

Aalborg Universitet

Approximate Matching of Hierarchial Data

Augsten, Nikolaus

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Augsten, N. (2008). Approximate Matching of Hierarchial Data. Aalborg Universitet.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2024

https://vbn.aau.dk/en/publications/51db2950-0245-11de-82e6-000ea68e967b

Nikolaus Augsten

Approximate Matching of

Hierarchical Data

Ph.D. Dissertation

Department of Computer Science

Faculty of Engineering and Science

Aalborg University e

Approximate Matching of

Hierarchical Data

Nikolaus Augsten

Ph.D. Dissertation

A dissertation submitted to the Faculty
of Engineering and Science at Aalborg
University, Denmark, in partial fulfill-
ment of the requirements for the Ph.D.
degree in computer science.

Approximate Matching of Hierarchical Data

Nikolaus Augsten

Faculty of Computer Science
Free University of Bozen-Bolzano

Dominikanerplatz 3, 39100 Bozen, Italy

Tel: +39-0471-016111 – Fax: +39-0471-016009

E-mail: augsten@inf.unibz.it

Copyright©c 2008 Nikolaus Augsten

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the

author.

Abstract

The goal of this thesis is to design, develop, and evaluate new methods for the
approximate matching of hierarchical data represented as labeled trees. In ap-
proximate matching scenarios two items should be matched if they are similar.
Computing the similarity between labeled trees is hard as in addition to the
data values also the structure must be considered. A well-known measure for
comparing trees is the tree edit distance. It is computationally expensive and
leads to a prohibitively high run time.

Our solution for the approximate matching of hierarchical data are pq-
grams. The pq-grams of a tree are all its subtrees of a particular shape.
Intuitively, two trees are similar if they have many pq-grams in common. The
pq-gram distance is an efficient and effective approximation of the tree edit
distance. We analyze the properties of the pq-gram distance and compare it
with the tree edit distance and alternative approximations. The pq-grams are
stored in the pq-gram index which is implemented as a relation and represents
a pq-gram by a fixed-length string. The pq-gram index offers efficient approx-
imate lookups and reduces the approximate pq-gram join to an equality join
on strings. We formally proof that the pq-gram index can be incrementally
updated based on the log of edit operations without reconstructing intermedi-
ate tree versions. The incremental update is independent of the data size and
scales to a large number of changes in the data. We introduce windowed pq-
grams for the approximate matching of unordered trees. Windowed pq-grams
are generated from sorted trees in linear time. Sorting trees is not possible for
common ordered tree distances such as the edit distance.

We present the address connector, a new system for synchronizing resi-
dential addresses that implements a pq-gram based distance between streets,
introduces a global greedy matching that guarantees stable pairs, and links
addresses that are stored with different granularity. The connector has been
successfully tested with public administration databases. Our extensive ex-
periments on both synthetic and real world data confirm the analytic results
and suggest that pq-grams are both useful and scalable.

i

ii Abstract

Acknowledgments

I would like to acknowledge the contribution of a number of people that directly
or indirectly have supported this PhD thesis.

First of all I would like to thank my supervisor Michael Böhlen. He never
got tired of reviewing and discussing my work, and his valuable advice was
indispensable for this thesis. His uncompromising commitment to high-quality
research made working with him an instructive and enjoyable experience.

I also would like to thank Johann Gamper who contributed to this thesis
through many fruitful discussions and iterations over the papers. He is the
principal investigator of the eBZ –Digital City project, a collaboration between
the Municipality of Bolzano and the Free University of Bolzano. My work was
mostly funded by this project. Thanks also to my colleagues from the DIS
group at the Free University of Bolzano who helped me whenever needed.

In 2006 I spent six month with Curtis Dyreson at the Washington State
University in Pullman, USA. I would like to thank Curtis for his valuable
contribution to my research, his helpfulness in many practical matters, and
the good time that we spent together in the deserts of Utah.

Thanks to Walter Costanzi, Franco Barducci, and Roberto Loperfido from
the Municipality of Bolzano. They patiently introduced me to the problems
that arise in public administration and they spent many hours in evaluating
and discussing the solutions that I proposed.

Finally, I would like to thank my parents Gregor and Anna, my siblings
Christine, Michael, Maria, Leopold, Josef, and Monika, and all my friends that
supported me throughout the years. In particular I would like to thank my
wife Leni. She always believed in me and encouraged me regardless of all the
time that we could not spend together due to my research.

iii

iv Acknowledgments

Contents

Abstract i

Acknowledgments iii

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Approximate Matching of Hierarchical Data 1
1.2 Application Area . 2
1.3 Contribution . 4
1.4 Organization of the Thesis . 7

2 pq-Grams for Ordered Trees 9
2.1 Introduction . 9
2.2 Problem Definition . 10
2.3 Related Work . 13
2.4 The pq-Gram Distance . 14

2.4.1 Preliminaries . 15
2.4.2 The pq-Gram Distance 16

2.5 Algorithms . 19
2.5.1 An Algorithm for the pq-Gram-Index 19
2.5.2 Relational Implementation 22

2.6 Sensitivity to Structural Changes 24
2.7 Experiments . 27

2.7.1 Scalability . 27
2.7.2 Sensitivity to Structural Changes 28
2.7.3 Matchmaking with Real Data 30

v

vi Contents

2.8 Conclusion . 32

3 Updating the pq-Gram Index 35
3.1 Introduction . 35
3.2 Related Work . 37
3.3 The pq-Gram Index . 38

3.3.1 Preliminaries . 38
3.3.2 The pq-Gram Index . 39

3.4 Outline . 42
3.5 Single Edit Step . 43

3.5.1 The Delta Function . 43
3.5.2 The Profile Update Function 44

3.6 Edit Sequence . 45
3.6.1 Incremental Index Update 45
3.6.2 Deltas of Intermediate Tree Versions 47
3.6.3 Computing ∆+

n . 48
3.6.4 Computing ∆−

n . 51
3.7 Computing Profile Updates . 53

3.7.1 Matrix Representation of pq-Grams 53
3.7.2 Effective Computation of δ and U 54
3.7.3 Example . 55

3.8 Implementation . 58
3.8.1 Temporary Storage of the Deltas 58
3.8.2 Index Update . 59
3.8.3 Delta Function . 60
3.8.4 Implementation of the Update Function 60

3.9 Experiments . 62
3.9.1 Lookup Efficiency . 62
3.9.2 Updating the Index . 63
3.9.3 Index Size . 63
3.9.4 Experiments with Real World Data 64

3.10 Conclusion . 65

4 pq-Grams for Unordered Trees 67
4.1 Introduction . 67
4.2 Related Work . 69
4.3 Motivation . 70
4.4 Windowed pq-Grams . 72

4.4.1 Requirements for Windowed pq-Grams 72
4.4.2 Solution . 74
4.4.3 Local Effect of Subtree Permutations 76

Contents vii

4.5 Properties of Windowed pq-Gram Bases 77
4.6 Optimal Windowed pq-Grams 79
4.7 Algorithms . 80

4.7.1 Building the pq-Gram Index 80
4.7.2 Approximate XML Join 81

4.8 Experiments . 82
4.9 Conclusion . 87

5 The Address Connector 89
5.1 Introduction . 90
5.2 Problem Definition and Motivation 93

5.2.1 Problem Definition . 93
5.2.2 Motivation . 93

5.3 The Connector . 94
5.4 The Synchronization Operator 96

5.4.1 Overview . 97
5.4.2 Step 1: Computing Street Distances 97
5.4.3 Step 2: Matching Streets 101
5.4.4 Step 3: Linking Addresses 103

5.5 Algorithms . 104
5.6 Experiments . 107

5.6.1 Name and Structure Distance 108
5.6.2 Global Greedy vs. Local Greedy 109
5.6.3 Global Greedy vs. Fixed Threshold 110

5.7 Related Work . 112
5.8 Conclusion . 113

6 Conclusions and Future Work 115

Bibliography 119

viii Contents

List of Figures

1.1 Two Databases with Residential Addresses that Cover the Same
Geographic Area. 3

1.2 Address Trees of ’Siegesplatz’ and ’Friedensplatz’. 3
1.3 Two XML Trees Representing the Same Album. 4
1.4 Application Scenario for the Incremental Index Update. 6

2.1 Street Names in Different Departments. 11
2.2 Addresses Stored in Different Departments. 12
2.3 Address Trees of Streets 30 from RO and 91 from LR. 12
2.4 Two Example Trees T1 and T2. 16
2.5 The Extended Tree T

2,3
1 . 16

2.6 Some of the 2, 3-Grams of T1. 17
2.7 2, 3-Gram Indexes of T1 and T2. 18
2.8 Different Trees with the Same pq-Gram Index. 19
2.9 Illustration of the pq-Gram Index Calculation. 21
2.10 Address Tree in Interval Encoding. 23
2.11 Tree Edit Distance and pq-Gram Distance for Structural Changes. 25
2.12 Scalability Results. 28
2.13 Properties of the pq-Gram Distance. 29
2.14 Distributed vs. Local Changes. 30
2.15 Parse Trees for an Example Tree T. 32

3.1 Application Scenario. 36
3.2 Sequence of Edit Operations that Transforms Tree T0 into T3. 39
3.3 Part of T

p,q
0 and Two 3, 3-Grams of Tree T0. 40

3.4 A Hash Function and Part of the pq-Gram Index of T0. 41
3.5 Application Scenario and Solution. 42
3.6 Profile Update for an Edit Operation ēj 43
3.7 Profiles for Two Edit Operations. 46
3.8 Setting in Lemma 3.3. 47
3.9 Operators on the p-Matrix. 54

ix

x List of Figures

3.10 Operators on the q-Matrix. 55
3.11 q-Matrices for Node Insertion (Example). 58
3.12 ∆+

2 for T2, Stored in the Table Pair (P, Q). 59
3.13 Lookup and Update Time. 63
3.14 Size and Update Time of Index. 64

4.1 Two XML Trees Representing the Same Album. 71
4.2 Ordered and Unordered Trees. 72
4.3 Sorted Tree, Extended Tree, and Windowed pq-Grams. 74
4.4 pq-Grams and Subtree Permutation. 77
4.5 Index Creation and Join Scalability. 83
4.6 Windows Increase Stability. 83
4.7 Distance between Matches and Non-Matches. 85
4.8 Matching with Different Thresholds. 86
4.9 1:1 Matches for SwissProt. 87

5.1 Two Databases with Residential Addresses that Cover the Same
Geographic Area. 90

5.2 Address Tree of ’Friedensplatz’ (Registration Office Database). 92
5.3 Connector X after the Synchronization synchA,B→C(X). 95
5.4 Example Address Trees. 98
5.5 Computing the pq-Grams of a Tree. 100
5.6 Distance Matrix for the Address Trees in Figure 5.4. 102
5.7 Links between the Addresses of α2 and β1. 104
5.8 Matching Accuracy for Different Weights and Databases. . . . 109
5.9 Global Greedy vs. Local Greedy 110
5.10 Global Greedy vs. Fixed Threshold. 111

List of Tables

2.1 Accuracy of the Tree Edit Distance and its Approximations. . . 31
2.2 Types of Valid Subtrees in the Different Phases. 33

3.1 Computing the Delta Function and the Profile Update Function. 56
3.2 Breakdown of the Index Update Time. 64

5.1 Runtimes for Synchronizing two Partitions. 108

xi

xii List of Tables

Chapter 1

Introduction

1.1 Approximate Matching of Hierarchical Data

The goal of this thesis is to design, develop, and evaluate new methods for
the approximate matching of hierarchical data represented as labeled trees.
In approximate matching scenarios two items should be matched if they are
similar. In order to approximately match two sets of hierarchical data items
two orthogonal problems must be solved: computing the similarity between
hierarchical data items and establishing a pairwise matching of items.

Hierarchical data are represented as labeled trees. Computing the simi-
larity between labeled trees is hard as in addition to the data values also the
structure must be considered. A common reference is the tree edit distance,
defined as the minimum number of node edit operations (node insertion, node
deletion, node renaming) that transforms one tree to the other. Unfortunately
the runtime of the tree edit distance is prohibitive and a scalable alternative
is required.

A distance for labeled trees must balance the weight of the structure and
the labels. A distance that considers only the tree structure and ignores the
labels is an unlabeled tree distance. If the distance considers only the labels
and ignores the structure it degrades to a set distance. The labels are not
always atomic values and introduce a dimension on their own. In some cases
it may be desirable to evaluate the similarity also between individual labels, for
example, to tolerate misspellings of string labels. In addition to tree structure
and labels, a distance function must deal with the sibling order in the tree. If
the sibling order should matter (e.g., the order of paragraphs in a document),
the data are represented as ordered, labeled trees. The best algorithms for the
ordered tree edit distance have cubic runtime [16]. If the sibling order must be
ignored (e.g., data-centric XML), the data are modeled as unordered, labeled

1

2 Introduction

trees. A distance algorithm for unordered trees can not take advantage of a
predefined order, and the edit distance problem becomes NP-complete [57].

Based on the distances between the data items we must establish a pairwise
matching of items. An approach that matches all pairs of items that are within
a fixed distance threshold often produces too few or too many matches. It
does not guarantee that each item is matched at most once, which is relevant
for many applications. A baseline approach to get unique matches for items
is to match each item to its nearest neighbor. Unfortunately the nearest
neighbor function is not symmetric (i.e, if a is the nearest neighbor of b, b is
not necessarily the nearest neighbor of a), and the matching result depends
on the order in which the items are matched. Global optimizations must be
applied to produce order-independent matches.

Below we first introduce the application area of our solution to approximate
tree matching. Then we describe our contributions. In the last subsection we
discuss the organization of the thesis.

1.2 Application Area

In this section we present two applications that require the approximate
matching of hierarchical data.

Matching Residential Addresses For many administrative tasks at the
municipality of Bolzano-Bozen data from different databases must be accessed
and linked. Often the databases are managed by independent departments and
residential addresses are the only link between relevant information in different
databases. Figure 1.1 shows two residential address databases that cover the
same geographic area and should be linked on the address attributes.

Exact matches clearly fail. Also approximate string matching fails since
street names have been renamed but were not updated in all databases
(’Friedensplatz’ was renamed to ’Siegesplatz’) and different languages
are used for street names in different databases (’Friedhofplatz’ and
’Cimitero’ are the German and the Italian name for the same street).

Residential addresses are organized in hierarchies and a street can be rep-
resented as an ordered, labeled tree: the address tree (see Figure 1.2). Two
streets are similar if their address trees are similar, and approximate matching
techniques for hierarchical data must be used to match streets.

Integrating XML Data about Music CDs An online database about
music CDs should integrate data from two XML sources: a song lyric store
and a CD warehouse. The integrated database will store the title, artist and

1.2 Application Area 3

Electricity Company (EC) Registration Office (RO)

address bill

Hermann-von-Gilm-Str. 1 e 121

Hermann-von-Gilm-Str. 3/A e 71

Hermann-von-Gilm-Str. 3/B e 63

Hermann-von-Gilm-Str. 6 e 0

Siegesplatz 2/A e 98

Siegesplatz 3/-/1 e 32

Siegesplatz 3/-/2 e 51

Siegesplatz 3/-/3 e 43

Friedhofplatz 4 e 143

Friedhofplatz 6 e 0

Untervigli 1 e 117

Mariengasse 1 e 161

address resident

Gilmstrasse 1 Peter

Gilmstrasse 3 Hans

Gilmstrasse 3 Renate

Gilmstrasse 3 Max

Gilmstrasse 5 Arturas

Friedensplatz 2/A/1 Markus

Friedensplatz 2/A/2 Klaudia

Friedensplatz 3 Igor

Cimitero 4 Linas

Cimitero 6/A Francesco

Cimitero 6/B Romans

Untervigil 1 Andrej

Marieng. 1/A Josef

Figure 1.1: Two Databases with Residential Addresses that Cover the Same
Geographic Area.

{Siegesplatz}

2

A

3

-

1 2 3

{Friedensplatz}

2

A

1 2

3

Figure 1.2: Address Trees of ’Siegesplatz’ and ’Friedensplatz’.

4 Introduction

songs of an album, information about individual songs such as the lyrics, guitar
tabs, and information about the artists.

Figure 1.3 shows the tree representation of two different XML documents.
Intuitively, both represent data about the same song album and they should
be matched. Yet exact ordered tree matching would not consider the items as
the same for a number of reasons. The song lyric store has an element year

that is absent from the CD Warehouse. The CD Warehouse has a price for
the album. For one track the title is slightly different, for the other track the
databases list different artists. Also the document order of elements differs,
i.e., the two documents have different sibling orders. As the order of the
siblings should not matter, approximate matching techniques for unordered
trees must be applied.

album

track

title

So far away

artist

Mark

artist

John

year

2000
track

title

Wish you where here

artist

Roger

artist

Dave

(a) Song Lyric Store Data

album

track

title

Far away

artist

John

artist

Mark

track

artist

Roger

title

Wish you where here

artist

Nick

price

15

(b) CD Warehouse Data

Figure 1.3: Two XML Trees Representing the Same Album.

1.3 Contribution

Our solution for the approximate matching of hierarchical data are pq-grams.
pq-Grams are small, besom-shaped subtrees that overlap and cover a tree. In-
tuitively, two trees are similar if they have many pq-grams in common. The
pq-gram distance is an efficient and effective approximation of the tree edit
distance. A major focus of our work is the efficient implementation of pq-
grams in a relational database. The pq-grams are stored in the pq-gram index
which supports efficient approximate lookups and joins of hierarchical data.

1.3 Contribution 5

The incremental update of the pq-gram index is independent of the data size
and scales to a large number of changes in the data. We also introduce win-
dowed pq-grams for the approximate matching of unordered trees and develop
an efficient approximate join algorithm for windowed pq-grams. Unordered
tree matching is indispensable for data-centric XML. We present the address
connector, a new system for synchronizing residential addresses based on pq-
grams. The system implements the address tree distance, introduces a novel
street matching algorithm, and links addresses that are stored with different
granularity. The connector solves the problem of linking residential addresses
between different databases without requiring a reference set of correct ad-
dresses.

Management of pq-Grams We present a linear time and space algorithm
to compute the pq-grams. Our solution can easily be integrated into a rela-
tional database or implemented on top of it. The input are hierarchical data
stored in a relation. The algorithm splits the trees into pq-grams, serializes
the pq-grams, and hashes them to string values of a fixed length. The result
is the pq-gram index, a relation that stores a single string for each pq-gram.
A tree is represented by a set of pq-grams in the index. We give an efficient
approximate join algorithm based on the pq-gram index that is implemented
as a query in a relational database. Most joins based on distance measures,
such as the edit distance, must evaluate the distance between every pair of
input trees. There is no effective way to sort trees or hash them into buckets.
An expensive nested-loop join must be applied. Our algorithm reduces the
approximate join to an equality join on strings that takes advantage of well
known join optimization techniques, for example, the sort-merge join.

Incremental Update of the pq-Gram Index The pq-gram index needs
to be updated in response to structure and value changes in the indexed data.
Recomputing the index from scratch is infeasible for large data. As an appli-
cation scenario consider Figure 1.4. Let I0 be the pq-gram index of a tree T0.
T0 is modified by a sequence of edit operations resulting in Tn. We provide
an incremental update of the pq-gram index based on: the old index I0, the
resulting document Tn, and the log of inverse edit operations that describe
how Tn can be transformed to T0. We do not require the original document
to still be available, and we do not need to reconstruct intermediate versions
of the document. All inverse edit operations can be applied to the resulting
document Tn to compute the changes to the old index. Note that it is not
obvious that this is possible, since the edit operations may depend on each
other and have been defined on intermediate trees that can be very different

6 Introduction

from the resulting tree. The incremental update does not depend on the tree
size, but only on the size of the log. We formally proof that our incremental
update is correct.

T0 T1 · · · Tn

I0

e1 e2 en

ēnē2ē1̄e1

Figure 1.4: Application Scenario for the Incremental Index Update.

Windowed pq-Grams for Data-Centric XML XML are data of particu-
lar interest for approximate matching efforts as an increasing amount of data is
stored and exchanged in XML. While order is important in document-centric
scenarios (e.g., paragraph tags in XHTML), most applications of data-centric
XML must ignore the sibling order. Two documents should be considered the
same even if they differ in the order of their siblings. Data-centric XML items
are usually modeled as unordered, labeled trees. The tree edit distance be-
tween unordered trees is NP-complete. We introduce windowed pq-grams for
the integration of data-centric XML. We develop a technique to systematically
generate windowed pq-grams from sorted trees. Sorting trees is not possible for
common ordered tree distances such as the edit distance. Windowed pq-grams
consist of a stem and a base, and they satisfy the following core properties: all
base-nodes have equal frequency; the Jaccard distance between two sibling sets
is preserved; and node moves to other parents are detected. The windowed
pq-gram distance between two sorted trees approximates the unordered tree
edit distance between these trees. The windowed pq-grams are produced in
linear time and space, and the approximate join based on windowed pq-grams
scales to large data sets.

The Address Connector We present the address connector, a new sys-
tem for the synchronization of residential addresses. The connector solves the
problem of matching residential addresses that are stored with different granu-
larity and have different or unrelated street names. The connector implements
a novel address tree distance that relies on both the structural similarity of
the address trees and the similarity of the street names. Our address tree
distance allows us to find similar streets also if either their names are very
different (e.g., in the case of renamed streets) or if the structure of the address

1.4 Organization of the Thesis 7

trees is ambiguous (e.g., the address trees of the streets ’Mariengasse’ and
’Untervigil’ in Figure 1.1 have identical structure). The connector imple-
ments a global greedy matching algorithm that forms street pairs based on the
distance between them. The algorithm exploits the fact that a single street
can not be matched to more than one other street. No threshold parameter is
required, the matching quality is independent of the matching order, and the
matching is stable. We introduce the concept of address containment and link
residential addresses of matching streets correctly even if they are stored with
different granularity. Our system has been successfully tested in the context
of the Municipality of Bolzano.

1.4 Organization of the Thesis

The thesis is organized as a collection of papers. Each of the Chapters 2–5
is based upon one paper. The chapters are self-contained. The experimental
evaluation of the analytic results can be found in the respective chapters. The
bibliography for all chapters is listed at the end of the thesis. All the chapters
adhere to the same terminology. The exception are stem and base which are
referred to as respectively p-part and q-part in Chapter 3.

Chapter 2 pq-Grams for Ordered Trees.

Nikolaus Augsten, Michael Böhlen, and Johann Gamper. Approximate
matching of hierarchical data using pq-grams. In Proceedings of the
International Conference on Very Large Databases (VLDB), pages 301–
312, Trondheim, Norway, September 2005. ACM.

Chapter 3 Updating the pq-Gram Index.

Nikolaus Augsten, Michael Böhlen, and Johann Gamper. An incremen-
tally maintainable index for approximate lookups in hierarchical data.
In Proceedings of the International Conference on Very Large Databases
(VLDB), pages 247–258, Seoul, Korea, September 2006. ACM.

Chapter 4 pq-Grams for Unordered Trees.

Nikolaus Augsten, Michael Böhlen, Curtis Dyreson, and Johann Gam-
per. Approximate joins for data centric XML. In Proceedings of the
International Conference on Data Engineering (ICDE), to appear, 2008.

Chapter 5 The Address Connector.

Nikolaus Augsten, Michael Böhlen, and Johann Gamper. The Address
Connector. Submitted.

8 Introduction

Chapter 2

pq-Grams for Ordered Trees

When integrating data from autonomous sources, exact matches of data
items that represent the same real world object often fail due to a lack of
common keys. Yet in many cases structural information is available and
can be used to match such data. As a running example we use residential
address information. Addresses are hierarchical structures and are present
in many databases. Often they are the best, if not only, relationship between
autonomous data sources. Typically the matching has to be approximate
since the representations in the sources differ.

We propose pq-grams to approximately match hierarchical information
from autonomous sources. We define the pq-gram distance between ordered
labeled trees as an effective and efficient approximation of the well-known
tree edit distance. We analyze the properties of the pq-gram distance and
compare it with the edit distance and alternative approximations. Experi-
ments with synthetic and real world data confirm the analytic results and
the scalability of our approach.

2.1 Introduction

When integrating data from autonomous sources, exact matches of data items
representing the same real world object often fail due to missing global keys
and different data representations. Approximate matching techniques must
be applied instead. We focus on hierarchical data, where, in addition to data
values, the data structure must also be considered.

As a running example we use an application from our local municipality.
The GIS Office wants to relate data about apartments stored in different
databases and display this information on a map. This requires a join on the
address attributes. An equality join gives extremely poor results, mainly due
to the different street names in various databases. Street names vary because
different conventions are used to represent them. They may even be stored

9

10 pq-Grams for Ordered Trees

in different languages, which prevents the use of standard string comparison
techniques. To overcome this problem we exploit the hierarchical organization
of addresses. Instead of comparing street names we look for similarities in the
hierarchical structure imposed by the addresses of a street.

Hierarchical data can be represented as ordered labeled trees. Data is then
matched based on similarities of the corresponding trees. A well-known mea-
sure for comparing trees is the tree edit distance. It is computationally very
expensive and leads to a prohibitively high run time. We propose the pq-gram
distance as an effective and efficient approximation of the tree edit distance.
The pq-grams of a tree are all its subtrees of a particular shape. Intuitively,
two trees are close to each other if they have many pq-grams in common. For
a pair of trees the pq-gram distance can be computed in O(n log n) time and
O(n) space, where n is the number of tree nodes.

In general, the pq-gram distance is a good approximation of the tree edit
distance. In contrast to the tree edit distance, it places more emphasis on
modifications to the structure of the tree. For example, deletions of nodes
with a rich structure (many descendants) are more expensive than deletions
of nodes with a poor structure (e.g., leaf nodes). We show that this property
yields intuitive results.

At a technical level, our contribution is a new approximation for the tree
edit distance with pq-grams. We present an algorithm to compute the pq-
gram distance in O(n log n) time and O(n) space, and we show its scalability
to large trees stored in a relational database. A core feature of the pq-gram
distance is its sensitivity to structural changes. This sets it apart from other
approximations. Our analytical results are confirmed by experiments on both
synthetic and real data.

In the following section we describe the application scenario at our local
municipality and give a problem definition. In Section 2.3 we discuss related
work. We define the pq-gram distance in Section 2.4. In Section 2.5 we give
an algorithm for the computation of the pq-grams, analyze the complexity of
this algorithm, and discuss its implementation in a relational database. We
analyze properties of the pq-gram distance in Section 2.6. In Section 2.7 we
evaluate the efficiency and effectiveness of our method on synthetic and real
world data and compare it to other approximations. We draw conclusions in
Section 2.8.

2.2 Problem Definition

As a running example we use an application and data from the Municipality
of Bozen. The GIS office in the municipality maintains maps of the city

2.2 Problem Definition 11

area. It would like to enrich the maps with information retrieved from various
databases of the municipality as well as external institutions. Residential
addresses turn out to play a pivotal role in this process since they have to be
used to access and link relevant information.

Whenever we join on address attributes, we have to know which streets
correspond to each other in the joined tables. As an example consider the
streets in the databases of the Registration Office (SRO) and the Land Register
(SLR) shown in Figure 2.1. The exact join on the street names

SRO ⋊⋉ [SRO.street=SLR.street] SLR

yields poor results since street names are different in different databases due
to spelling mistakes, different naming conventions, and renamed streets which
are not always updated in all databases. Moreover, in the bilingual region
of Bozen two names for each street exist, and they are used interchangeably.
A join on the street identifiers is not possible, as they are different in each
system. In practice there is no central registry for residential addresses which
maintains common keys for street names or addresses.

SRO

id street

30 Giuseppe-Cesare-Abba-Str.

120 Sebastian-Altmann-Str.

5220 Bozner-Boden-Str.

3000 Hermann-von-Gilm-Str.

3030 Pater-Reginaldo-Giuliani-Str.

3540 Italienallee

4440 Musterplatzl

7180 Raffaello-Sernesi-Galerie

7590 Telsergalerie

7620 Friedensplatz

7650 Turiner Str.

7740 Trienter Str.

7860 Triester Str.

8580 Walther-v.-d.-Vogelweide-Pl.

3930 Giannantonio-Manci-Str.

...

SLR

id street

91 CESARE ABBA STRASSE

74 S. ALTMANN STRASSE

33 BOZNER BODENWEG

109 GILMWEG

185 P. R. GIULIANI STR.

115 ITALIENSTRASSE

165 MUSTERPLATZ

207 SERNESIDURCHGANG

259 TELSERDURCHGANG

139 SIEGESPLATZ

266 TURINER STRASSE

262 TRIENTER STRASSE

263 TRIESTER STRASSE

285 WALTHERPLATZ

86 MANCISTRASSE

...

Figure 2.1: Street Names in Different Departments.

In order to improve the results we exploit the information about the streets
that is stored in the address tables RO and LR (see Figure 2.2) that reference
the streets in SRO and SLR, respectively. The addresses from a street are then
organized into hierarchies and can be represented in a so-called address tree [2].
Figure 2.3 shows the address trees for the framed addresses in Figure 2.2. The
root of the tree is the street name, the children of the street name are the house
numbers, the children of house numbers are the entrance numbers, and the

12 pq-Grams for Ordered Trees

children of entrance numbers are the apartment numbers. A complete address
is the path from the root to any leaf node. For example, the tuple (30, 2, A, -)
of table RO represents the address ’Giuseppe-Cesare-Abba-Str.2A’ and cor-
responds to the shaded path in Figure 2.3. We omit unnecessary empty values
(“-”) in the address trees.

RO

id num entr apt resident

30 1 - 1 Pichler

30 1 - 3 Rieder

30 2 A - Maier

30 2 B 1 Rossi

30 2 B 2 Woelk

30 2 B 3 Verdi

30 2 B 4 Verdi

30 2 C - Burger

30 3 - - Hofer

30 4 A 1 Tribus

30 4 A 2 Palermo

30 4 A 3 Palermo

30 4 B - Abel

30 4 C - Rossi

30 6 - - Spiro

120 3 A 1 Spiro

120 3 A 2 Barducci

120 3 A 3 Costanzi

120 3 A 4 Pichler

120 3 A 5 Spiro

120 3 A 6 Raifer

...

LR

id num entr apt owner

91 1 - 1 Maier

91 1 - 2 Rossi

91 1 - 3 Sparber

91 2 A - Maier

91 2 B 1 Totti

91 2 B 2 Bracco

91 2 B 3 Mair

91 2 B 4 Lun

91 2 D - Tribus

91 3 - - Costanzi

91 4 A - Palermo

91 4 B - Abel

91 4 C - Rossi

91 6 - - Spiro

74 3 A 1 Spiro

74 3 A 2 Barducci

74 3 A 3 Costanzi

74 3 A 4 Spiro

74 3 A 6 Spiro

74 3 A 7 Hofer

74 4 - - Mueller

...

Figure 2.2: Addresses Stored in Different Departments.

1 3

-

1

A

1 2 3 4

B C

2 3

1 2 3

A B C

4 6

Giuseppe-Cesare-Abba-Str.

1 2 3

-

1

A

1 2 3 4

B D

2 3

A B C

4 6

CESARE ABBA STRASSE

Figure 2.3: Address Trees of Streets 30 from RO and 91 from LR.

With address trees in place, we are able to compare entire address trees
so as to match street names of different databases. Intuitively, two streets are
identical if they have (almost) the same address tree. We use this to formulate
the original join as an approximate tree join

SRO ⋊⋉ [dist(T(SRO.id),T(SLR.id)) ≤ τ] SLR.

2.3 Related Work 13

Here T(id) are the address trees of the streets, dist(T1,T2) is the distance
between trees T1 and T2, and τ is a distance threshold. The equality match
between street names has been replaced by an approximate matching of the
corresponding address trees.

Our goal is to find an effective approximation for the tree edit distance
that can be efficiently computed and is scalable to large trees.

2.3 Related Work

A well known distance function for trees is the tree edit distance, which is
defined as the minimum cost sequence of edit operations (node insertion, node
deletion, and label change) that transforms one tree into another [47]. Zhang
and Shasha [56] present an algorithm to compute the tree edit distance in
O(n2 min2(l, d)) time and O(n2) space for trees with n nodes, l leaves, and
depth d. Other algorithms were presented in more recent works [11, 35]. All
of them have more than O(n2) runtime complexity and do not scale to large
trees.

By imposing restrictions on the edit operations that can be applied to
transform a tree, suboptimal solutions with better runtime complexities can
be found: Alignment distance [32], isolated subtree distance [48], and top-
down distance [46, 54] have runtime at least O(n2), bottom-up distance can be
computed in O(n) time. Bottom-up distance tries to find the largest possible
common subtrees of two trees, starting with the leaf nodes. It is very sensitive
to differences between the leaf nodes. If the leaves are different, the inner
nodes are never compared. This makes the bottom-up distance applicable in
only very specific domains.

Guha et al. [26] present a framework for approximate XML joins based on
tree edit distance, where XML documents are represented as ordered labeled
trees. They give upper and lower bounds for the tree edit distance that can
be computed in O(n2) time and use reference sets to take advantage of the
fact that the tree edit distance is a metric, thus reducing the actual number
of distances to compute in a join. The success of this method depends heavily
on a good choice of the reference set. We do not try to limit the number of
distance calculations with the expensive tree edit distance, rather we substitute
it with an efficient approximation.

Chawathe et al. [10] use a variant of the tree edit distance for change
detection. Lee et al. [37] tune the algorithm presented by Chawathe et al. to
XML documents. Both algorithms first compute a match between the nodes
of the trees, and based on this the distance is computed in O(ne) time, where e
is the edit distance between the trees. Whereas in a change detection scenario

14 pq-Grams for Ordered Trees

typically trees with small differences are compared, for joins the distances
between all pairs of trees have to be computed. For trees that are very different
the edit distance e is O(n), which yields O(n2) runtime for both algorithms.

A core operation in XML query processing is to find all occurrences of
a twig pattern [5, 31]. The goal of our work is not to find occurrences of a
pattern to answer queries. We split the tree into subtrees in order to calculate
the distance between trees. Polyzotis et al. [42] build synopsis of an XML
tree optimized for approximate query answering. They introduce the Element
Simulation Distance to capture the difference between the original tree and
the synopsis with respect to twig queries. This distance is tailored to measure
the quality of a synopsis and is not suitable as an approximation for the tree
edit distance.

Garofalakis and Kumar [23] investigate an algorithm for embedding the
tree edit distance (with subtree move as an additional edit operation) into
a numeric vector space equipped with the standard L1 distance norm. The
algorithm computes an approximation of the tree edit distance with subtree
move (to within a O(log2n × log∗n) factor) in O(n × log∗n) time and O(n)
space1. We implement this approximation and empirically compare it to the
pq-gram distance. The tree embedding distance gives less weight to structural
changes than the tree edit distance. The sensitivity of the pq-gram distance
to structural changes is controlled by the parameters p and q. The pq-gram
distance typically weights them more than the edit distance.

Navarro [40] gives a good overview of the edit distance for strings and its
variants. Ukkonen [49] introduces the q-gram distance as a lower bound for
the string edit distance. The q-gram distance between two strings is based
on the number of common substrings of length q. Gravano et al. [25] present
algorithms for approximate string joins based on edit distance and use q-
grams as a filtering algorithm. Approximate string matching techniques are
successful if the distance between corresponding strings is smaller than that
of other strings in the join set. This is typically the case for spelling mistakes,
where only a few characters change. The distance between corresponding
street names, however, is often larger than the length of the shorter string. If
streets are renamed, string matching fails completely.

2.4 The pq-Gram Distance

Hierarchical data can be represented as rooted, ordered, labeled trees, where
the single data values are represented as labels of the tree nodes. In this

1log∗ n denotes the number of log applications required to reduce n to a quantity that is
≤ 1, cf. [23].

2.4 The pq-Gram Distance 15

section we first give a definition of trees and then define the pq-gram distance
of trees.

2.4.1 Preliminaries

A tree T is a directed, acyclic, connected, non-empty graph with nodes N(T)
and edges E(T). An edge is an ordered pair (p, c), where p, c ∈ N(T) are
nodes, and p is the parent of c. A node can have at most one parent, and
nodes with the same parent are siblings. An order ≤ is defined on the nodes,
and this order is total among siblings. The siblings s1 ≤ s2 (s1 6= s2) are
contiguous if s1 and s2 have no sibling x (s1 6= x 6= s2) with s1 ≤ x ≤ s2.
Node c is the i-th child of p with i = |{x ∈ N(T)|(p, x) ∈ E(T), x ≤ c}|. The
number of p’s children is its fanout fp. The node with no parent is the root
node r = root(T), and a node without children is a leaf.

Each node a in the path from the root node to a node v is called an ancestor
of v. If there is a path of length k > 0 from a to v, then a is the ancestor
of v at distance k. The parent of a node is its ancestor at distance 1. d is
a descendant of v if v is an ancestor of d. The level of a node level(v) is the
length of the path from the root to v, the depth of a tree depth(T) is the length
of the longest path from the root to any one of the leaves. A label is a symbol
σ ∈ Σ, where Σ is a finite alphabet. Each node v ∈ N(T) has assigned a label
λ(v). A node • with the special label λ(•) = * is a dummy node.

In our graphical representation of trees we represent nodes as an
(identifier, label)-pair, the edges are lines between the nodes, and siblings are
ordered from left to right. Whenever possible we omit the identifiers of the
nodes to avoid clutter (e.g., in Figure 2.3).

Example 2.1. Figure 2.4 shows a tree with N(T1) = {v1, v2, v3, v4, v5, v6},
E(T1) ={(v1, v2), (v1, v5), (v1, v6), (v2, v3), (v2, v4)}, and the order v2 ≤ v5 ≤
v6, v3 ≤ v4. v1 has 3 children, where v2 is the first, v5 the second, and v6

the third child. The root node root(T) = v1. v1 is the ancestor of all other
nodes. v3, v4, v5 and v6 are leaf nodes. The node labels of our example tree
are λ(v1) = a, λ(v2) = a, λ(v3) = e, λ(v4) = b, λ(v5) = b, and λ(v6) = c.

A subtree S of T is a tree with N(S) ⊆ N(T) and E(S) ⊆ E(T), retaining
the node order. A preorder traversal of a tree visits the root node first, and
then recursively traverses all the subtrees rooted in its children in preorder,
preserving the children’s order. We call a node v the i-th node of T in preorder
if v is visited as the i-th node in a preorder traversal.

Two trees T and T′ are isomorphic if there is a bijective mapping m between
the nodes N(T) and N(T′) such that the following holds true: (v,w) is an edge

16 pq-Grams for Ordered Trees

T1

v3,e v4,b

v2,a v5,b v6,c

v1,a

T2

w7,e w9,b

w1,a w3,b w6,x

w5,a

Figure 2.4: Two Example Trees T1 and T2.

of T and w is the i-th child of v if and only if (m(v),m(w)) is an edge of T′

and m(w) is the i-th child of m(v).

Example 2.2. Consider Figure 2.4. The tree S1 = ({v2, v3, v4}, {(v2, v3),
(v2, v4)}), v3 ≤ v4 is a subtree of T1. The preorder traversal of T1 visits the
nodes in the following order: v1, v2, v3, v4, v5, v6. Tree T2 is isomorphic to T1

with m = {(v1,w5), (v2,w1), (v3,w7), (v4,w9), (v5,w3), (v6,w6)}.

2.4.2 The pq-Gram Distance

In the following paragraphs we define the notion of pq-grams and a distance
measure based on pq-grams. Intuitively, the pq-grams of a tree are all subtrees
of a specific shape. To ensure that each node of the tree appears in at least
one of the pq-grams, we extend the tree with dummy nodes. The pq-grams are
then defined as subtrees of the extended tree.

Definition 2.1 (pq-Extended Tree). Let T be a tree, and p > 0 and q > 0
be two integers. The pq-extended tree, Tp,q, is constructed from T by adding
p − 1 ancestors to the root node, inserting q − 1 children before the first and
after the last child of each non-leaf node, and adding q children to each leaf of
T. All newly inserted nodes are dummy nodes that do not occur in T.

•1,*

v1,a

•2,* •3,* v2,a

•4,* •5,* v3,e

•6,* •7,* •8,*

v4,b

•9,* •10,* •11,*

•12,* •13,*

v5,b

•14,* •15,* •16,*

v6,c

•17,* •18,* •19,*

•20,* •21,*

Figure 2.5: The Extended Tree T
2,3
1 .

2.4 The pq-Gram Distance 17

Example 2.3. Figure 2.5 shows the graphical representation of T
2,3
1 , the 2, 3-

extended tree of our example tree T1.

Definition 2.2 (pq-Gram Pattern). For p > 0 and q > 0, the pq-gram pattern
is a tree that consists of an anchor node with p− 1 ancestors and q children.

Example 2.4. An example of a 2, 3-gram pattern is the tree
({p1, p2, p3, p4, p5}, {(p1, p2), (p2, p3), (p2, p4), (p2, p5)}), p3 ≤ p4 ≤ p5.
p2 is the anchor node, and it has 1 ancestor (p1) and 3 children (p3, p4, and
p5).

Definition 2.3 (pq-Gram). For p > 0 and q > 0, a pq-gram G of a tree T is
defined as a subtree of the extended tree Tp,q with the following properties: G is
isomorphic to the pq-gram pattern, and contiguous siblings in G are contiguous
siblings in Tp,q.

Definition 2.4 (Label-tuple). Let G be a pq-gram with the nodes N(G) =
{v1, . . . , vp, vp+1, . . . , vp+q}, where vi is the i-th node in preorder. The tuple
λ(G) = (λ(v1), . . . , λ(vp), λ(vp+1), . . . , λ(vp+q)) is called the label-tuple of G.

Subsequently, if the distinction is clear from the context, we use the term
pq-gram for both, the pq-gram itself and its representation as a label-tuple.

•2,* •3,* v2,a

v1,a

•1,*

•4,* •5,* v3,e

v2,a

v1,a

•6,* •7,* •8,*

v3,e

v2,a

•5,* v3,e v4,b

v2,a

v1,a

. . .

Figure 2.6: Some of the 2, 3-Grams of T1.

Example 2.5. Figure 2.6 shows some of the 2, 3-grams of the example tree
T1. They are constructed by moving the 2, 3-gram pattern over the extended
tree T

2,3
1 (see Figure 2.5). We start at the top of the tree. For the first pq-

gram the anchor node of the pattern is mapped to v1, and the children of the
anchor are mapped to two dummy nodes and v2. The corresponding label-tuple
is (*, a, *, *, a).

Definition 2.5 (pq-Gram Index). For p > 0 and q > 0, the pq-gram index,
Ip,q(T), of a tree T is defined as the bag of label-tuples λ(Gi) of all pq-grams
Gi of T.

18 pq-Grams for Ordered Trees

I2,3(T1)

labels

(*, a, *, *, a)
(a, a, *, *, e)
(a, e, *, *, *)
(a, a, *, e, b)
(a, b, *, *, *)
(a, a, e, b, *)
(a, a, b, *, *)
(*, a, *, a, b)
(a, b, *, *, *)
(*, a, a, b, c)
(a, c, *, *, *)
(*, a, b, c, *)
(*, a, c, *, *)

I2,3(T2)

labels

(*, a, *, *, a)
(a, a, *, *, e)
(a, e, *, *, *)
(a, a, *, e, b)
(a, b, *, *, *)
(a, a, e, b, *)
(a, a, b, *, *)
(*, a, *, a, b)
(a, b, *, *, *)
(*, a, a, b, x)
(a, x, *, *, *)
(*, a, b, x, *)
(*, a, x, *, *)

Figure 2.7: 2, 3-Gram Indexes of T1 and T2.

The tables in Figure 2.7 show the 2, 3-gram index of T1 and T2, respec-
tively. Note that pq-grams might appear more than once in a pq-gram index,
e.g., (a, b, *, *, *) appears twice in the index of T1.

We subsequently define the pq-gram distance as a measure for the similarity
of two trees. The pq-gram distance is based on the number of pq-grams that
the indexes of the compared trees have in common.

Definition 2.6 (pq-Gram Distance). For p > 0 and q > 0, the pq-gram
distance, ∆p,q(T1,T2), between two trees T1 and T2 is defined as follows:

∆p,q(T1,T2) = 1− 2
|Ip,q(T1) ∩ Ip,q(T2)|

|Ip,q(T1) ∪ Ip,q(T2)|
(2.1)

Example 2.6. Consider the 2, 3-gram distance between T1 and T2. The cor-
responding 2, 3-gram indexes are shown in Figure 2.7. The bag-intersection
of the two indexes is {(*, a, *, *, a), (a, a, *, *, e), (a, e, *, *, *), (a, a, *, e, b),
(a, b, *, *, *), (a, a, e, b, *), (a, a, b, *, *), (*, a, *, a, b), (a, b, *, *, *)}, which
yields |I2,3(T1) ∩ I2,3(T2)| = 9. For the cardinality of the bag-union we get
|I2,3(T1) ∪ I2,3(T2)| = |I

2,3(T1)|+ |I
2,3(T2)| = 26. The pq-gram distance is

∆2,3(T1,T2) = 1− 2
9

26
= 0.31.

The pq-gram distance is 1 if two trees share no pq-grams. Trees at distance
0 have the same pq-gram index. Note that distance 0 does not imply equality

2.5 Algorithms 19

of trees. An example of two different trees with the same pq-gram index is
shown in Figure 2.8. The pq-grams responsible for detecting the swapped
children of the root nodes of T ′ and T ′′ are those anchored in the root nodes.
However, as all children of the root nodes have the same label, the pq-grams
remain unchanged.

T′

c

b b

a
T′′

b

c

b

a

Figure 2.8: Different Trees with the Same pq-Gram Index.

The pq-gram distance can be computed in O(n log n) time by computing
the bag intersection of the pq-gram indexes of size O(n). Theorem 2.1 shows,
how the size of the index is related to the number of leaf and non-leaf nodes.

Theorem 2.1. Let p > 0, q > 0, and T be a tree with l leaf nodes and i
non-leaf nodes. The size of the pq-gram index is

|Ip,q(T)| = 2l + qi− 1.

Proof. By structural induction:
|N(T)| = 1: The tree consists of the root node only, and according to Def-
inition 2.3 the pq-gram index contains exactly one pq-gram. The number of
leaves is 1, the number of non-leaf nodes is 0, thus |Ip,q(T)| = 2l + qi− 1 = 1.
|N(T)| > 1: In this case i ≥ 1 (at least the root node) and l ≥ 1. First we
delete all non-leaf nodes (except the root r) and get T′. |Ip,q(T)| − |Ip,q(T′)| =
(i− 1) ∗ q. (Deleting a non-leaf node decreases the cardinality of the pq-gram
index by q). The number of leaves does not change with this operation, and
the tree now consists of only the leaves and the root node. Now we delete all
leaf nodes and get T′′, |Ip,q(T′)| − |Ip,q(T′′)| = 2(l − 1) + q. (Deleting a leaf
node decreases the cardinality of the pq-gram index by q if the leaf has no
siblings, otherwise by 2). T′′ consists only of the root node and |Ip,q(T′′)| = 1.
This means, |Ip,q(T)| = 1 + [2(l − 1) + q] + [(i− 1) ∗ q] = 2l + qi− 1.

2.5 Algorithms

2.5.1 An Algorithm for the pq-Gram-Index

The basic idea of the pq-Gram-Index algorithm (see Algorithms 2.1 and 2.2)
is to move the pq-gram pattern vertically and horizontally over the tree as

20 pq-Grams for Ordered Trees

illustrated in Figure 2.9. After each move the nodes covered by the pattern
form a pq-gram.

Algorithm 2.1: pq-Gram-Index(T, p, q)

I : empty relation with schema (labels);1

anc: shift register of size p (filled with *);2

I← index(T, p, q, I, root(T), anc);3

return I;4

Algorithm 2.2: index(T, p, q, I, r, anc)

sib: shift register of size q (filled with *);5

anc ← shift(anc, λ(r));6

if r is a leaf then7

I← I ∪ (anc ◦ sib);8

else9

foreach child c (from left to right) of r do10

sib ← shift(sib, λ(c));11

I← I ∪ (anc ◦ sib);12

I←index(T, p, q, I, c, anc);13

for k ← 1 to q − 1 do14

sib ← shift(sib, *);15

I← I ∪ (anc ◦ sib);16

return I;17

We use two shift registers, anc of size p and sib of size q, to repre-
sent the labels of the ancestor and the leaf nodes that are covered by the
pq-gram pattern, respectively. A shift register reg supports a single opera-
tion shift(reg , el), which returns reg with the oldest element dequeued and
el enqueued. For example, shift((a, b, c), x) returns (b, c, x). The concatena-
tion of the two registers, anc ◦ sib, is a tuple in the pq-gram index, i.e., for
anc = (l1, . . . , lp) and sib = (lp+1, . . . , lp+q) the label-tuple of the pq-gram is
(l1, . . . , lp, lp+1, . . . , lp+q).

pq-Gram-Index takes as input a tree T and the two values p and q and
returns a relation that contains the pq-gram index of T. After the initialization,
index calculates the pq-grams starting from the root node of T. First index
shifts the label of anchor node r into the register anc, which corresponds to
moving the pq-gram pattern one step down. Now anc contains the labels of
r and its p − 1 ancestors. The loop at line 10 moves the register sib from

2.5 Algorithms 21

e b

a* *
sib

b c

a
*

anc

esib *b

a

anc

b c

a

* a * * a

a a * * e

a e * * *

a a * e b

a b * * *

a a e b *

a a b * *

* a * a b

a b * * *

* a a b c

a c * * *

* a b c *

* a c * *

I

labels

(*, a, *, *, a)

(a, a, *, *, e)

(a, e, *, *, *)

(a, a, *, e, b)

(a, b, *, *, *)

(a, a, e, b, *)

(a, a, b, *, *)

(*, a, *, a, b)

(a, b, *, *, *)

(*, a, a, b, c)

(a, c, *, *, *)

(*, a, b, c, *)

(*, a, c, *, *)

(a) Moving the pq-Gram
Pattern in the Tree.

(b) Shift Registers
anc and sib.

(c) Resulting
Index I.

Figure 2.9: Illustration of the pq-Gram Index Calculation.

left to right over the children of r in order to produce all the pq-grams with
anchor point r and calls index recursively for each child of r. Overall, index
adds fr + q− 1 label-tuples to I for each non-leaf node r, and 1 label-tuple for
each leaf node. The pq-extended tree is calculated on the fly by an adequate
initialization of the shift registers (lines 2, 5, 14–16).

Example 2.7. Assume p = 2, q = 3, and the tree T1 from Figure 2.4. The
main data structures of the index algorithm are visualized in Figure 2.9. After
the initialization, index(T1, 2, 3, {}, v1 , (*, *)) is called. Line 5 initializes sib =
(*, *, *), and line 6 shifts the label of v1 into the register anc, yielding anc =
(*, a). Since v1 is not a leaf we enter the loop at line 10 and process all children
of v1. The label of the first child, v2, is shifted into sib, yielding sib = (*, *, a),
and the first label-tuple (*, a, *, *, a) is added to the result set I. Figure 2.9(b)
shows the values of anc and sib each time a label-tuple is added to I. The
indentation illustrates the recursion. The table in Figure 2.9(c) shows the
result relation I with the label-tuples in the order in which they are produced
by the algorithm.

22 pq-Grams for Ordered Trees

pq-Gram-Index has runtime complexity O(n) for a tree T, where n =
|N(T)|: Each recursive call of index processes one node, and each node is
processed exactly once.

2.5.2 Relational Implementation

The algorithm described above requires no particular encoding of trees. This
section gives a scalable implementation for trees stored in a relational database.
We use an interval representation of trees, where each node of a tree is repre-
sented by a pair of numbers (interval). The interval encoding is a technique
for storing hierarchical data in relations [6, 7] and has been used to store and
query XML data [1, 15, 55].

We associate a unique index number to each tree in the set. Each node
of a tree is then represented as a quadruple of tree index, node label, and left
and right endpoint of the node’s interval.

Definition 2.7 (Interval Encoding). An interval encoding of a tree T is a
relation R that for each node v ∈ T contains a tuple (id(T), λ(v), lft , rgt);
id(T) is a unique identifier of the tree T, λ(v) is the label of v, lft and rgt are
the endpoints of the interval representing the node. lft and rgt are constrained
as follows:

• lft < rgt for all (id , lbl , lft , rgt) ∈ R,

• lfta < lftd and rgta > rgtd if node a is an ancestor of d, and
(id(T), λ(a), lft a, rgta) ∈ R, and (id(T), λ(d), lft d, rgtd) ∈ R,

• rgt v < lftw if node v is a left sibling of node w, and
(id(T), λ(v), lft v, rgt v) ∈ R, and (id(T), λ(w), lftw, rgtw) ∈ R,

• rgt = lft + 1 if node v is a leaf node, and (id(T), λ(v), lft , rgt) ∈ R.

We get an interval encoding for a tree by traversing the tree in preorder,
using an incremental counter that assigns the left interval value lft to each node
when it is visited first, and the right value rgt when it is visited last. Figure 2.10
shows an address tree of our application, where each node is annotated with
the endpoints of the interval.

The interval encoding of a tree allows a scalable implementation of the
algorithm pq-Gram-Index for a set of trees F stored in a relation F with
schema (treeID , label , lft , rgt). We define the following cursor:

cur = SELECT * FROM F ORDER BY treeID,lft

2.5 Algorithms 23

1
3 4

3
5 6

-
2 7

1
1 8

A
10 11

1
13 14

2
15 16

3
17 18

4
19 20

B
12 21

C
22 23

2
9 24

3
25 26

1
29 30

2
31 32

3
33 34

A
28 35

B
36 37

C
38 39

4
27 40

6
41 42

Giuseppe-Cesare-Abba-Str.
0 43

Figure 2.10: Address Tree in Interval Encoding.

Then with a single scan all trees can be processed, and each tree is processed
node-by-node in preorder. Our experiments in Section 2.7.1 confirm the scal-
ability of this approach to large trees.

The Algorithms 2.3 and 2.4 are adapted for the interval encoding and the
changes are highlighted. Instead of a tree, pq-Gram-Index gets a cursor as
an argument. index processes all nodes of the tree in preorder, and when it
terminates the cursor points to the root node of the next tree in the set.

Algorithm 2.3: pq-Gram-Index(cur, p, q)

I : empty relation with schema (labels);1

anc: shift register of size p (filled with *);2

I← index(cur , p, q, I, fetch(cur), anc);3

return I;4

index calls the following two functions:

• isLeaf(v): Returns true iff v is a leaf node, i.e., lft(v) + 1 = rgt(v).

• isDescendant(d, a): Returns true iff d is a descendant of a, i.e., lft(a) <
lft(d) and rgt(a) > rgt(d) and treeId(a) = treeId(d) and d 6= null.

With the interval encoding it is easier to check whether a node is a descen-
dant than whether it is a child. In our algorithm this amounts to the same
thing: When the loop in line 12 is entered the first time, c is the next node
after r in preorder (or null). Thus, if c is a descendant of r, it must be a
child. The recursive call in line 15 will process c and all its descendants, and

24 pq-Grams for Ordered Trees

Algorithm 2.4: index(cur , p, q, I, r, anc)

sib: shift register of size q (filled with *);5

anc← shift(anc, λ(r));6

cur ← next(cur);7

if isLeaf(r) then8

I← I ∪ (anc ◦ sib);9

else10

c← fetch(cur);11

while isDescendant(c, r) do12

sib← shift(sib, λ(c));13

I← I ∪ (anc ◦ sib);14

I← index(cur , p, q, I, c, anc);15

c← fetch(cur);16

for k ← 1 to q − 1 do17

sib← shift(sib, *);18

I← I ∪ (anc ◦ sib);19

return I;20

set the cursor on the next node after the processed nodes. Again, if this is
a descendant of r, then it is a child. Thus the while-loop of Algorithm 2.4 is
equivalent to the for-loop of Algorithm 2.2.

2.6 Sensitivity to Structural Changes

In this section we discuss the main properties of the pq-gram distance and
compare it with the tree edit distance. We investigate two cases where the
pq-gram distance behaves differently from the tree edit distance: structural
and local changes. We consider the following standard edit operations [56]:

Update(T, v, σ): Updating a node v ∈ N(T) means changing its label to
σ ∈ Σ.

Delete(T, v): Deleting a node v ∈ N(T) \ {root(T)} means substituting v

with its children (preserving the order), i.e., remove v and connect v’s
children directly with v’s parent node.

Insert(T, v, p, i, k): Inserting a new node v /∈ N(T) as a child of a node
p ∈ N(T) at position i means substituting k consecutive children
vi, vi+1, . . . , vi+k−1 of p with v, and inserting them as children of v (pre-

2.6 Sensitivity to Structural Changes 25

serving the order). If k = 0, a leaf node is inserted, and the number of
p’s children increases by one.

The tree edit distance assigns a fixed cost to each operation. This disre-
gards the fact that operations which change the structure (insert and delete)
might have side effects on other nodes. For example, if a node is deleted, all
children of this node are moved with their descendants to the parent node.
This behavior leads to non-intuitive results, as shown in Figure 2.11: Tree T′

is the result of deleting the leaves with labels g and k from T, T′′ is obtained
from T by deleting the nodes labeled c and e. Intuitively, T′ and T are much
more similar (in structure) than T′′ and T, but the tree edit distance is 2 in
both cases for a unit cost model.

T′ ← disted = 2→
∆2,3 = 0.30

T
← disted = 2→

∆2,3 = 0.89
T′′

b

d

h i

e f

c

a

b

d

h i k

e f g

c

a

b d h i k f g

a

Figure 2.11: Tree Edit Distance and pq-Gram Distance for Structural Changes.

The pq-gram distance depends directly on the number of affected pq-grams,
which depends on the number of descendants of v within distance p. Thus,
changes to non-leaf nodes cost more than changes to leaves. The following the-
orem gives the number of pq-grams that contain a node v, which corresponds
to the number of affected pq-grams if v is modified.

Theorem 2.2. For a tree T with all leaf nodes at level d = depth(T) and a
fixed fanout f > 1 for the non-leaf nodes, the number of pq-grams (p > 0, q >
0) that contain a node v of level l = level(v) is:

cntpq(T, v) = q sgn(l) +

{

fp−1
f−1 (f + q − 1) if p ≤ d− l
fd−l−1

f−1 (f + q − 1) + fd−l if p > d− l.

Proof. Consider how the pq-gram pattern with q leaves and p non-leaves is
shifted over the tree. The leaves of the pattern are shifted over all nodes of
the tree but the root node, which gives q pq-grams for each non-root node

26 pq-Grams for Ordered Trees

(sgn(l) is 0 for the root, 1 for non-root nodes). If v is a non-leaf node, it
appears in f + q − 1 pq-grams as the anchor node, otherwise in a single pq-
gram. While v is in the pq-gram we recursively move the pattern down the
tree. We exit the recursion earlier if the anchor node of the pq-gram pattern
is a leaf. For the case p ≤ d− l, we get (f + q − 1)

∑p−1
i=0 f i, and for the case

p > d − l, (f + q − 1)
∑d−l−1

i=0 f i additional pq-grams that contain v. For the
latter case we add the term fd−l that accounts for the pq-grams that have one
of the fd−l leaf descendants of v as an anchor node. We evaluate the partial
sum of the geometric series to get the formula in Theorem 2.2.

Theorem 2.2 assumes a tree with all leaves at the same depth and a fixed
fanout. If f is the maximum fanout of v and its descendants within distance
p, then cntpq(T, v) is an upper bound for the number of pq-grams that contain
v.

According to Theorem 2.2 the cost for changing a leaf node (d = l) is q+1,
i.e., depends only on q. For non-leaf nodes the impact of p is prevalent, and
we can control the sensitivity of the pq-gram distance to structural changes
by choosing the value for p.

The difference between non-leaf and leaf nodes is relevant for hierarchical
data, where values higher up in the hierarchy are more significant. For exam-
ple, two streets with different house numbers (with subnumbers and apartment
numbers) are considered more different than streets in which only apartment
numbers differ.

We further investigate the case when part of a tree is missing, i.e., a subtree
is deleted. The effect on the structure is limited as the remaining part of
the tree is unchanged. An example of a subtree is a subnumber with all its
apartment numbers. If it is missing in one address tree, a relatively high
number of nodes changes. These changes should be weighted less than the
same number of changes on different house numbers.

If a subtree is deleted, several modifications are applied within a small
neighborhood. The affected sets of pq-grams overlap each other, and hence,
these changes have less impact on the pq-gram distance than changes that are
uniformly distributed over the tree. The following theorem gives the number
of pq-grams that change with a subtree deletion.

Theorem 2.3. Let S be the subtree of T consisting of v ∈ N(T) \ {root(T)}
and all its descendants, and let l be the number of leaves of S, and let i be
the number of non-leaf nodes. If all nodes of S are deleted or updated, then
2l + iq + q − 1 pq-grams change.

2.7 Experiments 27

Proof. All pq-grams of the subtree change. This are 2l + iq − 1 pq-grams
(Theorem 2.1). Further v appears as a sibling in q pq-grams. The sum is
2l + iq + q − 1.

Example 2.8. We refer to Figure 2.11 and discuss the deletion of the subtree
of T that consists of the node with label e (lets call the node v) and all its
descendants. An effect of this operation is that the following nodes are deleted:
v plus the nodes labeled h, i, and k. The number of 2, 3-grams that contain
the node v is cnt2,3(T, v) = 11, and q + 1 = 4 for the three other nodes. If
these nodes did not share any pq-grams, the total number of affected pq-grams
would be 11 + 3 × 4 = 23. However, as the deleted nodes build a subtree with
l = 3 leaves and i = 1 non-leaf nodes, they do share pq-grams, and the total
number of changing 2, 3-grams is only 2l + iq + q − 1 = 11.

2.7 Experiments

2.7.1 Scalability

We compare the scalability of our algorithm with the tree edit distance [56]
and the tree embedding distance [23], and we investigate the influence of the
parameters p and q on the scalability of the pq-gram distance.

As a test set we produce pairs of trees (T1,T2) of size |N(T1)| = |N(T2)| =
n, where n ranges from 3 to 2×106 nodes. The depth of the trees is log(n) and
the labels for each tree are randomly chosen from a set of n different labels.

Figure 2.12(a) shows the runtimes of tree edit distance and 2, 3-gram dis-
tance calculations for different tree sizes. For the tree edit distance we use the
implementation of Zhang and Shasha2, whereas for the pq-gram distance we
use the relational implementation described in Section 2.5.2. For very small
trees edit distance is faster than pq-gram distance. The reason being that our
algorithm writes all intermediate results to the disk, while the edit distance
algorithm runs in the main memory. Therefore the overhead for disk access
in this range masks the actual computing time for the distance. This effect
can easily be prevented by keeping all data in main memory. For large trees
the computation time for the tree edit distance grows very fast. For trees of
size 10,000 it is already more than 27 hours, therefore we could not run our
experiment for even larger trees. For the pq-gram distance the computation
time is almost linear in the tree size.

Figure 2.12(b) compares the pq-gram distance for varying parameters with
the tree embedding distance. We use our own implementation for tree embed-

2http://www.cs.nyu.edu/cs/faculty/shasha/papers/tree.html

28 pq-Grams for Ordered Trees

ding distance according to the algorithm of Garofalakis and Kumar [23]. For
the comparison both algorithms run in main memory. The pq-gram distance
is slightly faster, and varying values for p and q have little impact on the
scalability of the pq-gram distance calculation.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

tim
e

[s
ec

]

number of nodes (n)

edit dist
2,3-gram dist

(a) Tree Edit Distance.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100000 200000 300000 400000 500000

tim
e

[s
ec

]

number of nodes (n)

edit dist embedding
3,4-gram dist
2,3-gram dist
1,2-gram dist

(b) Tree Embedding Distance.

Figure 2.12: Scalability Results.

2.7.2 Sensitivity to Structural Changes

In Section 2.6 we point out that the pq-gram distance weights deletions of
non-leaf nodes more than deletions of leaves, and the sensitivity to structural
changes is controlled by the parameters p and q. We show this property in
an experiment, where only non-leaf nodes or only leaf nodes are deleted for
varying parameters, and calculate the pq-gram distance for both cases.

We create an artificial tree T with 144 nodes, 102 leaves, and depth 6.
Each non-leaf has a fanout of between 2 and 5. Figure 2.13 shows the pq-gram
distance for different numbers of leaf and non-leaf deletions. Each value in
Figure 2.13 is an average over 100 runs.

For leaf node deletions only q has an influence (see Figure 2.13(a)). For
the deletion of non-leaf nodes q has a small impact compared to p (see Fig-
ure 2.13(b)). This confirms our analytical results. Sensitivity to changes in
the leaves depends only on q, and we can emphasize structural sensitivity
with higher values of p. For deletions of non-leaf nodes the pq-gram distance
is longer than for deletions of leaf nodes.

We further investigate the difference in the pq-gram distance for deleting
a subtree or the same number of nodes randomly distributed all over the tree.
For the experiment we use the same tree T as above. We randomly choose
a node v ∈ T \ {root(T)} and delete v and all its descendants. The tree edit
distance between T and the resulting tree T′ is the number of nodes in the

2.7 Experiments 29

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0 2 4 6 8 10 12 14 16 18 20

pq
-g

ra
m

 d
is

ta
nc

e

edit distance

1,3-grams
2,3-grams
3,3-grams
4,3-grams

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

 0 2 4 6 8 10 12 14 16 18 20

pq
-g

ra
m

 d
is

ta
nc

e

edit distance

2,1-grams
2,2-grams
2,3-grams
2,4-grams

(a) Deletion of Leaf Nodes.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 2 4 6 8 10 12 14 16 18 20

pq
-g

ra
m

 d
is

ta
nc

e

edit distance

1,3-grams
2,3-grams
3,3-grams
4,3-grams

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18 20

pq
-g

ra
m

 d
is

ta
nc

e

edit distance

2,1-grams
2,2-grams
2,3-grams
2,4-grams

(b) Deletion of Non-Leaf Nodes.

Figure 2.13: Properties of the pq-Gram Distance.

30 pq-Grams for Ordered Trees

deleted subtree. In Figure 2.14 we compare the results to distributed changes
(average on 100 runs). We can see that local changes (subtree deletions) are
cheaper than distributed changes.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

2,
3-

gr
am

 d
is

t

edit dist

distributed changes
local changes

Figure 2.14: Distributed vs. Local Changes.

2.7.3 Matchmaking with Real Data

To test the accuracy for real world data we use the address tables RO and LR

described in Section 2.2. We build the address trees for all streets in both
tables and get the sets R and L. Each tree T in one of the tree sets R and L

represents a street with all the addresses in that street. Set R from RO consists
of 302 trees with 52,509 nodes in total, reflecting 43,187 addresses. Set L from
table LR consists of 300 trees with 53,464 nodes and 44,447 addresses.

We say that two trees T ∈ F and T′ ∈ F ′ match if T has only one nearest
neighbor in F ′, namely T′, and vice versa. For each distance function distx
we compute a mapping Mx ∈ F × F

′ between all pairs of matching trees.
Furthermore, we create a mapping, Mc, by hand with the correct pairs of
trees, i.e., with all pairs of trees that represent the same street in the real
world. We define the accuracy of Mx with respect to Mc as a = |Mx∩Mc|

|Mc|
. The

false positives are computed as Mx \Mc.
We compute a mapping for the tree edit distance disted , the pq-gram dis-

tance ∆p,q, the tree embedding distance distemb , and the node intersection
disti. The node intersection is a simple algorithm that completely ignores the
structure of the tree. It is computed in the same way as the pq-gram distance,
the only difference being that the index of a tree consists of the bag of all its
node labels.

The results for the address tables RO and LR are shown in Table 2.1. There
are two streets in RO that do not exist in LR, thus |Mc| = 300 for the calculation
of the accuracy. The efficiency of the approximations is clearly greater than

2.7 Experiments 31

that of the tree edit distance: All of them can be computed within about five
minutes, whereas the tree edit distance takes more than 52 hours.

accuracy correct false pos. runtime

disted 82.7% 248 9 187,538s

∆1,2 78.3% 235 5 181s

∆2,3 77.3% 232 4 204s

∆3,2 79.3% 238 2 180s

distemb 69.0% 207 8 313s

disti 66.3% 199 12 82s

Table 2.1: Accuracy of the Tree Edit Distance and its Approximations.

The pq-gram distance clearly outperforms the other approximations with
respect to both, number of correct matches and number of false positives for
all tested parameters. The number of false positives is even smaller than with
the tree edit distance. The tree embedding distance does not perform much
better than the simple node intersection. We will now briefly discuss how the
tree embedding distance works, and why it performs poorly on typical address
trees.

The tree embedding distance is computed by building a parsing hierarchy
for a tree T. In each phase i a tree Ti is obtained by nodes of the tree Ti−1.
The parsing procedure starts with the tree T0 = T, and it stops if |Ti| = 1.
Figure 2.15 shows the parse trees T0, T1 and T2 for an example tree T that is
shaped like a typical address tree. In our illustration we use different types of
brackets to label the newly created nodes for the different situations in which
nodes are merged:

• Contiguous sequences of children are split into blocks of length 2 and
3, and the blocks are contracted. The nodes 1, 3, 5, 10, 11 of T0 become
the two new nodes (1,3,5) and (10,11) of T1.

• A lone leaf child is merged with the parent node if it is the leftmost lone
leaf. The nodes SN and 3 in T0 become the new node {SN,3} in T1.

• Chains (paths of degree-two nodes) are split into blocks of length 2 and
3, and the blocks are contracted. The nodes 2, A, (1,3,7) of T1 become
the new node [2,A,(1,3,7)] of T2.

Each node in the parsing hierarchy corresponds to a set of nodes (“valid
subtree”) in the original tree. The bag of all valid subtrees corresponding to
all nodes of the final hierarchical parsing structure (tagged with a phase label

32 pq-Grams for Ordered Trees

T0

1 2 3

A

2 4 5

B

1

1 3 7

A

2 3

1 3 5 10 11

A

3 5 9 15 20

B

4

SN

T1

(1,2,3)

A

(2,4,5)

B

1

(1,3,7)

A

2

(1,3,5) (10,11)

A

(3,5) (9,15,20)

B

4

{SN,3}

T2

[A,(1,2,3)] [B,(2,4,5)]

1 [2,A,(1,3,7)]

((1,3,5),(10,11))

A

((3,5),(9,15,20))

B

4

{SN,3}

. . .
Figure 2.15: Parse Trees for an Example Tree T.

to distinguish between subtrees in different phases) is treated the same way we
treat the pq-gram index in order to calculate the distance. It contains nodes
corresponding to (1) single nodes, (2) node chains with parent-child relation-
ship, (3) contiguous leaf children, and (4) subtrees. Single nodes contain no
structural information, parent-child chains only vertical, leaf sequences contain
only horizontal structure information. Only subtrees reflect both, horizontal
and vertical structure. Table 2.2 gives an overview of how many nodes of each
type are obtained in each phase for the example tree. We can see that 65% of
all nodes are single nodes containing no structural information. Only 19% of
nodes correspond to subtrees.

Trees with many leaves at the deepest level are parsed bottom-up, and the
structure of the inner nodes has less impact on the distance. For this reason
the tree embedding distance performs only slightly better than a simple node
intersection on our real world data.

2.8 Conclusion

Our work is motivated by a data integration scenario from the Municipality
of Bozen, where data from different sources have to be integrated and no
common keys exist. Data have to be joined over residential addresses, which

2.8 Conclusion 33

phase single node chain cont. leaf subtree

0 29 - - -
1 8 1 7 -
2 4 1 2 3
3 2 - - 4
4 1 - - 3
5 - - - 2
6 - - - 1

total 44 2 9 13
65% 3% 13% 19%

Table 2.2: Types of Valid Subtrees in the Different Phases.

in practice have some undesirable properties, and exact joins completely fail.
To overcome these problems we introduced address trees as a representation
of residential addresses. This reduces the integration to an approximate join
on address trees.

We presented a new distance measure, the pq-gram distance, for ordered
labeled trees as an effective and efficient approximation for the well known
tree edit distance. We provided an algorithm for the computation of pq-grams
in O(n) time, where n is the number of tree nodes. Based on the index
the pq-gram distance can be computed in O(n log n) time. We discussed a
scalable implementation using an interval representation of trees in a relational
database.

The pq-gram distance behaves differently from the tree edit distance for
structural and local changes. It gives more weight to edit operations that cause
big changes in the tree structure. This property turned out to be relevant in
our application domain.

Detailed experiments on real and synthetic data confirmed that the pq-
gram distance is orders of magnitude faster than the tree edit distance for
large trees. The accuracy of the pq-gram distance for real world data from the
municipality domain turned out to be clearly better than other approximations
of the tree edit distance.

In the future we will investigate additional application areas and apply the
pq-gram distance for data cleaning and the comparison of XML data.

34 pq-Grams for Ordered Trees

Chapter 3

Updating the pq-Gram Index

Several recent papers argue for approximate lookups in hierarchical data
and propose index structures that support approximate searches in large sets
of hierarchical data. These index structures must be updated if the underly-
ing data changes. Since the performance of a full index re-construction is
prohibitive, the index must be updated incrementally.

We propose a persistent and incrementally maintainable index for ap-
proximate lookups in hierarchical data. The index is based on small tree
patterns, called pq-grams. It supports efficient updates in response to struc-
ture and value changes in hierarchical data that are based on the log of tree
edit operations. We prove the correctness of the incremental maintenance
for sequences of edit operations. Our algorithms identify a small set of pq-
grams that must be updated to maintain the index. The experimental results
with synthetic and real data confirm the scalability of our approach.

3.1 Introduction

Index structures are widely deployed and are being used to index vast amounts
of documents with a hierarchical structure on the web. An important prop-
erty of index structures is how to incrementally update them in response to
structure and value changes in the source documents. We propose a persistent
and incrementally maintainable index that supports approximate lookups in
hierarchical data. The approximate lookup of a search document in a docu-
ment collection returns all documents of the collection that are similar to the
search document.

As an application scenario consider Figure 3.1. T0 is a document with a
hierarchical structure (e.g., the DBLP file, 211MB). I0 is the index for T0. T0

is modified by a sequence of edit operations resulting in Tn. Our goal is to
update the index structure based on: (1) the old index I0, (2) the resulting

35

36 Updating the pq-Gram Index

document Tn, and (3) the log of inverse edit operations that describes how
Tn can be transformed to T0. Note that we do not require that the original
document be still available, and we assume that it is not feasible to recompute
the index from scratch.

T0 T1 · · · Tn

I0

e1 e2 en

ēnē2ē1̄e1

Figure 3.1: Application Scenario.

Our key contribution is the proof that we do not need to reconstruct inter-
mediate versions of the document. All inverse edit operations can be applied
to the resulting document Tn to compute the changes to the old index. Note
that it is not obvious that this is possible, since the edit operations may de-
pend on each other and have been defined on intermediate trees that can be
very different from the resulting tree.

More specifically, the contributions are the following:

• We define the pq-gram index, which supports approximate lookups in
data with a hierarchical structure. The pq-gram index is based on pq-
grams [3], which generalize q-grams [49]. Intuitively, the pq-grams of a
tree are all its subtrees of a specific shape.

• We prove that the pq-gram index can be updated incrementally given
the old index, the log of edit operations, and the resulting document.
The index update does not require the reconstruction of intermediate
versions of the document.

• We show experimentally that our method efficiently handles logs of sev-
eral thousand edit operations.

The chapter proceeds as follows: Section 3.2 discusses related work, Sec-
tion 3.3 defines the pq-gram index, and Section 3.4 gives an outline on our
approach. Section 3.5 develops the incremental maintenance for a single edit
operation, Section 3.6 generalizes to a sequences of edit operations and proves
the correctness. In Section 3.7 we discuss the computation of the index main-
tenance functions. Section 3.8 discusses the implementation. Section 3.9 gives
experimental results. Section 3.10 summarizes and points to future research
directions.

3.2 Related Work 37

3.2 Related Work

Guha et al. [26] propose a framework for indexing approximate XML joins.
Each XML document is represented by an XML Document Distance vector
(XDD) that stores the distances between the document and all documents in a
reference set. The use of XDDs reduces the number of distances computations
in a join. Guha et al. [27] investigate the use of R-trees to efficiently access the
XDDs that are relevant for pruning. The update of XDDs is not addressed.
Building the XDD from scratch means recomputing the distance of the tree to
all trees in the reference set. This step is expensive and depends on the size
of the trees. We update our index locally and are nearly independent of the
tree size.

The comparison of hierarchical documents has been addressed in the con-
text of duplicate and change detection. Weis and Naumann [52] propose a
framework for detecting duplicates. In change detection scenarios two ver-
sions of the same document are given and the difference is computed [12, 37].
Index use and maintenance is not addressed.

Structural joins [1, 30] compute structural relationships (e.g., ancestor-
descendant) between XML element sets. Structural joins are part of the XML
query evaluation and are not used to approximately match XML documents.

XML queries typically specify path expressions or twig patterns that com-
bine content and structural information. Some papers investigate exact an-
swers [5, 13, 34, 39], while others allow approximate answers [42, 44]. Schenkel
et. al. [45] introduce a ranking of documents that satisfy the XML query. Typ-
ically the twig patterns are much smaller than the document and the goal is
to find parts of the document that match the pattern. The indexes proposed
for XML queries have been specialized for this setup and do not support the
matching of pairs of large documents.

A number of works propose index-like structures to compute an approx-
imate distance between hierarchical data [3, 23, 53]. None of these works
addresses index maintenance.

Our index is based on the pq-gram distance [3], an approximation of the
tree edit distance. Augsten et al. [3] give an algorithm to compute the pq-gram
distance in O(n log n) in the number of nodes. For the distance computation
they represented the tree as a set of pq-grams. Updates of pq-grams are not ad-
dressed: If the data changes, the entire set of pg-grams has to be re-computed.
We show that the computation of the pq-grams is by far the most expensive
part of the distance computation. We propose the pq-gram index, a persistent
and incrementally maintainable index for computing the pq-gram distance. We
prove that the pq-gram index can be updated given the old index, the log of

38 Updating the pq-Gram Index

edit operations, and the resulting document. It is not necessary to reconstruct
intermediate document versions. Our experiments compare the incremental
index update with the approach of Augsten et al. and show major performance
gains.

3.3 The pq-Gram Index

3.3.1 Preliminaries

A tree T is a directed, acyclic, connected, non-empty graph with nodes N(T)
and edges E(T). A node, n ∈ N(T), is an (identifier, label)-pair. The identifier,
id(n), is unique within the tree. The label, λ(n), is a symbol σ ∈ Σ, where
Σ is a finite alphabet. A node • with the special label λ(•) = * is a dummy
node. We represent nodes by their id or the (id, label)-pair. An edge is an
ordered pair (v, c), where v, c ∈ N(T) are nodes, and v is the parent of c.
A node can have at most one parent, and nodes with the same parent are
siblings. Siblings are ordered. Contiguous siblings s1 < s2 have no sibling x

such that s1 < x < s2. Node ci is the i-th child of v if v is the parent of ci

and i = |{x ∈ N(T) : (v, x) ∈ E(T), x ≤ ci}|. The number of v’s children is its
fanout fv. The node with no parent is the root node, r = root(T), and a node
without children is a leaf. A subtree S of T is a tree with N(S) ⊆ N(T) and
E(S) ⊆ E(T) that retains the node order. A forest, F , is a set of trees.

An ancestor of n is a node a in the path from the root node to n, a 6= n.
If there is a path of length k > 0 from a to n, then a is the ancestor of n at
distance k, and we write dist(a, n) = k. We define dist(n, n) = 0. The parent
of a node is its ancestor at distance 1. d is a descendant of n if n is an ancestor
of d.

An edit operation ej transforms a tree Ti into a tree Tj , denoted as Tj =
ej(Ti). The inverse edit operation, ēj , undoes ej , i.e., Ti = ēj(Tj). If a tree
T0 is transformed by a sequence of edit operations (e1, . . . , en) into Tn, the log
L = (ē1, . . . , ēn) is the sequence of inverse edit operations that (if applied in
inverse order) transform Tn back to T0. We use the following standard tree
edit operations [56] that transform Ti into Tj:

• ins(n, v, k,m): Insert a new node n as a child of node v at position k
by substituting the children ck, ck+1, . . . , cm of v with n, and inserting
them as children of n (preserving the order). The inverse edit operation
is ēj = del(n).

• del(n): Delete node n by substituting n with its children, i.e., remove
n and connect n’s children directly to n’s parent node (preserving the

3.3 The pq-Gram Index 39

T0

n1,a

n2,c n3,b

n5,e n6,f

n4,c

e1=ins((n7,g),n6,1,0)
−→

ē1=del(n7)
←−

T1

n1,a

n2,c n3,b

n5,e n6,f

n7,g

n4,c

e2=del(n3)
−→

ē2=ins((n3,b),n1,2,3)
←−

T2

n1,a

n2,c n5,e n6,f

n7,g

n4,c

e3=ren(n6,s)
−→

ē3=ren(n6,f)
←−

T3

n1,a

n2,c n5,e n6,s

n7,g

n4,c

Figure 3.2: Sequence of Edit Operations that Transforms Tree T0 into T3.

order). The inverse operation is ēj = ins(n, v, k, (k + fn − 1)), where n

is the k-th child of v in Ti, and fn is the fanout of n.

• ren(n, l′): Rename a node n by changing its label l to l′ ∈ Σ, l 6= l′.
Inverse operation: ēj = ren(n, l).

We assume that the root node is not changed. Two nodes of different trees, Ti

and Tj, are equal iff identifier and label match. Figure 3.2 shows an example
tree T0 that is transformed to T3 by a sequence of 3 edit operations.

Below we list standard set algebra rules that we use in our proofs. For sets
A,B, and C the following holds:

(A ∩B) ∪ (A \B) = A (3.1)

A \ (A \B) = A ∩B (3.2)

(A ∪B) \ C = (A \ C) ∪ (B \ C) (3.3)

(A \B) ∪B = A ∪B (3.4)

If we operate on bags, we use the symbols ∩, \ and ⊎ to denote bag intersection,
difference, and union, respectively.

3.3.2 The pq-Gram Index

The pq-gram index is used to efficiently compute approximate matches in
hierarchical data. Intuitively, the pq-grams of a tree are all subtrees of a
specific shape. Trees that share a high percentage of pq-grams are considered
more similar than trees that share a low percentage.

Definition 3.1. pq-Gram. Let T be a tree, a be a node in N(T), p > 0, q > 0,
and let Tp,q be T extended with dummy nodes as follows: p − 1 ancestors to
the root node, q −1 children before the first and after the last child of each
non-leaf node, and q children to each leaf.

40 Updating the pq-Gram Index

T
p,q
0

G1

G2

•

•

n1

n2 n3

n5

• • •

n6

n4 • •

•

•

n1

n4 • •

n1

n3

n5

• • •

Figure 3.3: Part of T
p,q
0 and Two 3, 3-Grams of Tree T0.

A pq-gram, G, of T with anchor node a is a subtree of Tp,q that is composed
of the following nodes: p nodes ap−1, . . . , a1, a, denoted as p-part of G, where
ai is the ancestor of a at distance i; q contiguous children ci, . . . , ci+q−1 of a,
denoted as q-part of G.

We use a linear encoding and represent a pq-gram G with anchor node a

as a tuple (ap−1, . . . , a1, a, ci, . . . , ci+q−1).

Example 3.1. Consider tree T0 in Figure 3.2. Figure 3.3 shows part of
the extended tree T

p,q
0 (p = q = 3) together with two pq-grams of T0, namely

G1 = (•, •, n1, n4, •, •) with anchor node n1 and G2 = (n1, n3, n5, •, •, •) with
anchor node n5. The total number of pq-grams of T0 is 13.

Definition 3.2. pq-Gram Profile. Let T be a tree, p > 0, q > 0. The pq-gram
profile, P, of tree T is defined as the set of all pq-grams of T.

Example 3.2. The pq-gram profiles of T0 and T2 in Figure 3.2 are given as
follows:

P0 = {(•, •, n1, •, •, n2), (•, •, n1, •, n2, n3), (•, •, n1, n2, n3, n4),
(•, •, n1, n3, n4, •), (•, •, n1, n4, •, •), (•, n1, n2, •, •, •),
(•, n1, n3, •, •, n5), (•, n1, n3, •, n5, n6), (•, n1, n3, n5, n6, •),
(•, n1, n3, n6, •, •), (n1, n3, n5, •, •, •), (n1, n3, n6, •, •, •),
(•, n1, n4, •, •, •)}

P2 = {(•, •, n1, •, •, n2), (•, •, n1, •, n2, n5), (•, •, n1, n2, n5, n6),
(•, •, n1, n5, n6, n4), (•, •, n1, n6, n4, •), (•, •, n1, n4, •, •),
(•, n1, n2, •, •, •), (•, n1, n5, •, •, •), (•, n1, n6, •, •, n7),
(•, n1, n6, •, n7, •), (•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •),
(•, n1, n4, •, •, •)}

3.3 The pq-Gram Index 41

l h(l)
* 0

a 1

b 3

c 2

d 6

l h(l)
e 8

f 4

g 7

h 5

s 9

(a) Hash Function.

treeId pqg cnt

T0 001002 1
T0 001023 1
T0 001232 1
T0 001320 1
T0 001200 1
T0 012000 2
.

(b) pq-Gram Index.

Figure 3.4: A Hash Function and Part of the pq-Gram Index of T0.

With λ(G) = (λ(n1), . . . , λ(np+q)) we denote the tuple of the pq-gram’s
node labels, called its label-tuple. While a pq-gram is unique within a tree,
different pq-grams may yield identical label-tuples.

Definition 3.3. pq-Gram Index. Let T be a tree with profile PT, p > 0, q > 0.
The pq-gram index, I, of tree T is the bag of all label-tuples of T,

I(T) =
⊎

G∈PT

λ(G). (3.5)

We store the pq-gram index of a forest F = {T1, . . . ,TN} in a relation
with tuples (k, x, n), where k is the ID of Tk, x is a label-tuple, and n is the
number of occurrences of x. To deal with node labels of different length, such
as labels in XML documents, we use a fingerprint hash function (e.g., the
Karp-Rabin fingerprint function [33]) that maps a label l to a hash value h(l)
of fixed length that is unique with a high probability. Instead of storing the
label-tuples of pq-grams, we store the concatenation of the hashed labels (see
Figure 3.4). Note that the only operation we need to perform on labels is to
check equality.

Example 3.3. Figure 3.4 shows part of the pq-gram index for tree T0, p =
q = 3. The label-tuple with the hash values 012000 occurs twice in T0, in
the pq-grams (•, n1, n2, •, •, •) and (•, n1, n4, •, •, •). All other label-tuples are
unique.

An approximate lookup of a search tree X in a forest F returns all trees
of the forest that are similar to the search tree, i.e., the set {T ∈ F |
TDist(X,T) < τ}, where TDist is a distance measure between trees and τ
is a threshold value. We use the pq-gram distance [3] as a measure for the
similarity of two trees. The pq-gram distance is based on the number of pq-
grams that the indexes of the compared trees have in common. For two trees,

T and T′, the pq-gram distance is defined as distp,q(T,T′) = 1− 2 |I(T)∩I(T′)|
|I(T)⊎I(T′)| .

42 Updating the pq-Gram Index

T0 T1 · · · Tn

I0

e1 e2 en

ēnē2ē1̄e1

∆−n ∆+
n

In

⋃n
k=1 δ(Tn, ēk)

U(. . .U(U(∆+
n , ēn), ēn−1) . . . , ē1)

I0 \ λ(∆−
n) ⊎ λ(∆+

n)

λ(∆−
n) λ(∆+

n)

Figure 3.5: Application Scenario and Solution.

3.4 Outline

In the following we give an outline of our approach to incrementally update the
index. Figure 3.5 shows the application scenario and summarizes the solution:

Input: The old index, I0, the log of inverse edit operations, (ē1, . . . , ēn), and
the resulting tree, Tn (shaded in Figure 3.5).

Output: The new index, In, for tree Tn.

Solution: The solution consists of three steps:

∆+
n = δ(Tn, ē1) ∪ · · · ∪ δ(Tn, ēn)

∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1)

In = I0 \ λ(∆−
n) ⊎ λ(∆+

n)

First, we compute ∆+
n , the new pq-grams in the profile of Tn that were not

present in the profile of T0. Second, we compute the set ∆−
n , the old pq-grams

in the profile of T0 that are not present in the profile of Tn. δ(Tn, ēj) operates
on tree Tn and uses the reverse edit operation ēj to compute the new pq-grams.
U(δ(Tn, ēj), ēj) operates on the new pq-grams and transforms them into the
old pq-grams. Finally, we map the pq-grams in ∆+

n and ∆−
n to label-tuples

and update the index I0.

Note the difference between the profile and the index of a tree. The profile,
P, is a set of pq-grams, the index, I = λ(P), the respective bag of label-tuples.
While the index can be computed from the profile, the reverse is not possible.

3.5 Single Edit Step 43

As we need to distinguish between different nodes with the same label, we
compute the deltas on the profiles.

3.5 Single Edit Step

In this section we discuss the effect of a single edit operation on the profile of a
tree. Figure 3.6 graphically illustrates this for two trees Ti and Tj with profiles
Pi and Pj , respectively, and an edit operation, ej, such that Tj = ej(Ti). An
edit operation changes a small part of the profile by substituting some old
pq-grams (A) by new pq-grams (B). A substantial part of the profiles overlaps
(C). The old pq-grams exist only in Pi, the new pq-grams only in Pj .

We give declarative definitions for functions that return the old and the
new pq-grams. Algorithms for these functions will be given in Section 3.7 and
Section 3.8.

←
ēj

C

Pi

U(δ(Tj, ēj), ēj) δ(Tj, ēj)

A B

Pj

Ti
ej

→ Tj

Figure 3.6: Profile Update for an Edit Operation ēj .

3.5.1 The Delta Function

Assume Ti,Tj, ej such that Tj =ej(Ti). The delta function, δ(Tj , ēj), operates
on Tj and computes the new pq-grams that have been added by the edit
operation ej.

Definition 3.4. Delta Function. Let Tj be a tree with profile Pj . Let ej be
an edit operation and ēj its reverse operation. The delta function is defined
as

δ(Tj , ēj) =

Pj \Pi iff ∃Ti : Ti = ēj(Tj)

∅ otherwise
(3.6)

Pi is the profile of Ti.

44 Updating the pq-Gram Index

This definition allows us to compute the delta function even if the edit
operation is not defined for the tree (e.g., deletion of a node that is not in the
tree). This is crucial in our application, where only the resulting tree, Tn, is
given. We will compute the delta function on Tn for all reverse edit operations
in the log. The reverse edit operations in the log are defined on intermediate
trees that are different from the resulting tree. They are not guaranteed to be
defined on Tn. We further discuss this issue in Section 3.6.

For the rename (delete) operation the delta function returns all pq-grams
that contain the renamed (deleted) node, for the insert operation the pq-grams
that contain the parent and at least one of the children of the inserted node.

Lemma 3.1. Let Ti,Tj be trees such that Ti = ēj(Tj), and let G ∈ Pj be a
pq-gram with the nodes N(G). If ēj = ins(n, v, k,m), C = {ck, . . . , cm}, where
ci is the i-th child of v, then

G ∈ δ(Tj , ēj)⇔ v ∈ N(G) ∧ ∃c ∈ C : c ∈ N(G). (3.7)

If ēj = del(n) or ēj = ren(n, l), then

G ∈ δ(Tj , ēj)⇔ n ∈ N(G). (3.8)

Proof. Each pq-gram G ∈ Pj is a subtree of Tj . If and only if this subtree is
affected by the edit operation ēj, the pq-gram is new, i.e., G ∈ δ(Tj , ēj).

Insert. G ∈ δ(Tj , ēj) ⇒ v ∈ N(G) ∧ ∃c ∈ C : c ∈ N(G) is equivalent to
v /∈ N(G) ∨ ∀c ∈ C : c /∈ N(G) ⇒ G /∈ δ(Tj , ēj): If v /∈ N(G), either (a) no
or (b) all nodes of G are in the subtree rooted in v. If (a), G is outside the
affected subtree. If (b), a descendant of v is the root of G, and the inserted
node is above its reach. G ∈ δ(Tj , ēj) ⇐ v ∈ N(G) ∧ ∃c ∈ C : c ∈ N(G):
As n is inserted between v and c, all pq-grams that contain both of them are
affected.
Delete. G ∈ δ(Tj , ēj)⇒ n ∈ N(G) is equivalent to n /∈ N(G)⇒ G /∈ δ(Tj , ēj):
If n is not in G, no node of G is affected. G ∈ δ(Tj , ēj) ⇐ n ∈ N(G): n does
not exist in Ti. If n is in G, G is only in Pj .
Rename. n /∈ N(G)⇒ G /∈ δ(Tj , ēj): If n is not in G, no node of G is affected.
G ∈ δ(Tj , ēj) ⇐ n ∈ N(G): λ(n) = l in Ti, but λ(n) 6= l in Tj. As G ∈ Pj ,
λ(n) 6= l in G. Thus, if n is in G, G is only in Pj .

3.5.2 The Profile Update Function

There is a symmetry between an edit operation and its reverse: The new pq-
grams of the edit operation correspond to the old pq-grams of the reverse edit
operations and vice versa. If Tj =ej(Ti), then δ(Tj , ēj) denotes the pq-grams

3.6 Edit Sequence 45

that are added by ej , and δ(Ti, ej) denotes the pq-grams that are deleted by
ej (Figure 3.6). Since Ti is not available after the update we define the profile
update function, which transforms the new pq-grams into the old pq-grams. As
an input we allow a superset of the new pq-grams. This will be relevant for the
extension to a sequence of edit operations. In the output the new pq-grams
are replaced by the old pq-grams, all other pq-grams are not affected.

Definition 3.5. Profile Update Function. Let Ti,Tj be trees with profiles
Pi,Pj , respectively, let ej be an edit operation and ēj its reverse operation
such that Ti = ēj(Tj), and let δ(Tj , ēj) ⊆ pj ⊆ Pj. The profile update
function, U : 2Pj → 2Pi , is defined as follows:

U(pj , ēj) = pj \ δ(Tj , ēj) ∪ δ(Ti, ej) (3.9)

If pj = δ(Tj , ēj), the profile update function computes the old pq-grams
from the new pq-grams, i.e., δ(Ti, ej) = U(δ(Tj , ēj), ēj). If pj = Pj , the
original profile Pi is computed from Pj . Due to the symmetry of the scenario
also the opposite direction holds:

Pi = U(Pj , ēj) Pj = U(Pi, ej) (3.10)

3.6 Edit Sequence

In this section we extend the results of the previous section to a sequence of
edit operations. We begin with basic definitions and an intuitive illustration
of the overall update process, followed by formal proofs.

3.6.1 Incremental Index Update

Consider a sequence of edit operations as shown in Figure 3.5. ∆+
n denotes

the new pq-grams in Pn that were not present in P0 and have been introduced
by one of the edit operations. ∆−

n denotes the old pq-grams in P0 that have
been removed by one of the edit operations and, hence, are not present in Pn.

Definition 3.6. Let T0, . . . ,Tn be trees with profiles P0, . . . ,Pn, respectively,
where T0 has been transformed into Tn by a sequence of edit operations
(e1, . . . , en), i.e., Tk = ek(Tk−1) for 1 ≤ k ≤ n. We define the following
sets of pq-grams:

Invariant pq-grams: Cn = P0 ∩ · · · ∩Pn (3.11)

Old pq-grams: ∆−
n = P0 \Cn

New pq-grams: ∆+
n = Pn \Cn (3.12)

46 Updating the pq-Gram Index

Figure 3.7 illustrates these sets for a scenario with n = 2. The two shaded
regions in Figure 3.7(a) together form the set ∆+

2 , i.e., the new pq-grams in P2

that were not present in P0. Note that there might exist new pq-grams that
have been added by an edit operation but are not contained in the final profile
P2, since they have been removed by a subsequent edit operation. Hence, ∆+

n

is in general a subset of all new pq-grams that have been introduced by edit
operations. C2 is the set of pq-grams that are shared by all trees.

P0

P1

C2

P2

(a) ∆+
2

P0

P1

C2

P2

(b) U(∆+
2 , ē2)

P0

P1

C2

P2

(c) U(U(∆+
2 , ē2), ē1) = ∆−2

Figure 3.7: Profiles for Two Edit Operations.

Having determined the set ∆+
n , we recursively apply the profile update

function for each reverse edit operation in the log-file: first for ēn, then for
ēn−1, etc. This process transforms ∆+

n into the set ∆−
n of old pq-grams that

have been dropped from P0 by one of the edit operations. Figure 3.7(b-c)
show this transformation of ∆+

2 into ∆−
2 . The first call of the update function

considers the edit operation ē2 and substitutes the new pq-grams in ∆+
2 that

have been introduced by e2. The resulting set of pq-grams is illustrated in
Figure 3.7(b) and is passed to the next call of the profile update function.
Figure 3.7(c) shows the final set ∆−

2 of old pq-grams that have been removed
from P0.

The last step is to map the old and new pq-grams to the corresponding
label-tuples and update the index.

Lemma 3.2. Let T0 be a tree with index Io = λ(P0) that is transformed to
Tn with index In = λ(Pn) by a sequence of n edit operations. The new index,
In, can be computed from the old index, I0, as follows:

In = I0 \ λ(∆−
n) ⊎ λ(∆+

n). (3.13)

Proof. First we show that replacing the old by the new pq-grams in P0 results

in Pn: P0 \∆
−
n

(3.12)
= P0 \ [P0 \Cn]

(3.2)
= P0∩Cn

(3.11)
= Cn, thus P0 \∆

−
n ∪∆+

n =

Cn ∪ ∆+
n

(3.12)
= Cn ∪ [Pn \ Cn]

(3.4)(3.11)
= Pn. As In = λ(Pn) it follows that

3.6 Edit Sequence 47

... ...
ex

Tx

ēx(Tj)

Ti

ēx(Ti)

ex ex

Tj

ej

ējēx

Figure 3.8: Setting in Lemma 3.3.

In = λ(P0 \∆−
n ∪∆+

n). Next we show λ(P0 \∆−
n ∪∆+

n) = λ(P0) \ λ(∆−
n) ⊎

λ(∆+
n) : As λ() maps equal pq-grams in different pq-gram sets to equal label-

tuples, for each pq-gram G ∈ ∆−
n that is subtracted from P0 the respective

label-tuple λ(G) ∈ λ(∆−
n) is subtracted from λ(P0). As ∆−

n ⊆ P0 (3.12),
also λ(∆−

n) ⊆ λ(P0). Thus for each subtracted label-tuple λ(G) ∈ λ(∆−
n)

there is a pq-gram, G ∈ ∆−
n , that is subtracted from P0. This shows that

λ(P0 \∆−
n) = λ(P0) \ λ(∆−

n). The set union, λ([P0 \∆−
n] ∪∆+

n) and the bag
union, λ(P0 \∆−

n) ⊎ λ(∆+
n), are equivalent if [P0 \∆−

n] is disjoint from ∆+
n .

Then no pq-grams get lost with the set union. This is the case, as P0\∆
−
n = Cn

(see above) and ∆+
n

(3.12)
= Pn \Cn.

3.6.2 Deltas of Intermediate Tree Versions

For the computation of ∆−
n and ∆+

n we have to analyze how the pq-grams
have evolved in the individual edit steps. With the functions defined in the
previous section we can compute the old and new pq-grams for the last edit
operation. This step cannot be repeated for earlier edit operations, as we have
no access to the intermediate tree versions.

The delta functions evaluated on the intermediate tree versions give us the
pq-grams that have been introduced during the edit process. We consider the
tree Ti that is transformed to Tj by the edit operation ej , and an edit operation
of the log, ēx. ēx reverses an earlier operation in the process that produced Tx

(see Figure 3.8). The delta function for ēx is defined on Tj as well as on Tx,
but the results on Tx and Tj are different, as the trees differ in structure and
labels. δ(Tj , ēx) computes the new pq-grams for the edit operation ex that
transforms ēx(Tj) into Tj . ēx(Tj) is not a tree in our scenario.

We compute the delta function for the earlier edit operation on both, Ti

and Tj. We analyze, how ej affects the results of the delta function. The
following lemma shows that the result is the same, except for the pq-grams
that are replaced by ej . This has an important implication on our application:

48 Updating the pq-Gram Index

The delta computed on Tn for an earlier edit operation, ēx, contains all pq-
grams of the delta on Tx that where not affected by a later edit operation.

Lemma 3.3. Let ej be an edit operation that transforms Ti into Tj (see
Figure 3.8). For an edit operation ēx that transforms Ti to ēx(Ti) and Tj to
ēx(Tj),

δ(Ti, ēx) \ δ(Ti, ej) = δ(Tj , ēx) \ δ(Tj , ēj). (3.14)

Note that δ(Ti, ej) = U(δ(Tj , ēj), ēj) are the old, δ(Tj , ēj) the new pq-
grams of ej .

Proof. (3.14) is equivalent to

G ∈ δ(Ti, ēx) ∧ G /∈ δ(Ti, ej)⇔ G ∈ δ(Tj , ēx) ∧ G /∈ δ(Tj , ēj). (3.15)

We first show (3.15) from left to right and denote the left side with L. From L
follows G ∈ Pi ∩Pj , i.e., the pq-grams in δ(Ti, ēx) that are not replaced by ej

are also in Pj : G ∈ δ(Ti, ēx)⇒ G ∈ Pi as δ(Ti, ēx) ⊆ Pi (3.6); G /∈ δ(Ti, ej)⇒
G /∈ Pi \Pj , as δ(Ti, ej) = Pi \Pj (3.6); from G ∈ Pi and G /∈ Pi \Pj follows
G ∈ Pi ∩Pj . We distinguish for ēx:

Rename. We first show L⇒ G /∈ δ(Tj , ēj): G ∈ Pi∩Pj implies G /∈ δ(Tj , ēj),
as δ(Tj , ēj) = Pj \Pi (3.6). Now we show L⇒ G ∈ δ(Tj , ēx): L implies that
the renamed node n is a node of G (G ∈ δ(Ti, ēx)⇒ n ∈ N(G) (3.8)). As G is
in Pj (L⇒ G ∈ Pi∩Pj) and it contains the node renamed by ēx, it is an new
pq-gram of Pj with respect to ex: n ∈ N(G) ∧ G ∈ Pj ⇒ G ∈ δ(Tj , ēx) (3.8).

Delete. Same rationale as for rename.

Insert. Similar rationale as for rename. Let v be the parent of the inserted
node n, then its children C = {ck, . . . , cm} move under n. We show L⇒ G /∈
δ(Tj , ēj): L ⇒ G ∈ Pi ∩Pj ⇒ G /∈ δ(Tj , ēj). We show L ⇒ G ∈ δ(Tj , ēx): L
implies that (a) the parent of the inserted node and at least on of its children
are in G (G ∈ δ(Ti, ēx) ⇒ v ∈ N(G) ∧ ∃c ∈ C : c ∈ N(G) (3.7)), and (b) that
G ∈ Pj (L⇒ G ∈ Pi∩Pj). With (a), (b): v ∈ N(G)∧∃c ∈ C : c ∈ N(G)∧G ∈
Pj ⇒ G ∈ δ(Tj , ēx). (3.15) from right to left follows from the symmetry of ej

and ēj , by substituting ej with ēj and vice versa.

3.6.3 Computing ∆+
n

In this section we show that the new pq-grams, ∆+
n , can be computed on the

tree Tn, by evaluating the delta function for each edit operation in the log on
the tree Tn and by taking the union of the results, i.e., ∆+

n =
⋃n

k=1 δ(Tn, ēk).
∆+

n does not necessarily contain all new pq-grams that have been introduced by
an edit operation. Some new pq-grams of one edit operation may be removed

3.6 Edit Sequence 49

by a later operation. ∆+
n is the set of new pq-grams that are present in Pn.

It is equal to or a subset of all new pq-grams, as illustrated in Figure 3.7 and
formalized in the following theorem. We break the proof down into three parts
and formulate each part in an individual lemma. The proof of the theorem
references the lemmas and connects the parts.

Lemma 3.4. Let L = (e1, . . . , en) be a sequence of edit operations that trans-
forms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n.

Pi = P0 \
i

⋃

k=1

δ(Tk−1, ek) ∪
i

⋃

k=1

δ(Ti, ēk) (3.16)

Ai Bi

Proof. (i) True for P1. (ii) With Ai =
⋃i

k=1 δ(Tk−1, ek) and Bi =
⋃i

k=1 δ(Ti, ēk) the induction hypothesis is

Pi = P0 \Ai ∪Bi ⇒ Pi+1 = P0 \Ai+1 ∪Bi+1.

Pi+1
(3.10)
= U(Pi, ei+1)

(3.9)
= [P0 \Ai ∪Bi] \ δ(Ti, ei+1) ∪ δ(Ti+1, ēi+1)

(3.3)
= P0 \ [Ai ∪ δ(Ti, ei+1)]∪

[Bi \ δ(Ti, ei+1)] ∪ δ(Ti+1, ēi+1)

Ai ∪ δ(Ti, ei+1) =
i+1
⋃

k=1

δ(Tk−1, ek) = Ai+1

Bi \ δ(Ti, ei+1) ∪ δ(Ti+1, ēi+1)

(3.14)
=

i
⋃

k=1

δ(Ti+1, ēk) \ δ(Ti+1, ēi+1) ∪ δ(Ti+1, ēi+1)

(3.4)
=

i
⋃

k=1

δ(Ti+1, ēk) ∪ δ(Ti+1, ēi+1) = Bi+1

(3.17)

Thus, Pi+1 = P0 \Ai+1 ∪Bi+1.

Lemma 3.5. Let L = (e1, . . . , en) be a sequence of edit operations that trans-
forms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n. Let An =

⋃n
k=1 δ(Tk−1, ek).

Then
Cn = P0 \An. (3.18)

50 Updating the pq-Gram Index

Proof. (a) P0 \ An ⊇ Cn: Cn
(3.11)
= P0 ∩

⋂n
k=1 Pk

(3.10)
= P0 ∩

⋂n
k=1[Pk−1 \

δ(Tk−1, ek)∪δ(Tk, ēk)]. As δ(Tk−1, ek)∩δ(Tk , ēk) = ∅, Cn = P0∩
⋂n

k=1[Pk−1∪
δ(Tk, ēk) \ δ(Tk−1, ek)]⇒ Cn ∩An = ∅.

(b) P0 \An ⊆ Cn: The opposite, G ∈ P0 \An and G /∈ Cn, leads to a

contradiction: G /∈ Cn
(3.11)
⇒ ∃Pi

G /∈ Pi, 0 ≤ i ≤ n. However, by induction
we show that ∀Pi

G ∈ Pi: G ∈ P0 is true. G ∈ Pi ⇒ G ∈ Pi+1, 0 ≤ i ≤

n − 1: Pi+1
(3.10)
= Pi \ δ(Ti, ei+1) ∪ δ(Ti+1, ēi+1); G ∈ P0 \An ⇒ G /∈ An ⇒

∀i=0..n−1G /∈ δ(Ti, ei+1)⇒ G ∈ Pi+1.

Lemma 3.6. Let L = (e1, . . . , en) be a sequence of edit operations that trans-
forms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n. Let Bi =

⋃i
k=1 δ(Ti, ēk). Then

Bn ∩Cn = ∅. (3.19)

Proof. Proof by induction. (i) True for i = 1: B1 = δ(T1, ē1) ⇒ B1 ∩ P0 =

∅
(3.11)
⇒ B1 ∩Cn = ∅.
(ii) Induction hypothesis:

Bi ∩Cn = ∅ ⇒ Bi+1 ∩Cn = ∅. (3.20)

We show Bi+1 ∩Cn ⊆ δ(Ti+1, ēi+1) ∩Cn: Bi+1 ∩Cn
(3.17)
= [Bi \ δ(Ti, ei+1) ∪

δ(Ti+1, ēi+1)] ∩Cn ⊆ [Bi ∪ δ(Ti+1, ēi+1)] ∩Cn = [Bi ∩Cn] ∪ [δ(Ti+1, ēi+1) ∩

Cn]
(3.20)
= [δ(Ti+1, ēi+1)∩Cn]. Then it follows with δ(Ti+1, ēi+1)∩Pi = ∅

(3.11)
⇒

δ(Ti+1, ēi+1) ∩Cn = ∅ that Bi+1 ∩Cn = ∅.

Theorem 3.1. Let L = (e1, . . . , en) be a sequence of edit operations that
transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n. The set of new pq-grams,
∆+

n , can be computed as

∆+
n =

n
⋃

k=1

δ(Tn, ēk). (3.21)

Proof. With Lemma 3.4, Pn can be expressed as

Pn = P0 \An ∪Bn, (3.22)

where An are the old pq-grams of each individual edit step, and Bn are the
new pq-grams for the edit operations in the log computed on Tn: An =
⋃n

k=1 δ(Tk−1, ek) and Bn =
⋃n

k=1 δ(Tn, ēk). We show that Bn is equivalent

to ∆+
n : Pn

(3.22)
= P0 \ An ∪ Bn

(3.18)
= Cn ∪ Bn. As Bn and Cn are disjoint

(Lemma 3.6), we can rewrite Pn = Cn ∪Bn as Bn = Pn \Cn
(3.12)
= ∆+

n .

3.6 Edit Sequence 51

3.6.4 Computing ∆−
n

If we look at the scenario in the reverse direction (Tn is transformed to T0 by
a sequence of edit operations, (ēn, . . . , ē1)), then ∆+

n in the reverse scenario
corresponds to ∆−

n in the original scenario. Thus in the original scenario
∆−

n =
⋃n

k=1 δ(T0, ek). As T0 is not given, we can not use this approach to
compute ∆−

n .
For two trees, Tj = ej(Ti), the profile update function computes Pi from

Pj , Pi = U(Pj , ēj) (3.10). Thus, we can compute P0 from Pn by applying
the profile update function recursively, P0 = U(. . .U(U(Pn, ēn), ēn−1) . . . , ē1).
Recall that ∆−

n = P0 \ Cn is a subset of P0 and ∆+
n = Pn \Cn is a subset

of Pn (3.12). In this section we show that, similar to P0 and Pn, we can
compute ∆−

n from ∆+
n by applying the update function recursively to ∆+

n ,

∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1).

We will use the following Lemma 3.7 to rewrite the recursive updates in an
un-nested form.

Lemma 3.7. Let ∆∗
i be the result of iteratively applying the profile update

function to ∆+
n i times, 1 ≤ i ≤ n,

∆∗
i = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ēn−i+1). (3.23)

Then ∆∗
i can be written in un-nested form as

∆∗
i =

n−i
⋃

k=1

δ(Tn−i, ēk) ∪
n
⋃

k=n−i+1

δ(Tn−i, ek). (3.24)

A∗
i B∗

i

Proof. We define A∗
i =

⋃n−i
k=1 δ(Tn−i, ēk) and B∗

i =
⋃n

k=n−i+1 δ(Tn−i, ek), and
show (3.24) by induction:

(i) ∆∗
1 computed with (3.23) and (3.24) matches: ∆∗

1

(3.24)
=

⋃n−1
k=1 δ(Tn−1, ēk)∪

δ(Tn−1, en). ∆∗
1

(3.23)
= U(∆+

n , ēn)
(3.21)
= U(

⋃n
k=1 δ(Tn, ēk), ēn)

(3.9)
=

⋃n
k=1 δ(Tn, ēk) \ δ(Tn, ēn) ∪ δ(Tn−1, en) =

⋃n−1
k=1 δ(Tn, ēk) \ δ(Tn, ēn) ∪

δ(Tn−1, en)
(3.3)(3.14)

=
⋃n−1

k=1 δ(Tn−1, ēk) \ δ(Tn−1, en) ∪ δ(Tn−1, en)
(3.4)
=

⋃n−1
k=1 δ(Tn−1, ēk) ∪ δ(Tn−1, en).

(ii) Induction hypothesis:

∆∗
i = A∗

i ∪B∗
i ⇒ ∆∗

i+1 = A∗
i+1 ∪B∗

i+1

52 Updating the pq-Gram Index

∆∗
i+1

(3.23)
= U(∆∗

i , ēn−i) = U(A∗
i ∪B∗

i , ēn−i)

(3.9)
= [A∗

i ∪B∗
i] \ δ(Tn−i, ēn−i) ∪ δ(Tn−i−1, en−i)

(3.3)
= [A∗

i \ δ(Tn−i, ēn−i)] ∪ [B∗
i \ δ(Tn−i, ēn−i)]∪

δ(Tn−i−1, en−i)

(3.25)

A∗
i \ δ(Tn−i, ēn−i)

(3.3)
=

⋃n−i−1
k=1 δ(Tn−i, ēk) \ δ(Tn−i, ēn−i)

(3.14)
=

⋃n−i−1
k=1 δ(Tn−i−1, ēk) \ δ(Tn−i−1, en−i)

= A∗
i+1 \ δ(Tn−i−1, en−i)

(3.26)

B∗
i \ δ(Tn−i, ēn−i)

(3.14)
=

n
⋃

k=n−i+1

δ(Tn−i−1, ek) \ δ(Tn−i−1, en−i) (3.27)

B∗
i \ δ(Tn−i, ēn−i) ∪ δ(Tn−i−1, en−i)

(3.27)(3.4)
=

n
⋃

k=n−i+1

δ(Tn−i−1, ek) ∪ δ(Tn−i−1, en−i)

=
n
⋃

k=n−i

δ(Tn−i−1, ek) = B∗
i+1

(3.28)

With (3.25), (3.26) and (3.28) we get P∗
i+1 = A∗

i+1 ∪B∗
i+1.

Theorem 3.2. Let L = (e1, . . . , en) be a sequence of edit operations that
transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n. The set of old pq-grams,
∆−

n , can be computed as

∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1). (3.29)

Proof. As ∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1)
(3.23)
= ∆∗

n, with (3.24) we can
rewrite (3.29) in un-nested form as

∆−
n =

n
⋃

k=1

δ(T0, ek). (3.30)

For the proof of (3.30) consider the inverse scenario, i.e., Tn is transformed
to T0 by (ēn, . . . ē1). With the substitutions P′

i = Pn−i, T′
i = Tn−i, and

e′i = ēn−i+1, the invariant pq-grams of the inverse scenario are C′
n =

⋂n
i=0 P′

i,
and the new pq-grams can be expressed as

∆′+
n

(3.12)
= P′

n \C
′
n or ∆′+

n
(3.21)
=

n
⋃

k=1

δ(T0, ek).

3.7 Computing Profile Updates 53

C′
n = Cn as both of them are the intersection of the same profiles. With

P′
n = P0 we get ∆′+

n = P0 \Cn
(3.12)
= ∆−

n .

3.7 Computing Profile Updates

In this section we introduce a matrix representation of pq-grams that better
reflects our implementation, and we describe the computation of the delta and
the profile update function in terms of matrix operations.

3.7.1 Matrix Representation of pq-Grams

For a non-leaf anchor node with f children, f +q−1 pq-grams exist. They all
have the same p-part, but different q-parts. For a leaf only one pq-gram exists,
where the q-part consist of q dummy nodes.

Definition 3.7. p-Matrix and q-Matrix. Let T be a tree, p > 0, q > 0, and
let a ∈ N(T) be a node with children c1, . . . , cf . The p-matrix, P (a), of node
a is the 1× p-matrix that represents the p-part of all pq-grams anchored in a:

P (a) = (ap−1, . . . , ai, . . . , a1, a)

If a is a non-leaf node, i.e., f > 0, the q-matrix, Q(a), is defined as an
(f + q − 1)× q-matrix that represents the q-parts of all pq-grams anchored in
a:

Q(a) =

• • c1

• cf

c1 •

cf • •

If a is a leaf node, i.e., f = 0, the q-matrix is defined as a 1 × q-matrix that
contains only dummy nodes.

The pq-grams of a node a can be computed by the concatenation of its
p- and q-matrix, P (a) ◦ Q(a), which concatenates the p-part in P with each
q-part in Q.

54 Updating the pq-Gram Index

Example 3.4. We consider tree T0 in Figure 3.2, assume p = q = 3, and
compute all pq-grams with anchor node n1 using the p- and q-matrices.

P (n1) ◦Q(n1) = (•, •, n1) ◦

• • n2

• n2 n3

n2 n3 n4

n3 n4 •
n4 • •

= {(•, •, n1, •, •, n2), (•, •, n1, •, n2, n3),
(•, •, n1, n2, n3, n4), (•, •, n1, n3, n4, •),
(•, •, n1, n4, •, •)}

3.7.2 Effective Computation of δ and U

For each edit operation we express the new pq-grams, δ(Tj , ē), in terms of p-
and q-matrices, and show, how the old pq-grams, U(δ(Tj , ē), ē), are computed
from the new ones.

To facilitate the discussion about the computation of the profile up-
date function, we introduce the following notation: descd(n) is the set
of n and its descendants within distance d ≥ 0, i.e., descd(n) = {x |
x is n or a descendant of n with dist(n, x) ≤ d}. For d < 0 we define
descd(n) = ∅. We use descd(nk, . . . , nm) as an abbreviation for {x | x ∈
descd(n) ∧ n ∈ {nk, . . . , nm}}, i.e., all descendants within distance d of a node
set.

Given a p-matrix P (a), the operation P+n,i(a) inserts node n at position
i, P−ai(a) deletes node ai from P (a), and P ai/m replaces ai by m. The other
nodes in P (a) are shifted as shown in Figure 3.9, where ai is a’s ancestor at
distance i.

ap−1 . . . ai+1 ai ai−1 . . . a

P (a)

ap−2 . . . ai n ai−1 . . . a

P+n,i(a)

ap ap−1 . . . ai+1 ai−1 . . . a

P−ai(a)

ap−1 . . . ai+1 m ai−1 . . . a

P ai/m(a)

Figure 3.9: Operators on the p-Matrix.

The operations on q-matrices are illustrated in Figure 3.10. Q(a) is the
q-matrix for anchor node a. The (inverse) diagonals are formed by the children
c1, . . . , cf of a, and the corners are filled with dummy nodes. With Qk..m(a)
we denote the sub-matrix of Q(a) that is formed by the rows k to m + q − 1.
It contains all q-parts of the children ck, . . . , cm. We introduce the operator

3.7 Computing Profile Updates 55

A//B that replaces all diagonals of A with the diagonals of B. D(n) initializes
a new q-matrix of size q × q, with the only diagonal formed by node n.

Q(a) =

• • c1
• c1 :
c1 : ck
: ck :
ck : cm
: cm :
cm : cf
: cf •

cf • •

D(n) =
• • n
• n •

n • •

Qk..m(a) =

: : ck
: ck :
ck : cm
: cm :
cm : :

Qk..m(a)//D(n) =
: : n
: n :
n : :

D(•)//Qk..m(a) =

• • ck
• ck :
ck : cm
: cm •

ck • •

Figure 3.10: Operators on the q-Matrix.

For insertions and deletions of leaf nodes we define the following special
cases: For the q-matrix of a leaf node a we define Qk..m(a) = (• . . . •) and
(• . . . •)//A = A. If all non-diagonal elements of a matrix A are dummy nodes,
then A//(• . . . •) = (• . . . •), else A//(• . . . •) deletes all diagonals of A. If a leaf
node is inserted under a node v, then m = k − 1 (see e1 in Figure 3.2), and
Qk..m(v) has no diagonals. We define Qk..k−1(v)//A to insert all diagonals of
A as new diagonals in Qk..k−1(v), and we define A//Qk..k−1(v) = (• . . . •).

Table 3.1 shows for each edit operation the pq-gram set that forms δ(Tj , ē)
and how this set is modified by the profile update function. We use the
notation introduced above. All information for the computation of the profile
update function is in the pq-grams of δ(Tj , ē) and the edit operation ē. The
tree Tj is not accessed.

3.7.3 Example

Example 3.5. Consider the first two edit operations in Figure 3.1 that
transform T0 into T2. The reverse edit operations are ē1 = del(n7) and
ē2 = ins((n3, b), n1, 2, 3). We determine the new pq-grams, ∆+

2 , p = q = 3, by

56 Updating the pq-Gram Index

Insert node n as the k-th child of node v: ins(n, v, k, m)

δ(Tj , ē) = P (v) ◦Qk..m(v) ∪ P (x) ◦Q(x) ∀x ∈ descp−2(ck, . . . , cm)

U(δ(Tj , ē), ē) = P (v) ◦ [Qk..m(v)//D(n)] ∪ ∀x ∈ descp−2(ck, . . . , cm)

P+n,0(v) ◦ [D(•)//Qk..m(v)] ∪ d = dist(ci, x) + 1

P+n,d(x) ◦Q(x) ci : i-th child of v

Delete node n, del(n):

δ(Tj , ē) = P (v) ◦Qk..k(v) ∪ P (x) ◦Q(x) ∀x ∈ descp−1(n)

U(δ(Tj , ē), ē) = P (v) ◦ [Qk..k(v)//Q(n)] ∪ P−n(x) ◦Q(x) ∀x ∈ descp−1(n) \ {n}

v : n is the k-th child of v

Rename node n to l′: ren(n, l′)

δ(Tj , ē) = P (v) ◦Qk..k(v) ∪ P (x) ◦Q(x) ∀x ∈ descp−1(n)

U(δ(Tj , ē), ē) = P (v) ◦ [Qk..k(v)//D(m)] ∪ P n/m(x) ◦Q(x) ∀x ∈ descp−1(n)

m = (id(n), l′)

v : n is the k-th child of v

Table 3.1: Computing the Delta Function and the Profile Update Function.

3.7 Computing Profile Updates 57

evaluating the delta functions in Table 3.1 for ē1 and ē2, i.e.,

∆+
2 = δ(T2, ē1) ∪ δ(T2, ē2) =

{(•, n1, n6, •, •, n7), (•, n1, n6, •, n7, •),
(•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •)} ∪

{(•, •, n1, •, n2, n5), (•, •, n1, n2, n5, n6), (•, •, n1, n5, n6, n4),
(•, •, n1, n6, n4, •), (•, n1, n5, •, •, •), (•, n1, n6, •, •, n7),
(•, n1, n6, •, n7, •), (•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •)}

= {(•, •, n1, •, n2, n5), (•, •, n1, n2, n5, n6), (•, •, n1, n5, n6, n4),
(•, •, n1, n6, n4, •), (•, n1, n5, •, •, •), (•, n1, n6, •, •, n7),
(•, n1, n6, •, n7, •), (•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •)}.

Next, we compute the old pq-grams ∆−
2 from ∆+

2 , using the profile update
function, i.e., ∆−

2 = U(U(∆+
2 , ē2), ē1). Figure 3.11 shows some of the modified

q-matrices that are used in the evaluation of the update function for ē2 =
ins((n3, b), n1, 2, 3). The relevant p-parts in ∆+

2 are transformed by inserting
the new node n3, e.g.,

P (n1) = (•, •, n1) → P+n3,0(n1) = (•, n1, n3)

P (n5) = (•, n1, n5) → P+n3,1(n5) = (n1, n3, n5)

By concatenating the respective p- and q-parts we get

U(∆+
2 , ē2) = {(•, •, n1, •, n2, n3), (•, •, n1, n2, n3, n4), (•, •, n1, n3, n4, •),

(•, n1, n3, •, •, n5), (•, n1, n3, •, n5, n6), (•, n1, n3, n5, n6, •),
(•, n1, n3, n6, •, •), (n1, n3, n5, •, •, •), (n1, n3, n6, •, •, n7),
(n1, n3, n6, •, n7, •), (n1, n3, n6, n7, •, •), (n3, n6, n7, •, •, •)}.

Now the profile update function for ē1 is applied to the result of U(∆+
2 , ē2)

which returns the final set of old pq-grams

∆−
2 = {(•, •, n1, •, n2, n3), (•, •, n1, n2, n3, n4), (•, •, n1, n3, n4, •),

(•, n1, n3, •, •, n5), (•, n1, n3, •, n5, n6), (•, n1, n3, n5, n6, •),
(•, n1, n3, n6, •, •), (n1, n3, n5, •, •, •), (n1, n3, n6, •, •, •)}.

The final step is to update I0 with λ(∆+
n) and λ(∆−

n).

λ(∆−
2) = {(*, *, a, *, c, b), (*, *, a, c, b, c), (*, *, a, b, c, *),

(*, a, b, *, *, e), (*, a, b, *, e, f), (*, a, b, e, f, *),
(*, a, b, f, *, *), (a, b, e, *, *, *), (a, b, f, *, *, *)}

λ(∆+
2) = {(*, *, a, *, c, e), (*, *, a, c, e, f), (*, *, a, e, f, c),

(*, *, a, f, c, *), (*, a, e, *, *, *), (*, a, f, *, *, g),
(*, a, f, *, g, *), (*, a, f, g, *, *), (a, f, g, *, *, *)}

58 Updating the pq-Gram Index

Q(n1) =

• • n2
• n2 n5
n2 n5 n6
n5 n6 n4
n6 n4 •

n4 • •

Q2..3(n1) =

• n2 n5
n2 n5 n6
n5 n6 n4
n6 n4 •

Q2..3(n1)//D(n3) =
• n2 n3
n2 n3 n4
n3 n4 •

D(•)//Q2..3(n1) =

• • n5
• n5 n6
n5 n6 •

n6 • •

Figure 3.11: q-Matrices for Node Insertion (Example).

3.8 Implementation

3.8.1 Temporary Storage of the Deltas

We process logs with thousands of edit operations. Each edit operation of
the log adds pq-grams to ∆+

n (see Algorithm 3.2). We store the p-parts and
q-parts of these pq-grams in a pair (P, Q) of temporary tables. Since p-parts
that appear in many pq-grams are stored only once, we gain performance when
we have to update them. The update function (see Algorithm 3.3) is applied
to (P, Q) for each edit operation in the log and, step by step, transforms it
to ∆−

n . We prevent duplicates from being inserted into P and Q, and we join
them to reconstruct the pq-grams. An index on the anchor IDs proved to give
a substantial performance advantage.

Let P (n) be the p-part of the pq-grams with anchor node n, where n is the
k-th child of its parent v. We store P (n) as a tuple (n, k, v,h(P (n))) in P, where
h() is the hash function introduced in Section 3.3. Let Q(n) be the q-matrix
of anchor node n. We store the i-th row of Q(n), ri, as a tuple (n, i,h(ri)) in Q.
For the pq-grams stored in the table pair (P, Q), we compute the respective
label-tuples as

λ(P, Q) = πppart◦qpart [P ⋊⋉ Q]. (3.31)

Subsequently, given pairs of tables we use the notation (A,B) ← (A′, B′) ∪
(A′′, B′′) for A ← A′ ∪ A′′ and B ← B′ ∪ B′′. We use relational algebra
expressions in the description of the algorithms. The expression A = A\B∪C
is implemented as an efficient UPDATE statement in SQL.

3.8 Implementation 59

P
anchId sibPos parId ppart

n1 - - 001

n5 2 n1 018

n6 3 n1 014

n7 1 n6 147

Q
anchId row qpart

n1 2 028

n1 3 284

n1 4 842

n1 5 420

n5 1 000

n6 1 007

n6 2 070

n6 3 700

n7 1 000

Figure 3.12: ∆+
2 for T2, Stored in the Table Pair (P, Q).

Example 3.6. Figure 3.12 shows ∆+
2 =

⋃2
i=1 δ(T2, ēi) for our example tree

in Figure 3.2. The first rows of P and Q show the hashed p-part and q-part of
the label-tuple (*, *, a, *, c, e).

3.8.2 Index Update

For the index maintenance we use the old index I0, the resulting tree Tn, and
the log L. The index is updated in three major steps, the computation of
∆+

n , the computation of ∆−
n from ∆+

n , and the update of I0 with λ(∆+
n) and

λ(∆−
n) (see Algorithm 3.1). ∆+

n is computed by evaluating the delta function
for all edit operations in the log on Tn (line 2), ∆−

n is computed by applying
the profile update function recursively to ∆+

n (line 4).

Algorithm 3.1: updateIndex(I0,Tn, L)

(P, Q)← (∅, ∅);1

foreach ēi ∈ L do (P, Q)← (P, Q) ∪ δ(Tn, ēi);2

I+ ← λ(P, Q);3

for i← n downto 1 do U(P, Q, ēi);4

I− ← λ(P, Q);5

In ← I0 \ I
− ∪ I+;6

return In;7

δ(T, ēi) computes all pq-grams of a subtree of T. The subtree size is inde-
pendent of the tree size |T |, and we consider it a constant. Then the nodes of
the subtree are accessed in O(log |T|) time, and the delta function returns a
constant number of pq-grams. U(P, Q, ēi) operates on the result of the |L| delta
computations, where |L| is the log size. Each pq-gram is accessed in O(log |L|)
time and a constant time transformation is applied to it. Both delta and up-
date function are computed |L| times, resulting in an overall complexity of

60 Updating the pq-Gram Index

O(|L|(log |T |+log |L|)). Our experiments confirm the near constant complex-
ity of the delta and the profile update function, and the linear dependence of
the overall algorithm from the log size.

3.8.3 Delta Function

The delta function δ(T, ē) is computed by creating the relevant p- and q-
matrices from the tree T (see Algorithm 3.2). The relevant matrices for each
edit operation are shown in Table 3.1. The p-part P (n) is computed by ac-
cessing the p − 1 ancestors of n in the tree. Qk..m(n) is formed by accessing
the children k − q + 1 to m + q − 1 of n, Q(n) by accessing all children of n.
We use the functions PT(n), Qk..m

T (n) and QT(n) that operate on T and return
the respective matrices as tuples for the temporary tables P and Q, as shown
in Section 3.8.1.

Algorithm 3.2: δ(T, ē)

if (ē = ren(n, l′)) ∨ (ē = del(n)) then1

v← parent of n;2

k ← sibling position of n (n is the k-th child of v);3

(P, Q)← (PT(v), Qk..k
T (v));4

foreach x ∈ descp−1(n) do5

(P, Q)← (P, Q) ∪ (PT(x), QT(x))6

else if ē=ins(n,v,k,m) then7

(P, Q)← (PT(v), Qk..m
T (v));8

foreach child c ∈ {ck, . . . , cm} of v do9

foreach x ∈ descp−2(c) do10

(P, Q)← (P, Q) ∪ (PT(x), QT(x))11

return (P, Q);12

3.8.4 Implementation of the Update Function

The profile update function for ē replaces δ(T, ē) in a set of pq-grams by
U(δ(T, ē), ē). The pq-grams are stored in the temporary tables P and Q. The
first step is to read the p-parts and q-parts of δ(T, ē) from these tables. As
shown in Table 3.1, the q-parts of δ(T, ē) are expressed by Q(n) and Qk..m(n).
We implement these functions as follows:

Q(n) ← σanchId=n(Q)

Qk..m(n) ← σanchId=n,k≤row≤m+q−1(Q)

3.8 Implementation 61

Algorithm 3.3: U(P, Q, ē)

switch ē do1

case ren(n,l′)2

t← σanchId=n(P); v← t[parId]; k ← t[sibPos];3

Q← Q \ Qk..k(v) ∪ [Qk..k(v)//Dv((id(n), l′))];4

s← subStr(t[ppart], 1, p − 1) ◦ l′;5

(Pold, Pnew)← changePParts(P, n, s, p− 1);6

P← P \ Pold ∪ Pnew;7

case del(n)8

t← σanchId=n(P); v← t[parId]; k ← t[sibPos];9

Q← Q \ [Qk..k(v) ∪ Q(n)] ∪ [Qk..k(v)//Q(n)];10

s← λ(•) ◦ subStr(t[ppart], 1, p − 1);11

(Pold, Pnew)← changePParts(P, n, s, p− 1);12

P← P \ Pold ∪ σanchId 6=n(Pnew);13

case ins(n,v,k,m)14

Q← Q \ Qk..m(v) ∪ [Qk..m(v)//Dv(n)] ∪ [Dn(•)//Q
k..m(v)];15

s← subStr(πppartσanchId=v(P), 2, p) ◦ λ(n);16

Pold ← ∅; Pnew ← ∅;17

foreach c ∈ πanchIdσparId=v,k≤sibPos≤m(P) do18

s′ ← subStr(s, 2, p) ◦ λ(c);19

(Pold, Pnew)← (Pold, Pnew) ∪ changePParts(P, c, s
′, p − 2);20

P← P \ Pold ∪ Pnew ∪ {(n, k, v, s)};21

Qk..m(n) and Q(n) return tuples (n, i, qpart), where qpart is the i-th row of
Q(n). Different from Qk..m

T (n) and QT(n) in the previous section, they operate
on profiles, not on trees.

In the second step we modify δ(T, ē) to get U(δ(T, ē), ē). We implement the
operator A//B so it operates on q-matrices represented as (anchId , row , qpart)
tuples and returns the result in this form. The anchor node and the first
row number of the result are both determined by the first argument, A. The
matrix operation itself is straightforward. Da(n) initializes a new q-matrix with
anchor node a and a single diagonal formed by n.

For the update of the p-parts we use the function changePParts(P, n, s, d)
(see Algorithm 3.4). It implements the operators on P (a) (P+n,i, P−ai , P ai/m)
as concatenations of strings. For each edit operation we construct a string s.
The last p− i characters of s correspond to the changing part of P (a) (shaded
in Figure 3.9). We concatenate it to the invariant part of length i (line 5).
The p-parts are retrieved level by level (line 6). Pold returns all p-parts of P

62 Updating the pq-Gram Index

whose anchor node is n or a descendant of n within distance d. Pnew is the
same set of tuples with the updated values for ppart .

Algorithm 3.4: changePParts(P, n, s, d)

Pold ← ∅; Pnew ← ∅;1

Z← σanchId=n(P);2

for i← 0 to d do3

Pold ← Pold ∪ Z;4

Pnew ← Pnew ∪ π[anchId , sibPos , parId ,5

subStr(s, i + 1, |s|) ◦
subStr(ppart , p− i + 1, p)→ ppart](Z);

if i < d then Z← P ⋊⋉ πanchId→parIdZ;6

return (Pold, Pnew);7

If rows are deleted from/inserted into the q-matrix, the row numbers, row ,
of the subsequent rows need to be updated. If p-parts are deleted or inserted,
the sibling numbers, sibPos , in the p-parts of the subsequent siblings have to
be updated. In both cases the scope of the update query is limited by the
fanout of the anchor node. As typically not all rows of a q-part and not all
p-parts of a node’s children are in (P, Q), the effect on structure change is even
smaller.

3.9 Experiments

We use XML trees for our experiments. The synthetic trees are generated with
xmlgen, provided by the XML benchmark project XMark1. The real world
experiments are done on the DBLP dataset2. Unless otherwise noted, we use
3, 3-grams for the indexes.

3.9.1 Lookup Efficiency

If we look up a tree T in a forest F , we have to compute the pq-gram distance
between T and each of the trees in F . We compare approximate lookups with
and without the use of a precomputed index.

We do a lookup in three different collections of XML documents. They have
a similar overall number of nodes (approx. 50×106). The number of documents
in the collections varies from 31 to 1999. The trees within a collection are of

1http://monetdb.cwi.nl/xml/
2http://www.informatik.uni-trier.de/∼ley/db/

3.9 Experiments 63

similar size. We measure the wall clock time for the approximate lookup of
an XML document.

Figure 3.13 (left) shows the results for the different data sets. The lookup
time with precomputed index is independent of the number of trees in the
forest. If the index has to be created on the fly, the lookup time grows for
larger tree numbers. Without precomputed index, the index creation is clearly
the most expensive operation in the lookup process.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1999 trees293 trees31 trees

tim
e

[s
ec

]

49.5M nodes 50.2M nodes 43.7M nodes

94 82 92

1657

2687

6969lookup with index
lookup without index

 1

 10

 100

 1000

 10000

 100000

 0 1e+07 2e+07

tim
e

[s
ec

]

number of nodes

from scratch
1 edit op

10 edit ops
100 edit ops

Figure 3.13: Lookup and Update Time.

3.9.2 Updating the Index

Each edit operation affects a subset of the pq-grams in the index. We expect
that updating only the affected pq-grams is more efficient than building the
whole index from scratch. The computation time for index rebuilding is ex-
pected to grow with the tree size, while the one for updates depends mainly
on the number of edit operations.

Figure 3.13 (right) compares the computation times for building the pq-
gram index from scratch with updating it based on a log of edit operations.
While the index creation time is linear in the tree size (note the log scale of
the y axis), the index update time is nearly independent of the tree size. The
figure shows the results for trees with up to 27× 106 nodes.

3.9.3 Index Size

The index does not store the labels, but only their hash values. Further a pq-
gram that appears many times in the index is stored only once. In Figure 3.14
(left) we compare the size of the index with the tree size. The index for both,
1, 2- and 3, 3-grams, is significantly smaller than the tree.

64 Updating the pq-Gram Index

The tree size is linear in the number of nodes, while the index size is less
than linear. We explain this with the higher probability of having duplicate
pq-grams with larger trees.

 0

 200

 400

 600

 800

 1000

 1200

 0 1e+07 2e+07

si
ze

 [M
B

]

number of nodes

tree
3,3-gram index
1,2-gram index

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2000 4000 6000 8000 10000

tim
e

[s
ec

]

number of edit operations

from scratch
update

Figure 3.14: Size and Update Time of Index.

3.9.4 Experiments with Real World Data

We compute the index and perform updates on the DBLP dataset (211MB
file size, 11M nodes). From Figure 3.14 (right) we see that the update time is
linear in the number of edit operations. Table 3.2 shows, for selected numbers
of edit operations, the share of the various index update steps in the overall
computation time. The conversion of the profile to the index (λ()) is negligible.
The computation times for ∆+

n and ∆−
n are approximately linear. The update

of I0 with λ(∆−
n) and λ(∆+

n) is sublinear in the number of edit operations.

Action Number of edit operations
1 10 100 1000

∆+
n 0.642s 3.903s 37.533s 391.513s

I+ = λ(∆+
n) 0.184s 0.199s 0.287s 0.443s

∆−
n 0.196s 2.836s 27.967s 295.104s

I− = λ(∆−
n) 0.177s 0.191s 0.185s 0.383s

I0 \ I
− ∪ I+ 2.206s 2.770s 6.475s 19.780s

total 3.405s 9.900s 72.448s 707.224s

Table 3.2: Breakdown of the Index Update Time.

3.10 Conclusion 65

3.10 Conclusion

We propose an incrementally maintainable index for data with a hierarchical
structure. The index uses pq-grams and we prove that the index can be up-
dated based on the resulting document and the log of edit operations. The
experimental results validate the approach for the DBLP dataset and logs with
several thousand edit operations.

We process the log sequentially. Later edit operations in the log might
undo earlier ones. In future we will investigate how the log can be preprocessed
in order to eliminate redundant edit operations. Further the deltas that we
compute span several nodes and can overlap. A preprocessing step could merge
overlapping regions to optimize the computation of the deltas.

We have addressed the node edit operations rename, delete, and insert.
Operations on subtrees, e.g., subtree move, insertion or deletion, are simulated
by a sequence of node edit operations. Future work will investigate index
updates for subtree operations.

66 Updating the pq-Gram Index

Chapter 4

pq-Grams for Unordered Trees

In data integration applications, a join matches elements that are com-
mon to two data sources. Often however elements are represented slightly
different in each source, so an approximate join must be used. For XML
data, most approximate join strategies are based on some ordered tree-
matching technique. But in data-centric XML applications, the order is
irrelevant: two elements should match even if their subelement order varies.

We give a solution for the approximate join of unordered trees. Our
solution is based on windowed pq-grams. A windowed pq-gram is a small
tree-shaped pattern that consists of a stem and a base. We develop a tech-
nique to systematically generate windowed pq-grams from sorted trees. Sort-
ing trees is not possible for common ordered tree distances such as the edit
distance. Windowed pq-grams satisfy the following core properties: all base-
nodes have equal frequency; the Jaccard distance between two sibling sets is
preserved; and node moves to other parents are detected. The pq-gram dis-
tance between two sorted trees approximates the unordered tree edit distance
between these trees. We provide an algorithm to compute the windowed pq-
grams in linear time. Our experiments with synthetic and real world data
confirm the analytic results and suggest that our technique is both useful and
scalable.

4.1 Introduction

The amount of data that is stored and exchanged in XML is increasing. In or-
der to integrate XML data from different sources into a single data collection,
data items that correspond to the same real world object must be matched.
Exact matches often fail due to inconsistent representations and missing global
keys, so approximate matching techniques must be applied. For instance, when
companies merge, their customer data will need to be integrated, but the com-
panies may have different ways to represent that customer data. As another

67

68 pq-Grams for Unordered Trees

example, an internet shop may want to enrich its product description with
data provided by third parties, which each have slightly different descriptions
for the same product.

One way to approximately match a pair of XML documents is to model
the XML documents as ordered, labeled trees and to compute the minimal edit
distance between the trees [12, 26, 37]. The edit distance between two such
trees is the number of node insertions, deletions, and renamings that transform
one tree into the other. While order is important in document-centric scenarios
(e.g., paragraph tags in XHTML), most applications of data-centric XML must
ignore the sibling order. Two documents should be considered the same even if
they differ in the order of their siblings. Data-centric XML items are usually
modeled as unordered, labeled trees. While the minimal tree edit distance
between ordered trees can be computed in polynomial time, the problem has
been shown to be NP-complete for unordered trees [57].

This work develops an efficient approximate join between data-centric
XML. Our solution is based on windowed pq-grams. A windowed pq-gram
is a small subtree that consists of a stem and a base. Intuitively, two unorderd
trees are similar if they have many pq-grams in common. We develop a tech-
nique to systematically generate the set of windowed pq-grams from a sorted
tree. Windowed pq-grams satisfy the following core properties: all base-nodes
have equal frequency; the Jaccard distance between two sibling sets is pre-
served; and node moves to other parents are detected. Due to these properties
key features of pq-grams for ordered trees [3] carry over to unordered trees.
Specifically, the pq-gram distance computed on the windowed pq-grams of two
sorted trees approximates the unordered tree edit distance between these trees.

Note that sorting trees is not possible for common ordered tree distances
such as the tree edit distance. Sorting a tree permutes the subtrees rooted in
the sorted nodes. While the sorted trees of two identical unordered trees are
identical for the pq-gram distance, they may be very dissimilar for the ordered
edit distance (cf. Section 4.4.3).

We provide an algorithm to compute windowed pq-grams in linear time
and approximately join unordered trees using windowed pq-grams. Most joins
based on distance measures, such as the edit distance, must evaluate the dis-
tance between every pair of input trees. There is no effective way to sort trees
or partition them input buckets with a hash function. A nested-loop join must
be applied. Our algorithm reduces the approximate join to an equality join
on strings (windowed pq-grams are serialized and represented as strings) that
takes advantage of well known join optimization techniques.

The rest of the chapter is organized as follows: We discuss related work
in Section 4.2. We motivate the approximate join of data-centric XML in

4.2 Related Work 69

Section 4.3 and introduce windowed pq-grams in Section 4.4. Section 4.5
discusses core properties of windowed pq-grams, and we tune the pq-grams to
optimize these properties Section 4.6. Section 4.7 provides algorithms, which
are experimentally evaluated in Section 4.8. In Section 4.9 we draw conclusions
and point to future work.

4.2 Related Work

Most papers that compare similar XML documents represent the XML data as
trees. Labels or label-value pairs are assigned to the tree nodes. Tree matching
techniques are applied to compute the similarity between trees. A well known
distance function for trees is the tree edit distance, which is defined as the
minimum cost sequence of edit operations (node insertion, node deletion, and
renaming) that transforms one tree into another [47]. The best known tree
edit distance algorithms [11, 16, 35, 56] for ordered trees have at least O(n3)
runtime for trees with n nodes. The problem is NP-complete for unordered
trees [57].

Guha et al. [26] present an approximate XML join based on the tree edit
distance. They give upper and lower bounds for the tree edit distance that
can be computed in O(n2) time and use reference sets to take advantage of the
fact that the tree edit distance is a metric, thus reducing the actual number
of distances to compute in a join. Guha et al. [26] do not address joins of
unordered XML.

Garofalakis and Kumar [23] correlate streams of XML data through ap-
proximate matching in small space. They present an efficient approximation
of the tree edit distance, but their approximation assumes ordered trees.

pq-Grams where introduced by Augsten et al. [3, 4] as an effective and
efficient approximation of the tree edit distance for ordered trees. This work
extends pq-grams for unordered trees and develops an efficient pq-gram-based
approximate join technique.

In change detection scenarios two versions of the same document are given
and the difference is computed. Most works assume ordered trees [10, 12,
37]. Cobéna et al. [12] take advantage of existing element IDs, which can
not be assumed for joins of data from different sources. Chawathe et al. [9]
present a heuristic solution for unordered trees that runs in O(n3) time and
for many cases in O(n2). The X-Diff algorithm by Wang et al. [51] allows leaf
and subtree insertion and deletion and node renaming. To achieve O(n2 ×
fmax log(fmax)) runtime, where fmax is the maximum fanout of the nodes,
they match only nodes with the same path to the root node. Our pq-gram
distance has O(n log n) runtime complexity. The distance measures presented

70 pq-Grams for Unordered Trees

above are evaluated between pairs of documents. Used as a join predicate
there is no obvious way to avoid an expensive nested-loop join. We transform
the distance-based join to an equality join on pq-grams and can apply well
known join optimization techniques.

Weis and Naumann [52] propose an XML similarity measure for a dupli-
cate detection framework. In the worst case, all pairs of elements must be
compared. Puhlmann et al. [43] improve the efficiency by applying the Sorted
Neighborhood method to nested objects. Both approaches assume a known,
common schema of the matched documents and require a configuration step.
No join algorithm using the proposed similarity measure is presented.

A core operation in XML query processing is to find all occurrences of
a twig pattern [5, 31]. The goal of our work is not to find occurrences of a
pattern to answer queries. We split the tree into subtrees in order to calculate
the distance between trees. Several papers deal with the related, but different
problem of detecting the structural similarity in XML documents [14, 20, 41].
Two documents are considered structurally similar if they are valid for a similar
DTD. The (text) values of the elements within the documents are ignored.

4.3 Motivation

In our application scenario we consider building an online database about
music CDs that integrates data from two sources: a song lyric store and CD
warehouse.1 The integrated database will store the title, artist and songs on
an album, information about individual songs such as the lyrics, guitar tabs,
and information about the artists.

Example 4.1. Figure 4.1 shows tree representations of two different XML
documents. Intuitively, both represent data about the same song album. Yet
exact ordered tree matching would not consider the items as the same for a
number of reasons. The song lyric store has an element year that is absent
from the CD Warehouse. The CD Warehouse has a price for the album. For
one track the title is slightly different, for the other track the databases list
different artists. Also the document order of elements differs, i.e., the two
documents have different sibling orders.

One way to match items from the two sources is to join the documents.
The join attribute is (the part of) the XML document that represents the

1We do not assume that the sources use a common schema, but we assume a common
vocabulary to describe the data; the problem of integrating data vocabularies or ontologies
is separate from matching the data. Terms in one source can be converted to the vocabulary
of the second source prior to matching. We focus on the data matching problem.

4.3 Motivation 71

album

track

title

So far away

artist

Mark

artist

John

year

2000
track

title

Wish you where here

artist

Roger

artist

Dave

(a) Song Lyric Store Data

album

track

title

Far away

artist

John

artist

Mark

track

artist

Roger

title

Wish you where here

artist

Nick

price

15

(b) CD Warehouse Data

Figure 4.1: Two XML Trees Representing the Same Album.

album. Two albums match if they are “similar.” The join condition can not
be equality, as the data items representing the same album in the different
databases may not match exactly.

The following XQuery expression returns all album pairs that are within
distance $tau. The distance function, dist, is a user-defined function that
returns the distance between a pair of XML documents.

for $a in doc("lyricstore.xml")//album,

$b in doc("warehouse.xml")//album

where dist($a,$b) <= $tau

return <match>{$a}{$b}</match>

In the XQuery expression, $a and $b are bound to elements of the sets
doc("lyricstore.xml")//album and doc("warehouse.xml")//album, re-
spectively. Each album element is a (small) XML document itself. We define
the approximate XML join between two sets of XML documents as follows [26].

Definition 4.1 (Approximate XML Join). Given two sets of XML documents,
F1 and F2, a distance measure, dist(Ti,Tj), between document Ti ∈ F1 and
document Tj ∈ F2, and a threshold τ . The approximate XML join computes
all pairs (Ti, Tj) ∈ F1 ×F2, such that dist(Ti,Tj) ≤ τ .

Our goal is to find a distance function for unordered trees that is effective
for data-centric XML and can be computed efficiently. We use this function
as the basis of a scalable approximate join.

72 pq-Grams for Unordered Trees

4.4 Windowed pq-Grams

In this section we introduce windowed pq-grams. We define properties that
we require for our solution.

In order to make pq-grams applicable for data-centric XML, we represent
an XML document as an unordered, rooted, labeled tree. Each node in the
tree is a triple (i, l, v), where i is the node index, l is the node label, and v is
the node’s value (text content). A node in the tree represents an XML element
(or attribute) and is labeled with the name of the element (or attribute). The
node index is any number that identifies the node in the document, such as its
ordinal position in a pre-order traversal. The value of a node represents the
text content of the corresponding element (or the value of the corresponding
attribute). The node value is an empty string if the corresponding element
contains only sub-elements and no content. An edge connects an element
node with each of its subelements (or attributes). The function λ(n) of a node
n = (i, l, v) maps the node to the (label,value)-pair (l, v). While nodes are
unique within a tree, the (label,value)-pairs are not.

4.4.1 Requirements for Windowed pq-Grams

pq-Grams were introduced by Augsten et al. [3] as an approximation of the edit
distance for ordered, labeled trees. Intuitively, a pq-gram is a small subtree of
a specific shape composed of two parts: a stem that consists of an anchor node
with p−1 ancestors and a base that consists of q consecutive children of the
anchor node. For example, consider the ordered tree T0 in Fig. 4.2. The stem
(a, c) with anchor node c and the base (k, j) form a pq-gram with p=q=2.

In unordered tree matching, the order of siblings is irrelevant. Graphically
we represent an unordered tree as a set consisting of a node and the subtrees
rooted in the node’s children. The unordered trees T1 and T2 in Fig. 4.2 differ
only in the node g that is moved between T1 and T2.

T0
a

b

e f d g

b

h f i

c

k j

T1

a
b

c

b

e f
g d

h
f
i

j

k

T2

a

b

c

b f h
g i

e
d
f j

k

Figure 4.2: Ordered and Unordered Trees.

4.4 Windowed pq-Grams 73

Stems are node chains of length p. They are invariant to order, and the
strategy for choosing stems in ordered trees carries over to unordered trees.
The bases in ordered trees are formed by consecutive siblings. This strategy is
not applicable to unordered trees, since no sibling order is defined. A different
strategy is required.

Let sibling set denote the set of all children of a tree node. A strategy
to choose all possible sibling subsets of size q weights nodes differently. For
f siblings,

(f
q

)

bases are formed. pq-Grams produced from large sibling sets
disproportionally contribute to the total number of pq-grams. Changes covered
by these pq-grams are amplified, other changes are disregarded.

Bases that consist of a single node ignore the sibling order However, pq-
grams with such bases fail to detect sibling moves to an other parent if the
ancestors in the old and the new position have identical labels. For example,
they cannot distinguish between the trees T1 and T2 in Fig. 4.2. The ancestors
of the moved node g have identical labels, resulting in identical stems, (a, b).
Ancestors with identical labels are frequent in data-centric XML (e.g., all
title elements have the ancestors track and album in the XML of Fig. 4.1).

Larger bases encode sibling information and can detect sibling moves, as
nodes with homonymous ancestors may have siblings with different labels. In
our example, g has a sibling i in T2 but not in T1. A base (g, i) exists only
in T2 and distinguishes it from T1.

A sibling order may be given implicitly, for example, by the XML document
order. This order is random for data centric XML. Bases formed over randomly
ordered sibling sets may be very different even for identical sibling sets.

In our approach we sort the trees and use a window to control the compu-
tation of the bases. We seek to build bases with the following properties:

P1: Equal Base-Node Frequency. Each non-root node of the tree ap-
pears in the same number of bases, independent of the number of siblings.

P2: Preservation of the Sibling Distance. The overlap of the bases
build from two different sibling sets is proportional to the overlap of
the sibling sets. In Fig. 4.2, there is a 50% overlap between the sibling
sets containing node g in T1 and T2, hence 50% of the bases should
match, too.

P3: Detection of Node Moves to Other Parents. Node g is moved to
an other parent with the same label (b). All pq-grams with anchor node
b have the same stem. In order to distinguish T1 and T2, the bases must
differ.

74 pq-Grams for Unordered Trees

4.4.2 Solution

We introduce windowed pq-grams for unordered trees with the required base
properties. We proceed in 3 steps:

1. sort the unordered tree,

2. extend the sorted tree, and

3. compute the pq-grams on the extended tree.

In the first step we sort the trees by imposing a horizontal order among
siblings. The siblings are sorted by node label and value. Due to nodes with
identical label-value pairs an unordered tree can possibly be sorted in different
ways. All sorted trees of the same unordered tree result in identical pq-grams
and are equivalent for our purpose. Figure 4.3(a) shows Tsort

1 , the sorted
example tree T1.

a

b

d e f g

b

f h i

c

j k

(a) Sorted Tree T
sort
1

•

a

b

d

• •

e

• •

f

• •

g

• •

b

f

• •

h

• •

i

• •

c

j

• •

k

• •

•

(b) Extended Tree T
ext
1 for w=3 and p=q=2.

j k • j k • j k •

a

c

j k

base

stem

anchor

a

c

j •

a

c

k •

a

c

k j

a

c

• j

a

c

• k

(c) Window Use and 2, 2-Grams with Anchor Node c.

Figure 4.3: Sorted Tree, Extended Tree, and Windowed pq-Grams.

Definition 4.2 (Sorted Tree). A tree T is sorted if its siblings are ordered
and for each sibling pair, n = (i, l, v) and n′ = (i′, l′, v′), the order satisfies

l < l′ ∨ (l = l′ ∧ v < v′)⇒ n < n′.

The next step extends the sorted tree with dummy nodes (•). Dummy
nodes have a special (label,value)-pair, which is the same for all such nodes,
i.e., λ(•i) = λ(•j) for all i, j. We also introduce the concept of a window which

4.4 Windowed pq-Grams 75

is shifted over siblings for a systematic generation of pq-grams. Figure 4.3(b)
shows the extended tree Text

1 for w = 3 and p = q = 2.

Definition 4.3 (Extended Tree). Let Tsort be a sorted tree, p > 0 and q > 0
be the parameters determining the shape of the pq-grams, w ≥ q be the window
size, and f denote the fanout of a node. The extended tree, Text, is defined
as Tsort extended with dummy nodes as follows:

• root: p−1 ancestors are prepended to the root node;

• leaves: q children are added to each leaf node;

• siblings: w−f siblings are appended to each sibling array (c1, . . . , cf) of
size 0<f<w, yielding (c1, . . . , cf , •1, . . . , •w−f).

Finally, we give a definition of windowed pq-grams based on the extended
tree.

Definition 4.4 (Windowed pq-Grams). Let T be an unordered tree with ex-
tended tree Text, n be a node of T, ci be the ith child of n in Text (1≤ i≤f), and
Wi = (ci, ci+1, . . . , c(i+w−1) mod f) be a node sequence visible through a window
of length w ≥ q that is wrapped around the right border.

A windowed pq-gram (p > 0, q > 0) of T with anchor node n is defined as
an ordered subtree of Text that is composed of the stem (ap−1, . . . , a1, n), where
ak is n’s ancestor at distance k, and a base (ci, b2, . . . , bq), where ci is the first
node of a window Wi, {b2, . . . , bq} ⊆ {ci+1, . . . , c(i+w−1) mod f}, and the node
order of Wi is preserved. If n is a leaf in T, the base is formed by q dummy
nodes. Each base that satisfies these constraints produces a windowed pq-gram
with anchor node n.

The set of all windowed pq-grams of a tree T (i.e. all pq-grams of all nodes
of T) is called its pq-gram profile.

The bases are systematically computed by producing for each window Wi

only the bases that contain the first node. For each window position,
(

w−1
q−1

)

bases are produced.

Theorem 4.1 (Profile Size). Let T be a tree with n nodes, then the size of its
pq-gram profile, P (T), is linear in the tree size, |P (T)| ≤ nq

(

w
q

)

. If T has l

leaves, and all other nodes have fanout f ≥ w, then |P (T)| = (n−1)
(w−1

q−1

)

+ l.

We use a linear encoding and represent a pq-gram as a tuple G =
(ap−1, . . . , a1, n, b1, . . . , bq). With λ(G) = (λ(ap−1), . . . , λ(n), . . . , λ(bq)) we de-
note a pq-gram’s node labels and values, called its label-tuple. Subsequently

76 pq-Grams for Unordered Trees

we omit node values and represent label-tuples as strings, e.g., the label-tuple
of the first 2, 2-gram in Fig. 4.3(c) is represented as acjk. While a pq-gram is
unique within a tree, different pq-grams may yield identical label-tuples.

Example 4.2. Figure 4.3(c) shows all windowed pq-grams for p = q = 2 that
can be formed in Text

1 for the anchor node c. Initially, the window covers the
nodes j, k, • , which according to the above procedure yields two bases of size
2 and produces the first two pq-grams acjk and acj•. Next, the window is
moved right and covers k, •, j . Notice that the window is wrapped around.
Two other pq-grams are produced. The final position of the window covers
•, j, k .

Definition 4.5 (pq-Gram Index). Let T be a tree with pq-gram profile P(T),
p > 0, q > 0. The pq-gram index, I, of tree T is the bag of all label-tuples of
T, i.e.,

I(T) =
⊎

G∈P(T)

λ(G).

The pq-gram distance is computed from the number of pq-grams that the
indexes of the compared trees have in common. For two trees, T and T′, the
pq-gram distance is

dist(T,T′) = 1− 2
|I(T) ∩ I(T′)|

|I(T) ⊎ I(T′)|
.

The pq-gram distance is 1 if two trees share no pq-grams, and 0 if they have
the same pq-gram index, which does not necessarily imply that the trees are
equal.

4.4.3 Local Effect of Subtree Permutations

Sorting siblings moves the subtrees rooted in the siblings. Due to identical
node labels, subtrees may be permuted between the sorted trees of two iden-
tical unordered trees. Further, if the root node of a subtree is renamed, the
subtree is moved to an other position in the sorted tree. The number of pq-
grams that changes after moving a subtree does not depend on the subtree
size. This core feature qualifies pq-grams for our approach and rules out other
distance measures such as the tree edit distance. We can not sort the siblings
and apply the edit distance for ordered trees. The edit distance with node
insertion, deletion and renaming moves the subtrees back node by node, thus
increasing the distance. An additional subtree move operation makes the edit
distance computation NP-hard [23].

4.5 Properties of Windowed pq-Gram Bases 77

Consider the two trees T1 and T2 in Figure 4.4. The unordered edit dis-
tance between the trees is zero as they differ only in the sibling order. Also
the pq-gram distance is zero. The ordered edit distance is about the tree size
as the subtrees t1 and t2 must be moved back node by node. Subtree moves
have limited effect on the pq-gram distance. When all children of a node are
permuted, only the pq-grams that have the permuted nodes in the bases will
change.

T1 r

x

t1

x

t2

T2 r

x

t2

x

t1

edit-distuo = 0
edit-disto = O(n)

pq-gram dist = 0

Figure 4.4: pq-Grams and Subtree Permutation.

Theorem 4.2 (Local Effect of Subtree Moves). Given a sorted tree T (index
I) that is transformed to a tree T′ (index I′) by permuting the order of the f
children of a node n, then the permutation affects only O(f) pq-grams:

|I \ I′| ≤ O(f).

4.5 Properties of Windowed pq-Gram Bases

We discuss the base properties of windowed pq-grams. We denote sibling sets
with S, bags of sibling labels with L, and bases formed over L with B.

P1: Equal Base-Node Frequency. Tree extension with dummy nodes,
windows, and window wrapping guarantee that each node of a tree is in the
same number of bases, thus giving each node the same weight. Dummy nodes
avoid that a node appears twice in the same window when the window is
wrapped. Due to the window wrapping each node appears in all w positions
of a window exactly once, independent of the number of its siblings. Only
bases within windows are formed, thus each node is in the same number of
bases.

P2: Preservation of the Sibling Distance. We analyze the pq-grams of
two anchor nodes that have the same stem and differ only in the bases. The
bases represent the sibling sets formed by the children of the anchor nodes.
The distance between the bases should approximate the distance between the
sibling sets.

78 pq-Grams for Unordered Trees

Sibling Distance. Let L1 and L2 be the labels of two sibling sets. We use
the Jaccard distance [50], modified for bags, to compute the distance between
the sibling sets.

J(L1, L2) = 1−
2|L1 ∩ L2|

|L1 ⊎ L2|
(L1 6= ∅ or L2 6= ∅)

The sibling distance is 1 if all siblings are different, and 0 if L1 and L2 have
identical labels.

Base Error. Let B1 and B2 be the bases formed over L1 and L2, respec-
tively. We define the base error,

ǫ(L1, L2, B1, B2) = |J(L1, L2)− J(B1, B2)|, (4.1)

where J(B1, B2) is the Jaccard distance between the bases. The base error ǫ
ranges between 0 and 1, ǫ = 0 means that the base distance is equivalent to
the sibling distance. For f ≥ w, small bases of size q = 1 have base error zero.

Example 4.3. Let L1 = {a, c, d, f, g, i} and L2 = {a, b, c, d, e, f, g, h, i}. For
q = 2 and w = 3, we get B1 = {ac, ad, cd, cf, df, dg, fg, fi, gi, ga, ia, ic}
and B2 = {ab, ac, bc, bd, cd, ce, de, df, ef, eg, fg, fh, gh, gi, hi, ha, ia, ib}.
With |B1 ∩B2|=6, |B1 ⊎B2|=30, and |L1 ∩ L2|=6 the base error is ǫ= 2

5 . For
q=w=3 no bases match, and ǫ= 4

5 .

P3: Detection of Node Moves to Other Parents. We define base recall
and base precision to measure the sensitivity of the bases to node moves. A
node move is detected if at least one of the bases changes. We consider bases
of size q = 2 and discuss larger bases in the next section.

A base without dummy nodes encodes exactly one sibling pair. Due to the
window wrapping, the same sibling pair may be encoded twice. Two bases
formed from the same sibling pair are called duplicates. Bases with dummy
nodes give no sibling information. Let #pairs(S,B) denote the number of
sibling pairs of S encoded by the bases B, i.e., only bases without dummy
nodes and only one copy of each duplicate are count.

Base Recall. For a sibling set S with f nodes,
(f
2

)

= f(f−1)
2 pairs can be

formed. Given the respective bases B, we define the base recall, ρ, as the ratio
of sibling pairs encoded by the bases to the number of possible pairs.

ρ(S,B) = 2
#pairs(S,B)

f(f − 1)
, f = |S| (4.2)

ρ = 1 if all possible pairs of S are in B, ρ = 0 if none of the possible pairs is
encoded. Bases with low recall may not encode relevant sibling pairs and thus
miss node moves.

4.6 Optimal Windowed pq-Grams 79

Base Precision. Ratio of sibling pairs encoded by the bases to the total
number of bases. Given a sibling set S and the respective set of bases B, the
base precision is

π(S,B) =
#pairs(S,B)

|B|
. (4.3)

π = 1 if the bases contain no duplicates/dummy nodes. In the original tree
there are no dummy nodes. Low precision, i.e., many bases with dummy
nodes, decrease the weight of the original nodes.

Example 4.4. Let B over siblings S be the bases in Figure 4.3(c) (q = 2, w =
3). jk and kj are duplicates, all other bases contain dummy nodes, thus
#pairs(S,B) = 1. Base recall ρ(S,B) = 1 (all pairs of S are encoded by
B), base precision π(S,B) = 1

6 (only 1 of 6 bases is relevant for detecting
node moves).

4.6 Optimal Windowed pq-Grams

In this section we discuss the choice of the base size q and the window size
w. We show that bases of size q = 2 have smaller base error than larger bases
(Lemma 4.1), but can detect exactly the same sibling moves (Lemma 4.2). We
choose q = 2 and compute base recall and precision (Lemma 4.3). We choose
a window size w that optimize both recall and precision, and we show that all
nodes in the resulting bases have equal weight (Theorem 4.3).

Lemma 4.1 (Optimal Base Size). Let S and S′ be sibling sets with labels L
and L′, respectively, let S be transformed to S′ by one of the following edit
sequences:

(a) k insertions of new nodes with labels not in L;
(b) k renamings of nodes with labels not in L (k ≤ S);
(c) k node deletions (k ≤ S).

For a given window size w ≤ min(|S|, |S′|), small bases of size 2
(Bq=2, B

′
q=2) have equal or smaller base error than larger bases (Bq>2, B

′
q>2):

ǫ(L,L′, Bq=2, B
′
q=2) ≤ ǫ(L,L′, Bq>2, B

′
q>2)

Lemma 4.2 (Sibling Move Detection). Given the sibling sets S1 and S′
1 with

the bases B1 and B′
1. We move a node n from S1 to S′

1 and get the sibling sets
S2 and S′

2 with the bases B2 and B′
2. For a given window size w, if the sibling

move is detected for bases with q > 2, i.e., B1 ∪B′
1 6= B2 ∪B′

2, then it is also
detected for bases with q = 2.

80 pq-Grams for Unordered Trees

Lemma 4.3 (Recall and Precision). Let S be a sibling set with f nodes, B
be the bases of size q = 2 formed over S with windows size w. Base recall,
ρ(S,B), and base precision, π(S,B), are

ρ =

{

2w−1
f−1 w < f+1

2

1 w ≥ f+1
2

π =

{

1 w < f+1
2

f−1
2(w−1) w ≥ f+1

2

Theorem 4.3. (Optimal Windowed pq-Grams) Given an unordered tree with
fixed fanout f . For the base size q = 2 and the window size w = f+1

2 we get
windowed pq-grams with the following base properties:

(a) All non-root nodes have equal frequency
and appear in exactly 2w − 2 bases.

(b) ǫ ≤

k
f for rename

2k
2f+k for insert

2k
2f−k for delete

(c) ρ = 1 (d) π = 1

The optimal base size w depends on the fanout f . For a degenerated tree
(consisting only of the root node and n− 1 leafs) w=f−1

2 =O(n). Even in this
case, the pq-gram profile can not grow larger than O(n2) (Theorem 4.1, f≥w,
q=2).

4.7 Algorithms

4.7.1 Building the pq-Gram Index

Algorithm 4.1 computes the windowed pq-gram profile P by recursively
traversing the tree T in preorder. The algorithm is initialized with the root
node n of T, the window size w, a stem of dummy nodes (•1, . . . , •p), and the
empty profile P. Whenever the last sibling (in document order) of a sibling
set is reached, the siblings are sorted, and the pq-grams are produced. The
runtime is O(n) for documents with n nodes and a constant maximal fanout.
Our experiments confirm the linear behavior of the algorithm.

The index, I, is computed by aggregating and counting the pq-grams in
the profile P(treeId , pqg): I← ΓtreeId ,pqg ,COUNT(∗)→cnt (P). The complexity is
O(n log n) (sorting the profile of size O(n)). The index of a forest is the union
of the indexes of its trees.

4.7 Algorithms 81

Algorithm 4.1: getPQGrams(T, n, w, stem,P)

stem← dequeue-first-element(stem) ◦ n;1

if n is a leaf then return P ∪ {(T, stem ◦(•, •)};2

C ← ∅;3

foreach child c of n do4

C ← C ∪ {c};5

P← P ∪ getPQGrams(T, c, w, stem,P);6

C ← C ∪
⋃w−f

i=1 {•};7

a← sort-by-label(C);8

for i← 0 to |a| − 1 do9

for j ← i + 1 to i + w − 1 do10

P← P ∪ {(T, stem ◦ a[i] ◦ a[j mod |a|])};11

return P;12

4.7.2 Approximate XML Join

Algorithm 4.2 computes the approximate pq-gram join (q = 2) of two sets
of trees F1 and F2, given their indexes I1 and I2, and the threshold τ . All
pairs (Ti,Tj) ∈ F1 ×F2 that satisfy dist(Ti,Tj) ≤ τ < 1 are returned. PS i is
initialized with the profile sizes for the trees in forest Fi.

Algorithm 4.2: pqGramJoin(I1, I2, τ)

foreach Ii do1

Ii ← ρtreeId/treeId i,cnt/cnt i
(Ii);2

PS i ← ΓtreeIdi,SUM(cnt i)→sizei
(Ii);3

return πtreeId1,treeId2
(σ1−2 cnt

size1+size2
≤τ (4

ΓtreeId1,treeId2,SUM(min(cnt1,cnt2))→cnt(I1 ⋊⋉ I2)5

⋊⋉ PS1 ⋊⋉ PS2))6

As pointed out by Guha et al. [26], hash and sort-merge joins do not carry
over to approximate tree joins that use the edit distance, since the function
must be evaluated between every input pair. There is no effective way to sort
trees or partition them into buckets with a hash function. The only approach
readily applicable is the nested loop join [26].

This does not hold for the pq-gram distance. For the calculation of the pq-
gram distance a tree is represented by its pq-gram index. Instead of computing
the distance between each pair of trees directly, we check for each pq-gram
in which pairs of trees it appears. We transform the distance-based join to

82 pq-Grams for Unordered Trees

an equality join on all pq-grams represented as strings. We can apply well
known techniques to optimize this join (e.g., sort-merge and hash join). The
approximate join is computed by counting pq-grams in the join result.

In the worst case the joined forests consist of identical copies of the same
tree. Let N be the cardinality of the forest, n the number of nodes per tree.
The indexes are of size O(Nn) for a constant maximal fanout. In a sort-merge
join the complexity of sorting the relations is O(Nn log(Nn)). Each pq-gram
in one index matches O(n) tuples in the other index. The overall complexity
is O(N2n). Note that for this worst case scenario the join result is of size
O(N2), thus no algorithm can improve on the quadratic runtime.

Different from the nest loop join, our join algorithm can take advantage
of the diversity of trees in a forest. In the best case, when no two trees
in the forest share pq-grams, the runtime is almost linear in the index size
O(Nn log Nn). In the our experiments we show the performance advantages
of the optimized join for large forests.

4.8 Experiments

Profile and Index Computation. We analyze the scalability of the index
computation. Our test data are XML documents that range between 100kB
and 1.2GB (2k to 20M nodes), p = q = 2 and w = 3. The index computation
in Figure 4.5(a) includes the profile computation (Algorithm 4.1) and the
aggregation of duplicate pq-grams within each tree. The index computation
scales to very large trees. The test documents are generated with xmlgen,
provided by the XML benchmark project XMark2.

Approximate pq-Gram Join. We compare the scalability of the “opti-
mized join” (Algorithm 4.2) with the scalability of a join that computes the
pq-gram distance between each pair of documents (“nested loop join”). We use
two sets of 1000 XML documents each (document size: 100 to 17000 nodes).
The documents within a set are different, each document has a match in the
other set. Figure 4.5(b) shows the results. The optimized join computes only
the distance between documents that have pq-grams in common. Unlike the
nested loop join, it can take advantage of the diversity of the trees that result
in a small join results set. The runtime is close to linear.

Increased Stability with Window Use. We create XML documents with
the following DTD:

2http://monetdb.cwi.nl/xml/

4.8 Experiments 83

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1e+07 2e+07

tim
e

[s
ec

]

number of nodes

2,2-gram index (w=3)
2,2-gram profile (w=3)

(a) Index Computation.

 0

 500

 1000

 1500

 2000

 2e+06 1e+06

 1000 750 500 250

tim
e

[s
ec

]

number of nodes

number of trees

nested-loop join
optimized join

(b) Approximate pq-Gram Join.

Figure 4.5: Index Creation and Join Scalability.

<!ELEMENT album (track+)>

<!ELEMENT track (artist+,title)>

<!ELEMENT artist (#PCDATA)>

<!ELEMENT title (#PCDATA)>

We randomly rename artist nodes and compute the pq-gram distance to
the original document with and without window, i.e., q < w and q = w,
respectively. Figure 4.6 shows typical results for two different windows sizes w.
Without windows the pq-gram distance shows steps and plateaus. A changed
artist node changes all pq-grams that contain the renamed node. A small
number of renamed artists can change all pq-grams of a track element. All
following renames of artists in the same track will not further increase the
distance, leading to the plateaus in the graph. This effect increases with larger
values of w. With window use (q = 2, q < w) the graph shows no plateaus.

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 1 2 3 4 5 6 7 8 9 10

pq
-g

ra
m

 d
is

ta
nc

e

edit distance

without window (q=w)
with window (q=2,q<w)

(a) Window Size w = 3.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

pq
-g

ra
m

 d
is

ta
nc

e

edit distance

without window (q=w)
with window (q=2,q<w)

(b) Window Size w = 5.

Figure 4.6: Windows Increase Stability.

84 pq-Grams for Unordered Trees

Quality of Matches. We use real world XML data sets and add noise
(spelling mistakes and missing elements). We approximately join the original
and the noisy set.

The Data Sets. We use the DBLP3 (bibliography), the SwissProt4 (protein
sequence database), and the Treebank5 (parts of speech tagged English sen-
tences) XML databases. We split each database into a set of (sub)documents
by deleting the root node, and we randomly choose 200 of the resulting docu-
ments for our experiments (requiring their size to be larger than the number
of errors we introduce).

The resulting document sets are structurally very different: DBLP contains
small and flat documents (15 nodes and depth 1.9 on average) with about ten
times more elements then attributes, the SwissProt documents are larger and
deeper with almost the same number of attributes and elements (104 nodes and
depth 3.5 on average), the Treebank documents have deep recursive structure
(49 nodes and depth 6.9 on average, with a maximum depth of 30).

Adding Noise. We modify the original documents by deleting and renaming
random nodes. Node deletions simulate missing elements or attributes and
modify the document structure. Renamed nodes represent different tag names
or spelling mistakes in the text values. The resulting noisy document is the
match of the original document, all other noisy documents are non-matches.
In our figures we show the percentage of changed nodes (norm-edit-dist).

Distance between Matches and Non-Matches. Each original document has
exactly one match. Figures 4.7(a)–4.7(c) show the average distance of the orig-
inal documents to their match and to the closest non-match. The SwissProt
documents are more similar to each other then the DBLP and Treebank docu-
ments. The pq-gram distance to the matches is almost linear to the number of
modified nodes. It effectively approximates the edit distance. All documents
are modified, thus also the distance to the non-matches increases with the
number of changed nodes.

Precision and Recall. Our join algorithm matches each original doc-
ument to one or more noisy documents. We count correct and incorrect
matches. With possible we denote the maximum number of correct matches
for a dataset. We compute precision = correct

correct+incorrect
× 100% and recall =

correct
possible

× 100%. The precision is high if the returned matches are correct, the
recall is high if the algorithm does not miss correct matches.

3http://dblp.uni-trier.de
4http://us.expasy.org/sprot/
5http://www.cis.upenn.edu/∼treebank/

4.8 Experiments 85

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pq
-g

ra
m

 d
is

ta
nc

e

norm-edit-dist

closest non-match
match

(a) DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5

pq
-g

ra
m

 d
is

ta
nc

e

norm-edit-dist

closest non-match
match

(b) SwissProt

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pq
-g

ra
m

 d
is

ta
nc

e

norm-edit-dist

closest non-match
match

(c) Treebank

Figure 4.7: Distance between Matches and Non-Matches.

Figure 4.8 shows precision and recall for different thresholds τ . Moving up
the threshold decreases the precision and increases the recall. Precision and
recall for DBLP and Treebank are almost 100%, even for very noisy documents.

For SwissProt the precision drops as we increase the threshold. The
SwissProt documents are clustered into groups of very similar documents (pro-
tein variants). For example, two documents with 64 elements have exactly the
same structure and vary only in 6 text values. The clustering of the data
is evident from the precision values in Figure 4.8(b) for norm-edit-dist = 0
(approximate self join): Already for τ = 0.2 many documents match other
documents then themselves. We improve the result for SwissProt using a
variable threshold. Each document is matched to its nearest neighbor. If a
document has more than one nearest neighbor, no match is returned. Fig-
ure 4.9 shows the results for the SwissProt database. The algorithm returns
precise matches, and even for errors of 20% we miss only about 10% of the
matches.

86 pq-Grams for Unordered Trees

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

pr
ec

is
io

n
[%

]

norm-edit-dist

tau = 0.3
tau = 0.5
tau = 0.7

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

re
ca

ll
[%

]

norm-edit-dist

tau = 0.7
tau = 0.5
tau = 0.3

(a) DBLP

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2

pr
ec

is
io

n
[%

]

norm-edit-dist

tau = 0.05
tau = 0.1
tau = 0.2

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2

m
at

ch
es

 [%
]

norm-edit-dist

tau = 0.2
tau = 0.1

tau = 0.05

(b) SwissProt

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4

pr
ec

is
io

n
[%

]

norm-edit-dist

tau = 0.3
tau = 0.5
tau = 0.7

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4

re
ca

ll
[%

]

norm-edit-dist

tau = 0.7
tau = 0.5
tau = 0.3

(c) Treebank

Figure 4.8: Matching with Different Thresholds.

4.9 Conclusion 87

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pr
ec

is
io

n
/ r

ec
al

l [
%

]

norm-edit-dist

precision
recall

Figure 4.9: 1:1 Matches for SwissProt.

4.9 Conclusion

When XML data from different sources is integrated in a single data collection,
data items that represent the same real world object must be recognized. Ex-
act matches, however, often fail in such applications (elements may be missing
in one database, content values may not match due to different coding con-
ventions and spelling mistakes, and the data may be arranged in a different
structure). Approximate matching techniques must be applied.

Previous research developed approximate join operations based on ordered
tree-matching, but for data-centric XML applications the order of siblings
should not matter. Data-centric XML can be represented as unordered trees.
In this work we propose an approximate join technique for data-centric XML
based on pq-grams.

pq-Grams were developed for the approximate matching of ordered trees.
We introduce windowed pq-grams for unordered trees that are computed in
a in a three-step process: sorting the tree, extending the tree with dummy
nodes, and computing the pq-grams on the extended tree using a window
mechanism. The resulting pq-grams consist of a stem and a base. The stems
are invariant to order, the main challenge is to compute the bases. Our bases
enjoy the following important properties: all base-nodes have equal frequency,
the Jaccard distance between sibling sets is preserved, and node moves to
other parents are detected. Due to these properties key features of pq-grams
for ordered trees [3] carry over to unordered trees. Specifically, the pq-gram
distance computed on the windowed pq-grams of two sorted trees approximates
the unordered tree edit distance between these trees.

We provide an efficient algorithm for the approximate pq-gram join of
unordered trees which is reduced to an equality join on pq-grams and can
take advantage of well known join optimization techniques. To the best of

88 pq-Grams for Unordered Trees

our knowledge, this is the first work to address the problem of approximately
joining XML data without taking advantage of the document order. Extensive
experiments on both synthetic and real world data confirm the analytic results
and suggest that our technique is both useful and scalable.

Future work includes the investigation of persistent, updatable index struc-
tures for the windowed pq-gram joins. As pq-grams store local information, a
document modification (e.g., an altered text value) affects only a limited num-
ber of pq-grams. The index should be updated incrementally by substituting
the affected pq-grams only, thus avoiding the recomputation of all pq-grams
from scratch.

Chapter 5

The Address Connector

Many different databases store information about the same or related ob-
jects in the real world. To enable collaboration between these databases, data
items that refer to the same object must be identified. Residential addresses
are data of particular interest as they often provide the only link between re-
lated pieces of information in different databases. Unfortunately, residential
addresses that describe the same location might vary considerably and hence
need to be synchronized. Non-matching street names and addresses stored
at different levels of granularity make address synchronization a challenging
task. Common approaches assume an authoritative reference set and cor-
rect residential addresses according to the reference set. Often, however, no
reference set is available and correcting addresses with different granularity
is not possible.

We present the address connector which links residential addresses that
refer to the same location. Instead of correcting addresses according to an
authoritative reference set, the connector defines a lookup function for resi-
dential addresses. Given a query address and a target database, the lookup
returns all residential addresses in the target database that refer to the same
location as the query address. The lookup supports addresses that are stored
with different granularity. To achieve this the connector implements a new
distance between streets that relies on both the similarity of the street names
and the hierarchical structure of the addresses in a street. This allows us
to match streets even if their names are completely unrelated. To align
the addresses of two matching streets, we introduce a global greedy address
matching algorithm that avoids the use of a threshold parameter and guar-
antees a stable matching. We define the concept of address containment that
allows us to correctly link addresses with different granularity. The evalua-
tion of our solution on real world data from a municipality shows that our
solution is both effective and efficient.

89

90 The Address Connector

5.1 Introduction

Large amounts of information about related objects in the real world are stored
in databases. If different databases store data about the same real world ob-
ject, the data must be synchronized to enable collaboration. The synchroniza-
tion is non-trivial since often databases are maintained by different depart-
ments, use different coding conventions, and data items that represent the
same real world object are identified through different key values.

Residential addresses are data of particular interest. They appear in many
databases and are often the only link between relevant information in differ-
ent databases. Unfortunately, addresses that describe the same location vary
considerably as they are maintained and updated independently. A synchro-
nization step is necessary to reconcile the addresses.

Synchronizing residential addresses is a challenging task. As an example
consider Figure 5.1 with the databases from the Electricity Company and
the Registration Office from the municipality of Bolzano-Bozen. We want to
establish a link between residents and electricity bills using the addresses as
the linking element. Both databases cover the same geographic area, but an
exact match on the address attributes obviously fails.

Electricity Company (EC) Registration Office (RO)

address bill

Hermann-von-Gilm-Str. 1 e 121

Hermann-von-Gilm-Str. 3/A e 71

Hermann-von-Gilm-Str. 3/B e 63

Hermann-von-Gilm-Str. 6 e 0

Siegesplatz 2/A e 98

Siegesplatz 3/-/1 e 32

Siegesplatz 3/-/2 e 51

Siegesplatz 3/-/3 e 43

Friedhofplatz 4 e 143

Friedhofplatz 6 e 0

Untervigli 1 e 117

Mariengasse 1 e 161

address resident

Gilmstrasse 1 Peter

Gilmstrasse 3 Hans

Gilmstrasse 3 Renate

Gilmstrasse 3 Max

Gilmstrasse 5 Arturas

Friedensplatz 2/A/1 Markus

Friedensplatz 2/A/2 Klaudia

Friedensplatz 3 Igor

Cimitero 4 Linas

Cimitero 6/A Francesco

Cimitero 6/B Romans

Untervigil 1 Andrej

Marieng. 1/A Josef

Figure 5.1: Two Databases with Residential Addresses that Cover the Same
Geographic Area.

Common solutions for address synchronization assume an authoritative
set of reference addresses, also termed address register, that is used to
correct the residential addresses in the databases. This approach suffers
from several limitations. Often an authoritative reference is not available,
and it is not clear which database should be used to correct the other
databases. Moreover, correcting addresses fails if the databases store ad-

5.1 Introduction 91

dresses with different granularity levels. In Figure 5.1, ’Gilmstrasse 3’ in
the RO database refers to a house, while ’Hermann-von-Gilm-Str. 3/A’ and
’Hermann-von-Gilm-Str. 3/B’ in the EC database are more detailed and
refer to different entrances in the same house. It is not possible to change the
less detailed address to a more detailed one since it is not clear how to assign
the residents Hans, Renate, and Max to the more detailed addresses. Vice
versa, correcting a detailed address to a less detailed one is not acceptable as
information gets lost.

Contributions: We present a new data structure, called the address con-
nector, which links residential addresses from different databases that refer to
the same location. The address connector can be represented as a relation,
where each tuple defines a residential address and establishes a link between
two other residential addresses. A key feature of our solution is that an au-
thoritative reference is not needed. Instead we establish links that equally
respect all participating addresses. At the core of the address connector is
the synchronization operator, which establishes the links between different ad-
dresses that refer to the same location. The synchronization operator faces
two key problems. First, streets must be matched even if different databases
use different names for the same street (e.g., due to misspellings, different cod-
ing conventions, or renamed streets). Second, addresses that are stored with
different granularity must be linked correctly, although there is no one-to-one
correspondence between them.

We introduce a structure-aware distance measure between two streets,
called street distance, which relies on both the name of the two streets and the
addresses of the two streets. Toward this end the residential addresses of a
street are organized in an ordered, labeled tree, called address tree. The root
of the address tree is the set of all known names of the street, while the rest of
the tree represents house numbers, entrance numbers, and apartment numbers
(see Figure 5.2). The street distance relies on both the structural similarity
of the address trees and the similarity of the street names. Such a structure-
aware approach allows us to match streets even if the names are completely
unrelated (e.g., in the case of renamed streets) or if the structure of the ad-
dress trees is ambiguous (e.g., the address trees of the streets ’Mariengasse’
and ’Untervigil’ in Figure 5.1 have identical structure).

Given the distance between all pairs of streets, the streets need to be
matched. A constraint of the matching is that a street can have at most one
matching partner. A threshold-based approach will not work since the same
threshold may be too high for some streets (they are matched multiple times),
but too low for other streets (they remain unmatched). We present the global

92 The Address Connector

{Friedensplatz}

2

A

1 2

3

Figure 5.2: Address Tree of ’Friedensplatz’ (Registration Office Database).

greedy matching algorithm that matches each street to at most one other street
and guarantees a stable matching. A matching is stable if no new street pair
can be found such that the streets in the new pair are closer to each other
than to their current partner in the matching.

Finally, the addresses of two matching streets must be linked. In gen-
eral, there is no one-to-one correspondence between all addresses of two
streets since they might be stored with different granularity. We introduce
the address containment. Intuitively, an address, a, contains another ad-
dress, b, if the location referred to by a contains the location referred to
by b. For example, Friedensplatz 2 is a house that contains the apart-
ments Fiedensplatz 2/A/1 and Fiedensplatz 2/A/2. We propose an effi-
cient merge algorithm that correctly links addresses with different granularity
by checking, in addition to equality, also for address containment.

To summarize, we introduce the address connector that offers lookups of
residential addresses in different databases. At the core of the address connec-
tor is the synchronization operator which establishes links between residential
addresses that refer to the same location. The main features of the synchro-
nization operator are: a new street distance based on address trees; a global
greedy matching algorithm that computes stable street pairs; and the concept
of address containment that allows to correctly link addresses with different
granularity levels. We implemented the connector and evaluated it with real-
world data from the municipality of Bolzano-Bozen. The experiments show
the effectiveness and efficiency of the connector.

Outline: In the next section we define and motivate the problem. We out-
line the solution in Section 5.3. In Section 5.4 we give solutions for comput-
ing the distances between pairs of streets, matching streets with our global
greedy matching algorithm, and linking addresses with different granularity.
In Section 5.5 we provide algorithms for linking residential addresses. The

5.2 Problem Definition and Motivation 93

algorithms are experimentally evaluated in Section 5.6. Section 5.7 discusses
related work, in Section 5.8 we draw conclusions and point to future work.

5.2 Problem Definition and Motivation

5.2.1 Problem Definition

We assume different databases that store residential addresses about the same
geographic area. The residential addresses reference houses, house entrances,
or apartments. The street names may be spelled in different languages or a
changed street name may not be reflected in some databases. The addresses
may be stored with different granularity, e.g., one database may store only the
address of a house without specifying entrance or apartment number while
another database may store also entrance and apartment numbers for the
same house.

Our goal is an effective and efficient lookup of residential addresses in
different databases. The input for the lookup are a residential address defined
in one of the databases (query address) and a target database. The lookup
returns the set of all addresses in the target database that refer to the same
location as the query address.

Example 5.1. Consider the two address databases in Figure 5.1,
and let the Registration Office be the target database. The lookup
of ’Hermann-von-Gilm-Str. 1’ should return {’Gilmstrasse 1’}, i.e.,
the query and the result address are equivalent. The lookup of
’Siegesplatz 3/-/1’ should return {’Fiedensplatz 3’}, i.e., the query ad-
dress is more detailed and is contained in the result address. Finally, the lookup
of ’Friedhofplatz 6’ should return {’Cimitero 6/A’, ’Cimitero 6/B’},
i.e., the result addresses are more detailed and are contained in the query
address.

5.2.2 Motivation

Our work is motivated by an application scenario from the Municipality of
Bolzano-Bozen. Many administrative tasks performed by the civil servants
require to combine information from different databases. The databases are
maintained by internal (e.g., the registration office, the GIS office) or exter-
nal departments of the municipality (e.g., the Electricity Company, the Land
Registration Office, the Catastre). As residential addresses are often the only
link between tuples in different databases, they must be used to access and
connect related pieces of information.

94 The Address Connector

Consider the two databases in Figure 5.1. The Registration Office (RO)
stores residents of apartments, the Electricity Company (EC) stores the amount
of the electricity bill of each apartment. For tax fraud detection the munic-
ipality wants to compute a list of all apartments for which no electricity is
payed although they have residents. To answer this query, the two databases
have to be joined over corresponding residential addresses.

Unfortunately, exact matches between addresses mostly fail since the ad-
dresses differ substantially for a number of reasons: ’Untervigil’ is mis-
spelled in one database; street names are coded using different conventions,
e.g., ’Hermann-von-Gilm-Str.’ vs. ’Gilmstrasse’); ’Friedensplatz’ was
renamed to ’Siegesplatz’, but the change was not reflected in all databases;
in the bilingual region of Bolzano-Bozen two names for each street exist and
they are used interchangeably, e.g., ’Friedhofplatz’ and ’Cimitero’ are the
German and Italian names of the same street. In addition to non-matching
street names, the residential addresses are stored with different granularity
in the different databases (e.g., with or without entrance/apartment num-
bers), and there is no one-to-one correspondence between them. For example,
’Friedhofplatz 6’ is a house that is divided into two parts with different
entrances, ’Cimitero 6/A’ and ’Cimitero 6/B’.

There is no authoritative reference database available to solve conflicts
or to correct addresses. All input addresses have the same priority, and no
input address can be deleted during the synchronization process. The syn-
chronization must be extensible to additional databases. A mapping between
only two address databases is of limited use as multiple departments need to
interact and new services provided by the public administration require new
departments to join the synchronization.

5.3 The Connector

In this section we introduce and define the connector as new data struc-
ture that supports the synchronization of residential addresses from different
databases. The connector is represented as a relation. A tuple in the con-
nector defines a residential address and establishes a link between two other
residential addresses (see Figure 5.3). A residential address is a reference to
a physical object that is either a house, a part of a house that has its own
entrance, or an apartment in a house. Residential addresses are grouped into
partitions, and the addresses of a partition are grouped into streets.

Definition 5.1 (Connector, Residential Address, Partition, Street). A con-
nector, X, is a relation. A tuple (id, a, c1, c2) ∈ X is identified by id, defines

5.3 The Connector 95

X

ID addr ref1 ref2

(A, α2, a1) ({Hermann-von-Gilm-Str.}, 1, @,@) ǫ ǫ
(A, α2, a2) ({Hermann-von-Gilm-Str.}, 3, A,@) ǫ ǫ
(A, α2, a3) ({Hermann-von-Gilm-Str.}, 3, B, @) ǫ ǫ
(A, α2, a4) ({Hermann-von-Gilm-Str.}, 6, @,@) ǫ ǫ

.

(A, α1, a10) ({Friedhofplatz}, 6,@, @) ǫ ǫ
.

(B, β1, b1) ({Gilmstrasse}, 1, @,@) ǫ ǫ
(B, β1, b2) ({Gilmstrasse}, 3, @,@) ǫ ǫ
(B, β1, b3) ({Gilmstrasse}, 5, @,@) ǫ ǫ

.

(B, β3, b8) ({Cimitero}, 6, A,@) ǫ ǫ
(B, β3, b9) ({Cimitero}, 6, B, @) ǫ ǫ

.

(C, γ1, c1) ({Gilmstrasse, Hermann-von-Gilm-Str.}, 1,@, @) (A, α2, a1) (B, β1, b1)
(C, γ1, c2) ({Gilmstrasse, Hermann-von-Gilm-Str.}, 3, A, @) (A, α2, a2) (B, β1, b2)
(C, γ1, c3) ({Gilmstrasse, Hermann-von-Gilm-Str.}, 3, B, @) (A, α2, a3) (B, β1, b2)
(C, γ1, c4) ({Gilmstrasse, Hermann-von-Gilm-Str.}, 5,@, @) ǫ (B, β1, b3)
(C, γ1, c5) ({Gilmstrasse, Hermann-von-Gilm-Str.}, 6,@, @) (A, α2, a4) ǫ

.

(C, γ3, c12) ({Cimitero, Friedhofplatz}, 6, A,@) (A, α1, a10) (B, β3, b8)
(C, γ3, c13) ({Cimitero, Friedhofplatz}, 6, B, @) (A, α1, a10) (B, β3, b9)

.

Figure 5.3: Connector X after the Synchronization synchA,B→C(X).

the residential address a, and establishes a link between the two residential ad-
dresses c1 and c2, where c1 and/or c2 may be empty (ǫ). A residential address
is a tuple (strName , num, entr, apt) that consists of a non-empty set of street
names, a house number, an entrance and an apartment number (entrance and
apartment number may be null values, @). The addresses of X are grouped
into partitions, and each address is in exactly one partition. A street is a set
of addresses that are all in the same partition and have identical street names.

The semantics of a tuple (id, a, c1, c2) ∈ X in the connector is that a, c1,
and c2 refer all to the same location. The identifier, id, of the tuple is a
triple of partition identifier, street identifier, and address identifier (local to
the partition). Whenever possible we refer to an address only by the local
address identifier. With str(A) we denote the set of all streets of a partition
A. names(α) denotes the set of street names of a street α. The relative part of
an address c, rel(c) = (num, entr, apt), is the triple of house number, entrance,
and apartment number defined by the address c.

Example 5.2. The last tuple of the connector in Figure 5.3 defines the
address c13 = ({Cimitero, Friedhofplatz}, 6, B,@) of partition C, and
it links the two addresses a10 of partition A and b9 of partition B. Ad-
dress c13 is in street γ3 which has two street names, i.e., names(γ3) =

96 The Address Connector

{Cimitero, Friedhofplatz}. The relative part of c13, rel(c13) = (6, B,@),
consists of house number 6, entrance B, and a null value for the apartment
number. Partition A consists of the streets str(A) = {α1, α2, α3, α4, α5} (only
two of them are shown in the figure).

In order to support the synchronization of residential addresses, the con-
nector provides the following main functionalities:

• load(X, DB,A): Load an address database into the connector. The resi-
dential addresses in DB are stored as a new partition, A, in the connector
X. The tuples in the partition define the residential addresses of DB, and
they include dummy links to empty addresses.

• synch(X,A,B, C): Synchronize the two partitions A and B and store the
result in a new partition C. The tuples in the new partition, C, align
addresses from A and B that refer to the same location. Each tuple
defines a new address.

• lookup(X, (A, α, a),B): Retrieve from partition B those addresses that
are aligned with the address a from partition A.

Example 5.3. Consider the databases in Figure 5.1 and the tax-fraud query,
which requires a join of the two databases over corresponding residential ad-
dresses. Using the connector, the residential addresses of the two databases
are first loaded, i.e., load(X, EC,A) and load(X, RO,B). Two new parti-
tions, A and B, are created in the connector X. Next, the partitions A
and B are synchronized by calling synch(X,A,B, C). The tuples in the new
partition, C, establish links between addresses from A and B that refer to
the same location, and each tuple defines a new address. For example,
a3 = (Hermann-von-Gilm-Str., 3, B,@) and b2 = (Gilmstrasse, 3,@,@) are
linked (a3 is an entrance of the house b2) and define the new address c3. Fi-
nally, we take the addresses that have an electricity bill with amount zero and
do a lookup in the RO database to find residents who do not pay for their elec-
tricity. For example, lookup(X, (A, α1, a10),B) retrieves the set {b8, b9} repre-
senting two entrances of the house a10. Thus, the apartments ’Cimitero 6/A’

and ’Cimitero 6/B’ have residents but do not pay for the electricity.

The synchronization operator is the most important one and will be de-
scribed in more detail below.

5.4 The Synchronization Operator

The synchronization operator, synchA,B→C(X), aligns the addresses of the par-
titions A and B and stores the result in a new partition C. A tuple in the new

5.4 The Synchronization Operator 97

partition establishes a link between two addresses of A and B that refer to
the same location, and the address defined by the tuple represents the linked
addresses.

5.4.1 Overview

The synchronization of two partitions, A and B, is a three-step process:

1. Computing Street Distances: Given two streets, α ∈ str(A) and β ∈
str(B), the distance, dist(α, β), between the two streets is computed.

Input: α ∈ str(A), β ∈ str(B)

Output: dist(α, β) ∈ [0..1]

2. Matching Streets: Assume the streets of two partitions, str(A) =
{α1, . . . , αM} and str(B) = {β1, . . . , βN}, M ≤ N , and a distance matrix
DM×N with the distance between streets αi and βj, dist(αi, βj), in row
i and column j. A matching, M, between the streets is computed, such
that each street of A matches at most one street of B and no two streets
of A match the same street of B.

Input: str(A), str(B), DM×N

Output: M ⊆ str(A)× str(B),
∀α ∈ str(A)∃!β ∈ str(B) : (α, β) ∈ M,
(α, β) ∈ M ∧ (α, β′) ∈ M⇒ β = β′

3. Linking Addresses: Links between the addresses of two streets, (α, β) ∈
M, are established. Two addresses are linked if they refer to the same
location. An address that has no counterpart in the other street is linked
to the empty address (ǫ). Each link produces a new connector tuple, and
the address defined by the new tuple represents the linked addresses. The
set γ̄ of new tuples defines a new street γ.

Input: (α, β) ∈ M

Output: γ̄ ⊆ (names(α)∪names(β))×rel(α∪β)×(α∪{ǫ})×(β∪{ǫ})

In the following we discuss each of these steps in detail.

5.4.2 Step 1: Computing Street Distances

To compute the similarity of two streets we introduce and define a new street
distance which is based on two independent characteristics: the name of the
two streets and the structure of the addresses of the two streets. For that we
have to represent each street by its address tree.

98 The Address Connector

Address Trees: The addresses of a street, α, define a hierarchy and are
represented as a so-called address tree, T(α) [2]. Figure 5.4 shows the address
trees of the streets in partitions A and B of connector X (see Figure 5.3). The
root of an address tree is the set of names of the corresponding street, the
children of the root are the house numbers, the children of house numbers are
the entrance numbers, and the children of entrance numbers are the apartment
numbers. An address is a path from the root to a leaf node. For example,
the shaded path in Figure 5.4(b) is the address ’Friedensplatz 2/A/1’. The
identifiers of addresses that are defined by a root-leaf path are shown below
the respective leaf. We omit null values in the address trees.

T(α1)

{Friedhofplatz}

4
a9

6
a10

T(α2)

{Hermann-von-Gilm-Str.}

1
a1

3

A
a2

B
a3

6
a4

T(α3)

{Siegesplatz}

2

A
a5

3

-

1
a6

2
a7

3
a8

T(α4)

{Mariengasse}

1
a12

T(α5)

{Untervigli}

1
a11

(a) Address Trees of the Electricity Company (Partition A).

T(β1)

{Gilmstrasse}

1
b1

3
b2

5
b3

T(β2)

{Friedensplatz}

2

A

1
b4

2
b5

3
b6

T(β3)

{Cimitero}

4
b7 6

A
b8

B
b9

T(β4)

{Untervigil}

1
b10

T(β5)

{Marieng.}

1

A
b11

(b) Address Trees of the Registration Office (Partition B).

Figure 5.4: Example Address Trees.

The Name Distance

The root node of an address tree represents the set of all known names of
the corresponding street. We define the name distance between two address
trees, T(α) and T(β), as the minimum distance between two of their names,
nα ∈ names(α) and nβ ∈ names(β). We use the q-gram distance to determine
the distance between a single pair of street names. The q-grams of a street
name are all its substrings of length q. Intuitively two street names are similar
if they have many q-grams in common.

5.4 The Synchronization Operator 99

Definition 5.2 (q-Gram Distance). Given a string s of characters from a
finite alphabet Σ and the extended string s′ that is formed by prefixing and
suffixing s with q−1 characters that are not in Σ. A q-gram of s is a substring
of length q of the extended string s′, and I(s) is the bag of all q-grams of s.
The q-gram distance between two street names, s1 and s2, is defined as

distq(s1, s2) = 1− 2
|I(s1) ∩ I(s2)|

|I(s1) ⊎ I(s2)|
.

The distance is normalized and can take values between 0 and 1. The
q-gram distance is 0 if s1 = s2.

Example 5.4. We compute the name distance between the address trees
T(α5) and T(β4) in Figure 5.4. Both root nodes store only one name, and
the name distance is equal to the q-gram distances between these names.
nα = ’Untervigli’, nβ = ’Untervigil’, the respective q-gram bags
are I(nα) = {##U, #Un, Unt, nte, ter, erv, rvi, vig, igl, gli, li#, i##} and
I(nβ) = {##U, #Un, Unt, nte, ter, erv, rvi, vig, igi, gil, il#, l##}, the q-gram

distance is distq(n1, n2) = 1− 2 |I(n1)∩I(n2)|
|I(n1)⊎I(n2)| = 1− 2 8

24 = 1
3 .

The Structure Distance

Intuitively, the structure distance of two streets considers how the (recorded)
addresses of the two streets differ. If the addresses of a street are represented
in an address tree, this measure can be defined as the structural distance
between two address trees, and we will use pq-grams to measure the distance
of two trees.

A pq-gram is a small, besom-shaped subtree consisting of an anchor node,
p − 1 ancestors, and q consecutive children. Intuitively, the pq-grams are
formed by shifting a pq-gram shaped pattern over the tree (see Figure 5.5).
The nodes covered by the pattern form a pq-gram. The pattern is shifted
such that each node appears in the anchor node position and each non-root
node also in each leaf position of the pattern. We fill in dummy nodes for the
parts of the pattern that extend beyond the tree border. For the following
definitions we assume an ordered, labeled, rooted tree T. Each node n of T

has a label λ(n). A node with the special label ’*’ is a dummy node.

Definition 5.3 (pq-Gram). Let T be a tree, a be a node of T, p > 0, q > 0, and
let Tp,q be T extended with dummy nodes as follows: p−1 ancestors to the root
node, q−1 children before the first and after the last child of each non-leaf node,
and q children to each leaf. A pq-gram of T with anchor node a is a subtree
of Tp,q that is composed of the following nodes: p nodes ap−1, . . . , a1, a, where

100 The Address Connector

p = 2

q = 3

anchor
node

(a) pq-Gram
Pattern.

T0 *

a

c b

e

* * *

f

c * *

*

a

c b

e

* * *

f

c * *

*

a

c * *

*

a

c * *

b

e

* * *

b

e

* * *

(*, a, c, *, *)

(b, e, *, *, *)

pq-gram G1

pq-gram G2

label-tuple λ(G1)

label-tuple λ(G2)

(b) Example Tree T0 and Two 2, 3-Grams of T0.

Figure 5.5: Computing the pq-Grams of a Tree.

ai is the ancestor of a at distance i, and q contiguous children ck, . . . , ck+q−1

of a.

We use a linear encoding and represent a pq-gram G with an-
chor node a as a tuple of its node labels, the label-tuple λ(G) =
(λ(ap−1), . . . , λ(a1), λ(a), λ(ck), . . . , λ(ck+q−1)). As the labels of a tree are not
necessarily unique, two pq-grams of the same tree may yield identical label-
tuples. The pq-gram distance is based on the number of label-tuples that two
trees have in common.

We ignore the street names when we compute the structure distance be-
tween address trees and denote with T*(γ) the address tree of street γ with a
dummy root node. The structure of two address trees is similar if the trees are
within a small pq-gram distance. The pq-gram distance is computed by split-
ting the trees into small subtrees of a specific shape (pq-grams). Trees that
share a high percentage of pq-grams are more similar than trees that share a
low percentage.

Definition 5.4 (pq-Gram Distance). Let I(T) denote the bag of all label-tuples
of a tree T. The pq-gram distance between two trees, T1 and T2, is defined as

distpq(T1,T2) = 1− 2
|I(T1) ∩ I(T2)|

|I(T1) ⊎ I(T2)|
.

The pq-gram distance is normalized and can take values between 0 and 1.
If T1 and T2 have identical structure and labels, the pq-gram distance is 0.

Example 5.5. We compute the structure distance between the address trees
T(α1) and T(β3) in Figure 5.4 using the pq-gram distance (p = 2, q = 3). The
root nodes are substituted by dummy nodes, the label-tuples are computed, and

5.4 The Synchronization Operator 101

the pq-distance is computed by intersecting the bags of label-tuples:

I(T*(α1)) = {(*, *, *, *, 4), (*, *, *, 4, 6), (*, *, 4, 6, *), (*, *, 6, *, *),
(*, 6, *, *, *), (*, 4, *, *, *)},

I(T*(β3)) = {(*, *, *, *, 4), (*, *, *, 4, 6), (*, *, 4, 6, *), (*, *, 6, *, *),
(*, 6, *, *, A), (*, 6, *, A, B), (*, 6, A, B, *), (*, 6, B, *, *),
(*, 4, *, *, *), (6, A, *, *, *), (6, B, *, *, *)}

distpq(T
*(α1), T

(β3)) = 1− 2 |I(T(α1))∩I(T*(β3))|
|I(T*(α1))⊎I(T*(β3))|

= 1− 2 5
17 = 0.42

The Street Distance

Depending on the input data, more reliable matches can be expected from
either the name distance (e.g., both address sets use the same language and
similar coding conventions) or the structure distance between the address trees
(e.g., the input sets use different languages). We weight the name distance
with ω and structure distance with 1 − ω, and we combine the two distances
into a single distance between address trees. Let dn be the name distance and
ds the structure distance, the address tree distance is defined as

d =
√

ωd2
n + (1− ω)d2

s.

Example 5.6. The name distance dn = 0.5714 between the renamed streets
β2 (Friedensplatz) and α3 (Siegesplatz) is larger than the name distance
dn = 0.3333 between β2 and α1 (Friedhofplatz). As the renamed streets
are structurally more similar (dt = 0.5758 vs. dt = 1.0 between β2 and α1),
the street distance (w = 0.5) between these streets is smaller then the street
distance between β2 and α1 and they are matched correctly (see Figure 5.6).

5.4.3 Step 2: Matching Streets

Given the distance between all street pairs of two partitions, the streets need to
be matched. We define the matching as a set of street pairs, where each street
appears in only one pair. Our goal is to compute a stable matching. Intuitively,
a matching is stable if it is not possible to break up existing matches and form
a new match, such that the new match is better than the old matches for both
matching partners.

Definition 5.5 (Matching and Stable Matching). A matching, M ⊆ str(A)×
str(B), of the streets of two partitions, str(A) and str(B), is a set of street
pairs (matches), where each street α ∈ str(A) is paired with at most one
street β ∈ str(B), and each street β ∈ str(B) is paired with at most one street
α ∈ str(A). M is stable if there is no pair (α, β) /∈ M, such that α is closer

102 The Address Connector

to β than to its current partner in M, and β is closer to α than to its current
partner in M:

∄(α, β) ∈ (str(A)× str(B)) \M : ∀(α, y) ∈ M : dist(α, y) > dist(α, β) ∧
∀(x, β) ∈ M : dist(x, β) > dist(α, β)

(5.1)

Let D be the M×N distance matrix that stores the distances between the
streets of the two partition, str(A) = {α1, . . . , αM} and str(B) = {β1, . . . , βN}.
The distance between the streets αi and βj is stored in row i and column j of
D. Figure 5.6 shows the distance matrix for the address trees in Figure 5.4.
Name distance and structure distance are equally weighted (w = 0.5), the
correct matches are shaded.

α1 α2 α3 α4 α5

β1 1.0 0.7761 1.0 0.6796 0.8498
β2 0.7454 1.0 0.5736 0.9649 1.0
β3 0.7647 0.9592 1.0 1.0 0.9556
β4 1.0 0.8584 1.0 0.7071 0.2357
β5 0.9608 0.9199 1.0 0.4241 0.7767

Figure 5.6: Distance Matrix for the Address Trees in Figure 5.4.

Our solution for the street matching problem is the global greedy matching.
Such an approach matches close street pairs first and avoids missing good
matches due to earlier miss-matches. Matched streets are marked, and no
street is matched twice. The matching produced by the algorithm is stable.

Example 5.7. Consider the distance matrix in Figure 5.6. The global greedy
matching computes the matches in the following order: (α4, β5), (α5, β4),
(α2, β3), (α3, β1), (α1, β2).

Note that matching two streets if they are within a fixed distance threshold
is not good enough. The threshold may be too low for some streets (they
remain unmatched), but too high for others (they are matched to multiple
streets in the other partition). Often it is impossible to set a good threshold.
A local greedy approach traverses the streets of one partition in random order
and matches each street to its nearest neighbor in the other partition. If the
nearest neighbor of a street is already matched, the next-nearest neighbors are
visited, until an unmatched street is found. Each street is matched only once,
but the quality of the matching depends on the random matching order. Both
approaches can not guarantee stable matches.

5.4 The Synchronization Operator 103

Example 5.8. Consider, for example, the distance matrix in Figure 5.6. A
threshold equal or above 0.6796 matches both, α1 and α5, with β4. For a lower
threshold α1 and α3 remain unmatched. The local greedy algorithm matches
each row to the unmatched column with the smallest distance value in the
respective row. We match the rows in the order given by the distance matrix
(first row first) and get the matching M = {(α1, β4), (α2, β3), (α3, β1), (α4, β5),
(α5, β2)}. As α1 is miss-matched to β4 in the beginning, α5 can not be matched
to its nearest neighbor β4, but it is matched to the remaining street β2 which
is very distant from α5.

5.4.4 Step 3: Linking Addresses

In this section we establish links between the addresses of two streets. Each
link is represented by a new tuple in the connector. The new tuples define
a new street and each of the linked addresses is represented by one or more
addresses in the new street.

Two addresses should be linked if they refer to the same location. It is
not enough to check whether the relative parts of the addresses are equiv-
alent as the addresses may be stored with different granularity. For exam-
ple, ’Gilmstrasse 3’ should match both ’Hermann-von-Gilm-Str. 3/A’

and ’Hermann-von-Gilm-Str. 3/B’, but the entrance is not specified in
’Gilmstrasse 3’. We define the concept of address equivalence and address
containment.

Definition 5.6 (Address Equivalence and Containment). Given two residen-
tial addresses, a and b. Address a is equivalent to address b (a ≡ b) if both
addresses refer to the same physical object. a contains b (a ⊒ b) if and only if
b refers to an object that is part of the object referred to by a or a ≡ b.

The input for the address linking are the street pairs provided by the street
matching algorithm. The addresses of two matched streets refer to locations
in the same real world street, thus addresses with identical relative parts are
equivalent. Further, if all non-null values of rel(a) = (numa, entra, apta) are
the same as the respective attribute values of rel(b) = (numb, entrb, aptb), then
a contains b.

We establish a link between two addresses if they are equivalent or if one
address is contained in the other. The addresses that can not be linked to an
address in the other street are linked to the empty address (ǫ). Each link is
represented by a new tuple in the connector. The address defined by the new
tuple represents the two linked addresses, and its relative part is identical to
the relative part of the linked address that is more detailed. The set of new
tuples, γ̄, defines a new street, γ, with names(γ) = names(α) ∪ names(β).

104 The Address Connector

Definition 5.7 (Address Linking). The address linking between two streets,
α and β, is the following set of new connector tuples (nγ = names(α) ∪
names(β)):

γ̄ = {(nγ ◦ rel(a), a, b) | a ∈ α, b ∈ β, rel(a) ⊑ rel(b)} ∪
{(nγ ◦ rel(b), a, b) | a ∈ α, b ∈ β, rel(b) ⊑ rel(a)} ∪
{(nγ ◦ rel(a), a, ǫ) | ∄b ∈ β : rel(b) ⊑ rel(a) ∨ rel(a) ⊑ rel(b)} ∪
{(nγ ◦ rel(b), ǫ, b) | ∄a ∈ α : rel(a) ⊑ rel(b) ∨ rel(b) ⊑ rel(a)}

Example 5.9. Linking the addresses of the two streets α2 and β1 (see
Figure 5.3) results in a new set of connector tuples that define the street
γ1 = {c1, . . . , c5}. Figure 5.7 shows the address trees of the input streets (α2

and β1) and the new street γ1. A root-leaf path is an address, the identifier
of the address is shown below the leaf. The dashed lines represent connector
tuples that link addresses of α2 and β1 and define addresses in the new street
γ1. a3 and b4 are linked to the empty address.

T(α2)

{Hermann-von-Gilm-Str.}

1
b1 3

A
b2

B
b3

6
b4

T(γ1)

{Hermann-von-Gilm-Str., Gilmstrasse}

1
c1 3

A
c2

B
c3

5
c4

6
c5

T(β1)

{Gilmstrasse}

1
a1

3
a2

5
a3

Figure 5.7: Links between the Addresses of α2 and β1.

5.5 Algorithms

In this section we provide algorithms for the synchronization operator, in-
cluding the street distance computation, the global greedy matching, and the
address linking. We prove that global greedy produces a stable matching and
we discuss the complexity of our algorithms.

Synch: Algorithm 5.1 synchronizes two partitions, A and B, of connector
X. First, we compute the distance matrix, D with the distances between each
pair of streets. Second, the stable street matching M is computed. Third,
for each pair of matched streets (α, β) ∈ M, a new set of tuples is added to

5.5 Algorithms 105

the connector. The new tuples define a new street. The algorithm returns the
connector X with the new partition C. In Section 5.5 we discuss the complexity
of the synchronization and present algorithms for the street distance, the global
greedy matching, and the address linking.

Algorithm 5.1: synch(X,A,B,C)

D[1..M, 1..N] : distance matrix;1

foreach αi ∈ str(A) do2

foreach βj ∈ str(B) do3

D[i][j] = streetDist(αi, βj);4

M = globalGreedyMatching(A,B,D);5

foreach (α, β) ∈ M do6

γ̄ = linkAddresses(α, β);7

foreach c ∈ γ̄ do8

X = X ∪ c;9

return X;10

Street Distance: Algorithm 5.2 computes the distance between two streets
based on their address trees. The nested loop computes the minimum q-gram
distance between the two street names. For the computation of the structure
distance the root nodes of the address trees are substituted by dummy nodes.
The name distance is weighted with ω, the structure distance with 1− ω.

Algorithm 5.2: streetDist(α, β)

ds ←∞;1

foreach sα ∈ names(α) do2

foreach sβ ∈ names(β) do3

dn ← min(ds,distq(sα, sβ));4

ds = distpq(T
(α),T(β));5

return
√

ωd 2
n + (1− ω)d 2

s6

Global Greedy Matching: Algorithm 5.3 implements the global greedy
matching. The algorithm sorts the street pairs by their distance and stores
them in array S. The closest street pair is matched. The respective row
and column are marked in the distance matrix to prevent a street from being
matched twice. The remaining streets pairs in S are matched in ascending

106 The Address Connector

order of their distances if both streets in the pair are still available. This
yields a stable matching.

Algorithm 5.3: globalGreedyMatching(DM×N ,A,B)

M← ∅;1

S[1..M ∗N] : array of tuples (α, β, dist);2

for i← 1 to M do3

for j ← 1 to N do4

S[(i− 1) ∗N + j]← (αi, βj ,D[i, j]);5

S ← sort(S) by dist;6

seen-row [1..M], seen-col [1..N] : boolean arrays initialized with false;7

s← 1;8

while |M| < min(M,N) do9

(dist, αi, βj)← S[s];10

if not seen-row [i] and not seen-col [j] then11

M← M ∪ {(αi, βj)};12

seen-row [i]← true; seen-col [j]← true;13

s++;14

return M;15

Theorem 5.1. The global greedy matching (Algorithm 5.3) is stable.

Proof. Let M′
k be the matching produced by Algorithm 5.3 after the k-th

execution of line 12, thus M′
0 = ∅ and M′

n = M (n = |M|). We substitute
M by M′

k in Equation (5.1) and proof it by induction. “Equation (5.1) holds
for k = 1”: The algorithm chooses the closest street pair amongst all possible
pairs. “If (5.1) holds for M′

k, then it also holds for M′
k+1, k < n”: No pair

(α, β) /∈ M′
k+1 satisfies the right-hand condition (denoted as C). Let (u, v) be

the new pair in M′
k+1, i.e., M′

k+1 \M′
k = {(u, v)}. We distinguish:

1. u 6= α and v 6= β: C is false as (5.1) holds for M′
k and neither u nor v

appear in C.

2. u = α and v 6= β: The algorithm matches the closest pair of un-
matched streets first. Thus, if β is unmatched in M′

k, ∀(u, y) ∈ M′
k+1 :

dist(u, y) ≤ dist(u, β); if β is already matched, ∀(x, β) ∈ Mk+1 :
dist(x, β) ≤ dist(u, β). In both cases C does not hold.

3. u 6= α and v = β: Analog to previous case.

5.6 Experiments 107

Address Linking: Algorithm 5.4 links the addresses of the two streets α
and β, and produces the new set of connector tuples γ̄. Checking equivalence
and containment for all pairs of addresses leads to a quadratic runtime in the
size of the input streets. We define an order on residential addresses and we
present an efficient merge-based algorithm to link the addresses of two streets.
The algorithm sorts the addresses of the input streets, and i and j point to
the current addresses (initially the first address) of the sorted arrays a[] and
b[], respectively. If one of the current addresses is contained in the other
(equivalence is a special case of containment), a link is established and a new
tuple for γ̄ is produced. The pointer of the more detailed address is moved
on. If none of the current addresses is contained in the other address, or if
one of the pointers reaches the end of the array, links to the empty address
are produced.

Definition 5.8 (Order of Residential Addresses). Let a and b be two res-
idential addresses with the relative parts rel(a) = (numa, entra, apta) and
rel(b) = (numb, entrb, aptb), respectively. We define

a > b ⇔ numa > numb

or (numa = numb ∧ entra > entrb)
or (numa = numb ∧ entra = entrb ∧ apta > aptb),

where numa/b, entra/b, and apta/b are ordered lexicographically.

Complexity: For our complexity analysis we assume the synchronization
of two partitions with N streets, each street has n addresses and c names
of constant length. The name distance is computed in O(c2) time and con-
stant space, and the pq-gram distance between two address trees has runtime
O(n log n) and needs O(n) space [3]. The global greedy matching algorithm
requires O(N2) space (the size of the distance matrix) and runs in O(N2 log N)
time (sorting the distances). The address linking sorts the addresses of the
streets in O(n log n) time and runs in O(n) space. The overall time complex-
ity of the synchronization (Algorithm 5.1) is O(N2(c2 + n log n + log N)), the
space complexity is O(N2 + n).

5.6 Experiments

We experimentally evaluate the accuracy of our approach on real world residen-
tial addresses from the registration office (reg, Italian street names, 43K ad-
dresses), the electricity company (elec, German, 45K addresses), and the cen-

108 The Address Connector

Algorithm 5.4: linkAddresses(α, β)

a[1 . . . |α|]← sort(α) by (num , entr , apt);1

b[1 . . . |β|]← sort(β) by (num, entr , apt);2

i← 1; j ← 1; γ̄ ← ∅;3

nγ ← names(α) ∪ names(β);4

while (i ≤ |α|) ∧ (j ≤ |β|) do5

if a[i] ⊑ b[j] then6

while a[i] ⊑ b[j] do { γ̄ ← γ̄ ∪ (nγ ◦ rel(a[i]), a[i], b[j]); i++; }7

j++;8

else if a[i] ⊒ b[j] then9

while a[i] ⊒ b[j] do { γ̄ ← γ̄ ∪ (nγ ◦ rel(b[j]), a[i], b[j]); j++; }10

i++;11

else if a[i] < b[j] then { γ̄ ← γ̄ ∪ (nγ ◦ rel(a[i]), a[i], ǫ); i++; }12

else if a[i] > b[j] then { γ̄ ← γ̄ ∪ (nγ ◦ rel(b[i]), ǫ, b[j]); j++; }13

while (i ≤ |α|) do { γ̄ ← γ̄ ∪ (nγ ◦ rel(a[i]), a[i], ǫ); i++; }14

while (j ≤ |β|) do { γ̄ ← γ̄ ∪ (nγ ◦ rel(b[j]), ǫ, b[j]); j++; }15

return γ̄16

sus database (cens, German, 11K addresses) of the municipality of Bolzano-
Bozen. We load the data into the connector such that each database corre-
sponds to a partition. We synchronize the partitions pairwise and verify the
street matches. The runtimes for synchronizing two partitions are shown in
Table 5.1 (AMD 2.6 GHz Processor, 16GB RAM).

A B name dist [s] structure dist [s] overall [s]

elec cens 1.7 6.1 9.2

elec reg 1.1 11.3 13.6

reg cens 1.0 6.5 8.8

Table 5.1: Runtimes for Synchronizing two Partitions.

In the following subsections we show that the combination of name and
structure increase the quality of street distance. We alse evaluate the matching
accuracy of the global greedy matching algorithm and find that it consistently
outperforms both the fixed threshold and the local greedy approach.

5.6.1 Name and Structure Distance

We compute precision (correctly found matches to total number of com-
puted matches) and recall (correctly found matches to total number of correct

5.6 Experiments 109

matches) for different weights w for name and structure distance. If w = 0,
only the structure of the address trees is considered, if w = 1, only the street
names are considered. The results are shown in Figure 5.8. Pure street name
matching (w = 1) gives good results if both databases have German street
names (Figure 5.8(a)), but it fails if the street names have different languages
(Figures 5.8(b) and 5.8(c)). The combination of name and structure improves
the results for all datasets. For w = 0.5 (equal weight for name and structure)
we find more than 95% of the matches in all data sets, and more than 90% of
our matches are correct.

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

re
ca

ll
/ p

re
ci

si
on

string weight

recall
precision

(a) elec (Ge) ↔ cens (Ge)

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

re
ca

ll
/ p

re
ci

si
on

string weight

recall
precision

(b) elec (Ge) ↔ reg (It)

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

re
ca

ll
/ p

re
ci

si
on

string weight

recall
precision

(c) reg (It) ↔ cens (Ge)

Figure 5.8: Matching Accuracy for Different Weights and Databases.

5.6.2 Global Greedy vs. Local Greedy

This section compares the global greedy matching algorithm with the local
greedy algorithm (see Section 5.4.3). As in the previous experiment we match
streets with different weights. In order to compare local greedy with our global
greedy algorithm we compute the F-measure. The F -measure, F = 2pr

p+r , is the
harmonic mean of precision, p, and recall, r, and it is a well-known performance

110 The Address Connector

measure in the information retrieval literature [50]. Figure 5.9(a) shows the
results for matching the streets of elec and cens, in Figure 5.9(b) we match
elec and reg. Matching reg and cens yields similar results. Global greedy
yields better matches for all settings that we have tested.

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
-m

ea
su

re

string weight

global greedy
local greedy

(a) elec (Ge) ↔ cens (Ge)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
-m

ea
su

re

string weight

global greedy
local greedy

(b) elec (Ge) ↔ reg (It)

Figure 5.9: Global Greedy vs. Local Greedy

5.6.3 Global Greedy vs. Fixed Threshold

This section compares the global greedy matching algorithm with the fixed
threshold approach. The fixed threshold approach matches all streets that are
within a given distance (see Section 5.4.3). Figure 5.10(a) shows precision and
recall for increasing threshold values (elec ↔ cens, string weight w = 0.5).
The precision is high for small thresholds (all matches are correct), but the
recall is very low (only few matches were found). As the threshold increases,
more matches are found, but also the number of incorrect matches increases.
Very high thresholds compute the cross product between all streets, the recall
is 100%, the precision decreases to almost zero.

In Figures 5.10(b)- 5.10(d) we compare the matching accuracy of the global
greedy algorithm with the fixed-threshold approach. The global greedy algo-
rithm outperforms the fixed threshold approach for all thresholds. The results
for the global greedy algorithm are independent of the threshold. The missing
values in Figures 5.10(c) and 5.10(d) indicate thresholds for which both pre-
cision and recall are zero, i.e., no streets could be matched within the given
threshold.

5.6 Experiments 111

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

re
ca

ll/
pr

ec
is

io
n

threshold

recall
precision

(a) Precision and Recall (elec ↔ cens)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
-m

ea
su

re

threshold

global greedy
fixed threshold

(b) F -Measure (elec ↔ cens, w = 0.5)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
-m

ea
su

re

threshold

global greedy
fixed threshold

(c) F -Measure (elec ↔ reg, w = 0.5)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
-m

ea
su

re

threshold

global greedy
fixed threshold

(d) F -Measure (reg ↔ cens, w = 0.5)

Figure 5.10: Global Greedy vs. Fixed Threshold.

112 The Address Connector

5.7 Related Work

Residential addresses appear in many applications, and commercial tools that
deal with the synchronization of residential addresses have been developed.
Customer Data Integration tools often include residential address integration.
Many tools, for example DQaddress (caatoosee ag)1 rely on string matching
techniques and find typos and small spelling variations. They often include
rules for common abbreviations. They can not deal with renamed streets
or streets in different languages. Typical address applications in the United
States use a standardized set of residential addresses and correct the input ad-
dress according to the reference set. AbiliTecR© (by ACXIOMR©)2, for example,
relies on an extensive repository of historical name and address information.
The repository stores associations between current an previous addresses, real
names and nicknames, maiden names, married names and multiple variations
of business names. In our case no such database is available, and we can not
rely on a standardized set of addresses. Instead we build links that equally
respect all participating addresses

The concept of an address tree is introduced in Augsten et al. [2], while
a later work [3] defines the pq-gram distance and matches address trees. The
similarity of street names is not considered. We show in our experiments that
we can significantly improve the matching accuracy by considering the name
distance in addition to the structure distance between address trees. Our
previous matching algorithm [3] matches two streets if they are mutual and
strict nearest neighbors. The nearest neighbor function is not symmetric, and
some streets may not have a mutual nearest neighbor. Also, a street may
have more than one nearest neighbors at the same distance. All these streets
remain unmatched and decrease the recall of the method.

q-Grams were introduced by Ukkonen [49] as a lower bound for the more
expensive string edit distance [38, 40]. Gravano et al. [25] show that q-grams
can be implemented efficiently in a relational database. Our approach is in-
dependent of the choice of a specific string distance.

Matching data items based on the distance between them is a well known
problem in data integration. Gravano et al. [25] define the approximate string
join, approximate XML joins are introduced by Guha et al. [26]. Both ap-
proaches use a fixed distance threshold and match all pairs of items that are
within the threshold. Chaudhuri et al. [8] point out that fixed thresholds lead
to poor matching accuracy as items that should match may be more distant
than items that should not match. They introduce a variable threshold for a

1http://www.caatoosee.com
2http://www.acxiom.com

5.8 Conclusion 113

duplicate detection scenario and define two criterions for duplicates, the com-
pact set criterion (duplicates are closer to each other than to non-duplicate
items) and the sparse neighborhood criterion (the local neighborhood of du-
plicate items is sparse). Both fixed and variable thresholds possibly match a
single item to multiple other items which is undesirable in our setting.

The street matching can be modeled as a bipartite weighted graph match-
ing problem (also known as assignment problem). The streets form the dis-
joint node sets of the bipartite graph, the distances between the streets are
the weighted edges. The goal is to compute the minimum-weighted matching
between the N nodes of the graph. The Hungarian algorithm by Kuhn [36]
runs in O(N2|V |) time, which is O(N4) in our case of a dense graph with
|V | = N2 edges. Edmonds and Karp [18] present an algorithm based on
Dijkstra’s shortest paths [17] that runs in O(N3) time if implemented with
the Fibonacci heap [21]. For the more general maximum-flow problem Gold-
berg and Tarjan [24] propose an O(N3) time algorithm. All these algorithms
globally minimize the sum of the distances in a matching, but they can not
guarantee a stable matching. Computing stable matchings is known as the
stable marriage problem [28]: Given a population of N men and N women,
each man strictly ranks each woman according to his preferences for a mar-
riage partner, and vice versa. Gale and Shapley [22] propose a O(N2) time
algorithm that computes a stable matching between men and women. The
Gale-Shapley algorithm is not commutative, and the solution is optimized ei-
ther for men or for women, depending on the order of the parameters. For
the respective other part the worst case solution is produced. Egalitary sta-
ble marriage algorithms that fix this problem have been proposed [19, 29], the
most efficient one runs in O(N3) time. We can take advantage of the distances
that globally rank the matches and produce a commutative stable matching
in O(N2 log N) time and O(N2) space.

5.8 Conclusion

We have presented the address connector which links residential addresses of
different databases that refer to the same location. The address connector
does not need an authoritative reference, but it builds a new reference that
equally respect all participating addresses. The core of the connector is the
synchronization operator which can deal with non-matching (even completely
unrelated) street names and correctly links residential addresses with different
granularity. The address connector has been successfully tested in the context
of the Municipality of Bolzano-Bozen. In our experiments with real world data

114 The Address Connector

from the public administration we show the effectiveness and the efficiency of
our approach.

The synchronization operator implements a new, context-aware street dis-
tance that considers, in addition to the street name, also the hierarchical
structure that is defined by the addresses of a street. The distances between
all street pairs are stored in a distance matrix. We propose a new algorithm
that matches streets based on the distance matrix. Our global greedy algo-
rithm matches each street to at most one other street, the result is independent
of the matching order, and we proof that the matches are stable. We define
the concept of address containment that allows us to link the addresses of two
streets correctly, even if they are stored with different granularity.

Future work will extend our solution to other applications. The combina-
tion of string and tree distances defined by the address tree distance is useful
when hierarchical data include string-valued nodes that (almost) identify ob-
jects. As an example consider XML data that store publications. Two publica-
tions are similar if both their title and the XML structure (defined by authors,
year of publication, etc.) are similar. Our global greedy matching algorithm
solves the problem of matching items based on a distance matrix, a typical
problem in data integration scenarios. The key properties of the global greedy
matching (independence of the matching order, one-to-one matches, and the
stability of the matching) sets it apart from previous approaches in data in-
tegration. The concept of containment extends to other kinds of hierarchical
data that are stored with different granularity. Our approach to link data
in the connector instead of correcting the databases is useful in applications
where correcting data is not possible (e.g., due to read only access or different
granularity).

Chapter 6

Conclusions and Future Work

In this thesis we proposed pq-grams to approximately match hierarchical data.
We introduce the pq-gram index that offers efficient approximate lookups and
joins of hierarchical data in a relational database. The incremental update of
the index is independent of the tree size. We introduce windowed pq-grams
for the approximate matching of data-centric XML and develop an efficient
approximate join algorithm for windowed pq-grams. The connector is our
system for the approximate matching of residential addresses based on the
address tree.

The pq-gram index represents a tree by its pq-grams and is the basis for
computing the distance between trees. We have developed an efficient algo-
rithm that computes the pq-grams in linear time and space. The algorithm
splits the trees into pq-grams, serializes the pq-grams, and hashes them to
string values of a fixed length. Our relational implementation requires only a
single scan of the tree data and stores the pq-gram index as a relation. We
give an efficient approximate join algorithm based on the pq-gram index that is
implemented as a query in a relational database. Most joins based on distance
measures, such as the edit distance, must evaluate the distance between every
pair of input trees. There is no effective way to sort trees or hash them into
buckets, and an expensive nested-loop join must be applied. We reduce the
approximate join to an equality join on strings that takes advantage of well
known join optimization techniques, for example, the sort-merge join.

We provide incremental updates for the pq-gram index in response to struc-
ture and value changes in the indexed trees. We formally proof that the index
can be updated based on the resulting tree and the log of edit operations
without reconstructing intermediate tree versions. It is not obvious that this
is possible, since the edit operations may depend on each other and have been
defined on intermediate trees that can be very different from the resulting tree.

115

116 Conclusions and Future Work

The incremental update is independent of the tree size and scales to large num-
bers of edit operations. The experimental results validate the approach for the
DBLP dataset and logs with several thousand edit operations.

Data-centric XML is represented as unordered trees. The tree edit distance
between unordered trees is NP-complete. We introduce windowed pq-grams
for unordered trees that are computed in a three-step process: sorting the
tree, extending the tree with dummy nodes, and computing the pq-grams on
the extended tree using a window mechanism. The resulting pq-grams consist
of a stem and a base. The stems are invariant to order, the main challenge
is to compute order-invariant bases. Our bases enjoy the following important
properties: all base-nodes have equal frequency, the Jaccard distance between
sibling sets is preserved, and node moves to other parents are detected. The
pq-gram distance computed on the windowed pq-grams of two sorted trees
approximates the unordered tree edit distance between these trees. The win-
dowed pq-grams are produced in linear time and space, and the approximate
join based on windowed pq-grams scales to large data sets. To the best of our
knowledge, this is the first work to address the problem of approximately join-
ing XML data without relying on the document order. Extensive experiments
on both synthetic and real world data confirm the analytic results and suggest
that our technique is both useful and scalable.

The connector solves the problem of matching residential addresses that
are stored with different granularity and have different or unrelated street
names. The connector can produce high quality matches by relying on the
address tree for the distance computation between streets. Our global greedy
matching algorithm forms street pairs based on a distance matrix. No thresh-
old parameter is required, the matching quality is independent of the matching
order, and the matching is stable. In our experiments we evaluate recall and
precision of the global greedy matching algorithm and show a significant ac-
curacy improvement over local greedy and the fixed-threshold approach. We
introduce the concept of address containment and link residential addresses
even if they are stored with different granularity. The address connector has
been successfully tested in the context of the Municipality of Bolzano.

Future Work Previous work, including ours, has used the tree edit distance
as a reference for the similarity between labeled trees. While the tree edit
distance is intuitive, it has never been shown that it is a good reference.
We show that it produces rather non-intuitive results in some situation, for
example, when non-leaf nodes are deleted. It would be interesting future work
to further investigate this issue. As an alternative reference, a set of properties
could be defined such that different distance functions can be positioned with

117

respect to these properties. As an example consider the sensitivity to structure
change. The empirical study in this thesis suggests that the pq-gram distance
emphasizes structure changes more than the tree edit distance. The edges
define the structure of a tree. Parallel to the node edit distance an edge
edit distance could be defined to quantify structure changes. For example,
the deletion of a non-leaf node is a single node edit operation, although the
deletion may substantially change the tree structure. The edge edit distance
captures this change, as the edges of all children of the deleted node must be
connected to a new parent and are affected.

We further plan to introduce weights for pq-grams. Currently all pq-grams
have the same weight, and the pq-gram distance is (inversely) proportional to
the cardinality of the profile intersection. All pq-grams that match between
the profiles decrease the pq-gram distance by the same amount. When differ-
ent weights are assigned to the pq-grams, some matches have more impact on
the distance than others. The distance algorithm must be adapted to match
pq-grams with small weights first in order to get the minimum pq-gram dis-
tance. The sensitivity of unweighted pq-grams to structure change is controlled
by the parameter p. We will weight pq-grams depending on their structural
importance (for example, the fanout of the anchor node), which will allow us
to fine-tune their sensitivity to structure changes. We think that appropriate
weights will make the pq-gram distance a lower bound of the tree edit distance.

118 Conclusions and Future Work

Bibliography

[1] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick
Koudas, and Divesh Srivastava. Structural joins: A primitive for efficient
XML query pattern matching. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), pages 141–152, San Jose, California,
2002. IEEE Computer Science Press.

[2] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. Reducing the
integration of public administration databases to approximate tree match-
ing. In Roland Traunmüller, editor, Electronic Government – Third In-
ternational Conference, Lecture Notes in Computer Science 3183, pages
102–107, Zaragoza, Spain, August 2004.

[3] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. Approximate
matching of hierarchical data using pq-grams. In Proceedings of the In-
ternational Conference on Very Large Databases (VLDB), pages 301–312,
Trondheim, Norway, September 2005. ACM.

[4] Nikolaus Augsten, Michael Böhlen, and Johann Gamper. An incremen-
tally maintainable index for approximate lookups in hierarchical data.
In Proceedings of the International Conference on Very Large Databases
(VLDB), pages 247–258, Seoul, Korea, September 2006. ACM.

[5] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:
Optimal XML pattern matching. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 310–321, Madi-
son, Wisconsin, June 2002. ACM Press.

[6] Joe Celko. Trees, databases and SQL. Database Programming and Design,
7(10):48–57, September 1994.

[7] Joe Celko. Trees and Hierarchies in SQL for Smarties. Morgan Kaufmann
Publishers Inc., 2004.

119

120 Bibliography

[8] Surajit Chaudhuri, Venkatesh Ganti, and Rajeev Motwani. Robust iden-
tification of fuzzy duplicates. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), pages 865–876, Tokyo, Japan, April
2005. IEEE Computer Science Press.

[9] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful change
detection in structured data. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 26–37, Tucson,
Arizona, United States, May 1997. ACM Press.

[10] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and
Jennifer Widom. Change detection in hierarchically structured informa-
tion. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 493–504, Montreal, Canada, June 1996. ACM
Press.

[11] Weimin Chen. New algorithm for ordered tree-to-tree correction problem.
Journal of Algorithms, 40(2):135–158, August 2001.

[12] Grégory Cobéna, Serge Abiteboul, and Amélie Marian. Detecting changes
in XML documents. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 41–52, San Jose, California, 2002. IEEE
Computer Science Press.

[13] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and
Moshe Shadmon. A fast index for semistructured data. In Proceedings
of the International Conference on Very Large Databases (VLDB), pages
341–350, Roma, Italy, September 2001. Morgan Kaufmann Publishers
Inc.

[14] Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, and Timos Sellis.
A methodology for clustering XML documents by structure. Information
Systems, 31(3):187–228, May 2006.

[15] David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Özsu.
A comprehensive XQuery to SQL translation using dynamic interval en-
coding. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 623–634, San Diego, California, June 2003.
ACM Press.

[16] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann.
An optimal decomposition algorithm for tree edit distance. In Proceed-
ings of the 34th International Colloquium on Automata, Languages and
Programming (ICALP 2007), Wroclaw, Poland, 2007.

Bibliography 121

[17] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[18] Jack Edmonds and Richard M. Karp. Theoretical improvements in al-
gorithmic efficiency for network flow problems. Journal of the ACM
(JACM), 19(2):248–264, April 1972.

[19] Tomás Feder. A new fixed point approach for stable networks and stable
marriages. Journal of Computer and System Sciences, 45(2):233–284,
October 1992.

[20] Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi Pontieri, and Andrea
Pugliese. Fast detection of XML structural similarity. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 17(2):160–175, February
2005.

[21] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM
(JACM), 34(3):596–615, July 1987.

[22] D. Gale and L. S. Shapley. College admissions and the stability of mar-
riage. The American Mathematical Monthly, 69(1):9–15, January 1962.

[23] Minos Garofalakis and Amit Kumar. XML stream processing using
tree-edit distance embeddings. ACM Transactions on Database Systems,
30(1):279–332, 2005.

[24] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM (JACM), 35(4):921–940,
October 1988.

[25] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas,
S. Muthukrishnan, and Divesh Srivastava. Approximate string joins in
a database (almost) for free. In Proceedings of the International Con-
ference on Very Large Databases (VLDB), pages 491–500, Roma, Italy,
September 2001. Morgan Kaufmann Publishers Inc.

[26] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting
Yu. Approximate XML joins. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 287–298, Madison,
Wisconsin, 2002. ACM Press.

122 Bibliography

[27] Sudipto Guha, Nick Koudas, Divesh Srivastava, and Ting Yu. Index-
based approximate XML joins. In Proceedings of the International Con-
ference on Data Engineering (ICDE), pages 708–710, Bangalore, India,
March 2003. IEEE Computer Science Press.

[28] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Struc-
ture and Algorithms. The MIT Press, August 1989.

[29] Robert W. Irving, Paul Leather, and Dan Gusfield. An efficient algo-
rithm for the “optimal” stable marriage. Journal of the ACM (JACM),
34(3):532–543, July 1987.

[30] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-tree:
Indexing XML data for efficient structural joins. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 253–263,
Bangalore, India, March 2003. IEEE Computer Science Press.

[31] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig
joins on indexed XML documents. In Proceedings of the International
Conference on Very Large Databases (VLDB), pages 273–284, Berlin,
Germany, September 2003. Morgan Kaufmann Publishers Inc.

[32] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees—an
alternative to tree edit. Theoretical Computer Science, 143(1):137–148,
July 1995.

[33] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development,
31(2):249–260, March 1987.

[34] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Pradeep
Shenoy. Updates for structure indexes. In Proceedings of the Inter-
national Conference on Very Large Databases (VLDB), pages 239–250,
Hong Kong, China, August 2002. Morgan Kaufmann Publishers Inc.

[35] Philip N. Klein. Computing the edit-distance between unrooted ordered
trees. In Proceedings of the 6th European Symposium on Algorithms,
volume 1461 of Lecture Notes in Computer Science, pages 91–102, Venice,
Italy, 1998. Springer.

[36] Harold W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

Bibliography 123

[37] Kyong-Ho Lee, Yoon-Chul Choy, and Sung-Bae Cho. An efficient al-
gorithm to compute differences between structured documents. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 16(8):965–
979, August 2004.

[38] Vladimir I. Levenshtein. Binary codes capable of correcting spurious
insertions and deletions of ones. Problems of Information Transmission,
1:8–17, 1965.

[39] Quanzhong Li and Bongki Moon. Indexing and querying XML data for
regular path expressions. In Proceedings of the International Conference
on Very Large Databases (VLDB), pages 361–370, Roma, Italy, Septem-
ber 2001. Morgan Kaufmann Publishers Inc.

[40] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001.

[41] Andrew Nierman and H. V. Jagadish. Evaluating structural similarity in
XML documents. In Proceedings of the Fifth International Workshop on
the Web and Databases (WebDB 2002), Madison, Wisconsin, USA, June
2002.

[42] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Approximate
XML query answers. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 263–274, Paris, France, June
2004. ACM Press.

[43] Sven Puhlmann, Melanie Weis, and Felix Naumann. XML duplicate
detection using sorted neighborhoods. In Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT), volume
3896 of Lecture Notes in Computer Science, Munich, Germany, March
2006. Springer.

[44] Chen Qun, Andrew Lim, and Kian Win Ong. D(k)-index: An adaptive
structural summary for graph-structured data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 134–
144, San Diego, California, USA, June 2003. ACM Press.

[45] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. Efficient creation
and incremental maintenance of the HOPI index for complex XML docu-
ment collections. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 360–371, Tokyo, Japan, April 2005. IEEE
Computer Science Press.

124 Bibliography

[46] Stanley M. Selkow. The tree-to-tree editing problem. Information Pro-
cessing Letters, 6(6):184–186, December 1977.

[47] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM
(JACM), 26(3):422–433, July 1979.

[48] Eiichi Tanaka and Keiko Tanaka. The tree-to-tree editing problem.
Int. Journal of Pattern Recognition and Artificial Intelligence (IJPRAI),
2(2):221–240, 1988.

[49] Esko Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science, 92(1):191–211, January 1992.

[50] C. J. van Rijsbergen. Information Retrieval, chapter 3. Butterworth-
Heinemann, 2nd edition, March 1979.

[51] Yuan Wang, David J. DeWitt, and Jin-yi Cai. X-Diff: An effective change
detection algorithm for XML documents. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), pages 519–530, Banga-
lore, India, March 2003. IEEE Computer Science Press.

[52] Melanie Weis and Felix Naumann. DogmatiX tracks down duplicates in
XML. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 431–442, Baltimore, Maryland, USA, June
2005. ACM Press.

[53] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation
on tree-structured data. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 754–765, Baltimore,
Maryland, USA, June 2005. ACM Press.

[54] Wuu Yang. Identifying syntactic differences between two programs.
Software—Practice & Experience, 21(7):739–755, July 1991.

[55] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and
Guy M. Lohman. On supporting containment queries in relational
database management systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 425–436, Santa
Barabara, California, 2001.

[56] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the edit-
ing distance between trees and related problems. SIAM Journal on Com-
puting, 18(6):1245–1262, 1989.

Bibliography 125

[57] Kaizhong Zhang, Richard Statman, and Dennis Shasha. On the editing
distance between unordered labeled trees. Information Processing Letters,
42(3):133–139, 1992.

126 Bibliography

