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l INTRODUCTION. 

1.1 Background and Motives. 

In the last two decades the research tool fracture mechanics for concrete has been developed, 
as it has become clear that the traditionally applied calculation tools ( elasticity theory and 
piasticity theory), not always are applicable of describing certain phenomenons in concrete 
fracture. The tool has also been applied by materlal researches developing new ultra strong 
duetile materials, e.g. Compact Reinforced Composiles (CRC). 

The compressive strength of concrete has in the same period increased dramatically, and 
compressive strengthover 100 MPa by using conventional techniques has been obtained. The 
increase in strength is followed by an increase in the brittleness of the materials, and it has 
been assumed that the conventional techniques do not suffice for these new brittie materials. 

One of the most important models which describes the fracture process of concrete in tension 
is the fictitious crack model developed by Arne Hillerborg and his co-workers at the 
Universily of Lund, Sweden. The fictitious crack model is a nonlinear fracture mechanical 
model, based on observations made in a dispiacement controlled tensile test. 

One of the phenomenons which can be deseribed by using the fictitious crack model, is the 
well-known size effect on the bending tensile strength. It can also be proved that the 
brittleness of a structure is dependent on the size of the structure, explaining why large 
struerures are cracking more than small structures. 

There are two major problems by using the fictitious crack model. Firsti y, that the materlal 
parameters which describe the model must be found by performing a stable deformation 
controlled tensile test, which is almost impossible for high strength concrete. Secondly, that 
it is almost always necessary to use numerical methods, and only in very special cases are 
analytical methods developed. 

Most of the developed numerical methods are either not stable or are not able to calculate 
the entire load-dispiacement curve. The analytical methods are in general very time 
consuming, not accurate enough or do not describe size effects. 

Therefore, it would be welcome if powerful numerical techniques, simple accurate analytical 
models and indirect methods for determining the constitutive parameters were developed. 
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1.2 Scope of Thesis. 

On the basis the previous scope of this thesis is presented, as a listing of topics. 

The main scqpe of the thesis is: 

Developmenl ofnwnerical and analytical fracture mechanical techniques, examination of the 
applicability of these techniques on high strength concrete struerures and to develop indirect 
methods for determination of the constitutive parameters. 

The above scope of the thesis can be divided into the foliowing topics and a list of general 
limitations. 

To.pics 

Limitations. 

The development of fast numerical methods which are applicable for brittie 
structures and which can calculate the entire load-dispiacement curve. 

The development of approximate analytical methods where the calculation time 
is smaller than that of the numerical methods, and which enables the 
development of explicit analytical results. 

To develop experimental techniques which can perform stable three-point 
bending tests 

Perform experiments with high strength concrete in order to investigate size 
effects and to study the brittleness of the strong material. 

Develop methods for indirect determination of the constitutive parameters in 
the fictitious crack model. 

The foliowing limitations are general in this thesis. 

6 

The compressive strength is assumed to be so large that compressive faiture 
will not occur. 

The fictitious crack model will be used. 

lt is in general assumed that the softening relation is piece by piece linear. 



l. Introduetion 

The structure outside the crack is assumed to be modelled satisfactory by 
linear elasticity theory. 

In chapter 3~5 only the three-point bending geometry is considere(i. 

1.3 Readers Guide. 

In the foliowing it is the intention to give the reader a preliminary overview of the thesis, 
which enables more selective reading. 

After the introduction, chapter 2 is used to give an overview of the factors that govems 
strength and cracking of normal- and high strength concrete. Models for cracking in concrete 
are evaluated, and a few examples which illustrates size effects and brittleness in concrete 
are presented. 

The chapters 3-5 are the mainbodyin the thesis. 

In chapter 3, different numerical methods which have been developed for use with the 
fictitious crack model are presented and stability problems by using the models are deseribed 
and solved. 

Chapter 4 is devoted to analytical models which take the softening behaviour of concrete into 
consideration. Also two models which are developed for lightly reinforced concrete are 
presented. 

In chapter S an experimental investigation of 8 different beam geomelries of a high strength 
concrete is presented. Fracture parameters by using different fracture models are presented, 
and size effects are observed. The numerical method is applied to determine the fracture 
parameters by curve fitting. 

An overall summary and condusion is given in chapter 6. 

At the end of the thesis there are 6 appendixes which contain the list of notation, all the 
fracture results and the load dispiacement curves of the performed experiments. 

The references in the text can be found in the list of references in the last section of the 
individual chapters. 

7 
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2 FRACTURE AND FRACTURE MODELS OF 
CONCRETE. 

After a description of concrete and tlle fracture process of concrete a review of tlle most 
important models which are used to describe concrete fracture will be given. A short 
presentation of linear elastic fracture mechanics (LEFM) is given with emphasis on 
terminology and definitions. Four different non-linear elastic fracture mechanical (NLFM) 
models which are widely accepted are presented. The models are compared and tlle 
applicability of each model is evaluated. Finally the terms 'size effect' and 'brittleness' is 
discussed and different examples and stability problems is examined by using LEFM. 

2.1 Fracture of Concrete and ffigh Strength Concrete. 

Concrete is a heterogene()US anisatropie non-linear inelastic composite materlal tllat consists 
mainly of cement, aggregates (sand and gravel) and water. In high-strengtil concrete (here 
defined as concrete witll a compressive strengtil above 50 MPa) mineral admixtures and 
water reducing additives are usually present. 

Wittmann (1983) suggests to consider concrete on three different levels: the micro-level 
where tlle structure of the hydrated cement is considered, the meso-level where large 
inhomogeneities such as larger aggregates and flaws are taken into consideration and the 
macro-level where the concrete is assumed to be a homogeneous isotropie continuum. 
Accordingly cracks are categorized as follows: 

Micro cracks : 
Meso cracks : 
Macro cracks : 

Cracks that can only be observed by an electron microscope. 
Cracks that can be observed using a conventional microscope. 
Cracks that are visible to the naked eye. 

Depending on the purpose of the investigation tlle appropriate level should be chosen. 
However, it will often be fruitful to develop a model at one level based on observations at 
a lower level. In practice models which should apply for the practical engineer will be on tlle 
macro-level. 

In this chapter emphasis will be on subjects related to strength and cracking of concrete. 
Strength of concrete wi11 mainly depend on the strength and stiffness of the bardened cement 

8 
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paste, on the strength of the aggregates and on the bonding between the cement paste and the 
aggregates. The strength of the cement paste and of the aggregates will to a great extent 
depend on the porosity. This is explained in two different theories: fracture mechanics by 
Griffith (1921) and the weakest link theory by Weibull (1932). These two theories will be 
presented in detaUlater. 

The difference between normal strength concrete (NSC) and high strength concrete (HSC) 
liesin the difference in the microstructure. According to Rice (1977) "depends strength and 
frocture in ceramics eritical/y on microstructural extremes rather than on averages•• and 
according to Mai (1991) 11 

• • but we want to re-emphasize here the need to understand the 
' physical mechanisms ofthe bridges and the mechanics of crock-bridging. It is such knowledge 

thai teaches us to design better ceramics through the control of micro-structures, such as 
grain siz.es •.. 11

• Thus, in arder to understand the fracture process, which is necessary for 
developing realistic fracture models, and to explain the difference between normal and high 
strength concrete this presentalion starts on the micro-level. 

2.1.1 Concrete on the Micro-level. 

F.ach component of concrete will first bedeseribed with emphasis on NSC, then HSC will 
be deseribed under the section mineral admixtures. 

Portland Cement. 

In the experiments performed in conneelion with this thesis the Danish low alkali sulphate 
resistant portland cement certified as PC (A/HS/EA/G)1 was used. 

Cement pawder consists of particles with ~ical sizes of 1-50 #'m, see Fig. 2.1:. The 
specific surface (the blaine) is typically 350 m /kg. By increasing the blaine it is possible to 
obtain high early strength. The long term strength is, however, not affected by the blaine, 
Swammy (1986). 

The solid phases of portland cement consist of four principal minerals: alite (impure 
tricalcium silicate (C3Sf ), belite (impure dicalcium silicate (C2S)), impure tricalcium 
aluminate (C3A) and a ferrite solid solution (tetracalcium alumina ferrite (C4AF or Fss). 
When these are mixed with water several chemical processes, called the hydration process, 
start. The outcome of the hydration process is the hydration products. The calcium silicates 
react with water to give calcium silicate hydrates (C-S-H) and calcium hydroxide (C-H). The 
aluminate and the ferrite phases react with added gypsum (calcium sulfate (CaSO..>) to give 

1 According to the Danish code: DS-SBC 227 

lnle customary cement nomenelature is used: Calcium oxide - CaO = C; Silicium oxide 
-SiD" = S; Aluminuro oxide- Al20 3 =A; Water- H=H20; 

9 
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Fig. 2.1: Grain curves for micro silica, fly ash, cement and sand, Herholdt et al. (1985). 

two types of products, referred to as AFt (Ettringite) and AF m, see Table 2:. If gypsum is 
not added the C3A will almost instantly react with water making the setting time very short, 
Herholdt et al. (1985). 

elinker Con- Hydration prod- Morphology 
mineral tents ucts 

c3s 58% C-S-H and C-H Of C-S-H: Wide range of morphology; 
Early: Fibrillar or honeycomb structure; 
Later: More dense 

c2s 24% C-S-H and C-H Of C-H: Euhedral hexagonal habit 

C3A 4% AF t Hexagonal rods 

C4AF 8% AF m Hexagonal piates 

Table 2: Constituents of cement. 

!Jle C-S-H is themost important component in concrete and together with C-Hit controls 
the strength development and most olher macroscopic properties of the bardened cement 
paste. The other elinker minerals and gypsum are important during cement elinker 
production, in regulation of setting time and important rheological properties, Skalny and 
Roberts (1987). 

It is in general difficult to follow the hydration process, and especially in the early phases. 
However, some results can be given o f the mechanical details of the microstructural 
development during hydration by using e.g. the scanning electron mieroscape (SEM) or the 
high voltage electron mieroscape (HVEM). In the HVEM it is possible to install an environ­
mental cell which makes it possible to study the hydration process as early as after 10 min 

lO 
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mixing. 

The hydration process is an exothermic reaction, and the overall progress in the hydration 
process can be studied under adiahatic conditions. The heat development for each elinker 
mineral is different and is approximately 500 J/g for the cement taken as a whole. However, 
the rate-of .. heat evolution curve is, of considerable more interest since it determines the 

60 

50 

!2 
~ 40 -g 30 ... 
~ .c 20 ._ 
o 
~ 
~ 
~ 

10 
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,., 

o 
' " ........ 10 20 30 40 50 60 70 BO 90 100 

Time [h] 

Fig. 2.2:. Rate of heat evolution curve, Herholdt et al. (1985). 

temperature and the temperature gradients in the concrete. A typical ratee.()f-heat curve is 
seen in Fig. 2.2:. 

By referring to the rate-of-heat evolution curve the hydration process can roughly be divided 
into three phases: early (Q-3 hrs), middle (3-24 hrs) and late (beyond 24 hrs). An illustration 
of the development of the microstructure of a cement grain during hydration is shown in 
Fig. 2.3: a-e. 

In the early phase, termed the induction period, the cement remains fluid and a large amount 
ofheat is developed, see Fig. 2.2:. In Fig. 2.3:a. a typical anhydrous cement com consisting 
of c;s, <;A and C4AF is shown. The ~S is omitted since it basically performs the same 
processes as (<;S). 

Immediately when the cement surface and the water come in contact the hydration starts. 
Calcium, aluminates and other ions are released into the solution forming an aluminate and 
silica rich gellayer, Skalny and Roberts (1987), Scrivener (1989) and Herholdt et al. (1985). 
Asearly as after 10 minutes hydration small rods of AFt which have nucleated in the gel, 
can be observed. At the end of the induction period the reaction of the tricalcium silicate 
begins which leads to the formation of C-S-H where the rods of AFt have nucleated. That 
is outside the original boundary of the cement grain which leaves a space of approximately 
l #'m between the anhydrous cement grain and the AFt and the C-S-H. These produets are 

11 



J.P. Ulfkjær. Fracture mecbanics of concrete 

' IOJ!ftl 

a) b) c) d) e) f) g) 

Fig. 2.3: The hydration process. a) unhydrated. b) -10 min. c) -10 hrs. d) ·18 hrs. e) 1-3 
days. f) -16 days. g) years, Senvener (1989). 

referred to as the outer product, Skalny and Roberts (1987) and Mehta and Aitchen (1990). 
This mechanism continues with the formation of C-S-H at the outer surface increasing the 
distance between the core and the shell. After about 16 hrs the AFt rods start to grow again 
through the shell of C-S-H. At the end of this phase all grains smaller than 5 pm are 
completely hydrated leaving hollow shells of hydration products, Scrivener (1989). As the 
shell of hydration produets thickens the shell beoornes Jess permeable and will eventually 
prevent the water transport in the system which ends the second phase. 

The subsequent hydration which continues infinitely will then be a slow solid state process 
decreasing the distance between the core and the shell. These produets are often referred to 
as the inner products, Skalny and Roberts (1989), Senvener (1989) and Mehta and Aitchen 
(1990). The hydrated cement grain will thus consist of the porous outer produets and the 
more dense inner products. 

This explains why the fracture path will go through the outer produets rather than the inner 
solid produets as revealed by SEM studies of fractured surfaces. Thus, the larger amount of 
inner produets that can be achieved the stronger is the cement paste. This is obtained by low 
water/cement ratios, mineral admixtures and super plasticizer, Mehta and Aitcin (1990). 

Coarse A~~regates. 

The strength ofthe coarse aggregate, usually with maximum sizes up to 64 mm, is controlled 

12 
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by the amount and sizes of cracks and by the amount of weak minerals. A high quality aggre­
gate is therefore clean, free of clay and silt, well graded and with a high density. Certain 
types of aggregates have a strengths up to 200 MPa, Mehta and Aitcin (1990). It is usually 
assumed that the strength of the aggregates does not have a significant influence on the 
compressive strength, but as shown by Aitchen (1990) thisis not the case for high-strength 
concrete. It is therefore evident to use high quality aggregates in high-strength concrete. 

Bond in& 

The final important aspects in concrete strength is the role of the bonding between the cement 
pastc and the aggregates. The aggregates depending on shape, size and surface texture will 

Fig. 2.4: SEM photo ofthe transition zone. a) (l) Silicious aggregates; crack along edge and 
(2) oriented C-H crystals. b) (2) Limestone aggregate; crack in cement paste beyond a zone 
of calcitereaction (l) and CaS03 crystals, Regourd (1984). 

block the water distribution during bleeding. This leads to a locally increased water/cement 
ratio at the paste aggregate interface. This increase leads to a change of the microstructure 
next to the aggregates, termed the transition zone typical 40-50 pm wide. In addition to 
larger porosity due to the bleeding there are generallylarge crystals of C-H in the transition 
zone with a referenced orientation, Mindess (1989), see Fig. 2.4: and Fig. 2.5:. The weakest 
zone in the transition zone does not Iie at the physical interphase but 5-10 pm away from the 
aggregate. The fracture will often run in the oriented C-H crystals. lt is often assumed that 
the transition zone only represents a fraction of the entire volume of the concrete. 
Microscopical investigation by Diamond, Mindessand Integers (1982), has revealed that the 
meandistance between the aggregates is about 75 - 100 pm which means that most of the 
bardened cement paste Iies in the transition zone. These observations indicate that the 
strength of the transition zone is of outermost importance in the description of concrete 

13 
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Trans1tlon Zone Bulk Cement Poste 

, 

Fig. 2.5: The transition zone between the aggregates and the cement gel, Mehta (1986). 

strength. 

Mineral Admixtures. 

The mineral admixtures are e.g. puzzolans, blast-furnace slag, fly ash and water reducing 
additives. Puzzulanes e. g. micro silica are extremely fine particles with a size of 20 nm- 500 
nm while fly ash have atmost the same size distribution as cement, see Fig. 2.1:. The micro 
silica is added to make the concrete more dense, i.e. it wil1 fi1l out the voids which are too 
small for the cement com and the hydration products, see Fig. 2.6:. Micro silica is not 
reacting with water but with the hydration produet calcium hydroxide, making the bardened 
cement paste more homogeneous and dense. When micro silica is added the transition zone 
also changes. The micro silica wil1 react with the oriented C-H which is the weak part of the 
transition zone, thus the interface between the cement gel and the aggregate is strengthened, 
Sarkar and Aitcin (1987). 

Since it is very difficult to disperse the small micro silica particles in the cement pastes it 
will always be necessary to add water reducing additives (WRA), which wil1 increase the 
workability. The WRA can be categorized into three groups: a) lignosulphonates b) 
sulphonatcd melamin e-formaldehyde condensates and c) sulphonated naphtalene-formaldehyde 
condensates. a) is also having a retarding effect and is often referred to as a plasticizer. The 
groups b) and c) are referred to as super plasticizer due to their low retarding effect which 
allows an increased dosage, FIP/CEB (1990). A cernbination of the two types of produets 
wil1 therefore often be used. 

14 



2. Fracture and fracture models of concrete 

Fig. 2.6: Micro silica concrete. a) Silicious aggregates (l) no crack and no oriented crystals 
of C-H low porosity and amotphous C-S-H (2). b) Limestone aggregate (3) no crack 
amotphous C-S-H and calcitereaction (l) some C-H crystals in the matrix, Regourd (1984). 

Sillea fume and water reducing additives wi1l thus change the microstructure of concrete 
significantly making the structure more dense, see Fig. 2.6:. 

1.1.11be Fraelure Process in Compression. 

Depending of the level of the investigation each part of NSC can be thought of as a 
composite materlal that consists of stronger particles which are embedded in a weaker matrix, 
see Table 3:. 

Level Materlal Strong Particles Weak Matrix 

Micro Cement paste Ioner Produets Outer Produets 

Meso Mortar Sand Cement Faste 

Macro Concrete Gravel Mortar 

Table 3:. Strong and weak particles classifled depending on the considered level. 

Consider the stress- strain curves for aggregates, concrete, and cement paste see. Fig. 2.7:. 
It is observed that the curve for the gravet is almost linear until 95% of the failure load and 
that the failure is very brittle. The stress-strain curves for the other materiais are non-linear. 
This is probably due to cracking at the different levels. 
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Fig. 2. 7: Stress-strain curves for aggregates, concrete and cement paste, Mindess (1983). 

The fracture process on the micro-level related to the stress-ss wtrain curve, has as far as the 
author knows, only been studied for cement paste and mortar, and only by Attiogbe and 
Darwin (1987). A very large study (150 specimens) of microcracking in cement paste and 
mortar was made in order to understand the non-linear behavior of those two materials. The 
examination was performed in a scanning electron mieroscape with a magnification of 1250 
x or 2500 x (cracks with widths below 2.5 l'm). They concluded that cracks run through C­
S-H and C-H in the cement paste. In the mortar the cracks are also running at the interface 
between the sand and the cement paste. The result were presented as crack densitles at 
different stages of loading. For both materiais it was observed that a substantial amount of 
cracking was initial cracking. For the cement paste almost 50% of the cracking at failure 
were initial cracks whereas it was approximately 30% for the mortar. However, during 
loading the crack densitles where growing more rapidly in the mortar than in the cement 
paste. Whereby they concluded ''Ihus, sand particles appear to aet as stress raisers that 
resull in a greater degree of softening and of lower strain capocity for mortar than for 
cement paste'. 

Crackin& on the meso-level 

Due to the non-linear stress-strain curve for concrete it is beneficial to divide the ascending 
branch of the stress-strain curve into four regions and the descending branch as suggesled by 
Mindess (1983), see Fig. 2.8:. 

This is illustrated by Hsu et al. (1963) who by using microscope and x-ray techniques studied 
NSC and obscrved that there initially was a substantial amount of bonding cracks. According 
to Stroeven (1975) the increasc of the specific crack area during loading is increascd with 
26% which corresponds to 80% o f all cracks were initial. These observations are in 
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Fig. 2.8: Stress-strain curve for concrete divided into four regions, Ziegeldorf (1983). 

accordance with the observation made on the micro-level. These initial cracks are properly 
due to swelling, shrinkage and bleeding since swelling yields tangential cracks while cracks 
due to creep are radial, Ziegeldorf (1983). 

For loads below app. 30-50% of the ultimate load the stress-strain curve is approximately 
linear and there is no growth of the initial cracks. Due to crack intensities and the difference 
in the elasticity modulus between the mortar and the aggregates bonding cracks start to grow 
making the curve increasingly non-linear. Beyond 50% of the ultimate load cracks start to 
form in the mortar running between the aggregates parallel with the load direction (indicating 
tensile cracks). These cracks grow quasi-statically and this type of crack growth is often 
termed slow crack arowth. At 75% of the ultimate load a more complex cracking system 
starts to develop and the cracks in the mortar coalesce with the bonding cracks and finally 
faiture occur. 

In HSC the same mechanisms can be observed, Smadi and Slate (1989). lt can, however, be 
concluded: 

The amount of cracking is significantly less in HSC than in NSC. 
The interfacial cracking is insignificant below 60-70% of the ultimate load for HSC. 
Mortar cracking is negligible below 90% of the ultimate load. 

By the observations made for HSC it can be concluded that the strengthening of the transition 
zone limits the amount of bond cracking and the more homogeneous high-strength cement 
paste is more brittle. 
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2.1.3 The Fradure Process in Tension. 

The tensile strengtit of concrete is a produet of the above observations and the fracture 
process wi1l thus be dependent on the strengthof each link in the cracking process (cracking 
of the paste, cracking of the aggregates and debonding). In normal strength concrete the 
cracking process wi1l start as debonding or as crack growth of existing micro cracks in the 
cement paste at approximately 80% of the peak load, then newcracks wi1l form and some 
will stop due to stress redistributions and due to crack arrest (cracks stopped by stronger 
aggregates). These cracks are evenly distributed throughout the specimen. When the peak 
load is reached a large amount of cracking willlocallze in a narrow zone and eventually the 
crack that will split the specimen into two will form in that zone. This zone will probably 
develop in the weakest part of the specimen. 

In high strength concrete the weakest part can both be in the aggregates and in the cement 
paste. lf the cement paste and the transition zone are the strongest then crack initiation wi1l 
probably not start as debonding but instead the crack growth wi1l initiate in the aggregates. 
After the peak load is reached all cracking will be limited to the zone. By using laser 
holographic Ansari (1987) confirmed these observations and he further observed that the 
dispiacement profile in the narrow zone was varyingin a random way. 

In the following the fracture process in tension will be deseribed on the macro-level by using 
a concret.e rod as an example. Consider a concrete rod with the length, L subjected to a 
deformation controlled tensile load, P, see Fig. 2.9: . The strain is measured by the strain 
gauges A, B, C and D. The strain gauges A,B and C having the length L/3 and D has the 

Unitormly distribu ted 
cracking 

P,llL 

A 

1---~)X 

~L 

Localized zone 
with cracking 

c 

~L 

Fig. 2.9: Concrete rod subjected to dispiacement controlled loading. 

P,llL 

same length as the rod. It is now assumed that the crack that eventually will split the rod into 
two will develop under strain gauge B. Thc stress-strain curves for the four strain gauge are 
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shown in Fig. 2.10:. The ascending brancb of tbe four stress-strain curves are identical 
q 

Fig. 2.10: Stress strain curves for tbe strain gauges A,B,C and D. 

whereas tbe descending brancb only is identical for gauges A and C. This will be explained 
in tbe following. 

The elongation of tbe rod will in general consist of three contributions: a linear elastic part 
fully deseribed by tbe elastic strain, Ee, a non-linear part whicb is due to uniformly 
distributed cracldng deseribed by tbe non-linear strain, E11 , and a part which is due to 
increased cracking in tbe localized zone, w. The total elongation, M...., can tben be written 

(2.1) 

The strain gauge A and C will only measure the two first contributions in eq. (2.1). Strain 
gauge B and D will measure all three contribution, but since strain gauge D is three times 
longer than B the last term will be divided by L for gauge D and only L/3 for gauges B. Thus, 
tbe strain measureel by a strain gauge will be dependent on tbe lengtb of tbe gauge and of tbe 
position on the rod. Eacb term in eq. (2.1) is shown in Fig. 2.11:. 

During cracking energy will dissipate into tbe specimen. The dissipated energy can be 
categorized according to eq. (2.1). A certain amount of energy will dissipate more or less 
uniformly through tbe whole specimen and is deseribed by tbe second term in eq. (2.1) the rest 
will be limited to tbe narrow zone. The total amount of dissipated energy can tben be written 
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.dL 
Fig. 2.11: The total elongation of a rod can be divided into three parts. a) linear elastic part 
b) non-linearin-elastic part and c) localized part. d) the total elongation. 
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where ,A, is the cross sectional area. Thus, the dissipated energy is dependent on the length of 
the rod, and of the three materlal functions/JfJ,/lJ andJ3f) defined in Fig. 2.11:. 

An accurate model which describes the fracture behavior of concrete should, therefore, inelude 
description of all three contributions in eq. (2.1). 

2.2 Linear Elastic Fracture Mechanics. 

The basis of linear elastic mechanics originated with the pioneer work by Griftith (1921). 
Griffith considered glass rods and suggested that fracture in brittie materiais arises from small 
inhomogeneities such as flaws and cracks. These inhomogeneities yield stress concentrations 
as given by lnglis (1913) and he introduced a parameter, the energy release rate, which is a 
state parameter related to crack extension. Until a series of catastrophic failures occurred (e. g. 
the liberty ships, fatigue in aero planes) researchers did not pay much attention to the theory 
developed by Griffith. The theory was further developed by: Irwin (1957) who introduced the 
stress intensity factor, Rice (1968) who detined the J-integral, Rutehinson (1968) who took 
yielding in front of the crack tip into consideration and Freudenthal (1968) who developed 
probabolistic fracture mechanics. In the foliowing the basic ideas o f LEFM will b e given. 

2.2.1 Basic LEFM. 

The theories presented in this chapter is basic linear elastic fracture mechanics and can be 
found in one of the many text books on this topic e.g. Hellan (1984), Ewalds and Wanhill 
(1984), Alibadi and Rooke (1991), Gansted and Sørensen (1991). 
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F, d 

Fig. 2.12:. Arbitrary specimen with an initial crack, energy approach. 

Consider a plane arbitrary elastic specimen with the thickness, t, and an initial note h o f length, 
a, which is subjected to a set of boundary conditions and loaded remotely from the crack tip 
with an arbitrary load, F, see Fig. 2.12:. The total potential energy, n, in the system is then 
given by 

(2.3) 

where, n e, is the elastic energy content in the body, n F, is the potential o f the extemal forces 
(body and surface) and, nx, is the total kinetic energy in the system. It is now possible to 
introduce a state parameter termed the energy reJease rate, G, defined as 

an G=-­
taa 

(2.4) 

The energy release rate is a pure continuum mechanical parameter and is not necessary related 
to crack growth. 

However, if crack growth is considered then eq. (2.3) changes to 

n ,., ne+nF+Dx•llc (2.5) 

where, llc, is the fracture potential, that is the energy that dissipates during crack growth. By 
assuming that crack growth is only dependent on one parameter, a, the equilibrium condition 
becomes (the variation of the total potential shall equal zero) 

an = o (2.6) 
taa 

The fracture criteria can then be written as 
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Where, R, is the resistance towards crack growtb. In general R is a material, geometry and 
crack length dependent parameter. In LEFM, R, is assumed to beamaterlal conslant termed 
the crack driving force, Gc. The fracture criteria is then written as 

(2.8) 

The crack growth is stable if the foliowing stability condition is fulfilled (the second variation 
of the total potential shall be positive) 

aG > aR = 0 (2•9) 
aa aa 

For most struerures the energy release rate, G, wi11 be an increasing function as the crack 

wth 
. aG 

0 gro , 1.e- > . a a 

The above outlin ed theory, referred to as the energy approach is, however, not adequate as 
a design tool and instead Irwin (1957) developed the stress intensity factor concept, which is 
based on stresses rather than on energy considerations. 

In general fracture can take place in one of three modes or a combination of these. These 
modes are opening mode, shear mode and torsion mode. Here only opening mode will be 
considered. 

F,8 

Fig. 2.13:. Arbitrary specimen with an initial crack, stress intensity approach. 

Consider the specimen in Fig. 2.13:, according to linear elasticity theory the stress distribution 
close to the crack tip is deseribed by 

uiJ(8,r) = K /;i(8) + higher order terms (2.10) 
J2rr 

where, uij, is the stress tensor, 8 and r are the polar coordinates, fiJ, contains trigonometric 
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functions and, K, is the stress intensity factor. As the coordinate, r, approaches zero the first 
term approaches infinity and the extra terms are constant or tends to zero. Consequently the 
first term is dominating in the vicinity of the crack tip. Thus, even for infinitely smallloads 
the stresses next to the crack tip will approach zero making a critical stress as failure condition 
meaningless. lrwin (1957) considered the elastic work necessary to close the crack and derived 
a relationship between the stress intensity factor and the energy reJease rate 

K= JGE (2.11) 

The relationship retates the crack driving force to a critical stress intensity factor, K c. Tb e 
fracture eriterion can thereby be written as 

K=K c (2.12) 

The critical stress intensity factor is usually termed the frøeture toughness. The designing 
engineer is therefore only limited to determine the stress intensity factor and compares it to 
the critical value in order to establish if the crack growth. The stress intensity factor is often 
written as 

K = uJ ra g(geo) (2.13) 

where, g(geo), is a dimensionless function o f the geometry, which can be determined analytical 
or numerical e.g. the boundary element method, Alibadi and Rocke (1991). 

In order to ascertain if LEFM is applicable for a given materlal it is then necessary to perform 
experiments and see if, Kc, is a materlal parameter. This will only be the case for elastic 
perfectly brittie materials. 

2.2.2 LEFM and Concrete. 

Many researchers have studied the applicability of LEFM to concrete and only some of the 
most important results will be given here, however, reference should be made to Mindes s 
{1983) and Mindess (1986) where an annotated bibliography from 1928-1986 on fracture and 
cracking of concrete is presented with 595 abstracts. 

The first to use LEFM on concrete was Kaplan {1964). He performed three and four point 
bending experiments on notehed beams at different size scales. He found that K c is a geometry 
and size dependent parameter. He attributed this 'size effect' to slow crack growth and to 
shear. 

Walsh (1976) and Higgins and Bailey (1976) made experiments with notehed beams of 
concrete and bardened cement paste respectively and they observed that Kc increases with the 
beam depth. They further concluded that the fracture toughness tends to a constant limiting 
value as the beam size increases. The same trend was observed by Modeer (1979) for concrete 
and he suggesled that in order to measure a true materlal parameter the specimen size should 
belargerthan 
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d >lO [~:r (2.14) 

where, d, is the beam depth. The condition yields that a beam of NSC should have a beam 
depth of more than2overc 2-3 m. 

Since HSC is considered a more brittie materlal than NSC, Biolzi and Tognon (1987) and 
Tognon and Cangiano (1989) made three-point bending experiments with NSC and HSC 
(Compressive strength from 50 Mpa to 170 Mpa), and they concluded that Kc is increasing 
with the beam size and with the strength of the concrete. For increasing notch length, Kc 
increased to a peak value (at notch depth ratio of approximately 0.4) and then decreased. 

The reason for the requirement in eq. (2.14) and discrepancies is that a process zone of micro 
cracking, debonding, crack arrest etc. wi11 develop in front of the crack tip as deseribed in 
section 2.1.3. If LEFM should be applicable this zone, the fracture process zone, should be 
small compared to the overall beam dimensions. The relative size of thc process zone is 
dependent on the size and geometry of the considered specimen and of the materlal used. It 
can therefore bc concluded that LEFM is only applicable for large brittie concrete struerures 
such as solid concrete dams or anchor blocs for large span bridges, Planas and Eices (1989). 
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2.3 Nonlinear Elastic Fracture Mechanics. 

Since LEFM is not applicable for labaratory sized specimens several non-linear fracture 
mechanical models have been developed. The five most accepted models arebriefly presented. 

2.3.1 1be Fietitlous Crack Model. 

The Fietitlous Crack Model (FCM) was invented by Hillerborg, Modær and Petersson (1978) 
and was fonnulated by Hillerborg (1977) and Petersson (1980), on the basis of the 
observations made of a dispiacement controlled tensile tests as deseribed in section 2.1.3. 

a HHIH 
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a 
y 
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a 

Fig. 2.14: The fictitious crack model. a) simplified rod b) the materlal function. 

w 

Consider the rod in Fig. 2.14: subjected to dispiacement controlled tensile loading. The rod 
is divided into three regions A, B and C. Part A and C are assumed to be linear elastic and 
completely deseribed by the elasticity modulus, E, and Poisons ratio, v. Before the tensile 
strength is reached part B is assumed to be infinitely small. When the first principal stress 
reaches the tensile strength, u,_, a crack is assumed to develop in part B. The crack is a so­
called cohesive crack, Barenolatt (1962), which is able to transfer stresses according to a 
materlal function, f('), only dependent on the distance between the two uncracked parts. The 
distance between the two uncracked parts is tenned the crack opening displacement, w. As 
the crack opening dispiacement increases the stress wi11 gradually fall and at some critical 
opening, w C' the crack is not able of transferring stress and the specimen wi1l split in to two. 
Since the crack is able to transfer stresses and therefore not a real crack the crack is phrased 
a ractitious crack. 

For the FCM eq. (2.1) becomes 
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The dissipated energy can thereby according to eq. (2.2) be written as 

wc 

Edisp = Jf(w)dw (2.16) 

o 
Since f(j is a materlal lunetion the area under the fimetion must be a materlal parameter, here 
termed thc fracture energy, GF, Hillerborg (1983). 

Thc FCM is not well suited for analytical solutions and it is only in simple cases possible to 
derivc analytical results. Instead the FCM is used together with numerlcal methods like the 
finitc element method or the boundary element method, Hillerborg (1976), Petersson (1981), 
Caipinteri (1989) Brincker and Dahl (1989), Harder (1990). 

The greatest problem with the PC-model is that it is extremely difficult to perform a stable 
dispiacement controlled uniaxial tensile test of a concrete rod and hitherto experiments have 
only been made for normal strength concrete. 

The first to performed a stable tensile test on NSC, in a very stiff testing machine, where the 
descending branch is measured was Evans and Marathe (1968). The methods for obtaining the 
descending branch has become more camplex and Gopolaratnam and Shah (1984) performed 
a large test series in a servo-controlled testing scheme. The most important work seems to 
have bcen performed at Delft University of Technology, where many experiments have been 
performed during the last decade, Reinhardt (1985), Wolinski et al. (1987). Among the 
problems which has to be overeorne are: 

The axial and rotational stiffness of the testing equipment. 
The nucleation of crack growth from one side of the specimen. 
The preparation of the specimens, in order to minimize the above 
problem. 
Measuting of strains and dispiacement on the specimens. 

If the above mentioned problems is not dealt with the test wi1l either be unstable or an 
incorrect stress dispiacement relation is measured, Hillerborg (1989). 
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2.3.2 Tbe Crack Band Model. 

The Crack Band Model was invented by BaZant and Oh {1983) and Bafant (1984), and is 
similar to the FCM. Instead of assuming that all the deformation in the process zone localize 
into a zone of zero width as in the FCM, BaZant assumes that the deformation willlocalize 
into a zone with a width, hc, which is assumed to beamaterlal parameter (experimental fit 
seems to yield hc= Jdmax where dmax is the maximuro size of the aggregates). The softening 
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Fig. 2.15: The crack band model a) the simplified rod b) the constitutive relation for the band. 

relation can then be formulated as a stress-strain relation instead of a stress -crack opening 
dispiacement relation, see Fig. 2.15:. 

This leads to some advantages: a) the model is well suited for FEM calculations, b) triaxial 
effects are easily taken into consideration, c) some analytical solution can be obtained the most 
well-known is the Size Effect Law, Bazant (1984). The disadvantages are that an extra materlal 
parameter is necessary (the width of the process zone). 

The dissipated energy can be written as 

hc Ec hc 

Edisp = J J u(e)btdedx = J btg1dx = GF (2.17) 
o o o 

where g1 is the volumetric fracture energy, Elices and Llorca (1989). 

The 'size effect la w' is usually written as (only the first term of a Taylor series expansion is 
considered) 
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f1 Bo -:z-=---

~ 
(2.18) 

where qfq11 is the normalized failure load, f111 is the uniaxial tensile strength, d" is the 
maximum aggregate size and B0 and )\0 are empirical constants usually determined by linear 
regression from experimental data, Bal.ant (1983). The size effect law will be considered 
further in section 2.4 

2.3.3 The Two Parameter Model. 

The two parameter model was proposed by Jenq and Shah (1986) and is a non-linear model 
which assumes a crack tip singularity in front of the real crack. The model belengs to a family 
of models donated cohesive crack models with crack tip singularity, Elfgren (1989). 

In this model it is assumed that the peak load is reached when the stress intensity factor of an 
effective crack (that is the initial crack plus the cohesive crack) and the crack tip opening 
dispiacement at the initial crack tip reaches two critical values, KJ/ and CI'OD c· The two state 
parameters Kl and CI'OD are calculated according to LEFM. 1t is, however, not possible to 
measure the CI'OD during experiments and instead the crack mouth opening displacement, 
CMOD, is measured. By using the inelastic CMOD at peak load the effective crack length can 
be found and by using this crack length the two critical state parameters can be obtained. 

Several investigations have been made in order to check the applicability of the two parameter 
model, Karihaloo and Nallathambi (1991), where it is concluded that the fracture toughness 
is essentially independent of specimen depth and that the variation between 0.93 and 1.53 

MPa/iil is mainly due to variations in the mix properties. They did not conetude anything 
about CI'OD c , but it is observed that the variation of the CI'OD c is much strenger and that 
it is not possible to detect a trend in the observed values, however, Briihwiler et al. concluded 
from wedge splitting tests that KJ/ is size independent but CI'OD c displays a significant size 
effect (CIOODc increases with specimen size). This phenomenon can be explained as follows. 
If the considered specimen outside the crack is assumed to be elastic then the crack tip opening 
dispiacement can be written according to the superposition principle 

CI'OD - CI'ODF+CI'OD CO (2.19) 

where CI'ODF is the crack tip opening dispiacement due to the applied load, F, and CI'OD co 
is the crack opening dispiacement due to the cohesive stresses. In the two parameter model the 
last term is not taken into consideration, Cotterell and Mai (1987) and it is not always a good 
approximation to negleet this component. There is also no evidence for the faet that the crack 
tip opening dispiacement should takc on its critical value at peak load. Actually more detailed 
analysis using the FC model and the boundary element method shows that the CI'OD talces on 
its critical value after the peak load, Ulfkjær, Krenk and Brincker (1991). 

lt is therefore concluded that the two parameter model is only a one parameter model where 
an effective crack length is used as controiling parameter. 

29 



J.P. Ulfkjer. Fncture mecbanica of concrete 

2.3.4 The Effective Crack Model. 

As in the two Parameter model the effective crack model assumes a sharp crack in front of the 
real crack as suggested by Nallathambi and Karihaloo (1986). In the effective crack model it 
is assumed that slow crack growth occurs prior to the peak load and an effective crack length 
which takes the slow crack and the reduced stiffness into consideration is introduced. The 
effective crack length is calculated by using the peak load and the deflection at peak load. The 
effective critical stress intensity factor, K1/ is then calculated by using the effective crack 
length and the peak load, Nallathambi and Karihaloo (1991). 

The effective crack model and the two parameter model are thus very similar, it is, however, 
considerably easier to calculate the effective critical stress intensity factor as deseribed in 
Nallathambi and Karihaloo (1991). 

2.3.5 R-Curves. 

Instead of assuming that the resistance, R, is a materlal property a more general theory which 
assumes that R is a function of the crack length has been developed. The fraelure eriterion is 
then written as 

G= R(a) (2.20) 

and the stability condition beoornes 

aG < aR(a) 
aa aa (2.21) 

The basic assumption is then that R(a) is a materlal function independent of size and geometry. 
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Fig. 2.16: R-curve for a specific materlal and initial crack length. 

A correlation between the FC-model and the R-cutve concept can be made. Consider an 
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arbitrary specimen without an initial notch. According to the FC-model a fictitious crack will 
develop when the first principal stress reaches the tensile strength. By increasing the loading 
the fictitious crack wil1 grow and eventually the real crack wil1 start to grow, see Fig. 2.17:. 
If the R-curve concept should be applied it is necessary to introduce an effective crack length, 
aeft generally defined as, Hellan (1984) 

Fig. 2.17: Fietitlous crack with an effective crack length. 

aef • a+aaf a E ]0; l] 

the dissipated energy during crack growth can then be written as 

l 
-(a-aer> 
a 

Edisp = GFt(aeraaf)+ J rp(x,aef)dx 

o 

(2.22) 

(2.23) 

where rp{x,ae} is the energy density in the fictitious crack, Brincker (1991), determined by 

~.aet> 

rp(x,aef) • J u(u)du (2.24) 

o 
where w(x,aJ is the crack opening profile which is dependent on the size and the geometry 
of the consioered structure. According to eq. (2.7) the resistance towards crack growth 
becomes 
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aEdisp aa1 1 1 
R = • GFt(l-a-)+cp(-(aq-a),aq)-

aaef aaef a a 

.!cae~-a) 
a J acp(x,aet> dx 

aaef 
o 

since the second term is always zero eq. (2.25) becomes 

l 

(2.25) 

-(ae~-a) 

R ., ..!_GF+ a J acp(x,aJ dx (2.26) 
a aaef 

o 
Thus, a complicated relation exists between the FC-model and the R-curve concept revealing 
the fracture resistance is dependent on the size and geometry of the considered structure. It is 
also obvious from eq. (2.26) that the R-curve is strongly dependent on how the parameter, a, 
is chosen. It was shown by Brincker (1990) that if the crack profile and the stress-crack 
opening dispiacement are chosen to belinearthen the R-curve will be a parable. 

Similar considerations to theabove have also been made by Mai (1991) but his approach seems 
to fail since he does not take crack growth and the fictitious crack length into consideration. 

Several researchers have made experiments in ord er to detect i f concrete has an R -curve 
behavior, Wecharatana and Shah (1982), Wecharatana and Shah (1983), Bal.ant and Cedolin 
(1984) and Ba7.ant et al. (1986). 

Wecharatana and Shah (1982) concluded that the R-curves seem to depend on the size and 
geometry of the concrete specimens considered and attributed this effect to the large process 
zone. BaZant concluded the same by using a linear crack band model. It seems, however, that 
by introducing an equivalent crack length this dependency is not very strong and he concluded 
that if a rough estimation of the load carrying capacity is needed R-curves seem to be suitable. 

2.4 Brittleness and Size Effect. 

Size effect is a term which is used more or less stringent by different researchers. The 
common interpretation of the word is that an assumed materlal parameter is not constant but 
is varying with the size o f the structure. The author feels, however, that the word is rather 
misleading, since the word does not describe the problem which in reality is that for some 
reason the model used is not accurate enough. Therefore size effects are always related to 
models. Thus, an observed size effect in one model can completely disappear in another more 
accurate model. The problem will be further illustrated by considering the three-point bending 
geometry. 
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The usual assumption is that the beam is a Bernoulli beam with the assumption that the tensile 
strength (or modulus of rupture) is a materlal property. This is, however, a poor model since 
experiments show that the bending tensile strength is decreasing as the size of the beam 
increases, Reagel and Willis (1931). 

The results of a large test series performed in USA, by the Arnerlean Association of State 
Highway Officials, Reagal and Willis (1931), are here briefly reported for the dimensions 
which are similar to those used in the present investigation, see chapter 5. 

The experiments were performed at four different laboratorles in USA, and consisted of 64 
different beam geometries, and a total of 768 beams of plain NSC were tested. 

6 

t • 203.2 mm 
!5.9 

t • 254.0 mm 

t • 152.4 mm 

!5.2 t • 52.12 mm 

5.1 100 120 140 160 180 200 220 240 260 
beam depth. d 

Fig. 2.18: Modulus of rupturefor varying values of the beam depth, d, and thickness, 
t, and span equal to 762 mm, Willis andReagel (1931). 

The modulus of rupture, um, was calculated from 

l(Fmax + 3/4W) 
C1 = ----=--

m td2 
(2.27) 

where, W, is the weight of the beam and , F mtDC is the peak load. The factor 3/4 on the beam 
weight is a mystery to the author, who expected it to be 1/2. The factor 3/4 wil1 yield a 
smaller size effect than the factor 112. This discrepancy wil1 in the foliowing be ignored. The 
experiments performed were under high control and the coefficent of variation of the individual 
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test varled between 2% and 5.% for the considered beam dimension, and the variation between 
each laboratory was between 2% and 7%. 

The test results for the beam with the length 762 mm are presented in Fig. 2.18:. It is seen 
that the modulus of rupture is decreasing with the beam depth for all beam thicknesses, and 
the decreasing by doubling the beam depth is 9% for the thielmesses 101.6 mm and 6% for 
the other thicknesses. lt is also seen that the modulus of rupture is almost independent of the 
beam thickness. 

This suggests that the Weibull size effect importance or that another cause for size effect is 
interacting when the beam thickness is increased, e. g. the crack profile is changing. 
This size effect is known for many brittie materiais and is usually explained by the Weibull 
effect, Weibull (1939) and Weibull (1951). The Weibull effect is based on the weakest link 
concept and on the assumption that the materlal is perfectly brittie. The mean value of the 
strength, R, can be expressed for homogeneous stress distributions as: 

EIRJ=x0+x_r [l+!) [:.)-j (2.28) 

where x0 is the lower strengtit limit, V is the volume of the structure V0 is a reference volume, 
and X0 and k are positive constants. For concrete Zech and Wittman (1977) found that k= 12. 
For the considered beam (2.28) beoornes for x0 =0: 

l 

E[R]=-x~ [1+.!.) [ V l l-l 
k v

0 
2(k+1)2 

(2.29) 

It is seen that it is only the volume and not the geometry of the beam which determine the size 
effect. 

By using linear elastic fracture mechanics, which is a better model than the Bernoulli model, 
it is possible to predict a strong size effect of the form: 

Kc~ ae·- -g(geo) 
d 112 Ta 

(2.30) 

wherc ae is the faiture stress, K0 is the fracture toughness, a is the normalized crack length, 
and d is a characteristic dimension of the structure e.g. the beam height. Yet, numerous 
experiments have shown that the fracture toughness is not conslant when the size of the 
structure is changed, still a size effect, and LEFM should therefore be used with care on 
concrete. 

In 1977 Hillerborg and co-workers showed that concrete is not a perfectly brittie materlaL This 
'non-brittle' behaviour is due to the existence of a cohesive zone in the front of the crack tip, 
and can bedeseribed with a model called the fictitious crack model (PC-model). The PC­
model gives a better description of the physical reality of crack growth, and by using the PC­
model the modulus of rupture is size dependcnt. 
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One of the basic assumptions regarding the FC-model and the crack band model is that the 
fracture energy Gp is a materlal property. However, the fracture energy measured u sin g the 
RILEM method displays a significant increase with beam size (the third type of size effect), 
Hillerborg (1985). This size effect is usually attributed to the faet that in the FC-model the 
energy dissipation in the bulk region has not been taken into consideration, Elices and Pianas 
(1988). 

By using dye technic Swartz (1989) showed that the crack profile is not a straight line, but is 
rather U-shaped. This could indicate that the strength of the concrete is lower near the surface 
of the specimen. If the size of this weak zone is independent of the specimen size then another 
cause for size effects is found. 

In the foliowing a few examples will be given which further illustrates the terms tbrittleness' 
and t size effects t. 

2.4.1 Example I. Size effect or plate made or a perfectly brittle/perfectly duetile material. 

Consider a larae plate o f width 2b with an initial crack o f length 2a. The plate is subjected to the 
load ø0 at the edges, see Fig. 2.19:. The plate is made of a materlal with the yield strength, O'u• 

L -2a 

Fig. 2.19: Plate with center crack. 

and with the fraelure toughness, Kc,. The purpose of this example is to investigate wbich of the 
two faiture possibilities will occur depending on the Bia and geometry of the beam. 

Yielding will occur in the two parts next to the crack when 

CJo a 
- •1-­
Ø'y d 

(2.31) 

If tbe width o f tbe beam is assumed to be much larger than tbe initial crack length, tben the stress 
intemrity factor can be wriUen as 
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K•ø0r;;; 
Crack propagation occura when K•Ke, viz 

øo Kc l l 
ø., • ø., -r.:=:= {ti 

JTd 

(2.32) 

(2.33) 

When similar piates are considered (e. g. ølb•kst., Kc""'krt. and ø1 -kst) at different size scales 
u shown in Fig. 2.20:., then it is seea tbat the yielding eriterion eq.(2.32) is independent of tbe 
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Fig. 2.20: The yielding criteria, the fracture criteria and the siz.e effect law for the considered 
plate. 

siz.e scale, d, whereas the crack propagation eriterion eq. (2.33) decreases npidly with the siz.e 
øcalo. Thua, for small sizea tbe plate will fail due to yielding and for large piates it wiU fait due 
to cøck propagation. The tnnsition, 4, between tbe two types o f faiture is determined by setting 
eq. (2.32) equal to eq. (2.33) 

4•[K c ]l l 

( ] 

1 (2.34) 
ø., T~ t-i 

lf tbe teasilo atrength is determined with such a plate then the tensile strength wiU be dependent 
OD tbe size of tbe plate if the size of the beam is larger than 4 and tho tensile strength is 
calculated according to the yielding criterion. On the other band if fractute toughness is deter­
mined for plate siz.es smaller than 4 tben Ke is also dependent on the beam size. These 
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phenomenoos are often termed 'size effect' since an assumed materlal parameter is dependent on 
the size of the specimen. Since concrete is not a perfectly brittie materlal it is necessary to use 
buge specimens if the fracture toughness should be determined as a materlal parameter. 

Consider now the size effect )aw in cq. (2.18). AB the size, d, approaches zero the denaminator 
approaches one and the normalind faiture load approaches, B. As the size approach infinity the 
one in the square root becomes insipificant and the normalind faiture becomes a function of 

b -l/1, Thus, by makin& proper adjustment of the two constants B0 and ~ the size effect law 
describes the two faiture possibilities as Iimitina cases. This is done by setting 

and 

whereby the sizo effect law becomes 

B • 1-~ 
d 

t-!! ..!,.Rd fly 
l+.!!. 

d !r 

(2.35) 

{2.36) 

(2.37) 

Yielding 

-1 10 1~o~~~~~1~o~o~~~~~1~o~1~~~~~1~o2 

Plate Size [m] 

Fig. 2.21: Load carrying capacity of plate in log-log scale. 
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The size effect law together with tbe yielding eriterion and the fraelure eriterion are shown in 
Fig. 2.20:. Since tbe crack propagation eriterion in loglog scale becomes a straight line with a 
slope of O.S it is common to display the faiture criteria in loglog scale, see Fig. 2.21:, Leicester 
(1973), which makes it obvious that tbe Size Effect Law describes a gradual transition from the 
yielding eriteria IO the crack propagation criteria. lt should, however, be empbasized tbat the 
Craclc Band Model and tbe Fictitious Craclc model would not predict any size effect in this 
example and the Size Effect Law is tberefore only used as mathematical expression which malces 
the above mentioned transition. 

In the example with a plate it was seen that the transition size of the plate, 4, plays a 
dominant role. In general plastic, elastic or visco elastic faiture criteria can be written as a 
dimensionless function of the geometry 

.!!.... = gl(geo) 
fly 

and the faiture eriterion for crack propagation, eq (2.8), can be rewritten as 

u ... Kc g(geo) l 

a, J": {ti 

whereby the transition size becomes 

d". = [ Kc]
2

_1 u., a 
'1"-

d 

[ 
g(geo) ]2 
gl(geo) 

and the Size Effect Law can be written as 

(f 
= 

gl(geo) 

R 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

11tus, for small ratios of {J 1 =dldtr, the behavior of the structure is ductile, for large {J 1 the 
behavior becomes more brittle, mak.ing {31 a brittleness number. The most commonly used 
brittleness number is defined as the ratio between the elastic energy and the fracrure energy 

2 
L3 u, L 2 

B = elastic energy E _ u, 
fracrure energy - L 2GF - E G p 

(2.42) 

where L is the characteristic dimension of the struerure and uu 2/E is the stored elastic energy 
at faiture for a unit volume and Gp is the fracrure energy, Elfgren (1989). If the relation 

K c ,., J EG p is used i t is seen that B is a special case o f {J 1 where the geometry o f the struerure 
is not taken into consideration, but only the size deseribed by, L. 

As it is seen from the previous examples the term brittleness is a word which is easy to 
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misinterpret. 1t has been common to understand brittleness as related to a materlal property, 
or to the shape of the load-dispiacement curve, and as was seen, is brittleness affected by the 
size and geometry of the considered structure, which again was reflected in the two introduced 
brittleness numbers. In the foliowing brittleness will be considered on the basis of a concrete 
rod. A material brittleness is introduced and structural brittleness based on observations of the 
descending branch of the load dispiacement curve is defined, finall y a third kind of size effect 
is introduced. 

2.4.2 Example II. Brittlenessand stability or concrete rod. 

Durlog crack growth energy will dissipate as previously described. The dissipated energy can be 
divided into two contributions 

(2.43) 

whero, Gv, is thc volumc diasipation and G1 is thc surface dissipation durlog crack: growth. A 
materlal brittleness can then be defiDed as, Brinck:er (1990), 

(2.44) 

Structural brittleness is defined by considering the load dispiacement curve of a rod made of a 
materlal which bebaves according to the fictitious crack: model. Consider an initial uncracked 
concrete rod with the length, L, and tbe cross section, A, subjected to a dispiacement controlled 
load, F, and the corresponding displacement, u. The elastic properties are deseribed by the 
elasticity modulus, E, and thc softeniøg relation is deseribed by,f(w), see Fig. 2.14:. The total 
potential energy in tbe system is given by 

Equilibrium is obtained for 

.;g • ~ (w-u)+Af(w) 

And øtability is obtained through thc foliowing condition 

a2n • clf{w) +AE >O 
awi clw L 

8./{w)<AE 
8W T 

(2.45) 

(2.46) 

- (2.47) 

which correspondø to infinitely slope on the descending branch of the load dispiacement curve. 
A brittleness number which ineludes thc slope o f the descending branch seems, thus, appropriate. 
The load dispiacement for the considered rod is as sketehed in Fig. 2.11:. The slope on the 
descending branch is given by 
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au l 
-,;r • -:;-a---::a­
oo "+ w 

au au 
l 

which becomes for a linear softening relation 

au u~-Ewc 
-=-=--
a~ Eau 

(2.48) 

(2.49) 

The advantages with this brittleness number is that it is related to a specific bebavior of the load 
dispiacement curve. The disadvantages are that it is difficult to calculate, it is not dimensionless 
and it is not defined for all structures. 

2.4.3 Example m. Stability and briUieness of glued beam. 

40 

F 

v- u+ CF 

a 

Fig. 2.22: Beam glued to an infinitely rigid foundation, subjected to deformation controlled load. 

The purpose of this example is to illustrate how the stiffness of thc testing machine affects the 
stability of the fraelure process in a dispiacement controlled experiment. Thc example Curther 
illustrates the necessity in measurlog the true dispiacement of the structure. 

Consider a beam glued to an infinitely rigid support as shown in Fig. 2.22:. An initial crack with 
the leogth, ø, much larger than the beam depth, b, is assumed to exist. The beam is subjected to 
a dispiacement controlled load, v. Between the load point and the beam a spring with the 
compliance, C, is inserted, modelling the flexibility of the testing machine. During testing the 
opening of the crack, u, is measured. The purpose of this example is to investigate how the 
flexibility of the testing machine influences the stability of the test. 

Since the test is deformation controlled the potential of the load is zero and the total potential of 
the system becomes 

n - .!.uF+.!.CF1 
l l 

(2.50) 
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lf tbe beam is assumed to be a Bernoulli beam the dispiacement becomes 

1Fa3 .,. __ 
3 El 

and the energy release rate becomes 

an 1 a1F1 
G • -- .. ---taa 2 Elt 

Tbe craclc wi11 extend wben G•Gc and tbe corresponding criticalload becomes 

J2GctEl 
F • ..:.---c a 

tbe comsponding dispiacement is 

.. [~i·+· 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

l f tbe fracture proces& shall be stable avlaa >o yielding the foliowing condition to tbe compliance 
of the teating machiDe 

C<.,! a3 
3El 

(2.55) 

A set of load dispiacement curveø for different complianceø is sbown in Fig. 2.23: where tbe 
controlling parameter is u (virtual Cl'ICk propagation). It is seen tbat even in dispiacement 
controlled testing the fracture procesa becomes unatabte for too flexible teating macbines. Instead 
it is neceøsary to perform experimeotø wbere thc crack opening is tbe controiling parameter, if 
the descending branch of tbc load wsplacement curvc is requested. Tbis can only be done in a 
closed loop scrvo controlled testing system, Brown and Hudson (1972). 
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3 NUMERICAL METHODS IN CONCRETE 
FRACTURE. 

It is only in a few simple cases possible to apply the fictitious crack model in an analytical 
manner and instead it is necessary to use numerical methods like the finite element method or 
the boundary element method. In the foliowing three different methods based on the finite 
element method and the boundary element method are presented. The presentation of the 
methods is limited to opening mode, to the threc-point bending gcometry and the softening 
relation is assumed to be piece by piece linear. Non-linear softening relations are in general 
applicable for all the presented methods, but then iterative procedures are necessary, Elfgren 
(1989). The two first models have not been implemented by the author and arc only roughly 
presented. The last method is deseribed in detail, implemented in computer and a serions 
stability problem has been solved, and this method willlater be used extensively. 

3.1 The ffillerborg, Modeer and Petersson Methods. 

F 

F 

F 

F 

Fig. 2.2 Beamand element mesh used in the calculations by Hillerborg et al. (1976). 

The fint method by means of the finite element method and the fictitious crack model was 
performed by this method, Hillerborg et al. (1976). The method is briefly outlined in the 
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following. 

Consider the beamand the element mesh in Fig. 2.2. First the moment which yields the tensile 
strengtit in node l is calculated. A new special very thin element with properties according to 
the chosen softening relation is now inserted. As the moment increases a fictitious crack will 
develop in node l, and the load which corresponds to the tensile strength in node 2 or the 
critical opening in node l is calculated. If the critical opening is reached the element at node 
l is removed and a stress free surface is achieved. If the tensile strength is reached in node 
2 a new spccial element is inserted at node 2 and the previous step is repeated. In this way the 
force-dispiacement curve can be calculated to tb e peak moment and a littie further. 

The advantage with this method is that it is directly applicable for all geomelries and loading 
configuration and capable of predicting multiple cracking, as long as the struerure can be 
satisfactory modelled by the finite element method. The method is therefore also valid for 
reinforced concrete. The disadvantage of this method is that it is very time consuming and 
many different element meshes are needed, as the fictitious crack develops and advances. 

Instead Modeer (1979) developed the force method, a more rapid special geometry method, 
which later was refined by Petersson (1981) to the sub-structure method. 

3.2 The sub-structure method. 

The sub-strucrure melbod was introduced by Petersson (1981) and later refined by Carpinteri 
(1989), who made the fracture process, fictitious crack length controlled. The method is more 
or less a melbod based on the boundary element method, since only loads at the boundary of 
the struerure are considered. The method is superior to the melbod developed by Hillerborg 
et al. (1976) since the calculation speed is considerably higher, up to a factor 100, Brincker 
and Dahl (1989). 

Consider an arbitrary struerure subjectcd to the dispiacement controlled load, F, and the 

l 

l 
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( \ J 

' ./ 

" r7 ) 
wc 

Fig. 2.3 Structure with virtual crack path, as used in the substructure method. 
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corresponding displacement, ~' see . The virtuai crack path, 'Y, is assumed to be known on 
beforehand. The distance along the crackpathis given by the coordinate y, and the virtual 
crack path ends at d . Along the crack path closing stresses are acting according to the 
fictitious crack mod~l The crack is assumed to be long, but is not allowed to split the 
structure into two, as it is assumed that a certain amount of nodes are necessary if the stress 
and strains should be modelled in arealistic way, Petersson (1981). 

First the governing equation will be derived. Then the fracture process is divided into three 
and the equations are discretizised. 

The crackpathis now assumed to consist of three parts, I) for y=O to y=a where the crack 
surfaces are stress free (the real crack), m for y=a to y='!! where the crack is loaded by 
cohesive stresses, a(y), according to the fictitious crack model, and deseribed by the softening 
relation,f(w), and part III) the linear elastic part where the crack opening dispiacement is zero. 

The opening between the two virtuai crack surfaces, w, can be determined by the compliances 

d 'Y 

w(y) = J C1(y,y 1) a(y1)dy1 + ~{y)F 
o 

(3.56) 

where C1{y,y1) is the dispiacement in x from a unit load in y 1 , and C2(y) is the dispiacement 
in y from a external load. Similarly the load point dispiacement can be calculated by 

d 'Y 

~ = J ~(y)a (y )dy + CJ(y)F 
o 

(3.57) 

where C 3 is the load point detleetion from a unit load. 

Three set of conditions must be fulfilled. At part I the virtuai crack surfaces are stress free 

a(y) = o for Os y s a (3.58) 

at the fictitious crack the stresses is deseribed by the softening relation 

a(y) = .f{w(y)) for as y s a1 (3.59) 

at the uncracked ligament the crack opening dispiacement is zero 

w(y) = O for a1 s y s d'Y (3.60) 

which constitutes the governing equations for the sub-structure method. 

The structure is now discretizised along the crackpathin n-nodes, with equidistant spaces 
between the nodes as proposed by Petersson (1981) and Catpinteri (1989). The stresses are 
expressed by the nodal forces, si, and the campliances are given by the appropriate influence 
coefficients 

The calculations are divided into three phases: Phase I where the entire structure is assumed 
to be linear elastic, Phase ll where the fictitious crack is developing and Phase m where the 
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real crack is extending. 

Phase I 
In all three phases the widening of each node can be calculated by using the discretiziced 
version of (3.56) 

n l Il 
w; = E c u s1 + ci F (3.61) 

j 3 l 

where, w1, is the crack opening dispiacement of node i, s1, is the elosure load in node j, c!1, 

is the opening in node i from a unit load in node j, and cff is the opening of node i due to a 
unit externalload. The boundary campliances can be calculated by using the finite element 
method on the discretizised structure. By applying Maxwells-Bettis theorem it is seen that 

c!u=c!ii, whereby the campliances reduces to n(n 
2
+ 3>. 

Since the opening of each node is zero, the foliowing condition must be fulfilled 

W·= 0 
' 

for i = l, ... , n (3.62) 

Eqs. (3.61) and (3.62) compose a linear algebraical system of n equations with n 
unknowns, that is the node forces, s1• When the load, F, and the node forces, s;, are known 
it is possible to calculate the load point displacement, ~. as 

Il 
~ =c. S · + eJ' J J r 

(3.63) 

where, cF, is the dispiacement for a unit load. At this first step the load, F1, which produces 
the ultimate nodal force, u", at node l and the corresponding displacement, ~1 , is calculated 
by eq. (3.63), (4.95). The load-dispiacement curve in phase I is then the linear curve between 
(0,0) and (~1,F1). Thus, the processis performed in load controlin phase I. 

Phase Il 
In phase n a cohesive crack develops in front of the real crack tip. The fictitious crack is 
assumed to form between nodes l and m whereby eq. (3.62) is replaced by 

s, = s. [l -::] for i = o, ... ,m - l (3.64) 

and at the remaining ligament 

w1 = O for i = m, m + 1, ... , n (3.65) 

Eqs. (3.61), (3.64) and (3.65) constitutes a linear algebraical system of2n+ l equations with 
2n+ l unknowns, i. e, the crack opening displacements, the nodal forces and the externalload, 
F. At the second point of the load-dispiacement curve the fictitious crack is between node l 
and 2 and the nodal force in node 2 is equal to the ultimate nodal force and the load, F 2 that 
produces that force is calculated. The dispiacement that corresponds to, F2, is then calculated 
by using eq.(3.63), (4.95). The calculations proceed in this manneruntil the critical opening 
is reached in node l, which ends phase n. In this way the process is fictitious crack length 
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3. Numerical Mcthods in Concrete Fracture 

In phase m the real crack starts to grow. The real crack is between node O and k-1 and the 
fictitious crack is between node k and m-l whereby eqs. (3.64) and (3.65) are replaced 

s1 • O for i • 1,2 ... ,k - l (3.66) 

in the fictitious crack 

S· = s [1 - wi] for i = k,k + l...,m - l <3·67) 
• " w c 

and at the remaining ligament 

w i = O for i = m, m + l, ... , n (3.68) 

Eqs. (3.61), (3.66), (3.67) and (3.68) constitute a linear algebraical system of 2n+ l 
equations with 2n +l unknowns. 

In phase m the controiling parameter is also the fictitious crack length, it is thcrefore not 
possible to directly calculate the real crack length, the externalload and the dispiacement and 
instead an iterative procedure must be applied, Carpinteri (1989). 

The sub-structure method is a specially designed method, for plain struerures with one crack. 
The method is easy to use, and when the campliances are determined the method is applicable 
for all sizes of the considered struerure by scaling the compliances appropriately. The 
calculation speed is increased tremendously compared with the Hillerborg et al. method, and 
by making the fictitious crack length the controiling parameter the method is applicable of 
predicting snap-back. If the method was not fictitious crack length controlled, but instead 
deflection controlled, the method beoornes unstable at the point where the slope becomes 
infinitely. The method is, however, truncated since the crack is not allowed to di vide the 
structure in to two, but only as long as the crack is allowed to be as deseribed previously. The 
problem is especially serious for duetile beams where the fictitious crack length is large 
compared to the beam height, whereby only a small part of the descending branch is 
calculated. 

3.3 The Direct Sub-Structure Method. 

The direct sub-structure was invented by Brincker and Dahl (1989) in order to be able to 
calculate the entire descending branch of the load dispiacement curve. Instead of making a cut 
in the structure as in the sub-structure method, the structure is actually divided into two in the 
direct sub-structure method. The method is applicable for multiple cracking, but in order of 
simplicity the method is only demonstrated on the three-point bending geometry. The method 
is deseribed foliowing the procedure of Brincker and Dahl (1989) and an effective method 
which solves the stability problem deseribed by Brincker and Dahl (1989) is presented and 
demonstrated. 
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Fig. 2.4 The considered beam divided into two substructures, Brincker and Dahl (1989). 

First the general equations will be derived, which are valid in all three phases, then the 
calculation technique for deformation control will be described. 

Consider the beamin Fig. 2.4, which is split into two parts (a) and (b) by a virtual cut along 
what is assumed to be the crack path, 'Y. In general the dispiacements will consist of the sum 
of two terms: rigid body displacements, vør, and elastic displacements, vbu, of the virtual 
surfaces. 

By assuming small dispiacements the rigid body dispiacements are calculated as 

and for beam part (b) 

r 2o 
va(y) = ~y (3.69) 

r ~ 2o 
vb(y) = uh - -Y 

l 
(3.70) 

where, v ø', and, v{, are the dispiacements ofthe virtual crack surfacesand oh is the horizontal 
dispiacement of the support. The dispiacements caused by the stresses acting on the virtual 
surfaces are calculated by 

and for beam part (b) 
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v:(y) • J q(y)c(y,y 1)dy' 
o 

d 

v; (y) = - J u(y)c(y,y1)dy' 

o 

(3.71) 

(3.72) 
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where c(y,y1) is the compliances of the considered dispiacement The opening between the 
virtual crack surface is then given by the difference between the total dispiacements fields of 
the two bodies (a) and (b) 

v(y) = v11(y) - v a <Y> 
h 

= - 2 J u(y 1)c(y,y 1)dy1 + l)h -
4
1
/)y 

o 

(3.73) 

Depending on which phase is considered one or more of the foliowing conditions must be 
fulfilled. The equilibrium condition 

the constitutive condition 

f(w(y)) '"' u(y) 

and the compatibility condition 

w(y) =O 

d 

J u(y)dy =O (3.74) 

a 

for a < y s a + af (3.75) 

for a + af < y < d (3. 76) 

The extemalload is determined by the equilibrium condition i. e. the equivalent moment at the 
virtual crack faces shall outbalance the external load 

d 

F • - ~J u(y)ydy (3.77) 

a 

As in the sub-structure method, the system is discretizised, in n nodes along the virtual crack 
surfaces with equidistance, 3o- The stresses are expressed by the nodal forces s1 and the 
compliances are expressed by the appropriate influence coefficients, cij. 

The crack opening dispiacement is then expressed as 

n /) 

Wi = - 2 L C;fj + Oh - 4]yi 
)"'k 

The equilibrium condition 

11 

:E s1 =O 
)•k 

for ks i < m 

the constituti.ve condition is for simplicity assumed to be linear 

W· 
h "'s (l + -'> • Il w 

c 

(3.78) 

(3.79) 

(3.80) 

if the constituti.ve relation is assumed to be piece by piece linear the two constants s" and w c 

are simply modified for the appropriate nodes. The only problem is then to establish on which 
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line on the softening relation each node is, Brincker and Dahl (1989). By inserting (3.78) the 
constitutive condition (3.80), (3.81) beoornes 

l ,. 4 o oh si (3.81) 
l - 2- L Cifi - --Y; + - - - = O for ks i < m - l 

wc j • k wc l wc s" 

The compatibility condition is discretizised and combined with (3. 78) 

n oh o E Cifj - - + 2-Yi = o 
j"' k 2 l 

for ms i< n (3.82) 

The equations (3. 79), (3.80), (3.81) and (3. 82) constitute a linear algebraical system or 2n+ l 

equations with 2n+ l unknowns. It is seen that only n( n 
2
+ l) influence coefficients are 

needed. The system of linear equations can then be written 

where the coefficient matrix is given by 

A= 

s" 
2-Ckk +l w , 

c 

s" 2-ck + 1 k w , 
c 

-c k m, 

- cn,k 

l 

and the right band side is given by 
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(3.83) 

s" s" 2-ckn --w , Wc c 

s" Sil 
2-ck +l n --w , wc c 

(3.84) 
Sil Sil 

2-cm -ln --w • wc c 

- cm,n 0.5 

- ln,n 0.5 

l o 
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b• (3.85) 

and the solution to the system of equations is 

X= (3.86) 

s" 
~h 

The non-lineacity of the problem is introduced by updating the matrix A and the right band 

sides b. When the nodal forces arc de termin ed the crack openings are determined by 
(3. 80), (3. 81), and the extemal load is determined by 

4 n 
F ... - - .E SjYj 

l}. k 

(3.87) 

The problem then consists in determining which node is the next to changc state (from elastic 
to fictitious state or from fictitious state to complete fracture). 

Two nodesarepotential of changing state: node k and node m. By applying a small test load, 
d~, the opening in node k will change dwk, and the stress in node m will change dsm, whereby 
thc foliowing sensitivities can be calculated 
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dsm 
tm • S -S 

., m 

(3.88) 

The next node to change state will be the one with the large sensitivity. Since the system is 
linear the dispiacement increment, L\~ , necessary for changing state is calculated by 

L\lj = __!!!.. 
t max 

(3.89) 

It is seen that when a node is completely fractured it will simply be removed from the system 
of cquations, reducing the calculation time as the real crack advances. In this way the entire 
load dispiacement can be calculated, in load point dispiacement control. 

3.4 Stability of The Direct Sub-structure Method. 

As was concluded by Brincker and Dahl (1989) a serions stability problem arises when the 
beam brittleness is increased, and an exorbitant amount of time has been used to solve this 
problem. 

The problem can be observed in the outlined method in the way that the crack opening 
dispiacement of the nodes in the fracture zone increases, which corresponds to that the strain 
softening relation becomes a strain hardening relation. Therefore, it was thought that an 
unloading branch was necessary in order to overeorne the problem. This was not the case. A 
method wherc the softening relation was a continuous fimetion was implemented. In this case 
an iterative procedure is necessary since the system is non-linear. The stability problem was, 
however, not solved. 

It was then realiud that the stability problem is due to the snap-back effect. The load­
dispiacement curve constitutes the set of points where the system is in equilibrium. If the beam 
is so brittie that snap-back is introduced, that means that the dispiacement at some point on the 
descending branch is decreasing, yielding a negative infinitely slope. However, the crack 
opening dispiacement will always be an increasing ftmction. 

The problem can therefore be solved by making the fracture process crack mouth opening 
controlled, or fietitions crack length controlled ( as by Carpinteri), or crack tip opening 
controlled. Here crack tip opening control is presented. As is seen from the previous equations 
it is not possible to derive the governing equations with the crack opening as the controiling 
parameter. Inst:ead a very simple and effective procedure was developed. The process is made 
indirectly crack tip opening dispiacement controlled. 

The calculation are performed completely similarly to the just deseribed method. However, 

56 



3. Numerical Methods in Concrete Fracture 

if the sensitivity of node k is then the dispiacement increment is calculated by 

.åcS - deS 
l k 

(3.35) 

Fig. 3.5 Load dispiacement curve where the beamis to brittie compared to the number of 
nodes n=21. 

Fig. 3.4 Examples of load dispiacement curves, calculated by using the Direct substructure 
method, at different size scales 

Since, .rk < O the dispiacement will decrease and snap back is introduced. This method is 
very stable, and a load-dispiacement curve is always calculated even for extremely brittie 
beams. The results are though not reliable if the number of nodes are too small compared 
to brittieness of the structure. This method will be used extensively in the rest of the thesis 
were many examples of load dispiacement curves using this method are shown. 

3.5 Model Evaluation. 

Three numerical methods have been presented. The Hillerborg et al. method was the first 
method to be used with thc fictitious crack model and is a multi purpose method applicable 
for all geometries and loading conditions. The method is, however, very slow and many 
element meshes are necessary as the fictitious crack develops and as the real crack extends. 

Instead the sub-structure method was developed by Petersson (1981) and Caepinteri (1989). 
The sub-structure is only applicable for a certain type of structures but instead i t is very fast 
compared to the Hillerborg method. The method is also made fictitious crack length 
controlled, whereby very brittie struerures can be analyzed. The method is, however, 
truncated by that the crack is not allowed to split the structure into two, and is therefore not 
well suited for duetile structures. 

To overeorne the problem of splitting the structure into two Brincker and Dahl (1989) 
developed the Direct sub-structure method, where the crack is extending through the entire 
structurc and actually splits the structure into two. The method is dispiacement controlled and 
is therefore not applicable for brittie structures. The calculation speed is of the same order 
as in the sub-structure method. 

To overeorne the problem of snap-back the author has extended the direct sub-structure 
method, to be crack tip opening dispiacement controlled. The only limit to how the brittie 
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struerures the method can analyze is thereby only Jimited to the amount of nodes. 

The direct sub-strueture is therefore applied in the restofthis thesis, since it is superior to 
the sub-strueture method. 
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4 ANAL YTICAL METHODS IN CONCRETE 
FRA C TURE. 

As deseribed in the previous section a variety of numerical methods exists which can be used 
to predict the load carrying capacity of plain and reinforced concrete struerures in which a 
fictitious crack develops. It is, however, often convenient to have more simple methods which 
can be used to predict approximate results and more appropriate for the practical engineer. The 
numerical methods are in general very time consuming, and if an indirect method is used to 
determine the constitutive relations, as will be deseribed in chapter 5, the numerical effort 
becomes enormous. In order of convenience the various models arenarned after the authors, 
who published the deseribed methods. 

4.1 Non-Reinforced Concrete. 

In the following, three analytical models for plain concrete will be presented and some 
improvements will be suggested. The presentalion is limited to linear softening relations and 
the notation used in each model corresponds, ifpossible, to the notation introduced by Ulfkjær 
et al. (1991). 

4.1.1 The UlfkJær, Drineker and Krenk Method. 

The idea of modeiling the bending failure of concrete beams by the development of a fictitious 
crack in an elastic layer with a thickness proportional to the beam height was introduced by 
Ulfkjær, Brincker and Krenk (1990), and further refined by Ulfkjær, Krenk and Brincker 
(1992). The foliowing presentation is equivalent to that, and some extra results are presented. 

The model is based on the assumption that the complex stress field areund the crack is 
modelled by simple spring-action in an elastic layer areund the crack, and outside the layer the 
deformations are modelled by elastic beam theory. 

Using a linear softening relation yields that the fracture energy is given by GF= Muuwc, 
where, a11, is the ultimate tensile stress and, wc:, is the critical crack opening dispiacement In 
the elastic layer only bending stresses are assumed to be present and the stress is assumed to 
depend Iinearly on the local elongation of the layer. By assuming a linear softening relation, 
the constitutive relation of the layer becomes a bi-linear relation between the axial stress, a, 
and the elongation, v, see Fig. 4.1. On theascending branch the elongation is linear elastic 
v=vø and no crack opening is present. The linearresponseis given by ve =uh/E where, h, is 
the thickness of the layer, and, E, is Young's modulus. On the descending branch the total 
deformation v consists of two contributions v = ve + w, where, w, is the crack opening 
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u 
B<l 

v(y) Wc 

(a) 

q 
B= l 

(b) 

Fig. 4.1. Constitutive relation for the midsection of the layer a) When the layer is stable, 
B< l .. b) When the layer is unstable B=l. 

dispiacement The peak point corresponds to the deformation v = v 11, and total fracture 
corresponds to v=v c· Therefore, the critical crack opening dispiacement corresponds to w c =v c• 

If the elastic layer should be stable in dispiacement controlled loading the foliowing condition 
must be fulfilled 

(4.91) 

In the present method it is convenient to define the brittleness number, in eq. (2.38), as 

u;, 
B•--

2G~ 
(4.92) 

corresponding to a characteristic size of the structure equal to h/2. The stability condition 
(4.91) can then be written as 

B< l (4.93) 

TilUs, in this model the brittleness number, B, varles between zero corresponding to ideal 
duetile behavior and one corresponding to ideal brittie behavior. The thickness h of the elastic 
layer, is assumed to bealinear function of the beam depth h=kd. In general the factor, k, is 
a function of the beam geometry, the beam size, the fictitious crack length and the real crack 
length. In this model the factor, k, is assumed constantand is found using the DSS dernanding 
that the peak load is predicted correctly. 

As a first approximation only rigid bod y dispiacement is assumed of the beam parts outside 
the elastic layer, see Fig. 4.2. 

The calculations are, as in the numerical method, divided into three phases. Phase 1): Before 
the tensile strength is reached in the tensile side of the beam, phase m: Development of a 
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a) 
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diD 
h=kd ~ 

l 

b) 

Fig. 4.2 a) The considered beam where the hatched areais the elastic layer. b) Deformed 
beam where only rigid body dispiacements are considered. 

l 

u=uul a, l 
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l u< u u 

Phase I Phase II 
F 

l 
l Phase III 
l 
1 
l 
l 
l 
l 
l 
l 

Fig. 4.3. The stress distributions of each phase a) Phase I where the stress distribution is 
elastic. b) Phase n where the fictitious crack is developed. c) Phase m where the real crack 
starts to grow. d) The load-dispiacement curve. 

fictitious crack in the layer, and phase III): Crack propagation. The stress distribution in each 
phase of the fracture processis illustrated in Fig. 4.3 

Phase I. 
In phase I a linear elastic constitutive relation is used for all parts of the Iayer ve = uh/E. By 
simple geometric considerations it is seen that ve = f/J (d-2y) where V' is the rotation, d is the 
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I II III 

Fig. 4.4 The moment rotation curve of the beam when only rigid body dispiacements are 
considered. 

beam depth and y is the vertical coordinate. The neutral axis is at the mid-point of the beam 
corresponding to y = d/2. Instead of the bending moment M and the rotation tp i t is convenient 
to introduce the dimensionless bending moment 

p.= M-6-
u,f12t 

and the corresponding dimensionless dispiacement 

8 = t{) dE • tp_E_ 

hu" ku" 

giving the simple load-dispiacement relation 

p.(8) = 8 

(4.94) 

(4.95) 

(4.96) 

In the limit situation of phase I the stress for y=O equals the tensile strength, and the 
dimensionless bending moment equals one. Thus, in phase I the load-dispiacement curve is a 
straight line between origo and (8,p.) = (1,1), see Fig. 4.4. 

Phase n. 
In phase n the size of the elastic tensile zone is determined by simple geometrical 
considerations. When the fictitious crack develops, it is necessary to determine the crack 
opening dispiacement By assuming that the stress in the fictitious crack is equal to the stress 
in the elastic layer, the crack opening dispiacement becomes 

(4.97) 

where a1 is the length of the fictitious crack. Thus, this corresponds to a linear crack profile. 

lf the linear softening relation is expressed as 

(4.98) 
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then the length of the fictitious crack can be determined by combining (4.98) with the 
equilibrium condition (the resultant axial force equal to zero). The result reduces to 

"f(Ø) = ; (8) = 1-B-J (1-B)(! -B) (4.99) 

The equivalent moment is determined by integrating the axial stresses 

l' (6) ~ 8 [ 
2{_~3 

- 6a1(8) +4] - 3 ( 
4

•
1 

OO) 

In order to stay in phase n the crack opening dispiacement at the hottom of the beam must be 
smaller than the critical crack opening w(O) < wc, which by use of (4.97), (4.99) and (4.100) 
can be reformulated as 

1'(8) > l or l < 8 < 8 c (4.101) 

where 

8 = l+{B 
c 2B 

(4.102) 

TitUs, during the development of the fictitious crack the moment increases from l to its 
ultimate value and then decreases again. When the moment reaches the value l at the 
descending branch corresponding to 8=flc the real crack starts to grow, see Fig. 4.4. The real 
crack will therefore only propagate on the descending branch of the load dispiacement curve 
as found by Harder (1991). 

Pbase m. 
In phase m the real crack starts to grow. The real crack length is termed a, see Fig. 4.3. The 
size of the elastic tensile zone is determined by the condition that w(a+aJ = w11• The size of 
the fictitious crack, ap is obtained by the condition w(a) = wc giving 

l l-B 
af= 28B (4.103) 

The crack length a is determined through the equilibrium condition that the resultant axial 
force is equal to zero 

a 8c 
a=- • l--

d 8 
(4.104) 

As in phase n the dimensionless bending moment is determined by integrating the axial 
stresses. The result is 

1'(6) - l i r (4.105) 

When, ti c' is suitably modified this result is general in the sense that i t is valid for all softening 
relations. The results for the moment-rotation curve including only rigid body dispiacements 
of the beam parts are shown in Fig. 4.4. 
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Beam Depth, d [mm] 

Beam Width, t [mm] 

Beam Length, l [mm] 

Notch depth, a; [mm] 

Specifi~ Fracture Energy, GF [Nmm/mm2] 

Tensile Strength, f!" [N/mm2] 

Modulus of Elasticity, E [N/mm2] 

Brittleness number, B 

Tabel 4.1 Geometry and materiais parameters for standard beam. 
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Fig. 4.5. Comparison between the analytical model and DSS using the standard beamat 4 
different size scales. 

Elastic defonnations in the beam parts outside the elastic layer are taken into account by 
subtracting the elastic deformation, 8 =p.( B), from the elastic layer Ieaving only deformations 
due to crack growth and adding the elastic deformations of the whole beam using a solution 
for a Timoshenko beam, Timoshenleo S. {1955). The Timoshenko dispiacements are 
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Ml2 

~e = 12ElfJ(A) 
(4.106) 

where El is the bending stiffness of the beam, {J, is a factor describing the influence of shear 
fJ = l +2.85A2 - O.B.f>...3, and, :A, is the slendemess ratio "A=lld. Introducing the elastic 
rotation similar to equation (3.63), (4.95) 

oe dE 
(Je = 2--­

l huu 

the relation (4.106) can be written in dimensionless form 

(Je = 'YP. 

where 

(4.107) 

(4.108) 

(4.109) 

and the total deformation is then given by subtracting the elastic deformation in the layer and 
then adding the deformations of the Timoshenleo beam 

(4.110) 

Hence, the complete moment rotation curve is fully determined by the brittleness number B, 
and the slendemess ratio 'A. 

The numerical results are obtained by the direct sub-structure method (DSS), Dahl and 
Brincker (1989). Four-node elements and an element mesh with 21 nodes in the midsection 
were used. Results for one beam geometry (slendemess ratio 'A= 8) are comparedat different 
brittleness levels in order to see how wellthemodel predicts the load-dispiacement curve. lt 
is assumed that the size of the elastic layer is proportional to the beam depth h = kb where 
the factor k is assumed to be 0.5. A beam geometry similar to the RILEM beam and materlal 
parameters corresponding to a normal strength concrete is chosen as standard beam, see 
Tabel 4.1. With the chosen materlal parameters the maximum beam depth is according to 
(4.93) 888 mm corresponding tothat all dimensions ofthe beamare scaled by a factor of 8.88 
(scale factor = 8.88). 
a comparison is shown between the analytical model and the numerical results for the standard 

beamon 4 different size scales (0.25, 0.5, 1.0 and 3.0). 1t is observed that the shape of the 
moment-rotation curves is almost identical and that themodel predicts the ultimate load quite 
well. However, in the analytical model the snap-back effect is more pronounced which implies 
that the analytical model is a littie too brittle. 

In Fig. 4.6 results for the size of the fictitious crack are compare<i. 1t is seen that the size of 
the fictitious crack calculated by the analytical model is slightly smaller than that calculated 
by the numerical method before the real crack starts to grow (the ascending branch of the 
curves) and larger at the descending branch. The small kinks on the numerical curve are due 
to the discretization made in the numerical model. With a larger number of nodes in the 
midsection these kinks would disappear. In Fig. 4.8 the real crack lengths for the two models 
are compared. lt is seen that the real crack grows faster in the numerical model. 
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Fig. 4.6. Size of the fictitious crack for the analytical model and DSS. The loops aredue to 
snap-back. 
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Fig. 4. 7. Length of real crack for the analytical model and DSS. 

In order to check the influence of the slendemess of the beam on the load dispiacement curves 
two additional slendemess number are considered. The slendemess is regulated by changing 
the beam length whereby a scale factor of 1.0 always corresponds to the beam height 100 mm. 
The results are seen in Fig. 4.8 and Fig. 4.9. It is seen that the analytical predicted by the 
analytical model still is almost identical to the numerical method. The stiffness of the beam 
with the slendemess ratio equal to 4 is, bowever, not identical. This is not a surprise since the 
Timoshenleo assumptions are not accurate enough for beams with low slendemess ratios. 

The peak loads, #'max, predicted by the analytical and the numerical models are shown in 
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Fig. 4.8 Load dispiacement curves for the slenderness ratio equal to 4.0. 
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Fig. 4.9 Load dispiacement curves for beam with slendemess = 16.0. 

log-log scale in Fig. 4.10. Since there is no stress singularity included in the two models there 
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Fig. 4.10. Peak load at different size scales predicted by themodel and by the DSS. 

is no size effect beyond the critical size of the models. In the numerical model this limit wi1l 
depend upon the materlal parameters and the number o f nodes there are in the midsection (here 
the critical size scale is approximately 20). 

h~k( d-lj11) a, 

l 

Fig. 4.11. Modelof notehed beam. 

l• t l 

The model is extended to notehed beams as indicated in Fig. 4.12 . The idea is to keep the 
width/depth ratio of the elastic layer by setting the width of the layer equal to k times the 
effective beam depth of the notehed beam section h = k(d-aJ, k = 0.5 where a; is the depth 
of the noteh. The modifications thus introduced imply that the brittleness number B for the 
layer is multiplied by a factor (1-a;fd). The total beam depth is still used in the formulas 
(4.94), (3.63), (4.95) and (4.106) whereas the effective beam depth de = b-a; is used in all 
other formulas. Results for different noteh depth' s are shown in Fig. 4.12 . 

Comparlog numerical results with results for the analytical model it can be concluded that 
deviations are relatively small. The errors introduced by the elastic layer and the assumption 
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Fig. 4.12. Moment dispiacement curves for notehed bearns with three different notch depths. 

of wedge-like crack-opening are typically smaller than errors due to the simple linear softening 
relation, Brincker and Dahl (1989). 

When the size of the beam changes, the stress distribution in the partiall y fractured mid-section 
changes and so does the shape of the load-dispiacement curve. In the foliowing a few closed 
form solutions are given for these size effects predicted by the analytical model. 

An important parameter describing the stress distribution in the partially fractured mid-section, 
is the maximum size af,max of the fictitious crack. Since aaj aø > O in phase II and aa( aø < 
O in phase m, ~is !argest at the end o f phase II. Thus, the maximum size of the fictitious 
crack is found by combining eq. (4.99) and (4.101) 

a.f.max • d(l-/i) (4.111) 

Thus, for small duetile beams the relative size of the fictitious crack is large and for large 
brittie beams the relative size of the fictitious crack approaches zero. 

The way the load-dispiacement curve changes with size is more difficult to describe. One 
important parameter of the load-dispiacement curve is the peak load, P.max· The peak load 
might be obtained from the condition a p.! aB, =0. However, no simple expressions have been 
derived for this case. 

Another key-parameter for the load-dispiacement curve is the maximum slope S on the 
descending branch. The slope is found by taking the derivative of eq. (4.110) 

1 - ~ ap. •('Y-l) ap. (4.112) 
ap. ae, aø, 

from which 
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....!!:. ... 'Y-1+-a [ ae]-1 

ae, ap. 
(4.113) 

The steepest point on the descending branch of the load-dispiacement curve is at the transition 
from phase n tophase m, i.e. for (J=(Jcr• Thus, the minimum value of ae/ap. is found from 
eq. (4.105) and eq.(4.102) which together with eq. (4.113) yield the results 

4B 
S=-----

1 +{B -4('Y-1)B 
(4.114) 

The quantity S is a kind of brittleness number for the structure, as deseribed in Chapter 2. The 
larger maximum slope on the descending branch, the more brittie the behavior of the beam wil1 
be. The brittleness number varies between zero corresponding to ideal duetile behavior and 
infinity corresponding to the case where the maximum slope becomes infinite. If the point of 
infinity slope is exceeded, snap-back occurs, and the brittleness number S becomes 
meaningless. Thus, the brittleness number S only describes the brittleness of struerures without 
snap-back on the load-dispiacement curve. 
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Fig. 4.13. Moment dispiacement curve for the beam with the slendemess = 8.0, on the critical 
size scale. 

The maximum slope on the descending branch becomes infinite when the denaminator in eq. 
(4.114) vanishes, i.e. when 

1+/B-4('Y-1)B =O (4.115) 

The solution to this equation defines a critical brittleness number for the elastic layer 
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Fig. 4.14 The critical brittleness number as a fimetion of the slenderness. 

B = [ l+J1+16('Y-1) ]

2 

er 8('Y-1) 

(4.116) 

If the brittleness number B of the layer is larger than the critical brittleness number B er then 
there is snap-back on the load-dispiacement curve. Otherwise there is no snap-back. The 
critical brittleness number as dependent of the slenderness is seen in Fig. 4.14, and it is seen 
as the slenderness increases the critical brittleness decreases. This was also seen in the 
moment-rotation curves for the different slendemess numbers. For the standard beam the 
critical brittleness number is found as Bcr=0.069 corresponding to a scale factor of0.615. The 
case is illustrated Fig. 4.13 where the results for the analytical model are shown for B =B er. 

In the method presented by illfkjær et al. the equations arederived assuming that the beam 
is loaded with a concentrated load at the midsection and that the strain distribution in the 
elastic layer is constant. These two assumptions are conflicting, but this conflict is easily 
removed by assuming that the beamis loaded in four point bending, whereby the equivalent 
moment beoornes constant between the loads. 

1t is also concluded that the model is not applicable for beams with a brittleness number equal 
to or larger than one. This restrietion is not necessary, as it can be replaced by a condition 
stating that phase II is absent for brittleness numbers equal to or larger than one. Beyond this 
value the peak load can eventually be calculated by using LEFM, yielding the strong size 
effect deseribed in chapter 2. 

4.1.2 The Chuang and Mai Method. 
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This method was introduced by Chuang and Mai (1989) and is basedon the crack band model. 
In the original paper four point bending specimens were considered and the descending branch 
of the constitutive relation was a power relation of the type 

(4.117) 

where, u, is the stress, e, is the strain, uu, is the tensile strength, e~, is the strain at peak load, 
ec, is the strain that corresponds to no stress transmission and, n, Is the softening coefficient. 
Thus, all the parameters arematerlal constants, see Fig. 2.15. By setting the minor span (the 
distance between the two Ioads) to zero and n=l, a three-point bending configuration with a 
linear softening relation is obtained. The procedure for establishing the governing equations 
is very similar to the previously presented method and the Chuang and Mai method will 
therefore only be roughly presented. 

Consider a beam with the length, L, depth, d, and thickness, t, withacrack band introduced 

x 

l t l 

l 

Fig. 4.15 The considered beam with a crack band around the midsection. 

around the midsection with the thickness, hc, see Fig. 4.15. The calculations are again divided 
into three phases, corresponding to those defined in the previous section. As a first 
approximation the two bearn parts outside the crack band are assumed to perform rigid body 
deformations. The strain distribution in each phase are shown in Fig. 4.16, the stress 
distributions are as in the previous presented model, see Fig. 4.3. 

Phase I 
In phase I all the materlal is assumed to be linear elastic. By dernanding equilibrium it is seen 
that the neutral axis is at x=d/2 whereby the normalized bending moment becomes 

(4.118) 

where, M, is the moment in the midsection and the normalized curvature, "• is defined as 
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Fig. 4.16. Strain distribution in the three phases. 

K = e•~ (4.119) 
e,. x 

where E • is the strain at the lowest part of the elastic tensile zone and a
11
s the normalized size 

E 
of the elastic tensile zone and ~ = ..!. is a materlal parameter which retates the maximum 

E c 

elastic strain to the separation strain. At the end of phase I the normalized moment and 
normalized curvature becomes 

p. = } K • 211 (4.120) 

TilUs, as in the Ulfkjær, Brincker and Krenk model a linear relationship is obtained. 

Phase n 
In this phase the fictitious crack starts to develop. The normalized size of the elastic tensile 
zone, a,, is obtained by the condition that the strain at the tip of the process zone equals, eP, 
yielding: a" =71/K, and the size of the softening zone, ap is obtained by requiring equilibrium 

(4.121) 

It is immediately seen that the length of the process zone is only dependent on the curvature 
and the materlal parameter, 11· This is in strong contradietion to the Ulfkjær, Brincker and 
Krenk model, where, ap also is a lunetion of the size of the structure. Observe, however, the 
remarkable similacity l:ietween equations (4.121) and (4.99). 

The corresponding normalized moment can be expressed as 

l'(•) = 
2
(
1
-::-a/ +2a!+6a1a• +3aJ- ( 1~~) [ 3a}+ 2 t] <4·122) 

Phase n ends when the strain in the lowest fibre equals, ec, yielding the following condition 
to the curvature in phase n 

(4.123) 
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where "c = l + {;is the normalized curvature which ends phase n. This corresponds tothat 
the normalized moment is one in both limits, completely equivalent to the illfkjær, Brincker 
and Krenk method. 

Phase m 
The governing equations in the crack growth regime is obtained similarly to the previous 
phases. The size of the elastic tensile zone is obtained by considering similarly triangles, the 
size of the process zone is determined by the condition that the strain at the tip of the zone 
must equal, E

11
, 

the real crack length, a, is obtained by requiring equilibrium 

1.6 

1.4 

:i 1.2 

i l 

a o.s 

10.6 
z 0.4 

0.2 

o 
o o.s 

"c a = 1--
IC 

l l.S 

Chuang et al. 

Ulfkjær et al. 

2 
Rotati~ ep ('lhousands) 

(4.124) 
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Fig. 4.17 Moment rotation curves predicted by the Chuang and Mai model and The illfkjær, 
Brincker and Krenk model. 

and the equivalent normalized moment becomes 
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[

K ]

2 
(4.126) 

#l(K) = : 

Again a remarkable similacity is seen between the two models, however, with the important 
difference that the goveming parameters in the Chuang and Mai model are independent of the 
beam size. 

The displacement, ~' is obtained by adding the dispiacement in the crack band to the 
dispiacement in the rest of the beam. Since the curvature in the crack band is constant, the 
detleetion will be a circular arch with the radius 11 K, the deformations in the parts outside the 
crack band are calculated by assuming that the parts are cantilever beams loaded by, F, at the 
end. The total detlection, ~' becomes 

~ L . -1 h(/CEc l - = - tan[sm (-->1+-"1Ec'Y2l' 
d 2d 2d 6 

(4.127) 

where 

f~-~ 13 -2f ~r +3 f ~l2f ~-~l 
L 

'Y2 = 
(4.128) 

d 

For the standard beam introduced in the previous section, the size of the crack band, h c, is set 
to 50 mm (which is the same as the size of the elastic layer) whereby, e"=0.00015 and 
E c =0.00133. 

The normalized moment-rotation curve, where the rotation is determined by ({) = 21~ , 
predicted by the Chuang and Mai model and the Ulfkjær Brincker and Krenk model are shown 
in Fig. 4.17. 1t is seen that the curves arealmost identical and the difference is attributed to 
the difference in the method of calculating the elastic deformations. Normalized moment­
rotation curves, with the same materlal properties, at different size scales, predicted by the 
Chuang and Mai method, are shown in, Fig. 4.18. lt is seen that the peak value is not affected 
by the size scale and that the shape of both the ascending and the descending branch is 
changed. 

The only equations where the size of the beam is included are in the deflection equations. This 
is due to the faet that during derivation of the governing equation an increase of the beam size 
alters the normalized amount of elastic energy stored in the beam parts outside the crack. It 
can therefore be conelurled that the Chuang and Mai model is not able to predict size effects, 
but can only determine the difference in load carrying capacity for different materials. The 
Chuang and Mai model will therefore not be considered further. 

4.1.3 1be Llorca and Elices Method. 

As was shown in chapter 2, virtual crack propagation can be considered by using LEFM. For 
the three-point bending geometry this has been done by Catpinteri (1982), Carpinteri (1986), 
Catpinteri (1989) and Biolzi et al. (1989). The Uorca and Elices method is an extension of 
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Fig. 4.18 Normalized moment rotation curves, as deseribed by the Chuang and Mai model for 
the standard beam at different size scales. 

this method since it assumes a linear elastic beam withacrack with the length, a+a1 , and a 
cohesive stress distribution acting on the crack edges deseribed by the FC-mcidel, see 
Fig. 4.19. 

The method is based on tindings of Foote et al. (1986), but the equations of the model 
deseribed here arederived on basis of the work by Llorca and Elices (1990). The method is 
in general applicable for all structures and all loading conditions as long as it is possible to 
detennine the appropriate stress intensity factors. Here the method will betested on the three­
point bending configuration. 

The basic hypothesis of the model is that the crack opening profile is a known function, 
completcly deseribed by the length of the fictitious crack, af. Here it will be assumed that the 
crack profile is a straight line deseribed by the function 

for O ~ x s a + af (4.129) 

where, a, is the real crack length, a~_, is the length of the fictitious crack and, w c• is the 
critical crack opening dispiacement The beam is assumed to be linear elastic, loaded at the 
load point with the force, F, and at the crack tip with cohesive stresses (internat loading) 
deseribed by the constitutive relation,f(w), and the crack opening profile, w(x). Since the beam 
is linear elastic the stress intensity factor, K, is determined by using the principle of 
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Fig. 4.19 The considered beam geometry, with a cohesive crack in front of an initial real crack 
tip. 

superposition 

(4.130) 

where, Kø, is the stress intensity factor due to the cohesive stresses and, KF, is the stress 
intensity factor due to the externalload. One of the basic assumptions in the FC-model is that 
there is no stress intensity at the crack tip, which implies that the stress intensity factor is equal 
to zero 

K • 0 ~ Kø = -KF (4.131) 

For the three-point bending specimen with an initial notch of length, a, the stress intensity 
factor for the extemalload, KF, can be determined by, ASTM (1974), 

KF = 3lF /i YF(ald) (4.132) 
2d2t 

where the dimensionless shape function, YF(alb), for A=8 is given by 

YF (a/d)=l.93-3.07(a/d)+l4.53(a/d)2-25.11(a/d)3 +25.8(a/d)4 (4.133) 

The stress intensity factor for a concentrated unit load at, x, on the crack edge for an infinitely 
long beam is determined by, Tada et al. (1973) 

(4.134) 

where 
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y (a/d,xla) = 3.52(1 - x/a) _ 4.35 - 5.28xla 
con (l - ald)312 Jl - a/d 

(4.135) 

+ { 1.30 - 0.30(x/a)
312 

+ 0.83 - 1.76x/a}[l - (l - xla)ald] 

J1 - (xla)2 

and by applying the principal of superposition the stress intensity factor for the stress 
distribution, u(w{x}), becomes 

ø+ Øf 

J 2 a +af x { } Ka(a,a) = Y con< d , ) Cl w (x) dx 
ø J ... (a +a) a + af 

(4.136) 

whereby thc externalload, F, can be determined by using eq. (4.131). 

In order to obtain compatibility it is necessary to check if the assumed crack opening profile 
corresponds to the one calculated by using dispiacement formulas according to LEFM. In the 
foliowing the necessary dispiacement and crack opening dispiacement equations will be derived 
using the energy principals deseribed by Llorca and Elices (1990a) and Bosco et al. (1990). 

Instead of considering the entire cohesive stress distribution a concentrated force, F2, at the 
crack edge is considered together with the applied load, F1, with the corresponding 

x 
a 

, 
, 

l 

Fig. 4.20 Beam with two concentrated loads for determination of compliances. 

displacements, u 1 and, u2, see Fig. 4.20. The total potential energy, A, stored in the system 
is 

ll = - .!.F1~1 - .!.F2c52 2 2 
(4.137) 

wherc thc dispiacements are given by the compliances 
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at • CuFt + C12F2 
~ = C21F2 + C22F2 

The energy release rate is given by 

G=_ an 
raa 

1 2 ac11 1 ac22 ac12 
= 2F1 raa + 2F2 raa + F1F2 raa 

(4.138) 

(4.139) 

where Maxwell-Bettis theorem has ben applied. The energy release rate can be written as 

K2 (Kt + K~2 
G • - "" ----=:---E E 

2 2 K1 K2 2K1K2 
z - + - + ---==--

E E E 

(4.140) 

Since the terms in (4.140) are Iinearly independent the compliances are determined as 

ø+ ør 

c9{a + a) • ~ J Ki~ dw (4.141) 

o 
where, K;, and, JS, are the stress intensity factors for a unit load. The dispiacements can then 
be determined by using eq. (4.138). When a distributed stress distribution is applied along the 
crack faces the principle of superposition can be applied 

a+ ae 

aF = CFF(a + apF + J CF;;c(a + a_pX) u(x) tdx 
ø 

(4.142) 
ø + ør 

a(x) = CJCF(a + a_pX)F + J Cxt(a + ap:l,x) u(.i) t dl 
a 

where c.xi is the dispiacement in, x, from a unity load in, :l, is given by 

ø + ac 

21 I CJ.a + ap:I,x) • E Kj(w,x)Kx(w,:f) dw 
max(x,:l) 

(4.143) 

The detleetion of the beam is then given as the sum of the deformation due to the crack and 
the deformation of an uncracked beam. 
By setting x=a1 in eq. (4.142) the crack tip opening displacement, CIOD, is calculated 

ø+ ør 

CIOD = a(a + a_p • Car(a + a)F + ! C'"u{w(x)}tdx (4.144) 

where 
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a+ a1 

Cu(a,a) "" ; J KF (a + a)Kc011~,a + a) dx 
o 

a + a1 

Cax(a,apX) ,., ~ J Kc011(w,x) Kco11(w,a + a_p dw 
x 

(4.145) 

By comparing the, CIOD, with the assumed value, wc, it is possible to check if the assumed 
crack opening profile deseribed by, a1 , is correct. If the, CIOD, is higher than, w c' then, ap_ 
has to be increased, and vice versa. The actuallength of the fictitious crack is then calculated 
foliowing an iteration procedure. The above formulas can only be calculated n urnericall y, and 
care should be taken with the singular stress intensity factors durlog the numerical integration. 

Llorca and Elices suggest that by using this known value of, a1 , it is possible to calculate the 
entire force-dispiacement relation. This seems to be a crude approximation. According to the 
numerical methods and to the illfkjær, Brincker and Krenk method, where it was shown that, 
a1 t initially is zero then growing to its maximum value and then decreasing, and i t was seen 
that the maximum size oft ll;t' was obtained when CIOD=wc. TllUst in order to improve the 
model Uorca and Elices have calculated, a1 t in each loading step in a subsequent paper, 
Uorca and Elices (1990b), howevert without comparing the method with numerical results or 
with the previous sketehed method and without giving the results of, a1 . 

As was seen in the previous section, it is only at the descending branch the real crack starts 
to grow, and it seems evident that the method should be extended, so the development of the 
fictitious crack can be calculated. Actually the peak value is reached durlog the development 
of the fictitious crack. 

The method here suggesled is equivalent to the Llorca and Elices method, but is divided into 
two phases. In the first phase the fictitious crack develops and in the second phase the real 
crack grows. At the first loading steps the desired opening is not set to the critical opening, 
but an opening which is a certain fraction of the critical opening, e. g. w des =w ;n, where, n, 
is the fraction and w des is the new desired opening. The above outlined iteration method is then 
applied until the CIOD is equal to the desired value. The desired opening is then increased 
and the iteration is performed again. This is done, n, times corresponding to that the desired 
opening is equal to the critical opening. Then the second phase begins which corresponds to 
the extended Uorca and Elices method. The method corresponds to that the loading in phase 
I is crack tip opening dispiacement controlled and in phase n is crack length controlled. This 
suggestion wil1 yield a considerable improvement of the Uorca and Elices method, and wil1 
only yield a small increase in the total calculation time since it is known that in the initial 
phase, ap therc is an increasing lunetion of the desired opening and a decreasing fimetion in 
the second phase of the real crack length. 

In the foliowing the different procedures of this method are comparedt see Fig. 4.21. 

4.1.4 Model Evaluation. 

Three methods basedon three different assumptions have been presented. 
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Fig. 4.21 The different melbods as introduced by Llorca and the author. 

The Ulfkjær et al. model is based on the development of a fictitious crack with a linear 
softening relation in the midsection of an elastic layer. The layer is assumed to be Iinearly 
dependent on the beam depth. The moment rotation curves calculated by themodel is atmost 
identical to the ones calculated using a numerical model at different size scales and slendemess 
ratios. The great advantages of the model are its simplicity and that the governing equations 
are simple and explicit whereby the calculating time is minimal. Purther it is possible to derive 
analytical results, e. g. the maximum size of the fictitious crack and the slope of the descending 
branch. The disadvantage is that the model is only applicable for a linear or piece by piece 
linear softening relation and that a size effect relation has not been found. However, 
appmximate solutions can be obtained for other softening relations than the linear by assuming 
that the dispiacement field in the midsection of the layer is linear. 

The Chuang and Mai model is based on the crack band model, on the Bernoulli assumptions, 
and on an exponential softening relation. The governing equations is derived on the basis of 
the same stress distributions as in the Ulfkjær et al. model and by assuming a linear softening 
relation the equation becomes atmost identical, with the important difference that the Chuang 
and Mai model not is able of predicting size effects, which is a great disadvantage of the 
model. The model is, however, able of comparing the load carrying capacity of identical 
struerures with different softening relations. 

The third model is based on LEFM and on the assumption that closing stresses acts on the 
edges at the crack tip, deseribed by the fictitious crack model. By assuming that there is no 
stress intensity factor at the crack tip, the externalload and the crack tip opening dispiacement 
can be calculated, which shall equal the critical crack opening dispiacement By performing 
an iterative procedure, which involves numerical integration of a double integral, the length 
of the fictitious crack can be calculated. By using this length the load dispiacement curve can 
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be calculated, this approximate procedure is uscd in order to make the method simple and fast. 
The model is then extended by the author whereby the formation of the fictitious crack is 
calculated. 

Though the basic idea appears to be sound, results obtained by using this model is 
disappointing. By using the original method the even descending branch is missing, and the 
stiffness of the struerure is miscalculated. By using the extended version where the length of 
the fictitious crack is calculated at each loading step, the descending branch is obtained, and 
some similarity between a numerical method is observed. However, the stiffness and the peak 
load is estimated unsatisfactory. In the procedure suggesled by the author the initial stiffness 
is predicted better, but the shortcoming is that the peak load not is predicted with sufficient! y 
accuracy. lt is therefore concluded that more research is needed in ord er to improve the 
method. 

4.2 Reinforced Concrete. 

To the authors knowledge only two analytical models which describe crack propagation in 
reinforced concrete exist. The two models are conceptual different since the first model, the 
Catpinteri model, is based on LEFM whereas the later is based on the fictitious crack model 
and an elastic layer in the midsection. The two models are presented, compared and evaluated. 

4.1.1 The Carpinteri Method. 

This method is based strictly on LEFM and was introduced by Carpinteri (1981), 
Carpinteri(1984), Catpinteri (1985), Carpinteri (1988) and later refined by Bosco et al.(1991). 

M,f&l/2( e----~---- )M,f&l/2 
~------~~~~------~ H w 

1-0 

' 
t 

Fig. 4.22 Beam segment from reinforced beam made of a perfectly brittie material. 

Consider the reinforced concrete beam segment in Fig. 4.22, with the depth, d, thickness, t, 
crack length, a, and the teinforcement area, Ar, in the depth, r, loaded with the extemal 
moment, M. The concrete is assumed to be linear elastic, perfectly brittie deseribed by the 
modulus of elasticity, E, and the fracture toughness, K c, and the teinforcement is assumed to 
be rigid, perfectly duetile deseribed by the yielding strength, uy. 
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Thc rcinforcement is now removed and an extemal steel force, F3 , is introduced which 
corresponds to the stress state in the reinforcement. The stress intensity factor, K, for the 
beam segment is then written as 

(4.146) 

where, KM, is the stress intensity factor due to the extemal moment and, KF, is the stress 
l 

intensity factor due to the steel force. Thc stress intensity factors are given in Tada et al. 
(1973) as 

(4.147) 

where 

Y M< al d) = 6(1.99(a/d) - 2.47(a/d)312 + 12.97(a/d)512 -

23.17(a/d) 712 + 24.8(a/d)912) 
(4.148) 

YF (a/d,rla) • - 2-Yco11(ald,rla) 
l lr:d 

where, Yco11(ald,rla), is given in eq.(4.135). The additional rotation, q,, ofthe segment due 
to the crack, produced by the two loads are given by the campliances 

t/>(ald,hla) = CMM<.ald) M + CMF (ald,rla)F3 l 
(4. 149) 

and the crack opening displacement, w(x), at the center of the reinforcement is given by 

w(a/d,rla) • CF~ald,r/a)M - CF.F,(ald,rla)F3 (4.150) 

The campliances can be derived by using energy principles similar to the one shown in section 
4.1.3, Bosco et al. (1990) 

(4.151) 

al d 

CMF • 
2
d J Y M<w)YF (CJJ,r/d) dw 

l ~t l 
r d 

before the steel is yielding the crack opening dispiacement is assumed to be zero 

83 



J.P. Ulflgær. Fncturo Mecbanics of Concrete 

w=O :::0 

M = r 11 (a!d r/a) 
Fjl ' 

(4.152) 

where 

11 r. _ CF .F. (a/ d, r/a) 
r (a/d, la) - CF,JJ.a!d,rla)d 

(4.153) 

from which the force in the reinforcement caused by the extemal moment is calculated. In the 
limit of plastic flow the moment becomes 

(4.154) 

where F: = uy-4.,. By considering eq.(4.146) the fracture moment, MF (the crack is extending 
when K =KJ can be determined as 

MF _ 1 YF,(ald,hla) F[ 
-....."...,.~--+ N-
K,p3121 YM YM<ald) P F: 

(4.155) 

where, F/, is the steel force at fracture and, NP, is a brittleness number defined by 

N = uyJ112 Ar (4.156) 
P K A c 

where, A=td, is the cross sectional area. Before the steel is yielding , F/, is determined 
through eq.(4.153), whereby the fracture moment becomes 

MF l = 
KJl31z1 y 

y - F, 
M IT r 

and when the steel is yielding, F[ = F;, viz 

for 
(4.157) 

for (4.158) 

It is hereby possible to consider virtual crack propagation, where the controiling parameter is 
the crack length, a/d. 

In the limit state of virtua1 crack growth the ulti.mate moment becomes 

Mil = F:(l - rid) 

Mil 
-~ = N (l - rid) 
Ktfl312t P 

(4.159) 

Bosco et al. concluded hereby that themoment-rotation curve wil1 consist of three phases, a 
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linear elastic part until the fracture moment is reached given by eq. (4.155) • As the crack 
length increases the moment decreases until the minimum moment, Mmin• is reached. If the 
minimum moment is less than the ultimate moment the fracture moment wi1l eventually 
increase until it reaches the ultimate moment, which the author agrees upon. However, as will 
be shown this conclusion can not be made with the presented shape functions. 

In order to be able to make comparisens between experiments and the model the load 
dispiacement curves should be considered. The load-dispiacement curves can be determined 
by considering the sum of the dispiacement due to the cracking, 8c, caused by, </>, and the 
elastic deformation o f a Timoshenko beam without a crack, a et as Suggested by Hededal and 
Kroon (1991) 

(4.160) 

In order to check the Carpinteri modelit has been implemented on computer. The results are, 
however, disturbed by an erroneousness shape function, Ycon• which in Bosco et al. is given 
as 

y (a/d,xla) = 3.52(1 - x/a) _ 4.35 - 5.28xla 
con (l _ a/d)312 (l _ ald)312 

(4.161) 

+ { 1.30 - 0.30(x/a)312 + 0.83 - 1.76x/a}[l - (l -x/a)] 
(l - (x/a)2) - 112 
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Fig. 4.23 The shape tunetions as presentedin Bosco et al. (1990). 

By using this shape tunetion the fracture moments calculated for virtual crack propagation are 
negative, and they are therefore not consistent. The shape tunetions used by Bosco et al. are, 
however, also presented graphically and are shown in Fig. 4.23. The shape tunetions 
calculated using eq.(4.161) and eq.(4.148), (4.161) are shown in Fig. 4.22, Fig. 4.25, and it 

85 



J.P. Ulfkjær. Fradure Mechanics of Concrete 

151.0 _M_ 

; 0.8 K.: bhll2 

lo.6 
~o. 
% 

Np = 0.0 

l O åf', /&p,o 
o 5 10 15 20 25 30 

Dlt.cENSIONLESS ROTATION 

(a) 

ffi l.O M 
2 

~ 0.8 KIC bh312 

~ 
~ 0.6 

Np = 0.26 

~ 0.4 f\ 
~ 0.2 '---=-=-.-·----;r-f!Jipro 

iS o 5 10 15 20 25 30 
Olt.IENSIONLESS ROTATION 

(c) 

~ 1.0 _t.l_ 

~ 0.8 KIC bhl/2 ------~~=-~~7 
~ i 0.6 

~o. 
:z 

~o. 

~o ~~5~1~o~1~5~2o~2~s~30 
Dlt.tENSIONlESS ROTATION 

(e) 

~ 1.0 t.l 

::1 0.8 K IC bh l/2 
(.!) 
:z 

~ 0.6 
m 

~ 0.4 
~ z 

Np = 0.10 

~ 0.2 
i3 --------- ~F j&ptD 
::1 
i5 o 5 10 15 20 25 30 

Dlt.IENSIONLESS ROTATION 

~ 1.0 _t.l_ 
::~ 0.8 KIC bhl/2 
(.!) 
:z 
~ 0.6 ..... 
m 

~ 0.4 
z 
~ 0.2 
z 
~ 

(b) 

Np = 0.53 

i5 o 5 1 o 15 20 25 30 
Olt.IENSIONLESS ROTATION 

(d) 

Fig. 4.24 Moment rotation curves for different brittleness numbers as presentedin Bosco et 
al. (1990). 

is seen that YF is completely different from the one used by Bosco et al. (1990) while YM is 
• 

exactly the same. 

For the standard beam the fracture toughness is calculated according to Kc = JEGF. The 
other materlal parameters are shown in Tabel4.2. By using the presented method a normalized 
moment-rotation curve for the reinforced standard beam is shown in Fig. 4.26, where the 
rotation is normalized to the first cracking rotation, t/Jo-

The initial shape o f the moment rotation curve is equivalent to Bosco et al., however, the rest 

86 



4. Analytical Methods in Concrete Fracture 

250 

200 

150 

100 

50 

y 
M 

o o 0.1 0.2 0.3 0.4 0.5 
crack length, afd 

Fig. 4.25 Shape functions accordmg to Tada et al. (1973). 

Fracture Toughness, Kc [Nmm-312 ] 

Remforcement area, Ar [mm2] 

Relative remforcement position, r/d 

Brittleness number, N
11 

Yielding strength, uv [N/mm2] 

Tabel 4.2 Parameters which describe the remforced standard beam. 
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44.7 

29 

0.05 

0.26 

400 

of the curve is compietet y different. The minimum moment is much larger using the presented 
indeed different from the one shown in Fig. 4.23, anditis actually larger than the ultimate 
moment. The second kink on the curve indicates where the steel starts to yield, and after that 
rotation the moment was supposed to decrease, and as is seen that is not the case. When the 
steel is yielding eq.(4.158), is applied. Since the first term is decreasing, and NP is constant 

y 
themoment-rotation curve is highly dependent by the ratio F., see Fig. 4.27. lf the shape 

YM 
of the moment rotation curves should be as found by Bosco et al., then this ratio should be 
decreasing or at least constant. 

87 



I .P. Ultkjær. Fracture Mechanics of Concrete 

1 

0.9 

0.8 

1 0.7 

0.6 s 

1 
o.s 
0.4 

0.3 z 
0.2 

0.1 

o o 

M 
Kc td3fl 

"' -
s 10 15 20 

Norma1ized rotation, t9/ t9 o 

25 

Fig. 4.26 Normalized moment-rotation curves by using the Carpinteri method. 

. 

30 

The author feel that the basic ideas describing the Carpinteri model is sound, but it has not 
been possible to determine, moment rotation curves as deseribed in Bosco et al. (1990). It 
would indeed be nice to see the mathematical expressions used to describe the shape fimetions 
used by Bosco et al. (1990). 

4.2.2 The Hededal, Kroon, UlflQær and Brincker Method. 

This method is an extension of the Ulfkjær, Brincker and Krenk Method with remforcement 
introduced in the elastic layer. Themodel was developed in junction with theMasters thesis 
of Hededal and Kroon (1991) and this presentalion follows their approach. 

Consider the beamin Fig. 4.28, reinforced with the remforcement area, Ar, introduced in the 
depth, r. The remforcement is assumed to be linear elastic, perfectly plastic deseribed by the 
modulus of elasticity, E" and the yielding strength, u y. The concrete is deseribed as in section 
4.1.1. The approach of obtaining the governing equations is identical to the method without 
reinforcement. Titus, three phases are considered, however, each phase is divided into two: 
a) the steel remains elastic or b) the steel yields. The strain condition in the steel in the elastic 
layer is assumed to be equal to the strain condition in the layer. The stress distribution and the 
shape of the load dispiacement curve are shown in Fig. 4.29. 

The strain distribution, E(y), in the midsection is obtained by considering similar triangles 
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Fig. 4.27. The ratio between the two shape lunetions used in the Carpinteri method. 
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Fig. 4.28 The considered beam used in the Hededahl et al. method. 

(4.162) 

where, 8, is defined in section, 4.1.1., a", is normalized position of the neutral line, E", is the 
ultimate concrete strain and, y, is the coordinate. 

Phase l. 
In this phase the concrete is assumed to be linear elastic. By taking horizontal equilibrium the 
position o f the neutral axis, a", is determined as 
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Fig. 4.29 Sketch of the load-dispiacement curve for reinforced concrete where the three phases 
are indicated. 

a" 

"' .!. [ l + 2fpa,] 
2 l + SP 

= .!.[1-p(fy_!.] 
2 (f" 8 

for 

(4.163) 

for 

E8 • A, 
where, f = -E , IS the flexibility ratio between steel and concrete, p = -, is the 

t d 

remforcement ratio and, a, = ~, is the normalized position of the reinforcement. The 

equivalent moment becomes 

f1s(8) 
p(8) = 8(4 - 6a") - 6-pa, 

(fil 

(4.164) 

where, f18 is the steel stresses which is determined by using eq. (4.162). Phase I ends when 
the strain in the hottom equals, e", yielding the foliowing condition to the normalized rotation 

8~-1- (4.165) 
2a" 

Thus, the moment rotation curve is a linear curve in phase I if the steel is not yielding, and 
bi-linear if the steel yields. 
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Phase n. 
In phase n the fictitious crack develops. The size of the elastic tensile zone is found by the 

condition that the strain at the fictitious crack tip is, e", yielding '1 = 2~. The position of the 

neutral axis is determined by taking horizontal equilibrium 

a1 = (l + iP)(l - B) 

± {l + 1P)2(1 - B)2 - (l + 2tpar)(l - B) + (!(l - B)(l + l"P) 

a1 • (l - B) ± .!.(1 - B) [l + u, p] 
8 a" 

and the equivalent moment becomes 

[ 
2aj8)

3 
] 

1'(8) = 8 - 6aj.8) + 4 
l -B 

for e">e1 
(4.166) 

(4.167) 

which is completely equivalent to the un-reinforced model, except for the last term taking the 
account of the steel and the modified equation for description of the size of the fictitious crack. 
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Fig. 4.30 Moment-rotation curves for the Hededal et al. model with different remforcement 
ratios. 
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Fig. 4.31 Moment rotation curves for the reinforced standard beam, with constant 
remforcement ratio at different size scales. 

Phase m. 

In phase m the real crack starts to grow. The size of the elastic tensile zone is as in phase n: 
;B. The condition that the strain at the real crack tip is, e c, and by considering similar 

triangles the size of the fictitious crack is detennined as 

al z [l ~B] i
9 

(4.168) 

which is the same as in the un-reinforced situation. The length of the real crack is determined 
be requiring horizontal equilibrium 

92 

a = l + l'P - ~B ± l'P(l'P + 2(1 - a,)) +B [~r 

l a=l--± 
288 

2p2- +B -(f. l [ l ]2 
(fu 28 2B8 

for e3~ e
1 
(4.169) 



4. Analytical Methods in Concrete Fracture 

and the equivalent moment becomes 

1'(9) = 9 [ 4 - 6 [ ~8 + "] + 2(a + ~~~2; 2Ba3] + 6 ::P"r (4.170) 

As in the Ulfkjær et al. method, is this method basedon the assumption that the curvature is 
constant in the elastic layer, and the model is therefore derived for four point bending. 
Modifications must, however, be made in order to calculate the elastic displacement, according 
to the four point bending geometry. 

In Fig. 4.30 normalized moment-rotation curves as calculated using the method for different 
reinforcement areas. it is seen that the shapes are as deseribed under the carpinteri method, 
which is the expected behavior. In Fig. 4.31 normalized moment-rotation curves for the 
standard beam at different size scales with constant teinforcement ratios are shown. 

The governing equations are simple and explicit, which makes the calculation speed very high 
compared to the Carpinteri method. 

The peak moment is seen to be dependent on both the reinforcement area and on the size of 
the structure. 

It is seen that there is a small kink on the curves. This kink is due to that the constitutive 
relation for the steel also have a kink and it was shown by Hededahl and Kroon (1991), that 
the kink on the moment-rotation curve disappears when the kink on the constitutive condition 
is removed, e.g. by making the constitutive relation parabolic-perfectly plastic. 

There have not been made any comparison between the Carpinteri method and the Hededal 
et al. method since it is assumed that the Carpinteri method is erroneousness as it is presented 
here. 

4.2.3 Model Evaluation. 

The first method presented was the Carpinteri method. The method is strictly based on LEFM 
and that the reinforcement is rigid-plastic. The model requires numerical integration of double 
integrals. The results presented here are, however, disturbed by an erroneousness results 
compared to the ones presented in tb e original paper, and further condusions seems 
meaningless, until is solved if the errors are due to the shape functions or due to the model 
concept. 

The second method, the Hededal et al. method, is based on the development of a fictitious 
crack with a linear softening relation in an elastic layer around the midsection of the beam and 
that the reinforcement is linear elastic-perfectly plastic. The results fits very well with what 
was expected. The model is powerful in the sense that the governing equations are expUcit and 
the calculation speed is therefore very high. 

4.3 References for Chapter 4. 
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5 EXPERIMENTAL DETERMINATION OF 
FRACTURE PROPERTIES OF IDGH-STRENGTH 
CONCRETE. 

With the different numerical and analytical methods presented, it is possible to analyze plain, 
lightly reinforced and other struerures of nonnal and high-strength concrete where the tensile 
strength is a goveming factor. It is, however, necessary to in vestigate if the size effects 
introduced in chapter 2 are present. For three of the models presented in chapter 2 the 
fracture parameters are determined, the results are presented and the size effects observed 
are commented. 

As was deseribed in chapter 2, it is very difficult to determine the constitutive parameters 
in the fictitious crack model and for high-strength concrete, only the fracture energy has been 
determined, and only by using the RILEM recommendation developed by Hillerborg and co­
workers, RILEM 50-FMC (1985). Instead indirect methods can be applied, e. g. the fracture 
parameters are determined through three-point bending experiment. Here the experimental 
results, in fonn of load dispiacement curves, are compared with numerical results obtained 
by using the direct sub-structure method, deseribed in chapter 3, and the fracture parameters 
are then assumed to be those who minimize a certain function, which in some way describes 
the difference between the experiment and the numerical result. Three of such tunetions are 
tested on 8 different beam geometries, and two different optimization techniques have been 
used. This method of detennining the constitutive parameters is evaluated, and ronelusions 
are drawn. 

In order to measure the crack profile and to detect eauses for size effects, dye experiments 
are performed on ordinary specimens and on specimens which are saw cut out. 

5.1 Size Effect Experiments. 

5.1.1 Materials. 

A high strength concrete similar to the one used at the Great Belt project in Denmark has 
been used. The !argest aggregate size in this concrete is, however, only 8 mm. Tabte 5.1 
shows the mix of the concrete and Tabte 5.2 shows the mechanical properties. The modulus 
of elasticity, the cylinder compressive strength and the cylinder splitting strength were 
determined using conventional procedures. 
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Servo Hydraulic 

Machine 

Fig. 5.5 Testing equipment for three-point bending testing. 

Cement Fly Sillea Water Plast. Super Sand Grav el 
ash fume (*) Plast. 

312 44 29 122 1.56 8.58 614 1238 

(*) Melamine-Naphthalene based plasticizer; Unitsare [kg/m3] 

Table 5 .l Mix proportions. 

The experiments were carried out on 8 different bearn sizes as shown in Tabte 5.3. These 
geometries were chosen for two reasons. Firsti y, in order to be ab le to study statistical and 
structural size effects separate! y, and secondly because of the limitations of the testing 
equipment. The bearns were made out of three batches (40 l each) and beams of 8 different 
sizes were cast o n the same da y. A total amount o f 40 bearns were cast over a period o f 4 
weeks. The bearns were narned alter size, cast day and batch number (e. g. A-3a is beam size 
A cast on day 3 from the first batch). The day alter easting the bearns were striped from 
their molds and cured 7 days in water (37°C). Then a notch ofrectangular cross section was 
saw cut in the beams and the bearns were Curther cured under water (20°C) for 7 days. 
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/ 
Control Panel 

•• 

Fig. S.6 Ph~ of reference bar. 

Cylinder compres- Cylinder splitting Young's modulus 
sive strength strength 

Mean S.Dev Mean S.Dev. Mean S.Dev. 

81,7 S.O% 5.5S 8.1% 42660 2.S% 

Unitsare [MPa] 

Table S.2 Meehanical properties oftested concrete. 

Hereafter, the beams were storedin the laboratory at relative humidity of 100% at 20°C until 
the day of testing. 

5.1.2 Testing equipment and procedure. 

The beams were submitted to three-point bending in a servo controlled materiais testing 
system, see Fig. S .S. In order to measure the true beam detleetion a reference bar was placed 
on each side of the bearn, and the beam detleetion was measured as the distance from the 
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o o 100 200 300 400 500 600 700 800 900 1000 

Dispiacement [J.Lm] 

Fig. S. 7 Difference between the true dispiacement and the piston dispiacement for beam type 
H-Sc. 

Type Length Depth Width Notch depth 
[mm] [mm] [mm] [mm] 

A 840.0 so.o so.o 5.0 

B 840.0 so.o 100.0 s.o 
c 840.0 100.0 so.o 10.0 

D 840.0 100.0 100.0 10.0 

E 840.0 100.0 200.0 10.0 

F 840.0 200.0 so.o 20.0 

G 840.0 200.0 100.0 20.0 

H 840.0 200.0 200.0 30.0 

Table S.3 Sizes of the beams tested, the dimensions was all within +/- 2.0 mm. 

load point to the reference bar using two LVDT's withabase of 20.0 mm and a sensitivity 
of O.S V/mm, see Fig. S.6. The piston dispiacement was measured using the buiid-in LVDT 
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with a base of 5.0 mm and a sensitivity of 2.0 V/mm. The difference between the 'true 
dispiacement and the piston displacement, which usually is assumed to be the beam 
deflection, is seen in Fig. S. 7, for beam type H~Sc. The crack opening dispiacement was 
measured using a cli~gauge withabase of2.0 mm and with a sensitivity of5.0 V/mm, see 
Fig. 5.6. The load was measured using a 50.0 kN load cell with a sensitivity of 0.2 V/kN. 
A schematic of the test set~up is shown in Fig. 5.8. 

All signals together with the time, t, were recorded using an analog to digital converter and 
an AT Personal Computer. The test was controlled by a feedback signal that included 
contributions from both the piston dispiacement and the COD. The feedback signal, ~, was 

Beam support~ 

Q 

Spherical Bearings Y ~age Beam support 

Support fitting~ · ,. Ø 
Q- Spherical Bearing 

Clip Gage 

~ fltting LVDT . 

Fitting \ ~ 200 mm x 200 mm 

. ~ ~VDT Specimen 

Load Cell 

Fig. 5.8 Schematic of the test set~up. 

created by analog addition of the corresponding signals: 

~=a~coD+fJ~p (5.171) 

where, ~c00, is the crack opening dispiacement and, ~ , is the piston dispiacement The 
weight factors, a, and, {3, were chosen to a=lO.O, 5.0 and 2.5 and {3=1.0, where a is 
decreasing with the beam depth. 

The idea of using this combined signal as feedback is that each term in (5.171) plays a 
dominant role in the different stages of the test. Before the fracture process starts the piston 
dispiacement plays the dominant role. When the fracture process starts the COD is increasing 
rapidly. In this way a stable test is obtained, see Fig. 5.9 , where the load-COD curve is 
plotted together with the load~piston dispiacement curve and the feed~back signal for beam 
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Fig. 5.9 Displacement, crack opening dispiacement and feed-back signal for bearn type G-4a. 

G-4a. It is obvious from this example that if the test was piston dispiacement controlled an 
instability would occur immediately after the peak load. 

The reference signal, a linear ramp, was generated with the same AT PC using a digital to 
analog converter. The controlarrangement is shown in Fig. 5.10. 

The measured load dispiacement curves are shown in Appendix A2, categorized according 
to the geometry. The peak load and the dispiacement at peak load are shown in Appendix 
A3. 

5.2 Fracture Parameter Results. 

Fracture parameters from three different models are calculated: 

A: The bending'tensile strength according to Bernoulli (modulus of rupture). 
B: The critical stress intensity factor Kc according to LEFM. 
C: The modulus of elasticity, E, the fracture energy, Gp, the uniaxial tensile strength, 

u", and the coordinates of the kink of a bi-linear er-w relation, according to the Fe­
model. 
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Fig. 5.10 Control Arrangement. 

5.2.1 1be Modulus of Rupture. 

The modulus of rupture is calculated as the bending tensile strength of a Bernoulli-Euler 
beam 

3Fmaxl 
CTm = ----=-

2(d - ai)2t 
(5.172) 

where, F max• is the peak load when the load dispiacement curve is adjusted for the beam 
weight. The modulus of rupture for all the beams are shown in Appendix A3, together with 
the mean values, the standard deviation and coefficient of variation. In Fig. 5.11 the mean 
value of the modulus of rupture is drawn as a tunetion of the beam depth, for the different 
beam thickness. It is seen that except for the smallest beam (d = 50 mm, t = 50 mm) the 
same trend is seen as in the Reagel and Willis (1931) experiments, thus, the modulus of 
rupture is decreasing with the beam depth. The decrease in modulus of rupture by doubling 
the beam depth is 4% for the thielmesses 50 mm and 100 mm and 10% for the beam 
thickness 200 mm which is of the same order as in the experiments by Reagel and Willis 
(1931). 
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t•200mm 

t• SO mm. 

60 80 100 120 140 160 180 200 
Beamdep~ d 

Fig. 5.11 Mean values of modulus of rupture as function of the beam depth for the three 
beam thickness. 

The reason for the unexpected behavior of test series A could be that the specimens have 
been too small to make a homogeneous structure of the specimens, however, visual 
inspection of the specimens did not indicate any difference in the structure of the smaller 
specimens than that of the larger. lt is therefore assumed that the decrease in strength o f the 
smallest beam size is due to some edge effect, which e.g. is introduced by the mould. 

5.2.2 1be Fracture Toughness. 

The fracture toughness, Kc is calculated according to ASTM: 

K =3Fmaxl{if [a] 
c 2 bd2 d 

(5.173) 

where 

f [:] =1.93-3.07 [:] +14.53 [:] 
2

-25.11 [:] 
3 
+25.8 [:] 

4 
(5.174) 

F max is the peak load and d,t and a is the beam depth, thickness and notch depth, respective­
ly. 
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The critical stress intensity factor for each beamis shown in Appendix A3, and the mean 
values are plotled in Fig. 5.12. It is seen that the fracture toughness is strongly increasing 
with the beam depth, and is almost independent of the beam depth. The increase by doubling 
the beam depths is 53% for t=50 mm, 46% for t=lOO mm and 65% for t=200 mm. Thus, 
a distinct size effect is observed, when LEFM is used. 

2.6 
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1.8 
~ 1.6 
~u 
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1.2 

l 

0.8 40 

t •lOOmm 

t • 50 mm 

60 80 100 120 140 160 180 200 
Beam depth, d [mm] 

Fig. 5.12 Mean value of the critical stress intensity factor. 

5.2.3 Fracture Energies According to RILEM. 

According totheRILEM recommendation, RILEM TC-50 (1985), the ftacture energy should 
be determined on a specimen with the dimensions l = 800 mm, d = 100 mm, t= 100 and 
initial notch depth a; = SO mm, the maximum aggregate size should not be larger than 16 
mm. In this test series the initial notch depth ratio was chosen to be only 1110 of the 
normalized beam depth, because as stated in chapter 2, LEFM is only applicable for small 
notch depth. By using this reduced notch depth the amount of energy dissipated outside the 
ftacture will increase. Therefore it can be expected that a certain size effect will be measured 
by using the RILEM method, since the energy dissipated in the bulk is not taken into 
consideration by using this method. 

Different areas are calculated in connection with the RILEM method. Consider the load­
dispiacement curve in Fig. 5.13. The experiments are usually terminated before the load is 
decreased to zero, due to the faet that the piston dispiacement speed is very slow at the 
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descending branch. The experiment wi1l therefore end at the load, F1, and the corresponding 
displacement, ~1, and the remaining area under the load-dispiacement curve must be 
estimated. 

According to the Ulfkjær et al. model the descending branch in Phase m is deseribed by 

(5.175) 

the remaining contribution to the fracture energy, A1, can then be determined by 

oot?-__ 
A ... l I...!.d8 

l t(d - O;) ~2 
l 

(5.176) 

By applying the condition 

F, • [::r (5.177) 

the remaining fracture energy becomes 

Ft~t 
Åt,., ~~~ 

t(d - a;) 
(5.178) 

The fracture energies (the sum of the area under the measured curve and the remaining area 
divided by the ligament) and the remaining fracture energy, A1, for each experiment are 
shown in Appendix A3. The mean value of the fracture energies for each geometry is shown 
in Fig. 5.14. It is seen that the fracture energy is increasing with the beam depth, and is 
almost independent of the beam thickness. The increase by doubling the beam depth is for 
t= 50 mm 19%, for t= 100 mm 8% and for t= 200 mm 16%. The fracture energy for test 
series A, is quite low, which is due to the experiment A-Sa, where the fracture energy is 
very low. Visual inspection of the cracked surfaces did not indicate that this specimen in an y 
sense was weaker than the others. The reason for the size dependency of the fracture energy 
is attributed to the faet that energy dissipation in the bulk is not taken into consideration. 

5.2.4 Fradure Parameters Accordin& to the Fietitlous Crack Model and Data fitting. 

The fracture energy, the tensile strength, the modulus of elasticity, the coordinates of the 
kink onabi-linear er-w relation were estimated by salving the minimizing of an objective 
function which in some manner describes the difference between the measured load 
dispiacement relation and one calculated using a numerical method. Three different objective 
functions and two different optimization procedures were tested in order to obtain the best 
estimate of the constitutive parameters. The functions will be presented in the order they 
were tested by the author, and the shortcomings of each function will be given. 
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Objectiye fimetion 1: 
The first objective tunetion to be tested were 

(5.179) 

z= [uu *c E f 
where F/ is the experimentalload deflection curve at the applied dispiacement ~i' which were 
calculated at equidistant dispiacements and z is the state vector. No bounds were imposed 

on the elements in the state vector. P/< z) is a load deflection curve determined using the 
direct sub-structure method (DSS-method),Brincker and Dahl (1988), deseribed in chapter 
3. Using the finp element method for determination of influence coefficient, four-node 

Fig. 5.13 Areas calcuiated in order to determine the fracture energy, using the RILEM 
method. 

element were chosen and the number of nodes in the midsection were 21. The u-w relation 

was assumed to be bi-linear with the normalized kink-coordinate at (0.16,0.31). u u, .V c and E 
are the estimated uniaxial tensile strength, critical crack opening dispiacement and the 
modulus of elasticity modulus respectively. The term (F/;2 is a weight, that emphasizes the 
importancee of the peak. 

The optimization problem was solved using the Nelder and Mead algorithm, see e. g. Gill et 
al. (1981) or Vanderplaats (1984) on a 386 20 MHzPersonal Computer implemented in a 
MATLAB shell, MATLAB (1989) and it took about l hour for each optimization. However, 
in order to avoid local minimaseveral runs were necessary. Using this objective lunetion 
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Fig. 5.14 Fracture energies determined according totheRILEM recommendation. 

initially rather good results were obtained and it was concluded that the method was rather 
good. However, as the results became more, and more scattered and as it was observed that 
the fltting results were very poor, especially at the descending branch. It was therefore 
concluded that another objective lunetion was needed, so that the descending branch could 
be fitted better. 

Objective tunetion TI: 
The second objective lunetion is similar to the firs t, however, the normalized eoordinates o f 
the kink point (w1/wc ,&1/fr,J of the strain softening relation is taken into account 

z.,. [ fr., (;F E wllwc frtlfrl ]T 

and the state vector is subjected to the following constraints 

(5.180) 
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o< 
o< 

< 10.0 MPa 

< 80,000 MPa 

O < li~ c < 0.5 mm 

O < lil1/ltlc, &1/&11 < 0,5 

(5.181) 

Another important difference is that the loads F/1, were calculated at equidistance points at 
the load-dispiacement curve and not just on the dispiacement curve. By doing so the 
descending branch was weighted equally as much as the ascending branch, and even snap 
back is taken into account by this method. The number of points, N, was set to 350. In order 
to increase the calculation speed the objective tunetion was implemented using the C 
programming language, and instead of the Nelder and Mead scheme the NLPQL scheme 
developed by Schittkowski (1980) implemented in the programming language FORTRAN was 
used. 

The NLPQL algorithm is a very effective method where each iteration consists of two steps. 
The first is the determination of a search direction by salving a quadratic optimization 
problem formed by a quadtatic approximation of the Lagrange tunetion of the non-linear 
optimization problem and a linearization of the constraints at the current design point. The 
second step is a line search with an augmented Lagrangian merit tunction, Enevoldsen et al. 
(1990). NLPQL requires estimates of the gradients of the objective tunetion and the 
constraints, and is in this case done numerically. 

In this way a more complicated objective tunetion with two additional parameters is used 
with almost the same calculation time as the previous tunction. However, as in the case of 
the first objective function it is necessary to try more than one start guess, in order to find 
the true minimum. 

In most cases this object function yields very satisfactory results, however, it is in some 
cases not possible to obtain an acceptable agreement at the tail at the descending branch, 
which usually results in a too large fracture energy. An example of such an optimization 
result is seen in Fig. 5.15. 

Objectiye filDetion m: 
In order to solve the above outlined problem a third objective tunetion was designed 

r-

N F.II 2 t/ 
E (P/I(z)-F/12 ' + ' --

8max i•l F max 

z ... [ ;," GF E lYtflY c ;, 1/&" ]T 

subjected to the following constraints 
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Fig. 5.15 Optimization result where the second objective tunetion fails. 
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Fig. 5.16 Optimization result from using the third objective function. 

o < A < 10.0 MPa CTu 

o < 
A 
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which are equivalent to objective function n, but weighted with the square of the normalized 

dispiacement -'- . By using this objective function the optimization result in Fig. 5.15 [ 
t/ ]2 

8max 

changes to Fig. 5.16. 
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Fig. 5.17 Contour plot of the object function for beam A-4a. 
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A contour plot of the objective function for beam A-4a is plotted in Fig. S .17 where the 
optimal values of E = 43086 MPa, ltr1/ltrc = 0.14 and u1/C114 = 0.22 are used. The 
corresponding surface plot is shown in Fig. 5.18. The plot consist ofa square grid of 51*51 
points and it took over 26 hours to perform the calculations on a 386 33 MHz Personal 
Computer. The solid contour lines are plotled with equidistance o f 3, 000 and the dashed 
contour lines are plotled with equidistance of 30,000. The two variables x and y are defined 
sothat -1.0 at the x-axis corresponds to (fil= 10 MPa and 1.0 corresponds to f114 = 10.0 MPa, 
at the y-axis -1.0 corresponds to wc= 0.05 mm and 1.0 corresponds to wc= 1.0 mm. The 
minima of the function is at (x,y) = ( 0.08, -0.84) and is equal to 107.96 the maximais at 
(x,y) = (-1.0, -1.0) and is equal to 318260. The minimum corresponds to that wc = 0.09 
mm and (fil= 5.86 MPa, the values shown in Appendix A3 found by NLPQL are wc= 0.09 
mm and (fil = 5.42 MPa. 

It is seen that the objective function is 'banana' shaped with a very deep valley. At the 
bottom of the valley the objective function is very flat for constant brittleness numbers, and 
a lot of local minima are present. It is therefore very difficult to find the true minimum of 
the objective function and often several start guesses are necessary in order to get a good fit. 
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Fig. 5.18 Surface plot of the object tunetion for beam A-4a. 

The optimization results for all the beams are shown in Appendix A4, and the estimated 
parameters are shown in Appendix A3. 

The mean value of the estimated fracture energies are shown in Fig. 5.19, and the trend 
observed in the RILEM method is also observed here, whieh is due to the faet that the titting 
is made so the eurve wi1l be as equal as possible and that the energy dissipation in the bulk 
is not talren into consideration in this method. The increase in the fraeture energy by 
doubling the beam depth is 15% for t= 50 mm and t= 200mmand 10% for t= 100. 

The mean values of the uniaxial tensile strength, cr.,, are shown in Fig. 5.20. No distinet 
trend is observed from the estimated uniaxial tensile strength. The tensile strength is smallest 
for the small specimens, are then inereasing and then decreasing a little. It is observed that 
the uniaxial tensile strength is smaller than the modulus of rupture, whieh is in agreement 
with the results presentedin ehapter 4. 

The mean values of the normalized kink point of the softening relation are shown in 
Fig. 5.21. It is also seen that the normalized kink coordinate is decreasing with the beam size 
and that the values are lower that that of NSC {(0, 16,0.31)), indicating that HSC is more 
brittie than NSC. 
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Fig. 5.19 Estimated fracture energies. 
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Fig. S .20 Estimated uniaxial tensile strength. 

When this work was finished the author became aware of a work by Roelfstra and Wittmann 
(1986) and Bruhwiler et al. (1990) who also have determined the fracture parameters through 
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Fig. 5.21 Estimated results for the normalized lånk coordinate of the softening relation. 

a method similar to theoneunder objective tunetionIon NSC. They did, however, not use 
a weight on the objective function, and their estimation of the peak load is not as that good 
as with objective tunetion I. 

5.2.5 Conelosions on Size Effect Experiments. 

For all the three models it were seen that there were a significant size effect. The size effect 
on the modulus of rupture was of the same arder as that of experiments performed by Reagel 
and Willis (1931). The increase on the fraeture toughness with the increasing beam depth was 
very large anditis concluded that LEFM, is not applicable for HSC concrete of labaratory 
size. The size effect on the fraeture energies wase also significant, and the RILEM method 
for detennining the fraeture encrgy seems inappropriate. By using the data fltting technique 
the uniaxial tensile strengths and the lcink coordinate on the descending branch were 
determined and it was observed that the tensile strength was both decreasing and increasing 
with the beam depth. The normalized lånk coordinates were decreasing with the beam depth. 
For all parameters it was concluded that they were independent of the beam thickness. It 
appears, thus, that edge effects are present, since the Weibull in same way is outbalanced. 
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5.3 Dye Experiments. 

In order to determine the crack profile and to investigate why the thickness of the beam does 
not influence on any of the determined fracture parameters, a series of dye experiments 
similar to the ones performed by Swartz and Refai (1989) has been performed, with emphasis 
on studying edge effects. 

In the method developed by Swartz and Rafai (1989), two Aluminum sheets were glued to 
the beam using silicone. The specimen was then loaded beyond the peak load, where after 
the dye, Blue Vanish (a fluid soap), was poured into the reservoir. The beamisthen load· 
cycled, with the maximum load being app. 113 of the peak load. The reservoirs were then 
removed and the beam was split whereby the cracked profile corresponding to the unloading 
load is revealed. The crack was then measured immediately after testing, since the dye 
disappears alter about an hour. The crack profile measured by Swartz was rather U-shaped 
indicating the possibility of the existence of a weak zone at the edges of the specimen. The 
reason for this weak zone could be that the structure of the concrete is not the same at the 
edges of the beam. Another reason could be that the stress intensity factor for a crack on the 
edge of the struerure is up to a factor of 2.0 of that of an internal crack. That means that a 
crack at the surface will propagate for a load which is only the half of that for an internat 
crack. A third explanation could be that the used dying technic is responsible for the shape 
of the measured crack profiles. 

Almost the same testing procedure test set-up as used by Swartz is utilized in this 
investigation, see Fig. 5.22. Though, the dye used was instead Rotamin, a red colored dye 
used in women lip-sticks, and is in the concentrated form used here almost impossible to 
remove. A specimen which was dyed approximately a year ago, placed in the authors office, 
has not changed at all since the day of dyeing!. The drying procedure in this investigation 
was done by using a hot air canon whereby the drying time was very short. Also the 
reservoirs were not glued on to the specimen, but were hinged to the top of the beam, and 
then a littie silicone was used to make the connection waterproof. It is thereby assumed that 
the stiffness of the beam has not changed, due to the reservoirs. 

In order to check if the crack profiles change as the structure of the surfaces changes, four 
specimens which were saw cut out were produced, and four reference specimens of beam 
type D were cast. The procedure just outlined was then followed. The crack profile measured 
and drawn. The profiles are shown in appendix AS, and as seen it is not possible to see an y 
difference in the measureel crack profiles. 

5.4 Conelosions of Chapter S. 
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Fig. 5.22 Test set up used in the dyeing experiments, with the aluminum reservoir. 

An experimental investigation on 40 high-strength concrete beams in three point bending have 
been perfonned. The beams consisled of eight different geometries where the beam depth and 
the thickness were varied. The experiments were made in a cernbination of piston 
displacement and crack opening displacement control, whereby the same controiling 
parameter was used throughout the entire experiment. The fracture parameters according to 
three different models were determined. That is the Bernoulli beam theory, linear elastic 
fracture mechanics, and the fictitious crack model. 

Explicit fonnulas are available for the two first theories. The results for the Bernoulli beam 
theory showed that the bending tensile strength or the modulus of rupture is decreasing with 
the beam depth, but not with the beam thickness. The decrease was approximately 10% by 
doubling the beam depth. The fracture toughness determined according to LEFM displayed 
a significant size effect, as the increase was approximately 50~ by doubling the beam depth. 
Also here there was no significant size effect by increasing the beam thickness. These results 
are parallel to other similar investigations. 

Two different methods were used in connection with the fictitious crack model. The RILEM 
method and a novel method were the fracture parameters determined through curve fitting. 
The fracture energy calculated by using the RILEM method displayed a size effect when the 
beam depth was increased by 15% No size effect was observed by increasing the beam 
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thickness. The data titting was done by minimizing a tunetion which describes the difference 
between the results from a numerical method and the experimental results. Three such 
lunctions, objective functions, were testedand the third one was the peak load and the tail 
were weighted gave the best results. The method is disturbed by the faet that the objective 
lunetion has a very deep flat valley with many local minima, which malres it very difficult 
to find the true minimum of the lunetion even when powerful optimization techniques are 
applied. This problem malres it also very time consuming to determine the fracture 
parameters. 

The materlal parameters determined using the data titting technique showed the size effects 
as the other related parameters. The normalized kink coordinates on the softening relation, 
which only can be used by using this technique were decreasing with the beam size and were 
in general smaller than those of normal strength concrete indicating that normal strengtil 
concrete is more brittie than high strength concrete. 

For all the parameters it was observed that the thickness of the beam was not a goveming 
factor and instead extra experiments were performed in order to check for edge effects due 
to the mould. Dying experiments were performed on standard specimens and on specimens 
saw cut out. No difference in the cracking profiles was observed. 
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6 CONCLUSIONS. 

This chaptcr has three sections. The first contains a summary of the different chaptcrs of the 
thesis. The second section gives an overall conclusion of the thesis. This conclusion is based 
on the evaluation made at the end of chapters 2-5. Finally future research needs and 
applications are presented and discussed. 

6.1 Summary of Thesis. 

Chapter 1 
Chaptcr l contains tlle introduetion to this thesis. The scope of the thesis is partly to 
investigate different numerical and analytical models based on fracture mechanical ideas, 
which are able to predict size effects, and parti y to perform an experimental investigation on 
high-strengtil concrete. 

Chapter 2 
A description of the factors which influence the strengtil and cracking of concrete and high 
strength concret.e is made. Then basic linear fracture mechanics is outlined followed by a 
description and evaluation of the models used to describe concrete fracture in tension. The 
chapter ends with a description of the different types of size effects. Three examples which 
discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. 
Finally some brittleness numbers are defined. 

Chgpter 3 
In chapter 3 the most well-known numerical metllods which use the fictitious crack to 
describe fracture in concrete are presented. Two of tlle metllods are cernbined into a power 
method which is stable for all brittleness numbers and which is able of calculating the entire 
load-dispiacement curve even for very duetile beams. This method is used extensively in the 
rest of tlle thesis. 

ChiPter 4 
Since analytical metllods are very time consuming different analytical models have been 
developed. Three methods for plain concrete are presented, where one of the methods is 
developed by the autllor. The metllod is based on three different fracture models. Also two 
models applicable for lightly reinforced concrete are presented. 
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An experimental investigation is performed in a elosed-loop testing setup where high-strength 
concrete in three-point bending is tcsted. In order to determine the materlal parameters in the 
fictitious crack model an estimation procedure based on the solving of an optimization 
problem is developed. The materlal parameters and the load-dispiacement curves obtained 
by using this procedure are presented. Different size effects are observed, anditis concluded 
that cdge effects play a dominant role. Dyeing experiments were performed on ordinary 
specimens and specimens which are saw-cut out. 

6.2 General Conclusions. 

One of the major problems solved in this thesis is the stabillty problem deseribed in chapter 
3. The direct sub-structure method is thereby complete, and is a strong tool, when analyzing 
structures of quasi brittie materials. The only limit of the method is now the number of nodes 
used in the midsection. When a fictitious crack develops, the normalized size of this zone is 
dependent on the brittieness of the structure. The more brittie the structure the smaller the 
fracture process zone, and consequently many nodes are necessary for describing this zone. 

The analytical methods deseribed in chapter 4 show very different results. The analytical 
method developed by the author, R. Brincker and S. Krenk, seems to be themost promising. 
This method is capable of predicting the size effect on the modulus of rupture. Purther more 
it is based on basic principles and the goveming equations are explicit and simple. These 
properties of the model make it a very powerful tool, which is applicable for the designing 
engineer. The method is also extended to reinforced concrete, where the results look very 
promising. 

The large experimental investigation on high-strength concrete seems to have been too small 
However, somegeneral results were obtained. It is observed that the decrease in the modulus 
of rupture with the increase of beam depth is of the same order as that of normal strengtil 
concrete. The fracture toughness is increasing with the beam depth, making LEFM 
inadequate for high-strength, even though high-strength is considered to be a brittie material. 
The data titting performed by finding the minimum of three different tunetion which 
describes the difference between a numerical and an experimental load dispiacement curve 
turned out to be very time consuming. If the constitutive parameters are wanted for high 
strength concret this method is then the only applicable. The method is, however, not 
recommendcd. 

6.3 Future Perspective. 

The foliowing items and problems are suggestions for future research in the field of fracture 
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• Developing analytical methods where the softening relation is bi-linear. 
• Perform experiments with high-strength where the beam depths and span are 

varying with more than a factor 5 
• Development of direct experimental techniques whereby the softening relation 

can be determined for ultra brittie materials. 
• Development of simple models, where the bulk dissipation is included. 
• Development of models, which describes the bonding between steel and 

concrete. 
• Development of stochastic methods, whereby the reliability and lifetime of 

cracked structures can be calculated. 



APPENDIX Al 
NOTATION. 

The foliowing symbols are used in this thesis: 
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Crack length. 
Effective crack length. 
Effective crack length. 
Fictitious crack length. 
Initial crack length. 
Distance between nodes. 
Brittleness number. 
Materlal geometry dependent parameter in the size ejfect law. 
Compliance, or greens function. 
Injluence coefficients. 
Crack tip opening displacement. 
Characteristic size of struerure (e. g. beam depth). 
Length of vinual cut in structure. 
Modulus of elasticity. 
Dissipated energy. 
Force. 
Peak load. 
Materlal function. 
Geometry function. 
The energy reJease rate. 
The crack drlving force. 
The fracture energy. 
Moment of lnertia. 
The stress intensity factor. 
The critical stress intensity factor. 
Length of structure. 
Elongation of structure. 
Linear elastic fracture mechanics. 
Resistance towards crack growth. 
Position of reinforcement. 
Nodal force. 
Uldmate nodal force. 
Thickness of structure. 
Dispiacement of vinual suiface. 
Crack opening displacement. 
Crltical crack opening displacement. 
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x,y - CaTtesian coordi1lllles 
a - Nonnalized crack length. 
af - Nonnalized jictitious crack length. 
ar - Nonnalized position of reitiforcement. 

a" - Nonnalized position of neutral axis. 
13 - Brittleness number. 
'Y - Crackpath. 
~ - Displacement. 
~1M% - Dispiacement at peak load. 
E = Strain. 
E e - Linear elastic strain. 
E,. - Nonlinear part of strain. 
Epeølc - Strain at peak load. 
E ru - Residual strain 
f/> f) - Energy density. 
n - Total potential energy of the considered system. 
De = The elastic energy conrent in structure. 
DF - The potential of external forces. 
Dg = The lånetic energy. 
DC - The fracture potential. 

" - Position of neutral axis. 
(l - Stress, o r arbitrary external load. 
(lij - Stress tensor. 
u m - Modulus of rupture. 
(III - Tensile strength. 
u, - Yield strength. 
Ø,r - Polar coordi1Ulles. 
j 
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LOAD DISPLACEMENT CURVES. 

On the foliowing pages the load dispiacement curves are plotted. The beams are plotted 
according to beam size. 
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Figure A2.1: Load dispiacement curvcs for bcam series A. 
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Pigure A2.4: Load dispiacement curves for beam series D. 
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Appendix A2. Load Dispiacement Curves 
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APPENDIX A3 
FRACTURE PARAMETERS. 

On the foliowing pages the fracture parameters determined in chapter 5 are presented. 

In table A3.1 and A3.2 the modulus of rupture, The fracture toughness, the peak load and 
the peak dispiacements are shown. 

In Table A3.3 and A3.4 the Fracture energy, the remaining fracture energy and the fracture 
energy obtained through optimization are presented. 

In tabte A3.5 and A3.6 the parameters determined through the optimization technique 
deseribed in chapter 5 are shown. 
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Appendix A3. Frøeture Parameters 

Specimcn Mod. of ru:f."'rc Kc Pcak load Pcalc dispiacement 
[N/mm] [N/mm3n1 [N] [p m] 

taDJe J\~ .. l ~som 
Al 

trea rrag_lfore para meters IOr oeam 
1.14 ype J\!.6· 284 

A2 7.18 0.87 663 294 

A3 ~ ~ ~ ~ 

A4 7.43 0.94 684 318 

A5 6.68 0.78 617 271 

Mean± S.dev 6.94 ± 0.43 0.93 ± 0.15 627 ± 62.5 295 ± 33.2 

Cocff.of Var. 0.062 0.16 0.10 0.11 

Bl ~ ~ ~ ~ 

82 6.51 0.917 1198 262 

B3 ~ ~ ~ ~ 

B4 8.21 1.13 1.515 314 

B .S 8.94 1.18 1710 311 

Mean± S.dev 7.89 ± 1.25 1.08 ± 0.14 1474 ± 258 296 ± 29.2 

Cocff.of Var. 0.16 0.13 0.18 0.09 

Cl 6.43 1.39 2160 135 

C2 7.97 1..57 2843 161 

C3 8.25 1.69 2831 154 

C4 8.54 1.69 3032 162 

es 8.45 1.67 3002 115 

Mean± S.Dev 7.93 ± 0.87 1.60 ± 0.13 2773 ± 355 157 ± 14.6 

Coeff.of Var. 0.11 0.08 0.13 0.09 

Dl 6.58 1.52 4502 124 

D2 7.97 1.65 5601 152 

Dl 6.54 1.36 4593 126 

D4 8 . .53 1.62 6117 167 

DS 8.74 1.66 6308 162 

Mean± S.dev 7.67 ± 1.05 1.56 ± 0.13 .5424 ± 842 146 ± 20.1 

Coeff.ofVar. 0.14 0.08 0.16 0.14 
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J.P. Ulfkjær. Fraelure mecbanics of concrete 

Spcclmcn Mod. o f ru~rc Kc Peakload Peak diapiacement 
[N/mm [N/mm3n1 [N1 (p m] 

El 6.9 1.52 9259 133 

E2 6.87 1.37 9543 131 

E3 1.56 1.41 10748 165 

E4 8.66 1.68 12125 178 

ES 8.44 1.53 12034 165 

Mean± S,dev 7.69 ± 0.84 1.50 ± 0.12 10741 ± 1343 154 ± 21.1 

Cocff.of Var. 0.11 0.081 0.13 0.14 

F l 6.37 1.92 8865 90.8 

F2 5.85 1.79 7966 ~ 

F3 6.13 1.78 8552 69.4 

F4 6.62 2.03 9155 75.6 

F5 6.73 2.07 9174 73.7 

Mean± S.dev 6.34 ± 0.36 1.92 ± 0.13 8742 ± 503 77.4 ± 9.32 

Cocff.ofVar. 0.051 0.069 0.051 0.120 

G1 ~ ~ ~ ~ 

G2 ~ ~ ~ ~ 

G3 6.65 1.96 18468 15.5 

G4 7.82 2.24 22324 80.3 

GS 7.17 2.02 20515 63.6 

Mean± S.Dcv 7.21 ± 0.59 2.07 ± 0.15 20436 ± 1929 73.1 ± 8.60 

Cocff.of Var. 0.081 0.071 0.094 0.12 

Hl ~ ~ ~ ~ 

H2 6.33 2.31 30803 69.4 

H3 6.98 2.33 35946 82.3 

H4 7.36 2.75 35383 81.5 

HS 6.9 2.47 33964 78.4 

Mean± S.dev 6.89 ± 0.42 2.47 ± 0.20 34024 ± 2304 77.9 ± 5.91 

Cocff.of Var. 0.062 0.12 0.068 0.076 

Table A3.2 Estimated fracture parameters for beam type E-H. 
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Appendix A3. Fracture Parameters 

Spccimcn o IIIl p ... , G'p 

Al 115 31.2 105 

A2 140.0 41.1 126.2 

A3 ~ ~ ~ 

A4 93.7 27.7 85.0 

AS 40.5 0.0 87.0 

Meani/S.dev 98.8 ± 42.3 ~ 100.8 ± 19.2 

Coeff.of Var. 0 .42 ~ 0.19 

Bl ~ ~ ~ 

B2 122.2 34.0 117.5 

B3 ~ ~ ~ 

B4 123.5 36.6 120.0 

BS 114.8 25.4 117.0 

Mean//S.dev 120.2 ± 4.69 ~ 118 ± 1.6 

Coeff.of Var. 0.04 ~ 0.01 

Cl 140.7 24.1 132.1 

C2 109.6 34.0 111.0 

C3 123.0 31.2 103.6 

C4 114.0 32.9 102.0 

es 184.0 17.8 188.0 

MeaniS.Dev 134.3 ± 30.3 ~ 127.3 ± 36.0 

Coeff.of Var. 0.23 " 0.28 

Dl 145.2 56.0 136 

D2 140.5 30.7 118 

D3 93.0 13.5 81.0 

D4 130 29.9 124.2 

DS 135.4 17.3 126 

Meani/S.dev 128.8 ± 20.1 " 117.0 ± 21.2 

Coeff.of Var. 0.16 " 0.11 

Tabte A3.3 Fracture Energies for beam types A-D. 
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I.P. Ulflcjær. Fracture medumics of concrete 

Spccimcn al• 
El 119.4 

El 107 

E3 100.9 

E4 163.4 

ES 131 

Meani/S.dcv 124.3 ± 24.7 

Coeff.of Var. 0.20 

P l 151.1 

P2 113.8 

P3 161 

P4 120.8 

PS 130.5 

Meani/S.dcv 136.8 ± 21.6 

Coeff.ofVar. 0.16 

G1 " 02 " 
G3 138.7 

G4 153.6 

G5 125.1 

Mean/S.Dcv 139.1 ± 14.3 

Cocff.ofVar. 0.10 

Hl " 
H2 127.1 

H3 152.6 

H4 168.6 

HS 126.5 

Mcan/IS.dev 143.7 ± 20.6 

Cocff.of Var. 0.14 

Tabte A3.4 Fracture Energies for beam types E-H. 
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Al G 'p 

34.7 108 

15.6 99 

0.79 lOS 

30.1 159.4 

27.9 128 

" 119.9 ± 24.6 

Il 0.21 

33.1 159 

19.5 107.1 

34.4 154 

9.17 121.3 

53.3 115 

Il 131.3 ± 23.6 

Il 0.18 

" " 
" Il 

13.5 143 

9.62 154 

44.8 128.3 

" 141.8 ± 12.9 

" 0.09 

" " 
15.1 123.2 

19.2 142 

26.6 159.8 

21.8 124.6 

" 137.4 ± 17.2 

" 0.13 



Appendix Al. Fractute Parameters 

Spccimcn ø. • w' 
~ 

z' y• Q 

Al 3.60 0.12 0.19 0.28 1.14 

A2 3.97 0.12 0.22 0.31 1.12 

A3 " " " " " 
A4 5.42 0.086 0.14 0.22 1.01 

AS " " ~ " " 
Mcan±S.dev 4.33 ± 0.96 0.11 ± 0.02 0.18 ± 0.04 0.27 ± 0.05 1.09 ± 0.07 

Cocff.ofVu. 0.22 0.18 0.22 0.17 0.06 

Bl " ~ " " " 
B2 3.31 0.15 0.20 0.26 1.20 

83 " " " " " B4 5.14 0.12 0.15 0.24 1.23 

BS 5.19 0.15 0.17 0.13 1.35 

Mcan±S.dev 4.55 ± 1.07 0.14 ± 0.02 0 .17 ± 0.03 0.21 ± 0.07 1.26 ± 0.08 

Cocff.of Var. 0.24 0.12 0.15 0.33 0.06 

Cl 4.15 0.14 0.18 0.29 1.26 

C2 6.14 0.19 0.12 0.07 1.18 

C3 6.91 0.10 0.14 0.16 1.32 

C4 7.87 0 .08 0.16 0.16 1.26 

es 5.53 0.18 0.18 0.19 1.26 

Mcan±S.Dcv 6.12 ± 1.41 0.14 ± 0.05 0.16 ± 0.03 0.17 ± 0.08 1.26 ± 0.05 

Cocff.ofVar. 0.23 0.35 0.17 0.45 0.04 

Dl 4 .12 0.16 0.18 0.23 1.31 

Dl 6 .47 0 .11 0.15 0.20 1.38 

D3 6.25 0.07 0.13 0.27 1.27 

D4 6.69 0.15 0.14 0.12 1.23 

DS 5.71 0.16 0.14 0.14 1.25 

Mcan±S.dev 5.86 ± 1.03 0.13 ± 0.04 0.15 ± 0.02 0.19 ± 0.06 1.29 ± 0.06 

Cocff.ofVu. 0.18 0 .30 0.13 0.32 o.os 

Table A3.5 Estimated fracture pararneters for beam type A-D. 
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J.P. Ultkjer. Fracture meclJanica of concrete 

Spccimcn fl ' 11 w ' c x' y' a 

El 5.11 0.09 0.19 0.30 1.15 

E1 6.15 0.11 0.11 0.10 1.13 

E3 6.63 0.09 0.16 0.19 1.13 

B4 6.61 0.18 0.11 0.15 1.19 

ES 6.80 0.18 0.11 0.10 1.11 
' 

Mean±S.dcv 6.26 ± 0.68 0.13 ± 0.05 0.14 ± 0.03 0.19 ± 0.07 1.10 ± 0.05 

Coeff.ofVu. 0.11 0.35 0.14 0.39 0.04 

P l 5.95 0.26 0.09 0.12 1.06 

P2 5.13 0.16 0.09 0.17 1.72 

P3 5.24 0.17 0.14 0.21 1.37 

P4 6.18 0.15 0.12 0.15 1.39 

PS 5.90 0.08 0.19 0.27 1.47 

Mean±S.dcv 5.1 ± 0.44 0.16 ± 0.06 0.13 ± 0.04 0.18 ± 0.06 1.40 :1: 0.24 

Cocff.ofVu. 0.08 0.39 0.33 0.32 0.17 

G l ~ ~ ~ ~ ~ 

G2 ~ ~ ~ ~ ~ 

G3 5.48 0.21 0.11 0.14 1.47 

G4 7.57 0.16 0.11 0.14 1.51 

GS 6.17 0.20 0.13 0.09 1.28 

Mcan±S.Dcv 6.41 ± 1.06 0.19 ± 0.026 0.12 ± 0.012 0.12 ± 0.03 1.42 ±0.12 

Cocff.ofVar. 0.17 0.14 0.10 0.13 0.09 

Hl ~ ~ ~ ~ ~ 

H2 5.38 0.18 0.12 0.14 1.49 

H3 5.11 0.14 0.15 0.08 1.34 

H4 5.15 0.28 0.11 0.09 1.43 

HS 6.31 0.17 0.12 0.11 1.32 

Mcan±S.dcv 5.64 ± 0.52 0.22 ± 0.05 0.13 ± 0.02 0.11 :1: 0.03 1.40 ± 0.08 

Cocff.of Var. 0.09 0.14 0.14 0.15 0.06 

Table A3.6 Estimated fracture parameters for beam type E-H. 
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APPENDIX A4 

OPTIMIZATION RESULTS. 

On the following pages the fitted load dispiacement curves are plotteet The experimental 
curve is the dashed curve and the solid curve is the fitted curve. 
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Figure A2.1: Fitted results for beam A-le. 
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Pigure A2.2: Pitted results for beam A-2a. 
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Appendix A4. Optimization Results. 
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Figure A2.3: Fitted results for bearn A-4a. 
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Figure A2.4: Fitted results for bearn A-Sa. 
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Figure A2.5: Fitted results for beam B-2a. 
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Figure A2.6: Fitted results for beam B-4a. 
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Appendix A4. Optimization Results. 
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Figure A2. 7: Fitted results for beam B-5a. 
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Pigure A2.8: Fitted results for beam C-le. 
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Figure A2.9: Fitted results for beam C-2. 
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Figure A2.10: Fitted results for beam C-3. 
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Appendix A4. Optimization Results. 
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Figure A2.11: Fitted results for beam C-4. 
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Figure A2.12: Fitted results for beam C-5. 
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Figure A2.13: Fitted results for beam D-l. 
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Figure A2.14: Fitted results for beam D-2. 
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Appendix A4. Optimization Results. 
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Figure A2.1S: Fitted results for beam D-3. 
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Figure A2.16: Fitted results for beam D-4. 
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Figure A2.17: Fitted results for beam D-5. 
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Figure A2.18: Fitted results for beam E-l. 
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Appendix A4. Optimization Results. 
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Figure A2.19: Fitted results for beam E-2. 
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Pigure A2.20: Pitted results for beam E-3. 
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Figure A2.21: Fitted results for beam E-4. 
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Figure A2.22: Fitted results for beam E-5. 
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Appendix A4. Optimization Results. 
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Figure A2.23: Fitted results for beam F-l. 

7000 

6000 

3000 

3SO 400 

... . ....... 
00~--~----~----~----~--~----~~--~--~ so 100 1SO 200 250 300 3SO 400 

Dispiacement [m E-6] 

Figure A2.24: Fitted results for beam F-2b. 
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Figure A2.25: Fitted results for beam F-3b. 
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Figure A2.26: Fitted results for beam F-4b. 
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Appendix A4. Optimization Results. 
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Figure A2.27: Fitted results for beam G-3a. 

4 
l.S xlO 

2 

~ 1.5 

! 
1 

g_4a 

100 300 400 500 
Displacernemt [m B-6] 

Figure A2.28: Fitted results for beam G4-a. 
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Figure A2.29: Fitted results for beam G-Sa . 
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Figure A2.30: Fitted results for beam H-2c. 
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Appendix A4. Optimization Results. 
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Figure A2.31: Fitted results for beam H-3c. 
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Figure A3.1: Fitted results for beam H-4c. 
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Figure A3.2: Fitted results for beam H-5c. 
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APPENDIX A5 
CRACKINO PROFILES. 

On the foliowing pages the measured cracking profiles deseribed in chapter 5 are shown. The 
specimens Sl-S4 are the standard specimens, and specimens Kl-K4 are the saw cut 
specimens. The profiles are meassured for both fracture surfaces, and are atmost identical. 

The dashed line indicates the position of the notch, and the solid line shows the dye edge, 
which is assumed to be near the real crack tip. 
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Figure AS . l: Dyeing profiles for the standard specimen type D. 

154 



100 

• ~. • Q • • • • . <l' . . -· - ·-· .....:........._· _._. . . . 

·. · .. 4 .. · . . . 4 •. 
• • • • • • • Q 

-~ • : • • 11 • : : • : : •• 

. . . . ~· ...... \) . . : 
• • •• .::1 

.4 .... ~.: . ri. 
• .d ... 

. . . • • <1 • 

~·· : :<l . <:\ . • 

. 4 .. '/\ . . . . . • : . .. • 
• • <.J • • A , 

• . • . . . • 'J . • 4 . . . • «L . • 
· ••• • • •• • ••• o.' • •• 4: 
,4 ' .: ~. ·.:'.<:J .' · .. ... 

. . . . 4 . . 4 . • . <l • 

'<l ... . . . : . . . . 
. . . . ~ .... <J . . . <l . . . . . . . . . . . . 

Appendix AS. Craddoa Profiles 

• ... ~ •• ~ •. 4 . • •• : 

. . . . . ... ·.· ·.~. ·. 

. .o . . . . . . .. . 
•••. A • •• •• 6· 

'<J · ... ·. ~ .. ·. ·.~_·:.· 

~ · · · ~ · .. · ~.. K 1 

. . . . . . 
. ·.., .. · .. ·. . . <l >. 

'V • <1 • • . . . . . . ... 
Å 

0 
° A ' ' , ' ~ 4 

"" Il.& - • • 

.. ... .. -6. : . ·.Q . . •• 

• • • • ' • A • • 

. ·. - ~· . . ~·- .. ~ .. . 

..... . .. · .. ·~· 
() • q • • • • • • • 

·· 4· . · .. <l ... . o·. . . 4 . 
•• l p. • • • • • 

K2 

K3 

K4 

F'~gure AS.2; Dyeing profiles for tbe saw cut specimen, of size D. 

155 



APPENDIX A6 
RESUME IN DANISH. 

Titlen på afhandlingen er 

Brudmekanik for beton 

Som titlen beskriver omhandler projektet brudmekanik for beton. Projektet er en del af et 
større forskningsprogram under Statens Teknisk Naturvidenskabelige Forskningsråd med 
titlen: 

"Højkvalitetsbetoner i 90'eme" 

Brudmekanik er en forholdsvis ny disciplin og de udviklede teorier har fortrinsvis været rettet 
mod stål hvor en lineær teori ofte giver gode resultater. For beton har lineær brudmekanik 
generelt vist sig at give dårlige resultater og i stedet er der udviklet en række nye modeller. 
Den mest kendte af disse er den fiktive revnes model udviklet af Arne Hillerborg. Denne 
model har gjort fagområdet bredt tilgængeligt og indenfor de seneste år har stadig flere 
fundet interesse for fagområdet, der er inde i en rivende udvikling. Brudmekanik er en mere 
nøjagtig metode at beskrive konstruktioner på end de mere almindelige anvendte teknikker 
(elasticitet teori og plasticitetsteori), og kan derfor beskrive visse fænomener som de 
førnævnte teorier ikke kan forklare. I Danmark er der dog stadig kun il, der har beskæftiget 
sig indgående med emnet (H.H. Bache, H. Stang og N.A. Harder). Det var på denne 
baggrund projektet blev startet. 

I denne afhandling er der især fokuseret på fænomenet 'størrelseseffekter', hvor betegnelsen 
størrelseseffekter er opfattet bredt (størrelseseffekter på vilkårlige materiale parametre). 

I kapitel 2 af afhandlingen gives en grundig beskrivelse af brudprocessen i beton og 
højstyrkebeton gående fra mikro- til makroniveau. Derefter følger en beskrivelse af de mest 
anvendte brudmodeller for beton. Kapitlet afsluttes med forskellige eksempler, der ved hjælp 
af lineær elastisk brudmekanik illustrerer begrebet størrelseseffekter. 

Efter beskrivelsen af disse modeller er der valgt at fokusere på den fiktive revnes model. Der 
er desuden foretaget den afgrænsning, at der udelukkende betragtes bjælker udsat for tre 
punkts bøjning. 

I kapitel 3 beskrives det hvorledes den fiktive revnes model kan anvendes i tilknytning til 
numeriske metoder. De to mest kendte metoder udviklet afP.E. Petersson og A. Carpinteri 
præsenteres. En ny metode baseret på randelementmetoden præsenteres. Der er i forbindelse 
med projektet lagt et stort arbejde i at udvikle og implementere denne metode. 
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Appendix I. Notation 

Da numeriske modeller ikke altid er særlig hensigtsmæssige er der udviklet en analytisk 
metode hvor den fiktive revnes model er anvendt således at den fuldstændige arbejdskurve 
kan beregnes. Modellen beskrives i detaljer og sammenlignes med to modeller, der er 
udviklet af Y.W. Mai, baseret på revnebåndsmodellen, samt en metode af J. Llorca, der er 
baseret på den fiktive revnes model. Modellen er endvidere udvidet til at gælde for armeret 
beton. 

I forbindelse med projektet er der udført forsøg med omkring 50 bjælker af uarmeret og 
svagt armeret beton i en nyudviklet servostyret revneåbningkontrolleret forsøgsopstilling. Der 
er genemført forsøg til belysning af størrelseseffekter og forsøg med henblik Ø at bestemme 
revne profiler i udsavede prøveemner. Der er endvidere forsøgt at bestemme materialepara­
metre i den fiktive revnes model ved at tilpasse arbejdskurver bestemt ved den numeriske 
metode med arbejdskurver målt ved forsøg. Dette er gjort ved anvendelse af et generelt ikke­
lineært optimerings program. Forsøg og forsøgsresultater er beskrevet i kapitelS. 

Rapporten afsluttes med en konklusion der opsummerer de opnåede resultater, samt giver 
forslag til den videre forskning indenfor området. 
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