
 

  

 

Aalborg Universitet

CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich Clay
Particles - An Effort towards Green Concrete

Gebremariam, Abraham Teklay

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Gebremariam, A. T. (2015). CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich
Clay Particles - An Effort towards Green Concrete. Department of Energy Technology, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2024

https://vbn.aau.dk/en/publications/8f545c21-990d-41b5-b42d-edeb63863885


CFD MODELING AND EXPERIMENTAL TESTING OF THERMAL

CALCINATION OF KAOLINITE RICH CLAY PARTICLES: AN EFFORT

TOWARDS GREEN CONCRETE

Abraham Teklay Gebremariam

Dissertation submitted to the faculty of Engineering and Science

at Aalborg University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

Aalborg University

Department of Energy Technology

Aalborg, Denmark

November 2015



ii

CFD modeling and experimental testing of thermal calcination of kaolinite rich clay

particles–An effort towards green concrete

Copyright c©Abraham Teklay, 2015

Printed in Denmark by Uniprint

ISBN: 978-87-92846-51-8

AALBORG UNIVERSITY

Department of Energy Technology

Pontoppidanstræde 101

Aalborg East, DK-9220

Denmark



“If we knew what we were doing, it wouldn’t be called research”

Albert Einstein.



Abstract

Cement industry is one of the major industrial emitters of greenhouse gases, generating

5-7% of the total anthropogenic CO2 emissions. Consequently, use of supplementary

cementitious materials (SCM) to replace part of the CO2-intensive cement clinker is

an attractive way to mitigate CO2 emission from cement industry. SCMs based on

industrial byproducts like fly ashes and slags are subject to availability problems. Yet

clays are the most ubiquitous material on earth’s crust. Thus, properly calcined clays

are a very promising candidates as SCMs to produce green cements. Calcination at

inappropriately high temperatures or long retention time will not only waste energy but

also decrease the reactivity of the calcines due to possible recrystallization of the reactive

phase into a stable crystalline phase. Therefore, it is very crucial to achieve an in-depth

understanding of the calcination processes in a calciner and develop a useful tool that

can aid in the design of a smart clay calcination technology, which makes the major

objective of this study.

In this thesis, a numerical approach is mainly used to investigate the flash calcina-

tion of clay particles. A transient one-dimensional particle model which fully addresses

not only the particle-ambient flow interaction but also the intra-particle processes has

been successfully developed in a C++ program to examine calcination of clay parti-

cles suspended in a hot gas. The calcination process is also numerically studied using

gPROMS (a general PROcess Modeling System) software. The model results from both

C++ and gPROMS software show good similarity. Various experiments have been per-

formed to derive key kinetic data, to collect data from a gas suspension calciner (GSC),

and to characterize the calcines obtained under different calcination conditions, which

are either provided to the numerical model as inputs or as database for model validation.

The model is able to reliably predict the temperature and residence time at which a

given clay material attains optimum composition of the required material, metakaolinite.

For kaolinite rich clay particles with mean particle size of 13.74 µm in diameter, moderate

calcination temperatures (1173–1200 K) tend to display optimum amount of metakaol–



inite in a fraction of seconds with less risk of further phase transformation. High cal-

cination temperatures (>1300 K), however, deplete the amount of metakaolinite and

promote further recrystallization of metakaolinite into undesired mullite phase that in-

fluences pozzolanic property of calcines negatively. Different indicators have been used

to spot the optimum pozzolanic property of the calcined clay material, among which is

the density of calcines. By using the variation in density of calcines, an optimum resi-

dence time has been marked. At this time the calcines display a minimum density that

corresponds to the most dehydroxylated calcines. The behavior of flash calcined kaoli-

nite rich clays has also been examined experimentally. The composition and property

of calcines observed experimentally supports model prediction. The agreement between

model and experimental results confirms the validity of the model.

The optimum calcination parameters predicted in this study are crucial not only

to maximize the yield of the desired product but also minimize the energy consumption

during operation. Thus, the experimentally validated calcination model and simulation

results can aid in an improved understanding of clay calcination process and also new

conceptual design and optimization of clay calciners.



Dansk resume

Cementindustrien er en af de største udledere af drivhusgasser og producerer 5-7% af den

totale menneskeskabte CO2 emission. Som følge deraf er brug af alternative cementagtige

materialer (Supplementary Cementitious Materials - SCM) en attraktiv m̊ade at erstatte

en del af de CO2–intensive cement klinker og derved dæmpe udledningen af CO2 fra

cement industrien. SCMs baseret p̊a industrielle biprodukter, s̊asom flyveaske og slagge,

er vanskelige, da tilgængeligheden af produkterne er meget begrænsede. Derimod er ler

det dominerende materiale i jordens skorpe, og derfor er korrekt kalcineret ler en meget

lovende kandidat til SCM for producktion af grøn cement. Lerkalcinering bør finde

sted indenfor et snævert temperatur- og tids-vindue: kalcinering ved uhensigtsmæssige

høje temperature eller ved for lang retentionstid vil ikke bare være spild af energi, men

ogs̊a reducere produktets reaktionsevne, idet sandsynligheden for krystallisering af den

reaktive fase over i en stabil krystallisk fase herved stiger. Det er derfor ekstremt vigtigt

at opn̊a en dybdeg̊aende forst̊aelse for kalcineringsprocessen for ler i en kalcinator, samt

at implementere denne i et brugbart værktøj, som kan medvirke i design processen af

“smart” ler kalcineringsteknologi, hvilket er hovedform̊alet med dette studie.

I afhandlingen er en numerisk tilgang hovedsageligt blevet brugt til at undersøge

flash kalcinering af ler partikler. En transient endimensional partikelmodel, som udførligt

kan h̊andtere s̊avel det partikel-nære flow som de intra-partikulære processer, er blevet

udviklet i et C++ program med det form̊al at undersøge kalcinering af lerpartikler

opslemmet i en varm gas. Kalcineringsprocessen er endvidere blevet undersøgt numerisk

ved brug af softwaren gPROMS (a general PROcess Modeling System) software. De

modellerede resultater fra b̊ade C++ og gPROMS viste fremragende overensstemmelse.

Et antal eksperimenter er blevet udført med henblik p̊a at udlede de væsenligste kinetiske

data fra en suspensionskalciner (GSC) og til at karakerisere det kalcinerede ler opn̊aet

under forskellige kalcineringsprocesser. De kinetiske data er derefter enten givet til den

numeriske model som input eller som en database for model validaering.



Modellen er i stand til p̊alideligt at kunne forudse temperatur og opholdstid, hvorved

et givet lermateriale opn̊ar den optimale sammensætning af det ønskede materiale,

metakoalinit. For lerpartikler rige p̊a kaolonit, med en gennemsnitlig størrelse p̊a 13.74 µm

i diameter, opn̊aedes maksimal kaolinit-indhold nærmest øjeblikkeligt ved moderate

kalcineringstemperaturer p̊a 1173-1200 K. Samtidig var dette en stabil tilstand, med

minimal risiko for videre fasetransformation. Høje kalcinerings temperature (>1300 K)

derimod gav meget lave kaolinit-niveauer og gav desuden anledning til øget krystalliser-

ing af metakaolinit hen imod den uønskede mullit fase, som p̊avirker det kalcinerede lers

pozzolaniske egenskaber i en negativ retning. Forskellige indikatorer er blevet benyttet

til at finde den optimale pozzolaniske egenskab af det kalcinerede ler materiale, blandt

hvilke er densiteten af den kalcinerede ler. Ved at benytte en variation i densiteten af

det kalcinerede ler, har det været muligt at fastsl̊a en optimal opholdstid. Til dette

tidspunkt viser det kalcinerede ler en minimumsdensitet , hvilket svarer til det mest

hydroxylerede kalcinerede ler. Det flash kalcinerede og kaolinit-rige ler er ogs̊a blevet

undersøgt eksperimentelt. Sammensætningen og egenskaber af det kalcinerede ler fra

eksperimenterne understøtter de forudsagte resultater fra modellen. Overensstemmelsen

imellem modellen og de eksperimentelle resultater bekræfter validiteten af modellen.

De optimale kalcineringsparametre fundet i dette studie er signifikante ikke bare

for at kunne maksimere afkastet af en det ønskede produkt, men ogs̊a i forhold til at

minimere energiforbruget under drift. S̊aledes er det vist, at resultaterne fra den eksper-

imentelt validerede kalcineringsmodel og simuleringer kan medvirke til en forbedret

forst̊aelse af ler kalcinering samt i et nyt conceptuel design og optimering af ler kalcina-

torer.
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Chapter 1

Introduction

This chapter gives an overview of the significance of the study and defines the objectives

and scope of the thesis. It also presents the methodology and approach used to arrive at

the final conclusions, followed by contribution of the study.

1.1 Overview

Fueled by the current environmental concern and the ever increasing demand for cement,

the present emission trends in cement industry need to be halted. The use of supple-

mentary cementitious materials to offset a portion of cement powder in concrete has got

paramount significance in lowering the environmental cost associated with the emission

of greenhouse gases from cement production. With this respect, the current study finds

a method of optimizing the pozzolanic reactivity of kaolinite rich clay particles that can

be used as SCMs. Kaolinite being one of the most abundant clay mineral, its excellent

pozzolanic properties has drawn renewed attention in cement and concrete industry.

Calcination of kaolinite is among the popular methods to produce the metastable phase

called metakaolinite, which has a particular mineralogical properties that can be utilized

as a mineral admixture in cement and concrete production.

Well-calcined clay products especially metakaolines have shown pozzolanic activity equal

to or higher than the well-known artificial pozzolans such as; fly ash, silica fume and

blast furnace slag. The fact that most clay minerals are compositionally suitable to be

used as pozzolanic materials is the starting point of the investigation.

1
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1.2 Objectives and scope of thesis

One of the key visions of this project is to elaborate an innovative processes and know-

how needed to convert the locally available clays into high-quality SCM products. The

pozzolanic reactivity of such clays largely depends on the pyroprocessing or calcination

conditions (e.g., temperature, residence time of clay particles in the calciner), as well

as clay properties (e.g., type of clay, particle size distribution, morphology). With

this respect, the key objective of this study is to find out how to obtain clay particles

with the desired pozzolanic properties by smart calcination or pyroprocessing; so that

these reactive clay products could be used as a partial clinker substitute to mitigate

the emission of CO2 from cement industries. While Modeling is the main workhorse of

the study, supplemental laboratory tests and experiments are key inputs to validate the

model.

The main scope of this PhD study is therefore:

• Develop a calcination model for single clay particle, which is able to simulate the

heat transfer process and simultaneous changes in composition during thermal

calcination

• Predict the spatial and temporal evolution of temperature and composition inside

a clay particle of different size calcined under different conditions

• Validate the model experimentally by performing experiments in a pilot scale gas

suspension calciner

• Propose optimum calcination conditions (temperature and residence time) that

can be used to turn the clay material into useful SCM product

1.3 Methodology

This thesis focuses on the development of a numerical model to study the calcination

process of kaolinite rich clays, and experimental examination of the clay material using

TGA and pilot scale gas suspension calciner. The general approach is described briefly

as follows:

Numerical model

One-dimensional transient particle model has been developed using C++ and gPROMS

softwares. The major intention of using gPROMS software is to develop the calcination
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model which later could be used to simulate results in a tubular reactor or combine

the gPROMS calcination model with CFD to run simulation of gas suspension calciner.

However, the use of gPROMS is suspended due to adjustments made by the project

consortium. The results generated by gPROMS are used as a verification effort for the

C++ results.

Generally, the model addresses the conversion of a kaolinite particle when inserted into

a hot gas atmosphere. The process can be understood by considering a porous kaolinite

clay particle, when suspended in the hot gas, heat is transferred to the particle surface

by convection and radiation. As heat penetrates into the surface, different reactions and

phase transformations commence causing the release of water vapor through the porous

surface. In order to address this phenomena numerically, the particle has been discretized

into a number of spherical cells, on each of which mass, momentum, energy and species

conservation equations are numerically solved by using the finite volume method. The

model reliably predicts the conversion and simultaneous changes in composition.

Experimental study

A number of experiments are carried out either to provide an input data to the model

or experimental evidences for model validation. These experiments cover a wide scope

of tests ranging from TGA to comprehensive flash calcination tests in a gas suspension

calciner, including various characterization methods of the feed and the calcines.

TGA experiments are performed to collect kinetic parameters (E and A) which are vital

inputs to the model. TGA tests are also used as part of model validation, where the

conversion of the clay particle is compared with model prediction.

Calcination experiments are performed in a pilot scale gas suspension calciner, where

flash calcines have been produced at different calcination conditions inside the GSC.

The composition and property of the calcines has been further analyzed.

Characterization of the feed and calcines have been carried out using several methods.

The composition and degree of dehydroxylation for the feed and calcines are investigated

using X-ray diffraction (XRD) and LECO thermal analyzer, respectively. The amount of

phases such as kaolinite, metakaolinite and mullite are compared with model predicted

ones. Other relevant properties such as the PSD, the density and specific surface area

of the feed and calcines are examined using laser diffraction, Gas Pycnometer and BET

method, respectively. Experimental outputs such as the degree of dehydroxylation and

the specific density are used to validate the model results.



Chapter 1. Introduction 4

1.4 Contribution of thesis

The contribution of this thesis is largely to elaborate an innovative process and know-

how needed to convert the locally available materials, such as clays, into high-quality

SCM products. The reactivity of clays largely depends on calcination conditions (e.g.,

temperature, residence time of clay particles in the calciner), as well as clay properties

(e.g., type of clay, particle size distribution, morphology). The fundamental knowledge

on these effects is understood by modeling the clay particle and simulating at different

calcination conditions. With this regard, the major contributions of this thesis are:

• A comprehensive calcination model for kaolinite particle has been developed. The

model considers several reactions such as dehydration, dehydroxylation and various

phase transformations that may occur when the clay particle is heated.

• Optimum calcination path for the conversion of kaolinite to metakaolinite is pre-

dicted. Consequently, the time-temperature-transformation curve is derived.

• The composition of calcines has been experimentally characterized after the clay

material has been being exposed to different calcination conditions in the GSC.

The amount of different phases has been quantified with the aid of experimental

techniques. Experimental results show reasonable agreement with model predic-

tion.

• A comprehensive model-based sensitivity analysis of the impacts of the most im-

portant calcination conditions (such as, temperature and time); and clay particle

properties (such as, particle size and kinetic parameters) has been carried out.

Their impact on the property of the final product has been explained.

1.5 Thesis outline

This thesis is prepared as a collection of scientific papers produced during the entire

PhD period. It is composed of 6 chapters which are described as follows;

Chapter 1 gives a general overview on the study and defines the scope and objectives

of the thesis. It also lists the contribution of the thesis.

Chapter 2 presents a solid background on the production of cement and the significance

of SCMs in alleviating CO2 from cement industries. It also presents literature review

on the calcination of clays, specifically on kaolinite rich clays. Finally, it reviews the

available literature on modeling and experimental study on calcination of kaolinite rich

clay particles.
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Following the background and literature review, the details of a single particle calcination

model are extensively discussed in Chapter 3. The mathematical approach and major

assumptions are described at the beginning, then the governing equations and methods

of discretization are explained.

Chapter 4 describes the experimental section where several tests are performed in order

to determine the kinetic parameters of clay calcination, which are the main inputs of

the model. Calcination tests in a pilot scale gas suspension calciner are presented along

with characterization method of the calcines.

Chapter 5 is a summary of result and discussions. In this chapter, the major results

of this project are discussed in relation to the objectives of the study and the existing

literature. A brief discussion on model validation is made. Model predicted results are

also discussed and the impacts of key factors in clay calcination (e.g., particle size, gas

temperature and reaction kinetics) are also examined through a model-based sensitivity

analysis.

Finally, the main conclusion and recommendations for future work are provided in

Chapter 6.





Chapter 2

Background and literature review

This chapter presents the background on the production of cement and its impact on

the environment. It also highlights the advantage of using of SCMs in reducing CO2

footprint from cement industry. Finally, the efforts reported in literature to understand

the calcination of kaolinite rich clays either by using models or through experimental

study are reviewed.

2.1 Production of cement

Production of cement generally involves the following broad stages: quarrying and pro-

cessing of raw materials; pyroprocessing to produce clinker; blending and grinding of

clinker to cement and finally storage and packing.

Generally the raw materials are a mixture of minerals containing calcareous, siliceous,

argillaceous, and ferriferous materials that mainly include limestone, marl and shale

or clay, which are extracted from quarries. These materials are primarily crushed and

milled before they are transported to the cement plant for storage and further condi-

tioning. The raw materials, in controlled proportions, are ground and mixed together to

form a homogeneous blend in fineness and composition. Figure 2.1 provides a typical

production flowchart of Portland cement.

The minerals are transferred into the kiln system where the raw mix is fused at high

temperatures to alter into new minerals with hydraulic properties. Prior to introducing

the raw mix into the rotary kiln, it is pre-heated and calcined at the pre-calciners where

the majority of heat source comes from the waste heat of rotary kiln.

7
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Figure 2.1: The production process of Portland cement showing the major pollution
sites of carbon dioxide and particulate matter(PM).

The heart of the Portland cement manufacturing process is the pyroprocessing stage

where the chemistry of the cement manufacturing process begins. This process trans-

forms the raw mix into clinker through the process called calcination. At this stage of

the process, calcium carbonates is decomposed to yield calcium oxide (CaO) and CO2.

This is followed by the clinkering process at the rotary kiln where the raw material mix

enters the kiln at the elevated end in a counter current manner to the flow of fuels. As

the feed materials are continuously and slowly moved down the kiln, the raw materi-

als are changed to cementitious or hydraulic mineral called clinker, which is a product

of high temperature reactions (typically 1673 − 1773K) between calcium oxide, silica,

alumina, and ferrous oxides. The hot clinker then falls onto a grate cooler where it is

cooled rapidly by air.

The final step in the manufacturing of Portland cement is blending and grinding opera-

tions that transform clinker to finished Portland cement. Up to 5% gypsum or natural

anhydrite is added to the clinker during grinding to control the cement setting time. At

this stage, addition of other minerals (blast furnace slag, metakaolinite, fly ash or silica

fume) could be accomplished to reduce the CO2 footprint from the industry.
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2.1.1 Impact of cement production on the environment

Most emissions that come out of cement industry are from the kiln system. The main

constituents of the exit gas are oxides of nitrogen, oxides of sulfur and oxides of carbon

generated due to process related chemical reactions and combustion of fuels. The emis-

sion of these gases is environmentally damaging. CO2 being the major constituent of

the exit gas, it is produced by two mechanisms:

1. Calcination of limestone or other calcareous materials at high temperature.

CaCO3
1kg

→ CaO
0.56kg

+ CO2
0.44kg

2. Combustion of fuel during pyroprocessing that releases substantial quantities of CO2.

As a result, cement industry is associated with the emission of large amounts of CO2

from both calcination and combustion processes. Every kilogram of Portland cement

generates 0.73–0.99 kilogram of CO2 which comprises approximately 5-7% of total an-

thropogenic CO2 emissions [Mehta, 2002]. When all greenhouse gas emissions gener-

ated by human activities are considered, the cement industry is responsible for approxi-

mately 3% of global emissions [Humphreys and Mahasenan, 2002; Mehta, 2002]. Figure

2.2 describes the global greenhouse gas emissions and contribution of cement industry

[Humphreys and Mahasenan, 2002; Rehan and Nehdi, 2005].

Fossil fuel
23.9 Gt (54%)

Other GHGs
14.8 Gt (34%)

Deforestation
3.94 Gt (9%)

Calcination
~50%

Fuel
~40%

Transport and 
electricity ~10%

Cement, 
1.4Gt (3%)

Global Greenhouse Gas (GHG) emission interms of CO2 equivalents [1Gt≈109 tonnes]

Figure 2.2: The global greenhouse gases emission in the year 2000 and contribution
of cement industry [Rehan and Nehdi, 2005].
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Like many other industrial activities, the cement industry needs to strictly comply with

national and international emission abatement regulations. Moreover, with the drastic

increase in Portland cement production foreseen in the future, the current cement indus-

try is facing challenges of producing more sustainable and less energy intensive products

without sacrificing the mechanical performance or durability of the end product. As a

result, different strategies have been forwarded to alleviate CO2 emission from cement

industry [IEA, 2009], among them are, the use of alternative fuels, use of carbon capture

and storage strategies and use of SCMs.

In this study the use of SCMs is of main interest, and hence, the use of natural or

artificial pozzolans such as calcined clays are considered as a useful admixtures of Port-

land cement. The potential future of clay materials as SCM is not only because of its

availability, but also due to its environmental advantage.

The use of metakaolinite as SCMs has been extensively studied in the literature [Arikan

et al., 2009; Cassagnabère et al., 2010; He et al., 1994; Khatib et al., 2012; Said-Mansour

et al., 2011; Salvador, 1995; Shvarzman et al., 2003; Tironi et al., 2012] and found that

partial substitution of metakaolinite (up to ∼ 20% of clinker) plays a significant role

in the production of green concretes without compromising the mechanical property

and durability of the blended concrete. However, proper thermal activation of kaolinite

clay is critical, because the above mentioned benefits are directly related to the amount

metakaolinite in the calcined product.

2.2 Supplementary Cementitious Materials (SCMs)

The use of pozzolana along with Portland cement was originally practiced to reduce the

cost of Portland cement. However, the mixture of pozzolana and Portland cement has

got other interesting benefits such as inhibiting or suppressing the alkali-silica reactions

that improve the durability of cement. In this regard, the construction of Friant dam in

California in 1940 was a typical example proving the benefits of blending cement with

natural pozzolan (Pumicite) to reduce the deterioration of concrete due to expansion

[Hewlett, 1998].

The use of metakaolin blended concrete has also been practiced since 1960’s to mitigate

alkali-silica reactions and improve durability of concrete; with this regard, the construc-

tion of Jupia Dam in Brazil in 1962 using metakaolinite as a partial substitute of cement

was a great success [Li et al., 2010].

The knowledge and the practice of substituting part of cement with SCMs has long been

exercised for several decades, and still it is under investigation. One can easily perceive
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the complexity of the subject as it still attracts the attention of many researchers and

business firms.

SCMs are a group of materials that show either hydraulic or pozzolanic behavior, in

such a way that it can set and harden in the presence of water by forming cementitious

products in a hydration reaction [Massazza, 1993]. This group of materials embraces a

large number of materials which vary widely in terms of origin, mineralogical composi-

tion, and typical particle characteristics. Typical examples of such materials are fly ash,

silica fume, blast furnace slag, metakaolin, rice husk ash and natural pozzolans.

SCMs could be categorized in two broad distinctions: materials of natural origin (nat-

ural SCMs) and materials of man-made or artificial origin (artificial SCMs). Natural

SCMs consist materials that can be used in their naturally occurring form after being

conditioned by sieving and grinding processes. Typical examples are volcanic ash or

pumicite, shales, tuffs, and some diatomaceous earth.

Artificial SCMs includes materials which have undergone structural modifications as

a consequence of manufacturing or production processes. They can be produced de-

liberately by thermal method, for instance by thermal activation of kaolinite to obtain

metakaolin, or can be obtained as waste or by-products from high temperature processes

such as blast furnace slags, fly ashes or silica fume.

SCMs such as fly ash, slag and calcined clays are the most promising materials as cement

admixture. Among all SCMs, those based on calcined clay are the future materials as

cement admixture; primarily because of their availability and additionally they modify

the performance and durability of a concrete [Cassagnabère et al., 2010; Sabir et al.,

2001].

Today, artificial SCMs such as metakaolinite are enjoying a renaissance as SCMs in ce-

ment industry and may replace part of the clinker not only to mitigate CO2 footprints

from cement production but also to enhance the performance of the concrete by decreas-

ing the deleterious alkali-silica reactions [Cassagnabère et al., 2010; Lothenbach et al.,

2011; Sabir et al., 2001].

2.2.1 The need for SCMs

There has been a continuous search for material admixtures that can improve the work-

ability, strength and durability of a concrete. Recently, due to the strict air pollution

controls and regulations imposed on cement industry, an alternative material search has

primarily focused on materials that can be utilized to reduce CO2 footprint from cement

industry.
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In addition to the environmental benefits, some of the broad benefits of incorporating

SCMs as partial cement replacement are; increased compressive strength, reduced segre-

gation, reduced permeability, mitigation of alkali-silica reactions and enhanced workabil-

ity. It has also been shown that using multiple SCMs as a cement admixture appear to

have synergistic effect in the concrete [Shehata and Thomas, 2002; Thomas et al., 1999].

This is because of the chemical and physical differences of each SCM additive stimu-

late different reactions in the concrete, granting a unique property of high-performance

concretes. Table 2.1 presents the general effect of SCMs on the property of hardened

concrete [Dam, 2013].

Table 2.1: Effects of SCMs on the properties of hardened concrete

Property Fly ash(Type C) Slag Silica fume Metakaoline

Early strength ↔ ↓ ↑↑ ↑↑
Long term strength ↑ ↑ ↑↑ ↑↑
Permeability ↓ ↓ ↓↓ ↓↓
Chloride ingress ↓ ↓ ↓↓ ↓↓
ASR l ↓↓ ↓ ↓
Sulfate resistance l ↑↑ ↑ ↑
Freezing and thawing ↔ ↔ ↔ ↔
Abrasion resistance ↔ ↔ ↔ ↔
Drying shrinkage ↔ ↔ ↔ ↔
• KEY

↓ Reduced

↓↓ Significantly reduced

↑ Increased

↑↑ Significantly increased

↔ No significant change

l Effect varies

One major concern regarding the use of SCMs may be the initial cost associated with

production the SCM-cement blend. Specially using metakaolinite as SCM may surge the

overall cost of the concrete, as calcination of this material incurs additional cost on the

blended cement. Usually the initial cost of a concrete containing metakaolinite additive

is expected to increase. The real economic savings are obtained over the lifecycle, as the

enhancements in ultimate strength, and durability often result an improved long-term

performance.

2.2.2 Pozzolanic reactivity

A Pozzolan is generally defined in ACI 116R as “..a siliceous or siliceous and aluminous

material which, in itself, possesses little or no cementitious value but which will, in finely

divided form and in the presence of moisture, react chemically with calcium hydroxide

(lime) at ordinary temperature to form compounds possessing cementitious properties”
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[Tikalsky et al., 2001]. Hence, the term pozzolana includes all those inorganic materials,

either natural or artificial, which harden in water when mixed with calcium hydroxide.

Generally, it embraces a large number of very different materials in terms of origin,

composition and structure.

Pozzolanic reactivity, therefore, covers all reactions occurring among the active con-

stituents of pozzolanas, lime and water. Pozzolanic reactivity of SCMs is characterized

by the reaction between siliceous or aluminosiliceous material in the SCM with calcium

hydroxide (a reaction product from the hydration of Portland cement), forming calcium

silicate hydrate and other cementitious compounds that have a positive impact on the

long-term properties of the hardened concrete.

2.3 Kaolinite

Kaolin is a fine, white, clay mineral that has traditionally been used in the manufactur-

ing of porcelain. Kaolinite is the mineralogical term that is applicable to kaolin clays

composed of hydrated aluminum silicates. Its structural formula is Al2Si2O5(OH)4 with

theoretical composition of 46.54% SiO2, 39.5% Al2O3 and 13.96% H2O. The shape of a

perfectly ordered kaolinite crystal is pseudo-hexagonal, but its crystallinity may range

from a highly crystalline to a poorly ordered crystal [Prasad et al., 1991].

Kaolinite is the most prominent 1:1 type of phyllosilicate clay mineral. It has flake(flat)

type morphology due to the arrangement of atoms in the structure. The basic struc-

ture is made through the arrangement of two layers: the tetrahedral and octahedral

layer. Each tetrahedron consists Si4+ cation coordinated to four oxygen atoms that are

linked to adjacent tetrahedra by sharing three oxygen atoms at the corner; while the

octahedron consist Al3+ cations surrounded by six hydroxyl groups. The free corners

of the tetrahedral sheet connect with the octahedral sheets to form a common plane

or a single layered structure. The sheet of atoms are stacked on top of each other in

Tetrahedral-Octahedral (TO) fashion to form a layered structure. These layers, in turn,

are held together by hydrogen bonding between hydroxyls of the octahedral layer and

oxygen of the tetrahedral layer to form a repeating pattern of kaolinite clay structure as

shown in Figure 2.3.

Three fourth of the hydroxyl groups in the kaolinite structure lie in the interlamellar

space, while one fourth lie in the intralamellar space between the silica and alumina

sheets [Slade and Davies, 1991]. When kaolinite gets heated at temperatures above 700

K, sequential loss of hydroxyls has been observed [Slade et al., 1991]; those hydroxyls
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situated at the interlamellar space being easier to get removed than the intralamellar

ones.

Kaolinite has got many interesting properties such as fine particle size, non-abrasiveness,

chemical stability and low viscosity at high solid content. Moreover, its structure exhibits

very little shrinkage and swelling [Grim, 1953]. Owing to these properties, it has got

several industrial applications notably as a filler in paper, rubber and paint industry

[Murray, 1963]. Furthermore, it can be utilized as supplementary cementitious material

in cement and concrete industry after being properly calcined [Sabir et al., 2001].

Figure 2.3: The arrangement of tetrahedral silica and octahedral alumina layers to
form kaolinite structure

In a comparative study to assess the reactivity of different clays, it turns out that thermal

activation of kaolinite displays high pozzolanic reactivity compared to other clays such as

montmorillonite and illite [Ambroise et al., 1985; Fernandez et al., 2011]. Consequently,

Kaolinite has been the interest of many researchers in the cement area, as it can be

thermally activated to produce the highly reactive pozzolanic material, metakaolinite.

2.3.1 Calcination of kaolinite

Thermal decomposition of kaolinite at moderate temperature (700-1000 K) yields amor-

phous structured material called metakaolinite (Al2Si2O7), a material that offers good

properties as supplementary cementitious material [He et al., 1994; Shvarzman et al.,

2003]. Thermal exposure beyond a definit point will result the formation of spinel-type
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(Al4Si3O12) of phase along with amorphous silica, after which crystalline phases of mul-

lite (Al6Si2O13) and cristobalite (SiO2) form. The appearance of crystalline phases may

cause a decline in pozzolanic reactivity of the calcined material [Sabir et al., 2001].

A complete structural transformation of kaolinite mineral during thermal treatment

passes through a sequence of reactions [Brindley and Nakahira, 1958; Ptáček et al., 2011],

that occur at different temperatures. The whole transformation may be represented by

the following reaction scheme:

H2O(l,free)
373K−−−→ H2O(g) 4H = −2242(kJ/kg) (2.1)

Al2Si2O5(OH)4(Kaolinite)
700−1000K−−−−−−−→ Al2Si2O7(Metakaolinite) + 2H2O 4H = −632(kJ/kg) (2.2)

2(Al2Si2O7)
1000−1300K−−−−−−−−→ Al4Si3O12(Spinel) + SiO2 4H = +230(kJ/kg) (2.3)

3(Al4Si3O12)
≥1300K−−−−−→ 2(Al6Si2O13)(Mullite) + 5SiO2 4H = +84(kJ/kg) (2.4)

SiO2(Amorphous silica)
≥1473K−−−−−→ SiO2(Cristobalite) 4H = +42(kJ/kg) (2.5)

With regard to this study, the first two reactions, namely evaporation and dehydrox-

ylation are the most important reactions. Especially, the dehydroxylation reaction is

the one that needs to be optimized as the most pozzolanic material (metakaolinite) is

obtained at this stage. The remaining reactions that may occur at or beyond 1300 K are

phases transformations that deplete the amount of metakaolinite into spinel and mullite

phases; and hence need to be controlled.

Generally the above reactions are characterized by complex solid state reactions that

are influenced by the crystallinity of the kaolinite sample [Cabrera and Eddleston, 1983],

particle size [Lahiri, 1980], vapor pressure [Brindley et al., 1967] and heating rate. De-

spite the wealth of published works on the dehydroxylation of kaolinite, there is no

general consensus over the kinetics and mechanism of the entire reaction.

The calcination of such clay could be accomplished either by flash calcination or soak

calcination. Flash calcination is achieved by rapid heating (≈ several tenths of seconds)

followed by rapid cooling of the powdered clay material suspended in gas; whereas

soak calcination is achieved by slow heating for relatively long periods. According to

the literature [Salvador, 1995], flash-calcined products have shown peculiar structural

properties and reactivity that makes them a potential clinker substitute. Thus, a good

knowledge on the nature, composition and methods of calcining the clay material are

crucial to obtain a highly reactive pozzolanic product. For instance, the crystallinity,

the amount of metakaolinite and the particle size of the calcined clay strongly affects its

performance as SCM.
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2.3.2 Kinetics of dehydroxylation

Dehydroxylation of kaolinite is accompanied by the loss of chemically bonded hydroxyls

and consequently, a structural disorder in the kaolinite framework causes the forma-

tion of amorphous phase, namely metakaolinite. This phenomenon is revealed by the

appearance of an endothermic peak between temperatures 800-1000 K. Analysis of the

differential thermal patterns of this peak is a common way of studying the reaction

kinetics of the clay material. Thermal analysis on the dehydroxylation of kaolinite has

been studied by using different techniques to examine the value of kinetic parameters,

specifically the activation energy (E) and the frequency factor (A).

Generally kinetic parameters for solid state reactions have been studied either by model-

fitting or model-free (isoconversional) methods. Model fitting methods yield single value

of activation energy which cannot account for the variation of activation energy due to

the complexity of the solid state reaction. The values obtained by these methods are

averages that do not reflect changes in the kinetics and mechanism with the temperature

and the extent of conversion. Whereas, model-free methods allow kinetic predictions to

be accomplished as a function of the extent of reaction. As such, the kinetic analysis is

carried out over a set of kinetic runs and gives better estimation of kinetic parameters.

Both methods have been practiced to determine the kinetic parameters of kaolinite

dehydroxylation. None of them is free of flaws, but model free methods got an upper

hand.

The use of empirical models (model-fitting methods) to study the dehydroxylation of

kaolinite has been carried out to examine the kinetics and reaction mechanism of the

dehydroxylation reaction [Brindley et al., 1967; Dion et al., 1998; Murray and White,

1955; Sharp et al., 1966]. Most of these studies attempt to solve if the reaction mechanism

follows first order or diffusion controlled mechanism, which has been a dispute over

the years. Yet, dehydroxylation of kaolinte remains controversial, where some authors

suggest the reaction obeys a first-order kinetic law [Allison, 1955; Dion et al., 1998;

Murray and White, 1955] whereas others suggest a diffusion model [Criado et al., 1984;

Horvath, 1985; Redfern S., 1987].

Kinetic parameters based on isoconversional methods are usually obtained using ther-

mogravimetric experiments. Among these methods, Kissinger’s method is one of the

most popular methods to calculate kinetic parameters for dehydroxylation of kaolinite

clays [Kissinger, 1956]. Accordingly, when a reaction occurs in differential thermal anal-

ysis, the thermal properties of the sample vary with heating rate and this variation is

manifested by deflection of temperature peaks. Analyzing the shift in peak temperature

at different heating rates during thermogravimetric experiment is the core concept to
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determine the kinetic parameters. A complete derivation of the method can be referred

elsewhere in the literature [Chen et al., 1993; Kissinger, 1957, 1956; Llópiz et al., 1995].

Although the kinetics of kaolinite dehydroxylation has been broadly studied, there is

no single activation energy and frequency factor that characterize the dehydroxylation

process. Table 2.2 provides a summary of kinetic parameters of kaolinite dehydroxy-

lation from literature. The reason behind the diversity of values could be due to their

dependence on the natural composition, crystallinity and particle size distribution of

the kaolinite sample. The fact that dehydroxylation of kaolinite is a complex process

involving many individual steps, has been demonstrated by the dependence of activation

energy on the extent of conversion [Ortega et al., 2010].

Table 2.2: A summary of kinetic parameters of kaolinite dehydroxylation from liter-
ature

E(kJ/mol) A(s−1) Method Source Reference

177 4.57× 108 Thermogravimetry Florida,USA Kissinger [1956]

162 1.26× 107 Thermogravimetry Georgia,USA Kissinger [1956]

242 2.21× 108 Effluent gas analysis Rep.Czech Ptáček et al. [2010]

196 9.6× 108 TGA India Saikia et al. [2002]

195 8.58× 1014 DTG Rep.Czech Ptáček et al. [2011]

193 1.70× 107 DTA USA Bellotto et al. [1995]

163 2× 1012 DTA USA Levy and Hurst [1993]

2.4 Modeling thermal calcination of kaolinite

Today the use of computational modeling to tackle complex engineering problems in

the quest for optimal solutions in many fields of studies is a common practice. Hence,

mathematical models have been used to harvest any process related characteristics for

the calcination of kaolinite such as dehydroxylation mechanism, conversion and phase

transformation.

There has been little effort to understand calcination of kaolinite clays through modeling.

Indeed significant advances have been made in modeling fluid-solid, mainly gas-solid re-

actions [Bhatia, 1985; Georgakis et al., 1979; Patisson et al., 1998; Szekely and Propster,

1975; Wen and Wang, 1970]. Most of them are based on grain model and shrinking core

models to study the heat and mass transfer during reactions that involve gas-solid inter-

actions. However, these models consider several assumptions. Among them are steady

state and pseudo steady state approximations that ignore the accumulation term in the

gaseous phase [Bhatia, 1985; Szekely and Propster, 1975]. Such assumptions are mainly
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made to simplify and circumvent mathematical difficulties; and are not recommended

in transient phenomena [Wen and Wang, 1970]. The isothermal assumptions rendered

in most grain and shrinking core models is another drawback of such models [Georgakis

et al., 1979]. When most of gas-solid reactions involve exothermic and endothermic re-

actions, it may impose temperature variation affecting the internal and external heat

transfer in the grain, thus, isothermal assumptions may only be used for a known cases

[Patisson et al., 1998].

In an attempt to study flash calcination of kaolinite clay, Salvador and Davies [1994]

presented a simplified thermochemical model which is used to examine the behavior of

kaolinite particles that are plunged into a hot gas atmosphere. In this model, different

particle sizes were investigated for their calcination behavior at different gas temper-

atures (823–1273 K). The model predicts fast conversion rates at higher temperatures

(1273 K). For instance, 100 µm particles are observed to dehydroxylate in 0.1 seconds.

The fast heating rate observed during flash calcination causes rapid generation of vapor

and is suggested to be the reason for particle decrepitation observed during flash dehy-

droxylation of kaolinite [Bridson et al., 1985]. However, this model does not consider the

effect of intra-particle processes that could influence dehydroxylation process. Favergeon

et al. [2013] also presented a kinetic model for kaolinite dehydroxylation at grain scale

that could be applied for heat and mass transfers at reactor scale. The kinetic model is

entirely based on the dehydroxylation reaction as a rate limiting reaction where several

built-in empirical models are used to monitor dehydroxylation reaction. The model is

able to predict the dependence of dehydroxyalation rate on calcination temperature and

vapor pressure. Moreover, the kinetic rate is found to be significantly affected by the

powder height in the reactor. This model is based on complex variables such as areic

frequency of nucleation, areic reactivity of growth, vapor pressure and so on that require

to apply several assumptions.

The above mentioned models by [Salvador and Davies, 1994] and [Favergeon et al., 2013],

however, have some limitations when addressing the complex behavior of kaolinite clay

calcination at different process conditions. For instance, none of them predicts the

composition of the calcined material and the phase transformation of kaolinite particle

when the temperature exceeds 1273 K.

On the other hand, modeling the calcination of limestone particles has been extensively

studied. Many of the investigations have been done on the calcination and simultaneous

sintering processes of limestone particles with the aid of mathematical models. Borg-

wardt [Borgwardt, 1985] found that the calcination reaction was kinetically controlled

except for the final stage of reaction where the diffusion of CO2 through the product layer

was rate limiting. Silcox et al. [Silcox et al., 1989] also developed a calcination model
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of limestone (CaCO3) and (Ca(OH)2) particles where the decomposition of the parent

material at the reactant–product interface was described by a shrinking core model by

solving kinetic and transport equations for the gas and solid species. The model reliably

predicts the effects of particle size, temperature, time and relative rates of surface area

development. The study concluded that the escape of CO2 does not significantly slow

down the calcination reaction rate for small particles, and thus smaller lime particles

produce more reactive CaO particles in shorter period and at lower temperatures. But,

the hydrate particle produces more reactive CaO than do carbonates. This implies rapid

calcination rate for the hydrates, Ca(OH)2 than carbonates, CaCO3.

The model developed by Hu and Scaroni [Hu and Scaroni, 1996] considers the heat and

mass transfer and chemical kinetics for calcination of pulverized limestone particles under

furnace injection conditions. The model show a significant influence of heat transfer,

mass transfer and chemical kinetics on the calcination rate of limestone. Moreover, due

to location-dependent calcination process, a gradient in temperature and CO2 partial

pressures are observed. Under such conditions, the calcination of smaller limestone

particles (≈ 63µm) is observed in less than 0.2 seconds at 1473 K furnace temperature.

Takkinen et al. [2012] also investigated the heat and mass transfer phenomena during

calcination of limestone through modeling. Two modeling approaches were used, namely

the shrinking core model and a transient numerical particle model where the mass,

momentum and energy equations are solved during calcination. The numerical particle

model depicts faster and uniform conversion for smaller particles at different calcination

stages. Furthermore, high temperature is observed to decrease the reaction time. Over

all, the importance of advection in the intraparticle transport during calcination was

highlighted for the numerical particle model. In their study the applicability of shrinking

core models towards lime calcination is compared with the numerical particle model.

Both models show certain degree of differences in their output, the difference being

significant for small particle sizes and higher CO2 concentrations in the surrounding gas.

These differences are however modest when the model assumes an apparent reaction rate

than infinite reaction rate.

Other calcination studies on limestone has also been demonstrated for the purpose of

cement production either at the precalciner or at the rotary kiln [Fidaros et al., 2007;

Mikulčić et al., 2012]. Their investigation focuses on the impact of partial pressure,

particle size distribution and porosity on the degrees of conversion. Alike the above

studies, the influence of temperature, particle size and partial pressure of CO2 on the

calcination process has been reported.

The usefulness of such limestone models in this study is the similarity of the calcination

process and thus, the modeling approach is somehow similar. However, the effect of
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process variables during calcination of limestone is quite different from that of kaolinite.

i.e., the product of limestone calcination which is CaO may not further transform into

a different phase that affect the performance of cement. Hence, the severe calcination

condition and long residence time at the kiln system might have little effect on final

property of lime, if not on the cost of production. The exothermic nature of some

reactions involved during kaolinite rich clay calcination, however, makes the temperature

control more crucial and also more difficult, in order to obtain the optimum calcines.

2.5 Experimental study on flash calcination of kaolinite

Flash calcination of kaolinite has been investigated by several authors [Bridson et al.,

1985; Meinhold et al., 1992; Meinhold and Salvador, 1994; Slade and Davies, 1991;

Slade et al., 1991, 1992]. In most cases the powdered kaolinite clay is exposed to high

temperature(≈ 1273K) for short period of time, usually 0.5 to 1 second. Any change

in characteristics of the calcines is examined by rapid cooling at various stages during

calcination. Thus, flash calcined kaolinites undergo structural changes such as internal

voids. These changes are due to rapid generation of vapor, especially for residence times

beyond 0.3 seconds [Slade and Davies, 1991]. The flash calcines also display lower density

than the original kaoilinite sample [Bridson et al., 1985]. However, as the residence time

inside the calciner increases, the specific gravity progressively increases.

Flash calcination tests are also studied using different laboratory scale and pilot scale

flash calciners to examine the mechanism of dehydroxylation reaction [Meinhold and

Salvador, 1994]. These tests are carried out at different temperature and residence

time. In all cases, the rate of flash dehydroxylaton is influenced by diffusion of vapor

and the process is represented by 3 dimensional diffusion model. However, a change in

mechanism is observed at higher degrees of dehydroxylation. The different activation

energies calculated for the calcines produced by the different flash calciners may be

explicable due to the impact of vapor pressure inside the calciner that change the gas

flow characteristics, and also due to different sample introduction methods for each

calciner.

In a comparative study of calcined kaolinite particles from an industrial flash calciner and

conventional rotary kiln calciner, the chemical composition of the calcined metakaolinite

product is not influenced by the method of calcination [San Nicolas et al., 2013]; rather

the physical property of calcines is affected significantly. Since the calcination process

in rotary kiln calciner is achieved at low temperatures 920–973 K for about 3–5 hours,

agglomeration of the calcined product is observed. In an industrial flash calciner, the

process is accomplished in few tenths of seconds at temperatures 1273–1473 K. The
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flash calcines display spherical morphology compared to the conventional kiln products,

furthermore, the flash calcines show high proportion of mullite due to direct contact

between the flame and clay particles inside the calciner.





Chapter 3

Single particle calcination model

This chapter describes the numerical effort used to model the calcination of kaolinite

rich clay particles. It briefly discusses the set of governing equations that characterize

the energy and fluid flow during calcination along with boundary conditions and method

of discretization used to solve the equations. It also gives an overview of the modeling

tools used in this study.

3.1 Fundamentals of CFD

Computational Fluid Dynamics (CFD) involves the analysis of a set of partial differen-

tial equations that characterize the flow of a fluid. For instance, consider the general

transport equation which is given as:

∂(ρψ)

∂t
+∇ · (ρUψ) = ∇ · (D∇ψ) + Sψ (3.1)

The above equation represents the flow and transport of fluids in which first two terms

in the left side of the equation correspond to the transient and convective terms, respec-

tively. The right side equations correspond to the diffusion and source terms, respec-

tively. Where ψ is a dependent variable transported due to the existence of a velocity

field, U and the gradient of the property transported, ∇ψ. The source term, Sψ accounts

for any sources or sinks that either create or destroy ψ.

A common CFD practice involves the discretization of the computational domain into

a number of cells or control volumes. The equation is then integrated over the control

volume so as to discretize the partial differential equations to algebraic equations by

using finite volume method. The set of algebraic equations are solved to calculate the

values at cell centers, after the initial and the boundary conditions of the problem are

23
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specified properly. In this way CFD provides an approximation to the analytical solution

of the general governing equations.

3.2 Description of the clay particle calcination model

The problem under investigation may be understood in such a way that when a kaolinite

clay particle initially at room temperature is exposed to a hot environment, different

physical and chemical processes may take place. Among them are heat transfer from the

surrounding, evaporation of any available moisture, dehydroxylation and transformation

of kaolinite into different phases sequentially. In order to substantiate the entire process

numerically, a particle model is developed.

In practice, the shape of such clay particles may be better represented by flat sheet

(flake-like). Due to the lack of accurate description of particle shape, the clay particles

are assumed as spheres, as most commonly used in particle shape approximation (e.g.,

pulverized coal particles), and an one-dimensional (1D) spherical particle model is de-

veloped to simulate thermal calcination of these particles. Figure 3.1 illustrates the 1D

calcination model showing the interaction of the clay particle with its surrounding. As

shown in the figure, the exchange of mass and heat with the surrounding gas is accom-

plished by radiation and convection through a gas film surrounding the particle, where

the temperature, mass concentration and other physical properties in the gas film are

evaluated using a simple 1/3rd rule [Abramzon and Sirignano, 1989].

As heating continues, the kaolinite clay particle conversion proceeds by releasing free

water and crystal water out of the particle to yield the amorphous material called

metakaolinite. When the particle temperature reaches certain level beyond complete

dehydroxylation, phase transformation of metakaolinite commences. Depending on the

process conditions, the particle conversion and transformation of the clay product is

examined based on the series of reactions given in section 2.3.1, reactions (2.1)–(2.5).

The sequence of reactions is governed by the temperature and kinetic parameters at

each reaction step; as such, high temperature and fast reaction rates may increase the

speed of phase transformation into unnecessary products such as mullite. Therefore,

the kinetic parameters for each reaction need to be carefully picked from literature or

experimentally determined.
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Figure 3.1: A sketch of 1D clay particle calcination model

3.2.1 Main assumptions

The main assumptions used in the model development are:

• The clay particle is spherical in shape and homogeneous in composition,

• 1D profile, i.e., the dominant variations in key parameters occur in the radial

direction (from the particle center to particle surface)

• Local thermal equilibrium exist within the clay particle, i.e., different phases at

the same temperature locally.

• Possible shape changes due to swelling or shrinking of the particle are neglected,

• The porosity of kaolinite particle hardly changes up on thermal treatment unless

it undergoes sintering beyond 1373 K [Chen et al., 2003]. Hence, constant particle

porosity is assumed,

• The heat and mass transfer conditions at the particle surface are symmetrical,

• Gas species and the gas mixtures follow the equation of state for an ideal gas,

• The same value of effective diffusivity (Deff ) has been assumed for all the gaseous

species, such assumption has been commonly used in literature [Lu et al., 2008;

Takkinen et al., 2012].
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3.2.2 Governing equations

Like any modeling process, numerical study of kaolinite calcination begins with a physical

model that is described by a set of PDEs which are developed based on conservation laws

of physics. The general governing equations that characterize the thermal conversion of

kaolinite during calcination are summarized as follows:

∂(ερg)

∂t
+ div(ερgU) = Sg (3.2)

U = −η
µ
∇P (3.3)

∂(ερgYj)

∂t
+div(ερgUYj) = div(ερgDeff∇Yj)+SYj (3.4)

∂

∂t

(∑
i

ρihi+ερgh+ρfwhfw

)
+div(ερgUh) = div(keff∇T )+div

(∑
j

hjερgDeff∇Yj
)

+Sh

(3.5)
∂(ρs,iYs,i)

∂t
= Sy,i (3.6)

In the above equations, Eq. 3.2–3.4 represent the continuity equation, momentum equa-

tion modified with Darcy’s law in a porous medium, and the species transport equations

for the gaseous phases, respectively. Eq. 3.5 is a combined energy equation where the

influence of gases, solids and moisture on the transfer of energy is incorporated. The

last equation represented in Eq. 3.6 is the continuity equation for solid species.

The rate expression and kinetic parameters for the reactions involved during calcination

of kaolinite clay are represented as shown in Table 3.1.

Table 3.1: The expression of reaction rate and kinetic parameters used in the model

Reaction Rate expression A (s−1) E
(kJ/mol)

4H
(kJ/kg)

Reference

2.1 ṙ1=
∂ρfw
∂t =k1ρfw 5.13× 1010 88 -2242 [Bryden and Hagge,

2003]
2.2 ṙ2=∂ρkl/∂t=k2ρkl 6.3× 109 180 -632 (A,E):this work, 4H:

[Weber and Roy, 1965]

2.3 ṙ3=
∂
∂t(ρmk)=k3ρmk 1.7× 1016 405 230 [Gerardin and Sundare-

san, 1994]

2.4 ṙ4=
∂ρsp
∂t =k4ρsp 9.1× 1015 424 84 (A,E): [Ptáček et al.,

2012],4H: [Holm, 2001]

2.5 ṙ5=
∂ρsil
∂t =k5ρsil 1.75× 1010 274 42 (A,E): [Ptáček et al.,

2012], 4H: [Holm et al.,
1967]
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The expression of key physical and transport properties used in the above governing

equations are summarized in Table 3.2.

Table 3.2: The Physical and transport properties and their expression in the model

Property Value/Expression Reference

Sensible enthalpy of gas mixture, h
∑

j Yjhj

Sensible enthalpy of species, hj
∫ T
Tref

Cp,j(T )dT

Rate constant of kth reaction, kk Akexp(−Ek/RT )
Effective conductivity, keff εkg + (1− ε)ks [Takkinen et al., 2012;

Tavman, 1996]
Conductivity of solid, ks 0.3 [Michot et al., 2008]

Effective diffusivity, Deff
ε

τ

( 1

DAB
+

1

Dk

)−1
[Benitez, 2009; Silcox
et al., 1989]

Molecular diffusivity, DAB −2.775 × 10−6 +
4.479 × 10−8T +
1.656× 10−10T 2

[Bolz and Tuve, 1976]

Knudsen diffusivity, Dk 48.50dp
√

T
MWg

[Benitez, 2009; Silcox
et al., 1989]

Pore size, dp 0.3× 10−6 [Diamond, 1970]
Permeability, η 1× 10−12 [Reinecke and Sleep,

2002]
Particle emissivity, ω 0.7 [Bergman et al., 2011]
Tortuosity, τ 1.5 this work

The expression of the source/sink terms that appear in the above set of governing equa-

tions is based on the rate expression given in Table 3.1. Since evaporation and dehydrox-

ylation are the only reactions that generate gaseous species; the source/sink terms that

appear in the continuity equation, Sg and in the transport equation, SYj are basically

equivalent. The contribution of other gases (O2 and N2) during reaction is is negligible.

The source/sink term appearing in the energy equation is the heat effects summed over

all the five reactions. The expression of all source/sink terms are summarized as follows;

Sg = SYj = ṙ1 + ṙ2
2MWH2O

MWkl

Sh =
k=5∑
k=1

ṙk4Hk

(3.7)

The source term expression for solid species, SYi is based on the rate of conversion of

individual species during calcination reaction and is summarized in Table 3.3.

Temperature dependent heat capacity of solid species is used in the study [Knovel, 2013;

Robie et al., 1979]. The heat capacity values for each solid components is summarized

in Table 3.4.
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Table 3.3: The expressions for solid species source/sink terms during calcination of
kaolinite clays

Source(sink) term Expression

For kaolinite, Skl −ṙ2
For metakaolinite, Smk ṙ2(MWmk/MWkl)− ṙ3
For spinel, Ssp ṙ3(MWsp/2MWmk)− ṙ4
For mullite, Smu ṙ4(2MWmu/3MWsp)

For silica, Ssil ṙ3(MWsil/2MWmk) + ṙ4(5MWsil/3MWsp)− ṙ5
For cristobalite, Scr ṙ5(MWsl/MWcr)

Table 3.4: Temperature dependent heat capacity of solid species

Heat capacity Value (J/(kg·K))

Cp,kl (200.58− 0.795T + 4.42× 10−3T 2 − 8.25× 10−6T 3 + 7.65×
10−9T 4 − 3.55× 10−12T 5 + 6.55× 10−16T 6)1000/MWkl

Cp,mk (146.5 − 0.51T + 2.98 × 10−3T 2 − 5.68 × 10−6T 3 + 5.29 ×
10−9T 4 − 2.45× 10−12T 5 + 4.48× 10−16T 6)1000/MWmk

C†p,sp (146.5 − 0.51T + 2.98 × 10−3T 2 − 5.68 × 10−6T 3 + 5.29 ×
10−9T 4 − 2.45× 10−12T 5 + 4.48× 10−16T 6)1000/MWsp

Cp,mu (7.55 × 102 − 2.94 × 10−2T − 6.58 × 103T−0.5 + 3.45 ×
10−6T−2)1000/MWmu

Cp,sil (21.27 + 0.12T − 1.99 × 10−4T 2 + 2.29 × 10−7T 3 − 1.72 ×
10−10T 4 + 7.295× 10−14T 5 − 1.29× 10−17T 6)1000/MWsil

Cp,cr (72.753T + 1.3× 10−3T + 4.13× 106T−2)1000/MWcr

† The heat capacity of spinel-type phase is not available in the literature. Thus, it is assumed to
have similar heat capacity as that of metakaolinite.

3.2.3 Boundary conditions

Boundary conditions at the particle center (at r = 0) are determined by symmetry as:

∂T

∂t

∣∣∣∣
r=0

= 0;
∂Yj
∂t

∣∣∣∣
r=0

= 0;
∂P

∂t

∣∣∣∣
r=0

= 0 (3.8)

At the surface of the particle (r = RP ), the exchange of mass and heat with the sur-

rounding gas film is driven by the external convective mass transfer coefficient, hm and

convective heat transfer coefficient, hT , respectively; which in turn is calculated from

the empirical correlations available in the literature [Ranz and Marshall, 1952]. The Ste-

fan flow effect is not taken into account in this work, mainly due to the comparatively

small amount of water vapor flow released during clay calcination process. Thus, the

boundary conditions at the particle surface are:
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keff
∂T

∂t

∣∣∣∣
r=Rp

= hT (T∞ − Ts) + ωσ(T 4
rad − T 4

s )

Nu =
hTDp

kg
= 2 + 0.64(Re)

1
2 (Pr)

1
3

Dj,m
∂Yj
∂t

∣∣∣∣
r=Rp

= hm(Yj,∞ − Yj,s)

Sh =
hmDp

DAB
= 2 + 0.64(Re)

1
2 (Sc)

1
3

P |r=Rp
= Patm

(3.9)

The physical properties in the gas film around the particle are evaluated based on the

reference conditions that can be calculated by a simple 1/3rd rule [Abramzon and Sirig-

nano, 1989], from which the non-dimensional constants such as Nu, Pr, Re, Sc, and Sh

numbers are computed. Thus, the reference conditions in temperature and mass fraction

at the gas film are calculated as,

Tfilm = Ts +
1

3

(
T∞ − Ts

)
Yj,film = Yj,s +

1

3

(
Yj,∞ − Yj,s

) (3.10)

3.2.4 Initial conditions

Apart from boundary conditions, the transient calcination model require well defined

initial conditions where initial values of flow variables are specified in the flow domain.

These conditions usually describe the states of the solid and gas phases at the beginning

of the process (t = 0).

The initial conditions acquired are:

T |t=0 = 298.15K; P |t=0 = Patm

YH2O

∣∣
t=0

= 0; YO2

∣∣
t=0

= 0.23; YN2

∣∣
t=0

= 0.77
(3.11)

3.3 Discretization

Discretization of the calculation domain is achieved by systematically dividing the space

and dependent variables so that the governing differential equations could be expressed

with simple algebraic equations that can be solved easily. The discretization of the

governing equations in the present work is based on finite volume method (FVM), which

is one of the well studied schemes [Patankar, 1980; Versteeg and Malalasekera, 2007].



Chapter 3. Single Particle Calcination Model 30

The discretized equations are then assembled to a standard form that can be solved by

using TDMA (Tri-Diagonal Matrix Algorithm).

aPψP = aWψW + aEψE + Su (3.12)

where ψ is a property that can be computed, for example the temperature, mass fraction,

pressure and so on. The subscripts P , W and E denote the position at current cell-

center, at the west and the east neighboring cell-centers, respectively. Su is the source

term, if any.

Since the transient particle model output is a function of time and position, the dis-

cretization is carried out for both of the domains. Thus, numerical discretization of

such time-dependent partial differential equations (PDE) need to be fully discretized in

both time and space. The governing equations are discretized in space first to transform

PDEs into ordinary differential equations (ODEs), followed by time integration of ODEs

to advance in time.

3.3.1 Spatial discretization

The discretization of the single particle model is accomplished by dividing it into a

finite number of control volumes (CV). In order to integrate the PDE’s over each cell,

the basic mesh is defined by a set of points (nodes) from the domain so that to each node

a control volume is assigned. The computational domain in this work is shown in Figure

3.2, where the spherical particle is divided into N equidistant nodes, 4r. To simplify

the notation in accordance with the standard notation widely used in many of the CFD

books, the letters P , W and E denote the nodes at ri, ri − 1 and ri + 1, respectively.

At these nodes, the scalar variables such as the temperature, pressure, density and mass

fraction are evaluated. Each control volume is bounded by faces that are located midway

between the grid points. These faces are represented by w and e which are located at

ri− 1
24r and ri+

1
24r, respectively. At these faces, velocity components are calculated.

In this study, discretization is based based on the upwind scheme for the convection

term, and the central difference scheme for the diffusion term.

3.3.2 Temporal discretization

Temporal discretization has been carried out using fully implicit method. The advantage

of this method is its unconditional boundedness and robustness for any size of time step

[Patankar, 1980; Versteeg and Malalasekera, 2007]. Hence, the governing equations are
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Figure 3.2: Discretization of the one dimensional clay particle

temporally discretized over a time step (4t). A general expression for the transient term

in the PDEs during time marching of a scalar variable φ is given as;

∂ψ

∂t
= F (ψ) (3.13)

where F is anonymous function that may have any spatial discretization. The first-order

accurate implicit temporal discretization is given by ;

ψ − ψo

4t
= F (ψ) (3.14)

where the variable with superscript, ψo denotes the value of the quantity at the previous

time, t−4t, while the values of ψ are evaluated at current time, t. This way, the fully

implicit scheme is implemented to all transient governing equations.

3.3.3 Final discretized equations

As briefly discussed in the previous section, the final form of the energy, transport

and continuity equations are discretized and rearranged into a standard form aPψP =

aWψW + aEψE + Su. The final solution is summarized by sorting the value of the

coefficients. Solving the discretized energy equation by using TDMA solver gives the

value of temperature. The value of coefficients for the discretized energy equation are

summarized in Table 3.5.
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Table 3.5: A solution to the discretized energy equation

Coefficient Solution of energy equation

aW (cell center) 0.0

aW (internal cells)
(
keffA
4r

)
w

+
(
ερgCp,gUA

2

)
w

aW(cell surface)
(
keffA
4r

)
w

+
(
ερgCp,gUA

2

)
w

aE (cell center)
(
keffA
4r

)
e

-
(
ερgCp,gUA

2

)
e

aE (internal cells)
(
keffA
4r

)
e

-
(
ερgCp,gUA

2

)
e

aE (cell surface) 0.0

aP (cell center)
ρCp4V
4t + aE + aW + (ερgCp,gUA)e - (ερgCp,gUA)w

aP (internal cells)
ρCp4V
4t + aE + aW + (ερgCp,gUA)e - (ερgCp,gUA)w

aP (cell surface) ρCp4V
4t + aE + aW + (ερgCp,gUA)e − (ερgCp,gUA)w +AsurfhT + 4Asurfωσ(T oP )3

Su (cell center)
(ρCp)oT o

p4V
4t +

∑5
k=1 ṙk4Hk4V

Su (internal cells)
(ρCp)oT o

p4V
4t +

∑5
k=1 ṙk4Hk4V

Su (cell surface)
(ρCp)oT o

p4V
4t +

∑5
k=1 ṙk4Hk4V +AsurfhTT∞ +Asurfωσ(T 4

rad + 3(T oP )4)

• The superscript, o, indicates the value of the parameter at the previous time step

• ρCp =
∑

i ρiCp,i +
∑

j ερgYjCp,j + ρfwCp,fw

At the outer most control volume, the final discretized energy equation need to address

the heat source term Sh at the particle surface due to convection and radiation. Thus,

the heat source term Sh is integrated at the control volume to yield:∫
4t

∫
cv
ShdV dt = hTAsurf (T∞ − Ts) +Asurfωσ(T 4

rad − T 4
s ) (3.15)

The nonlinear radiation source term is handled as described elsewhere in the literature

[Yin et al., 2010], where the linearized radiation term will have the form,

Asurfωσ(T 4
rad − T 4

s ) ≈ Asurf ωσ
(
T 4
rad − (T oP )4 − 4(T oP )3(TP − T oP )

)
(3.16)

Discretizing and integrating the transport equation solves for the mass fraction of gas

species, Yj . The solution of the transport equation sorted in accordance with the stan-

dard form of notation is summarized in Table 3.6.

Solving the continuity equation requires substituting the physical velocity at the east

and west interfaces using Darcy’s flow equation Eq. 3.3. The solution of the resulting

discretized equation solves for the pressure correction term, P′ as shown in Table 3.7.

The velocity at the outer most control volume is derived from the discretized continuity

equation as;

Ue =
[Sg4V

ε
−

(ρg − ρog)4V
4t

+ (ρgUA)w

]
/(ρgA)e (3.17)
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Table 3.6: A solution to the discretized transport equation of gases

Coefficient Solution of transport equation

aW (cell center) 0.0

aW (internal cell)
(
ερgDeffA
4r

)
w

+
(
ερgUA

2

)
w

aW (cell surface)
(
ερgDeffA
4r

)
w

+
(
ερgUA

2

)
w

aE (cell center)
(
ερgDeffA
4r

)
e
−
(
ερgUA

2

)
e

aE (internal cells)
(
ερgDeffA
4r

)
e
−
(
ερgUA

2

)
e

aE (cell surface) 0.0

aP (cell center)
ερg4V
4t + aE + aW + (ερgUA)e − (ερgUA)w

aP (internal cells)
ερg4V
4t + aE + aW + (ερgUA)e − (ερgUA)w

aP (cell surface)
ερg4V
4t + aE + aW + (ερgUA)e − (ερgUA)w + ρgAsurfhm

Su (cell center)
ερogY

o
j,p4V
4t + Sy,j4V

Su (internal cells)
ερogY

o
j,p4V
4t + Sy,j4V

Su (cell surface)
ερogY

o
j,p4V
4t + Sy,j4V + ρgAsurfhmYj,∞

Table 3.7: A solution to the discretized pressure-correction equation.

Coefficient Solution of the pressure-correction equation.

aW
η

µ4r (ρgA)w

aE
η

µ4r (ρgA)e

aP aE + aW

Su
ρg4V
ε − (ρg−ρ0g)4V

4t + (ρgAU
∗)w − (ρgAU

∗)e

Here it must be noted that the correction pressure P′ is defined as a difference between

correct pressure field, P and the guessed pressure field, (P∗). The same is true for the

velocity field, as shown below,

P = P ∗ + P ′

U = U∗ +
η

µ4r
(P′i − P′i+1)

(3.18)

The indexes i and i+ 1 denote the current control volume and its east neighbor control

volume, respectively.
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3.4 Iterative procedure

Once the appropriate equations, the boundary and initial conditions are set; the solution

methods involve an iterative scheme to arrive at simulation results. Since the system of

PDE’s is nonlinear, several iterations must be carried out during each time step of the

numerical solution until convergence is reached.

During the iterative convergence, some criteria may need to be fulfilled and it is usually

defined by acceptable error in some parameter values. It is also important to examine

whether the final time has been reached with proper convergence at each time step.

Figure 3.3 shows the iterative procedure used to obtain numerical solution for the particle

model.

Figure 3.3: Overall algorithm for the sequence of operations in the problem
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3.5 Modeling tools: C++ and gPROMS ModelBuilder

For simulating the calcination process of kaolinite clay particle, a stand alone C++

code has been successfully developed; the same process has also been simulated in a

commercial software called gPROMS.

• The model developed in c++ for single clay particle calcination is not only to

achieve a better understanding of the conversion process of a single clay particle

when it is suddenly exposed to a known calcination condition, but also to be inte-

grated, after proper reformulation, into advanced CFD simulations of the reacting

particulate flow system in the calciner later. CFD simulation of the entire calciner

is crucial in order to really understand its performance and ultimately to come up

with innovative conceptual design of smart and energy-efficient calciners.

• The ultimate purpose of using gPROMS here is for the calcination plant perfor-

mance evaluation and optimization by modeling the calciner and integrating the

calciner model into the whole system in the plant. Even though such a plan was

changed by the project consortium during the project, the comparison between

the standalone c++ code and commercial gPROMS can serve as a kind of model

cross-validation.

gPROMS is a commercial software abbreviated for general PROcess Modeling System.

It is a bundle of software tools with a common solver kernel to compute numerical so-

lutions and optimization problems [Pantelides and Barton, 1993]. These are created in

a central graphical user interface (GUI) which is called ModelBuilder. This tool can

also be used to start certain tasks, analyze and view results. Modeling and Simulating

in gPROMS are done by setting up different objects called entities with dedicated pur-

poses [Oh and Pantelides, 1996; Pantelides and Barton, 1993; PSE, 2013]. For instance,

gPROMS ModelBuilder requires to have at least the VARIABLE TYPE, MODEL and

PROCESS entities. The upper and lower bounds of a variable are declared under the

entity VARIABLE TYPE. The set of equations, assignments, parameters and initial

conditions together with event conditions are specified under the entity MODEL. Sev-

eral models can also be written and coupled to each other without worrying about

their hierarchy. The PROCESS entity is the main task that controls simulation activi-

ties, furthermore, this entity includes assignment of parameters, specification of initial

conditions and setting solver parameters. Figure 3.4 illustrates a screenshot of a well

posed calcination model and gPROMS ModelBuilder interface along with visualization

of output results.
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gPROMS uses a number of state-of-the-art hierarchical solvers. Among these are, DA-

SOLV for Differential-Algebraic Equations, BDNLSOL for Nonlinear Equations and the

MA28 and MA48 for sparse linear system of equations.

Although this study is not intended to compare the two modeling tools, the major

differences in using C++ code and gPROMS to simulate the calcination process are

highlighted as follows;

• While C++ needs to discretize the geometry and the governing equations manually,

gPROMS handles it by simply specifying the method of discretization and its order

of accuracy.

• C++ needs to write the final discretized equations in a standard form [Patankar,

1980; Versteeg and Malalasekera, 2007] so that it would be convenient to solve by

Tri-diagonal matrix algorithm (TDMA) or Thomas algorithm; whereas gPROMS

needs to write the equations as they appear in paper [PSE, 2013] and the mathe-

matics is handled by built-in solvers.

• While convergence and computational stability needs much effort in C++; initial-

ization and setting well posed system is the most difficult task in gPROMS.

Figure 3.4: A screenshot of gPROMS interface



Chapter 4

Experimental study

The experiments under this section not only provide a detailed data on the initial compo-

sition and property of the kaolinite rich clay material, but also offer an in-depth under-

standing on the thermal calcination of kaolinite rich clay sample into different products

under different calcination conditions. This chapter, therefore, is dedicated to the exper-

imental study performed to determine kinetic parameters, characterize the composition,

specific density, PSD and other physical properties of the clay material under investiga-

tion. The outcome from the experiments is used as an input for modeling study or model

validation.

4.1 Study of kinetic parameters

The kinetic parameters (A and E) of dehydroxylation of kaolinite rich clay particles are

determined by using the well known Kissinger’s approach [Kissinger, 1957, 1956], using

thermogravimetric experiments. The method is based on the shift in peak temperature

(the temperature at which the reaction rate is maximum), when a reaction occurs at

different heating rates. The shift in peak temperature is clearly shown in in Figure 4.1

when DTA experiments are performed at different heating rates for kaolinite rich clay

sample.

37
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Figure 4.1: The shift in temperature during dehydroxylation of kaolinite rich clay at
different heating rates, θ (◦C/min)

In order to summarize the derivation of Kissinger’s equation briefly, we begin with the

general expression of decomposition reaction as,

dα

dt
= kf(α) (4.1)

where α is the the degree of dehydroxylation, k is the rate constant, and f(α) is a kinetic

model that dictates the behavior of the dehydroxylation reaction.

According to Kissinger, the the kinetic model is represented by order based kinetics,

where f(α) = (1− α)n. Hence, the above equation is rearranged into:

dα

dt
= k(1− α)n (4.2)

where n is the empirical kinetic exponent of the reaction. Substituting the rate constant,

k with Arrhenius relationship and rearranging and integrating the equation gives the

final Kissinger’s expression as shown in Eq. 4.3. Further information on the derivation

of the method can be referred in the literature [Chen et al., 1993; Kissinger, 1957, 1956;

Llópiz et al., 1995; Ptáček et al., 2011].

ln

(
θ

T 2
p

)
= − E

RTp
+ ln

(
AR

E

)
(4.3)

where, θ is the heating rate (K/min) and Tp is the maximum reaction rate temperature

(K). The plot ln(θ/T 2
p ) versus 1/Tp is a straight line whose slope is −E/R and an
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intercept ln(AR/E). Although the method has been criticized and modified by several

authors [Baumann et al., 2010; Boswell, 1980; Sesták et al., 2014], it still remains popular

to determine kinetic parameters of decomposition reactions and other solid-gas reactions.

The kinetic exponent or Avrami’s constant (n) has also been calculated based on the

characteristics of the DTG curve [Augis and Bennett, 1978], where its value is approxi-

mated as:

n =
2.5RT 2

p

W1/2E
(4.4)

The reaction mechanism has been interpreted based on the value of Avrami’s constant,

as it is commonly practiced in literature [Criado et al., 1984; Hankock and Sharp, 1972;

Ptáček et al., 2011; Saikia et al., 2002].

4.1.1 Thermogravimetric study

Dehydroxylation of kaolinite clay is carried out by using thermogravimetry method. It

simultaneously measures both the heat flow (DSC) and weight changes (TGA) associated

with transitions in a material as a function of temperature and time in a controlled

atmosphere. The general procedure of the test is described as follows. Approximately

about 20 mg (±2) of clay sample is placed in a Pt crucible. The sample is heated to

a maximum temperature of 1373 K at different heating rates (5, 10, 20, 30, 40 and

50 K/min) in nitrogen environment at flow rate of 100 cm3/min. Relevant data are

collected, in which the weight loss from TGA and its derivative DTG are plotted against

temperature, as shown in Figure 4.2. Moreover, the DTG data were analyzed to extract

the peak temperature (Tp) and the half peak width (W1/2).

Figure 4.2: A representative thermogram for an experiment done at a heating rate
of 20 K/min
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Two TGA experiments are carried out utilizing different TGA models. The first experi-

ment is done using model SDT 2960 and the second is STA 409 PC, which are illustrated

in Figure 4.3. The same procedure is used for both experiments except that the sample

size is well controlled for each test in the second experiment.

Figure 4.3: TGA equipment used during study

The DTG curve for each test is examined to derive useful information such as the peak

temperature, the half width maxima (W1/2) and the values of kinetic exponent (n). The

Experimental peak characteristic values obtained from DTG curve at different heating

rates are shown in Table 4.1 and 4.2.

Table 4.1: Experimental peak char-
acteristic values from Experiment 1.

θ (K/min) Tp (K) W1/2 n

5 769.6 64 1.1
10 785 69 1.04
20 805 75.1 1.03
30 815.32 78.5 1.02
40 828.6 85.2 1.0

Table 4.2: Experimental peak char-
acteristic values from Experiment 2.

θ (K/min) Tp (K) W1/2 n

5 778 66 1.28
10 795.5 70.1 1.24
20 816.4 72.3 1.22
30 825 74.2 1.21
40 832.15 80.5 1.12
50 837.6 81.7 1.12

Based on experimental results collected for TGA experiments, the plot ln(θ/T 2
p ) versus

1/Tp is illustrated in Figure 4.4, where the activation energy is calculated from the slope.
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Figure 4.4: Plot of ln(θ/T 2
p ) versus 1/Tp to determine kinetic parameters

4.2 Gas Suspension Calciner (GSC)

The calcination test is performed in a gas suspension calciner located in FLSmidth R& D

Center Dania (Denmark). The schematic sketch of the GSC is illustrated in Figure 4.5.

The main objective of this test is to examine the property of calcines after it gets exposed

to various calcination temperatures. For this purpose, a dried and crushed kaolinite rich

clay sample is used as a feed material with initial composition of 90-95 % kaolinite and

5-10 % quartz. The feed has particle size distribution as shown in Figure 4.6.

The feed material is introduced into the system at a feeding rate of 6 kg/hr. The hot

gas generated in the main burner is drawn into the calciner from the bottom and pulled

through the reactor tube together with the feed particles by an extraction fan. The hot

gas/particle flow is mixed with a stream of quenching air at the exit of the GSC, and

finally enters the filter to separate the product from the gas flow.

The system has provision of secondary burners that may be put into operation to obtain

a uniform temperature profile in the calciner. Hence, two sets of experiments are per-

formed. The first sets of experiments are accomplished without support burners where

calcination tests under 1073, 1173, 1273 and 1373 K are performed. During this test a

temperature drop was noticed along the calciner. The temperature across the calciner is

measured with the help of thermocouples that are put at four different locations along

the GSC. The second set of experiments are performed by using support secondary

burners to maintain constant calcination temperature at 1073 and 1273 K all over the

calciner.

In all of the six tests made, the clay particles are expected to have about 0.5 s residence
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Figure 4.5: A schematic sketch of the gas suspension calciner along with the position
of secondary burners (SB) and thermocouples (TC).

time inside the calciner. The calcined clay material is then collected after each test

for further analysis. Table 4.3 presents the calcination conditions for the experiments

carried out in GSC and detailed description of each experimental setup and sample ID.

Those experiments carried out when secondary burners are not operational (EXP-I) ex-

hibit a significant temperature drop along the calciner. When secondary burners are

operational (EXP-II), the temperature inside the GSC is observed to be stable.

Table 4.3: Calcination conditions of the GSC and details of sample ID

Test
Calcination temperature (K) Secondary

burners
Calcined
product ID

Temperature drop (K)
Nominal Average TC-1 TC-2 TC-3 TC-4

Exp-I 1073 964 NO MK964NB 1067 979 921 893
1173 1058 NO MK1058NB 1168 1078 1022 972
1273 1126 NO MK1126NB 1269 1158 1062 1012
1373 1214 NO MK1214NB 1362 1244 1147 1081

Exp-II 1073 1073 Yes MK1073WB 1075 1070 1062 1061
1273 1273 Yes MK1273WB 1271 1276 1263 1264

4.3 Characterization test of the raw feed and the calcines

Today, the significant advance in X-ray diffraction (XRD) and X-ray fluorescence (XRF)

techniques enabled to fully characterize clay minerals [Bish and Post, 1993; Chung and
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Smith, 1999; Snellings et al., 2010]. However, the complex nature of clays make char-

acterization difficult and thus, it needs to be supplemented with other methods for

accurate quantification. This section presents different characterization tests that have

been made to fully characterize both the feed and the calcined clay material.

4.3.1 Mineralogical composition and PSD

The mineralogy of the clay material under investigation is determined by a combination

of results from chemical analyses by X-ray fluorescence and X-ray diffraction on both

oriented and random powder samples, supplemented with other thermal methods such

as thermogravimetry.

The kaolinite rich clay sample has chemical composition as shown in Table 4.4. This clay

sample is pretreated and conditioned prior to using it as feed material. The treatments

are usually physical and doesn’t affect the composition of the clay sample.

Table 4.4: Chemical composition of kaolinite rich clay sample

Chemical composition, wt.%

SiO2 Al2O3 Fe2O3 CaO TiO2 P2O5 K2O Na2O LOI
47.9 35.06 0.77 0.2 1.29 0.11 0.12 0.06 13.65

The particle size distribution of the clay sample is measured using Malvern equipment

with laser diffraction by measuring the angular variation in intensity of light scattered

when a laser beam passes through a dispersed clay sample. It is based on the principle

that particles passing through a laser beam will scatter light at an angle that is directly

related to their size: large particles scatter at low angles, whereas small particles scatter

at high angles. Thus, a collection of particles will produce a pattern of scattered light

defined by intensity and angle that can be transformed into a particle size distribution.

The PSD of the feed and calcined clay is illustrated in Figure 4.6.

4.3.2 Density and surface area

The density of the feed clay material and the calcined clay material has been measured

by Gas Pycnometer Micromeritics, AccuPyc II 1340. The measurement and principles

are based on gas displacement method to measure volume accurately. An inert gas,

helium, is used as the displacement medium. The clay sample is sealed in the instrument

compartment of known volume, the appropriate inert gas is admitted, and then expanded

into another internal chamber. The pressure difference before and after expansion helps
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Figure 4.6: Particle size distribution of the feed and calcined clay materials.

to compute the sample volume. The density is then calculated by dividing the sample

weight by its volume.

Surface area of the feed and calcined clay material is measured using BET method which

is based on the adsorption of gas on a surface. The amount of gas adsorbed at a given

pressure allows to determine the total specific surface area in m2/g.

4.3.3 Degree of dehydroxylation

The degree of dehydroxylation of the clay sample is studied by using LECO RC612

multiphase carbon and hydrogen/moisture analyzer shown in Figure 4.7. The equip-

ment features a state-of-the-art furnace control system, allowing the temperature of the

furnace to be programmed from near-ambient to 1373 K. The main purpose of this ex-

periment is to examine the degree of conversion or dehydroxylation by monitoring the

amount of crystal water in the clay sample.

The principle is based on examining the mass of water left after the clay sample has

been heated to high temperature inside the equipment. For such purposes, 250 mg of

the feed clay is placed into a system stabilized with inert nitrogen atmosphere. The raw

feed clay sample is held at 423 K for 15 minutes to make sure that the free water is

removed. Then, the clay sample is exposed to a heating rate of 120 K/min until 1273 K

and held at this temperature for about 7 minutes to secure a complete dehydroxylation

(i.e., a complete removal of the crystal water). A built-in Infrared detection method is
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used to quantify the amount of vapor as a weight percentage. The same procedure is

repeated for calcined samples. The final output from the instrument gives the amount

of water vapor in weight percentage, as shown in Figure 4.8.

Figure 4.7: LECO RC612 Multiphase Carbon and Hydrogen/moisture analyzer.

Figure 4.8: The amount of vapor in terms of weight fraction, as it is shown in LECO
RC612: (a) Feed (b) calcined clay at 1273 K (MK1273WB)

Finally, the degree of dehydroxylation, α is determined by comparing the crystal water

left in each calcined sample (mCS ) to the initial amount of crystal water in the raw feed

(mRF ), as shown in Eq. 4.5. When all crystal water is removed from the calcined sample,

the amount of water left (mCS ) approaches to zero and hence degree of dehydroxylation,
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α becomes closer to 1.

α = 1− mCS

mRF

(4.5)

A summary of the vapor signals for all clay samples is illustrated in Figure 4.9, where

the intensity of water vapor evolved from the feed and calcined clays are plotted against

temperature. The observed decreasing trend in the intensity of vapor is due to the fact

that the calcination process in the GSC has driven out most of the crystal water from

the clay material.

Figure 4.9: A graphical plot of the intensity of vapor during LECO RC612 thermal
analysis for the feed and calcined clay products.

4.3.4 Composition of phases

X-ray diffraction is by far the commonest method used to determine the amount of

phases in clay sample. In this study, XRD is used to determine the qualitative and

quantitative phase analysis of clays. The analysis of the as-received and calcined sam-

ples is carried out using PANalytical CubiX PRO X-ray diffractometer as illustrated in

Figure 4.10. Rietveld analysis of randomly oriented clay powders is used to quantify

the composition of the calcined clay material after each run at its respective calcination

temperature. Quantification of phases is based on the comparison of the mass fraction

of each component with a known standard [Bish and Post, 1993], where 10 % anatase

(TiO2) is used as internal standard.
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Figure 4.10: The PANalytical CubiX PRO X-ray diffractometer used in this study.

Since X-ray diffraction determine the relative amount of each phase by comparing the

positions and intensities of the diffraction peaks against a library of known crystalline

materials, having known the amount of crystalline phases in the calcined material, the

amorphous material (metakaolinite) can be approximated indirectly as:

Yam = 1−
∑
i

Yi,c (4.6)

where Yam is mass fraction of amorphous material and Yi,c is the mass fraction of crys-

talline phases in the calcined clay material. The approximated mass fraction of the

amorphous material may not entirely be metakaolinite, some unidentified none crys-

talline materials may share some part; for instance amorphous silica. It is known that

the clay material under study is rich in kaolinite with some quartz impurities. Since

kaolinite, quartz and mullite phases are crystalline they can be easily quantified with

XRD as shown in Figure 4.11. Based on this quantification, the amount of amorphous

phase (metakaolinite) is reasonably approximated.
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Figure 4.11: XRD pattern of the as received clay sample and its calcines at different
calcination temperature.



Chapter 5

Result and discussion

This chapter presents the outcome of the study supplemented with discussions in relation

to the available literature. Results are presented in different sections where the values

of kinetic parameters are computed, comparison of experimental data with model predic-

tion are established and composition of phases are explained. Lastly, a detailed results

predicted by the model at different calcination conditions are presented, with brief sen-

sitivity analysis on the impact of the most important calcination conditions such as gas

temperature, residence time and kinetic parameters.

5.1 Kinetic parameters

Based on the experiments performed in chapter 4, kinetic parameters for kaolinite de-

hydroxylation reaction are determined. The calculated experimental values of kinetic

parameters are given in Table 5.1 along with the “average” value which is explained

in Paper 2. Other kinetic parameters collected from literature are also given in the

same table for comparison purposes. Generally, the values are so diverse that they can

influence the rate of reaction significantly. Figure 5.1 illustrates the impact of kinetic

parameters on the rate constant, k, which is expressed in terms of Arrhenius relationship

as, k = Aiexp(−Ei/RT ).

49
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Table 5.1: A summary of kinetic parameters for kaolinite dehydroxylation from liter-
ature and experimental values of this study

E(kJ/mol) A(s−1) Method Source Reference

177 4.57× 108 Thermal Analysis, DTA Florida, USA [Kissinger, 1956]
193 1.0× 109 Thermal Analysis, TGA Georgia, USA [Bellotto et al., 1995]
196 9.6× 108 Thermal Analysis, TGA India [Saikia et al., 2002]
195 8.58× 1014 Thermal Analysis, DTG Rep. Czech [Ptáček et al., 2011]
163 2.0× 1012 Thermal Analysis, TGA USA [Levy and Hurst, 1993]
176 1.66× 1011 TGA, SDT 2960 EU Experiment-I
189 2.7× 109 TGA, STA 409 PC EU Experiment-II
180 6.3× 109 – EU Average value

0

30

60

90

120

150

500 700 900 1100 1300 1500

Ra
te
 c
on

st
an
t, 
k[
s‐1
]

Temperature, T[K]

Kissinger Belloto et al. Saika et al. Ptacek et al.
Levy & Hurst Experiment‐I Experiment‐II "Average"

Figure 5.1: The influence of kinetic parameters on the rate constant

Although the experiment is aimed at estimating the kinetic parameters quickly, differ-

ent values of activation energy and frequency factor are obtained for each experiment,

but within the range of values given in literature. A possible reason for the variation

could be the interdependency among the different factors considered. The sample mass,

sample particle size and packing [Schilling, 1990] are among the factors that may af-

fect the shape, precision and accuracy of the experimental results in thermogravimetry.

The sample mass might cause sample temperature to deviate from a linear temperature

change affecting the shape of thermogram during experiment. The particle size may

also cause a change in the diffusion of the evolved gases during reaction which alters the

reaction rate and hence the shape of the DTG curve [Stoch, 1984; Stoch and Waclawska,

1981]. Apart from the above mentioned reasons, the different values of kinetic param-

eters obtained above could also be due to the uncertainty associated with the method

itself, which has been under debate in literature [Michèle et al., 2011; Opfermann and

Flammersheim, 2003; Pijolat et al., 2005; Sesták et al., 2014].
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5.2 Experimental and modeling results of flash calcination

in the GSC: A comparison

As a first effort to validate the model, TGA experiments are used to compare the con-

version profile with model results. The details can be seen in Paper 1, where further

explanation on the little discrepancy observed at higher degree of conversion are made.

The other major effort to validate the model results is using experimental results from

the pilot scale GSC. Paper 2 describes in detail the comparison between the GSC ex-

perimental data and model predictions.

The process conditions inside the GSC are taken into account in the model. There

are two parameters that need attention: the particle size and calcination temperature.

The implementation of the real particle size and real temperature during calcination is

essential to fairly generate representative results. The particle size is implemented based

on the PSD of the feed material (see Figure 4.6), from which 6 representative particle

sizes are finally used (with proper volume percentages) in the model. The calcination

temperature is implemented based on the temperatures measured at different position

in the GSC. Thus, a piecewise-linear temperature profile is implemented in the model.

Detailed description of such implementation can be found in Paper 2.

For those tests done in the presence of secondary burners (Exp-II), the temperature pro-

file along the GSC is nearly constant and uniform. As a result, the nominal calcination

temperature is implemented directly in the model.

Under the above calcination conditions and proper implementation of temperature and

PSD, model results are compared with experimental data. The density and degree of

dehydroxylation are good indicators to evaluate structural changes during the course of

calcination [Davies, 1986; Slade and Davies, 1991]. Hence, a comparison in density is

illustrated in Figure 5.2.

As shown in Figure 5.2, when kaolinite rich clay particles are flash calcined at a given

calcination temperature for about 0.5 seconds, it displays a drop in density of the cal-

cined material at lower calcination temperatures (MK964NB and MK1058NB) and then

density increases with calcination temperature. Such observation is common among

flash calcined kaolinites [Bridson et al., 1985; Slade and Davies, 1991], even soak cal-

cined kaolinites display similar trend in density [Grim, 1953]. When kaolinite is exposed

to temperatures 900 – 1200 K, it tends to lose the structural hydroxyls to form a poorly

ordered structure, metakaolinite. This material is characterized by amorphicity and low

density [Davies, 1986]. As calcination temperature increases, a slow increase in density

is observed which is due to the rearrangement of alumina and silica structures to form a
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Figure 5.2: Comparison between GSC tests and model predictions: density of the
clay samples

dense mullite phase. The X-ray pattern observed for the calcined products in Figure 4.11

is a good indication for the formation of mullite phase at higher calcination temperature

(MK1273WB).

The degree of dehydroxylation, α which implies the amount of crystal water removed

after the kaoilinite rich clay material has been exposed to various calcination condi-

tions, is also another parameter that is used to compare experimental data with model

prediction. The degree of dehydroxylation of the calcined clay at different calcination

temperatures is compared with model results. Figure 5.3 presents a comparison between

the experiments and model prediction.

Figure 5.3: Comparison between GSC tests and model predictions: Degree of dehy-
droxylation
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Despite the presence of some uncertainties associated with the operation of GSC such

as temperature drop along the GSC, the above comparison is generally found to be in

good agreement.

Other experimental data that need to be discussed is, the composition of phases after the

feed clay material has been exposed to different calcination conditions. As it is described

in the previous chapter, XRD and XRF have been a prominent tools to estimate the

mineralogical composition and the amount of phases in the clay sample. The estimation

is made by Rietveld refinement of randomly oriented samples using the known miner-

alogy of the feed clay material as input. As shown in Figure 4.11, it is clear that the

diffraction signals from kaolinite decreases as the the calcination temperature increase.

This is due to transformation of kaolinite into other phases, mainly to metakaolinite.

Unfortunately metakaolinite is amorphous phase and is not shown in the XRD pattern

but can be estimated indirectly. Another interesting observation from the XRD pat-

tern is, the formation of mullite is not shown for all calcined products, except for those

samples exposed to temperatures about 1273 K in the presence of secondary burners

(MK1273WB). This implies that all other calcination temperatures are safe but may not

cause complete transformation of kaolinite to metakaolinite at the given residence time.

Table 5.2 compares the composition of phases in the calcined clay materials with model

prediction. A detailed analysis on the comparison of phase composition between the

experiments and model can be found in Paper 2. Such comparison must account the un-

certainties associated with XRD method, such as, use of anatase as a reference, weighing

of samples, peak-overlap, low signal/noise ratios and poor simulations in Rietveld XRD.

Table 5.2: Experimentally estimated and model-predicted composition of clay samples

Sample
Kaolinite (%) Quartz (%) Amorphous (%) Mullite (%)

Experiment Model Experiment Model Experiment Model Experiment Model

Feed 90-95 94 5-10 6 - - 0 0
MK964NB 10* 31.1 6 6.6 84* 63 0 0
MK1058NB 1 2.5 8 7 91 90.4 0 0
MK1126NB 0 1.23 9 7.7 91 90 0 0
MK1214NB 0 0 9 8.9 91 87 0 1.05
MK1073WB 0 1.2 8 7 92 90.1 0 4.02
MK1273WB 0 0 10 13.7 74 71.76 16 14.4

∗Thermal analysis suggests 27% of kaolinite for MK964NB which leaves the amorphous content to be 66%

A cross-comparison between the C++ model and gPROMS results is also made, as a

kind of model validation effort. The agreement between the two modeling tools verifies

the mathematical approach of the model. Figure 5.4 illustrates the comparison of model

output in C++ and gPROMS, where the temperature profile and the conversion are

compared. Detailed results based on gPROMS ModelBuilder can be found in Paper 3.
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Figure 5.4: The comparison between C++ and gPROMS results (A) temperature
profile at particle center/surface (B) model predicted conversion profile

5.3 Detailed model prediction

5.3.1 Baseline case results

The following detailed explanation on model results is based on the calcination conditions

given in Table 5.3. Since most physical properties are adopted from the bulk properties

of kaolinite clay powder, a spherical kaolinite clay particle having a diameter of 100 µm

is assumed. The model results explained here are similar to those explained in Paper 1

and Paper 2, except that larger particle size and “average” kinetic parameters are used

to simulate the current results.

Table 5.3: The initial properties of kaolinite clay and calcination conditions

Variables Values

Initial density of feed clay particle 2654 kg/m3

mass fraction of kaolinite in particle 93%

mass fraction of silica in particle 6.1%

mass fraction of moisture in particle 0.9%

Initial temperature of clay particle, T0 298 K

Clay particle diameter, Dp 100 µm

Biot number, Bi hTDp/6k

Pore diameter, dp 3× 10−7 m

Porosity, ε 0.5

Ambient gas composition Air (77 wt.% N2 and 23wt.% O2)

Ambient gas temperature, T∞ 1273 K

Radiation temperature, Trad Trad = T∞
Ambient gas pressure, Patm 101,325 Pa
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When a kaolinite particle is plunged into a hot air at temperature 1273 K, it undergoes

a sequence of transformations where the heat and mass transfer profile is given in Fig-

ure 5.5. As shown in the figure, the particle surface temperature is remarkably higher

than the temperature in the center. This is due to convective and radiative transfer of

heat from the surrounding to the particle surface which then transfers to the center by

conduction until the particle attains isothermal condition.
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Figure 5.5: Model predicted profiles in temperature and water vapor at particle
center/surface

As the clay particles experiences temperature gradient within the particle, it also dis-

plays a distinctly different mass fraction of water vapor across the particle radius. The

two peaks observed on the above figure correspond to evaporation of free water and

dehydroxylation, respectively. Since evaporation and dehydroxylation reactions are en-

dothermic reactions, the energy demand by these reactions cause the temperature profile

to be damped; at this instance, the the temperature and vapor mass fraction showed

a clear gradient between the surface and center of the particle. Moreover, the intense

release of water vapor during dehydroxylation gives rise to outward flow of vapor in-

side the solid matrix that offsets the inward heat conduction giving rise to maximum

temperature difference between the particle surface and center during the two reaction

periods.

Figure 5.6 illustrates the variation of kaolinite density as it transforms to metakaolinite

and mullite. The density of kaolinite in the clay particle decreases as the dehydroxylation

reaction starts. Kaolinite is completely depleted at the full dehydroxylation about 0.22

seconds, and transformed to metakaolinite. Further holding on the clay particle in
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the hot air will lead to the transformation of metakaolinite into unwanted products,

e.g., mullite. The particle conversion is deduced based on changes in particle mass.

Accordingly, the conversion, X is computed as,

X = 1−
(mkl +mfw)

(m0
kl +m0

fw)
(5.1)

where, mkl and mfw represent the mass of kaolinite and free water in the clay particle at

time t, while m0
kl and m0

fw denote their initial values in the raw clay particle, respectively.

As shown in Figure 5.6, the particle conversion is plotted against time. The clay particle

attains complete conversion in about 0.22 seconds, at this time the clay product contains

optimum amount of metakaolinite. The 14% of mass loss belongs to the amount of crystal

water liberated during dehydroxylation.

Figure 5.6: Model predicted density of solid species and conversion of the particle

The fact that koalinite undergoes a variation in density during flash calcination has been

experimentally demonstrated [Davies, 1986; Slade and Davies, 1991]. The time at which

the calcined product exhibit lower density has been assigned to the optimum amount

of metakaolinite. According to Bridson et al. [1985], during calcination, kaolinite clay

undergoes a change in density in a trend that depends on the degree of dehydroxylation.

For such cases, an empirical trend is proposed as;

ρ = ρkl(1− βα) (5.2)
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where, ρ is the density of flash calcined product, ρkl is the density of the kaolinite

sample, β is the mass ratio of water in the kaolinite sample (≈ 14%) and α is the degree

of dehydroxylation. The implication of this correlation is, for kaolinite clay having initial

density 2630 kg/m3, the calcined clay material could have a density as low as 2200 kg/m3;

provided that the volume of the clay material is assumed constant. In our model, using

similar kaolinite properties such as, the density of kaolinite and β, as stated in Eq.

5.2, the same trend was observed in density as the empirical correlation established by

Bridson et al. [1985]. In reality, flash calcines undergo a little swelling in volume and

the density of the calcines is observed lower than the empirical trend. Flash calcination

experiments carried out by Slade et al. [1992] are chosen for comparison purposes, where

kaolinite clay sample is flash calcined at 1273 K for 0.5 seconds in nitrogen atmosphere.

Different calcines are produced at different degrees of dehydroxylation by controlling the

residence time. The calcines exhibit lower mean density than the suggested empirical

trend; this is due to the presence of voids in their structure. Figure 5.7 illustrates

the variation in density of kaolinite with degree of dehydroxylation for flash calcination

experiments performed by Slade et al. [1992], the trend suggested by Bridson et al. [1985]

and the model prediction. The agreement between model and the empirical trend is due

to the assumption of negligible volume change during calcination.
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Figure 5.7: The changes in density of kaolinite as a function of degree of dehydrox-
ylation during calcination: comparison between experiment, empirical correlation and

model prediction.

In an attempt to locate the optimum amount of metakaolinite, Figure 5.8 illustrates the

variation in density of the kaolinite model against time. The density of the calcined clay
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products, ρ is calculated based on the mass fraction of individual solid species and their

respective true density, which is given as,

ρ =
(∑

i

Yi
ρi

)−1
(5.3)

where, Yi and ρi represent the mass fraction and material density of ith solid component

in the clay particle. The material densities used in this model are 2589, 2550, 3100, 2650,

2200 and 2270 kg/m3 for kaolinite, metakaolinite, mullite, quartz, silica and cristobalite,

respectively [Al-Akhras, 2006; Database, 2013].

Figure 5.8: The variation in model predicted density of the calcined product as a
function of time

It is evident from the graph above that for the calcination conditions specified above,

most of the kaolinite particle gets dehydroxylated between 0.2–0.3 seconds. This obser-

vation is consistent with literature [Cadoret, 2005; Salvador and Davies, 1994].

The significance of convection, diffusion and chemical reaction during calcination has

been examined for the particle model by using Peclet-Thiele mapping [Cardoso and

Rodrigues, 2007; Lopes et al., 2009]. In order to assess the relative effect of chemical

kinetics and mass transport through convection and diffusion, dimensionless parameters

are used. Thiele modulus, φ is one of these parameters used for physical interpretation of

the two time scales involved in the system; reaction and diffusion. Its value is computed

as,

φ =
Rp
3

√
Sg

ερgDeff
(5.4)

The influence of convection on the mass transfer of vapor can also be evaluated based

on the Peclet mass transfer number, Pem which compares the ratio of convective to
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diffusive mass transfer as:

Pem =
RpU

3Deff
(5.5)

The regime diagram suggested by Cardoso et al. [Cardoso and Rodrigues, 2007] and

Lopes et al. [Lopes et al., 2013, 2009] is based on the values of Peclet and Thiele modules.

Accordingly, the different regimes illustrated in Figure 5.9 characterize the interaction

between chemical reaction, diffusion and intra-particle convection during the process.

Thus, when the dominant phenomena are convection and diffusion, the flow is charac-

terize by small values of Thiele modulus (φ2/Pem � 1). For smaller Peclet numbers

(Pem � 1), and (φ2 ≈ 1), diffusion and reaction are the dominant mechanisms. Inter-

mediate values of the Thiele modulus (φ2/Pem ≈ 1) illustrate convection and reaction

are limiting during the process. As shown in the figure (dashed lines), the Pem values

lie between 0 and 0.8 while the φ2 values lie between 0 and 1.1. Thus, the flow regime of

kaolinite dehydroxylation falls in the region where Diffusion-Convection-Reaction plays

significant role. This ensures the importance of incorporating the diffusion, convection

and reaction terms in the model. Based on the regime indicated for calcination process

(dashed line) in the Figure 5.9, it can be generally suggested that diffusion is a dominant

phenomena during calcination kaolinite rich clays. To be more specific, the small values

of Thiele modulus (0 ≤ φ2<1.1) and Peclet number (0 ≤ Pem<0.8) indicate convec-

tion, diffusion and reaction kinetics have a major impact during the process of thermal

calcination, with diffusion being dominant over others.

Figure 5.9: Regime diagram for convection, diffusion and chemical kinetics repro-
duced from Literature [Lopes et al., 2009] showing a specific region that belong to the

calcination process of kaolinite clay (dashed line)
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5.3.2 Sensitivity analysis

The parameter values and assumptions of any model are subject to change. The main

aim of performing sensitivity analysis is to investigate the potential change of parameters

and their impact on the conclusion to be drawn from the model. In this study, a

sensitivity analysis is performed to examine the effect of calcination conditions (e.g.,

calcination temperature, time), clay particle properties (e.g., particle size) and some

uncertain model inputs (e.g., kinetic parameters) on the final property of the calcined

clay material. Detailed sensitivity analysis can be found in Paper 3.

Calcination temperature and time

As it is mentioned earlier, the thermal transformation of kaolinite into different phases is

entirely dependent on calcination temperature. As the calcination temperature increase,

there is high risk of formation of the undesired product called mullite that influence

the pozzolanic property of the final product negatively. In order to investigate the

sensitivity of calcination temperature on the property of the final product, the gas

temperature has been varied from 1073 K to 1373 K and the impact on conversion profile

is studied. Figure 5.10(A) depicts the effect of calcination temperature on the conversion

of the kaolinite clay model. It is shown that, the higher the temperature, the faster the

conversion to metakaolinite. However, the amount of metakaolinite is observed to be

depleted as temperature and residence time increase. This is due to the transformation of

metakaolinite into undesired phase. Figure 5.10(B) illustrates the impact of calcination

temperature and residence time on the amount of metakaolinite. Thus, it is apparent

that the right residence time and calcination temperature are extremely important to

obtain maximum concentration of metakaolinite in the final calcined product.

Figure 5.10: Sensitivity of calcination temperature and time on (A) model predicted
conversion (B) model predicted mass fraction of metakaolinite
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Particle size

Clay is composed of a number of tiny particles with several dimensions as shown in the

experimental section. with this regard, sensitivity analysis on the particle size gives an

overall idea on how the different particles behave during calcination. To investigate the

effect of particle size on model results, different particle sizes that range from 25 µm to

150 µm are assumed and their impact on the conversion is studied. Figure 5.11 illustrates

the impact of particle size on conversion.
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Figure 5.11: Sensitivity of particle size on model predicted conversion

As shown in the figure above, the conversion profile is a strong function of particle

size. Thus, smaller particles are observed to attain full conversion rapidly, whereas

larger particles of diameter 150 µm, the intra-particle heat and mass transfer resistances

become more important than the external heat and mass transfer resistance and this

delays the time of full conversion.

Kinetic parameters

Since the expression of reaction rates is based on Arrhenius type of dependence which

is interpreted in terms of kinetic parameters (E and A), the influence of these param-

eters on thermal calcination of the kaolinite model is unquestionable. A number of

kinetic parameters have been reported in the literature, specially for dehydroxylation

reaction step. Table 5.4 summarizes some selected values of kinetic parameters given for

dehydroxylation of kaolinite from the literature.
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Table 5.4: A summary of kinetic parameters for kaolinite dehydroxylation from liter-
ature

E(kJ/mol) A(s−1) Method Source Reference

177 4.57× 108 Thermal Analysis, DTA Florida, USA [Kissinger, 1956]
193 1.0× 109 Thermal Analysis, TGA Georgia, USA [Bellotto et al., 1995]
196 9.6× 108 Thermal Analysis, TGA India [Saikia et al., 2002]
195 8.58× 1014 Thermal Analysis, DTG Rep. Czech [Ptáček et al., 2011]
163 2.0× 1012 Thermal Analysis, TGA USA [Levy and Hurst, 1993]
180 6.3× 109 Thermal Analysis, TGA EU this work

Here, the influence of the above mentioned kinetic parameters on the degree of con-

version of kaolinite model has been investigated and compared with the experimentally

determined kinetic parameters in this study. Figure 5.12 illustrates the impact of ki-

netic parameters on the conversion profile of the model. Consequently, the sensitivity of

kinetic parameters can be judged from the different conversion profiles observed in the

figure.
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Conclusion

This section brings the summary and conclusions made out of the study. Recommenda-

tions are also made to further improve the existing research work based on more reliable

inputs and suggestions on the particle model.

6.1 Final remarks

Thermal calcination of kaolinite has been of current interest in cement and concrete

industry. Based on its application for the intended use, the calcined material needs to

have high concentration of the pozzolanic active material, metakaolinite. Besides, flash

calcined metakaolinite displays typical properties that enhance the materials pozzolanic

property. As flash calcination is a very quick process that could yield a calcined product

in a fraction of seconds, modeling of such processes enable us to capture and understand

the inter-particle processes during transformation.

In this work, thermal calcination kaolinite rich clay particles is studied by using both

modeling and experimental approaches. Both modeling and experimental results show

a good agreement.

A comprehensive mathematical model has been successfully developed for clay particle

calcination, which sufficiently addresses the key intra-particle processes and the particle-

ambient flow interaction. The model reliably predicts favorable production path that

may able to achieve an optimum amount of the desired product, namely metakaolin-

ite. Based on the kinetic, physical and thermodynamic data used in the model, when

kaolinite rich clay particles are plunged into a hot gas atmosphere, the clay particles are

observed to dehydroxylate quickly. The speed at which the kaolinite clay is converted

into metakaolinite depends on the calcination temperature, particle size and other inputs

63
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such as kinetic parameters. Simulation of kaolinite particle model in different calcination

temperature has predicted interesting results that may give a full picture on the opera-

tion conditions of a flash calciner. Generally, there are three entirely correlated factors

that may influence the process: calcination temperature, particle size and the yield of

metakaolinite. In order to achieve optimum amount of metakaolinite, a compromise

is important among the above parameters. Clay particles exposed to high calcination

temperatures (>1273 K) may exhibit not only faster conversion but also faster phase

transformation into undesired material. Again, lower temperatures (<1073 K) may re-

quire longer residence time and may not have the risk of phase transformation. Based

on these observations, calcination temperatures 1173 K–1273 K may hold a reasonable

tradeoff in the amount of metakaolinite and residence time. At such calcination tempera-

tures, even though the model predicts lower residence time (0.2 – 0.3 s), when calcination

continues for half a second (0.5 s) the calcined material still contains sufficient amount

of metakaolinite enough to be used as an input in concrete production.

From the modeling perspective, the physical and thermodynamic properties that char-

acterize clay particles are found to limit simulation results. The complex nature of clays

is also another factor that may result in diverse values of kinetic parameters. The sensi-

tivity analysis on kinetic parameters revealed the influence on dehydroxylation process.

In such cases of uncertainty, tuning the kinetic parameters based on experimental results

can provide a good estimation of their values.

Flash calcination experiments in a gas suspension calciner are presented for a residence

time of 0.5 seconds. Under different calcination temperatures, the composition of the

calcined material is experimentally examined. In all cases, the calcined product is ob-

served to comprise high amount of the required material, metakaolinite. Yet, optimum

amount of metakaolinite is noticed at higher temperatures; except for temperatures at

1273 K in the presence of secondary burners. This observation is in agreement with

model prediction. However, the need for a stable temperature inside the calciner is

important to mention.

6.2 Future work

As there is only a little work reported in the literature about modeling calcination of

kaolinite clay, some recommendations that might help to further improve the results of

this study are described below.

In order to gain more fundamental insight on the calcination process, the reaction rate on

the more influencing reaction step, which is dehydroxylation, might need more refinement
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and better expression. Owing to the sensitivity of the calcination process towards kinetic

parameters and the difficulty of determining these variables, as briefly stated in this work,

rate expressions that are based on Arrhenius equation could contribute to the major

share for such uncertainties. A new paradigm shift may be necessary in expressing the

reaction rates for solid-gas reactions as described in [Favergeon et al., 2013; Michèle

et al., 2011]. These expressions may somehow solve the doubts on predicted properties

that vary significantly with kinetic parameters.

From the perspective of the particle model, the first question that might appear could

be whether one dimensional approach is sufficient to model the complex structure and

nature of clays. Two dimensional or fully three dimensional structure of kaolinite clay

particles could be more appropriate to address the intra-particle transport phenomenon

and any structural change, if proper description of particle shape is available.

In the entire SCM project, a lot of good efforts are made on the processes at the down-

stream side of the calciner, e.g., comprehensive characterization of the calcines obtained

under various calcination condition, and concrete tests by using the calcined clay in con-

crete. In this thesis, models for single clay particle calcination are successfully developed

and validated. However, all these are far from being enough, in terms of cost-effective

innovative design of smart, energy-efficient large-scale gas suspension clay calciners. To

achieve this, advanced CFD simulation of the reacting particulate flow system in the

calciner must be performed, in which all the highly coupled sub-processes (e.g., com-

plicated particulate flow, heat transfer, clay particle conversion, particle agglomeration

and so on) must be appropriately addressed. The CFD simulation of the entire calciner

must be somehow validated (e.g., by experimental data) to assure that a reliable CFD

modeling capability for such a gas suspension flash calcination process is established.

Only after that, a true understanding of the details in the calciner and the impacts of

various factors can be reliably achieved (e.g., via CFD model-based sensitivity study),

and smart, energy-efficient large-scale gas suspension calciners can be designed and op-

timized in a reliable and cost-effective way (i.e., mainly based on the CFD capability,

with proper combination of experience and a few tests and adjustment).
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Llópiz, J., M. Romero, A. Jerez, and Y. Laureiro (1995). Generalization of the Kissinger

equation for several kinetic models. Thermochim. Acta 256, 205–211.

Lopes, J., M. Alves, M. Oliveira, S. Cardoso, and A. Rodrigues (2013). Internal mass

transfer enhancement in flow-through catalytic membranes. Chem. Eng. Sci. 104,

1090 – 1106.

Lopes, J., S. Cardoso, and A. Rodrigues (2009). Convection, diffusion, and exothermic

zero order reaction in a porous catalyst slab: Scaling and perturbation analysis. AIChE

J. 55 (10).

Lothenbach, B., K. Scrivener, and R. Hooton (2011). Supplementary cementitious ma-

terials. Cem. Concr. Res. 41 (12), 1244–1256.

Lu, H., W. Robert, G. Peirce, B. Ripa, and L. L. Baxter (2008). Comprehensive Study

of Biomass Particle Combustion. Energy & Fuels 22 (4), 2826–2839.

Massazza, F. (1993). Pozzolanic cements. Cem. Concr. Compos. 15 (1993), 185–214.

Mehta, B. Y. P. K. (2002). Greening of the Concrete Industry for Sustainable Develop-

ment. Concr. Int., 23–28.

Meinhold, R., H. Atakul, and T. Davies (1992). Flash calcines of kaolinite: kinetics

of isothermal dehydroxylation of partially dehydroxylated flash calcines and of flash

calcination itself. J. Mater. Chem. 38 (9), 913–921.

Meinhold, R. and S. Salvador (1994). A comparison of the kinetics of flash calcination

of kaolinite in different calciners. IChemE 72 (part A), 105–113.
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Ptáček, P., F. Šoukal, T. Opravil, J. Havlica, and J. Brandštetr (2011). The kinetic
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