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Plug & Play Control of Hydraulic Networks

TOM N@RGAARD JENSEN

'This work is a part of the research project Plug & Play Process Control. An industrial case study
involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic
network underlies a district heating system, which provides heating water to a number of end-
users in a city district. The case study considers a novel approach to the design of district heating
systems in which the diameter of the pipes used in the system is reduced in order to reduce the
heat losses in the system, thereby making it profitable to provide district heating to areas with
low energy demands. The new structure has the additional benefit that structural changes such
as the addition or removal of end-users are easily implementable. In this work, the problem of
controlling the pressure drop at the end-users to a constant reference value is considered. This
is done by the use of pumps located both at the end-users and at designated places across the
network. The control architecture which is used consists of a set of decentralized linear control
actions. The control actions use only the measurements obtained locally at each end-user. Both
proportional and proportional-integral control actions are considered. The results consist of a
series of global stability results of the closed-loop system. The stability analysis is complicated by
the non-linearities present in the system process. Specifically, global practical output regulation
is shown when using proportional control actions, while global asymptotical output regulation is
shown when using proportional-integral control actions. Since the results are global in the state
space, it is concluded that the closed-loop system maintains its stability properties when struc-
tural changes are implemented.
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| Abstract

Typically, control systems are designed with little or nasioleration for possible changes
in the structure of the system process to be controlled.dssit control design, a mono-
lithic approach is taken where structural changes in theesyprocess require the de-
velopment of a new mathematical model of the system and a&gubst redesign of the
control system. This process can be expensive and time congu Therefore, an at-
tractive alternative is to design the control system suahitrautomatically reconfigures
whenever structural changes occur. This is the aim oftlg & Play Process Control
research program, which the work presented here is a part of.

An industrial case study involving a large-scale hydrauaktwork with non-linear
dynamics is studied. The hydraulic network underlies aridisheating system, which
provides heating water to a number of end-users in a cityiclisThe case study considers
a novel approach to the design of district heating systenwghich the diameter of the
pipes used in the system is reduced in order to reduce théseas in the system, thereby
making it profitable to provide district heating to areashaidw energy demands. The
new structure has the additional benefit that structurahgba such as the addition or
removal of end-users are easily implementable. In this wibik problem of controlling
the pressure drop at the end-users to a constant referehmeisaonsidered. This is
done by the use of pumps located both at the end-users andighdid places across
the network.

The control architecture which is used consists of a set céuiealized linear control
actions. The control actions use only the measurementmebtbocally at each end-user.
Both proportional and proportional-integral control aas are considered. Some of the
work considers control actions which are constrained tomegative values only. This
is due to the fact that the actuators in this type of systerit&ly consist of centrifugal
pumps which are only able to deliver non-negative actuatiither parts of the work con-
sider control actions which have been quantized. That &g, #ine restricted to piecewise
constant signals taking value in a bounded set. This is dooedier to facilitate sending
the control signals across a finite bandwidth communicatetwork. This is necessary
since the actuators in the system are geographically segaftam the logic circuitry
implementing the control actions.

The results presented here consist of a series of globalitstabsults of the closed-
loop system using the control actions described above. fEtdisy analysis is compli-
cated by the non-linearities present in the system procggscifically, global practical
output regulation can be shown when using proportionalrobiaictions, while global
asymptotical output regulation can be shown when using gtigmal-integral control
actions. Since the results are global in the state spass;aticluded that the closed-loop
system maintains its stability properties when structahalinges are implemented.

XI






| Synopsis

Kontrol systemer bliver typisk designet med fa eller ingeemsyn til mulige strukturelle
gendringer i system processen der skal reguleres. | klakgigkol design anvendes en
monolitisk tilgang, hvor strukturelle aendringer i systemgessen kraever udvikling af
en ny matematisk model af systemet med efterfglgende rigrda$ kontrol systemet.
Denne proces kan veere bekostelig og tidskreevende. Ettattrakkernativ er derfor at
designe kontrol systemet saledes at det automatisk rigkmarer nar strukturelle aen-
dringer forekommer. Dette er malsaetningen Rhug & Play Process Controforskn-
ingsprojektet, som dette veerk er en del af.

Arbejdet omhandler et case study fra industrien, som irerelv et stor-skala hy-
draulisk netveerk med ulineger dynamik. Det hydrauliskeaeekwudggar et fiernvarmesys-
tem, som forsyner et antal slutbrugere i et bydistrikt medntarand. Der tages udgangs-
punkt i en ny tilgang til design af fiernvarmesystemer, hd@meteren af de rar der
anvendes i systemet reduceres for at reducere varmetalsgsteimet, og derved ggre
det rentabelt at tilbyde fiernvarme i omrader med lavt githov. Det nye design har
ydermere den fordel at strukturelle aendringer i systendspm tilfgjelse eller fiernelse
af slutbrugere, er nemme at implementere. Dette veerk onirakmhtrol opgaven i sys-
temet, som er at regulere trykfaldet hos slutbrugerne tkamstant reference. Til dette
anvendes pumper placeret bade hos slutbrugerne og uelsédgler i netvaerket.

Den anvendte kontrol arkitektur bestar af et szt af deaksdrede linezere kontrol
virkninger. Kontrol virkningerne gar kun brug af signalsam er malt lokalt hos den
enkelte slutbruger. Bade proportionale og proportiantdgrale kontrol virkninger bliv-
er undersggt. Dele af vaerket omhandler kontrol virkningen ®r begreenset til ikke-
negative vaerdier. Dette skyldes at aktuatorerne i denne syptemer typisk bestar af
centrifugal pumper, som kun er i stand til at levere ikkeat®gaktivering. Andre dele af
veerket omhandler kvantiserede kontrol virkninger, htilkesige kontrol virkninger som
er begreenset til at antage stykvis konstante veerdier fragranset meengde. Dette er for
at muligggre afsendelsen af kontrol signalerne over et konikationsnetveerk med be-
greenset bandbredde. Dette er ngdvendigt da aktuatorsysteimet er geografisk adskilt
fra elektronikken, som beregner kontrol signalerne.

Veerkets resultater bestar af en reekke globale stabiliestsitater fra lukket-slgjfe
systemet med de fgromtalte kontrol virkninger. Stabgitahalysen kompliceres af de
ulineariteter som er til stede i system processen. Merdfgfid@n global praktisk output
regulering bevises nar der anvendes proportional kantrehs global asymptotisk output
regulering kan bevises nar der anvendes proportionaiiat kontrol. Da resultaterne er
globale i tilstandsrummet, kan det konkluderes at lukkajfes systemet beholder sine
stabilitetsegenskaber nar strukturelle eendringer bilmplementeret.
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| Nomenclature

R The set of real numbers

R4 The set of positive real numbers

7 The set of integers

7 The set of positive integers

R"™ Then-dimensional Euclidean space

x; Theith component of the vectar

(x,y) The scalar product between vecterandy
|al The absolute value of the scalar

[||] The Euclidean norm of the vector

By (x) The open ball of radius centred inz, that is

Br(z) ={y e R" | [ly — 2|l <r}
The set ofn-by-m matrices with real entries,

M{(n,m:R) alsoM (n;R) = M(n,n;R)

AT The transpose of the matrix

Ajj The entry in theth row andjth column of the matrix4

A>0 The matrixA is positive definite, that is” Az > 0 for everyz # 0

Xe The complement of the s&f

XcCcyYy The setX is a proper subset of the sBt

X xY The Cartesian product between the sgétandY

d(X,Y) The Hausdorff metric between the séfsandY

%x =i The time derivative of variable

— Mapping from a domain into a range, but also "tends to”

ol The set o_f continuogsly differentiable functions, also gnfi&)
will be said to beC* if f(-) € C*

V) The gradient of the functioffi(-)

Df(+) The Jacobian matrix of the maft-)

A continuous functiorf : R — R is said to be monotonically increasing if it is natural
order preserving,e., for all « andb such thatt < bthenf(a) < f(b).

A continuous magf : X — Y is said to be:

aninjectionif itis into, i.e,, for everyz,y € X, if f(z) = f(y) thenz =y

asurjectionif it is onto, i.e,, if for everyy € Y there exists at least onec X such that
fz)=y

abijectionif it is both aninjectionand asurjection

ahomeomorphisrii it is a bijectionwith a continuous inversg—!

properif the inverse image of a compact set is compact

monotonically increasing X C R, Y C R™ and({x — vy, f(z) — f(y)) > 0.
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1 | Introduction

The work presented here regards stability analysis of ebi@edcontrol system, in which
a set of linear decentralized event-based controllers sed tor output regulation of a
large-scale non-linear system process.

The system process represents an industrial case studly intigdves a novel paradigm
for the design of district heating systems (see [Kalles@872Bruus et al., 2004]). The
new paradigm is motivated by the assessment that a reduictioa diameter of the pipes
used in the system can lead to a reduction in the heat los® isystem of up to 50 %,
thereby making it profitable to offer district heating to@sevith low demand.

Furthermore, by introducing a multi-pump architectures sitructure of the district
heating system becomes more flexible as end-users can be adaleremoved from the
system online. The system will be described in detail later.

The case study has been proposed by one of the industrialepsuin the research
programPlug & Play Process ContrdiStoustrup, 2009, Stoustrup, 2006]. The research
program focus on a novel concept for process control wheredhtrol system automati-
cally reconfigures when an intelligent sensor or actuatadied to or removed from the
system.

1.1 Motivation

Powerful tools exist to design feedback control for a systéth known structure, espe-
cially for linear systems where [Franklin et al., 2002] afdanklin et al., 1998] comes
to mind. However, they come in short if the structure of thstegn to be controlled for
some reason is required to change over time. Depending aothplexity and nature of
the system this might require the mathematical model dgisgrthe system behaviour to
be changed and a new feedback controller to be designed.

Typically, control systems are designed without much cargdssible future changes
in the structure of the system being controlled. Changegstem structure alter the way
that the closed-loop system performs regarding its cotas and can result in subopti-
mal or unwanted behaviour. An off-the-shelf solution to tatrol problem would be to
construct a new model of the system, which can be time comgurinother way is to let
the structure of the controller change automatically whenehanges in the system are
detected. The latter is the aim of tRéug and Play Process Controésearch program.
ThePlug and Play Process Controésearch program aims at providing general theories
for designing and analysing the stability of feedback caltgrs for systems with varying
structure. For instance, take the following example of suslistem, taken from the web

1



Introduction

page of the research program [Stoustrup, 2006]:

“Imagine a farmer observing some region in his stable, wheee pigs are
not comfortable. He plugs a new intelli-sensor in a vacarakst in that
part of the stable. The stable ventilation system autoraliyicegisters the
new component and in response reconfigures itself in ordstabilize the
indoor climate in the proximity of this sensor, leading taraal comfort and
increased productivity.”

Five companies participate in titug and Play Process Controésearch program; Dan-
foss, Grundfos, Skov, DONG Energy and FLSmidth Automateath providing one or
more case studies. The work is divided into a number of wodkages, the contents of
which will be described briefly in the following.

WP1:

WP2:

WP3:

WP4:

WP5:

Integration of hardware, networks, and protocols for flexible control systems.

This work package deals with the communication network edddr a plug and
play control system. This includes reconfiguration of thexowunication topology
whenever new devices such as sensors or actuators arelicgatb the system.
Literature on the work from the work package includes [Mejibet al., 2011b],

[Meybodi et al., 2011a] and [Meybodi et al., 2012].

Correlation based sensor/actuator awarenessThis work package deals with
identifying the nature of a newly attached component, wéeithbe a sensor or
an actuator. That is, given a new component identify theesysitate/variables it
affects/measures and update the system model accordBwaily.black and white

box models are considered depending on the situation. atitex from the work

package includes [Knudsen, 2009a], [Knudsen, 2009b], flsen and Trangbaek,
2008], [Bendtsen et al., 2008] and [Knudsen et al., 2012].

Structurally based reconfiguration. The work package deals with automatically
reconfiguring an existing controller whenever structuberges, such as the addi-
tion/removal of sensors or actuators, are introduced isylseem being controlled.
Literature on the work from this work package includes [Staup et al., 2009],
[Trangbeek, 2009], [Trangbeek et al., 2009], [Trangbaek e2808], [Trangbaek
and Bendtsen, 2009], [Trangbaek and Bendtsen, 2010], [Bendit al., 2011],
[Trangbeek, 2010b] and [Trangbaek, 2010a].

Model-based control performance optimization through flexible sensor/actu-
ator configuration. This work package deals with model based control and per-
formance of the control when introducing structural chang&hen new compo-
nents are introduced, the control algorithms are changedh@ve optimal per-
formance. Literature from the work package includes [Miske et al., 2008],
[Michelsen et al., 2009], [Michelsen and Trangbaek, 2009} Bvichelsen and
Stoustrup, 2010].

Survivability and performance measures. This work package deals with the
evaluation of the available sensors/actuators with the dirmchieving the opti-
mal performance of the system. Literature from the work pgekincludes [Kra-
gelund, 2010], [Kragelund et al., 2008], [Kragelund et @aD10b], [Kragelund




1 Motivation

etal., 2009a], [Kragelund et al., 2011], [Kragelund et2009b], [Kragelund et al.,
2010d], [Kragelund et al., 2010a] and [Kragelund et al.,@&{)1

WP6: Decentralized event-based networked non-linear coml for Plug-and-Play Pro-
cess Control.This work package deals with decentralized and event-basatol
of large-scale systems subject to structural changes sutteaaddition/removal
of sensors or actuators. Literature from the work packageidtes [DePersis and
Kallesge, 2008], [DePersis and Kallesge, 2009a], [Defaral Kallesge, 2009b]
and [DePersis and Kallesge, 2011]. Furthermore, the wakamted here is a part
of the work package.

Since this work is focused on one of the case studies iRling and Play Process Control
research program, the motivation for the case study wilhtduced in the following.

As previously mentioned the case study involves a new pgmador the design of
district heating systems. Traditionally, district hegtgystems are designed to have few
pump stations, with the hydraulic dynamics between puntmsisdecoupled using heat
exchangers. This has the advantage that it is easy to nraandisupervise pumps in the
system, and control is easy since the dynamics are decougtagever, since there are
few pumps in the system, pipes with large diameter, and tmadl pressure gradients,
are needed. Furthermore, the structure of the overallsyistinflexible and designing a
system which can handle expansions can be expensive [Kal|ll@®07]. An example of
the network structure for a traditional district heatingtgyn is illustrated in Fig. 1.1. As
it is evident from the figure, pumps are separated by heatasgdrs.

&
2)
§
© &
—~O- Centrifugal pump & &
2)
“T” Heat exchanger @ &
X
Pressure sensor Qg’,b
Distribution station [ }
,_<> C N |
Heat source \/

-

~

Figure 1.1: Example of the structure of a traditional dégthieating system [Kallesge,
2007].

On the other hand, by reducing the diameter of the pipes usbisystem, the heat
losses, due to heat dispersion from the pipes, can be redudedever, the pressure
gradients of the pipes are increased with the risk of vietapressure constraints of the
pipes. This issue can be overcome by placing so-calledymeebsosting pumps along the
pipeline. This has the additional benefit that the structiréne system becomes more
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Introduction

flexible in the sense that end-users can easily be added smmved from the system
[Kallesge, 2007]. The added flexibility calls for a controtltecture which is able to
handle structural changes in the system while the systempsdaline. An example of
the network structure for the novel district heating syspamadigm is illustrated in Fig.
1.2. As can be seen in the figure multiple pumps can be foundesame pipeline.

9
&
\.00 <7 @
. o ) )
O centrifugal pump & & &
:@: Heat exchanger @ & (9&'
‘\«() ,;.
Pressure sensor £ R
Heat source <> ‘ ‘

—J

)
sl
¥

Figure 1.2: Example of the structure of a district heatingtem in the novel design
paradigm [Kallesge, 2007].

1.2 State of the Art and Background

Work on control problems involving fluid flow networks can ghly be separated into
two categories; works involving open networks with no cg@ed works involving closed
networks with cycles.

Examples of open networks include irrigation networks assatered in [Cantoni
et al., 2007]. Here the problem of minimizing distributiams$es due to oversupply is
considered. Another example is considered in [Polycarpal,2002] and [Wang et al.,
2006], where the problem of controlling the water qualitydiinking water distribution
networks using disinfectants is considered. A final exarnigdlglarinaki, 1999] and [Wan
and Lemmon, 2007] where flow control in sewer networks is w#red. Common for
these networks is the presence of capacitive elements whiudt present in the district
heating system. Furthermore, the district heating systamstiutes a closed network.

Examples of closed networks include mine ventilation neksevhich are considered
in [Hu et al., 2003]. Here non-linear model based feedbackrobof the air quality in
mines is considered. This work is extended in [Koroleva.e28l06], where decentralized
feedback control of more general fluid flow networks is coesd. The dynamics of
these networks are closely related to the dynamics of thealikeating system.

However, in the case of the district heating system, it isrddgo use a set of simple
decentralized linear control actions for the purpose opoutegulation. Results on the
problem of feedback control of the district heating systemsidered here have appeared

4



2 State of the Art and Background

in [DePersis and Kallesge, 2008], [DePersis and Kalles@@9&] and [DePersis and
Kallesge, 2009b]. These results have been collected inettent paper [DePersis and
Kallesge, 2011], in which also the mathematical model, tvdiescribes the behaviour of
the system, can be found. Before outlining the results nbthin these works, the model
along with the control problem will be stated.

The system under consideration is a hydraulic network césimgy a district heating
system. Figure 1.3 illustrates a small district heatingesyswith two apartment build-
ings which constitutes the end-users. Figure 1.4 showsrtterlying hydraulic network
diagram.

- centrifugal pump
013
]@; Heat exchanger

Pressure sensor dp5
Cy)
300 [m]
Heat source 200 [m]
10 /\Cl A i
\/dpl dpz@ dp (e

f—— 1000 [m] ——>f«—— 500[m] ——>

Figure 1.3: A sketch of a small district heating system.

- Pump
=/ Pipeline n
—><— Valve

Sensor

Figure 1.4: The hydraulic network diagram.

In the following the mathematical model of the hydraulicvaetk will be described
along with the presentation of the output regulation probénd the proposed strategy
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Introduction

for control and dealing with the structural changes whicly mecur in the system.

System Model

The hydraulic network consists of a number of connectionwéen two-terminal com-
ponents, which are: valves, pipes and pumps. fheystem componentis characterized
by dual variables, the first of which is the pressure digp, across it

Ahy, = h; — hj, (1.1)

wherei, j are nodes in the network;, ; are the relative pressures at the nodes.

The second variable characterizing the component is theéfflaw g5, through it. The
components have algebraic or dynamic expressions gogtiménrelationships between
the two variables. The stability analysis presented in thésis relies on the system
model derived in [DePersis and Kallesge, 2011], which repas the assumption that
the fluid in the system is incompressible and that pipe diamstconstant along a pipe.
For additional details on the modelling of the system, thergsted reader is referred to
[DePersis and Kallesge, 2011].

Valves

The behaviour of valves in the network is governed by thefithg algebraic expression

hi — hj = pi(ar) = pr(vk, k), (1.2)

whereuy, is the hydraulic resistance of the valyg;(-) is aC* and proper function, which
for any fixed value oby, is zero atg;, = 0, monotonically increasing ang (vy,-) = 0
for v, = 0.

Pipes

The behaviour of pipes in the network is governed by the dyaaouation
TG = (hi — h;) — Ar(qr) (1.3)

whereX;(¢x) = Apk, qr); Jr andpy are parameters representing mass inertia of the
fluid in the pipe and friction in the pipe respectively;(-) is a function with the same
properties ag(+).

Pumps

A (typically centrifugal) pump is a component which deliser desired pressure differ-
enceAhy, regardless of the value of the fluid flow through it. Thus, tleddviour of
pumps in the network is governed by the following expression

hi — hj = —Athm (14)

whereA#h,, . is a non-negative control input.
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Component Model

A generalized component model can be derived using theWolpexpression

Ahy = Tl + Mi(ar) + pi(gre) — Ahyp i, (1.5)

whereJ, pi. are non-zero for pipe components and zero for other comgisneris non-
zero for valve components and zero for other componeXts, ;, is non-zero for pump
components and zero for other components.

The values of the parameters and vy, are typically unknown, but they will be as-
sumed to take values in a compact set of non-negative valLikswise, the functions
ur(qr) andX(qr) are not precisely known, only their properties of beiifg monotone,
zero ing; = 0 and proper are guaranteed. The varying heating demand efthesers,
which is the main source of disturbances in the system, isetfemtiby a (end-user) valve
with variable hydraulic resistance. In the network modeljstinction is to be made be-
tween end-user valves and the rest of the valves in the nketwWaro types of pumps are
present in the network; the end-user pumps, which are masegy to meet the demand
at the end-users, and booster pumps which are used to mestaiots on the relative
pressures in the network [DePersis and Kallesge, 2009b].

Network Model

The network model has been derived using standard cirentryh see e.g. [Desoer and
Khu, 1969] or [Brayton and Moser, 1964a, Brayton and Mos@64b]. The hydraulic
network consists ofn components and end-usersit > n). The network is associated
with a graphG which has nodes coinciding with the terminals of the netwaoknpo-
nents. The edges of the network are the components therasdllie graph satisfies the
following:

Assumption 1. [DePersis and Kallesge, 2011] The graghs connected.

By the use of graph theory, a setwfindependent flow variableg have been iden-
tified. These flow variables have the property that their @slcan be set independently
from other flows in the network. The independent flow varialdeincide with the flows
through the chordsof the graph [DePersis and Kallesge, 2009a]. To each chaitkin
graph, a fundamental (flow) loop is associated, and alorgyltiup Kirchhoffs voltage
law holds. This means that the following equality applies

BAh =0, (1.6)

whereB € M (n,m;R) is called the fundamental loop matri&h is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop matiare—1,1 or 0, depending on the net-
work topology. HereB;; = 1 if the jth component belongs to thith fundamental flow
loop and flow directions agreé;; = —1 if the jth component belongs to thith funda-
mental flow loop and flow directions disagree apg = 0 if the jth component does not

1Let T denote the spanning tree 6f i.e. a connected subgraph which contains all node§ bfit no
cycles. Then the edges Gfwhich are not included ifi” are the chords of (see [Desoer and Khu, 1969]).
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belong to theth fundamental flow loop. For the case study in question, ylaedulic net-
work underlies a district heating system. Because of thierlahe following statements
can be made regarding the network.

Assumption 2. [DePersis and Kallesge, 2011] Each end-user valve is inesewith a
pipe and a pump, as seenin Fig. 1.5. Furthermore, each chmicciorresponds to a pipe
in series with a user valve.

Assumption 3. [DePersis and Kallesge, 2011] There exists one and only ongonent
called the heat source. It corresponds to a valeéthe network, and it lies in all the
fundamental loops.

Remaining network

Figure 1.5: The series connection associated with eaclusadfDePersis and Kallesge,
2009a].

Proposition 1. [DePersis and Kallesge, 2011] Any hydraulic network sgingf Assump-
tions 1 and 2 admits the representation

Ji=f(BTq) +u (1.7)
yi = wi(q) , i=1,...,n, (1.8)

whereq € R™ is the vector of independent flows;c R is a vector of independentinputs
consisting of a linear combination of the delivered pumpspuees;y; is the measured

pressure drop across tfte end-user valvej € M (n;R), J > 0; f(-) isaC! map;u;(-)

is the fundamental law of thah end-user valve. In (1.8), it is assumed that the first
components coincide with the end-user valves.

Under Assumptions 1-3, it is possible to select the origmtatdf the components in
the network such that the entries of the fundamental loopixat are equal tal or 0,
whereB;; is 1 if componentj belongs to fundamental flow loadpand0 otherwise.

Defining the vector of flows through the components in theesysasr = B7q €
R™, the mapf(-) can be written as [DePersis and Kallesge, 2009a]

f(z) = —B(A\(z) + u(@)), Yo € R™, (1.9)

2The valve models the pressure losses in the secondary side b&at exchanger of the heat source.




2 State of the Art and Background

where\(z) = A (21), -, A (@) 5 (@) = [u1(x1), ..., o (2)]T @nd X (¢) is
non-zero for pipe components apg-) is hon-zero for valve components.
The matrixJ in (1.7) is given by

J=BJBT (1.10)

whereJ = diag(J1, - - -, Jm)-

Let Ah. € R™ andAh, € R° denote the vectors of pressures delivered by the end-
user pumps and boosting pumps respectively. Then the inpui1.7) can be written
as

w=Ah, + FAhy (1.11)

—[1I, F] ( ﬁZ; ) (1.12)
N

- B( o ) (1.13)

whereF € M(n, o0;R) consisting of 1,0 is the sub-matrix & mapping boosting pumps
to the fundamental flow loops. That iBj; # 0 if and only if ARy, is present in théth
fundamental flow loop. Since # 0, it is evident from (1.11) and (1.7) that the system is
over actuated.

Now, the purpose of the control can be defined as follows.

Definition 1. Output regulation problemGiven a vecton of reference values, where
reR={zxeR"|0<r, <z <ryu}, ands > 0 design control signals,(¢) such
thatflim lys —ri| <e.

L— 00

The district heating system is subject to changes in thetstrel of the network. Ex-
amples of actions which will result in changes in the netwairkicture is the addition or
removal of an end-user in the system or pumps being deconomézsdue to failures.
The type of changes which are considered in the work predéwes are the former. To
ease the handling of structural changes in the hydrauliwar&ta control architecture
which consists of a set of decentralized proportional adrtctions have been proposed
in [DePersis and Kallesge, 2011]. These control actiongigesn as

U; = _Nz(yz — Ti), (114)

whereN; > 0andi =1,2,...,n.
The control actions have also been extended to provideraitegtion as follows
[DePersis et al., 2011]
&= —Ki(yi — i)

1.15
u; =& — Ni(yi —1m3) (19

whereK; > 0.

This architecture has the benefit that the control signahfeindividual fundamental
flow loop uses information from only said flow loop. Since widual end-users can be
associated with individual fundamental flow loops, this msehat whenever an end-user
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is taken into or out of commission the corresponding cordigihal can immediately be
taken into or out of commission.

In [DePersis and Kallesge, 2008] a simple system limiteavtoénd-users are con-
sidered. The main result in [DePersis and Kallesge, 2008} stihat when using the
proportional control actions semi-global practical outprgulation is achievable under
time varying demand from the end-users. In [DePersis ante&a¢, 2009a] the gen-
eral network model which has been repeated in this sectiderived. The paper also
provides a proof of semi-global practical output regulatieghen using the proportional
control actions and constraining the control actions to-negative values only. The
paper [DePersis and Kallesge, 2009b] extends the resutft fibeePersis and Kallesge,
2009a] to showing semi-global output regulation when using-negative constrained
binary control actions. Lastly, the result in [DePersis Katlesge, 2009b] is extended in
[DePersis et al., 2010] to show semi-global practical outpgulation when using non-
negative constrained and quantized proportional contitibas. An elaboration of the
result in [DePersis et al., 2010] is given in Chapter 2 to exa comparison between
the approach used to show the semi-global results and threagpused here to provide
global results. All of the results mentioned here have bedleated in the resent paper
[DePersis and Kallesge, 2011].

Since the results described above are semi-global no gieesaabout the stability
of the closed-loop system can be given when end-users asdadcr removed from
the system. This is because the initial conditions of thelyp@btained system are not
guaranteed to belong to the compact attractor set.

Dealing with Structural Changes

Since the new paradigm for the design of district heatingragks provide the possibility
of having systems with varying network structure, it is resegy to examine the stability
properties of the closed-loop system, when it undergoasggsin the network structure.

To assure that problems with instability of the closed-lsgptem, whenever struc-
tural changes are implemented does not arise, the stratabg work presented here is
to show that the closed-loop system is inherently robusatde this type of changes.
Specifically, if global stability of the closed-loop syste&ain be shown to hold for an ar-
bitrary number of end-users in the system, then the systdhb&irobustly stable with
respect to the structural changes mentioned above. Thaklutitn of the papers writ-
ten in the duration of the PhD project is a number of resultelwehow global stability
properties of the closed-loop system using the proposedb&sk control actions. In
some cases the control actions have been extended to beingzpd or non-negatively
constrained or both. This will be emphasized in Chapter 2.

By (1.11) it is evident that multiple pump pressure inputatdbute to the 'virtual’
inputwu;. This means that 1) a strategy for distributing the contigrnal «; to the pumps
should be developed and 2) information regarding the cosigoal u; needs to be com-
municated across the network. Regarding 1), the papers AGadescribed in Chapter
2 provide suggestions to such a strategy. Regarding 2)npfbemation on the structure
of the network needed for knowing which pumps to communitteesignak:; to can be
assumed to be known before taking end-usato commission. The papers A, C and E
described in Chapter 2 consider event-based control sigvtath are considered eligible
for being communicated across a finite bandwidth commuioicatetwork.

10



2 State of the Art and Background

The introduced control actions constitutes a passive systeurthermore, the be-
haviour of the pipe and valve components in the hydraulizogk is governed by passive
functions, thus the hydraulic network is a passive systembi8y theorems for the neg-
ative feedback interconnection of passive systems canuelfim [Khalil, 2002, van der
Schaft, 1999, Isidori, 1999] among others. However, asdeisved in the following, the
passive output of the hydraulic network is given by the sysséateq and not the actual
outputy. Thatis, to apply a traditional global stability resultyielg on said theorems,
one has to assume that the state (fundamental flows) are redasd the reference is
given as a vector of desired fundamental flows. In the folhmythe passivity properties
of the hydraulic network will be derived along with a studytbé closed loop stability
properties based on these properties. This study is notndecied in the papers, but
has been used as a starting point for some of the analysiscudastly carried out and
documented in the papers.

Passivity of Hydraulic Networks

A block diagram of the closed-loop system is shown in Fig.. 1r6the block diagram,
the block representing the hydraulic network has been spbttwo subsystems. The
first subsystent; represents the model from the input vectoto the flow vectorg.
The second subsysten(-) represents the output map, which maps the flow vegtor
to the vector of measured outputs= h(q). Furthermore, a blockV representing the
proportional control actions is present, whéres a diagonal matrix with positive entries.

" y

= N —= H h(.)w

Figure 1.6: Feedback connection of system with proportiooatrol actions with gain
matrix V.

If » = 0, the system in Fig. 1.6 is equivalent to the system illusttah Fig. 1.7. In
the following it will be shown that it is equivalent to the fHleack interconnection of a
strictly passive system with a passive memoryless systdrareby rendering the origin
globally asymptotically stable. Later, analysis for nare- will be done.

71)1:0

Figure 1.7: This system is equivalent to the one illustratdeig. 1.6 withr = 0.
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First, the passivity properties of the subsyst&imis considered, wherél; is given
by

H, : { Ji=f(B"q) +u (1.16)

Y, =4

The powerP;,, which is supplied externally to the system can be calculateéh
[Khalil, 2002]
Py, =u'y (1.17)

Integrating the power supplied to the system over time, gumession of the energy
supplied to the systerfy;,, can be obtained

E;(t) :/0 u”' (s)y(s)ds (1.18)

In order for the system to be passive, the energy absorbée ingtwork over any period
of time is required to be greater than or equal to the eneayedtin the network over the
same period of time, which corresponds to

Auﬂgmwwzw¢m—vm@> (1.19)

whereV (¢) is an energy storage function for the system.
The inequality in (1.19) must hold for evety> 0, which corresponds to the instan-
taneous power inequality must hold for all

u (t)y(t) > V(q) (1.20)

The energy storage function for the system is chosen as lberiiog

Vi(g) = %qTJq = (1.21)
Vig)=q"Jq (1.22)

Multiplying the system state equation in (1.16) from the:kgf¢” gives the following
¢"Ji=q"f(BTg) +q"u e (1.23)
¢"u=q"Jq—q" f(B"q) (1.24)

Using (1.9) gives the following
u"q=V(q) +¢"B(MB"q) + (B q)) (1.25)

Both the maps\(-) and u(-) consist of smooth, monotonic increasing functioné-)
andy;(-) which are zero inc; = 0 [DePersis and Kallesge, 2009a], because of this the
following applies

u’'q > V(q) (1.26)

which shows that the systehf, is passive.

12



2 State of the Art and Background

Specifically, since the following inequality holds
uTq > V() +4(q) (1.27)

andw(q) > 0 for everyq # 0, the systent; is strictly passive [Khalil, 2002].

Next, take the systerfls in Fig. 1.7. Since the matri®/ is diagonal with positive
entries and the output functiohs(q;) = w;(¢;) are monotonically increasing and zero in
q; = 0 it follows

Nigihi(q:) >0, Yg; #0 = (1.28)

> Nigihi(gi) >0, Vg # 0= (1.29)
=1

¢"Nh(q) >0, Vg #0. (1.30)

From this it is concluded that the systeffy is passive memoryless. This shows that
q = 0 is the globally asymptotically stable equilibrium pointtbe closed-loop system,
since the energy storage functibiiq) is radially unbounded, s€heorem 6.4n [Khalil,
2002].

Passivity of Incremental Model

The result derived in the previous section states that teeesy can be asymptotically
stabilized towards the origin. Since this case is not ofrgdg it is examined if the system
can be stabilized towards an arbitrary point in the stateespa

Take a general non-linear passive system of the form

z=F(z)+ Gu (1.32)
y = H(x) (1.32)

Comparing to the system equations in (1.16) it is seen that

F(q)=J " f(B"q) (1.33)
G=J"! (1.34)
H(q) = Iq (1.35)

The incremental model which describes the system arounsigdequilibrium point
x* is given by the following set of equations

T

Y

F(z) +Gu" + Gu (1.36)
H(xz) — H(z") (1.37)

where(f) = () — (-)* are the incremental variables [Jayawardhana et al., 2007].
The constant input and output vectots fesp.y*) associated with the desired equi-

librium statex* are in general defined as

u* = —GTF(z*) (1.38)
y* = H(z") (1.39)

13
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whereGT = (GTG)~'GT is the pseudo inverse of the matiix given thatG' has full
column rank [Jayawardhana et al., 2007].

A block diagram of the incremental feedback interconnestelem is given in Fig.
1.8. HereH; denotes the incremental version of the sysfénfor i = 1, 2.

-
| u*
w0 @ A\ - H

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

v R0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.8: Block diagram of the incremental feedback syste

As in the previous subsection, the stability analysis ofdlesed loop system will be
done by deriving the passivity properties of the incremlesyistemst/; and Ho.
First, the passivity properties of the incremental syst€mare examined. In the
systemH; the matrixG = J~! has the inverse, which i, thereforeu* is given as
uw* = —JJ ' f(BT¢*) & (1.40)
u* = —f(BYq") (1.41)

If the system satisfies the property
[F(x) = Fa)]"[VV(z) = VV(2)] < 0 (1.42)

whereVV (z) is the gradient of the storage function as a column vecten the incre-
mental model of the system is passive with the energy stdtamgionV; (z) [Jayaward-
hana et al., 2007]

Vo(z) =V (z) — 2" VV(z*) — [V(z*) — (") VV (z*)] (1.43)

Now, setr = BT ¢ € R™ and consider the functions (x;), which has the properties
that they are monotonic increasing and zera,in= 0.
Because of these properties, the following applies

— i) = Ni(@)] (2 —2f) < 0, Va; £ 2] = (1.44)

- zm: i) = @) (2 —2f) <0, Vo £ 2" = (1.45)
i=1

—Mz) =A@ (x—2*) <0, Vo #£a* (1.46)
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The mapu(-) has the same properties as), i.e. it consists component-wise of mono-
tonic increasing functions which are zero for= 0. Furthermore, using the identity in
(1.9) one can see that the following applies

* T * *
[f(BTa)— f(BTq")] (a—4q")<0,Yg#q (1.47)
Multiplying this expression witll,, in between the terms gives
* T * *
[f(BTq) = f(B"q")] In(¢—q") <0, Vg#q (1.48)

which in turn can be rewritten to
[T (B q) — T (B q)] T (JTq—JTq") <0, Ya£ ¢ (1.49)

The expressio ~! (BT q) corresponds td@'(z) in the general system model given in
(1.31), and the expressialf ¢ corresponds t& V (z) in (1.42). Thus it is shown that the
incremental system model of the subsystEmis passive. Le§ = ¢ — ¢*, then it can be
verified that the expression in (1.43) corresponds to

Volg) = %th (1.50)

for the systen¥;.

It can furthermore be verified that the incremental modél ofs strictly passive with
respect to the storage functi®h(q). To this end, take the time derivativedf(q), which
is given as

Volg) = q" g (1.51)
=7 f(B")+q"uw +q"u (1.52)
=q¢" (f(B"q)— f(BTq")) +q" (1.53)

=—¢"B(AB"q) + u(B"q) = A(B"¢") — n(B"q")) + ¢" (1.54)

Again, the maps\(-) andu(-) consist of monotonic increasing functions which are zero
for z = 0, thus the following inequality is fulfilled

(¢—¢")"'B(ANB"q) +u(B"q) = NB"¢*) —w(B"¢*)) >0, Vg #q¢*  (1.55)

and strict passivity of the incremental systéfn follows.

Now, the passivity properties of the incremental sysfémare examined. Again, it
is recalled that the function’s;(¢;) = wi(¢g;) are monotonically increasing and zero in
¢; = 0. Since,N is diagonal with positive entries it follows that

Ni(gi — q7)(hi(q:) — hi(g;)) >0, Vg # qi = (1.56)
> Niai — ¢7)(hilgi) — hi(gf)) >0, Vg # q" = (1.57)
(¢—¢")"N(h(g) = h(g*) >0, Vg #¢" (1.58)

which shows thaff; is passive memoryless. Again, sinig(q) is radially unbounded,

H, is strictly passive and, is passwe memoryless, the closed-loop system is globally
asymptotically stable with = ¢* as the equilibrium point. Although the result derived in
the above shows that the closed-loop system in Fig. 1.8 safjloasymptotically stable
some issues still remain, which will be illustrated in thédaing.
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Practical output regulation

Since the functiong;(-) are monotonically increasing and proper they admit global i
versesu; ' (-). Now, letr be the vector of reference values andjiéke the vector defined
by

Gi=p (), i=1,2,....,n. (1.59)

Referring to Fig. 1.8, set* = ¢ andy™ = u(¢) = r, now what should:* be in order
to renderg the global asymptotically stable equilibrium point? Thewar comes from
the steady state expression of (1.7)

0=f(BT§) +u* < (1.60)
u* = —f(BTq). (1.61)

However, since an exact expression for the steady state inpB7 ) is generally
unknown, it is in general impossible to achieve asymptatitpot regulation using only
proportional control actions, as would be expected.

Instead, consider the mdp: R” — R"

F(2) = pu(z) — N“Lf(BT2). (1.62)

If () is surjective onto the seR of possible reference values, then for every vector
r € R, there exists a vectaf such that

r=p(g") - N~'f(Bq). (1.63)

This in turn means that the block diagram in Fig. 1.8 with= ¢/, y* = r andu* = 0 is
equivalent to the same block diagram just with= ¢/, y* = u(q') andu* = — f(BT¢'),
which shows thayy = ¢’ is the global asymptotically stable equilibrium point okth
closed-loop system, and furthermore

1
i — yf = —ﬁfi(BTq,) (1.64)

wherey’ = u(q).

What now remains to be shown is th&f-) in fact is surjective ont@&, which is the
starting point for the analysis carried out in Paper B (seap®¥r 2). The result of Paper
B is that for functionsu (-) and A, (-) with certain properties, the malp(-) is a global
homeomorphism, and thus surjective ofto

Asymptotic Output Regulation

Additional analysis based on passive systems theory canbalsised to show stability

of the desired equilibrium point of the closed-loop systelrew using the proportional-

integral controllers in (1.15). To that end, consider thedfeack interconnection system

in Fig. 1.7, but now let the blockl; denote the syster — ¢, that is
Ji=Df(BTq)j+1

H, { §=Df(B q)q+1u (1.65)

Yy, =4
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whereD f(B”q) denotes the Jacobian 6 B ¢) with respect ta;.
Define the storage functidv (¢) as

1

Vi(q) = §cJTJq (1.66)

then the time derivative df; (¢) is
Vi(d) = q" Jg. (1.67)

From (1.65) the following is true
Vi(d) = ¢"Df (BT q)q + ¢ (1.68)

If it is assumed that the derivatives of the functiong:) are bounded away from zeko
it can be shown that the matrixD f (BT q) is positive definite for any (see [DePersis
etal., 2011]), and thus it follows that

q"i > Vi(q) + ¥(q) (1.69)

wherey(-) is some positive definite function. Sinkg(-) is radially unbounded it follows
that the systent{; is strictly passive.
Likewise, let the systeni/s in the system denote the systgm> « where (by (1.15))

—i = —£+ NDp(q)g (1.70)
= K(u(q) —r) + NDu(q)g (1.71)
whereDpu(q) denote the Jacobian pfg) with respect ta;.

Again, letg = p~1(r), define the change of coordinatgs- ¢ — ¢, and let the map
i :R™ — R™ be given by

i(q) = (g +q) — p(q) (1.72)
= pulq) — p(q) (1.73)
=y—r (1.74)

By the properties of.(-) it follows that ji(§) is monotonically increasing and zero in
G=0.
Define the storage functidr(¢) as

V@) =S K, /0 " fa(s)ds (1.75)
=1

which is positive definite and radially unbounded by the rtips offi(-).
Then the time derivative df,(q) is

Va(q) = 4" K fi(q)- (1.76)

3This assumption is motivated by the fact that for small valtiee flow through the pipes can be considered
laminar [Roberson and Crowe, 1993]
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Furthermore,

~q"=q¢"Kp(q) + 4" NDu(q)g (1.77)
= 15(@) + 4" NDp(q)g- (1.78)

Since the functiong;(¢;) are monotonically increasing and is a diagonal matrix
with positive entries it follows that the matri¥ Du(q) is positive semi-definite from
which it follows that the systenfil, is input feed-forward passive, see [Khalil, 2002].

Since,¢ = 0 is a strict minimum ofl; (¢) andg = 0 is a strict minimum ofl(§)
it follows by Proposition A.10 in [Ortega et al., 1998] th@t g) = (0,0) is a stable
equilibrium of the feedback interconnection system.

The analysis above is the starting point of Paper F, whereajjlasymptotic output
regulation is shown using similar arguments. However, tteopis done by showing
that the second order dynamics of the closed-loop systeimisto an Euler-Lagrange
mechanical system with Rayleigh dissipation.

Euler-Lagrange Systems

The motion of a mechanical system can be described by the-Eatgange equation
d (0 7]
— | = ) — = j) = 1.79
7 <8qﬁ(q, q)) 8q£(q, i) =Q (1.79)

whereg € R™ is a vector of generalized coordinatés: R" is the corresponding vector
of generalized velocities}) € R"™ is a vector of external forces acting on the system;
L : R?" — R is the Lagrangian function given by

where7T : R?" — R is the kinetic energy function and : R* — R is the potential
energy function. In the specific case considered here, tlyfances acting on the system
are the dissipative forces, and as a consequence

o ..
Q= —a—q.F(q) (1.81)
whereF(q) is the Rayleigh dissipation, which satisfies
70 () >0 (1.82)
q Ex q) =Y. -

Furthermore, the system is said to be fully-damped if thel&gly dissipation function
further satisfies

70 . " )
qTa—q. (4) > Z i3 (1.83)
i1

witho; > 0fori=1,2,...,n.
The Hamiltonian functiori : R?” — R is defined as

T
Hig,d) = (%ﬁ(m)) Q- L(0.d). (L.84)
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In a standard mechanical system, the kinetic engrgy is of the form

T(4.4) = 5" Dla)d (1.85)

and as a consequence, the Hamiltonian function is the sulmedfihetic and potential
energy functions
H(g,q) = T(q,q) +V(a)- (1.86)

The time derivative of the Hamiltonian function is given as

T
g,y =4 (((%.c(q,q)) i- ﬁ(qm) (187

) ((iﬁ(q,d))Téﬁ (%ﬁ(q’q)>Tq> (1.88)

q

9 9 g
— (5 (5etan) - gtted) d (1.89
=Q"g (1.90)
- (2 r T-<_§n: 2 (1.91)
= By q q=> aiq; - .

i=1

If additionally V(-) has a strict minimum at some point, saye R", then?{(-) will
attain a strict minimum afgo,0). Then, by (1.91) and the LaSalle invariance principle,
(g0, 0) is the global asymptotically stable equilibrium point oéthystem.

How this applies to the hydraulic network will be elaboraitethe following chapter.

1.3 Outline of the Thesis

This thesis is written as a collection of the papers, whickehHzeen produced during the
course of the PhD project. With the state-of-the-art andkgyamind now covered, the
remainder of the thesis will proceed as follows. The nexptéracontains an overview
of the content of the papers. Following this, Chapter 3 withyide a conclusion on the
project and give some suggestions to issues which are stirggeo address in the future.
Lastly, the remainder of the thesis consists of the papamsklves. As such, some
repetition of introductory sections should be expected.
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2 | Summary of contributions

This chapter presents a summary of the contributions madegithe course of the
project. The contributions can be divided into two categmri The first category are
results describing the stability properties of the cloksap system when using only pro-
portional control actions in the system, this category isspnted in Section 2.1. The
second category are results describing the stability ptigseof the closed-loop system
when both proportional and integral control actions areluges category is presented in
Section 2.2.

Generally, the control structure is the one illustrated iig. F2.1. Here the block
C represents the controller which provides either propogi®r proportional-integral
control actions. For both the proportional and the proposi-integral control actions
the control architecture is completely decentralized endénse that the control action for
each fundamental flow loop is using information from said floap only.

Ah

- BT B - H h(-
— ¢ = Ah. 1 )

Figure 2.1: General structure of the closed-loop systensidened in the papers.

Most of the results only consider the part of the control hitvolves the generation
of the 'virtual’ control signal ¢ in Fig. 2.1). A simple way of mapping the virtual input
u to the actual input pressure vectaks, and Ah., which are the vectors of pressures
delivered by the booster pumps and end-user pumps resgigctisould be to simply use
the Moore-Penrose pseudo-inverseibf However, papers A and G consider mappings
with different prudent properties.

Furthermore, papers A, C, and E also considers the closgmisigstem with a quanti-
zation of the control signals. This is illustrated in Figdr8. Here the block) constitutes
the quantizer. The quantized version of the control sigaggiecewise constant signals
taking value in a finite set. This allows them to be transrdiieross a communication
network of finite bandwidth. This is necessary since theatons in the system are geo-
graphically separated from the logic circuitry implemagtthe control actions.

For the closed-loop system with the quantized control dggriae dynamics will be
described by discontinuous equations. For these systhmsoptutions will be considered
in the form of Krasovskii solutions to discontinuous diatial equations.
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Ah

r

Ahe

Figure 2.2: Structure of the system with quantized conigyials.

Definition 2. [Hajek, 1979] A mapy : I — R™ is a Krasovskii solution of an au-
tonomous system of ordinary differential equations: G(z), whereG : R™® — R", if

it is absolutely continuous and for almost every [ it satisfies the differential inclusion
o(t) € KG(p(t)), whereKG(z) = (), ., C0G(B,(x)) andCod is the convex closure
of the setG.

n>0

Herel is aninterval of real numbers, possibly unbounded. By défimithe operators
K associates t6/(x) a set valued map which is compact for everg R™. Furthermore,
if G(z) is locally bounded this set valued map is upper semi-contisuwith convex
values. Then, for each initial statg, there exists at least one Krasovskii solution of
# = G(z) [Aubin and Cellina, 1984].

In the following, proofs or proof strategies for some of tkeults documented in the
papers will be given. These are provided to make the chaptecantained. For the
interested reader, the full versions of the proofs are faoride contributions part of the
thesis, which contains the full papers.

2.1 Practical output regulation in hydraulic networks

This section presents the main results of the papers on #iiditst properties of the
closed-loop system when proportional output feedbackrobistused in the system.

Paper A: [DePersis et al., 2010]

The result presented in Paper A shows that the closed-lastpraywith proportional con-
trol actions constrained to non-negative values and wigfadithmic quantization, can
provide semi-global practical output regulation. Thatfg, any compact set of initial
conditions of the system, there exist gains of the propoaiicontroller and parameters
of the quantizer such that the basin of attraction contadriniftial conditions and the at-
tractor set can be designed as an arbitrarily small neididmat of the desired steady state.
It should be mentioned that the author of the thesis have awttibuted to the stability
result, and that it is merely included here to illustrate diféerence in the approaches
used in this result and the subsequent results on globalistabhe contribution from
the author of the thesis to the paper will be stated immelgiateer the result on stability.
The control signals considered in the paper are the follgwin

u; = P(Us), (2.1)

22



1 Practical output regulation in hydraulic networks

where the map : R, — R, is given by

Vi, T <r< 0<i<j
P(x) = Lo o0 (2.2)
0, 0<a:§1+C$

and
. _{ —Ni(yi —ri), yi—ri<0

U; = 0, yi_7”1‘>0 (23)

wherej € Z4, 6 € (0,1), ¥; = ¢ 11+5 for every: = 1,2,...,j andyy > 0 are
parameters of the (logarithmic) quantizer, withd andg to be designed. The parameter
N; > 0 is the proportional controller gain.

This gives the following expression for the closed-looptsys

Jg= f(BTq) +¥(a) (2.4)

whereV (@) = (¢¥(a1), .. .,%(a,)). The right hand side of (2.4) is discontinuous.
The Krasovskii solutions to (2.4) are absolutely contirsifinctions satisfying the
differential inclusion

Jge f(BTq) + K¥(a) (2.5)
whereK¥(a) C x K (u;) with
. {(L+X0)d; , A€ [-1,1]}, < < 1
K¢(uz)§{ L8 Ae D]} 5 i< 2 5 (2.6)

Then the main result of Paper A is

Proposition 2. [DePersis et al., 2010] For any choice of the paramedgy > 0, any
compact seR C R, any compact sep of initial conditions described by

for any arbitrarily small positive numbey, and for any value of the quantization parame-
teré € (0, 1) there exist gainv;* > 0 and parametersgy, j of the quantizer such that for
all N; > N, foranyr € R, any Krasovskii solution(t) of the closed-loop system (2.4),
with initial condition in Q is attracted by the sefe € R™ | |e;| < v,i=1,2,...,n},
Whereei =Yi — 1.

Proof of Proposition 2.The proofis somewhat technical, so only the strategy of thefp
will be given here. For the full version of the proof see [Dedfeand Kallesge, 2011].

Since the functiong;(-) are monotonically increasing and proper they admit global
inversesy; '(-). Then, the desired equilibrium point is

G=p"t(r) (2.8)

wherep ™ (r) = (7' (1), -, 1, (7).
Define the error coordinatesise = ¢— ¢ and the positive definite Lyapunov function
candidaté/ : R™ — R as

V(e) = %eTJe (2.9)
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with the time derivative

Vie) =elJeé (2.10)
=elJg (2.11)
=eTf(BTq)+eTv, Y e KU(q). (2.12)

Then a compact st is constructed wher§ = {e e R" | o < V(e) < 0},0< o< 0
andQ C {q € R" | V(e)|e=q—g < o}. The remainder of the proof consists of showing
that there exists parametefgand; of the quantizer and/;* of the proportional controller
such that for allV; > N, V(e) < 0 for everye € S andv € K¥(i). O

Additional to the main result in Proposition 2, the papeogisovides a suggestion to
a graph based approach to solve the problem of distributiegontrol signat:; to the
multiple pumps contributing to it, which is the problem ofgming the mag3' in Fig.
2.2. The designed map has the property that if the componé&ntare non-negative, then
the components of the vectafsh, andAh,. are non-negative as well. Furthermore, the
mapping defines a graph which in turn can be used to define thencaication topology
which should be used to communicate control signals achessdtwork. The derivation
of this mapping constitutes the contribution to Paper A ftbmauthor of the thesis.

Paper B: [Jensen and Wisniewski, 2011b]

It is found that the closed-loop system with proportionahtcol and no actuator con-
straints is globally practically stable. While the focudtud paper is on the application of
the hydraulic network, the result presented in Paper B, ezgxtended to a general class
of systems.
Consider the following system
A = f(z)+u (2.13)
wherex € R, A € M (n;R) with A > 0, the map— f(-) is continuous, monotonically

increasing and proper, the functién(-) is continuous, monotonically increasing and
proper and given a positive definite diagonal mafvixthe mapF' : R™ — R"™ given by

F(z) = h(z) = N"'f(2) (2.15)

is proper.
Letr € R™ be a vector of reference values, and let

u=—N(y—r), (2.16)
then the following result is true.

Proposition 3. There exists a unique poiat € R™ which is the globally asymptotically
stable equilibrium point of the closed-loop system (2.(3),4) and (2.16). Furthermore,

h(z*) —r = N"1f(a*). (2.17)
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1 Practical output regulation in hydraulic networks

Proof of Proposition 3.The proof is done in two steps, which follows along the linés o
the proofs of Proposition 11 and Proposition 12 in Paper Bagewl. The first step is
to prove that the map’(-) is a global homeomorphism. This can be done following the
technique used to prove Proposition 11 in Paper B. Sifcgis a global homeomorphism

it follows that for every vector € R™ of reference values, there exists a unique vector
xz* € R™ such that

r=h(z*) — N1 f(z*) (2.18)
which in turn means that the closed-loop system can be wrétte
Ai = f(z) — f(=") = N(y —y") (2.19)

wherey* = h(z*).

Secondly, it can be proved that is a globally asymptotically stable equilibrium point
of the closed-loop system using the technique in the proBfoposition 12. Specifically,
using the Lyapunov function candiddte: R" — R

1
Viz) = 5(1 — 2T Az — z*), (2.20)
along with the monotonicity properties ¢f-) andh(-) the thesis follows. O

Since the result is global and independent on the numbéend-users itis concluded
that it is possible to add or remove end-users from the systeanstill have a global
asymptotically stable equilibrium point* of the newly obtained system. However, to
keep the same level of performance it may be necessary tahargainsV;.

Paper C: [Jensen and Wisniewski, 2011c]

The result in Paper C is an extension of the result in PaperdBpantly of the result
in Paper A. The proportional control actions are used andaatigation of the control
signals is introduced. The result shows that the trajezsooif closed-loop system are
bounded and globally asymptotically stable towards a catget of the state space.

As in Paper A, the control signals considered in the papetharéllowing

with the slight modifications

ﬂi = —N7(y7 — 7”7;) (222)
and

P(—z) = —¢(), (2.23)

which means that the control signals are not constrainednienegative values.
Again, the closed-loop system is given as

Jg= f(BTq) + U(a). (2.24)

The solutions are again considered in the sense of Krasaaltions to the differ-
ential inclusion
Jge f(BYq) + K¥(a), (2.25)
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whereKW(u) C xI_; K (a;) with the set valued mafi’ modified to

1/’0, ~i>1w705
r, 15 < <5, k=0,...]
K¢(ﬂ'1) < {i—igd)k , AE [07 1]}a u; = % , k=0, )J ) (226)
- ¥,
0, 0L i<1+6

that is, K (-) is only set-valued at points of discontinuity of-).
The main result of Paper C can then be summarized in the fltpproposition

Proposition 4. For any gainN; > 0 and for any valug € Z, of the quantizer, there exist
parameter), of the quantizer and a compact g with the property that the Krasovskii
solutionsg(t) of the closed-loop system (2.24) are attracte@to

Proof of Proposition 4.The proofis somewhat technical, so only the strategy of thefp
will be given here. For the full proof, the interested reaereferred to [Jensen and
Wishiewski, 2011c].

Using the facts thav; andr; in (2.22) are constants, (2.24) can be rewritten to

Jg=f(BTq) = N(Y(y) — ) (2.27)
where the following identities has been used

and

Yilys) = -2 gy, (2.29)
Then (2.25) can be rewritten as
Jg e f(BTq) = N(KY (y) — ) (2.30)

whereKY (-) can be defined in a manner similar to the definitiodkap(-).
Recalling the mag” : R” — R™

F(z) = p(z) = N~'f(BT2), (2.31)
which is a global homeomorphism, the differential inclus{@.30) can be rewritten as
Jie f(BTq) — f(BTq") = N(KY(y) — y") (2.32)

whereq* = F~1(r) andy* = u(q*).
Now, the quantizer is designed such that, < u} < ¢y where

u; = —N;(yf —r;) (2.33)

which means that when the outpyt= y; the input to the quantizer does not go beyond
the maximum or below the minimum output of the quantizer.
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1 Practical output regulation in hydraulic networks

Consider the Lyapunov function candidafe R™ — R

1

Vi) =5la—a)"Ja—q") (2.34)
with the time derivative
Vig)=(¢—q")"Jg (2.35)
=(q—q)(f(B"q) — f(B"¢") = N(v—y")), WweKY(y).  (2.36)
Then by using the monotonicity propertiesfif) and(-) it can be shown that there
exists a compact s& with the property that’(¢) < 0, for everyq € Q¢. O

By applying a result similar to Proposition 2 from Paper Asitbncluded that global
practical output regulation is possible. Furthermoregeithe result is global and inde-
pendent on the numberof end-users, these can be added to or removed from the system
and the trajectories of the newly obtained system will bertoleal. However, to keep the
same level of performance it might be necessary to tune tims ga.

Paper D: [Jensen and Wisniewski, 2011a]

The result in Paper D is an extension of the result in Paperdse ithe control signals are
constrained to non-negative values to take into accounfaitiehat the actuators in the
system are typically able to deliver non-negative actuatioly.

Just as the result in Paper B the result in Paper D can be digedrto a larger class
of systems than the hydraulic network considered in the stasly. Again, these systems
are described by (2.13) and (2.14). The following contrdl be used

where
’[Li = _Nz(yz — Ti) (238)
z, 220
s(z){ 0, 2<0 (2.39)

Again it is assumed thdt'(-) in (2.15) is proper.
The main result of Paper D can then be stated as

Proposition 5. If the equilibrium pointc* € R™ which is the globally asymptotically sta-
ble equilibrium point of the closed-loop system (2.13Y142and (2.16) fulfils;(z}) <
r;, then it is the globally asymptotically stable equilibrigmint of the closed-loop system
(2.13), (2.14) and (2.37). Furthermore,

h(z*) —r = N"1f(a*). (2.40)
Proof. SinceN; andr; are constants, the closed-loop system can be written as

Ai = f(x) — N(S(y) —7) (2.41)
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whereS(y) = (51(y1), - -, 5n(yn)) and

_ zZ, z<mr
5i(2) { S (2.42)

i,

SinceF (+) is proper it is a global homeomorphism as shown in [JenseMésdiewski,
2011b], and there exists = F~1(r) such that

Ai = f(z) — f(a") = N(S(y) —y") (2.43)

wherey* = h(x*).
The rest of the proof follows along the lines of the proof afpwsition 3 and exploit-
ing thats; (y;) = y; because of the additional assumptigfic;) < ;. O

Again, since the result is global and independent on the mumbf end-users in the
system, end-users can be added to or removed from the syattth@newly obtained
system will have a global asymptotically stable equilibripointz*. Again, to keep the
same level of performance it may be necessary to adjust the a

In the specific case of the hydraulic network underlying tiséridt heating system it
has yet to be proved that indegfl < r; in the general case (arbitran). However, a
proof for the casew = 2 can be found in [Jensen and Wisniewski, 2011a]. Furthermore
thaty? < r; has been supported by simulations and proved for systerhsupito four
end-usersr{ = 4).

Paper E: [Jensen and Wisniewski, 2011d]

This paper collects the results from papers B-D and can be @asan extension of the
results in [DePersis and Kallesge, 2011]. The main resufagfer E state that the tra-
jectories of the closed-loop system with quantized prapoal control constrained to
non-negative values are bounded and globally asymptiytiatitacted to a compact set
of the state space. The quantization map used in the paperiltessa general set of
monotonically increasing quantization maps with hystisreghus, the logarithmic quan-
tizer (if hysteresis is included) used in paper A and C istided in this set, but also other
types such as the uniform quantizer for instance.

The control used in the paper is the following

where
_ | =Nilyi—7mi), yi—1:<0
uz_{ o Ty (2.45)

and the quantization ma,,(-) will be described in the following.
First, forl € Z, let A = {Ap, Ay1,..., A} andB = {By, B1,..., B;4+1} be the
following family of intervals

A = {(—00,aq], (a0, 1], ..., (ag—2, y—1], (y—1,00) } (2.46)
B = {(—o00, Bol, (Bo, 1], - - - (Bi=2, Bi—1], (Bi—1, B1), (B, 00) } (2.47)
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1 Practical output regulation in hydraulic networks

wherel, a; and3; fori = 0,1,...,l — 1 andj = 0,1,...,] are design parameters
of the quantizer and such that < «; < f;4+1 fori = 0,1,...,1 — 1. Note that
I+1

l
R=|]J4=JB;.
i=0 j=0

LeIwm : R — R be the map

’lﬂ,‘?, iftzto/\l‘(to)EAk
" if () = B A (2(t7)) = ¥B,, or
ko z(t) = B Abp(2(t7)) =B, 1 <k <1
Vm(2(t) = wB if 2(t) = ar—1 A (x(t™)) = ¢t or
koo (t) = ap—1 A (x(t7)) =it |, 1<k <1
g if 2(t) = Bo A hm(x(t™)) = f
Um(z(t7)), otherwise

(2.48)

wherey! andy? are design parameters of the quantizer, with= 0 andy;! | <
Y <yfforallk =1,2,...,1.
Remarkl: The mapyn.(-) is defined for piecewise monotone signals [to,t] — R. There is a
family of k partitions oflto, t] denotedl1, I», ..., I, wherel, = [to,t1),I2 = [t1,t2),..., Ik =

[tk—1,t] @andt; < tip1 < tfori = 0,1,...,k — 2, such thatc(7) is monotone forr € I; for
j=1,2,...,k Thent™ is defined as~ = 7 if € int(I_1).

This gives the closed-loop system
Jg = f(BTq) + V(1) (2.49)
whereV,,, (1) = (U (1), -« ., U (Uy)).
The Krasovskii solutions to (2.49) are absolutely contimifunctionsg(t) which
solves the Cauchy problem
Ji€ f(BTq) + KW (), q(0) = qo0 (2.50)

whereK (¥ (a)) C x 1 K (¢m(a;)) and K (¢, (z)) is given by

it x> B
K(wm(x)) = {M/fo, A€ [07 1]} , T E [5075l] (2.51)
0, x < fo
Again, let
F(z) = p(z) = N~'f(BT2) (2.52)
and
g =F(r), (2.53)

with the following conjecture, which has been supported bsnarical simulations and
proved to hold for systems with up to four end-users<4)

Conjecture 1. The pointg* defined by (2.53) fulfilg; (¢}) < r;.
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Given these preliminaries, the following result can be prbv

Proposition 6. For any gainN; > 0 and for any valud € Z, andc;, §;, where
j =0,1,...,1, of the quantizer, such thal; < a; < Bj4+1, if the parameter)* of the
quantizer fulfilsy;* > — f;(BTq*), whereg* is defined by (2.53), then a compact gkt
exists, with the property that the Krasovskii solutigi(s) to the Cauchy problem (2.50)
are attracted toQ.

Remark2: Conjecture 1 and the fact thaf* > — f:(B" q*) assures that the input to the quantizer
wheny, = y; does not go beyond the maximum or below the minimum outpubh@fuantizer.
Thatis,0 < u} < ¢f* whereu; = —N;(y; — r:) (by (2.52)).

Proof of Proposition 6.Again, the proof is quite technical, so only the strategyhaf t
proof will be given. For the full version of the proof, the énested reader is referred to
[Jensen and Wisniewski, 2011d].

SinceN; andr; are constants a map; : R — R with the following property exists

N;

Using this and the identity in (2.53), the closed-loop sys{2.49) can be written as
Ji=f(B"q)— f(B"¢") = N(Y(y) —y") (2.55)

whereY (y) = (T1(y1),- - Tu(yn))-
The Krasovskii solutiong(t) to the Cauchy problem (2.50) are then the solutions to
the problem
Jie f(BTq) — f(BTq") — N(KY(y) — ") (2.56)

whereKY (y) can be defined in a manner similarkov,,, ().
Then the Lyapunov function candiddte: R™ — R

Vig)=(qa—q")"J(g—q") (2.57)

will be used. The functioV'(-) has the time derivative
Vig)=(¢—q¢")"Jg (2.58)
=(@—a)"(f(BTq) ~ f(B'q") = N(v—y")), W € KY(y).  (2.59)

Then by using the monotonicity properties of the m#ps andy(-) it can be shown that
there exists a compact s@tsuch that’(¢) < 0 for everyq € Q°. O

By applying Proposition 2 from Paper A it can furthermore hewen that practical
output regulation is possible if logarithmic quantizers ased.
2.2 Asymptotic output regulation in hydraulic networks

This section presents the main results of the papers on #iieditst properties of the
closed-loop system when proportional-integral feedbackrol is used in the system.
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Paper F: [DePersis et al., 2011]

The result in Paper F shows that the closed-loop system Wwitptoportional-integral
control actions is global asymptotically stable towarasdbsired reference pointif no ac-
tuator constraints are assumed. The result is proved byispdhat the closed-loop sys-
tem can be described as an Euler-Lagrange mechanical sySfasnifically, it is shown
that the second order dynamics of the closed-loop systeaniles a fully-damped Euler-
Lagrange mechanical system with Rayleigh dissipation anthputs. For literature in
these types of systems see for instance [Ortega et al., ¥88&ler Schaft, 1999].
The control used in the paper is

fi = _Kz‘(yi — TZ‘) (260)
U; = fz — N7(y7 — 7”7;) (261)
which gives the closed-loop system
Jg=f(BTq)+&—N(y—r) (2.62)
E=—K(y—r). (2.63)

Letg = p; '(r;) and define the transformation of coordinajes- ¢; — ¢;. Assum-
ing that the derivatives of the functiong (-) describing the behaviour of the pipes are
bounded away from zetpthe following result can be proved

Proposition 7. The point(g, ¢) = 0 is a globally asymptotically stable equilibrium point
of the closed-loop system given by (2.62) and (2.63).

Proof of Proposition 7.The strategy of the proofis to show that the second ordermyna
ics of (2.62) describes an Euler-Lagrange mechanical systih Rayleigh dissipation
and then use the analysis carried out in the end of Section 1.2

The second order dynamics of (2.62) is

Jij= (Df(B"q) = NDp(q)) 4 +¢ (2.64)
= —Gl(q)g — K(u(g) —7) (2.65)

whereDg(x) denotes the Jacobian of the mgp) andG(q) = —Df(BTq) + NDu(q).
Using that the derivatives of the functiong(-) are bounded away from zero it can
be shown tha(q) is a positive definite matrix, see [DePersis et al., 2011].
Define the functioni; : R — R as

i Gi) = i@ + i) — palay) (2.66)
= pi(qi) —r (2.67)

then by using the properties pf(+) it can be shown thai; () is monotonically increas-
ing and zero inc = 0.
Now, let the kinetic energy functiofi : R” — R be given as

T(¢) = %QTJQ (2.68)

1This assumption is motivated by the fact that for low valuresftow can be considered laminar [Roberson
and Crowe, 1993].
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and the potential energy functidh: R — R be

n

Z K; / fii(s (2.69)

then the thesis follows. O

As an additional result in Paper F it is also shown that thérel@®quilibrium point
of the closed-loop system is semi-global exponentialliglsta

Paper G: [Jensen et al., 2011]

This paper represents an extension of the result presemtgier F, in which the extra
degree of freedom coming from the fact that the district ingegystem is over actuated
(see (1.11)), is exploited to expand the controllers inicadi in Paper F such that the
steady state electrical power consumption of the pumpsaisystem is minimal.

First, let(¢*, ¢*) denote the steady state of the closed-loop system (2.6@3)(2nd
consider the change of coordinates

i=a-d (2.70)
§=¢-¢"
The control used in the paper is
Ahy; = —L; (%%P(Ahb, q,g)) (2.71)
& = —K(yi—ri) (2.72)
Ahei = & — Ni(yi — i) — F{' Ahy (2.73)

whereL; > 0with j = 1,2,...,0; P(Ahs, ¢, &) is a simplified version of the electrical
power function of the pumps in the systetnis an estimate of fulfilling ¢ = ag with
a > 0; F' is theith row of F.

The functionP(-, 4, ) is a sum of an bi-linear function and quadratic penalty terms
(see [Fletcher, 1975]) designed to make the minimunP6f ¢*, £*) belong to some
desired set. The functiof(-, g, £) is convex and radially unbounded. Furthermore,
P(-,¢*, &%) has a closed and convex set of minimizers. That is, the set

M={xeR?| P(z,¢*,&") < P(y,¢",&")}, Yy € R° (2.74)

is compact and convex. The penalty functions has a desigmpers > 0 and it can
be shown that there exists finik¢ > 0 such that for alk > x*, P(-,§*,£*) is positive
definite.

The closed-loop system is

Ji=f(B"q)+&{—N(y—r) (2.75)

é =—-K(y—r) (2.76)

Ahy; = —L; (a%hb,P(Ahb,d,f)) (2.77)
]
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2 Asymptotic output regulation in hydraulic networks

The closed-loop system can be seen as an interconnectiovoafeparate systems,
where the state of the first system is an external input to ¢éitersd system. This is
illustrated in Fig. 2.3. Comparing with Fig. 2.3~ (¢,¢) andz = Ah,,.

z=g(2) & = f(=,2)

Figure 2.3: Block diagram of the cascaded system.

As shown in Paper F ([DePersis et al., 2011]) the pgint 0, £ = 0 is a global
asymptotically stable equilibrium of the closed-loop syst(2.75)-(2.76), which in turn
means that the external input to the second system in Figl&t8ys to zero.

The setM can be shown to be global asymptotically stable for the gyste

& =—L(VP(x,§",£)). (2.78)
The main result of the paper relies on the following theorem
Theorem 1. Consider the system in Fig. 2.3
= flz,2) (2.79)
z=g(2),

wherez € R", z € R™, f(y,0) =0, Vy € Y, g(0) = 0 andY C R”™ is non-empty,
compact and connected arfdz, z), g(z) are locally Lipschitz orR™ x R™,

Supposey” C R”™ is a globally asymptotically stable set of = f(x,0) and the
equilibriumz = 0 of 2 = ¢(z) is globally asymptotically stable. Suppose the integral
curves of the composite system are defined far all0 and bounded. Then, the state set
(z,z) € (Y,0) of (2.79) is globally asymptotically stable.

Proof of Theorem 1The proof follow along the lines of the proof of Theorem 10@,3.
Corollary 10.3.3in [Isidori, 1999]. Specificallyfx(¢)|| should be replaced b¥(x(¢),Y).
O

If o < 2 it can be shown that the trajectories of the closed-loopesysre bounded,
and by applying Theorem 1 the main result of the paper candesgr

Theorem 2. Leto < 2,k > k%, § = g — ¢* and{ = € — £*. The state set
M = {(Ahy,q,€) €R® xR" x R" | Ahy e MAG=E =0} (2.80)
is globally asymptotically stable for the closed loop sys{@.75)-(2.77). In particular

Jlim d(¢(t), M) =0, (2.81)
and _
(=0, V(e M, (2.82)

where¢ = (Ahy, q,§).

The theorem above concludes the summary of contributiortbel following chapter,
conclusions on the project will be drawn and suggestionatiaré work will be given.
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3 | Conclusion

In this chapter, the main conclusions from the work preskimehe previous chapters
will be drawn. Following these, some suggestions to posdiltlure research directions
will be given.

3.1 Conclusion

The work presented in this thesis considered an industags study consisting of a large-
scale hydraulic network underlying a district heating egssubject to structural changes.
The problem of regulating the pressure drop at the end-uséng a set of pumps in the
system was described, along with a set of decentralizedaaations used in solving
the problem. The results from this work regards stabilityparties of the closed-loop
system, and can be divided into two main categories; praabictput regulation using
proportional control actions and asymptotic output retjoiteusing proportional-integral
control actions. Since the actuators in the system are r@netl to non-negative actua-
tion, parts of the work considered control constrained te-negative values. Other parts
considered quantized control actions because of the nesdnih these across a finite
bandwidth network. Lastly, some of the results considevggisstions to mappings from
the control actions to the actuator inputs since the syssemer actuated.

The results regarding the proportional control actionsenwemllected in [Jensen and
Wisniewski, 2011d], where it was shown that the trajectdéthe closed-loop system
remains bounded when using constrained and quantizedpiced control actions. Fur-
thermore, with high gain control, the output regulatiormeoan be made arbitrarily small.
These results are global in the state space and valid forgineay number of end-users.
Therefore, it is concluded that end-users can be added tensoved from the system
while maintaining the stability properties. Lastly, a sagtjon to a mapping from the
control actions to the actuator inputs was given in [DeRBeagsal., 2010]. This mapping
has the property that it guarantees that non-negative@anttions are mapped to non-
negative actuator inputs. Thus, it guarantees that thetreamis on the actuators are not
violated.

The result in [DePersis et al., 2011] regarding proportigmgral control actions
showed that when no positivity constraints on the actuarsssumed, then the desired
steady state is global asymptotically stable for the cldseg system with arbitrary pos-
itive control gains. This result was extended in [Jensen.eR@11], where a dynamic
mapping from the control actions in [DePersis et al., 20dthe actuator inputs was in-
troduced. The purpose of this mapping was to minimize thedststate electrical power
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consumption of the actuators in the system. The resultsatitinat for systems with two
or less of the so-called boosting pumps, global asymptatiowt regulation with minimal
power consumption can be proved. Again, since these remelglobal in the state space
and valid for an arbitrary number of end-users, it is conetiithat end-users can be added
to or removed from the system, while maintaining the clokegh stability properties.

3.2

Future Work

This section provides some suggestions to future reseamettidns on the system con-
sidered in the paper. These suggestions are based both itetibms on some of the
presented results and on more general issues which hawe lye&ddressed.

Since the control signals needs to be sent over a commuomaagitwork, stability
analysis of the closed-loop system with delays in the coniaation network will
be relevant.

The results in [Jensen and Wisniewski, 2011d] and [JensegiMdsniewski, 2011a]
rely on the conjecture that” < r; fori = 1,2,...,n, which has yet to be proved
for an arbitrary numben of end-users.

The results regarding the proportional-integral contaticans will need to be ex-

tended to the case of control constrained to non-negatluesand quantized con-
trol, similar to the way it has been done for the case of priomoal control actions,

since the actuators in this type of system will typically lestricted to provide

non-negative actuation only.

The result regarding the proportional-integral contrdlats with the steady state
energy minimization scheme holds for networks with two @slboosting pumps.
A generalization to an arbitrary number of boosting pumpklyei preferable. Fur-
thermore, the result relies on a simplified version of theesyspower function.
Future work could consider a similar result but with a moraistic power func-
tion of the system.

The results presented have been focused on the districhhegstem, which is a
closed network without capacitive elements. An extensipapen networks and
networks with capacitive elements could be included inreitwork. Examples
of these types of networks include irrigation networks arader supply systems,
where reduction of the water losses in these systems coudélibterest.
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1 Introduction

Abstract

It was shown previously that semi-global practical pressegulation at desig-
nated points of a large-scale nonlinear hydraulic netweduaranteed by distributed
proportional controllers. For a correct implementationhaf control laws, each con-
troller, which is located at these designated points anathvbomputes the control
law based on local information only (measured pressure)di®pequired to transmit
the control values to neighbor pumps, i.e. auxiliary pumysctv are found along
the same fundamental circuit. In this paper we show that tipehcontrollers can
serve well to this purpose. Besides a theoretical analydiseoclosed-loop system,
we provide experimental results obtained in a laboratasiridt heating system. This
approach is fully compatible with plug-and-play controbs¢gies.

1 Introduction

This work is part of an on-going research on the design ofrobrdws for large-scale
non-linear hydraulic networks required to be implemergablaplug-and-playfashion,
namely to be easily reconfigurable when new sensors, actuatcomponents are added
to the existing control system.

The large-scale hydraulic network underlies a districtingesystem with an arbitrary
number of end-users. The problem consists of regulatingithgsure at the end-users to
a constant value despite the unknown demands of the usenséhas. The regulation
problem is addressed for a new generation of district hgatyistems, where multiple
pumps are distributed across the network at the end-usetise$e new large-scale heat-
ing systems, the diameter of the pipes is decreased in ardedtice heat dispersion. The
reduced diameter of the pipes increases the pressure whggsmust be compensated
by a larger pump effort. The latter can be achieved only withmulti-pump architec-
ture ([1]). Besides the reduced heat losses, having melltipmps distributed across the
network makes it robust to the failure of one or more pumpswéi@r, this issue is not
considered in the paper. Moreover, we do not take into addberproblem of damping
fast pressure transients due to water hammering, as thidepnds not to be handled by
our controller, but by well-placed passive dampers in thevaek.

There is a large number of works devoted to large-scale hyidnzetworks, and more
in particular to water supply systems. A recent paper witextended bibliography on
the modeling and control of hydraulic networks is [2], in winthe emphasis is on “open”
hydraulic networks, as found in irrigation channels, sewegworks and water distribution
systems. Papers which deal with various control problemsgpen hydraulic networks
include [3], [4] and references therein.

In our application, however, the network is "closed”. Sianihetworks and models
arise for instance in mine ventilation networks and cardsoular systems. These classes
of systems are the motivation for the works [5], [6], [7], wleaonlinear adaptive con-
trollers are proposed to deal with the presence of uncep@iameters. Other systems
close to the one considered here are nonlinear RLC circsgs €.9. [8] and references
therein).

Preliminary results on the case study of interest in thisepdyave appeared in [9],
[10] and [11] (the contribution of the latter compared witle oresent paper is discusses
later below). In [9], the control law was designed for a reshitscale laboratory set-up
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of a district heating system. A general model for a largesctdhydraulic networks was
derived in [10], and distributed proportional controllgrsre designed. Since centrifugal
pumps are used in these hydraulic networks and those arespaimiph can only provide
a positive control action, the positivity constraint on ttwtrol law was explicitly taken
into account.

In this paper, we face the following control problem. For a@reot implementation
of the control laws of [10], each controller, which is locht&t the end-user and which
computes the control law based only on local informationgsueed pressure drop), is
required to transmit the control values to “neighbor” pupipes auxiliary pumps which
are found along the same circuit where the end-user lies. tDyhysical constraints
and the large-scale nature of the system, it is conveniematsmit information “spo-
radically”. This motivates us to investigate the possipito achieve the previous control
objective (pressure regulation) by quantized control{§t8], [14], [15], [16]). These
controllers take value in a finite set (and therefore contatlies can be transmitted over
a finite-bandwidth communication channel) and change tradires only when certain
boundaries in the state space are crossed. Since the f&ecinatcol action delivered
by each pump makes use of local information only (presswp dreasured at the pump
itself), it lends itself to be fully compatible with the pltand-play-control strategy.

Controllers motivated by a similar need of being implemdritean industrial net-
worked environment have been investigated in [4], as atrefah optimal control prob-
lem, and in [11], where binary controllers were employed.aftized controllers were
introduced as well, but no explicit proof was given.

Quantized controllers change their values less abrup#g thinary controllers, thus re-
ducing the fatigue of the actuators. Moreover, the presdritontrol goal by quantized
controllers is achieved with less control effort at steatdyes Finally, while in [11] only
simulations were presented, here we discuss experimestdts obtained in a laboratory
district heating system.

In Section 2, the class of hydraulic networks of interestiis paper is recalled. In
Section 3, the quantized control strategy is analyzed. Exeatal results are discussed
in Section 4. Conclusions are drawn in Section 5.

2 Large-scale hydraulic networks

We introduce the model of a large-scale hydraulic networdtentying a district heating
system. The model is taken from [10], [11] to which we refertbader for further details.

Hydraulic networks

An hydraulic network is a connection of two-terminal compats such as valves, pipes
and pumps (see Fig. 4.3, for a diagram of an hydraulic netyarikose constitutive laws
put in relation the pressure drdph = h; — h; across the element and the flgwhrough
the element. We briefly recall the constitutive laws of thes@ponents.

A valveis characterized by the algebraic relation

hi — hj = ,U(KU; Q)

where K, is the hydraulic resistance of the valve, gnis a smooth function of its ar-
guments which, for each fixed value éf, is zero at zero and strictly increasing. The
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constitutive law of gipeis a dynamic relation of the type

dg
JE = (hl - hJ) - )\(Kp, q)
with J, K, parameters andl a function which enjoys the same properties of the function
w. Finally, a (centrifugalpumpis a device which delivers the desired pressure difference
h; — h; no matter what is the flow through it. The constitutive lawlt pump is

hi — hj = —Ah,

whereAh,, is a nonnegative function of time which is viewed as a coritplit.

The value of the parameters,, K, are typically unknown and we shall assume they
range over a compact sets of strictly positive values, ahbyP. Similarly, the func-
tions u, A are not precisely known, and in fact knowing them is not nemesfor the
analysis, at least as far as the two properties of smootlarmessnonotonicity are guar-
anteed. We will distinguish between end-user valves anather valves, allowing the
former to change the value of the hydraulic resistance ireaegpivise constant fashion,
and between the end-user pumps — located in the vicinityeoétid-user valves — and the
boosting pumps, that is pumps used to fulfill constraintshenrelative pressures across
the network which the end-user pumps alone — mainly used & the demands of the
end-users — could not fulfill.

Model

To derive a model for these systems, it is convenient and-alaturesort to tools in cir-
cuit theory ([17]). We will not review all the details her@ferring the interested reader
to [17], [10]. Rather, we will only recall the few notions vahi are needed to follow
the developments below. In particular, we associate to jfukaulic network a graph
G whose nodes are the terminals of the network’s componentsvanse edges are the
components themselves. Then a set of 1 independenfiow variables (i.e. a set of flow
variables whose value can be set independently from all tiier dlows in the network)
are singled out. These independent flows coincide with thesfliirough the so-called
chordsof the graph ([17], [10]). A fundamental loop is associateceach chord, and
along each fundamental loop Kirchhoff’s voltage law hottigt is BAh = 0,,«1, where
B is called thefundamental loop matrixi.e. a matrix of—1, 1,0 whose value depends
on the topology of the circuit, andh is the vector of all the pressure drops across the
components of the network.

The class of hydraulic networks which are important for casecstudy satisfies the fol-
lowing two assumptions:

Assumption 4. Each user valve is in series with a pipe and a pump, see Fig.Mote-
over, each chord if corresponds to a pipe in series with a user valve.

Assumption 5. There exists one and only one component calleché® sourcelt cor-
responds to a valveof the network, and it lies in all the fundamental loops.

1The valve models the pressure losses in the secondary sikle béat exchanger of the heat source.
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Remaining network

Figure 4.1: The series connection associated with eaclused-

The following result holds ([10]):
Proposition 8. Any hydraulic network satisfying Assumption 4 obeys thatops

Jq
Yi

f(Kp7KU;BTq) +ﬂ,
wilkeisqi), i=1,2,....n

(4.1)

with ¢ € R™ the vector of independent flows,c R™ a vector ofn independent inputs,
y; the measured pressure drop across itieend-user valve] = J7 > 0ann x n
matrix, K, K, vectors of parameterg,( K, K,,, BT q) a smooth vector fieldy; (k:, ¢:)
the constitutive law of thé&h end-user valve.

The model has some nice features among which we recall tlosvial, which states
that if all the flows in the network have positive sign and ¢isrno input action, then all
the entries of the flow velocity vectofg are strictly negative. Namely we have ([10]):

Lemma 1. Under Assumptions 4 and ,c R" 2implies—f(K,, K., q) € R%.

The input vector deserves a few comments too. As a matter of fact, it can bershow
([10]) thatw = BAh,, with B, the fundamental matrix recalled above, ahd,,, the
vector of pump pressures, taking respectively the form

0
B=(1 I F'), Ahy=| Ak
ARl

with Ahg, Ahg the vectors of pressures delivered by the end-user pumpsespkec-
tively, the boosting pumps. The sub-matfi% turns out to have alhon-negativentries
as a consequence of Assumption 2.

Communication Topology

We have just established that the control laws a linear combination of vectonShf,
andAhg. Since the pumps in the network are centrifugal pumps whainot deliver

2R™ denotes the positive orthant&f*, i.e. the se{q € R™ : ¢; > 0,i=1,...,n}.
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negative pressures, having a positive control favg essential. Suppose a control law

exists which produce non-negative control actions (segdhfl Section 3 below). How

should these control actions be mapped to pump pressuredento keep the positivity

constraints? Below we build a graph which describes thispimap It also results in a

way to distribute the control effort among the end-user psiar the boosting pumps.
Define the followingk sets:

H?Z{ﬂie{ﬂla“-aan} PEG#0N j=1,0k

wherek is the number of boosting pumps in the system. That%l§:is the subset of
the control actions to Whiclzﬁhgj contributes. The following assumptions are made
regarding the sets:

Assumption 6. There exists one boosting pumya’; for whichH? = {ay, ..., @, }.

This assumption corresponds to the statement that thestsexie boosting pump
which is providing actuation to all the fundamental flow IgoSince a boosting pump
will be located in connection with the heat source this aggion will generally be ful-
filled.

A hierarchy (tree) among the boosting pumps is how consttucthe starting point
is the forward treeJ; (see [10]). The tree is constructed by removing all edges fro
T which does not correspond to a boosting pump. The boosting)pmhgi for which
H® = {iy, ..., 0, } will be the root of the tree.

Using this tree it is then possible to define the pressureshwéach pump must de-
liver. Each boosting pump needs to calculate:

AL, = k; (;21& iy — Ahg+> (4.2)
whereAhf,+ is the actuation provided by the boosting pumps Iocated@hmgi in the

tree @hi; = 0 if the boosting pummhgi is the root of the tree), anl< x; < 1is the
scaling factor which leaves some fraction of the actuatoihé end-user pumps.

Remark3: The signalAhf,+ can be calculated at the boosting pump located immediatalyea
AR}, in the tree and thus communicated from here.

Each end-user pump then only need to subtract the boostimg pations from their
respective control actions:

k

AhS; =1ty — Y FARY j=1,....n. (4.3)
1=1

To implement (4.2), the boosting pumps must communicate eter their control effort

according to the topology described by the tree. Moreoetr, k& {1,2,...,k} and

j € {1,2,...,n} be such thati; € H’. Then the controllef, which is located at the

end-user pumg and which computes the control lay, must communicaté@; to the

boosting pump. Finally, each boosting pumjpmust also communicatéhgi to the end-

user pumpg for which Fj; # 0 (see (4.3)). In the next section, we propose control laws

which the pumps can communicate each other.
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3 Pressure regulation by quantized control

Motivation

We are interested in the problem of designing a setisfributed controllers which
regulates each output (the pressure drop at the end-uses) yalto the positive set-
point reference value;, with r = (r1,...,r,) € R ranging in a known compact set,
namelyR = {r e R : 0 < r,y < 1r; < 77,4 = 1,...,n} (although typically
rn = ... =r, = 0.5 [bar]). We start from a set of proportional controllers of the
following form
| =Ni(yi—1), yi—1:<0
uz—{ 07 yi—TiZO, (44)

whereN; > 0 is the controller gain. These controllers were studied 67.[1

Since controllers and pumps are distributed across theonktand hence geograph-
ically separated, it is important to investigate a way inafhihe control laws (4.4) can
actually be communicated to the pumps (see Subsection &)islaection, we propose to
usequantizectontrol laws and prove that a quantized version of (4.4)aas the control
objectives.
By quantized control is meant a piece-wise constant cotdamlwhich takes values in
a finite set. The state place is partitioned into a finite nunabeegions, and a control
value is assigned to each one of the regions. The transitionsone control value to
another take place when the state crosses the boundarles i@gions. Since quantized
control laws take value in a finite set, in principle theseuealcan be transmitted over
a finite bandwidth communication channel. Quantized cofidtranonlinear systems has
been investigated in a number of papers, among which wel [@&}J [13], [14], [15],
[16]. Here, we extend the results of [16], where a quantizgdion of the so-called semi-
global backstepping lemma was proven, to the case in whigliple positivanputs are
present. To the best of our knowledge, this is the first timlassoof quantized controllers
for a nonlinear multi-input industrial process is inveatied.

Quantized controllers
Lety : Ry — Ry be the map (remember that € R, see (4.4))

b, Dcu<c Y 0<i<
W(u) = 14+6 ‘ 1-6 (4.5)
0, 0<u<-——
14+6

In the definition abovej is a positive integery is a positive real numbes, < (0, 1), and
W = plpg fori =1,2,..., 5 withp = %g The parameters ¢, 6 are to be designed.
The mapy is known adogarithmicquantizer ([18]).

Consider now the quantized version of the control law (4n)) the resulting closed-loop
system, namely

Jq'f = f(Km KU; BTQf) + \I/(ﬂ) ) (46)

with @ as in (4.4) andl (@) = (¢(a1) ... (a,))T. Since¥ () is a discontinuous func-
tion of the state variables, the closed-loop system (4.8)3gstem with discontinuous
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right-hand side. For this system the solutions are intendédbtle Krasowskii sense, a
notion which is here briefly recalled:

Definition 3. Acurvey : [0, +00) — R™ is aKrasowskii solutiorof a system of ordinary
differential equations = G(t, z), whereG : [0, +o0) xR™ — R", if itis absolutely con-
tinuous and for almost evety> 0 it satisfies the differential inclusioh € K(G(t, x)),
whereK (G(t,x)) = Ns>oCo G(t, Bs(x)) andTo( is the convex closure of the sét

Recalling [19], Theorem 1, Properties 2), 3) and 7), we cateshat the Krasowskii
solutions of (4.6) are absolutely continuous functionsohitsatisfy the differential inclu-
sion

Jiy € f(Kp, Ky, BTqp) + v, (4.7)
wherev € K (U (a)), K(¥(a)) C x_; K((a;)) and ([16])

[ M) Ae [-11))

~ U4
0< @ < 14

K(y(ui)) € (4.8)

The result below proves that quantized controllers carr steginitial state included
in an arbitrarily large set to an arbitrarily small neighbood of the desired reference
value. In what follows, the following terminology will be mse: a trajectory iattracted
by a setS if it is defined for allt > 0, and it belongs te5 forall t > 7', with 7" > 0 a
finite time. Our control goal is the following:

Proposition 9. For any choice of the parametej; > 0, any compact sk C R, any
compact se® of initial conditions described by

for any arbitrarily small positive numbey, and for any value of the quantization param-
eterd € (0,1) there exist gainsV;* > 0 and parameters), j of the quantizer such that
for all N; > N/}, for anyr € R, any Krasowskii solutiog () of the closed-loop system
(4.6), (4.4) with initial condition inQ is attracted by the sefe € R™ : |¢;| < v,i =
1,2,...,n}, wheree; = y; — r;.

The proof is omitted due to space limitation and it can be tbar{12].

We cannot exclude that sliding modes may arise along thagiécfsng) surfaces
where—N; (i (Kuvi,qri) — ri) = (1 + §)~! for somei, j. This would give raise to
chattering and it would jeopardize the possibility of tnaiting the control values over
a communication network, since a large bandwidth would baired. To this regard, we
observe that it is always possible to replace the quant{#es¥ with quantizers for which
sliding modes are guaranteed to never occur. We follow theraents of [16] and [14].
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Let us introduce a new quantizer described by the followindtirvalued map:

Ui );
, <
wla 1+5<U71_5,
0<i<y
)y i W
() = < 4.10
P (u) T+5° QroE ““ST1_s (4.10)
0<i<y
Y;
<u<
0, O_u_l—i-(S

Fig. 4.2 gives a pictorial representation of the map in treega= 1. Compared with the
previous quantizer, in the quantizer (4.10) there are adtit quantization levels equal
to+ ffr’?é, 1 =0,1,...,7. The figure helps to understand how the switching occurs with
these quantizers. Suppose for instance thatu) = v1, u is decreasing and hits the
pointy (1 + §)~* (in the Figure this situation corresponds to point 0). Thewiching
occurs andy,, (u) = (1 + 6)~! (i.e. there is a jump from o to a in the Figure). If
u decreases and becomes equaptél + 6)~2 (point b), then a new transition occurs
(b—c). If, on the other hand, increases until it reaches the valug(1 + 6)~2 (pointe)
then a transition takes place franto p.

From the above description it should be clear that the newtigegdion levels and the new
switching mechanism prevent the system to experiencenglitiodes and chattering. For
the sake of simplicity we shall refer to these quantizersastizers with hysteresis. One
may then wonder whether Proposition 9 still holds. The amssvgositive since the new
quantization levels belong to the sets on the right-hanel sfd4.8), and Proposition 9
was proven letting each componentf v range over these sets. Hence Proposition 9 is
still valid if we replace the quantizers (4.5) with the guaets (4.10). The experimental
results we present below are obtained using the quantizgréistersis just introduced.

4 Experiments

This section presents experimental results obtained ubm@roposed controllers on a
specially designed setup. The setup corresponds to a “sdiatfict heating system
with four end-users with a network layout as the system shiowkig. 4.3. Although
this number is by far less than the number of end-users expéttreal district heating
systems, it makes it possible to build an operational setuplaboratory, and it covers
the main features of a real system. A picture of the test getsipown in Fig. 4.4.

The design of the piping of the test setup is aimed at emgjatie dynamics of a real
district heating system. However, due to physical constsathe dynamics of the setup
are approximately 5 to 10 times faster than the dynamicsatggdén a real system.

The natural disturbances in district heating systems dieanges. However, the
valves on the test setup are slow motor valves that are ut@bleite the dynamics of the
system. Therefore, to exemplify the performance of theradlets, the system response
to a step in the references is tested. The references argedh&mom 0.2 [bar] to 0.45
[bar] and then back to 0.2 [bar].
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Figure 4.2: The multi-valued map,, (u) for v > 0, and withj = 1.

el
Pipe, D: 10 mm,
Length: o m

Pipe, D: 10 mm,
Length: 6 m

Pipe, D: 10 mm, Length: 6 m)
Length: 6 m

Pipe, D: 10 mm,
Length: 6 m

Relativ. pres. Relativ. pres.

Pump 6: Pipe, D: 20 mm, Pipe, D: 20 mm, Pur
UPE25:60  Length: 25m Length: 15 m UPE

mp3:  Pipe, D: 20 mm, Pipe, D: 20 mm,

2560  Length: 20m Length: 15 m

Pipe, D: 20 mm, Pipe, D: 20 mm, Pipe, D: 20 mm, Pipe, D: 20 mm,
Length: 25 m Length: 15 m Length: 20 m Length: 15 m

Figure 4.3: A diagram of the hydraulic network of the testipah Fig. 4.4. The system
contains four end-user pumps and two booster pumps.

Results obtained with the quantized controllers given lppBsition 9 are shown in
Fig. 4.5. The design parameters of the quantizers (4.5)fasen ag)y = 1, § = 0.25,
andj = 3. The gains of the controllers are sethp = 1.5, =1, ..., 4.

From the test results it is immediately seen that there isadyt state error between
the measured pressures and the reference pressures. dihestis the use of quantized
proportionalcontrollers. Such steady state errors can be reduced bgtedjuhe gains
of the controllers. From the behavior of both the controfeelssures and the controller
inputs it is seen that the control system well-behaves aaltthie steady state is achieved
within a reasonably short period of time.

The experimental results confirm the theoretical analyssnely that semi-global
practical regulation of the plant is guaranteed by distedwquantized proportional con-
trollers. The experiments emphasize that relatively latglays (as those introduced in
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|
Valves =
modelling the & =

heat exchangers |}
I

Figure 4.4: A picture of the test setup. The marked valvesehibe primary side of the
heat exchanger of the end-users.
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Figure 4.5: The results obtained using the proposed quehtiantrollers. The top plot
shows the controlled pressures and the bottom plot showguiduetized control inputs.

these experiments by the hardware setup) can impose tiestsion the performance (os-
cillations) and on the accuracy of the controllers (largageprevent from increasing the
gains of the controllers and in turn from reducing the regjoiteerror).

5 Conclusions

The paper deals with the study of an industrial system distieid over a network. Pos-
itive quantized controllers have been proposed to prditicegulate the pressure at the
end-users and experimental validation of the results has peovided. The actual imple-
mentation of the quantized controller over an actual compation network in a urban
environment is currently under investigation.

We plan to extend our findings to the case of proportionagrdl controllers ([20], [21],
[22]), and to include constraints on the sign of the flows alt (}&8)). Other research di-
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5 Conclusions

rections will focus on controller redesign when new endrsisee added to the network,
extension of the results to the case of open hydraulic nésv2]), and robustification
of the controllers to delays, the latter being a very imparéand challenging problem.
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1 Introduction

Abstract

Proportional feedback control of a large scale hydraultevoek which is subject
to structural changes is considered. Results regardirigapfaractical stabilization
of the non-linear hydraulic network using a set of deceiztedl proportional control
actions are presented. The results show that closed lobpitstaf the system is
maintained when structural changes are introduced to stersy

1 Introduction

An industrial case study involving a system distributedr@metwork is investigated. The
system is a large-scale hydraulic network which underl@istgict heating system with an
arbitrary number of end-users. The case study considens par@digm for constructing
district heating systems [1]. The new paradigm is motivatethe possibility of reducing
the overall energy consumption of the system while makimgrétwork structure more
flexible. However, the new system paradigm also calls forw centrol architecture,
which is able to handle the flexible network structure [1].

The case study is a part of the research progpéug & Play Process ContrdR] and
has been proposed by one of the industrial partners invaivié research program. The
goal of the research program is automatic reconfiguratioheoontrol system whenever
components, such as sensors or actuators, are added toaveifnom the system. In
the case of the district heating system, the addition (ref)af components could, for
instance, be due to the addition (removal) of one or moretesadls to (from) the system.
Whenever such an addition or removal is made, the structutieeosystem is changed
and the control should accommodate the changes.

The control objective of the system in question is to regutlaé pressure drops across
the so-called end-user valves in the hydraulic network tw@gpiecewise constant refer-
ence point. This goal shall be obtained in spite of the unkmdeamand of the end-users.
The controllers, which will be considered here, are a seteakdtralized proportional
controllers, which use only locally available informatiohhis control architecture has
been chosen, since it is expected that changes in the syBiartuge can be easily han-
dled [3].

Previous work on a simple system with two end-users has shistrhigh-gain pro-
portional controllers semi-globally stabilizes the clddeop system towards a set of
attractors [4]. The results show that whenever the comirghins are large enough,
the basin of attraction contains the set of all possiblgahionditions of the system.
However, if changes to the structure of the system is inttedusuch as the addition
or removal of end-users, the results cannot guaranteecclose stability of the newly
obtained system without proper redesign of the controbénsg

The results presented here are threefold. First, the seardtapplicable for a large-
scale hydraulic network, since no assumptions are madediegathe number of end-
users in the system. Secondly, the proposed control acthiteis decentralized in the
sense that the individual controllers use only locally Eldée information. Thirdly, the
results show that the closed loop system is globally praltyistable with a unique equi-
librium point using a set of arbitrary positive controllexigs.

Compared to previous results in [4], which are semi-globa, global result here
shows that the closed loop system will be stable regardfetseaonitial conditions. Fur-
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thermore, since the result is independent of the numberaisers, the system will also
be stable whenever components are added to or removed feosggtem, since the initial
conditions of the newly obtained system are guaranteedltmfeo the basin of attrac-
tion. This, along with the fact that the control scheme isetidi@lized, makes structural
changes in the system easy to implement.

In Section 2, the models of the individual system componasitsell as the model of
the hydraulic network are presented along with the proposattollers. The closed loop
properties of the system is derived in Section 3. Sectioro¥iges a proof of an important
intermediate proposition, which is used to derive the adsep stability properties of
the system.

Nomenclature

Let R™ denote then-dimensional Euclidean space, with the scalar prodacb) be-
tween two vectora, b € R". For a vectorr € R™, z; denotes the'th element of
x. Let M (n,m;R) denote the set af x m matrices with real entries, and (n; R) =

M (n,n;R). For a matrixA, the notation4,; will be used to denote the entry in thi¢h
row andj;’th column of A. For a square matriA, A > 0 means tha# is positive defi-
nite, i.e.,A = AT andx” Ax > 0Vx # 0. For a square matriA, A = diag(z;) means
that A hasz; as entries on the main diagonal and zero elsewhere. Throtititefollow-
ing, C!' denotes a continuously differentiable function (map), atidunctions (maps)
introduced will be assumed!. A continuous function (mapj : X — Y is said to be:
aninjectionif it is into, i.e., for everya,b € X, if f(a) = f(b) thena = b; a surjection

if it is onto, i.e., if for everyy € Y there exists at least onec X such thatf(x) = y;

a bijectionif it is both aninjectionand asurjection ahomeomorphisrif it is a bijection
with a continuous inversg—!; adiffeomorphisnif it is a bijectionwith aC! inversef 1.

A continuous function (map) is said to peoperif the inverse image of a compact set is
compact. A functiorf : R — R is called monotonically increasing if it is order preserv-
ing, i.e., for allx andy such thatr < y thenf(x) < f(y). The open ball with radius
and centred irx is denotedB,.(x), i.e., B,(x) = {y € R"||ly — x| < r}. Likewise, the
corresponding closed ball is denotBd(x), i.e., B,.(x) = {y € R"||y — x| < r}.

2 System Model

The system under consideration is a hydraulic network uyidgra district heating sys-
tem. The model has been derived in detail in [3] and will bealled here but in fewer
details.

The hydraulic network consists of a number of connections/éen two-terminal
components, which can be valves, pipes and pumps. The sgsm@ponents are charac-
terized by dual variables, the first of which is the pressuopd\i across them

Ah = h; — hj, (5.1)

wherei, j are nodes in the network;, ; are the relative pressures at the nodes.

The second variable characterizing the components is thtefitwv ¢ through them.
The components have algebraic or dynamic expressionsmjageihe relationships be-
tween the two variables.
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2 System Model

Valves

Valves in the network are governed by the following algebeaipression

hi = hj = p(ky, q), (5.2)

wherek, is the hydraulic resistance of the valve(k,, ¢) is aC* and proper function,
which for any fixed value ok, is zero aty; = 0 and monotonically increasing. Further-
more,u(0,-) = 0.

Pipes

Pipes in the network are governed by the dynamic equation
Jq=(hi— hj) - /\(k;m q), (5.3)

whereJ andk, are parameters of the pip¥(k,,, ¢) is a function with the same properties
asu(ky, q).

Pumps

A (typically centrifugal) pump is a component which delisexr desired pressure differ-
enceAh regardless of the value of the fluid flow through it. Thus, thenps in the
network are governed by the following expression

hi — hj = —Ah,, (5.4)

whereAh,, is a non-negative control input.

Component Model

A generalised component model can be made using the folipaipression
Ah = Jq+ /\(kpa Q) + N(k1J7 Q) - Ahp (5.5)

where7, k,, are non-zero for pipe components and zero for other comgsrigrns non-
zero for valve components and zero for other componehts; is non-zero for pump
components and zero for other components.

The values of the parameteks andk, are typically unknown, but they will be as-
sumed to be piecewise constant functions of time ranging aveompact set of non-
negative values. Likewise, the functiopék,, ¢) andA(k,, ¢) are not precisely known,
only their properties of being'!, monotone and proper are guaranteed. The varying heat-
ing demand of the end-users, which is the main source ofrdshces in the system, is
modelled by a (end-user) valve with variable hydraulicsesice. In the network model,
a distinction is to be made between end-user valves and shefréhe valves in the net-
work. Two types of pumps are present in the network; the esa-pumps, which are
mainly used to meet the demand at the end-users, and boastg@spvhich are used to
meet constraints on the relative pressures in the netwdrk [5
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Network Model

The network model has been derived using standard circeitryh[3]. The hydraulic
network consists ofn components and end-usersi > n). The network is associated
with a graphg which has nodes coinciding with the terminals of the netvaaponents.
The edges of the network are the components themselves.eBysthof graph theory, a
set ofn independent flow variableg have been identified. These flow variables have the
property that their values can be set independently frorardtbws in the network. The
independent flow variables coincide with the flows through¢hords of the graph [3].
To each chord in the graph, a fundamental (flow) loop is aasedj and along this loop
Kirchhoffs voltage law holds. This means that the followaguality holds

BAh = 0, (5.6)

whereB € M (n, m;R) is called the fundamental loop matri&h is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop ma@xare—1, 1 or 0, dependent on the network
topology. For the case study in question, the hydraulic agtwnderlies a district heating
system. Because of this, the following statements can bemegarding the network.

Assumptior2.1: [3] Each end-user valve is in series with a pipe and a pumpeas & Fig. 5.1.
Furthermore, each chord ¢hcorresponds to a pipe in series with a user valve.

Assumptior2.2 [3] There exists one and only one component called the heatesolt corresponds
to a valvé of the network, and it lies in all the fundamental loops.

Valve

Remaining network

Figure 5.1: The series connection associated with eactusedf3].

Proposition 10. [3] Any hydraulic network satisfying Assumption 2.1 adrttiis repre-
sentation

Jqg = f(K,,K,,B'q)+u (5.7)
Yi = ﬂl(kvlvql) 5 1= 1,...,TL, (58)

1The valve models the pressure losses in the secondary sikle béat exchanger of the heat source.
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whereq € R" is the vector of independent flows; € R” is a vector of independent
inputs consisting of a linear combination of the deliveredp pressuregj; is the mea-
sured pressure drop across itteend-user valve] > 0 € M (n; R); K,,, K, are vectors
of system parameter§{K,, K,, -) is aC" vector field;u; (k.i, -) is the fundamental law
of theith end-user valve. In (5.8), it is assumed that the firstmponents coincide with
the end-user valves.

Under Assumption 2.1 and Assumption 2.2, it is possible tecs¢he orientation of
the components in the network such that the entries of thégiorental loop matriB are
equal tol or 0, whereB;; is 1 if component;j belongs to fundamental flow loapand0
otherwise.

Defining the vector of flows through the components in theesysasx = B”q ¢
R™, the vector field (K,, K., -) can be written as [3]

(K, Ko, x) = —BAKp, %) + p(Ky, x)),

(5.9)
Vx € R™,
whereA(K,, ) = M (kp1,21), -« s A (Kpms 2m)] T
w(Ky, ) = [p1 ko1, 1), -« oy n(kom, 2m )], andk,,; is non-zero for pipe components
andk,; is non-zero for valve components.
The matrixJ in (5.7) is given by
J=BJB” (5.10)

whereJ = diag 71, - . ., Jm) andJ; is non-zero for pipe components.

The inputu to the system deserves a few comments as well. Define thersexig,.
andAh,, as the vectors of pump pressures delivered by respectivelgrid-user pumps
and the booster pumps. Tharis given as

u = Ah,, + FAh,, (5.11)

whereF € M(n, k;R) is the sub-matrix oB which maps the booster pumps to the
fundamental flow loops; is the number of booster pumps in the network.

A sketch of a simple district heating system with a heat seamd two apartment
buildings is illustrated in Fig. 5.2. The corresponding taxdic network is illustrated in
Fig. 5.3. The two end-users are represented by the serieectons{c;, ¢13, c14} and
{cs, cs, c7}. The heat source is represented by the véatye} which models the pressure
losses in the secondary side of the heat exchanger of theteate.

It is desired to regulate the pressugeacross theth end-user valve to a given ref-
erence value; with the use of a feedback controller using locally avagsibformation
only. The desired reference value of the pressure acrosntheiser valve is assumed to
be a piecewise constant function of time, and it ranges iroavkrsetr,,,, a7|. Thus, the
vectorr = (rq,...,r,) of reference values takes values in a known compad®set

R={r e R"|rp, <1 <rur}. (5.12)

For the purpose of practical output regulation, a set of digakzed proportional con-
trollers will be the focus of the work presented here. Thetimlers considered will be
of the form

= =iy =) i=1,..m, (5.13)
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- centrifugal pump
013
]@; Heat exchanger

Pressure sensor dp5
Cy)
300 [m]
Heat source 200 [m]
10 ¢! v v
\/dpl dpz@ dp (e

f—— 1000 [m] ——>f«——— 500[m] ——>

Figure 5.2: A sketch of a small district heating system.

- Pump

=/ Pipeline
—> Valve

Sensor

Figure 5.3: The hydraulic network diagram.

wherev; > 0 is the controller gain at end-user

The pressure control for theh end-user valve use only the pressure measurement ob-
tained at said valve. Thus, the controllers are decen¢@lizthe sense that the individual
controller use only locally available information.

3 Stability Properties of Closed Loop System

In this section, the main result regarding the closed loapibty properties of the feed-
back control system introduced in the previous sectionlélpresented.

To simplify the notationf” (-) will be used to denoté(K,, K., -). Likewise, A" ()
andp () will be used to denota (K, -) andu (K., -). The closed loop system defined
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by (5.7), (5.8) and (5.13) is given by
Jg=f%(B"q) - T(y(q) —x). (5.14)

whereI’ = diag(y;).

Subsequently, a more specific class of functions will be usdtie expressions of
w(ky, ) andA(k,, -). This more specific class is motivated by the presence ofitenif
flows in the system [3]. The class of functions, which will lmmsidered, is the following

i (Kois T5) = Koi|xi]2; (5.15)
Ai(kpis @) = kil | v (5.16)

An important intermediate result, which will be used foraddishing the stability
properties of the closed loop system, is presented below.
Define the mafF : R* — R™ as follows

F(z) = y(z) — T 5 (BTz). (5.17)

Proposition 11. For the class of functions defined in (5.15) and (5.16), the Ra:
R"™ — R™ defined in (5.17) is a homeomorphism.

The proof of Proposition 11 has been left out of this sectmmaintain the flow of
the exposition, but can be found in Section 4.

As a consequence of Proposition 11, for any veetarR of output reference values,
there exists a unique vector of flow$ € R™ such that

q=F(r), (5.18)
which means that can be expressed in terms@f as
r=y(q*) - T "5 B q"). (5.19)
Using the identity in (5.19), the expression of the closemplgystem in (5.14) can be
replaced by
Jq=t(a,q") — T(y(a) - y(a")), (5.20)

wherefX (q,q*) = f5(B7q) — fX(BTq*). Recall that the vectag* € R” is some
unknown but unique vector of flows, which is constant for gvesnstant vector of
reference values.

Proposition 12. The pointg™ defined by (5.18) is a globally asymptotically stable equi-
librium point of the closed loop system defined by (5.7),) @8l (5.13).

Proof of Proposition 12 Define the variablg = q — g*, and the functio/(q) as

1

V(@) =5 (ada, (5.21)

which has the properties

2Since the motivation for considering the new paradigm isicaty the diameters of the pipes used in the
network, the likelihood for turbulent flows increases.
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° V(O) =0
« V(@) >0,Yq#£0
o lim||g)|—00 V(q) = o0.

The time derivative 0¥/ (q) is given by

SV@) = (@,3q) < 522)
9v(@ = fa-a". P (@) - Tly(@) - y(a')), 529)

The functions\; (k,;, ;) have the properties that they are monotonically increasing
and zero forr; = 0, consequently it applies that

—<x—x*,/\K(x) —/\K(x*)> <0, ¥x £ x*. (5.25)

The mapp(x) has the same properties A8 (x), i.e., it consists of monotonically
increasing functions which are zero foy = 0. Due to these properties, the fact that
x = BT q and the identity in (5.9), the following inequality holds

(a—q*, f%(B"q) - f*(B"q")) <0, Vq # q". (5.26)

Furthermore, since;(g;) is a monotonically increasing function which is zero at
q; = 0, the inequality below is true

(@a—q",y(q) —y(q)) >0, Vg #q". (5.27)

Using (5.26) and (5.27) in (5.23) and observing that 0, the following inequality
is obtained

d

%V(q) < 0,Vq #0. (5.28)
As a consequence of the propertieddiq) and (5.28), the poing = 0 is a globally

asymptotically stable equilibrium point of the closed logystem (see for instance [6],

Theorem 4.2). Considering the change of coordingtesq — q* it is concluded thaty =

q* is a globally asymptotically stable equilibrium point oéthlosed loop system. O

Proposition 12 shows that for every constant vectand gainy; > 0, there exists
a unique constant vecter* such thaig* is a globally asymptotically stable equilibrium
point of the closed loop system. Note that only the propertiethe functiongu(k,, q)
and\(k,, ¢) being monotonically increasing and zerogat 0 are used in the proof of
Proposition 12. This means that the control system is raiousirds uncertainties in the
system parameters.

With the flows in the system convergingdd, the output of the system will converge
to the valuey* = y(q*). Using (5.19), the following relation is given between theetor
r of reference values angt

r—y(q*) =-T'f*B"q"). (5.29)
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Using the definition of’, thei’th component is
* 1 *
ri —ile}) =~ (B ). (5.30)

Letting v; — oo, the right hand side of (5.30) will converge to zero. Frons tii
can be seen that the use of large gains in the controlleratithle output regulation error
become small.

Since the system is globally asymptotically stablg'atthe system state will converge
to g* regardless of the initial conditions. Furthermore, thdidity property is indepen-
dent of the numben of end-users. This has the consequence that flow loops alidhg w
their respective controllers can be added to or removed fhensystem without the need
for redesigning the controller gains in order for the systerhe stable. However, con-
troller gains may have to be redesigned for the purpose @llitg some specifications
on the regulation error. From 5.30, it can be seen that ealiVidual controller can adjust
its own gain freely.

4 Properties of F(q*)

This section provides a proof of Proposition 11, which hasnbesed in deriving the
closed loop properties of the system.

For the specific class ¢f(k,, -) and\(k,, -) defined in (5.15) and (5.16), the output
map (5.8) can be rewritten as

v = (kotlala, - konlgnlan)”, (5.31)

which in turn can be rewritten as

y =H(q)q, (5.32)
whereH(q) € M (n;R) is given by
H(q) = diaquiMiD’ (533)

1=1,...,n.
Likewise, by substituting back with B q, the expression fof(K,, K, -) in (5.9)
can be rewritten as

f(K,, K,,B"q) = -BN(B"q)B”q, (5.34)
whereN(BTq) € M (m;R) is given by
N(B"q) = diag((kv; + ky;)[Bj a). (5.35)

j =1,...,m, wherek,; is non-zero for valve components ahg; is non-zero for pipe
componentsB; is the;jth column of B.
Define the functiorF : R® — R™ as

F(z) = T'y(z) — t%(2). (5.36)
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For the specified class @i k,, ¢) andA(k,, ¢), F(z) can be written as
F(z) = TH(z)z + BN(BT2)B7z, (5.37)
From the above, it can be established ) scales in the sense stated below
F(\z) = A|\[F(z), (5.38)

where\ € R.
Furthermore, note that(\) = A|)\| is bijective, i.e. for every: € R there exists a
uniqueX € R such that
k= A\l (5.39)

The properties (5.38) and (5.39) are instrumental in thefowbProposition 11.

Proof of Proposition 11.As a consequence of (5.27) and the fact fhat 0, the follow-
ing inequality is satisfied

(z—2z",Ty(z) —y(z")]) >0, Vz # z". (5.40)
Likewise, from (5.26) the following inequality is obtained
—(z—z" f5(B"z) — f5(B"z")) > 0, Vz # z". (5.41)
A combination of these two inequalities gives
(z—2",F(z) —F(z")) >0, Vz # z". (5.42)

Definition4.1: [7]. Letf : X — Y, X C R", Y = R". Let the following inner product be
denoted by

(f(x1) — f(x2),x1 — X2) = a(x1,%2).
Thenf is said to be increasing aX¥i, or simply an increasing function if and only if
a(x1,x2) >0, Vx1,x2 € X andx; # x2.

From (5.42) and Definition 4.1, it can be seen thét) is an increasing function for
every pointz € R™.

Lemmad.L [7]. Letf : U — R", whereU is an open convex subsetf.
(a) Iff isincreasing o/, thenf is injective onU.

(b) If f is continuous and increasing &h thenf is a homeomorphism oti® and its inverse
functionf~" : f(U) — U is also increasing of(U).

SinceF(z) is continuous and increasing for every pointe R”, it follows from
Lemma 4.1 thaF(z) is a local homeomorphism.

Proposition 13. For the specified class gf(k., ¢) and A(k,, q) defined in (5.15) and
(5.16), the mafF : R™ — R™ defined in (5.17) is proper.

3f is a homeomorphism off if and only if f : U — V is a homeomorphism, whefié = f(U)
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Proof of Proposition 13.In the proof, the following lemma will be used.

Lemmad.2 [8]. Letf be a continuous map frolR™ intoR"™, thenf is a proper map if and only if:

lim |f(x)| = o0

| x| =00
Thus, if F(-) is proper it should fulfil

lim |F(z)| = oo. (5.43)

|z|— o0

Suppose by contradiction, that some sequdgé ., <y exists, where

lim |z,| = oo (5.44)
n— oo
and
F(z,) € B.(0), ¥n €N, (5.45)

for somer € R.

SinceF(-) is a local homeomorphism, there exits some oped/set R" containing
0 and an open sét Cc R”, such thafF : &/ — V is a homeomorphism. Furthermore, it is
known that) € V sinceF(0) = 0.

Because of the scaling property (5.38)Ryf), there exists somg, € R", A € R and
ry € R, such that

Ay = Znp, (5.46)
and
F(Zn) S BTV (0) cV, (5.48)

wherez,, is unique for a specific choice of
However, this indicates that
meKcCcU (5.49)

whereK = F~1(B,,,(0)) is some compact and thus bounded set.
This is a contradiction since

1
lim |z,|=|<| lim |z,| =00 (5.50)
n—00 A n—oo
O

Theorem 3. [8]. Let f be a map fronR™ into R", thenf is a homeomorphism @&
ontoR™ if and only iff is:

1) alocal homeomorphism

2) a proper map
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From Theorem 3 it follows thdF (z) is a homeomorphism @&" ontoR".
Now, consider the linear transformatiih: R — R™ whereT(v) = I'"'v. Since
I'"!is non-singular, the transformatidry(-) is a diffeomorphism. Thus, the composition

(ToF)(z) =y(z) - T 5 (BT 2), (5.51)

is a homeomorphism.
O

SinceF : R” — R™ is a homeomorphism it is bijective and has a continuous seser
Ffl

F(F'(r)) =r. (5.52)

5 Numerical Results

The proposed proportional controllers have been tested)usimerical simulations. The
results of the simulations are shown in Fig. 5.4 and Fig. SB6e simulated system
consists of two end-users corresponding to the hydrautigor illustrated in Fig. 5.3.
The parameters used in the system afe; = 0.3697, J1o = Jo1 = 0.0559, Joo =
0.2738; k‘pg = k‘pg = 0.0024; k‘pg = k‘pg = 0.0012; k‘p4 = k‘p7 = 0.0014; kpll = kp14 =
0.0021; kys = ky13 = 0.01; ky1o = 0.0013. Furthermore, the functions(k,,-) and
A(kp, -) used in the simulation are the ones introduced in Section 4.

3 I
@ el ] @ gl
o ~
=] =}
04 : 07
o
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0 50 100 150 200 250 300 0 50 100 150

o 50 100 150 200 250 300 [ 50 100 150 200 250 300
time, s time, s

Figure 5.4: The figure shows the result of a numerical sinaradf the system in Fig.
5.3. The figure shows control inputs andus, the controlled variablep, and dps,
and the flow through valves andc;3 obtained with the proportional feedback control.
At time 100 s, the end-user connection consisting@t, c13, c14} is removed from the
system. Attime 200 s the end-user connection is re-ins@rtedhe system.
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First, a scenario where the end-user connection consisfif@i2, c13, c14} is re-
moved from and later re-inserted into the system has beematied. This is simulated
by increasing the hydraulic resistaricg; of c¢,3 to a large value and thereby reducipg
to close to zero. The results are shown in Fig. 5.4. Expfiditle end-user connection is
removed at time 100 s and re-inserted at time 200 s. All sypeameters are maintained
at the same values throughout the simulation, and the detgain~y;, = v, = 2 has
been used. The reference value for the pressure acrossdhisenvalves is indicated by
the solid line at 0.5 Bar in the two plots in the middle.

In Fig. 5.4, it can be seen that a steady state, with an equiibpoint q* =
(q%,a55) ~ (4.1,4.2) Bar, has been reached at time 100 s. Later, when the above
mentioned end-user connection is re-inserted, the samiébeigen point g* has been
reached again at time 300 s. Since the same system paramaretersed throughout the
simulation, it is expected that the same equilibrium poiiit e reached since the rela-
tion between the reference value and the equilibrium pgitité homeomorphism given
by the expression in (5.19). Furthermore, when only onee®@i-is present, it can be
seen that a steady state with an equilibrium pgint ¢; ~ 4.9 Bar is reached between
time 100 s and 200 s.

Secondly, a scenario has been simulated where steps indhetig resistance, ¢, k13
of the end-user valves, c13 are made. This corresponds to a varying demand for heating
at the end-users. The steps are between the values 0.011dndr@e results of the sim-
ulation are seen in Fig. 5.5. Agai, = 72 = 2 and the end-user connection consisting
of {¢12, c13, c14} is removed from and later re-inserted into the system. Spaly, it is
removed between time 300 s and time 600 s.

! r}ﬁ”r“r“ﬂvw T rrr
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Figure 5.5: The figure shows the result of a numerical sinaradf the system in Fig.
5.3. Throughout the simulation, steps between values @10all are made in the
hydraulic resistanceék(g, k,13) of the end-user valves, c13. At time 300 s, the end-user
connection consisting ofcio, c13, c14} is removed from the system. At time 600 s the
end-user connection is re-inserted into the system.
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In Fig. 5.5, it can be seen that the system remains stable wiségp is made in the
hydraulic resistance of the end-user valves.

6 Conclusion

An industrial case study involving a large-scale hydranktwork underlying a district

heating system was investigated. The system under inedistigis subject to structural
changes. A set of decentralized proportional controllergpfactical output regulation

were proposed. The results show that the closed loop systglohally practically stable

with a unique equilibrium point. The decentralized arattitiee of the control design and
the fact that the closed loop system is globally stable mizd@gy to implement structural
changes in the system, while maintaining closed loop stabllhe results were supported
by numerical simulations of a simple two end-user system.

Some natural future extensions of the work presented hédirbeviestricting the con-
trol actions to only positive values and the incorporatibimtegral control actions. Since
the (centrifugal) pumps used in the network are able to debtiwly positive pressures, it
should be examined if the stability properties of the syséeekept when this restriction
is taken into consideration. The incorporation of integrahtrol actions would be in-
teresting with respect to accommodating for the outputleggun error which is present
with the proportional control actions.
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1 Introduction

Abstract

An industrial case study involving a hydraulic network urigieg a district heat-
ing system is investigated. The flexible structure of thevoet calls for control
structure which is able to handle changes in the networlctstre. For this purpose
a set of decentralized proportional controllers have beepgsed. These controllers
make use only of locally available information, and in ortermake implementa-
tion of the control laws possible, the control signals atpineed to be communicated
across the network. To accommodate this a quantized veo$itie control laws are
considered, and the results show that the designed clospdsistem maintains its
stability properties despite the structural changes éhtced in the system.

1 Introduction

The work presented here considers the investigation of@umsinial case study. The case
study involves a large-scale hydraulic network which utidel district heating system.
Specifically, the case study regards a new paradigm for teegulef district heating
systems. By reducing the diameters of the pipes in the né&ther heat dispersion can
be reduced, making it possible to reduce the heat lossewisytstem by 20 % to 50
% [Kallesge(2007)]. Furthermore, the new paradigm alloavsafmore flexible network
structure, which calls for a new control structure whichikeao handle structural changes
in the network, such as the addition or removal of end-udéadlgsge(2007)]. The
case study is part of the ongoing research progpdung & Play Process ContrdIStou-
strup(2009)], which considers automatic reconfiguratibtine control system whenever
components such as actuators or sensors are added to oregtfnowm the system. The
case study has been proposed by one of the industrial paitivetved in the program.

A set of decentralized proportional control actions areppsed to meet the control
objective in the system, which is to maintain the pressuresacthe so-called end-user
valves at a piecewise constant reference point. The ctersalse only locally available
information, which is the pressure measurement at eaclused-

Reducing the pipe diameter in the district heating systeas,the consequence that
the pressure losses across the pipes are increased. Thimpeisated by distributing
a number of (boosting) pumps across the network in order tet pressure constraints
[Kallesge(2007)]. This means that the actuators are gpbgmally separated from the
controllers, making it necessary to communicate the cosigjoals over a communication
network. In order to accomplish this, the control signaks guantized in the sense that
they are piecewise constant taking value in a finite set. fi#kes it possible to send
them across a finite bandwidth network.

The result presented here shows that, given a properlymasiguantizer, the closed
loop system with the quantized control actions is globatlyaated to a compact set,
which can be made arbitrarily small by a proper design of tr@roller gains and quan-
tization parameters. Furthermore, since the result ispaddent of the number of end-
users in the system, the closed loop system will maintaisetis¢ability properties when-
ever end-users are added to or removed from the system.

The model of the system is introduced in Section 2. In Se@&idhe control objective
is introduced along with the proposed controllers and thentjgation map. In Section
4, the stability properties of the closed loop system ardyard. Section 5 presents the
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result of numerical simulations performed on the close@ kgstem. Finally, conclusions
are drawn in Section 6.

Preliminaries

e Throughout the followingC! denotes the set of continuously differentiable func-
tions.

e A continuous function (map) is said to be proper if the ineegrsage of a compact
set is compact.

e A function f : R — R is called monotonically increasing if it is natural order
preservingi.e., for all x andy such thatr < y thenf(x) < f(y).

e M (n,m;R) denotes the set of x m matrices with real entries antf (n; R) =
M(n,n;R).

e A > 0 means thatd is a positive definite matrix,e, A = A" andz' Az >
0,Vx # 0.

e A = diag(z;) means thatl has entries:; on the main diagonal and zero elsewhere.
e Fortwo vectors:, b € R", (a, by denotes the Euclidean scalar product.

o B.(z)={yeR" ||y —x| <r}

2 System Model

In this section, the model of the large-scale hydraulic wekwiill be recalled. The model
is fully described in [DePersis and Kallesge(2009)].

Component Models

The hydraulic network is comprised of three types of twarti@al components: valves,
pipes and pumps as well as a number of interconnections batiise components.
These components are characterized by dual variablesysheffiwhich is the pressure
dropAh across them

Ah = h; — hj, (6.1)

wherei, j are nodes of the network;, h; are the relative pressures at the nodes.

The other variable characterizing the components is theflloiv ¢ through them. The
components in the network are governed by dynamic or algebrpations describing
the relation between the two dual variables.

Valves
A valve in the hydraulic network is described by the follogimligebraic relation
hi = hy = p(ky,q), (6.2)

wherek, is the hydraulic resistance of the valve(k,,:) € C* is proper and for any
constant value of,, is zero aty = 0 and monotonically increasing.
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Pipes
A pipe is described by the dynamic equation
TG = (hi = hj) = Akp, q) (6.3)

whereJ andk, are parameters of the pip&(k,, ) € C! have the same properties as
U(kva )

Pumps

A (centrifugal) pump is a component which is able to maintagtesired pressure differ-
enceAh across it regardless of the value of the fluid flow through fitisTneans that the
constitutive law of the pump is

hi — hj = —Ah, (6.4)

whereAh,, is a signal, which for the purpose of the present exposii®rjewed as a
control input.

Typically, exact values of the parametégsandk, are not known but will be assumed
to be positive and to take values in a known compact set. Eurtbre, the functions
p(ky, ) and(k,, -) are not precisely known. Only their properties of being’ih proper,
monotonic increasing and zero f@r= 0 will be guaranteed.

The varying demand for heating at the end-users in the hjidir@etwork is modelled
by a (end-user) valve for which the hydraulic resistancelmaichanged in a piecewise
constant way. Thus, a distinction is to be made between tHeuser valves and the
remaining valves in the network. Likewise, a distinctiomiade between end-user pumps
and booster pumps in the network. The later are pumps plactteinetwork to meet
constraints on the relative pressures across the netwdr&.fdrmer are pumps located
in the vicinity of the end-user valves and are mainly used &ethe demands of the
end-users.

Network Model

The model of the hydraulic network has been derived by usiotstfrom circuit theory
[DePersis and Kallesge(2009)]. The network is comprised abmponents and end-
users, wheren > n. To the network is associated a gra@hwhere the nodes af
coincides with the terminals of the components and the edfiéscoincides with the
components themselves. A vector of independent flow vaggailidentified as the flows
through the chords of;. These flow variables have the property that they can be set
independently of all other flow variables in the network. Exle chord inG (i.e. to
each independent flow variable) a fundamental flow loop is@ated. Along each of the
fundamental flow loops Kirchhoff’s voltage law holds, whicéin be expressed as

BAh =0, (6.5)

whereB € M (n,m;R) is called the fundamental loop matri&; is a vector consisting
of the pressure drops across the components in the netwbeduihndamental loop matrix
B consists of-1, 0, 1, depending on the structure of the network.

The class of hydraulic networks which are considered hdrsfgaéhe following two
assumptions:
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Assumption 7. [DePersis and Kallesge(2009)] Each end-user valve is imesewith a
pipe and a pump, as seenin Fig. 6.1. Furthermore, each cmictiorresponds to a pipe
in series with a user valve.

Assumption 8. [DePersis and Kallesge(2009)] There exists one and onlycongponent
called the heat source. It corresponds to a valeéthe network, and it lies in all the
fundamental loops.

Remaining network

Figure 6.1: The series connection associated with eaclused-

Proposition 14. [DePersis and Kallesge(2009)] Any hydraulic network dgiigy As-
sumption 7 admits the representation:

Ji=f(Ky,K,,B'q)+u (6.6)

y7(Q7) :,U'L(kv’uq%) B 1= 1,2,,77/ (67)

whereq € R"™ is the vector of independent flows; € R™ is a vector of independent
inputs, which is a linear combination of the delivered pumgsguresy; is the measured
pressure drop across tith end-user valve (see (6.2));c M (n;R)andJ > 0; K, K,
are vectors of system parametef$x,, K, BTq) € C'; pi(kyi,q;) is the constitutive
law of theith end-user valve. In (6.7), it is assumed that the firsbmponents coincide
with the end-user valves.

Under Assumption 7 and Assumption 8, it is possible to sehexbrientation of the
components in the network such that the entries of the fuedd#ahloop matrixB are
equal tol or 0.

A sketch of a simple district heating system with a heat seamd two apartment
buildings is illustrated in Fig. 6.2. The corresponding raudic network is illustrated in
Fig. 6.3. The two end-users are represented by the serieectons{c;, 13,14} and
{¢s,c6, c7}. The heat source is represented by the vélyg} which models the pressure
losses in the secondary side of the heat exchanger of theheate.

1The valve models the pressure losses in the secondary sikle béat exchanger of the heat source.

80



3 Pressure Regulation by Quantized Control Actions

~Cr Centrifugal pump c [—6—}
]@i Heat exchanger 13
CG

Pressure sensor dp5
012( dp4
of
300 [m] T
Heat source 200 [m]
—o <t A4 v
N\ dp . dp,(®) dp 3

—le— 1000 [m] ——»le«—— 500[m] ——>

Figure 6.2: A sketch of a small district heating system.

-~ Pump
=" Pipeline n
—>< Valve

—®~ Sensor

Ny Cq Ng Cg

Figure 6.3: The hydraulic network diagram.

3 Pressure Regulation by Quantized Control Actions

This section introduces the control objective for the syste question along with a set
of proposed control actions to accommodate this objectugthermore, a quantization
map is introduced, which lets the control signals be piesewonstant taking values in a

finite set.

Pressure Regulation Problem

It is desired to regulate the pressugg) @cross théth end-user valve to a given reference
value (;) with the use of a feedback controller using locally avd#ahformation only.
The vecton- = (r4, ..., r,) of reference values take values in a known compacRset

R={reR"[0<r, <r<ru} (6.8)
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For the purpose of practical output regulation, a set of digakzed proportional con-
trollers will be the focus of the work presented here. Thetmiers considered will be
of the form:

ui:—’yi(yi(qi)—m), i=1,2,...,n (69)
where~; > 0 is the controller gain.

The controllers are decentralized in the sense that theithdil controller use lo-
cally available information only. Thus, the control for tith end-user uses information
obtained only at théth end-user, which is the measurement of the pressure datmss
end-user valve.

Quantization Map

This section describes the quantizers which will be usedth@bend, let be a positive
integer,y, a positive real numbes, € (0,1), andyy, = pFy for k = 1,2,...,1 with
p = %g (ie. Y = %wk*l)' The following quantizer is then proposed [DePersis
et al.(2010)]:

Lety : R — R be the map

wO ) 1#:05 < U;
Pk Vg
; T <u; < 7755, 0< k<
U(u;) = :f’“ el (6.10)

—;b(—ui) ,ou <0

The parameterk vy andé of the map (quantizer) are to be designed.
Define® : R™ — R™ asW(u) = (¢(u1),. .., (uy,)) ", then the closed loop system
with the quantized version of the proportional controlaes is given as

Jg= f(Kp, K,,B"q) + ¥(u) (6.11)

The piecewise constant mapg-) changes value whenever the continuous control sig-
nalu; crosses some boundary, as defined in (6.10). The contralsigis governed by
the expression (6.9), whergand~; are constant parameters. Thus, the quantized version
(v (u;)) of the control signal can be replaced with an expressiordeing on a quantized
version of the system outpuf'(y;)) such that

V(=7 (Yi(q) —ri)) = —vi(L(yi) — i) (6.12)
To this end, the following quantized version of the outpuit; ) is considered.
Definee; = y; — r; and letY : R — R be the map
v o 2 6 e
Y(yi) =ri + 0<k<l (6.13)
P
0, w2620
ri—Y(ri—e), <0

DefineY : R* — R asY (y) = (Y(y1),..., Y(y,)) ", andl' = diag(y;), then the
closed loop system (6.11) can be rewritten to

Jq = f(K;I); Kw BTQ) - F(Y(y) - T) (614)
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since the identity in (6.12) is fulfilled.
The closed loop system in (6.14) has a discontinuous rigid kale. Solutions to this
system will here be considered in the sense of Krasovskitiswis.

Definition3.1: [Bacciotti(2004), Bacciotti and Ceragioli(2006)] Amap I — R" is a Krasovskii
solution of an autonomous system of ordinary differentiplaions: = G(x), whereG : R" —
R™, if it is absolutely continuous and for almost everg I it satisfies the differential inclusion
@(t) € KG(p(t)), whereKG(x) = (5., COG(Bs(x)) andcoG is the convex closure of the set
G.

Here, I is an interval of real numbers, possibly unboundedG(f) is Lebesgue
measurable and locally bounded, the operaférassociates t6:(x) a set valued map
which is upper semi-continuous, compact and convex valuedparticular, for each
initial statez, there exists at least one Krasovskii solutioniof= G(x) [Bacciotti and
Ceragioli(2006)].

The Krasovskii solutions of (6.14) are absolutely contmsiéunctions which satisfy
the differential inclusion [Paden and Sastry(1987)]

Jq € f(Kp;Kv;BTQ) _F(K(Y(y)) _T)v (615)

whereK (Y (y)) € x? ;K (Y(y;)) andK (Y (y;)) is given by

%o s %o
J? = LT
v T=om © %7 ey
0<k<]
K(Y(yi)) =ri + b b P (6.16)
A'y_j’ €i§(1+§)%,0§k§l
0, (1+(;)7i >€ 20
T —K(T(T‘Z‘ —Ei)) y GS O

forall A € {135, A € [0,1]}.

4  Stability Properties of Closed Loop System

In this section, the stability properties of the closed Iayptem introduced above will
be examined. Subsequentf (-) will be used to denot¢ (K, K,,-). Furthermore, a
more specific class of functions will be used in the expressiaf ;(k,, ) andA(k,, -).
This more specific class is motivated by the presence of kemifuflows in the system
[DePersis and Kallesge(2009)]. The class of functionschvhiill be considered, is the
following

i(kviy i) = ki |z |23 (6.17)

)\i(kpia {L‘Z‘) = kpi|{L‘Z‘|{L‘Z‘ (618)

First, let the mag’ : R® — R™ be given as

F(z) =y(2) =T~ fx(B'2). (6.19)

2Since the motivation for considering the new paradigm isicaty the diameters of the pipes used in the
network, the likelihood for turbulent flows increases.
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Proposition 15. [Jensen and Wisniewski(2010)] For the class of functionfnee in
(6.17) and (6.18), the map : R™ — R™ defined in (6.19) is a homeomorphism.

As a consequence of Proposition 15, there exists a uniquer«gcc R”™ for each
vector of reference valuesc R™, and the relation betweenandg* is

r=y(¢*) — FflfK(BTq*). (6.20)

This means that the expression for the closed loop systeendiv (6.14) can be
replaced by B
Jqe fr(q) —T(K(Y (y) —y(q")) (6.21)

wherefi (§) = fx(BTq) = fx(BTq").
The following change of coordinates is made

i=q-4q, (6.22)
and the (Lyapunov) functiol : R™ — R is defined as
U R
V(@) = 5(¢79). (6.23)

The time derivative 0¥/ (§) is then given as

V@) = a.74) (624)
Lv(@) € (2. 7@~ TEV W) - y(0) (6.25)
ZV(@) € (0. F(@) ) = (@ DK W) ~ y(a") (6.26)
It can be shown that the following inequality holds [Jensed @isniewski(2010)]
w(@) = (3. k(@) <0, Vi #0. (6.27)

Now, the properties of the second term on the right hand i@ 26) are examined.
To that end, the parametey of the quantizer is first designed such that

n- ) <n+ =12 (6.28)

Vi Vi

Remark4: Since the output functions are monotonic increasing andl izaf; = 0, the following
inequality holds:
(qi - qj)(yl(ql) - yl(Q;)) > 07 1= 17 27 cees T (629)

Now, consider two different situations for(¢;") (the output of the system when=
qr):
1) vi(q}) is exactly equal to one of the quantization levels.

This is the case if the parameters ), § andl are designed such that(¢) = r;
or such that there exist some € {0,1,...,1} so eithery(¢) = r; + 2 if

Vi
vilar) > rioryi(ar) =ri — L= if yig)) <.
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2) yi(q}) lies between two quantization levels.
This is the case if fog; (¢]) > r;, eitherr; < y;(¢f) <7 + % or there exist some
ke{l,....1} suchthah+% <wilg) < m+%. Oriffory;(q}) < r;, either
i — % < yi(qF) < r; or there exist somé € {1,...,1} such that; — % <
b

yilgl) <ri— 3t

First, consider situation 1). In the range whéféy;) = vi(¢;), the following is
fulfilled

(¢ —ai)(C(ys) —wilgi)) =0 (6.30)
and outside the above mentioned range
(¢ — ;)Y (y:) — vilg;)) > 0. (6.31)

If situation 1) is fulfilled for everyi = 1,2, ..., n, then
—(¢—¢" T(v—-y(q"))) <0, Vv e K(Y(y)), (6.32)

sincel’ > 0.

This shows; = ¢* is a globally asymptotically stable equilibrium point oéthlosed
loop system, since
d_ . . - *
5V (@ =w(@) <0, Yg#q (6.33)
Where%V(Ej) is given in (6.26) andv(q) is as defined in (6.27).

A more realistic situation is that there exist some {1,2,...,n} (of course with a
proper rearrangement gf such that situation 2) is fulfilled fary, ¢35, . . . , g,

Now, consider situation 2) fog;. Denote the bounds in 2);, 5; such thato,; <
yi(q}) < Bi. Wheneveuwy; (¢;) is outside the ranggv;, ;)

(@i —q7)(Y(yi) —yilg))) > 0. (6.34)

For a subset of the rande;, 5;) the sign of the product above changes.
Thusfortheses = {q € R" | yi(¢;) ¢ (i, 5i) , i =1,...,p}, itcan be guaranteed
that £V () < w(q) < 0.
DefineS; = R™\ S. For a given point in the s, there exists an index< p (with
a proper rearrangement @f, such that

Sincey;(g;) is proper, monotonically increasing and zerg,r= 0, it admits a continuous
inverse. Thus, the bound @n(q;) means that; is also bounded. Therefore, there exist
some finitem > 0 such that

(¢i = q7)(Y(wi) — wilg7)) > —m (6.36)

and consequently, for each poine S;, there exist a finité// > 0 such that

S

D (@ —a)(X(y:) —wilg;)) > =M. (6.37)

i=1
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Let Ms, > 0 be the bound which fulfils
> (@i — ) (Y (i) — vilg})) > —Ms,, Yg € 81, (6.38)
=1
which exists, sincey; < y;(q;) < f;fori=1,...,s.
Let the setS; C S; denote the set for which the following holds
V4
> (e — @) (C(yi) — wilg))) > Ms,. (6.39)
1=s+1
Note thatg’ is constant and(y;) is bounded, thus there exists finifesuch that (6.39)
is fulfilled, sinceg; is unbounded foi = s+ 1,...,p.
Thus in the sef,, the following inequality holds

—{g— ¢, T(v-y(qg")) <0, Vv e K(Y(y)), (6.40)

sincel” > 0.

Consequently%V(d) < w(q) < 0 on the setSs.

From the analysis above it is concluded that there existesmmpact se@ C R",
whereS; \ S; C Q, with the property that all trajectories of the system isaatted toQ.

Furthermore, whenever the initial conditions of the clokemp system belong to a
compact set, sag, it can be shown by applying Lyapunov arguments that pralaiatput
regulation of the system is achievable. That is: for anyteabily small positive number
e, and for any value of the quantization parametet (0,1) there exist gaing; > 0
and parametersandz, of the quantizer such that for aj > ~/, for anyr € R, any
Krasovskii solutiony(t) of the closed loop system with initial condition @ is attracted
by the setfe € R" | |¢;| < e, i =1,2,...,n}, wheree; = y; — ;. The proof is similar
to the one presented in [DePersis and Kallesge(2010)] daft @ut for brevity.

Since the result is global, the basin of attraction of the&t the entire state space
R™. Furthermore, since the result is independent on the numbé&end-users, it will be
possible to add or remove end-users in the system while aiaing stability in the sense
that for the newly obtained system a compact@ethich attracts the system trajectories
will exist, given that (6.28) is fulfilled.

Quantization with Hysteresis

Using the quantizers defined in (6.13) may result in slidingdes arising along the
switching surfaces, resulting in chattering and consetiyiéme requirement for a large
bandwidth. However, it is possible to replace the quaniiz€6.10) with an alternative
for which it can be guaranteed that no sliding modes willafidePersis et al.(2010)].

Due to space limitations no explicit proof of stability oktilosed loop system using
this alternate quantizer will be provided here. However ptoof can be done by a proper
redefinition of the bounds; andg; in the previous section.

5 Numerical Results

A numerical simulation of the system in Fig. 6.3 in closeddedgth the proposed control
has been performed, and the results are shown in Fig. 6.4.pfdportional control
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Figure 6.4: Result of a numerical simulation of the two emsefsystem in Fig. 6.3. The
figure shows control inputs; andus, the controlled variablép, anddps, and the flow
through valvecs andc;3 obtained with the proportional feedback control. At timed30
s, the end-user connection consisting{ofs, c13, c14} is removed from the system. At
time 600 s the end-user connection is re-inserted into tsesy.

actions defined in (6.9) and the quantizers including hgsisthas been used. A scenario,
where the end-user connection consisting@b, c13, 14}, has been removed from and
later re-inserted into the system has been simulated. Thedshows that the end-user
connection is removed at time 300 s and re-inserted agaimatd00 s. The parameters
used in the simulation are; = v = 2,9 = 0.5,¢¢ = 1 andl = 2. The reference values
arer; = ro = 0.5 Bar, which is indicated by the solid line in the middle twotslin Fig.
6.4. Contrary to the result with the continuous proportla@matrol actions [Jensen and
Wisniewski(2010)], it is evident from Fig. 6.4 that a singleique equilibrium point can
generally not be achieved when the quantized version ofityggptional control actions
are used. For instance a limit cycle-type behaviour is aelidor the single end-user
system between time 300 s and 600 s.

6 Conclusion

An industrial case study involving a large-scale hydranktwork underlying a district
heating system was investigated. The results show thatltised loop system using
a set of quantized proportional feedback control actiorglabally stable in the sense
that there exists a compact etwhich attracts all system trajectories. Furthermore, it
has been shown that this set can be made arbitrarily smalhbgsing a proper set of
parameters for the feedback controller and quantizer. ifsgedty, for the result to hold,
the bounds in (6.28) has to be fulfilled. Since the resultabagl and independent on the
number of end-users in the system, a@etith the above mentioned properties will also
exist for the newly obtained system if it should be necesgandd or remove end-users
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to/from the system. This, along with the decentralized readdi the control structure, will
make it easy to implement structural changes in the systdmie winaintaining closed
loop stability.

Future extensions of the results presented in this papkcamsist of an investigation
of quantized proportional controllers, which are consiedito deliver only positive con-
trol signals. This is important since the (centrifugal) ppswsed in the network are only
able to deliver positive pressure inputs to the system hieamore, it will be interesting to
investigate closed loop stability using proportionakupal control actions in order to ac-
commodate for the output regulation error, which is presétft the proportional control
actions.
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7 Errata

7 Errata

1. Below (6.32) instead ofsincel” > 0., the argument should be changed $mce
I' = diagv;) and~; > 0.

2. Below (6.34) instead ofThus for the sef = {q € R" | y;(¢;) ¢ (i, 53:) , i =
1,...,p}, itcan be guaranteed th%‘/(@) < w(g) < 0., the argumentis changed
to: Thus for the seS = {¢ € R" | yi(q;) ¢ (o, 0:) , @ = 1,...,p}, it can be
guaranteed thats V() < w(g) < 0, sincel’ = diag(y;) and~; > 0.

3. (6.36) should be changed to
Yilai — @) (Y(yi) = yilgi)) > —m

4. (6.37) should be changed to
> vilai = a)(Y(wi) — wilg))) > —M
i=1
5. (6.38) should be changed to
Z%‘(qz‘ =4 )(Y(y:) —vilai)) > —Ms,, Vg € &
i=1

6. (6.39) should be changed to

p

> vila —a)(C(:) = vila))) > Ms,
i=s+1

7. Below (6.40) instead ofsincel” > 0., the argument should be changed smce
I' = diag(y;) and~; > 0.
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1 Introduction

Abstract

An industrial case study involving a large-scale hydrao&twork is considered.
The hydraulic network underlies a district heating systerhe network is subject
to structural changes, such as the addition or removal ofuseds. The actuators
(pumps) in the system are limited to non-negative actuatédnes. The problem of
controlling the pressures across the so-called end-udezsvtnp a vector of desired
reference values is described. The results show that gioaetical output regulation
can be achieved using a set of proportional control actidmisiware constrained to
non-negative values. Since the result is global, strubtinanges can be implemented
while maintaining closed loop stability of the system.

1 Introduction

This work investigates an industrial case study of a largéedeydraulic network under-
lying a district heating system. Specifically, a new paradigr the design of district
heating systems is considered in the case study. It has lsseased that a reduction of
the pipe diameter used in district heating systems, whidlr@duce heat dispersion, can
reduce the heat losses with up to 50 % [1]. Furthermore, thepagadigm also leads
to a more flexible network structure, which calls for a coharehitecture which is able
to handle structural changes in the system, such as theéadditremoval of end-users.
The case study has been proposed by one of the industriakpsiihvolved in the ongo-
ing research programlug & Play Process Contrdb]. This research program considers
automatic reconfiguration of the control whenever comptssuinch as sensors, actuators
or maybe even entire subsystems are added to or removed ftontral system.

A set of decentralized proportional control actions willli#gized to accommodate the
control objective, which is to keep the pressure drop adtesso-called end-user valves
at a desired reference value. The controllers are deceeitleds they use only locally
available information, which is the pressure measuremesdeh of the end-users. The
actuators (typically centrifugal pumps) used in the hydecanetwork are limited in their
actuation in the sense that they are only able to delivermemyative pressures. Therefor,
the control actions are subject to a non-negativity coirgtra

The result presented here comprises an important exten§ithre result presented
in [2], where it was shown that the closed loop system is sglotially attracted to a
neighbourhood of the desired equilibrium. That is; for apnynpact set of initial con-
ditions, sayQ, the basin of attraction can be designed to contdiby increasing the
gains. Furthermore, the attractor set can be made arbjtsangll by increasing the gains
of the controller. However, if structural changes, suchhasaddition or removal of end
users, are introduced in the system, the results cannoagies closed loop stability of
the newly obtained system without a proper redesign of tiérobgains.

Whereas, the analysis presented here shows that the ddizautproportional con-
trollers subjected to the constraints, leads to a closeg kystem which is globally
asymptotically stable with a unique equilibrium point. Bdugh the attained equilibrium
point is different from the desired one. By adjusting thengaised in the controllers,
the output regulation error can be made arbitrarily smatisTesult, which is the origi-
nal contribution of this paper, is independent on the nunobend-users in the system;
and as a consequence, end-users can be added to or remoudtidreystem while still
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maintaining the stability properties of the closed loopteys since the initial conditions
of the newly obtained system are guaranteed to belong toasie bf attraction.

The model of the system is introduced in Section 2. In Se@iahe control objec-
tive is introduced along with the proposed controllers dr@lrion-negative constraints.
In Section 4, the stability properties of the closed looptesysare analysed. Section 5
presents the result of numerical simulations performedhenctosed loop system. Fi-
nally, conclusions are drawn in Section 6.

Preliminaries

e Throughout the following(’! denotes a continuously differentiable function.

e A continuous map is said to be proper if the inverse image obrapact set is
compact.

e Foravectorr € R™, x; denotes théth component of:.
e Fortwo vectorse,y € R, (x,y) denotes the Euclidean scalar product.

e M (n,m;R) denotes the set of x m matrices with real entries antf (n; R) =
M (n,n;R).

e A > 0 means that! is a positive definite matrix.

e For a square matrid, A = diag(z;) means thatd hasz; as entries on the main
diagonal and zero elsewhere.

2 System Model

In this section, the model of the large-scale hydraulic oekvwvill be described. The
model is derived in [2], which the interested reader canrreféor more details.

Component Models

The hydraulic network is comprised of three types of twarti@al components: valves,
pipes and pumps as well as a number of interconnections batiise components.
These components are characterized by dual variablesysheffiwhich is the pressure
drop Ah across them

Ah = h; — hj, (7.1)

wherei, j are nodes of the network;, ; are the relative pressures at the nodes.

The other variable characterizing the components is théflloiv ¢ through them. The
components in the network are governed by dynamic or algebrpiations describing
the relation between the two dual variables.

Valves

A valve in the hydraulic network is described by the follogyimligebraic relation

hi — hj = ,U(km Q)a (72)
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wherek, > 0 is the hydraulic resistance of the valyg¥,, -) € C' is proper and for any
constant value ok, is zero aty = 0 and monotonically increasing.

Pipes

A pipe is described by the dynamic equation
jq = (hz - h]) - /\(kpa Q) (73)

whereJ > 0 andk, > 0 are parameters of the pipafk,,-) € C' have the same
properties ag (k. -).

Pumps

A (centrifugal) pump is a component which is able to maintagtesired pressure differ-
enceAh across it regardless of the value of the fluid flow through fitisTmeans that the
constitutive law of the pump is

hi — h; = —Ah, (7.4)

whereA#h, is a non-negative signal, which for the purpose of the prtesgposition, is
viewed as a control input.

Typically, exact values of the parametégsandk, are not known but will be assumed
to be positive and to take values in a known compact set. €urtbre, the functions
p(ky, ) andA(k,, -) are not precisely known. Only their properties of bedity proper,
monotonic increasing and zero f@r= 0 will be guaranteed.

The varying demand for heating at the end-users in the hjidraetwork is modelled
by a (end-user) valve for which the hydraulic resistancelmaichanged in a piecewise
constant way. Thus, a distinction is to be made between tHeuser valves and the
remaining valves in the network. Likewise, a distinctiomiade between end-user pumps
and booster pumps in the network. The latter are pumps pliacthe network to meet
constraints on the relative pressures across the netwdré.fdrmer are pumps located
in the vicinity of the end-user valves and are mainly used &eithe demands of the
end-users.

Subsequently,(-) (A(+)) will be used to denotg(k,, -) (A(kp, -)).

Network Model

The model of the hydraulic network has been derived by usiotstfrom circuit theory
[2]. The network is comprised of: components and end-users, wherer > n. To the
network there is associated a graphwhere the nodes @ coincides with the terminals
of the components and the edgesdtoincides with the components themselves. A
vector of independent flow variables is identified with thevéidhrough the chordof G.
These flow variables have the property that they can be separtiently of all other flow
variables in the network. A fundamental flow loop is ass@&ddb each chord i (i.e. to

1Let T denote the spanning tree 6f i.e. a connected subgraph which contains all node§ bfit no
cycles. Then the edges Gfwhich are not included ifi” are the chords of (see [2]).
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each independent flow variable). Along each of the fundaatdioiv loops Kirchhoff’s
voltage law holds, which can be expressed as

BAh =0, (7.5)

whereB € M (n,m;R) is called the fundamental loop matri&h is a vector consisting
of the pressure drops across the components in the netwdri.efiitries of the funda-
mental loop matrixB consist of—1,0, 1, and the values depend on the structure of the
network.

The class of hydraulic networks which are considered heisfgahe following two
assumptions:

Assumptior.1: [2] Each end-user valve is in series with a pipe and a pumpeeas & Fig. 7.1.
Furthermore, each chord ¢hcorresponds to a pipe in series with a user valve.

Assumptior2.2 [2] There exists one and only one component called the heatesolt corresponds
to a valvé of the network, and it lies in all the fundamental loops.

Valve

Remaining network

Figure 7.1: The series connection associated with eaclusad-

Proposition 16. [2] Any hydraulic network satisfying Assumption 2.1 adritiis repre-
sentation:
Ji=f(BTq) +u (7.6)

whereq € R™ is the vector of independent flows; € R”™ is a vector of independent

inputs, which is a linear combination of the delivered pumgspuresy; is the pressure

drop measured across théh end-user valve (see (7.2)), € M(n;R) andJ > 0;

f(BTq)is aC?! vector field;u;(g;) is the constitutive law of théth end-user valve. In

(7.7), it is assumed that the firstcomponents coincide with the end-user valves.
Definingz = BT ¢, the vector fieldf (z) can be written as [2]:

f(@) = =BA(@) + u(x)) (7.8)

whereX(z) = [ (1), -+, Am(20)] T () = [p1(z1), - -+ o (200)]

2The valve models the pressure losses in the secondary side b&at exchanger of the heat source.
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Under Assumption 2.1 and Assumption 2.2, it is possible tect¢he orientation of
the components in the network such that the entries of thegfiorental loop matrix3 are
equal tol or 0.

A sketch of a simple district heating system with a heat seamd two apartment
buildings is illustrated in Fig. 7.2. The corresponding faudic network is illustrated in
Fig. 7.3. The two end-users are represented by the serieectons{c, 13, c14} and
{es,c6, c7}. The heat source is represented by the vélyg} which models the pressure
losses in the secondary side of the heat exchanger of theheate.

~Cr Centrifugal pump c [—6—}
]@i Heat exchanger 13
CG

Pressure sensor dp5
012( dp4
of
300 [m] T
Heat source 200 [m]
ﬁcm ¢y i
N\ dp . dp,(®) dp 3

—le— 1000 [m] ——»le«—— 500[m] —>

Figure 7.2: A sketch of a small district heating system.

O~ Pump
=" Pipeline n
—>< Valve

—(®~ Sensor

Figure 7.3: The hydraulic network diagram.
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3 Pressure Regulation by Positive Constrained Proportiona
Control

In this section, the pressure regulation problem is intoedualong with a number of
proposed control actions to accommodate the control albgedturthermore, a saturation
map is introduced, in order to take into account the facttte(centrifugal) pumps used
in the system are only able to deliver non-negative actoafitiis means that the control
actions are subject to constraints.

Pressure Regulation Problem

It is desired to regulate the pressugg(§;)) across théth end-user valve to a given refer-
ence value;) with the use of a feedback controller using locally avd#abformation
only. The vector = (r4,...,r,) of desired reference values is assumed to be piecewise
constant, taking values in a known compactBet

R:{TGRn|O<Tm§7"i§T‘]u} (79)

For the purpose of practical output regulation, a family e€entralized proportional
controllers will be the focus of the work presented here. Gdwtrollers considered will
be of the form:

ui:—%(yi(qi)—m), i:1,2,...,n (710)

wherev; > 0 is the controller gain.

The controllers are decentralized in the sense that theithdil controller uses lo-
cally available information only. Thus, the control for tith end-user uses information
obtained only at théth end-user, which is the measurement of the pressure atr@ss
end-user valve.

Constraint Map

Since the pumps in the hydraulic network are only able tovdefpositive pressures, it is
desired to constrain the control signaldo positive values. To that end, let the constraint
maps : R — R be given as

r x>0
s(x) —{ 0 2<0 (7.112)
Now, defineS(u) = (s(u1),...,s(u,))”, then the closed loop system with the con-
strained control is given as
Ji = f(BTq) + S(u). (7.12)

The control signat; is governed by the expressionin (7.10), whgrandr; are constant.
Thus the constrained version of the control sigs(@l;) given by (7.11) can be replaced
by an expression depending on a constrained version of sterayoutputs; (v;(q:)),
defined by

s(ui) = —vi(5:(yi(qi)) — 7i) (7.13)
which, recalling (7.10), can be rewritten as
s(=vi(yi(a:) — i) = —7i(5i(yi(qi)) — 74)- (7.14)
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The constraint mag; : R — R fulfilling (7.14) is

_ r <71
si(x) = { B N . (7.15)

Let S(y(q)) = (51(y1(q1)),---,3n(yn(ga)))T, then by using the relation in (7.14), the
closed loop system (7.12) can be written as

Ji=f(B"q) —T(5(y(q) —r) (7.16)

wherel" = diag(v;).

4 Stability Properties of Closed Loop System

Subsequently, a more specific class of functions will be usetle expressions qif(-)
and\(-). This more specific class reflects the presence of turbflents in the system
[2]. The following class of functions will be considered

/LZ(LC@) = km|{L‘Z‘|{L‘Z‘ (717)
Now, let the mapt' : R™ — R™ be defined as follows
F(z) =y(z) - T f(BT2). (7.19)

Proposition 17. [6] For the class of functions defined in (7.17) and (7.18) thap
F : R" — R™ defined in (7.19) is a homeomorphism.

As a consequence of Proposition 17, there exists a uniquervgce R” for every
vectorr € R™ of reference values, such that

¢ =F(r) (7.20)

and
r=y(q") - T f(B"q"). (7.21)
To simplify notation, defing = ¢ — ¢* andf(q) = f(BT (G + ¢*)) — f(BT¢*).
Using (7.21), it is possible to rewrite the closed loop sys(é.16) as

Ji= f(@) —T(S(y(a) — y(a"). (7.22)

The following conjecture will be instrumental in the detiea of the stability prop-
erties of the closed loop system.

Conjecture 2. Under Assumption 2.1 and Assumption 2.2 the vectalefined by (7.20),
fulfils thaty;(¢}) < r;, whenl' = diag(v;), v > 0 andr € R.

3Since the motivation for considering the new paradigm isicaty the diameters of the pipes used in the
network, the likelihood for turbulent flows increases.
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Conjecture 2 is supported by simulation results similahtuse presented in Section
5. Furthermore, the conjecture can be proved to hold for aetwebuser systenn(= 2).

Proof of Conjecture 2 fon = 2. Let C' denote the set of components in the network.
Furthermore, letZ; and £, denote the chords of the graph associated to the network.
Create a partition of’ denoted”;, C5, C12 such that the flow through componentgiin
equals the flow throughi,, the flow through components @k, equals the flow through
Lo andClg = C\ (Cl U CQ)

Consider the system in Fig. 7.3 théh = {c1,...,c14}. By Assumption 2.1 let
L, be given by the series connecti¢a;, c7} and L be given by the series connection
{c13,c14}. Then the partition is given a8; = {cs,...,cs}, Co = {c11,...,c14} and
Ci2 = {c1,¢2,¢9,c10}.

For a two end-user system the right hand side of (7.21) caawetten as

( v (q}) )+ [ 5 0 ] ( A (q7) + Mz (qi + g3) ) (7.23)

i
y2(a5) 0 o |\ An2(ad) + Az (af +a3)

whereAu (q7) = 3 jec, Milan)+ha(ar)s A2 (a3) = 2, Ailaz)+1i(03); Az (gi+
@) = Yiccy, Nildh + ¢5) + wilgi + ¢5). Note, that the functiondy; (-), Auz(-) and
Au12(+) are monotonically increasing and zero when the argumeet s z

The proof of the proposition is by contradiction. Suppos& th(q;) > 1 > 0.

Then, sincey;(-) is monotonically increasing and zero in zero, it followsttha > 0
and consequently thatu; (¢7) > 0. Sincey; > 0 and (7.21) needs to be fulfilled, it is
concluded thahu12(¢f + ¢3) < 0 and consequently thgt < 0. However, this means
that

* 1 * * *
ro # y2(q3) + g()\m((b) + Apia(gr +¢3)) <0, (7.24)

sincer, > 0. This gives a contradiction since (7.21) is not fulfilled. O

Proofs similar to the one above have been made fer3 andn = 4.
Proposition 18. Suppose Conjecture 2 holds, that igq}) < r;, with the pointg*

defined by (7.20). Thegi* is the global asymptotically stable equilibrium point oéth
closed loop system (7.16).

Proof of Proposition 18 First, let the Lyapunov function candidaté : R — R be
given as

V(q) = %@, Jq), (7.25)
which has the properties
e V(0)=0
e V(q)>0,V3#0
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The time derivative o¥/(g) is given by
d_ . _ R
5V (@) =12, Jq). (7.26)

Using the expression (7.16) for the closed loop system|ithederivative (7.26) oV (g)
can be expressed as

9V@) = @ F@) — (@ T(Swla) — vla)) (7.27)
It can be shown that the following inequality holds [6]
W(q) = =4, (@) > 0, Vg # 0. (7.28)

The second term on the right hand side of (7.27) can be widisen
—(@.T(S(y(@) —y(@) = = > (5 (yi(a:) — vi(a))) (7.29)
1=1

sincel is diagonal with entries;.
Recall that the functiong;(¢;) = wu:(¢;) are monotonically increasing and zero for
¢; = 0. Because of this, the following holds

¢ < q; < vi(a:) < vilg)- (7.30)
Now, the following two situations fog; are examined
1) ¢ <gq;
2) ¢ >q;
for the product
Yilai — a7)(5i(yi(@) — i) (7.31)

First, consider situation 1). Sineg < ¢, using the property (7.30), it follows that
yi(q:) < yi(qf). Furthermore, by Conjecturei®(q;) < i, then it follows from (7.15)
thats;(yi(¢;)) = vi(q:). In conclusion for situation 1)

i(e — ¢7)(5i(yi(ai)) — vi(g7)) = 0 (7.32)

sincey; > 0. Furthermore, the inequality is strict foy # ¢;.

Now, consider situation 2). Again, singe> ¢, from (7.30), it follows thay; (¢;) >
yi(¢;7). By Conjecture 2 and (7.15), it follows thai(y;(¢;)) > vi(¢;). In conclusion for
situation 2)

Yilai — ;) (5i(yi(ai)) — vilg7)) >0 (7.33)
again with strict inequality fog; # q;.
From the consideration above it is concluded that

d

EV@ < —=W(q) <0,Vq#0. (7.34)
with W (g) as defined in (7.28) and consequently that 0 is a global asymptotically
stable equilibrium point of the closed loop system (7.16). O
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Using (7.21) and thdt is diagonal with entries; > 0, it can be seen that the follow-
ing holds

ri = ys(a?) — %fxBTq*), (7.35)

which shows that the use of large gamswill let the output regulation error become
small.

Furthermore, since Proposition 18 is independent of thebmumof end-users in the
system, the closed loop system will remain stable when gddinremoving end-users
to or from the system. However, note that the equilibriunmpei will change when
structural changes are made, so it may be necessary to #ajuintroller gains in order
to keep the same level of performance.

5 Numerical Results

The proportional controllers with the non-negativity cmasts have been tested using
numerical simulations. In the simulations, a four end-system like the one illustrated

in Fig. 7.4 has been used. The end-users in the system argisethpf the connections

{ca,es,¢6}, {c, cr0, c11}, {cis, €19, coo} @nd{cas, caa, c25}. The gainsy:, v2,v3,71 =

~O- Pump
== Pipeline
—b<— Valve
—~(®~ Pressure diff. sensor
@ Relative pressure sensor
© Expansion tank

Figure 7.4: The hydraulic network diagram for the systenimvour end-users which has
been used in the simulations.

2 and references,, o, 3,74 = 0.2 Bar have been used.

First, a scenario, where the two end-users consistifi@i@f c19, c20} and{cas, c24, c25}
have been removed from and later re-inserted into the sy$tambeen simulated. The
results of the simulation are shown in Fig. 7.5. As can be setns figure a steady state
q*(100) = (0.1517,0.1502,0.1432,0.1424) m*/h has been attained before the end-user
connections are removed at time 100 s. After the end-us@emions have been removed
a new steady statg (200) = (0.1707,0.1756) m?/h is attained before the re-insertion of
the end-user connections at time 200 s. At time 300 s, thegtate;* (300) = ¢*(100)
is attained. This is expected since the niap) defined in (7.19) is a homeomorphism.
Furthermore, notice that the steady state value®ofdp,, dps, dp, fulfils Conjecture 2.

Secondly, a scenario has been simulated in which the hydrasistanceX,s, k.10,
k19 @andk,o4) Of the end-user valves is varied. This corresponds to atiani in the
heating demands at the end-users, and is considered thalis@irbance in the system.
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Figure 7.5: Result of a numerical simulation of the four ersér system in Fig. 7.4. The
figure shows control inputs; , us, us, us, the controlled variablép,, dp-, dps, dp4, and
the flow through valves,,, c19, c19, ¢5 Obtained with the proportional feedback control.
At time 100 s, the end-user connections consistingf, c19, cao} and{cas, ca4, ca5 }
are removed from the system. At time 200 s the end-user ctions@re re-inserted into
the system. The solid line at 0.2 Bar in the two middle plotidates the reference value.

The results of the simulation are given in Fig. 7.6. As seahimfigure, the closed loop
system remains stable also with the disturbances presér system.

6 Conclusion

An industrial case study involving a large scale hydraugtwork underlying a district
heating system has been examined. A set of decentraliz@dpimnal control actions
to accommodate the output regulation problem were pregeftes control actions were
modified to take into consideration non-negative constsaom the actuators in the sys-
tem. The results show that the proposed control actiondxee@provide global practical
asymptotic output regulation. Furthermore, since theltésindependent on the number
of end-users in the system, end-users can be added to oredrfrom the system while
maintaining the closed loop stability properties of theteys

Some natural future extensions of the work presented hee iiscorporate event
based control actions as in [7] and [3, 4], which explicitiké the non-negativity con-
straints into consideration. Furthermore, incorporatbmtegral control action is seen
natural in order to eliminate the output regulation errdrich is present with the propor-
tional control actions.
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Figure 7.6: Result of a numerical simulation of the four ersg+r system in Fig.
7.4. Throughout the simulation steps are made in the hyidreegistance of the end-
user valves. At time 100 s, the end-user connections cargisf {cis, c19,c20} and
{ca3, c24, c25 } are removed from the system. At time 200 s the end-user ctions@re
re-inserted into the system.
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1 Introduction

Abstract

The work presented here considers an industrial case sitidy.case study in-
volves a large-scale hydraulic network which underliesstridit heating system. The
structure of the network is subject to change, such as thevaor addition of end-
users. The problem of controlling the output of the systera tiesired reference
point is addressed. The actuators in the system are geacgiplseparated from
the controllers, which means that control signals shoulddmemunicated via a com-
munication network with finite bandwidth. Furthermore, #wtuators are limited to
positive actuation only. This is solved by using decertealicontrol architecture us-
ing quantized proportional control signals limited to pivei values. The results show
that practical output regulation is achievable. Furtheeni is possible to add and
remove end-users while the system is on-line without déstialg the closed loop
system.

1 Introduction

An industrial case study involving a large-scale hydranktwork is considered. The
hydraulic network underlies a district heating system. €ase study considers a new
paradigm for designing district heating systems. By redgithe diameter of the pipes
used in the network and using a multi-pump architectureast heen assessed that a
reduction in the heat losses in the system of up to 50 % is Iplesgi]. Furthermore,
a more flexible network structure is achievable, in whichifmtance end-users can be
arbitrarily added to or removed from the system.

The added flexibility in the network structure calls for a toharchitecture which is
able to handle these types of changes in the network steidtuthe work presented here,
a set of decentralized proportional control actions willibbéhe focus. The individual
control signal relies only on information obtained at théiwidual end-user. Furthermore,
since the (centrifugal) pumps used in the system are onky tabtleliver non-negative
actuation to the hydraulic network, the control signald Wwé limited to non-negative
values. Lastly, the multi-pump architecture leads to thieators being geographically
separated from the controllers. This means that it is nacg#s communicate the control
signals over a communication network. To accommodate #wsinthe control signals
are quantized in the sense that they are piecewise considtake value in a finite set.
This has the benefit that it is possible to communicate themsaca finite bandwidth
communication network.

The results presented here represents an important extesfsthe results presented
in [2]. In [2], it was shown that semi-global practical outpegulation is achievable
using the proposed control architecture. That is, thedtajees of the system are locally
attracted to a neighborhood of the desired equilibrium, fmcevery initial condition
contained within some compact set, 33y the basin of attraction can be designed to
cover@Q by increasing the gains of the controllers. Furthermore attractor set can be
made an arbitrarily small neighborhood of the desired éayiilm by increasing the gains
of the controllers.

On the other hand, the results presented here show that) giyeoperly designed
maximum quantization level, the trajectories of the clokeg system are globally at-
tracted to a compact set. That is, for an arbitrary value efcitntroller gain, a compact
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attractor set exists with a global basin of attraction, giaeproper design of the maxi-
mum quantization level. Furthermore, the attractor seto@amade arbitrarily small with
a proper design of the controller gains and quantizatioarpaters.

Since the result presented here is global and independt g nfimber of end-usersin
the system, itis possible to add and remove end-usersioffre system while maintain-
ing the closed loop stability properties. That is, for thevlyeobtained system a compact
set of attractors with a global basin of attraction will éxisowever, to keep the same
level of performance it may be necessary to adjust the clhertigains and the parame-
ters of the quantizer. Furthermore, since the controllexglacentralized, changes in the
network structure are easy to implement.

The outline of the paper is as follows. The component and ortwodels are de-
scribed in Section 2. In Section 3, the output regulatiorbfam is described along with
the proposed set of controllers. The stability propertiethe closed loop system are
derived in Section 4. The results of tests performed on dits®p system in a laboratory
setup are presented in Section 5. Finally, conclusionsrarerdin Section 6.

Nomenclature

LetR™ denote the:-dimensional Euclidean space, with the standard scalaugta, b)
between two vectora, b € R™. For a vectorr € R", x; denotes thé’'th element ofz.
The notationR”; denotes the positive orthant Bf*, that isR”} = {z € R" | z; > 0},

i € {1,2,...,n}. The symbolZ denotes the set of integers aAid the set of integers
greater than zero. Let/(n, m;R) denote the set of x m matrices with real entries,
andM (n;R) = M(n,n;R). For a matrixA, the notation4,; will be used to denote the
entry in thei'th row and;’th column of A. For a square matriA, A > 0 means that

A is positive definite, i.e.A = AT andx”Ax > 0Vx # 0. For a square matriq,

A = diag(z;) means thatA hasz; as entries on the main diagonal and zero elsewhere.
Throughout the followingC' denotes the set of continuously differentiable maps. A
continuous function (map) is said to Ipgoper if the inverse image of a compact set
is compact. A functionf : R — R is called monotonically increasing if it is order
preserving, i.e., for alk andy such thatr < y then f(z) < f(y). The open ball with
radiusr and centred ix is denotedB,.(x).

2 System model

In this section, the model of the large-scale hydraulic oekvwill be described. The
model is derived in [2], which the interested reader canrrieféor more details.

Component Models

The hydraulic network is comprised of three types of twori@al components: valves,
pipes and pumps as well as a number of interconnections batii®se components.
These components are characterized by dual variablesysheffiwhich is the pressure
dropAh across them

Ah = h; — h;, (8.1)

wherei, j are nodes of the network;, ; are the relative pressures at the nodes.
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2 System model

The other variable characterizing the components is théflloiv ¢ through them. The
components in the network are governed by dynamic or algebrpiations describing
the relation between the two dual variables.

Valves

A valve in the hydraulic network is described by the follogrialgebraic relation

hi — hj = M(q) = ,LL(’U, q)a (82)

wherev > 0 is the hydraulic resistance of the valygj, -) € C! is proper and for any
constant value of is zero aty = 0 and monotonically increasing.

Pipes
A pipe is described by the dynamic equation
Jq = (hi —h;) — XMa) (8.3)

whereA(q) = \(p,q); J > 0 andp > 0 are parameters of the pip&{p,-) € C! have
the same properties asv, -).

Pumps

A (centrifugal) pump is a component which is able to maintagtesired pressure differ-
enceAh across it regardless of the value of the fluid flow through fitisTmeans that the
constitutive law of the pump is

hi — hj = —Ah, (8.4)

whereA#h,, is a non-negative control input.

Typically, exact values of the parameterandp are not known but will be assumed
to be positive and to take values in a known compact set. Eurtbre, the functiong(-)
and)(-) are not precisely known. Only their properties of beingih proper, monotonic
increasing and zero far= 0 will be guaranteed.

The varying demand for heating at the end-users in the hjidraetwork is modelled
by a (end-user) valve for which the hydraulic resistancelmaichanged in a piecewise
constant way. Two types of pumps are present in the netwlekehd-user pumps, which
are mainly used to meet the demand at the end-users, ane&bpastps which are used
to meet constraints on the relative pressures in the network

Network Model

The model of the hydraulic network has been derived by ugintstfrom circuit theory
[2]. The network is comprised ofi components and end-users, whera > n. To the
network there is associated a graphwhere the nodes @ coincides with the terminals
of the components and the edgesdtoincides with the components themselves. A
vector of independent flow variables is identified with thevéidhrough the chordof G.

1Let T denote the spanning tree 6f i.e. a connected subgraph which contains all node§ bfit no
cycles. Then the edges Gfwhich are not included ifi” are the chords of (see [2]).
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These flow variables have the property that they can be separtiently of all other flow
variables in the network. A fundamental flow loop is ass@&ddb each chord i (i.e. to
each independent flow variable). Along each of the fundaatdioiv loops Kirchhoff’s
voltage law holds, which can be expressed as

BAh =0, (8.5)

whereB € M (n, m;R) is called the fundamental loop matri&h is a vector consisting
of the pressure drops across the components in the netwdr.efitries of the funda-
mental loop matrixB consist of—1,0, 1, and its value depends on the structure of the
network.

The class of hydraulic networks which are considered hergfg¢he following three
assumptions:

Assumptior2.1: [2] The graphg is connected.

Assumptior2.2 [2] Each end-user valve is in series with a pipe and a pumpeas & Fig. 8.1.
Furthermore, each chord ¢hcorresponds to a pipe in series with a user valve.

Assumptior2.3. [2] There exists one and only one component called the heatesolt corresponds
to a valvé of the network, and it lies in all the fundamental loops.

Remaining network

Figure 8.1: The series connection associated with eaclused-

Proposition 19. [2] Any hydraulic network satisfying Assumptions 2.1 an?l &dmits
the representation:
Jq=f(BTq)+u (8.6)

whereq € R"™ is the vector of independent flows; € R™ is a vector of independent
inputs, which is a linear combination of the delivered pumgspuresy; is the pressure
drop measured across thigh end-user valve (see (8.2)); € M(n;R) andJ > 0;
f(BTq) € O, ui(q;) is the constitutive law of théh end-user valve. In (8.7), it is
assumed that the first components coincide with the end-user valves.

2The valve models the pressure losses in the secondary side b&at exchanger of the heat source.
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3 Stabilization by Positive and Quantized Proportional Control

Definingx = B”q, the mapf(x) can be written as [2]:
£(x) = ~B(A(x) + p(x)) (8.8)
whereX(x) = [A1(21), ..+, A (o)) T (%) = [p1(21), - -+ o (2)] T

Under Assumption 2.2 and Assumption 2.3, it is possible tecs¢he orientation of
the components in the network such that the entries of thégiorental loop matriB are
equal tol or 0.

A sketch of a simple district heating system with a heat seamd two apartment
buildings is illustrated in Fig. 8.2. The corresponding raudic network is illustrated in
Fig. 8.3. The two end-users are represented by the serieectons{c, 13,14} and
{cs, 6, c7}. The heat source is represented by the vtyge} which models the pressure
losses in the secondary side of the heat exchanger of theheate.

- centrifugal pump
013
]@; Heat exchanger
Cs

Pressure sensor dp5
el ) dp,
of )
300 [m] A
Heat source 200 [m]
10 ¢! v v
\/dpl dpz@ dp (e

f—— 1000 [m] ——>f«—— 500[m] ——>

Figure 8.2: A sketch of a small district heating system.

3 Stabilization by Positive and Quantized Proportional Corrol

Pressure Regulation Problem

It is desired to regulate the pressuygeacross theth end-user valve to a given reference
valuer; with the use of a feedback controller using locally avaighformation only. The

vectorr = (ry,...,r,) of desired reference values is assumed to be piecewiseaconst
taking values in a known compact et
R={reR"[0<ry, <r <ru} (8.9)

For the purpose of practical output regulation, a set of digabzed proportional con-
trollers will be the focus of the work presented here. Thetimlers considered will be

of the form: ( )
) i) s oy S .
ul_{O, vi > 7 ,i1=1,2,...,n (8.10)

where~; > 0 is the controller gain.
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- Pump
=/ Pipeline n
—><— Valve

Sensor

Figure 8.3: The hydraulic network diagram.

Quantization Map

This section describes the family of quantizers which wéldonsidered in the exposi-
tion, which are a set of piecewise constant, non-decre&sirggions taking non-negative
values in a finite set. Furthermore, the quantizers will Haysteresis in order to prevent
sliding modes and thereby chattering.

First, forl Z+ let A = {140,1417 Ce ,Al} andB = {BQ,Bl, e 7Bl+1} be the
following family of intervals

A = {(~00, ], (a0, 1], ..., (-2, 1-1], (a1-1,00) } (8.11)
B = {(—00, Bol, (Bo, B1], - - - (Bi=2, Bi—1], (Bi—1, B1), (B, 00) } (8.12)

wherel, a; and3; fori = 0,1,...,l — 1 andj = 0,1,...,] are design parameters
of the quantizer and such thgt < a; < (41 fori = 0,1,...,1 — 1. Note that
I+1

R = UA_UB

Letwm : IR{ — R be the map

i, ift—to/\x(to)eAk
BA z(t) = B A (@(t7)) = i, or
b @%=MAwm@@ﬂ)=wﬁlgkgz
U (2(t)) = wB if 2(t) = cax—1 A (2(t7)) = it or
' (ﬂ—QM4AMMﬂﬁD=wﬂU1§kgl
w(j)él ) ( ):ﬁo/\wm(x(t_)):wlB
Y (2(t7)) otherwise

(8.13)

wherey ;! andy? are design parameters of the quantizgh,= 0 andy;* | < ¢fP <
yiforallk =1,2,....1.
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3 Stabilization by Positive and Quantized Proportional Control

Remark5: The mapyn(-) is defined for piecewise monotone signals [to,t] — R. There is a
family of k partitions oflt,,t] denotedl1, I», ..., I, wherel; = [to,t1),I2 = [t1,t2),..., I =

[tk—1,t] andt; < tiw1 < tfori = 0,1,...,k — 2, such that:(7) is monotone for- € I, for

j=1,2,... k. Thent™ is defined a$~ = 7 if 7 € int(lx_1).

Define®w,, : R® — R" asW¥,,(x) = (¥ (21),...,%m(x,))T, then the closed loop
system with the quantized version of the proportional adractions is given as

Jqg=fB%q) + ¥,,(n) (8.14)

The quantized version/{,, (u;)) of the control signal can be replaced with an expres-
sion depending on a quantized version of the system oulfy@t()) such that

Y (=vi(yi —1i)) = =7 (Tilyi) — i) (8.15)

To this end, the following map is considered

SLL i t=to A —mila(te) — 1) € Ay
4 |f —’Yz(x(t) —’I"z') :ﬁk/\Tz(x(t—)) :ri_@or
Vi 5 Vi
T 0 _’Yz(x(t)—Tz):ﬁk/\Tz(]}(t_)):rz_li_é,
1<k<lI
A
Yi(z(t) = ri+ . if — i (2(t) — ) = ap_y ATi(x(t™)) =r; — ujy_k or
Vi REL
_'y_}; ’ —’}/i(l‘(t) — ’ri) = Qk—1 A ’I‘?(x(t—)) = — 1/’;;;1,
1<k<lI
0 B
— if —yi(x(t) = i) = Bo A Ti(w(t™)) = ri — 2=
Y;(z(t7)), otherwise
(8.16)

DefineY : R® — R" asY(x) = (Yi(x1),..., Tn(z,))?, andl = diag(y;), then
the closed loop system (8.14) can be rewritten to

Jq=f(B"q) —T(Y(y) —r) (8.17)

since the identity in (8.15) is fulfilled.
The closed loop system in (8.17) has a discontinuous rigid Bale. Solutions to this
system will here be considered in the sense of Krasovskitisois.

Definition 3.1 [3] Amap ¢ : I — R" is a Krasovskii solution of an autonomous system of
ordinary differential equations = G(x), whereG : R™ — R", if it is absolutely continuous and
for almost everyt € 1 it satisfies the differential inclusiop(t) € KG(p(t)), whereKG(x) =
Ns>o COG(Bs(x)) andcoG is the convex closure of the 9@t

Herel is aninterval of real numbers, possibly unbounded. By défimjthe operators
K associates t6x(x) a set valued map which is compact for everg R™. Furthermore,
if G(x) is locally bounded this set valued map is upper semi-contiswith convex
values [4]. Then, for each initial statg), there exists at least one Krasovskii solution of
x = G(x) [4].
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Using the calculus given in [5] it can be calculated that thradévskii solutions of
(8.17) are absolutely continuous functions which solvesGauchy problem

Jqef(B'q) -~ T(KE(Y(y) —r), a0) = qo (8.18)

whereK (Y(y)) C x K (Y;(y;)) andK (Y;(y:)) is given by

—?A ) —i(yi — i) > [
KT =ity (-2, xe 01}, —wlyi—r) € bo, ) @19
0, —Yi(yi — i) < Bo

4 Stability Properties of Closed Loop System

In this section, the stability properties of the closed Isggtem introduced above will be
examined. Subsequently, a more specific class of functidhisewsed in the expressions
of u(-) andX(-). This more specific class reflects the presence of turbuflents in the
system [6]. The class of functions, which will be consideiedhe following

(i) = kui|zi|x; (8.20)
Xi(mi) = kpilzila; (8.21)

Let the ma@ : R™ — R” be given as
F(z) = y(z) - T 'f(BTz). (8.22)

Proposition 20. [7] For the class of functions defined in (8.20) and (8.21) thap
F : R" — R” defined in (8.22) is a homeomorphism.

As a consequence of Proposition 20, there exists a uniquerngt € R™ for each
vector of reference valuasc R™, and the relation betweanandq* is

qf = Fil(r)7 (8.23)

furthermore
r=y(q") — I‘flf(BTq*). (8.24)

Defineq = q — q*, then the expression for the closed loop system given ir7j&an
be replaced by

Ja e f(@) — D(K(Y(y) ~y(a") (8.25)
wheref(q) = f(B”(q + q*)) — f(B"q").
The following conjecture will be instrumental in the detioa of the stability prop-
erties of the closed loop system.

Conjecture 3. Under Assumption 2.2 and Assumption 2.3 the vagtatefined by (8.23),
with I' = diag(~;), v; > 0 andr; > 0 fulfils thaty; (¢) < r;.

3Since the motivation for considering the new paradigm isicaty the diameters of the pipes used in the
network, the likelihood for turbulent flows increases.
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4 Stability Properties of Closed Loop System

A proof of Conjecture 3 forn = 2 is given in [8]. Furthermore, the conjecture has
been supported by numerical simulations of a small scalesysvith up to four end-
users.

By (8.24), Conjecture 3 corresponds-tqf;(BTq*) > 0. Before stating the main
result, the following Lemma will be given.

Lemmad.l: Letq* be defined by (8.23) and f;(B”q*) > 0 by Conjecture 3, then for every
r € R, ify > —fi(BTq") for everyi = 1,2, ..., n, there exists a bounded intendal C R,
such that for every; € If
(@i —a)(Y(ys) — wilai)) > 0. (8.26)
Furthermore
lgi| = 00 = (¢ — i )(Y(y:) — yilai)) — oo. (8.27)

Proof of Lemma 4.1By (8.24), the property
Uit > —f:(B"q") (8.28)
corresponds to

Uit

3

< wi(q;) (8.29)

ry —

sincel’ = diag(y;) and~; > 0.
Furthermore, by Conjecture 3

s

Vi

<wilg)) <. (8.30)

Ti

By the definition of';(y;) in (8.16)

T, Vyi >ri — %
Tz(yz) = sz By . (831)
7“1'—7, Vy1'<7“7;—,y—i’

Now, define the interval; = {¢; € R | y; € [r; — %ﬂ"i — %]} which is bounded by
continuity of zi;(+).
Sincew; (+) is monotonically increasing it follows that

(¢i — ) (Yilyi) —wi(g))) >0, Vg; € If. (8.32)

Furthermore, since; andy;(q;) are constant antf’;(y;) is bounded, from (8.32) it
follows that

gi| = 00 = (qi — q; )(Yi(yi) — vilg;)) — o0 (8.33)
which completes the proof. O

The following proposition regarding the stability propestof the closed loop system
can now be proved. The proposition states that for any Daifhthe proportional control
actions, there exists a valug® of the quantizer and a compact 8t such that the
trajectories of the closed loop system are attracted.to
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Proposition 21. For any gainy; > 0 and for any valud € Z, and«;, 8;, where
j =0,1,...,1, of the quantizer, such thal; < a; < Bj4+1, if the parameten/;;“ of the
quantizer fulfilsy* > —f;(BTq*), whereq* is defined by (8.24), then a compact &kt
exists, with the property that the Krasovskii solutieyi$) to the Cauchy problem (8.18)
are attracted toQ.

Proof of Proposition 21 Recall, thai is defined by the following change of coordinates
4a=a-q". (8.34)
The Lyapunov candidate functidn : R — R is defined as

1

Via)=5(adg). (8.35)

The time derivative 0¥/ (q) is then given as

Vi@ = (@34 8.36)
SV e (@@ - TRV () - vla) 837)
2v(@ e (a.f@) — (@ DEY () - y(a) (8.38)

It can be shown that the following inequality holds [7]
W@ =-(af@) >0, (8.39)
from which it follows

9V(@) <~ (@ - y(a), Yo e K(Y(y)). (8.40)

Define the sef = {q € R" | ¢; € I;}, with I; defined by Lemma 4.1, then it follows
that there exists a finit®/ > 0 such that

> vilai — a)(Yilys) — wi(q))) > =M, Vq € I, (8.41)
=1

sincey; > 0, ¢f andy;(¢;) are constants ang and¥;(y;) belong to a bounded set.
Furthermore, sincéy; — ¢} )(Yi(yi) — vi(q)) > 0 for everyg; € I, consequently

n

D vilai —a)(Cilys) — wilg})) > =M, Vq € R™. (8.42)

=1

From Lemma 4.1, and (8.42) it follows that

lal = 00 = D vilas — 4)(Tilys) — ilal)) = oo (8.43)
i=1
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From (8.43) and Lemma 4.1 it is concluded that there existapact se© O I, with
the property

@T(Y(y) —y(@)) =D vile —a)(Ti(ys) —vi(g})) >0, Vg € Q°,  (8.44)
=1

and consequently for evetye Q¢
—(q,T(v-y(q"))) <0, Vv € K(Y(y)), (8.45)
and the thesis follows. O

Remark6: Since the result is global and independent on the numbsrend-users in the system
it follows that end-users can be added to or removed fromytsies while maintaining stability in
the sense that a compact €etwhich attracts system trajectories will exist for the newbtained
system, given that (8.28) is fulfilled. However, to keep thene level of performance it may be
necessary to adjust the gaipsand quantization parametapg' andi.

Furthermore, if logarithmic quantizers are consideredcfical output regulation
have been proved in [2].

To that end, let be a positive integer), a positive real numbes € (0,1), and
U :_p’wp fork = 1,2,....0 with p = 72 (i.e. ¢ = 153¢_1). The following
(logarithmic) quantizer is then proposed [2]:

Lety : R — R be the map

¢07 prO<x
o, B ca<i o<k<i
YW=l e o< 0<k<d (8.46)
0, 0<z< %

The parameters vy andd of the map (quantizer) are to be designed.
Then, the following proposition is proved in [2]:

Proposition 22. For any choice of the parameter, > 0, any compact seR C R,
any compact sef of initial conditions described by

for any arbitrarily small positive number, and for any value of the quantization parame-
terd € (0,1) there exist gaing; > 0 and parameters), [ of the quantizer such that for
all v; > v, for anyr € R, any Krasovskii solutioi(¢) of the closed loop system (8.14)
with initial condition in Q is attracted by the sefe € R" | |e;| < e, i = 1,...,n},
wheree;, = y; — r;.

Furthermore, it is remarked in [2] that Proposition 22 hdiisother quantizers as
well, such as the uniform quantizer for instance.
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5 Numerical Results

In this section, the results of numerical simulations penied on the closed loop sys-
tem, are presented. The hydraulic network diagram of theesysised in the simula-
tions is shown in Fig. 8.4. The system is a laboratory scadéesy, in which four end-
users are present. The end-users are represented by e g@mnectiongcy, cs, cs },
{eg, c10,c11}, {c1s, c19, c20} and{cas, ca4, co5 }. The quantization map used throughout

-O- Pump

“E==r Pipeline

—><— Valve

Pressure diff. sensor
@ Relative pressure sensor
@ Expansion tank

Figure 8.4: Diagram of the hydraulic network used in the $ation.

the simulations is the logarithmic quantizer introduce@6). The parameters used in
the simulation are.J;; = 1.0787, Jio = Ji3 = Jia = Jo1 = J31 = Jy1 = 0.4421,
Jog = 1.1318, Jog = Jog = Jao = Jyo = 0.7074, J33 = 1.4854, J34 = Jy3 = 1.061,
J44 = 1.7507;])2 = P13 = 0.0586,p3 = P = 0.6755,])7 = P12 = P21 = P26 — 0.0352,

P8 = p11 = P17 = P20 = P22 = p25 = 0.4503, p1g = p2r = 0.0469; vs = v1p = vig =
v9q4 = 0.005, v14 = 0.0013;r = 0.214; ' = 214; ¢y = 0.5;1 = 2; 6 = 0.5.

A scenariois simulated, where the end-user connecfioRsci g, coo } and{ cas, caq, co5 }
are first removed from and then later re-introduced into tstesn. The removal of
the end-users are simulated by changing the parametgrand v, to a large value
(0.005+1.2510?), thereby reducing the flowgo andqg.4 to close to zero.

In Fig. 8.5 the results of the simulations are shown. As ivislent from the figure,
system trajectories are bounded and practical outputaégualis achieved, both in the
situation where all four end-users are present as well aswhky two are. However, as
shown in Section 4 asymptotic stability is generally notiaeable, and limit-cycle-type
behaviour is possible as shown in [9].

6 Conclusion

An industrial case study involving a large scale hydraugtwork has been examined.
The hydraulic network underlies a district heating syst&pecifically, stability proper-
ties of the closed loop system using quantized proportioaatrol actions constrained
to non-negative values were investigated. Particuldnly,quantized control actions was
constrained to take values in a finite set, thereby makingdsible to send them across a
communication network using a finite bandwidth. The stgbdnalysis shows that given
a properly chosen upper level of the quantizer, a compac@sexists with the prop-
erty that all closed loop system trajectories are globdtisaeted to it. Furthermore, by
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Figure 8.5: Results of the simulation performed on the systeFig. 8.4 in closed loop
with the proposed controllers. The figure shows control iapuy, us, us, us, the con-
trolled variabledp, , dps, dps, dpy, and the flow through valves,, c19, c¢19, ¢5 obtained
with the quantized proportional feedback control. At tin@3s, the end-user connec-
tions consisting of c1g, c19, c20} and{cas, c24, ca5} are removed from the system. At
time 200 s the end-user connections are re-inserted inteytem. The solid line at 0.2
Bar in the two middle plots indicates the reference value.

a proper design of the parameters of the quantizer and theotgain, practical output
regulation is achieved. Since these results are both géstzthindependent of the number
of end-users in the system, it is concluded that end-userbeadded to and removed
from the system, while still maintaining the property thabanpact se®, which globally
attracts system trajectories, exists for the newly obthsystem. However, to keep the
same level of performance may require an adjustment of trenpeters of the quantizer
and the controller gains.

Some natural future extensions of the work presented herearsidered the intro-
duction of delays in the communication network as well asitiiduction of integral
control actions. Since a communication network in pradsdéely to introduce delays
in the control loop, it is considered necessary to examigesthbility properties of the
closed loop system when such delays are introduced. Theéi@udi integral control
actions are considered natural to accommodate for theysg¢aie output regulation error
which is present with the proportional control actions only
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1 Introduction

Abstract

An industrial case study involving a large-scale hydranktwork is examined.
The hydraulic network underlies a district heating systerhe network is subject
to structural changes in the sense that end-users may bd tmlde removed from
the network. The problem of output regulation in the netwisrkddressed. The re-
sults show that semi-global exponential output regulatsoachievable using a set
of decentralized proportional-integral control actioRsrthermore, by adding an as-
sumption about the behaviour of the components in the sysidrith is justified
in practice, global asymptotic output regulation is showhe fact that the result is
global and independent on the number of end-users has tisequence that struc-
tural changes can be made in the network while maintainiagstability properties
of the system. Furthermore, the decentralized nature afah&ol architecture eases
the implementation of structural changes in the network.

1 Introduction

The work presented here concerns an industrial case studjvimg a large-scale hy-
draulic network. The hydraulic network underlies a distheating system. The case
study considers a new paradigm for the design of districtihgaystems, in which it has
been proposed to reduce the diameter of the pipes in the netBy reducing the pipe
diameter, it is possible to reduce the heat dispersion frenpipes and thereby reduce the
energy losses in the system [2]. On the other hand, the redli@meters induce increased
pressure losses throughout the network which must be cosapemhby multiple pumps.
Studies held that the multi-pump architecture is the teldgyowhich can compensate
for the increased pressure losses while still achievingoatantial energy saving ([1]).
The multi-pump architecture raises the question of how tiags should be operated to
control the network in appropriate way. The new paradigro gises rise to a flexible
network structure in which end-users can be added to or redhfvem the network. The
case study is part of the ongoing research progeaurg & Play Process ContrdB] which
considers automatic reconfiguration of the control sysferarponents such as sensors,
actuators or subsystems are added to or removed from a system

To fulfil the control objective, which is to keep the pressaceoss the so-called end-
user valves at a constant reference, a set of proportiotegtial control actions is pro-
posed. The control actions are decentralized in the seasehth individual controllers
use only locally available information, which is the pregsmeasurement at the end-user.
The results show that it is possible to achieve semi-glokabeential output regulation
using this control architecture. By adding an additionauasption regarding the con-
stitutive relation of the components in the system, it isfHarmore, possible to show
global asymptotic output regulation. These two resultsasgnt an important extension
of [5], where semi-global practical stability was achiewgdoroportional controllers, and
we believe they are instrumental for further developmentiekvare briefly discussed in
conclusions of the paper.

In Section 2, the model of the system is introduced along thighoutput regulation
problem. The main results of the paper are presented indBetiin Section 4, the results
of numerical simulations of the closed loop system are prteske Finally, conclusions are
given in Section 5 along with possible future research tives.

125



Paper F

NomenclatureFor a vector: € R, z; denotes théth element ofc. Let M (n, m; R)
denote the set oft x m matrices with real entries, antd (n; R) = M(n,n;R). For
a square matrixd, A > 0 means thatd is positive definite. For a square matr
A = diag(z;) means thatd hasz; as entries on the main diagonal and zero elsewhere.
For a matrixA, A;; will be used to denote the entry in thi#h row and;th column of
A. A matrix A is said to beHurwitz if all eigenvalues ofA have strictly negative real
part. Throughout the pape?,' denotes a continuously differentiable map. A continuous
map is said to bg@roperif the inverse image of a compact set is compact. A function
f : R — Ris called monotonically increasing if it is order presegjine., for allx and
y such thatr < y then f(z) < f(y). Foramapf : R® — R™, let Df(-) denote the
Jacobian matrix of (-).

2 System Model

The system under consideration is a hydraulic network caimgra district heating sys-
tem. The model has been derived in detail in [4] and will bealled here, but in fewer
details.

The hydraulic network consists of a number of connectiona/éen two-terminal
components, which in this work are: valves, pipes and pufipskth system component
is characterized by dual variables, the first of which is tresgure dropg\ /. across it

Ahy, = h; — hj, (9.1)

wherei, j are nodes in the network;, ; are the relative pressures at the nodes.

The second variable characterizing the component is treéfflaw ¢;, through it. The
components have algebraic or dynamic expressions goxgtiménrelationships between
the two variables.

Valves

The behaviour of valves in the network is governed by thefithg algebraic expression
hi — hj = pr(qr) = pr(vk, qx), (9.2)

wherewv, is the hydraulic resistance of the valve;(-) is a C* and proper function,

which for any fixed value oty is zero atg, = 0, strictly monotonically increasing and

uk(vk, ) = 0foruvg, = 0.

Pipes

The behaviour of pipes in the network is governed by the dya&oauation

Tee = (hi — hj) — Ae(qr) (9.3)

where), (gx) = A(pk, qr); Jr andp;, are parameters of the pipk; (-) is a function with
the same properties ag (-).
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2 System Model

Pumps

A (typically centrifugal) pump is a component which delisexr desired pressure differ-
enceAhy regardless of the value of the fluid flow through it. Thus, tleddviour of
pumps in the network is governed by the following expression

hi —hj = —=Ahp 1, (9.4

whereAh,,  iS a non-negative control input. In this paper we disregheddonstraint
on control input and refer the interested reader to [5] wip@sdtiveproportionalcontrol
laws have been studied.

Component Model

A generalised component model can be derived using theAfimlipexpression
Ahy = Tir + M) + pr(qr) — Dby i, (9.5)

whereJ, pi. are non-zero for pipe components and zero for other comgsngns non-
zero for valve components and zero for other componeits, ;, is non-zero for pump
components and zero for other components.

The values of the parameters and vy, are typically unknown, but they will be as-
sumed to take values in a compact set of non-negative valLikswise, the functions
wr(qr) andX(qr) are not precisely known, only their properties of beiifg monotone,
zero ing, = 0 and proper are guaranteed. The varying heating demand efthesers,
which is the main source of disturbances in the system, isetfemtiby a (end-user) valve
with variable hydraulic resistance. In the network modeljsdinction is to be made be-
tween end-user valves and the rest of the valves in the nketwWaro types of pumps are
present in the network; the end-user pumps, which are masgy to meet the demand
at the end-users, and booster pumps which are used to mestaiots on the relative
pressures in the network [6].

Network Model

The network model has been derived using standard cir@oty{4]. The hydraulic net-

work consists ofn components and end-usersif, > n). The network is associated with
a graphg which has nodes coinciding with the terminals of the netwamponents. The

edges of the network are the components themselves. Thie gatipfies the following:

Assumptior2.1: [5] G is a connected graph.

By the use of graph theory, a setwfindependent flow variableg have been iden-
tified. These flow variables have the property that their @slcan be set independently
from other flows in the network. The independent flow varialdeincide with the flows
through the chordsof the graph [4]. To each chord in the graph, a fundamentakjflo

1Let T denote the spanning tree 6f i.e. a connected subgraph which contains all node§ bfit no
cycles. Then the edges Gfwhich are not included ifi” are the chords of (see [4]).
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loop is associated, and along this loop Kirchhoffs voltaye holds. This means that the
following equality applies

BAh =0, (9.6)

whereB € M (n,m;R) is called the fundamental loop matri&; is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop matfxare—1,1 or 0, depending on the net-
work topology. For the case study in question, the hydrangdiwvork underlies a district
heating system. Because of the latter, the following statéacan be made regarding the
network.

Assumptior2.2 [5] Each end-user valve is in series with a pipe and a pumpeas & Fig. 9.1.
Furthermore, each chord ¢hcorresponds to a pipe in series with a user valve.

Assumptior2.3. [5] There exists one and only one component called the heatesolt corresponds
to a valvé of the network, and it lies in all the fundamental loops.

Valve

Remaining network

Figure 9.1: The series connection associated with eaclusedi4].

Proposition 23. [5] Any hydraulic network satisfying Assumptions 2.1 an?l dmits
the representation

Jig=f(BTq) +u (9.7)
yi(qi) = pi(q:) ,i=1,...,n, (9.8)

whereg € R™ is the vector of independent flows;c R is a vector of independentinputs
consisting of a linear combination of the delivered pumpspueesy; is the measured
pressure drop across th end-user valveJ € M(n;R), J > 0; f(-) is aC* vector
field; i, () is the fundamental law of théh end-user valve. In (9.8), it is assumed that
the firstn components coincide with the end-user valves.

Under Assumptions 2.1-2.3, it is possible to select thentaigon of the components
in the network such that the entries of the fundamental loapimnB are equal td or 0,
whereB;; is 1 if componentj belongs to fundamental flow logmnd0 otherwise.

2The valve models the pressure losses in the secondary side b&at exchanger of the heat source.
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3 Stability properties of closed loop system

Defining the vector of flows through the components in theesysasz = B7q €
R™, the vector fieldf(-) can be written as [4]

f(z) = =B(\(z) + p(x)), Vo € R™, (9.9)

where\(z) = [A(21), -, A (@) 5 (@) = [u1(x1), ...y o (2)]T @nd X (¢) is
non-zero for pipe components apg-) is non-zero for valve components.
The matrixJ in (9.7) is given by

J=BJB" (9.10)
whereJ = diag(J1, - . -, Jm)-

Output Regulation Problem

It is desired to regulate the pressureacross théth end-user valve to a given reference
valuer; with the use of a feedback controller having available oolyal information.
The vecton = (r4, ..., r,) of reference values takes values in a known compad®set

R={reR"|0<r, <r <ryu} (9.12)

For the purpose of asymptotic output regulation, a set oéngalized proportional-
integral controllers is the focus of the work presented hé&iee controllers considered
will be of the form

& = —Ki(yi(q:) —74) (9.12)
u; =& — Ni(yi(qi) —14) (9.13)
whereK,;, N, >0andi=1,2,...,n.

3 Stability properties of closed loop system

In this section, the stability properties of the closed lsgptem will be examined. First,
itis shown that global asymptotic output regulation cantoeed by adding an additional
assumption on the algebraic relations governing the coraptsnn the system. Secondly,
semi-global exponential stability is shown.

Global Asymptotic Stability

If it is further assumed that the functions(-), which govern the behaviour of pipes,
have derivative% (M\i(z;)) bounded away from zero, then it is possible to show global
asymptotic stability of the closed loop system. This asgionps motivated by the fact
that for small values, the flow through the pipes can be censitllaminar [7].

First, define the proportional gain matriX = diag(V;). The following lemma will
be instrumental in deriving the closed loop stability pndjgs of the system.

Lemma3.1 Let the matrixG/(q) € M(n,R) be given by
G(g) = NDy(q) — Df(B"q), (9.14)
thenG(q) > 0.
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Proof. Again, letz = B” ¢ and recall that
f(z) = =B (Az) + p(z)) (9.15)

where A(z) = (A1 (21), -, A (z))T and u(z) = (u1(x1), ..., o (z))T. Then
—Df(BTq) is given by

~Df(Bq) = ——f() B4 (9.16)

= BA(z)B”. (9.17)

whereA(z) = diag( 22 (\i(z:) + pi(:)))-

By Assumption 2.2, each chord in the grapldescribed by the network corresponds
to a pipe in series with a user valve. Therefore, by rearraptlie numbering of the
components, such that the firstomponents are the pipes in the chord§ p9.17) can
be rewritten as

—~Df(BTq)= (1. F) [ Aléx) A;zx) ] ( Z{JLT ) (9.18)
= Ay (z) + FAq(z)FT (9.19)

whereA (z) = diag(a%(xi(xi))) fori = 1,...,n andAy(z) = diag(a%(xi(xi) +
wi(z;)))fori=n-+1,.

Since\;(-) are monotonlcallylncreasmg functions with derlvatl\gés x;)) bounded
away from zero, the matrid;(x) is positive definite for alk. Furthermore smcm( )
are monotonically increasing functions, the matkixz) is positive semi definite for all
x (recall that\;(+) is non-zero only for pipe components angd-) is non-zero only for
valve components). Then it follows thatD f (BT q) is positive definite.

The matrixDy(q) is given by

Dy(q) = diag(a%yi(qi)). (9.20)

Recall thaty;(¢;) = w:(q:), andy;(-) is a monotonically increasing function. As a con-
sequenceéy(q) is positive semi definite. Sinc¥ is diagonal and positive definite and
Dy(q) is positive semi definite diagonal, it follows th&tDy(q) is positive semi definite.
From the derivations above, it is concluded thaby(q) — D f(B7q) is a positive
definite matrix. O

Since the functiong;(-) are monotonically increasing and proper, they admit ire®rs
w5 H(-). Now, let
qf = u;l(r‘i), (9.21)
thatis:¢; is the flow through théth end-user valve which produce the reference output.
Furthermore, define

i=q—4q, (9.22)
then the main result of this subsection can be stated.

Proposition 24. The point(G”, ¢7) = 0 is a globally asymptotically stable equilibrium
point of the closed loop system given by (9.7), (9.8), (Sab#)(9.13).
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3 Stability properties of closed loop system

Proof. Define the variable
9i(Gi) = i@ +q;) — i (9.23)

The following Lemma has been derived in [5]:

Lemma3.2 The functiony;(q;) is monotonically increasing and zerogat= 0, and moreover

§i(G:)@ >0,V #0. (9.24)

The closed loop system defined by (9.7), (9.8), (9.12) ariB{9s

Ji=f(BYq) +£&— Ny(q) (9.25)
£ = —Kj(q) (9.26)
From (9.25) the following can be derived
Ji=Df(BTq)i+&— NDy(q)q (9.27)
which can be rewritten as
Ji=-G(q)qi — Ky(q). (9.28)

In the aboveJ > 0, G(¢) > 0 by Lemma 3.1 and{y(g) can be written a&¥ W (g), with

W(q) > 0 given as
ZK / Gi(s (9.29)

Therefore, the structure of (9.28) is S|m|Iar to that of a haatdcal system in the standard
Lagrangian form [8].

This motivates the choice of the Lyapunov function cangidat R>® — R, which
can be seen as an equivalent of the total energy functiondoahanical system:

qi 1
V(g ) = K /0 ils)ds + 54" Jq (9.30)

which is positive definite and radially unbounded.
The time derivative 0¥/ (g, ¢) is

V@) = " i+ i K@) 931)
= —¢"G(q)q. (9.32)

From Lemma 3.1 it then follows thq%V(cj, g) < 0 for everyg # 0 and consequently
that all trajectories are bounded ajée> 0 ast — oco.
From (9.28) it follows thatX'j(qg) — 0 ast — oo. Sincey;(-) is monotonically
increasing and zero in zero, it is concluded that 0 ast — co.
(I

From (9.21) and (9.23) it can be seenjagj;) — 0 the outputu;(g;) — 7.

Since Proposition 24 is independent of the numbeaf end-users in the system, it
follows that end-users can be added to or removed from thersywhile maintaining
asymptotic output regulation.
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Semi-global Exponential Stability

In this section semi-global exponential output regulatidrthe closed loop system is
shown. This result does not depend on the deriva%\%?é)\i(xi)) being bounded away
from zero. Rather, it reposes on the assumptiong%g(tm (%i))|z;=q> # 0.

First, some preliminaries will be instrumental. L

Perform the change of coordinates

E=¢+ f(BTqY), (9.33)

S0 as to obtain
Ji=f(q) +&— Nj(q) (9.34)
£=—Kij(q), (9.35)

wheref(q) = f(B"(q+q")) — f(B"q").

Let F' € M(n,R) be a Hurwitz matrix and define further the new coordinate) ([9]

x=£&-FJq

which yields
Ji=f@) +x + FJj— Nijq) (9.36)
X =— K@) — Ff(q) — Fx — F*J§+ FNj(q). (9.37)

Lemma3.3 [10] Let f : R™ — R be aC' function in a convex neighborhodd of 0 inR™, with
f(0) =0. Then

f(xl,...,xn):ingi(xl,...,xn) (9.38)
i=1

for some suitabl€ functionsg; : R™ — R defined inlU, with g;(0) = -2~ £(0).

By Lemma 3.3 the ma}ﬁ(q) can be written as
F(@) = (@) (9.39)

with q@((j) a continuously differentiable matrix.
ChoosingK = F'N, the closed-loop system can be written more simply as

X=—Fx—¢"a)q (9.40)
JG=¢"(D)d+ x — N§(q) (9.41)
where
¢\(q) = Fo(q) + F*J (9.42)
¢ (@) = b(q) + FJ. (9.43)
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3 Stability properties of closed loop system

Again by Lemma 3.3, the relation betwegrandy; can be written as
9i(Gi) = 9i(qi)d:- (9.44)

Observe that, agk-(7i(d:)) =0 = 52 (1:(¢i))lg;=q: # 0, and the fact thag; (z;) =
0 if and only if z; = 0, for everyg; the functiong;(-) on the right-hand side is positive.
Moreover, ifg; range over a compact set, then by continuitydf) there existsn > 0
such that

9i(@;)>m >0, i=1,2...,n. (9.45)
Then the main result of this subsection can be stated.

Proposition 25. Given system (9.7), (9.8), and a compact set of initial chonk Q C

R™ x R"™, there exist diagonal positive definite matricd€sand K in (9.12), (9.13), such
that every trajectoryq(t), £(t)) of the closed-loop system (9.7), (9.8), (9.12), (9.13) with
initial condition in Q is bounded and satisfiésn, _, ;o y;(t) = r; fori =1,2,...,n

Proof. Let P > 0 be such thaF#” P + PEF = —I and consider the Lyapunov function
candidatd” : R?” — R given by

o 1
V(x,q) = §XTPX + §qTJq

which is positive definite and radially unbounded. Compheetime derivative along the
trajectories of the system, to obtain

d ~ o
ZV0ed) =~ X" PEx — x"Po)(§)4+
+q" ¢ (@)q+ " x — " Ny(q) - (9.46)

Let S be a level set of(x, ¢) containing the set of initial conditions of the system.
Bearing in mind (9.45), the time derivative Bf(x, ¢) can be written in compact form as

d @) 11~
TV 00D <X+ I (@)ll1dl+
+allle™ @)lllal + lallx| —mq" NG . (9.47)

Let © be a positive constant such thaax{|| P4(* (§)|], |6 (§)]| | § € S} < ©, which
exists by continuity of(®)(-) and¢® (-). Then

d -V |X|2 92 () 2 N
7 060 < =5+ (O + 0+ 1)|g]" —mg Ng.
Let N; = ... = N, = m~ N, with N,'s the diagonal entries ¥ and N to design, so
that p | 2
ZV(6Q) < —S-+ (07 + 0+ 1-N)|g.
SetN* =02 +0+1+ 1 ZM((P), whereo ), (-) denotes the maximum eigenvalue of a

(symmetric) matrix. Then, for alv > N*

d B 1 N
%V(X,Q) < —UM(P)V(XaQ)- (9.48)
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This shows that the trajectoriég(t), ¢(t)) of the system are bounded and converge to the
origin. Bearing in mind the definition dfy, ¢), it also shows thafy(t), £(¢)) are bounded
andq(t) — q¢*, £(t) — —f(BTq*) ast — oo. By continuity of u(-), itis concluded that
w(q(t)) — w(g*) = r ast — oo, i.e. the thesis. O

Remark?: In view of the quadratic nature of the Lyapunov functidiix, G) the proof actually
shows exponential convergence(Gfx) to the origin. Bearing in mind (9.44) and the boundedness
of the statd g, x), also the regulation errar; (q;) = ui(q:) — r: converges exponentially to zero.

4 Numerical Results

The closed loop system has been tested using numericakgiond. A four end-user sys-
tem have been used in the simulations, and the diagram ofottiesponding hydraulic
network is shown in Fig. 9.2. The end-users in the system amgpdsed of the con-
nections{cs, cs, cs }, {co, c10, 11}, {cis, 19, c20} @and{cas, cas, ca5}+. The parameters
used in the simulations aref;; = 10787, Jio = Jig = Jig = Jog = J31 = Ju1 =
0.4421, Joo = 1.1318, Jag = Jog = J32 = Jyo = 0.7074, J33 = 1.4854, J34 = Jy3 =
1.061, J44 = 1.7507,])2 = P13 = 0.0586,p3 = P = 0.6755,])7 = P12 = P21 = P26 —
0.0352,ps = p11 = p1r = p20 = pa2 = p2s5 = 0.4503,p16 = p2r = 0.0469,v5 =
V10 = V19 = w24 = 0.005,v14 = 0.0013 and controller gain matrice& = N = 21,. A

-O- Pump
“E==r Pipeline
—><— Valve
Pressure diff. sensor
Relative pressure sensor
@ Expansion tank

Figure 9.2: The hydraulic network diagram for the systeniviour end-users which has
been used in the simulations.

scenario, where the end-user connections consistifig,0f 19, c20} and{cas, ca4, ca5 }
are removed from and later re-inserted into the system, éas §imulated. This has been
done by changing the valve parameters andv., to large values.005 + 1.25 - 10?),
thus reducing the flows through valves) andcs, to close to zero. The results of the
simulations are shown in Fig. 9.3. In Fig. 9.3, it is seen thatclosed loop system
achieves asymptotic output regulation when all four engksiare present in the system
as well as when only two of the end-users are present in therays
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5 Conclusion

5 Conclusion

An industrial case study involving a large-scale hydranktwork comprising a district
heating system was presented. The problem of output régulat the network was
addressed. The results show that global asymptotic andgleiral exponential output
regulation is achievable using a set of decentralized ptapl-integral control actions.
Furthermore, as the former result is global and indepenaietite number of end-users
in the system, it is concluded that the property of asymptmtitput regulation is main-
tained if end-users are arbitrarily added to or removed filversystem. The results were
supported by numerical simulations of a four end-user ayste

The incorporation of positive constraints on the contrghsis is seen as a natural
extension of the results presented here. Since the cagdtifumps used in the network
are only capable of delivering positive pressures, theiekjcorporation of this con-
straint in the stability analysis of the closed loop systeithlye necessary. This increases
considerably the difficulty of the control problem and regsaia deep independent study
to be carried out in the future.
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Figure 9.3: Result of a numerical simulation of the four ersgr system in Fig. 9.2.
The figure shows control inputs , us, us, u4, the controlled variablép, , dps, dps, dp4,
and the flow through valves,, c19, c10, ¢5 Obtained with the proportional-integral feed-
back control. At time 100 s, the end-user connections cotngisf {cis, c19, 20} and
{ca3, c24, c25 } are removed from the system. At time 200 s the end-user ctions@re
re-inserted into the system. The solid line at 0.2 Bar intermniddle plots indicates the
reference value.
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1 Introduction

Abstract

An industrial case study involving a large-scale hydranktwork is examined.
The hydraulic network underlies a district heating systeith an arbitrary number of
end-users. The problem of output regulation is addresseayalith a optimization
criterion for the control. The fact that the system is ovetuated is exploited for
minimizing the steady state electrical power consumptfth@pumps in the system,
while maintaining output regulation. The proposed conaiciions are decentralized
in order to make changes in the structure of the hydrauliworkt easy to implement.

1 Introduction

An industrial case study involving a large scale hydraufgtem is the focus of the work
presented here. The case study involves a new paradigmefdiesign of district heating
systems in which the diameter of the pipes used in the netigor&duced in order to
lessen heat dispersion from the pipes, and thereby dedtemsgerall energy consump-
tion of the system. This has the additional benefit that esetaiarbitrarily can be added
to and removed from the system ([1]). The case study has breg@oged by one of the
industrial partners in the ongoing research progRlog & Play Process Contro([2]),
which considers automatic reconfiguration of the contrgteyn whenever components
such as actuators, sensors or subsystems are added to eeckfram the plant.

The reduced pipe diameter leads to larger pressure gradierdss the pipes, which
again leads to the danger of violating pressure constramtie components in the net-
work. In order to overcome this problem, a number of (presshoosting pumps are
placed along the main pipe line. Furthermore, to accomneatti@ demands of the end-
users in the system, so-called service pipe pumps are pcbd end-users. The multi-
pump architecture means that the system is over actuatee g#ie number of actuators
in the system exceeds the number of states to be controllede e system is over
actuated, there is additional freedom in choosing the obsignal. In this paper, this
extra degree of freedom will be exploited to solve an optéation problem. The problem
considered is to find the control signal which provide asytipbutput regulation, while
using least possible electrical power in steady state.

The added flexibility in the system calls for a control staetwhich is able to han-
dle structural changes in the network. The focus of the wodsgnted here is a set of
decentralized control actions, which use locally avadahformation only. The results
show that global asymptotic output regulation is achievét the proposed controllers.
Furthermore, global asymptotic convergence to the set ofmiiers of the objective
function is also proved. The decentralized nature of the@robactions combined with
the fact that the closed loop system is globally asymptiiyiséable, means that changes
in the system structure will be easy to implement.

The layout of the paper is as follows. In Section 2, the congpband network mod-
els of the system is introduced. The output regulation @bk introduced in Section 3
along with a set of controllers which accommodate the prable Section 4, the opti-
mization problem is introduced along with a modified contodurther accommodate the
optimization problem. The stability properties of the @d$oop system are examined in
Section 5, where the main result of the exposition is givére iesults of a numerical sim-
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ulation performed on the closed loop system is given in 8adi Finally, conclusions
are drawn in Section 7 along with suggestions to future work.

Nomenclaturefor a vector: € R™, x; denotes théth element of: and|z| denotes
the Euclidean norm of. Let M (n, m;R) denote the set of x m matrices with real
entries, andV/ (n; R) = M (n,n;R). For a square matrid, A > 0 means thatd is
positive definite. For a square matuk A = diag(x;) means thatd hasx; as entries on
the main diagonal and zero elsewhere. For a matrid;; will be used to denote the entry
in the ith row and;jth column of A. Throughout the pape€;' denotes a continuously
differentiable map. A continuous map is said to feper if the inverse image of a
compact set is compact. A functigh: R — R is called monotonically increasing if it is
order preserving, i.e., for all andy such that: < ythenf(x) < f(y). LetI, denote the
n-dimensional identity matrix and,, the vector inR™ consisting of ones. For a function
R xR™ = R, letV,f(z,y) = (0f(z,y)/0z1,...,0f(z,y)/0z,). Let B.(z)
denote the open ball with radiuscentred inz, thatis: B, (z) = {y € R" | |y — z| < r}.
For two setsX andY, X C Y means thatX is a proper subset df. For a setS C
R” the setS, is given asS, = UR_(J:), where B () denotes the closure @ (z).

zeS
The Hausdorff metriel(X,Y") between two setX C R™ andY C R” is defined as

d(X,Y)=inf{e>0| X CY.andY C X.}.

2 System Model

The system under consideration is a hydraulic network caimgra district heating sys-
tem. The model has been derived in detail in [3] and will bealled here, but in fewer
details.

The hydraulic network consists of a number of connectiona/éen two-terminal
components, which in this work are: valves, pipes and pufipskth system component
is characterized by dual variables, the first of which is thesgure dropg\ /. across it

Ahy = h; — h;, (10.1)

wherei, j are nodes in the network;, ; are the relative pressures at the nodes.

The second variable characterizing the component is treéfflaw ¢;, through it. The
components have algebraic or dynamic expressions gogtiménrelationships between
the two variables.

Valves

The behaviour of valves in the network is governed by thefaithg algebraic expression
hi - hj - Nk:(qk:) = Nk:(vk7 qk:); (102)

whereuy, is the hydraulic resistance of the valyg;(-) is aC* and proper function, which

for any fixed value oby, is zero atg;, = 0, monotonically increasing ang (vy,-) = 0
for v, = 0.
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Pipes

The behaviour of pipes in the network is governed by the dya&oauation
Tk = (hi — hj) — Ar(qr) (10.3)

wherel, (gx) = AMpk, qr); Jr andpy, are parameters of the pipk; (+) is a function with
the same properties as(+). Furthermorea—gk M. (gx) is bounded away from zero.

Pumps

A (typically centrifugal) pump is a component which deliser desired pressure differ-
enceAh; regardless of the value of the fluid flow through it. Thus, tleddviour of
pumps in the network is governed by the following expression

hi —hj = =Ahy g, (10.4)

whereA#h,, . is a non-negative control input.

Component Model

A generalised component model can be derived using theAfisitpexpression

Ahy = Tl + Mi(ar) + i (qr) — Ahp i, (10.5)

whereJ, pi are non-zero for pipe components and zero for other comgsngns non-
zero for valve components and zero for other componeXts, ;, is non-zero for pump
components and zero for other components.

The values of the parametess andwv, are typically unknown, but they will be as-
sumed to take values in a compact set of non-negative valLikswise, the functions
ur(qr) andX(qr) are not precisely known, only their properties of beiifg monotone,
zero ing; = 0 and proper are guaranteed. The varying heating demand efthesers,
which is the main source of disturbances in the system, isetfextiby a (end-user) valve
with variable hydraulic resistance. In the network modeljsdinction is to be made be-
tween end-user valves and the rest of the valves in the nketwWaro types of pumps are
present in the network; the end-user pumps, which are masgy to meet the demand
at the end-users, and boosting pumps which are used to mesttaiots on the relative
pressures in the network ([4]).

Network Model

The network model has been derived using standard circedtryh([3]). The hydraulic
network consists ofn components and end-usersi > n). The network is associated
with a graphG which has nodes coinciding with the terminals of the netwaoknpo-
nents. The edges of the network are the components therasdlie graph satisfies the
following:

Assumption 9. ([5]) G is a connected graph.
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By the use of graph theory, a setwfindependent flow variableg have been iden-
tified. These flow variables have the property that their eslcan be set independently
from other flows in the network. The independent flow varialdeincide with the flows
through the chordsof the graph ([3]). To each chord in the graph, a fundamefitaky
loop is associated, and along this loop Kirchhoffs voltaye holds. This means that the
following equality applies

BAh =0, (10.6)

whereB € M (n,m;R) is called the fundamental loop matri& is a vector consisting
of the pressure drops across the components in the network.

The entries of the fundamental loop matfxare—1,1 or 0, depending on the net-
work topology. For the case study in question, the hydrangdiwvork underlies a district
heating system. Because of the latter, the following statgaican be made regarding the
network.

Assumption 10. ([5]) Each end-user valve is in series with a pipe and a pungseen
in Fig. 10.1. Furthermore, each chord % corresponds to a pipe in series with a user
valve.

Assumption 11. ([5]) There exists one and only one component called the beaitce.
It corresponds to a valfeof the network, and it lies in all the fundamental loops.

Valve

Remaining network

Figure 10.1: The series connection associated with eaclused([3]).

Proposition 26. ([5]) Any hydraulic network satisfying Assumptions 9 ancatinits the
representation

Jig=f(BTq)+u (10.7)
yi(qi) = pi(qg:) ,i=1,...,n, (10.8)

whereq € R™ is the vector of independent flows;c R is a vector of independentinputs
consisting of a linear combination of the delivered pumpspuees;y; is the measured

ILet T denote the spanning tree 6f i.e. a connected subgraph which contains all node§ bfit no
cycles. Then the edges gfwhich are not included iff” are the chords af (see [3]).
2The valve models the pressure losses in the secondary side b&at exchanger of the heat source.
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pressure drop across thih end-user valveJ € M(n;R), J > 0; f(-) is aC! vector
field; u;(-) is the fundamental law of th&h end-user valve. In (10.8), it is assumed that
the firstn components coincide with the end-user valves.

Under Assumptions 9-11, it is possible to select the ortenaf the components in
the network such that the entries of the fundamental loopixat are equal tal or 0,
whereB;; is 1 if componentj belongs to fundamental flow logmnd0 otherwise.

Defining the vector of flows through the components in theesysasz = B7q €
R™, the vector fieldf (-) can be written as ([3])

f(2) = ~B(\(@) + p(x)), ¥z € R™, (10.9)
wherel(z) = [y (1), Am(@m)]%,
pw(x) = [pi(x1), ..., pm(zm)]T @and;(-) is non-zero for pipe components apg-) is

non-zero for valve components.
The matrixJ in (10.7) is given by

J=BJBT (10.10)

whereJ = diag(J1, - . ., Jm)-

The inputu to the system deserves a comment as well. Akt € R andAh, € RF
denote the vectors of pressures delivered by the end-useém@osting pumps respec-
tively. Then the input: can be written as

u = Ahe + FAh, (10.11)
Ah
-1, F ¢ 10.12
(nor](an) (10.12)
_ [ Ah,
= B( Ahe ) (10.13)

whereF' € M (n, k; R) consisting of 1,0 is the sub-matrix & mapping boosting pumps
to the fundamental flow loops. That i8;; # 0 if and only if Ahy; is present in théth
fundamental flow loop. Sinck # 0 the system is over actuated.

Assumption 12. For eachj = 1,2,..., k there exists at least one= 1,2, ...,n such
thatﬂj 75 0.

The assumption above corresponds to the statement thatbeashing pumps is
present in minimum one fundamental flow loop.

3 Output regulation problem

It is desired to regulate the outputof the system to a piecewise constant vectaf
reference values, which belongs to a known compackset

R={reR"[0<r, <r <ru} (10.14)

In [6] the following set of controllers has been proposedtfar purpose of output
regulation

§i = —Ki(yi — i) (10.15)
w; =& — Ni(yi — 1), (10.16)
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whereK, N > 0,andn =1,2,...,n.
Since the functiong; (-) are monotonically increasing and proper, they admit ire®rs
1yt (-). Now, let
4 = pi (i), (10.17)

that is: g} is the flow through théth end-user valve which produce the reference output.
Furthermore, define the coordinate transformation

i=q-q, (10.18)
then the following proposition follows

Proposition 27. ([6]) The point(¢”, ¢*) = 0 is a globally asymptotically stable equilib-
rium point of the closed loop system given by (10.7), (1018),15) and (10.16).

Furthermore, the output regulation erig(g; ), which is given as
9i(Gi) = vi(qi) — ri = i@ +q;) — i, (10.19)
is zero in steady state.
Let £* denote the steady state valueéoih the closed loop system given by (10.7),
(10.8), (10.15) and (10.16).
The following lemma will prove instrumental later in the eition.
Lemma3.L If the vectorr of reference values fulfits € R’} , then™ € R”}.
Proof. In steady state, the following will be fulfilled
piq;) = ri. (10.20)
Sincey;(+) is monotonically increasing and zero at zero, it follows tha

ri >0 ¢ >0, (10.21)

and consequently that € R} .
The closed loop system is given by

Ji=f(BTq)+&{—N(y—r) (10.22)
{=-K(y—r) (10.23)

Sincey = r in steady state, from (10.22) it follows
& = —f(BTq"). (10.24)
Lemma3.2 ([5]) Under Assumptions 9-1%, € R% implies—f(B"q) € R%.

From Lemma 3.2 it follows theg* € R”}.
This completes the proof. O
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4 Power-optimal control

4 Power-optimal control

From (10.11), it is seen that the control inputis a linear combination of the pump
pressures delivered to the network. Therefore, it is necgss find a mapping from to
the vectorsAh, and Ahy, such that (10.11) is fulfilled. One possibility is the follmg

map
Ahe \  ar
( Ahe ) = Blu, (10.25)

whereB' denotes the right inverse éf.

Another possible mapping has been investigated in [7], hanap, which provides
the property that\h,. € R} andAh, € R% wheneven € R", is considered.

In the exposition presented here, an approach based on iamabyt condition will
be examined instead. The aim is to design the veaddrs and Ak, such that in steady
stateAh, € R andAh, € R’j (which is possible by Lemma 3.1) and the steady-state
power consumption of the system is minimal.

Optimization Problem

In this subsection the objective function will be introddadong with the optimization
problem. First, some preliminaries are given.
In steady-statg = r and consequently from (10.11) and (10.16)

Ah, =& — FAh (10.26)

The equality (10.26) can also be written component-wise

Ahe; =& — F Ahy, (10.27)
where
F
F = : (10.28)
FT

The electrical power consumptidn.(-) of a (centrifugal) pump is given by the ex-
pression
P.(q,w(Ah)) = —apq’w + anqw® + agow® (10.29)

whereayo, a;1, a0 > 0 are parameters of the pump ands the rotational speed of the
pump.
Furthermore, there exists the following relation betwess pressuré\i delivered
by the pump and
Ah = —ap2q® + ap1qw + apow? (10.30)
whereays, ap1, apo are parameters of the pump amb, ang > 0.
However, for the purpose of the exposition presented hesanpler expression for

the electrical power consumption of the pumps will be used.
The hydraulic powep;,(-) delivered by a pump is given by the following expression

Py, (q, Ah) = qAh, (10.32)
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for ¢ > 0 andAh > 0.
Leta™! € (0,1) be the efficiency with which the pump turn the supplied eleatr
power into hydraulic power, then

Pi(q,Ah) = a *P.(q, Ah) < (10.32)
P.(q,Ah) = agAh. (10.33)

Usually, the parameter will depend ong and Ah as seen in (10.29). However, in the
following a will be considered constant. This is motivated by the faat #t steady state
a will be a constant, and that only minimal power consumptiorihe steady state is
considered here.

Let a;.l andab‘j1 denote the efficiency of thah end-user pump and thiéh boosting
pump respectively.

Furthermore, let the vectgy denote the vector of flows through the boosting pumps,
theng, = FTq.

The electrical power consumption of the syst&ifi) will be the sum of the electrical
power consumption of all the pumps present in the system

k

P(Ahy, Ahe,q) = Z @ei Qi ARe; + Z apiqn; Ahyj (10.34)
i=1 j=1

= qT A Ahe + qf AyAhy, (10.35)

= qTAAhe + ¢T FA Ay (10.36)

whereA,. = diag(a.;); Ay = diag(ay;).
It is now desired to find the vectaxh, of boosting pump pressures which solve the
following steady state optimization problem

argmin P(Ahy, Ahe, q*) (10.37a)
Ahy, Ah,
subject to the constraints
Ah, =& — FAhy (10.37b)
Ah. >0 (10.37¢)
Ahy >0, (10.37d)

where the equality constraint (10.37b) comes from (10.R6j}e that since; > 0,
P(Ahp, Ahe,q*) > 0 for everyAh, > 0 andAh, > 0.
The problem (10.37) is now rewritten to

argmin P(Ahy, ¢*, &%) (10.38a)
Ahy
subject to
Dodam+( 2 )0 (10.38b)
_F b é—* - .

whereP(Ahy, q,€) = g7 Al + q7 (F Ay — A.F)Ahy,. Subsequently, leff = F A, —
AF,G € M(n,k;R).
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The constraint set (10.38b) is non-empty by Lemma 3.1. Ageite that the objective
function is positive within the constraint set.

The vectorg of free flow variables is generally assumed to be unknown. é@rese-
guence it might be impossible to find a solution to the prob{@h38). However, it can
be assumed that the pump parametersay; in (10.29) and (10.30) are known. This can
be exploited to calculate an estimgtef ¢ using techniques described in [8].

Assumption 13. The flow estimaté can be made accurate up to some unknown constant
scalara > 0. Thatis,j = aq.

Now, the problem (10.38) is rewritten to

argmin P(Ahy, ¢*, &%) (10.39a)
Ahy,
subject to
I dan+( 2 )so0 (10.39b)
_F D é‘* — .

By Assumption 13 the problems (10.38) and (10.39) produes#me solution since

P(Ahy,§,€) = T A + ¢TGARy (10.40)
=a(¢" A& + ¢"GARy) (10.41)
= aP(Ahy, g, ). (10.42)

Itis now desired to redefine the optimization problem (1Pt8%n unconstrained op-
timization problem, and then use the gradient of the objedtinction to find the vectors
Ahy andAh, of pump pressures. This is explored in the following subeact

Dynamic optimization using penalty functions

In this section a method, in which the gradient of an objectiwnction is used dynami-
cally to update the vectors of pressure inputs, will be dbedt

First, a new convex objective function will be defined, wikte tproperty that it has
a globally well defined minimum with respect to the vectoh,. Based on this new
objective function, the vectahh;, is updated using a dynamic expression depending on
the gradient of the objective function.

This means that the controllers in (10.15) and (10.16) grkaced by the following

&= —Ki(yi —ri) (10.43)
. a ~ )
Ahyy = —L; <8A—hbjP(Ahb, q,£)) (10.44)
Ahei = & — Niy; — i) — FF Ahy, (10.45)

whereL; > 0,i=1,2,...,nandj =1,2,...,k andP(-) is the new objective function.
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The objective function is modified to the following

n

P(Ahy, Ahe,q) = (Pf(Ahei, §) + s{(Ahe))+
=1

i (10.46)
+ ) (PE(Ahyy, G) + s5(Ahsy))
Jj=1

where P£(+), Pj’?(-) denotes the electrical power consumption of itheend-user pump
and thejth boosting pump respectively; (-), sg’.(-) are additional terms which penalizes
violation of inequality constraints (see for instance [9])

A possible implementation of : R — R is the following:

2

— <
si(x) :{ o= OQ) ’ i;i (10.47)

where the constarit < z, is the minimal allowed value of and the gainc > 0. This
particular implementation of; (-) is C*. Furthermore, for simplicity, the sameis used
foralll=1,2,....,n+ k.

Motivated by the fact that in steady staje= r and consequently = & and that
optimality is only considered for the steady state powerscomption and not the power
consumption during transients, using the identity in (5).4he power function (10.46)
is rewritten as

P(Ahy, §,€) =T Ak + T GARy+

k
+ Z Si(fz — FiTAhb —|— Z S Ahbj
Jj=1

i=1

(10.48)

whereAh,; has been replaced by the expressipn F;7 Ahy,.

Sinces;(-) is convex,P(-, ¢, £) consists of a sum of functions which are convex and
thus in itself is a convex function.

FurthermoreP(-, ¢, £) is a sum of a0 function and a number @’ functions; thus
itis aC* function.

Define the se€ by the inequalities

Ahy > Ah, (10.49a)

FAhy < € — Ah,. (10.49D)

Note that” is compact. Furthermore, by Lemma 3.1 it is always possiopeak Ak, , Ak, >
0 such thatC' is a non-empty proper subset of the feasibility set of (1)0.38

Lemmad.l The function]5(~, q, &) is radially unbounded; that@(a:, G,§) — oo as|z| — .

Proof. For Ah, € C the functionss$(-) = slj’-(-) =0fori =1,2,...,nandj =
1,2,..., k.
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5 Stability properties of the closed-loop system

As a consequence

P(Ahy, 4,€) = P(Ahy, §,€) (10.50)
=" Al + ¢ GARy, (10.51)

for everyAh;, € C. ForAh,, ¢ C, denote byS(Ahy, §)
n k
S(Ahy,&) =" s5(& — FFAh) + > sh(Ahy) (10.52)
1=1 Jj=1

and forAhy, € bd(C') setS(Ahy, &) = 0. By the definition ofs;(-) in (10.47) it can be
seen that(Ahy, &) — oo as|Ahy| — co by Assumption 12.
Now, defineP(-) as

P(Ahy, §,€) = P(Ahy, ¢,€)+
o VAR, € C (10.53)
S(Ahy, &) VAR, €RFNC

Sinceg and¢ are bounded by Proposition 27 asdAhy, ) has quadratic growth for
everyAh, € R*\ C this meansP(-, ¢, ¢) is radially unbounded; i.e. dg\h;,| — oo,
P(Ahy, 4,&) — oo, which completes the proof. O

Now, the main result of the exposition can be derived.

5 Stability properties of the closed-loop system

In this section, the stability properties of the closed Iggptem are examined.
The closed loop system given by (10.7), (10.8), (10.11) 404@)-(10.45) is

Ji=f(BTq) +€— Ny—r) (10.54)
{=-K(y—r) (10.55)
Ay = L (Van, Pk, 3.6)) (10.56)

whereL = diag(L;).
By Proposition 27 the system (10.54), (10.55) is globallynastotically stable.
Let¢* = agq™ and the set\ denote the set of minimizers dﬁ‘(Ahb, q*, &), thatis
M= {z € R¥ | P(,§*,€") < P(y,¢",£%), Vy € R*}.
The following two propositions will be instrumental in whatlows

Proposition 28. The setM is hon-empty, convex and compact.
For a proof see Appendix A.

Proposition 29. Let x denote the gain defined in (10.4}3(-, g, &) be defined by (10.48),
C denote the feasibility set of the problem (10.38) andiet* be the steady state of the
closed loop system (10.54)-(10.55). Then there exists 0 such that for every > x*,
M c CandP(-, g% &%) > 0.
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For a proof of Proposition 29 see Appendix B.

Lemmab.1l For everyx > k™ defined in Proposition 29, the sétl is globally asymptotically
stable for the system (10.56) wigh= ¢* and¢ = ¢~

Proof. The following Lyapunov function candidai& : R* — R for the system (10.56)
with ¢ = ¢* and{ = £* is considered

W(Ahy) = P(Ahy, §*, €) (10.57)

which is positive definite for. > «* defined in Proposition 29 and radially unbounded.
The time derivative of¥/ () is then bounded by

~ 2
%W(Ahb) < —min(L;) (Van, P(Ahy, ¢°,€) (10.58)
wherej = 1,2, ..., k. The above proves global stability.
Furthermore, by the LaSalle invariance principle it follothatA#R, converges to the
largest invariant set of the system (10.56) wh‘@r@th(Ahb, q*,&*) =0.
SinceP(Ahy, ¢*, €*) is convex it follows thatAh, is a minimizer and thus itM if
and only if

vAhbp(Ahbv Cj*,g*) = Oa (1059)

see for instance Appendix A.
This shows that all trajectories are bounded (by Proposi#i8) and the sei\ is
globally asymptotically stable for the system (10.56) wite: ¢* and¢ = £*. That is

fli)m d(Ahy(t), M) =0, (10.60)

and
Van,P(Ahy, §*,6°) =0, VAR, € M. (10.61)
This proves the thesis. O

Theorem 4. Consider the system

v fe,2) (10.62)

Z=g(2),
wherez € R", z € R™, f(y,0) =0, Vy € Y, g(0) = 0 andY C R”™ is non-empty,
compact and connected arfdz, z), g(z) are locally Lipschitz orR™ x R™,

Supposey” C R”™ is a globally asymptotically stable set of = f(x,0) and the
equilibriumz = 0 of 2 = ¢(z) is globally asymptotically stable. Suppose the integral
curves of the composite system are defined far all0 and bounded. Then, the state set
(z,z) € (Y,0) of (10.62) is globally asymptotically stable.

Proof. The proof follow along the lines of the proof of Theorem 1Q@,&orollary 10.3.3
in [10]. Specifically,|/|«(¢)|| should be replaced by(x(¢),Y). O
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5 Stability properties of the closed-loop system

Now, note that the functiof®(-) can be rewritten as
P(Ahy,4,€) = §T Ak + 3T G A+

+ ) wpil&is M) (& — FT Ahy — Abg,)*+
=1

(10.63)
k
+ ) w7(Ahyy) (Ahy; — Aby)?
j=1
where
0, FTAhy <& — Ahy,
pi(&i, Ahy) = { 1 FZ.TAhZ N g CAh (10.64)
and
0, Ahy; > Ahy;
7j(Ahp) = ¢ T 10.65
J( bJ) { 1, Ahbj <Ahbj ( )

Let, R(§, Ahy) = diag(pi (&, Ahy)), T(Ahy) = diag(1j (Ahej)), Ah, = (Ahgy, ..., Ak,,),
andAh, = (Ahy,, ..., Al ). Furthermore, leb(¢, Ahy) = £ — FAhy, — Ah,, thenin
compact form

P(Ahy,§,€) = " A + " GARy+
+ kb7 (&, ARy ) R(E, Ahy)b(E, Ahy)+ (10.66)
+ k(Ahy — Ahy)TT(ARy) (Ahy — Ahy).

The remainder of the exposition will be restricted to theedas< 2. The following
Lemma will be instrumental for the rest of the exposition

Lemmab.2 Letv(Ahs, &) be the vector given by
v(Ahy, €) = ART (T(Ahb) + FTR(, Ahb)F) , (10.67)
if k < 2 then||Ahy|| = oo = ||v(Ahs, §)|| — oo.
Proof. First, for arbitraryk € Z,, define the following sets
Fp ={i| Fi; #0} (10.68)

fori = 1,2,...,nandj = 1,2,...,k. That is]-'}’ is the set of indices such that
the booster pump\hy; is in fundamental flow loop. Recall that7—'j‘? is non-empty by
Assumption 12.

Also, recall thatR (&, Ahy) = diag(p; (&, Ahy)), with

[0, FFAh, <& - Ah,
pl(gla Ahb) - { 1, FvlTAhb > fl _ Ahel ) (1069)

wherel =1,2,...,n.
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Then it follows that elements of the matix! R(¢, Ahy) F are given by

(FTRE A)F) = > pul&, Ahy), (10.70)
leFinF?
if 72N F? #0and
(FTR(E, Ahy)F),. =0, (10.712)
it 72 nF=0.
Since
F'NFCFr=FinF, (10.72)
it follows that
(FTR(E, Alp)F),; < (FTR(§, Ahy)F),, < n (10.73)

for everyj # i.
Now, consider the case= 2. In this case

T(Ahy) + FTR(E, Ay F = ( “(thbl) o thbz) ) + ( Z Z > (10.74)

with a,d > b > 0 (as a consequence of (10.73)), and recall that

0, Ahy; > Ahy,

Tj(Ahbj)Z{ I Ahy < Aby, (10.75)

If ||Ahy|| — oo it follows that there exists at least one indiesuch thafAhy;| — oc.
Assume, for instance, thdkh,; — —oo, then it follows thatr (Ahy) = 1 and
consequently
v1 = (14 a)Ahyy + bAhye (10.76)

from which it follows that either 1); — —oo, from which the thesis follows, or )£ 0
and there exists finite > 0 such that

(1 + a)Ahb1 + bAhy > —c & (10.77)
—c—(1 A
Ahyy > ==L “bLa) &y (10.78)
For the case 2), since
Vo = bAhbl + dAth (1079)
it follows i1 p
vy > (b— ( ;a)) Ahyy — % (10.80)

Sincea,d > b > 0 it follows thatvs — oo becauseAh,; — —oo and%d is bounded.
For vectorsAh, € R or Ak, € R? the arguments become easier since the entries of
the matrix

T(Ahy) + FTR(E, Ahy)F

are always non-negative. Similar arguments hold for the kas 1.
In conclusion|v|| — oo when||Ah|| — oo in the casé < 2.
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Proposition 30. Supposé < 2, then the trajectories of the system (10.56) are bounded
for everyt > 0.

Proof. The outline of the proof is as follows: first a Lyapunov functicandidateP(-)

is constructed, which is radially unbounded and boundenh foelow with respect to
Ahy. Nextitis shown thaP(-) is decreasing along trajectories of the closed loop system
(10.54)-(10.56) for sufficiently large value Bf\hy||.

To that end define the functidd : R* x R” x R™ — R as
P(Ahy, §,&) = P(Ahy, 4, &) — G GAhy+
(Ahs, G, &) ( ;qﬁ) b (10.81)
+ 2%5 R(f, Ahb)FAhb,

which is radially unbounded it\h;, (which can be proved in a similar way as Lemma
4.1). Furthermore, sincB(-) is convex with respect tdh,, it follows that it is bounded
from below (see for instance Appendix A). Then

P(Ahy, 4, €) = G Ak + 2kETR(E, Ahy)F Ahy+
+ kb7 (&, Ahp)R(E, Ay )b(E, Ahy)+ (10.82)
+ w(Ahy — Ahy)TT(ARy) (Ahy — Ahy).

The partial derivatives dP () is given as

ViP(Ahy, 4, &) =T Ae (10.83)
VeP(Ahy, §,€) = §7 Ae + 26(€ — Ab,)T R(E, Ahy) (10.84)
VanP(Bhy, 4, €) = 26 (AT R(E, Aly) P+
+ Ah (T(Ay) + FTR(E, Ahy)F) + (10.85)
—ART(Al)) .

The following expression is used in ti¢h;, dynamics
Van,P(Ahy, ¢,€) = ¢7G + 2 ((Aﬁe —TR(E, Ahy)F +
+ Ahf (T(Ahs) + FTR(E, Ahy)F) + (10.86)
~ART(AMy)) .

Now, letz = (¢, ¢T), then by boundedness éft) andé(t) for everyt > 0, there exists

constant > 0 such that
V. P(Ahy,z)t < z. (10.87)

Furthermore, recall
v(Ahy, &) = Ahi (T(Ahy) + FTR(E, Ahy)F) (10.88)
then by boundedness ¢ft) and&(¢) there exists constanis> 0 andz’ > 0 such that

Van, P(Ahy, 2)Ahy < — 4k2 min(L;)||v(Ahy, €)])*+

Ak, €l + (10.89)
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and consequently

d
—P(Ah — 4% min(L;)|[v(Ah 2
2P (B, ) < — 4r® min(L;) (A, )|+ (10.90)
+ Al (Ahy, )| + 2 + 2.
By applying Lemma 5.2 the proof is concluded. O
Now, the main result of the paper can be stated.

Theorem 5. Letk < 2,§ = g — ¢* andé = £ — £*. For k > x* defined in Proposition
29, the state set

M = {(Ahp, q,€) € RF x R" x R" | Ahy € M AG=E =0} (10.91)

is globally asymptotically stable for the closed loop sys(¢0.54)-(10.56). In particular

Jim d(¢(t), M) =0, (10.92)
and .
¢=0,V(CeM, (10.93)

where¢ = (AL, q7,€T).

Proof. It follows from Proposition 27 thatg” ET) = 0 is a globally asymptotically sta-
ble equilibrium point of the system (10.54)-(10.55). Thhke thesis follows by letting
z=1(q,§), x = Ahy andY = M in Theorem 4 and applying Lemma 5.1, and Proposi-
tion 30. O

Since, by Theorem 5, the closed loop system is globally asyticplly stable inde-
pendently on the number of end-users in the system, it isladad that end-users can be
arbitrarily added to or removed from the system while maimitg the stability properties
of the closed loop system. However, for the result to holdnim@ber of booster pumps
in the system cannot be more than two.

6 Numerical Results

The proposed controllers have been tested by performingnalaiion of the closed
loop system. Specifically, a small laboratory scale systéth four end-users and two
booster pumps has been simulated. The hydraulic networkatia of the system is
shown in Fig. 10.2. A scenario is simulated, where the sy$amthe initial condition
(ARL, ¢T,€T) = 0 and the reference for all the outputs are Bar.

The parameters used in the simulation afg; = 1.0787, J1o = Ji3 = Jiu =
Jo1 = J31 = Ja1 = 0.4421, Joy = 1.1318, Joz = Joy = J3o = Jyo = 0.7074, J33 =
1.4854, J34 = J43 = 1.061, J44 = 17507, P2 = P13 = 0.0586,])3 = P = 06755,
pr = p12 = pa1 = pae = 0.0352, ps = p11 = p17 = P20 = pa2 = p2s = 0.4503,
P16 = P27 = 0.0469; v5 = vig = v19 = voq = 0.005, v14 = 0.0013; Ab = 215,
Ae = 31y, 7 = 021y K = N = 21y, L = 2I5;, k = 2; Ah, = Ahy, = 0.1;
a = 1. Furthermore, the parameters for all pumps in the systenuare= 0.0148,

156



6 Numerical Results
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Figure 10.2: Hydraulic network diagram of the system usatiénsimulation.

ap1 = —0.35379 - 1073, app = 6.0854 - 1075, ass = 0.0039, a3 = 0.10648 - 10~2 and
ax = 0.96902- 1075, these are used in calculating the power consumption ofuhgpg.

Results of a simulation of the closed loop system are show#igin10.3. The power
consumption of the pumps have been calculated using thetwer function given in
(10.29).
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Figure 10.3: Result of simulation of closed loop system. gheen line in the bottom

graph shows the power consumption of the system, when usenghap (10.94) from
to Ahe, Ahy.
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In [5], the following map is used to calculateh. andAh,

Ahe, = 0.7min(u, ug, us, tg)
Ahe,, = 0.7(min(us, us4) — Ahe,)
Ahe, = uy — Ahg,

Ahcy = ug — Ahg,

Ahey = ug — Ahe, — Ahey,
Aheyy = ug — Ahe, — Ahey,,

(10.94)

whereAh;, = (Ah,,, Ah,,,) and
Ahe = (Ahe,, Ahey, Ahe,y, Ahe,,). Notice that this map guarantees thatife RZ
thenAh, € RZ andAh, € RY.

In Fig. 10.3, bottom, a comparison has been made betweerotirer gonsumption
of the pumps in the system using the approach for calculatingandAh; presented in
this paper, and the approach in (10.94). The relatively lowgr consumptions£ 7 W in
steady state) is due to the fact that a laboratory scalemyistsimulated.

In Fig. 10.3, it can be seen that in steady state, the corgmls to leave as much
of the actuation to the boosting pumps as possible. Thistig@ssincea;, < a., which
from the point of view of the controller means that the baagpumps are more efficient
than the end-user pumps, sim?bé1 > a_!. However, this might not be the general case
and some care should be taken into account when choosindfittierey matricesA.
and A,;, since the actual power function is not bilinear, but the ginen in (10.29).

7 Conclusion

A case study involving a large scale hydraulic system wasnixed. The problem of
regulating the pressure drop across the so-called endvabers in the system while
minimizing the steady state power consumption of the actsavas addressed. The
results show that the proposed controllers are able to geogiobal asymptotic output
regulation, while converging to the set of minimizers of aided objective function.
In particular, the objective function describes the eleatrpower consumption of the
actuators in the system.

The result is supported by numerical simulations perforrmedh small laboratory
scale system with four end-users.

Since the result is global and independent on the numberdiisars in the system,
it shows that end-users can be arbitrarily added to or rech@nen the system while
maintaining the stability properties.

A natural extension of the work presented here will be theegaisation of the result
to an arbitrary number of booster pumps in the system. A &urgixtension is an analysis
of the stability properties of the closed loop system, whas ¢ontrol actions:; are
restricted to non-negative values. This is important siheecentrifugal pumps used in
the system are only able to provide non-negative actuation.
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A Proof of Proposition 28

This appendix presents a proof of Proposition 28.Ré&) = P(-, §*, &*).

Proof.

DefinitionA.1: For a functionf : S — R andc € R, whereS C R" define the sef *1(0) as the
preimage of: underf, or f~*(c) = {x € S| f(z) = c}.

LemmaA.1: Letc € im(P) andD = P~ *(c), then there exists € N such thatD C B,.(0).
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Proof. The proof will be done by contradiction. Assume that for gverc N, there
exists somer* € D such thatz* ¢ B,(0). Take a sequenceg, =} such thatr; € N,
then asr; — oo, |zf| — oco. On the other handP(xz) — oo as|z| — oo, which is a
contradiction. O

Lemma A.1 shows that the set of minimizersf() is bounded. This can be seen by
choosing: = min(P(+)), which exists by the following theorem.

Theorem 6. ([11]) Let F'(X) be a convex function on a finite-dimensional spacé

VX £0 lim F(EX) = 4o, (10.95)
—00

then there exists minimum &6f.X) on&.

Next,the property of closedness of the set of minimizers&rened. First, the fol-
lowing helpful theorems will be given.

DefinitionA.2: LetC be a non-empty convex setlki, and letf : C — R be convex or’. Then,

min f(2) (10.96)

is said to be a convex program.

Theorem 7. ([12]) Let z* be a local minimum of a convex program. Theh,is also a
global minimum.

Theorem 8. ([12]) Suppose thayf : R™ — R is differentiable atc*. If z* is a local
minimum, theiV f (z*) = 0.

Theorem 9. ([12]) Suppose thaf : R™ — R is differentiable atz* and convex ofR™.
If Vf(z*) =0, thenz* is a global minimum of onR™

From the above, it is concluded that is a global minimum ofP if and only if
VP(xz*) = 0. SinceP(-) is continuously differentiabléyP(-) is continuous. Because
VP(-) is continuous, the preimage of a closed set un@gx-) is closed. In particular,
the set{0} is closed, which means thatt = VP ~1(0) is also closed.

Lastly, a well known result is that the set of minimizers ofoeneex function defined
over a convex set is convex.

Theorem 10. Let f : S — R be a convex function defined on a convex$set R". Then
the set of all global minimizers gfis a convex set.

Proof. Lety* € R denote the minimum of overS, thatis, f(z) > y* for everyz € S.
Sincef is a convex function it fulfils the inequality

flazy + (1 —a)xs) < af(x1) + (1 —a)f(x2) (20.97)

for two pointszy, zo € S. Note,az; + (1 — «)xo belongs taS sincesS is a convex set.
Now, let two pointse;, x5 € S be such thaf («7) = f(z3) = y*.
From convexity off

flaxt + (1 —a)as) < af (@) + (1 —a)f(e3) = y" (10.98)
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2 Proof of Proposition 29

However, since/* is the minimum off on S
flazy + (1 —a)z3) =y, (10.99)

which completes the proof.

By Theorem 10 Proposition 28 is true.

B Proof of Proposition 29

First, recall that denotes the feasibility set of the original minimizationiplem (10.39),
which is recalled here

Ahy >0 (10.100a)
FARy < £*, (10.100b)

and thatC is compact and non-empty by Lemma 3.1, dd\hy, ¢*,£*) > 0 for every
Ahy € C.
Also, by Lemma 3.1, the compact sétC C defined by

Ahy > Ah, (10.101a)
FAhy < € — Ah,, (10.101b)

is non-empty for a proper choice &fh, > 0 andAh, > 0.
Furthermore, the objective function with the penalty teintduded and steady state
G and¢ is given as
P(Ahy, ", €) = P(Ahy, ¢, € )+

0 YAhy € C (10.102)
T S(Ahy, %) VAR, € RF\ C

whereC C C andS(Ahy, £*) > 0 for everyAh;, € RF \ C.

Proof. Notice that since the sameis used across all=1,2,....,nandj =1,2,....k
the functionS(Ahy, £) in (10.52) can be written as

S(Ahy, €) = rS(Ahy, €), (10.103)
where i
S(Ahy, &) => 556 — FAy) + Y 85(Ahy) (10.104)
i=1 j=1
and )
N - ; <z
5i(x) :{ (@ o,&l) iz Z . (10.105)

Now, let@ be an open set such that

ccqQcec. (10.106)
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Furthermore, letn > 0 be such that
P(x,q",&") <m, Va € C, (10.107)

which exists by continuity of(-, ¢*, £*) and compactness 6.
The functionS(-, £*) fulfils

Sz, &%) >0, Yoz e RF\ C, (10.108)

and )
S(x, &) =0, Yz € C. (10.109)

Therefore, for every: € C \ @ there exists:* such that
P(x,§*, &%) = P(x, G, €°) + kS(x,£*) > m, V& > k¥, (10.110)

again by continuity of”(-, ¢*, £*) and compactness 6f\ Q.
Let M denote the set of minimizers &f(-, ¢*, £*), then from the above and convexity
of P(-,g*, &) it follows that

McQcCc. (10.111)
Furthermore, since
P(x,q",&*) >0, Vz € C, (10.112)
it follows that for everyx > x*
P(z,§*,&") = Pz, ¢, &) + kS(x, &%) > 0, Vo € RF. (10.113)
Then the thesis follows. O
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