.
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(a) Convex (b) Concave (c) Other

Fig. B.2: Categorization of Utility Functions.

Next we consider the utility function u(x) = 120− x, where x is a path’s travel time.
Thus, the utilities of the three paths are 20, 10, and 0, respectively. Therefore, P1 has
the highest utility and is the optimal choice.

Expected Utility Principle

Next, to accommodate uncertain measurements, we apply the expected utility princi-
ple [16, 17]. An uncertain measurement is represented as a random variable Xi, and
the expected utility of random variable Xi is employed as the utility of the uncertain
measurement: EU(Xi) =

∫ Xi.max
Xi.min u(x) · fXi (x)dx.

Given the utility function u(x) = 120− x and the uncertain travel times of P1, P2,
and P3 as shown in Table B.1, the expected utility of P1, P2, and P3 can be calculated
as follows: EU(P1) = 0.25 · (120 − 80) + 0.5 · (120 − 90) + 0.25 · (120 − 120) = 25,
EU(P2) = 25, and EU(P3) = 10. Therefore, P1 or P2 are optimal as both have the
highest expected utility.

Risk Preferences and Utility Functions

When making decisions under uncertainty, different users may have different prefe-
rences—risk-loving, risk-averse or risk-neutral. A risk-loving user, e.g., an ambulance
that transports a cardiac arrest patient, prefers P1 that offers the possibility of arriving
very early although there is also a risk of arriving very late. A risk-averse user, e.g.,
a vehicle that transports perishables, prefers P2 that guarantees arrival within 100
minutes. A risk-neutral user has no clear preference for P1 versus P2 and may choose
either P1 or P2. However, path P3 is not interesting to any user since it can neither
make a user arrive very early nor guarantee arrival within 100 minutes.

Different risk preferences can be represented by different categories of utility func-
tions. Specifically, we categorize utility functions into concave, convex, and other func-
tions. Recall that we only consider non-increasing functions since smaller measure-
ments (e.g., smaller travel times) are always preferred (see Section B.3.1). Figures B.2
(a), (b), and (c) show a convex function, a concave function, and a function that is
neither convex nor concave.

Next, the relationships between risk preferences and utility function categories are
shown in Table B.3. All users use non-increasing utility functions. The preferences of
risk-loving and risk-averse users can be captured by convex and concave functions,
respectively. The last column will be explained later in Section B.3.2.
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Risk Attitudes Utility Functions Stochastic Dominance
Risk-neutral Non-increasing First order
Risk-loving Non-incr., Convex Second convex order
Risk-averse Non-incr., Concave Second concave order

Table B.3: Risk preferences, Utility Functions, and Stochastic Dominance

(a) cdf, FXi (x) (b) Integral of cdf, F̂Xi (x) (c) Integral of cdf, F̃Xi (x)

Fig. B.3: Distributions of P1, P2, and P3.

To further elaborate on the connection between risk preferences and utility func-
tions, we consider the three functions in Figure B.2 and the three paths in Table B.1.
The expected utilities when using the three utility functions are shown in Table B.4,
where the highest expected utilities for each utility function are highlighted in bold.

P1 P2 P3 Optimal

uC 850 650 200 P1
uV 1650 1850 800 P2
uO 450 450 200 P1, P2

Table B.4: Expected Utilities for Paths P1, P2, and P3.

We have already seen that P1 and P2 are optimal for risk-loving and risk-averse
users, respectively. Table B.4 shows that P1 and P2 have the largest expected utilities
for the convex utility function uC(·) and the concave utility function uV(·), which is
consistent with the relationship in Table B.3. Further, when a user has no clear risk-
loving or risk-averse attitude, P1 and P2 may be optimal. However, P3 is not of interest
to any user.

B.3.2 Stochastic Dominance
Stochastic dominance enables comparison of two random variables. We introduce
three different orders of stochastic dominance and describe how these notations of
dominance apply to decision making with different categories of utility functions.
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First Order Stochastic Dominance

Definition B.3.1
First Order Stochastic Dominance (FSD). Given two random variables X1 and X2, if ∀a ∈
R+, FX1 (a) > FX2 (a), X1 first order stochastically dominates X2, denoted by X1�fsdX2.

Following the example in Table B.1, the cdfs of the three paths are shown in Fig-
ure B.3(a). Here, P1’s travel time random variable first order stochastically dominates
that of P3 since for every possible travel time a ∈ [70, 120], P1’s cdf is no smaller than
that of P3. Similarly, P2’s travel time random variable dominates that of P3. However,
P1 and P2 do not dominate each other because P1 has a larger cumulative probability
before 100 minutes and P2 has a larger cumulative probability after 100 minutes.

Theorem B.3.1
Given a non-increasing utility function u(a), a ∈ R+, if X1 �fsd X2 then the expected
utility of X1 is no smaller than that of X2, i.e., EU(X1) > EU(X2).

Proof. We prove that ∆ = EU(X1)− EU(X2) > 0. For readability, we define Xmax =
max(X1.max, X2.max), and Xmin = min(X1.min, X2.min)− ε, where ε > 0. Then:

∆ =
∫ X1.max

X1.min
u(a) fX1 (a)da−

∫ X2.max

X2.min
u(a) fX2 (a)da

=
∫ Xmax

Xmin

u(a) fX1 (a)da−
∫ Xmax

Xmin

u(a) fX2 (a)da

=
∫ Xmax

Xmin

u(a) · ( fX1 (a)− fX2 (a))da

=
∫ Xmax

Xmin

u(a)d(FX1 (a)− FX2 (a))

= [u(a)(FX1 (a)− FX2 (a))]Xmax
Xmin

−
∫ Xmax

Xmin

u′(a) · (FX1 (a)− FX2 (a))da

=−
∫ Xmax

Xmin

u′(a) · (FX1 (a)− FX2 (a))da (B.1)

From line 3 to line 6, we use integration by parts [18]. At Xmax, we have FX1 (Xmax) =
1 and FX2 (Xmax) = 1; and at Xmin, we have FX1 (Xmin) = 0 and FX2 (Xmin) = 0. Thus,
we have [u(a)(FX1 (a)− FX2 (a))]Xmax

Xmin
= 0, which explains the final transformation.

Since X1 first order stochastically dominates X2, we have FX1 (a) > FX2 (a) and thus
FX1 (a)− FX2 (a) > 0. Since utility function u(a) is non-increasing, we have u′(a) 6 0.
Thus, ∆ > 0.

Theorem B.3.1 implies that if a random variable X1 first order stochastically dom-
inates a random variable X2, the object represented by X2 is not interesting because
the expected utility of X1 is always no smaller than the expected utility of X2. In our
example, P1 and P2 may be optimal paths, but P3 is uninteresting regardless of the
utility function.
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Second Order Stochastic Dominance

The second order stochastic dominance between two random variables is defined
based on two different forms of integrals of the two random variables’ cumulative
distribution functions, F̂Xi (·) and F̃Xi (·). In particular, F̂Xi (·) denotes the integral of
the cdf FXi (·) from 0, shown in Equation B.2.

F̂Xi (a) =
∫ a

0
FXi (t)dt (B.2)

And F̃Xi (·) denotes the integral of the cdf FXi (·) until +∞, shown in Equation B.3.

F̃Xi (a) =
∫ +∞

a
FXi (t)dt (B.3)

In the two definitions that follow, we distinguish two cases—second convex order
stochastic dominance, defined based on F̂Xi (·), and second concave order stochastic
dominance, defined based on F̃Xi (·).

Definition B.3.2
Second Convex Order Stochastic Dominance (SSD). Given random variables X1 and X2, if
∀a ∈ R+, F̂X1 (a) > F̂X2 (a), X1 second convex order stochastically dominates X2 , denoted
by X1�ssdX2.

Figure B.3(b) shows the integrals of the cdfs from 0 for the three paths. We have
P1 �ssd P2, P2 �ssd P3, and P1 �ssd P3.

Theorem B.3.2
Given a non-increasing and convex utility function u(a), a ∈ R+, if X1�ssdX2 then
EU(X1) > EU(X2).

Proof. We prove ∆ = EU(X1)− EU(X2) > 0. According to Equation B.1,

∆ = −
∫ Xmax

Xmin

u′(a) · (FX1 (a)− FX2 (a))da

Next, we construct a helper function as follows.

I(a) =
∫ a

Xmin

(FX1 (t)− FX2 (t))dt = F̂X1 (a)− F̂X2 (a)

Then, we have

∆ =−
∫ Xmax

Xmin

u′(a)dI(a)

=− u′(a)I(a)|Xmax
Xmin

+
∫ Xmax

Xmin

I(a)u′′(a)da

=− u′(Xmax)I(Xmax) + u′(Xmin)I(Xmin)

+
∫ Xmax

Xmin

I(a)u′′(a)da (B.4)
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Consider the first term on the right hand side in Equation B.4. Since utility func-
tion u is non-increasing, u′(Xmax) 6 0. Because random variable X1 second convex
order stochastically dominates X2, we have F̂X1 (a) > F̂X2 (a) and thus I(Xmax) =
F̂X1 (Xmax) − F̂X2 (Xmax) > 0. Thus, the first term is non-negative.

Next, as I(Xmin) = F̂X1 (Xmin)− F̂X2 (Xmin) = 0− 0 = 0, the second term is zero.
Finally, we use the property that the second derivative of a convex function is

non-negative. Since utility function u is convex, u′′(a) > 0. Since random variable X1
second convex order stochastically dominates X2, F̂X1 (a) > F̂X2 (a) and thus I(a) =
F̂X1 (a)− F̂X2 (a) > 0. Thus, the third term is non-negative.

Theorem B.3.2 implies that when random variable X1 second convex order stochas-
tically dominates random variable X2, and any risk-loving utility function, i.e., a con-
vex function, is used, the choice represented by X2 is not interesting because X1’s
expected utility is always no smaller than that of X2.

In our example, P1 �ssd P2 and P1 �ssd P3, leaving P1 as the only optimal choice
for a risk-loving users. Recall also that when a user has no clear risk-loving or risk-
averse preference, both P1 and P2 can be optimal choices. This illustrates that when
a user’s preference becomes more specific, we can narrow down the optimal choices
for the user using second convex order stochastic dominance.

Definition B.3.3
Second Concave Order Stochastic Dominance (SCSD). Given random variables X1 and
X2, if ∀a ∈ R+, F̃X1 (a) > F̃X2 (a), X1 second concave order stochastically dominates X2,
denoted by X1�scsdX2.

Figure B.3(c) shows the integrals of the cdfs until +∞ for the three paths in our
example. According to Definition B.3.3, we have P2 �scsd P1, P2 �scsd P3, and P1 �scsd
P3.

Theorem B.3.3
Given a non-increasing and concave utility function u(a), a ∈ R+, if X1�scsdX2, then
EU(X1) > EU(X2).

Proof. We prove ∆ = EU(X1)− EU(X2) > 0. According to Equation B.1,

∆ = −
∫ Xmax

Xmin

u′(a) · (FX1 (a)− FX2 (a))da

Next, we construct a helper function as follows.

I(a) = F̃X1 (a)− F̃X2 (a)

=
∫ Xmax

a
(FX1 (t)− FX2 (t))dt

+
∫ +∞

Xmax

(FX1 (t)− FX2 (t))dt

=
∫ Xmax

a
(FX1 (t)− FX2 (t))dt (B.5)

This holds because FX1 (t) = FX2 (t) = 1 if t > Xmax.
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Then, we have

∆ =
∫ Xmax

Xmin

u′(a)dI(a)

= u′(a)I(a)|Xmax
Xmin
−
∫ Xmax

Xmin

I(a)u′′(a)da

= u′(Xmax)I(Xmax)− u′(Xmin)I(Xmin)

−
∫ Xmax

Xmin

I(a)u′′(a)da (B.6)

Since I(Xmax) = 0, the first term in Equation B.6 is 0.
Next, as utility function u is non-increasing, we have u′(Xmin) 6 0. Further,

X1 second concave order stochastically dominates X2, so F̃X1 (a) > F̃X2 (a) and thus
I(Xmin) > 0. Thus, the second term is non-negative.

Finally, we use the property that the second derivative of a concave function is
non-positive. Because utility function u is concave, we have u′′(a) 6 0. Since X1 second
concave order stochastically dominates X2, we have F̃X1 (a) > F̃X2 (a) and thus I(a) =
F̃X1 (a)− F̃X2 (a) > 0. As a result, the third term in Equation B.4 is non-negative.

Theorem B.3.3 implies that a user with a risk-averse utility function, i.e., a concave
function, is not interested in choosing X2 if X1 �scsd X2, no matter the specific form
of the concave function. In our example, P2 is the optimal choice for risk-averse users.

Optimal Random Variable Set

Given a set of random variables RVS, if a random variable is not dominated by any
other random variable, it is an optimal random variable, where dominance can be
based on first order, second convex order, or second concave order dominance. For ex-
ample, the first order optimal random variable set is defined as follows. Ofsd(RVS) =
{X ∈ RVS|@X′ ∈ RVS(X′ �fsd X ∧ X′ 6= X)}. The second convex and concave order
optimal random variable sets Ossd(RVS) and Oscsd(RVS) are defined similarly.

To help users make decisions, only the optimal random variables should be re-
turned. In particular, if a user is risk-loving, only the optimal random variable set
w.r.t. second convex order dominance, i.e., Ossd(RVS), should be returned; and if a
user is risk-averse, only the optimal random variable set w.r.t. second concave order
dominance, i.e., Oscsd(RVS), should be returned; further, if a user is risk-neural, the
optimal random variable set w.r.t. first order dominance, i.e., Ofsd(RVS), should be
returned. This explains the last column in Table B.3.

B.3.3 Temporal Dominance Query
Having defined the necessary concepts, we are able to define formally the temporal
dominance query Q(x, R, TS).

The query takes as input a stochastic dominance relationship parameter x, which
can be fsd, ssd, or scsd; a interval range R = [s, e] that represent a time horizon of

interest, and a UTS collection TS = {T1, T2, . . ., Tk}, where each UTS Ti = 〈X
(1)
i , X(2)

i ,

. . ., X(N)
i 〉.
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The query returns a sequence of optimal random variable sets q = 〈q(s), q(s+1),

. . ., q(e)〉, where q(j) = Ox(RVS(j)) and RVS(j) = {X(j)
1 , X(j)

2 , . . ., X(j)
k } denotes the set

of the random variables during the j-th interval in TS where s 6 j 6 e, and x is fsd,
ssd, or scsd.

Temporal dominance queries provide a generic solution to users with varying risk
preferences in the sense that:
(1) if a user does not have a clear risk preference, fsd should be used, and the user can
choose any object in Ofsd(RVS);
(2) if a user has either a risk-loving or risk-averse preference, ssd or scsd should be
used, and the user can choose any object in Ossd(RVS) or Oscsd(RVS);
(3) if a user provides a specific utility function, we first categorize it as convex, con-
cave, or other; then we only need to compute expected utilities for the objects in
Ofsd(RVS), Ossd(RVS), or Oscsd(RVS), not for other dominated objects, and finally, and
return the object with the highest expected utility.

B.4 Checking Stochastic Dominance

To efficiently compute temporal dominance queries on UTSs, we first need efficient
means of checking stochastic dominance between two random variables. In this sec-
tion, we present algorithms for checking these three kinds of dominance considered
between two random variables.

For a random variable X, we denote the expectation of the random variable as
E(X) and the minimum and maximum value of the random variable as X.min and
X.max, respectively. Next, we introduce X.min− = X.min − ρ where ρ is a small
positive value. When considering travel time, ρ represents a time that is shorter than
the finest time granularity ε. For example, if the finest time granularity ε is a second,
ρ can be half second or a millisecond.

Recall that we use FX(·) to denote the cdf of random variable X. Thus, we have
FX(X.min−) = 0; ∀X.min < x < X.max, 0 < FX(x) < 1; and ∀x > X.max, FX(x) = 1.

B.4.1 Checking FSD
We first consider a naive algorithm based on the definition of FSD. Next, we pro-
pose an initial check strategy to improve the naive algorithm. Finally, we propose a
speedup algorithm.

Naive algorithm: Given two random variables X1 and X2, a naive algorithm
for checking whether X1 first order dominates X2 is to use Definition B.3.1. For each
value a ∈ Dom where Dom = [min(X1.min, X2.min), max(X1.max, X2.max)], we check
whether FX1 (a) > FX2 (a) always holds. If yes, X1 first order dominates X2. Otherwise,
X1 does not first order dominate X2.

Assume that the finest granularity of travel-time measurements is ε, e.g., 1 second
or 1 minute. We have N = Dom

ε possible values to check. Thus, the complexity of the
naive algorithm is linear in N, i.e., the number of comparisons between two random
variables’ CDFs. The pseudo code of the naive algorithm is shown in Algorithm 1.
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Algorithm 1 NaiveFSD

Input:
Random variables: X1 and X2;

Output:
Dominance relationship between X1 and X2 w.r.t. FSD;

1: for each a ∈ [min(X1.min, X2.min), max(X1.max, X2.max)] do
2: if FX1(a) < FX2(a) then
3: return X1 does not dominate X2;
4: end if
5: end for
6: return X1 dominates X2;

Naive algorithm with initial check: The naive algorithms is inefficient as it
needs to check every a ∈ [min(X1.min, X2.min), max(X1.max, X2.max)]. We present
an improved algorithm with an initial check. If X1 and X2 fail this check, X1 does not
dominate X2. The initial check is based on Lemma B.4.1.

Lemma B.4.1
Given two random variables X1 and X2, if X1 �fsd X2 then X1.min 6 X2.min and
X1.max 6 X2.max, and E(X1) 6 E(X2).

Proof. We prove by contradiction that X1.min 6 X2.min and X1.max 6 X2.max.
First, assume that X1.min > X2.min. Based on the assumption and the defi-

nition of X.min−, we get X1.min > X1.min− > X2.min. Consequently, we have
FX2 (X1.min−) > 0 = FX1 (X1.min−). However, since X1 � f sd X2, we have FX1 (x) >
FX2 (x) for any x ∈ (−∞,+∞), including the case when x = X1.min−. This results in
a contradiction. Thus, the assumption is invalid, and we must have X1.min 6 X2.min.

Second, assuming that X1.max > X2.max, we have that FX1 (X2.max) < 1 and
FX2 (X2.max) = 1. Thus, FX1 (X2.max) < FX2 (X2.max). However, since X1 � f sd X2,
we have FX1 (X2.max) > FX2 (X2.max), which also results in a contradiction. Thus, the
assumption is invalid, and we must have X1.max 6 X2.max.

Finally, we apply Theorem B.3.1 to prove E(X1) < E(X2). Consider a non-
increasing utility function u(x) = −x. According to the Theorem B.3.1, we have
EU(X1) > EU(X2). Since u(x) = −x, we have EU(X1) = −E(X1) and EU(X2)
= −E(X2). Thus, we have E(X1) 6 E(X2).

Based on Lemma B.4.1, we first check if the three conditions, i.e., X1.min 6 X2.min,
X1.max 6 X2.max, and E(X1) 6 E(X2), hold. If yes, X1 may stochastically dominate
X2, and then we call the naive algorithm to further check if X1 dominates X2; oth-
erwise, X1 does not dominate X2. Hence, we propose an Initial Check method before
calling the naive FSD algorithm, which is shown in Algorithm 2.

Speedup Algorithm: We propose a speed-up algorithm to verify the first order
stochastic dominance relationship between two random variables, which can signifi-
cantly reduce the number of comparisons. We first apply the initial check specified
in Lemma B.4.1 to filter the cases where two random variables cannot dominate each
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Algorithm 2 NaiveFSDInitialCheck

Input:
Random variables: X1 and X2;

Output:
Dominance relationship between X1 and X2 w.r.t. FSD;

1: if E(X1) 6 E(X2) ∧ X1.min 6 X2.min ∧ X1.max 6 X2.max then
2: Call the naive FSD algorithm on X1 and X2;
3: else if E(X2) 6 E(X1) ∧ X2.min 6 X1.min ∧ X2.max 6 X1.max then
4: Call the naive FSD algorithm on X2 and X1;
5: else
6: return no dominance;
7: end if

other. We then assume that X1.min 6 X2.min and X1.max 6 X2.max. Then, the speed-
up algorithm needs to check whether FX1 (a) > FX2 (a) for each a ∈ [X2.min, X1.max].

The speed-up algorithm does not only rely on the two random variables’ cdfs, i.e.,
FX1 (·) and FX2 (·), but also on the integral of cdfs, i.e., F̂X1 (·) and F̂X2 (·). This means
that F̂′X1

(a) = FX1 (a) and F̂′X2
(a) = FX2 (a) for any a. Figure B.4(a) shows an example

of the integrals of the cdfs of two random variables X1 and X2. Recall that at a point
on the curve of an integral of a cdf, the slope of the point is the point’s corresponding
cumulative distribution.

The speed up algorithm SpeedupFSD(X1, X2, s, e) follows a divide-and-conquer
approach. It takes as input two random variables X1 and X2 and a range [s, e], and
it returns a Boolean value indicating whether FX1 (x) > FX2 (x) for any x ∈ [s, e]. The
pseudo code is shown in Algorithm 3. First, we call SpeedupFSD(X1, X2, X2.min,
X1.max).

Algorithm 3 first checks whether FX1 (x) > FX2 (x) when x equals to the two
boundary values s and e, i.e., whether FX1 (s) > FX2 (s) and FX1 (e) > FX2 (e) (lines
1–2). If not, X1 cannot dominate X2, and the algorithm returns False. Next, algo-
rithm 3 uses Lemma B.4.2 to check whether the dominance relationship between X1
and X2 can be identified by using their cdfs at s and e (lines 4–5).

Lemma B.4.2
Given random variables X1 and X2 and a range [s, e], if FX1 (s) > FX2 (e) then FX1 (x) >
FX2 (x) ∀x ∈ [s, e].

Proof. Since FX(x) is non-decreasing, we have FX(s) 6 FX(x) 6 FX(e), ∀x ∈ [s, e].
Thus, we obtain FX1 (x) > FX1 (s) > FX2 (e) > FX2 (x), ∀x ∈ [s, e].

To better explain the next lines in Algorithm 3, we introduce four important
points: A = (s, F̂X1 (s)), B = (e, F̂X1 (e)), C = (s, F̂X2 (s)), and D = (e, F̂X2 (e)), where
points A and C are the left endpoints of the curves of F̂X1 and F̂X2 in the range [s, e],
and points B and D are the right endpoints. Examples of the four points are shown
in Figures B.4(a) and (b).

Next, we construct a line segment l0 by connecting A and B, and we compute
the slope kAB of line segment l0. At point B, we compute the corresponding slope
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Algorithm 3 SpeedupFSD (X1, X2, s, e)

Input:
Random variables X1 and X2; a range [s, e]

Output:
True if X1 �fsd X2; False, otherwise.

1: if FX1(s) < FX2(s) or FX1(e) < FX2(e) then
2: return False;
3: end if
4: if FX1(s) > FX2(e) then
5: return True; //acc. to Lemma B.4.2
6: end if
7: kAB ← the slope of the line segment AB;
8: kA ← FX1(s); kB ← FX1(e); kD ← FX2(e);
9: Construct l1 through point B with slope kB;

10: if kD < kAB then
11: Construct l2 through point A with slope kD;
12: i← x-coordinate of the intersection between l1 and l2;
13: return SpeedupFSD(X1, X2, s, i) //acc. to Lemma B.4.3
14: else
15: Construct l3 from point A with slope kA;
16: j← x-coordinate of the intersection between l1 and l3;
17: Boolean b1← SpeedupFSD(X1, X2, s, j);
18: Boolean b2← SpeedupFSD(X1, X2, j, e);
19: return b1∧ b2;
20: end if
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(a) F̂X1 (x) and F̂X2 (x) (b) Case 1 (c) Case 2

Fig. B.4: Speedup Algorithm for Checking FSD.

kB on the curve of F̂X1 , which equals the cumulative distribution of e on X1, i.e.,
kB = F̂′X1

= FX1 (e). We have kB > kAB. We construct a straight line l1 that goes
through point B with slope kB. At point D, we compute the corresponding slope
kD on the curve of F̂X2 , which equals the cumulative distribution of e on X2, i.e.,
kD = F̂′X2

= FX2 (e). Then we distinguish two cases depending on the ordering of kD
and kAB.
Case 1 (lines 10–13): kD < kAB (see Figure B.4(b)). We make a straight line l2 through
point A with slope kD. Since kD < kAB, l2 and l1 must intersect, and the x-coordinate
of the intersection i must be between s and e.

According to Lemma B.4.3, we have FX1 (x) > FX2 (x), ∀x ∈ [i, e]. Therefore, range
[i, e] can be pruned safely and we only need to check if FX1 (x) > FX2 (x), ∀x ∈ [s, i]. To
do this, we recursively call SpeedupFSD(X1, X2, s, i).

Lemma B.4.3
If kD < kAB, then FX1 (x) > FX2 (x), ∀x ∈ [i, e].

Proof. Let the x-coordinate of the intersection between l2 and F̂X1 (x) be q (see Fig-
ure B.4(b)). Further, we have F̂′X1

(q) = FX1 (q) = kD. Since F̂X1 (x) is convex and
increasing, we have (1) FX1 (a) > kD if a > q and (2) q 6 i. Based on the above, we
have ∀x ∈ [i, e], FX1 (x) > FX1 (q) = kD = FX2 (e) > FX2 (x).

Case 2 (lines 14–19): kD > kAB (see Figure B.4(c)). We make a straight line l3 through
point A with slope kA = FX1 (s). Since kA must be no larger than kAB, l3 and l1 must
intersect, and the x-coordinate of the intersection j must be between s and e. In this
case, we cannot guarantee FX1 (a) > FX2 (a) for neither sub-range [s, j] nor sub-range
[j, e]. Therefore, we recursively call SpeedupFSD(X1, X2, s, j) and SpeedupFSD(X1, X2,
j, e) to check both sub-ranges.

B.4.2 Checking SSD
We present a naive algorithm, a naive algorithm with an initial check, and a speedup
algorithm to check second convex order stochastic dominance (SSD) between two
random variables.

Naive Algorithm for SSD: Similar to the naive algorithm for FSD checking, the
naive algorithm for SSD checking applies the definition of SSD, i.e., Definition B.3.2.
For each value a ∈ [min(X1.min, X2.min), max(X1.max, X2.max)], we check whether
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F̂X1 (a) > F̂X2 (a) always holds. If so, X1 dominates X2; otherwise, X1 does not domi-
nate X2. The pseudo code is shown as follows.

Algorithm 4 NaiveSSD

Input:
Random variables: X1 and X2;

Output:
Dominance relationship between X1 and X2 w.r.t. SSD;

1: for each a ∈ [min(X1.min, X2.min), max(Xi.max, Xi.max)] do
2: if F̂X1(a) < F̂X2(a) then
3: return X1 does not dominate X2;
4: end if
5: end for
6: return X1 dominates X2;

Naive Algorithm with Initial check for SSD: We present an initial check based
on Lemma B.4.4, which is similar to the initial check of FSD. If random variables X1
and X2 do not pass the check, X1 does not dominate X2 w.r.t. SSD. The proof of
Lemma B.4.4 and the pseudo code of Algorithm 5 with the initial check according to
Lemma B.4.4 follow.

Lemma B.4.4
If X1 �ssd X2 then X1.min 6 X2.min and E(X1) 6 E(X2).

Proof. We prove X1.min 6 X2.min by contradiction. If X1.min > X2.min, we have
F̂X1 (X1.min) = 0 and F̂X2 (X1.min) > 0. Thus, we have F̂X2 (X1.min) > F̂X1 (X1.min).
According to the definition of SSD, when X1 �ssd X2, we have F̂X1 (X1.min) > F̂X2 (
X1.min). This yields a contradiction, and we must have X1.min 6 X2.min.

We apply Theorem B.3.2 to prove E(X1) 6 E(X2). Consider a non-increasing
convex utility function u(x) = −x. According to Theorem B.3.2, we have EU(X1) >
EU(X2). Since u(x) = −x, we have EU(X1) = −E(X1) and EU(X2) = −E(X2). Thus,
E(X1) 6 E(X2).

Speedup Algorithm for SSD: We propose a speed-up algorithm for SSD check-
ing between two random variables. We first utilize the initial check specified in
Lemma B.4.4 to filter cases where two random variables cannot dominate each other.
We can then assume that X1.min 6 X2.min, and the algorithm needs to check if X1
dominates X2 w.r.t. SSD, i.e., whether F̂X1 (a) > F̂X2 (a), ∀a ∈ [X2.min, max (X1.max,
X2.max)].

The speed-up algorithm also employs the two random variables’ cdfs, i.e., FX1 (·)
and FX2 (·), and the integrals of the cdfs, i.e., F̂X1 (·) and F̂X2 (·).

Algorithm SpeedupSSD(X1, X2, s, e) follows a divide-and-conquer approach. It
takes as input two random variables X1 and X2 and a range [s, e], and it returns a
Boolean value indicating whether F̂X1 (a) > F̂X2 (a) for each a ∈ [s, e]. The pseudo code
is shown in Algorithm 6. First, we call SpeedupSSD (X1, X2, X2.min, max(X1.max,
X2.max)).
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Algorithm 5 NaiveSSDInitialCheck

Input:
Random variables X1 and X2;

Output:
Dominance relationship between X1 and X2 w.r.t. SSD;

1: if E(X1) 6 E(X2) ∧ X1.min 6 X2.min then
2: Call the naive SSD algorithm on X1 and X2;
3: else if E(X2) 6 E(X1) ∧ X2.min 6 X1.min then
4: Call the naive SSD algorithm on X2 and X1;
5: else
6: return no dominance.
7: end if

As for SSD checking, we make use of the four important points, where points A
and C are the left endpoints and points B and D are the right endpoints of the curves
of F̂X1 and F̂X2 in the range [s, e]. Examples of the four points are shown in Figures B.5
(a) and (b).

(a) Case 1 (b) Case 2

Fig. B.5: Speedup Algorithm for Checking SSD.

At point A, we compute the corresponding slope kA on the curve of F̂X1 , which
equals the cumulative distribution of s on X1, i.e., kA = F̂′X1

(s) = FX1 (s). Then
we construct a line lA through A with slope kA. Next, at point B, we compute the
corresponding slope kB on the curve of F̂X1 , which equals the cumulative distribution
of e on X1, i.e., kB = F̂′X1

(e) = FX1 (e). Then we construct a line lB through B with
slope kB. Assume that lA and lB intersect at point E = (xE, yE) where the x- and
y-coordinates of point E are xE and yE, respectively. We denote the point on curve of
F̂X2 whose x-coordinate is xE as M = (xE, F̂X2 (xE)).

We proceed to consider two cases.
Case 1: Point E is not below point M (see Figure B.5(a)). According to Lemma B.4.5, we
have F̂X1 (x) > F̂X2 (x), ∀x ∈ [s, e]. Thus, we return True.

Lemma B.4.5
If yE > F̂X2 (xE) then F̂X1 (x) > F̂X2 (x), ∀x ∈ [s, e].

Proof. Since F̂X1 (x) and F̂X2 (x) are convex, the tangent line lA at point A of F̂X1 (x)
satisfies F̂X1 (x) > lA(x), ∀x ∈ [s, xE]; and the chord line lCM that connects points C
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Algorithm 6 SpeedupSSD (X1, X2, s, e)

Input:
Random variables X1 and X2; a range [s, e];

Output:
True, if X1 �dcx X2; False, otherwise;

1: if F̂X1(s) < F̂X2(s) ∨ F̂X1(e) < F̂X2(e) then
2: return False
3: end if
4: if F̂X1(s) > F̂X2(e) then
5: return True; //acc. to Lemma B.4.4
6: end if
7: kA ← FX1(s); kB ← FX1(e);
8: Construct line lA through A with the slope kA;
9: Construct line lB through B with the slope kB;

10: Point E ← intersection of lines lA and lB;
11: Point M ← the point on curve of F̂X2 whose x-coordinate is xE;
12: if E is not below M then
13: return True; //acc. to Lemma B.4.5
14: else
15: b1← SpeedupSSD(X1, X2, s, xE);
16: b2← SpeedupSSD(X1, X2, xE, e);
17: return b1∧ b2;
18: end if

and M of F̂X2 (x) satisfies lCM(x) > F̂X2 (x), ∀x ∈ [s, xE].
Moreover, we have lA(s) = F̂X1 (s) > F̂X2 (s) = lCM(s), meaning that the left

end point of lA is not below the left end point of lCM; and lA(xE) = yE > F̂X2 (xE) =
lCM(xE), meaning that the right end point of lA is not below the right end point of lCM.
Thus, line lA is not below line lCM between s and xE, i.e., lA(x) > lCM(x), ∀x ∈ [s, xE].
Thus, we have F̂X1 (x) > F̂X2 (x), ∀x ∈ [s, xE].

We are able to derive the same conclusion for range [xE, e]. Therefore, the lemma
holds.

Case 2: Point E is below point M (see Figure B.5(b)). In this case, we cannot give any
guarantee, and the range [s, e] is divided into two sub-ranges [s, xE] and [xE, e] based
on the divided point, here xE. We then recursively call SpeedupSSD on [s, xE] and
[xE, e], respectively.

B.4.3 Checking SCSD
Similar to the case for checking SSD, the naive algorithm is based on the definition of
SCSD. Lemma B.4.6 enables an initial check for SCSD.
Lemma B.4.6
If X1 �scsd X2, then X1.max 6 X2.max and E(X1) 6 E(X2).
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Proof. We prove X1.max 6 X2.max. Assuming that X1.max > X2.max by contra-
diction, we have F̃X1 (X1.max) = 0 and F̃X2 (X1.max) > 0. Thus, F̃X2 (X1.max) <
F̃X1 (X1.max). According to the definition of SCSD, when X1 �scsd X2, we have
F̃X1 (X1.max) > F̃X2 (X1.max). This yields a contradiction. Thus, the assumption is
invalid, and X1.max 6 X2.max.

We apply Theorem B.3.3 to prove E(X1) 6 E(X2). Consider a non-increasing
convex utility function u(x) = −x. According to Theorem B.3.3, we have EU(X1) >
EU(X2). Since u(x) = −x, we have EU(X1) = −E(X1) and EU(X2) = −E(X2). Thus,
we have E(X1) 6 E(X2).

Finally, we present a speedup algorithm for checking SCSD. The speedup algo-
rithm for check SCSD is similar to the speedup algorithm for checking SSD. The only
difference is that we need to check if point E is not above M, while when checking for
SSD, we check if point E is not below M. We give an intuitive idea of how to perform
speedup algorithm for SCSD in Figure B.6.

(a) Case 1 (b) Case 2

Fig. B.6: Speedup Algorithm for Checking SCSD.

B.5 Finding Temporal Dominance

We proceed to provide efficient algorithms for checking temporal dominance among
UTSs. We first solve the case of checking temporal dominance between two UTSs,
and then the case of checking temporal dominance among multiple UTSs.

B.5.1 Naive Algorithm

Given two uncertain time series T1 = 〈X(1)
1 , X(2)

1 , · · · , X(N)
1 〉 and T2 = 〈X(1)

2 , X(2)
2 ,· · · ,

X(N)
2 〉, we would like to find the temporal dominance between T1 and T2. In particular,

during each interval j, we want to determine the dominance relationship between X(j)
1

and X(j)
2 w.r.t. a given order: FSD, SSD, or SCSD.

A naive algorithm checks, for each interval j, the relationship between X(j)
1 and

X(j)
2 using the proposed speedup algorithms. For example, consider two UTSs, where

each has 3 intervals T1 = 〈X(1)
1 , X(2)

1 , X(3)
1 〉 and T2 = 〈X(1)

2 , X(2)
2 , X(3)

2 〉, and assume
that we consider FSD. The integral cdfs of the random variables in the UTSs are shown
in Figure B.7. The naive algorithm needs to determine the dominance relationship
between three pairs of random variables.
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(a) Naive (b) Grouping

Fig. B.7: Intuition for the Grouping Strategy.

This can be very inefficient, especially when long UTSs have many intervals. To
contend better with long UTSs, we group the random variables in the UTSs and com-
pare groups. If one group dominates another, any random variable in the former
group dominates every random variable in the latter group. This grouping can sig-
nificantly reduce the cost of dominance checking.

For example, we form G1 from X(1)
1 and X(2)

1 , and form G2 from X(1)
2 and X(2)

2 ,
as shown in Figure B.7(b). Since the lower boundary curve of G1 is always above
the upper boundary curve of G2, the random variables in G1 dominates the random
variables in G2. Thus, we determine the dominance relationships for two intervals, by
comparing one group pair. Likewise, when groups have multiple random variables, if
one group dominates another, we are able to determine dominance relationships for
multiple intervals, thus improving efficiency. On the other hand, large groups are less
likely to dominate each other even if there is dominance between pairs of variables
in them. Thus, we proceed to design a general grouping framework that is able to
identify groups with appropriate sizes.

B.5.2 A General Grouping Framework
We choose the expectations of random variables as the grouping criterion. This is because
E(X1) 6 E(X2) is a necessary condition for X1 �fsd X2, X1 �ssd X2, and X1 �scsd X2
according to Lemmas B.4.1, B.4.4, and B.4.6.

Analogous to the ideas of the initial check covered in Section B.4, we propose a
grouping strategy to produce groups such that for each group, the random variables
from a UTS, say T1, have smaller expectations and the random variables from the
other UTS, say T2, have larger expectations. This way, the random variables from T2
with larger expectations cannot dominate the random variables in T1 with smaller
expectations, and thus we only need to check if the random variables in T1 dominate
the random variables in T2. The resulting strategy is shown in Algorithm 7. We
illustrate the strategy using the example in Table B.5 that lists the expectations of two
UTSs with 8 intervals.
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Interval j 1 2 3 4 5 6 7 8

E(X(j)
1 ) in T1 20 39 60 80 30 35 55 75

E(X(j)
2 ) in T2 40 40 45 54 40 40 50 54

Table B.5: Expectations for UTSs T1 and T2.

Algorithm 7 GroupingBasedOnExpectations(T1, T2)

Input:
UTSs: T1 and T2.

Output:
A sequence of optimal random variables, q;

1: Identify the master UTS Tm and the slave UTS Ts;
2: Make an empty sequence q← ∅;
3: Non-grouped interval set NGIS← all intervals;
4: while NGIS 6= ∅ do
5: Emin ← the smallest expectation in NGIS in Tm;
6: E′min ← the smallest expectation in NGIS in Ts;
7: if E′min < Emin then
8: Make an empty group G;
9: for each interval j ∈ NGIS do

10: if the expectation of the j-th interval in Ts is no larger than Emin
then

11: G ← G ∪ {j}; Remove j from NGIS;
12: end if
13: end for
14: I ← GroupCheck(Ts, Tm, G, min(G), max(G));
15: Update(q, I, Ts, Tm);
16: else
17: Emin ← E′min;
18: Make a new empty group G;
19: for each interval j ∈ NGIS do
20: if the expectation of the j-th interval in Tm is no larger than Emin

then
21: G ← G ∪ {j}; Remove j from NGIS;
22: end if
23: end for
24: I ← GroupCheck(Tm, Ts, G, min(G), max(G));
25: Update(q, I, Tm, Ts);
26: end if
27: end while
28: return q;
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We choose the UTS with the smaller average expectation as the master and call the
other UTS the slave. In the example, T2 is the master and T1 is the slave.

The algorithm identifies appropriate groups iteratively. In each iteration, it identi-
fies the smallest expectation Emin among the expectations of non-grouped intervals in
the master. In the first iteration in the example, Emin = 40 because 40 is the smallest
expectation in T2. The algorithms stops when all intervals are grouped (line 4). In
each iteration, it distinguishes between two cases.

Case 1: The slave has intervals with expectations that are smaller than Emin. In
this case, these intervals form a group (lines 7–15).

In the example, the first iteration belongs to case 1 because intervals 1, 2, 5, and 6
in T1 have expectations 20, 39, 30, and 35, which are all smaller than Emin = 40. Thus
G1 = {1, 2, 5, 6} is the first group.

The intuition is that when considering the random variables in G1, the random
variables from T1 may dominate the random variables from T2, while the random
variables in T2 cannot dominate the random variables from T1. Then, we only need
to further check if the random variables in T1 dominate the random variables in T2
by calling algorithm GroupCheck(Ts, Tm, G, min(G), max(G)) (line 14), where min(G)
and max(G) return the minimum and maximum values of the random variables in
the intervals that belong to group G from both master Tm and slave Ts, respectively.
Algorithm GroupCheck returns the intervals in G for which the corresponding RVs in
Ts dominate those in Tm. Thus, for the removed intervals in G, the RVs in Ts and Tm
do not dominate each other. Based on this, a helper function update is called to update
the result q.

Case 2: The slave has no intervals with expectations that are smaller than Emin.
In this case, we update Emin to be the smallest expectation among the expectations
in the non-grouped intervals in the slave. Then, in the master, the intervals whose
expectations are no larger than the updated Emin are grouped (lines 16–26).

In the example, the second iteration belongs to case 2. After the first iteration,
the non-grouped intervals are 3, 4, 7, and 8. The minimum expectation among non-
grouped intervals in the master is Emin with value 45. In the slave, intervals 3, 4, 7,
and 8 have expectations 60, 80, 55, and 75, all of which exceed 45. We then set Emin
to 55, i.e., the minimum expectation of non-grouped intervals in the slave. Since the
expectations of the non-grouped intervals in the master are 45, 54, 50, 54, which are
all no larger than 55, we form the group G2 = {3, 4, 7, 8}.

The intuition is that when considering the random variables in G2, the random
variables from the master may dominate the random variables from the slave, while
the random variables in the slave cannot dominate random variables in the master.
This is because the random variables in T2 have smaller expectations than the expec-
tations of the random variables in T1. We then call GroupCheck (Tm, Ts, G, min(G),
max(G)) (line 24).

B.5.3 Dominance Checking for Groups
We provide a detailed discussion only for the case of SSD checking. Since checking of
FSD and SCSD for groups can be done in a similar manner, we omit the details.

Dominance checking for groups is achieved by calling function GroupCheck(T1, T2,
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G, min, max), shown in Algorithm 8. In the following discussion, we only consider
random variables during intervals in G. Recall that when groups are formed using
Algorithm 7, we ensure that T1’s random variables have smaller expectations, mean-
ing that T2’s random variables cannot dominate T1’s random variables. Thus, we only
need to check whether T1’s random variables dominate T2’s random variables.

Algorithm 8 GroupCheck(T1, T2, G, min, max)

Input:
UTSs: T1 and T2; Group G; Double: min and max;

Output:
Interval set IS of intervals where T1 dominates T2;

1: IS← ∅;
2: if ¬ BoundaryCondition(T1, T2, G, min, max) then
3: Make sub-groups from G;
4: for each sub-group sg do
5: IS← IS∪ GroupCheck(T1, T2, sg, min, max);
6: end for
7: else
8: s← min(T2, G); e← max(T1, G);
9: kA ← min(T1, G, s); kB ← max(T1, G, e);

10: Construct line lA from A with the slope kA;
11: Construct line lB from B with the slope kB;
12: Point E ← intersection of lines lA and lB;
13: Point M ← the point on the top-most curve among the curves of T2’s

random variables whose x-coordinate is xE;
14: if E is not below M then
15: IS← G;
16: else
17: G′ ← GroupCheck(T1, T2, G, s, i);
18: IS← GroupCheck(T1, T2, G′, i, e);
19: end if
20: end if
21: return IS;

We use G = {1, 2, 5, 6}, i.e., the first group found in Section B.5.2, as an example.
The integrals of the cdfs of the random variables in G from T1 and T2 are shown in
Figure B.8(a).

Boundary Condition

We start by checking a boundary condition (line 2 in Algorithm 8). Consider the
random variables (RVs) in G. If the RVs in T1 dominate the RVs in T2, the curves of
the integral of the cdfs of the RVs in T1 should appear above the corresponding curves
for T2. The boundary condition checks if this is true on the left and right boundaries.
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If this is not true on either boundary, T1’s curves cannot always appear above T2’s
curves, and thus we cannot guarantee that T1’s RVs dominate T2’s RVs. Thus, we
need to partition G into sub-groups and further check for each sub-group whether
T1’s curves can always appear above T2’s curves.

We show how the boundary condition works for the left boundary. It works
similarly for the right boundary. We first identify the left boundary lb as the smallest
minimum values of the RVs in T2. For each interval i ∈ G, we consider two copies, one
copy for the random variable in interval i in T1, represented as a square, and one copy
for the random variable in interval i in T2, represented as a circle—see Figure B.8(b).

Next, we associate with each interval copy a value that equals its random vari-
able’s integral of cdf at lb. In particular, for interval copy 5 , which corresponds

to random variable X(5)
1 from T1, the associated value is F̂

X(5)
1
(lb). For interval copy

1, which corresponds to random variable X(1)
2 from T2, and the associated value is

F̂
X(1)

2
(lb). Next, we order the interval copies according to their associated values. Fig-

ure B.8(b) shows such ordered interval copies. Specifically, since RVs in the 1st and
5th intervals from T1 have non-zero values y1 and y2, and all the remaining RVs have
0s, 1 and 5 appear at the top, and the remaining interval copies follow.

Next, we identify the interval copies from T2 that appear at the top. In our ex-
ample, it is interval 1 from T2, i.e., 1. All interval copies from T1 that appear above
1 form a sub-group. In the example, intervals 1 and 5 form a sub-group. This is so
because, on the left boundary and during intervals 1 and 5, the RVs from T1 appear
above the RVs from T2, meaning that it is possible that the RVs during intervals 1 and
5 from T1 dominates those from T2. The remaining intervals form another sub-group.

If one of the sub-groups is empty, this means that it is not necessary to make
further sub-groups at boundaries and that group G passes the boundary condition
checking. Otherwise, we check dominance for each sub-group by recursively calling
GroupCheck on each sub-group (lines 3–5 in Algorithm 8).

Group Check with Lower and Upper Bounds

We follow an idea similar to that used in the speedup algorithm for checking SSD. We
first identify s as the the smallest minimum value of the RVs in T2 and e as the largest
maximum value of the RVs in T1 (line 8), see Figure B.8(c). In order to better explain
the idea of group check, we give several definitions and lemmas.

Definition B.5.1
Lower Bound. We use H to denote the integral cdfs of a set of RVs. Given a range
[s, e] on the x-axis, the minimum values of H at s and e are denoted as Hs,min =
minF̂i∈H F̂i(s) and He,min = minF̂i∈H F̂i(e), respectively. The minimum value of the

derivatives of H at s is denoted as H′s,min = minF̂i∈H F̂′i (s), and the maximum value

of the derivatives of H at e is denoted as H′e,max = maxF̂i∈H F̂′i (s). The lower bound in
range [s, e], denoted as lb(H, s, e), consists of the following two line segments.{

y = H′s,min · (x− s) + Hs,min, when x ∈ [s, i]
y = H′e,max · (x− e) + He,min, when x ∈ (i, e]
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(a) F̂X(·) of RVs in G (b) Boundary Condition

(c) Sub-group1 = {1, 5} (d) Group Checking

Fig. B.8: Group based Dominance Checking.

Here, i is the x-coordinate of the intersection of the two line segments.

For example, consider the RVs in T1, whose integral cdfs are shown in Fig-
ure B.8(d). Points A and B hold the minimum values of the integral cdfs of the
RVs at s and e, respectively. This means that point A’s y-coordinate is Hs,min and
point B’s y-coordinate is He,min. The slopes of lines lA and lB equal H′s,min and H′e,max,
respectively. Lines lA and lB intersect at point E, whose x-coordinate is i. Thus, the
lower bound of the RVs in T1 consists of line segment AE when x ∈ [s, i] and line
segment EB when x ∈ [i, e].

Lemma B.5.1
For any value x ∈ [s, e] on the x-axis, and any integral cdf F̂i ∈ H, we have lb(H, s, e)(x)
6 F̂i(x), where lb(H, s, e)(x) returns the y-coordinate of the point that is on the lower
bound and whose x-coordinate is x.

Proof. We use proof by contradiction. We start proving on the left range [s, i]. Assume
that there exists a value x′ ∈ [s, i] and an integral cdf F̂i ∈ H such that F̂i(x′) < lb(H,
s, e)(x′). If so, the slope of the chord line that connects point (s, F̂i(s)) and point (x′,
F̂i(x′)) is smaller than H′s,min. However, since any integral cdf is convex, the slope of
the chord line of any integral cdf in H on range [s, i] should be no samller than H′s,min.
This yields a contradiction. The proof for the right range [i, e] is similar. Thus, the
lemma holds.

Definition B.5.2
Upper Bound. We use H to denote the integral cdfs of a set of RVs. Given a range
[s, e] on the x-axis, the maximum values of H at s and e are denoted as Hs,max =
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maxF̂i∈H F̂i(s) and He,max = maxF̂i∈H F̂i(e), respectively. For any d ∈ [s, e], we de-
fine Hd,max in a similar way. Given d ∈ [s, e], the upper bound of H, denoted as
ub(H, s, e, d), consists of the following two line segments.{

y =
Hd,max−Hs,max

d−s · (x− s) + Hs,max, when x ∈ [s, d]
y =

He,max−Hd,max
e−d · (x− e) + He,max, when x ∈ (d, e]

Lemma B.5.2
For any value x ∈ [s, e] on the x-axis, and any integral cdf F̂i ∈ H, we have ub(H, s, e,
d)(x) > F̂i(x), where ub(H, s, e, d)(x) returns the y-coordinate of the point that is on
the upper bound and whose x-coordinate is x.

Proof. We use proof by contradiction.We consider the left range [s, d]. Assume ∃x′ ∈
[s, d] and ∃F̂i ∈ H such that F̂i(x′) > ub(H, s, e, d)(x′). If so, the slope k of the chord
line that connects point (s, F̂i(s)) and point (x′, F̂i(x′)) exceeds the slope k′ of the
upper bound ub(H, s, e, d) on range [s, d], i.e., k > k′.

Further, since any cdf is a non-decreasing function, we have F̂
′

i (x′′) > F̂
′

i (x′) if
x′′ > x′. Since d > x′, this leads to F̂

′

i (d) > F̂
′

i (x′) = k > k′. Thus, we have
F̂i(d) > ub(H, s, e, d)(d) = Hd,max. This yields a contradiction. The proof for the right
range [d, e] is similar. Therefore, the lemma holds.

With Lemmas B.5.1 and B.5.2, it is straightforward to obtain the following lemma
to decide the dominance relationships between two sets of RVs.

Lemma B.5.3
Given a master set of RVs with integral cdfs Hmaster, a slave set of RVs with integral
cdfs Hslave, and a range [s, e], if Hmaster and Hslave meet the following three conditions
then ∀F̂k ∈ Hmaster, ∀F̂j ∈ Hslave, ∀x ∈ [s, e], we have F̂k(x) > F̂j(x).

(1) Hmaster
s,min > Hslave

s,max;
(2) Hmaster

e,min > Hslave
e,max;

(3) lb(Hmaster, s, e)(i) > ub(Hslave, s, e, i)(i).

Proof. Conditions (1) and (3) guarantee that, in range [s, i], the lower bound of Hmaster

is above the upper bound of Hslave. Similarly, conditions (2) and (3) guarantee that, in
range [i, d], the lower bound of Hmaster is above the upper bound of Hslave.

Algorithm 8 proceeds according to Lemma B.5.3. We identify the important points
A and B, where A and B are the lowest points of the integral cdfs of RVs in T1 whose
x-coordinate are s and e, respectively, as shown in Figure B.8(d). We identify two
slopes kA and kB, where kA is the smallest slope of the integral cdfs of RVs in T1 when
the x-coordinate is s and kB is the largest slope of the integral cdfs of RVs in T1 when
the x-coordinate is e. We construct line lA through point A with slope kA and line
lB through point B with slope kB (lines 9–11). We then compute the intersection E of
lines lA and lB. If E does not appear below the upper bound of T2 then all RVs in G
from T1 dominate all RVs in G from T2 (lines 12–15). Otherwise, we check sub-ranges
(s, i) and (i, e) (lines 16–18).
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B.5.4 Checking Multiple UTSs
Based on the proposed grouping strategy, we have an efficient method to check the
temporal dominance between two UTSs. However, a UTS collection TS may contain
multiple UTSs. We propose two alternative methods to check the temporal dominance
among all UTSs in a TS. The first simply checks every UTS pair using the efficient
algorithm based on the grouping strategy. The second employs a merge-sort like pro-
cedure to compare UTS pairs while employing the intermediate comparison results
to construct the final result.

For example, consider TS = {T1, T2, T3, T4}. The first method checks the domi-
nance relationships between pairs (T1, T2), (T1, T3), (T1, T4), (T2, T3), (T2, T4), and
(T3, T4). The second method first checks (T1, T2) and (T3, T4) and then uses the
results we consider to construct the final result.

B.5.5 User Defined Constraints
Users may specify additional travel time constraints. For example, a user may only
be interested in paths with an arrival times that are no later than 6 p.m. or that offer
a possibility of arriving before 4 p.m.

We use Left Constraint (LC) and Right Constraint (RC) to denote the shortest and
longest travel times that a user is interested in. For example, assume that the current
time is 2 p.m. and that a user specifies the following contraint: “the arrival time must
not exceed 6 p.m. or there must be a possibility of arriving before 4 p.m.” We can
then set LC to 120 mins and RC to 240 mins.

Based on LC and RC, we can prune random variables, before checking the stochas-
tic dominance relationships. Specifically, using LC, we can prune random variable X
if the minimum value of X exceeds LC. In other words, if FX(LC) ≤ 0, we prune X.
Similarly, based on RC, we can prune random variable X if the maximum value of X
exceeds RC. In other words, if FX(RC) < 1, we prune X. We only consider a random
variable X if and only if X satisfies both the LC and the RC constraints.

Algorithm 9 shows how we use the two constraints. Given constraints, T1 and
T2 and time interval j, (1) if the j-th random variable in T1 does not meet one of
the constraints and the j-th random variable in T2 meets both constraints then T2 is
the optimal choice in time interval j (lines 4–6); (2) if the j-th random variable in T2
does not meet one of the constraints and the j-th random variable in T1 meets both
constraints then T1 is the optimal choice in time interval j (lines 7–9); (3) if the j-th
random variables in both UTSs do not meet the constraints, time interval j has no
optimal choice and is removed (lines 10–11).

To incorporate the user-defined constraints, Algorithm 9 must be called to filter
random variables that do not satisfy the constraints. Specifically, Algorithm 9 needs
to be called after line 3 in Algorithm 7 to update q and NGIS, respectively. After-
wards, Algorithm 7 continues to check the remaining random variables that satisfy
the constraints.
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Algorithm 9 UserDefinedConstraintsCheck(T1, T2, LC, RC)

Input:
UTSs: T1 and T2, LC, RC.

Output:
A sequence of optimal random variables, q, and remaining intervals I;

1: Make an empty sequence q← ∅;
2: Non-grouped interval set I← all intervals;
3: for each interval j ∈ I do
4: if (T1[j].min > LC or T1[j].max > RC) and (T2[j].min ≤ LC and

T2[j].max ≤ RC) then
5: Remove j from I;
6: Update(q, j, T2, T1);
7: else if (T1[j].min ≤ LC and T1[j].max ≤ RC) and (T2[j].min > LC or

T2[j].max > RC) then
8: Remove j from I;
9: Update(q, j, T1, T2);

10: else if (T1[j].min > LC or T1[j].max > RC) and (T2[j].min > LC or
T2[j].max > RC) then

11: Remove j from I;
12: end if
13: end for
14: return q, I;

B.6 Empirical Study

B.6.1 Experimental Setup
We consider two different collections of uncertain time series.
Real UTSs (RU): We use a large GPS data set of more than 180 million GPS records
collected in Denmark from January 2007 to December 2008. We eliminate GPS records
with unreasonable speeds, i.e., more than 200 km/h, since the speed limit on high-
ways in Denmark is 130 km/h.

Next, we align GPS records with the road network to obtain trajectories using a
well-known map-matching algorithm [12]. Given an origin and a destination (OD)
pair, we first count the number of trajectories between the OD pair. Then we select
the top 15,000 OD pairs with the largest numbers of trajectories. For each chosen OD
pair, we consider all paths that have been used by trajectories that connect the pair.

We derive UTSs for the edges in the road network using the method outlined in
Section B.2. Then, for each considered path, we construct a UTS using the UTSs of
the edges in the path using an existing method [7, 14].

This way, we obtain a UTS collection for each OD pair. As OD pairs are connected
by between 2 and 6 paths, we obtain UTS collections with cardinalities that vary from
2 to 6, as shown in Table B.7 and the corresponding number of UTS collections is
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shown in Table B.6.

|T S| 2 3 4 5 6
Num of Collections 12,461 1,266 164 20 4

Table B.6: Number of UTS Collections.

Synthetic UTSs (SU): Following a common practice from studies of UTSs [19–21], we
also construct UTSs from deterministic time series (DTSs). In particular, we use a pub-
licly available DTS data set3. In a DTS, each interval is associated with a deterministic
value c rather than a random variable. To construct a UTS from a DTS, we construct
a random variable based on the deterministic value c for each interval. Specifically,
generate three distributions—normal, uniform, and exponential—and use c as their
mean. The standard deviation is chosen as τ times the standard deviation of all the
deterministic values in a DTS, where τ varies from 0.1 to 2. This procedure follows a
recommendation from a recent UTS benchmark [19].
Data Cleaning: In both datasets, we smooth the probability mass function (pmf) of
each random variable. In particular, we set pmf (x) = 0 if pmf (x) < ε, and we set ε to
1× 10−8 in the experiments; and then we normalize each pmf so that ∑ pmf (x) = 1.
By doing this, we remove insignificant biases.
Parameters: For both RU and SU, we use equi-width histograms to represent the
random variables. We vary the number b of bins in a histogram from 100 to 1,000. We
also vary the cardinality |T S| of a UTS collection, parameter τ, and the distribution
of the synthetic UTSs according to Table B.7, where the default values are in bold.

Parameter Values
b (102) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|T S| 2, 3, 4, 5, 6
τ 0.1, 0.5, 1, 2
Distributions Normal (n), Exponential (e), Uniform (u)

Table B.7: Parameter Settings.

Since SSD and SCSD are defined in a similar way and also due to the space limi-
tation, we only report findings for SSD.

Note that temporal dominance queries only require users to provide a stochastic
dominance parameter x that indicates fsd, ssd, or scsd—users need not provide specific
utility functions.
Implementation Details: All algorithms are implemented in Python. We conduct
experiments on a server with a 64-core AMD Opteron(tm) 2.24 GHZ CPU, 528 GB
main memory under Ubuntu Linux.

3http://academic.udayton.edu/kissock/http/Weather/
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B.6.2 Efficiency

Checking Stochastic Dominance

We first study the performance of checking stochastic dominance between two ran-
dom variables. We consider four algorithms: (1) NAI: the naive algorithm according
to the definition of the corresponding order. (2) NAI+IC: the naive algorithm with
initial checks. This also corresponds to a state-of-the-art method [22, 23], where a de-
tailed discussion is included in Section B.7. (3) SPE: the speedup algorithm. (4) CPS:
a method that represents different orders of stochastic dominance as constraints in
linear programming and solves the resulting linear problem using CPLEX4, a state-of-
the-art optimization software package that is widely used in statistics and operations
research [24].

We consider two measurements—the number of comparison steps and runtime.
For NAI and NAI+IC, the number of comparison steps corresponds to the number
of the comparisons between two random variables’ cdfs or cdf integrals. For SPE,
the number of comparison steps correspond to the number of the recursive calls in
Algorithms 3 and 6, because they compare two random variables’ cdfs or integrals of
cdfs in each recursive call.

For brevity, in this set of experiments, we only report results for SSD and omit
results for FSD if they are similar to those for SSD.

Impact of b: We first evaluate the scalability of the different algorithms w.r.t.
the number of histogram bins, with results shown in Figure B.9 (RU) and Figure B.10
(SU). For both data sets, the number of comparison steps and the runtime of NAI and
NAI+IC increase almost linearly with b. However, the speedup algorithm SPE has sta-
ble performance and is insensitive to b. Further, SPE shows substantial improvement
over NAI and NAI+IC.

(a) Comparison Steps (b) Runtime

Fig. B.9: Impact of b, SSD, RU.

Next, we consider the method CPS. As CPS works as a black box, we are unable
to count the number of comparison steps and only measure runtime. Figures B.9(b)
and B.10(b) show that although CPS is also insensitive to b, the runtime is even worse

4https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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(a) Comparison Steps (b) Runtime

Fig. B.10: Impact of b, SSD, SU.

than that of NAI. This is because CPS has an initialization overhead for constructing
its linear programming model.

Impact of distributions: Figure B.11 reports the performance of the different
methods for different distributions, where n, e, and u denote normal, exponential,
and uniform distributions. We see that SPE significantly outperforms other methods
in all settings. This experiment implies that SPE is robust to different distributions.

(a) Comparison Steps (b) Runtime

Fig. B.11: Impact of Distributions, SSD, SU.

Impact of τ: Next, we consider the impact of varying standard deviations. Fig-
ure B.12 shows the results for normal distributions. As the standard deviation in-
creases, the performance of NAI+IC improves slightly. This is because although the
range that needs to be checked increases with a larger standard deviation, NAI+IC
may find an inconsistent point early and may thus terminate in a few steps, which
results in less runtime. The runtime for SPE increases when τ increases from 0.1 to 0.5
and then decreases when τ increases from 0.5 to 2. The reason is two-fold. First, when
τ is very small, the compared cdf integrals may be separated by substantial gaps that
yield a clear dominance relationship, which results in less runtime. Second, when τ

becomes larger, e.g., when τ > 1, the gaps become smaller, and the cdf integrals are
increasingly likely to intersect, resulting in situations where random variables cannot
dominate each other. Therefore, when τ is either very small or very large, it takes less
time to check dominance reltionships.
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(a) Comparison Steps (b) Runtime

Fig. B.12: Impact of τ, SSD, SU.

Temporal Dominance Queries in UTSs

We evaluate the performance of processing temporal dominance queries on UTS col-
lections. We consider four methods for temporal dominance queries. Neither NAI
nor SPE use the grouping strategy, but rather use the naive algorithm with initial
checking and the speedup algorithm to check the dominance relationships for each
interval. Both GRP and MSG use the grouping strategy, and GRP does not use the
merge sort like procedure that is used by MSG.

Impact of b: Figure B.13 shows the runtime when varying b on RU. The runtime
of NAI increases almost linearly with the increase in b, while the other three methods,
which are all based on the proposed speedup algorithm, only increases slightly. This
occurs because the speedup algorithm for checking FSD and SSD between two ran-
dom variables is insensitive to b. Figure B.13 also shows that the proposed grouping
strategy is effective—the two methods that use the grouping strategy, i.e., GRP and
MSG, outperform the other two methods that do not use the grouping strategy, i.e.,
NAI and SPE.

(a) FSD (b) SSD

Fig. B.13: Impact of b, UTSs, RU.

Impact of |TS|: Figure B.14 shows the runtime of the different methods when
varying the UTS collection cardinality |TS| on RU. The results show that as the car-
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dinality increases, the methods using the grouping strategy achieve more significant
runtime improvements. Further, the use of a merge sort like procedure enables MSG
to achieve better run-time than GRP, especially when cardinality is large.

(a) FSD (b) SSD

Fig. B.14: Impact of |TS|, UTSs, RU.

Impact of l: We show the impact of the length l of UTSs on RU in Figure B.15.
As length l increases, the runtimes of all methods increase. However, runtimes of the
two methods using the grouping strategy, i.e., GRP and MSG, only increase slightly,
as they are able to group similar random variables together and identify dominance
relationships between random variable groups. When the time series are long, there
are more random variables that can be grouped. For all values of l, GRP and MSG are
significantly faster than the other two methods that do not use the grouping strategy,
on both FSD and SSD.

(a) FSD (b) SSD

Fig. B.15: Impact of Length, UTSs, RU.

Impact of distributions: Figure B.16 shows the effect of different distributions on
SU. GRP and MSG, which use the grouping strategy, outperform the methods without
grouping strategy for all distributions. This indicates that the proposed grouping
strategy is robust to varying distributions.

Impact of τ: Figure B.17 shows the impact of varying standard variations when
using normal distributions on SU. On FSD, the performance of the grouping strategy
degrades slightly with larger standard deviations because such standard deviations
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(a) FSD (b) SSD

Fig. B.16: Impact of Distribution, UTSs, SU.

(a) FSD (b) SSD

Fig. B.17: Impact of τ, UTSs, Normal Dist., SU.

have the effect that the initially formed groups based on means will be split into many
sub-groups later on, which adversely affects the efficiency. On SSD, the performance
of the grouping strategy is more stable and is insensitive to standard deviation varia-
tions. In all settings, GRP and MSG are faster than the other two methods that do not
use grouping, and MSG is the fastest.

B.6.3 Effectiveness

Comparison with Expectations

To gain insight into the functionality improvements of the proposed methods that
take into account users’ risk preferences, we compare with a method that does not
take users’ risk preferences into account. Specifically, we employ a method that uses
expected values, i.e., expected travel time in our setting. This means that one random
variable dominates another random variable if the former has a smaller expected
value.

Given a UTS collection, this expectation-based method always chooses, for each
interval, the random variable with the smallest expected travel time, meaning that it
does not consider any risk preferences. In contrast, the temporal dominance queries
choose, for each interval, the random variables that are not dominated by other ran-
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dom variables w.r.t. fsd (i.e., for risk-neutral users), ssd (i.e., for risk-loving users), or
scsd (i.e., for risk-averse users).

We compute the ratio γ =
Diff
Total , where Diff is the number of queries whose re-

sults returned by the two methods are different and Total is the number of all queries.
Thus, the ratio expresses the difference between the results returned by the two meth-
ods. Figure B.18(a) shows that the temporal dominance queries w.r.t. fsd and ssd
return significantly different results when compared to the method using expected
values. This offers evidence that the proposed temporal dominance queries are able
to support different scenarios with different risk preferences.

Ratio of Non-Dominated Variables

In this experiment, we evaluate the effectiveness of the proposed temporal domi-
nance queries when a specific utility function is provided, i.e., the third scenario in
Section B.3.3. In this scenario, we consider two options. First, we compute the expec-
tations for all random variables based on the given utility function. We denote the
number of expectation computations by total. Second, we first categorize each utility
function as convex, concave, or other; then we only need to compute expected utilities
for the random variables in Ofsd(RVS), Ossd(RVS), or Oscsd(RVS), not for other dom-
inated RVs. We denote the number of expectation computation in the second option
as NonDominated.

Next, we use the ratio NonDominated
Total to measure the effectiveness of calculating ex-

pected utilities using the two options. The lower the ratio is, the better pruning
effectiveness the temporal dominance queries provide. Figure B.18(b) shows that the
ratios w.r.t fsd and ssd go down when the cardinalities of the UTS increase. On aver-
age, more than half of the random variables can be safely pruned when the cardinality
exceeds 2. In addition, we also observe that the ratio for fsd is always larger than that
for ssd. This is true because the non-dominated set regarding ssd is always a subset
of that regarding fsd.

(a) Comparison with Expectations (b) Ratio of Non-Dominated Variables

Fig. B.18: Effectiveness, RU.
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B.7 Related Work

We review related work in relation to stochastic dominance, uncertain time series, and
path selection.

Stochastic Dominance: Stochastic dominance is fundamentally different from the
dominance notion that is used widely in skyline queries [25], where dominance is
defined in terms of pareto-optimality for multi-dimensional, deterministic data. In
contrast, the stochastic dominance considered here is defined on one-dimensional,
uncertain data.

Skyline queries can also be applied to uncertain data, yielding probabilistic [26, 27]
and stochastic [7, 22, 23, 28] skyline queries. Probabilistic skylines adopt a possible
worlds semantics [29]. A skyline is computed for each possible world, and an un-
certain object has a probability of being in the skyline when considering all possible
worlds. Stochastic dominance does not use possible world semantics, but instead
considers cdfs and integrals of cdfs.

Stochastic skylines [22, 23] are defined in terms of stochastic dominance. How-
ever, only first order dominance is considered, and algorithms exist only for discrete
distributions in the form of (value, probability) pairs. The efficiency of an existing
method relies on the number of distinct values [23]. When the values in the discrete
distributions are sparse and not aligned, there exist only a limited number of distinct
values, which offers good efficiency. In contrast, when the values in the discrete dis-
tributions are not sparse or well aligned, e.g., discrete representations of continuous
distributions, all the values become distinct values, and the method deteriorates to the
NAI+IC method covered in Section B.6.2. Our proposal supports stochastic dominance
with different orders of dominance and supports both discrete and continuous distri-
butions. Further, the stochastic skyline operator does not take into account random
variable sequences, while our proposal considers this setting and provides efficient
group dominance checking for random variable sequences.

Uncertain time series: Most studies involving uncertain time series (UTS) concern
similarity search in a top-k or threshold-based manner [19–21, 30, 31]. In contrast, our
temporal dominance query on uncertain time series identifies the optimal random
variables in each considered time interval, which is different from similarity search.

In particular, MUNICH [20] and PROUD [30] consider threshold-based similarity
search where two thresholds are provided in advance—a distance threshold ε and a
probability threshold τ. Given a query UTS TQ, a threshold-based similarity search
returns a set of UTSs. Each returned UTS, say Ti, has a sufficiently large (i.e., larger
than τ) probability that the distance between Ti and the query UTS TQ is smaller than
the distance threshold ε. MUNICH assumes that the random variables in different
intervals are independent and offers speed-up techniques to answer threshold-based
similar searches. PROUD assumes that statistical information, e.g., means and vari-
ances, are available for all random variables in different intervals and utilizes the
central limit theorem to prune dissimilar UTSs.

DUST [31] also considers similarity search but relies on only a single distance
threshold ε. In particular, given two UTSs, DUST is able to return a deterministic
distance value that measures the similarity between the two UTSs without requiring
a probability threshold τ. DUST performs better than MUNICH and PROUD when
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random variables follow different distributions during different intervals. A bench-
mark [19] compares the three methods, i.e., MUNICH, PROUD, and DUST, for UTS
similarity search and makes recommendations on the scenarios in which each method
performs the best.

Holistic-PkNN [21] investigates the problem of efficiently computing top-k nearest
neighbors of UTSs. Given a query UTS TQ, the probability of a UTS being the nearest
neighbor to TQ is defined, and an efficient query processing algorithm is proposed to
find k UTSs having the top-k largest probabilities.

One study considers probabilistic skylines on uncertain time series [32]. It adopts
possible worlds semantics to model a UTS as a collection of multi-dimensional points
and then applies probabilistic skyline queries to them. Our study also differs from
this study, as we do not use possible worlds semantics.

Path selection: A few studies consider path selection under different user prefer-
ence [13, 33–35]. They either do not consider uncertain travel times or consider only
uncertain travel times for some specific departure time or interval. Some of these
studies also consider specific preference functions or preference vectors, but they do
not consider preference categories. Thus, the paper’s proposal also differs from this
line of research. A recent paper considers identifying non-dominated paths w.r.t.
fsd [36] for a given interval, e.g., a peak or off-peak interval, while our paper is able
to identify non-dominated paths w.r.t fsd, ssd, and scsd for different intervals.

B.8 Conclusions and Outlook

We propose and study temporal dominance queries on uncertain time series. We
provide a comprehensive analysis of stochastic dominance and user risk preferences,
and utility functions. Efficient methods for checking stochastic dominance between
two random variables and two random variable groups are proposed to efficiently
compute temporal dominance queries on UTSs. Empirical studies with two real world
UTS collections suggest that the proposed methods are effective and efficient.

In future work, it is of interest to consider decision making with multi-variate ran-
dom variables, e.g., travel paths with both travel time and fuel consumption [37–39]
distributions. It is also of interest to consider grouping strategies involving differ-
ent UTSs, not only different intervals, to further improve temporal dominance query
processing efficiency.
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Abstract

Given a partitioning of a road network into regions, an origin-destination (OD) matrix records
the cost of travel between any pair of regions, example costs being travel speed or greenhouse
gas emission. OD matrices have a broad range of uses in transportation and logistics. We
consider an increasingly pertinent setting where a set of vehicle trajectories is used for instan-
tiating historical OD matrices. As a cost such as travel speed varies over time, e.g., due to
varying congestion, matrices are created for different time intervals during a day, e.g., one
matrix for every 15 minutes. A cost is modeled as a distribution because different vehicles, as
captured by the set of trajectories, may travel at different speeds during the same time interval,
e.g., due to different driving styles or different waiting times at intersections. The resulting
historical OD matrices are likely to be sparse. We address the problem of forecasting complete
near future OD matrices from such sparse historical OD matrices. To solve the problem, we
propose a generic learning framework that employs matrix factorization and graph convolu-
tional neural networks to contend with data sparseness and that captures temporal dynamics
via recurrent neural networks. Empirical studies using two taxi trajectory data sets offer
detailed insight into the properties of the framework and indicate that it is effective.
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Fig. C.1: Partition a City into Regions

C.1 Introduction

Origin-destination (OD) matrices [1, 2] are applied widely in location based services
and online map services (e.g., transportation-as-a-service), where OD matrices are
used for the scheduling of trips, for computing payments for completed trips, and for
estimating arrival times. For example, Google Maps1 and ESRI ArcGIS Online2 offer
OD matrix services to help developers to develop location based applications. Further,
increased urbanization contributes to making it increasingly relevant to capture and
study city-wide traffic conditions. OD matrices may also be applied for this purpose.

To use OD-matrices, a city is partitioned into regions, and a day is partitioned into
intervals. Each interval is assigned its own an OD-matrix, and an element (i, j) in ma-
trix described the attribute (e.g., travel speed, fuel consumption, or travel demand) of
travel from region i to region j during the interval that the matrix represents. Differ-
ent approaches can be applied to partition a road network, e.g., using a uniform grid
or using major roads, as exemplified in Figure C.1. In this paper, we focus on speed
matrices. However, the proposed techniques can be applied on other travel attributes
or costs, such as travel time, fuel consumption, and travel demand.

As part of the increasing digitization of transportation, increasingly vast volumes
of vehicle trajectory, trajectory data are becoming available. We aim to exploit such
data for composing OD matrices. Specifically, an element (i, j) of a speed matrix for
a given time interval can be instantiated from the speeds observed in trajectories that
went from region i to region j during the relevant time interval.

We consider stochastic OD matrices where the elements represent uncertain costs by
meaning of cost distributions rather than deterministic, single-valued costs. The use of
distribution models reality better and enables more reliable decision-making. For ex-
ample, element (i, j) has a speed histogram {([10, 20), 0.5), ([20, 40), 0.3), ([40, 60], 0.2)},

1https://tinyurl.com/7vmtk4y
2https://tinyurl.com/ydhq765h
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meaning that the probability of traveling speed from region i to region j at 0-20 km/h
is 0.5, at [20, 30) is 0.3, and at [30, 40) is 0.2, respectively. If a passenger needs to go
from his home in region i to catch a flight in an airport in region j, and the short-
est path from his home to the airport is 20 km, then we are able to derive a travel
time (minutes) distribution: {[30, 40], 0.5), (40, 60], 0.3), (60, 120], 0.2)}. Therefore, the
passenger needs to reserve at least 120 minutes for not being late. However, when
only using average speed to derive an average travel time of 54 minutes, it makes the
passenger runs into a risk of missing the flight.

We address the problem of stochastic origin-destination matrix forecasting—based on
historical stochastic OD-matrices, we predict future OD-matrices. Figure C.2 shows a
specific example: given stochastic OD-matrices for 3 historical intervals T(t−2), T(t−1),
and T(t), we aim at predicting the stochastic OD-matrices for the 3 future intervals
T(t+1), T(t+2), and T(t+3).

1
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4
5
6
7
8

1 2 3 4 5 6 7 8

Historical Sparse OD-matrices Future Full OD-matrices
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?
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?

? ?
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[10, 20) [20, 30)[30, 40]

Fig. C.2: Stochastic Origin-Destination Matrix Forecasting.

Here, a stochastic OD-matrix is represented as a 3-dimensional tensor, where the
first dimension represents source regions, the second dimension represents desti-
nation regions, and the third dimension represents cost ranges. For example, Fig-
ure C.2(b) shows the stochastic OD-matrix for interval T(t), which is represented as
a R8×8×3 tensor with 8 source regions, 8 destination regions, and 3 speed (km/h)
ranges [10, 20), [20-30), and [30-40]. Element (8, 8) in the OD-matrix is a vector (0.3,
0.5, 0.2), meaning that, when traveling within region 8, the travel speed histogram is
{([10, 20), 0.3), ([20, 30), 0.5), ([30, 40], 0.2)}.

Solving the stochastic OD-matrix forecasting problem is non-trivial as it is neces-
sary to contend with two difficult challenges.
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(1) Data Sparseness. To instantiate a stochastic OD-matrix in an interval using tra-
jectories, we need to have sufficient trajectories for each region pair during the in-
terval. However, even massive trajectory data sets are often spatially and temporally
skewed [3–7], making it almost impossible to cover all region pairs for all intervals.

For example, the New York City taxi data set3 we use in experiments has more
than 29 million trips from November and December 2013. Yet, this massive trip set
only covers 65% of all “taxizone” pairs in Manhattan, the most densely traversed
region in New York City. If we further split the data set according to the temporal
dimension, e.g., into 15-min intervals, the spareness problem becomes even more
severe.

The data sparseness in turn results in sparse historical stochastic OD-matrices,
where some elements are empty (e.g., those elements with “?” in Figure C.2(b)).
Yet, decision making requires full OD-matrices. The challenge is how to use sparse
historical OD-matrices to predict full future OD-matrices.
(2) Spatio-temporal Correlations. Traffic is often spatio-temporally correlated—if a
region is congested during a time interval, its neighboring regions are also likely to be
congested in subsequent intervals. Thus, to predict accurate OD-matrices, we need to
account for such spatio-temporal correlations. However, the OD-matrices themselves
do not necessarily capture spatial proximity. No matter which partition method is
used, we cannot always guarantee that two geographically adjacent regions are rep-
resented by adjacent rows and columns in the matrix. For example, in Figure C.1(a),
regions 1 and 4 are geographically adjacent, but they are not adjacent in the OD ma-
trices; in Figure C.1(b), regions 4 and 7 are adjacent but they are again not adjacent in
the OD matrices. This calls for a separate mechanism that is able to take into account
the geographical proximity of regions.

We propose a data-driven, end-to-end deep learning framework to forecast stochas-
tic OD matrices that aims to effectively address the challenges caused by data sparse-
ness and spatio-temporal correlations. First, to address the data sparseness challenge,
we factorize a sparse OD matrix into two small dense matrices with latent features
of the source regions and the destination regions, respectively. Second, we model
the spatial relationships among source regions and among destination regions using
two graphs, respectively. Then, we employ two graph covolutional, recurrent neural
networks (GR) on the two dense matrices to capture the spatio-temporal correlations.
Finally, the two GRs predict two dense, small matrices. We apply the multiplication
to the two dense, small matrices to obtain a full predicted OD-matrix.

To the best of our knowledge, this is the first study of stochastic OD matrix fore-
casting that contends with data sparseness and spatio-temporal correlations. The
study makes four contributions. First, it formalizes the stochastic OD matrix forecast-
ing problem. Second, it proposes a generic framework to solve the problem based on
matrix factorization and recurrent neural networks. Third, it extends the framework
by embedding spatial correlations using two graph convolutional neural networks.
Fourth, it encompasses an extensive experiments using two real-world taxi datasets
that offers insight into the effectiveness of the framework.

The remainder of the paper is organized as follows. Section 2 covers related
works. Section 3 defines the setting and formalizes the problem. Section 4 introduces

3http://www.nyc.gov/html/tlc/html/technology/raw_data.shtml
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a basic framework and Section 5 presents an advanced framework. Section 6 reports
experiments and Section 7 concludes.

C.2 Related Work

C.2.1 Travel Cost Forecasting
We consider three types of travel cost forecasting methods in turn: segment-based
methods [8–13], path-based methods [5, 6, 14–17], and OD-based methods [3, 4, 18].

Segment-based methods focus on predicting the travel costs of individual road
segments. For example, by modeling the travel costs of a road segment as a time se-
ries, techniques such as time-varying linear regression [8], Markov models [9, 10], and
support vector regression [11] can be applied to predict future travel costs. Most such
models consider time series from different edges independently. As an exception, the
spatio-temporal Hidden Markov model [10] takes into account the correlations among
the costs of different edges. Some other studies focus on estimating high-resolution
travel costs, such as uncertain costs [12] and personalized costs [13].

Path-based methods focus on predicting the travel costs of paths. A naive ap-
proach is to predict the costs of the edges in a path and then aggregate the costs.
However, this approach is inaccurate since it ignores the dependencies among the
costs of different edges in paths [5, 15]. Other methods [5, 14, 15] use sub-trajectories
to capture such dependencies and thus to provide more accurate travel costs for paths.
A few studies propose variations of deep neural networks [6, 16, 17] to enable accurate
travel-time prediction for paths.

Finally, OD-based methods aim at predicting the travel cost for given OD pairs.
Our proposal falls into this category. A simple and efficient baseline [3] is to compute
a weighted average over all historical trajectories that represent travel from the origin
to the destination in an OD pair. However, it does not address data sparseness, which
means that if no data is available for a given OD pair, it cannot provided a prediction.
In contrast, our proposal is able to predict full OD-matrices without empty elements
based on historical, sparse OD-matrices. A recent study [18] utilizes deep learning
and multi-task learning to predict OD travel time while taking into account considers
the road network topology and the paths used in the historical trajectories. However,
path information may not always be available. An example is the New York taxi data
set that we use in the experiments. This reduces the applicability of the model. In
contrast, our proposal does not require path information. Further, existing proposals
support only deterministic costs, while our proposal also supports stochastic costs.

C.2.2 Graph Convolutional Neural Network
Convolutional Neural Networks (CNNs) have been used successfully in the contexts
of images [19], videos [20], speech [21], and taxi supply-demand [22], where the un-
derlying data is represented as a matrix [23, 24]. For example, when representing an
image as a matrix, nearby elements, e.g., pixels, share local features, e.g., represent
parts of the same object. In contrast, in our setting, an OD-matrix may not satisfy the
assumption that helps make CNNs work—two adjacent rows in an OD matrix may
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represent two geographically distant regions and may not share any features; and
two separated rows in an OD matrix may represent geographically close regions that
share many features.

Graph convolutional neural networks (GCNNs) [23, 24] aim to address this chal-
lenge. In particular, the geographical relationships among regions can be modeled as
a graph, and GCNNs then take into account the graph while learning. One study [25]
applies GCNNs to solve semi-supervised classification in the setting of citation net-
works and knowledge graphs. One study continues to study semi-supervised clas-
sification via dual graph convolutional networks [26]. Another study [27] constructs
GCNNs together with a Recurrent Neural Network (RNN) to forecast traffic. Both
studies consider a setting where only one dimension needs to be modeled as a graph.
In contrast, in our study, both dimensions, i.e., the source region dimension and the
destination region dimension, need to be modeled as two graphs. An additional,
recent study focuses on so-called geomatrix completion which considers a similar set-
ting where two dimensions need to be modelded as two graphs. It uses multi-graph
neural networks [28] with RNNs. However, the RNNs in this study are utilized to
perform iterations to approximate the geomatrix completion, not to capture temporal
dynamics as in our study. To the best of our knowledge, our study is the first that
constructs a learning framework involving dual-graph convolution and employing
RNNs to forecast the future.

C.3 Preliminaries

C.3.1 OD Stochastic Speed Tensor
A trip p is defined as a tuple p = (o, d, t, l, τ), where o, d denote an origin and a
destination, t is a departure time, l represents the trip distance, and τ is the travel
time of the trip. Given p.l and p.τ, we derive the average travel speed v of p. We use
P to denote a set of historical trips.

To capture the time-dependent traffic, we partition the time domain TI of interest,
e.g., a day, into a number of time intervals, e.g., 96 15-min intervals. For each time
interval Ti ∈ TI, we obtain the set of historical trips PTi from P whose departure times
belong to time interval Ti, i.e., PTi = {pi|pi.t ∈ Ti ∧ pi ∈ P}.

We further partition a city into M regions V = {V1, · · · , VM}. An Origin-
Destination (OD) pair is defined as a pair of regions (Vo, Vd) where 1 ≤ o, d,≤ M.

Given a time interval Ti, two regions Vo and Vd, we obtain a trip set PTi ,Vo ,Vd =
{pi|pi.o ∈ Vo ∧ pi.d ∈ Vd ∧ pi.t ∈ Ti}, meaning that each trip in PTi ,Vo ,Vd starts from
region Vo, at a time in interval Ti, and ends at region Vd.

Next, we construct an equi-width histogram HTi ,Vo ,Vd to record the stochastic
speed of trips in PTi ,Vo ,Vd . In particular, an equi-width histogram is a set of K bucket-
probability pairs, i.e., HTi ,Vo ,Vd = {(bj, prj)}. A bucket bj = [vs, ve) represents the
speed range from vs to ve, and all buckets have the same range size. Probability prj is
the probability that the average speed of a trip falls into the range bj. For example, the
speed histogram {([0, 20), 0.5), ([20, 40), 0.3), ([40, 60), 0.2)} for PTi ,Vo ,Vd means that
the probabilities that the average speed (km/h) of a trip in PTi ,Vo ,Vd falls into [0, 20),
[20, 40), and [40, 60) are 0.5, 0.3, and 0.2, respectively.
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Definition C.3.1
Given a time interval Ti, an OD stochastic speed tensor is defined as a matrix
M(i) ∈ RN×N′×K , where the first and second dimensions range over the origin and
destination regions, respectively, and the third dimension ranges over the stochastic
speeds. For generality, the origin and destination regions can be the same or can be
different; thus the first and second dimensions have N and N′ instances, respectively.
The third dimension defines K speed buckets.

Mo,d,k represents the element (o, d, k) of tensor M(i) ∈ RN×N′×K and represents
the probability of trips in PTi ,Vo ,Vd traveling at an average speed that falls into the
k-th bucket.

Following the example in Figure C.2(b), given a time interval Ti, for origin region
7 and destination region 8, we obtain a stochastic speed of trips as a histogram, in
which the first bucket records that the probability of trips, starting at region 7 during
time interval Ti and ending at region 8, traveling at an average speed of [5, 10) is 0.3.

As shown in Figure C.2(b), not all cells have a histogram to capture the stochastic
speed. Specifically, the cells with question marks have no histograms because no trip
records are available for those cells, i.e., PTi ,Vo ,Vd = ∅, so that HTi ,Vo ,Vd = ∅. We
refer to such tensor as sparse OD stochastic speed tensor.

Given a time interval Ti, we refer to a tensor where each cell has a stochastic speed
HTi ,Vo ,Vd as a full OD stochastic speed tensor.

C.3.2 Problem Definition

Given s sparse OD stochastic speed tensors M(t−s+1), . . ., M(t) during s historical time
intervals T(t−s+1), . . ., T(t), we aim to predict the stochastic speeds for the next h time
intervals T(t+1), . . ., T(t+h) in the form of h full OD stochastic speed tensors M(t+1),
. . ., M(t+h) by learning the following function f .

f : [M(t−s+1), . . . , M(t)]→ [M(t+1), . . . , M(t+h)]

C.4 Basic Stochastic Speed Forecasting

C.4.1 Framework and Intuition
Figure C.3 shows the basic framework for forecasting stochastic speeds, which con-
sists of three steps: Factorization, Forecasting, and Recovering.

For the historical time intervals T(t−s+1), . . ., T(t), we have sparse OD stochastic
speed tensors M(t−s+1), . . ., M(t). We factorize each stochastic speed tensor M(t−i+1) ∈
RN×N′×K , where i ∈ [1, s] into two smaller tensors R(t−i+1) ∈ RN×β×K and C(t−i+1) ∈
Rβ×N′×K , where β � N, N′. The aim is to use R(t−i+1) and C(t−i+1) to approxi-
mate M(t−i+1). Here R(t−i+1) and C(t−i+1) model the correlated features of stochastic
speeds among origin regions and among destination regions, respectively. And it is
intuitive to assume that stochastic speeds among origin regions and among destina-
tion regions share correlated features, as traffic in a region affects the traffic in its
nearby regions.
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Fig. C.3: Framework Overview.

The factorization is supported by the intuition underlying low-rank matrix ap-
proximation [28–31]. Since M(t−i+1) is a sparse tensor, we aim to find a low-rank
tensor M′(t−i+1) to approximate M(t−i+1). When carrying out the approximation,
we assume that the rank of M′(t−i+1) is at most β and that it can be factorized as
M′(t−i+1) = R(t−i+1) ×C(t−i+1). Then, the problem of using M′(t−i+1) to approximate
M(t−i+1) can be formulated as the problem of minimizing the following loss function.

min
R(x) ,C(x)

||R(x)||2F + ||C(x)||2F +
µ

2
||Ω ◦ (R(x)C(x) −M(x))||2F, (C.1)

where x = t− i + 1, || · ||F denotes the Frobenius norm, Ω(x)
o,d,k = 1 if the element (o, d)

of M(x) is not empty, and ◦ is the element-wise tensor multiplication.
Next, we consider R(t−s+1), . . . , R(t) as an input sequence, from which we capture

the temporal correlations among the origin regions of M(t−s+1), . . ., M(t). We feed
this input sequence into a sequence-to-sequence RNN model [32] to forecast an output
sequence that represents the shared features among the origin regions in the future.

We apply a similar procedure to C(t+1), . . . , C(t+h) to forecast an output sequence
that represents the shared features among destination regions in the future.

Finally, we recover M(t+j) as a full OD stochastic speed tensor from R(t+j) and
C(t+j), j ∈ [1, h]. Since we obtain the predictions R(t+j) and C(t+j) from the histori-
cal R(t−i+1) and C(t−i+1), i ∈ [1, s], the intuition of Equation C.1 also applies when
reconstructing M(t+j).

C.4.2 Factorization

Given an input sparse OD stochastic tensors M(t−i+1) ∈ RN×N′×K at interval T(t−i+1),
where i ∈ [1, s], we proceed to describe the method for factorizing M(t−i+1) into
R(t−i+1) and C(t−i+1), which are able to capture the correlated features of stochastic
speed among origin and destination regions, respectively.

We first flatten M(t−i+1) into a vector f (t−i+1) ∈ Rl , where l = N · N′ · K, from
which we generate two small factorization vectors, c(t−i+1) ∈ RN′ ·K·β and r(t−i+1) ∈
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RN·K·β via a fully-connected neural network layer (FC layer).

r(t−i+1) = relu(Fr × f (t−i+1) + br) (C.2)

c(t−i+1) = relu(Fc × f (t−i+1) + bc) (C.3)

Here Fr ∈ R(N·K·β)×l and Fc ∈ R(N′ ·K·β)×l are parameter matrices, where β is a hyper-
parameter to be set; br ∈ R(N·K·β) and bc ∈ R(N′ ·K·β) are bias vectors; and relu(·) is
the relu activation function.

Next, we reorganize the factorization vectors r(t−i+1) and c(t−i+1) into factoriza-
tion tensors R(t−i+1) ∈ RN×β×K and C(t−i+1) ∈ Rβ×N′×K , respectively.

C.4.3 Forecasting

Given historical time intervals T(t−s+1), . . . , T(t), we learn the temporal correlations of
M(t−s+1), . . . , M(t) from the temporal correlations among origin regions R(t−s+1), . . . ,
R(t) and the temporal correlation among destination regions C(t−s+1), . . . , C(t).

Based on R(t−s+1), . . . , R(t), we use a sequence-to-sequence RNN model [32] to

forecast R̂
(t+1)

, . . . , R̂
(t+h)

for the future time intervals Tt+1, . . . , Tt+h. In particular, we
apply Gated Recurrent Units (GRUs) in the RNN architecture, since these can capture
temporal correlations well by using gate units well and also offer high efficiency [33,
34]. The process is presented as follows.

R̂
(t+1)

, . . . , R̂
(t+h)

= seq2seqGRU(R(t−s+1), . . . , R(t)). (C.4)

A similar procedure is applied to obtain Ĉ
(t+1)

, . . . , Ĉ
(t+h)

from C(t−s+1), . . . , C(t).

C.4.4 Recovery

Given predicted tensors R̂
(t+j) ∈ RN×β×K and Ĉ

(t+j) ∈ Rβ×N′×K for a future time

interval T(t+j), with j ∈ [1, h], we proceed to describe how to transform R̂
(t+j)

and

Ĉ
(t+j)

into a full OD stochastic speed tensor M(t+j) ∈ RN×N′×K .

First, we slice each of R̂
(t+j)

and Ĉ
(t+j)

by the speed bucket dimension into K

matrices. Specifically, we have slice(R̂
(t+j)

) = {R̂(t+j)
:,:,1 · · · , R̂

(t+j)
:,:,K } and slice(Ĉ

(t+j)
) =

{Ĉ(t+j)
:,:,1 · · · , C(t+j)

:,:,K }, where R̂
(t+j)
:,:,k ∈ RN×β and Ĉ

(t+j)
:,:,k ∈ Rβ×N′ , k ∈ [1, K].

Next, we conduct a matrix multiplication as follows.

M̃(t+j)
k = R̂

(t+j)
:,:,k × (Ĉ

(t+j)
:,:,k ), (C.5)

where M̃(t+j)
k ∈ RN×N′ , k ∈ [1, K].

Finally, we are able to construct a tenor M̃
(t+j) ∈ RN×N′×K by combining a total

of K matrices, i.e., M̃
(t+j)
:,:,k = M̃(t+j)

k , k ∈ [1, K]. Now, M̃
(t+j)

is a full tensor where each
element has a value.
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A histogram M̂
(t+j)
o,d,: ∈ R1×K must meet two requirements to be a meaningful

histogram: (1) M̂
(t+j)
o,d,k ∈ [0, 1], k ∈ [1, K], meaning that the probability of a speed

falling into the k-th bucket for each OD pair (o, d) must between 0 and 1; and (2)

∑K
k=1 M̂

(t+j)
o,d,k = 1, meaning that the probability of a speed falling into all K buckets for

each (o, d) must equal 1.

To achieve this, we apply a softmax function to normalize values in M̃
(t+j)

into

M̂
(t+j)
o,d,: that satisfies the histogram requirements.

M̂
(t+j)
o,d,: = softmax(M̃

(t+j)
o,d,: ), ∀o ∈ [1, N], ∀d ∈ [1, N′]. (C.6)

Thus, we obtain h meaningful full OD stochastic speed tensors for the future time

intervals Tt+1, . . . , Tt+h as the output of the recovery process: M̂
(t+1)

, . . . , M̂
(t+h)

.

C.4.5 Loss Function
The loss function is defined as the error between the recovered future tensor and the
ground-truth future tensor.

`(F, b) =
h

∑
j=1

[λ||R̂(t+j)||2F + λ||Ĉ(t+j)||2F+

||Ω(t+j) ◦ (M(t+j) − M̂
(t+j)

)||2F],

(C.7)

where F and b represent the training parameters in the framework, and λ is a reg-
ularization parameter. Further, Ω(t+j) ∈ RN×N′×K is an indication tensor, where

Ω(t+j)
o,d,k = 1 if the OD pair (o, d) is not empty in the t + j’th future interval. Note that

although we aim to predict full tensors, the ground truth tensors are sparse, so we
compute the errors taking only into account the non-empty elements in the ground

truth tensors. Next, ◦ is element-wise multiplication, M̂
(t+j)

and M(t+j) are predicted
and ground truth tensors, respectively, || · ||F is the Frobenius-norm.

C.5 Forecast with Spatial Dependency

To improve forecast accuracy, we proceed to integrate spatial dependency into our
framework in two different stages. First, in the factorization step, we apply graph
convolutional neural networks to perform feature encoding for origin and destination
dimensions, respectively. Second, in the forecasting step, we integrate graph convo-
lutional with RNNs to capture spatio-temporal correlations.

C.5.1 Spatial Factorization

As in Section C.4.2, we aim to factorize tensor M(t−i+1) during interval Tt−i+1, i ∈
[1, s], into two smaller tensors C(t−i+1) and R(t−i+1). In Section C.4.2, M(t−i+1) is
simply flattened and followed by a fully-connected layer to construct C(t−i+1) and
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R(t−i+1). This process does not take spatial correlations among the origin regions
and among the destination regions into account, although such correlations are likely
to exist. To accommodate spatial correlations, we first capture spatial correlations
among origin and destination regions; then we use the captured spatial correlations
to conduct factorization.

Spatial Correlation

We leverage the notion of a proximity matrix [35] to capture spatial correlations. We
proceed to present the idea using origin regions as an example, which also applies to
destination regions in a similar manner.

Given M(t−i+1) ∈ RN×N′×K , we have N origin regions, from which we build an
adjacency matrix A ∈ RN×N to show region connections. Specifically, Au,v = 1 means
that regions Vu and Vv are adjacent; otherwise, Au,v = 0.

We construct a weighted proximity matrix W (α,σ) ∈ RN×N from A that describes
the proximity between regions Vu and Vv and is parameterized by adjacency hops α

and standard deviation σ. Specifically, if Vv can be reached from Vu in α adjacency

hops using A, W (α,σ)
u,v = e−x2/σ2

, where x is the distance between the centroid of Vu

and Vv; otherwise W (α,σ)
u,v = 0. In the experiments, we study the effect of α and σ (see

Section C.6.2). The proximity matrix W (α,σ) is symmetric and non-negative.
The adjacency matrices for the source regions and destination regions may be

different or the same. Consider two scenarios. First, we use OD matrices to model the
travel costs within a city. In this case, the source regions and the destination regions
are the same, and thus the two adjacency matrices are the same. Second, we may use
OD matrices to model the travel costs between two different cities. Then, the source
regions and the destination regions are in different cities. Thus, we need two different
adjacency matrices. To avoid confusion, we use W and W ′ represent the adjacency
matrices for source regions and destination regions, respectively.

Factorization

We proceed to show the factorization procedure. Specifically, we show how to obtain
R(t−i+1) from M(t−i+1). The same procedure can be applied to obtain C(t−i+1).

As shown in Figure C.4(a), we first slice M(t−i+1) ∈ RN×N′×K by the origin region

dimension into N matrices, i.e., slice(M(t−i+1)) = [M(t−i+1)
1,:,: , · · · , M(t−i+1)

N,:,: ]. Each of
the sliced matrix is then applied with a GCNN operation. Accordingly, we obtain

the GCNN output as [R(t−i+1)
1,:,: , · · · , R(t−i+1)

N,:,: ]. We then concatenate this to obtain

R(t−i+1) ∈ RN×β′×K .
Figure C.4(b) shows a GCNN operation on a sliced matrix M(t−i+1)

j,:,: j ∈ [1, N],

which transforms M(t−i+1)
j,:,: ∈ RK×N′ into R(t−i+1)

j,:,: ∈ RK×β′ via Filtering and Pooling.

Filtering: Given M(t−i+1)
j,:,: ∈ RK×N′ , we apply Q graph convolutional filters, which

take into account the destination region adjacency matrix W , to generate R̃
(t−i+1)
j,:,: ∈

RN′×Q that captures the correlated features among destination regions.
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Fig. C.4: Spatial Factorization for R.

We first slice M(t−i+1)
j,:,: ∈ RK×N′ into K vectors [M(t−i+1)

j,:,1 , · · · , M(t−i+1)
j,:,K ], where

vector M(t−i+1)
j,:,k ∈ RN′ , k ∈ [1, K], represents the probability of speeds falling into the

k-th speed bucket when traveling from origin region Vj to all destination regions.
Next, we use a specific graph convolutional filter, namely Cheby-Net [23], due

to its high accuracy and efficiency, on each vector M(t−i+1)
j,:,k . Specifically, before con-

ducting actual convolutions, we compute T(t−i+1)
k = [t1, t2, . . . , tS], where ts ∈ RN′ ,

s ∈ [1, S], from M(t−i+1)
j,:,k . Here, t1 = M(t−i+1)

j,:,k , t2 = L̂ ×M(t−i+1)
j,:,k , and Ts =

2L̂× Ts−1 − Ts−2 when s > 2, where L̂ = 2L/λmax − I is a scaled Laplacian matrix
and where L = D−W ′ is the Laplacian matrix and λmax is the maximum eigenvalue

of L. Here, we use destination adjacency matrix W ′ because M(t−i+1)
j,:,k represents the

speed from source region j to all destination regions and we use W ′ to capture the
spatial correlation among destination regions. After the whole computation, we get
Tk ∈ RN′×S as the encoded features for the k-th bucket while considering the spatial
correlations among destination regions.

Then we proceed to apply Q filters to Tk. Each filter is a vector Gq ∈ RS, where

q ∈ [1, Q]. We apply each filter to all {T(t−i+1)
k }, ∀k ∈ [1, K], and then the sum is used

as the output of the filter.

R̃
(t−i+1)
j,:,q = Gq ⊗M(t−i+1)

j,:,: =
K

∑
k=1

(
ε(T(t−i+1)

k ×Gq + bq), (C.8)

where ⊗ is the Cheby-Net graph convolution operation, bq ∈ RN′ is a bias vector, and
ε(·) is a non-linear activate function.

Finally, we arrange the results obtained from all Q filters as R̃
(t−i+1)
j,:,: = [R̃

(t−i+1)
j,:,1 ,

. . ., R̃
(t−i+1)
j,:,Q ], where R̃

(t−i+1)
j,:,: ∈ RQ×N′ .
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Pooling: To further condense the features and to construct the final factorizations,

we apply geometrical pooling [23] to R̃
(t−i+1)
j,:,: over the destination region dimension

to obtain R(t−i+1)
j,:,: ∈ RQ×β′ , where β′ = N′

p and p are the pooling and stride size,
respectively. This process is shown as follows.

R(t−i+1)
j,:,: = P(R̃

(t−i+1)
j,:,: ), (C.9)

where P(·) is the pooling function that can be either max pooling or average pooling.
Since the pooling operation requires meaningful neighborhood relationships, we

identify spatial clusters of destination regions. For example, in Figure C.1(b), if we
use the order of ascending region ids, i.e., (1, 2, 3, 4, 5, 6, 7, 8) to conduct pooling
with a pooling size of 2, then regions 3 and 4 are pooled together. However, regions
3 and 4 are not neighbors, so this procedure may yield inferior features that may in
turn yield undesired results. Instead, if we identify clusters of regions, we are able to
produce a new order, e.g., (6, 1, 2, 3, 5, 4, 7, 8). When again using a pooling size of 2,
each pool contains neighboring regions.

The GCNN process, including filtering and pooling, is repeated several times with
different numbers of filters Q and pooling stride size p. Eventually, we set Q = K and

get R(t−i+1)
j,:,: ∈ Rβ′×K .

As shown in Figure C.4(b), the last operation is concatenation. We slice M(t−i+1)

by the origin region dimension into N matrices [M(t−i+1)
1,:,: , . . . , M(t−i+1)

N,:,: ] and apply

GCNN to each of them to obtain [R(t−i+1)
1,:,: , . . . , R(t−i+1)

N,:,: ], where each R(t−i+1)
j,:,: ∈

Rβ′×K . We then concatenate the R(t−i+1)
j,:,: , j ∈ [1, N], to obtain R(t−i+1) ∈ RN×β′×K .

The same procedure can be applied to obtain C(t−i+1) where we need to change
W ′ to W when conducting the graph convolution.

C.5.2 Spatial Forecasting
To model temporal dynamics while keeping the spatial correlations in RNNs, we com-
bine Cheby-Net based graph convolution with RNNs, yielding CNRNNs. Intuitively,
we follow the structure of gated recurrent units while replacing the traditional fully
connected layer by a Cheby-Net based graph convolution layer. Separate CNRNNs
are employed to process R(t) and C(t).

Taking the source region dimension as an example, a CNRNN takes as input R(t)

at time interval T(t), and it predicts R̂
(t+1)

for the future time interval T(t+1). This
procedure is formulated as follows.

S(t+1) = σ(GS ⊗ [H(t) : R(t)] + bS) (C.10)

U(t+1) = σ(GU ⊗ [H(t) : R(t)] + bU) (C.11)

H(t+1) = tanh(GH ⊗ [R(t) : (S(t+1) ◦H(t))] + bH) (C.12)

R̂
(t+1)

= U(t+1) ◦ R(t) + (1−U(t+1)) ◦H(t+1) (C.13)
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where GS, GU, and GH are graph convolution filters; R(t) and R̂
(t+1)

are the input
and output of a CNRNN cell at time interval T(t), respectively; S(t) and U(t) are
the reset and update gates, respectively; ⊗ denotes the graph convolution which
defined in Equation C.8, and here the graph convolution should take into account
source adjacency matrix W since R captures features of source regions. ◦ denotes the
Hadamard product between two tensors; and ε(·), σ(·), and tanh(·) are non-linear
activation functions.

When applying CNRNN to predict Ĉ
(t+1)

, we need to change W to W ′ when
conducting the graph convolution as R captures features of destination regions.

Given predicted factorization tensors [R̂
(t+1)

, . . . , R̂
(t+h)

] and [Ĉ
(t+1)

, . . . , Ĉ
(t+h)

],
we apply the same recovery operation introduced in Section C.4.4 to obtain h full OD
stochastic speed tensors for the future time intervals T(t+1), . . . , T(t+h) as the recovery

output: M̂
(t+1)

, . . . , M̂
(t+h)

.

C.5.3 Loss Function
Similar to the construction covered in Section C.4.5, we present the loss function as
follows.

`(G, b) =
h

∑
i=1

[λ||R(t+j)||2W + λ||C(t+j)||2W+

||Ω(t+j) ◦ (M(t+j) − M̂
(t+j)

)||2F]

(C.14)

where G and b represent the training parameters in the framework (in particular,
graph convolutional filters and bias vectors), || · ||2W is the Dirichlet norm under the
proximity matrix W , λ is the regularization parameter for the Dirichlet norm. We use
the Dirichlet norm because it takes the adjacency matrix into account—nearby regions
should share similar features in the dense tensors R and C. Finally Ω(t+j) ∈ RN×N′×K

is an indication tensor, and M̂
(t+j)

and M(t+j), j ∈ [1, h], are the predicted and ground
truth tensors, respectively.

C.6 Experiments

We describe the experimental setup and then present the experiments and the find-
ings.

C.6.1 Experimental Setup

Datasets

We conduct experiments on two taxi trip datasets to study the effectiveness of the
proposal.

We represent a stochastic speed (m/s) as a histogram with 7 buckets [0, 3), [3, 6),
[6, 9), [9, 12), [12, 15), [15, 18), and [18, ∞); and we consider 15-min intervals, thus
obtaining 96 15-min intervals per day.
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Fig. C.5: Region Representations of NYC and CD.

New York City Data Set (NYC): We use 14 million taxi trips collected from 2013-
11-01 to 2013-12-31 from Manhattan, New York City. Each trip consists of a pickup
time, a drop off time, a pickup location, a drop off location, and a total distance.
Manhattan has 67 taxizones4, each of which is used as a region. The regions are
shown in Figure C.5(a). The OD stochastic speeds for NYC are represented as an
R67×67×7 tensor.
Chengdu Data Set (CD): CD contains 1.4 billion GPS records from 14,864 taxis col-
lected from 2014-08-03 to 2014-08-30 in Chengdu, China5. Each GPS record consists
of a taxi ID, a latitude, a longitude, an indicator of whether the taxi is occupied, and
a timestamp. We consider sequences of GPS records where taxis were occupied as
trips. We use a total of 3,636,845 trips that occurred within the second ring road of
Chengdu. Next, we partition Chengdu within the second ring road into 79 regions
according to the main roads; see Figure C.5(b). The OD stochastic speeds for CD are
represented as an R79×79×7 tensor.

Table C.1 shows the statistics of the two datasets. Figures C.5(d) and C.5(d) show
the speed distributions for both datasets. We use 70% of the data for training, 10% for

4http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
5https://goo.gl/3VsEym
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NYC CD

# Trips 14,165,748 3,636,845
# Regions 67 79
Average
Speed

8.8 m/s 6.0 m/s

Table C.1: Statistics of the Data Sets.

validation, and the remaining 20% for testing for both NYC and CD.

Forecast Settings

We consider settings where s = 3 or s = 6 while varying h among 1, 2, and 3. This
means that we use stochastic OD matrices from 3 or 6 historical intervals to predict
stochastic OD matrices during up to 3 future intervals, respectively. An example for
s = 6 and h = 3 can be: given stochastic OD matrices in intervals [8:00, 8:15), [8:15,
8:30), [8:30, 8:45), [8:45, 9:00), [9:00, 9:15), and [9:15, 9:30), we predict stochastic OD
matrices in intervals [9:30, 9:45), [9:45, 10:00), and [10:00, 10:15).

Baselines

To evaluate the effectiveness of the proposed base framework (BF) and the advanced
framework (AF), we consider five baselines. (1) Naive Histograms (NH): for each OD
pair, we use all travel speed records for the OD pair in the training data set to construct
a histogram and use the histogram for predicting the future stochastic speeds. Next,
we model the stochastic speeds for each OD pair as a time series of vectors, where
each vector represents the stochastic speed of the OD pair in an interval. Based on this
time series modeling, we consider three time series forecasting methods: (2) Support
Vector Regression (SVR) [36], (3) Vector Auto-regression (VAR) [37], and (4) Gaussian
Process Regression (GP) [38]. (5) Fully Connected (FC): this is a variant of BF where
we only directly use a fully connected layer to obtain a single dense tensor (instead
of performing factorization into two dense tensors) to replace the factorization step in
BF.

Evaluation Metrics

To quantify the effectiveness of the proposed frameworks, we use three commonly
used distance functions that work for distributions, i.e., Kullback-Leibler divergence (
KL), Jensen-Shannon divergence (JS), and earth-mover’s distance (EMD), to measure
the accuracy of forecasts.

Specifically, the general dissimilarity metric is defined as follows.

DisSim(k)
metric =

∑T
t=1 ∑N

i=1 ∑N′
j=1 Ω(t+k)

i,j metric(M(t+k)
i,j,: , M̂

(t+k)
i,j,: )

∑T
t=1 ∑N

i=1 ∑N
j=1 Ω(t+k)

i,j

, (C.15)
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where 1 ≤ k ≤ h denotes the k-th step ahead forecasts, T is the size of testing set.

Next, Ω(t+k), M(t+k), and M̂
(t+k)

are the indication matrix, ground truth tensor, and

forecast tensor, respectively. Ω(t+k)
(i,j) = 1 if observations exist from region i to region j

at step (t + k); otherwise, Ω(t+k)
(i,j) = 0. Moreover, metric(·) is a generic metric function

that can be any of the metrics mentioned above and defined next. For simplicity, we

use m and m̂ ∈ RK to denote M(t+k)
i,j,: and M̂

(t+k)
i,j,: , respectively.

KL divergence,

KL(m, m̂) =
K

∑
k=1

m̂klog(
m̂k + δ

mk + δ
), (C.16)

where δ is a positive small value to prevent having a zero when using the log function.
We use δ = 0.001 in the experiment.

Jensen-Shannon divergence,

JS(m, m̂) =
KL(m, m̂) + KL(m̂, m)

2
(C.17)

Earth mover’s distance,

EMD(m, m̂) =
∑K

i=1 ∑K
j=1 Fi,jdi,j

∑K
i=1 ∑K

j=1 Fi,j
, (C.18)

where flow matrix F is the optimal flow that minimizes the overall cost from m to
m̂ [39].

All three functions capture the dissimilarity between an estimated and a ground-
truth distribution. Thus, low values are preferred.

Model Construction

The proposed frameworks are trained by minimizing the two loss functions defined
in Equation C.7 for BF and Equation C.14 for AF, using back-propagation. We use the
Adam optimizer due to its good performance. The hyper-parameters were config-
ured manually based on the loss on a separate validation set. Specifically, we set the
initialization learning rate to 0.001, set with the decay rate to 0.8 at every 5 epochs,
and set the dropout rate to 0.2.

Table C.2 shows the optimal configurations of the hyper-parameters for the three
deep learning methods and numbers of weight parameters used in each model for
both datasets. Baseline FC first encodes the input into a 2D latent space via an FC
operation, denoted as FC2. Then it calls a GRU with 3 units and 1 layer to capture
the temporal dynamics, denoted as GRU1

3. Finally, another FC is called to project
the output from GRU to an OD stochastic tensor with the following dimensions:
#Source Regions × #Destination Regions × #Buckets, e.g., 67 × 67 × 7 = 31, 423 di-
mensions for NYC, denoted as FC31,423. For BF and AF, we apply two identical con-
figurations for origin and destination factorization, which is why we have “2×” on
the first configuration, respectively. For BF, we first utilize FC2 to encode the input for
the first factorization. Then we adopt GRU1

2 to learn the temporal dynamics. At the
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C.6. Experiments

Data Model Configuration #Weights

NYC
FC FC3-GRU1

3-FC31,423 408,535
BF 2×FC2-GRU1

2-FC2,345 391,182
BF 2 × GC32

8 -P4-GC32
4 -P2-GCR32×4

2 339,726

CD
FC FC3-GRU1

3-FC43687 567,967
BF 2×FC2-GRU1

2-FC2,765 415,339
AF 2 × GC32

8 -P4-GC32
4 -P2-GCR32×4

2 367,502

Table C.2: Model Construction and Hyper-Parameter Selection.

end of GRU, we project the output into a corresponding factorization with the follow-
ing dimensions: #Source Regions× r× #Buckets, where r is the rank of the factorized
dense matrix which we set to 5, e.g., 67× 5× 7 = 2, 345 for NYC, denoted as FC2,345.
The configuration for AF is very different from the previous two models. First, we
adopt two combinations of GCNN, GCQ

K , where Q is the filter number and K is the
filter size, and pooling operation, Pp, where p is the pooling size, e.g., GC32

8 -P4-GC32
4 -

P2 for NYC. Then, the encoded features are fed into a CNRNN with n layers where
each layer has four Cheby-Nets. Assuming that the number and size of the filters
are Qc and Kc, this operation can be written as GCRQc×Kc

n , e.g., GCR32×4
2 , implying 2

CNRNNs where the GCNN in each gate has 32 graph convolutional filters of size 4.
From the above configurations, although AF uses the most complex models, AF

uses the fewest weight parameters (see the # weights column in Table C.2).

C.6.2 Experimental Results

Overall Results

We compare the accuracies of the different methods, using KL, JS, and EMD to eval-
uate the forecast accuracy; see in Tables C.3 and C.4. We also vary s, i.e., the number
of historical stochastic speed matrices, and h, i.e., the h-intervals ahead forecasting, to
study the effect of s and h. We have the following observations. (1) The deep learning
based methods perform better than the other baselines in most cases. (2) The pro-
posed basic framework BF performs better than other methods in most settings. This
indicates that the proposed frameworks, which involve factorization and RNN based
forecasting, are effective for OD matrix forecasting in settings with data sparseness.
(3) The advanced framework AF is significantly better than other methods, including
BF, in all settings. This suggests that by taking into account the spatial correlations
among regions using two GCNNs, the learned features become more meaningful,
which then improves forecasting accuracy. (4) The results on NYC are better than
those on CD. This is because the regions in NYC are more homogeneous (i.e., within
Manhattan) than the regions in CD that cover a much larger and more diverse region.
This in turn makes the traffic situations in CD much more complex and more chal-
lenging to forecast. (5) When varying h, the accuracy of AF becomes worse, i.e., larger
metric values. This suggests that forecast far into the future becomes more challenge.
(6) When fixing h, we compare the two tables and observe that the performance of AF
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Data Metric h NH SVR VAR GP FC BF AF

NYC

KL
1 0.592 0.704 0.554 0.522 0.446 0.427 0.311
2 0.592 0.713 0.562 0.535 0.438 0.417 0.313
3 0.592 0.720 0.577 0.545 0.438 0.415 0.314

JS
1 0.439 0.530 0.440 0.391 0.332 0.322 0.299
2 0.439 0.537 0.452 0.400 0.327 0.317 0.302
3 0.439 0.543 0.471 0.408 0.327 0.316 0.305

EMD
1 0.293 0.452 0.305 0.266 0.250 0.246 0.214
2 0.293 0.455 0.313 0.270 0.247 0.243 0.216
3 0.293 0.458 0.317 0.274 0.247 0.243 0.217

CD

KL
1 0.697 0.818 0.699 0.674 0.694 0.582 0.549
2 0.709 0.836 0.715 0.687 0.689 0.586 0.555
3 0.700 0.822 0.780 0.684 0.807 0.792 0.626

JS
1 0.580 0.672 0.814 0.597 0.517 0.438 0.435
2 0.584 0.677 0.869 0.599 0.513 0.442 0.444
3 0.592 0.692 0.875 0.619 0.590 0.571 0.500

EMD
1 0.441 0.543 0.799 0.439 0.360 0.307 0.289
2 0.443 0.539 0.871 0.434 0.361 0.313 0.295
3 0.464 0.574 0.787 0.471 0.423 0.378 0.311

Table C.3: Forecast Accuracy with Varying h, s = 3.

is better at s = 3 than s = 6. This seems to indicate that the traffic variations are more
dependent on short-term history (i.e., s = 3) than on long-term history (i.e., s = 6).

According to the above results, in the following, we only consider FC, BF, and AF,
and we only consider the setting where h = 1 and s = 6, i.e., 1-step ahead forecasting
with 6 historical observations.

Effect of Time of Day

In this experiment, we aim at investigating forecasting performance for different in-
tervals during a day. To this end, we show the forecast accuracy across different time
intervals. Figures C.6, C.7, and C.8 show the performance on both data sets when
using EMD, KL, and JS. To visualize the results across time, we aggregate the results
per each 3 hours. We use three curves to represent the accuracy of FC, BF, and AF. In
addition, we use bars to represent the percentages of data we have per each 3 hours.
CD does not contain any data from 00:00 to 06:00, which is why the figures for CD
start at 6.

Figures C.6(a) and C.6(b) show the accuracy based on EMD. We observe that
both AF and BF outperform FC in almost all the time intervals. This suggests the
effectiveness of factorization in the proposed framework when contending with data
sparseness. In addition, AF has the best performance and differs clearly from FC and
BF. This suggests that by further capturing spatial and spatio-temporal correlations
improves the forecast accuracy.

We observe that the EMD for all the three methods is the worst in NYC during
[3:00, 6:00). This is because the amount of testing data during [3:00, 6:00) is quite
small, only accounting for around 1% of the total testing data. On both data sets, the
best EMD values appear during [12:00, 15:00). This indicates that the traffic conditions
during this time period seems to have the least dynamics thus making the forecasting
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Data Metric h NH SVR VAR GP FC BF AF

NYC

KL
1 0.592 0.698 0.566 0.522 0.453 0.437 0.343
2 0.592 0.706 0.576 0.535 0.445 0.421 0.347
3 0.593 0.713 0.587 0.545 0.440 0.410 0.348

JS
1 0.440 0.524 0.442 0.394 0.337 0.327 0.305
2 0.440 0.531 0.455 0.404 0.333 0.318 0.308
3 0.440 0.537 0.472 0.411 0.331 0.313 0.310

EMD
1 0.293 0.447 0.299 0.265 0.248 0.238 0.214
2 0.293 0.450 0.305 0.270 0.246 0.235 0.216
3 0.294 0.452 0.314 0.274 0.245 0.233 0.217

CD

KL
1 0.686 0.804 0.741 0.671 0.753 0.668 0.600
2 0.685 0.806 0.759 0.671 0.740 0.666 0.605
3 0.686 0.807 0.739 0.674 0.735 0.667 0.609

JS
1 0.578 0.674 0.808 0.610 0.554 0.517 0.466
2 0.577 0.676 0.850 0.610 0.546 0.516 0.475
3 0.578 0.678 0.903 0.612 0.543 0.517 0.483

EMD
1 0.449 0.555 0.716 0.449 0.394 0.344 0.304
2 0.448 0.557 0.767 0.448 0.389 0.344 0.305
3 0.448 0.559 0.890 0.448 0.386 0.344 0.306

Table C.4: Forecast Accuracy with Varying h, s = 6.

less challenging. Similar trends can be observed when using KL and JS, as shown in
Figures C.7 and C.8. Overall, the advanced framework AF achieves consistently the
best forecasting performance on both datasets and on the three different evaluation
metrics. More data enables more accurate forecasting.
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Fig. C.6: Effect of Time of a Day, EMD.

Effect of Distances

In this experiment, we aim at investigating the effect of the distances between source
and destination regions. We thus report the forecast accuracy with different distances.
Given a source and a destination region, we use the Euclidean distance between the
centroids of the two regions as its corresponding distance. We group OD region pairs
based on their distances into 6 groups as shown in Figures C.9, C.10, and C.11. We
only consider OD region pairs that are below 3 km because less than 1% of the data
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Fig. C.7: Effect of Time of a Day, KL.
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Fig. C.8: Effect of Time of a Day, JS.

is available for OD region pairs more than 3 km apart. Figures C.9, C.10, and C.11
report results on EMD, KL, and JS, respectively.

Figures C.9(a) and C.9(b) show the EMD values at varying distances on NYC
and CD, respectively. We observe that (1) BF and AF outperform FC for all distance
settings and on both datasets; (2) AF outperforms BF by a clear margin. This again
offers evidence of effectiveness of the proposed advanced framework and suggests
that the best performance is achieved by contending the sparseness and by capturing
spatio-temporal correlations. Next, when considering distances from 0.5 to 1.5, i.e.,
the first three points of the curves, we observe a clear descending trend in NYC, but
this trend is less obvious in CD.

We also observe that curves start to increase 1 km on NYC as shown in Fig-
ure C.9(a). The reason is amount of data in distance range [1.5, 3.0] decreases quickly,
in turn introducing more fluctuations. We observe a subtle trend from distance range
[1., 1.5) to distance range [1.5, 2.0) in Figure C.9(b) for BF and AF, however, FC is much
worse in distance range [1.5, 3.0]. We have similar observations for NYC regarding
the KL and JS evaluation metrics, which is shown in Figures C.10(a) and C.11(a). The
trend is much clearer in CD for the evaluation metrics of KL and JS as is shown in
Figures C.10(b) and C.11(b). Therefore, another explanation of the increasing tread is
that as the distance increases, the route options also increase, which makes the speed
more stochastic and harder to forecast. Overall, AF achieves the best performance on
both datasets regarding to EMD, KL, and JS evaluation metrics.
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Fig. C.9: Effect of Distances, EMD.
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Fig. C.10: Effect of Distances, KL.

Effect of Proximity Matrices

We conduct a last set of experiments to investigate the effect of the parameters σ and
α when constructing the proximity matrix W in the advanced framework. We only
report results for CD due to the space limitation and because NYC yields similar
results. Figures C.12(a) and C.12(b) show the accuracy when varying α and σ. The
proposed AF is insensitive to σ and α. In other words, using proximity matrices is a
robust way of capturing spatial correlations.

C.7 Conclusions and Outlook

An increasingly pertinent settings are asking for full OD matrices contain stochas-
tic travel costs between any pair of regions in near future. However, instantiating
such OD matrices calls for a large amount of vehicle trajectories which is almost an
impossible task to fulfill in reality. We define and study the problem of stochastic
origin-destination matrix forecasting in this setting. First, a data-driven, end-to-end
deep learning framework is proposed to address the data sparseness problem by
taking advantage of matrix factorization and recurrent neural networks. Further, a
dual-stage graph convolution is integrated into factorization and recurrent neural net-
works to better capture the spatial correlations and thus lift performance. Empirical
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studies on two real datasets from different countries, New York City and Chengdu
City, demonstrate that the proposed framework outperforms other methods in all the
experimental settings.

In future work, it is of interest to extend the framework to support continuous
distribution models such as Gaussian mixture models.
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