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Summary 

Rheumatoid arthritis (RA) and osteoarthritis (OA) are two chronic disease entities with variable disease 

course that affect the joints of millions of people around the world, and can lead to severe disability with 

major socioeconomic impact. In general the joint damage in both RA and OA is monitored by x-ray, 

even though this modality tends to show only late disease manifestations within the joint. Thus there is a 

need for more sensitive imaging modalities for detecting early disease manifestations, which with proper 

systemic and/or intra-articular (IA) treatment potentially can halt the disease progression, and prevent or 

retard future disability. Magnetic resonance imaging (MRI) is an established and sensitive tool that 

offers an unparalleled discrimination among articular soft tissues by direct visualization of all 

components of the joint simultaneously. 

The aim of study I and II was primarily to evaluate the effect of two intra-articular drug treatments 

injected US guided into the wrist joint of patient with RA (study I) and secondly to examine the 

distribution pattern of such an injection (study II), which we suspected could be a possible explanation 

of treatment failure in some patients. To evaluate the treatment effect in study I, we used state of the art 

low-field MRI before and 4 weeks after IA treatment, and used the recommended RAMRIS scoring 

system by the OMERACT group to monitor the treatment changes. To track the distribution pattern 

within the wrist in study II, we used low-field MRI before and immediately after the US guided 

injection.  

In short, most of the patients in study I had a significant clinical effect of a single IA injection into the 

wrist in both treatment groups, but neither low-field MRI nor US parameters revealed a group effect 4 

weeks after treatment with either methylprednisolone or etanercept. In fact we present evidence of a 

significant erosive progression among the patients. This result should however be regarded with 

reservation due to the calculated intra-observer variation and calculated smallest detectable difference 

(SDD) of the erosion score, which could explain all but one of the observed patients with erosive 

progression. In this patient we present imaging evidence of a likely erosive progression in the hamate 

bone, which is, as far as we know, the first time this is presented within a time span of 4 weeks. 
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Nevertheless, one IA injection into the wrist joint does not seem to have a sufficient effect on the overall 

arthritis activity in the studied patient group and should not be used as the only treatment measure 

against its flares. Based on our results it may be speculated whether a relevant effect of the IA treatment 

requires more than one injection; in such cases experiences in larger populations remain to be obtained 

with glucocorticoid, etanercept and other anti-TNF-α agents.  

The diversity of distribution patterns within the wrist joint among the RA patients could be an 

explanation of the variation in treatment responses seen after IA injections, which is supported by the 

fact that the distribution of contrast on MRI in study II showed a random and patient specific pattern. 

The degree of distribution increased with the synovitis score, while no association was found with the 

erosion- and bonemarrow oedema scores. Thus, injecting patients with more severe synovitis might be 

associated with a more complete diffusion into the wrist, possibly increasing the efficacy of the 

injection. The results also indicate that injection into the proximal central part of the wrist cannot be 

regarded as sufficient to treat the whole wrist joint in most patients. Thus based on our results we 

suggest that patients who do not respond clinically to IA injections in the wrist joint, could have their 

distribution pattern examined to clarify whether an effect might be obtained by additional injections 

elsewhere in the joint if the distribution of the injected drug is blocked by either anatomical variation or 

expanding pannus.  

In any case we suggest that imaging should monitor the IA injections effect on the inflammation, using 

both US-Doppler and possibly dynamic MRI on short-term and conventional MRI on long-term follow-

up to substantiate a true regression in disease activity and erosive arrest. This is as also recommended in 

a recently published study showing imaging documentation of further erosive progression in patients 

with clinical remission, leading to the conclusion that “imaging assessment may be necessary for the 

accurate evaluation of disease status and, in particular, for the definition of true remission”.  

In study III the aim was to test whether an i.v or an IA “delayed Gadolinium enhanced MRI of cartilage” 

(dGEMRIC) method could increase the SNR and CNR in the thin cartilage of the hip joint using a 

conventional 3D T1-w cartilage sensitive gradient echo sequence on a clinical 1.5T scanner. We found 

that both the i.v and IA dGEMRIC method significantly increased the SNR and CNR in the hip joint 
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cartilage as well as the visual delineation compared to non-enhanced images. Among the two dGEMRIC 

techniques the IA administration of Gd-DTPA gave an even better delineation of cartilage and 

significantly better SNR and CNR than the i.v. administration. In conclusion, as ultrasound guided IA 

therapies in the hip joint are increasingly used, our results indicate that a more exact status of the joint 

cartilage may easily be obtained in the same procedure by adding Gd-DTPA to the IA injection with 

subsequent delayed MRI. This could provide a tool to evaluate more subtle cartilage damage and may 

potentially be useful for a more precise monitoring of cartilage volume changes and effects of newer 

therapies in OA. 

 
Danish Summary 

Reumatoid artrit (RA) og slidgigt/osteoartrit (OA) er to meget almindelige led sygdomme i 

befolkningen, der præsenterer sig med uforudsigelige sygdomsforløb som oftest er smertefulde, og som 

kan medføre svær invaliditet med store sociale og økonomiske konsekvenser for personen og samfundet. 

Til at vurdere graden af ledskade og monitorere sygdomsudviklingen anbefaler de store internationale 

medicinske selskaber at bruge røntgenbilleder. Ulempen ved røntgenbilleder er at de kun viser de sene 

sygdomsmanifestationer i form af led- og knogleforandringer, fordi røntgenbilleder ikke kan visualisere 

bløddelsforandringerne. Derfor er der brug for en mere følsom metode til at vurdere de tidlige 

sygdomstegn i form a bløddelsforandringerne i leddet, hvormed man med målrettet systemisk eller intra-

artikulær terapi kan bremse sygdomsudviklingen på et tidligt stadie og derved forhåbentlig forhindre 

fremtidig leddestruktion og invaliditet. Magnetisk resonans billeddannelse (MRI) opfylder kravene til et 

sådant billeddannende værktøj, idet MRI har etableret sig som et følsomt værktøj, der på overlegen vis 

kan visualisere alle bløddele i leddet på samme tid.   

Formålet med studie I var at vurdere og måle og visualisere den potentielle effekt af en ultralydsvejledt 

injektion af to forskellige betændelsesdæmpende behandlinger i håndleddet hos RA patienter. 

Behandlingen blev injiceret ultralydsvejledt for at sikre en korrekt placering. Til at vurdere 

behandlingseffekten i studie I undersøgte vi patienterne med en ”state of the art” lavfelt MR-skanner 

umiddelbart før den ultralydsvejledte injektion, samt 4 uger efter og anvendte det internationalt 

anbefalede RAMRIS score system udviklet af OMERACT gruppen.. 
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I studie II undersøgte vi fordelingen af en sådan ultralydsvejledt injektion i håndleddet, idet vi mistænkte 

at fordeling i de forskellige områder i håndleddet måske kunne forklare behandlingssvigt hos nogle 

patienter. Igen brugte vi lavfelt MR før og umiddelbart efter injektionen til at visualisere fordelingen af 

injektionen.  

Vores resultater viste at patienterne i studie I oplevede en betydelig klinisk bedring af deres  

ledsymptomer efter 4 uger uanset behandling, hvorimod hverken lavfelt MR eller ultralyd-Doppler viste 

en forbedring af de billeddiagnostiske parametre. Faktisk fandt vi at nogle patienter fik en forværring af 

deres leddestruktions (erosion) score. Dette resultat skal dog tages med forbehold idet den statistiske 

måleusikkerhed ved det anvendte scoresystem kunne forklare alle på nær én patients forværrring. Hos 

denne patient har vi MR- billeddokumentation for en sandsynlig forværret leddestruktion  i en 

håndledsknogle, hvilket er første gang dette er synliggjort efter bare 4 uger ved brug af lavfelt MR. 

Uanset om den målbare effekt af forværring kan forklares af statistisk måleusikkerhed, er faktum at 

patienterne, trods klinisk bedring, ikke viste tegn på billediagnostisk bedring, hvorved vi må konkludere 

at én injektion i håndleddet hos disse patienter ikke har været tilstrækkelig til at have en effekt på de 

inflammatoriske parametre såsom synovitis, knoglemarvsødem, hvorfor vi må betragte patienterne som 

utilstrækkeligt behandlet. Vi kan på baggrund af vore resultater kun gisne om at mere end én injektion i 

samme håndled er nødvendig for at have en målbar effekt på betændelsesparametrene, hvilket et større 

behandlingsstudie med flere patienter formodentlig kan besvare.  

I studie II forsøgte vi at besvare hvorledes en ultralydsvejledt injektion i håndleddet fordeler sig, når man 

benytter et standardiseret injektionssted som anbefalet i litteraturen. Vores resultater viste at der er stor 

forskel på kommunikationen mellem de mange små led der udgør håndleddet, idet vi observerede at 

fordelingen var tilfældig og uafhængig af alder og varigheden af RA. Fordelingen var korreleret til 

graden af synovitisscoren på MR, men korrelerede ikke med  knoglemarvsødem- eller erosionsscore, 

hvilket vi tolker som at patienter med svær grad af synovitis måske har en større fordelingsgrad af 

behandlingen, og derfor muligvis også en bedre effekt, hvilket et studie med flere patienter og 

behandlings monitorering, formentlig kan afklare. Vores resultateter angiver også at man hos de fleste af 

vores patienter ikke kan betragte det anbefalede standardinjektionssted som tilstrækkeligt til at opnå en 
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fordeling af behandlingen til hele håndleddet. Baseret på vores erfaringer fra studie I og studie II 

anbefaler vi at undersøge patientens håndledsfordeling hvis de ikke umiddelbart responderer på en 

ultralydsvejledt injektion, for at klarlægge om en mulig forklaring på den manglende effekt er at 

fordelingen i håndleddet er begrænset af enten en anatomisk variation eller ekspanderende 

betændelsesvæv (pannus). Disse patienter kan måske have effekt af flere injektioner andre steder i 

leddet. Endelig anbefaler vi at overveje avanceret billeddiagnostik til at monitorere effekten af 

injektioner i håndleddet med f.eks ultralyds-Doppler og dynamisk MR til korttidsopfølgningen og 

standard MR til langtidsopfølgning, for at synliggøre en ægte regression af sygdomsaktiviteten og 

knogledestruktionen. Denne konklusion er i tråd med et nyligt publiceret arbejde der demonstrerede 

billeddiagnostisk forværring af knogledestruktionen efter 1 år hos RA patienter, der klinisk var 

kategoriserede som værende uden sygdomsaktivitet. Forfatterne konkluderede således at “imaging 

assessment may be necessary for the accurate evaluation of disease status and, in particular, for the 

definition of true remission”(1).  

I studie III var formålet at teste om to forskellige dGEMRIC metoder enten en i.v- eller en  

ultralydsvejledt IA metode, kunne øge signal-støj ratioen (SNR) og kontrast-støj ratioen (CNR) i den 

tynde hofteledsbrusk hos patienter med tidlige slidgigtsymptomer. Vi brugte en konventionel 3D-

gradient ekko brusksekvens på en klinisk 1.5T MR skanner. Vi fandt at begge metoder øgede SNR og 

CNR i hofteledsbrusken sammenlignet med den ikke kontrastforstærkede baselineundersøgelse. Af de to 

dGEMRIC metoder gav IA- metoden den bedste afgrænsning af brusken samt den højeste SNR og CNR 

sammenlignet med i.v- metoden. Som konklusion kan dGEMRIC metoden anvendes klinisk til at 

forbedre signal- og kontrastforholdene i hofteledsbrusken, og i de tilfælde hvor det er muligt anbefaler vi 

IA- metoden, hvilket sandsynligvis vil være mulig i nær fremtid, da ultralydsvejledte IA- behandlinger i 

hoften benyttes i stigende grad. Ved at benytte ovenstående kliniske dGEMRIC metoder til forbedret 

bruskfremstilling i en MR skanner, har vi et værktøj der muligvis kan forbedre diagnostikken af mindre 

brusklæsioner samt  formentlig kan bruges til bedre at afgrænse hofteledsbrusken hvilket muliggør en 

forbedring af bruskvolumen målinger der i stigende grad anvendes  til at monitorere effekten af nye 

bruskbeskyttende behandlinger ved slidgigt. 
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Introduction 

Rheumatoid arthritis (RA) and Osteoarthritis (OA) are two chronic disease entities with variable disease 

course that affect the joints of millions of people around the world, and can lead to severe disability with 

major socioeconomic impact. In general the joint damage in both RA and OA is monitored by x-ray, 

even though this modality tends to show only the late disease manifestations within the joint such as 

reduced joint space, erosions, ankylosis and subluxation (2). In RA x-ray erosions may develop rapidly 

as erosions are seen in 10-26% of patients within 3 month of disease onset and is present in 75% of 

patients within 2 years(3). In OA cartilage repair is poor, and as joint space narrowing is an indirect 

measure of cartilage degradation on x-ray, this modality is insensitive and is not ideal for early disease 

recognition. Thus there is a need for more sensitive imaging modalities for detecting the early soft tissue 

disease manifestations, which with proper systemic and/or intra-articular (IA) treatment, potentially can 

halt the disease progression and prevent or retard future disability.    

With the introduction of magnetic resonance imaging (MRI) in clinical practice during the 1990’s, MRI 

has been extensively used to investigate, diagnose, follow and monitor the evolution as well as the 

treatment effects in both RA and OA. Compared to x-ray, MRI offers an unparalleled discrimination 

among articular soft tissues by direct visualization of all components of the joint simultaneously. Over 

the last decade MRI has contributed to a better understanding of both RA and OA, and is today 

considered an important and invaluable tool in both research protocols as well as in clinical management 

of both diseases.  

When I started the studies of this thesis the following was known: 

High-field MRI of the small joints of the hands and feet was a safe, sensitive and accurate method for 

detection of synovitis and bone erosions in joints compared to the classical x-ray examination in patients 

with RA(4-6). In fact,  MRI showed signs of bone erosion a median of 2 years before it appeared on x-

rays(7). MRI also provided valuable information regarding bone marrow oedema in bone near the joint, 

and bone marrow oedema could be used as a prognostic marker for disease progression and future bone 

erosions in the hand and feet(8;9). In addition it was shown in a previous study at the Parker Institute, 

that both low (<0.5T) and high-field (>0.5T) MRI could outline bone erosion, joint synovitis, joint 
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effusion and bone marrow oedema (10). The image quality seemed to be comparable, but cost and 

patient acceptance indicated that low-field MRI might replace high-field MRI for clinical routine 

examinations(10-12).  

In OA of the knee, bone marrow oedema had also shown to be a predictor of progress(13), and compared 

to x-rays, MRI allowed the knee joint to be evaluated as a whole(14) and could be useful in imaging 

cartilage abnormalities. Cartilage thickness was considered an important parameter for the evaluation 

joint damage and high-field MRI was expected to be the best method for accurate cartilage 

measurements, however, MRI still had limitations because of insufficient signal to noise ratio (SNR) and 

problems regarding quantification of cartilage volume (15), especially in joints with thin cartilage such 

as the hip joint (16;17). When we started the studies, research had also indicated that “delayed 

Gadolinium enhanced MRI of cartilage” (dGEMRIC) approximately two hours following intra-venous (i 

.v) Gadolinium and subsequent T1-mapping could image the early and subtle molecular changes of the 

glycoseamineglycan content in the cartilage on high-field 1.5 T MRI scanners(18-20). The clinical 

impact of this method has been debated in several papers but further investigations regarding clinical 

application as well as optimal magnetic field strength was needed(18;19;21-23). In addition, no group 

had published the use of the dGEMRIC technique to increase the signal to noise (SNR) and contrast to 

noise (CNR) in the cartilage of the hip joint by use of a clinical T1-w 3D cartilage sensitive sequence, 

nor was it known whether an IA approach gave superior cartilage visualization compared to the standard 

i.v method.  

In conclusion the focus of this thesis was to use MRI for monitoring of IA injections. Thus we used low-

field MRI to monitor the treatment effect and the distribution pattern of IA- injected drug in the wrist 

joint of patients with RA, and finally we used high-field MRI to test a novel dGEMRIC approach to 

increase the SNR and CNR of the hip joint cartilage.  

 

This thesis was based on the following hypotheses and aims: 
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Hypotheses 

• Low-field MRI can visualize synovitis, bone marrow oedema and erosive destruction in the wrist 

joint and demonstrate a regression of disease activity 1 month after IA therapy in patients with 

RA. 

• Injecting drugs ultrasound- guided into the proximal part of the wrist joint of patients with 

persistent RA using one standard injection site provides an even distribution of the drug to all the 

joint compartments.  

• IA Gadolinium will improve the clinical evaluation and possible quantification of cartilage using 

the dGEMRIC technique in patients with hip OA. 

Aim 

The aim of this study was to: 

1. Use low-field MRI to evaluate and score the synovial changes, bone marrow oedema and bone 

erosions according to the OMERACT RAMRIS criteria in the wrist joint of patients with RA 

before and 4 weeks after IA therapy. 

2. Use low-field MRI in a double-blinded study to monitor the treatment effect 4 weeks after either 

IA glucocorticoid or IA etanercept injected into the wrist joint of patients with RA.  

3. Use low-field MRI to investigate the compartmental and spatial distribution pattern after injection 

of an ultrasound guided IA drug solution in the wrist joint of patients with persistent RA.  

4. Apply a new dGEMRIC method for increasing the SNR and CNR in cartilage imaging of the hip 

joint in OA patients 

5. Compare two dGEMRIC methods for improving clinical cartilage imaging of the hip joint using 

either i.v (indirect) or IA (direct) administration of Gadolinium (Gd-DTPA) contrast. 

 
Ethical considerations 

MRI is without ionising radiation and repeated examinations of joints with either inflammatory or 

degenerative diseases is therefore safe. However, some safety considerations are to be taken as 

mentioned in the MRI section. Placebo treatment was not used in the treatment study I, because patients 
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with active RA disease receiving placebo over even as short a period as 6 month may develop 

irreversible damage to their joints as seen in previous studies (24;25). Approval from the ethitical 

committee was granted to the randomized treatment studies I and III. We did not seek approval from the 

local ethical committee in study II due to the fact that this was a pilot study. We found no ethical conflict 

in study II since a clinical indication of an IA injection in the wrist joint was present in all cases, and the 

use of IA Gadolinium is a recommended technique for joint arthrography. In all studies the patient 

received full information about the procedures and we had a written agreement of participation. The 

patients were also informed that they could withdraw from the studies at any time.  

 

Background 

MRI in general: 

It is beyond the scope of this thesis to describe the basic principles of the MRI technique, as this has 

been described in more than 100 textbooks and has been discussed in more than 10 academic theses 

from Denmark. In the following it is assumed that the basic principles of MRI theory are known, as I 

will discuss the aspects of pulse sequence choice in joint imaging. 

 

Generally 3 types of sequences are used in clinical musculoskeletal imaging, being spin echo (SE), 

gradient echo (GRE) and inversion recovery.  

 

Spin Echo(SE) sequences 

The spin-echo sequences are the oldest type of sequence and properly still the most used in MR imaging 

of the joints(26). In SE sequences, a 90° pulse flips the net magnetization vector into the transverse 

plane(27). As the spinning nuclei go through T1, T2, and T2* relaxation, the transverse magnetization is 

gradually dephased. A 180° pulse is applied at a time equal to one-half of TE to rephase the spinning 

nuclei. When the nuclei are in phase coherence, an echo is observed and read. Sequences that have a 

relative short TR and relative short TE are used to obtain T1 weighting (T1-w) in the images. Those with 

a long TR and short TE result in proton-density weighting and when both the TR and the TE is long, T2 
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weighting (T2-w) is achieved(27).  In general T1-w images best depict the anatomy due to high signal to 

noise, and, if Gadolinium contrast is used, they also may show enhancement of the pathologic entities by 

reducing the T1 value and the relaxation time. However, T2-w images or the STIR (see below) provide 

the best depiction of disease, because most tissues  involved in a pathologic process have a higher water 

content than normal, and the fluid causes the affected areas to appear bright on T2-weighted and STIR 

images (27;28). With the introduction of MRI, SE sequences were time-consuming and therefore not 

used frequently. However, advances in MR imaging- and computer technology enabled a reduction in 

acquisition time with the use of fast or turbo SE that uses several echoes to make the image within the 

same TR. Thus image time is reduced by a factor equal to the number of echoes used, which makes this 

sequence type more suitable in clinical practice (27). 

 

Short tau inversion recovery (STIR) sequences 

In STIR sequences, an inversion-recovery pulse is used to null the signal from fat. The inversion 

recovery sequence is an SE sequence in which a 180° preparatory pulse is applied to flip the net 

magnetization vector 180°, in order to null the signal from a particular entity like fat. When the RF pulse 

ceases, the spinning nuclei begin to relax. When the net magnetization vector for fat passes the transverse 

plane (the null point for that tissue), a 90° pulse is applied, and the SE sequence then continues as before 

with a 180 degree pulse at TE/2(27;28). The interval between the 180° pulse and the 90° pulse is the 

inversion time (TI). TI for fat is usually 140-170ms in high-field MR scanners(28) and approximately 

80-100ms in low-field scanners(10), and at that TI, the net magnetization vector of fat is very weak, so 

when the vectors are flipped by the 90° pulse, there is little or no transverse magnetization of fat, so that 

no signal is generated at the echo time and fat appears dark. The other tissues exhibit signal intensities 

from low to high in tissues with a stronger net magnetization vector such as water(27;28). The STIR 

sequence thus provides excellent depiction of bone marrow oedema, which may be the only indication of 

an occult fracture or an indication of more aggressive disease in RA and OA(8;9;13). In addition the 

STIR sequence is not affected by magnetic field inhomogeneities (27), which is a huge advantage in low-

field MR scanners, where they are the only usable fat suppression sequence, as spectral fat suppression is 
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not possible due to a reduced spectral separation between water and fat which restricts the ability to 

perform frequency selective fat suppression(27). 

 

Gradient Echo (GRE) Sequences  

Recently GRE type sequences have been introduced in musculoskeletal imaging and are being 

increasingly used. In a GRE sequence, an RF pulse is applied that partly flips the net magnetization 

vector into the transverse plane (variable flip angle)(27;28). Gradients are then used to dephase (negative 

gradient) and rephase (positive gradients) the transverse magnetization and because gradients do not 

refocus field inhomogeneities, as the 1800 pulse does in the spin echo experiment, GRE sequences with 

long TE’s are T2* weighted rather than T2 weighted(27;28). The use of gradients to de- and rephrase the 

transverse magnetisation along with the lower flip angles (typically 15-65) makes the GRE sequences 

very fast compared to the conventional spin-echo sequence, mainly because the repetition time TR is 

markedly reduced (27;28) . This also enables the making of 3D volume scans with isotropic voxels 

within a reasonable time frame and still achieving high image quality (28;29). Furthermore 3D GRE 

sequences also make it possible to reduce the slice thickness to sub-millimetre resolution which is an 

advantage when looking at small structures, such as small erosions in the bones of patients with RA, 

compared to the typical slice thickness of 2-5 millimetre used in the 2D spin-echo sequences(28;29). 

 

 Low-field MRI 

The E-scan® (Esaote®, Genoa, Italy) 0.2T MRI scanner which we used in study I and II, is a low-field 

extremity scanner with a permanent magnet that has MR qualities and physics similar to those of 

conventional whole-body systems. It is designed with open access to the imaging volume, which allows 

examination of not only the distal extremities, but also the shoulder and hips in children and small 

adults. The permanent magnet poles are located above and below the table, making it a vertical field 

scanner, and the table can be positioned around the magnetic pole, which helps with a more comfortable 

patient positioning. The main advantages of extremity MR scanners compared to whole-body, high-field 

scanners are lower purchase and maintenance costs, low weight, and ease of installation in a limited 



 

 17

space, making them suitable for in-office and emergency room installation(30). Another advantage of 

extremity scanners is that claustrophobic patients and children, who may otherwise require sedation, 

tolerate them better(10;30). Finally the disease entity may be occult on x-ray, such as is the case in 

numerous musculoskeletal injuries and diseases such as subchondral bone injuries, bone marrow 

infections and inflammatory joint diseases. A delay in treatment can thus occur if MRI is not applied, 

and as the capacity of high-field scanners is limited, the low-field equipment might fill in this place in 

the future(30). 

The main disadvantage of low-field scanners is that the image quality is reduced compared to whole-

body, high-field scanners, mainly due to a poorer SNR. In general, SNR, contrast, and resolution 

increase with field strength and the literature has suggested that in order to compensate for the increased 

SNR in low-field scanners, the voxel volume and/or acquisition time must be increased (30). Increasing 

the voxel volume by increasing the slice thickness or the FOV makes the detection of signal 

abnormalities more difficult secondary to reduced spatial resolution. 3D imaging can improve the SNR 

compared to 2D techniques, however, the longer acquisition times can lead to an increased risk of patient 

motion and hence reduced image quality, even though the movement artefacts are less problematic in 

low-field imaging(30). Additional factors, such as RF penetration, optimized pulse sequences, and 

improvement in coil design and sensitivity also play a crucial and significant role in the SNR benefit at 

different field strengths(31). Hence the newer generations of low-field MR scanners have improved in 

many of the mentioned factors, especially with the introduction of optimized fast spin echo- and gradient 

echo sequences as well as improved coil designs, low bandwith technology and long gradient echoes 

which can be noticed in the image quality that is significantly better today than 10 years ago(30;32). 

Care must be taken to not compensate for the inherently poor SNR at 0.2T with voxel dimensions that 

are too large to provide adequate spatial resolution for evaluation of joint structures. Thus sequence 

optimization and protocol improvement are still mandatory when the scanner is installed, but after such a 

calibration low-field scanners today produce images of diagnostic quality, even though the images are 

subjectively noisier compared to high-field(30;32). As previously mentioned another major disadvantage 

of low-field imaging is the reduced spectral separation between water and fat, which restricts the ability 
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to perform frequency selective fat suppression. Fat suppression is an invaluable technique in 

musculoskeletal imaging because it is used to demonstrate bone-marrow pathology and increase the 

contrast between Gadolinium enhanced tissue and adjacent fat in high-field imaging. An alternative 

method to suppress fat signal, which can be performed by low-field scanners, is the STIR sequence that 

is extremely useful for demonstrating bone marrow oedema. Unfortunately the STIR sequence is 

incompatible with Gadolinium enhancement, thus MR arthrograms and contrast-enhanced studies have, 

in theory, a reduced diagnostic value on low-field scanners, mainly due to lack of a robust T1-fat-

suppressed imaging sequence (32).  

In musculoskeletal MRI, the CNR is also a clinically relevant parameter because it determines the extent 

to which adjacent structures can be distinguished from one another (33) but compared to the SNR, the 

CNR is more dependent on imaging parameters and not as strongly dependent on field strength, which 

make this parameter less compromised in low-field imaging (34;35).  

 

Rheumatoid arthritis (RA) 

RA is a chronic inflammatory joint disease with an unpredictable course (36). In two thirds of the cases, 

RA begins with symmetric arthralgia and arthritis in the small joint of the hands and feet, and the disease 

process can lead to severe skeletal changes and destruction of the affected joints(37), thus RA has a great 

impact on all aspects of life due to the joint- related symptoms as well as general malaise and tiredness. 

As no pathognomonic test exists for RA, the disease is a “syndrome” diagnosis based on case history, 

clinical signs, laboratory abnormalities and x-ray manifestations. The classification criteria for RA along 

with therapeutic recommendations were published by the American College of Rheumatology (ACR) in 

1988(38) to define a more uniform group of patients, The RA criteria have made the diagnosis RA more 

specific, but even though these criteria are still not diagnostic, they are generally useful since they help 

to ensure a uniform patient group for comparing experiences and treatment results between countries and 

clinical treatment centres.  

The actual consensus of RA treatment involves early onset of disease modifying anti-rheumatic drugs, 

DMARDs (39;40) with supplementary IA drug therapy with glucocorticoid in target joints not 
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responding to systemic treatment (41). The IA glucocorticoids are well tolerated, however, the effect 

varies considerably from a few months to a year (42;43). In the ACR criteria, x-ray of the joints is 

considered the standard reference for detecting and quantifying the erosions in RA, while x-rays cannot 

reliably detect changes in the synovial membrane (44), x-rays tend to show the late disease 

manifestations, and as the synovial changes are believed to precede the erosions because the synovial 

changes are seen in patients months to years before an erosion develops(45;46), early detection of 

inflammatory joint changes is crucial for guiding the treatment strategy. Hence there is a need for more 

sophisticated imaging modalities capable of accessing the soft tissue changes. The need for a change in 

imaging strategy is also supported by the introduction in recent years of new biological drug treatments 

such as systemic anti-tumor necrosis-factor alpha (anti TNF-α) (ex. etanercept (Enbrel®)). These drugs 

have shown promising results and have revised the treatment strategy in patients with RA (47), but as the 

drugs are very expensive, there is a need for more sensitive imaging modalities that can access the early 

inflammatory treatment response. But even with these potent and effective drugs, IA treatment is still 

necessary in joints with aggressive forms of the disease that do respond to the systemic treatment. The 

drugs are either the traditionally known glucocorticoids or, on experimental basis, anti-TNFα(48). IA 

treatment in wrists has recently been evaluated with ultrasound(US)-Doppler at the Parker Institute(43) 

and the safety aspects of IA injections of anti-TNF-alpha (etanercept) in the wrist joint of patients with 

RA have also been investigated at the Parker Institute(48). A randomized study comparing the clinical 

outcome 4 weeks after ultrasound guided IA injection of either glucocorticoid or etanercept in several 

joints has been published (49), showing that the patient receiving glucocorticoid had a better clinical 

outcome regarding pain, joint swelling and clinical evaluation compared to etanercept.  

 

Course of the disease 

The clinical presentation is heterogeneous with a wide spectrum of age at onset, degree of joint 

involvement, and severity. At the onset of symptoms it is difficult to predict which patients will follow a 

more severe disease course though various predictive parameters have been indicated. 
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Suggested predictors of poor outcome are a large number of joints involved, poor functional status, the 

presence and a high titre of rheumatoid factor (RF), a low haemoglobin level, a high platelet count, 

elevated erythrocyte sedimentation rate (ESR) and/or c-reactive protein (CRP) level, already present 

bone erosions on x-ray(50) and bone marrow oedema on MRI(8;9). A positive RF is associated with the 

development of erosions (51;52), and patients with RA who remain RF negative have better prognosis 

than those who are positive(53;54). 

 

Laboratory tests 

More objective measures of clinical status and disease activity are the laboratory tests. In RA it is the 

acute phase proteins and the RF that are of interest. 

CRP is part of the acute phase response, which means that it increases at least 25% in plasma 

concentration after inflammatory stimuli (55). Its production in the liver is stimulated by the cytokines 

interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) derived from the inflamed synovium. CRP 

increases very rapidly over hours as part of the acute response , peaks in 2 to 3 days and in contrast to 

the erythrocyte sedimation ratio (ESR)it may return quickly to baseline (55). It has been shown to reflect 

disease excercabations and remissions (56) and is therefore suitable for the estimation of disease activity 

and treatment response – especially when measured sequentially. Due to the high sensitivity and 

amplitude CRP is the choice of acute phase proteins in rheumatology. It is however important to note 

that the CRP reflects the sum of the disease from all involved joints which synthesize it, and that it is an 

insensitive marker for local flares in a single joint. 

RF is included as one of the classification criteria made for RA. It is an antibody against the Fc-part of 

the immunoglobulin M. However, not all RA patients have elevated RF and it may occur in the absence 

of RA. With sufficient stimulation in e.g. chronic infections, any individual may develop RF and the 

specificity of the test is low. Elevated RF is present in other inflammatory diseases like mixed 

connective tissue disease and systemic lupus erytomatosus and elevated levels are also present in 3-5% 

of the normal population and the frequency increases with age. Nevertheless subjects with RF have a 40-
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fold risk to develop RA(57) and of those subjects developing RA the age of onset is associated with the 

prevalence of circulating RF(58).  

 

Joint assessment 

A joint with disease activity is defined by the presence of tenderness on pressure, pain on passive 

movement and/or swelling other than bony proliferation (59). Soft tissue swelling is detectable by 

palpation along the joint margins and fluctuations are characteristic features and may influence the range 

of joint movement. Joint tenderness is present by pressure and passive movement of the joint by the 

examiner. The maximum pressure to elicit tenderness should be exerted by the examiner’s thumb and 

index finger sufficient to cause whitening of the examiner’s nail bed (60).  

In the estimation of the disease activity the ACR recommend an evaluation of 68 joints for tenderness 

and 66 for swelling (the latter not including the hips) but a reduced 28 joint count was suggested by H.A. 

Fuchs and colleagues in 1989(61) for evaluating easily accessible joints commonly affected in RA. The 

28-joint count has been shown to correlate to the 66/68 joint count when assessing changes in relation to 

therapy (62).  

The clinical assessment of joint swelling and tenderness may be either qualitative (presence or absence 

of swelling) or quantitative (graded from 0-3) and inter-observer agreement depends on which type of 

assessment is used. The inter-observer agreement for the qualitative joint assessment has been shown to 

be better than the quantitative joint assessment (63), but the quantitative joint assessment improves the 

reliability of the joint assessment in measuring disease activity (64). The joint assessment should be 

performed by the same assessor because the intra-observer variation is low (65), even though this is 

rarely the case in clinical practice. The inter-observer variation is high(59), but may be improved with 

training(66). 

 

Other measures of disease activity 

The tender and swollen joint assessment is supplemented by several other measures of disease activity. 

The functional status may be evaluated by questionnaires, most commonly applied as the health 
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assessment questionnaire (HAQ) (67). In early arthritis the inflammatory symptoms are the main 

predictors of physical disability, and in late stage RA the joint destruction may be more important, both 

indicated by the HAQ (68). As an objective measure of performance of the RA patients, isokinetic 

muscle strength measurements have been applied in several studies (69) and the HAQ score has been 

shown to correlate with isokinetic muscle strength in a longitudinal study(70). 

The severity and duration of morning stiffness is recorded in minutes. A quantitative assessment of pain 

on a 100 millimetre (mm) visual analogue scale (VAS) and patient and physician global assessment of 

disease activity are all useful parameters to follow during the course of the disease (71). 

 

Treatment 

Treatment of RA aims at preventing, reducing, or at least retarding the destructive processes that lead to 

joint destruction and impaired function. Optimal management of the disease does not only require early 

diagnosis but also timely introduction of drugs that reduce the probability of irreversible joint 

damage(40). To prevent joint destruction, disease modifying anti-rheumatic drugs (DMARD) such as 

methotrexate (MTX), sulphasalazine, anti-malaria drugs, oral glucocorticoids and more recently 

leflunomide and TNF-α blocking agents such as infliximab and etanercept are used. MTX is the most 

commonly employed DMARD therapy, and is also the first choice in patients with high disease activity 

whereas patients with low disease activity are more likely to receive sulphasalazine or anti-malaria drugs 

and then MTX if the treatment fails (72).  Recently the TNF-α drugs have changed the treatment 

strategy, especially in patients that do not respond to the traditional DMARDs, as the drugs have been 

shown to control inflammation and retard destruction (73-75). In conclusion early initiation of therapy, 

and rapid disease control is considered important as the destructive process can be quite rapid and 

detectable on x-rays after only a few months (76-78). In clinical practice the joint count, pain and global 

disease assessment play a prominent role in determining whether a treatment change is needed (79). 

IA treatment 

Despite successful systemic DMARD and/or TNF-α treatment, local joint flares often occurs, in which 

case, IA treatment with glucocorticoids have become a mainstay of the rheumatologist’s armamentarium 
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(80) in order to reduce the possibility of systemic adverse effects, since it was proposed by Hollander in 

the 1950s(81). One or a few injections in the same joint can improve the patient’s clinical condition 

significantly by decreasing joint pain and swelling and lead to improved function. The effect varies from 

patient to patient but may last up to years (42) although the repeated long-term use can cause adverse 

effects(82). In addition IA treatment with betamethasone and oral methotrexate seems to halt the erosive 

progression on radiographs in patients with early RA and a poor prognosis (80). In parallel to the use of 

IA glucocorticoids, anti-TNF-α medications have also been successfully used intraarticularly, although 

the response to this treatment has varied (83;84), and the knowledge and experience concerning the 

treatment effect is still limited.  

The correct placement of the needle for IA injections have been a matter of concern (85) because only 

about half IA injections are performed into the right structure, but US- guided IA injections can help to 

overcome this problem(86).  

 

Clinical remission 

There are several sets of criteria (EULAR, ILAR, WHO and ACR) for defining clinical remission in RA, 

but the studies of this thesis have used the criteria suggested by the ACR which include six signs and 

symptoms being 1) duration of morning stiffness not exceeding 15 minutes 2) no fatigue 3) no joint pain 

by anamnesis 4) no joint tenderness or pain on motion 5) no soft tissue swelling in joints or tendon 

sheets 6) erythrocyte sedimentation rate <30mm/hour for female and <20mm/hour for male(71;87)  

 

The wrist joints articulations: 

The wrist joint is a complex multi-compartmental joint, which often displays local disease flares in 

patients with RA, thus there is a need to understand the anatomy of the joint in order to properly evaluate 

the treatment procedure and imaging findings.  

The wrist is composed of six articulations, from proximal to distal including: 1) The distal radio-ulnar 

joint, 2) the radio-carpal joint, 3) the intercarpal joint, 4) the piso-triquetral joint, 5) the four ulnar carpo- 
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metacarpal joint and finally 6) the trapezio-carpal joint(88). From arthrographic studies of the wrist joint 

approximately 10% of the of the “normal” population in the 3rd decade have communication between 

the radio-ulnar and the radio-carpal joint which raises to approximately 50% in the seventh decade(89). 

Communication between the radio-carpal and inter-carpal joints is seen in approximately 40% of 

scapholunate- and 55% of luno-triquetral articulations in randomly chosen cadavers older than 40 years 

(90). Despite the anatomical knowledge of the wrist joint as comprised of several synovial cavities with 

variation in communication, there is a longstanding assumption in rheumatology, especially concerning 

RA, that an injection of drug into the standard site (radio-carpal joint) will distribute into all relevant 

joint cavities of the wrist (91) due to destruction of the anatomic boundaries by the disease processes in 

RA. 

In MRI studies of the wrist joint in rheumatology, the joint is usually defined as comprised of 1) the 

radio-ulnar joint, 2) the radio-carpal joint, 3) the inter-carpal joints and 4) the four ulnar carpo-

metacarpal joints(92) (figure 1). 

Figure 1 

The wrist joint in RA MRI studies is defined as:  

RU: the distal radio-ulnar joint, CR: the radio-carpal 

joint, IC: the inter-carpal joints and CMC: the four 

ulnar carpo-metacarpal joints. 

(The drawing is presented by courtesy of Søren Torp-

Pedersen, The Parker Institute) 

 

Imaging modalities in RA 

X-ray in RA 

The imaging modalities used in rheumatology aim at providing the clinician with objective measures of 

disease activity/severity by the use of qualitative and quantitative parameters. 

X-ray is the gold standard imaging in rheumatology for evaluating joint damage, and is still part of the 

classification criteria in RA(38). It may be used to define erosive damage in RA as well as progression 
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of the disease over time, and x-rays also serve as an invaluable tool in terms of differential diagnoses 

such as psoriatic arthritis that show distinct features on the x-ray, which can be helpful in making the 

correct diagnosis especially in patients with unspecific/unclassified arthritis. X-ray in RA demonstrate 

bone erosions, joint space narrowing as an indirect sign of cartilage thinning or loss, juxta-articular 

osteoporosis, bone cysts, or in late stages of disease joint subluxation, malalignment or ankylosis(93). 

However, the soft tissue changes that precede the bone changes are not visible (44) which is one of the 

major disadvantages of this imaging modality, thus, more sensitive modalities in term of soft tissue 

visualisation is recommended. Another disadvantage of X-ray is the use of radiation. X-rays of the hands 

and feet are commonly obtained in the posterior-anterior (PA) view but alternate radiographic views of 

the hands are recommended (e.g. the Nørgaard view(94)). However, the latter requires specific 

positioning which affects the reproducibility(93). 

Several scoring systems, based on the PA view, are currently in use in the assessment of joint destruction 

in a semi-quantitative way.  The three most used methods are the Sharp method (95), the Sharp/van der 

Heijde modification (96) and the Larsen method(97;98). 

The Sharp method considers 17 areas for erosion and 18 areas for JSN in each hand/wrist. Each erosion 

scores one point, with a maximum of five points for each area (reflecting loss of more than 50% of either 

articular bone). Erosion scores range from 0 to 170. For JSN, one point is scored for focal joint 

narrowing, two points for diffuse narrowing of less than 50% of the original space, and three points if the 

reduction is more than half of the original joint space. Ankylosis is scored as four. (Sub)luxation is not 

scored. The score for JSN ranges from 0 to 144.  

In 1989, van der Heijde modified the method described by Sharp in 1985. Erosion is assessed in 16 

joints for each hand and wrist, and six joints for each foot. One point is scored if erosions are discrete, 

rising to 2, 3, 4, or 5, depending on the amount of surface area affected where complete collapse of the 

bone is scored as 5. The score for erosion ranges from 0 to 160 in the hands, and from 0 to 120 in the 

feet where the maximum erosion score for a joint in the foot is 10. JSN is assessed in 15 joints for each 

hand and wrist, and six joints for each foot. JSN is combined with a score for (sub)luxation and scored as 

follows: 
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0 = normal; 1 = focal or doubtful; 2 = generalised, less than 50% of the original joint space; 3 = 

generalised, more than 50% of the original joint space or subluxation; 4 = bony ankylosis or complete 

luxation. The score for JSN ranges from 0 to 120 in the hands and from 0 to 48 in the feet.  

The Larsen score was developed in 1974, and is based on a comparison with a set of standard films. It 

differentiates six stages from 0 (normal) to 5, reflecting gradual, progressive deterioration, and provides 

an overall measure of joint damage in 15 joints of the wrist and 10 joints of the feet (this method was 

modified several times between 1974 and 1995). In 1995, Larsen devised a method to evaluate 

radiographs in long-term studies. The main differences from the original are deletion of scores for the 

thumbs and 1st MTP; subdivision of the wrist into four quadrants; deletion of soft tissue swelling and 

osteoporosis; distinction between erosions of different sizes. The grading scale ranges from 0 to 5: 0 = 

intact bony outlines and normal joint space; 1 = erosion less than 1 mm in diameter or JSN; 2 = one or 

several small erosions (diameter more than 1 mm); 3 = marked erosions; 4 = severe erosions (usually no 

joint space left and the original bony outlines are only partly preserved); and 5 = mutilating changes (the 

original bony outlines have been destroyed). The score ranges from 0 to 160.  

The scoring systems have been validated in many clinical trials. In North America, the Sharp’s method 

has been used extensively, whereas the Larsen method or the Sharp/van der Heijde method(96) has been 

used frequently in Europe. The Sharp/van der Heijde method, in contrast to the Larsen method, includes 

the feet in the joint assessment and has a better sensitivity to change while considerably more time-

consuming(96). 

The advantages of x-rays are that it requires simple, readily available x-ray films that are inexpensive. In 

addition it is the only recommended imaging modality in the ACR criteria and they have shown to be 

reproducible for clinical trials. With the current digital imaging technology the x-rays are obtained 

digitally and stored in PACS for convenient retrieval and re-analysis (99). However, considerable inter-

observer variation must be taken into account (100) especially when dealing with multicenter trials, and 

the introduction of digital images with a significant lower image resolution compared to the classical x-

ray and mammography films might change the sensitivity of the erosion detection. 
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MRI in RA 

Since the first pilot study was published in 1988(101) comparing MRI to conventional x-rays in the wrist 

joint of RA patients, more than 200 publications using MRI in wrist RA have been published according 

to MEDLINE. When we started the work of the thesis, it was known that MRI was the non-invasive 

imaging modality of choice for visualisation of the inflamed synovium in patients with RA(9;102). MRI 

could also provide the possibility for detection of volume changes and changes in contrast enhancement 

following anti-inflammatory drug treatment(103;104). Furthermore, MRI was shown be a sensitive non-

invasive method for detection and quantification of bone erosions, and is the only modality able to detect 

bone marrow oedema which is a predictor of future bone erosions (8). In fact bone marrow oedema was 

recently shown to reflect true bone marrow inflammation (105).  

In the beginning of my thesis it was discussed whether MRI erosions were true erosions. However, a 

recent publication from 2006 by Dohn et al have settled this question by showing that MRI erosions can 

be considered true erosions when compared to computed tomography (CT) as the reference(106). In 

addition McQueen et al have published in 2006 evidence that erosions seem to start in the bone marrow 

through an inflammatory release of cytokines stimulating osteoclasts to resorb bone(107), which 

contribute to the understanding of the still unsolved controversy regarding the cause and effect 

relationship between synovitis and bony changes(108) in RA. 

 

Low field MRI of the wrist and hand in rheumatology 

With the introduction of extremity dedicated low-field (<0.5T) magnets there has been an interest in 

comparing the diagnostic performances of these patient friendly scanners to the existing high-field 

scanners. The low-field scanners are especially suited for the patient group with peripheral joint diseases, 

because the imaging in high-field scanners requires uncomfortable patient positioning compared to the 

low-field magnets. A study from our institution by Savnik et al(10) has shown that low- and high-field 

MRI showed a comparable number of erosions and number of joints with synovitis, which has also been 

confirmed by several groups (11;12;109). In fact it has been reported that low-field imaging reveals 

more erosions than high-field images, and the reason for this is still not clear, but coil selection choice of 
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pulse sequences and patient positioning in the high-field scanners have been suggested (109). High-field 

MRI is properly still the most used modality in research settings (6;103;110) although low-field 

publications has increased in the last couple of years(4;111-113).  

For bone marrow oedema there are only few published studies comparing low- and high-field, and the 

most cited of these are the study by Ejbjerg et al(12) concluding that low-field MRI performed markedly 

poorer compared to high-field, but these data are based on images from an early generation of low-field 

scanners (Arthroscan®, Esaote) and a 1.0T (Impact®, Siemens) scanner. Hence a study with blinded 

comparison between a state of the art low- field and high-field MR scanner is needed, to reveal if this is 

still the case with today’s technological improvements(114).  

We used a state of the art low-field MRI scanner in study I and II of wrist RA for several reasons. 1) The 

scanner was readily available in our institution 2) The scanner had very high patient compliance which 

especially was mandatory in study I that included two MRI scan within 4 weeks and 3) The literature 

supported the image quality of the low-field scanner to be comparable to the images from high-field 

scanners in terms of diagnostic quality. 

Sequence selection for joint imaging in low-field scanners: 

Selection of optimized protocols and sequences for RA is mandatory especially in low-field dedicated 

MR scanners, that suffer from lower SNR compared to high-field scanners, in order to obtain the best 

possible signal and contrast between the different tissues. In the wrist joint, most groups recommend 

starting with a STIR sequence or a fat-saturated T2-w sequence (only high-field scanners) in the coronal 

plane for bone marrow oedema detection, followed by a 3D isotropic T1-w turbo gradient echo 

sequence; or a T1-w spin echo sequence in the coronal and axial plane before and after contrast for 

detection of erosions and synovitis. The isotropic 3D gradient echo sequence has the advantage of 

subsequent reconstruction in the orthogonal plane, why one can omit a scan plane and thus save time in 

the scanner (10-12). 
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Impact of Gadolinium contrast in synovitis scoring 

Gadolinium contrast is mandatory for quantification of the synovial inflammation in RA in order to 

differentiate the enhancing inflamed synovium from the surrounding tissues and possible effusion. In 

addition a recent publication has shown that a double standard-dose of Gadolinium  (0.2ml/kg) 

significantly increases the subsequent synovitis score in low-field scanners, compared to a standard 

single dose (0.1ml/kg).  

 
OMERACT (Outcome measures in rheumatoid arthritis clinical trials) 

The OMERACT group consists of several international experts from the field of rheumatology and 

musculoskeletal radiology that are working with MRI as an outcome measure in clinical trials, and who 

since the first publication in 1999 have been very active and published more than 20 papers (according 

to MEDLINE) regarding the use of MRI in RA. The group has contributed to most of the “corner-

stones” in the field such as publication of a valid and reproducible RAMRIS (RA MRI score) scoring 

system along with basic recommendations of MRI sequences selection (115) and have introduced a 

reference atlas for scoring the key parameters; synovitis, bonemarrow oedema and erosions in the wrist 

and MCP joints (92;116).  The recommended basic MRI sequences are: T1-w images before and after 

contrast in two orthogonal planes for erosion and synovitis scoring along with either a fat-saturated T2-w 

image or a STIR sequence for bone marrow oedema assessment (115). According to the RAMRIS score 

the degree of synovitis is scored on a scale from 0–3 for every examined joint area depending on an 

arbitrary grading of the synovitis from no synovitis over mild, moderate to severe (worst imaginable). 

Erosions are graded on a scale from 0-10 with intervals of 10% volume involvement, and bone marrow 

oedema is scored on a scale from 0-3 with intervals of 33% volume involvement. Long bones are scored 

to a depth of 1cm from the articular surface.  

In Denmark the group is represented by professor Mikkel Østergaard, dr. Bo Ejbjerg and colleagues, and 

recently the group has suggested a scoring system for evaluation of both tenosynovitis and psoriatic 

arthritis (117;118).  
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In conclusion there are several advantages of MRI in RA as it provides a potential for whole joint 

tomographic assessment with high image quality in any plane, as well as discrimination and assessment 

of the soft tissue structures including the intra-articular and periarticular tissues without potentially 

harmful radiation. In this context MRI a safe and ideal tool to follow-up on treatment responses, and 

especially erosive progression, as no harmful radiation is applied. MRI is also the only modality that can 

access bone marrow oedema and the introduction of 3D MRI sequences with isotropic voxels (voxels 

with equal size in all directions), have also made it possible to reduce scan time due to the possibility of 

multi-planar reconstruction (MPR) without loss of image quality, which can increase the throughput of 

patients in the MR scanner. Finally, as the MRI technology relies on digital images, these are easily 

stored in Picture Archiving System (PACS) for convenient retrieval, re-analysis and quick sharing across 

hospitals and country borders.  

The use of MR in RA is restricted by some patient-related circumstances like claustrophobia, 

pacemakers, pregnancy in the first trimester, existing alloplastic implants that destroy the image quality 

due to metallic artefacts etc. The imaging procedure may also be hampered by uncomfortable positioning 

of the patient especially in the high-field scanners, while this problem is overcome by the use of 

dedicated low-field extremity scanners (10) or the newly developed “midfield” (0.6-1.0T) open scanners. 

When compared, high-field MRI provides better image quality than low-field MRI; however, this does 

not necessarily translate into greater diagnostic power (30;32) as has been shown in the case of RA. The 

current literature has demonstrated a high diagnostic value of low-field scanners for musculoskeletal 

pathologies (30), but large well-designed comparative studies quantifying the clinical impact, efficacy, 

cost benefit and diagnostic capabilities of low- and high-field imaging are still needed in most clinical 

musculoskeletal applications (30;114). In general, the experience and training of the reader is likely to 

impact the interpretation of the images, thus low-field musculoskeletal MR images are probably best 

read by radiologists with experience from low-field systems.  

Regardless of scanner field strength, more technical limitations of MRI in RA are availability, cost 

issues and the fact that MRI is also restricted to make contrast enhanced imaging of only one area that 

can fit in the scanner’s field of view (FOV) due to the washout period of the Gadolinium contrast agent 
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of approximately 24 hours, impairing multiple contrast enhanced joint assessments/examinations on the 

same day.  

 

Ultrasound in RA 

Within the past decade, musculoskeletal US has become an established imaging technique for the 

diagnosis and follow-up of patients with rheumatic diseases (119;120). US is most commonly used in the 

assessment of soft tissue changes or the detection of fluid collections (121), but has also proven able to 

detect erosions in RA both actual changes and development over time (122).  

Most musculoskeletal US is performed using grey-scale US, but newer US techniques include the use of 

colour- or power Doppler, which may be used in the assessment of vascularisation of the tissue as may 

occur in inflammatory conditions (123). So far, no standardised scoring methods have been developed, 

while guidelines for grey-scale US have been suggested (124). 

The advantages of US are its non-invasiveness, portability, relative inexpensiveness, lack of ionising 

radiation, its repeatability and its ability for rapid “real-time” dynamic examinations of multiple joints in 

multiple planes at one sitting. US may also be used for guidance for aspirations, biopsy and injection of 

IA treatments – ensuring correct placement of the needle (125), and finally US has the advantage that 

with proper training the treating physician can perform the examinations. The most prominent 

disadvantages of using US are the intra- and inter-observer variation, and the lack of spatial orientation 

(126).  

 

Osteoarthritis (OA) 

OA is a common disease entity covering a group of chronic, non- inflammatory joint disorders with 

cartilage destruction, and may be regarded as a common joint failure that can be induced by disease 

entities of different aetiologies (127).  Thus the development of OA seems to follow a common complex 

pathway with gradually evolving disease manifestations, including decreasing water content, degradation 

of cartilage matrix components, collagen fibers and glucose-amino-glycans (GAG))(128;129). The 
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process is irreversible due to the poor repair potential of the hyaline cartilage tissue, whatever the 

underlying aetiology (130).  

OA is a major cause of morbidity and disability in the elderly and OA is the most common form of 

arthritis, affecting millions of people; approximately 70% of a population over 65 years (131). The 

incidence of hand, hip, and knee OA increases with age, and women have higher rates than men, 

especially after age 50, with knee OA showing the highest incidence compared to hand and hip(132). 

Hip OA is representing the second highest incidence next to knee (132). Before the age of 50, men have 

a higher prevalence and incidence of OA than women, presumably due to secondary changes after 

trauma, while after the age of 50 women have both a higher prevalence and incidence (133).   

No international agreement has been reached regarding a common definition of OA, but it is generally 

accepted that the disease processes involves cartilage destruction, bony changes in the subchondral zone, 

and loss of function(134)  

Several risk factors for OA development have been reported such as obesity (135), heredity (136), 

malalignment(129), cruciate ligament injuries(137), meniscal tears(138), Legg-Calvé-Perthes(139), 

congenital hip dislocation(140), slipped epiphysis(141), certain occupations like jobs with prolonged or 

repeated knee bending(142) and hip fractures(143). However, data from epidemiological studies are 

often difficult to interpret due to confounding factors and selection bias. Odds ratios representing 

increased risk of OA are usually modest, and generally associated with wide confidence intervals. 

  

Classification and grading 

Classification of this multifaceted joint disorder has to embrace the great disparity and is often the result 

of a consensus. Overall OA is classified into a secondary form with a known trigging factor; e.g. trauma, 

congenital/developmental, metabolical or endocrine diseases; as opposed to an idiopathic or primarily 

OA of unknown source (144). The latter may be subdivided into a localized form, involving one joint, 

and a generalized form involving three or more independent areas(145).  
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Treatment 

Current treatment strategies for OA include both non-pharmacological, pharmacological, and surgical 

interventions (146;147). Weight reduction with a sustained weight loss seems to be the best non-

pharmacological treatment with moderate pain relief and functional improvement (148). 

The medical treatment in OA mainly consists of various formulations of painkillers and supplementary 

therapy with glucocorticoids during painful inflammatory flares/reactions. Since no disease modifying 

drugs yet have been developed for  improving the quality of the cartilage, all current recommended 

treatments aim at reducing symptoms, but do not have any direct impact on the continuing degradation 

of the cartilage. Currently there is an ongoing debate regarding treatments that can slow down or even 

halt the disease evolution and thus spare the cartilage. In this context the use of oral formulations of 

glucosamine and chondroitine sulphate have in some studies shown a beneficial effect on clinical as well 

as x-ray parameters in early and moderate cases of OA(149), but a recent meta-analysis published by the 

Cochrane group has concluded that there is yet no evidence to conclude a general effect of these 

substances(150). IA therapy has also been advocated in OA with hyaluronic acid(151) as well as 

glucocorticoids(152) however the efficacy of these IA drugs, especially hyaluronic acid is 

debated(153;154).  Finally surgical treatment is regarded as the last treatment option with total joint 

replacement being the most radical one(147).    

 

Course of OA 

Disease progression characteristically is slow, occurring over several years or decades. At onset 

symptoms can be very subtle, morning joint stiffness may be the only early sign present, as the disease 

progresses, pain becomes more prevailing and is often the main reason for an OA patient to seek medical 

attention. Initially pain occurs during activity but can be relieved by rest, at this state usually no clinical 

signs of inflammation are present. Depending on which joint is affected the specific clinical picture can 

vary. In most cases the range of joint motion is gradually decreasing as a consequence of changes  in 

bone formation, including formation of osteophytes. Ultimately malalignment and bony enlargement of 
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the affected joint may occur. Pain can become a permanent feature and even resting pain is typical in 

advanced hip OA. 

The natural course of OA, without treatment, is diversified both in time and amplitude. OA pain in the 

hip joints may diminish or stagnate over time, often at the price of decreased range of motion (155) 

whereas in other joints like the knee, worsening both in function and pain can be overall intolerable. 

There is, however, casuistic evidence of reversibility in both symptoms and radiographic changes (156), 

leading to the assumption that the existence of a Disease Modifying OA Drug could become a reality 

(157). In conclusion since the disease evolution is slow, there is a need for sensitive imaging modalities 

and/or biomarkers to reduce the sample size in future studies evaluating potential disease modifying 

drugs. 

 
Imaging modalities in OA 

X-ray grading  

In 1957 Kellgren and Lawrence (K&L) were the first to systematically use radiographic changes to asses 

the severity of OA (158). By combining the four characteristic features of OA and the subsequent 

deformation of subchondral bone, a four step grading scale was developed for the major sites involved. 

(Table 1) 

 

Table 1 K&L grades of severity of osteoarthritis of the hip(158) 
Grade 1 

 
 

Grade 2 
 
 

Grade 3: 
 
 
 

Grade 4: 

Possible narrowing of joint space medially and possible osteophytes around femoral 
head. 
 
Definite narrowing of joint space inferiorly, definite osteophytes and slight sclerosis. 
 
 
Marked narrowing of joint space, slight osteophytes, some sclerosis and cyst 
formation and deformity of femoral head and acetabulum. 
 
 
Gross loss of joint space with sclerosis and cysts, marked deformity of femoral head 
and acetabulum and large osteophytes. 
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The K&L score has limitations, wherefore numerous modifications have been suggested (159;160) and 

the more recent overall grading of the hip OA emphasizes joint space narrowing, as the most common 

and prominent feature of the radiographic changes(161). Which of the published scoring systems should 

be regarded as the more valid is still to be clarified, nevertheless intra- and inter-reliability seem to be 

comparable(162). In the present study III, the K & L grading was chosen as one of the inclusion criteria 

as recommended in studies of hip OA (163).  

 

MRI in OA 

MRI is regarded as the most powerful soft tissue and joint imaging modality, and bone marrow oedema 

has been shown to be a predictor of worsening in knee OA (13), and compared to x-ray, MRI offers 

unparalleled discrimination among articular soft tissues by direct and tomographic visualization of all 

components of the knee joint simultaneously, allowing the knee joint to be evaluated as a whole organ. 

Thus MRI in OA can reliably image pathology such as; osteophytes, bone marrow oedema, sub- and 

periarticular cysts, meniscal tears, ligament abnormalities, synovial thickening, joint effusion, intra-

articular loose bodies, and has been shown useful in imaging cartilage abnormalities (14;164;165). 

 

MRI of cartilage 

MRI provides the possibility for direct chondral imaging with the potential for evaluation of the regional 

thickness as well as the water content and cartilage matrix compositions throughout the joint (23;165). 

Most MRI data of cartilage imaging are derived from studying the knee, while similar good results 

regarding accuracy, sensitivity and specificity to cartilage lesions cannot be reproduced in joints with 

thinner cartilage such as the hip joint (16;17). In the past static two dimensional (2D) MRI using 

conventional T1-w- and T2-w spin echo sequences, did not provide accurate visualization of joint 

cartilage when compared to arthroscopy (166). Hence new 2D turbo spin-echo and three dimensional 

(3D) gradient echo MRI cartilage sensitive sequences were developed, which has increased the accuracy 

for surface evaluation and thickness measurements. However, no consensus regarding examination 

technique has yet been derived, although several have been suggested (23;167;168). Even though the 
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sensitivity regarding cartilage lesions detection has increased with the introduction of new cartilage 

sensitive sequences, there are still limitations regarding visualization of the early and subtle degenerative 

or traumatically induced cartilage alterations, as supported by a thorough review from Radiology in 2003 

stating that: “Except for full-thickness lesions, the role of MR imaging in detecting articular cartilage 

defects has not been well established. Especially for lesions that are limited to half of the cartilage 

thickness, the diagnostic accuracy of MR imaging seems poor. We performed a MEDLINE search of 

articles on MR imaging of knee cartilage, but among the articles that we found, we considered the 

patient population, grading systems, definition of disease, and regions studied as too heterogeneous to 

justify a meta-analysis. Thus there is a need for new imaging techniques visualizing the molecular 

processes within the cartilage (169). Several molecular imaging methods have been suggested like 

“magic angle” effect of T2 (Xia Y 2002  MRM) and “diffusion tensor imaging”(170) Assumingly these 

methods mostly reflect the collagen architecture and breakdown, T2-diffusion and magnetization transfer 

that seem to be sensitive to the molecular structure and concentration of both collagen and the 

glucoseamino- glycan (GAG) content, but all of these techniques that may play a role in the future are 

not used often due to technical limitations and reproducibility issues. The most used technique for 

cartilage composition measures in OA are “T2 mapping” (171), “T1-rho mapping”(172) and 

“dGEMRIC”(23). T2 mapping is a promising and obvious candidate for measuring cartilage 

composition, since the T2 value is sensitive to many of the interesting aspects of the cartilage such as 

tissue architecture and hydration as well as molecular structure and concentration, but this novel 

parameter is not fully understood, and the clinical value is still debated since the T2 value in longitudinal 

studies have shown little or no change over time. More importantly, the T2 value seems to differ only a 

little between the OA and control groups, and one study could not find T2 value differences in the 

different stages of OA (173).  

The newest parameter suggested for cartilage composition imaging is the T1-rho mapping technique that 

seems to reflect and correlate to the GAG and the collagen concentration, but which might be most 

affected by the collagen concentration. Even though this parameter is regarded as a sensitive marker for 

cartilage disease, understanding it is challenging, as many components within the cartilage affect the 
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measured values, which makes interpretation difficult. Other aspects in T1-rho measurements are the 

hardware requirements, the long examination times and radiofrequency power deposition, which all 

together limit the clinical use.     

 

 dGEMRIC 

The most promising technique to date, although time-consuming, is the dGEMRIC method of 

intravenous (indirect) delayed MR arthrography and T1-relaxation mapping of the cartilage. The 

technique has been shown to indirectly image the content of GAG within the cartilage, and has already 

been investigated in several in-vitro as well as in-vivo studies(18-21;174;175). The technique is based on 

the fact that the GAGs are negatively charged, therefore, if a charged MRI contrast agent such as 

GdDTPA2- (Magnevist®, Schering) is given time to passively distribute in the cartilage, it will distribute 

in inverse relationship to the GAG concentration. Because the GdDTPA2- distribution in cartilage is 

reflected in the MRI parameter of T1, T1 imaging in the presence of GdDTPA2- can be used as an index 

of GAG concentration (174;175). Evidence supporting this assumption comes from an in vitro study 

showing that delayed Gadolinium-enhanced MRI of cartilage can be used to follow GAG replenishment 

over time in degraded cartilage in culture(174). Several in vivo clinical studies have shown the clinical 

feasibility of the technique on 1.5T(19-21;165). The only problem with the technique on 1.5 Tesla, is the 

fact that it is time- consuming with relatively long patient- time in the MR scanner, and that it also 

requires a time- consuming post- processing step in a separate computer with a dedicated software 

program. Thus clinical applications of the method are currently being tested  on 3T MR scanners, with 

promising preliminary results regarding reduction in imaging time, along with increased signal to noise 

ratios and joint coverage.(176;177).  

In a study of patients with hip dysplasia, the GAG concentration in cartilage was significantly 

lower in the symptomatic hips than the asymptomatic,  even though the cartilage thickness was the same 

on both sides, which was interpreted as an immaturity of the cartilage in the dysplastic hip, and  which 

could be a possible explanation of the early development of hip OA in these patients (20). 
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The technique behind dGEMRIC relies as mentioned on the passive diffusion of Gadolinium into the 

cartilage driven by a concentration gradient from outside the cartilage, which is counteracted by the 

negative charge in the cartilage. In other words Gadolinium will diffuse into the cartilage over time and 

thus also have a delayed washout from the cartilage. In theory this can be used to selectively increase the 

signal to noise ratio within the cartilage, which can be detected and visualized by a T1-w sequences such 

as the newly developed 3D T1-w spoiled gradient echo cartilage sensitive sequences. We tested this 

hypothesis in study III in order to investigate whether clinically delayed cartilage imaging, using either 

an i.v. injection (as most groups do) or an IA injection, can overcome the problem of low sensitivity for 

macroscopic changes and low signal to noise ratios in the very thin cartilage of the hip joint. Our 

hypothesis was supported by a recent in-vitro experiment (178) showing that dGEMRIC increases the 

detection threshold of early cartilage lesions in the patellar cartilage.  To our knowledge no data have 

been published prior to our study III of the in-vivo use of the dGEMRIC method for better cartilage 

delineation in the hip joint.  

Future studies will hopefully determine the place of all these interesting parameters, and because several 

tissues are involved in the OA disease entity, most of these measurements might be needed. Thus the 

future challenge will be to develop imaging protocols that can retrieve the different parameters in the 

same session within a reasonable scan time.  

 

Material and methods 

Patients 

All patients in the three studies were recruited from the outpatient clinic, Department of Rheumatology, 

Frederiksberg Hospital. The patients in all studies (I, II and III) were unselected representing the 

standard patient group and the treatments were standard in the department, apart from the extra imaging 

investigations. 

The 25 RA patients included in study I were the subgroup with wrist joint involvement from a larger 

randomized controlled double-blinded trial of the clinical effect of IA etanercept compared with 

methylprednisolone(49). These patients had a therapy resistant wrist joint, which in the opinion of their 
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treating physician demanded an IA injection. The injections were all given guided by ultrasound to 

ensure the correct IA placement of the drug in the wrist. The needle was placed in the proximal radio-

carpal row according to published standards (figure 3)(179). Demographics and baseline characteristics 

are given in study I (appendix I). 

In study II, another group of 17 patients with active RA according to the ACR criteria were enrolled. As 

in study I, these patients had wrist arthritis resistant to the systemic treatment, and the clinician referred 

them to an ultrasound guided IA injection of methylprednisolone, which is a standard within the 

Department of Rheumatology. Demographics and baseline characteristics are given in study II (appendix 

II). In study II, the wrist joint was defined according to published standards for MRI studies (92) (figure 

1). In study III, 5 male and 5 female patients, otherwise unselected, were studied. All 10 patients had 

radiographical signs of hip OA in slight to moderate degree (grade 2-3) according to the K &-L 

score(158) and presence of hip pain. These patients were all participants in an ongoing study of hip IA 

injection therapy (154).  

 

Clinical evaluation: 

In the beginning and in the end of study I the following clinical observations were recorded:  

All patients described the degree of wrist pain on a 100mm VAS and filled in the HAQ questionnaire. 

The same independent clinician, blinded to the treatment, evaluated the number of tender and swollen 

joints (28-joint count), which were furthermore graded 0-3 with 0 = no activity and 3=most prominent 

activity. The physician also filled in a subjective disease activity VAS. The DAS 28 was calculated and 

biochemical blood tests, including IgM and CRP concentrations, were performed. 

In study II the patients were seen after 2 weeks and possible adverse events were recorded after clinical 

inspection of the wrist area.  

In study III the ten patients recruited were participants in a larger clinically randomized study of hip OA. 

The clinical details of these patients were not used in our study and are described elsewhere (154).   
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MRI: 

All MRI examinations in study I-II were performed using a 0.2 T musculoskeletal dedicated extremity 

scanner (E-scan®, Esaote Biomedica, Genoa, Italy). To select the most appropriate image protocol for 

study I and II, a pilot experiment was carried out at the Parker Institute where the potential useful 

standard sequences for joint assessment were first tested on a porchine phantom (a ribcage) to evaluate 

how the different sequences performed regarding fat/muscle/bone contrast, fluid detection, SNR, time 

consumption and number of acquisitions in terms of image quality. Later on, four of the sequences that 

proved best in the pilot experiment (3D Turbo T1-w gradient-echo, T1-w spin-echo (SE),  Turbo multi-

echo and T2-w contrast enhancement (CE) gradient echo) were tested on patients to evaluate the best 

protocol for detecting the usual pathology in RA of the wrist, such as bonemarrow oedema, synovitis, 

erosions, effusion and tenosynovitis.  We chose the standard sequences delivered with the MRI scanner 

as we were not capable of writing new sequences, and based on the experiences from the pilot study, we 

initially used both axial and coronal T1-w spin-echo (SE) and 3D turbo T1-w gradient-echo images 

before and after intravenous injection of Gadolinium. When our preliminary results were analysed (data 

not shown) and we noted a better and more sensitive detection of the small erosions using the 3D Turbo 

T1-w gradient echo sequence compared to the T1-w SE sequence (figure 2), we abandoned the SE 

sequence from the protocol in April 2004. The main reason for choosing the 3D turbo T1-w gradient-

echo sequence was that this sequence could give us sub-millimetre in-plane resolution (0.8 x 0.8) and a 

slice thickness of 1-1.2mm which was necessary to see the post contrast enhancement within the 

erosions even though there was a substantial chemical shift artefact (figure 2). The other sequences 

tested along with the T1-w SE all had a slice thickness of 2-3mm making visual evaluation of contrast 

enhancement within the small erosions difficult due to partial volume artefacts (figure 2). Testing the 

different sequences also revealed that multiplanar reconstruction of the 3D dataset in the orthogonal 

plane gave a visual insufficient image resolution regarding detection of the small erosions, because the 

used standard 3D T1-w turbo sequence was not entirely isotropic.  
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Figure 2: Sequence selection on the low-field MR scanner:  
For optimal image contrast regarding synovitis and erosion detection the 3D T1 Turbo gradient
echo sequence is superior to the Spin Echo (SE) T1. Note the arrow pointing at an erosion in 
the hamate bone visible on the STIR but best seen on the coronal 3D T1 Turbo sequence. Both 
T1 images are after Gadolinium contrast, note how easy contrast enhancent is detected within 
the erosion on the 3D T1 Turbo sequence compared to the T1 SE sequence (arrow).   
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erefore we decided to continue the protocol, scanning with both a 3D T1-w turbo sequence in the 

al- and in the coronal plane before and after contrast, and we used the 3D Turbo T1-w sequences for 

 MRI scoring in study I and II. Our findings corresponded with the observations of similar low-field 

I datasets from wrist joints in RA patients published by Ejbjerg et al in 2005(12) who found, that the 

 T1-w sequence performed much better than the T1-w SE sequence when scoring erosions. Thus we 

ld not publish these observations, but only mention them in the article describing study I, which was 

epted for publication in November 2007 in Journal of Rheumatology. Our findings are also in 

cordance with earlier published data regarding sequence selection(11;12;113), except that Ejbjerg et 

Taouli et al and Schirmer et al, all scanned in only one image plane with subsequent reconstruction in 

 orthogonal planes. In addition Taouli et al did not use i.v. Gadolinium in their study for synovitis 

ring, and Schirmer et al did not use the OMERACT RAMRIS score for erosions. 

r patients were examined in supine position with the hand alongside the body. For signal collection, 

eiver-only cylindrical solenoid wrist coil was used. The following pulse sequences were applied: 
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gradient-echo scout, coronal T1-w spin-echo (TR/TE: 600/18 ms, FOV/matrix: 180 x 180 mm / 192 x 

192, slice thickness 2,0 mm), coronal STIR (TR/TE/TI: 1310/24/85, FOV/matrix: 200 x 170 mm / 192 x 

163, slice thickness 3,0 mm) and axial/coronal turbo 3D T1-w gradient echo (TR/TE: 38/16, 

FOV/matrix: 180 x 180 x 100 mm / 192 x 160 x 72, slice thickness 0,8 mm). After these images were 

acquired, an intravenous injection of Gadolinium-DTPA (Magnevist, Schering AG, Berlin, Germany) 

was given at a dose of 0.2 mmol/kg of body weight. Following the Gadolinium injection, the coronal and 

axial T1-w 3D pulse sequences mentioned above, was repeated. Total scan time was 45 minutes. All 

images were evaluated on the scanner-processing console using the standard Esaote® software. The 

MRI data were paired and evaluated by the same independent observer in chronological order as 

recommended by Van der Heide et al(180) for longitudinal x-ray studies, and suggested by 

Haavardsholm et al(181) for longitudinal MRI studies of the wrist. The MRI observer (MB) had general 

MRI research experience since 2001, and dedicated low-field MRI research experience of joint 

pathologies since 2003. Furthermore, the MRI reader was supervised at all time during the initial reading 

experience by a senior expert in musculoskeletal radiology (KEJ). KEJ  also performed the OMERACT 

RAMRIS scoring of 10 randomly chosen wrist joints before and after treatment, which were used to 

calculate the Intra Class correlation Coefficient (ICC) of the inter-observer variation score (see below).  

The disease activity was scored according to the OMERACT RAMRIS evaluation standard for synovitis, 

bone marrow oedema and erosions (115)and in cases of doubt, the OMERACT reference atlas was used 

(92). The MRI observers were blinded to the clinical, biochemical, and US data. 

 

In study II, following the same baseline MRI examination as mentioned above, all patients had an US 

guided IA drug injection into the space between the central part of the radius and the lunate bone in the 

wrist (figure 3).  

 

The drug solution contained 1ml Depo-Medrole® (40mg/ml), 0.5ml Lidocaine® (5mg/ml) and 0.1-0.15 

ml Gadolinium (Omniscan® 0.5mmol/ml).  



 

Figure 3: Ultrasound guided injection.  
 
It is a longitudinal image with proximal oriented left. The needle tip (arrow) is seen with comet tail
artefact between radius (R) and lunate (L). The injected fluid is seen as a hyperechoic cloud
(arrowheads) spreading distally from the needle tip into the synovial duplication of the radiocarpal
joint (S). On ultrasound, the fluid does not continue into the synovial duplication of the intercarpal
joint cavity (SS). General Electric, Logiq 9 with a 14 MHz linear array matrix transducer. 
 

Gadolinium dose: 

The Gadolinium dose was chosen after a minor in-vitro pilot experiment testing different doses (0.1, 

0.15, 0.2, 0.3ml Omniscan 0.5mmol/ml) of the Gadolinium compound added to 2 ml saline.  

 In addition we tried to use a pre-diluted Gadolinium solution of 2mmol/l (Magnevist®, Schering, 

Germany) but adding 0.15 ml of this solution to the injected methylprednisolone was too low a dose to 

be recognized on the subsequent MR images on both high and low field (data not shown).  

The chosen dose of Gadolinium ranged from 0.1 to 0.15ml taken from a standard Gadolinium solution 

(Omniscan 0.5mmol/ml), which gave good enhancement in a pilot examination and was easy to apply to 

the drug solution for the clinician performing the US guided injection without prior dilution. This gave a 

Gadolinium concentration of approximately 45-50mmol/l in the injected solution which is approximately 

ten times higher than the recommended MR arthrography solution on low field scanners according to a 

recent publication(182). The high concentration did leave room for further dilution after injection 

without loosing signal, as we suspected a dilution of the injected Gadolinium due to possible existing 

effusion as well as washout from the joint cavity. There was a delay of 20-30 minutes between the US 
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guided injection and the subsequent MRI using the 3D T1-w turbo sequence in the axial and coronal 

plane, in order to trace the distribution pattern of the injected drug solution. The first 5 patients were also 

scanned after the IA injection on a high-field MR-scanner (Philips Intera® 1.5T, Philips, Eindhoven 

Nederland) in order to evaluate whether low-field MRI had equal sensitivity compared to high-field MRI 

in tracing the distribution pattern of the injected drug. The following sequences were applied in the high-

field scanner: gradient echo scout, 3D coronal and axial Gradient echo T1-w FFE SPIR with SENSE 

(TR/TE : 39/5.2, FOV/matrix :  150x150x100mm /  512x256x166 , slice thickness 1.5mm).   

 

In study III the idea to use the dGEMRIC technique to obtain better cartilage images in the hip joint 

using the dGEMRIC technique, was developed in a case of an elderly patient referred to MRI of the hip 

prior to hip replacement surgery. The patient had a baseline standard MR protocol of the hip, revealing a 

destructed femoral head with severe cystic changes, joint space narrowing and the impression of severe 

cartilage breakdown (figure 4A). 

 

Figure 4: Hip joint 
imaging   
 
Sagittal 3D SPGR T1-w 
cartilage sequnece before 
A)   
And 90 min after i.v Gd-
GDTPA B). 
 
Note the profound 
enhancement in the 
remaining cartilage of 
the hip joint in B that is 
not visible in image A)  
 A B

She also had a massive synovitis that seemed to displace the iliopsoas muscle. After i.v. Gadolinium the 

patient could not lie still due to hip pain and we had to wait approximately 90 minutes for pain relief 

before the post contrast images could be taken. The delayed post contrast images showed an 

enhancement of the remaining cartilage in the hip joint that was not visualized in the baseline images, 

thus confirming our hypothesis that a delayed increase in cartilage signal was possible (figure 4B).  
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The use of the dGEMRIC technique and subsequent scanning with a clinical 3D T1-w cartilage sensitive 

sequence has not been suggested before, as all previous publications using the dGEMRIC technique 

have been done in order to calculate T1 maps of the cartilage, and thus get an estimate of the relative 

GAG content within the imaged cartilage(18;19;21-23). Additionally the dGEMRIC technique in the 

published literature is performed using an i.v. approach based on the pioneer work by Bashir et al in 

Radiology 1997(175). The group developed the dGEMRIC technique when testing a double i.v. dose to 

a 4mmol/l IA dose in the knee joint of two patients and found no differences in performance regarding 

the subsequent T1 maps. Bashir et al thus concluded that a double i.v. dose should be used due to 

feasibility reasons.  

In study III we had the opportunity to test whether an i.v. or an IA approach would perform best 

regarding cartilage enhancement using the fore mentioned 3D T1-w cartilage sensitive sequence. We 

used a standard clinical 1.5 Tesla MR scanner (Signa Exite, General Electric Cooperation, Milwaukee, 

Wisc, USA) for all patient examinations, applying a dedicated receive-only phase array body coil. The 

baseline MRI protocol used is generally accepted in the clinical setting and consisted of a conventional 

coronal STIR  imaging (slice-thickness 5mm, TR: 4000ms, TI:150ms, TE:38ms, FOV: 380x380mm) as 

well as a coronal T1-w fat-saturated spin echo sequence (slice thickness of 5 mm, TR:690ms/TE:9ms, 

FOV 380x380mm). Following these conventional sequences, both hip joints were scanned using a 

standard clinical T1-w spoiled gradient echo (SPGR) cartilage imaging sequence in the sagittal plane 

(slice thickness of 2mm, TR:38ms/TE:6,9ms, FOV: 250x250mm, matrix: 512x512, giving a pixel size of 

0.48x0.48mm) .  All patients were placed in the supine position (feet first). Images were obtained using 

the phase-array body-coil, placed with the symphysis in the centre of the coil. All subjects were 

examined twice within a one-week interval and all scan parameters as well as image planes were 

identical throughout the study. In the first examination (the indirect MR arthrography), MRI was initially 

performed without contrast administration. Thereafter 0.3mmol/kg body weight (triple routine 

dose(183)), of the Gadolinium contrast agent Gd-DTPA (Magnevist®, 0.5mmol/ml, Schering AG, 

Berlin, Germany) were administered i.v.  



 

 

Following i.v. Gd-DTPA the patient was asked to perform light stair walking as recommended for 

approximately 15 minutes within the outpatient clinic and 90-180 minutes after the i.v. Gd-DTPA 

injection, the T1-w  MRI sequences of each hip joint were repeated.    

At the second MRI examination (direct MR arthrography), MRI was preceded by injection of 2.2 ml 

mixture of Gd-DTPA (4mmol/l) and a drug guided by US(184).  Again, the patient was asked to walk 

for 15 min. in the outpatient clinic and the final MRI was performed 90-180 minutes after injection. 

 

Ultrasound 

An Acuson Sequoia ® was used for all studies. This equipment was regarded as the best in its field at the 

time of investigations. In study I and II, the ultrasound examinations were performed according to 

published standards (43;184) and all examinations performed by specialists trained in musculoskeletal 

US. The US in study I was performed immediately prior to and on the same day as the MRI 

examinations, while in study II, the US was  done in between the two MRIs.  

The patients in study I and II were placed opposite the operator in the upright position with the hand of 

interest placed on a cushion, fully pronated (figure 5). The wrist was scanned on the dorsal side from 

side to side in the longitudinal plane and from superior to inferior in the transverse plane. 

 

Q

D

c

Figure 5 
The US injection technique, the patient position (A) and the corresponding US image (B) 
illustrating how the injection is performed in the central part of the joint. This procedure ensures
that the injected drug is placed inside the joint cavity in the area between the central part of the 
radius end the lunate bone. Note arrow pointing at the needle tip visible in the scan plane. 
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uantitative estimation of the vascularisation in the synovial membrane was performed using the colour 

oppler image (CDI) with maximum colour activity selected for analysis. The synovium inside the 

olour box was traced, thereby defining a ROI. By using a colour recognition function, the amount of 
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coloured pixels was then expressed in relation to the total amount of pixels in the marked ROI – the 

colour fraction (184).  

In study III an experienced physician performed the US examination and the subsequent IA injections 

with the patient in the supine position and the hip in neutral position. The ultrasound scanning was made 

on an Acuson Sequoia ® using a 5 cm linear probe with a 14 MHz center frequency. Both depth and 

focus of the image were adjusted for the position of the hip joint. The joint was scanned in a longitudinal 

plane slightly angled to the sagittal plane and aligned with the axis of the femoral neck. In the hip joint, 

Doppler signals are detected very rarely (185), and we found none in the 10 patients of study III. 

 
US guided injection 

In rheumatology, a standard approach is recommend when injecting into a joint (179). For the distal 

radio-ulnar joint the drug injection is performed using a superior approach just medial to the ulnar 

styloid, or lateral to the extensor pollicis longus tendon. For the radio-carpal joint a superior approach is 

used entering the triangular space between the distal radius, the lunate and scaphoid bone. For the hip 

joint the use of imaging control (fluoroscopy or US) is recommended (186) for aspiration and/or 

injection into the hip, as arthrocentesis of the hip joint is technically difficult, and unless fluid is 

aspirated, the needle cannot be confirmed in the joint space without the use of imaging. In all cases the 

needle is in the correct position if it can be pushed easily to the required depth and the injection can be 

made with little resistance.  

The US guided injections in study I and II were performed according to recommended standard from the 

dorsal side of the wrist with the transducer in the sagittal plane showing the distal end of the radius and 

the proximal part of the lunate bone as well as an extensor digitorum tendon in the image plane. The 

needle was inserted perpendicularly to the transducer and the drug injection was documented by 

recording an image-clip during injection with the needle tip in the image plane 

In study III the needle (gauge 21, 0.8 x 80 mm) was inserted anteriorly 8-10 cm under the inguinal 

ligament towards the anterior/inferior capsule below the femoral head. By ultrasound the needle could be 

traced, in real time, from 1 cm below the skin surface all the way to the joint. The injection consisting of 

1 ml lidocaine 1% along with the drug, 0.5-1.0 ml air and 0.2 ml saline diluted Gd-DTPA was injected 
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into the joint(125) The total volume of the injected solution was 2.2 ml containing a concentration of 4 

mmol/L Gd-DTPA. A movie clip along with still ultrasound images of the aspiration and the injection of 

air, as well as the injection of the drug, was recorded as evidence of the placement.  

 

Statistics: 

The statistical analyses in all studies I-III were performed using the statistical analysis software program, 

SPSS® version 13 for Windows®. P-values < 0.05 were considered significant. 

In study I, differences in treatment response between baseline and follow up in all the patients were 

tested by using Spearman’s two-tailed correlation. Results are presented in table 2. The treatment effect 

between the two treatment groups was tested by using simple general linear models with values at 4 

weeks as dependent variable, treatment as a factor (two levels), and baseline values as a covariate. 

Estimated marginal means derived from these models are presented in table 2. By using these models we 

eliminate minor differences in baseline values, allowing a difference in estimated marginal means to be 

an estimate of the true difference between the two groups.  

As recommended by the OMERACT group in clinical treatment trials the intra-reader and the inter-

reader reliability of the different OMERACT MRI scores (synovitis, erosions and bonemarrow edema) 

in our study were evaluated in 10 randomly chosen patients and calculated by means of the two-way 

mixed model, single measure intraclass correlation coefficient (ICC) for absolute values, and was 

calculated for both the baseline and the follow-up scores as recommended by Haavardsholm et al(181) 

(table 3A+3B). Scores above 0.8 is considered very good correlation as the ICC coefficient can be 

regarded as a kappa value.  

Sensitivity to change was calculated for the intra-reader results as the smallest detectable difference 

(SDD) described by Bland and Altman (187) and recommended as an outcome measure in longitudinal 

trials with MRI scores of the wrist in rheumatology (188). The SDD represent the smallest detectable 

change score that within a 95% confidence interval represent a “true” change and not a measurement 

error (table 3A).  

SDD was calculated according to the following formula:  
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SDD = 2 x SD ((observation Afollowup – observation Abaseline) – (observation Bfollowup – observation Bbaseline) 

where SD = standard deviation ; observation A = score at first reading and observation B = score at 

second reading.  

Finally the minimum detectable change (MDC) was calculated for the intra-reader results to express the 

SDD as a percentage of the maximum score (181)(table 3A). P values <0.05 were considered significant. 

For the inter reader  

In the 17 patients with RA included in study II, the MR images were evaluated by two trained viewers in 

musculoskeletal MRI  (Mikael Boesen and Marco Cimmino) using qualitative comparison between the 

T1-w MR images before and after IA injection, in order to detect the distribution pattern. The 

distribution pattern of each patient was recorded regarding distribution to the radio-ulnar joint, radio-

carpal joint, the inter-carpal joints and the carpo-metacarpal joints. Spread to the tendon sheaths was also 

recorded. A full distribution in one joint compartment was given the value 1, partial distribution to a 

single joint compartment was given the value 0.5 and no distribution was given the number 0 (Table 5).  

A sum of the total distribution count for all 4 compartments was calculated and the relationships between 

the distribution sum for all 4 compartments and the OMERACT score, duration of disease, RF status and 

CRP concentration was calculated using Spearman’s two-tailed correlation. 

In study III the distribution of the results was tested, and as it was not different from a normal 

distribution, parametric tests were used. Baseline results were compared to i.v. and IA results using 

Student t-test. I.v. and IA results were standardized by dividing the ROI values with the standard 

deviation of the mean (SD) in each ROI, and tested using the Student t-test. Our null-hypothesis (H0) 

was that there were no differences in signal intensity of cartilage between the two methods. SNR was 

calculated using the formula S1: N, where S1 corresponds to the mean signal of the drawn cartilage ROI 

and N corresponds to the mean signal intensity of the drawn ROI in the background noise. CNR was 

calculated using the formula (S1 - S2)/N, where S2 correspond to the mean signal intensity of the bone 

marrow ROI in the femoral head. For a given joint and between patients, the ROIs of the bone marrow 

and the background noise were identical in shape and size and were placed at the same location in all 
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images analyzed. SD for each drawn ROI was calculated by the Philips View Forum® software. An 

example of a drawn ROI surrounding the hip joint cartilage are given in figure 6. 

Figure 6 
Example of a drawn ROI 
surrounding the hip joint cartilage 
after the IA dGEMRIC method 

 

Results 

Study 1 

At baseline, the patient in the two treatment arms (Methylprednisolone and Etanercept) did not differ in 

demographics regarding the distribution of gender (males/females 3/22), mean age (55 years, range 22-

80), mean duration of RA (7.7 years, range 1.9-30), IgM-RF positive (n=18), mean DAS 28 (4.2, range 

2.1-6.6).  

MRI:  

According to the OMERACT reference atlas for wrist joint pathologies in RA(92), the patients had in 

general a mean total erosion-, and bone edema score at a rather low level and a mean total synovitis 

score in the midrange (table 2). No significant differences were observed for MRI scores between the 

two groups at baseline. 

The global MRI synovitis score did not differ between the treatment groups at 4 weeks (estimated 

marginal mean: methylprednisolone 4.91 vs. etanercept 5.24, p = 0.4) nor did the overall response score 

differ from baseline to 4 weeks (p=0.52)(figure 7 and table 2).   
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The overall MRI bone marrow edema score was also unchanged after 4 weeks (p=0.13)(table 2) and 

neither were any group differences found  (estimated marginal mean between groups (p = 0.1). The 

global erosion score increased significantly at 4 weeks in both groups (p<0.001) (table 2).  

Table 2 
Clinical parameters*, MRI Total OMERACT score and Ultrasound (US) score at baseline and 4 weeks 
follow-up in the total patient group 
 

Mean (SD) Baseline 4 week P 

Swollen target joint* 1.6 (0.6) 0.9 (0.8) P < 0.001 

Tender target joint* 1.72 (0.9) 0.8 (1.0) P < 0.001 

Physician VAS* 36.3 (25.1) 15.2 (15.7) P < 0.001 

Patient VAS* 43.3 (24.7) 32.2 (28.6) P = 0.09 

MRI erosion score  17.88 (8.5) 18.25 (8.6) P < 0.001 

MRI bone oedema score 4.46 (7.2) 3.71 (6.6) P = 0.13 

MRI synovitis score 5.08 (2.0) 4.96 (1.9) P = 0.52 

US color pixel fraction  0.25 (0.18) 0.19 (0.14) P = 0.07 

US resistive index  0.75 (0.13) 0.77 (0.10) P = 0.36 
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Figure 7: 
MRI images of the wrist at baseline (A,B,E) and 4 weeks after (C,D,F) i.a injection of steroid. 
All images are post-Gadolinium. Note that the synovitis score and visible erosions are 
unchanged. A,C: Axial 3D Turbo T1 gradient echo image of the distal radio-ulnar joint. B,D: 
Axial 3D Turbo T1 gradient echo image of the intercarpal joint; E,F: Coronal 3D Turbo T1 
gradient echo image of the wrist.  
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he ICC, SDD and the MDC for the intra-reader agreement of the different MRI scores are presented in 

able 3A, and the ICC for the inter-reader agreement of the MRI scores are presented in table 3B. The 

umber of patients that showed a regression or a progression in the MRI scores before and after 

orrection by the intra-reader SDD are presented in table 4. 

able 3A: 
ntra-reader agreement of the different OMERACT MRI scores  
etermined by a two-way mixed effect model single measures  
ith absolute values 

MRI ICC 
Baseline 

ICC 
Follow-up SDD MDC in % 

Erosion 
score 0.96 0.95 1.89 4.75 

Bone 
oedema 
score 

0.89 0.81 2.08 9.56 

ynovitis 
score 0.89 0.95 0.86 9.56 
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Table 3B 
Inter-reader agreement of the different OMERACT MRI scores  
determined by a two-way mixed effect model single measures  
with absolute values 
 

MRI ICC 
Baseline 

ICC 
Follow-up 

ICC 
Change 
score 

Erosion 
score 0.87 0.86 0.83 

Bone 
oedema 
score 

0.95 0.96 0.97 

Synovitis 
score 0.69 0.89 0.77 

 
 
Table 4: 
MRI Total OMERACT score and the number of subjects with increased or decreased values at baseline 
and 4 weeks before and after correction of the SDD from the intra-observer results. 
 

MRI Mean (SD) Baseline 4 week No. of 
progressors 

No. of 
regressors SDD

No. of 
definite 
progressors 
corrected 
by the SDD 

No. of 
definite 
regressors 
corrected 
by the 
SDD 

MRI erosion 
score 

17.88 
(8.5) 

18.25 
(8.6) 8 0 1.9 1 0 

MRI bone 
oedema score 4.46 (7.2) 3.71 (6.6) 1 5 2.1 0 2 

MRI synovitis 
score 5.08 (2.0) 4.96 (1.9) 3 4 0.86 3 4 

 
An example of a patient with progression in total OMERACT erosion score higher than the SDD and 

with a likely erosive progression in the hamate bone is shown in figure 8A+8B. 
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Figure 8B  
This figure shows that we see a configuration change in the original data at follow-up of the erosion 
outlined by the arrow, which is also seen in the images above and below the scan plane presen
figure 8A We conclude that this configuration change is not likely to be either a scan plane p
volume artifact nor  a chemical shift artifact as this erosion at baseline does not change 
configuration after reconstruction, and the fact that the configuration change is visible above and 
below the imageplane presented in figure 8A

Figure 8B  
This figure shows that we see a configuration change in the original data at follow-up of the erosion 
outlined by the arrow, which is also seen in the images above and below the scan plane presen
figure 8A We conclude that this configuration change is not likely to be either a scan plane p
volume artifact nor  a chemical shift artifact as this erosion at baseline does not change 
configuration after reconstruction, and the fact that the configuration change is visible above and 
below the imageplane presented in figure 8A
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istributed throughout the joint. In table 1 the mean colour pixel fraction and RI values of the wris

iven. There were no significant differences between the baseline measures in the two groups of 

atients. The US Doppler was calculated as colour fraction, which did not change significantly bu

howed an improvement trend from the baseline value of 0.25 (range 0.06-0.77) to 0.19 (range 0.01

.44) at 4 weeks follow-up (p=0.07). In addition, no significant changes were seen in resistive index 

RI), which were 0.76 at baseline in both groups and 0.77 at 4 weeks (p=0.36) (figure 9 and table 2) 
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Figure 9: 
Ultrasound colour Doppler image of the radial part of the wrist joint from the same patient as 
shown in figure 7. Note that the colour fraction is basically unchanged from baseline 0.2 (A) 
to 4 weeks follow-up 0.19 (B)  
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linical data:  

oth groups showed a significant improvement in the clinical parameters of swollen target joint score 

p<0.001),  tender target joint score (p<0.002), physician evaluated VAS (p<0.001), and an 

mprovement trend in patient evaluated VAS (p=0.09) (table 2) 

 

linical vs. imaging data: 

ithin the two groups, the clinical- and imaging scores showed no significant correlations in the 

tanercept group at 4 weeks follow up, while in the methylprednisolone group changes in clinical target 

oint tenderness score correlated with both the change in the OMERACT synovitis score 

r=0.60,p<0.04) and the change in color fraction index (r=0.68,p<0.02)    

he other laboratory and clinical parameters (IgM, CRP, HAQ DAS 28 and VAS) did not correlate 

ith any imaging data (MRI and US) at baseline, nor at 4 weeks follow-up. 

tudy II 

he results from the patient evaluated treatment response, the OMERACT MRI scores and the  

istribution count for each patient in study II are listed in table 5.There were no differences in 

ensitivity, between the 5 patients examined on both high- and low-field MRI regarding the detection of 

he drug distribution (mean distribution score 2.4 on both modalities). We were not able to compare the 

MERACT scores from the different MRI modalities, because the high-field protocol was not designed 
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for this purpose, as we could not give the patient i.v. Gadolinium contrast two times within the same 

day.  

Table 5 
The OMERACT MRI scores and the distribution count for each patient 
Table 1. 
The OMERACT MRI scores and the distribution count for each patient.

Patient Sum Sum Sum D_RU D_1 D_2 D_3 D_Flex D_Ext Sum
No. MRI Erosion MRI Oedema MRI Synovitis Distibution
1 25 12 3 0.5 0 0 0 0 0 0.5
2 9 5 3 0 0.5 0 0 0 0 0.5
3 11 11 6 0 0.5 0 0 0 1 1.5
4 9 7 6 1 1 1 1 0 0 4
5 16 0 4 1 1 1 0 0 0 3
6 16 5 8 1 1 1 0 0 0 3
7 14 35 9 1 1 1 1 0 0 4
8 7 1 4 1 1 1 0 0 0 3
9 20 32 8 1 1 1 0 0 0 3

10 22 4 4 1 1 0 0.5 0 0 2.5
11 4 2 3 0 1 0.5 0 0 0 1.5
12 17 7 3 0 1 1 0.5 0 0 2.5
13 10 13 4 0 1 1 0.5 1 0 2.5
14 12 8 5 0 1 1 0 0 0 2
15 20 7 5 0 1 1 1 0 0 3
16 22 6 5 0 1 1 0.5 0 0 2.5
17 18 10 4 0 1 0 0 0 0 1

Mean 14.2 9.6 5.1 0.4 0.9 0.7 0.3 0.06 0.06 2.4
Minimum 4.0 0.0 3.0 0.0 0.5 0.0 0.0 0.0 0,0 0.5
Maximum 22.0 35.0 9.0 1.0 1.0 1.0 1.0 1,0 1.0 4.0
MRI : OMERACT MRI score
D_RU : Distribution to the Radio-ulnar joint  0 = No distribution to the joint space
D_1 : Distribution to the Radio-carpal joint 0.5 = Partial distribution to the joint space 
D_2 : Distribution to the Inter-carpal joint  1 = Full distribution
D_3 : Distribution to the Carpo-metacarpal joint
D_Flex : Distribution to the flexor tendons
D_Ext : Distribution to the extensor tendons  

No universal pattern was seen in the distribution of the contrast. Only 2 patients had a full spread of 

contrast to all 4 joint compartments, and the mean distribution count for all patients was 2.4 (range 0.5-

4). One patient only had contrast in the radio-ulnar joint, three patients had full or partial spread of 

contrast to the proximal carpal row and 10 patients had full or partial spread of contrast to both the 

proximal and intercarpal rows (figure 10-12)(Table 5). 
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Figure 10: Distribution to the radio-carpal and radio-ulnar joint compartments Figure 10: Distribution to the radio-carpal and radio-ulnar joint compartments 
  
Coronal  (A) and axial (B) and reconstructed sagittal (C) Turbo 3D T1 gradient echo images 
after IA treatment. This patient is an example of distribution to the radio-ulnar joint and the 
radio-carpal joint. Note that pannus tissue seems to block further spread of the Gadolinium 
contrast to the more distal parts of the wrist joint. Note that the large erosion in the lunate bone 
is well-filled with the contrast agent giving a possible T2 effect in the image. 

Coronal  (A) and axial (B) and reconstructed sagittal (C) Turbo 3D T1 gradient echo images 
after IA treatment. This patient is an example of distribution to the radio-ulnar joint and the 
radio-carpal joint. Note that pannus tissue seems to block further spread of the Gadolinium 
contrast to the more distal parts of the wrist joint. Note that the large erosion in the lunate bone 
is well-filled with the contrast agent giving a possible T2 effect in the image. 

 



 

 

 

 

 

Figure 11: Distribution to the radio-ulnar joint, the radio-carpal joint and the inter-carpal joints.Figure 11: Distribution to the radio-ulnar joint, the radio-carpal joint and the inter-carpal joints.
  
Coronal (A) and axial (B) Turbo 3D T1 gradient echo images after i.a. treatment. This patient is
an example of distribution to the radio-ulnar joint, the radio-carpal joint and the inter-carpal 
joints. Note the arrow in (A) pointing at a disrupted intrinsic carpal ligament between the lunate 
and the scaphoid bones, compared to an intact ligament between the lunate and the triquetrum. 
The line in (A) indicates the image level in (B), where the arrowhead points at the skin 
penetration of the ultrasound guided injection. 

Coronal (A) and axial (B) Turbo 3D T1 gradient echo images after i.a. treatment. This patient is
an example of distribution to the radio-ulnar joint, the radio-carpal joint and the inter-carpal 
joints. Note the arrow in (A) pointing at a disrupted intrinsic carpal ligament between the lunate 
and the scaphoid bones, compared to an intact ligament between the lunate and the triquetrum. 
The line in (A) indicates the image level in (B), where the arrowhead points at the skin 
penetration of the ultrasound guided injection. 
5959
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Figure 12: Distribution to all wrist joint compartments. 
 
Coronal Turbo 3D T1 gradient echo images after i.a treatment in two patients (A) and (B). Both 
patients are examples of distribution to  all compartments (n=3) of the wrist including the 
radio-ulnar joint. Note the arrow in (A) pointing at a disrupted intrinsic carpal ligament 
between the lunate and the scaphoid bones compared to an intact ligament between the lunate 
and the triquetrum. 

 

 

 

 

The OMERACT synovitis score correlated with the distribution count (r=0.60, p=0.014), while no 

association was found between the distribution pattern and the erosion score (p=0.70) or the bone 

marrow oedema score (p=0.35).  There was no correlation between the MRI distribution pattern of the 

drug and the following parameters: Age, disease duration, IgM RF status, and CRP value.  

 

We saw evidence of a communication between the wrist compartment and inflamed tendon sheaths in 

some patients (n=2). In one case distribution to the extensor tendons was seen, and in one patient a 

signal enhancement was seen in the flexor tendons.  

In 5 patients an additional MRI the following day (18-26 hours after injection) found no trace of 

Gadolinium. Clinical inspection at baseline and at 2 weeks follow-up revealed no side effects after the 

injection. 
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Study III 
Pre-contrast SNR and CNR values did not differ between the first and second MRI examination  (data 

not shown).  

All images obtained after i.v. and IA Gd-DTPA showed a marked signal intensity increase within the 

cartilage compared to non-enhanced baseline images. This was noted both in the qualitative image 

evaluation (figure 13A-C) as well as by a marked increase in SNR (p<0.002) and CNR (p<0.0001) of 

the cartilage (table 6).  

 
Table 6: Signal to noise and contrast to noise ratios in the ROIs of the hip- joint cartilage, on images 
without Gd-DTPA, after indirect i.v. Gd-DTPA and after direct IA Gd-DTPA. 
 

Signal to noise ratio Contrast to noise ratio 
Patients Without 

Gd-DTPA 
After i.v 

Gd-DTPA 
After IA 

Gd-DTPA 
Without 

Gd-DTPA 
After i.v 

Gd-DTPA 
After IA 

Gd-DTPA 
1 4.12 7.20 6.90 3.71 9.04 7.17 
2 4.18 6.50 8.97 3.42 7.10 9.18 
3 4.56 5.09 5.62 4.79 8.50 6.00 
4 4.13 9.26 5.68 4.21 11.80 7.63 
5 5.21 4.20 6.54 4.64 10.52 8.26 
6 4.82 7.87 9.94 5.44 10.35 11.14 
7 4.23 6.16 6.56 4.12 5.23 6.85 
8 5.36 7.72 10.03 5.66 10.94 11.84 
9 3.56 8.05 4.44 3.44 7.89 4.48 
10 4.40 8.32 7.85 4.86 11.22 11.22 

Median 4.31 7.46 6.73 4.42 9.69 7.95 
Mean 4.46 7.04 7.25 4.43 9.26 8.38 

T-test SNR mean baseline vs i.v   p<0.001 
T-test SNR mean baseline vs IA   p<0.001 
T-test SNR mean i.v vs IA 

T-test CNR mean baseline vs i.v.  p<0.001 
T-test CNR mean baseline vs IA   p<0.001 
T-test CNR mean i.v vs IA 
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Figure 13:  
Sagittal T1-weighted 3D SPGR cartilage images of the hip joint without Gd-DTPA (A), 140 min after 
indirect i.v. Gd-DTPA (B) and 140 min after direct i.a. Gd-DTPA (C).  
Note the better cartilage contrast in images B and C compared to image A. The closed arrow points at 
the synovial lining of the joint, note that there is a marked synovial enhancement after the i.v. Gd-
DTPA (B) making it difficult to separate the cartilage and synovial border. The arrowhead points 
toward the subchondral border. Note the better delineation of the subchondral border after i.a Gd-
DTPA (C).  
The open arrow marks the synovial enhancement in subchondral cyst best seen in (B). Femoral Head 
(F), acetabulum (A), musculus iliopsoas (Ip), blood vessels (V), adipose tissue (Ad). 

 
In all patients the IA images showed a clear delineation of the cartilage in areas with synovial lining as 

well as a better delineation of the subchondral border than the i.v. images (Fig. 13C). The i.v. method 

showed CNR problems at the subchondral border, as well as difficulties in distinguishing between 

contrast-enhanced synovium and cartilage (Fig. 13B).  

The impression of a more pronounced cartilage enhancement after the IA injection compared to i.v., 

was confirmed statistically by comparing the SD-corrected SNR values (p<0.01) and CNR values 

(p<0.01) (Table 7 and figure 14).  

No patients experienced adverse events following either i.v. Gd-DTPA or ultrasound guided IA Gd-

DTPA injection.  
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Table 7: Signal to noise and contrast to noise ratios in the ROIs of the hip joint cartilage after SD-
correction of values observed after i.v Gd-DTPA and after IA Gd-DTPA.  
 

Signal to noise ratio Contrast to noise ratio 
Patients After i.v. 

Gd-DTPA 
After IA 

Gd-DTPA 
After i.v. 

Gd-DTPA 
After IA 

Gd-DTPA 
1 1.63 1.60 0.53 0.57 
2 1.18 1.99 0.18 1.06 

3 1.38 1.67 0.36 0.69 
4 1.14 1.29 0.17 0.35 
5 0.80 2.32 0.06 1.54 

6 1.41 1.77 0.40 0.78 
7 1.19 1.59 0.26 0.55 
8 1.30 1.77 0.29 1.25 
9 1.13 1.29 0.12 0.31 

10 1.34 2.04 0.38 1.14 

Median 1.24 1.72 0.27 0.73 
Mean 1.25 1.73 0.24 0.82 

T-test SNR SD-corrected mean i.v. vs IA  p <0.001 
T-test CNR SD-corrected mean i.v. vs IA  p<0.001 

 

 

 
Figure 14 
Signal to noise ratio 
(A) and contrast to 
noise ratio (B) after 
indirect i.v. and direct
IA Gd-DTPA using 
SD-corrected values 
of the drawn ROIs. 
Note that IA Gd-
DTPA has the best 
signal to noise and 
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Discussion 

Study 1: Treatment effect after US guided IA injection in the wrist joint of patients with RA  

Overall, study I provided new evidence regarding the imaging monitored short-term treatment response 

after IA injection in the wrist joint of patients with RA. This double blinded clinical controlled study 

attempted to assess the efficacy of a single IA injection of either etanercept or glucocorticoid after 4 

weeks, which have both shown significant clinical effect within the first month (43;48;189). 

Surprisingly, the clinical response was not confirmed by imaging, as neither MRI nor US-Doppler 

could demonstrate a benefit of one such injection at the 4-weeks follow-up. All parameters tested with 

the two methods proved negative, including synovitis and bone marrow oedema on MRI, and colour-

fraction-index or RI-index on US, which represent very sensitive signs of inflammation (190). The 

clinical observer in our study was blinded to the therapy and phase in therapy of the patients, however, 

a discrepancy between clinical and imaging efficiency may be explained to some extend by bias of the 

patient wanting to experience a positive effect. A definite source of concern was our finding of a 

significantly higher erosion score at 4 weeks follow-up, indicating that joints with active disease may 

deteriorate within a period as short as 1 month due to insufficient response to the injection regardless of 

therapy. The erosions may be in a state of progress, which cannot be arrested by a single injection of 

medication. However, due to the SDD of the erosion score presented in table 3A this result should be 

regarded with some reservation, and the risk of a TYPE 2 error is definitely present. This is supported 

by the results from  table 4, where only one of the patients who had an increase in the OMERACT 

erosion score exceeding the SDD, and the results from table . This patient had however imaging 

evidence of progression in the hamate bone as can be seen in figure 8. To our best knowledge we are 

the first to show MRI documentation of an erosive progression within 4 weeks. 

The intra-observer agreement values that we present in table 3 are all above 0.8 indicating a very good 

correlation, which is in agreement with previously published results on both high-field and low-field 

equipment (181;188). The seemingly higher erosive progression in the etanercept group compared to 

the methylprednisolone group is based on small changes in few patients from a small sample size that 

are all below the measured SDD from this cohort  (table 3A), and should thus be regarded with 
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reservation, again due to a high risk of a type 2 error. The inter-reader agreement presented in Table 3B 

show high level of agreement between observers both in the cross sectional score as well as in the 

change scores which are all above 0.74.  

Table 8 : Interreader correlation coefficient (ICC) from previous studies compared to study I  
   MRI MRI MRI Bonemarrow  Field Strength  
    Synovitis Bone Erosions Oedema   
Østergaard et al*         
  Baseline 0.58 0.65 NA High 
Lassere et al          
  Baseline 0.74 0.72 0.78 High 
Conaghan et al (Ref)        
  Baseline 0.74 0.15 0.08 High 
  Follow-up 0.68 0.45 0.56 High 
  Change 0.46 0.55 0.45 High 
Haavardsholm et al***        
  Baseline 0.69 0.83 0.79 High 
  Follow-up 0.78 0.73 0.95 High 
  Change 0.74 0.67 0.95 High 
Schirmer et al*         
  Baseline 0.86 0.84 NA Low 
Conaghan et al**         
  Change 0.78 0.72 0.09 Low 
Boesen et al (Study 1)         
  Baseline 0.87 0.75 0.95 Low 
  Follow-up 0.86 0.89 0.96 Low 
  Change 0.79 0.77 0.93 Low 
* Østergaard et al and Schirmer et al did not use the RAMRIS score (0-10) for erosions but a score between 0-3 
** Conaghan et al used a 10 year old lowfield MRI dataset with poor image quality to perform their study 
***The presented results are the average ICC's for 4 readers with various RAMRIS expertice from beginner to expert 
 

As can be seen in table 8 the inter-observer agreement in the 10 randomly chosen patients is in the high 

range compared to previous published studies. We were only 2 observers that through out the phd 

period continiusly have been calibrated to the RAMRIS score as the second reader KEJ served as a 

reference for MB throught the the study, whereas the presented ICC for the study of Haavardsholm et al 

that resembles study I, using highfield data, is a bit lower, mainly due to the various experiences of the 

4 readers from beginner to experts in using the RAMRIS score. In addition our study used the 

published reference atlas(92)in all cases of doubt which again can contribute to the higher ICC. Taken 

the ICC of the change score into account the presented results of a higher erosive progression at 4 
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weeks follow-up should again be regarded with caution, due to the small sample size with a high risk of 

a type 2 error. Newer the less we have imaging documentation of a potential erosive progression in the 

hamate bone after 4 weeks that is most likely a true erosive progression and not a partial volume- or a 

chemical shift artefact (see below and figure 8A + 8B page 54-55). In conclusion our disappointing 

one-month results in imaging parameters are in contrast with the clinical impression of the injections in 

joints, which are commonly regarded as having a dramatic immediate effect. This clinical effect was 

also experienced, mostly in small joints, by participants in our former studies of injections with 

etanercept (48;49). However, the imaging parameters can be regarded as more objective evidence that 

after one month, a single injection in the wrist joint may be efficient in some individuals, but the global 

effect in the group is nsufficient. By consequence, clinical measures with subjective scores might give a 

false impression of response if used as the only criteria of success. Our results lend further support to 

the recently published study by Brown et al showing imaging documentation of continuing joint 

deterioration in patients with clinical remission, leading to the conclusion that “imaging assessment 

may be necessary for the accurate evaluation of disease status and, in particular, for the definition of 

true remission”(1).  

Studies of the smaller and single-chambered metacarpophalangeal and the metatarsophalangeal joints 

have reported a good correlation between MRI and US synovitis evaluations (191;192). Our imaging 

data were in contrast to these results, which might be explained by the fact that the wrist is a more 

complicated joint with less strict definitions of region of interest for MRI and US respectively. A 

former study of the wrist from our own group showed a weak to moderate correlation between the MRI 

synovitis score and the US scores, and possible differences in patient selection may also be of 

importance for the results (190). 

Study I is to our knowledge the first to show indications of further bone destruction within a period as 

short as 4 weeks (figure 8A+B). None of our patients were treated with anti-TNF systemically, while 

all by DMARDS, suggesting an insufficient protection by the latter compounds on the disease 

progression.  
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In clinical practice, flares of arthritis in one of a few joints are commonly treated with a single 

injection, even though evidence has been presented that the effect of a single injection of 

methylprednisolone is rather unpredictable, since it has large variations in both clinical and imaging 

parameters of inflammation (Doppler US and RI) (43). A one-shot strategy must be regarded as 

delivering a sort of rescue medication and is not an alternative to changes in systemic treatment in case 

of a generally dissatisfactory treatment of RA. In the meantime, after planning the present study, 

evidence has been presented of a more sustained effect of repeated injections of steroid into RA joints 

(80), while not as the only therapeutic measure. 

The present negative imaging findings could be explained by the relatively long interval of 4 weeks 

between imaging assessments, and we can only speculate whether both drugs had an earlier effect on 

inflammation in the days or weeks after injection. We have found indications of an earlier clinical and 

US response to etanercept, when tested one week after IA injection (193).   

Treatment failure may also be caused by malplacement of the IA injection due to poor technique (85), 

but in our series this problem was overcome by giving all injections under US guidance, with imaging 

documentation of the placement of the injected substance into the wrist joint.  

The present patient group had a long duration of disease, a moderate synovitis score according to the 

OMERACT RAMRIS score, a moderate DAS score, and might be relatively more resistant to the 

injections than would be seen in early arthritis. Whatever the reason for the neutral and possibly even 

negative outcome, our patients were not treated sufficiently and should have been treated more 

aggressively. Especially the potential aspect of rapidly progressing erosions in wrist joints must 

challenge the usual reluctance to treat patients with biologics or IA injections. In Denmark, as in many 

other countries, biologics are used as the last resort, despite the fact that these drugs seem to give 

patients a higher chance of arrest of erosions than traditional DMARDs (73-75).  

Finally, the OMERACT RAMRIS synovitis score could be poorly sensitive to changes in the very short 

term, and not being the ideal method to follow-up IA injections. In this perspective the effect of IA 

glucocorticoid injections in the knee has been successfully evaluated by calculation of synovial 

membrane volume and dynamic MRI (104). On the same note, a new dynamic sequence for the 
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lowfield scanner has successfully been evaluated for discriminating active disease from inactive disease 

in RA patients(194).  

In conclusion, neither MRI nor US parameters revealed a significant effect 4 weeks after treatment with 

a single IA injection of either methylprednisolone or etanercept in the wrist of patients with RA, even 

though we used optimized “state of the art” lowfield MRI and US, as well as internationally 

recommended scoring systems. Furthermore, we present possible MRI evidence of a progressive 

erosive disease within 4 weeks in at least one patient, that could not be stopped by a single IA injection 

which is in clear in contrast to the clinical impression of improvement. By consequence, an injection 

into a joint does not seem to have a sufficient effect on arthritis and should not be used as only measure 

against its flares. It may be speculated that a clinically relevant effect of intra-articular treatment 

requires more than one injection and we suggest considering imaging to monitor IA injections. 

 

Study II: Distribution pattern of US guided injection in the wrist joint of patients with RA 

In study II we saw data that challenge the usual assumption in rheumatology as to drug distribution in 

the wrist joint of RA patients, giving us a potential explanation of treatment failure after IA injection 

into the joint cavity. In 1984 Mikic et al presented evidence of a compartmentalization of the wrist with 

various degrees of communication between the compartments (90) and due to this anatomical variance, 

some authors even suggest a triple injection technique for a whole-joint arthrographic evaluation (195-

197). Thus, treatment failure of a wrist injection may be caused by insufficient spread of the medication 

into all relevant joint compartments. This suspicion of a large diversity regarding the complex anatomy 

and intercommunication of the multiple joints comprising the wrist joint was confirmed in study II, thus 

supporting this hypothesis generated after completion of study I. The different distribution patterns 

presented in table 4 may be due to normal variation or may be caused by arthritic changes.  

A higher degree of joint communication could be caused by destruction of the interposed septa as 

indicated in some patients (fig 11A and 12A). Here, the contrast passes through the intrinsic ligament 

of the lunate and scaphoid bones as an indication of damage to this structure. If this were the 

explanation, a larger degree of communication might be expected in long-standing arthritis, which was, 
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however, not observed in our series. It also could be speculated that passageways between 

compartments might be blocked by pannus, leading to a lower degree of joint communication as could 

be seen in the patient in figure 10. Whatever the reason for the different distribution patterns, our study 

shows that in most cases a drug injection into the radio-carpal joint will be insufficient as treatment for 

the all the joints of the wrist.  

An explanation for non-response in some patients to an IA injection of a potent anti-inflammatory drug 

such as glucocorticoid, is the fact that injections done without guidance may not hit the joint cavity at 

all (85). In our series this possibility was, as in study I, overcome by giving all injections guided by US 

with documentation of the placement of the injected substance into the joint space between the distal 

radius and the lunate in the proximal wrist compartment. In all cases the placement was confirmed on 

the subsequent MRI. What the US technique does not, is to ensure a distribution of the drug into all 

relevant areas of activity, which could be one of the reasons for treatment failure with injections into 

the wrist. To our knowledge, our study is the first to address this potential problem with the use of MRI 

to trace the drug distribution, and our results support the conclusion that communication between the 

various compartments within the wrist joint varies between patients. Our results also showed 

distribution to the tendon sheaths in two patients, which indicate that there is a direct communication 

between the pannus of the wrist compartment and the tenosynovitis of the involved tendons in some 

patients. This distribution could be due to an abnormal capsule communication or a reflux of the 

injected drug through the injection canal, but this was not seen during the actual process using real-time 

US. Our standard is to make sure that the extensor tendons and tendon sheaths are seen clearly on the 

screen and are kept out of range from the needle (figure 3 and 5). Also, in one patient a distribution to 

the flexor tendons was observed after a dorsal injection far from these tendon sheaths. Accordingly, as 

only few patients have communication between the tendon sheaths and the wrist joint, tenosynovitis 

seems not to be treated along with the wrist joint and significant inflammation in the tendon sheaths 

should be treated separately.  

Until now it has been our routine to give IA injections in the wrist in the space between the central part 

of the distal radius and the lunate bone. Our present series shows that this approach is inadequate, and 
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we suggest further studies to develop the optimum injection strategy for the wrist joint. One strategy 

suggested by Koski et al. may overcome this by injecting into both the radio-carpal joint and the inter-

carpal joints, which in their study showed a better response than a single injection into the standard site 

(198). According to our results listed in table 4, the radio-carpal joint was reached to a large extent by 

one injection in the majority of patients (16 of 17). One patient had contrast enhancement only in the 

radio-ulnar joint, suggesting that the US guided injection into the radio-carpal joint applied the 

treatment in this joint space without further distribution to the rest of the wrist. The drug was 

distributed to the inter-carpal joints in 12 of the 16 patients after injection in the radio-carpal joint; but 

in 11 of 17 patients, the contrast did not reach the carpo-metacarpal joints, which must be regarded as 

insufficient treatment. With the use of US Doppler, most active areas in the wrist may be distinguished, 

and possibly partitioned injections should be guided into these by US to optimize the effect of the 

steroid. It must be noted that in some cases an injection placed directly in the pannus may give rise to 

unpleasant tension in the tissue, To avoid this, a small pre-injection of air to ensure the position of the 

needle tip free in the joint cavity was used(86). Finally we found that high-field MRI and low-field 

MRI revealed similar sensitivity to the distribution of the IA contrast, which supports the use of 

dedicated extremity MR-scanners to track the distribution pattern, as this modality is more patient 

friendly and cheaper (10). A larger study designed to compare the high- and lowfield scanner 

performance in this perspective is desirable.  

 The chosen Gadolinium dose was in the high range (50mmol/l) compared to previously published 

arthrographic studies in the wrist on both 1,5T(199;200) and 0.2T(201) using up to 8ml of injected 

solution. As the current study was designed to trace the distribution of the injected drug and not 

considered to be a diagnostic arthrography of the wrist, no direct comparison can be made. A recent in-

vitro publication has shown the optimal Gadolinium dose to be 2-5 mmol/l in the 0.2T low-field 

scanner when injecting approximately 20 ml into a shoulder joint of cadavers (182). In contrast to that 

study, we had no problems with tracing the distribution pattern using the 10 times higher concentration, 

even though one patient revealed a signal drop within a large erosion of the lunate bone that could be 

due a concentration dependent T2 effect (figure 10). Finally, our observation that the Gadolinium was 
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not seen in the MR images the following day is in accordance with the previous reports and reviews of 

the temporal behavior of IA Gadolinium injections concluding that the IA Gadolinum has left the joint 

cavity within 24 hours(202;203). The small volume injected and the use of a low-field MR scanner may 

also account for the lack of visible Gadolinium on the one-day follow-up MR scan(202). In retrospect 

our concentration of Gadolinium was high. However, when we started the data collection of the current 

pilot study no studies had addressed the optimal Gadolinium dose for the presented arthrographic 

procedure in wrists using a low-field scanner. Our preliminary results revealed good visualization in the 

MRI images and as the injected volume was low compared to standard arthrography volumes we 

continued this pilot experiment with the above mentioned solution. Regarding the safety aspects of the 

procedure, the total amount rather than the local concentration of Gadolinium in one joint is of 

importance for possible toxicity(202). The range of concentration optimal for tracing the drug 

distribution in the wrist on the low-field scanner remains to be determined, as well as the cost 

effectiveness of the suggested MR arthrography method vs. a more conventional fluoroscopically 

guided arthrography method.  

We choose to use MR arthrography in our study to trace the drug distribution, as many rheumatologists 

increasingly use MRI to monitor therapy response and we wanted to reduce the lifetime radiation dose 

of the involved patients to a minimum. Furthermore the low-field MRI scanner has not prior to study II 

been used for arthrographic investigations in the wrist joint according to MEDLINE (key word: MRI 

lowfield wrist arthrography). 

  

In conclusion the distribution of contrast on MRI showed patient-specific and random patterns after IA 

injections in active RA wrist joints. The degree of distribution correlated with the MRI synovitis score, 

while no association was found with the MRI erosion- and bonemarrow oedema scores or any clinical 

scores. Therefore, injecting patients with more severe synovitis seems to be associated with a more 

complete diffusion into the wrist, possibly increasing the infiltration’s efficacy. These results also 

indicate that injection into the proximal central part of the wrist cannot be regarded as sufficient to treat 

the whole wrist joint. The diversity of distribution patterns among patients could be an explanation of 
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the variation in treatment responses seen with IA injections(43;49), and based on our results we 

recommend that patients, who do not respond sufficiently to IA injections into the wrist joint, should 

have their distribution pattern examined, and that they might benefit from additional injections 

elsewhere in the joint. 

 
Study III: I.v or IA dGEMRIC for better delineation of hip joint cartilage 

In study III we present a different use of the dGEMRIC technique for improved enhancement, SNR, 

CNR and delineation of the cartilage in the hip joint, which is easy to implement in current clinical 

practice, and does not require sophisticated sequences and post processing equipment.    

The series of hip MRI in study III, using the dGEMRIC technique demonstrated a general superiority of 

the IA to the i.v. route, regarding the delineation of the subchondral cartilage border (figure 13 and 14). 

We believe this result was due to CNR problems in the joint cartilage following i.v. Gd-DTPA because 

of a lower concentration of Gd-DTPA in the cartilage, as well as the fact that we saw subchondral bone 

marrow enhancement after the i.v injection. The IA Gd-DTPA on the other hand gave a clear 

delineation of the cartilage in areas with synovial lining, whereas after i.v. administration, it was 

impossible to distinguish between Gd-DTPA enhanced cartilage and synovial lining in the images (Fig. 

13B and 13C, closed arrows).  

Our data confirm that in comparison to a conventional T1-w weighted cartilage MRI sequence, the 

dGEMRIC technique gave a superior cartilage image quality in the hip joint independent of the way of 

Gd-DTPA administration  (figure 13-14 + table 6 and 7). The observation is in agreement with the 

hypothesis of Gd-DTPA diffusion into the cartilage, and the data are also in agreement with the in-vitro 

observations of excellent late enhancement of cartilage, and thus better delineation of the patellar 

cartilage damage after incubation in 2mmol/L Gd-DTPA saline solution when using a clinical T1-w 

weighted spin echo sequence(178). 

The obstacles of low SNR and CNR of the hip joint cartilage (16) apparently can be overcome by the 

use of the dGEMRIC technique and a T1-w weighted SPGR cartilage sequence. This approach may 

provide a better platform for developing automatic segmentation algorithms for volume estimation of 

the hip joint cartilage. In this setting, our data support the use of the IA method for volume calculations 
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whenever possible, because the IA method optimizes the outlining of the synovial and subchondral 

cartilage border.  

In a previous study by Bashir et al., double i.v. doses of Gd-DTPA was given in volunteers providing 

excellent cartilage delineation for T1-w-mapping (18). We chose to give triple i.v. dose Gd-DTPA, 

which in the knee joint has been shown to give an increased signal intensity in the cartilage compared 

to a double dose(183). .The dose used for IA injection was 4 mmol/L Gd-DTPA, the same 

concentration as used by Bashir et al in their pioneer work for comparing i.v. with IA gadolinium whilst 

developing dGEMRIC for T1-w mapping (175). A recent work by Zhai et al.(204), applying a similar 

3D-T1-w-SPGR cartilage sequence without Gd-DTPA enhancement, correlated the hip joint cartilage 

thickness and volume to joint-space narrowing and the OA score on radiographs, and found a modest 

correlation. It may be speculated that with improved cartilage delineation, using the dGEMRIC 

approach and IA Gd-DTPA, volume calculations may be more accurate and correlations may be better. 

Finally the debate regarding nephrotoxicity of certain Gadolinium compounds (205) can be neglected 

using the IA approach, as the amount of Gadolinium injected IA is several 1000 fold lesser than the 

double or triple dose i.v. approach.  

Further studies with true volume comparisons are needed to shed light to these questions, and future 

studies will also show whether the present protocol might be of advantage for cartilage diagnostics in 

other synovial joints such as the knee, ankle, wrist etc. The application of such a clinical protocol could 

at the same time provide 1) clinical T1-w weighted images for better delineation of cartilage thus 

giving better volume calculation, 2) T1-w mapping for indirect glycosaminoglycan (GAG) 

concentration measurement, and 3) better cartilage images for preoperative evaluation. 

The hip joint is of special interest for MRI studies due to its relative inaccessibility for other 

examinations such as arthroscopy and ultrasound. Often the hip joint disease present clinically 

equivocal signs, which may or may not be explained by imaging findings. The cartilage of the hip joint 

is thinner than that of the knee, and pushes the demands further for in- and through-plane resolution and 

increased CNR between cartilage, synovium and bone. Ultrasound-guided medical 

treatment(184;206;207) is rapidly gaining acceptance, hence ultrasound guidance of injections opens  
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for a more extensive use of IA MRI contrast agents. The need for detailed cartilage evaluations 

increases due to the improved options for treatment of early hip OA, by both IA therapies and new 

surgical procedures such as GANZ osteotomia(208). 

 
Concluding remarks  

The studies of this thesis have raised several questions regarding the current clinical and imaging 

procedures in both RA and OA, and the following conclusions can be drawn: 

• Evaluated by MRI and US-Doppler, one ultrasound guided IA injection of either etanercept or 

methylprednisolone seems not to be enough to arrest flare of wrist arthritis in “standard” RA 

patients on oral DMARDS fulfilling the clinical criteria of an IA treatment.  

• Both methylprednisolone and etanercept gave some clinical relief to the patient while injection 

of IA methylprednisolone might provide a slightly better disease control 

• Within the 25 patients as a group we saw a significant erosive progression at 4 weeks, which 

was in clear contrast to a significant clinical relief, but this result could in all but one patient be 

explained by the SDD of the measuring method. 

• The one patient with a higher erosive progression score than the SDD revealed MRI 

documentation likely representing a erosive progression in the hamate bone within the 4-week 

follow-up, which we, to the best of our knowledge, are the first group to show.   

• Injecting drugs ultrasound-guided IA in the recommended standard site of the wrist joint seems 

to ensure the correct placement of the drug in the joint compartment. 

• Distribution of IA injected drugs is apparently varying and patient specific, although there 

seems to be a correlation between the MRI synovitis score and the spread of the drug within the 

different compartments of the wrist joint. This could be a potential explanation of the lack of 

treatment effect in some patients receiving IA injections 

• IA injection of Gd-DTPA along with a drug treatment in the hip joint and subsequent delayed 

MRI of cartilage (dGEMRIC) gave a significantly better SNR, CNR and visual delineation of 

the cartilage in the hip than the triple dose i.v. dGEMRIC technique. The IA administration 
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especially improved visualization of the cartilage in the subchondral and the synovial lining 

areas. 

• The suggested dGEMRIC approach is easy to implement in departments equipped with a 

standard 1.5T MRI scanner having a 3D T1-w GRE cartilage sensitive sequence.      

• The amount of Gadolinium injected for dGEMRIC is significantly lower using the IA approach 

compared to the double or triple i.v. approach. This is of interest as perspectivized in the 

ongoing debate regarding the nephrotoxicity of certain Gadolinium compounds.   

  

Future perspectives  

Clinical evaluation of the treatment response after an IA drug injection in the wrist of patients with RA 

seems to be insufficient, as many patients respond clinically to the treatments even though imaging 

parameters are unchanged, and in some cases show signs of progression. Thus we recommend that MRI 

and US should be used more frequently in the follow-up of the treatment response, and maybe should 

be applied in even shorter intervals than 4 weeks to follow the response to an IA treatment. A similar 

conclusion in a recently published study supports this assumption showing imaging progression in a 

cohort of patients on systemic DMARD treatment in clinical remission.  

Studies in smaller joints such as the MCP and MTP joints have shown good correlations between the 

MRI RAMRIS synovitis score and the US power Doppler score. The wrist joint represents a much 

more complex situation, which must be solved to facilitate a detailed monitoring of the development of 

RA in this joint. The OMERACT RAMRIS score for synovitis might not be sensitive enough for 

verifying changes in the very short term in the wrist joint, and might not serve as good standard method 

for follow-up IA injections. Data from a larger number of patients (n=100) with US Doppler and MRI 

RAMRIS scores in the wrist are currently being analyzed at the Parker Institute. Preliminary results 

(N=41) from this study reveal a disappointing correlation regarding synovitis (r=0.4), indicating that 

different aspects of the synovitis are being reflected by the two imaging modalities. The best correlate 

is seen between the colour Doppler and the bone marrow oedema (r=0.6), which theoretically makes 

sense as it is believed that colour Doppler reflects the degree of local inflammation, and bone marrow 
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oedema represents true inflammation in the bone, and also can be regarded as an indication of more 

aggressive disease. Other MRI methods, such as dynamic MRI, might build a better bridge between the 

US and MRI measures. The effect of steroidal IA injections in the knee has been successfully evaluated 

in the past by calculation of synovial membrane volume and dynamic MRI (104), and a new dynamic 

sequence for the low-field scanner has successfully been evaluated for discriminating active disease 

from inactive disease in RA patients (194). Further development of the evaluation of this dynamic 

sequence by automatic voxel based segmentation technique is planned and has been published in an 

international collaboration(209)  

Based on the current knowledge, we believe with others that MRI and possibly also US should be 

mandatory in the disease evaluation of treatment follow-up and that they may even supplement each 

other. Larger multicenter studies should validate the US-Doppler and dynamic MRI for short-term and 

conventional MRI with the 3D sequence for long-term follow-up in order to substantiate a true 

regression in disease activity and erosive arrest. In this perspective the results in study II indicate that 

injection into the proximal central part of the wrist cannot be regarded as sufficient to treat the whole 

wrist joint in most patients, consequently we recommend that patients, who do not respond sufficiently 

on imaging evaluation to IA injections in the wrist joint, should have their distribution pattern 

examined to clarify whether an effect might be obtained by additional injections elsewhere in the joint, 

if the distribution of the injected drug is blocked by either anatomical variation or expanding pannus. 

Furthermore an ongoing study investigates whether it is possible to monitor the regional effect of an IA 

injection into the wrist with US Doppler and dynamic MRI. We hope that this study will help to clarify 

if the potential regional response is correlated to the baseline distribution pattern of the injected drug. In 

addition the optimal Gadolinium concentration needed to trace a drug distribution still needs to be 

settled to avoid a possible T2 effect and signal drop, since a recent study has indicated  that a very high 

concentration of IA Gadolinium results in a significant signal drop in both high and low-field scanners. 

The recommended dose from that study was 2-5mmol/l for arthrography, but future studies should test 

whether this is also the optimal dose to trace the drug distribution. We have experience from one 
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patient receiving 2mmol/l, which could not be seen in the subsequent MR image of the wrist on both 

high-field and low-field, possibly due to the relative low volume (1.5ml) injected.  

Regarding cartilage imaging the suggested technique with either i.v. or IA Gd-DTPA for late 

enhancement of cartilage is currently used at  Rigshospitalet in patients with hip dysplasia considered 

for GANZ osteotomia where the baseline MR examination has revealed insufficient SNR for cartilage 

visualisation. At the moment two patients have been taken off the operation program due to sufficient 

cartilage coverage visualized with the i.v. dGEMRIC approach.  

In the future we need to explore the use of the technique for cartilage imaging in synovial joints such as 

the knee, ankle, wrist etc, as well as the potential benefits in MR scanners with different field strengths 

(0.2T through 3.0T). Furthermore we need evidence from larger cohorts on the different field-strengths 

MR scanners, to see whether the suggested dGEMRIC method in study III is useful in the clinical 

setting. In this perspective we plan to initiate a large randomized controlled study of the cartilage 

changes in obese patients (BMI>30) with knee OA (N=150) during a weight loss program where the 

goal is to examine whether the IA dGEMRIC method suggested in study III along with the 

conventional dGEMRIC T1 relaxation measures can at the same time improve 1) The clinical T1-w 

images for better delineation of cartilage thus giving better volume calculation, 2) T1 mapping for 

indirect glycosaminoglycan (GAG) concentration measurement,  3) Better cartilage images for 

preoperative evaluation and 4) Arthrographic imaging immediately after the IA injection. 
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