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1 INTRODUCTION.

1.1 Background and Motives.

In the last two decades the research tool fracture mechanics for concrete has been developed,
as it has become clear that the traditionally applied calculation tools ( elasticity theory and
plasticity theory), not always are applicable of describing certain phenomenons in concrete
fracture. The tool has also been applied by material researches developing new ultra strong
ductile materials, e.g. Compact Reinforced Composites (CRC).

The compressive strength of concrete has in the same period increased dramatically, and
compressive strength over 100 MPa by using conventional techniques has been obtained. The
increase in strength is followed by an increase in the brittleness of the materials, and it has
been assumed that the conventional techniques do not suffice for these new brittle materials.

One of the most important models which describes the fracture process of concrete in tension
is the fictitious crack model developed by Ame Hillerborg and his co-workers at the
University of Lund, Sweden. The fictitious crack model is a nonlinear fracture mechanical
model, based on observations made in a displacement controlled tensile test.

One of the phenomenons which can be described by using the fictitious crack model, is the
well-known size effect on the bending tensile strength. It can also be proved that the
brittleness of a structure is dependent on the size of the structure, explaining why large
structures are cracking more than small structures.

There are two major problems by using the fictitious crack model. Firstly, that the material
parameters which describe the model must be found by performing a stable deformation
controlled tensile test, which is almost impossible for high strength concrete. Secondly, that
it is almost always necessary to use numerical methods, and only in very special cases are
analytical methods developed.

Most of the developed numerical methods are either not stable or are not able to calculate
the entire load-displacement curve. The analytical methods are in general very time
consuming, not accurate enough or do not describe size effects.

Therefore, it would be welcome if powerful numerical techniques, simple accurate analytical
models and indirect methods for determining the constitutive parameters were developed.
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1.2 Scope of Thesis.

On the basis the previous scope of this thesis is presented, as a listing of topics.

The main scope of the thesis is;

Development of numerical and analytical fracture mechanical techniques, examination of the
applicability of these techniques on high strength concrete structures and to develop indirect
methods for determination of the constitutive parameters.

The above scope of the thesis can be divided into the following topics and a list of general
limitations.

Topics

The development of fast numerical methods which are applicable for brittle
structures and which can calculate the entire load-displacement curve.

The development of approximate analytical methods where the calculation time
is smaller than that of the numerical methods, and which enables the
development of explicit analytical results.

To develop experimental techniques which can perform stable three-point
bending tests

Perform experiments with high strength concrete in order to investigate size
effects and to study the brittleness of the strong material.

Develop methods for indirect determination of the constitutive parameters in
the fictitious crack model.

Limitations,
The following limitations are general in this thesis.

The compressive strength is assumed to be so large that compressive failure
will not occur.

The fictitious crack model will be used.

It is in general assumed that the softening relation is piece by piece linear.
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The structure outside the crack is assumed to be modelled satisfactory by
linear elasticity theory.

In chapter 3-5 only the three-point bending geometry is considered.

1.3 Readers Guide.

In the following it is the intention to give the reader a preliminary overview of the thesis,
which enables more selective reading.

After the introduction, chapter 2 is used to give an overview of the factors that governs
strength and cracking of normal- and high strength concrete, Models for cracking in concrete
are evaluated, and a few examples which illustrates size effects and brittleness in concrete
are presented.

The chapters 3-5 are the main body in the thesis.

In chapter 3, different numerical methods which have been developed for use with the
fictitious crack model are presented and stability problems by using the models are described
and solved.

Chapter 4 is devoted to analytical models which take the softening behaviour of concrete into
consideration. Also two models which are developed for lightly reinforced concrete are
presented.

In chapter 5 an experimental investigation of 8 different beam geometries of a high strength
concrete is presented. Fracture parameters by using different fracture models are presented,
and size effects are observed. The numerical method is applied to determine the fracture
parameters by curve fitting.

An overall summary and conclusion is given in chapter 6.

At the end of the thesis there are 6 appendixes which contain the list of notation, all the
fracture results and the load displacement curves of the performed experiments.

The references in the text can be found in the list of references in the last section of the
individual chapters.
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2 FRACTURE AND FRACTURE MODELS OF
CONCRETE.

After a description of concrete and the fracture process of concrete a review of the most
important models which are used to describe concrete fracture will be given. A short
presentation of linear elastic fracture mechanics (LEFM) is given with emphasis on
terminology and definitions. Four different non-linear elastic fracture mechanical (NLFM)
models which are widely accepted are presented. The models are compared and the
applicability of each model is evaluated. Finally the terms ’size effect’ and ’brittleness’ is
discussed and different examples and stability problems is examined by using LEFM.

2.1 Fracture of Concrete and High Strength Concrete.

Concrete is a heterogeneous anisotropic non-linear inelastic composite material that consists
mainly of cement, aggregates (sand and gravel) and water. In high-strength concrete (here
defined as concrete with a compressive strength above 50 MPa) mineral admixtures and
water reducing additives are usually present.

Wittmann (1983) suggests to consider concrete on three different levels: the micro-level
where the structure of the hydrated cement is considered, the meso-level where large
inhomogeneities such as larger aggregates and flaws are taken into consideration and the
macro-level where the concrete is assumed to be a homogeneous isotropic continuum.
Accordingly cracks are categorized as follows:

Micro cracks : Cracks that can only be observed by an electron microscope.
Meso cracks : Cracks that can be observed using a conventional microscope.
Macro cracks : Cracks that are visible to the naked eye.

Depending on the purpose of the investigation the appropriate level should be chosen.
However, it will often be fruitful to develop a model at one level based on observations at
a lower level. In practice models which should apply for the practical engineer will be on the
macro-level.

In this chapter emphasis will be on subjects related to strength and cracking of concrete.
Strength of concrete will mainly depend on the strength and stiffness of the hardened cement
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paste, on the strength of the aggregates and on the bonding between the cement paste and the
aggregates. The strength of the cement paste and of the aggregates will to a great extent
depend on the porosity. This is explained in two different theories: fracture mechanics by
Griffith (1921) and the weakest link theory by Weibull (1932). These two theories will be
presented in detail later.

The difference between normal strength concrete (NSC) and high strength concrete (HSC)
lies in the difference in the microstructure. According to Rice (1977) "depends strength and
Jracture in ceramics critically on microstructural extremes rather than on averages" and
according to Mai (1991) "..but we want to re-emphasize here the need to understand the
Physical mechanisms of the bridges and the mechanics of crack-bridging. It is such knowledge
that teaches us to design better ceramics through the control of micro-structures, such as
grain sizes...". Thus, in order to understand the fracture process, which is necessary for
developing realistic fracture models, and to explain the difference between normal and high
strength concrete this presentation starts on the micro-level.

2.1.1 Concrete on the Micro-level.

Each component of concrete will first be described with emphasis on NSC, then HSC will
be described under the section mineral admixtures.

Portland Cement.,

In the experiments performed in connection with this thesis the Danish low alkali sulphate
resistant portland cement certified as PC (A/HS/EA/G)! was used.

Cement powder consists of particles with typical sizes of 1-50 um, see Fig. 2.1:. The
specific surface (the blaine) is typically 350 m“/kg. By increasing the blaine it is possible to
obtain high early strength. The long term strength is, however, not affected by the blaine,
Swammy (1986).

The solid phases of portland cement consist of four principal minerals: alite (impure
tricalcium silicate (C;S)? ), belite (impure dicalcium silicate (C,S)), impure tricalcium
aluminate (C3A) and a ferrite solid solution (tetracalcium alumina ferrite (C4AF or Fss).
When these are mixed with water several chemical processes, called the hydration process,
start. The outcome of the hydration process is the hydration products. The calcium silicates
react with water to give calcium silicate hydrates (C-S-H) and calcium hydroxide (C-H). The
aluminate and the ferrite phases react with added gypsum (calcium sulfate (CaSO,)) to give

! According to the Danish code: DS-SBC 227

2The customary cement nomenclature is used: Calcium oxide - CaO = C; Silicium oxide
- 8i0y = §; Aluminum oxide - Al,0;3 = A; Water - H=H,0;
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Fig. 2.1: Grain curves for micro silica, fly ash, cement and sand, Herholdt et al. (1985).

two types of products, referred to as AFt (Ettringite) and AFm, see Table 2:. If gypsum is
not added the C;A will almost instantly react with water making the setting time very short,
Herholdt et al. (1985).

Clinker Con- Hydration prod- | Morphology

mineral tents ucts

C,S 58% C-S-H and C-H | Of C-S-H: Wide range of morphology;
Early: Fibrillar or honeycomb structure;
Later: More dense

C,S 24% C-S-H and C-H | Of C-H: Euhedral hexagonal habit

C;A 4% AFt Hexagonal rods

C4AF 8% AFm Hexagonal plates

Table 2: Constituents of cement.

The C-S-H is the most important component in concrete and together with C-H it controls
the strength development and most other macroscopic properties of the hardened cement
paste. The other clinker minerals and gypsum are important during cement clinker
production, in regulation of setting time and important rheological properties, Skalny and
Roberts (1987).

It is in general difficult to follow the hydration process, and especially in the early phases.
However, some results can be given of the mechanical details of the microstructural
development during hydration by using e.g. the scanning electron microscope (SEM) or the
high voltage electron microscope (HVEM). In the HVEM it is possible to install an environ-
mental cell which makes it possible to study the hydration process as early as after 10 min

10
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mixing.

The hydration process is an exothermic reaction, and the overall progress in the hydration
process can be studied under adiabatic conditions. The heat development for each clinker
mineral is different and is approximately 500 J/g for the cement taken as a whole. However,
the rate-of-heat evolution curve is, of considerable more interest since it determines the

BOi

50

40

30

20

N

¢ 10 20 30 40 50 60 70 80 90 100
Time [h]

Rate of heat [KJ/kg h]

0

Fig. 2.2:. Rate of heat evolution curve, Herholdt et al. (1985).

temperature and the temperature gradients in the concrete. A typical rate-of-heat curve is
seen in Fig. 2.2:.

By referring to the rate-of-heat evolution curve the hydration process can roughly be divided
into three phases: early (0-3 hrs), middle (3-24 hrs) and late (beyond 24 hrs). An illustration
of the development of the microstructure of a cement grain during hydration is shown in
Fig. 2.3: a-e.

In the early phase, termed the induction period, the cement remains fluid and a large amount
of heat is developed, see Fig. 2.2:. In Fig. 2.3:a. a typical anhydrous cement corn consisting
of C48, C;A and C,AF is shown. The C,S is omitted since it basically performs the same
processes as (C;S).

Immediately when the cement surface and the water come in contact the hydration starts.
Calcium, aluminates and other ions are released into the solution forming an aluminate and
silica rich gel layer, Skalny and Roberts (1987), Scrivener (1989) and Herholdt et al. (1985).
As early as after 10 minutes hydration small rods of AFt which have nucleated in the gel,
can be observed. At the end of the induction period the reaction of the tricalcium silicate
begins which leads to the formation of C-S-H where the rods of AFt have nucleated. That
is outside the original boundary of the cement grain which leaves a space of approximately
1 pm between the anhydrous cement grain and the AFt and the C-S-H. These products are

11
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Fig. 2.3: The hydration process. a) unhydrated. b) -10 min. c) -10 hrs. d) -18 hrs. ¢) 1-3
days. f) -16 days. g) years, Scrivener (1989).

referred to as the outer product, Skalny and Roberts (1987) and Mehta and Aitchen (1990).
This mechanism continues with the formation of C-S-H at the outer surface increasing the
distance between the core and the shell. After about 16 hrs the AFt rods start to grow again
through the shell of C-S-H. At the end of this phase all grains smaller than 5 um are
completely hydrated leaving hollow shells of hydration products, Scrivener (1989). As the
shell of hydration products thickens the shell becomes less permeable and will eventually
prevent the water transport in the system which ends the second phase.

The subsequent hydration which continues infinitely will then be a slow solid state process
decreasing the distance between the core and the shell. These products are often referred to
as the inner products, Skalny and Roberts (1989), Scrivener (1989) and Mehta and Aitchen
(1990). The hydrated cement grain will thus consist of the porous outer products and the
more dense inner products.

This explains why the fracture path will go through the outer products rather than the inner
solid products as revealed by SEM studies of fractured surfaces. Thus, the larger amount of

inner products that can be achieved the stronger is the cement paste. This is obtained by low
water/cement ratios, mineral admixtures and super plasticizer, Mehta and Aitcin (1990).

Coarse Aggregates,

The strength of the coarse aggregate, usually with maximum sizes up to 64 mm, is controlled

12
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by the amount and sizes of cracks and by the amount of weak minerals. A high quality aggre-
gate is therefore clean, free of clay and silt, well graded and with a high density. Certain
types of aggregates have a strengths up to 200 MPa, Mehta and Aitcin (1990). It is usually
assumed that the strength of the aggregates does not have a significant influence on the
compressive strength, but as shown by Aitchen (1990) this is not the case for high-strength
concrete. It is therefore evident to use high quality aggregates in high-strength concrete.

Bonding

The final important aspects in concrete strength is the role of the bonding between the cement
paste and the aggregates. The aggregates depending on shape, size and surface texture will

Fig. 2.4: SEM photo of the transition zone. a) (1) Silicious aggregates; crack along edge and
(2) oriented C-H crystals. b) (2) Limestone aggregate; crack in cement paste beyond a zone
of calcite reaction (1) and CaSO; crystals, Regourd (1984).

block the water distribution during bleeding. This leads to a locally increased water/cement
ratio at the paste aggregate interface. This increase leads to a change of the microstructure
next to the aggregates, termed the transition zone typical 40-50 ym wide. In addition to
larger porosity due to the bleeding there are generally large crystals of C-H in the transition
zone with a referenced orientation, Mindess (1989), see Fig. 2.4: and Fig. 2.5:. The weakest
zone in the transition zone does not lie at the physical interphase but 5-10 um away from the
aggregate. The fracture will often run in the oriented C-H crystals. It is often assumed that
the transition zone only represents a fraction of the entire volume of the concrete.
Microscopical investigation by Diamond, Mindess and Integers (1982), has revealed that the
mean distance between the aggregates is about 75 - 100 um which means that most of the
hardened cement paste lies in the transition zone. These observations indicate that the
strength of the transition zone is of outermost importance in the description of concrete

13
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AGGREGATE —= enoesil -
Transition Zone Bulk Cemant Poste

’

Fig. 2.5: The transition zone between the aggregates and the cement gel, Mehta (1986).

strength.
Mi mi

The mineral admixtures are e.g. puzzolans, blast-furnace slag, fly ash and water reducing
additives. Puzzulanes e.g. micro silica are extremely fine particles with a size of 20 nm- 500
nm while fly ash have almost the same size distribution as cement, see Fig. 2.1:. The micro
silica is added to make the concrete more dense, i.e. it will fill out the voids which are too
small for the cement corn and the hydration products, see Fig. 2.6:. Micro silica is not
reacting with water but with the hydration product calcium hydroxide, making the hardened
cement paste more homogeneous and dense. When micro silica is added the transition zone
also changes. The micro silica will react with the oriented C-H which is the weak part of the
transition zone, thus the interface between the cement gel and the aggregate is strengthened,
Sarkar and Aitcin (1987).

Since it is very difficult to disperse the small micro silica particles in the cement pastes it
will always be necessary to add water reducing additives (WRA), which will increase the
workability,. The WRA can be categorized into three groups: a) lignosulphonates b)
sulphonated melamine-formaldehyde condensates and ¢) sulphonated naphtalene-formaldehyde
condensates. a) is also having a retarding effect and is often referred to as a plasticizer. The
groups b) and c) are referred to as super plasticizer due to their low retarding effect which
allows an increased dosage, FIP/CEB (1990). A combination of the two types of products
will therefore often be used.

14



2. Fracture and fracture models of concrete

Fig. 2.6: Micro silica concrete. a) Silicious aggregates (1) no crack and no oriented crystals
of C-H low porosity and amorphous C-S-H (2). b) Limestone aggregate (3) no crack
amorphous C-S-H and calcite reaction (1) some C-H crystals in the matrix, Regourd (1984).

Silica fume and water reducing additives will thus change the microstructure of concrete
significantly making the structure more dense, see Fig. 2.6:.

2.1.2 The Fracture Process in Compression.
Depending of the level of the investigation each part of NSC can be thought of as a

composite material that consists of stronger particles which are embedded in a weaker matrix,
see Table 3:.

Level Material Strong Particles Weak Matrix
Micro Cement paste Inner Products Outer Products
Meso Mortar Sand Cement Paste
Macro Concrete Gravel Mortar

Table 3:. Strong and weak particles classified depending on the considered level.

Consider the stress- strain curves for aggregates, concrete, and cement paste see. Fig. 2.7:.
It is observed that the curve for the gravel is almost linear until 95% of the failure load and
that the failure is very brittle. The stress-strain curves for the other materials are non-linear.
This is probably due to cracking at the different levels.

15
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STRESS
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Fig. 2.7: Stress-strain curves for aggregates, concrete and cement paste, Mindess (1983).

The fracture process on the micro-level related to the stress-ss wtrain curve, has as far as the
author knows, only been studied for cement paste and mortar, and only by Attiogbe and
Darwin (1987). A very large study (150 specimens) of microcracking in cement paste and
mortar was made in order to understand the non-linear behavior of those two materials. The
examination was performed in a scanning electron microscope with a magnification of 1250
x or 2500 x (cracks with widths below 2.5 um). They concluded that cracks run through C-
S-H and C-H in the cement paste. In the mortar the cracks are also running at the interface
between the sand and the cement paste. The result were presented as crack densities at
different stages of loading. For both materials it was observed that a substantial amount of
cracking was initial cracking. For the cement paste almost 50% of the cracking at failure
were initial cracks whereas it was approximately 30% for the mortar. However, during
loading the crack densities where growing more rapidly in the mortar than in the cement
paste. Whereby they concluded 'Thus, sand particles appear to act as stress raisers that
result in a greater degree of softening and of lower strain capacity for montar than for
cement paste’.

Cracking on the meso-level

Due to the non-linear stress-strain curve for concrete it is beneficial to divide the ascending
branch of the stress-strain curve into four regions and the descending branch as suggested by
Mindess (1983), see Fig. 2.8:.

This is illustrated by Hsu et al. (1963) who by using microscope and x-ray techniques studied
NSC and observed that there initially was a substantial amount of bonding cracks. According
to Stroeven (1975) the increase of the specific crack area during loading is increased with
26% which corresponds to 80% of all cracks were initial. These observations are in

16
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Fig. 2.8: Stress-strain curve for concrete divided into four regions, Ziegeldorf (1983).

accordance with the observation made on the micro-level. These initial cracks are properly
due to swelling, shrinkage and bleeding since swelling yields tangential cracks while cracks
due to creep are radial, Ziegeldorf (1983).

For loads below app. 30-50% of the ultimate load the stress-strain curve is approximately
linear and there is no growth of the initial cracks. Due to crack intensities and the difference
in the elasticity modulus between the mortar and the aggregates bonding cracks start to grow
making the curve increasingly non-linear. Beyond 50% of the ultimate load cracks start to
form in the mortar running between the aggregates parallel with the load direction (indicating
tensile cracks). These cracks grow quasi-statically and this type of crack growth is often
termed slow crack growth. At 75% of the ultimate load a more complex cracking system
starts to develop and the cracks in the mortar coalesce with the bonding cracks and finally
failure occur.

In HSC the same mechanisms can be observed, Smadi and Slate (1989). It can, however, be
concluded:

The amount of cracking is significantly less in HSC than in NSC.
The interfacial cracking is insignificant below 60-70% of the ultimate load for HSC.
Mortar cracking is negligible below 90% of the ultimate load.

By the observations made for HSC it can be concluded that the strengthening of the transition
zone limits the amount of bond cracking and the more homogeneous high-strength cement
paste is more brittle.
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2.1.3 The Fracture Process in Tension.

The tensile strength of concrete is a product of the above observations and the fracture
process will thus be dependent on the strength of each link in the cracking process (cracking
of the paste, cracking of the aggregates and debonding). In normal strength concrete the
cracking process will start as debonding or as crack growth of existing micro cracks in the
cement paste at approximately 80% of the peak load, then new cracks will form and some
will stop due to stress redistributions and due to crack arrest (cracks stopped by stronger
aggregates). These cracks are evenly distributed throughout the specimen. When the peak
load is reached a large amount of cracking will localize in a narrow zone and eventually the
crack that will split the specimen into two will form in that zone. This zone will probably
develop in the weakest part of the specimen.

In high strength concrete the weakest part can both be in the aggregates and in the cement
paste. If the cement paste and the transition zone are the strongest then crack initiation will
probably not start as debonding but instead the crack growth will initiate in the aggregates.
After the peak load is reached all cracking will be limited to the zone. By using laser
holographic Ansari (1987) confirmed these observations and he further observed that the
displacement profile in the narrow zone was varying in a random way.

In the following the fracture process in tension will be described on the macro-level by using
a concrete rod as an example. Consider a concrete rod with the length, L subjected to a
deformation controlled tensile load, P, see Fig. 2.9: . The strain is measured by the strain
gauges A, B, C and D. The strain gauges A,B and C having the length L/3 and D has the

Uniformly distributed Localized zone
cracking / with cracking
\ D
P,AL-— ’i. —>=P AL
. = - = - =
&L &L &
—x

Fig. 2.9: Concrete rod subjected to displacement controlled loading.

same length as the rod. It is now assumed that the crack that eventually will split the rod into
two will develop under strain gauge B. The stress-strain curves for the four strain gauge are

18



2. Fracture and fracture models of concrete

shown in Fig. 2.10:. The ascending branch of the four stress-strain curves are identical
o

Ty

A,B,C,D)

EantcrD

8;' elmu

Fig. 2.10: Stress strain curves for the strain gauges A,B,C and D.

whereas the descending branch only is identical for gauges A and C. This will be explained
in the following.

The elongation of the rod will in general consist of three contributions: a linear elastic part
fully described by the elastic strain, €,, a non-linear part which is due to uniformly
distributed cracking described by the non-linear strain, ¢,, and a part which is due to
increased cracking in the localized zone, w. The total elongation, AL, can then be written

AL = e,L+e,L+w 2.1)

The strain gauge A and C will only measure the two first contributions in eq. (2.1). Strain
gauge B and D will measure all three contribution, but since strain gauge D is three times
longer than B the last term will be divided by L for gauge D and only L/3 for gauges B. Thus,
the strain measured by a strain gauge will be dependent on the length of the gauge and of the
position on the rod. Each term in eq. (2.1) is shown in Fig. 2.11:.

During cracking energy will dissipate into the specimen. The dissipated energy can be
categorized according to eq. (2.1). A certain amount of energy will dissipate more or less
uniformly through the whole specimen and is described by the second term in eq. (2.1) the rest
will be limited to the narrow zone. The total amount of dissipated energy can then be written
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Fig. 2.11: The total elongation of a rod can be divided into three parts. a) linear elastic part
b) non-linear in-elastic part and c) localized part. d) the total elongation.
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where ,A, is the cross sectional area.Thus, the dissipated energy is dependent on the length of
the rod, and of the three material functions f;(), f5() and f3() defined in Fig. 2.11:.

An accurate model which describes the fracture behavior of concrete should, therefore, include
description of all three contributions in eq. (2.1).

2.2 Linear Elastic Fracture Mechanics.

The basis of linear elastic mechanics originated with the pioneer work by Griffith (1921).
Griffith considered glass rods and suggested that fracture in brittle materials arises from small
inhomogeneities such as flaws and cracks. These inhomogeneities yield stress concentrations
as given by Inglis (1913) and he introduced a parameter, the energy release rate, which is a
state parameter related to crack extension. Until a series of catastrophic failures occurred (e.g.
the liberty ships, fatigue in aero planes) researchers did not pay much attention to the theory
developed by Griffith. The theory was further developed by: Irwin (1957) who introduced the
stress intensity factor, Rice (1968) who defined the J-integral, Hutchinson (1968) who took
yielding in front of the crack tip into consideration and Freudenthal (1968) who developed
probabolistic fracture mechanics. In the following the basic ideas of LEFM will be given.

2.2.1 Basic LEFM.
The theories presented in this chapter is basic linear elastic fracture mechanics and can be

found in one of the many text books on this topic e.g. Hellan (1984), Ewalds and Wanhill
(1984), Alibadi and Rooke (1991), Gansted and Serensen (1991).
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F,é

Fig. 2.12:. Arbitrary specimen with an initial crack, energy approach.

Consider a plane arbitrary elastic specimen with the thickness, ¢, and an initial notch of length,
a, which is subjected to a set of boundary conditions and loaded remotely from the crack tip
with an arbitrary load, F, see Fig. 2.12:. The total potential energy, II, in the system is then
given by

I = IL+TIp+I0, 2.3)

where, II,, is the elastic energy content in the body, I, is the potential of the external forces
(body and surface) and, IIg, is the total kinetic energy in the system. It is now possible to
introduce a state parameter termed the energy release rate, G, defined as

G = -1 2.4)
tda
The energy release rate is a pure continuum mechanical parameter and is not necessary related

to crack growth.
However, if crack growth is considered then eq. (2.3) changes to
I = I, +Tp+Ip+0, 2.3)

where, II_, is the fracture potential, that is the energy that dissipates during crack growth. By
assuming that crack growth is only dependent on one parameter, a, the equilibrium condition
becomes (the variation of the total potential shall equal zero)

M _, 2.6)
téa
The fracture criteria can then be written as
oIl
G = - R (2-7)
tda
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Where, R, is the resistance towards crack growth. In general R is a material, geometry and
crack length dependent parameter. In LEFM, R, is assumed to be a material constant termed
the crack driving force, G,.. The fracture criteria is then written as

G=6G, 2.8)

The crack growth is stable if the following stability condition is fulfilled (the second variation
of the total potential shall be positive)

dG . 4R

—_— > =10 2.9

da da &3
For most structures the energy release rate, G, will be an increasing function as the crack

. G
wth, i.e — >0.
growth, i.e =

The above outlined theory, referred to as the energy approach is, however, not adequate as
a design tool and instead Irwin (1957) developed the stress intensity factor concept, which is
based on stresses rather than on energy considerations.

In general fracture can take place in one of three modes or a combination of these. These
modes are opening mode, shear mode and torsion mode. Here only opening mode will be
considered.

Fig. 2.13:. Arbitrary specimen with an initial crack, stress intensity approach.

Consider the specimen in Fig. 2.13:, according to linear elasticity theory the stress distribution
close to the crack tip is described by

K
2xr

where, O is the stress tensor, @ and r are the polar coordinates, Jij» contains trigonometric

a;j(esr) =

_f;j(ﬂ) + higher order terms (2.10)
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functions and, K, is the stress intensity factor. As the coordinate, r, approaches zero the first
term approaches infinity and the extra terms are constant or tends to zero. Consequently the
first term is dominating in the vicinity of the crack tip. Thus, even for infinitely small loads
the stresses next to the crack tip will approach zero making a critical stress as failure condition
meaningless. Irwin (1957) considered the elastic work necessary to close the crack and derived
a relationship between the stress intensity factor and the energy release rate

K = ﬁ (2.11)

The relationship relates the crack driving force to a critical stress intensity factor, X,.. The
fracture criterion can thereby be written as

K=K, (2.12)

The critical stress intensity factor is usually termed the fracture toughness. The designing
engineer is therefore only limited to determine the stress intensity factor and compares it to
the critical value in order to establish if the crack growth. The stress intensity factor is often
written as

K = ofrasteeo) @1

where, g(geo), is a dimensionless function of the geometry, which can be determined analytical
or numerical e.g. the boundary element method, Alibadi and Rooke (1991).

In order to ascertain if LEFM is applicable for a given material it is then necessary to perform
experiments and see if, K, is a material parameter. This will only be the case for elastic
perfectly brittle materials.

2.2.2 LEFM and Concrete.

Many researchers have studied the applicability of LEFM to concrete and only some of the
most important results will be given here, however, reference should be made to Mindess
(1983) and Mindess (1986) where an annotated bibliography from 1928-1986 on fracture and
cracking of concrete is presented with 595 abstracts.

The first to use LEFM on concrete was Kaplan (1964). He performed three and four point
bending experiments on notched beams at different size scales. He found that X is a geometry
and size dependent parameter. He attributed this 'size effect’ to slow crack growth and to
shear.

Walsh (1976) and Higgins and Bailey (1976) made experiments with notched beams of
concrete and hardened cement paste respectively and they observed that X increases with the
beam depth. They further concluded that the fracture toughness tends to a constant limiting
value as the beam size increases. The same trend was observed by Modéer (1979) for concrete
and he suggested that in order to measure a true material parameter the specimen size should
be larger than
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2
4 >10 ﬂ] 2.14)

Ou

where, d, is the beam depth. The condition yields that a beam of NSC should have a beam
depth of more than2overc 2-3 m.

Since HSC is considered a more brittle material than NSC, Biolzi and Tognon (1987) and
Tognon and Cangiano (1989) made three-point bending experiments with NSC and HSC
(Compressive strength from 50 Mpa to 170 Mpa), and they concluded that K, is increasing
with the beam size and with the strength of the concrete. For increasing notch length, X,
increased to a peak value (at notch depth ratio of approximately 0.4) and then decreased.

The reason for the requirement in eq. (2.14) and discrepancies is that a process zone of micro
cracking, debonding, crack arrest etc. will develop in front of the crack tip as described in
section 2.1.3. If LEFM should be applicable this zone, the fracture process zone, should be
small compared to the overall beam dimensions. The relative size of the process zone is
dependent on the size and geometry of the considered specimen and of the material used. It
can therefore be concluded that LEFM is only applicable for large brittle concrete structures
such as solid concrete dams or anchor blocs for large span bridges, Planas and Elices (1989).
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2.3 Nonlinear Elastic Fracture Mechanics.

Since LEFM is not applicable for laboratory sized specimens several non-linear fracture
mechanical models have been developed. The five most accepted models are briefly presented.

2.3.1 The Fictitious Crack Model.
The Fictitious Crack Model (FCM) was invented by Hillerborg, Modéer and Petersson (1978)

and was formulated by Hillerborg (1977) and Petersson (1980), on the basis of the
observations made of a displacement controlled tensile tests as described in section 2.1.3.

o {HHE } ° } ©
1 Oy fw
e C
L+AL w [ B
A
o HHH - "
a} b)

Fig. 2.14: The fictitious crack model. a) simplified rod b) the material function.

Consider the rod in Fig. 2.14: subjected to displacement controlled tensile loading. The rod
is divided into three regions A, B and C. Part A and C are assumed to be linear elastic and
completely described by the elasticity modulus, E, and Poisons ratio, ». Before the tensile
strength is reached part B is assumed to be infinitely small. When the first principal stress
reaches the tensile strength, o, a crack is assumed to develop in part B. The crack is a so-
called cohesive crack, Barenblatt (1962), which is able to transfer stresses according to a
material function, ffJ), only dependent on the distance between the two uncracked parts. The
distance between the two uncracked parts is termed the crack opening displacement, w. As
the crack opening displacement increases the stress will gradually fall and at some critical
opening, w,, the crack is not able of transferring stress and the specimen will split into two.
Since the crack is able to transfer stresses and therefore not a real crack the crack is phrased
a fictitious crack.

For the FCM eq. (2.1) becomes

AL = %L+w (2.15)
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The dissipated energy can thereby according to eq. (2.2) be written as
we
Eggp = ] f(w)ydw (2.16)
0

Since f¢} is a material function the area under the function must be a material parameter, here
termed the fracture energy, Gy, Hillerborg (1983).

The FCM is not well suited for analytical solutions and it is only in simple cases possible to
derive analytical results. Instead the FCM is used together with numerical methods like the
finite element method or the boundary element method, Hillerborg (1976), Petersson (1981),
Carpinteri (1989) Brincker and Dahl (1989), Harder (1990).

The greatest problem with the FC-model is that it is extremely difficult to perform a stable
displacement controlled uniaxial tensile test of a concrete rod and hitherto experiments have
only been made for normal strength concrete.

The first to performed a stable tensile test on NSC, in a very stiff testing machine, where the
descending branch is measured was Evans and Marathe (1968). The methods for obtaining the
descending branch has become more complex and Gopolaratnam and Shah (1984) performed
a large test series in a servo-controlled testing scheme. The most important work seems to
have been performed at Delft University of Technology, where many experiments have been
performed during the last decade, Reinhardt (1985), Wolinski et al. (1987). Among the
problems which has to be overcome are:

The axial and rotational stiffness of the testing equipment.

The nucleation of crack growth from one side of the specimen.

The preparation of the specimens, in order to minimize the above
problem.

Measuring of strains and displacement on the specimens.

If the above mentioned problems is not dealt with the test will either be unstable or an
incorrect stress displacement relation is measured, Hillerborg (1989).
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2.3.2 The Crack Band Model.

The Crack Band Model was invented by BaZant and Oh (1983) and BaZant (1984), and is
similar to the FCM. Instead of assuming that all the deformation in the process zone localize
into a zone of zero width as in the FCM, BaZant assumes that the deformation will localize
into a zone with a width, k., which is assumed to be a material parameter (experimental fit
seems to yield A = 34, where d, . is the maximum size of the aggregates). The softening
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Fig. 2.15: The crack band model a) the simplified rod b) the constitutive relation for the band.

relation can then be formulated as a stress-strain relation instead of a stress - crack opening
displacement relation, see Fig. 2.15:.

This leads to some advantages: a) the model is well suited for FEM calculations, b) triaxial
effects are easily taken into consideration, ¢} some analytical solution can be obtained the most
well-known is the Size Effect Law, Bazant (1984). The disadvantages are that an extra material
parameter is necessary (the width of the process zone).

The dissipated energy can be written as

he & hy
Ezp = J [ o(e)bededx = [ bigedx = Gp 2.17)
0 0 0

where & is the volumetric fracture energy, Elices and Llorca (1989).

The ’size effect law’ is usually written as (only the first term of a Taylor series expansion is
considered)
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. B
u b (2.18)

Mdg

where o/o, is the normalized failure load, o, is the uniaxial tensile strength, d, is the
maximum aggregate size and By, and \, are empirical constants usually determined by linear
regression from experimental data, BaZant (1983). The size effect law will be considered
further in section 2.4

1+

2.3.3 The Two Parameter Model.

The two parameter model was proposed by Jenq and Shah (1986) and is a non-linear model
which assumes a crack tip singularity in front of the real crack. The model belongs to a family
of models donated cohesive crack models with crack tip singularity, Elfgren (1989).

In this model it is assumed that the peak load is reached when the stress intensity factor of an
effective crack (that is the initial crack plus the cohesive crack) and the crack tip opening
displacement at the initial crack tip reaches two critical values, K;.* and CTOD,. The two state
parameters K;' and CTOD are calculated according to LEFM. It is, however, not possible to
measure the CTOD during experiments and instead the crack mouth opening displacement,
CMOD, is measured. By using the inelastic CMOD at peak load the effective crack length can
be found and by using this crack length the two critical state parameters can be obtained.

Several investigations have been made in order to check the applicability of the two parameter
model, Karihaloo and Nallathambi (1991), where it is concluded that the fracture toughness
is essentially independent of specimen depth and that the variation between 0.93 and 1.53

MPa\fm_ is mainly due to variations in the mix properties. They did not conclude anything
about CTOD_, but it is observed that the variation of the CTOD,, is much stronger and that
it is not possible to detect a trend in the observed values, however, Brihwiler et al. concluded
from wedge splitting tests that X’ is size independent but CTOD,, displays a significant size
effect (CTOD,, increases with specimen size). This phenomenon can be explained as follows.
If the considered specimen outside the crack is assumed to be elastic then the crack tip opening
displacement can be written according to the superposition principle

CTOD = CTODp+CTOD,, (2.19)

where CTODy; is the crack tip opening displacement due to the applied load, F, and CTOD,
is the crack opening displacement due to the cohesive stresses. In the two parameter model the
last term is not taken into consideration, Cotterell and Mai (1987) and it is not always a good
approximation to neglect this component. There is also no evidence for the fact that the crack
tip opening displacement should take on its critical value at peak load. Actually more detailed
analysis using the FC model and the boundary element method shows that the CTOD takes on
its critical value after the peak load, Ulfkjer, Krenk and Brincker (1991).

It is therefore concluded that the two parameter model is only a one parameter model where
an effective crack length is used as controlling parameter.
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2.3.4 The Effective Crack Model.

As in the two Parameter model the effective crack model assumes a sharp crack in front of the
real crack as suggested by Nallathambi and Karihaloo (1986). In the effective crack model it
is assumed that slow crack growth occurs prior to the peak load and an effective crack length
which takes the slow crack and the reduced stiffness into consideration is introduced. The
effective crack length is calculated by using the peak load and the deflection at peak load. The
effective critical stress intensity factor, X, ° is then calculated by using the effective crack
length and the peak load, Nallathambi and Karihaloo (1991).

The effective crack model and the two parameter model are thus very similar, it is, however,
considerably easier to calculate the effective critical stress intensity factor as described in
Nallathambi and Karihaloo (1991).

20305 R“'Cmes.
Instead of assuming that the resistance, R, is a material property a more general theory which

assumes that R is a function of the crack length has been developed. The fracture criterion is
then written as

G = R(a) (2.20)

and the stability condition becomes
3G  9R() 2.21
da ™ da @21)

The basic assumption is then that R(g) is a material function independent of size and geometry.

G R

Fig. 2.16: R-curve for a specific material and initial crack length.

A correlation between the FC-model and the R-curve concept can be made. Consider an
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arbitrary specimen without an initial notch. According to the FC-model a fictitious crack will
develop when the first principal stress reaches the tensile strength. By increasing the loading
the fictitious crack will grow and eventually the real crack will start to grow, see Fig. 2.17:.

If the R-curve concept should be applied it is necessary to introduce an effective crack length,
a,p generally defined as, Hellan (1984)

L / wix, a,)
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Fig. 2.17: Fictitious crack with an effective crack length.

@y = a+aa;, a«€]0;1] (2.22)

the dissipated energy during crack growth can then be written as

1
5 (a-ay)

2.23
Edi.ip = GFt(aef‘aaf)+ I (P(x,atf)dr ( )
[V
where ®(X,G,4 is the energy density in the fictitious crack, Brincker (1991), determined by
w(x,aef)
o(X,a,) = j o) du (2.24)
0

where w(x,ag; is the crack opening profile which is dependent on the size and the geometry
of the considered structure. According to eq. (2.7) the resistance towards crack growth
becomes
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dE da 1 1
R = aj‘:’ - Gpr(l-aa—af})w(;(a,,ra),a,,«);
% (a-a) (2.25)
J dp(x,a,0) ix
da
0 o
since the second term is always zero eq. (2.25) becomes
%caa-a)a
R=21G+ | kil P (2.26)
o aaef
0

Thus, a complicated relation exists between the FC-model and the R-curve concept revealing
the fracture resistance is dependent on the size and geometry of the considered structure. It is
also obvious from eq. (2.26) that the R-curve is strongly dependent on how the parameter, o,
is chosen. It was shown by Brincker (1990) that if the crack profile and the stress-crack
opening displacement are chosen to be linear then the R-curve will be a parable.

Similar considerations to the above have also been made by Mai (1991) but his approach seems
to fail since he does not take crack growth and the fictitious crack length into consideration.

Several researchers have made experiments in order to detect if concrete has an R-curve
behavior, Wecharatana and Shah (1982), Wecharatana and Shah (1983), BaZant and Cedolin
(1984) and BaZant et al. (1986).

Wecharatana and Shah (1982) concluded that the R-curves seem to depend on the size and
geometry of the concrete specimens considered and attributed this effect to the large process
zone. BaZant concluded the same by using a linear crack band model. It seems, however, that
by introducing an equivalent crack length this dependency is not very strong and he concluded
that if a rough estimation of the load carrying capacity is needed R-curves seem to be suitable.

2.4 Brittleness and Size Effect.

Size effect is a term which is used more or less stringent by different researchers. The
common interpretation of the word is that an assumed material parameter is not constant but
is varying with the size of the structure. The author feels, however, that the word is rather
misleading, since the word does not describe the problem which in reality is that for some
reason the model used is not accurate enough. Therefore size effects are always related to
models. Thus, an observed size effect in one model can completely disappear in another more
accurate model. The problem will be further illustrated by considering the three-point bending

geometry.

32



2. Fracture and fracture models of concrete

The usual assumption is that the beam is a Bernoulli beam with the assumption that the tensile
strength (or modulus of rupture) is a material property. This is, however, a poor model since
experiments show that the bending tensile strength is decreasing as the size of the beam
increases, Reagel and Willis (1931).

The results of a large test series performed in USA, by the American Association of State
Highway Officials, Reagal and Willis (1931), are here briefly reported for the dimensions
which are similar to those used in the present investigation, see chapter 5.

The experiments were performed at four different laboratories in USA, and consisted of 64
different beam geometries, and a total of 768 beams of plain NSC were tested.
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Fig. 2.18: Modulus of rupture for varying values of the beam depth, d, and thickness,
t, and span equal to 762 mm, Willis and Reagel (1931).

The modulus of rupture, o,,, was calculated from

HF por + 3/4W)
O, =
1d?
where, W, is the weight of the beam and , F,_is the peak load. The factor 3/4 on the beam
weight is a mystery to the author, who expected it to be 1/2. The factor 3/4 will yield a

smaller size effect than the factor 1/2. This discrepancy will in the following be ignored. The
experiments performed were under high control and the coefficent of variation of the individual

2.27)
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test varied between 2% and 5. % for the considered beam dimension, and the variation between
each laboratory was between 2% and 7%.

The test results for the beam with the length 762 mm are presented in Fig. 2.18:. It is seen
that the modulus of rupture is decreasing with the beam depth for all beam thicknesses, and
the decreasing by doubling the beam depth is 9% for the thicknesses 101.6 mm and 6% for
the other thicknesses. It is also seen that the modulus of rupture is almost independent of the
beam thickness.

This suggests that the Weibull size effect importance or that another cause for size effect is
interacting when the beam thickness is increased, e.g. the crack profile is changing.

This size effect is known for many brittle materials and is usually explained by the Weibull
effect, Weibull (1939) and Weibull (1951). The Weibull effect is based on the weakest link
concept and on the assumption that the material is perfectly brittle. The mean value of the
strength, R, can be expressed for homogeneous stress distributions as:

1
x|+ | Y| ¥ (2.28)
s 1-4) | 7]

where x, is the lower strength limit, V is the volume of the structure Vj is a reference volume,
and x, and k are positive constants. For concrete Zech and Wittman (1977) found that k=12.
For the considered beam (2.28) becomes for x;=0:

k (2.29)

EIR)=x, T [1+ ] [

Vo 2(k+1)2

It is seen that it is only the volume and not the geometry of the beam which determine the size
effect.

By using linear elastic fracture mechanics, which is a better model than the Bernoulli model,
it is possible to predict a strong size effect of the form:

K. | 2 2.30)
oc=—o | = g(geo) @.
¢ d\2 | xa

where o is the failure stress, K, is the fracture toughness, « is the normalized crack length,
and d is a characteristic dimension of the structure e.g. the beam height. Yet, numerous
experiments have shown that the fracture toughness is not constant when the size of the
structure is changed, still a size effect, and LEFM should therefore be used with care on
concrete.

In 1977 Hillerborg and co-workers showed that concrete is not a perfectly brittle material. This
'non-brittle’ behaviour is due to the existence of a cohesive zone in the front of the crack tip,
and can be described with a model called the fictitious crack model (FC-model). The FC-
model gives a better description of the physical reality of crack growth, and by using the FC-
model the modulus of rupture is size dependent.
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One of the basic assumptions regarding the FC-model and the crack band model is that the
fracture energy Gy is a material property. However, the fracture energy measured using the
RILEM method displays a significant increase with beam size (the third type of size effect),
Hillerborg (1985). This size effect is usually attributed to the fact that in the FC-model the
energy dissipation in the bulk region has not been taken into consideration, Elices and Planas
(1988).

By using dye technic Swartz (1989) showed that the crack profile is not a straight line, but is
rather U-shaped. This could indicate that the strength of the concrete is lower near the surface
of the specimen, If the size of this weak zone is independent of the specimen size then another
cause for size effects is found.

In the following a few examples will be given which further illustrates the terms ’brittleness’
and ’size effects’.

2.4.1 Example 1. Size effect of plate made of a perfectly brittle/perfectly ductile material.

Consider a large plate of width 2b with an initial crack of length 2a. The plate is subjected to the
load oy at the edges, see Fig. 2.19:. The plate is made of a material with the yield strength, g,,,

%

7

2a

K.
A A

2d
Fig. 2.19: Plate with center crack.
and with the fracture toughness, K. The purpose of this example is to investigate which of the
two failure possibilities will occur depending on the size and geometry of the beam.
Yielding will occur in the two parts next to the crack when

%6 1
oy d
If the width of the beam is assumed to be much larger than the initial crack length, then the stress
intensity factor can be written as

(2.31)
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K"G’oJTT (2.32)
Crack propagation occurs when K=K, viz
.5 1 L
5% o[ % Jd (2.33)
b

When similar plates are considered (e.g. a/b=kst., K =kst. and o, =kss) at different size scales
as shown in Fig. 2.20:., then it is seen that the yielding criterion eq.(2.32) is independent of the

» 18 | K, = 15 N/mni'>

16 | — o, =60Nmm® .
al W a/d =001

' d, =203m
1.2 | J

1

0.8 |
06

Normalized failure load, o/o

04
02 i

0 1 2 3 4 5 6 7 8 9
plate size, d [m]

o

Fig. 2.20: The yielding criteria, the fracture criteria and the size effect law for the considered
plate,

size scale, d, whereas the crack propagation criterion eq. (2.33) decreases mapidly with the size
scale. Thus, for small sizes the plate will fail due to yielding and for large plates it will fail due
to crack propagation. The transition, d,,, between the two types of failure is determined by setting
eq. (2.32) equal to eq. (2.33)
b= [K c ] (2.34)
ST

If the tensile strength is determined with such a plate then the tensile strength will be dependent
on the size of the plate if the size of the beam is larger than d, and the tensile strength is

calculated according to the yielding criterion. On the other hand if fracture toughness is deter-
mined for plate sizes smaller than d,. then K, is also dependent on the beam size. These

36



2. Fracture and fracture models of concrete

phenomenons are often termed 'size effect’ since an assumed material parameter is dependent on
the size of the specimen. Since concrete is not a perfectly brittle material it is necessary to use

huge specimens if the fracture toughness should be determined as a material parameter.

Consider now the size effect law in eq. (2.18). As the size, d, approaches zero the denominator
approaches one and the normalized failure load approaches, B. As the size approach infinity the
one in the square root becomes insignificant and the normalized failure becomes a function of

b~"2, Thus, by making proper adjustment of the two constants By and A, the size effect law

describes the two failure possibilities as limiting cases. This is done by setting

a
Bl?l

o, a,, 4.2
y (1~
-
whereby the size effect law becomes
j-
g _ d
.
1+—
tr

(2.35)

(2.36)

2.37)
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Fig. 2.21: Load carrying capacity of plate in log-log scale.
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The size effect Jaw together with the yielding criterion and the fracture criterion are shown in
Fig. 2.20:. Since the crack propagation criterion in loglog scale becomes a straight line with a
slope of 0.5 it is common to display the failure criteria in loglog scale, see Fig. 2.21:, Leicester
{1973), which makes it obvious that the Size Effect Law describes a gradual transition from the
yielding criteria to the crack propagation criteria. It should, however, be emphasized that the
Crack Band Model and the Fictitious Crack model would not predict any size effect in this
example and the Size Effect Law is therefore only used as mathematical expression which makes
the above mentioned transition.

In the example with a plate it was seen that the transition size of the plate, d;, plays a
dominant role. In general plastic, elastic or visco elastic failure criteria can be written as a
dimensionless function of the geometry

— = g(geo) (2.38)
%y

and the failure criterion for crack propagation, eq (2.8), can be rewritten as

o _ Keglgeo) 1

Ao

a, oy, a (2.39)
L ,/E
whereby the transition size becomes
2 2
K
d, = | =¢| L |.8e) (2.40)
o | .8 |&eeo)
and the Size Effect Law can be written as
o _ 81(ge0)
i (2.41)
1+i
dtr

Thus, for small ratios of 8;=d/d,, the behavior of the structure is ductile, for large 8, the
behavior becomes more brittle, making 8; a brittleness number. The most commonly used
brittleness number is defined as the ratio between the elastic energy and the fracture energy

2
3% 2
elastic energy _  E _ Lo, (2.42)

~ Tracture energy LZGF EGgp

where L is the characteristic dimension of the structure and ¢,%/E is the stored elastic energy
at failure for a unit volume and Gy is the fracture energy, Elfgren (1989). If the relation

K, = JEGg is used it is seen that B is a special case of 8; where the geometry of the structure
is not taken into consideration, but only the size described by, L.

As it is seen from the previous examples the term brittleness is a word which is easy to
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misinterpret. It has been common to understand brittleness as related to a material property,
or to the shape of the load-displacement curve, and as was seen, is brittleness affected by the
size and geometry of the considered structure, which again was reflected in the two introduced
brittleness numbers. In the following brittleness will be considered on the basis of a concrete
rod. A material brittleness is introduced and structural brittleness based on observations of the
descending branch of the load displacement curve is defined, finally a third kind of size effect
is introduced.

2.4.2 Example II, Brittleness and stability of concrete rod.

During crack growth energy will dissipate as previously described. The dissipated energy can be
divided into two contributions

G = G,+G, (2.43)

where, G,, is the volume dissipation and G, is the surface dissipation during crack growth, A
material brittleness can then be defined as, Brincker (1990},

By = 1 By €10; o [ (2.44)
G\'

Structural brittleness is defined by considering the load displacement curve of a rod made of a
material which behaves according to the fictitious crack model. Consider an initial uncracked
concrete rod with the length, L, and the cross section, A, subjected to a displacement controlled
load, F, and the corresponding displacement, u. The elastic properties are described by the
elasticity modulus, E, and the softening relation is described by, f{w), see Fig. 2.14:. The total
potential energy in the system is given by

I - 2w Lﬂv)dv (2.45)
Equilibrium is obtained for
= 2 w-uyvf(w) @.46)

And stability is obtsined through the following condition

3’0 _ afw) AE
ﬁaw ._.__._+_L >0 -
(2.47)
aflw) <AE
“ow L

which corresponds to infinitely slope on the descending branch of the load displacement curve.
A brittleness number which includes the slope of the descending branch seems, thus, appropriate.
The load displacement for the considered rod is as sketched in Fig. 2.11:. The slope on the
descending branch is given by
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do . 1
% du_ow
do do 2.48)
” 1
L,
E of

which becomes for a linear softening relation
do _ al-Ew (2.49)
ad Ea,

The advantages with this brittleness number is that it is related to a specific behavior of the load
displacement curve. The disadvantages are that it is difficult to calculate, it is not dimensionless
and it is not defined for all structures.

2.4.3 Example ITI. Stability and brittleness of glued beam.

40
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Fig. 2.22: Beam glued to an infinitely rigid foundation, subjected to deformation controlled load.

The purpose of this example is to illustrate how the stiffness of the testing machine affects the
stability of the fracture process in a displacement controlled experiment. The example further
illustrates the necessity in measuring the true displacement of the structure.

Consider a beam glued to an infinitely rigid support as shown in Fig. 2.22:. An initial crack with
the length, a, much larger than the beam depth, b, is assumed to exist. The beam is subjected to
a displacement controlled load, v. Between the load point and the beam a spring with the
compliance, C, is inserted, modelling the flexibility of the testing machine, During testing the
opening of the crack, u, is measured. The purpose of this example is to investigate how the
flexibility of the testing machine influences the stability of the test.

Since the test is deformation controlled the potential of the load is zero and the tota] potential of
the system becomes

I = %uF+%CF: (2.50)



2. Fracture and fracture models of concrete

If the beam is assumed to be a Bernoulli beam the displacement becomes

u=1Fa’ @.51)
3 E
and the energy release rate becomes
G=-1 _1a’F? (2.52)
@a 2 ENr

The crack will extend when G=G, and the corresponding critical load becomes

2 V26 EI 2.53)

the corresponding displacement is

v = [14_3“.:] F, @59

If the fracture process shall be stable dv/da> 0 yielding the following condition to the compliance
of the testing machine

3
oAt (2.55)
A set of load displacement curves for different compliances is shown in Fig. 2.23: where the
controlling parameter is u (virtual crack propagation). It is seen that even in displacement
controlled testing the fracture process becomes unstable for too flexible testing machines. Instead
it is necessary to perform experiments where the crack opening is the controlling parameter, if

the descending branch of the load displacement curve is requested. This can only be done in a
closed loop servo controlled testing system, Brown and Hudson (1972).
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Fig. 2.23: Load displacement curves for the glued beam when the compliance of the spring is
varied.
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3 NUMERICAL METHODS IN CONCRETE
FRACTURE.

It is only in a few simple cases possible to apply the fictitious crack model in an analytical
manner and instead it is necessary to use numerical methods like the finite element method or
the boundary element method. In the following three different methods based on the finite
element method and the boundary element method are presented. The presentation of the
methods is limited to opening mode, to the three-point bending geometry and the softening
relation is assumed to be piece by piece linear. Non-linear softening relations are in general
applicable for all the presented methods, but then iterative procedures are necessary, Elfgren
(1989). The two first models have not been implemented by the author and are only roughly
presented. The last method is described in detail, implemented in computer and a serious
stability problem has been solved, and this method will later be used extensively.

3.1 The Hillerborg, Modeer and Petersson Methods.

Fig. 2.2 Beam and element mesh used in the calculations by Hillerborg et al. (1976).

The first method by means of the finite element method and the fictitious crack model was
performed by this method, Hillerborg et al. (1976). The method is briefly outlined in the
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following.

Consider the beam and the element mesh in Fig. 2.2. First the moment which yields the tensile
strength in node 1 is calculated. A new special very thin element with properties according to
the chosen softening relation is now inserted. As the moment increases a fictitious crack will
develop in node 1, and the load which corresponds to the tensile strength in node 2 or the
critical opening in node 1 is calculated. If the critical opening is reached the element at node
1 is removed and a stress free surface is achieved. If the tensile strength is reached in node
2 a new special element is inserted at node 2 and the previous step is repeated. In this way the
force-displacement curve can be calculated to the peak moment and a little further.

The advantage with this method is that it is directly applicable for all geometries and loading
configuration and capable of predicting multiple cracking, as long as the structure can be
satisfactory modelled by the finite element method. The method is therefore also valid for
reinforced concrete. The disadvantage of this method is that it is very time consuming and
many different element meshes are needed, as the fictitious crack develops and advances.

Instead Modeer (1979) developed the force method, a more rapid special geometry method,
which later was refined by Petersson (1981) to the sub-structure method.

3.2 The sub-structure method.

The sub-structure method was introduced by Petersson (1981) and later refined by Carpinteri
(1989), who made the fracture process, fictitious crack length controlled. The method is more
or less a method based on the boundary element method, since only loads at the boundary of
the structure are considered. The method is superior to the method developed by Hillerborg
et al. (1976) since the calculation speed is considerably higher, up to a factor 100, Brincker
and Dahl (1989).

Consider an arbitrary structure subjected to the displacement controlled load, F, and the
|

H

i

!
o | o,

Fig. 2.3 Structure with virtual crack path, as used in the substructure method.

48



3. Numerical Methods in Concrete Fracture

corresponding displacement, 3, see . The virtual crack path, -, is assumed to be known on
beforehand. The distance along the crack path is given by the coordinate y, and the virtual
crack path ends at d.. Along the crack path closing stresses are acting according to the
fictitious crack modeI. The crack is assumed to be long, but is not allowed to split the
structure into two, as it is assumed that a certain amount of nodes are necessary if the stress
and strains should be modelled in a realistic way, Petersson (1981).

First the governing equation will be derived. Then the fracture process is divided into three
and the equations are discretizised.

The crack path is now assumed to consist of three parts, I) for y=0 to y=a where the crack
surfaces are stress free (the real crack), I) for y=a to y=a, where the crack is loaded by
cohesive stresses, o(y), according to the fictitious crack model, and described by the softening
relation, f{w), and part III) the linear elastic part where the crack opening displacement is zero.

The opening between the two virtual crack surfaces, w, can be determined by the compliances

dy

wQ) = [ oy oo )dy! + COF (3.56)

0

where C,(y,y /Y is the displacement in x from a unit load in y’ , and C,(y) is the displacement
in y from a external load. Similarly the load point displacement can be calculated by

d

5= [GOWOMy + GOF 3.57)

0
where Cj is the load point deflection from a unit load.

Three set of conditions must be fulfilled. At part I the virtual crack surfaces are stress free

o) =0 for0=s y < a (3.58)
at the fictitious crack the stresses is described by the softening relation
o) = Aw()) foras y < af (3.59)
at the uncracked ligament the crack opening displacement is zero
w(y) =0 for <y = d'r (3.60)

which constitutes the governing equations for the sub-structure method.

The structure is now discretizised along the crack path in n-nodes, with equidistant spaces
between the nodes as proposed by Petersson (1981) and Carpinteri (1989). The stresses are
expressed by the nodal forces, §;, and the compliances are given by the appropriate influence
coefficients

The calculations are divided into three phases: Phase I where the entire structure is assumed
to be linear elastic, Phase IT where the fictitious crack is developing and Phase III where the
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real crack is extending.

Phase I
In all three phases the widening of each node can be calculated by using the discretiziced

version of (3.56)
n
wi= Y cfs; + ¢/ F (3.61)
j=1

where, w;, is the crack opening displacement of node i, Sps is the closure load in node j, c’i,

is the opening in node i from a unit load in node j, and cgis the opening of node i due to a
unit external load. The boundary compliances can be calculated by using the finite element
method on the discretizised structure. By applying Maxwells-Bettis theorem it is seen that

c',}-=c'j,-, whereby the compliances reduces to M

Since the opening of each node is zero, the following condition must be fulfilled
w; =0 for i=1, .,n (3.62)

Eqs. (3.61) and (3.62) compose a linear algebraical system of n equations with n
unknowns, that is the node forces, 5s;, When the load, F, and the node forces, s;, are known
it is possible to calculate the load point displacement, &, as

- 3.63
d=c; s+ cpF (3.63)

where, cp, is the displacement for a unit load. At this first step the load, F;, which produces
the ultimate nodal force, o, at node 1 and the corresponding displacement, §,, is calculated
by eq. (3.63), (4.95). The load-displacement curve in phase I is then the linear curve between
(0,0) and (6,,F;). Thus, the process is performed in load control in phase 1.

Phase IT
In phase II a cohesive crack develops in front of the real crack tip. The fictitious crack is
assumed to form between nodes 1 and m whereby eq. (3.62) is replaced by

We

§ =8, [1 - ok for i = 0,..,m -1 (3.64)

and at the remaining ligament
w; =0 fori=mm+1,.,n (3.65)

Egs. (3.61), (3.64) and (3.65) constitutes a linear algebraical system of 2n+ 1 equations with
2n+1 unknowans, i.e, the crack opening displacements, the nodal forces and the external load,
F. At the second point of the load-displacement curve the fictitious crack is between node 1
and 2 and the nodal force in node 2 is equal to the ultimate nodal force and the load, F, that
produces that force is calculated. The displacement that corresponds to, F,, is then calculated
by using eq.(3.63), (4.95). The calculations proceed in this manner until the critical opening
is reached in node 1, which ends phase II. In this way the process is fictitious crack length
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controlled in phase II.

Phase TII
In phase III the real crack starts to grow. The real crack is between node 0 and k-1 and the

fictitious crack is between node k and m-1 whereby egs. (3.64) and (3.65) are replaced

;=0 fori=12. k-1 (3.66)
in the fictitious crack
5; =8, [1 N E] fori =kk+1.m-1 (3.67)
wc

and at the remaining ligament
w; =0 fori=m m+1,.,n (3.68)

Eqgs. (3.61), (3.66), (3.67) and (3.68) constitute a linear algebraical system of 2n+1
equations with 2r+1 unknowns.

In phase III the controlling parameter is also the fictitious crack length, it is therefore not
possible to directly calculate the real crack length, the external load and the displacement and
instead an iterative procedure must be applied, Carpinteri (1989).

The sub-structure method is a specially designed method, for plain structures with one crack.
The method is easy to use, and when the compliances are determined the method is applicable
for all sizes of the considered structure by scaling the compliances appropriately. The
calculation speed is increased tremendously compared with the Hillerborg et al. method, and
by making the fictitious crack length the controlling parameter the method is applicable of
predicting snap-back. If the method was not fictitious crack length controlled, but instead
deflection controlled, the method becomes unstable at the point where the slope becomes
infinitely. The method is, however, truncated since the crack is not allowed to divide the
structure into two, but only as long as the crack is allowed to be as described previously. The
problem is especially serious for ductile beams where the fictitious crack length is large
compared to the beam height, whereby only a small part of the descending branch is
calculated.

3.3 The Direct Sub-Structure Method.

The direct sub-structure was invented by Brincker and Dahl (1989) in order to be able to
calculate the entire descending branch of the load displacement curve. Instead of making a cut
in the structure as in the sub-structure method, the structure is actually divided into two in the
direct sub-structure method. The method is applicable for multiple cracking, but in order of
simplicity the method is only demonstrated on the three-point bending geometry. The method
is described following the procedure of Brincker and Dahl (1989) and an effective method
which solves the stability problem described by Brincker and Dahl (1989) is presented and
demonstrated.
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Fig. 2.4 The considered beam divided into two substructures, Brincker and Dahl (1989).

First the general equations will be derived, which are valid in all three phases, then the
calculation technique for deformation control will be described.

Consider the beam in Fig. 2.4, which is split into two parts (a) and (b) by a virtual cut along
what is assumed to be the crack path, v. In general the displacements will consist of the sum
of two terms: rigid body displacements, v, and elastic displacements, v,°, of the virtual
surfaces.

By assuming small displacements the rigid body displacements are calculated as
Vo) = .21_5); (3.69)
and for beam part (b)
vio) =8, - 2y (3.70)

1

where, v,’, and, v,’, are the displacements of the virtual crack surfaces and &y, is the horizontal
displacement of the support. The displacements caused by the stresses acting on the virtual
surfaces are calculated by

d
v,0) = [a(v)c(y,y’ My G.71)
0
and for beam part (b)
d
v%0) = - [o0)oy My” 3.72)
0
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where c(y,y’) is the compliances of the considered displacement. The opening between the
virtual crack surface is then given by the difference between the total displacements fields of
the two bodies (a) and (b)

v0) = v,0) - v,0)
h

=-2 [ o/ )cy,y )y’ + 8,
v}

Depending on which phase is considered one or more of the following conditions must be
fulfilled. The equilibrium condition

(3.73)
- 4_153,

d
[onay =0 3.74)
a
the constitutive condition
fw®)) = o(») for 6 <y<a+a (3.75)
and the compatibility condition
w() =0 for a +a;<y<d (3.76)

The external load is determined by the equilibrium condition i.e. the equivalent moment at the
virtual crack faces shall outbalance the external load

d
F = - -‘Ha(y)ydy 3.7

As in the sub-structure method, the system is discretizised, in n nodes along the virtual crack
surfaces with equidistance, a,. The stresses are expressed by the nodal forces s; and the
compliances are expressed by the appropriate influence coefficients, Cij-

The crack opening displacement is then expressed as

n
W, = - 212k c5; + By - 43;.y,- for k< i < m (3.78)

The equilibrium condition

n
Y s =0 (3.79)
ji=k

the constitutive condition is for simplicity assumed to be linear
W:
fi =5,(1 + 7‘) (3.80)

[+

if the constitutive relation is assumed to be piece by piece linear the two constants s, and w,
are simply modified for the appropriate nodes. The only problem is then to establish on which
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line on the softening relation each node is, Brincker and Dahl (1989). By inserting (3.78) the
constitutive condition (3.80), (3.81) becomes

% 0 ; 3.81
I—ZJ_Ecvsj—ié,-+—h—i=0 forksi<m—& )
We j=k W, l We Sy
The compatibility condition is discretizised and combined with (3.78)
“ ah d i (3.82)

jz:kc,-jsj — t 27)’,- =0 for ms< i< n -

The equations (3.79), (3.80), (3.81) and (3.82) constitute a linear algebraical system of 2n+1
equations with 2n+1 unknowns. It is seen that only

.'_'g."_iﬂ influence coefficients are
needed. The system of linear equations can then be written
Ax=D (3.83)
where the coefficient matrix is given by
™ n
s s s 5
2—"ckk +1 2—uck 1 i 2—“Ck -
w, w, Bk * w, " W,
s 5 s 5
2 %¢ 2 Y%¢ +1 2 "¢ -2
wclc+1,k wck+1,k+1 clc+1,n W,
‘ ‘ I X7
A= Sy Su Su Su
2—C - 2—C -1 1 G 2=t -1 - —
w, m ¥ 4 w, m X+ W, m N :
= Cm,k ~ Cmi + 1 ~ Com,n 0.5
= Cax - C"'k +1 e = gn'n 0.5
I 1 1 1 0 |
and the right hand side is given by
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Sy - 4——13’". -1 (3.85)

|
n
g

2

0

and the solution to the system of equations is

Sk

Sk + 1

m -1 (3.86)

~|
I

The non-linearity of the problem is introduc-ed by -updating the matrix A and the right hand

sides B. When the nodal forces are determined the crack openings are determined by
(3.80), (3.81), and the external load is determined by

K== %Zn: 59 @50
=k

The problem then consists in determining which node is the next to change state (from elastic
to fictitious state or from fictitious state to complete fracture).

Two nodes are potential of changing state: node k and node m. By applying a small test load,

dj, the opening in node k will change dw,, and the stress in node m will change ds,,, whereby
the following sensitivities can be calculated
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G = wcd"_"ka
(3.88)
dS
fm = 5 = 8

The next node to change state will be the one with the large sensitivity. Since the system is
linear the displacement increment, Ad, necessary for changing state is calculated by
As = B (3.89)
max
It is seen that when a node is completely fractured it will simply be removed from the system
of equations, reducing the calculation time as the real crack advances. In this way the entire
load displacement can be calculated, in load point displacement control.

3.4 Stability of The Direct Sub-structure Method.

As was concluded by Brincker and Dahl (1989) a serious stability problem arises when the
beam brittleness is increased, and an exorbitant amount of time has been used to solve this
problem.

The problem can be observed in the outlined method in the way that the crack opening
displacement of the nodes in the fracture zone increases, which corresponds to that the strain
softening relation becomes a strain hardening relation. Therefore, it was thought that an
unloading branch was necessary in order to overcome the problem. This was not the case. A
method where the softening relation was a continuous function was implemented. In this case
an iterative procedure is necessary since the system is non-linear. The stability problem was,
however, not solved.

It was then realized that the stability problem is due to the snap-back effect. The load-
displacement curve constitutes the set of points where the system is in equilibrium. If the beam
is so brittle that snap-back is introduced, that means that the displacement at some point on the
descending branch is decreasing, yielding a negative infinitely slope. However, the crack
opening displacement will always be an increasing function.

The problem can therefore be solved by making the fracture process crack mouth opening
controlled, or fictitious crack length controlled ( as by Carpinteri), or crack tip opening
controlled. Here crack tip opening control is presented. As is seen from the previous equations
it is not possible to derive the governing equations with the crack opening as the controlling
parameter. Instead a very simple and effective procedure was developed. The process is made
indirectly crack tip opening displacement controlled.

The calculation are performed completely similarly to the just described method. However,

56



3. Numerical Methods in Concrete Fracture

if the sensitivity of node k is then the displacement increment is calculated by

A5 = 9 (3.35)
Sk

Fig. 3.5 Load displacement curve where the beam is to brittle compared to the number of
nodes n=21.

Fig. 3.4 Examples of load displacement curves, calculated by using the Direct substructure
method, at different size scales

Since, § < 0 the displacement will decrease and snap back is introduced. This method is
very stable, and a load-displacement curve is always calculated even for extremely brittle
beams. The results are though not reliable if the number of nodes are too small compared
to brittleness of the structure. This method will be used extensively in the rest of the thesis
were many examples of load displacement curves using this method are shown.

3.5 Model Evaluation.

Three numerical methods have been presented. The Hillerborg et al. method was the first
method to be used with the fictitious crack model and is a multi purpose method applicable
for all geometries and loading conditions. The method is, however, very slow and many
element meshes are necessary as the fictitious crack develops and as the real crack extends.

Instead the sub-structure method was developed by Petersson (1981) and Carpinteri (1989).
The sub-structure is only applicable for a certain type of structures but instead it is very fast
compared to the Hillerborg method. The method is also made fictitious crack length
controlled, whereby very brittle structures can be analyzed. The method is, however,
truncated by that the crack is not allowed to split the structure into two, and is therefore not
well suited for ductile structures.

To overcome the problem of splitting the structure into two Brincker and Dahl (1989)
developed the Direct sub-structure method, where the crack is extending through the entire
structure and actually splits the structure into two. The method is displacement controlled and
is therefore not applicable for brittle structures. The calculation speed is of the same order
as in the sub-structure method.

To overcome the problem of snap-back the author has extended the direct sub-structure
method, to be crack tip opening displacement controlled. The only limit to how the brittle
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structures the method can analyze is thereby only limited to the amount of nodes.

The direct sub-structure is therefore applied in the rest of this thesis, since it is superior to
the sub-structure method.
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4 ANALYTICAL METHODS IN CONCRETE
FRACTURE.

As described in the previous section a variety of numerical methods exists which can be used
to predict the load carrying capacity of plain and reinforced concrete structures in which a
fictitious crack develops. It is, however, often convenient to have more simple methods which
can be used to predict approximate results and more appropriate for the practical engineer. The
numerical methods are in general very time consuming, and if an indirect method is used to
determine the constitutive relations, as will be described in chapter 5, the numerical effort
becomes enormous. In order of convenience the various models are named after the authors,
who published the described methods.

4.1 Non-Reinforced Concrete.

In the following, three analytical models for plain concrete will be presented and some
improvements will be suggested. The presentation is limited to linear softening relations and
the notation used in each model corresponds, if possible, to the notation introduced by Ulfkjer
et al. (1991).

4.1.1 The Ulfkjeer, Brincker and Krenk Method.

The idea of modelling the bending failure of concrete beams by the development of a fictitious
crack in an elastic layer with a thickness proportional to the beam height was introduced by
Ulfkjer, Brincker and Krenk (1990), and further refined by Ulfkjer, Krenk and Brincker
(1992). The following presentation is equivalent to that, and some extra results are presented.

The model is based on the assumption that the complex stress field around the crack is
modelled by simple spring-action in an elastic layer around the crack, and outside the layer the
deformations are modelled by elastic beam theory.

Using a linear softening relation yields that the fracture energy is given by Gp= %o,w,,
where, o, is the ultimate tensile stress and, w,, is the critical crack opening displacement. In
the elastic layer only bending stresses are assumed to be present and the stress is assumed to
depend linearly on the local elongation of the layer. By assuming a linear softening relation,
the constitutive relation of the layer becomes a bi-linear relation between the axial stress, o,
and the elongation, v, see Fig. 4.1. On the ascending branch the elongation is linear elastic
v=v, and no crack opening is present. The linear response is given by v, =oh/E where, A, is
the thickness of the layer, and, E, is Young’s modulus. On the descending branch the total
deformation v consists of two contributions v = v, + w, where, w, is the crack opening
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Fig. 4.1. Constitutive relation for the midsection of the layer a) When the layer is stable,
B< .. b) When the layer is unstable B=1,

displacement. The peak point corresponds to the deformation v = v,, and total fracture
corresponds to v=v,. Therefore, the critical crack opening displacement corresponds to w_=v.,.

If the elastic layer should be stable in displacement controlled loading the following condition
must be fulfilled

v, < Vv, (4.91)
In the present method it is convenient to define the brittleness number, in eq. (2.38), as
2
B-_" (4.92)
2GgE

corresponding to a characteristic size of the structure equal to %/2. The stability condition
(4.91) can then be written as

B <1 (4.93)

Thus, in this model the brittleness number, B, varies between zero corresponding to ideal
ductile behavior and one corresponding to ideal brittle behavior. The thickness A of the elastic
layer, is assumed to be a linear function of the beam depth h=kd. In general the factor, %, is
a function of the beam geometry, the beam size, the fictitious crack length and the real crack
length. In this model the factor, k, is assumed constant and is found using the DSS demanding
that the peak load is predicted correctly.

As a first approximation only rigid body displacement is assumed of the beam parts outside
the elastic layer, see Fig. 4.2.

The calculations are, as in the numerical method, divided into three phases. Phase I): Before
the tensile strength is reached in the tensile side of the beam, phase II): Development of a
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Fig. 4.2 a) The considered beam where the hatched area is the elastic layer. b) Deformed
beam where only rigid body displacements are considered.
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Fig. 4.3. The stress distributions of each phase a) Phase I where the stress distribution is
elastic. b) Phase IT where the fictitious crack is developed. c) Phase III where the real crack
starts to grow. d) The load-displacement curve.

fictitious crack in the layer, and phase IIT): Crack propagation. The stress distribution in each
phase of the fracture process is illustrated in Fig. 4.3

Phase 1.

In phase I a linear elastic constitutive relation is used for all parts of the layer v, = h/E. By
simple geometric considerations it is seen that v, = ¢ (d-2y) where ¢ is the rotation, d is the
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Fig. 4.4 The moment rotation curve of the beam when only rigid body displacements are
considered.

beam depth and y is the vertical coordinate. The neutral axis is at the mid-point of the beam
corresponding to y = d/2, Instead of the bending moment M and the rotation ¢ it is convenient
to introduce the dimensionless bending moment

p=M 62 (4.94)
o d°t
and the corresponding dimensionless displacement
dE E
0=p— =p— 4,95
¢ ha, ¥ ka, (4.95)

giving the simple load-displacement relation
w®) =0 (4.96)

In the limit situation of phase I the stress for y=0 equals the tensile strength, and the
dimensionless bending moment equals one. Thus, in phase I the load-displacement curve is a
straight line between origo and (f,1) = (1,1), see Fig. 4.4.

Phase IL,
In phase II the size of the elastic tensile zone is determined by simple geometrical

considerations. When the fictitious crack develops, it is necessary to determine the crack
opening displacement. By assuming that the stress in the fictitious crack is equal to the stress
in the elastic layer, the crack opening displacement becomes
= 20 4.9
W= =) (4.97)

where ar is the length of the fictitious crack. Thus, this corresponds to a linear crack profile.
If the linear softening relation is expressed as

o = g(1-) (4.98)
wC
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then the length of the fictitious crack can be determined by combining (4.98) with the
equilibrium condition (the resultant axial force equal to zero). The result reduces to

2 i
ap(0) = 71’ ® = l-B—J (1 -B)(%—B) (4.99)
The equivalent moment is determined by integrating the axial stresses

2a,4(0)°
= ¢ R 2l -
n(® o[ e 6ot (6) 4] 3

In order to stay in phase II the crack opening displacement at the bottom of the beam must be
smaller than the critical crack opening w(0) < w, , which by use of (4.97), (4.99) and (4.100)
can be reformulated as

(4.100)

ui@ > 1 or 1 < 0 < 6, (4.101)
where
0 - 1+/B 4.102)
2B

Thus, during the development of the fictitious crack the moment increases from 1 to its
ultimate value and then decreases again. When the moment reaches the value 1 at the
descending branch corresponding to =6, the real crack starts to grow, see Fig. 4.4. The real
crack will therefore only propagate on the descending branch of the load displacement curve
as found by Harder (1991).

Phase 111,

In phase III the real crack starts to grow. The real crack length is termed a, see Fig. 4.3. The
size of the elastic tensile zone is determined by the condition that w(a+ag = w,,. The size of
the fictitious crack, g is obtained by the condition w(a)} = w, giving

o = ,5151_;'3 (4.103)
The crack length a is determined through the equilibrium condition that the resultant axial
force is equal to zero

a=>=1-2 (4.104)

As in phase II the dimensionless bending moment is determined by integrating the axial
stresses. The result is

2
0 .
Bm [?c] (4.105)

‘When, 8, is suitably modified this result is general in the sense that it is valid for all softening
relations. The results for the moment-rotation curve including only rigid body displacements
of the beam parts are shown in Fig. 4.4,
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Beam Depth, d [mm] 100.0
Beam Width, ¢ [mm] 100.0
Beam Length, I [mm] 800.0
Notch depth, a; [mm] 0.0

Specific Fracture Energy, Gp [Nmm/mm?] 0.100
Tensile Strength, g, [N/mm?] 3.0

Modulus of Elasticity, E [N/mm?] 20,000
Brittleness number, B 0.1125

Tabel 4.1 Geometry and materials parameters for standard beam.

In Fig. 4.5

Fig. 4.5. Comparison between the analytical model and DSS using the standard beam at 4
different size scales.

Elastic deformations in the beam parts outside the elastic layer are taken into account by
subtracting the elastic deformation, § = u(6), from the elastic layer leaving only deformations
due to crack growth and adding the elastic deformations of the whole beam using a solution
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for a Timoshenko beam, Timoshenko S. (1955). The Timoshenko displacements are
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= M (4.106)
f IZEIﬁ ™
where EI is the bending stiffness of the beam, 8, is a factor describing the influence of shear
B = 1 +2.85M2 - 0.84\3, and, ), is the slenderness ratio A=I/d. Introducing the elastic
rotation similar to equation (3.63), (4.95)

o0 dE
y M 4.10
8, = 7 (4.107)
the relation (4.106) can be written in dimensionless form
0¢ = 'Y# (4. 108)
where
= BOOA 4.109
Y T ( )

and the total deformation is then given by subtracting the elastic deformation in the layer and
then adding the deformations of the Timoshenko beam

0, = 0-u(0)+6, = 0+(y-L(®) (4.110)

Hence, the complete moment rotation curve is fully determined by the brittleness number B,
and the slendemess ratio A.

The numerical results are obtained by the direct sub-structure method (DSS), Dahl and
Brincker (1989). Four-node elements and an element mesh with 21 nodes in the midsection
were used. Results for one beam geometry (slenderness ratio A= 8) are compared at different
brittleness levels in order to see how well the model predicts the load-displacement curve. It
is assumed that the size of the elastic layer is proportional to the beam depth A = kb where
the factor k is assumed to be 0.5. A beam geometry similar to the RILEM beam and material
parameters corresponding to a normal strength concrete is chosen as standard beam, see
Tabel 4.1. With the chosen material parameters the maximum beam depth is according to
(4.93) 888 mm corresponding to that all dimensions of the beam are scaled by a factor of 8.88
(scale factor = 8.88).

a comparison is shown between the analytical model and the numerical results for the standard
beam on 4 different size scales (0.25, 0.5, 1.0 and 3.0). It is observed that the shape of the
moment-rotation curves is almost identical and that the model predicts the ultimate load quite
well. However, in the analytical model the snap-back effect is more pronounced which implies
that the analytical model is a little too brittle.

In Fig. 4.6 results for the size of the fictitious crack are compared. It is seen that the size of
the fictitious crack calculated by the analytical model is slightly smaller than that calculated
by the numerical method before the real crack starts to grow (the ascending branch of the
curves) and larger at the descending branch. The small kinks on the numerical curve are due
to the discretization made in the numerical model. With a larger number of nodes in the
midsection these kinks would disappear. In Fig. 4.8 the real crack lengths for the two models
are compared. It is seen that the real crack grows faster in the numerical model.
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Fig. 4.6. Size of the fictitious crack for the analytical model and DSS. The loops are due to
snap-back.

1.00 — Analytical
— — Numerical _ _ — -

0.80

5 /

S 0.60

b

=

-

0.40

o 3

[

|

O 0.20

0.00 ||lllllllll]llllllIll|lllll
0.00 2.00 4.00

Rotation, ¢ (Thousands)
Fig. 4.7. Length of real crack for the analytical model and DSS.

In order to check the influence of the slenderness of the beam on the load displacement curves
two additional slenderness number are considered. The slenderness is regulated by changing
the beam length whereby a scale factor of 1.0 always corresponds to the beam height 100 mm.
The results are seen in Fig. 4.8 and Fig. 4.9. It is seen that the analytical predicted by the
analytical model still is almost identical to the numerical method. The stiffness of the beam
with the slenderness ratio equal to 4 is, however, not identical. This is not a surprise since the
Timoshenko assumptions are not accurate enough for beams with low slenderness ratios.

The peak loads, g,..., predicted by the analytical and the numerical models are shown in
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Fig. 4.8 Load displacement curves for the slenderness ratio equal to 4.0.
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Fig. 4.9 Load displacement curves for beam with slenderness = 16.0.

log-log scale in Fig. 4.10. Since there is no stress singularity included in the two models there
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Fig. 4.10. Peak load at different size scales predicted by the model and by the DSS.

is no size effect beyond the critical size of the models. In the numerical model this limit will
depend upon the material parameters and the number of nodes there are in the midsection (here
the critical size scale is approximately 20).

tcf
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h=k(d—a,) lay ety
I

T

Fig. 4.11. Model of notched beam.

The model is extended to notched beams as indicated in Fig. 4.12 . The idea is to keep the
width/depth ratio of the elastic layer by setting the width of the layer equal to k times the
effective beam depth of the notched beam section & = k(d-a,;), k = 0.5 where g; is the depth
of the notch. The modifications thus introduced imply that the brittleness number B for the
layer is multiplied by a factor (I-a,/d). The total beam depth is still used in the formulas
(4.94), (3.63), (4.95) and (4.106) whereas the effective beam depth d, = b-q; is used in all
other formulas. Results for different notch depth’s are shown in Fig. 4.12 .

Comparing numerical results with results for the analytical model it can be concluded that
deviations are relatively small. The errors introduced by the elastic layer and the assumption
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Fig. 4.12. Moment displacement curves for notched beams with three different notch depths.

of wedge-like crack-opening are typically smaller than errors due to the simple linear softening
relation, Brincker and Dahl (1989).

When the size of the beam changes, the stress distribution in the partially fractured mid-section
changes and so does the shape of the load-displacement curve. In the following a few closed
form solutions are given for these size effects predicted by the analytical model.

An important parameter describing the stress distribution in the partially fractured mid-section,

is the maximum size a;,,, of the fictitious crack. Since da/d@ > 0 in phase I and daddf <
0 in phase III, a;is largest at the end of phase II. Thus, the maximum size of the fictitious
crack is found by combining eq. (4.99) and (4.101)

G = 4C1VB) @11

Thus, for small ductile beams the relative size of the fictitious crack is large and for large
brittle beams the relative size of the fictitious crack approaches zero.

The way the load-displacement curve changes with size is more difficult to describe. One
important parameter of the load-displacement curve is the peak load, p,,,.. The peak load
might be obtained from the condition dx/d6, =0. However, no simple expressions have been
derived for this case.

Another key-parameter for the load-displacement curve is the maximum slope § on the
descending branch. The slope is found by taking the derivative of eq. (4.110)

= 00 0p
" 34730, +(v- ) (4.112)

from which
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-1
[/ [7-1+ﬁ (4.113)

The steepest point on the descending branch of the load-displacement curve is at the transition
from phase II to phase III, i.e. for 8=8,. Thus, the minimum value of 36/3y is found from
eq. (4.105) and eq.(4.102) which together with eq. (4.113) yield the results
K = i (4.114)
1+/B-4(y-1)B

The quantity § is a kind of brittleness number for the structure, as described in Chapter 2. The
larger maximum slope on the descending branch, the more brittle the behavior of the beam will
be. The brittleness number varies between zero corresponding to ideal ductile behavior and
infinity corresponding to the case where the maximum slope becomes infinite. If the point of
infinity slope is exceeded, snap-back occurs, and the brittleness number § becomes
meaningless. Thus, the brittleness number S only describes the brittleness of structures without
snap-back on the load-displacement curve.
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Fig. 4.13. Moment displacement curve for the beam with the slenderness = 8.0, on the critical
size scale,

The maximum slope on the descending branch becomes infinite when the denominator in eq.
(4.114) vanishes, i.e. when

1+/B-4(y-1)B = 0 (4.115)
The solution to this equation defines a critical brittleness number for the elastic layer
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Fig. 4.14 The critical brittleness number as a function of the slenderness.

2
(4.116)

1+/1+16(y-1)
8(v-1)

If the brittleness number B of the layer is larger than the critical brittleness number B, then
there is snap-back on the load-displacement curve. Otherwise there is no snap-back. The
critical brittleness number as dependent of the slenderness is seen in Fig. 4.14, and it is seen
as the slendemess increases the critical brittleness decreases. This was also seen in the
moment-rotation curves for the different slenderness numbers. For the standard beam the
critical brittleness number is found as B, =0.069 corresponding to a scale factor of 0.615. The
case is illustrated Fig. 4.13 where the results for the analytical model are shown for B = B,,.

B, =

In the method presented by Ulfkjar et al. the equations are derived assuming that the beam
is loaded with a concentrated load at the midsection and that the strain distribution in the
elastic layer is constant. These two assumptions are conflicting, but this conflict is easily
removed by assuming that the beam is loaded in four point bending, whereby the equivalent
moment becomes constant between the loads.

It is also concluded that the model is not applicable for beams with a brittleness number equal
to or larger than one. This restriction is not necessary, as it can be replaced by a condition
stating that phase II is absent for brittleness numbers equal to or larger than one. Beyond this
value the peak load can eventually be calculated by using LEFM, yielding the strong size
effect described in chapter 2.

4.1.2 The Chuang and Mai Method.
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This method was introduced by Chuang and Mai (1989) and is based on the crack band model.

In the original paper four point bending specimens were considered and the descending branch
of the constitutive relation was a power relation of the type

n
™ 4.11
c=0, |1- ki @117

€€y

where , o, is the stress, ¢, is the strain, o,,, is the tensile strength, ¢, is the strain at peak load,
€, is the strain that corresponds to no stress transmission and, n, is the softening coefficient.
Thus, all the parameters are material constants, see Fig. 2.15. By setting the minor span (the
distance between the two loads) to zero and n=1, a three-point bending configuration with a
linear softening relation is obtained. The procedure for establishing the governing equations

is very similar to the previously presented method and the Chuang and Mai method will
therefore only be roughly presented.

Consider a beam with the length, L, depth, d, and thickness, ¢, with a crack band introduced

3
- -
-] \ |.,U 0,
(=}
fre——ef

Fig. 4.15 The considered beam with a crack band around the midsection.

around the midsection with the thickness, 4., see Fig. 4.15. The calculations are again divided
into three phases, corresponding to those defined in the previous section. As a first
approximation the two beam parts outside the crack band are assumed to perform rigid body
deformations. The strain distribution in each phase are shown in Fig. 4.16, the stress
distributions are as in the previous presented model, see Fig. 4.3,

Phase 1
In phase I all the material is assumed to be linear elastic. By demanding equilibrium it is seen
that the neutral axis is at x=d/2 whereby the normalized bending moment becomes

. M _ «x
u(x) 7 % (4.118)

o d

where, M, is the moment in the midsection and the normalized curvature, «, is defined as
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Fig. 4.16. Strain distribution in the three phases.

(= £ (4.119)
€,X

where ¢ is the strain at the lowest part of the elastic tensile zone and a,s the normalized size

€ .
of the elastic tensile zone and » = —= is a material parameter which relates the maximum
EC
elastic strain to the separation strain. At the end of phase I the normalized moment and
normalized curvature becomes

# = 1 K = 21, (4'120)
Thus, as in the Ulfkjzr, Brincker and Krenk model a linear relationship is obtained.

Phase II

In this phase the fictitious crack starts to develop. The normalized size of the elastic tensile
zone, o,, is obtained by the condition that the strain at the tip of the process zone equals, €p
yielding: a, =n/x, and the size of the softening zone, o is obtained by requiring equilibrium

ay = 11| -nZLn) @.121)
K

It is immediately seen that the length of the process zone is only dependent on the curvature
and the material parameter, y. This is in strong contradiction to the Ulfkjer, Brincker and
Krenk model, where, o also is a function of the size of the structure. Observe, however, the
remarkable similarity between equations (4.121) and (4.99).

The corresponding normalized moment can be expressed as

2(1-a, -a)®

u = T
C!" b

Phase II ends when the strain in the lowest fibre equals, ¢, yielding the following condition

to the curvature in phase II

3
+2a§+60:fa,,+3af2— [1_'1‘”] [3a§+ 2%] (4.122)

211 < x < X, (4.123)
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where x, = 1 + ,/rT is the normalized curvature which ends phase II. This corresponds to that

the normalized moment is one in both limits, completely equivalent to the Ulfkjzr, Brincker
and Krenk method.

Phase III
The governing equations in the crack growth regime is obtained similarly to the previous

phases. The size of the elastic tensile zone is obtained by considering similarly triangles, the
size of the process zone is determined by the condition that the strain at the tip of the zone
must equal, €,

ap= 1" ! (4.124)

K

the real crack length, «, is obtained by requiring equilibrium

o =1-X€ (4.125)
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Fig. 4.17 Moment rotation curves predicted by the Chuang and Mai model and The Ulfkjr,
Brincker and Krenk model.

and the equivalent normalized moment becomes
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2
3) = E] (4.126)

Again a remarkable similarity is seen between the two models, however, with the important
difference that the governing parameters in the Chuang and Mai model are independent of the
beam size.

The displacement, 8, is obtained by adding the displacement in the crack band to the
displacement in the rest of the beam. Since the curvature in the crack band is constant, the
deflection will be a circular arch with the radius 1/x, the deformations in the parts outside the
crack band are calculated by assuming that the parts are cantilever beams loaded by, F, at the
end. The total deflection, §, becomes

hoxe,
2d

6 _ L . =1
3 2_dtan[sm(

3 3 2
L Rl kel 5|k |L R
y, =19 @ d d| |d d
2 L
d

For the standard beam introduced in the previous section, the size of the crack band, A, is set
to 50 mm (which is the same as the size of the elastic layer) whereby, e,=0.00015 and
€,=0.00133.

26

The normalized moment-rotation curve, where the rotation is determined by ¢ = T

predicted by the Chuang and Mai model and the Ulfkjer Brincker and Krenk model are shown
in Fig. 4.17. Tt is seen that the curves are almost identical and the difference is attributed to
the difference in the method of calculating the elastic deformations. Normalized moment-
rotation curves, with the same material properties, at different size scales, predicted by the
Chuang and Mai method, are shown in, Fig. 4.18. It is seen that the peak value is not affected
by the size scale and that the shape of both the ascending and the descending branch is
changed.

SR @127

where

(4.128)

The only equations where the size of the beam is included are in the deflection equations. This
is due to the fact that during derivation of the governing equation an increase of the beam size
alters the normalized amount of elastic energy stored in the beam parts outside the crack. It
can therefore be concluded that the Chuang and Mai model is not able to predict size effects,
but can only determine the difference in load carrying capacity for different materials. The
Chuang and Mai model will therefore not be considered further.

4.1.3 The Llorca and Elices Method.
As was shown in chapter 2, virtual crack propagation can be considered by using LEFM. For

the three-point bending geometry this has been done by Carpinteri (1982), Carpinteri (1986),
Carpinteri (1989) and Biolzi et al. (1989). The Llorca and Elices method is an extension of
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Fig. 4.18 Normalized moment rotation curves, as described by the Chuang and Mai model for
the standard beam at different size scales.

this method since it assumes a linear elastic beam with a crack with the length, a+ag, and a
cohesive stress distribution acting on the crack edges described by the FC-model, see
Fig. 4.19.

The method is based on findings of Foote et al. (1986), but the equations of the model
described here are derived on basis of the work by Llorca and Elices (1990). The method is
in general applicable for all structures and all loading conditions as long as it is possible to
determine the appropriate stress intensity factors. Here the method will be tested on the three-
point bending configuration.

The basic hypothesis of the model is that the crack opening profile is a known function,
completely described by the length of the fictitious crack, as. Here it will be assumed that the
crack profile is a straight line described by the function

w(x) = &(aﬂzf—x) for 0 <x<a-+a (4.129)
G

where, a, is the real crack length, a,, is the length of the fictitious crack and, w,, is the
critical crack opening displacement. The beam is assumed to be linear elastic, loaded at the
load point with the force, F, and at the crack tip with cohesive stresses (internal loading)
described by the constitutive relation, f{w}, and the crack opening profile, w(x). Since the beam
is linear elastic the stress intensity factor, K, is determined by using the principle of
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Fig. 4.19 The considered beam geometry, with a cohesive crack in front of an initial real crack
tip.

superposition
K = K,+Kp (4.130)

where, K, is the stress intensity factor due to the cohesive stresses and, Kp, is the stress
intensity factor due to the external load. One of the basic assumptions in the FC-model is that
there is no stress intensity at the crack tip, which implies that the stress intensity factor is equal
to zero

K=0 = K, =-Kp (4.131)

For the three-point bending specimen with an initial notch of length, a, the stress intensity
factor for the external load, K, can be determined by, ASTM (1974),

Kp = %JE Yy (ald) 4.132)

where the dimensionless shape function, Yi(a/b), for A=8 is given by
Y (a/d)=1.93-3.07(a/d)+14.53(a/d)*~25.11(ald)’ +25.8(ald)* (4.133)

The stress intensity factor for a concentrated unit load at, x, on the crack edge for an infinitely
long beam is determined by, Tada et al. (1973)

2

ryxa

K q(ax,d) = Y, .(a/dxla) (4.134)

where
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3.52(1 - x/a) _ 4.35 - 5.28/a
(1 - aldy*? 1 - ald

Y n(aldxla) =
(4.135)
1.30 - 0.30(x/a)*?

\/1 - (x/a)?

and by applying the principal of superposition the stress intensity factor for the stress
distribution, o(w{x}), becomes

+

+0.83 - 1.76x/al[1 - (1 - x/a)ald]

a+ag
" 2 a*% x 4.136
K,(a,a) L —— Yeon(—sd,— af) o{w@}dx  (4.136)

whereby the external load, F, can be determined by using eq. (4.131).

In order to obtain compatibility it is necessary to check if the assumed crack opening profile
corresponds to the one calculated by using displacement formulas according to LEFM. In the
following the necessary displacement and crack opening displacement equations will be derived
using the energy principals described by Llorca and Elices (1990a) and Bosco et al. (1990).

Instead of considering the entire cohesive stress distribution a concentrated force, F,, at the
crack edge is considered together with the applied load, F,, with the corresponding

lFu(51

| Bo P Ja d

L 1
| L]

Fig. 4.20 Beam with two concentrated loads for determination of compliances.

displacements, u; and, u,, see Fig. 4.20. The total potential energy, A, stored in the system
is

= - 2Fd) - 2F 4.137)

where the displacements are given by the compliances
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& = CyyFy + CpoF (4.138)
6 = CyFy + Cph,
The energy release rate is given by

4.139
S 1%  1,0Cn oo 3Ch 15
2 1% 2 % 1a 125

where Maxwell-Bettis theorem has ben applied. The energy release rate can be written as

K2 _ (K + K)°

¢ _E: , E (4.140)
= _K_l + ﬁ +* ZKIKZ
E E E
Since the terms in (4.140) are linearly independent the compliances are determined as
a+ af
Cyfa + ap = % !) KK; do (4.141)

where, K, and, K, are the stress intensity factors for a unit load. The displacements can then
be determined by using eq. (4.138). When a distributed stress distribution is applied along the
crack faces the principle of superposition can be applied

a"“af

O = Cpp(a + af)F + I Crc(@ + apx) o(x) tdx

(4.142)
a + ﬂf
@) = Cep(a + apn)F + j Cex(a + apX,x) o(¥) tdX
a
where C,; is the displacement in, x, from a unity load in, X, is given by
a + ag
Cofa + a5%3) = %‘. [ EewdK(amdo (4.143)
max(x,X)

The deflection of the beam is then given as the sum of the deformation due to the crack and
the deformation of an uncracked beam.
By setting x=a,in eq. (4.142) the crack tip opening displacement, CTOD, is calculated
a +ap
CTOD = &(a + a) = Cyla + a)F + j C,, o{w(x)} tdx (4.144)
a

where
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a + ag
Corla,ap = % j Kp(a + apK,,,(x,a + apdx
0

a+ar

Caxla,apx) = % ] K on(@X) K pp(w,a + ap dw

X

(4.145)

By comparing the, CTOD, with the assumed value, w,_, it is possible to check if the assumed
crack opening profile described by, a;, is correct. If the, CTOD, is higher than, w,, then,
has to be increased, and vice versa. %e actual length of the fictitious crack is then calculated
following an iteration procedure. The above formulas can only be calculated numerically, and
care should be taken with the singular stress intensity factors during the numerical integration.

Llorca and Elices suggest that by using this known value of, a,, it is possible to calculate the
entire force-displacement relation. This seems to be a crude approximation. According to the
numerical methods and to the Ulfkjar, Brincker and Krenk method, where it was shown that,
a, initially is zero then growing to its maximum value and then decreasing, and it was seen

at the maximum size of, ar, Was obtained when CTOD=w,_. Thus, in order to improve the
model Llorca and Elices have calculated, ar, in each loading step in a subsequent paper,
Llorca and Elices (1990b), however, without comparing the method with numerical results or
with the previous sketched method and without giving the results of, ar.

As was seen in the previous section, it is only at the descending branch the real crack starts
to grow, and it seems evident that the method should be extended, so the development of the
fictitious crack can be calculated. Actually the peak value is reached during the development
of the fictitious crack.

The method here suggested is equivalent to the Llorca and Elices method, but is divided into
two phases. In the first phase the fictitious crack develops and in the second phase the real
crack grows. At the first loading steps the desired opening is not set to the critical opening,
but an opening which is a certain fraction of the critical opening, e.g. w,,,=w/n, where, n,
is the fraction and w,,, is the new desired opening. The above outlined iteration method is then
applied until the CTOD is equal to the desired value. The desired opening is then increased
and the iteration is performed again. This is done, n, times corresponding to that the desired
opening is equal to the critical opening. Then the second phase begins which corresponds to
the extended Llorca and Elices method. The method corresponds to that the loading in phase
I is crack tip opening displacement controlled and in phase II is crack length controlled. This
suggestion will yield a considerable improvement of the Llorca and Elices method, and will
only yield a small increase in the total calculation time since it is known that in the initial
phase, a, there is an increasing function of the desired opening and a decreasing function in
the second phase of the real crack length.

In the following the different procedures of this method are compared, see Fig. 4.21.
4.1.4 Model Evaluation.

Three methods based on three different assumptions have been presented.
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Fig. 4.21 The different methods as introduced by Llorca and the author.

The Ulfkjzr et al. model is based on the development of a fictitious crack with a linear
softening relation in the midsection of an elastic layer. The layer is assumed to be linearly
dependent on the beam depth. The moment rotation curves calculated by the model is almost
identical to the ones calculated using a numerical model at different size scales and slendemness
ratios. The great advantages of the model are its simplicity and that the governing equations
are simple and explicit whereby the calculating time is minimal. Further it is possible to derive
analytical results, e.g. the maximum size of the fictitious crack and the slope of the descending
branch. The disadvantage is that the model is only applicable for a linear or piece by piece
linear softening relation and that a size effect relation has not been found. However,
approximate solutions can be obtained for other softening relations than the linear by assuming
that the displacement field in the midsection of the layer is linear.

The Chuang and Mai model is based on the crack band model, on the Bernoulli assumptions,
and on an exponential softening relation. The governing equations is derived on the basis of
the same stress distributions as in the Ulfkjar et al. model and by assuming a linear softening
relation the equation becomes almost identical, with the important difference that the Chuang
and Mai model not is able of predicting size effects, which is a great disadvantage of the
model. The model is, however, able of comparing the load carrying capacity of identical
structures with different softening relations.

The third model is based on LEFM and on the assumption that closing stresses acts on the
edges at the crack tip, described by the fictitious crack model. By assuming that there is no
stress intensity factor at the crack tip, the external load and the crack tip opening displacement
can be calculated, which shall equal the critical crack opening displacement. By performing
an iterative procedure, which involves numerical integration of a double integral, the length
of the fictitious crack can be calculated. By using this length the load displacement curve can
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be calculated, this approximate procedure is used in order to make the method simple and fast.
The model is then extended by the author whereby the formation of the fictitious crack is
calculated.

Though the basic idea appears to be sound, results obtained by using this model is
disappointing. By using the original method the even descending branch is missing, and the
stiffness of the structure is miscalculated. By using the extended version where the length of
the fictitious crack is calculated at each loading step, the descending branch is obtained, and
some similarity between a numerical method is observed. However, the stiffness and the peak
load is estimated unsatisfactory. In the procedure suggested by the author the initial stiffness
is predicted better, but the shortcoming is that the peak load not is predicted with sufficiently
accuracy. It is therefore concluded that more research is needed in order to improve the
method.

4.2 Reinforced Concrete.

To the authors knowledge only two analytical models which describe crack propagation in
reinforced concrete exist. The two models are conceptual different since the first model, the
Carpinteri model, is based on LEFM whereas the later is based on the fictitious crack model
and an elastic layer in the midsection. The two models are presented, compared and evaluated.

4.2.1 The Carpinteri Method.

This method is based strictly on LEFM and was introduced by Carpinteri (1981),
Carpinteri(1984), Carpinteri (1985), Carpinteri (1988) and later refined by Bosco et al.(1991).

My/2( - ——- M2

Ar
Ar

— 1| IaIr
t

Fig. 4.22 Beam segment from reinforced beam made of a perfectly brittle material.

Consider the reinforced concrete beam segment in Fig. 4.22, with the depth, d, thickness, 1,
crack length, @, and the reinforcement area, 4,, in the depth, r, loaded with the external
moment, M. The concrete is assumed to be linear elastic, perfectly brittle described by the
modulus of elasticity, E, and the fracture toughness, K, and the reinforcement is assumed to
be rigid, perfectly ductile described by the yielding strength, o,,.
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The reinforcement is now removed and an external steel force, F,, is introduced which
corresponds to the stress state in the reinforcement. The stress intensity factor, K, for the
beam segment is then written as

K = KM & KF. (4.146)

where, K, is the stress intensity factor due to the external moment and, KF., is the stress

intensity factor due to the steel force. The stress intensity factors are given in Tada et al.
(1973) as

Ky = =5 d3/2 u(a/d)

F,
K, = - * Yy (ald,rid)

(4.147)

where

Ypfald) = 6(1.99(ald) - 2.47(ald)*? + 12.97(ald)*”? -
23.17(ald)’"? + 24.8(ald)*?)

2
YF'(ald,rla) = —_Y,,(a/d,rla)
‘/.__

xd

(4.148)

where, Y, (a/d,rla), is given in eq.(4.135). The additional rotation, ¢, of the segment due
to the crack, produced by the two loads are given by the compliances

¢(ald,hla) = Cyplald) M + Cl,,ﬂ..-'(a/d,rla)F.T (4.149)
and the crack opening displacement, w(x), at the center of the reinforcement is given by
w(a/d,rla) = Cg ‘M(ald rla)M - Cp F, (a/d,rla)F, (4.150)

The compliances can be derived by using energy principles similar to the one shown in section
4.1.3, Bosco et al. (1990)

2 ald
Gy = —— | Yylo dai
MM = —s !) M
ald
Crp, = Ezi l Yy, (w,rid)? deo (4.151)
rid
ald
Curr, = Ezd j Yo@) Y (w,r/d) do

before the steel is yielding the crack opening displacement is assumed to be zero
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w=20 =
(4.152)
% = (a/d,r/a)
where
CF (ald,rla)
" = b 4.153
r' (ald,rla) Cr T ( )

from which the force in the reinforcement caused by the external moment is calculated. In the
limit of plastic flow the moment becomes

M, = FPdr" (4.154)

where Ff = g)A,. By considering eq.(4.146) the fracture moment, M. (the crack is extending
when K=K ) can be determined as

Mg 1, W@k FF

RN I S i S——— vt

Kp% Yy  Yyfald) P g

s

(4.155)

where , FSF , is the steel force at fracture and, Ny, is a brittleness number defined by

172
N A, (4.156)
P K 4

c

where, A=td, is the cross sectional area. Before the steel is yielding , FSF , is determined
through eq.(4.153), whereby the fracture moment becomes

My 1 F.
e NP RS N f F,) < o(F?
K% Yr or eF) = el 41
Yy - —2
W/
and when the steel is yielding, F = F?, viz
Mg 1, Tr F,
_— = — + N for o(F:) > ofFP) (4.158)
K% Yy Yyt : '

It is hereby possible to consider virtual crack propagation, where the controlling parameter is
the crack length, a/d.

In the limit state of virtual crack growth the ultimate moment becomes

M, = F?(1 - rd) =
M, (4.159)
——— = N,(1 - 7d)
Kd%%

Bosco et al. concluded hereby that the moment-rotation curve will consist of three phases, a
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linear elastic part until the fracture moment is reached given by eq. (4.155) . As the crack
length increases the moment decreases until the minimum moment, M,,;,, is reached. If the
minimum moment is less than the ultimate moment the fracture moment will eventually
increase until it reaches the ultimate moment, which the author agrees upon. However, as will
be shown this conclusion can not be made with the presented shape functions.

In order to be able to make comparisons between experiments and the model the load
displacement curves should be considered. The load-displacement curves can be determined
by considering the sum of the displacement due to the cracking, §_, caused by, ¢, and the
elastic deformation of a Timoshenko beam without a crack, 6,, as suggested by Hededal and
Kroon (1991)

5=8+6,= % + 8, (4.160)

In order to check the Carpinteri model it has been implemented on computer. The results are,
however, disturbed by an erroneousness shape function, Y_,,, which in Bosco et al. is given
as

3.52(1 - x/a) _ 4.35 - 5.28/a

Y pnla/dxla) =
conl@/d,xla) 0 - a2 0 - aa

(4.161)

1.30 - 0.30(/a)*? |
(1 - @a)®)y =17

0.83 - 1.76x/a([l - (1 - x/a)]

25
- Yo le/h = 0.08) Yy
20t
Yo {e/h = 0.19)
15¢ Yo (e/h = 045)
10
5 L
0 lllllllllllllll

01 02 03 04 05 06 07
RELATIVE CRACK DEPTH ¢=a/h
Fig. 4.23 The shape functions as presented in Bosco et al. (1990).

By using this shape function the fracture moments calculated for virtual crack propagation are
negative, and they are therefore not consistent. The shape functions used by Bosco et al. are,
however, also presented graphically and are shown in Fig. 4.23. The shape functions
calculated using eq.(4.161) and eq.(4.148), (4.161) are shown in Fig. 4.22, Fig. 4.25, and it
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Fig. 4.24 Moment rotation curves for different brittleness numbers as presented in Bosco et
al. (1990).

is seen that YF. is completely different from the one used by Bosco et al. (1990) while Yy, is
exactly the same.

For the standard beam the fracture toughness is calculated according to X = ‘fEGF . The

other material parameters are shown in Tabel 4.2. By using the presented method a normalized
moment-rotation curve for the reinforced standard beam is shown in Fig. 4.26, where the
rotation is normalized to the first cracking rotation, ¢,

The initial shape of the moment rotation curve is equivalent to Bosco et al., however, the rest
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Fig. 4.25 Shape functions according to Tada et al. (1973).

Fracture Toughness, K, [Nmm™>/2 ] 44.7
Reinforcement area, 4, [mm?] 29
Relative reinforcement position, r/d 0.05
Brittleness number, N, 0.26
Yielding strength, o, [N/mm?] 400

Tabel 4.2 Parameters which describe the reinforced standard beam.

of the curve is completely different. The minimum moment is much larger using the presented

indeed different from the one shown in Fig. 4.23, and it is actually larger than the ultimate

moment. The second kink on the curve indicates where the steel starts to yield, and after that

rotation the moment was supposed to decrease, and as is seen that is not the case. When the

steel is yielding eq.(4.158), is applied. Since the first term is decreasing, and N, is constant
Y,

the moment-rotation curve is highly dependent by the ratio % , see Fig. 4,27, If the shape

M
of the moment rotation curves should be as found by Bosco et al., then this ratio should be

decreasing or at least constant.
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Normalized moment

0 5 10 15 20 25 30
Normalized rotation, cplcpo

Fig. 4.26 Normalized moment-rotation curves by using the Carpinteri method.

The author feel that the basic ideas describing the Carpinteri model is sound, but it has not
been possible to determine, moment rotation curves as described in Bosco et al. (1990). It
would indeed be nice to see the mathematical expressions used to describe the shape functions
used by Bosco et al. (1990).

4.2.2 The Hededal, Kroon, Ulfkjer and Brincker Method.

This method is an extension of the Ulfkjar, Brincker and Krenk Method with reinforcement
introduced in the elastic layer. The model was developed in junction with the Masters thesis
of Hededal and Kroon (1991) and this presentation follows their approach.

Consider the beam in Fig. 4.28, reinforced with the reinforcement area, 4, introduced in the
depth, r. The reinforcement is assumed to be linear elastic, perfectly plastic described by the
modulus of elasticity, E; and the yielding strength, gy The concrete is described as in section
4.1.1. The approach of obtaining the governing equations is identical to the method without
reinforcement. Thus, three phases are considered, however, each phase is divided into two:
a) the steel remains elastic or b) the steel yields. The strain condition in the steel in the elastic
layer is assumed to be equal to the strain condition in the layer. The stress distribution and the
shape of the load displacement curve are shown in Fig. 4.29.

The strain distribution, e(y), in the midsection is obtained by considering similar triangles
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Fig. 4.27. The ratio between the two shape functions used in the Carpinteri method.
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Fig. 4.28 The considered beam used in the Hededahl et al. method.

€0) = 20e,(a, - ‘Zi) (4.162)

where, 8, is defined in section, 4.1.1., Qs is normalized position of the neutral line, ¢,, is the
ultimate concrete strain and, y, is the coordinate.

Phase 1.

In this phase the concrete is assumed to be linear elastic. By taking horizontal equilibrium the
position of the neutral axis, a,, is determined as
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Fig. 4.29 Sketch of the load-displacement curve for reinforced concrete where the three phases
are indicated.

r ]
1|1 + 2¢pe,
(4.163)
1 F a, 11
o, = 5 1 = p"_uﬁj for & ¢

E
where, { = E’, is the flexibility ratio between steel and concrete, p = t_c;' is the

reinforcement ratio and, o, = .5., is the normalized position of the reinforcement. The
equivalent moment becomes

a5(f)

Ou

p( = 64 - 6a)) - 6—par, (4.164)

where, o, is the steel stresses which is determined by using eq. (4.162). Phase I ends when
the strain in the bottom equals, ¢, yielding the following condition to the normalized rotation

o<1 (4.165)

20:,,

Thus, the moment rotation curve is a linear curve in phase I if the steel is not yielding, and
bi-linear if the steel yields.
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Phase 11,
In phase II the fictitious crack develops. The size of the elastic tensile zone is found by the

condition that the strain at the fictitious crack tip is, ¢, yielding n = -2% . The position of the
neutral axis is determined by taking horizontal equilibrium

ap= (1 + {o)(1 - B)

:tJ(l + G - B - (L + 26p0)(1 - B) + G - B + &) for e,<e,

ar=(1-B+ |[la-pl1+2, for e,>¢
s ¢ o { 168
u (4.166)

and the equivalent moment becomes

o5(0) (4.167)

pot,

_ 2af{8)3 _ )
p(a)-a[l_B 6&_,(0)+4] 3+

which is completely equivalent to the un-reinforced model, except for the last term taking the
account of the steel and the modified equation for description of the size of the fictitious crack.

u
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Fig. 4.30 Moment-rotation curves for the Hededal et al. model with different reinforcement
ratios.
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Fig. 4.31 Moment rotation curves for the reinforced standard beam, with constant
reinforcement ratio at different size scales.

Phase 111,

In phase III the real crack starts to grow. The size of the elastic tensile zone is as in phase II:

l. The condition that the strain at the real crack tip is, €, and by considering similar

20
triangles the size of the fictitious crack is determined as
- [1-B|1 (4.168)
kKl [ B ] 70

which is the same as in the un-reinforced situation. The length of the real crack is determined
be requiring horizontal equilibrium

1 1)2
a=1+{p-_—— % [l +2(1 -a,)) +B [_] for e< &
= o (4.169)
a'=1-.Lj: 2pﬁ.l.+BL2 for e.>e
2BY 0,20 2B8 S
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and the equivalent moment becomes

1 2(a + ap? - 2Bo’ 0 (4.170)
,u(ﬂ)=0[4—6[—+a] + + 6—pa
288 1-B T

As in the Ulfkjer et al. method, is this method based on the assumption that the curvature is
constant in the elastic layer, and the model is therefore derived for four point bending.
Modifications must, however, be made in order to calculate the elastic displacement, according
to the four point bending geometry.

In Fig. 4.30 normalized moment-rotation curves as calculated using the method for different
reinforcement areas. it is seen that the shapes are as described under the carpinteri method,
which is the expected behavior. In Fig. 4.31 normalized moment-rotation curves for the
standard beam at different size scales with constant reinforcement ratios are shown.

The govemning equations are simple and explicit, which makes the calculation speed very high
compared to the Carpinteri method.

The peak moment is seen to be dependent on both the reinforcement area and on the size of
the structure.

It is seen that there is a small kink on the curves. This kink is due to that the constitutive
relation for the steel also have a kink and it was shown by Hededahl and Kroon (1991), that
the kink on the moment-rotation curve disappears when the kink on the constitutive condition
is removed, e.g. by making the constitutive relation parabolic-perfectly plastic.

There have not been made any comparison between the Carpinteri method and the Hededal
et al. method since it is assumed that the Carpinteri method is erroneousness as it is presented
here.

4.2.3 Model Evaluation.

The first method presented was the Carpinteri method. The method is strictly based on LEFM
and that the reinforcement is rigid-plastic. The model requires numerical integration of double
integrals. The results presented here are, however, disturbed by an erronecusness results
compared to the ones presented in the original paper, and further conclusions seems
meaningless, until is solved if the errors are due to the shape functions or due to the model

concept.

The second method, the Hededal et al. method, is based on the development of a fictitious
crack with a linear softening relation in an elastic layer around the midsection of the beam and
that the reinforcement is linear elastic-perfectly plastic. The results fits very well with what
was expected. The model is powerful in the sense that the governing equations are explicit and
the calculation speed is therefore very high.

4.3 References for Chapter 4.
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5 EXPERIMENTAL DETERMINATION OF
FRACTURE PROPERTIES OF HIGH-STRENGTH
CONCRETE.

With the different numerical and analytical methods presented, it is possible to analyze plain,
lightly reinforced and other structures of normal and high-strength concrete where the tensile
strength is a governing factor. It is, however, necessary to investigate if the size effects
introduced in chapter 2 are present. For three of the models presented in chapter 2 the
fracture parameters are determined, the results are presented and the size effects observed
are commented.

As was described in chapter 2, it is very difficult to determine the constitutive parameters
in the fictitious crack model and for high-strength concrete, only the fracture energy has been
determined, and only by using the RILEM recommendation developed by Hillerborg and co-
workers, RILEM 50-FMC (1985). Instead indirect methods can be applied, e.g. the fracture
parameters are determined through three-point bending experiment. Here the experimental
results, in form of load displacement curves, are compared with numerical results obtained
by using the direct sub-structure method, described in chapter 3, and the fracture parameters
are then assumed to be those who minimize a certain function, which in some way describes
the difference between the experiment and the numerical result. Three of such functions are
tested on 8 different beam geometries, and two different optimization techniques have been
used. This method of determining the constitutive parameters is evaluated, and conclusions
are drawn.

In order to measure the crack profile and to detect causes for size effects, dye experiments

are performed on ordinary specimens and on specimens which are saw cut out.

5.1 Size Effect Experiments.

5.1.1 Materials.

A high strength concrete similar to the one used at the Great Belt project in Denmark has
been used. The largest aggregate size in this concrete is, however, only 8 mm. Table 5.1
shows the mix of the concrete and Table 5.2 shows the mechanical properties. The modulus
of elasticity, the cylinder compressive strength and the cylinder splitting strength were
determined using conventional procedures.
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. Analog Addition ; a
Servo Hydraulic
1 Testing Machine___

Fig. 5.5 Testing equipment for three-point bending testing.

Cement Fly Silica | Water | Plast. Super | Sand | Gravel
ash fume ™ Plast.

312 44 29 122 1.56 8.58 614 1238

(*) Melamine-Naphthalene based plasticizer; Units are [kg/m°]
Table 5.1 Mix proportions.

The experiments were carried out on 8 different beam sizes as shown in Table 5.3. These
geometries were chosen for two reasons. Firstly, in order to be able to study statistical and
structural size effects separately, and secondly because of the limitations of the testing
equipment. The beams were made out of three batches (40 1 each) and beams of 8 different
sizes were cast on the same day. A total amount of 40 beams were cast over a period of 4
weeks. The beams were named after size, cast day and batch number (e.g. A-3a is beam size
A cast on day 3 from the first batch). The day after casting the beams were striped from
their molds and cured 7 days in water (37°C). Then a notch of rectangular cross section was
saw cut in the beams and the beams were further cured under water (20°C) for 7 days.
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Fig. 5.6 Phay of reference bar,

Cylinder compres- Cylinder splitting Young's modulus
sive strength strength
Mean S.Dev Mean S.Dev. Mean S.Dev.
81,7 5.0% 5.55 8.1% 42660 2.5%
Units are {MPa]

Table 5.2 Mechanical properties of tested concrete.

Hereafter, the beams were stored in the laboratory at relative humidity of 100% at 20°C until
the day of testing.

5.1.2 Testing equipment and procedure.

The beams were submitted to three-point bending in a servo controlled materials testing
system, see Fig. 5.5. In order to measure the true beam deflection a reference bar was placed
on each side of the beam, and the beam deflection was measured as the distance from the
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Fig. 5.7 Difference between the true displacement and the piston displacement for beam type

True

Piston

Displacement [pum]

100 200 300 400 500 600 700 800 9S00 1000

H-5c¢.
Type Length Depth Width Notch depth
[mm] [mm] [mm] [mm]
A 840.0 50.0 50.0 5.0
B 840.0 50.0 100.0 5.0
C 840.0 100.0 50.0 10.0
D 840.0 100.0 100.0 10.0
E 840.0 100.0 200.0 10.0
F 840.0 200.0 50.0 20.0
G 840.0 200.0 100.0 20.0
H 840.0 200.0 200.0 30.0

Table 5.3 Sizes of the beams tested, the dimensions was all within +/- 2.0 mm.

load point to the reference bar using two LVDT’s with a base of 20.0 mm and a sensitivity
of 0.5 V/mm, see Fig. 5.6. The piston displacement was measured using the build-in LVDT
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with a base of 5.0 mm and a sensitivity of 2.0 V/mm. The difference between the 'true
displacement and the piston displacement, which usually is assumed to be the beam
deflection, is seen in Fig. 5.7, for beam type H-5c. The crack opening displacement was
measured using a clip-gauge with a base of 2.0 mm and with a sensitivity of 5.0 V/mm, see
Fig. 5.6. The load was measured using a 50.0 kN load cell with a sensitivity of 0.2 V/kN.
A schematic of the test set-up is shown in Fig. 5.8.

All signals together with the time, ¢, were recorded using an analog to digital converter and
an AT Personal Computer. The test was controlled by a feedback signal that included
contributions from both the piston displacement and the COD. The feed back signal, 8, was

Beam support\I E

a2

A Beam support

Spherical Bearings Clip Gage

Support ﬁtﬁng% <
°~— Spherical Bearing

i " 200 mm x 200 mm
Reference Bar :
2 “ LVDT Specimen

78/
?:.

LVDT— Load Cell
Fig. 5.8 Schematic of the test set-up.

created by analog addition of the corresponding signals:
6=a5¢0D +Bap (5. 171)

where, dpgp, i8 the crack opening displacement and, &, is the piston displacement. The
weight factors, «, and, 8, were chosen to a=10.0, 5.6 and 2.5 and 8=1.0, where « is
decreasing with the beam depth.

The idea of using this combined signal as feedback is that each term in (5.171) plays a
dominant role in the different stages of the test. Before the fracture process starts the piston
displacement plays the dominant role. When the fracture process starts the COD is increasing
rapidly. In this way a stable test is obtained, see Fig. 5.9 , where the load-COD curve is
plotted together with the load-piston displacement curve and the feed-back signal for beam
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Fig. 5.9 Displacement, crack opening displacement and feed-back signal for beam type G-4a.

G-4a. It is obvious from this example that if the test was piston displacement controlled an
instability would occur immediately after the peak load.

The reference signal, a linear ramp, was generated with the same AT PC using a digital to
analog converter. The control arrangement is shown in Fig. 5.10.

The measured load displacement curves are shown in Appendix A2, categorized according
to the geometry. The peak load and the displacement at peak load are shown in Appendix
A3,

5.2 Fracture Parameter Results.

Fracture parameters from three different models are calculated:

A: The bending tensile strength according to Bernoulli (modulus of rupture).

B: The critical stress intensity factor K¢ according to LEFM.

C: The modulus of elasticity, E, the fracture energy, G, the uniaxial tensile strength,
o,, and the coordinates of the kink of a bi-linear o-w relation, according to the FC-
model.

101



J.P. Ulfkjeer. Fracture mechanics of concrete

{D/A converter |
_] [A/D converter |
IBM AT AT Dus

Clip gage.8cq
“« “g

10Volt]

Analog addition
Ug=aUj+bUcg

Servo controller

3 -
Control ¢ -
[=C(Up-Uf) Uy (rampfunction)

10Volt

Fig. 5.10 Control Arrangement.

5.2.1 The Modulus of Rupture.

The modulus of rupture is calculated as the bending tensile strength of a Bernoulli-Euler
beam

A
2d - a)u

where, F,., is the peak load when the load displacement curve is adjusted for the beam
weight. The modulus of rupture for all the beams are shown in Appendix A3, together with
the mean values, the standard deviation and coefficient of variation. In Fig. 5.11 the mean
value of the modulus of rupture is drawn as a function of the beam depth, for the different
beam thickness. It is seen that except for the smallest beam (d = 50 mm, t = 50 mm) the
same trend is seen as in the Reagel and Willis (1931) experiments, thus, the modulus of
rupture is decreasing with the beam depth. The decrease in modulus of rupture by doubling
the beam depth is 4% for the thicknesses 50 mm and 100 mm and 10% for the beam
thickness 200 mm which is of the same order as in the experiments by Reagel and Willis
(1931).

(5.172)

Om
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Fig. 5.11 Mean values of modulus of rupture as function of the beam depth for the three
beam thickness.

The reason for the unexpected behavior of test series A could be that the specimens have
been too small to make a homogeneous structure of the specimens, however, visual
inspection of the specimens did not indicate any difference in the structure of the smaller

specimens than that of the larger. It is therefore assumed that the decrease in strength of the
smallest beam size is due to some edge effect, which e.g. is introduced by the mould.

5.2.2 The Fracture Toughness.

The fracture toughness, K, is calculated according to ASTM:
K, =§Mf a (.173)
€2 pg2 d
where
f18]=1.93-3.07| &]| +14.53| & " asa1(8] ass[8]t Gam
d|l R “Tld ld ld
F4x is the peak load and d,¢ and a is the beam depth, thickness and notch depth, respective-

ly.
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The critical stress intensity factor for each beam is shown in Appendix A3, and the mean
values are plotted in Fig. 5.12, It is seen that the fracture toughness is strongly increasing
with the beam depth, and is almost independent of the beam depth. The increase by doubling
the beam depths is 53% for =50 mm, 46% for =100 mm and 65% for =200 mm. Thus,
a distinct size effect is observed, when LEFM is used.
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08 40 60 80 100 120 140 160 180 200
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Fig. 5.12 Mean value of the critical stress intensity factor.

5.2.3 Fracture Energies According to RILEM.

According to the RILEM recommendation, RILEM TC-50 (1985), the fracture energy should
be determined on a specimen with the dimensions 1 = 800 mm, d = 100 mm, t = 100 and
initial notch depth ¢; = 50 mm, the maximum aggregate size should not be larger than 16
mm, In this test series the initial notch depth ratio was chosen to be only 1/10 of the
normalized beam depth, because as stated in chapter 2, LEFM is only applicable for small
notch depth. By using this reduced notch depth the amount of energy dissipated outside the
fracture will increase. Therefore it can be expected that a certain size effect will be measured
by using the RILEM method, since the energy dissipated in the bulk is not taken into
consideration by using this method.

Different areas are calculated in connection with the RILEM method. Consider the load-

displacement curve in Fig. 5.13. The experiments are usually terminated before the load is
decreased to zero, due to the fact that the piston displacement speed is very slow at the
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descending branch. The experiment will therefore end at the load, F;, and the corresponding
displacement, 6;, and the remaining area under the load-displacement curve must be
estimated.

According to the Ulfkj2r et al. model the descending branch in Phase III is described by

2
é ;
F= [ 9 ] (5.175)
é
the remaining contribution to the fracture energy, 4;, can then be determined by
=5
Ay = 1 Ze (5.176)
td-a;) ) 52
1
By applying the condition
5 2
F, = _c] (5.177)
0
the remaining fracture energy becomes
A = Fl_al (5.178)

The fracture energies (the sum of the area under the measured curve and the remaining area
divided by the ligament) and the remaining fracture energy, 4;, for each experiment are
shown in Appendix A3. The mean value of the fracture energies for each geometry is shown
in Fig. 5.14. It is seen that the fracture energy is increasing with the beam depth, and is
almost independent of the beam thickness. The increase by doubling the beam depth is for
t= 50 mm 19%, for = 100 mm 8% and for = 200 mm 16%. The fracture energy for test
series A, is quite low, which is due to the experiment A-5a, where the fracture energy is
very low. Visual inspection of the cracked surfaces did not indicate that this specimen in any
sense was weaker than the others. The reason for the size dependency of the fracture energy
is attributed to the fact that energy dissipation in the bulk is not taken into consideration.

5.2.4 Fracture Parameters According to the Fictitious Crack Model and Data fitting.

The fracture energy, the tensile strength, the modulus of elasticity, the coordinates of the
kink on a bi-linear o-w relation were estimated by solving the minimizing of an objective
function which in some manner describes the difference between the measured load
displacement relation and one calculated using a numerical method. Three different objective
functions and two different optimization procedures were tested in order to obtain the best
estimate of the constitutive parameters. The functions will be presented in the order they
were tested by the author, and the shortcomings of each function will be given.
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Objective function I:
The first objective function to be tested were

N
Y [ED-FR EN]
min i=1

z 7 (5.179)

max

=0, w E1T
where F,-’ is the experimental load deflection curve at the applied displacement &;, which were
calculated at equidistant displacements and z is the state vector. No bounds were imposed

on the elements in the state vector, ﬁ".l(_z') is a load deflection curve determined using the

direct sub-structure method (DSS-method),Brincker and Dahl (1988), described in chapter
3. Using the ﬁnﬁ; element method for determination of influence coefficient, four-node
[

h

(Gr—A;)t(d-a;)

Fig. 5.13 Areas calculated in order to determine the fracture energy, using the RILEM
method.

element were chosen and the number of nodes in the midsection were 21. The o-w relation

was assumed to be bi-linear with the normalized kink-coordinate at (0.16,0.31). &,, W, and £
are the estimated uniaxial tensile strength, critical crack opening displacement and the
modulus of elasticity modulus respectively. The term (I",-I)2 is a weight, that emphasizes the
importancee of the peak.

The optimization problem was solved using the Nelder and Mead algorithm, see e.g. Gill et
al. (1981) or Vanderplaats (1984) on a 386 20 MHz Personal Computer implemented in a
MATLAB shell, MATLAB (1989) and it took about 1 hour for each optimization. However,
in order to avoid local minima several runs were necessary. Using this objective function
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Fig. 5.14 Fracture energies determined according to the RILEM recommendation.

initially rather good results were obtained and it was concluded that the method was rather
good. However, as the results became more, and more scattered and as it was observed that
the fitting results were very poor, especially at the descending branch. It was therefore
concluded that another objective function was needed, so that the descending branch could
be fitted better.

Objective function II;

The second objective function is similar to the first, however, the normalized coordinates of
the kink point (W,/W_,5,/6,) of the strain softening relation is taken into account

N
- ):{ [ EXD-FI? ( Fi”)z]

z F (5.180)

max

zZ=[6, Gr Ewiw, 56, 17

and the state vector is subjected to the following constraints
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0 < G < 10.0 MPa

0 < E < 80,000 MPa (5.181)
0< W, < 0.5 mm

0 < whw, 01/6, < 0,5

Another important difference is that the loads F;/, were calculated at equidistance points at
the load-displacement curve and not just on the displacement curve. By doing so the
descending branch was weighted equally as much as the ascending branch, and even snap
back is taken into account by this method. The number of points, N, was set to 350. In order
to increase the calculation speed the objective function was implemented using the C
programming language, and instead of the Nelder and Mead scheme the NLPQL scheme
developed by Schittkowski (1980) implemented in the programming language FORTRAN was
used.

The NLPQL algorithm is a very effective method where each iteration consists of two steps.
The first is the determination of a search direction by solving a quadratic optimization
problem formed by a quadratic approximation of the Lagrange function of the non-linear
optimization problem and a linearization of the constraints at the current design point. The
second step is a line search with an augmented Lagrangian merit function, Enevoldsen et al.
(1990). NLPQL requires estimates of the gradients of the objective function and the
constraints, and is in this case done numerically.

In this way a more complicated objective function with two additional parameters is used
with almost the same calculation time as the previous function. However, as in the case of
the first objective function it is necessary to try more than one start guess, in order to find
the true minimum.

In most cases this object function yields very satisfactory results, however, it is in some
cases not possible to obtain an acceptable agreement at the tail at the descending branch,
which usually results in a too large fracture energy. An example of such an optimization
result is seen in Fig. 5.15.

Obiective function HI:
In order to solve the above outlined problem a third objective function was designed

Hewr (2] [E]]

mm:ai
<

F

z=[8, Gp Ewyw, 5//6, 17
subjected to the following constraints

108



5. Experimental Determination of Fracture Properties of High-Strength Concrete

1600
1400 | f]
1200 | ;
2, 1000 [ il
g 800 [ ¢
L 600 |

400 | .

200

0 0 100 200 300 400 500 600 700 800 900 1000
Displacement [pm]

Fig. 5.15 Optimization result where the second objective function fails.
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Fig. 5.16 Optimization result from using the third objective function.
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which are equivalent to objective function II, but weighted with the square of the normalized
T Y2
displacement fl_ . By using this objective function the optimization result in Fig. 5.15
max

changes to Fig. 5.16.
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Fig. 5.17 Contour plot of the object function for beam A-4a.

A contour plot of the objective function for beam A-4a is plotted in Fig. 5.17 where the
optimal values of E = 43086 MPa, w;/w, = 0.14 and 5,/6, = 0.22 are used. The
corresponding surface plot is shown in Fig. 5.18. The plot consist of a square grid of 51*51
points and it took over 26 hours to perform the calculations on a 386 33 MHz Personal
Computer. The solid contour lines are plotted with equidistance of 3,000 and the dashed
contour lines are plotted with equidistance of 30,000. The two variables x and y are defined
so that -1.0 at the x-axis corresponds to o,= 10 MPa and 1.0 corresponds to o, = 10.0 MPa,
at the y-axis -1.0 corresponds to w,= 0.05 mm and 1.0 corresponds to w.= 1.0 mm. The
minima of the function is at (x,y) = ( 0.08, -0.84 ) and is equal to 107.96 the maxima is at
(x,y) = (-1.0, -1.0) and is equal to 318260. The minimum corresponds to that w, = 0.09
mm and o, = 5.86 MPa, the values shown in Appendix A3 found by NLPQL are w, = 0.09
mm and o, = 5.42 MPa.

It is seen that the objective function is ’banana’ shaped with a very deep valley. At the
bottom of the valley the objective function is very flat for constant brittleness numbers, and
a lot of local minima are present. It is therefore very difficult to find the true minimum of
the objective function and often several start guesses are necessary in order to get a good fit.
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Fig. 5.18 Surface plot of the object function for beam A-4a.

The optimization results for all the beams are shown in Appendix A4, and the estimated
parameters are shown in Appendix A3.

The mean value of the estimated fracture energies are shown in Fig. 5.19, and the trend
observed in the RILEM method is also observed here, which is due to the fact that the fitting
is made so the curve will be as equal as possible and that the energy dissipation in the bulk
is not taken into consideration in this method. The increase in the fracture energy by
doubling the beam depth is 15% for r = 50 mm and ¢ = 200 mm and 10% for ¢t = 100.

The mean values of the uniaxial tensile strength, o, are shown in Fig. 5.20. No distinct
trend is observed from the estimated uniaxial tensile strength. The tensile strength is smallest
for the small specimens, are then increasing and then decreasing a little. It is observed that
the uniaxial tensile strength is smaller than the modulus of rupture, which is in agreement
with the results presented in chapter 4.

The mean values of the normalized kink point of the softening relation are shown in
Fig. 5.21. It is also seen that the normalized kink coordinate is decreasing with the beam size
and that the values are lower that that of NSC ((0,16,0.31)), indicating that HSC is more
brittle than NSC.
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When this work was finished the author became aware of a work by Roelfstra and Wittmann
(1986) and Bruhwiler et al, (1990) who also have determined the fracture parameters through
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Fig. 5.21 Estimated results for the normalized kink coordinate of the softening relation.

a method similar to the one under objective function I on NSC. They did, however, not use
a weight on the objective function, and their estimation of the peak load is not as that good
as with objective function I.

5.2.5 Conclusions on Size Effect Experiments.

For all the three models it were seen that there were a significant size effect. The size effect
on the modulus of rupture was of the same order as that of experiments performed by Reagel
and Willis (1931). The increase on the fracture toughness with the increasing beam depth was
very large and it is concluded that LEFM, is not applicable for HSC concrete of laboratory
size. The size effect on the fracture energies wase also significant, and the RILEM method
for determining the fracture energy seems inappropriate. By using the data fitting technique
the uniaxial tensile strengths and the kink coordinate on the descending branch were
determined and it was observed that the tensile strength was both decreasing and increasing
with the beam depth. The normalized kink coordinates were decreasing with the beam depth.
For all parameters it was concluded that they were independent of the beam thickness. It
appears, thus, that edge effects are present, since the Weibull in some way is outbalanced.
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5.3 Dye Experiments.

In order to determine the crack profile and to investigate why the thickness of the beam does
not influence on any of the determined fracture parameters, a series of dye experiments
similar to the ones performed by Swartz and Refai (1989) has been performed, with emphasis
on studying edge effects,

In the method developed by Swartz and Rafai (1989), two Aluminum sheets were glued to
the beam using silicone. The specimen was then loaded beyond the peak load, where after
the dye, Blue Vanish (a fluid soap), was poured into the reservoir. The beam is then load-
cycled, with the maximum load being app. 1/3 of the peak load. The reservoirs were then
removed and the beam was split whereby the cracked profile corresponding to the unloading
load is revealed. The crack was then measured immediately after testing, since the dye
disappears after about an hour. The crack profile measured by Swartz was rather U-shaped
indicating the possibility of the existence of a weak zone at the edges of the specimen. The
reason for this weak zone could be that the structure of the concrete is not the same at the
edges of the beam. Another reason could be that the stress intensity factor for a crack on the
edge of the structure is up to a factor of 2.0 of that of an internal crack. That means that a
crack at the surface will propagate for a load which is only the half of that for an internal
crack. A third explanation could be that the used dying technic is responsible for the shape
of the measured crack profiles.

Almost the same testing procedure test set-up as used by Swartz is utilized in this
investigation, see Fig. 5.22. Though, the dye used was instead Rotamin, a red colored dye
used in women lip-sticks, and is in the concentrated form used here almost impossible to
remove. A specimen which was dyed approximately a year ago, placed in the authors office,
has not changed at all since the day of dyeing!. The drying procedure in this investigation
was done by using a hot air canon whereby the drying time was very short. Also the
reservoirs were not glued on to the specimen, but were hinged to the top of the beam, and
then a little silicone was used to make the connection waterproof. It is thereby assumed that
the stiffness of the beam has not changed, due to the reservoirs.

In order to check if the crack profiles change as the structure of the surfaces changes, four
specimens which were saw cut out were produced, and four reference specimens of beam
type D were cast. The procedure just outlined was then followed. The crack profile measured
and drawn. The profiles are shown in appendix A5, and as seen it is not possible to see any
difference in the measured crack profiles.

5.4 Conclusions of Chapter 5.
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, Reference

Fig. 5.22 Test set up used in the dyeing experiments, with the aluminum reservoir.

An experimental investigation on 40 high-strength concrete beams in three point bending have
been performed. The beams consisted of eight different geometries where the beam depth and
the thickness were varied. The experiments were made in a combination of piston
displacement and crack opening displacement control, whereby the same controlling
parameter was used throughout the entire experiment. The fracture parameters according to
three different models were determined. That is the Bernoulli beam theory, linear elastic
fracture mechanics, and the fictitious crack model.

Explicit formulas are available for the two first theories. The results for the Bernoulli beam
theory showed that the bending tensile strength or the modulus of rupture is decreasing with
the beam depth, but not with the beam thickness. The decrease was approximately 10% by
doubling the beam depth. The fracture toughness determined according to LEFM displayed
a significant size effect, as the increase was approximately 50% by doubling the beam depth.
Also here there was no significant size effect by increasing the beam thickness. These results
are parallel to other similar investigations.

Two different methods were used in connection with the fictitious crack model. The RILEM
method and a novel method were the fracture parameters determined through curve fitting.
The fracture energy calculated by using the RILEM method displayed a size effect when the
beam depth was increased by 15% No size effect was observed by increasing the beam
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thickness. The data fitting was done by minimizing a function which describes the difference
between the results from a numerical method and the experimental results. Three such
functions, objective functions, were tested and the third one was the peak load and the tail
were weighted gave the best results. The method is disturbed by the fact that the objective
function has a very deep flat valley with many local minima, which makes it very difficult
to find the true minimum of the function even when powerful optimization techniques are
applied. This problem makes it also very time consuming to determine the fracture
parameters.

The material parameters determined using the data fitting technique showed the size effects
as the other related parameters. The normalized kink coordinates on the softening relation,
which only can be used by using this technique were decreasing with the beam size and were
in general smaller than those of normal strength concrete indicating that normal strength
concrete is more brittle than high strength concrete.

For all the parameters it was observed that the thickness of the beam was not a governing
factor and instead extra experiments were performed in order to check for edge effects due
to the mould. Dying experiments were performed on standard specimens and on specimens
saw cut out. No difference in the cracking profiles was observed.
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6 CONCLUSIONS.

This chapter has three sections. The first contains a summary of the different chapters of the
thesis. The second section gives an overall conclusion of the thesis. This conclusion is based
on the evaluation made at the end of chapters 2-5. Finally future research needs and
applications are presented and discussed.

6.1 Summary of Thesis.

Chapter 1

Chapter 1 contains the introduction to this thesis. The scope of the thesis is partly to
investigate different numerical and analytical models based on fracture mechanical ideas,
which are able to predict size effects, and partly to perform an experimental investigation on
high-strength concrete.

Chapter 2

A description of the factors which influence the strength and cracking of concrete and high
strength concrete is made. Then basic linear fracture mechanics is outlined followed by a
description and evaluation of the models used to describe concrete fracture in tension. The
chapter ends with a description of the different types of size effects. Three examples which
discuss the two terms 'size effect’ and ’brittleness’ and the importance of a stiff test rig.
Finally some brittleness numbers are defined.

Chapter 3

In chapter 3 the most well-known numerical methods which use the fictitious crack to
describe fracture in concrete are presented. Two of the methods are combined into a power
method which is stable for all brittleness numbers and which is able of calculating the entire
load-displacement curve even for very ductile beams. This method is used extensively in the
rest of the thesis.

Chapter 4
Since analytical methods are very time consuming different analytical models have been

developed. Three methods for plain concrete are presented, where one of the methods is
developed by the author. The method is based on three different fracture models. Also two
models applicable for lightly reinforced concrete are presented.

Chapter 5
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An experimental investigation is performed in a closed-loop testing setup where high-strength
concrete in three-point bending is tested. In order to determine the material parameters in the
fictitious crack model an estimation procedure based on the solving of an optimization
problem is developed. The material parameters and the load-displacement curves obtained
by using this procedure are presented. Different size effects are observed, and it is concluded
that edge effects play a dominant role. Dyeing experiments were performed on ordinary
specimens and specimens which are saw-cut out.

6.2 General Conclusions.

One of the major problems solved in this thesis is the stability problem described in chapter
3. The direct sub-structure method is thereby complete, and is a strong tool, when analyzing
structures of quasi brittle materials. The only limit of the method is now the number of nodes
used in the midsection. When a fictitious crack develops, the normalized size of this zone is
dependent on the brittleness of the structure. The more brittle the structure the smaller the
fracture process zone, and consequently many nodes are necessary for describing this zone.

The analytical methods described in chapter 4 show very different results. The analytical
method developed by the author, R. Brincker and S. Krenk, seems to be the most promising.
This method is capable of predicting the size effect on the modulus of rupture. Further more
it is based on basic principles and the governing equations are explicit and simple. These
properties of the model make it a very powerful tool, which is applicable for the designing
engineer. The method is also extended to reinforced concrete, where the results look very
promising.

The large experimental investigation on high-strength concrete seems to have been too small
However, some general results were obtained. It is observed that the decrease in the modulus
of rupture with the increase of beam depth is of the same order as that of normal strength
concrete. The fracture toughness is increasing with the beam depth, making LEFM
inadequate for high-strength, even though high-strength is considered to be a brittle material.
The data fitting performed by finding the minimum of three different function which
describes the difference between a numerical and an experimental load displacement curve
turned out to be very time consuming. If the constitutive parameters are wanted for high
strength concret this method is then the only applicable. The method is, however, not
recommended.

6.3 Future Perspective.

The following items and problems are suggestions for future research in the field of fracture
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mechanics of concrete

120

Developing analytical methods where the softening relation is bi-linear.
Perform experiments with high-strength where the beam depths and span are
varying with more than a factor 5

Development of direct experimental techniques whereby the softening relation
can be determined for ultra brittle materials.

Development of simple models, where the bulk dissipation is included.
Development of models, which describes the bonding between steel and
concrete,

Development of stochastic methods, whereby the reliability and lifetime of
cracked structures can be calculated.



APPENDIX Al

NOTATION.

The following symbols are used in this thesis:

I I | O O 1 O T '

Crack length,

Effective crack length.

Effective crack length.

Fictitious crack length.

Initial crack length.

Distance between nodes.
Brittleness number.

Material geometry dependent parameter in the size effect law.
Compliance, or greens function.
Influence coefficients.

Crack tip opening displacement.
Characteristic size of structure (e.g. beam depth).
Length of virtual cut in structure.
Modulus of elasticiry.

Dissipated energy.

Force.

Peak load.

Material function.

Geometry function.

The energy release rate.

The crack driving force.

The fracture energy.

Moment of Inertia.

The stress intensity factor.

The critical stress intensity factor.
Length of structure.

Elongation of structure.

Linear elastic fracture mechanics.
Resistance towards crack growth.
Position of reinforcement.

Nodal force.

Ultimate nodal force.

Thickness of structure.
Displacement of virtual surface.
Crack opening displacement.
Critical crack opening displacement.
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Cartesian coordinates

Normalized crack length.

Normalized fictitious crack length.
Normalized position of reinforcement.
Normalized position of neutral axis.
Brittleness number.

Crack path.

Displacement.

Displacement at peak load.

Strain,

Linear elastic strain.

Nonlinear part of strain.

Strain at peak load.

Residual strain

Energy density.

Total potential energy of the considered system.
The elastic energy content in structure.
The potential of external forces.

The kinetic energy.

The fracture potential.

Position of neutral axis.

Stress, or arbitrary external load.
Stress tensor.

Modulus of rupture.

Tensile strength.

Yield strength.

Polar coordinates.



APPENDIX A2

LOAD DISPLACEMENT CURVES.

On the following pages the load displacement curves are plotted. The beams are plotted
according to beam size.
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Figure A2.1: Load displacement curves for beam series A.
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Figure A2.2: Load displacement curves for beam series B.
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Figure A2.3: Load displacement curves for beam series C.
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Figure A2.4: Load displacement curves for beam series D.
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Figure A2.5: Load displacement curves for beam series E.
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Figure A2.6: Load displacement curves for beam series F.
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Figure A2.7: Load displacement curves for beam series G.
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Figure A2.8: Load displacement curves for beam series H.
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APPENDIX A3
FRACTURE PARAMETERS.

On the following pages the fracture parameters determined in chapter 5 are presented.

In table A3.1 and A3.2 the modulus of rupture, The fracture toughness, the peak load and
the peak displacements are shown.

In Table A3.3 and A3.4 the Fracture energy, the remaining fracture energy and the fracture
energy obtained through optimization are presented.

In table A3.5 and A3.6 the parameters determined through the optimization technique
described in chapter 5 are shown.
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Appendix A3. Fracture Parameters

Specimen Mod. of rupture Peak load Peak displacement
[N/mm’] [N/mm*"?] IN) [sm]
able 2 stm g ore P clers 1011; cam o -
A2 7.18 0.87 663 294
A3 % % % %
Ad 7.43 0.94 684 318
AS 6.68 0.78 617 271
Mean 4 S.dev 694 £ 043 0.93 £ 0.15 627 £ 62.5 295 + 33.2
Coeff.of Vnr._ 0.062 0.16 0.10 0.11
Bl % % % ]
B2 6.51 0.917 1198 262
B3 % % % %
B4 8.21 1.13 1515 314
BS 8,94 1.18 1710 311
Mean & S.dev 7.89 £ 1.25 1.08 + 0.14 1474 + 258 296 + 29.2
Coeff.of Var. 0.16 0.13 0.18 0.09
C1 6.43 1.39 2160 135
cz 7.97 1.57 2843 161
C3 8.25 1.69 2831 154
C4 8.54 1.69 3032 162
C5 8.45 1.67 3002 175
Mean + S.Dev 7.93 £ 0.87 1.60 + 0.13 2773 + 355 157 £+ 14.6
Coeff.of Var. 0.11 0.08 0.13 0.09
D1 6.58 1.52 4502 124
D2 197 1.65 5601 152
D3 6.54 1.36 4593 126
D4 8.53 1.62 6117 167
D5 8.74 1.66 6308 162
Mean + S.dev 7.67 + 1.05 1.56 £ 0.13 5424 + 842 146 + 20.1
Coeff.of Var. 0.14 0.08 0.16 0.14
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H1 %

Specimen Mod. of rupture Peak load Peak displacement
IN/mm N/mm®?] ] [um]
El 6.9 1.52 9259 133
E2 6.87 1.37 9543 131
E3 7.56 1.41 10748 165
E4 8.66 1.68 12125 178
E5 8.44 1.53 12034 165
Mean + S.dev 7.69 + 0.84 1.50 £ 0.12 10741 + 1343 154 £ 21.1 i
Cocff.of Var. 0.11 0.081 0.13 0.14 I‘
F1 6.37 192 8865 90.8 I
F2 5.85 1.79 7966 % ’l
F3 6.13 1.78 8552 69.4 "
F4 6.62 2.03 9155 75.6
F5 6.73 2.07 9174 737
Mean + S.dev 6.34 + 0.36 1.92 1+ 0.13 8742 £ 503 77.4 +£9.32
Coelf.of Var. 0.057 0.069 0.057 0.120
Gl % % % %
G2 % % % %
G3 6.65 1.96 18468 755
G4 7.82 2.24 22324 80.3 ||
aGs 117 2.02 20515 63.6 I
Mean + S.Dev 7.21 + 0.59 2.07 + 0.15 20436 £ 1929 73.1 £ 8.60 |
Coell.of Var. 0.081 0.071 0.094 0.12 l

Table A3.2 Estimated fracture parameters for beam type E-H.
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% % %
H2 6.33 2.31 30803 69.4
H3 6.98 2.33 35946 82.3
H4 7.36 2.75 35383 81.5 ||
H5 6.9 2.47
Mean  S.dev 6.89 + 0.42 247 £ 020 | 34024 + 2304 71.9 + 5.91
Cocff.of Var. 0.062 0.12 0.068 0.076 "



Appendix A3. Fracture Parameters

A4 93.7 21.7 85.0
AS 40.5 0.0

Mean//S.dev 98.8 + 42.3 %
Coeff.of Var. 0.42
Bl
B2
B3 % % % "
B4 123.5 36.6 120.0
B5 114.8 254 117.0
Mean//S.dev 120.2 + 4.69 % 118 4 1.6
Coeff.of Var. 0.04 % 0.01
C1 140.7 24.1 132.1 |
c2 109.6 34.0 111.0 ||
c3 123.0 312 103.6 u
C4 114.0 329 102.0
Cs 184.0 17.8 188.0
Mean/S.Dev 134.3 £ 303 % 127.3 + 36.0
Coeff.of Var. 0.23 % 0.28

Table A3.3 Fracture Energies for beam types A-D.

D2 140.5 30.7 i18
D3 93.0 13.5 81.0
D4 130 29.9 124.2 "
DS 1354 17.3 126 I
——— e — —_—— —
Mean//S.dev 128.8 + 20.8 % 117.0 + 21.2
Coceff.of Var. 0.16 % 0.18 ||
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E2 107 15.6 99
E3 100.9 0.79 105
E4 163.4 30.1 159.4
ES 131 279 128
S —_— —— e
Mean//S.dev 124.3 + 24.7 % 119.9 1+ 24.6
Coeff.of Var. 0.20 % 0.21
Fl 158.1 31 159
F2 113.8 19.5 107.1 "
F3 161 34.4
F4 120.8 9.17
Fi 130.5 53.3
Mean//S.dev 136.8 + 21.6 % 1313 £ 23.6

Coeff.of Var.

0.16

%

0.18

Table A3.4 Fracture Energies for beam types E-H.
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G2 % %

G3 138.7 13.5 143 |

G4 153.6 9.62 154

G5 125.1 448 128.3
Mean/S.Dev 139.1 % 14.3 % 141.8 + 12.9
Cocff.of Var. 0.10 % 0.09

H1 % % % |

H2 127.1 151 123.2 “

H3 152.6 19.2 142

H4 168.6 26.6 159.8 ||

HS 126.5 28.8 124.6
Mean//S.dev 143.7 £ 20.6 % 137.4 £ 17.2
Cocff.of Var. 0.14 % 0.13




Appendix A3. Fracture Parameters

Al 3.60 0.12 0.19 0.28 1.14

A2 3.97 0.12 0.22 0.31 1.12

A3 % % % % %

A4 5.42 0.086 0.14 0.22 1.01

AS % % % % % =l
Mean+S.dev 433 + 0.96 0.11 + 0.02 0.18 + 0.04 0.27 £+ 0.05 1.09 £ 0.07
Coeff.of Var. 0.22 0.18 0.22 0.17 0.06

B1 % % % % %

B2 331 0.15 0.20 0.26 1.20

B3 % % % % %

B4 5.14 0.12 0.15 0.24 1.23

BS 5.19 0.15 0.17 0.13 1.35
Mean+8S.dev 4.55 £ 1.07 0.14 + 0.02 0.17 £ 0.03 0.21 + 0.07 1.26 + 0.08
Coelf.of Var. 0.24 0.12 0.15 0.33 0.06

C1 4.15 0.14 0.18 0.29 1.26

c2 6.14 0.19 0.12 0.07 1.18

C3 6.91 0.10 0.14 0.16 1.32

C4 7.87 0.08 0.16 0.16 1.26

Cs 553 0.18 0.18 0.19 1.26
Mean+S.Dev 6.12 £ 1.41 0.14 £ 0.05 0.16 + 0.03 0.17 + 0.08 1.26 £ 0.05
Coeff.of Var. 0.23 0.35 0.17 0.45 0.04

D1 4.12 0.16 0.18 0.23 1.31

D2 6.47 0.11 0.15 0.20 1.38

D3 6.25 0.07 0.13 0.27 1.27

D4 6.69 0.15 0.14 0.12 1.23

D5 . 0.16 0.14 0.14 1.25

e < . e

Mean1S.dev 5.86 + 1.03 0.13 + 0.04 0.15 + 0.02 0.19 + 0.06 1.29 + 0.06
Cocff.of Var. 0.18 0.30 0.13 0.32 0.05

Table A3.5 Estimated fracture parameters for beam type A-D.
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Bl 5.12 0.09 0.19 0.30 1.25
E2 6.15 0.11 0.12 .20 1.23
E3 6.63 0.09 0.16 0.19 1.13
E4 6.61 0.18 0.12 0.15 1.19
ES 6.80 0.18 0.11 0.10 1.21
Mean+-S.dev 6.26 + 0.68 0.13 + 0.05 0.14 + 0.03 0.19 £ 0.07 1.20 + 0.05
Coeff.of Var. 0.11 0.35 0.24 0.39 0.04
F1 595 0.26 0.09 0.12 1.06
F2 5.23 0.16 0.09 0.17 1.72
F3 5.24 0.17 0.14 0.21 1.37
F4 6.18 0.15 0.12 0.15 1.39
F5 5.90 0.08 0.19 0.27 1.47
— == S——
Mean4S.dev 5.7 +£ 0.44 0.16 £ 0.06 0.13 + 0.04 0.18 + 0.06 1.40 + 0.24
Coeff.of Var. 0.08 0.39 0.33 0.32 0.17
——————————— =-—==—=%
G1 % % % % %
G2 % % % % %
G3 5.48 0.21 0.11 0.14 1.47
G4 7.57 0.16 0.11 0.14 1.51
| G5 6.17 0.20 0.13 0.09 1.28
Mean+S.Dev 6.41 + 1.06 0.19 + 0.026 0.12 + 0.012 0.12 4 0.03 1.42 +0.12
Coeff.of Var. 0.17 0.14 0.10 0.23 0.09
H1 % % % % %
H2 538 0.18 0.12 0.14 1.49
H3 511 0.24 0.15 0.08 1.34
H4 5.75 0.28 0.11 0.09 1.43
HS éﬂ. 0.17 0.12 0.11 1.32
Mean+S.dev 5.64 4+ 0.52 0.22 + 0.05 0.13 1 0.02 0.11 % 0.03 1.40 £ 0.08
Coeff.of Var. 0.09 0.24 0.14 0.25 0.06

Table A3.6 Estimated fracture parameters for beam type E-H.
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APPENDIX A4

OPTIMIZATION RESULTS.

On the following pages the fitted load displacement curves are plotted. The experimental
curve is the dashed curve and the solid curve is the fitted curve.
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Figure A2.1: Fitted results for beam A-1C,
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Figure A2.2: Fitted results for beam A-2a.
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Appendix A4. Optimization Results.
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Figure A2.3: Fitted results for beam A-4a.
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Figure A2.4: Fitted results for beam A-5a.
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Figure A2.5: Fitted results for beam B-2a,
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Figure A2.6: Fitted results for beam B-4a.
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Appendix A4. Optimization Results.
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Figure A2.7: Fitted results for beam B-5a.
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Figure A2.8: Fitted results for beam C-lc.
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Figure A2.9: Fitted results for beam C-2.
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Figure A2.10: Fitted results for beam C-3.
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Appendix A4. Optimization Results.
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Figure A2.11: Fitted results for beam C-4.
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Figure A2.12: Fitted results for beam C-5.
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Figure A2.13: Fitted results for beam D-1.
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Figure A2.14: Fitted results for beam D-2.
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Appendix A4. Optimization Results.
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Figure A2.15: Fitted results for beam D-3.
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Figure A2.16: Fitted results for beam D-4.
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Figure A2.17: Fitted results for beam D-5.
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Figure A2.18: Fitted results for beam E-1.
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Figure A2.19: Fitted results for beam E-2.

12000 . : — e3b

10000

1

\\
%9 100 200 300 400 500 600 700 800

Displacement [m E-6]

Figure A2.20: Fitted results for beam E-3.
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Figure A2.21: Fitted results for beam E-4.
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Figure A2.22: Fitted results for beam E-5.
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Figure A2.23: Fitted results for beam F-1.
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Figure A2.24: Fitted results for beam F-2b.
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Figure A2.25: Fitted results for beam F-3b.
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Figure A2.26: Fitted results for beam F-4b.
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Appendix A4, Optimization Results,

x10 g.3a

0 100 200 300 400 500 600 700 800 900
Displacement [m E-6])
Figure A2.27: Fitted results for beam G-3a.
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Figure A2.28: Fitted results for beam G4-a.
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Figure A2.29: Fitted results for beam G-5a.
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Figure A2.30: Fitted results for beam H-2c.
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Appendix A4, Optimization Results.
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Figure A2.31: Fitted results for beam H-3c.
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Figure A3.1: Fitted results for beam H-4c.
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Figure A3.2: Fitted results for beam H-5c¢,
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APPENDIX A5
CRACKING PROFILES.

On the following pages the measured cracking profiles described in chapter 5 are shown. The
specimens S1-S4 are the standard specimens, and specimens K1-K4 are the saw cut
specimens. The profiles are meassured for both fracture surfaces, and are almost identical.

The dashed line indicates the position of the notch, and the solid line shows the dye edge,
which is assumed to be near the real crack tip.
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Figure A5.1: Dyeing profiles for the standard specimen type D.
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Appendix AS. Cracking Profiles
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Figure A5.2: Dyeing profiles for the saw cut specimen, of size D.

K1

K2

K3

K&

155



APPENDIX A6
RESUME IN DANISH.

Titlen pa afhandlingen er
Brudmekanik for beton

Som titlen beskriver omhandler projektet brudmekanik for beton. Projektet er en del af et
storre forskningsprogram under Statens Teknisk Naturvidenskabelige Forskningsrdd med
titlen:

"Heojkvalitetsbetoner i 90’erne"

Brudmekanik er en forholdsvis ny disciplin og de udviklede teorier har fortrinsvis varet rettet
mod stil hvor en linezr teori ofte giver gode resultater. For beton har line®r brudmekanik
generelt vist sig at give ddrlige resultater og i stedet er der udviklet en rekke nye modeller.
Den mest kendte af disse er den fiktive revnes model udviklet af Arne Hillerborg. Denne
model har gjort fagpomridet bredt tilgzngeligt og indenfor de seneste ar har stadig flere
fundet interesse for fagomridet, der er inde i en rivende udvikling. Brudmekanik er en mere
ngjagtig metode at beskrive konstruktioner pi end de mere almindelige anvendte teknikker
(elasticitet teori og plasticitetsteori), og kan derfor beskrive visse f&nomener som de
fornzvnte teorier ikke kan forklare. I Danmark er der dog stadig kun f3, der har beskaftiget
sig indgdende med emnet (H.H. Bache, H. Stang og N.A. Harder). Det var pd denne
baggrund projektet blev startet.

I denne afhandling er der isr fokuseret pi fenomenet ’storrelseseffekter’, hvor betegnelsen
sterrelseseffekter er opfattet bredt (storrelseseffekter pd vilkirlige materiale parametre).

I kapitel 2 af afhandlingen gives en grundig beskrivelse af brudprocessen i beton og
hejstyrkebeton gdende fra mikro- til makroniveau. Derefter falger en beskrivelse af de mest
anvendte brudmodeller for beton. Kapitlet afsluttes med forskellige eksempler, der ved hjzlp
af linezr elastisk brudmekanik illustrerer begrebet storrelseseffekter.

Efter beskrivelsen af disse modeller er der valgt at fokusere pd den fiktive revnes model. Der
er desuden foretaget den afgrensning, at der udelukkende betragtes bjzlker udsat for tre
punkts bejning.

I kapitel 3 beskrives det hvorledes den fiktive revnes model kan anvendes i tilknytning til
numeriske metoder. De to mest kendte metoder udviklet af P.E. Petersson og A. Carpinteri
presenteres. En ny metode baseret pd randelementmetoden prasenteres. Der er i forbindelse
med projektet lagt et stort arbejde i at udvikle og implementere denne metode.
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Da numeriske modeller ikke altid er szrlig hensigtsmassige er der udviklet en analytisk
metode hvor den fiktive revnes model er anvendt siledes at den fuldstzndige arbejdskurve
kan beregnes. Modellen beskrives i detaljer og sammenlignes med to modeller, der er
udviklet af Y.W. Mai, baseret pd revnebdndsmodellen, samt en metode af J. Llorca, der er
baseret pa den fiktive revnes model. Modellen er endvidere udvidet til at gelde for armeret
beton.

I forbindelse med projektet er der udfert forsog med omkring 50 bj=zlker af uarmeret og
svagt armeret beton i en nyudviklet servostyret revnedbningkontrolleret forsegsopstilling. Der
er genemfort forsog til belysning af sterrelseseffekter og forseg med henblik pd at bestemme
revne profiler i udsavede proveemner. Der er endvidere forsagt at bestemme materialepara-
metre i den fiktive revnes model ved at tilpasse arbejdskurver bestemt ved den numeriske
metode med arbejdskurver malt ved forseg. Dette er gjort ved anvendelse af et generelt ikke-
linezrt optimerings program. Forseg og forsegsresultater er beskrevet i kapitel 5.

Rapporten afsluttes med en konklusion der opsummerer de opndede resultater, samt giver
forslag til den videre forskning indenfor omradet.

157



