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Abstract

English Abstract

Today the traditional client-server network architecture is the predominant
model in our network infrastructure. However, for the increasing amount
of “live” services such as TV and radio being digitalized and the growing
amount of user generated content, the centralized model can provide a poor
utilization of the available network resources. To efficiently support these
services we look towards the field of user cooperation. In order to create the
incentive for users to join the cooperation we must make the gain larger than
the expense. In this PhD I have suggested two central ways of achieving this.
1) I have suggested the use of network coding as a key-enabler for technology-
enabled cooperation. I refer to technology-enabled cooperation when we are
able to provide all participating entities in the network a better performance
by enabling user cooperation. In order to achieve this goal I apply network
coding, which from a theoretical point of view has the potential to make
our networks faster, energy-efficient, robust and more secure. In this PhD
I provide an experimental platform for network coding in order to evaluate
whether these theoretical merits may be transferred to practice. I provide
the initial development of systems and protocols and show that the potential
is there. However, I also find that network coding needs to be implemented
with care and protocols have to be designed with consideration to make use
of this novel technique. 2) The final aspect of this PhD investigates different
ways that cooperative models may be implemented to cover a wide range of
applications. This addresses the development of user cooperative protocols
and how we in Device To Device (D2D) communication may reward users
that contribute more to the network than they gain. In this area I suggest
the use of social-networks to allow payoff in different domains. In the future
this work could be expanded and built into cooperative protocols.
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Dansk Resume

I dag er den traditionelle netværksinfrastruktur bygget op omkring en klient-
server model. Denne model er dog ikke altid en optimal løsning, for et
stigende antal ”live” services s̊asom digital TV og radio. Hertil kommer
at brugerne i netværket i lang højere grad end tidligere, ogs̊a deler data
med hinanden. For disse services kan den centraliserede netværksstruktur
ofte betyde en d̊arlig udnyttelse af de til r̊adighed værende ressourcer. For
at effektivisere dette, kan vi finde inspiration indenfor forskningsomr̊adet
bruger-samarbejde. Dette kræver dog at vi kan skabe incitament for at den
enkelte vil deltage. Dette sker kun hvis vi kan bygge et system hvor forde-
lene ved samarbejde opvejer ulemperne. I denne PhD har jeg foresl̊aet to
centrale m̊ader hvorp̊a vi kan opn̊a dette. 1) Jeg har foresl̊aet brugen af
netværkskodning, som en nøgleteknologi til at skabe teknologidrevet samar-
bejde. Jeg referer til teknologidrevet samearbejde n̊ar vi er i stand til at
forbedre ydelsen for alle brugere der vælger at deltage. For at kunne opn̊a
dette mål udnytter jeg netværkskodning, som i teorien har potentialet til at
gøre vores netværk hurtigere, energi effektive, robuste og mere sikre. I denne
PhD udvikler jeg en eksperimentel platform hvorfra en evaluering, af disse
teoretiske fordele kan undersøges i praksis. Jeg udvikler ogs̊a første version af
systemer og protokoller, og viser potentialet der. Her finder jeg at netværk-
skodning skal implementeres med omtanke, og at protokollerne skal designes
omhyggeligt for at kunne udnytte denne teknik. 2) I den afsluttende del
af denne PhD undersøges forskellige måder hvorp̊a bruger-samarbejde kan
implementeres i en lang række applikationer. Dette adressere udviklingen af
protokoller til bruger-samarbejde samt hvordan vi i enhed-til-enheds kom-
munikation kan belønne brugere, som bidrager mere til netværket end de
modtagere. I dette omr̊ade forsl̊ar jeg brugen af sociale netværk, til at op-
bygge en belønningsmodel hvorigennem brugere kan modetage “betaling” for
deres deltagelse. I fremtiden kan dette arbejde blive udbygget og inkorporeret
i bruger-samarbejdes protokoller.
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Preface

This PhD thesis presents a selection of papers which embody the direction
and research topics that were investigated throughout my 3 years as a PhD
student at the Antennas, Propagation and Radio Networking Group (AP-
Net), Department of Electronic Systems, Aalborg University. This thesis was
prepared under the supervision of Professor Frank H.P. Fitzek. This work
was financed by the CONE project (Grant No. 09-066549/FTP) granted by
the Danish Ministry of Science, Technology and Innovation.

The thesis includes 6 selected publications and complete list of all co-
authored publications.
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Chapter 1

Introduction

In this chapter we will introduce the main topics and contributions of this
PhD thesis and provide the reader with the background and motivation for
the work carried out.

In the past few years a remarkable development of commodity mobile
communication devices such as smartphones has occurred. This change has
not only been on the technological side, where the devices today are as power-
ful as our desktop computers only a few years ago. But, also in the way that
we as consumers have integrated these new devices into our daily lives. Many
users already use these devices to store their “digital life” i.e. music, videos,
photos, conversations and so forth. But storing content is not the final goal.
Users want to share and experience content together. This has already been
seen in the remarkable success of on-line services such as Flicker, YouTube,
and Facebook. As an example approximated 250 million photos are uploaded
to Facebook every day [44]. Although these services provide common storage
and distribution functionality, they also introduce an asynchronous content
distribution model. Where content is first uploaded and then later at differ-
ent points in time, downloaded and consumed by other users. This model is
a poor fit for building services which provide a “live” experience where users
simultaneously enjoy content together with their friends. Reaching this goal,
is further complicated by the fact that current transport protocols only pro-
vide very limited support for multicast traffic, in which data is delivered to
a group of users simultaneously. Also for classical services such as digital
TV and radio the traditional client-server model results in a poor utiliza-
tion of the available network resources. Due to the lack of efficient multicast
the same data is copied and transmitted to each user separately. To effi-
ciently support this type of content distribution model we may look towards
the field of user cooperation, which breaks with the traditional centralized
client-server architecture and allows users to communicate directly.
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Introduction

1.1 User Cooperation in Wireless Networks

In mobile and wireless networks user cooperation refers to the situation where
a number of users decide to undertake a certain task as a group rather than
as individuals. This fundamental concept has its roots in nature and relies
on the belief that through cooperation each individual may achieve its goals
spending less resources compared to working alone. In wireless networks
these principles are the same, and previous research has demonstrated that
the concept has to the potential to improve upon the current systems in a
variety of ways [45].

In common for these systems are that they break with the traditional
centralized network architecture, as users communicate directly instead of
only with a centralized server. A classical example of this is shown in Fig-
ure 1.1 where users interested in the same content and within close proximity,
establish a secondary communication channel using a short-range communi-
cation interface. By doing this the users may improve the performance of
the communication by reducing the overall traffic required.

Cooperative
group

Content
provider B

Internet

Network
provider B

Network
provider A

Access
point

Access
point

Content
provider A 

User A

User B User C

User D

Figure 1.1: Cooperative network architecture, where a number of users form a
cooperative cluster in order to efficiently access content via the Internet.

In general the main motivation for introducing user cooperation in a
wireless system falls into two categories.

The first category contain systems that enhance the performance of the
communication system. In this category we find systems that utilize coop-
eration to improve different performance indicators, typically this could be

2



1.1 User Cooperation in Wireless Networks

energy consumption, throughput or delay. Examples of this are given in [46]
where user cooperation combined with Multiple Description Coding (MDC)
is used to lower the resources needed to deliver a live video to a group of
users. In [47] the authors improve the throughput of mobile web browsing
by accumulating the cellular capacity of the individual users into one big
virtual data-pipe.

The second category contain systems that enhance the functionality of
the communication system. In this category systems utilize user cooperation
to provide functionality to the participating users not otherwise available.
This could be digital resources such as photos, audio and video. But also
physical resources such as cameras, sensors, etc.

Although research has shown many benefits of user cooperative techniques
in both theory and implementation, only few examples of user cooperation
in communication networks exists in actual products and systems. Some
of the most successful are the now quite popular wireless hot-spot solutions
where an user can turn his or her smart-phone into a mobile access-point
and thereby share the cellular connectivity with other users in close prox-
imity [48]. Although this serves as a nice example of user cooperation the
potential is still underutilized. We believe that this in part can be explained
by the missing solutions to some of the following challenges.

Traditionally user cooperation has been systems oriented, in this case the
benefit of the individual devices or users are less important than the system as
a whole. For this type of cooperation the success criteria is that the overall
system gains by the user cooperation. Although this might work well in
fully dedicated networks such as sensor- or mesh-networks where the system
controls and “owns” all the participating devices. It does not fit well into
the mobile end-user networks. In these networks devices are owned by selfish
individuals, who are unlikely to sacrifice resources to improve performance
for a complete stranger. Therefore we have to either build systems where all
users will benefit from cooperation or find alternative ways so that users who
sacrifices resources in one domain may receive compensation or rewards in
another domain.

In the protocol domain a different challenge when building systems relying
on user cooperation is that the complexity of the systems grow significantly
as the number of cooperating users increase [49, 50]. This if further compli-
cated by the dynamic and unstable nature of mobile networks which mean
that maintaining a consistent protocol state and determining which users
should cooperate becomes increasingly difficult. As a simple example con-
sider the cooperative data distribution network shown in Figure 1.2. In order
to minimize the traffic required from the server, the access point will only
transmit data until the users combined have the full information. However
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Introduction

due to transmission errors it is likely that all nodes after some time only have
partially filled buffers. As the users receive data via the cellular link they
utilize their short-range network interfaces to exchange their missing packets.

1
3
4

1
2
4

2
3

1
2
3

2
3
4

1
2
3
4

1
2

3

4

Figure 1.2: The scheduling problem with user cooperation where each receiver
holds a different set of packets (denoted by numbers). No single packet can benefit
all receivers and the repair phase therefore becomes suboptimal.

As seen in Figure 1.2 not one single packet is useful for all receivers and
the task of understanding which users require which packets now becomes a
significant challenge.

As illustrated here deploying user cooperation in current and future net-
works will require a number of new solutions to address the existing chal-
lenges. However, in 2000 it seemed as if a piece of the puzzle was found as
Ahlswede et al. introduced the theory of network coding [51]. Investigating
the cross-over between network coding and user cooperation was the starting
point for this PhD work.

1.2 Network Coding a Key Enabler for User

Cooperation

Network coding has the potential to improve the data distribution among
the users participating in the cooperative network. In the following we will
introduce network coding and underline its benefits towards user cooperation.

Network coding breaks with the traditional paradigm in packet switched
networks often referred to as store-and-forward. In this type of network nodes
on the intermediate path of a packet flow simply receives and forwards the
incoming packets without performing any kind of processing of the packets.
In network coding packet flows are no longer considered immutable entities

4



1.2 Network Coding a Key Enabler for User Cooperation

and intermediate nodes in the network may choose to recode packets before
forwarding them. Due to this unique feature networks utilizing network
coding are often referred to as compute-and-forward. A classical example
of how network coding changes the way data is processed in the network is
illustrated by the famous Butterfly example shown in Figure 1.3.

R1

S

R2

b1 b2

b1

b1

b2

b2

b2

b2

b2

b2b1,b2

(a) The store-and-forward
approach from traditional
routing.

R1

S

R2

b1 b2

b1

b1

b2

b2
b1+b2

b1+b2 b1+b2

b1,b2 b1,b2

(b) The compute-and-
forward approach from
network coding.

Figure 1.3: The Butterfly network in which each link can carry one packet per
unit time. (a) Shows the traditional solution where nodes simply forwards the
incoming packets. (b) Shows the network coding approach where the bottleneck
node codes the two packets b1 and b2 into one coded packet b1 + b2 in this case +
represents the addition in a Finite Field.

On the left-hand side (Figure 1.3a) we see how using traditional rout-
ing we may deliver on average 1.5 packets per time unit at the two receivers.
Whereas on the right-hand side (Figure 1.3b) we see that the bottleneck node
is “allowed” to recode the two packets b1 and b2. Consequently the two re-
ceivers are able to successfully decode both packets. The Butterfly elegantly
illustrates the key operation of network coding. Since the introduction of net-
work coding significant efforts have been invested trying to understand the
implications of this new technique and how this seemingly simple idea could
be transferred to communication networks in practice. In the context of user
cooperation one of the most significant contributions to this were introduced
in [52] where the authors showed that for a multicast transmission, randomly
creating linear combinations of the incoming data packets over a sufficient
large finite field were enough to ensure a close to optimal performance. This
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approach was named Random Linear Network Coding (RLNC). Figure 1.4
depicts the basic operations of RLNC. To lower the computational com-
plexity large files are typically split into several equally sized chunks, called
generations, each generation then consists of g packets.

1 2 3 g-2 g-1 g................

1 2 3 g-2 g-1 g................

Encoder

Decoder

1 2 3 ................ ................k-2 k-1 k n-2 n-1 n

X X X X X X X X

2 3 ................ k-2 k ................ n

Erasures

Original Packets 
(single generation)

Encoded Packets

Sending to
another receiver

n-1 n1 ................

Recoding from 
(partially) decoded 

packets

X X X

Figure 1.4: RLNC system overview showing the encoding, decoding and recoding
operations.

The encoder (shown in the top of Figure 1.4) generates and transmits
random linear combinations from the data packets of the current generation.
The linear combinations are created over the chosen finite field. With RLNC
the coding coefficients are chosen randomly which means that any number
of encoded packets can be generated from any given generation. The middle
layer represents the wireless channel, where packets maybe lost depending on
the channel conditions. At the receivers packets are passed to the decoder
(the bottom component of Figure 1.4), which will be able to reconstruct
the original data packets after receiving g linear independent combinations.
Finally a receiver may choose to generate and send new encoded packets
based on the currently partially decoded packets. This operation is known
as recoding and is the unique feature of network coding.
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1.3 Thesis Outline

This approach looks promising for user cooperation since it relies on a
very decentralized approach with very limited need for coordination between
cooperating users. Due to these proprieties RLNC was by many seen as a
very interesting tool for many different types of wireless networks, where the
unreliable nature of wireless in many cases favors decentralized algorithms
with minimum coordination requirements [53, 54]. However, in spite of the
nice theoretical properties a concern was whether the network coding algo-
rithms were too complex for even modern day desktop computers and mobile
devices [55, 1]. This raised the question whether the use of network coding
would add too much computational complexity and that the user cooperation
would lose its benefit over traditional client-server networking.

1.3 Thesis Outline

In the previous sections we have introduced the purpose of utilizing user
cooperation and network coding and outlined some of the challenges faced
by the research community in trying to makes these techniques applicable
and useful in actual wireless networks. In the following we will introduce the
two core aspects presented in this PhD thesis.

1. Implementation of network coding algorithms.

2. Integration of user cooperation and network coding.

1.3.1 Implementation of Network Coding Algorithms

One of the main challenges in the initial phase of the PhD work was the lack of
a suitable experimental platform for network coding algorithms. At the time
network coding remained a largely theoretical field and several researchers
voiced their concerns over the complexity of network coding being too high to
be practical in real networks [55]. The need to begin development of a suitable
platform for experimentation with network coding was therefore outspoken.
The goal was that this development effort should result in a better under-
standing of how the reported high complexity would translate into actual
performance on state-of-the-art consumer available hardware. Modern hard-
ware has become extremely complex and in order to tune an implementation
to get the best possible performance it requires an understanding of many
optimization aspects such as vectorization using Single Instruction Multi-
ple Data (SIMD), memory access patterns and caches, assembly instruction
latencies, etc [56, 57, 58]. The possibility to apply these optimizations in
many case depend on the algorithms design and structure, therefore having
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an available implementation could be used to provide valuable feedback to
researchers working on techniques for lowering the complexity of the sug-
gested algorithms. In effect providing the missing link in the optimization
cycle shown in Figure 1.5.

Simulation

Theory & Analysis

Implementation
<< missing link >>

Feedback 
loop

New
ideas

Figure 1.5: Optimization cycle of creating practical network coding algorithms.

To achieve this a number of goals were specified for the development
of the library, the initial goals are presented in [7]. These have since been
updated, however the essence remains the same namely to create a design
which allowed easy modification and experimentation while at the same time
yielding highly optimized implementations.

The development of a suitable software platform for experimentation has
been an ongoing activity throughout the entire PhD period. The main result
of this effort were two libraries written in C++ to allow both efficient and
wide platform support. The first library called Fifi implements the mathe-
matical operations needed by the network coding algorithms. The arithmetic
operations used are defined within a branch of mathematics known as Finite
Fields or Galois Fields. In network coding finite field arithmetics are used
when performing the three core operations namely: encoding, recoding and
decoding. An efficient implementation of finite field arithmetics is therefore
an important prerequisite for any network coding implementation. At the
time of writing we believe that Fifi provides one of the most comprehensive
implementations of finite field arithmetics currently supporting the following
fields and algorithms.

• SimpleOnline{8, 16}: This algorithm computes the result on-the-fly in
F28 using an iterative algorithm, without any precomputed lookup ta-
ble. The SimpleOnline algorithm supports the F28 and F216 field.

• OptimalPrime2325 : This algorithm presents an alternative to the tra-
ditional binary extension fields. Using the prime field F4294967291, where
p = 232 − 5 = 4294967291

8



1.3 Thesis Outline

• FullTable8 : This algorithm utilizes a fully precomputed lookup table
stored in memory to calculate the results in F28 .

• LogTable{8, 16}: This algorithm uses a reduced lookup table to cal-
culate the results in F28 and F216 . The log table minimize memory
consumption at the cost of additional operations for every calculation.

• ExtendedLogTable{8, 16}: This algorithm extends the lookup table used
by the LogTable to calculate the results in F28 and F216 . The extended
lookup table removes a number of checks necessary in the LogTable
algorithm when moving from exponential to polynomial representation.

In [31] we present our work on implementing the Finite Field arithmetics
used by network coding algorithms. We provide implementers with guidelines
for choosing between the different finite field algorithms.

In [2] we introduce the use of an Optimal Prime Field for finite field
arithmetics. Optimal Prime Fields utilizes higher order prime fields instead
of the binary or binary extension field typically used. The main advantage of
the Optimal Prime Field is the larger field size and efficient implementation.
However, also several drawbacks exist which are discussed in the paper.

Built on-top of Fifi is the Kodo library. Kodo implements a selected set
of the network coding algorithms proposed in literature. Kodo was designed
utilizing a specific C++ design technique proposed by [59, 60] called Mixin-
Layers. Mixin-Layers offer a very generic approach to structuring a software
library. The end result is a large set of building blocks rather than a fixed set
functionality, these building blocks can then be assembled at compile time
to yield desired functionality, at the same time as giving the compiler the
full static information about the composed blocks. This allows the compiler
to emit machine code equivalent to a hand-written special purpose function.
While also giving the developer, in this case the researcher experimenting
with different algorithms, the freedom to easily compose and customize the
available functionality. The use of Mixin-Layers has previously been success-
fully applied to high-performance memory allocators [61]. It is to the best of
our know the first time this technique is applied for error-correcting codes.

In [7] we present the first open source version of the library. The paper
presents the initial design and gives examples on how the library can be used
to implement network coding algorithms.
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Introduction

1.3.2 Integration of Network Coding and User Coop-
eration

In this part of the PhD work we begin investigating the cross-over between
user cooperation and network coding.

As we have previously mentioned the integration of user cooperation in
mobile end-user networks are particular challenging due to the fact that most
users will not act purely altruistic. Although the system i.e. the network op-
erator and the cooperating users as a whole might gain from the cooperation.
The selfish user will not participate if there is not an individual gain for him
or her. Here we do not consider forced cooperation although this might be a
plausible scenario if the user cooperation is built into the network technology
or if the network operator has access to control the users devices. This means
that the incentive to join the cooperation is based purely on egoistic behavior
and will only take place if the user sees a gain. If the user sees an advantage
to cooperate due to e.g. better date rate or lower energy consumption we
call this technology enabled cooperation. The integration of network coding
with user cooperation has the purpose of making the user cooperation more
effective and thereby increase the willingness of users to join the technology
enable cooperation. Whether this will be the case in practical systems relies
on several factors. 1) How does the added complexity of the network coding
algorithms affect the performance of the wireless protocol. 2) Can we build
protocols which utilize the special “recoding” properties of network coding
to increase performance.

In [3] we investigate the effect of network coding on standard mobile
devices. We show that utilizing network coding has a measurable impact
on the throughput of the device. Continuing the effort to keep improving
the network coding algorithms is therefore important. We provide an initial
investigation of a network coding based protocol. These investigations shows
that for the given topology the protocols should be able to tune their activities
depending on the Packet Erasure Probability (PEP) on the network. Also in
the specific setup the use of small generation sizes showed a higher energy-
per-bit usage due to the wasted linear dependent transmissions, whereas
large generations sizes had an increased energy-per-bit due to the increased
computational load.

In [8] we introduce a practical protocol to facilitate the dissemination of
multimedia towards a cooperative cluster of smartphones. The protocol uses
RLNC to increase the efficiency of the communication within the cooperative
cluster. In order to evaluate the protocol a test-bed was created and the
several measurements were carried out. The evaluation showed that ENOC
Cooperation Protocol (ECP) was capable of recovering close to the maximum
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1.3 Thesis Outline

amount of packet errors. Furthermore, the evaluation confirmed that in a
practical setting the field size should be carefully chosen to avoid overloading
the resource constrained devices, and thereby increasing the possibility of
buffer overflows etc.

The development of systems based on technology enabled cooperation has
a wide potential. However, there exists systems where the technology enabled
cooperation model typically does not apply and a different cooperation model
is therefore needed. In this model the service typically consist of a service
provider i.e. one who “contributes” a resource to the system. This could
be the user who grants neighboring devices access to his or her Internet
connectivity. In current systems this model has been based on altruistic
behavior, i.e. typically the “contributor” has some sort of relationship with
the receivers, which outweighs the fact that he or she will spend resources
without payback. In some cases the contributor might gain in terms of
strengthening the personal relationship with the receivers or rise in reputation
or esteem. To enable this type of cooperative model we may capitalize on
the widespread popularity of online social networks.

In [4] we introduce the concept of the “mobile cloud” as an alternative
to the existing client-server architecture in most content distribution net-
works. The mobile cloud enhances the existing communication architecture
utilizing user cooperation, Device To Device (D2D) communication and net-
work coding. This results in a more content centric distribution model where
the users both host and participate in the content distribution. In order to
motivate and increase the users willingness to participate in the cooperative
distribution socially enabled cooperation is introduced. In this model users
participating in the cooperation and sacrificing resources may be rewarded
though their social network.

11
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Chapter 2

Contributions In This Thesis

In this chapter we present the publications included in this thesis. Where
relevant we also point the reader to “own related publications”. These pub-
lications were also part of the PhD work but have not been included in the
thesis.

2.1 Paper 1

Mobile Clouds: The New Content Distribution Platform
Morten V. Pedersen, and Frank H.P. Fitzek
Institute of Electrical and Electronics Engineers. Proceedings, Vol. 100,
13.05.2012.
Pages 4.

Motivation

In recent years the success of online content sharing services and social net-
works have changed the way that users interact and share content over the
Internet. This means moving away from a model where content is mainly
produced by “classical” publishers such as news and television networks, to
a model where users to a large extend contribute and share the content over
the Internet. In this new model the question is whether the classical client-
server network architecture still offers the best solution. Or whether it should
be changed to more efficiently support this new more decentralized content
distribution pattern.
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Contributions In This Thesis

Paper Content

The paper introduces the current problems and motivation for enhancing the
traditional client-server network architecture. This is achieved by utilizing
ideas from the field of user cooperation [62]. Based on user cooperation a more
decentralized content distribution model utilizing D2D communication is
suggested. The success of such a model will depend largely on the willingness
of the users to participate in the cooperation. Different cooperation incentives
are therefore introduced and discussed.

Main Results

The paper introduces the concept of the “mobile cloud” as an alternative
to the traditional client-server network architecture. The “mobile cloud” is
envisioned to enhance the existing networks by combining techniques from
user-cooperation, D2D communication and network coding. Dealing with
the users willingness to cooperate is a critical aspect in the foundation for
any cooperation based system. We therefore suggest the concept of “socially
enabled” cooperation. Socially enabled cooperation proliferates on the suc-
cess of online social networks to create an different way of rewarding users
willing to cooperate.

Own Related Publications

In [5] we extend the work presented here on the integration of social and
cooperative networks. Furthermore we elaborate on the importance of uti-
lizing network coding in the “mobile cloud” when building user cooperative
protocols.
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2.2 Paper 2

2.2 Paper 2

On-the-fly Packet Error Recovery in a Cooperative Cluster of Mo-
bile Devices
Péter Vingelmann, Morten Videbæk Pedersen, Frank H. P. Fitzek and Janus
Heide
Paper presented at Globecom 2011, Houston
Pages 6.

Motivation

Today most mobile devices have several available communication interfaces
i.e. most smartphones contain both a cellular and often several short-range
interfaces. This makes it possible to maintain multiple parallel communica-
tion sessions, where one or more network interfaces are used to enhance the
performance of the ongoing communication. An example of this could be
several mobile users watching mobile TV using their cellular network inter-
face, while at the same time being connected to the same local network using
a short-range network interface. As the users typically experience different
packet losses, the local short-range network could be utilized as a secondary
repair channel. In this case users would cooperate to reduce the amount of
redundancy needed on the cellular network. Moving traffic load from the cel-
lular to the short-range network is often advantageous since the short-range
network technologies typically provide higher throughput, lower delay, lower
energy-per-bit when compared to the cellular technologies.

Paper Content

This paper investigate the possibility of packet error recovery in a cooperative
cluster of mobile devices. We assume that these devices receive data from a
broadcast transmission on their primary network. Using a secondary short-
range network they form a cooperation cluster in order to exchange missing
data packets. To achieve this goal ECP is described and implemented. ECP
describes a number of mechanisms which are used to make the cooperative
exchange as efficient as possible. Following this ECP is implemented in a
test-bed using smartphones and Wireless Local Area Network (WLAN) as
short-range technology. Using the test-bed a cellular broadcast transmission
is emulated and the performance of ECP is measured on the short-range
network.
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Main Results

In this paper we have introduced a practical protocol to facilitate the dis-
semination of multimedia towards a cooperative cluster of smartphones. The
protocol uses RLNC to increase the efficiency of the communication within
the cooperative cluster. In order to evaluate the protocol a test-bed was cre-
ated and the several measurements were carried out. The evaluation showed
that ECP was capable of recovering close to the maximum amount of packet
errors. Furthermore, the evaluation confirmed that in a practical setting the
field size should be carefully chosen to avoid overloading the resource con-
strained devices, and thereby increasing the possibility of buffer overflows
etc.

Own Related Publications

In [9] we investigate the potential gain from using user cooperation and net-
work coding in existing Long Term Evolution (LTE) networks. LTE net-
works are supposed to use Forward Error Correction (FEC) codes for the
content distribution such as download and streaming services over the air
towards the mobile device. In order to minimize the required redundancy by
the FEC code it is proposed that local retransmissions using network coding
can be used. The proposed approach shows that local retransmissions can
save up to 80% of the redundant information on the cellular link as long as
there are at least two cooperative users. The result also show that by using
network coding the traffic on the short-range network can be reduced by 50%
as long as there are four devices in the cooperative cluster.
In [10] we extend previous work to include a high degree of mobility. In
this setting the cooperative cluster is subject to sporadic disconnections and
only partial connectivity as devices move in and out of range. The paper
compares the use of a network coding based User Datagram Protocol (UDP)
protocol and a reference scheme based on Transmission Control Protocol
(TCP). Results show that the proposed strategy is able to outperform the
reference strategy both in terms of good-put and energy consumption.
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2.3 Paper 3

2.3 Paper 3

Kodo: An Open and Research Oriented Network Coding Library
Morten V. Pedersen, Janus Heide, and Frank H.P. Fitzek
NETWORKING 2011 Workshops: International IFIP TC 6 Workshops, PE-
CRN, NC-Pro, WCNS, and SUNSET 2011, Held at NETWORKING 2011,
Valencia, Spain, May 13, 2011, Revised Selected Papers. Vol. 6827 Springer,
2011. p. 145-153 (Lecture Notes in Computer Science).
Pages 8.

Motivation

Since the introduction of network coding in 2000 by Ahlswede [51] much
work has been carried out showing the theoretical benefits of this novel new
approach to data distribution. However, since then only a limited amount
of work has been carried out investigating the feasibility of these algorithms
in practice. In this paper we introduce a high performance research oriented
C++ library targeting researchers and practitioners wishing to work on prac-
tical network coding. It is the hope that this library may serve as a starting
point for researchers wishing to investigates the practical aspects of network
coding.

Paper Content

The paper introduces design goals and motivation behind the Kodo library.
Following this the paper provides an overview of different network coding
approaches and provides a description of the network coding algorithms sup-
ported by Kodo. The initial functionality covers most of required algorithms
for implementing a RLNC based system. The paper also introduces how
Kodo handles packetization through the use of partitioning schemes. Finally
an example shows how to use the basic RLNC classes to perform encoding
and decoding of a data block. The example also shows how to use different
density generators for the encoding vectors and allows changing the used
finite field.

Main Results

The goal of this paper is to provide other researchers an way to experiment
with practical network coding algorithms. This goal has been so far been suc-
cessfully achieved and the library has been reported used at several research
institutions worldwide. The library supports implementing an operational
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RLNC application in only 60 lines of C++ code. Furthermore the code has
been successfully used on the following platforms Windows, Linux, Mac OS
and Android.

Own Related Publications

In [11] we consider different approaches to reduce the number of operations
needed by the decoding algorithms in RLNC. In particular we are interested
in the case where the coding vectors are sparse. We use an on-the-fly version
of the Gauss-Jordan algorithm as the baseline, and provide several simple im-
provements to reduce the number of operations needed to perform decoding.
Our tests show that the improvements can reduced the number of operations
needed with 10-20% on average depending on the encoding parameters.
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2.4 Paper 4

2.4 Paper 4

Finite Field Arithmetics for Network Coding
Morten Videbæk Pedersen, Janus Heide and Frank H. P. Fitzek
Book chapter in “Network Coding: A Hands-on Approach” tentative title,
to be published Wiley.
Pages 39.

Motivation

Finite Fields or Galois Fields are the underlying mathematical foundation
of network coding algorithms. In practice we may choose between a wide
range of different field implementations and realizations. Choosing a specific
implementation can depend on several factors. Some choices are dictated by
topology i.e. in order to achieve the multicast capacity of certain networks
theory tells us what is the required field size [63]. On the other hand practical
concerns also limits our freedom of choice. Typically choosing a large field
will increase the complexity of the mathematical algorithms. In this book
chapter we investigate the implementation of different Finite Fields and their
impact on network coding algorithms.

Paper Content

The chapter starts with a brief introduction to the theory of finite fields.
Following this the chapter introduces how the theory can be transformed
into software algorithms. The chapter starts at the binary field and shows
how the field size may be increased through the use of binary extension
fields. For the binary extension fields a number of different implementation
techniques are presented and discussed. The algorithms required for the
implementations are also presented and discussed. Furthermore the trade-
off between the different algorithms in terms of complexity and memory
consumption is shown.

Main Results

The results presented in this chapter makes it possible for network coding
researchers to include practical concerns when choosing the type of finite
field to used. It also makes available to practitioners the algorithms and
descriptions needed to implement the finite fields in network coding systems.
The paper demonstrates how to transform the mathematical constructs into
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runnable algorithms. The paper introduces 5 different algorithms for imple-
menting finite field arithmetic. For all algorithms memory consumption and
example implementations are shown and described.

Own Related Publications

In [12] we investigate the trade-off between key parameters in a network
coding system namely field size, generation size, coding vector density and
coding vector representation. We show that for a simple topology a low field
size offers the best trade-off.
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2.5 Paper 5

2.5 Paper 5

Network Coding Over The 232 − 5 Prime Field
Morten Videbæk Pedersen, Janus Heide, Péter Vingelmann and Frank H. P.
Fitzek
IEEE Transactions on Mobile Computing (in preparation for submission)
Pages 9.

Motivation

From theory it can be shown that increasing the field size used in a network
coding system increases the efficiency of the code as it reduces the probability
of transmitting linear dependent packets in the network. In certain cases a
high field size may even be required in order to realize the communication’s
maximum theoretical data rate. However, in practice implementations typi-
cally search to use the smallest possible field size as this in most cases is easier
to implement efficiently and therefore yields a higher performance. There is
a continued need to find better and more efficient ways of implementing finite
field algorithms.

Paper Content

The paper proposes the use of a finite field called optimal prime fields for net-
work coding systems. In order to provide a practical solution the paper first
introduces solutions to two obstacles. Namely efficient implementation of the
modulo operation and mapping arbitrary binary data to the selected field.
Following this several approaches to the binary mapping are investigated and
their practical performance is measured. Following this the performance of
the proposed field is evaluated and compared to different field implementa-
tions. Finally the paper provides a discussion and conclusion of the proposed
solution.

Main Results

The main result found shows that the optimal prime field is a promising
candidate to implement higher order fields in network coding systems. The
performance is between 18% and 20% faster than the currently fastest F28

fields implementation tested, while at the same time providing a significant
higher order field, namely with 232 − 5 field elements. Another advantage of
the proposed solution is that the computations does not rely on any precom-
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puted look-up tables or similar. Which makes it a suitable candidate for low
memory devices such as sensors etc.
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2.6 Paper 6

2.6 Paper 6

A mobile application prototype using network coding
Morten Videbæk Pedersen, Janus Heide, Frank H. P. Fitzek and Torben
Larsen
European Transactions on Telecommunications, Vol. 21, No. 8, 12.2010, p.
738-749.
Pages 12.

Motivation

Several open questions exists when considering the use of network coding
combined with user cooperation. One is whether the computational com-
plexity added by the additional network coding operations surpasses the
gains obtained. Furthermore following the implementation of network cod-
ing algorithms is the implementation of network coding protocols. Protocol
designers should begin to consider how this new technique can be applied to
communication protocols in an efficient and meaningful way.

Paper Content

The paper introduces a simple single-hop cooperative network and provide
an overview and comparison of the different data distribution techniques.
Following this the network coding algorithms used are introduced and im-
plemented on a smartphone based test-bed. Using the test-bed a number of
measurements are conducted in order to measure the impact of the coding
operations on the network performance. The measurements are based on a
simple setup where a source transmits a chunk of data to all receivers. To
achieve this in the most efficient way the use of network coding is evaluated
in two steps. First network coding is used as a traditional FEC code with
no recoding and communication between the receivers. In the second step
the receiving devices participate by transmitting recoded packets. Based on
these two schemes several measurements are recorded and the performance
of the two schemes are evaluated. Based on the observed results a num-
ber of recommendations and considerations for future network coding based
protocols are presented.

Main Results

Utilizing network coding has a measurable impact on the throughput of the
device, continuing the effort to keep improving the network coding algorithms
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are therefore important. In the specific setup recoding should be used care-
fully, taking into account the packet error probability of the receivers is a first
guideline for determining when a receiver becomes a useful relay. The ad-
ditional linear dependency introduced by the binary field creates a trade-off
between generation size and energy consumption. For small generation sizes
a higher field size could yield better performance, this is however subject to
further investigations.

Own Related Publications

In [13] we present an analysis of binary field algorithms used in this paper. We
propose the use of the binary finite field to increase performance and present
an evaluation of the proposed solution. We also quantify the speed-up from
using a systematic phase at the beginning of the FEC block transmission.
In [14] the initial prototype application is developed and the first implemen-
tation results are presented. The prototype is able to demonstrate the use
of network coding on resource constrained mobile devices. A simple protocol
based on a no feedback packet overshoot scheme is presented and used to
control the data transmission.
In [15] a number of additional platforms are included. This is done to quantify
the performance of an extended set of hardware architectures. The platforms
include the popular iOS based devices.

24



Chapter 3

Contributions of the PhD Work

This chapter summarizes the main contributions of the PhD work. In the fol-
lowing we will describe the main outlets of the knowledge generated through-
out the project and describe some of the initiatives that were started through-
out of the PhD.

The main instruments for dissemination in this project has been through
a) publications, b) open source software, c) demonstrators, d) teaching, e)
organization of workshops, f) research projects, g) start-up company.

a) As a part of the PhD project one of the main dissemination channels have
been through publications at conferences and workshops. At the time of
writing this has resulted in 15 co-authored papers (2 as first author).
In addition to this a number of journal and book chapters has been co-
authored which currently counts 5 journal papers (3 as first author) and
4 book chapters (2 as first author). For the full list of publications see
the “Complete List of Publications” included in Chapter 5.

b) During the project period a large amount of research based software was
developed. This software has been made publicly available on the Internet
to other researchers and students working on related subjects. The source
code for the two main projects Fifi and Kodo can be found here:

• https://github.com/steinwurf/fifi

• https://github.com/steinwurf/kodo

c) Throughout the PhD project a number of demonstrators has been de-
veloped. These demonstrators have been instrumental in communicating
the concepts of user cooperation and network coding to wider audience.
They also serve as clear way to demonstrate the potential of user coop-
eration and network coding. One example of this was a demonstrator
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developed in collaboration with Prof. Muriel Medard’s research group
at Massachusetts Institute of Technology (MIT) showing network coding
used to support the distribution of live video streams. This demonstrator
was shown at National Broadcasting Company (NBC), to demonstrate
how user cooperation and network coding could be implemented into fu-
ture video distribution networks.

d) During the project period a large amount of teaching activities have been
carried out. During the PhD project we have applied much of our research
to mobile phones and we believe the mobile phone serves as an excellent
platform for research, experimentation and demonstration. In order to
help others get started with these platforms we have organized summer
schools in mobile phone programming in 2010, 2011, and 2012. Each
year with an average of 20 to 30 participants from all over Europe. In
addition to this we have given a number of smaller lectures on mobile
phone development for a variety of different people from 9th grade school
kids to company employees.

e) During the PhD it has been a pleasure to server in the Technical Program
Committee (TPC) and support in organization of the ICC CoCoNet 4
and ICC CoCoNet 5 workshops on cognitive and cooperative wireless
networks.

f) The Evolved Network COding (ENOC) project was started in cooperation
with and funded by Nokia. The main scope was to investigate cooperation
and network coding in cellular networks, and to produce publications and
patents on the topic. Later this project was continued as Network COding
Evolved (NOCE) in cooperation with Renesas Mobile. Finally I have
received the funding to continue the work started during this PhD by the
Danish Ministry of Science, Technology and Innovation as a three year
individual Post Doc.

g) In 2011 Steinwurf ApS was founded by Janus Heide, Frank H.P. Fitzek,
Muriel Médard and Morten V. Pedersen. The company will deliver soft-
ware applications and protocols to customers who wish to incorporate
user cooperation and network coding as part of their network infrastruc-
ture. The company is currently in the start-up phase and has received
the initial seed funding in 2011.

26



Chapter 4

Conclusion

Throughout this PhD we have been investigating the cross-over between user
cooperation and network coding, as a way to enhance the data dissemina-
tion in mobile networks. Our initial starting point was the development of
an experimental platform for network coding based protocols. These efforts
have been open-sourced and are today freely available to researchers working
on practical network coding. The developed platform has since been used
in a series of publications to investigate to what degree the reported high
complexity of network coding would impact practical systems and how it
potentially could be reduced. Two areas significantly contribute to the com-
putational complexity of the algorithms, namely the finite field arithmetics
and the choice of parameters for the encoding and decoding algorithms. In
this thesis we present our work on lowering the complexity of the finite field
arithmetics. One promising technique is the use of the Optimal Prime Field
which efficiently utilizes normal integer arithmetics of the Central Process-
ing Unit (CPU) and thereby offers fast calculations. In the related work,
we reference the work we have done on reducing complexity of the decoding
algorithms [11]. Based on the developed platform we investigate the impact
and use of network coding in user cooperative protocols. We show that user
cooperation can benefit from the use of network coding and that although the
complexity of network coding does impact the performance it still surpasses
the performance of state-of-the-art reference schemes. However, we also see
that even for simple single-hop cooperative clusters the protocols have to be
carefully designed to efficiently take advantage of network coding. Finally
we present our work on creating cooperation incentives in networks where
the users are not contributing equally to the network. To make cooperation
attractive in such networks we propose the use of social networks to create
an alternative payoff model.

Within all of these areas we are by no means at the end of the road
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but we believe that the contributions from this project will serve as a useful
foundation and input for researchers also working in the field.
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INV ITED
P A P E R

Mobile Clouds: The New
Content Distribution Platform
In this paper, the future of digital media content distribution using mobile clouds

is introduced and the impact of social networks on sharing content and other

limited resources such as spectrum is highlighted.

ByMorten V. Pedersen, Member IEEE, and Frank H. P. Fitzek, Senior Member IEEE

ABSTRACT | This paper discusses the future of content

distribution among mobile devices forming the so-called

mobile clouds. This paper introduces the current-technology-

based problems of the approach, but also highlights its future

potential. One core element of this paper is the technical

development in this area and the social paradigm that will be

used to create cooperation among users. We conclude that the

future of mobile clouds will be in novel technologies such as

network coding as well as in combination with social networks

in order to boost cooperation among users as well as connect

people over the shared content.

KEYWORDS | Cooperation; mobile clouds; network coding;

social networks

I . INTRODUCTION

With the dramatic evolution of mobile phones come

changes to how we use these devices. From simple phone
calls in the past, today the mobile phone is the main source

of information storing our favorite songs and videos.

But storing the mobile content is not the final goal.

Users like to share content. For this purpose, all social

networks such as Facebook allow upload of content of any

kind. But users want more than just a common storage of

their content. They want to enjoy the content together

with their friends simultaneously. This is not a new trend.
In the very early days of the Walkman there were already

two headset jacks. The great success of the TV as a social

medium was that we could watch it together and talk about

it later on.

With the introduction of the mobile phone, the
consumption of content became more asynchronous.

One of the reasons is that the content we watch is a

downloaded content. Live streaming such as in Internet

protocol television (IPTV) is not widely deployed yet.

Unfortunately, our mobile phones and our networks are

not completely ready yet to support the described usage

scenario. Current networks, for example, have difficulties

to support multicast or broadcast services for mass events
such as rock concerts or sport events, especially if the

receivers are spatially correlated. Furthermore, the social

interaction over such content cannot be globalized, but is

limited to people which are spatially or socially close to

each other. Therefore, the trend tends to share the content

in a more cooperative way from device to device (D2D).

Without going into detail, sharing is not limited to

content but follows a more general concept of sharing
resources. Sharable resources are, e.g., spectrum, compu-

tational power, apps, onboard sensors, achieved knowl-

edge as well as the aforementioned content [1], [2]. After

answering the question on what will be shared in the

mobile clouds, the follow-up question is how will the

sharing be realized? Here we will highlight two aspects,

namely, the technology side and the social side. The

technology side looks into the efficient sharing of the
content in a mobile cloud, while the social side discusses

different forms of cooperation within the mobile cloud

from forced cooperation, altruism, and new forms of

cooperation.

II . MOBILE CLOUDS: CURRENT
PROBLEMS

Since the very early days of mobile communication,

cellular and centralized concepts have dominated the
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communication world. This old paradigm limits us. We
should break with these concepts and start to think about

D2D concepts. As the content is not necessarily stored in

the overlay network, devices might convey information

directly to the neighboring devices without any help of

the overlay network. This technical solution maps

perfectly with the social need to share with people who

are close to us.

The problem is that the mobile platforms are not, or
even worse not anymore, ready for this. Such an approach

could be realized by the globally accepted WiFi technol-

ogy. Most mobile phones, whether featured phones or

smartphones, are equipped with WiFi already. In order to

not be dependent on any overlay network, ad hoc WiFi

would be the best choice. But as the first WiFi-enabled

phones were still able to support ad hoc WiFi, some of the

newer devices do not allow it anymore. More precisely, the
devices are allowed to join an ad hoc network but cannot

establish such a network. Even if the ad hoc capabilities are
supported as, for example, on some Android phones or the

Nokia N9, the performance of ad hoc communication was

reported to be rather low. Fortunately, WiFi direct is now

implemented on the newest phones. This will boost the

D2D communication platform. Whatever technology is

available, network coding has to be implemented for the
efficient exchange of the content. In case the content is not

stored on any participating mobile, but within the Internet,

D2D still offers many benefits. Without the D2D capability

of mobile devices in close proximity, the network operator

needs to make sure that each participating mobile phone

gets full information. In case of D2D, the network would

just pump enough information into the D2D group and

leave it up to the phones to exchange the missing parts.
Such an approach leads to not only energy saving for the

mobile phones, but also energy and bandwidth savings for

the network operators.

Another problem has to do with legal aspects: Which

content can be used for D2D networks? Downloadable

content is most often digital right management (DRM)

protected. This last problem may be solved by identifying

users that would like to share the same content and setting
up an efficient transmission among them.

III . MOBILE CLOUDS: THE FUTURE

Here we highlight the future of the mobile clouds with

respect to content distribution. We will examine two main

aspects, namely, the technological and social domains.

A. Technological Domain
Currently, there is a lot of research work going on to

make the communication within the mobile clouds

feasible and highly attractive for users, network operators,

and service providers. A key element here is the network

coding. Introduced by Ahlswede et al. [3], the main

contribution was done later by Ho et al., who introduced

the random linear network coding [4]. Using network
coding for the distribution of content within a mobile

cloud leads to energy savings, bandwidth savings, delay

reduction, privacy assurance, as well as preventing false

packet injection. It has been shown that the implementa-

tion of network coding on any mobile platform is feasible

and the energy spent for operating network coding is less

than the energy savings that will be achieved by the

reduced bandwidth requirements. First applications for
mobile phones have been prototyped [5], showing the

benefits of network coding. Conceivably mobile clouds will

be powered in the future by network coding due to the list

of benefits given beforehand. Fig. 1 shows one of the first

content sharing demonstrations [5]. One sender shares a

video with 16 receivers in close proximity.

B. Social Domain
A more interesting question is how can cooperation

among mobile phones be achieved? It is critical to

understand the reasoning behind users’ cooperation or

defection in order to influence users’ willingness to

participate. In Fig. 2, four different modes of cooperation

are shown: forced cooperation, technology-enabled coop-
eration, socially enabled cooperation, and altruism. Forced

cooperation takes place if, for example, the content is

shared to any requesting device without asking the content

holder whether she or he agrees. As this may be seen as

disadvantageous for the content holder, it has huge

benefits for the network operator. If mobile devices have

different owners, cooperation becomes more difficult. In

its easiest form, cooperation takes place if it is based on
altruism. Here, the content holder is willing to share

content with friends and family and even strangers. As

shown by Hamilton in 1963 [6], in human science, some

mobile devices willingly sacrifice some of their own

Fig. 1. Example of sharing amovie locally amongmobile devices using

WiFi technology for the iOS platform.
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benefits in favor of others, as long as B�r > C, where B is

the expected benefit for the receiver of the donation, C is

the cost involved for the donor, and r is the relationship

between the two entities.

The easiest way to encourage the use of cooperative

technologies is to create situations where the instant
benefit ðBÞ is larger than the cost ðCÞ of undertaking

cooperation for all participating users. The better we

design the technology the lower the costs are. Cooperative

IPTV, as introduced in [7], where users cooperate during

downloading of the prefetched TV content, undoubtedly

exemplifies this point. In order to find more scenarios,

new communication protocols and techniques are needed.

Should the benefit of cooperation remain unclear to all
users, social reinforcement will kick in. In such a scenario,

we predict one or more mobile devices gaining from the

cooperation (we call them the receivers) and one or more

entities who invest in cooperation but do not gain (we call

them the investors). While the gain for the receivers is clear,

the gain for the investors is not. It is well documented that
most users of mobile devices are members of social

networks such as Facebook and Google+. When investors
help establish cooperation with little to no perceived

benefit to them, their efforts should be rewarded in social

networks with a different kind of benefit ðBÞ (see Fig. 3).
This can be done by simple notification or other

gamification concepts. The gain for the investors is

therefore within the social domain where they will obtain
rewards from the receivers as well as their own social

graph. While forced cooperation and altruism are two well-

known concepts that represent the state of the art,

technology and socially enabled mobile clouds are

undoubtedly beyond the state of the art. In contrast to

any other tit-for-tat cooperation scheme such as FON [8]

or BitTorrent [9], the cooperative exchange is not repaid

with equal currency but is rewarded within a new
dimension: the social domain.

Currently, social networks dominate the information

and communication technology (ICT) world and will

become even more pervasive in the future. Social networks

will not only boost cooperation among mobile devices, but

also they will allow social commentary about the content

currently or recently shared. Such an approach has several

advantages for the:
• User: content sharing is faster and more energy

efficient compared to cellular download; simulta-

neous consuming of digital content (music, video,

pictures);

• network operator: local sharing will offload the

overlay networks where spectrum is a scarce

resource;

• service/content provider: content will be spread
quickly and viral loops will be established,

spreading interesting content with larger speed.

IV. CONCLUSION

In this paper, the future of content distribution for digital

media using mobile clouds is introduced. The mobile cloud

concept foresees that mobile devices connect to each other
directly without any help of the overlay network. For the

actual sharing among mobile devices new technologies

such as network coding are the key enabler for support of

energy saving, privacy, security, data protection, and fast

exchange of data. This new architecture fits the needs of

users who would like to enjoy the digital content together.

In order to boost cooperation, especially for users who do

not know one another, the social networks are introduced.
By means of social networks, mismatch in cooperation gain

can be balanced out.

In this paper, we only highlighted the impact of social

networks on content sharing only, but in the future, users

might also share other resources such as spectrum,

onboard sensor information with each other, using the

reporting capabilities of the social networks. h
Fig. 3. Local sharing with social networks to enable cooperation

and discuss the digital content.

Fig. 2. Different cooperation modes.
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Abstract—This paper investigates the possibility of packet er-
ror recovery in a cooperative cluster of mobile devices. We assume
that these devices receive data from a broadcast transmission on
their primary network interface (e.g. LTE network), and they are
using a secondary network interface (e.g. ad hoc WLAN network)
to form a cooperative cluster in order to exchange missing data
packets among each other. Our goal is to devise a protocol that
minimizes the number of packets exchanged on the secondary
network whilst maximizes the number of packet errors recovered
on the primary network. Moreover, we aim to repair the packet
losses on-the-fly (as the data is being received), which also imposes
real-time constraints on the protocol. We propose a solution
based on random linear network coding to form cooperative
clusters of mobile devices to facilitate the efficient exchange of
information among them. We also introduce a demo application
that implements this technique on Nokia phones. Then we present
our testbed and the collected measurement results in order to
evaluate the performance of our protocol.

I. INTRODUCTION

Network coding has received a lot of attention lately [1], [2],
[10], [8], [12]. Researchers have shown that network coding
has its clear advantages, especially for wireless and mobile
multi-hop communication systems. Our prior work has been
focused on the feasibility and tuning of network coding for
mobile platforms [5], [14], [13]. Later those findings were
confirmed by other researchers [15], so we could conclude
that network coding is feasible on embedded devices, and
its benefits in terms of energy consumption and bandwidth
usage are realistic. Researchers in [11], [4] proposed solutions
that utilize network coding in cooperative clusters in various
communication scenarios.

The work in this paper is also focusing on protocol design
based on network coding. In particular, we investigate the
possibility of using cooperative clusters of mobile devices
for packet error recovery in content distribution systems. The
main architecture of these systems has not changed much
in the past decade. In the mobile world, we still use a
highly centralized client/server architecture, where the overlay
network is providing the content, and the mobile users are
merely consuming it.

The protocol proposed here takes advantage of the mobile
devices themselves by forming cooperative clusters with the
help of network coding. We attempt to enhance the traditional
client/server communication pattern by allowing neighboring
devices to communicate directly to make the content distribu-
tion more efficient.

This paper is organized as follows. Section II presents our
scenario and gives an overview on network coding. Section III
discusses the features of our protocol and introduces our
application. Section IV presents measurement results. Future
works are discussed in Section V, and the final conclusion is
drawn in Section VI.

II. SCENARIO

In our scenario a source wants to reliably transmit the
same media file or media stream to several receivers. We
assume that these receivers are connected to the source via
their primary network interface (e.g. 4G or LTE network).
In state-of-the-art systems the source broadcasts the data
on this interface, and it also applies some sort of coding
scheme (e.g. Raptor coding) to fix the packet erasures on the
receivers. Since packet losses are quite common in wireless
networks, this coding may require a large overhead. Therefore
we assume that the receivers are also able to communicate
with each other using their secondary network interface (e.g.
ad hoc WLAN). Thereby cooperative clusters can be formed
of several receivers to exchange missing data packets among
each other. This basic scenario is depicted in Figure 1.

Fig. 1. A source transmitting data to multiple receivers.

The fundamental problem with broadcast packets is the fre-
quent losses of packets in real-life wireless networks [6]. Since
channel conditions are not ideal, we cannot expect that all



broadcast packets are delivered to all receivers. Packet losses
must be corrected by using some sort of retransmission scheme
to ensure reliability. As a naive solution, the individual nodes
can request all their missing packets from the original source.
The end result would be similar to the Automatic Repeat-
reQuest (ARQ) mechanism used in one-to-one transmission
protocols, since every lost packet would be transmitted again.
This strategy is sub-optimal if packet losses are uncorrelated,
as each retransmission is only useful to those receivers that
have lost the given packet in the first place. It is likely that a
single retransmission will only benefit a single receiver.

The impact of each retransmission can be maximized by
using network coding [1], [2], [9], [5]. Researchers have
shown that network coding can provide several advantages,
namely improved throughput, robustness, security and lower
complexity in communication networks [7], [3].

A. Network Coding

The basic operations performed in a network coding system
are depicted in Figure 2. To lower the computational com-
plexity of coding operations, large files or continuous streams
are typically split into several equal sized chunks, also called
generations [2], each consisting of g packets.

Fig. 2. Overview of Network Coding

The encoder (the top component in Figure 2) generates
and transmits linear combinations of the original data packets
in the current generation. Addition and multiplication are
performed over a Galois field, therefore a linear combination
of several packets will result in a packet having the same
size as one of the original packets. With Random Linear
Network Coding (RLNC), the coding coefficients are selected
at random. Note that any number of encoded packets can be
generated for a given generation. The middle layer represents
the wireless channel, where packets are lost depending on the
channel conditions. The received encoded packets are passed
to the decoder (the bottom component in the figure), which
will be able to reconstruct the original data packets after
receiving at least g linearly independent packets.

The receiver nodes are also allowed to generate and send
new encoded packets, even before decoding the entire gen-
eration. They form new linear combinations of the packets
that they have previously received. This operation is known
as recoding, and it is a unique feature of network coding.
Traditional coding schemes require the original data to be fully
decoded before it can be encoded again.

Another advantage of network coding is that it makes
”perfect coordination” possible, where an arbitrary number
of sending nodes can be used to serve the same generation to
a receiver. Moreover, a receiver is no longer required to gather
all data packets one-by-one, it can simply ”hold a bucket” for
a generation until it is full, that is enough linearly independent
encoded packets are received. With RLNC, the randomly
generated coding coefficient vectors from different senders
are linearly independent with high probability (depending on
which Galois field is used). Consequently, there is only a
minimal need for signaling among the cooperating nodes.

III. PROTOCOL DESIGN

Our goal is to devise a protocol that minimizes the number
of packets exchanged among the mobile clients, whilst max-
imizes the number of packet errors recovered. Moreover, we
aim to repair the packet losses on-the-fly (as the data is being
received), which imposes real-time constraints on the protocol.
We call our protocol ECP (ENOC Cooperation Protocol).

We assume that the primary network is an LTE network,
which uses systematic Raptor coding for broadcast trans-
missions. Thus the raw symbols (uncoded data packets) are
transmitted first, and they are followed by several encoded
packets to repair the losses. We intend to devise a best-effort
protocol that uses the secondary network established among
the receivers to conceal a significant part of these losses
from the LTE Raptor decoder. It is important to note that
ECP is not intended to provide full reliability, which remains
the responsibility of the Raptor decoder. We assume that the
protocol has read access to the raw symbols received on the
primary network, and it can also write back newly recovered
symbols to the Raptor decoder buffer, thereby significantly
lowering the perceived packet error rate and the required
overhead.

A. Protocol operation

ECP is based on the principles of network coding, since the
receivers cooperate by sending encoded or recoded messages,
which contain information that is most likely innovative for
all peers. The basic unit of operation is a generation, meaning
that the cooperative cluster is only trying to fix a specific
generation at any given time. The network nodes may form a
new cluster for the next generation.

After receiving a certain generation on the primary network,
a receiver can broadcast a NACK (Negative Acknowledgment)
message on the secondary network if it has experienced any
packet losses. This is a retroactive trigger mechanism in ECP.
We apply semi-random back-off intervals to prevent multiple
nodes from broadcasting NACK messages at the same time.



The back-offs are chosen so that it is more likely that the worst
receiver sends out the first NACK. These messages contain
information about how many packets were lost on the receiver.

When the other devices within range receive this packet,
they will suppress their own NACKs, and in response they
schedule several encoded data packets to be sent at a specific
speed. The devices generate and broadcast encoded packets,
which also convey information about their own packet losses.

Since RLNC is used to achieve perfect coordination, en-
coded/recoded packets from any of the nodes can be equally
useful. Senders do not have to pay attention to select specific
packets for specific receivers.

Consequently, the most essential question here is how many
packets the devices should schedule and transmit in response to
a NACK message. They can simply broadcast as many as the
worst receiver needs. The nodes constantly gain information
about the others’ knowledge with every encoded packet they
receive. These updates can be used to continuously adjust the
remaining number of packets to be sent.

This simple approach however leads to sub-optimal per-
formance in most cases. If there are 3 or more cooperating
devices, then the task of ”filling up” the worst receiver should
be equally divided among the others. For example, suppose
that there are 4 devices and the worst one needs 15 packets,
then the other 3 can send 5 packets each.

If we have only 2 cooperating nodes, then it is very likely
that they have some common erasures. Consequently, full
recovery is often not possible in this case, and the devices
should send less packets than the other one has lost. Specific
information about the individual packet losses is necessary to
determine the combined knowledge of the cooperative cluster.
We include a short bit vector (called the knowledge vector) in
all protocol messages that explicitly indicates which packets
of the current generation are currently available on the sender
of the message. The network nodes can quickly calculate the
combined knowledge of the cluster by bitwise OR-ing these
vectors from all receivers. To determine how many innovative
packets can be sent to a given node, we can take the difference
of the combined knowledge and the node’s latest knowledge
vector.

This improved approach can yield near optimal performance
under ideal channel conditions and slow transfer rates. How-
ever, as we increase the transfer rate, we observe that informa-
tion about the other nodes can quickly become out-of-date thus
inaccurate. This may lead to the premature termination of the
repair session, i.e. the nodes may schedule less packets than
necessary. Therefore we allow the receivers to send secondary
NACK messages for the current generation when the others
have stopped sending, but the node is still unable to decode
some of the received messages.

B. Implementation

Based on the protocol design ideas outlined above, we have
implemented a prototype application using the Qt framework
so that we can test our protocol on any Nokia phone, desktop
computer or laptop.

This demo application emulates an incoming LTE packet
flow on all devices synchronously. When the application starts,
it enumerates its network interfaces in order to determine
its IP and broadcast addresses corresponding to the WLAN
network interface. One device is used to start the simulation
by broadcasting a command packet that contains all the
simulation parameters. The other devices receive this packet,
extract the parameters, and initiate the packet flow simulation.
They all use the same random seed to generate random data
packets deterministically, as if these were received on the LTE
network. Packets are generated continuously with the same
data rate on all clients. The devices also drop certain packets
at random to simulate packet losses. Note that they do this
independently from each other. Thereby all devices possess
some parts of the incoming datastream, and they also have
some ”holes” that ECP should be able to fill on-the-fly.

We consider a single Raptor code source block, e.g. 1024
packets in a simulation. The entire block can be segmented
into smaller generations (e.g. 64 packets) that are sufficiently
small for network coding calculations on resource-constrained
mobile devices. ECP works on these generations as depicted
in Figure 3.

Fig. 3. Mapping between Raptor code source blocks and ECP generations.

When the first 64 packets of the emulated packet flow are
(partially) received, the ECP trigger mechanism is activated,
and the nodes generate a random back-off interval before
sending a NACK (Negative Acknowledgment) message. When
they receive a NACK, the devices generate and broadcast
several encoded packets with a specified data rate in order
to repair the packet losses in the cluster.

Network coding involves a computational overhead which
might be prohibitive from a practical point of view. The au-
thors in [5] proposed an efficient solution for mobile devices,
namely to use the binary Galois field, GF(2) to simplify all
calculations. Since this approach increases the probability of
generating linearly dependent (i.e. useless) encoded packets,
we have also implemented arithmetics over another finite
field, GF(28), which is more computationally intensive, but
almost totally free of linearly dependent packets. For a given
simulation, all devices use either GF(2) or GF(28), as dictated
by the source node in the simulation parameters.



The application can run simulations with different data rates,
which is quite useful when we examine the implications of
time constraints on the protocol performance. Moreover, data
rates can be increased automatically for stress tests, and the
collected simulation results from all participating devices can
be transmitted to a logging server.

C. Visualization

The application also has a simple visualization grid with
colors, hence we can observe as the packet losses are being
repaired by the neighboring devices. In Figure 4 we show
screenshots of this visualization grid after finishing simulations
with 1, 2 and 6 devices.

A green box signifies a packet that was received on the
simulated primary network. A red box signifies an encoded
packet that was received from another device, but it has not
been decoded yet, thus it can be considered ”dirty data”. A
blue box signifies a packet that was originally lost on the
primary network, but it has been recovered by ECP. Obviously,
our objective is to maximize the number of blue boxes and to
eliminate all red boxes.

(a) Single device (b) One of 2 devices (c) One of 6 devices

Fig. 4. Visualization grid after complete simulations with 1024 packets and
30% simulated packet loss.

IV. MEASUREMENTS

We have assembled a testbed to demonstrate the capabilities
of our protocol, and to refine its design. The cooperative cluster
consists of 6 Nokia N95 (or N95 8GB version) mobile phones
that run the demo application described above. These devices
form an ad hoc WLAN network for short-range communica-
tion. All ECP packets are transmitted on this network.

It is important to design ECP so that it can work well with
a various number of neighboring devices. In this testbed we
can test its operation with 1-6 devices. With one device, the
objective is to minimize outgoing traffic, although we have to
make sure that the devices can detect each other’s presence
and switch on cooperation when necessary. With 6 devices,
we also aim to send as few packets as possible to minimize
the overall energy consumption.

A. Performance evaluation

The main purpose of this testbed is to evaluate the perfor-
mance of ECP on actual mobile devices, since it is a vital step
in protocol design to gain feedback from real networks.

Our first performance metric is the required overhead to
complete the transmission, as measured on the primary source
node (i.e. the LTE base station).

In Figure 4 we can easily count the white ”holes”, each of
those would require a retransmission from the source. In these
simulations we used a source block consisting of 1024 packets
with 30% simulated packet loss. We expect around 300 lost
packets if a device is alone, that is why we see around 300
holes in the left screenshot (4a) after a finished simulation.

The middle screenshot (4b) illustrates the cooperation gain
with just 2 devices. In this case we were able to fill 70% of the
holes, that means a 70% reduction in the required overhead.
Some packets were not fully decoded here (red boxes), which
indicates sub-optimal performance with 2 devices.

The right screenshot (4c) shows the end result of a sim-
ulation with 6 devices, where 98% of the holes were filled.
Therefore only a minimal amount overhead is required from
the base station in this case. There are no red boxes here,
and the remaining holes are actually correlated erasures, i.e.
packets that were lost on all 6 devices of the cluster.

Fig. 5. Required overhead on the primary network.

Figure 5 shows the average required overhead as the number
of cooperating devices increases. This graph is based on
several hundred measurements performed with GF(2). As we
can observe, the cooperation gain is quite significant even with
2 devices. Note that packets, that were lost on all devices,
cannot be recovered. Their number is shown as correlated
losses in Figure 5. In most cases ECP is able to achieve
very close to the maximum cooperation gain, i.e. it can repair
almost all packet losses that can be repaired by the cluster.

Our second performance metric is the number of packets
exchanged on the WLAN network. The overall energy con-
sumption of the system is heavily influenced by this measure.
In the testbed, we can measure the number of transmissions
(packets sent and received) on a single device, and we can
aggregate these values from all devices for a given simulation.



In our previous work [17] the theoretical upper and lower
bounds for this measure were established considering an ideal
system based on network coding. The upper bound can be
calculated by doubling the expected number of recoverable
(i.e. non-correlated) packet losses on a single device. In the
worst case, the device has to both send and receive that amount
of packets. As we have mentioned before, the sending part
can be optimized if there are more than two devices. We can
divide the number of packets to be sent among all nodes.
This principle is used to establish a lower bound, which is
calculated for the worst receiver (on the primary network). For
this device, the expected number of recoverable packet losses
is higher than the average, and this is the amount of packets
that it has to receive. It should also send its fair share of the
expected number of recoverable losses on the second worst
receiver. The lower bound is obtained by adding the number
of packets received and sent. This is based on the observation
that any packet exchanged on the WLAN network is either
sent or received by a given node.

Fig. 6. Number of exchanged packets on the WLAN network as a function
of the cluster size

The lower and upper bounds are plotted in Figure 6 together
with the actual numbers measured on the testbed using GF(2)
and GF(28). The performance with GF(28) is quite close to
the lower bound for 2 and 3 devices, but it is getting worse
for larger cluster sizes. On the other hand, using GF(2) results
in generating some linearly dependent (i.e. useless) packets,
which account for the performance gap between the two Galois
fields. For 6 devices, GF(2) performs similarly to GF(28),
which is an interesting result. It can be explained by the fact
that the processing delay is significantly smaller for GF(2),
therefore the protocol decisions (how many packets to send)
are based on more up-to-date information.

The third performance metric is the compliance with real-
time constraints. This can be very important for video playback

(a) ECP with GF(2)

(b) ECP with GF(28)

Fig. 7. Performance at different data rates with 4 devices

or similar services, where the packet losses should be repaired
on-the-fly, i.e. faster than the native playout data rate of the
video stream. In the testbed, we can adjust the data rate of
the simulated LTE packet flow, and we can measure how the
increased data rates influence the protocol performance. In
Figure 7 we have plotted the number of total packets sent, the
required overhead and the number of lost packets as measured
in consecutive simulations with 4 devices with increasing data
rates ranging from 10 to 240 KB/s. As we can see in Figure 7a,
these performance indicators were almost unaffected when we
used GF(2). We can only notice a slight increase in the number
of sent packets. However, if we look at Figure 7b, we observe
that the situation is much worse for GF(28). Encoding and
decoding operations over GF(28) impose a heavy load on the
CPU, which leads to frequent packet losses on the WLAN
network. Consequently, the devices will try to send more
packets to counteract these losses, and the number of sent
packets increases almost twofold. As a result, the protocol is
no longer able to recover all the original losses with data rates
higher than 180 KB/s. For higher data rates, GF(2) performs
better than GF(28) due to the high computational overhead
associated with GF(28). Note that the highest data rate here,



240 KB/s corresponds to around 2 Mbit/s, which is more
than sufficient for full quality videos on state-of-the-art mobile
devices.

V. FUTURE WORKS

Before this protocol can be deployed in real-life mobile
networks, we need to investigate the effects of peer mobility
and dynamic behavior. Mobile devices may join and leave the
cluster at any time, and typically they are also moving around,
therefore static cooperative clusters are not to be expected
in reality. Extensive measurements are needed to analyze the
protocol performance in dynamic settings.

ECP was designed so that it can work well with multiple
disjoint clusters if certain nodes move from one to another.
Basically a new cluster is formed for every generation (e.g.
64 packets). If a cluster stays together for that short period of
time, near-optimal performance can be achieved, and the next
generation is handled by a new (possibly different) cluster.

The protocol can also be used for coverage extension in
multi-hop wireless networks to provide services on mobile
phones that are outside the range of 3G, 4G or LTE networks.
If some nodes are not directly reachable by the source, then
it is still possible to deliver the data stream to these receivers
with the help of relaying nodes that propagate the received
data farther away from the source. As it was shown in [16],
the fundamental problem of data dissemination in multi-hop
networks is the dynamic selection of relays and finding the
proper scheduling scheme for the packet flow.

VI. CONCLUSION

In this paper we have introduced a protocol to facilitate
the dissemination of multimedia content using cooperative
clusters of mobile devices. We considered a scenario where
these devices receive data from a broadcast transmission on a
primary network (e.g. LTE network), and they use a secondary
network (e.g. ad-hoc WLAN network) to recover packets that
are lost during the transmission. We proposed a solution based
on random linear network coding to facilitate the efficient
exchange of information in the cooperative cluster. A demo
application running on Nokia phones has been presented to
show the feasibility of this approach. We observed that in
most cases the protocol is able to realize almost the maximum
cooperation gain, that is to recover all packets which are lost
on the primary network. Meanwhile, the number of packets
exchanged on the secondary network was kept close to the
minimum. Moreover, we showed that packet errors can be
recovered on-the-fly with data rates as high as 2 Mbit/s.
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Abstract. This paper introduces the Kodo network coding library. Kodo
is an open source C++ library intended to be used in practical stud-
ies of network coding algorithms. The target users for the library are
researchers working with or interested in network coding. To provide
a research friendly library Kodo provides a number of algorithms and
building blocks, with which new and experimental algorithms can be
implemented and tested. In this paper we introduce potential users to
the goals, the structure, and the use of the library. To demonstrate the
use of the library we provide a number of simple programming exam-
ples. It is our hope that network coding practitioners will use Kodo as a
starting point, and in time contribute by improving and extending the
functionality of Kodo.

Keywords: Network Coding, Implementation

1 Introduction

First introduced by Ahlswede et al. in [1], network coding has in recent years
received significant attention from a variety of research communities. However
despite the large interest most current contributions are largely based on theo-
retical, analytical, and simulated studies and only few practical implementations
have been developed. Of which even fewer has openly shared their implementa-
tions. In this paper we introduce an open source network coding library named
Kodo. It is the hope that Kodo may serve as a practical starting point for re-
searchers and students working in the area of network coding algorithms and
implementations. At the time of writing the initial release of Kodo supports ba-
sic network coding algorithms and building blocks, however by releasing Kodo as
open source it is the hope that contributions may lead to additional algorithms
being added to Kodo. Before describing the library design and functionality we
will first give an overview of the motivations and goals behind the library.

Flexibility: as the target users of Kodo are researchers working with network
coding, one of the key goals behind the design of Kodo has been to create a
flexible and extensible Application Programming Interface (API), while pro-
viding already functional components for implementers to re-use. To enable



this, the ambition is that Kodo should provide a number of customizable
building blocks rather than only a set of complete algorithms. Creating easy
to use extension points in the library is vital to provide researchers the op-
portunity to use/reuse Kodo for their specific use-case or implementation.
To achieve this goal Kodo relies on the generic programming paradigms pro-
vided by the C++ template system. Through the use of C++ templates
implementers may substitute or customize Kodo components without mod-
ifying the existing code. This makes experimental configurations easy to
create and lowers the entry level for new users.

Ease of use: to the extend possible it is the intent that Kodo should be us-
able also for researchers with limited programming experience. To achieve
this Kodo attempts to provide a simple and clean API hiding the more
complicated implementation details. To further support this Kodo will also
provide programming language bindings, which will allow users of program-
ming languages other than C++ to use the library functionality. Currently
experimental bindings for the Python programming language are provided
for a selected part of the API.

Performance: one of the key challenges in the design of Kodo has been to
provide the flexibility and ease of use required for research while not signif-
icantly sacrificing performance of the library. One of the most active areas
for network coding implementations have been investigating and improving
the performance of network coding algorithms, see [5],[6],[2]. For this reason
Kodo attempts to find a reasonable middle ground between flexibility and
performance. In cases where these two requirements does not align, Kodo will
typically aim for flexibility and ease of use over performance. The reason for
this is to keep the library agile, and that high performance implementations
should easily be derived from Kodo source code.

Testing: to avoid and catch as many problems as early as possible, Kodo is
tested using a number of unit tests. At the time of writing most components
in Kodo is delivered with accompanying test cases, and it is the goal that all
Kodo components should have a matching unit test. The testing framework
used in Kodo is Qt test library (QtTestLib). It was chosen due to the good
cross-platform support and ease of use provided by the Qt framework. It is
important to note that the Kodo library itself does not have any dependen-
cies on Qt, and that Kodo therefore may be used on platforms not supported
by the Qt framework.

Portability: it is the intention to keep Kodo as portable and self-contained as
possible. In cases where platform specific dependencies are required, Kodo
should provide interfaces which enable easy adaptation to that specific plat-
form.

Contributions: it is the hope that researchers from the networking coding
community will join in the development of Kodo and contribute new func-
tionality. Kodo will be released under a research friendly license which allows
everybody to contribute and use the library in their research.

Benchmarking: since Kodo is created to facilitate research of various Net-
work Coding (NC) implementations, enabling measurements and monitor-



ing the performance of the implemented algorithms are a priority. Having
good methods for benchmarking allows quick comparisons between perfor-
mance of existing and future algorithms or optimizations. Using the C++
template system users of Kodo may instrument code to collect useful infor-
mation about algorithms and data structures used. Examples of this are to
monitor the number of finite field operations performed by a specific type
of encoder or the number of memory access operations performed during
decoding. Additionally it allows the maintainers of Kodo to ensure that no
modifications or additions to the library results in unwanted performance
regressions.

Following the goals and motivation behind the library the following section
will introduce the functionality provided by Kodo.

2 Network Coding Support

Due to its promising potential many algorithms and protocols have been sug-
gested to demonstrate and exploit the benefits of network coding. Use cases range
over wired to wireless and from the physical to the transport and application
layer. In addition to these widely different areas of application, different vari-
ants of network coding also exist. Examples of this are inter- and intra-session
network coding, where the former variant operates on data from a uniquely iden-
tifiable network flow and the latter allows mixing of data from different network
flows. One might also differentiate between deterministic and non-deterministic
network coding algorithms. These refer to the way a computer node participat-
ing in a network coding system operates on the data traversing it. Typically
in deterministic algorithms a node performs a “fixed” number of operations on
the incoming data, these predetermined operations may be selected based on
different information e.g. the network topology. In contrast non-deterministic
network coding or random network coding operates on the data in a random or
pseudo-random manner. This has certain desirable advantages in e.g. dynamic
wireless networks.

The initial release of Kodo supports only a subset of these use-cases, however
it is the goal that future versions will eventually support a wide range of different
network coding variants. The initial features implemented have been selected to
support the creation of digital Random Linear Network Coding (RLNC) systems.
RLNC has in recent years received a large amount of interest for use in dynamic
networks e.g. wireless mesh networks [3]. Understanding the functionality of a
RLNC system will therefore also be helpful to understand the current structure
of the Kodo library. In the following we therefore provide a general overview
of the supported RLNC components and show the corresponding C++ code
used in Kodo. The C++ programming examples will not be explained in detail
here, but are there to demonstrate how a RLNC application would look, using
Kodo. For details about usage of the library, the programming API and further
programming examples we refer the reader to the Kodo project web page.



2.1 Random Linear Network Coding

In RLNC we operate on either finite or infinite streams of binary data. To make
the coding feasible we limit the amount of data considered by segmenting it into
manageable sized chunks. Each chunk in turn consists of some number g packets,
where each packet has a length of d bytes. In network coding terminology such
a chunk of binary data, spanning g · d bytes, is called a generation.

One commonly used way for constructing generations from a file is illustrated
in Figure 1. In this approach a file is divided into N packets, p1, p2, · · · pN .
Packets are then sequentially divided into M = N

g generations, each containing g
packets. In Kodo this algorithm is referred to as the basic partitioning algorithm.

m m
+1

m
+2

m
+3

data

Generation 

id:

datadata data data

g 

[packets]

d 

[bytes]

Fig. 1: Basic partitioning algorithm for slicing a file into generations of a certain
size.

Besides the basic partitioning algorithm Kodo also supports other partition-
ing schemes, such as the random annex code described in [4]. The following code
listing shows how the basic partitioning algorithm is used in Kodo to partition
a large buffer.

Listing 1.1: Using the basic partitioning algorithm

// Selecting general coding parameters
int generationSize = 16;
int packetSize = 1600;

// Size of the buffer
int bufferPackets = 432141;

// The buffer contaning all the packets of the file
UnalignedBuffer fileBuffer(bufferPackets, packetSize);

// Vector to hold the buffers for each generation
std::vector<ThinBuffer> generationBuffers;



// Run the basic partitioning, and add the generation
// buffers to the vector
BasicPartitioning basic(generationSize, packetSize);
basic(fileBuffer.dataBuffer(), std::back_inserter(

generationBuffers));

Listing 1.1 Initially we specify the target generation size and the desired packet
size for each generation. The fileBuffer object represents the file, containing
a large amount of packets to be distributed over different generations. This
is achieved in the last line by passing file buffer to the basic partitioning
algorithm. This creates a number of generation buffers and inserts them in
the vector. Following this we may operate on a single generation at a time.

In addition to selecting the packet size and generation size parameters, imple-
menters are faced with an additional choice before the coding can start, namely
which finite field to use. In NC data operations are performed using finite field
arithmetics. Performing arithmetic operations in finite fields are informally very
similar to normal arithmetic with integers, the main difference being that only
a finite number of elements exist, and that all operations are closed i.e. every
operation performed on two field elements will result in an element also in the
field. A simple example is the binary field F2, which consists of two elements
namely {0, 1}. In the binary field addition is implemented using the bit-wise
XOR and multiplication is implemented using the bit-wise AND operator. For
NC applications the choice of finite field represents a trade-off between compu-
tational cost and efficiency of the coding, i.e. how fast we may generate coded
packets versus how likely it is to generate linear dependent and therefore useless
packets. Kodo provides several choices of finite field implementations, and also
allow external implementations to be used.

After creating the buffers containing the generation data and selecting the
finite field to use, the encoding and decoding processes may start. Figure 2
presents an overview of the basic operations performed for each generation in a
typical RLNC system.

At the top of Figure 2 the encoder uses the g original source packets to create
k encoded packets, where k is larger or equal to g. The k encoded packets are
then transmitted via an unreliable channel, causing a number of packet erasures.
The job at the decoder side is to collect enough encoded packets to be able to
reconstruct the original data. In general this is possible as long as the decoder
receives g or more encoded packets. Note, that in RLNC the number of encoded
packets, k, is not fixed which means that the encoder can continuously create new
encoded packets if needed. For this reason this type of coding is often referred
to as rate-less. Also shown in the figure is one of the most significant differences
between NC and traditional schemes, namely the re-coding step shown in the
bottom right of Figure 2. In contrast to e.g. traditional error correcting codes,
NC based codes are not necessarily end-to-end codes, but allow intermediate
nodes between a sender and receiver to re-code and forward data, instead of
pure forwarding.
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Fig. 2: Network coding system overview.

In Kodo the encoding and decoding step for a single generation may be
performed using the following example code:

Listing 1.2: Encoding and decoding data from a single generation

int generationSize = 16;
int packetSize = 1600;

// Create an encoder and decoder object
Encoder encoder(generationSize, packetSize);
Decoder decoder(generationSize, packetSize);

// Fill the encoder data buffer with data
fillbuffer(encoder.packetBuffer().buffer(), encoder.

packetBuffer().size());

// Construct a vector generator
typedef DensityGenerator<Binary, RandMT> DensityGenerator;
DensityGenerator generator(0.5);

int vectorSize = Binary::sizeNeeded(generationSize);

// Make a buffer for one packet and one vector
UnalignedBuffer packet(1, packetSize);



UnalignedBuffer vector(1, vectorSize);

// Loop as long as we have not decoded
while( !decoder.isComplete() )
{

memset(packet[0], ’\0’, packetSize);
memset(vector[0], ’\0’, vectorSize);

// Fill the encoding vector
generator.fillVector(vector[0], generationSize);

// Create an encoded packet according to the vector
encoder.encode(packet[0], vector[0]);

// For a simulation this would be where the erasures
// channel could be implemented

// Pass the encoded packet to the decoder
decoder.decode(packet[0], vector[0]);

}

Listing 1.2 : The source code is a slightly modified excerpt from one of the unit
tests, testing the encoder and decoder implementations of Kodo. Initially
the coding parameters are specified and some buffers are prepared. We then
setup a vector generator. The vector generator is responsible for creating the
encoding vectors, in this case we are using a density generator which creates
encoding vectors according to some specified density (i.e. number of non-zero
elements in the vector). Kodo contains other types of vector generators e.g.
for creating systematic encoding vectors. You may notice the word, binary,
present in the vector generator, this denotes the finite field we are using.
Binary refers to the F2 binary field. Kodo contains a number of different
finite field implementations for different field sizes. Following this the code
loops passing encoded packets from the encoder into the decoder until the
decoder reports that decoding has completed.

The two source code examples shown demonstrates the code needed to im-
plement an operational RLNC application in less than 60 lines of code. This
completes the overall introduction of the Kodo functionality, to get an in-depth
view on the possibilities with Kodo visit our project website (which may be
found at www.cone-ftp.dk.

3 Conclusion

In this paper we have introduced the Kodo C++ network coding library, the goal
of this paper is to provided a general overview of the components of the library
and introduce its usage. In the initial release of Kodo a number of goals for the



library has been specified, and it is the hope that these goals and introduction of
Kodo presented here, may aid researchers in identifying whether Kodo may be
useful for them in their network coding research. As shown in this paper Kodo
currently support development of basic RLNC schemes and many general NC
features are still missing. However, it is the aspiration that by releasing Kodo
as open source, researchers will contribute to strengthen the capabilities and
usefulness of the project.
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Finite Field Arithmetics for Network Coding

Morten Videbæk Pedersen, Janus Heide and Frank H.P. Fitzek

Abstract

In Network Coding (NC) nodes in a network operate on the data
flows traversing them. The arithmetic operations used are defined within
a branch of mathematics known as finite fields or Galois fields. In NC
finite field arithmetics are used when performing the three core operations
namely: encoding, recoding and decoding. An efficient implementation of
finite field arithmetics is therefore an important prerequisite for any NC
implementation. In this chapter we will introduce the basic finite field
theory and describe several ways finite fields may be implemented and
used in software.

1 Finite Fields

The purpose of this section is to introduce the reader to the basic theory of
finite fields, this is done to assist in the understanding of the software algorithms
presented in the following sections. We first give the formal definition of a field
along with the axioms governing the operations allowed [2]:

A field is a set F of at least two elements, where the operations addition (de-
noted +) and multiplication (denoted ·) are defined, and for which the following
axioms are satisfied:

• The set F forms an abelian group (whose identity is called 0 i.e. a+0 = a)
under the operation +. Where the definition of an abelian group states
that a + b = b + a.

• The set F∗ = F − {0}, i.e. the non-zero elements of F forms an abelian
group (whose identity is 1 i.e. a · 1 = a) under the operation ·.

• Distributive law: For all a, b, c ∈ F we have, (a + b) · c = (a · c) + (b · c).

By the definition of a field it can be verified that the elements of familiar
number systems N,Z,Q,R etc. indeed form fields. If the set F contains a
finite number of elements the field is said to be finte. When a field is finite it
essentially means that any arithmetic operations performed on two elements in
the field will result in an element also in the field.

1



1.1 Field Operations

Besides the two mentioned field operations (addition and multiplication) we also
define the inverse operations namely subtraction and division.

Subtraction of two field elements can be defined in terms of addition, if a, b ∈
F then a − b = a + (−b), where −b is the unique field element in F such
that b + (−b) = 0 (−b is called the negative of b).

Division can be defined in terms of multiplication: if a, b ∈ F then a/b =
a · (b−1), where b−1 is the unique field element in F such that b · b−1 = 1
(b−1 is called the inverse of b).

As mentioned previously a finite field extends the definition of a field by
specifying, that the operations addition and multiplication including their in-
verse subtraction and division, performed on the field elements must result in
an element within the field. For integers this property is achieved using mod-
ulo arithmetic. Informally modulo arithmetics can be thought of as normal
arithmetics, except that all results x are replaced by x mod p [3, p. 862-869],
where mod denotes the modulo operation. The result of the modulo opera-
tion is the remainder r, which for integers may be calculated as r = x− pn, for
some quotient n and prime number p. The possible set of mod-p remainders is
therefore given as the set Rp = {0, 1, . . . , p− 1}. In general any integer i can be
mapped onto a chosen field as i mod p, when p is a prime number. As shown
in Equation (1) choosing p = 3 will result in a finite field with three elements
{0, 1, 2}.

i mod p

0 mod 3 = 0

1 mod 3 = 1

2 mod 3 = 2 (1)

3 mod 3 = 0

4 mod 3 = 1

...

1.2 Order, Existence and Uniqueness

The number of elements of a field is also called the fields order. We may con-
struct a finite field Fq of order q if and only if q is a prime power, i.e. q = pm,
where p is some prime number and m is a positive integer. We call p the char-
acteristics of the field. When m = 1 we call Fp a prime field. For m ≤ 2 we call
Fpm an extension field. For any field of order q there exists a single finite field.
Although the two fields e.g. with parameters p = 9, m = 1 and p = 3, m = 3
might seem different they contain the same number of elements i.e. have the
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same order (namely 9), and thus the only difference between the two fields is
the labeling of the field elements. Two finite fields with the same order q are
for this reason called isomorphic.

1.3 Prime Fields

As shown when p is a prime number the integers modulo p constitutes a prime
field with the elements {0, 1, . . . , p − 1}. The following examples shows the
arithmetic operations in the prime field F11:

• Addition: 5 + 9 = 3, since 14 mod 11 = 3.

• Subtraction: 4− 10 = 5, since −6 mod 11 = 5

• Multiplication: 6 ∗ 7 = 9, since 42 mod 11 = 9

• Inversion: 4−1 = 3, since 4 ∗ 3 mod 11 = 1

• Division: 5/4 = 4, since 5 ∗ 3 mod 11 = 4

The smallest possible finite field Fp is the prime field with p = 2 also called
the binary field. In this case the order and characteristic of the finite field are
equal, however as we mentioned if using extension fields this is not always the
case. The binary field consists of two elements {0, 1} and is of particular in-
terest since the binary operations are easily implemented and represented in
software and hardware. In the case of the binary fields, addition and multipli-
cation are performed mod-2 and therefore satisfies the following addition and
multiplication tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Table 1: The finite field F2 consists of elements 0 and 1 which satisfy the
addition(+) and multiplication(·) tables.

In Table 1 it can be seen that addition can be implemented using the bitwise
XOR (∧) operator and multiplication the bitwise AND (&) operators found in
most programming language. If an implementation would only require opera-
tions on 1-bit field elements a similar subtraction and division table could be
constructed. Where it would quickly be seen that addition and subtraction are
identical over F2. The division table is identical to the multiplication table,
except that division by zero would not be allowed. Performing calculations in
the 1-bit binary field would however not yield very efficient implementations, as
most hardware does not natively support a 1 bit data type i.e. most computer
hardware is optimized for operating on 8,16,32 or 64 bit data types. Applica-
tions working with F2 therefore typically perform computations using vectors
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of 1 bit field elements to better utilize the underlying hardware. For different
reasons depending on the application it may be desirable to increase the field
size a common way of achieving is by extending the field.

1.4 Extension Fields

When implementing finite field operations the number of elements in a field can
be increased by using polynomials to represent the field elements. A nonzero
polynomial f(x) of degree m over a field Fpm has the form:

f(x) = fmxm + . . . + f2x
2 + f1x + f0 (2)

Where the coefficients fi ∈ Fp for 0 ≤ i ≤ m. Polynomials essentially allow
the same arithmetic operations as integers, however when polynomials are used
the operations are performed mod-p(x), where p(x) is an irreducible polynomial
instead of a prime integer. As with a prime number an irreducible polynomial
is one which cannot be factored into products of two polynomials.

Ordinary polynomial addition is performed component-wise e.g. for two
polynomials with a maximum degree of k:

f(x) = h(x) + g(x) (3)

f(x) =

k∑

i=0

(hi + gi)x
i (4)

In Fpm we calculate f(x) + g(x) as f(x) + g(x) mod p(x). This uses the
usual component-wise addition as given in Equation (4), the only difference is
that the coefficient sum is modulo p i.e. hi + gi mod p.

For ordinary polynomial multiplication, the coefficients of f(x) = h(x)g(x)
are determined by convolution, the resulting polynomial f(x) is of degree =
deg(h)+deg(g):

fi =

i∑

j=0

hjgi−j (5)

The product h(x)g(x) in Fpm can be found by first multiplying h(x) and
g(x) using ordinary polynomial multiplication. Then ensuring that the resulting
polynomial f(x) has degree < m by reducing it modulo p(x). The modulo
operation can be implemented as polynomial long division and then taking the
remainder. As for polynomial addition we must also ensure that all resulting
coefficients are elements in Fp by reducing them modulo p. It can be shown
that we may find irreducible polynomials for any p and m [6, p.28].

Of particular interest are binary extension fields i.e. F2m . These fields are
very common as the binary representation allows efficient implementations in
either software of hardware.
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1.5 Binary Extension Field

In the binary extension field all field elements may be represented as binary
polynomials of degree at most m− 1:

F2m = {fmxm + . . . + f2x
2 + f1x + f0 : fi ∈ {0, 1}} (6)

As an example consider the field given by F23 in Table 2, in this case the
field will consist of 23 = 8 polynomial elements of degree < m.

GF23

Polynomial Binary Decimal
0 000 0
1 001 1
x 010 2

x + 1 011 3
x2 100 4

x2 + 1 101 5
x2 + x 110 6

x2 + x + 1 111 7

Table 2: Field elements of the Galois field GF (23) in polynomial and binary
representation.

In the binary extension field all polynomial elements can be represented as
m bit binary numbers. It is important to notice the correspondence between
the binary and polynomial representation. The bits from left to right are the
coefficients of the powers of x in increasing order. Table 3 shows the direct
mapping for a polynomial in F28 :

1 1 0 1 0 0 1 1
1 · x7 + 1 · x6 + 0 · x5 + 1 · x4 + 0 · x3 + 0 · x2 + 1 · x + 1 · 1

x7 + x6 + x4 + x + 1

Table 3: Example mapping between polynomial and binary representation for
a polynomial in F28 .

Understanding the connection between the different representations will be
important to understand how finite fields are implemented in software. In gen-
eral we can construct F2 extension fields containing any 2m number of elements
where m ≥ 1. In an implementation the field size can be chosen so that the
polynomial representation will fit into an available data type e.g. F28 can typ-
ically be represented in an unsigned char. For this reason fields of 28, 216, 232

elements are common choices.
In the following example it is shown how to perform arithmetic operations

on two polynomials from Table 2. The irreducible polynomial p(x) = x3 +x+1
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is used to ensure that all calculations are within F23 . Note, that coefficient
operations are still performed in F2 we can therefore use the addition table in
Table 1 when adding coefficients and subsequently Equation 3.

• Addition: (x2 + x + 1) + (x2 + 1) = x, since x mod (x3 + x + 1) = x.

• Subtraction: (x)− (x2 + x) = x2, since x2 mod (x3 + x + 1) = x2.

• Multiplication: (x2 +x) · (x+1) = 1, since (x3 +x) mod (x3 +x+1) = 1.

• Inversion: x−1 = x2 + 1, since x · (x2 + 1) mod (x3 + x + 1) = 1.

• Division: x2/x = x, since x2 · (x2 + 1) mod (x3 + x + 1) = x.

As mentioned the modulo operation may be implemented using polynomial
long division, taking the remainder. As an example the following computes the
polynomial long division of (x3+x) mod (x3+x+1) shown in the multiplication
example from above:

1 ⊳ qoutient

x3 + x + 1 x3 +x

x3 +x +1

1 ⊳ remainder

In addition to the polynomial, binary and decimal representation of the
binary field elements, shown in Table 2, we may in certain cases be able to use
an alternative representation utilizing two useful properties of binary extension
fields, namely primitive polynomials and primitive elements.

1.5.1 Primitive Polynomials

For an irreducible polynomial p(x) defined in F2m we investigate the result of
xj mod p(x), where j = 0 → ∞. We will find that the modulo operation will
only produce a finite number of elements e.g. for p(x) = x3 + x + 1 we obtain:
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x0 mod p(x) = 1 (7)

x1 mod p(x) = x (8)

x2 mod p(x) = x2 (9)

x3 mod p(x) = x + 1 (10)

x4 mod p(x) = x2 + x (11)

x5 mod p(x) = x2 + x + 1 (12)

x6 mod p(x) = x2 + 1 (13)

x7 mod p(x) = 1 (14)

x8 mod p(x) = x (15)

...

As shown in Equation (7) to (15) we obtain only a limited number remainders
from the modulo operation. The number of unique field elements generated by a
polynomial is denoted the polynomials period. In general we say that the period
is the smallest nonzero number P such that:

xP ≡ 1 mod p(x) (16)

Where the maximum period which may be obtained for a polynomial of
degree m is given as:

Pmax = 2m − 1 (17)

If a polynomial has a period Pmax we it denote it as a primitive polyno-
mial. Correspondingly any element α for which increasing powers generates all
nonzero elements of a given field is called a primitive element. Note, that for all
primitive polynomials, x is a primitive element. All primitive polynomials are ir-
reducible however not all irreducible polynomials are primitive. This means that
choosing an arbitrary irreducible polynomial we may risk that we cannot gener-
ate all field elements as the element x is raised to some power j. An example of
an irreducible polynomial which is not primitive is p(x) = x4 + x3 + x2 + x + 1,
where Pmax = 24 − 1 = 15:
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x0 mod p(x) = 1 (18)

x1 mod p(x) = x (19)

x2 mod p(x) = x2 (20)

x3 mod p(x) = x3 (21)

x4 mod p(x) = x3 + x2 + x + 1 (22)

x5 mod p(x) = 1 (23)

x6 mod p(x) = x (24)

...

In this case p(x) does not generate the Pmax unique elements and is therefore
not primitive. For more information on this topic see [11, p.25-54].

We will refer to the xj as the power representation of the corresponding poly-
nomial element. The advantage of primitive polynomials and elements is that
using the power representation, the product or division of two field elements is
reduced to summing or subtracting the exponent values modulo 2m−1, where m
is the degree of the primitive polynomial. This may in many cases be computed
faster than a direct multiplication or division of two binary polynomials. This
is shown for multiplication in the following example, using p(x) = x3 + x + 1
from above:

a(x) = (x2 + 1) · (x2 + x + 1) mod p(x) (25)

Using the mapping from Equation (13) and (12):

a(x) = x6 · x5 mod p(x) (26)

a(x) = x6+5 mod 7 (27)

a(x) = x4 (28)

Mapping back to polynomial representation using Equation (11):

a(x) = x2 + x (29)

Algorithms using finite field arithmetics can in certain cases increase per-
formance by utilizing look-up tables with the mapping between the polynomial
representation and the power representation.

2 Finite Fields Implementation

Creating efficient finite fields implementations have been an active research topic
for several decades. Many applications in areas such as cryptography, signal pro-
cessing, erasure coding and now also network coding depend on this research to
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deliver satisfactory performance. The efficient implementation of the arithmetic
operations in software are complicated for a number of reasons, for example:

• As shown in Section 1 all arithmetic operations must be performed modulo
some prime p or irreducible polynomial p(x). For integers and the polyno-
mial coefficients, not in the binary field, the modulo operation is typically
performed using an integer division which has a particular high latency
on most Central Processing Units (CPUs). Furthermore for polynomials,
in all fields, the modulo operation must be performed after multiplication
and division (where division is typically implemented using a multiplica-
tion with the inverse element) to ensure that the resulting polynomials
degree is within the field.

• For prime fields and extension fields where the binary representation of
the field elements does not fit the typically available data types e.g. char,
short, int, etc. fully utilizing the underlying hardware is typically hard,
as most CPUs are designed for 8, 16, 32, 64 bit data. Therefore in practice
operating on data which is not byte-aligned requires bit-masking and bit-
shifting making operations slower.

In this section we present a selected number of methods and algorithms
which have been proposed for creating efficient finite field implementations.
Besides the ones covered here a large amount of additional algorithms exist
in current literature. Many of which are optimized for specific use-cases e.g.
within the field of cryptography and thus requiring very large field elements (in
the order of hundreds of bits per element), and are therefore not directly useful
in NC applications, where lower field sizes typically are sufficient [4]. Therefore
this section attempts to cover the ones most widely used/suggested for NC
applications. Besides the description of the algorithms given here, an open
source library containing the corresponding C++ implementation is available
at [15].

As we will see finite fields may be implemented in a number of different ways,
and in general one can not point out a single superior implementation covering
all possible use-cases. Different applications often have different requirements,
and for NC some of the factors typically impacting the choice of implementation
are:

Field Size: Depending on the network topology we may require a finite field
of a certain size, see [4] and [10] for more information.

Memory consumption: On memory constrained devices, algorithms with a
limited memory consumption may be a requirement.

Speed: We may wish to optimize the algorithms for speed, in which case we
simply want an as fast as possible implementation.

In addition to specific algorithmic optimizations several researchers also
deal with platform specific optimizations such as parallelism on multi-core ar-
chitectures or utilizing the computational capabilities of Graphics Processing
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Units (GPUs). An overview of this type of optimizations with focus on NC
applications are given in [7].

The algorithms covered here falls in the three categories depicted in Figure 1.

Finite fields implementations for network coding

Binary Field Binary Extension Field Prime Fields

F2 F2m Fp

Figure 1: Finite fields commonly used in network coding implementations.

To avoid misunderstandings and make the descriptions more clear we will in
the following use terms and definitions:

We assume that an implementation platform has a W -bit architecture, where
W is a multiple of 8 (today typically architectures are 8, 16, 32 and 64 bit). The
bits of a W -bit word U are numbered from 0 to W − 1, with the rightmost bit
of U denoted bit 0. We will assume Little-endian byte order when addressing
multi-byte data, i.e. least significant byte first. As shown in following example
for W = 32.

0781516232431

1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0

4th byte 3rd byte 2nd byte 1st byte

← increasing addresses

The following symbols will be used to denote different operations on words
U and V :

U ∧V bitwise exclusive or (XOR)
U &V bitwise and (AND)
U≫ i Right shift U by i positions, with the i high-order bits set to 0
U≪V Left shift U by i positions, with the i low-order bits set to 0
U %V Compute the modulo between U and V

2.1 Binary Field Implementations

The binary field F2 only consisting of the two elements {0, 1} has been widely
used, not only in network coding implementations but also various other foun-
tain code based systems [12, 14]. The use of the binary field is in many cases
advantageous since it allows computationally very efficient implementations.
When working in the binary field we may utilize the underlying hardware per-
fectly by operating on vectors of field elements at a time. As an example we
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may consider an 8 bit data type (e.g. an unsigned char) as a vector of eight
field elements, i.e. with each bit representing an element with value 0 or 1.
Pairwise adding two vectors of eight elements may then be implemented using
a single XOR operation of two unsigned char variables. Recall from Section 1.3
that all operations in F2 may be implemented either using the bitwise XOR
or AND operators. These operations may typically be performed using a sin-
gle fast CPU instruction yielding very fast implementations. Network coding
algorithms using this field can be found in [9].

Listing 1: Addition and subtraction in F2

1 def binary_add_subtract(a,b):
2 """
3 Add or subtracts two vectors of 1 bit field
4 elements packed in two W-bit words.
5

6 a, the first field element
7 b, the second field element
8 """
9 return a ˆ b

Listing 2: Multiplication in F2

1 def binary_multiply(a,b):
2 """
3 Multiplies two vectors of 1 bit field
4 elements packed in two W-bit words.
5

6 a, the first field element
7 b, the second field element
8 """
9 return a & b

Notice, we did not show an algorithm for division here. The reason is that
division is only defined for non-zero elements in our field, i.e. no division by zero
allowed. Since, we are working in the binary field the only non-zero element is
1, where 1/1 = 1.

In practice when using the binary field operations are typically performed
on vectors of elements. We may readily

2.1.1 Example

As mentioned to better match the supported operations of the underlying hard-
ware when working in F2 we typically do calculations on vectors of multiple 1
bit elements. As an example if using a W = 32 bit architecture using a 32 bit
data type would allow adding, subtraction or multiplying up to 32 field elements
at a time using a single ⊕ or & operation. The following examples show these
operations for a number of W = 8 bit vectors.

• Addition: 11011001⊕ 01011011 = 10000010.
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• Subtraction: 01001101⊕ 00011001 = 01010100

• Multiplication: 11001011&01001010 = 01001010

Notice we have omitted division for the reasons explained in Section 2.1.

2.2 Binary Extension Field Implementations

In NC the binary extension field is one of the most commonly used. This is
mainly driven by that fact that it enables the use of higher field sizes required
by some network topologies, while still allowing reasonably efficient implementa-
tions. As we will see in the following choosing an extension field also introduces
more complicated algorithms for the multiplication and division operations,
when compared to the simple binary field. This added complexity is mainly
introduced by the polynomial representation used to create the extension field.
To combat this the common strategy is to use look-up tables to fetch precom-
puted results of the division or multiplication operations. While this technique
in most cases can outperform algorithms calculating the results “on the fly”,
its performance becomes largely platform dependent e.g. on CPU cache sizes,
memory prefetching, etc [5]. Furthermore on some resource constrained devices
e.g. sensor boards using several kB for a look-up table may be an unacceptable
requirement.

In the following we will first provide algorithms for directly computing the
result of the different arithmetic operations, we will refer to these as “online”
algorithms. Following this we will present a number methods for implementing
multiplication and division using precomputed look-up tables, we will refer to
these as “offline” algorithms.

2.2.1 Online Addition and Subtraction

As previously shown in Section 1.4 addition and subtraction using the polyno-
mial representation is done element-wise for the coefficients of the polynomials,
and since the coefficients in the binary extension field are members of the binary
field F2, this means that addition and subtraction may be implemented using
the XOR operation i.e.:

Listing 3: Addition and subtraction in F2m

1 def binary_extension_add_subtract(a, b):
2 """
3 Add or subtracts two W-bit field
4 elements.
5

6 a, the first field element
7 b, the second field element
8 """
9 return a ˆ b

As the degree of the resulting polynomial c(x) cannot exceed the degree of
the chosen prime polynomial, no further computations are needed.
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2.2.2 Example

Lets consider a W = 8 bit architecture with the two polynomials a(x) = x7 +
x6 +x2 and b(x) = x7 +x5 +x3 +x2 with the binary representation of 11000100
and 10101100 respectively.

• Addition or subtraction: 11000100⊕ 10101100 = 01101000.

The result may be confirmed by adding the two polynomials directly:

c(x) = (x7 + x6 + x2) + (x7 + x5 + x3 + x2) (30)

= (1⊕ 1)x7 + x6 + x5 + x3 + (1⊕ 1)x2 (31)

= x6 + x5 + x3 (32)

Where x6 + x5 + x3 has the expected binary representation 01101000.

2.2.3 Online Multiplication and Division

Compared to the straightforward and simple implementation of addition and
subtraction the multiplication and division algorithms require significantly more
computations, as shown in the following algorithm. This also illustrates why
using precomputed look-up tables often increases performance.

The basic idea behind the following algorithm is to perform multiplication
one factor at a time, while ensuring that the resulting polynomial in each step
has a degree < m. As an example given the two polynomials a(x) = x3 + x + 1,
b(x) = x2 + 1 and an irreducible polynomial p(x) = x5 + x2 + 1, we want to
compute the result c(x) = a(x) · b(x):

c(x) = (x3 + x + 1) · (x2 + 1) (33)

= x5 + (1⊕ 1)x3 + x2 + x + 1 (34)

= x5 + x2 + x + 1 (35)

Since degree of c(x) equal m, we perform the modulo operation using the irre-
ducible polynomial p(x)

c(x) = x5 + x2 + x + 1 mod p(x) (36)

c(x) = x (37)

To implement this in practice we need the following two operations:

Multiplication with x: We perform the multiplication of the two polynomials
using three iterations of the algorithm equivalent to the following:

c(x) = (x3 + x + 1) · (x2 · 1)︸ ︷︷ ︸
interation 3

+ (x3 + x + 1) · (x1 · 0)︸ ︷︷ ︸
iteration 2

+ (x3 + x + 1) · (x0 · 1)︸ ︷︷ ︸
iteration 1

(38)
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A key part to understanding the algorithm is to notice that in each itera-
tion we multiply a(x) with an increasing power of x from b(x). However,
as shown in “interation 2” we only use the result if the corresponding
coefficient b(x) is non-zero. Using this approach we perform the multipli-
cation by iterating though the binary representation of b(x), while in every
step multiplying a(x) with x and if necessary reducing the result modulo
p(x). Where the multiplication with x is equivalent to a right bit-shift e.g.
taking a(x) from the example we see that:

(x3 + x + 1)︸ ︷︷ ︸
00001011

→ (x3 + x + 1) · x︸ ︷︷ ︸
00001011≪1

→ x4 + x2 + x︸ ︷︷ ︸
00010110

(39)

Multiplying a(x) with x2 is equivalent to performing two bit-shifts and so
forth.

Modulo reduction with p(x): during each iteration of the algorithm we have
to ensure that the degree of the resulting polynomial stays below m. In
the cases where when the degree of the result polynomial reaches m we
must perform the modulo reduction with the irreducible polynomial p(x).
In the example this occurs after “iteration 3”. From the example, we have
the desired result:

c(x) = x5 + x2 + x + 1 mod x5 + x2 + 1 (40)

= x (41)

As both polynomials in this case have degree m the modulo operation may
be performed using a single subtraction. We know from Section 2.2.1 the
subtraction in the binary extension field may be implemented using an
XOR between the binary representation of the two polynomials:

00100111⊕ 00100101 = 00000010 (42)

The above result may also be verified using polynomial long division, and
is equivalent to:

1 ⊳ qoutient

x5 + x2 + 1 x5 +x2 +x +1

x5 +x2 +1

x ⊳ remainder
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Where we can verify that the remainder x indeed has the binary repre-
sentation 00000010.

The following example1 shows steps of the algorithm for the input a =
x2 + x + 1 and b = x + 1:

Listing 4: Online multiplication algorithm for F2m

1 simple_multiply_print_latex = False
2

3 def online_simple_multiply(a, b, p, m):
4 """
5 Performs the simple online multiply algorithm in the
6 2ˆm extension field
7

8 a, the first polynomial
9 b, the second polynomial

10 p, the irreducible polynomial
11 m, the degree of the irreducible polynomial
12 """
13

14 if a == 0 or b == 0:
15 return 0
16

17 # Mask to check if the degree is about to reach m
18 mask = 1 << (m-1)
19 highbit = 0
20

21 # The resulting polynomial
22 c = 0
23

24 for i in range(m):
25

26 if b == 0:
27 break
28

29 if b & 1:
30 c = c ˆ a
31

32 highbit = a & mask
33

34 a = a << 1
35 b = b >> 1
36

37 if highbit:
38 a = a ˆ p
39

40 return c

1Note, that this implementation may not suitable for use in certain cryptographic schemes
as we stop the for loop as soon as possible, this may make the code vulnerable for timing
attacks.
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2.2.4 Example

The following shows the iterations of the algoritm using the example given in
Equation 33, where a(x) = x3 + x + 1, b(x) = x2 + 1 and p(x) = x5 + x2 + 1.
The input to the algorithm is the decimal representation of the polynomials as
shown in Table 2.

Initialization:

a = 11 b = 5 c = 0 highbit = 0 (43)

p = 37 m = 5 mask = 16 (44)

Interation 1:

a = 22 b = 2 c = 11 highbit = 0 (45)

p = 37 m = 5 mask = 16 (46)

Interation 2:

a = 9 b = 1 c = 11 highbit = 1 (47)

p = 37 m = 5 mask = 16 (48)

Interation 3

a = 18 b = 0 c = 2 highbit = 0 (49)

p = 37 m = 5 mask = 16 (50)

In “iteration 3” we hit the terminating condition b equal 0. We see that the
resulting polynomial is c = 2, which corresponds to 00000010 binary or c(x) = x
as polynomial and matches our calculations in Equation 37.

2.2.5 Online Division Algorithm

We now define the algorithm used for division, to do this we have to recall the
definition presented in Section 1.1. This definition states that division may be
implemented in terms of multiplication with the inverse element i.e.

c(x) =
a(x)

b(x)
(51)

Will be calculates as:

c(x) = a(x) · b(x)−1 (52)

Since we already have defined an algorithm for multiplication we therefore
only need to find an algorithm to determine the inverse of an element in the
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binary extension field. A common way to implement this is to use the Extended
Euclidean algorithm. The Extended Euclidean algorithm calculates the Great-
est Common Divisor (GCD) of two polynomials, but also find two additional
polynomials u(x) and v(x) such that:

gcd(a(x), b(x)) = a(x) · u(x) + b(x) · v(x) (53)

In the above equation we may find the GCD between two arbitrary poly-
nomials. However, if we choose the fields irreducible polynomial as one of the
input polynomials to the algorithm we get the following result:

gcd = a(x) · u(x) + p(x) · v(x) = 1 mod p(x) (54)

gcd = a(x) · u(x) = 1 mod p(x) (55)

As p(x) is a irreducible polynomial the GCD will always be 1, furthermore
since we are working mod p(x) any multiple of p(x) will be zero. We therefore
see that u(x) will represent the inverse of a(x).

The following algorithm calculates the inverse polynomial by utilizing the
fact that the GCD between two polynomials does not change when subtracting
one from the other. This algorithm and the Extended Euclidean algorithm from
which it is derived is described in more detail in Appendix A.
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Listing 5: Online inverse algorithm for F2m

1 def online_simple_inverse(a, p):
2 """
3 Finds the inverse of a polynomial a(x) in
4 the 2ˆm extension field
5

6 a, the polynomial whos inverse we want
7 p, the irreducible polynomial
8 """
9 if a == 1:

10 return 1
11

12 r_large = p
13 r_small = a
14

15 y_large = 0
16 y_small = 1
17

18 j = 0
19 while(r_large != 1):
20

21 j = find_degree(r_large) - find_degree(r_small)
22

23 if j < 0:
24 r_large, r_small = r_small, r_large
25 y_large, y_small = y_small, y_large
26

27 j = abs(j)
28

29 r_large = r_large ˆ (r_small << j)
30 y_large = y_large ˆ (y_small << j)
31

32 return y_large

Notice, the algorithm requires the degree of the resulting polynomials to be
know, a suitable function may be derived by iterating over the binary represen-
tation of each polynomials. A code listing for such a function may be found
Section A.0.17

The division algorithm may now be implemented in terms of the multiplica-
tion and inverse algorithms as shown in the following:
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Listing 6: Online divide algorithm for F2m

1 def online_simple_divide(a, b, p, m):
2 """
3 Divides the two input polynomials and find the resulting
4 polynomial in the 2ˆm extension field
5

6 a, the numerator polynomial
7 b, the denominator polynomial
8 p, the prime polynomial
9 m, the degree of the prime polynomial

10 """
11 inverse = online_simple_inverse(b,p)
12 return online_simple_multiply(inverse, a, p, m)

2.2.6 Example

Since the division algorithm is simply composed using the multiplication and
inverse algorithm, we will only show an example of the inverse algorithm here.
In the following iterations we find the inverse of a(x) = x3 + x + 1 using the
irreducible polynomial p(x) = x5 +x2 +1. As with the multiplication the input
to the algorithm is specified using the decimal representation of the polynomials:

Initialization:

r large = 37 y large = 0 a = 11 p = 37 (56)

r small = 11 y small = 1 p = 37 (57)

Iteration 1:

r large = 9 y large = 4 a = 11 p = 37 (58)

r small = 11 y small = 1 p = 37 (59)

Iteration 2:

r large = 2 y large = 5 a = 11 p = 37 (60)

r small = 11 y small = 1 p = 37 (61)

Iteration 3:

r large = 3 y large = 21 a = 11 p = 37 (62)

r small = 2 y small = 5 p = 37 (63)

Iteration 4:

r large = 1 y large = 16 a = 11 p = 37 (64)

r small = 2 y small = 5 p = 37 (65)
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In “iteration 4” we hit the terminating condition r large = 1, in this case
the algorithm will have calculates the inverse polynomial in the variable y large.
Which in this case contains the decimal value 16 which represents the polynomial
u(x) = x4. We may now check that this indeed is the inverse of a(x), such that:

a(x) · u(x) = 1 mod p(x) (66)

We check by inserting our two polynomials:

(67)

(x3 + x + 1) · (x4) = 1 mod p(x) (68)

x7 + x5 + x4 = 1 mod p(x) (69)

1 = 1 (70)

The step given in Equation (69)(70) is calculated by reducing the polynomial
x7 + x5 + x4 by the irreducible polynomial p(x) = x5 + x2 + 1. We may verify
this using polynomial long division:

x2 +1 ⊳ qoutient

x5 + x2 + 1 x7 +x5 +x4

x7 +x4 +x2

x5 +x2

x5 +x2 +1

1 ⊳ remainder

2.2.7 Full Multiplication Table

As seen in the previous section, multiplication of two elements require a sig-
nificant number of operations. To avoid this we may instead precompute the
results and at runtime use a lookup table to find the results. In this way we may
reduce the number of operations needed per multiplication at the cost of a high
memory consumption. The lookup table may be computed using the iterative
multiplication and division algorithms given in the previous section.
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Listing 7: Creates a full multiplication and division table for F2m

1 def create_full_table(p,m):
2 """
3 Precomputes and creates two lookup table for multiplying
4 and dividing elements in a given 2ˆm binary extension field.
5

6 p, the irreducible polynomial used
7 m, the degree of the irreducible polynomial
8 """
9

10 # The number of elements in the field
11 order = 1 << m
12

13 # Allocate the two tables
14 multtable = [0] * order * order
15 divitable = [0] * order * order
16

17 for i in range(order):
18 offset = i * order
19

20 for j in range(order):
21 multtable[offset+j] = online_simple_multiply(i, j, p, m)
22

23 if j == 0: # Cannot divide by zero
24 continue
25

26 divitable[offset+j] = online_simple_divide(i, j, p, m)
27

28

29 return (multtable, divitable)

Multiplying or dividing two field elements may now be computed using a
look-up into either the multiplication or division table, as shown in Listing 8.

Listing 8: Example look-up function for the full multiplication or division
tables created in F2m

1 def multdiv_full_table(a,b,t,m):
2 """
3 Multiplies/divides two binary extension field elements us ing the
4 precompute lookup table.
5 For each element there are 2ˆm results, this is used to
6 index into the table
7

8 a, the first polynomial
9 b, the second polynomial

10 t, the precomputed lookup table
11 m, the degree of the irreducible polynomial
12 """
13 return t[(a << m) + b]

Memory Consumption: As seen the full multiplication and division tables
have a very attractive complexity, requiring only a single bit-shift, addi-
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tion and memory lookup to perform either a multiplication or division.
However, the low complexity comes with a high memory consumption.
Depending on the chosen field F2m a table will contain 2m · 2m = 22m

elements, where each element consumes m bits storage. Computing the
total storage for both a multiplication and division table we get:

mfull = 22m · m
8
· 2 [B] (71)

2.2.8 Log and Anti-Log Table

On way to reduce the memory footprint of the full table based multiplication and
division is to construct the lookup table utilizing the power representation of the
finite field elements as introduced in Section 1.5.1. This type of implementation
is in literature often called the Log/AntiLog method. In the following example
we will produce such a lookup table for primitive polynomial p(x) = x3 +x+1.
From Section 1.5.1 we have the following possible representations for the field
elements:

Power Polynomial Binary Decimal
0 0 000 0
x0 1 001 1
x1 x 010 2
x2 x2 100 4
x3 x + 1 011 3
x4 x2 + x 110 6
x5 x2 + x + 1 111 7
x6 x2 + 1 101 5

Table 4: Different representations of the elements of the finite field F23 .

This basic idea is to create a mapping from the binary/decimal represen-
tation to the exponent in the power representation and from the exponent in
the power representation back. In our chosen example F23 these are shown in
Table 5.

index 0 1 2 3 4 5 6 7

Log - 0 1 3 2 6 4 5
AntiLog 1 2 4 3 6 7 5 -

Table 5: Logarithmic tables for the finite field F23 .

Using Table 5 we see that the Log table maps between decimal value of an
element and its corresponding exponent in the power representation i.e. such
that:
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Log[5] = 6 (72)

Which we can verify using Table 4 which shows that the decimal value 5
has the corresponding power representation x6. Correspondingly the AntiLog
table maps from the exponent value in the power representation to the decimal
representation:

AntiLog[6] = 5 (73)

This may now be utilized by using the values in Table 5, such that multipli-
cation and division becomes:

5 ∗ 3 = AntiLog[Log[5] + Log[3] mod 7] (74)

= AntiLog[6 + 3 mod 7] (75)

= AntiLog[2] = 4 (76)

2 ∗ 4 = AntiLog[Log[2] + Log[4] mod 7] (77)

= AntiLog[1 + 2 mod 7] (78)

= AntiLog[3] = 3 (79)

6/3 = AntiLog[Log[6]− Log[3] mod 7] (80)

= AntiLog[4− 3 mod 7] (81)

= AntiLog[1] = 2 (82)

2/7 = AntiLog[Log[2]− Log[7] mod 7] (83)

= AntiLog[1− 5 mod 7] (84)

= AntiLog[3] = 3 (85)

As shown we may find the power representation for the field elements by
calculating the j′th power of the primitive element x. In the following code
listing we construct the Log and AntiLog tables using the online multiplication
algorithm to repeatedly multiply x with itself and finding the corresponding
field elements.
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Listing 9: Creates the Log and AntiLog tables for F2m

1 def create_log_table(p,m):
2 """
3 Creates the Log and AntiLog tables mapping between power
4 representation and decimal/binary representation in a
5 given 2ˆm binary extension field.
6

7 p, the primitive polynomial used
8 m, the degree of the primitive polynomial
9 """

10

11 # The number of elements in the field
12 order = 1 << m
13

14 # Allocate the two tables
15 log = [None] * order
16 antilog = [None] * order
17

18 # Initial value corresponds to xˆ0
19 power = 1
20

21 for i in range(order-1):
22

23 log[power] = i
24 antilog[i] = power
25

26 # 2 is the decimal representation of the polynomial
27 # element ’x’
28 power = online_simple_multiply(2, power, p, m)
29

30 return (log, antilog)

For multiplication we may use the Log and AntiLog tables as follows:
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Listing 10: Multiplication using the Log and AntiLog tables for F2m

1 def multiply_log_table(a,b,log,antilog,m):
2 """
3 Multiplies two field elements using the
4 precompute lookup table.
5

6 a, the first field element
7 b, the second field element
8 log, the precomputed Log lookup table
9 antilog, the precomputed AntiLog lookup table

10 m, the degree of the irreducible polynomial
11 """
12 if a == 0 or b == 0:
13 return 0
14

15 # Calculate the exponent sum modulo the field
16 # order - 1
17 exp_sum = (log[a] + log[b]) % (2ˆm - 1)
18

19 return antilog[exp_sum]

Division using the Log and AntiLog tables are similar to multiplication, but
uses subtraction of exponent values instead of addition:

Listing 11: Division using the Log and AntiLog tables for F2m

1 def divide_log_table(a,b,log,antilog,m):
2 """
3 Divides two field elements using the
4 precompute lookup table.
5

6 a, the numerator field element
7 b, the denomiator field element
8 log, the precomputed Log lookup table
9 antilog, the precomputed AntiLog lookup table

10 m, the degree of the irreducible polynomial
11 """
12 # No division by zero
13 assert(b > 0)
14

15 if a == 0:
16 return 0
17

18 # Calculate the exponent sum modulo the field
19 # order - 1
20 exp_sum = (log[a] - log[b]) % (2ˆm - 1)
21

22 return antilog[exp_sum]

Removing modulo operator: A performance bottleneck in the presented al-
gorithm is the use of the modulo operator to reduce the exponent sum.
Since the modulo operator typically requires significantly more CPU cy-
cles to perform that e.g. addition and subtraction we may improve perfor-
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mance by avoiding its use. Here we assume that the implementation uses
a finite precision type system with C/C++ compatible unsigned integer
overflow rules. We first notice that if the exponent sum overflows we may
detect it in the following way: The exponent sum of two W bit unsigned
integers is bound by s = a + b < 2W+1, in case of an overflow we have
2W ≤ a + b < 2W+1 in which case the leading bit in the W + 1 bit repre-
sentation of the sum equals 1, since this high bit cannot be represented in
the W bit representation it will be discarded. Discarding the high means
that s < a and s < b, this can therefore easily be checked.

After detecting the overflow we have to ensure that the modulo reduction
is performed correctly. We do this by noticing that if an overflow occurs
this is equivalent to subtracting 2W from the sum. However, since we
work mod (2W − 1) we have to compensate by adding 1 to the resulting
sum. If, no overflow occurs we do not have to perform any operations.

Memory Consumption: As seen both the Log and AntiLog tables will con-
tain a single entry for each element in the used field. In general a F2m

field has 2m elements of m bits. Thus the total memory consumption for
both the Log and AnitLog tables become:

mlog = 2m · m
8
· 2 [B] (86)

2.2.9 Extended Log and Anti-Log Table

In the previous section we showed how to construct the Log and AntiLog tables,
we also discussed how the modulo operator could be avoid to increase perfor-
mance. A different approach to handle overflows in the exponent sum is to
extend the tables to handle this situation. The following optimization is based
on the fact that the maximum exponent is given as:

emax = 2m − 2 (87)

Furthermore the minimum exponent is given as

emin = 0 (88)

Thus, we have the maximum exponent sum as:

summax = (2m − 2) + (2m − 2) (89)

= 2m+1 − 4 (90)

Likewise the minimum exponent sum can be calculated as:
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summin = 0− (2m − 2) (91)

= 2− 2m (92)

Accepting an increased memory consumption we may extend the AntiLog
table to handle all possible sums. The following AntiLog table extends the
example given in Table 5 for p(x) = x3 + x + 1:

index -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

AntiLog 2 4 3 6 7 5 1 2 4 3 6 7 5 1 2 4 3 6 7

Table 6: Extended AntiLog tables for the finite field F23 .

To understand the mapping recall that we are computing the sum modulo
2m − 1. In the example this yields:

−6 mod 7 = 1 (93)

−5 mod 7 = 2 (94)

... (95)

11 mod 7 = 4 (96)

12 mod 7 = 5 (97)

From Equation (93) we see that index −6 should map to same element as
index 1, Equation (94) shows index −5 maps to the same element as index 2
and so forth. We can verify these results in Table 6 by checking that e.g. index
−6 and 1 both map to the same element. We may now rewrite the examples
from Section 2.2.8 without the mod operator:

5 ∗ 3 = AntiLog[Log[5] + Log[3]] (98)

= AntiLog[6 + 3] (99)

= AntiLog[9] = 4 (100)

2 ∗ 4 = AntiLog[Log[2] + Log[4]] (101)

= AntiLog[1 + 2] (102)

= AntiLog[3] = 3 (103)

6/3 = AntiLog[Log[6]− Log[3]] (104)

= AntiLog[4− 3] (105)

= AntiLog[1] = 2 (106)
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2/7 = AntiLog[Log[2]− Log[7]] (107)

= AntiLog[1− 5] (108)

= AntiLog[−4] = 3 (109)

The following function shows how the extended Log and AntiLog tables may
be created:

Listing 12: Creates the extended Log and AntiLog tables for F2m

1 def create_extended_log_table(p,m):
2 """
3 Creates the extended Log and AntiLog tables mapping between

power
4 representation and decimal/binary representation in a
5 given 2ˆm binary extension field.
6

7 p, the primitive polynomial used
8 m, the degree of the primitive polynomial
9 """

10

11 # The number of elements in the field
12 order = 1 << m
13

14 # Allocate the two tables
15 log = [None] * order
16 antilog = [None] * (3 * order - 5)
17

18 # Initial value corresponds to xˆ0
19 power = 1
20

21 # Array offset
22 low_offset = 0
23 mid_offset = low_offset + order - 2
24 high_offset = mid_offset + order - 1
25

26 for i in range(order-1):
27

28 log[power] = i
29 antilog[mid_offset + i] = power
30

31 # 2 is the decimal representation of the polynomial
32 # element ’x’
33 power = online_simple_multiply(2, power, p, m)
34

35 # Fill the extended table based on the previously computed
36 # results
37 for i in range(order-2):
38 antilog[low_offset + i] = antilog[mid_offset + i + 1]
39 antilog[high_offset + i] = antilog[mid_offset + i]
40

41 return (log, antilog)

Memory Consumption: The Log table size has not changed i.e. it contains
2m elements of m bits. However, extending the AntiLog table to avoid
the modulo operation has increased the number of elements to:
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AntiLogelements = (2m − 2)︸ ︷︷ ︸
negativesums

+ (2m+1 − 4)︸ ︷︷ ︸
positivesums

+ (1)︸︷︷︸
zerosum

= (3 · 2m)− 5

(110)

Thus the total memory consumption for both the extended Log and An-
tiLog tables become:

mextlog = (2m + 3 · 2m − 5) · m
8

[B] (111)

= (2m+2 − 5) · m
8

[B] (112)

Which is still a significant reduction in memory consumption when compared
to the full lookup tables presented in Section 2.2.7.

3 Summary

In the previous sections we have presented a number of different finite field
implementations. As shown in [5, 8] which implementation has the best per-
formance for a specific application can vary greatly. Using the algorithms pre-
sented here the implementer has a wide variety of choices covering different field
sizes, memory consumption and computational complexity. The code listings
presented in this chapter demonstrates the different algorithms implemented in
the popular Python language [1]. These should form a solid starting point for
further experimentation with finite fields. However, if wanted the algorithms
presented here are also available as C++ source code at [15]. The source code
is freely available for any educational and research related purposes.
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Appendix

A Extended Euclidean Algorithm

In this section we describe the extended Euclidean algorithm with can be used
to find the inverse of integers and polynomials defined over some field F

p

m . The
extended Euclidean algorithm is based on the classical Euclidean algorithm for
finding the GCD of two numbers. The classical Euclidean algorithm works by
using the principle that given two numbers a and b where a ≤ b subtracting a
from b does not change the GCD. This yields the following identity:

gcd(a, b) = gcd(b− qa, a) (113)

Equivalent to:

gcd(a, b) = gcd(b mod a, a) (114)

This leads to the following interative algoritm where we find the quotient
q for positive integers a and b where a ≤ b. Here b is divided by a to obtain
a quotient q and a remainder r satisfying r = b − qa and 0 ≤ r ≤ a. From
Equation 113 we know that gcd(a, b) = gcd(r, a), the problem of finding the
gcd(a, b) has now been reduced to computing gcd(r, a) where (r, a) < (a, b) this
process now continues until the remainder is 0, which immediately yields the
result gcd(0, d), where d is the GCD. The following example shows the process
for a = 4, b = 27.

gcd(4, 27) = gcd(27− 6 · 4, 4) = gcd(3, 4)

= gcd(4− 1 · 3, 3) = gcd(1, 3) (115)

= gcd(3− 3 · 1, 1) = gcd(0, 1)

= 1

The final non-zero remainder is the gcd in this case 1.
The Euclidean algorithm outlined may now be extended to find the integers

x, y such that ax + by = d, where d = gcd(a, b). The extended Euclidean
algorithm can be implemented in a number of different ways. In the following we
will outline an algorithm based on the Table Based Method (also know a “magic
box”). The algorithm is based on the observation that the remainders computed
in the standard GCD algorithm can be expressed as linear combinations of the
original integers a and b:

ri = axi + byi (116)

So in general we may say:
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ri−1 = axi−1 + byi−1 (117)

ri−2 = axi−2 + byi−2 (118)

... (119)

From Equation 114 we see that the remainder ri can be calculated as:

ri = ri−2 mod ri−1 (120)

= ri−2 −
⌊

ri−2

ri−1

⌋
· ri−1 (121)

Substituting Equation (117) and (118) into Equation (121) yields:

ri = axi−2 + byi−2 −
⌊

ri−2

ri−1

⌋
· (axi−1 + byi−1) (122)

Which may be rewritten as:

ri = axi−2 + byi−2 − axi−1 ·
⌊

ri−2

ri−1

⌋
− byi−1 ·

⌊
ri−2

ri−1

⌋
(123)

= a

(
xi−2 − xi−1 ·

⌊
ri−2

ri−1

⌋)
+ b

(
yi−2 − yi−1 ·

⌊
ri−2

ri−1

⌋)
(124)

Comparing Equation (124) to Equation (116) we see that:

xi = xi−2 − xi−1 ·
⌊

ri−2

ri−1

⌋
(125)

yi = yi−2 − yi−1 ·
⌊

ri−2

ri−1

⌋
(126)

After finding these identities we can determine the coefficients xi and yi for
any given remainder ri. We may also note that for every remainder we must
know the results of the previous two steps i.e. to compute ri for a given input
a and b we need to first determine {xi−2, xi−1, yi−1, yi−2, ri−1, ri−2}.

We first initialize the algorithm by calculating r0 and r1 by first setting
x0 = 0, x1 = 1, y0 = 1, y1 = 0 for these values solve for ri using Equation (116).

r0 = ax0 + by0 = a · 0 + b · 1 = b (127)

r1 = ax1 + by1 = a · 1 + b · 0 = a (128)
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We continue calculating r2 = ax2 + by2 using the formulas given in Equa-
tion (125) and (126). This process continues until the remainder ri = 0 in which
case we have found:

ri−1 = axi−1 + byi−1 = gcd(a, b) (129)

Algorithm 1 outlines the pseudo code for the extended Euclidean algorithm
for integers. This algorithm uses the extended Euclidean procedure which we
have outlined in the previous section starting with Equation (116).

Algorithm 1 Extended Euclidean Algorithm for integers in Z, where a ≤ b

1: procedure extended euclidean(a,b)
2: x0 = 0, x1 = 1
3: y0 = 1, y1 = 0
4: r0 = b, r1 = a
5: while r1 6= 0 do

6: q =
⌊

r0

r1

⌋

7: r = r0 − r1 · q
8: x = x0 − x1 · q
9: y = y0 − y1 · q

10: x1, x0 ⇔ x, x1

11: y1, y0 ⇔ y, y1

12: r1, r0 ⇔ r, r1

13: end while
14:

15: Return r0, x0 and y0

16: end procedure

The following iterations shows the algorithm for the integers a = 3 and
b = 11.

A.0.10 Initialization

a = 3 b = 11 x = 0 y = 0 q = 0 (130)

r = 0 x0 = 1 x1 = 0 y0 = 0 y1 = 1 (131)

A.0.11 Iteration 1

a = 2 b = 3 x = −3 y = 1 q = 3 (132)

r = 2 x0 = −3 x1 = 1 y0 = 1 y1 = 0 (133)

A.0.12 Iteration 2

a = 1 b = 2 x = 4 y = −1 q = 1 (134)

r = 1 x0 = 4 x1 = −3 y0 = −1 y1 = 1 (135)
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A.0.13 Iteration 3

a = 0 b = 1 x = −11 y = 3 q = 2 (136)

r = 0 x0 = −11 x1 = 4 y0 = 3 y1 = −1 (137)

After terminating the algorithm we may verify the result i.e. ax + by = d =
gcd(a, b), where we have a = 3, b = 11, x = 4, y = −1 and gcd(a, b) = d = 1:

3 · 4 + 11 · −1 = 1 (138)

In the following we will use this result to find the inverse of a number in a
prime field Fp. To see how this may be achieved we use the following observa-
tions. First note that if p is prime then gcd(a, p) = 1. This mean that for the
extended Euclidean algorithm we have ax + py = 1. However, as we are in a
finite field we should reduce the coefficients modulo p. This yields ax + yp = 1
mod p. Which is ax = 1 mod p since the modulo of y · p mod p always will
be zero. From this we see that x must be the inverse of a, as the definition of
inverse states that a · a−1 = 1. Based on these results we see that the following
optimizations may be made to Algorithm 1, so that we may use it to find the
inverse of a.

• We only need to keep track of the x coefficients. As the equation we
solving for is essentially ax = 1.

• We can terminate the loop when the remainder equals 1. We may use this
as terminating condition as we know gcd(a, p) will always equal 1.

Implementing these optimizations we obtain the following algorithm for find-
ing the inverse of an integer in F

p

.

Algorithm 2 Finding inverse integer in Fp

1: procedure inverse(a)
2: x0 = 0, x1 = 1
3: r0 = p, r1 = a
4: while r0 6= 1 do

5: q =
⌊

r0

r1

⌋

6: r = r0 − r1 · q
7: x = x0 − x1 · q
8: x1, x0 ⇔ x, x1

9: r1, r0 ⇔ r, r1

10: end while
11: Return x0 mod p
12: end procedure

The following iterations shows the algorithm for the integers a = 4 and
p = 7.
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A.0.14 Initialization

a = 4 b = 7 x = 0 q = 0 (139)

r = 0 x0 = 1 x1 = 0 (140)

A.0.15 Iteration 1

a = 3 b = 4 x = −1 q = 1 (141)

r = 3 x0 = −1 x1 = 1 (142)

A.0.16 Iteration 2

a = 1 b = 3 x = 2 q = 1 (143)

r = 1 x0 = 2 x1 = −1 (144)

After reaching the terminating condition i.e. a = 1 we may check that the
x found is indeed the inverse of a:

a · x mod p = 1 (145)

4 · 2 mod 7 = 1 (146)

The final part of this section describes how the above results may be used
in an extension field i.e. a finite field Fpm using polynomial representation
for the field elements. As it turns out the exactly same formulas apply for
polynomials as for integers. Using polynomial long division to find the quotient
and remainder in Algorithm 1 and otherwise performing the same routine would
yield the correct answer.

That is for two binary polynomials a(x) and b(x) we may find a GCD for
which the following holds:

gcd(a(x), b(x)) = gcd(b(x)− c(x) · a(x), a(x)) (147)

This holds for any binary polynomial c(x). As with the integers Equa-
tion (147) states that subtracting a multiple of a(x) from b(x) does not change
gcd. As for the integers we may extend this result so that we may using the
extended Euclidean algorithm may find an z(x) and w(x) such that:

a(x) · z(x) + b(x) · w(x) = d(x) = gcd(a(x), b(x)) (148)

Algorithms for the both the Euclidean and extended Euclidean algorithms
for polynomials are given in [13, p. 82-83]. However, in these algorithms we
must perform an polynomial long division to obtain the needed qoutient and
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remainder (denoted q and r in the extenede eucliden algorithm for integers)
which in practice is not easily implemented in software. Instead we may use
an alternative extended Euclidean algorithm presented here [6, p. 57-58]. The
algorithnm utilizes the fact that the division may be replace with a number of
subtractions. Recall that the gcd(a, b) = gcd(b, b − ca). In this algorithm only
one step of each polynomial long division is performed for each interation of
the algorihtm. Essentially this means that in each iteration of the algorithm we
perform the long division using a single multiplication followed by a subtraction
cancel the highest degree polynomial term. As an example we may consider the
two polynomials g(x) = x4 + x2 + 1 and f(x) = x3 + 1. To cancel the term x4

we first multiply f(x) with x and subtract from g(x) i.e.:

r(x) = g(x) + f(x) · x (149)

= (x4 + x2 + 1) + (x3 + 1) · x (150)

= (1 + 1) · x4 + x2 + x + 1 (151)

= x2 + x + 1 (152)

Notice, that in the binary field addition and subtraction are identical, thus
the use of +. Furthermore remember that in the binary field 1 + 1 = 0 which
cancles x4 in (151). We may now continue gcd algorithm by reducing f(x) by
r(x).

h(x) = f(x) + r(x) · x (153)

= (x3 + 1) + (x2 + x + 1) · x (154)

= (1 + 1) · x3 + x2 + x + 1 (155)

= x2 + x + 1 (156)

k(x) = r(x) + h(x) (157)

= (x2 + x + 1) + (x2 + x + 1) (158)

= (1 + 1) · x2 + (1 + 1) · x + (1 + 1) (159)

= 0 (160)

Since the last remainder is zero, the algorithm ends with h(x) = x2 + x + 1
as the greates common divisor of g(x) and f(x). We may backtrack the steps
in this algorithm to find the coefficients of the Extended Euclidean Algorithm
(starting from h(x) which is our gcd).
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h(x) = f(x) + r(x) · x (161)

= f(x) + (g(x) + f(x) · x) · x (162)

= f(x) + g(x) · x + f(x) · x2 (163)

= (1 + x2) · f(x) + x · g(x) (164)

Using the outlined gcd approach for polynomials we may used the following
algorithm:

Algorithm 3 Extended Euclidean Algorithm for polynomials in F2p , where
deg(a) ≤ deg(b)

1: procedure extended euclidean(a,b)
2: g0 = 1, g1 = 0
3: h0 = 0, h1 = 1
4: u = a, v = b
5: while u 6= 0 do
6: j = deg(u)− deg(v)
7: if j < 0 then
8: u↔ v
9: g0 ↔ g1

10: h0 ↔ h1

11: j ← −j
12: end if
13: u = u + v · xj

14: g0 = g0 + g1 · xj

15: h0 = h0 + h1 · xj

16: end while
17:

18: Return v, g1 and h1

19: end procedure

As for the integers we may modify the Extended Euclidean Algorithm to
find the inverse of any given polynomial mod p(x) as shown in Algorithm 4.

A.0.17 Find Degree Function

Certain algorithms require that the degree of the polynomials are calculated.
The following code listing gives an example implementation of such a function.
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Algorithm 4 Inverse Algorithm for polynomials in F2p

1: procedure inverse(a)
2: g0 = 1, g1 = 0
3: u = a, v = p
4: while u 6= 1 do
5: j = deg(u)− deg(v)
6: if j < 0 then
7: a↔ b
8: g0 ↔ g1

9: j ← −j
10: end if
11: u = u + v · xj

12: g0 = g0 + g1 · xj

13: end while
14:

15: Return g0

16: end procedure

Listing 13: Function to determine the degree of arbitrary polynomial in F2m

1 def find_degree(a):
2 """
3 Finds returns the degree of the polynomial
4 i.e. the number 5 = 101 = Xˆ2 + 1 has degree 2
5

6 a, the polynomial whos degree we wish to find
7 """
8 degree = 0
9

10 a = a >> 1
11

12 while(a > 0):
13 degree = degree + 1
14 a = a >> 1
15

16 return degree
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Abstract—Creating efficient finite fields implementations has
been an active research topic for several decades. Many appli-
cations in areas such as cryptography, signal processing, erasure
coding and now also network coding depend on this research
to deliver satisfactory performance. This paper introduces the
initial investigation of utilizing prime fields for network coding
applications. First we introduce the algorithms needed to apply
prime field arithmetics to arbitrary binary data. After this we
present the initial throughput measurements from a benchmark
application written in C++. These results are finally compared
to different binary and binary extension field implementations.

I. I NTRODUCTION

With its introduction by Ahlswede in 2000, Network Coding
(NC) has undergone a tremendous evolution, from simple
XOR type coding schemes to newer developments such as
Random Linear Network Coding (RLNC). NC has shown its
potential in a variety of application fields covering sensor
networks, satellite networks and peer-to-peer (P2P) networks
as a short list of examples. The core idea behind NC schemes
is to change the way packets are processed in the network.
Without NC, the packets are typically only stored and for-
warded at intermediate nodes in the network. With NC, packets
are potentially recoded before being forwarded. As shown
with the famous butterfly example [1], this approach leads
to significant potential gains.

The arithmetic operations performed by the NC nodes in a
network are defined within a branch of mathematics known
as finite fields or Galois fields. Finite fields define all the
commonly used arithmetic operations i.e. addition, subtraction,
multiplication and division. These arithmetics operations are
used in NC when performing the three core operations namely:
encoding, recoding and decoding. Efficient implementations of
finite field arithmetics are therefore an important prerequisite
for any efficient NC implementation. See [2] for a thorough
introduction to the theory of finite fields.

In both software and hardware, finite fields may be imple-
mented in a number of different ways, and in general one
cannot point out a single superior implementation covering
all possible use-cases [3]. Different applications will often
have different requirements. The finite field implementation
presented in this paper addresses two requirements commonly
seen in NC applications, namely high field sizes and low
algorithmic memory consumption.

A. Field Size

Depending on the network topology, a large field size may
be required to efficiently realize the communication. As stated
by the main theorem of NC given in [4].

Theorem 1 (Main Theorem in Network Coding):Consider
a directed acyclic graphG = (V, E) with unit capacity
edges,h unit rate sources located on the same vertex of
the graph andN receivers. Assume that the value of the
min-cut to each receiver ish. Then there exists a multicast
transmission scheme over a large enough finite fieldFq, in
which intermediate network nodes linearly combine their
incoming information symbols overFq, that delivers the
information from the sources simultaneously to each receiver
at a rate equal toh.

Even in very simple network topologies, choosing a too
small field size can reduce the effectiveness of the coding
by introducing an excess of linearly dependent packets [5].
However, note that in RLNC schemes increasing the field size
also increases the overhead added to each encoded symbol
through the encoding vector. It is therefore undesirable to
increase the field size more than necessary, an overview of
this trade-off is provided in [6].

B. Memory Consumption

On memory constrained devices, algorithms with a limited
memory consumption may be a requirement. Many finite field
implementations used in NC applications rely on different vari-
ants of lookup tables to provide efficient arithmetic operations.
On constrained devices lookup tables may be undesirable as
they occupy valuable space in memory (e.g. on a sensor board)
and can cause severe performance issues due to the typically
limited Central Processing Unit (CPU) cache size [3].

In this paper we will introduce the initial implementation
results utilizing a new scheme based on results from Optimal
Extension Fields (OEFs) and a sub-field mapping algorithm
developed by Crowley et al. [7]. This scheme allows for both
a high field size and a very low memory consumption.

The remainder of the paper is organized as follows. In
Section II OEFs are described. Section III introduces the
algorithm for fast modulo reduction. Section IV introduces
the binary sub-field mapping algorithm. Section VII presents
the obtained results from an initial implementation. The final
conclusions are drawn in Section VIII.

II. OPTIMAL EXTENSION FIELDS

OEFs were introduced in [8] for use in public-key crypto-
graphic systems. OEFs differ from the traditional binary field
implementations by changing the characteristic of the field.
The general definition of a field is given asFpm , for which
p is a prime number also called the field characteristic and
m denotes the extension used. Efficient finite field arithmetics



in an OEF are achieved by choosing a characteristic (i.e. a
prime p) close to the word size of the underlying hardware
processor e.g. 8, 16, 32 or 64 bits and creating field extensions
using irreducible polynomials of a special form. This approach
differs from traditional implementations where a binary exten-
sion field is used, i.e. fields with characteristicp = 2. As an
example, a concrete implementation for a32 bit CPU may
use a binary extension field such asF232 , whereas an OEF
implementation could useF4294967291m , where4294967291
is the prime number232−5. Although Bailey et al. envisioned
OEFs to be used in cryptographic systems, we may use their
results to also create efficient prime field implementationsfor
NC applications.

Before moving on, let us give the definitions describing an
OEF as described in [8]:

• Definition 1. A pseudo-Mersenne prime is a prime num-
ber of the form2n − c, wherelog2(c) ≤ 1

2n
• Definition 2. An Optimal Extension Field is a finite field
Fpm such that:

1) p is a pseudo-Mersenne prime.
2) An irreducible bionomialp(x) = xm−ω exists over
Fp.

We observe that there are two special cases of OEF which
yield additional arithmetic advantages, which we will call
Type I and Type II.

• Definition 3. A Type I OEF hasp = 2n − 1. A Type I
OEF allows for subfield modular reduction with very low
complexity as we will show later.

• Definition 4. A Type II OEF has an irreducible binomial
xm − 2. A Type II OEF allows speedups in extension
field modular reduction.

In the following we will show how the ideas of OEFs can
be utilized in a NC context. Since most NC systems do not
require the same large fields as certain cryptographic systems,
we will not discuss the construction of extension fields, but
focus on the OEF sub-field which is given as a regular prime
fieldFp, wherep is a pseudo-Mersenne prime. For this reason
we will refer to this type of finite field as an Optimal Prime
Field (OPF). To implement this in practice, two open questions
must be addressed: How to implement fast modulo reduction
in the chosen prime fieldp = 2n − c and how to ensure that
arbitrary input data can be represented within the chosen field.

III. FAST SUB-FIELD MODULO REDUCTION

This result originally stems from [9] and was later utilized
in OEFs. In a finite field, the modulo operation is used
to ensure that all arithmetic operations performed in the
field remain “closed”, i.e. adding, subtracting, multiplying or
dividing two field elements must result in an element also in
the field e.g. inFp, wherep = 7:

(5 + 4) mod 7 = 2 (1)

(5 − 4) mod 7 = 1 (2)

(5 · 4) mod 7 = 6 (3)

(5/4) mod 7 = 3 (4)

To create an efficient prime field implementation, an effi-
cient way of implementing the modulo reduction is therefore
also needed. Given twon-bit integersa, b ∈ Fp we may
handle the addition and subtraction with reduction modulop
as:

a + b =

{
a + b if a + b < p
a + b − p if a + b ≥ p

(5)

a − b =

{
a − b if a − b ≥ 0
a − b + p if a − b < 0

(6)

For multiplication and division the process is more in-
volved. Division can be considered a multiplication with the
inverse element, therefore it will only be necessary to perform
the modulo reduction after multiplication. The inverse of a
field element can be calculated using the extended Euclidean
Algorithm, see [10]. As with addition and subtraction, we
again consider twon-bit integersa, b ∈ Fp. Recall from
“Definition 1” that p is a pseudo-Mersenne prime of the form
p = 2n − c, wherelog2(c) ≤ 1

2n. The goal is to calculate the
modulo reduction of the product of twon-bit integers using
only additions, shifts and multiplications. Although thismay
sound more complicated than calculating the modulo reduction
using an integer division it will often be faster in practice
due to the high latency of the integer division instruction on
the CPU [11]. In the following the idea behind the modulo
reduction algorithm is presented.

First choose a pseudo-Mersenne prime of the formp =
2n − c, wherelog2(c) ≤ 1

2n. Calculate the product of the two
n-bit integersa andb:

←− n bits−→

a

b

←− 2n bits−→

a · b h l

The resulta ·b can be represented as an-bit high-halfh and
a n-bit low-half l. From this, it can be seen that the product
a · b can be rewritten as:

a · b = h · 2n + l mod p (7)



Rewriting the product as a sum of the low- and high-half,
we see that the factor2n can be reduced using the chosen
prime p, wherep = 2n − c:

2n ≡ c mod 2n − c (8)

Substituting this result into Equation (7) yields:

a · b = h · c + l mod p (9)

Graphically we may represent the producth · c as:
←− n bits−→

h

← log2 c
bits

→

c

←− n + log2(c) bits−→

h · c h′ l′

Again we represent the result as a high-half added to the
low-half:

h · c = h′ · 2n + l′ mod p (10)

Repeating the reduction step using Equation (8) we may
rewrite the product:

h · c = h′ · c + l′ mod p (11)

The producth′ · c can now be represented as:
← log2 c

bits
→

h′

c

←− 2 · log2(c) bits−→

h′ · c l′′

Where l′′ can be represented using2 · log2(c) ≤ n bits.
This is possible since we have chosenc aslog2(c) ≤ 1

2n. This
represents the final step in the algorithm as no further high-
half bits are produced. We may note that due to our choice of
c this is guaranteed to happen. By combining the results from
Equation (9) and (11), we may rewrite the multiplication as a
sum of three≤ n bit integers:

a · b = l + l′ + l′′ mod p (12)

As shown for addition in Equation (5), we only have to
ensure that the sum is belowp by subtractingp if necessary.
This leads to the following algorithm for multiplication:

Listing 1: Optimal prime field multiplication for p

1 def optimal_multiply(a, b):
2 """
3 Computes and returns the product a*b modulo

the prime p.
4

5 a, first integer operand
6 b, second integer operand
7 """
8 c = 5
9 p = 2**32 - c

10

11 x = a*b
12 while x >= 2**32:
13 high = x >> 32;
14 low = x & 0xffffffff;
15

16 x = high * c + low;
17 if x >= p:
18 x = x - p;
19

20 return x

1) Example: The following example shows the how the
algorithm computes the modulo remainder for two large32 bit
integers.

Initialization:

x = 25351674994116735234

a = 5294969294 b = 4787879511

c = 5 p = 4294967291

high = 0 low = 0

Iteration 1:

x = 32021112688

a = 5294969294 b = 4787879511

c = 5 p = 4294967291

high = 5902646806 low = 2507878658

Iteration 2:

x = 1956341651

a = 5294969294 b = 4787879511

c = 5 p = 4294967291

high = 7 low = 1956341616

In practice this algorithm can be implemented in an unrolled
fashion (without the while loop).

IV. SUB-FIELD DATA MAPPING

As mentioned, one of the goals of OEFs is to match
the underlying processor word size as closely as possible.
However, in practice this means that the finite field elements
cannot be exactly represented by any common data types i.e.
8, 16, 32 or 64 bits, due to the fact that a prime must be
used. As an example, using a prime field with characteristic



p = 232 − 5, we see that it does not allow the binary
values from0xfffffffb to 0xffffffff. This would
create problems for most NC applications, where the data
being processed cannot be guaranteed to be within a certain
binary range. Consequently, in this example we require an
encoding/decoding scheme for mapping arbitrary32-bit data
values into values in the[0, 232−5) range. Using the approach
presented by Crowley et al. [7], this goal may be achieved
with limited computational overhead. The algorithm may be
summarized in the following steps:

1) Choose a data type ofn bits to match the processor word
size.

2) Select a pseudo-Mersenne prime of the formp = 2n−c.
3) Partition the input data into blocks of maximum2t − 1

data words, wheret ≤ ⌈n − log2(c)⌉.
4) For each block, search the data to find at-bit prefix not

present in the data. Note, that since we have a maximum
block size of2t − 1, this prefix is guaranteed to exist.

5) Negate thet bit prefix and XOR it with alln-bit words
in the data block. This will ensure that all data values
are representable in the chosen prime field.

6) When no more finite field operations are required, e.g.
after the data block has been transmitted and decoded,
reverse the prefix mapping by again performing the XOR
with the negated prefix on the data.

The outlined algorithm will ensure that all values larger than
the selected prime will be mapped to a value representable
with in the prime field. As an example of how the binary
mapping works, consider the binary representation of the
pseudo-Mersenne primep = 232 − 5:

0481216202428

11111111111111111111111111111011

One way to make sure that all input values are below the
prime is to ensure that at least a single zero will appear in
the top29 bits, denoted as theprefix:

0481216202428

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
︸ ︷︷ ︸

Prefix location

The binary sub-field mapping algorithm achieves this by
partitioning the input data into blocks with a maximum of
229 − 1 data words. Corresponding to a maximum block size
of approximately2.1 GB. This block size guarantees that
a 29 bit prefix, s, may be found which does not appear in
any of the data words. Using the prefixs, a binary mask can
be constructed and XOR’ed with the remaining data block
values. The binary mask is simply the negated version of the
prefix. To illustrate how this works, assume we have found a
prefix which does not appear anywhere in our data block:

0481216202428

10011110101011010011111001011000
︸ ︷︷ ︸

Unused 29-bit prefix

Negate this prefix:

0481216202428

01100001010100101100000110100111
︸ ︷︷ ︸

Which value after XOR can give all ones here?

Only the unused 29-bit prefix.

Now notice that the only value for which the XOR with
the negated prefix can produce all binary ones is the prefix
itself - which does not exist in the data block. XOR’ing with
all other input values with the negated prefix is guaranteed to
have at least a single zero bit in the topt bits. Therefore, all
data values in the block will be representable within the prime
field.

In general the length of a data block will determine the
number of bits necessary to ensure that an unused prefix can
be found. This relationship between the block lengthb in 32-bit
data words and prefix lengtht in bits is given by Equation 13.

t = ⌈log2(b)⌉ wheret ≤ ⌈n − log2(c)⌉ (13)

As an example for a block length of15 data words it is
given that at least one4-bit prefix must exist, which does not
appear anywhere in the data.

V. PREFIX SEARCH

One drawback of this solution is that finding the prefix will
require processing of the entire data block. This is however
only necessary once, and may therefore be precomputed and
attached to a storage object as meta-data. However, for steam-
ing applications data is produced on-the-fly and the prefix
search therefore has to be executed as the blocks are made
available. In the following we will therefore investigate the
added processing overhead of the prefix search. Searching
for the prefix may be accomplished in several ways in the
following we investigate the performance of two algorithms
1) bitmap lookupand 2)k-pass binary search.

As shown in Figure 1 the bitmap algorithm works by
mapping everyt-bit prefix pattern in a data block to an unique
bit position in a bitmap with2t entries. Any unused prefix can
therefore be found after a single iteration of the data block.
As the number of possible prefix values grows exponentially
with the length of data block this algorithm is expected to
perform best if the block length remains small. The storage
requirements of the bitmap algorithm is given in Equation 14.

bitmapmemory =
⌈2t

8

⌉
[B] (14)

The k-pass binary search performsk iterations over the data
block to find an unused prefix. Utilizing more than a single
iteration reduces the memory consumption but is expected
to increase the algorithms computational cost. The general
principle of the binary search algorithm is that given at bit
prefix we may inspect only a subsetj of the bits, wherej < t
to determine firstj-bits of the unused prefix. This can be
achieved by noticing that for everyj-bit prefix there can be
at most2t−j bit patterns. It is given that if a counter contains
less than2t−j values there must exist ant bit prefix with



10100100 0110100100 00111000 11 10101010 00

Data block:

Data words:

Bitmap:

Inspecting 

word 1

Inspecting 

word 2

Inspecting 

word b

Fig. 1: Example of the bitmap algorithms. The algorithms
iterates over the data block and maps eacht-bit prefix to a
corresponding bit-position in the bitmap. After iteratingover
all words in a data block the unused prefix can be found by
iterating over the bitmap to locate an unused bit position.

the topj bits which does not appear in the data. Recall this
is guaranteed to happen since we at most allow2t − 1 data
words in block. Equation 15 gives the relationship betweenk,
t and j.

j =
⌈ t

k

⌉
[bits] (15)

As shown in Figure 2 the binary search algorithm counts
all j-bit prefixes once. Utilizing the counters the algorithm
choose aj-bit prefix for which it knows that an unusedt-bit
prefix exists. Using the firstj-bit prefix as a filter it continues
by counting the nextj-bit prefixes. This process continues
until a counter contains the value0, when this happens the
concatenation of the chosenj bit prefixes will constitute the
unusedt-bit prefix. The valuek determines the maximum
number of iterations needed. Increasingk reduces the memory
requirements as less counters have to be stored. The total
memory requirements can be calculated as the number of
counters needed, multiplied by the size of each counter (in
our implementation we useduint32_t which is 4 bytes), as
given in Equation 16.

binary searchmemory = 2j · 4 [B] (16)

The storage requirements of both algorithms are shown
in Figure 3. As shown it is possible to a large extend tune
the memory consumption of the algorithms. Also worthwhile
noticing is that even for a generation size of2048 it is possible
to run the prefix search using less than1000 bytes of memory
using the binary searchk = 4.

A. Prefix Search Performance

In this section we benchmark the presented prefix search
algorithms. The benchmark measures the time required for the
algorithm to find a missing prefix in a block of random data. In

0010 0100 01

Data block:

Data words:

Buckets:

Inspecting 

word 1

Inspecting 

word 2

Inspecting 

word b

0000 0001 0010 0011 1110 1111

4 5 1 0 6 8

1110 0100 01 1110 0100 01

Fig. 2: Example of the binary search algorithm. The algorithm
usesk passes over the data block. In each step it counts the
number of occurences ofj-bit prefixes.
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Fig. 3: The memory requirements given for each prefix search
algorithm. Given both in terms of total block size (figure
top) and in terms common choice of generation size (figure
bottom). A packet size of 1400B was used to calculate the
block size of the generations.

order to get an impression of the performance of the algorithms
the benchmark have been conducted on the following device:

TABLE I: Specifications of the device used for benchmarking

Device Desktop PC

OS XUbuntu 12.04

CPU Intel(R) Core(TM) i7 920 @ 2.67 GHz

Cache L1 128 KiB, L2 1 MiB, L3 8 MiB

Memory 6 GB DDR3 1066 MHz

In Figure 4 we see the results from the benchmarks. The
measurements show that the fastest algorithm for all block
sizes is the Binary search withk = 2. Which is able to find the



missing prefix in approximately6 ms for generation size1024.
For generation sizes below256 which are quite common in NC
applications, due to the otherwise high decoding complexity,
the prefix search completes within2 ms. Also we may notice
the “staircase” like increase in search time as the block size
increases. These slowdowns correspond to the block sizes
where the algorithms require one more bit in the prefix. This
has the effect that the amount of available prefixes double and
therefore the algorithm have to perform more bookkeeping.
As an example when the prefix length increases from15 to
16 bits the Bitmap algorithm increases its storage requirements
from 32 KB to 64 KB. Following an increase in the algorithms
storage requirements the search time grows slowly as the block
size increase, until the prefix needs additional bits causing a
new performance slowdown. This effect is especially visible
for large block sizes as shown in Figure 4 (top).
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Fig. 4: Time in milliseconds required to search for the needed
block prefix on the desktop i7. The block size was increased
in steps of 10KiB for each step 100 runs where completed.
The vertical bars show the standard deviation in each step.

In Table II we show the results for the fastest algorithm
Binary searchk = 2, these result signify the overhead which
would be added per block due to the prefix search. Depending
on the type of application this could be problematic, e.g. for
live streaming applications the prefix must be found “on-the-
fly” as data is being produced, whereas for static objects such
as files the prefix may be found in advance and attached to
the data as meta-information.

TABLE II: Prefix search time [ms] for Binary searchk = 2

Generation size 16 32 64 128 256 512 1024

Time [ms] 0.19 0.23 0.27 0.54 1.09 2.30 5.99

VI. N ETWORK CODING ARITHMETICS

In order to quantify the potential performance of different
finite field implementations it is necessary to understand the
statistics of the arithmetic operations performed in NC algo-
rithms. For a Gaussian Elimination decoder and a generation
sizeg, packet size off finite field elements and an encoding
vector of v finite field elements we expect the upper-bound
for the operations as shown in Table III.

TABLE III: Upper bound operations for a Gaussian Elimina-
tion decoder

Operation dest[i] = dest[i] - (constant * src[i])

Upper-bound O((g2 − g) · (v + f))

Operation dest[i] = dest[i] * constant

Upper-bound O(g · (v + f))

Operation invert(value)

Upper-bound O(g)

Notice, that the length of the encoding vector is always
v = g, however to make it clearer where the operations are
coming from we will keep usingv to denote its length. For
the encoding algorithms we have the upper-bound expression
shown in Table IV.

TABLE IV: Upper bound operations for a standard RLNC
encoder

Operation dest[i] = dest[i] + (constant * src[i])

Upper-bound O(g2 · f)

To confirm these expressions the following results were
obtained by instrumenting one standard RLNC encoding al-
gorithm and a Gaussian Elimination based RLNC decoding
algorithm (source code available here [12]). Field coefficients
used for the encoding where drawn uniformly. It should also
be noted that the algorithms require two implementations
one for the binary field and one for higher order fields i.e.
binary extension fields as well as the optimal prime field.
This is required since high field size implementations do
multiplication with non-trivial constants, whereas the binary
field only uses addition and subtraction. This difference can
be clearly seen in Figure 6. Whereas the higher order fields
shown in Figure 5 heavily relies on multiplication.

These results confirm the expectation from the upper-bound
expressions given in Table III and IV. Based on this can also be
seen that in order to improve the performance of binary field
algorithms the addition and subtraction should be optimizes.
Whereas for higher order fields the compound operations
addition and subtraction with a constant multiplication isthe
most common operation.

VII. F INITE FIELD ARITHMETICS

This section presents the benchmark results of the suggested
finite field algorithm.

Based on the results from the previous section the majority
of operations performed are the two compound operations:
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RLNC.Binary8 (generation size = 32, packet size = 1400 [B])
dest[i] = dest[i] + (constant * src[i])
invert(value)
dest[i] = dest[i] * constant
dest[i] = dest[i] - (constant * src[i])

49.44 %
0.00 %
1.58 %
48.98 %

Fig. 5: Number of finite field operations needed during en-
coding and decoding of a single generation. The field used
corresponds to the binary extension fieldF28 , which means
that every field element corresponds to1 byte.
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RLNC.Binary (generation size = 32, packet size = 1400 [B])

dest[i] = dest[i] + src[i]
dest[i] = dest[i] - src[i]

51.93 %
48.07 %

Fig. 6: Number of finite field operations needed during en-
coding and decoding of a single generation using the binary
field F2. In this field every field element corresponds to1
bit. Since operating on single bit values is very inefficient
implementations typically operate on vectors of1 bit elements.
In the used implementation the data type used corresponds to
a 1 byte i.e.8 bit elements. The result shown above should
therefore be scaled by8 to get the1 bit operations performed.

dest[i] = dest[i] + (constant * src[i])and
dest[i] = dest[i] - (constant * src[i]). These
operations are therefore of key interest when comparing
different finite field implementations for NC algorithms. In
the following we have tested a number of different finite field
implementations (source code available here [13]):

• SimpleOnline{8, 16}: This algorithm computes the result
on-the-fly inF28 andF216 using an iterative algorithm,
without any precomputed lookup table.

• OptimalPrime2325: This corresponds to the algorithm
presented in this paper. Using the prime fieldF4294967291,
wherep = 232 − 5 = 4294967291

• FullTable8: This algorithm utilizes a fully precomputed
lookup table stored in memory to calculate the results in
F28 .

• LogTable{8, 16}: This algorithm uses a reduced lookup
table to calculate the results inF28 and F216 . The
log table minimize memory consumption at the cost of
additional operations for every calculation.

• ExtendedLogTable{8, 16}: This algorithm extends the

lookup table used by theLogTableto calculate the results
in F28 andF216 . The extended lookup table removes a
number of checks necessary in theLogTablealgorithm
when moving from exponential to polynomial represen-
tation.

The following figures show the throughput for the arith-
metic operations tested. The benchmark uses two generations
containing eachg packets where each packet is1400 B long.
From each generation two packets are then randomly selected
and the specified operation is performed. In the operations
tested a constant is used for the multiplication, this constant
was randomly generated for each invocation of the operations
under test. For each operation number of iterations were
completed so that the total measurement time exceeded a
minimum of10 ms, this was done to keep inaccuracies due to
timing granularity and other disturbances in the measurements
low. For each operation this was repeated100 times.

The benchmarks were run on the device specified in Table I
using three different generations sizes;g = 32, g = 128
and g = 1024. These numbers were chosen to see how the
algorithms were affected by the working set size (which is the
generation size multiplied by the packet size). The working
set size can have a significant impact on performance due to
caching effects [14, p. 593-673]. In this case we only observe
a slight drop in performance as the working set size increases
indicating that the CPU is able to keep the working set in the
cache.

All implementations presented here are written in C++ using
no assembler or compiler intrinsics to further speed up the
computations. However, inspecting the assembly output of the
compiled benchmark does reveal that the compiler was able
to take advantage of vectorized Single Instruction Multiple
Data (SIMD) instructions in some of the arithmetic loops.
Although this boosts performance considerable some functions
were not optimized by the compiler. It is therefore likely that
further performance could be achieved by hand-writing some
of operations using assembly or vectorized SIMD instructions
directly.

In Figure 7 we see the benchmarks for a generation size of
32. In this case we see that the OPF preforms better than the
alternative implementations. One interesting thing to observe
is that the OPF performs slightly faster in subtraction than
addition. The explanation for this is the that addition requires
two checks, one for checking for integer overflow, and one
for checking whether the prime modulo operation must be
performed. For subtraction we only have to check for integer
underflow. Avoiding this additional check yields an approx.
5% performance increase.

In Figure 8 we see the benchmarks for a generation size
of 128 and finally in Figure 9 we see the benchmarks for a
generation size of 1024. Where the tendency remains the same
as for the generation size of 32.

As seen the two implementationsFullTable8 and
OptimalPrime2325 are by far the fastest. Where the
OptimalPrime2325 on average provides an 18% perfor-
mance increase for addition and an average 23% performance
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Fig. 7: Throughput for the compound NC operations for a
generation size of32.
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Fig. 8: Throughput for the compound NC operations for a
generation size of128.
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Fig. 9: Throughput for the compound NC operations for a
generation size of1024.

increase for subtraction when compared to theFullTable8.
Table V shows the measured results for the two benchmarks.

TABLE V: Throughput measurements in MB/s for the
OptimalPrime2325 andFullTable8 algorithms.

generation size algorithm operation
throughput

[MB/s]

32

OptimalPrime2325
add 1122.44

subtract 1181.02

FullTable8
add 948.14

subtract 946.14

128

OptimalPrime2325
add 1124.21

subtract 1178.35

FullTable8
add 938.15

subtract 939.78

1024

OptimalPrime2325
add 1069.69

subtract 1122.75

FullTable8
add 920.80

subtract 916.31

VIII. C ONCLUSION

In this paper we have presented our initial investigation
regarding the use of OPF for NC applications. The results
show that OPF looks like a promising addition to the selection
of finite field implementations. Besides the good performance
one of the main benefits from the OPFs is the large field
size and the limited memory consumption required by the
algorithms. As briefly mentioned the implementation presented
here uses a plain C++ implementation, and inspecting the
compiled assembly we could verify that the compiler did not
optimize all operations using SIMD instructions. It is therefore
likely that such an implementation could yield even faster
implementations. The main drawback of this approach is the
need for the prefix binary mapping scheme. Further work
should be invested in reducing the overhead added by this. We
expect OPFs to be particular useful on very small embedded
devices, with only KB’s of memory, since these devices cannot
use the lookup table based algorithms.

ACKNOWLEDGMENTS

This work was partially financed by the CONE project
(Grant No. 09-066549/FTP) granted by Danish Ministry of
Science, Technology and Innovation as well as by the collab-
oration with Renesas Mobile throughout the NOCE project.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, 2000.

[2] S. Lin and D. J. Costello,Error Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[3] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz, “Optimizing galois
field arithmetic for diverse processor architectures and applications,” in
MASCOTS, E. L. Miller and C. L. Williamson, Eds. IEEE Computer
Society, 2008, pp. 257–266.

[4] C. Fragouli and E. Soljanin, “Network Coding Fundamentals,” Founda-
tions and Trends in Networking, vol. Vol. 2, Issue 1, pp. 1–133, 2007.



[5] M. V. Pedersen, J. Heide, F. Fitzek, and T. Larsen, “Network coding for
mobile devices - systematic binary random rateless codes,” inWorkshop
on Cooperative Mobile Networks 2009 - ICC09. IEEE, Jun. 2009.

[6] J. Heide, M. V. Pedersen, F. H. Fitzek, and M. Médard, “On code
parameters and coding vector representation for practical rlnc,” in IEEE
International Conference on Communications (ICC) - Communication
Theory Symposium, Kyoto, Japan, 5-9 June 2011.

[7] P. Crowley. (2006, Nov.) Gf(232-5). [Online]. Available: http:
//www.lshift.net/blog/2006/11/29/gf232-5

[8] D. V. Bailey and C. Paar, “Optimal extension fields for fast
arithmetic in public-key algorithms,” inProceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology.
London, UK: Springer-Verlag, 1998, pp. 472–485. [Online].Available:
http://portal.acm.org/citation.cfm?id=646763.706317

[9] S. B. Mohan and B. S. Adiga, “Fast algorithms for implementing rsa
public key cryptosystem,”Electronics Letters, vol. 21, 1985.

[10] D. Hankerson, A. J. Menezes, and S. Vanstone,Guide to Elliptic Curve
Cryptography. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2003.

[11] T. Granlund. (2011, Mar.) Instruction latencies and throughput
for amd and intel x86 processors. [Online]. Available: http:
//gmplib.org/tege/x86-timing.pdf

[12] Steinwurf ApS. (2012) Kodo git repository on github.
Http://github.com/steinwurf/kodo.

[13] ——. (2012) Fifi git repository on github.
Http://github.com/steinwurf/fifi.

[14] R. E. Bryant and D. R. O’Hallaron,Computer Systems: A Programmer’s
Perspective, 2nd ed. USA: Addison-Wesley Publishing Company, 2010.



Paper 6

A Mobile Application Prototype using
Network Coding

Morten V. Pedersen, Janus Heide, Frank H.P. Fitzek and
Torben Larsen

European Transactions on Telecommunications, Vol. 21, No. 8, 12.2010, p.

738-749.

117



EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
Eur. Trans. Telecomms. 2010; 21:738–749
Published online 11 October 2010 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/ett.1448

A mobile application prototype using network coding†
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SUMMARY

This paper looks into implementation details of network coding for a mobile application running on com-
mercial mobile phones. We describe the necessary coding operations and algorithms that implements them.
The coding algorithms forms the basis for a implementation in C++ and Symbian C++. We report on prac-
tical measurement results of coding throughput and energy consumption for a single-source multiple-sinks
network, with and without recoding at the sinks. These results confirm that network coding is practical
even on computationally weak platforms, and that network coding potentially can be used to reduce energy
consumption. Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Network Coding (NC) has received a lot of attention since
the term was coined by Ahlswede et al. [1]. Several research
works have investigated [2, 3] and implemented [4, 5] NC
to prove the feasibility of this novel technique. NC can be
applied in many communication scenarios such as multicast
or meshed networking, where NC delivers promising results
for throughput and reliability. While most codes are end-
to-end, with NC packets can be recoded at each node in
the network, which can be of special interest in multi-hop
networks.

The concept of NC has been proven to work in the-
ory, some current questions are how to design NC algo-
rithms and whether these algorithms are too complex for
a given platform. In References [6, 7], it has been shown
that NC can be applied to sensor networks and meshed
networks formed by mobile phones. One finding was that
NC techniques must be designed with care if they are
to be applied to the mobile or embedded domain. These
platforms have limited resources such as energy, mem-
ory and computational power in addition to the general

* Correspondence to: Morten V. Pedersen, Department of Electronic Systems, Aalborg University, Denmark. E-mail: mvp@es.aau.dk
†A previous version of this paper was presented in the 15th European Wireless Conference (EW 2009), Aalborg, Denmark.

problems in mobile networking such as limited wireless
capacity.

This paper introduces a mobile demo application using
NC that is running on the Symbian/S60 platform used on
most Nokia smartphones and by other manufactures such
as Motorola, Samsung and Sony Ericsson. The main idea
is that users wish to share content over short range wireless
technologies such as WiFi. Instead of uploading the con-
tent to social networks such as MySpace or Facebook, the
content can be conveyed directly to nearby mobile phones,
which would allow a user to easily share photos with his/her
friends ad hoc.

The use of NC is motivated by the fact that the trans-
mission from one source to many sinks must be done in a
reliable and efficient manner. NC enables this as it allows
for efficient spectrum usage and a low complexity error
control system. NC can be applied at different protocol lay-
ers, ranging from the physical layer over the network layer
to the application layer. In this work we focus on the ap-
plication layer. Furthermore, the paper provides some im-
plementation guidance on how to keep the complexity of
NC low.
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The remainder of this work is organised in the follow-
ing sections. Section 2 introduces different transmission
approaches. Section 3 introduces NC operations and algo-
rithms. In Section 4 the functionality and interface of the
application prototype is introduced. Section 5 presents the
obtained results. Section 6 provides a discussion on impor-
tant considerations when implementing NC. The conclusion
is presented in Section 7.

2. TRANSMISSION APPROACHES

Different approaches for transmitting the data are possible,
here we present some possibilities. We assume that a single
source s broadcast data to N sinks t1 . . . tN and that the
source has a direct wireless link to the sinks, as shown in
Figure 1. The data can be divided into a number of packets,
g. Transmitting packets over the wireless link may lead to
packet loss due to the characteristics of the wireless channel
thus an error control system is needed.

2.1. Unicast

The simplest solution is for the source to send the data in
a round robin fashion using a reliable unicast protocol e.g.
Transmission Control Protocol (TCP). Such an approach is

Figure 1. The basic PictureViewer setup.

fully reliable as each sink is served individually. Each sink
acknowledges received packets and therefore the source de-
vice can determine when all sinks have received all packets.
This solution is simple and the computational complexity
is low. However, if N is high the amount of redundant in-
formation sent from the source becomes significant.

2.2. Broadcast

Instead of sending to each device individually the source
could broadcast the data to the sinks. This approach is highly
efficient as long as no errors occur on the wireless link.
However, when packet losses occur some form of error cor-
rection is needed. To achieve reliability the source needs to
know which packets have been lost by one or more sinks
and those must be retransmitted, this introduces the need
for feedback information which consumes spectrum and
time. The amount of feedback information depends on N

and the Packet Error Probability (PEP). The feedback mes-
sages can be fairly small and as such do not require a lot of
spectrum. However, they potentially introduces collisions
in the network as both the source and sinks will attempt to
transmit packets simultaneously. Thus the performance of
such a broadcast approach depends on the effectiveness of
the Medium Access Control (MAC).

Furthermore, the retransmissions by themselves is sub-
optimal as not all sinks will lose the same packets, thus each
retransmitted packet will only be useful for a subset of the
sinks. For example, if mobile devices 1, 2 and 3 have lost
packet 17, 21 and 16, respectively, three broadcast packets
must be transmitted, and each retransmitted packet is only
useful for a single sink. Generally broadcast can be faster
than unicast if N > 1 and its performance is less sensitive
towards the number of sinks.

2.3. Pure network coding

One NC approach that lends itself to this scenario, is Ran-
dom Linear Network Coding (RLNC) [2]. With this ap-
proach coding is used to simplify the problem of correcting
lost packets at the sinks and furthermore reduces the re-
quirement for feedback. In NC, nodes can combine the in-
formation in the network to create new packets [8]. Hence,
the source codes g + r packets from the g original packets
and broadcasts these packets. r is the number of redundant
packets and should be chosen according to the PEP of the
link. Each sink only has to receive any g linear independent
packets, which can then be decoded to recreate the original
packets.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
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Table I. Estimates of the achievable capacity, C, decoding de-
lay, D, computational complexity, O, and energy consumption, E,
when N >> 1.

C D O E

Unicast Low Low Low High
Broadcast Med. Low Low Med.
Pure NC High Med. High Med.
Systematic NC High Med. Med. Low

The advantage of NC can be illustrated by the previous
example. In this case the source could code packets 16,
17 and 21 together into a new packet of the same length
as the original packets. This packet is broadcasted to the
three sinks, which each remove from the coded packet the
packets they already got and thus decode the packet into
the packet they lost. Thus, the retransmission that needed
three transmissions using broadcast can be done by a single
transmission using NC.

As the coding and decoding operations introduces com-
plexity the computational requirement is increased. These
operations will increase the Central Processing Unit (CPU)
load and thus the energy consumption. However, the num-
ber of redundant packets transmitted from the source and
feedback messages sent from the sinks can be decreased
which help to decrease energy consumption.

2.4. Systematic network coding

To decrease the complexity systematic NC can be used [9].
Systematic NC combines the broadcast and NC approaches.
As there is no obvious gain in coding the first g packets, the
source broadcasts these packets and code the remaining r

packets. Each uncoded packet is useful for all N sinks as
they are linear independent. The following r packets are
coded and have a high probability of being independent of
the n uncoded packets. This approach decreases the com-
putational complexity at the source and the sinks as only r

packets has to be coded and decoded.
The different approaches are compared in Table I.

3. NETWORK CODING

This section introduces the coding operations necessary in
NC and the algorithms used in the demo application, for
details and analysis see Reference [10]. We base our solu-
tion on performing RLNC over a Galois field. When Ga-
lois fields are implemented on computer systems the Galois
elements are generally of the form 2i, where i ∈ Z∗, and

typically i ∈ {8, 16, 32}. We choose the smallest possible
Galois Field, GF(2), to decrease the computational com-
plexity of coding operations. This is done to overcome the
challenges posed by the limited computational resources
available on the test platform.

3.1. Coding operations

In NC data to be transferred from the source to the sinks is
divided into packets of length m. The number of original
packets over which encoding is performed is typically ref-
ereed to as the batch size or generation size and denoted g.
Thus, the g original data packets of length m are arranged
in the matrix M = [m1m2 . . . mg], where mi is a column
vector.

3.1.1. Encoding. To encode a packet x at the source,
M is multiplied with a randomly generated vector g of
length g, x = M × g. In this way we can construct X =
[x1x2 . . . xg+r] that consists of g + r coded data packets
and G = [g1g2 . . . gg+r] that contains g + r randomly gen-
erated encoding vectors, where r is the number of redundant
packets.

Note that if an encoding vector consists of all zeros except
a single scalar that is one, the coded packet is equal to an
original packets and we say that it is trivially encoded.

3.1.2. Recoding. Any relay or sink node that have received
g − i > 1 linear independent packets, can recode and thus
create new coded packets. All received coded packets are
placed in the matrix X̂ = [x̂1x̂2 . . . x̂g−i] and all encoding
vectors are placed in the matrix Ĝ = [ĝ1ĝ2 . . . ĝg−i], we
denote this the decoding matrix. The number of received
linear independent packets g − i is equal to the rank of Ĝ.
Ĝ and X̂ is multiplied with a randomly generated vector
h of length g − i, g̃ = Ĝ × h, x̃ = X̂ × h. In this way we
can construct G̃ = [g̃1g̃2 . . . g̃g−i] that contains g − i ran-
domly generated recoding vectors and X̃ = [x̃1x̃2 . . . x̃g−i]
that consists of g − i recoded data packets.

Note that h is only used locally and that there is no need
to distinguish between coded and recoded packets when
further recoding or decoding is performed.

3.1.3. Decoding. In order for a sink to successfully de-
code the original data packets, it must receive g linear inde-
pendent coded packets and encoding vectors. All received
coded packets are placed in the matrix X̂ = [x̂1x̂2 . . . x̂g]
and all encoding vectors are placed in the matrix Ĝ =
[ĝ1ĝ2 . . . ĝg]. The original data M can then be decoded

as M̂ = X̂ × Ĝ
−1

.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
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Note that the set of g linear independent packets can con-
tain any mix of uncoded, coded and recoded packets.

3.2. Coding algorithms

In this section we present pseudo code for the coding oper-
ations in RLNC based on GF(2).

3.2.1. Encoding. A packet in GF(2) can be encoded in two
simple steps. First the encoding vector, g, of length g, is gen-
erated as a random bit vector, where the indices in the vector
corresponds to packets in the original data set i.e. index one
corresponds to packet one. The second step is performed
by iterating over the encoding vector and adding packets
where the corresponding index in the encoding vector is 1.

The following listing shows the encoding algorithm in
pseudo code, where M is the data buffer containing all orig-
inal packets, g is an encoding vector and x is the resulting
encoded packet.

1: procedure ENCODEPACKET (M,x,g)
2: x = 0
3: for each bit b in g do
4: if b equal 1 then
5: i = position of b in g

6: x = XOR(x, M[i])
7: end if
8: end for
9: end procedure

3.2.2.. Recoding of the received g − i packets in M̂

is performed similar to encoding. However, instead of
combining all g original data packets, the received g − i

received packets are combined. First the recoding vector, h,
of length g − i, is generated as a random bit vector, where
the indices in the vector corresponds to received packets
i.e. index one corresponds to packet one. The second step is
performed by iterating over the recoding vector and adding
packets where the corresponding index in the encoding
vector is 1. Simultaneously the packets corresponding en-
coding vectors are added in order to create a new encoding
vector.

The following listing shows the recoding algorithm in
pseudo code, where M̂ is the data buffer containing all re-
ceived packets both partially and fully decoded, Ĝ is the
corresponding encoding vectors, h is the recoding vector,
x̃ is the resulting recoded packet, and g̃ is the resulting en-
coding vector.

1: procedure RecodePacket(M̂,Ĝ,h,x̃,g̃)
2: x̃ = 0, g̃ = 0
3: for each bit b in h do

4: if b equal 1 then
5: i = position of b in h

6: x̃ = XOR(x̃, M̂[i])
7: g̃ = XOR(g̃, M̂[i])
8: end if
9: end for

10: end procedure

3.2.3.. Decoding is performed on the run in two steps with
a slightly modified Gauss-Jordan algorithm. Thus the re-
ceived data at the sink is always decoded as much as possi-
ble and the load on the CPU is distributed evenly. In the first
step we reduce the incoming encoded packet by perform-
ing a forward substitution of already received packets. This
is done by inspecting the elements of the encoding vector
from start to end and thus determining which original pack-
ets the coded packet is a combination of. If an element is 1
and we have already identified a packet with this element
as a pivot element we subtract that packet from the coded
packet and continue the inspection. If an element is 1 and
we have not already identified a packet where this element
is a pivot element we have identified a pivot packet and con-
tinue to the second stage of the decoding. Note that if we
are able to subtract all information contained in the received
encoded packet, it will contain no information useful and is
discarded.

In the second step we perform backward substitution with
the newly identified pivot packet. This is done by subtract-
ing the pivot packet from previously received packets for
which the corresponding encoding vector indicates that the
particular packet is a combination of the pivot packet.

The following listing shows the decoding algorithm in
pseudo code, whereM̂ is the packet decode buffer of packets
received and decoded so far and Ĝ is the corresponding
encoding vector buffer, x̂ is a newly received encoded packet
and ĝ is the newly received encoding vector.

1: procedure DecodePacket(M̂,Ĝ,x̂,ĝ)
2: pivotposition = 0
3: pivotfound = false
4: for each bit b in ĝ do ( Forward substitution
5: if b equal 1 then
6: i = position of b in ĝ

7: if i’th packet is in M̂ then
8: ĝ = XOR(ĝ,Ĝ[i])
9: x̂ = XOR(x̂,M̂[i])

10: elseif pivotfound equal false
11: pivotfound = true
12: pivotposition = i

13: end if
14: end if

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
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15: end for
16: if pivotfound equal false then
17: exit procedure ( Discard packet
18: end if
19: for each packet j in M̂ do ( Backward substitution
20: k = Ĝ[j]
21: if bit at pivotposition in k equal 1 then
22: Ĝ[j] = XOR(Ĝ[j],ĝ)
23: M̂[j] = XOR(M̂[j],x̂)
24: end if
25: end for
26: Ĝ[pivotposition] = ĝ ( Insert packet
27: M̂[pivotposition] = x̂

28: end procedure
The algorithm can also be used unmodified in a system-

atic coding approach, in which case we only have to ensure
that uncoded packets are treated as pivot packets.

4. DEMO APPLICATION

A demo application, PictureViewer, has been developed to
illustrate what is happening when NC is applied. There-
fore, the PictureViewer application allows users to broad-
cast images located on their phones to a number of receiving
devices. To illustrate the difference between different NC
approaches the application allows users to monitor the de-
coding process directly. The decoding process is displayed
by drawing the actual content of the decoding matrix onto
the display of the receiving phones. As the application is
primarily meant for demonstration purposes it may not be
very useful in the real world. However, if the pictures where
substituted with some other data, e.g. video or audio it might
be useful for streaming in a local network or similar.

In Figure 2 the first column of screenshots shows the
decoding process when pure NC is used. Here only coded
packets are transmitted, and initially as shown in Figure 2(a)
the content of the decoding matrix appears random. As the
decoder receives more linear combinations, the decoding
process solves the decoding matrix, and the original picture
start to appear, see Figure 2(c). In Figure 2(e) the picture
has been decoded and the transmission is complete. The
second column of screenshots shows systematic NC, where
all data is first transmitted uncoded. Figure 2(b) shows how
uncoded packets are being inserted into the decoding ma-
trix. In Figure 2(d) the application has entered the coding
phase, where erasures which occurred during the uncoded
phase are repaired by transmitting encoded packets. In this
test the PEP was approximately 30% and therefore 70% of

the data was received uncoded without need for additional
decoding. This illustrates the advantage of the systematic
approach as the number of packets that had to be decoded
was reduced by 70%.

5. RESULTS

In this section we present the results of three measurements
evaluating the performance of the used algorithms. The first
tests focuses on the performance of the algorithms i.e. the
amount of MB/s which can be encoded and decoded us-
ing the presented algorithms and the additional energy con-
sumed. In the second test the code is used as an end-to-end
code in an ad hoc Wireless Local Area Network (WLAN) to
measure the impact of encoding and decoding. In the third
test recoding is added and the sinks form a small cooper-
ative cluster, hence the test provides information about the
impact of recoding and simple cooperation. These test are
intended to provide basic information about how the use NC
impacts throughput and energy consumption, in a small ad
hoc broadcast network comprising mobile devices with low
computational capabilities.

5.1. Coding throughput

To determine the synthetic performance of the encoding
and decoding algorithms we have implemented a coding
library designed to deliver high throughput by optimising
it through assembly and Single Instruction, Multiple Data
(SIMD) instructions. This implementation was then ported
to the Symbian platform and used in the PictureViewer ap-
plication which allowed testing the algorithms on commer-
cially available mobile phones. In the following tests the
Nokia N95-8GB mobile phone with the following specifi-
cations was used; ARM 11 332 MHz CPU, 128 MB RAM,
Symbian OS 9.2. In the throughput test a single phone was
used to perform both the encoding and decoding opera-
tions by first encoding packets, saving the encoded data
to memory, and subsequently decoding them. Packets were
coded using the generation sizes q = {16, 32, 64, 128, 256}
and a packet size of 1200 bytes. This test was performed
both for pure NC and systematic NC. For pure NC g coded
packets were generated and subsequently decoded. To get
an indication of the impact of using systematic NC a test
was also be conducted where the first 0.7·g of the packets
were uncoded and the last 0.3·g packets were coded. Thus,
the coding performance corresponds to what would be ex-
pected if the packets were transmitted over a channel with
PEP = 0.3.

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
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Figure 2. Pure NC: (a) partially decoded data, (c) image starting to appear as the decoders rank increases, (e) the final decoded image.
Systematic NC: (b) received uncoded data, (d) erasures corrected by coded packets, (f) the final decoded image.
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Figure 3. Synthetic throughput for encoding and decoding.

As seen in Figure 3 the encoding and decoding speed
decreases as the generation size increases. Additionally the
decoding throughput is somewhat lower than the encoding
throughput. This is expected due to the higher computa-
tional complexity of the decoding algorithm. The test also
shows that the systematic approach achieves approximately
twice the throughput compare to the pure NC approach for
a generation size of 16. For generation size of 64 and above
the throughput is approximately tripled. Encoding and de-
coding of trivially coded packets require no computation,
which results in a large speedup for the systematic approach.
We note that the coding performance in a real network will
depend on the ratio between uncoded and coded packets. In
the extreme case where all packets are received coded, the
two approaches perform identically and thus have the same
throughput. The measured coding throughput indicate that
the coding algorithms are fast enough to saturate the WLAN
interface for all tested generation sizes, when compared to
the achievable WLAN data rates of the Nokia N95 [11].
This result is important as the computational complexity
introduced by coding should have minimal impact on the
network and device performance, when compared to strate-
gies without NC. A test was also performed to estimate the
cost of coding in terms of energy. To measure the energy
used for the coding operations, the Nokia Energy Profiler
(NEP) was used during the tests. The results from the en-
ergy measurement are shown in Figure 4. To calculate the
approximate energy consumption per coded packet, the test
application first measured the idle power of the device using
NEP. This was subtracted from the measured values during
encoding and decoding, which gave the approximate power
consumption caused by the coding operations.
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Figure 4. Energy spent per packet during encoding and decoding.

As seen in Figure 4 the energy consumption per packet
increases as the generation size grows. The power consump-
tion was approximately constant during all tests, but as the
throughput decreased the energy per packet increased. The
energy used to decode a packet is slightly higher than for
encoding, this can be attributed to the higher complexity of
decoding and the following lower coding throughput.

5.2. Coding in a network

A simple approach to distribute the data from the source to
all sinks in Figure 1 is to use systematic coding at the source
and overshoot with a comfortable margin. Thus the source
transmit so many packets that with a very high probability
all sinks are able to decode, and as the source know nothing
about the PEP for the sinks, r needs to be high. This is not
very useful in a real network, but it allow us to observe
the impact that the code has on the channel throughput and
energy consumption, and thus choose parameters for the
code that are appropriate for our test devices.

We measured from the first packet was received until the
packet which completes the decoding of the generation was
received. This allows us to obtain the performance as if we
had a perfect feedback-channel and feedback scheme. The
sink records the following parameters; time per generation,
PEP, total packets, uncoded packets, coded packets and lin-
ear dependent packets.

The test was conducted using two Nokia N95s, one source
and one sink. Packets were coded using the generation sizes
q = {16, 32, 64, 128, 256} and a packet size of 1200 bytes.
Approximately 100.000 test runs were completed in to-
tal. All measurements were binned according to their PEP,
Table II shows the number of measurements in each bin. We

Copyright © 2010 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2010; 21:738–749
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Table II. The number of generations counted for different
values of PEP.

PEP [%]

0–10 10–20 20–30 30–40 40–50

g = 16 40707 10789 509 124 56
g = 32 18820 3407 794 662 676
g = 64 10907 3373 695 343 150
g = 128 9393 1372 287 183 158
g = 256 4263 890 215 142 138

Table III. Average number packets per generation for g = 16.

PEP [%]

g = 16 0–10 10–20 20–30 30–40 40–50

nsent 16.63 19.09 22.09 26.92 30.87
nrecieved 16.20 16.55 16.91 17.36 17.23
nuncoded 15.52 13.78 12.52 10.64 9.18
ncoded 0.48 2.22 3.48 5.36 6.82
ndependent 0.20 0.55 0.91 1.36 1.23

note that the uncertainty in the measurements are higher for
high PEP values as fewer results were observed in those
bins.

In the following Tables III–VII we have grouped the re-
sults according to the different generation sizes. For each
generation nsent denotes the average number of packets sent
from the source before completing the generation. nsent was
calculated using the first and last sequence number in the
generation. nreceived denotes the average number of packets
received to complete the generation i.e. including nuncoded,
ncoded and ndependent which denote, respectively, the coded
packets, uncoded packets and linear dependent packets re-
ceived.

Several trends in the tables are similar for all generation
sizes. As the measured PEP increases the ratio between
uncoded packets and coded packets change. This is to
be expected as the number of uncoded packets sent in

Table IV. Average number packets per generation for g = 32.

PEP [%]

g = 32 0–10 10–20 20–30 30–40 40–50

nsent 32.88 38.04 43.93 51.86 61.33
nrecieved 32.27 32.76 33.25 33.56 33.58
nuncoded 31.32 27.88 24.61 21.30 18.28
ncoded 0.68 4.12 7.39 10.70 13.72
ndependent 0.27 0.76 1.25 1.56 1.58

Table V. Average number packets per generation for g = 64.

PEP [%]

g = 64 0–10 10–20 20–30 30–40 40–50

nsent 66.17 75.82 86.53 99.94 118.59
nreceived 64.56 65.28 65.36 65.37 65.54
nuncoded 62.28 54.52 49.29 44.12 35.91
ncoded 1.72 9.48 14.71 19.88 28.09
ndependent 0.56 1.28 1.36 1.37 1.54

Table VI. Average number packets per generation for g = 128.

PEP [%]

g = 128 0–10 10–20 20–30 30–40 40–50

nsent 130.66 150.42 171.63 199.21 237.15
nrecieved 128.67 129.39 129.56 129.68 129.69
nuncoded 125.99 109.99 95.12 81.68 72.52
ncoded 2.01 18.01 32.89 46.32 55.48
ndependent 0.67 1.39 1.56 1.68 1.69

the initial phase is fixed, and as the PEP increases, more
and more erasures must be fixed in the second phase of
the systematic code. Additionally the amount of linear
dependent received packets increases. This makes sense
as each coded packet has a non-zero probability of being
linear dependent. Inspecting nreceived we see that the
generations are typically completed using between zero
and two additional packets depending on the PEP. This
is in agreement with the analytical results of the coding
performance presented in Reference [10].

In Figure 5, the development in throughput versus PEP
is shown. The throughput approximately drops affine with
the PEP, and it can be seen how the higher computational
complexity of the larger generations sizes affect the per-
formance as the PEP increases and more packets must be
coded. The average maximal throughput 0.395 MB/s mea-
sured lies approximately 33% below the maximal WLAN
throughput without coding presented in Reference [11] on

Table VII. Average number packets per generation for g = 256.

PEP [%]

g = 256 0–10 10–20 20–30 30–40 40–50

nsent 260.69 301.28 340.35 398.73 465.49
nreceived 256.79 257.59 257.50 257.47 257.61
nuncoded 252.34 219.57 186.49 153.87 120.94
ncoded 3.66 36.43 69.51 102.13 135.06
ndependent 0.79 1.59 1.50 1.47 1.61
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Figure 5. Throughput for different strategies with a single sink
as a function of the PEP.

the same type of device. This stresses that the coding op-
erations are not ‘free’ and further work should be done to
optimise their implementation.

Using the measured ratios given in Tables III–VII we are
able to calculate the energy consumption of the different
schemes. To compute this we use the energy consumed due
to the sending and receiving and the energy consumed due
the coding operations. We use the values given in Refer-
ence [7] for energy receiving and sending data over WLAN
and the energy measurement given in Section 5.1. Figure 6
shows the development in energy per byte spent as the PEP
increases. The lower generation sizes perform worse, in
terms of energy consumption, compared to the larger gen-
eration sizes, especially for higher PEPs. Thus in this case
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Figure 6. Energy for different strategies with a single sink as a
function of the PEP.

we see that the higher overhead in terms of linear dependent
packets for small generation sizes outweighs the higher en-
ergy consumption of the encoding/decoding of the larger
generation sizes.

Based on these results we see an interesting trade-off
between energy and speed. Where small generation sizes
deliver high throughput, but higher generation sizes deliver
a better energy per byte ratio. We also stress that the proto-
type did not use any form of feedback from the sink to the
source. If feedback was introduced e.g. on a per generation
basis the lower generation sizes may loose its advantage in
speed as it would need a higher amount of signalling.

5.3. Coding and cooperation in a network

To observe the effect of recoding we need to test a setup
where the sinks are cooperating by forwarding recoded
packets to each other. The simplest approach is to let each
sink recode and forward whenever it receives a packet from
the source, with some fixed probability pR. This probability
should be chosen in accordance with the PEP of the sinks
in the cluster, and will also depend on what parameters we
wish to optimise, here we have chosen 5% and 10%. This
simple protocol allows us to observe the effect of recod-
ing. Enabling recoding should offload the source, in terms
of both energy and computations, by moving some of the
coding to the cluster. The effect should be biggest when the
PEP is high, and especially visible in cases where the chan-
nel between the source and a sink is weak, but the channels
between cooperating sinks are strong. In this case a fixed
pR was used; however, for a real protocol implementation
it will be important to consider when a sink has enough
information to be a useful ‘recoder’.

In the test we measured from the first packet was re-
ceived until the packet which completes the decoding of
the generation was received. This allows us to obtain the
performance as if we had a perfect feedback-channel and
feedback scheme. The sink records the following parame-
ters; time per generation, PEP, total packets, uncoded pack-
ets, coded packets, linear dependent packets, relayed coded
packets, relayed linear dependent packets.

As in the previous setup the test was conducted using
three Nokia N95s, one source and two sinks. Packets were
coded using the generation size q = 64 and a packet size
of 1200 bytes. Approximately 9.000 test runs were com-
pleted in total for each pR. All measurements were binned
according to their PEP, Table VIII shows the number of
measurements in each bin. We note that the uncertainty in
the measurements are higher for high PEP values as fewer
results were observed in those bins.
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Table VIII. The number of generations counted for different val-
ues of PEP.

PEP [%]

0–10 10–20 20–30 30–40 40–50

g = 64 8091 891 176 53 63
pR = 5%
g = 64 8114 1355 266 140 109
pR = 10%

As in the previous tables rows starting with n denotes data
originating from the server, in addition the rows starting
with c i.e. ccoded and cdependent denotes, respectively, the
useful coded packets and linear dependent packets received
from the relay. As shown in the Tables IX and X we can
observe the same tendencies as in the non-cooperation case
for the source to sink communication. However, in the relay
communication we can observe, as expected, that the relay
becomes an increasingly better source of information as the
PEP increases. The main reason for this, is that the relay will
only be able to repair the uncorrelated losses, that is losses
which occurred only at the other sink. In addition since
RLNC is used the relay will randomly pick which packets
to recode, further minimising the probability of selecting
an useful packet. However, as the PEP increases so does
the probability that one relay has useful packets to offer the
second relay. This tendency can be seen for pR = 5% where
the ratio of useful packets changes from 19% to 73% and
for the pR = 10% case where the ratio changes from 21%
to 58%.

These results indicate that a successful relay protocol
should be able to adapt to the current channel conditions
in order to avoid sending unnecessary redundant data e.g.
when the PEP is low. We do however also see that any
packets coming from the relay will aid the source, in the way
that the source needs to transmit a relative lower overhead

Table IX. Average number packets per generation for g = 64. Us-
ing 5% pR.

PEP [%]

g = 64 0–10 10–20 20–30 30–40 40–50

nsent 67.12 73.44 80.30 87.75 93.46
nreceived 63.45 64.65 64.21 62.69 62.72
nuncoded 61.40 57.01 52.57 48.15 44.49
ncoded 2.04 5.92 9.98 13.64 16.92
ndependent 0.01 1.72 1.66 0.90 1.31
ccoded 0.56 1.07 1.45 2.21 2.59
cdependent 2.46 1.87 1.32 0.92 0.92

Table X. Average number packets per generation for g = 64. Using
10% pR.

PEP [%]

g = 64 0–10 10–20 20–30 30–40 40–50

nsent 67.48 73.37 80.36 87.31 93.11
nreceived 62.77 63.75 62.99 63.29 62.66
nuncoded 60.35 56.06 52.14 50.09 47.46
ncoded 2.41 6.17 9.19 11.24 13.47
ndependent 0.01 1.52 1.66 1.96 1.73
ccoded 1.24 1.77 2.67 2.67 3.07
cdependent 4.65 3.98 3.18 2.89 2.18

to overcome the channel PEP as part of the redundancy is
now coming from the relays.

6. DISCUSSION

When NC is used several parameters must be defined, these
parameters influences the performance in terms of cod-
ing throughput, network throughput, decoding delay, etc.
A good choice will depend on the type of application, the
target platform, the network characteristics, etc. In the fol-
lowing we will discuss these parameters and how they can
be selected.

6.1. Parameter considerations

The field size, q, defines the size of the field over which cod-
ing operations are performed and also the size of the data
symbols. From a network perspective a high q is preferable
as it gives a low probability that packets are linear depen-
dent. However, a high q can result in low coding throughputs
which can be problematic in many applications and can in-
fluence the energy consumption negatively. Here we have
considered only q = 2, as this is the only choice that have
currently been shown to be practical realisable on the target
platform [12, 7, 10, 13]. On other platforms this choice can
be less restricted [14, 15].

The generation size, g, defines the number of packet in
each generation and thus the number of packets coded to-
gether. A low g gives a high coding throughput but a higher
probability of linear dependent packets, a higher g gives a
lower probability of linear dependent packets but a lower
coding throughput [10]. Thus the choice of g is a trade-off
between network performance and coding throughput. Ad-
ditionally a higher g increases the decoding delay, which
is important for some applications, e.g. audio and video
streaming.
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The packet size, m, defines the number of symbols per
packet. A higher m increases the coding throughput [14,
7]. However, a high m can be impractical as it can result
in fragmentation at lower layers. If one coded packet is
fragmented into several frames, and one of these frames is
lost, the rest of the frames will be useless.

A good choice of these parameters depend on the ap-
plication data. For bulk data transfer the requirements to
decoding delay is loose, the file(s) will not be usable until
everything is decoded. However, if relatively large amounts
of data is to be transferred quickly, it is important that the
coding throughput is high, in order to reduce the usage of
computational resources. For audio and video streaming a
very important requirement is a low decoding delay, but the
requirement can be loosened by increasing the playback
buffer size. This is not possible for VOIP and video confer-
encing as it would introduce lag in the communication.

6.2. Protocol considerations

The challenge of ensuring reliable multicast transmission
in arbitrary networks is an open problem with no solution
within sight. To create a usable application this problem
needs to be addressed at least for the scenario where the
application is deployed.

The solution in the prototype is simply to overshoot, thus
sending additional packets for each generation in order to
compensate for packet losses. Such an approach is for ex-
ample used in Multimedia Broadcast and Multicast Services
(MBMS) system where the overshooting is tuned based on
infrequent feedback from nodes in the network, such that
a predefined fraction of the sinks can decode. Because the
overshooting is fixed at some level the sinks that experience
a packet loss below this level will be able to decode the data,
while the remaining sinks will not. This approach is sim-
ple and works well if the sinks have relatively uniform and
static channel conditions. If the feedback channel is weak
or non-existing this may be the only available solution.

Another approach is to let the sinks request more data
if they need it. The source sends data from a generation,
alternatively it also send some overhead, and then proceeds
to the next generation. If any of the sinks were not able
to decode the generation they signal that they needs addi-
tional information which the source sends. This approach
adapts better to changing channel conditions and as such
can utilise the channel better, however, the feedback from
the sinks introduces the exposure problem [16] and the cry-
ing baby problem [17]. Thus this approach works best if the
sinks have relatively uniform channel conditions, and if the
number of sinks is moderate.

As the links to sinks are independent they will hold differ-
ent information when the source has transmitted data. Thus
an interesting approach is to let the sinks cooperate and
thus exploit the connection diversity. Instead of a sink re-
questing additionally data specifically from the source, any
node that received the request could respond, thus more than
one node could potentially attempt to answer the request,
which would introduce the implosion problem [16]. One of
the main drawbacks of this approach is the high complexity
it introduces, one technique to remedy this could be the NC.
Additionally if done correctly it could potentially allow for
transmission in partially connected networks.

Thus in addition to the overall system operation there is
several problems reliable transmission in a broadcast net-
work that must be addressed, namely the implosion, ex-
posure, and crying baby problem. Furthermore, a range of
protocol functionality is necessary or beneficial, such as
service discovery, cluster forming, multi-hop routing, con-
nection loss and reconnection, TCP friendliness, and secu-
rity, especially when partial connected mesh networks and
cooperation is considered.

7. CONCLUSION

In this paper we have introduced a demo application for
mobile phones, PictureViewer, that via network coding en-
ables a user to share content with several other users. The
application itself is simple but it demonstrates that network
coding does not necessarily result in high complexity or
overwhelming energy consumption. The implemented al-
gorithms are designed to allow for high coding throughput,
therefore a binary Galois Field and a systematic random
code was used.

The achieved encoding, recoding and decoding through-
put are relatively high when compared with the throughput
of the WLAN. As the generation increases the computa-
tional complexity increases, as a result the coding through-
put decreases and the energy consumption increases. Not
surprisingly the systematic approach is considerably faster,
especially when the PEP is low.

When the source is encoding and the sinks are decod-
ing the rate at which the source transmits is significantly
reduced when the generation size is increased. The energy
consumption depends mostly on the PEP, but is also influ-
enced by the generation size. In the test setup a generation
size of 64 appears to achieve a good trade-off between cod-
ing throughput and linear dependence, if we observe the en-
ergy consumption. On platforms with higher computational
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capabilities and/or lower network throughput it is likely that
a higher generation size would be a good choice.

The use of recoding was beneficial when the observed
PEP was increased. For low values of PEP a large ratio of
sent packets where linear dependent. However, as the PEP
increased this ratio changed. This indicates that protocols
using recoding in this type of networks, should be aware of
the channel conditions using recoding only when detecting
a certain level of PEP. The use of recoding at the relays was
however in all cases beneficial for offloading the source
when compared to the non-recoding case.
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