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Preface 
This PhD thesis is based on four original papers. The four studies contain new methods of 

subject examination, data collection and data analysis techniques. Thedevelopment of the  

methodologies and presentation of the data collected was presented at numerous 

conferences through posters, oral presentations and mini papers .A detailed description 

and discussion on the methods and techniques used to analyse and present the data are 

contained within the relevant publications listed (1-IV). The prototype manual 

viscoelastometer and the automated viscoelastometer trialled in studies two and three is 

undergoing patent. Both devices are used primarily in research with future potential for 

wider clinical application.   

Original papers  
I .Gutnik, B.  Yielder, P., Some mechanical muscle properties as indicators of the 

peripheral characteristics of manual asymmetry. -Submitted to Biophysics (under review 

and translation)   

 

II .Yielder P, Gutnik B, Kobrin V, Leaver J, Guo W (2007)  Viscoelastic properties of a 

skin-and-muscle compartment in the right and the left hands. -Biophysics 52, 220-226 

DOI: 10.1134/S0006350907020133 

 

III. Gutnik, B. Yielder, P., Murphy, B., Kobrin, V.  Reliability of an automated 

viscoelastometer and comparison of the viscoelasticity of the skin muscle compartment 

of the left and right hands - Submitted to Biophysics (under review and translation)   

 

IV.Yielder, P. Gutnik, B. Kobrin, V. Hudson, G.  (2009) A possible anatomical and 

biomechanical explanation of the 10% rule used in the clinical assessment of prehensile 
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hand movements and handed dominance.  The Journal of Electromyography and 

Kinesiology”,19, e472 to  480.  DOI:10.1016/j.jelekin. 

Published Conference Proceedings: 
1). Yielder, P., Gutnik, B., Miller, J. (2003).  Peripheral factors influence the latency 

period of simple sensory motor reaction time.  International Conference of Motor Control 

(Motor control and learning over the life span).  University of Caen, Basse Normandie, 

France, 20-23 August. Pg. 172. 

 

2).Yielder, P., Gutnik B.  (2003). Abnormal features of the first dorsal interosseous 

muscle in vivo (Force torque muscle contraction and stiffness).  21st Australasian Winter 

conference of Brain Research.  Queenstown, 30 August – 3 September. Pg 23. 

 

3).Yielder, P., Gutnik, B.  (2003). Anatomical features of the first dorsal interosseous 

muscle – structural morphology and MRI reconstruction. 21st Australasian Winter 

conference of Brain Research.  Queenstown, 30 August – 3 September. Pg 23. 

 

4).Yielder, P., Gutnik, B., Hudson, G., Smith, G., Kobrin, V.  (2003). Anatomical 

features of the first interosseous muscle in vivo (Preliminary report). In Proceedings of 

Australasian Society for Human Biology Conference.  Auckland, 7-10 December 

Population Migration and Diversity Abs. HOMO - Journal of Comparative Human 

Biology 55 (2004) pg 170. 

 

5).Gutnik, B., Yielder, P., Nash, D., Hinkson, E, Lewis, C., Skirius, I.  (2003). How 

elastic is the first interosseous muscle?  In proceedings of Australasian Society for 

Human Biology Conference. Auckland, 7-10 December.  Population-Migration and 

Diversity Abs. HOMO – Journal of Comparative Human Biology. 55 (2004) pg 154. 

 

 6).Yielder, P., Gutnik, B., Kobrin, V., Smith, G., Hudson, G.(2004) The structural 

properties of the first dorsal interosseous muscle (in vivo).  The experimental model No 
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1.  Pushchino International Symposium.  Biological Motility.   Moscow, 23 May – 1 

June. Pg. 280-283 

 

7).Gutnik, B., Yielder, P., Smith, G., Hudson, G., Nash, D., Hinkson, E., Skirius, S.  

(2004). The structural properties on the first dorsal interosseous muscle (in vivo).  The 

experimental model No 2.  Pushchino International Symposium.  Biological Motility.   

Moscow, 23 May – 1 June.Pg. 255 - 256 

 

8).Yielder, P., Gutnik, B., Korbrin, V., Hudson, G., Smith, G.  (2004). Further neuro-

structural characteristics of the First Dorsal Interosseous Muscle:  Possible peripheral 

factors of handedness. In proceedings of 22nd International Australasian Winter 

Conference on Brain Research, ISSN 1176-3183,   

 

9).Yielder, P., Gutnik, B., Hudson, G., Geo, W.  (2004). Neuro-muscular factors in 

stiffness of the distal hand muscles in vivo: The lateral approach (preliminary results).In 

proceedings of 22nd International Australasian Winter Conference on Brain Research, 

ISSN 1176-3183, p35.  

 

10). Yielder P. Gutnik B. Hudson G. (2005) Peripheral muscular factors in the 

assessment of hand dominance. In proceedings of Movement Analysis 2005 – Building 

Bridges Auckland University.  Pg.119-122. 

 

11).Gutnik, B., Yielder P. Leaver J. Kobrin V. (2005) .The viscoelastic behaviour of the 

distal hand muscles in the lateral aspect. (FDI) In proceedings of Movement Analysis 

2005 – Building Bridges – Auckland University Pg.115 – 118 

 

12).Gutnik, B., Yielder, P., Leaver, J., Henneberg, M. (2005).  Behaviour of distal human 

muscle under tensile stress”in vitro” – Approach to manual asymmetry. In Proceedings of 

Russian State Classical Academy – Movement and Clinical symposium “Current 

Problems in Modern Medicine” (M. Maimonides). p.33 
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13). Gutnik,B., Yielder P. Leaver J. Kobrin V. Wei Guo (2005). Development of a 

Peripheral Comparative Index from a Pilot study for the Assessment of Manual 

Asymmetry. . In Proceedings of Russian State Classical Academy – Movement and 

Clinical symposium “Current Problems in Modern Medicine” (M. Maimonides). p.34. 

 

14). Yielder, P., Gutnik, B., Doyle, A., Donald, S., Hudson, G. (2005). Contradictions to 

the traditional Approach used in the Assessment of Handed Dominance. In Proceedings 

of Russian State Classical Academy – Movement and Clinical symposium “Current 

Problems in Modern Medicine” (M. Maimonides). p.48. 

 

15).Yielder, P., Gutnik, B., Kobrin, V. (2005). Whole muscle assessment of the First 

Dorsal Interosseous Muscle (FDI) incorporating an approach to the peripheral 

mechanisms of lateralisation. “Fusion 2005.”  Inaugural joint New Zealand Institute of 

Medical Radiation Technology / Australian Institute of Radiography Conference, 

Auckland 25-28 August, 2005.  

Pg.48 

 

16). Gutnik. B  Henneberg, M.  Yielder, P . Kobrin, V.  J.Leaver (2005). Manual 

asymmetry – towards the peripheral approach: investigation in-vitro on cadaver muscles 

– part III In. Chudoerkova E.P. (ED). Russian State Academy of Medical Science: Dept 

of Medical and Biological Sciences - Russian state Institute of Brain Research: (ISBN 5-

7479-0128-9) The Structural functional and Neurochemical Patterns of Asymmetry and 

Plasticity of the Brain.pg 319-3232 

 

17). V.Kobrin. B.Gutnik. P.Yielder J.Leaver (2005).“Manual Asymmetry”Towards the  

Peripheral Approach Part 1 investigation in vivo In. Chudoerkova E.P. (ED). Russian 

State Academy of Medical Science: Dept of Medical and Biological Sciences - Russian 

state Institute of Brain Research: (ISBN 5-7479-0128-9) The Structural functional and 

Neurochemical Patterns of Asymmetry and Plasticity of the Brain.pg 319-3232 pg. 324-

327  
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18).Yielder,P., Gutnik, B.,Kobrin,V. (2005). The Influence of the peripheral factors in the 

assessment of Hand Dominance in Vivo (Part II). In. Chudoerkova E.P. (ED). Russian 

State Academy of Medical Science: Dept of Medical and Biological Sciences - Russian 

State Institute of Brain Research: (ISBN 5-7479-0128-9) The Structural functional and 

Neurochemical Patterns of Asymmetry and Plasticity of the Brain.pg 329-332  
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English summary 
The study of cerebral lateralisation was pioneered by Paul Broca in 1860. This work 

formalised neural concepts of the principle that one hemisphere functionally dominates 

the other. Subsequent work has been strongly influenced by the concept of cortical 

asymmetry with cortical differences projected upon paired anatomical structures in the 

periphery. Studies in this area are often concerned with the functional anatomy and 

lateralized behavior of the distal hand muscles.  The field has remained heavily 

influenced by the postulate that one side of the body dominates the other during motor 

behaviour.  This focus on the centrally mediated contribution has meant that the 

contribution of peripheral influences to left-right asymmetry has not been adequately 

investigated.   

This thesis features the left and right first dorsal interossei (FDI) muscles as test muscles 

for the study of the contribution of peripheral factors to left-right asymmetry.  The FDI 

are intrinsic hand muscles which play a fundamental role in hand grip.  The principal aim 

of the thesis was to design and perform a sequence of studies to quantify some of the 

mechanical and physiological properties of the first dorsal interosseous muscle (FDI) and 

also to discriminate the contributions made by some “peripheral” factors that influence 

human bimanual asymmetry.  The overall hypothesis assumed that there would be 

differences between the right and left hands, specifically in parameters of stiffness and 

viscoelasticity, and in the production of muscle forces related to the peripheral geometry 

of the muscle to bone attachment angles of the first dorsal interossous muscle. 

Study I was a post-mortem study which set out to identify and quantify some of the 

residual viscoelastic properties of muscle present in the dennervated state, in order to 
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differentiate the contribution of the inherent molecular properties of the muscle from 

overlying neurally mediated muscle tone. Biomechanical indices (yield points, the level 

of strain, viscoelastic energy, Young’s modulus) did not demonstrate a significant 

difference between dominant and non-dominant hands.  Study II aimed to develop a 

model inclusive of a mathematical approach to discriminate the relative viscoelastic 

contributions of skin, muscle and connective tissues using a new device purpose designed 

to quantify muscle visco - elasticity and stiffness in vivo.  This study reported “new 

data” concerning the stiffness of the FDI in vivo from a sequence of compression 

movements in the dorsal- palmar direction but found no difference between the hands.  

Study III trialed an improved automated version of the manual device used in Study II 

and investigated it’s inter-trial reliability in a comparative study of the tonal viscoelastic 

properties of the skin-muscle compartment of the left and right first dorsal interossei 

(FDI) muscles of the hands. The device was found to be highly reliable and again no 

significant right left differences were found in visco-elasticity and stiffness.  Study IV 

utilized a novel MRI modelling approach to investigate peripheral differences in the 

intrinsic muscle force related to the geometry of the muscle attachment angle. The study 

also set out to determine whether the 10% rule (which states that in 10% of cases, the 

non-dominant hand will be stronger than the dominant) might be partially explained by 

muscle attachment angle.  There was a significantly greater muscle volume for the right 

FDI muscle as compared to the left as measured from the reconstructed MRI slice data.  

Those participants who produced greater force with their non-dominant hand were found 

to have a greater angle of attachment. This study concluded that the 10% rule may be 

anatomically and biomechanically explained.  
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This work demonstrates that the classical model of manual asymmetry in motor 

performance could be enriched by reformulation and inclusion of the complexity of the 

peripheral muscle-osseous relationship. 
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Dansk sammenfatning 
Resumé: De mekaniske og fysiologiske egenskaber af m. interosseus dorsalis I. 

En tilgang til de”perifere mekanismer for lateralisation”  

I 1860 banede Paul Broca vejen for studiet af cerebral lateralisering. Dette arbejde 

formaliserede neurale koncepter om princippet, at én hemisfære funktionelt dominerer 

den anden. Konceptet om kortikal asymmetri har haft stærk indflydelse på det 

efterfølgende arbejde, hvor kortikale forskelle er blevet anvendt på parrede anatomiske 

strukturer i periferien. Studier på området beskæftiger sig ofte med de distale 

håndmusklers funktionelle anatomi og lateraliserede adfærd. Området er til stadighed 

under stærk indflydelse af postulatet om, at den ene side af kroppen dominerer den anden 

under motorisk adfærd. Dette fokus på det centralt formidlede bidrag har betydet, at 

bidraget fra perifere påvirkninger til venstre-højre-asymmetri ikke er blevet undersøgt i 

tilstrækkelig grad.   

Denne afhandling bruger den venstre og højre første dorsale interossei-muskel (FDI) som 

testmuskler til studiet af bidraget fra perifere faktorer til venstre-højre-asymmetri. FDI er 

indre håndmuskler, som spiller en fundamental rolle i håndens gribefunktion. Det var 

afhandlingens vigtigste mål at skabe og udføre et studieforløb med det formål at 

kvantificere nogle af den første dorsale interossei-muskels (FDI) mekaniske og 

fysiologiske egenskaber og samtidig at skelne bidragene fra nogle "perifere" faktorer, der 

har indflydelse på den menneskelige bimanuelle asymmetri. Den overordnede hypotese 

var, at der ville være forskel på den højre og venstre hånd, navnlig hvad angik parametre 

som stivhed og viskoelasticitet samt i produktionen af muskelstyrke i forbindelse med 

den perifere geometri af den første dorsale interossei-muskels fastgørelsesvinkler til 

knoglen. 
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Studie I var et obduktionsstudie, som havde til formål at identificere og kvantificere 

nogle af de tilbageværende viskoelastiske muskelegenskaber i den denerverede tilstand 

med henblik på at differentiere bidraget fra de medfødte molekylære muskelegenskaber 

fra den overliggende neuralt medierede muskeltonus. Biomekaniske indikatorer 

(strækgrænser, grad af overbelastning, viskoelastisk energi, Youngs mål) påviste ikke en 

signifikant forskel mellem dominante og ikke-dominante hænder. Studie II tilstræbte at 

udvikle en model, inklusive en matematisk metode, til at skelne de relative viskoelastiske 

bidrag fra hud, muskel og bindevæv ved hjælp af en nyt apparat, som var udviklet til at 

kvantificere muskelviskoelasticitet og stivhed in vivo. Studiet resulterede i "nye data" om 

FDI's stivhed in vivo fra en række klemmebevægelser i dorsal-palmar-retningen, men 

påviste ingen forskel mellem hænderne.  Under studie III afprøvede man en forbedret, 

automatiseret udgave af det manuelle apparat, som blev anvendt under studie II, og 

undersøgte dets pålidelighed i et komparativt studie af de tonusviskoelastiske egenskaber 

ved hudmuskelrummet på den venstre og højre første dorsale interossei-muskel (FDI) i 

hænderne. Det blev konstateret, at apparatet var særdeles pålideligt, og igen blev der ikke 

påvist nogen signifikante højre-venstre-forskelle i viskoelasticitet og stivhed. Under 

studie IV blev der anvendt en ny MRI-modelleringstilgang for at undersøge perifere 

forskelle i den indre muskelstyrke i forhold til geometrien af muskelfastgørelsesvinklen. 

Studiet forsøgte også at fastlægge, hvorvidt 10 %-reglen (som siger, at den ikke-

dominante hånd vil være stærkere end den dominante i 10 % af tilfældene) delvist kan 

forklares med muskelfastgørelsesvinklen. Der var en betydeligt større muskelvolumen for 

den højre FDI-muskel sammenlignet med den venstre i målingerne fra de rekonstruerede 

MRI-data.  De deltagere, som producerede større styrke med deres ikke-dominante hånd, 
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viste sig at have en større fastgørelsesvinkel. Dette studie konkluderede, at 10 %-reglen 

muligvis har en anatomisk og biomekanisk forklaring.  

Dette arbejde viser, at den klassiske model for manuel asymmetri i motorisk 

præstationsevne kan beriges ved omformulering og inklusion af kompleksiteten ved det 

perifere muskel-ossøse forhold. 
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Glossary of General Abbreviations 
 AIR                             Australian Institute of Radiography 
 
ANOVA                       Statistical method for the analysis of variance. 
 
AutoCAD 2004            Automated computer aided draughting (Software package) 
 
CCC                              Concentric contraction 
 
CMC                             Carpo - metacarpal  
 
CT                                 Computed Tomography 
 
DICOM                         Digital CD viewer 
 
2D                                 Two dimensional          
 
3D                                 Three dimensional 
 
ECC                               Eccentric contraction 
 
EMG                             Electromyograph 
 
FDI                                First dorsal Interosseous muscle 
 
FOV                               Field of view 
 
fMRI                              Functional magnetic resonance imaging 
 
Gd-DTPA                      Gadolinium chelate – exogenous contrast agent 
 
PCSA                            Physiological cross sectional area of the muscle 
 
MCP                              Metacarpophalangeal 
 
MPRAGE                     Magnetisation prepared gradient echo (acquisition sequence) 
 
MRA                             Magnetic Resonance Angiography 
 
MRI                              Magnetic resonance imaging 
 
MTB                             Muscle Tendon Bone Unit (Whole muscle analysis) 
 
MVC                            Maximal voluntary contraction. 
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NMR                             Nuclear magnetic resonance 
 
NZIMRT                      New Zealand Institute of Medical Radiation Technology 
 
RF                                 Radio frequency Pulse 
 
ROI                               Region of interest 
 
T1                                  Inversion time 
 
T2                                  Decay time 
 
TE                                 Transverse excitation 
 
TR                                 Transverse relaxation 
 
UNITEC                        Institute of Technology in Auckland New Zealand 
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Introduction 
 This PhD thesis features the bi lateral first dorsal interossei (FDI) muscles and is 

principally concerned with the problem of the peripheral influence and contribution that 

these muscles and their associated osseous and connective tissues make to bimanual 

actions and bimanual performance asymmetry. Early work in the  study of cerebral 

lateralization pioneered by Paul Broca (1861)  introduced  the principle of cortical 

asymmetry and established  the hypothesis that one hemisphere functionally dominates 

the other. Subsequent work in neuroscience has been strongly influenced by this classical 

approach.  Over the last 50 years some research in the field of bimanual actions has 

offered a different orientation than the classical emphasis on cortical dominance  

favouring an approach that emphasizes complimentary hemispheric specialization  

(Hecean and De Ajuriaga 1964) (Guiard 1987) (Hecean and De Ajuriaga 1964; Hellige 

1993). In this sequence of research, the principle of lateral specialisation was modified to 

assert the complimentary actions of both hands in bimanual performance and the adaptive 

advantage of complementariness in human manual specialisation.  

This trend reflects the neurophysiologic realization that a theory assigning connectivity 

and complimentary motor and cognitive functions to the two halves of the brain would 

possess better explanatory capability than one assuming that one hemisphere is more 

important or sophisticated than the other. However, despite anatomical and functional 

evidence that a complimentary relationship exists between the bi-hemispheric and the 

bilateral manual (motor) systems, a conceptual translation from lateral dominance to 

lateral specialization and complimentary bilateral bimanual function has not really taken 

place in the study of manual skills. Even though frequency of the use of the term lateral 
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dominance has declined in the contemporary literature, the field remains heavily 

influenced by the postulate that one side dominates the other in the various expressions of 

motor behavior.  

Central and Peripheral Dichotomy  
Many of the problems considered current in the study of movement coordination were 

recognized during the first half of the 20thcentury by the Russian neurophysiologist and 

movement scientist Nikolai Bernstein. His assertion that the central nervous system’s 

(CNS) hierarchy of control mechanisms for posture and movement is organized hand-in-

hand with distributed and parallel processing, which is also subject to evolutionary 

pressures, challenged the view held in McGraw's and Gesell's time (O’Boyle 2006) of a 

hierarchical system within the body whereby commands for movement were issued by 

the brain. Bernstein’s view was that motor development was not primarily dependent on 

brain maturation, but was also heavily influenced by adaptations to constraints of the 

body (changes in the growing infant's body mass and proportions) and responses to 

exogenous conditions (gravity, surface, specific tasks to be performed).  He posited that 

performance of any kind of movement results from an infinite variety of possible 

combinations, or degrees of freedom, involving neuromuscular, skeletal and connective 

tissue elements emphasizing the complexity of the interrelationship  between movement 

co-ordination and localization (Bernstein 1967).  His mathematically derived movement 

equations complimented his descriptive functional analogues that defined two essential 

movement patterns, namely the chain cycle (peripheral associations) and the comb cycle 

(top down associations). The chain cycle contains the mutual interdependence between 

the position and the moment involved in the movement and is purely mechanical. So this 
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type of approach implies that the motor system may be considered as self-organizing, 

with body elements coordinated, or assembled, in response to specific tasks reactive to 

exogenous and peripheral influences that are not directly under the control of the brain. 

His comb cycle assimilates the chain cycle as a foundation principle of movement 

expression, emphasing a similar interdependence between the position and the degree of 

excitation (E).  This connection is physiologically based on reflexes but is related to the 

activity of the central nervous system. The traditional view accepted and retained by 

physiologists and clinicians is biased towards the comb, top-down domain of Bernstein’s 

second cycle (Annett 1998; Dassonville et al. 1998; Amunts et al. 2000; Gazzaniga 2000; 

Sainburg and Kalakanis 2000). Within this scheme, a central impulse always produces a 

movement and the peripheral components are under dominant control of central impulses. 

The executor in the cortical motor area (M1 - Brodmann Area 4) performs, therefore, like 

a distributor with push button controls. However, Bernstein’s view is that this approach 

ignores the state of the periphery which can produce completely different effects because 

of the interplay of external forces and variations in internal conditions. Since its original 

inception in Russia, and eventual dissemination in the West, Bernstein’s approach has 

become influential within the numerous sub-disciplines of the study of human movement 

and motor behaviour. It also rather uniquely presents a historical foundation and 

precursor to current theories and ideas involving neural and musculoskeletal plasticity.  A 

recent  expression of Bernstein’s thought, continuing the discussion on the central vs. 

peripheral dichotomy and the theme of adaptive plasticity  referring to the hand 

hemisphere system  is discussed by Carson (Carson 1993), in the guise of a behavioral 

approach adopting dynamic systems theory.  
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Possible Peripheral Factors 
  

Bernstein’s approach contains an implicit challenge to consider peripheral influences as 

fundamental components in the study of movement patterns and particularly in those 

involving inter-limb coordination and lateralisation. Rather paradoxically peripheral 

influences in general, and those involving lateralization and the phenomenon of 

handedness in particular, are poorly specified and are rather inadequately represented in 

the literature.  However, over the last decade the study of the peripheral contribution  

In the context of surgical joint reconstruction and limb function has featured sophisticated 

modelling work involving the transmission of forces both inside and between adjacent 

skeletal muscles and connective tissue elements. This approach has demonstrated that 

morphologically defined muscles are not exclusively independent actuators but are 

capable of mechanical interactions via their connective tissue structures (Huijing 1998; 

Meijer et al. 2007). The term myofascial force transmission is now commonly used to 

indicate force transmission via pathways other than myo tendinous routes 

(Rijkelijkhuizen et al. 2007), hence myofascial force transmission between muscles fibres 

and fascial connective tissues is influenced by the arrangement of the intramuscular 

stroma of adjacent muscles and the intramuscular connective tissues.   To execute 

movement, momentary forces need to be exerted at various locations within the 

musculoskeletal subsystem and in order to exert force onto the skeleton, active or passive 

force  generated within the sarcomeres of muscle fibres has to be transmitted across  the 

sarcolemma and the various connective tissues involved (Huijing et al. 2007). When 

combined with the biomechanical features and the geometric arrangement of the tissues, 
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these contributing factors co-determine how much force is exerted, both actively and 

passively, in a given state or instance of movement. 

This complex  morphological arrangement  and  interplay of tissues also determines, to 

some extent, the viscoelastic properties of muscle (Huijing 1992)  and the mechanical 

strength of the intramuscular connective tissue compartment during the development and 

ageing of living skeletal muscle (Carmeli et al. 2003).  These visco-elastic properties are 

dynamic within living muscle and preserved to some extent within the molecular 

structure as protein residues in post mortem muscle. There are some studies that that have 

approached the question of the periphery using morphological and compositional 

techniques to disclose patterns of lateralization. Walters et al. (1998) identified higher 

bone mineral density in the ulna of the dominant forearm and this was reported as a 

possible index of dominance. The compositional argument being preceded by 

Mortensson and Thonell (1991) to explain why in trauma to the upper extremities, 

fracture incidence is twice as common on the left as on the right side.  

There are also studies indicating that the architectonics of muscle conformity may 

contribute to the general influence of peripheral factors that dictate handedness, (Jozsa et 

al. 1981; Fugl-Meyer et al. 1982; Tanaka et al. 1984; Gutnik et al. 2004)  The 

architectonic theme  related to reactive  muscle plasticity and the involvement of 

peripheral connective tissues  is reported by Adam et al (1998) who observed that  

preferential use of selected muscles is known to initiate changes to physiological 

characteristics and mechanical responses. The author attributed these changes to 

alterations in fibre type and internal composition with associated neural adaptation and 
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changes to the contractile mechanics of the sarcomere, and hence the visco-elastic 

behaviour of the muscle.  

Viscoelasticity and Stiffness 
Movement is generally considered to be a consequence of the forces applied to the 

skeleton by muscles, involving the activity of cross bridges within the sarcomeres and 

also the elasticity of tendons. Tendons are the medium by which the force generated 

within an activated muscle is transmitted to the skeleton with  modification to the original 

force produced by interaction with the material properties of the tendon and modulation 

by the neural pathway involving the Golgi tendon reflex circuitry (Kubo et al. 2000; 

Fukuanaga et al. 2001). When muscles tendons and ligaments are stretched, the essential 

molecular composition and tissue structures resist the stretch and exert an elastic force 

upon the skeleton. For tendons, the stretch can be caused by either a passive increase in 

the joint angle or an active shortening of the muscle fibres. For ligaments, the stretch 

occurs when some mechanical action (perturbation) causes a distraction of the 

articulating surfaces. This stress strain relationship is quite complex and with regard to 

the performance of muscles often leads to a consideration of the relative stiffness of the 

movement system.  So why is it considered important to develop techniques to quantify 

stretch, elasticity and stiffness?  In clinical work understanding of the stress-strain 

properties of the musculoskeletal system in vivo during the static state and also during 

normal movements is an essential foundation for understanding the mechanism of muscle 

trauma when mechanical stress is the leading factor (Roy and Edgerton 1992). 

Viscoelasticity and musculoskeletal stiffness are likely to be modified by the age, 

nutrition and the physical activity level of the individual. Stiffness is also subject to 
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variation in the magnitude of the mechanical properties of different categories of the 

same material with suprisingly little or no standard reference data reported (Watkins 

1999).  

 

Hooks Law and Young’s Modulus - methods for discriminating viscosity 
and elasticity 
The principle of the method used to quantify viscoelasticity and stiffness adopted in 

studies II and III is based on Robert Hook’s  original work involving the stress strain 

properties of balanced timepiece springs (Watkins 1999). His work contributed a method 

used to quantify the elasticity and force-influenced behaviour of stretched tissues.  When 

the magnitude of the stretch is relatively small, the elastic force can be represented by the 

properties of an ideal spring as defined by Hook’s Law where Fe = - kx (Fe = elastic 

force; k =spring stiffness; x = elongation).  However, to distinguish between small and 

large stretches, the force length relationship of tendons and ligaments are usually divided 

into an elastic region and a plastic region (Enoka 2002).  In the elastic region, the tissue 

behaves like a spring; however when the stretch parameters extend into the plastic region, 

the structure of the tissue is altered and the slope of the force length relations changes. 

These dynamic changes to the elastic behaviour of the tissue are usually regarded as 

‘stiffness”.  These changes are specific to tissue type and among structural subtypes of 

the same tissue.  In most materials, all or part of the stress strain curve within the elastic 

range is linear, conforming to Hook’s Law.  Hence the linear profile of the stress strain 

curve is referred to as the Hookean region with the gradient profile of the curve 

quantified as the modulus of elasticity (E) being defined as the ratio of stress (ợ) to strain 

(є) or “Young’s modulus of elasticity” a constant in the mathematical equation named 
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after Thomas Young  who extended the original work of Hook (Watkins 1999).  Young’s 

work adopted defined the stiffness of a material being the resistance of the material to 

deformation, referred to as the stress per unit strain producing a modulus that evolved as 

a standard measure of stiffness for comparing different materials with the modulus 

indicating the amount of stress needed to produce 100% strain.  Strain represents the 

change in length of the tissue relative to its initial length, therefore the stress strain 

characteristics are representative of the intrinsic force capacity and extensibility of 

tendons, ligaments and elastic connective tissues. 

Muscle Tone and Viscoelasticity 

Clinical deliberations on the normal expression of elasticity and stiffness in skeletal 

muscle and connective tissues invariably lead to a consideration of the significance of 

muscle tone.  Muscle tone is a state of continuous partial contraction of a muscle 

dependent on the integrity of a monosynaptic reflex arc.  Minimal healthy muscle tone 

contraction level is approximately five twitches per second, based upon the summation of 

the twitches of many fibres excited asynchronously at low frequencies.  Up to five per 

second (or 5 s-1) generates a total force that does not fluctuate (Schmidt et al. 1985; 

Cohen and Wood 2005). This is neurally mediated muscle tone, or the more commonly 

encountered characteristic state of partial contraction commonly referred to as normal 

muscle tone.  It is partly maintained by continuous excitation of motor impulses with the 

primary goal of maintaining body posture.  Normal muscle tone is abolished if any part of 

the essential reflex arc is destroyed (Schmidt et al. 1985; Guyton and Hall 2005).  If this 

occurs, the muscle becomes atonic and atrophies rapidly.  Samsom et al (1998) 

distinguish two tonal states, active tone and passive tone. The active state of muscle tone 
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is perhaps the simpler of the two to identify, as when a muscle extends and develops 

tension under stretch and is then restored to its original length when the tension is 

released (Cooke 1986).  In this state, the muscle clearly expresses a range of tonal 

responses throughout the movement.  

The passive tonal state is somewhat harder to identify however, as even when apparently 

functionally inactive, a skeletal muscle possesses variable elasticity and is capable of 

expressing subtle variations in “passive tone”.  When adopted clinically, the term is most 

often used to describe muscular resistance to stretch.  This is often expressed as the 

amount of contraction in a resting muscle seemingly related to concepts of passive and 

normal muscle tone.  Arguably, a more precise definition would include the idea of a 

static balanced isometric contraction between agonist and antagonist (internal forces 

within the muscle) for the purpose of maintaining joint integrity and posture.  

Nevertheless, despite variance in the use of the terminology, clinical models that seek to 

quantify muscle tone may be of use when evaluating patients with conditions that 

subjectively exhibit increased or decreased tone in skeletal muscle.  It follows that it is 

important to measure tone in individuals without impairment or disability to serve as a 

comparison.  Investigation of the stiffness and tonicity of the skeletal muscle system are 

also important when assessing levels of adaptation and training (Gosselin et al. 1998; 

Almeida-Silveira et al. 2000; Rosager et al. 2002; Bojsen-Moller et al. 2003; Magnusson 

et al. 2003; Magnusson and Kjaer 2003) as these states may be altered in a number of 

CNS pathologies. Rather surprisingly, there is no fully validated method used to measure 

the level of muscle tone or in its extreme state “spasticity”, although there are numerous 

sources that express muscle tone and visco-elasticity for clinical purposes using the 
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Ashworth five-point scale (Bohannon and Smith 1987; Sloan et al. 1992; Haas et al. 

1996; Gregson et al. 2000).  

Viscoelasticity has been shown in various studies to exert marked influences on human 

motor behaviour and is a general term adopted to describe the function of a composite, 

biological material containing a combination of stiff and elastic fibres embedded in a gel 

medium that predispose the tissue to its unique behaviour.  Inherent viscoelasticity is 

therefore a significant contributor to subjective states of muscle elasticity and stiffness. 

Both of these states are difficult to quantify, nevertheless they are often reported as a 

criterion and index of effectiveness and efficiency of muscle adaptation (Magnusson et 

al. 2001) during contraction and movement  and also an expression of the level of 

flexibility in the different kinematic chains (Voigt et al. 1995; Watkins 1999).  

Handedness and the 10% Rule  
For the last 350 years it is possible to identify a line of research that is concerned with the 

study of cortical lateralization, and the phenomenon of dominance within the motor 

system that projects onto the periphery.  It is well known that most people are right 

handed, and that in the majority of these cases the left cerebral cortex is apparently 

dominant and that this dominance extends through the descending pathways of the motor 

system involving the distal, and rather less frequently the proximal portions of the limbs 

(Annett 1998; Dassonville et al. 1998; Amunts et al. 2000).   This apparent a priori 

emphasis on cortical lateralization during motor execution implies a genetic 

predisposition to express an architectonic and functional asymmetry with much of the 

literature on bimanual charatecteristics still concerned with uncovering  the precise 

mechanisms  of handed dominance (Elliott and Chua 1996) and how these are 
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conditioned by cortical lateralization.  The behaviorist approach asserts that handedness 

is the clearest example of behavioral lateralization in humans (Corballis 1981; Springer 

and Deutsch 1981; Bragina and Dobrochotova 1984; Kolb and Whishaw 1995; Annett 

1998; Annett 1998; Corballis 2003) and  it is generally agreed that the majority of people 

show a pronounced asymmetry between the hands in motor performance, usually 

favoring the right hand (Coren and Porac 1977; Annett et al. 1979; Todor and Smiley 

1985; Roy and Edgerton 1992; Elliott and Chua 1996).   

Much research on manual asymmetries is therefore concerned with two major aspects of 

handedness, notably preference and comparative performance asymmetry. Given the 

emergent interest in the study of peripheral factors it is rather surprising that there has 

been very limited investigation of these factors related to handedness and the contribution 

they make to bi manual co-ordination and individual muscle function.(Jozsa et al. 1981; 

Fugl-Meyer et al. 1982; Tanaka et al. 1984; Gutnik and Hyland 1997; Gutnik et al. 2005).  

This may be partly explained by the anatomical arrangement and functional complexity 

of the hand. Napier (Napier 1956), attempted to classify the function of the hand as a 

whole unit based on prehension mechanisms. Prehension movement involves grasping or 

taking hold of an object that is usually categorized as precision grip or power grip.  These 

highly skilled movements  represent the remarkable synthetic integration of the human 

hands adaptive capability to grasp or wrap around an object (Carmeli et al. 2003).  In the 

developmentally accomplished form, these movements they are are unique to humans, 

although similar primitive patterns are observed in other primate species.  There are 

therefore numerous clinical techniques that adopt anthropometric variables and study 
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force measures to assess hand dexterity and preference, principally to provide indicators 

of underlying pathology.  

One of these techniques featured in study IV is the 10% rule that is often invoked in the 

dynamometric approach to determine lateralization of hand function.  The rule states that 

in 10% of cases, the non-dominant hand will be stronger than the dominant hand and is 

generally applied in situations where the non-dominant hand produces less force that the 

dominant hand (Provins et al. 1982; Mathiowetz et al. 1984; Mathiowetz et al. 1985; 

Gutnik 1990; Bohannon 1997; Bohannon 1997; Hanten et al. 1999; Incel et al. 2002).   

However the basis of the 10% rule is rather uncritically and unconvincingly explained in 

these studies.  Study IV presents the possibility that the 10% variance may be partly 

explained by the complex role of peripheral factors and the individual arrangement of the 

anatomical components of the various muscles and osseous segments involved in the 

compartmental biomechanics. 

The First Dorsal Interosseous Muscle (FDI) 
 The dorsal interossei muscles are located within the dorsal muscular compartment of the 

human hand developing from the fusion of the primitive dorsal abductors and short flexor 

muscles of the fingers (Lewis 1965).  They are usually classified as bipennate muscles, 

referring to muscles that possess a central tendon or myo-fascial partition that seperates 

the muscle tissue. The first dorsal interosseous muscle (FDI) is the largest of the four 

dorsal interossei. It is also classically named the Abductor Indicis, inhabiting the dorsal 

inter - digital space between the thumb and index finger. The FDI is considered the most 

important because of the role it performs during execution of prehensile movements. 

Both  academic and surgical literature agree that the FDI performs a stabilizing influence 
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upon the muscles of the thenar compartment during  pinch and grip movements of the 

thumb and index finger (Bilbo and Stern 1986; Riodan 1995).  Bilbo also observes that a 

significant difference exists in the performance of these movements between the 

dominant and non dominant hands (Bilbo and Stern 1986). Anatomical accounts of the 

FDI muscle usually describe two heads or bellies. The largest is the radial head arising 

from the proximal half of the ulnar border of the 1st metacarpal bone.  The smaller ulnar 

head arises from the proximal 2/3 of the radial border of the second metacarpal bone. The 

radial head, is the larger of the two, contributing about 65%-70% of the entire muscle 

mass (Bilbo and Stern 1986).   The literature contains ambiguities and inconsistencies in 

the descriptive classification and it is clear to the critically informed reader that 

descriptions of the attachment and insertion sites have been oversimplified even though a 

number of morphological variations are identified by cadaver dissection  surgical 

intervention and imaging studies (Naouri and Kuhlman 1984; Masquelet et al. 1986; Van 

Sint and Rooze 1992; Fuglevand et al. 1993; Smith et al. 1996; Difelice et al. 1998). 

However, there is consensus that the attachments of the FDI muscle are not single 

pointed or projected upon precise osseous targets and that they may constellate as 

singular or multiple loci with the potential for considerable variability between individual 

subjects (Bilbo and Stern 1986). In this thesis, Study IV is partly concerned with the 

geometric arrangement of these attachment sites and the action of the deep radial head of 

the muscle as rather paradoxically the role and significance of this deep head, the larger 

of the two bellies, especially on thumb action has not been well studied. The importance 

of the attachment angle of this head of FDI and its contribution to force production 

during an arc of horizontal movement has not been previously investigated, which is 
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rather surprising as the radial head of the muscle is often involved in reconstruction 

surgery following trauma.  

Commentary on the Deep Radial Head of the FDI 

There are only a small number of intramuscular electromyographic (EMG) studies that 

have investigated the importance of the deep radial head of the FDI to thumb movement, 

in particular those movements involved in precision grip. When the insertion of the FDI 

onto the base of the proximal phalanx of the 2nd digit is held fixed, the primary action is 

exerted by the deep head of the FDI which attaches to the ulnar border of the first 

metacarpal. This portion of FDI is also positioned to contribute substantially to the force 

produced during tasks where the hands are held stationary in a pronated posture and the 

thumbs are used to guide an object such as when using a lathe or guiding a piece of 

timber through a sawbench.  In this situation, the primary axis of movement is occurring 

at the point of attachment of the FDI on the ulnar border of the first metacarpal.    

Studies based on fine wire EMG recordings during a number of thumb movements, 

demonstrate that the FDI is an essential muscle for the execution of precision grip which 

is movement of the thumb, to bring it towards the index finger (second digit), as occurs 

during a precision grip and handling (Long et al. 1970).  They describe precision grip as 

requiring that compression be maintained between the thumb and index finger and that 

specific arch-like thumb positions are held rigidly.  In a study using fine wire EMG in the 

hands of 115 subjects, Long et al (1970) studied the EMG activity of both intrinsic and 

extrinsic hand muscles during  a variety of functional tasks involving precision grip and 

power grip and manipulation of hand tools. He demonstrated that during clockwise 

turning of a knob involving precision grip, the FDI acts strongly on the first metacarpal 
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joint of the thumb, and is quiet during the return phase.  Likewise, during counter-

clockwise rotation, the FDI is quiet during the handling phase and active during the 

return phase of the movement.  More recently, Johanson et al. (2001) recorded the 

activity of a number of intrinsic hand muscles, including the FDI, with fine wire EMG 

during a variety of pinch tasks in both a stable and unstable conditions.  FDI contributed 

a significant amount of force to all the pinch tasks involving force application with 

thumb.  An earlier study by Johansen et al. (1996) clearly showed that FDI acts as a 

phasic muscle during thumb closing in all hand positions. EMG studies have further 

confirmed the role that the FDI plays in the grip on the most commonly used modern 

tool,  the computer mouse (Agarabi et al. 2004).  For some individuals, the amplitude of 

EMG activation from the FDI was greater than the extrinsic hand muscles located in the 

forearm, when subjects gripped the mouse, in an isometric hold with the force exerted in 

the direction of drawing the thumb in towards the hand. The FDI has also been adopted 

as target muscle in studies using transcranial magnetic stimulation (TMS) as it has a 

strong cortical drive and is easily accessible via surface EMG and easily excited using 

TMS.  Interestingly, there are no hemispheric differences in suppression of intracortical 

inhibition (ICI) during a graded isometric contraction of FDI (Zoghi and Nordstrom 

2007), indicating that an a priori difference in ICI between the two hemispheres may not 

be the central mechanism by which lateral preferences are manifested. This lends support 

to the notion that preferential use may lead to peripheral changes that influence hand 

function, and makes the contribution of peripheral factors in FDI asymmetry worthy of 

further study. 
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Aims of the thesis and the four studies 
 The principal aim of the thesis was to design and perform a sequence of studies to 

quantify some of the mechanical and physiological properties of the first dorsal 

interosseous muscle (FDI) and also to discriminate the contributions made by some 

“peripheral” factors that influence human bimanual asymmetry.  The initial hypothesis 

assumed that there would be differences between the right and left hands, specifically in 

parameters of stiffness and viscoelasticity, and  in the production of muscle forces related 

to the peripheral geometry of the muscle to bone attachment angles of the first dorsal 

interossous muscle. Studies I-IV are reported in the following chapters prefaced by a 

commentary on general methodological considerations pertinent to the design of each of 

the four studies. A more detailed account of the development of these methods with a full 

summary and report of the findings can be found in the published articles and those 

submitted for publication. as listed in the preface on pages 3/4 of this thesis. 
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General Methodological Considerations: 
Ethics  
All subjects who participated in the three in vivo studies in New Zealand gave their 

informed consent. None had any history of neurological or muscular disorders. All 

studies were conducted in accordance with the Declaration of Helsinki and were 

approved by the ethics committees of the academic and clinical institutes involved.   

Ethical permisssion for the Cadaver study was granted by Adelaide University South 

Australia and perfomed at the Department of Anatomy in the School of Medicine. 

Subject groupings 
  

Study I involved 13 cadaver subjects (9 males and 4 females). Known correlates of 

behavioural and morphological asymmetry, utilized by Kulaksiz & Gozil (2002), Plato, 

Wood and Norris (1980) and Stoklosa (1992) were used to determine handedness from a  

group of  40 cadavers. Only those cadavers where there was a clear difference (>10%) 

size increase of the bi-epicondylar and bi-styloid circumferenceson the right side were 

designated  as  probable expressors  of right handed ness in life and included in the study. 

 

Study II involved a group of 25 young male subjects. Study III involved a group of 22 

young male subjects. Both groups of subjects were selected because of their strong 

positive assessment of right handedness.   

 

Study IV (Part A) involved an initial group of 25 young male subjects selected for their 

strong positive assessment of right handedness.  Those participants from part A, with 
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laterality indices greater than 85% for right handed dominance were invited to participate 

in Part B.   

Study IV (Part B) Nine out of eleven of those invited agreed to participate in Part B, the 

MRI calculated-force study. 

The standard position of the hand used in studies II III IV  
 

The sequence of the three in vivo studies involved a baseline anatomical position of the 

hand with the palmar surface of the hand in contact with the base plates of the respective 

data collection devices. In this position the longitudinal axis of the FDI muscle is aligned 

parallel to the longitudinal axis of the hand.  The angle between the axis of the thumb and 

the segments of the index finger was close to 90 degrees as in previous kinematic 

research reporting force production from the FDI muscle (Tanaka et al. 1984; Lieber 

2002). In this position the dorsal surface of the hand confronts the observer and the (FDI) 

muscle is accessible to palpation and surface analysis. It is possible to assign 

topographical landmarks and also locate the radial artery pulse; the likely site of origin of 

the interfascicular partition between the radial and ulnar heads of the (FDI) muscle.  

Assessment of Handedness and the Edinburgh handedness Inventory. 
The design of all four studies required a preliminary assessment of participant 

handedness to initiate the overall aim and study theme of the contribution of peripheral 

factors upon bimanual asymmetry. There are numerous approaches used to assess 

handedness usually requiring  some form of assessment  based on comparative 

observation of a task  related to bimanual performance or assessment of the difference of  

magnitude of maximum isometric force produced by each hand (Brand and Hollister 
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1999). Preeminent in the conventional assessment of handedness is the work of Annett 

(1967) and Oldfield  (1971) who developed questionnaires using the traditional approach 

based upon the contextual belief that human skills reside in the special capabilities of the 

so called dominant hand.  In the three in vivo studies, preliminary assessment of 

handedness was established using the commonly adopted Edinburgh Handedness 

Inventory (Oldfield 1971). The inventory allows the calculation of a laterality quotient, 

where +100 represents complete right hand dominance, and – 100 represents complete 

left hand dominance.  Strong right handedness is deemed to be a laterality quotient of + 

85 or above on the scale of  the  Edinburgh Handedness Inventory (Oldfield 1971). 

However as Guiard (1987) points out, questionnaires on hand preference systematically 

include questions relating to bimanual actions - in other words, actions when both hands 

contribute to the action.  Significantly in Annett’s questionnaire (1967), five of the eight 

items refer to bimanual acts and in the popular “Edinburgh Handedness Inventory” 

(Oldfield 1971) eleven of the twenty items presented relate to bi manual acts. In the more 

recent 75 item questionnaire of Provins and Milner et al. (1982) the task inventory 

demonstrates a similar paucity of unimanual tasks relevant to the study of manual 

preference.   

Study I Principles and general description of the method used to assess 
viscoelasticity in Cadaver Muscle 
This post-mortem study set out to identify and quantify some of the residual viscoelastic 

properties of muscle present in the dennervated state, as in the in vivo state it is difficult 

to differentiate the contribution of the inherent molecular properties of the muscle from 

overlying neurally mediated muscle tone. It was initially hypothesized that there would 

be significant differences in the post mortem viscoelastic properties of the dominant and 
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non-dominant FDI muscles possibly reflecting the adaptations to the neural drive during 

life.  The sample of 13 preserved cadavers included nine males (65 to 96 years old) and 

four females (63 to 90 years old) and  is a typical number of cadavers used for  

anatomical research (Smith et al. 2003). All cadavers were preserved with an ethanol 

glycol mixture containing less than 1% formaldehyde. Both FDI muscles were removed 

from the cadaver hands and subjected to stretching using a force length technique 

previously applied to preserved tissue and the testing of post-mortem specimens (Yahia et 

al. 1993; Sokolis et al. 2002; Barker et al. 2004).  The muscle was suspended in the 

stretching device in the baseline position and measured (Figure 1). The corresponding 

force, produced by the tensile stress of the stretched muscle during each step of the 

incremental movement, was measured and recorded by a force meter scaled in 

corresponding kilograms of weight (kg) with 0.05 kG graduations on the scale.  Units of 

kg were converted to Newtons (1 kg corresponding to 9.81 N) for further calculations. On 

completion of the straining process indicated by the tearing of muscle fibres, the muscle 

was detached from the device and its length measured once again along the initial 

longitudinal axis. Calculations of the stress-strain characteristics and total viscoelasticity 

of each sample of muscle tissue were perfomed using an adapted mathematical technique 

similar to the approach used by Linder-Ganz and Gefen (2004) with an extension to the 

model to  indicate  regions of elastic and plastic behaviour. 
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Figure 1: Stretch device with cadaver muscle in situ 

 

Study II   Principles and general description of the method used to Assess 
Viscoelasticity in living Muscle  
 

Study II was designed to measure stiffness of the relaxed muscle in the vertical direction 

using a force dial (stress strain) elastometer (Gutnik et al. 2003; Yielder et al. 2003; 

Gutnik et al. 2004).  The principle of the vertical approach is that under direct 

compression, muscle as well as other elastic soft tissues will be deformed. This level of 

deformation will be associated with a resistance to the original deformation, and this 

difference can be measured and expressed in units of force, calculated using a tension 

stiffness plot.  This  method  has been used previously to discriminate changes in the 

mechanical behaviour of the contractile and elastic elements of muscles and tendons 

(Granzier and Wang 1993) and other biological tissues (Stidham et al. 1997; Uchiyama 
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et al. 1998). This differs to Morgan’s approach (Morgan 1977; Cook and McDonagh 

1996) where the stiffness of the muscle was measured in the active state, during a short 

period of  eccentric muscular contraction. The manual device specifically designed for 

this study was named a force dial visco-elastometer as demonstrated in Figure 2. The 

device incorporated a monitoring stylus with a diameter of 3.5 mm, providing a 

monitoring sensitivity of 0.001 N connected to a signal encoder and signal amplifier 

interfaced to a computer incorporating the design software to calculate the tension 

stiffness plot.  

 

Figure 2: Manual Force Dial viscoelastometer 

All participants were asked to sit in a completely relaxed sitting posture with the arm 

partially flexed at the elbow and the forearm extended. The hand being examined was 

placed under the stylus of the elastometer in the standard position. The stylus was 

positioned on the dorsal skin surface over the FDI muscle compartment in contact with a 

predetermined skin location. The participant was blindfolded when initial light touch 

sensation from the stylus was confirmed and was then asked to achieve a state of relaxed 

awareness and to try to maintain this state throughout the trial. For six participants, the 

stylus was applied to four to six locations with Ag-AgCl surface EMG electrodes in place 
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over the belly of the FDI, to confirm that there was no EMG activity during the 

viscoelastometer application.  The EMG was sampled at 1000 Hz and bandpass filtered 

between 10 and 500 Hz using a two channel PowerLab system (ADI instruments).  EMG 

could not be monitored during the main experiment because the recording electrodes 

would have obscured some of the application sites.  The overall strain and sampling 

range of compression of the cutaneous-muscular structure was regulated by the subject 

and terminated when a subjective sensation of pressure discomfort was reported.  

Study III The Automated Elastometer  
The automated device featured in study III contained several improvements over the 

original manual elastometer.  A review of the performance of the manually controlled 

force applicator indicated that is was subject to operator inconsistencies, specifically the 

speed of application which relied on the operator of the device being able to maintain a 

consistent rate of force application, across subjects and for both hands.   The design of the 

automated viscoelastometer incorporates a monitoring stylus of 3.5 mm diameter, 

providing a sensitivity of 1x10-3 N. The improved device applied a graduated 

compression to muscle and viscoelastic tissues with progressive deformation using a 

calibrated precison motor drive. The level of deformation is therefore precisely controlled 

and associated with resistance to the original deformation measured and expressed as 

units of force (Figure 3). The rate of deflection was held constant at 0.43 mm/s as it was 

determined in preliminary experiments to be the fastest rate that avoided painful 

sensation and which did not elicit stretch reflexes and involve central mechanisms in the 

reaction. The data processing chain involved a signal amplifier, computer and purpose 

designed interpretative software. 
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Figure 3: Photograph of automated viscoelastometer 

 

Study IV a) Principles and general description of the method used to 
assess the push force using the dynamometer 
 

In study IV,  the isometric model of force assessment was adopted principally because 

isometric testing of skeletal muscle under laboratory conditions in vivo is a common 

assessment tool (Wilson 2000) and because isometric strength tests are considered to 

possess high test-retest reliability (Viitasalo et al. 1980; Bemben et al. 1991). This 

approach is used to quantify muscle strength because the force developed in an isometric 

 



43 

concentric contraction will not decrease as a function of the speed of the shortening of a 

muscle (i.e., force-velocity relationship rule) (Herzog 1998), therefore maximal force 

production occurs during isometric muscular work.   

In Study IV part A, subjects were asked to push the button of a purpose designed 

electronic dynamometer as powerfully as possible. Headphones were placed on the 

subject who was asked to react to a sound tone (1000 Hz) by isometrically pushing the 

button as strongly as possible without regard to the time of development of the force. The 

signal interval between stimuli was 10 seconds in order to avoid fatigue.   

The hand was positioned in the standard position with the palmar surface of the distal 

phalanx of the thumb adjacent to the centre of the push button. The angle between the 

axis of the thumb and the axis of the segments of the index finger was close to 90 degrees 

(Figure 4) where the deep radial head of FDI was in a position to provide a large 

contribution to isometric force production 

 

Figure 4: Measuring the Force of FDI with the electronic push force dynamometer. 
Arrows are pointing to the FDI muscle belly, under tension. 
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Study IVb) Method used to assess the Calculated force of the FDI  
 

Magnetic resonance imaging (MRI) was introduced into the clinical repertoire of 

diagnostic imaging in 1981and has emerged as the modality of choice for the 

demonstration of many organ systems and is well suited to demonstrate components of 

the musculoskeletal system. Study IV, part B features structural MRI, combined with a 

purpose designed modelling technique, to examine the basis of the 10% rule previously 

discussed. The design of this approach is a response to difficulties encountered by in vivo 

muscle researchers when attempting to isolate individual moments of force and 

specifying functional characteristics attributable to an individual muscle when the muscle 

is functioning within its synergistic group  (Herzog 2000).  In order to overcome some of 

these difficulties, various modelling techniques involving clinical imaging modalities 

notably MRI, CT and Ultrasound have been developed (Maganaris and Baltzapoulos 

2000). In this study a conventional clinical magnetic resonance imaging technique was 

adopted to aquire data for further processing and analysis. In study IVb, two image 

acquisition sequences per hand were performed with the hand positioned in the standard 

position previously described.  MRI  data were acquired using a 3-D Turbo FLASH  

expanded MPRAGE (Magnetisation Prepared Rapid Gradient Echo) acquisition sequence 

(Siemens Corp)  designed for the precison imaging of musculosketal structures (Stark and 

Bradley 1999; Bernstein et al. 2004) using the following sequence specifications  (MPR 

12.*R (T1) 300ms: TR. 9.7ms: TE.4ms: FOV 175x200: 1.5mm -2 mm slice- thickness 

using a high resolution 12 cm diameter surface coil. The data was acquired using a no 

gap technique and spatially assigned using a 256 X 256 matrix with a four minute 

acquisition time per sequence. The modelling technique developed for study IVb was 
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based on a contouring approach combined with a mathematical and biomechanical model 

that uses surface extraction as the first step in establishing a geometric hierarchy within 

the data. Applied to format images it establishes spatially accurate tissue relationships, 

profiling point sources, faces and margins within the data and is well suited to the 

examination of individual tissues and relationships between defined tissue data sets 

(Maganaris and Baltzapoulos 2000). This situation prevails as long as the viewing port is 

standardised and the user does not change viewing parameters.  A theoretical necessity 

with this approach is the requirement to integrate 2D and 3D slice reconstruction 

techniques when using 2D sections to reconstruct and visualize 3D solid bodies (Sirakov 

et al. 2004). This modeling design adopted a  two stage geometrical approach  

(Boissonnat and Geuger 1993) (Moody and Lozanoff 1997). The initial data set was 

configured in 3D within the MRI system and transported into AutoCAD 2004 (Fowler et 

al. 2001). The final muscle contour – line of action was based on the 3D summation of 

consecutive 2D extracted muscles slices. The osseous centroids were 3D volumetric 

calculations performed by the AUTOCAD software representing individual subject and 

group standardised anatomical locii  in a spatially standardized viewing port (Rusinek et 

al. 1989). Further in order to ensure that the observed differences reported were not due 

to differences in gross muscle size, muscle volume for both the right and left FDI muscles 

was calculated from the reconstructed muscle slice data. The method involved a grid 

system superimposed on the scaled image of each muscle slice with the area of each slice 

recorded. Each slice area was multiplied by the slice thickness and the slice volumes 

added to obtain overall muscle volume. 
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Discussion of the Four Studies  
Study I. Some mechanical muscle properties as possible indicators of the 
peripheral characteristics of manual asymmetry 
As previously introduced this method was designed to quantify residual energy stored in 

the FDI muscles of cadavers as in the post mortem state the molecular properties of 

muscle devoid of cortical influence are inherently preserved. The FDI muscles were 

chosen because in life they have a strong cortical drive emanating from the contralateral 

hemisphere and are more likely to demonstrate preserved differences in the viscoelastic 

properties between the dominant and non-dominant hands (Herzog 1999; Gazzaniga 

2000; Lieber 2002; Hamill and Knutzen 2003; Linder-Ganz and Gefen 2004).  It was 

hypothesized that there would be significant differences in the post mortem viscoelastic 

properties of the dominant and non-dominant FDI muscles possibly reflecting the neural 

adaptations in life and that neurally mediated muscle tone could be considered as a type 

of system noise that could be eliminated by the use of inert muscle in its final 

dennervated state.  This would accomplish the goal of isolating purely peripheral factors 

for study, as post mortem muscle is devoid of the influence of alpha motor neurones and 

the regulatory action of motor units and is not functionally influenced by contractile 

elements and cross bridges.  These muscles do however; possess residual dead proteins 

from connective tissue, specifically the myofascial membranes (Herzog 1999; Lieber 

2002; Hamill and Knutzen 2003; Linder-Ganz and Gefen 2004) with a residue of inherent 

viscoelastic properties that perform like a type of biological rubber band. Although this 

type of study has limitations associated with the use of preserved tissue, there is support 

for the general approach offered by various studies and propositions within the literature. 

The method adopted  to stretch the cadaver FDI muscle cadaver is precedented by studies 
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perfomed on the muscular characteristics of different muscles under applied tensile stress 

(Titze 1994; Magnusson et al. 2000; Rosager et al. 2002; Khalsa and Ge 2004), inclusive 

of the related  principle that accurate discrimination of viscoelastic characteristics may be 

used as an index indicating the effectiveness and efficiency of muscle adaptation 

(Magnusson et al. 2000). Some studies using changes in force and length have produced 

scales reporting levels of overall “stiffness” (Cook and McDonagh).  The force length 

type study approach has been previously applied to preserved tissue and the testing of 

post-mortem specimens (Yahia et al. 1993; Sokolis et al. 2002; Barker et al. 2004).   

This study compared paired the FDI muscles from 13 cadavers that were subjected to 

graduated tensile stress.  Mass, density, yield point, Young’s modulus and two variables 

of stored energy were recorded. From a total set of 117 variables of nine selected indices 

from 13 cadavers, 45 (38.5%) possessed a greater magnitude on the non dominant side. 

Overall, the muscle stretch capability, as calculated,  corresponds to previously reported 

values in the literature (Wang et al. 1991). The mathematical model approach is this 

study is designed to indicate regions of elastic and plastic behaviour.  The data 

demonstrating elastic behaviour were modelled by a linear equation using MS- EXCEL 

software (R2 > 0.98).  A pseudo-Young’s Modulus (E), expressed in N/mm, was 

determined from the linear equation and is representative of the muscle stiffness (Lieber 

2002) in the elastic range (Hamill and Knutzen 2003). The pseudo-Young’s modulus is 

the ratio of the induced force to the deflection in contrast to the classical definition of 

Young’s modulus that is the ratio of induced stress to strain. 

 The individual data reported here demonstrate substantial individual variance in the 

range of all reported variables, probably attributable to age-related degenerative changes 
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in life (Deschenes 2004).  While it is acknowledged that a cadaveric approach has 

limitations because preserved muscle tissue undergoes significant shrinkage during the 

fixation process (Yamaguchi et al. 1990) with muscle bundle shrinkage being reported to 

be as high as 20% (Friederich and Brand 1990) the chemical effects of preservation and 

the age and gender of the cadavers of these cadavers would be essentially similar between 

hands and  should not impact detrimentally on the  results of the paired comparisons. The 

findings on the peripheral variables of the residual characteristics preserved in these 

muscles do not provide unequivocal support for right handed dominance.  There was only 

one index, representing the specific energy of the total muscle deformation that was 

significantly greater on the dominant side. This may indicate that cortical asymmetry is 

not entirely reflected in the peripheral properties of muscle. This is likely to be related to 

substantial individual variance in part attributable to environmental adaptations and age 

related, degenerative changes in life.  This approach offers a method for the 

quantification of residual energy stored within inert tissue and the findings  offer  

qualified support for Bernstein’s overall view that a complimentary interplay exists 

between cortical and peripheral levels. In vivo, these potential states of peripheral 

autonomy and laterality are likely to be cortically conditioned within the overall field of 

motor control. It is therefore challenging to develop techniques to discriminate and 

quantify these states in the living subject  particularly with regard to the  complex 

musckuloskeletal changes that occur during  the aging process  notably alterations to the  

viscoelasticity of  connective tissues and  stiffening of muscles.  
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Study II.  Viscoelastic properties of a Skin and Muscle Compartment in 
the right and left Hands 
Musculoskeletal stiffness is a complex state said to be influenced by the age, nutrition 

and physical level of activity of the individual. Chronic effects of ageing and altered 

physical activity usually occur over time leading to structural changes in the architecture 

organisation and composition of the various tissues involved (Carmeli et al. 2003).  The 

effects of temperature, strain rate and loading history applied to these tissue  may also 

effect acute changes in the functional architecture with associated changes to collagen 

cross links in the visco elastic tissues. The stiffness state is generally considered to be 

difficult to standardise and quantify, hence stiffness values are often variably reported.  In 

study II we have reported and quantified “total stiffness” in the static state as a product of 

passive, intrinsic and reflex mediated components in healthy young males. The study 

featured the use of of a unique device that was named a force dial elastometer (Gutnik, 

1990).  The principle of the method has been previously described. During the 

compression procedure the stylus mechanism progressively indented the 

musculocutaneous compartment with the vertical movement and compression increment 

being applied via a screw applicator operated by one of the researchers. Stiffness was 

measured on both hands. Each trial contained three data acquisition sequences performed 

upon each hand and was completed within 60 - 90 seconds. A precise sequence detailing 

the mathematical model and statistical methods used to process and report the data are 

included in the text of study II.  

Our sequence analysis provided the elastic modulus and the specific energy of 

deformation for both the total tissue compartment and also the separate cutaneous and 
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muscular compartments.  Both individual and group data were analysed. The study 

demonstrated a broad range of peripheral laterality (cumulative index of right hand 

preference). In this study no isolateral differences between the elastic modulus and 

specific energy for either the muscular or cutaneous compartments were identified, 

initially suggesting a parallel to research that did not demonstrate statistical differences 

between gross sizes of isolateral structures (Mysorekar and Nandedkar 1986; Alter 1996).  

The behavioural component of this study specified a controlled state of relaxation, 

without significant voluntary cortical input to the muscle. In this case the state of 

potential  dominancy of the right FDI muscle  in these strongly right handed subjects 

would be arguably diminished,  modifying  the  classical  predisposition of imposed 

dominancy on the muscle by the motor cortex of the left hemisphere (Kandel et al. 2000) 

as the state of compressive deformation of the muscle in this study  occurred during a  

diminished state of neuromuscular activation (e.g. muscle relaxation). However, the 

application of the stylus with the muscle in a passive state seemed to evoke spinal stretch 

reflexes which were interpreted as a response to the technique of the incremental 

sequence and the timing during the compression procedure. Studies using 

electrophysiological measures have revealed  significant changes in these passive 

properties in spastic conditions in the lower limb (Sinkjaer and Magnussen 1994).  Some  

investigators have presented  the idea that changes in the intrinsic muscle properties are 

largely responsible for spastic hypertonia while other other investigators conclude that 

the major cause of spastic muscle hypertonus is the widely accepted pathological increase 

in the stretch reflex activity  (Ashby et al. 1987; Thilmann et al. 1991). The work on the 

significance of the stretch reflex and its integrative significance within the central 
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nervous system comes from Sherrington’s original animal studies,  however the role of 

the stretch reflex incident from muscle receptors has remained controversial despite the 

large number of studies that have been carried out over the years targeting the apparent 

simplicity and arrangement of the strong monosynaptic connections from primary muscle 

spindles to α – motorneurons (Liddell and Sherrington 1924; Agarawal and Gottlieb 

1985). This continuing controversy is representative of the difficulty encountered when 

researchers try to discriminate the mechanical consequences of reflex activity from those 

of the intrinsic properties of the muscle and the joint.  Attempts to discriminate these 

properties have compared the mechanical behaviour of these tissues under normal 

conditions and in states of induced deafferentation, mainly using surgery, localised 

anaesthesia; or induced ischaemia  (Sinkjaer and Hayashi 1989).  Paradoxically, 

clinically focussed research emphasizes the dynamic profile of stiffness as a product of 

stretch reflex activity produced during specified joint movement. The dynamic approach 

is multi-faceted and also attempts to discriminate and quantify stretch reflex and intrinsic 

contributions to the overall stiffness profile (Kearney et al. 1997), contrasting with the  

approach adopted in this study that specified an ipsilateral muscle in a passive state. The 

relevance and use of handedness “questionnaires” with emphasis on the theme of 

“dominant characteristics” is raised by the results reported in the index of laterality. 

These results suggest differential modes of preference adopted by the hands within the 

scale of bimanual movements as opposed to dominance, an interpretation that is broadly 

in agreement with the theoretical assertion contained in the work of Guiard (1987).  It 

may, however, be pre-emptive to suggest that the current emphasis on “dominance” 
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should be replaced by an approach emphasising preference and complimentary 

reciprocity when studying human lateralization. 

Study III.  Reliability of an automated viscoelastometer and comparison of 
the viscoelasticity of the skin muscle compartment of the left and right 
hands  
Study III features the use of an automated viscoelastometer less dependent on operator 

control than the previously described manual version featured in study II. 

It has been discussed previously that inherent viscoelasticity is considered to be a 

significant contributor to subjective states of muscle elasticity and stiffness. However 

both of these states are difficult to quantify, nevertheless they have been reported as a 

criterion and index of effectiveness and efficiency of muscle adaptation (Magnusson et 

al. 2001) contraction and movement (Voigt et al. 1995; Watkins 1999) and also an 

expression of the level of flexibility in the different kinematic chains (Voigt et al. 1995; 

Watkins 1999).  

In Study II, the paired FDI muscles were assessed for viscoelastic asymmetry with 

difference being observed between the right and left sides.  However, the original study 

used a manually controlled force deformation applicator that was judged to be 

inconsistent when applying the force increment and also subject to operator 

inconsistency. There was also concern regarding the possible elicitation of stretch 

reflexes implying poorly controlled system noise sourced from the neural circuitry. 

The automated device contained improved features over the manual prototype. 

Principally the addition of an adaptable stylus arm that extends the possible use of the 

device and further development of the technique to sites other than the distal limb 

muscles and the use of an automatic driver to standardise the compression procedure.  
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Improvements were also made to the data acquisition and data management components 

specifically improved calibration specifications to the auto compression motor drive and 

the internal specifications of the stylus applicator (patent pending). In this study 23 

strongly right-handed male participants had three compressions each applied to the left 

and right first dorsal interosseous muscles of the hands.  The average values for energy, 

specific energy and Young’s modulus were calculated using these data for both the right 

and left hands of the individual subjects.  Reliability was calculated using intraclass 

correlation co-efficients (ICC) and Paired T-tests were used to compare the left and right 

parameters related to stiffness 

In this study, the ICCs for data specifying Total energy, Specific Energy, and Young’s 

modulus indicated a high reliability (range 0.7 to .95) for all parameters confirming a 

high confidence in the use of the automated version of the device. The findings of the 

original study with the manual viscoelastometer (Yielder et al. 2007) were confirmed, in 

that there were no significant differences in viscoelastic properties between the right and 

left hands. This pattern of neutral assymetry may be explained by considering the 

homogenous selection criteria of the subject group even though individual differences in 

the mechanical properties of these tissues have been reported (Barney and LeVeau 1992; 

Alter 1996). These authors report that the concentration of collagen and elastin proteins 

(containing spring like qualities) is highly individualised and may be individually 

lateralised, rather paradoxically, without reference to handedness or hand dominance. We 

consider that habitual patterns of use as a form of training could induce adaptive changes 

and modifications in the contractile and elastic protein composition of the muscles 

involved.  In vivo, these potential states of peripheral autonomy are likely to be cortically 
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conditioned within the overall field of motor control, but nonetheless, represent an 

important consideration in studies of laterality.  

Study IV.  A possible anatomical and biomechanical explanation of the 
10% rule 
Study IV features the comparative quantification of forces and patterns of peripheral 

lateralisation produced by the FDI muscle from two different methods used to calculate 

the muscle force. The first method is an established technique commonly used to measure 

force in a dynamic push button task. The second is a new method designed to isolate the 

momentary force produced by the FDI muscle during an isometric contraction in a 

specific peripheral moment of the muscle, tendonous and bone relationship. This study 

was also concerned with the clinical assessment of lateralization of hand function and the 

hypothesis underlying the 10% rule adopted in the dynamometric approach to determine 

lateralization of hand function.  In this study, a novel MRI based modelling approach was 

applied to the first dorsal interosseus muscle, to determine the significance of the 10% 

rule and to ascertain if the 10%  may be partially explained by the arrangement of the 

anatomical components of the FDI and the functional states of connective tissues in the 

periphery.  Initially the force generated by the movement of the thumb segment in the 

horizontal plane during an isometric pushing was measured from 25 strongly right-

handed young males. Nine of these participants then had structural magnetic resonance 

imaging (sMRI) of the thumb and index osseous compartment.  A modelling technique 

was used to extract the muscle data and quantify the muscle line of action onto to the first 

metacarpal bone segment in order to quantify the muscle force at the point of momentary 

rotation and static equilibrium. The technical specifications of the dynanometer data 
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acquisition sequence and the progression of the design of the MRI modelling technique is 

presented and discussed in detail in Study IV. 

The main finding from the push force dynometric study was that eight out of 25 subjects 

exhibited stronger force production from the left hand, while in the MRI modelling study 

six out of nine subjects possessed significantly greater angles of attachment of the index 

osseous compartment on the left (non-dominant) hand.  These six subjects also generated 

greater maximal isometric forces from the FDI of the left side.  

The  results from the “Push Force Study”  are broadly similar to reported lateralised force 

differences in the FDI muscles (Tanaka et al. 1984).  There was overall group difference 

in force production between the left and right hands, a similar trend being reported 

alongside a critique of methods adopted to assess grip strength (Provins and Cunliffe 

1972).  These researchers regard the grip strength test as unreliable and in their opinion, 

parallel work is likely to produce some isolateral differences between left- and right-sided 

muscles. One of the shortcomings of this approach  is that complex grip and pinch 

movements of the hands involve  numerous functional compartments making it difficult 

to specify and quantify the precise contribution of the muscles and joints that are 

involved in force production during the various contractile states (Richards et al. 1996; 

Bohannon 1997).  

In the MRI modelled force study, the results support the proposition that relative 

asymmetry of the maximal isometric forces generated by the FDI muscles is partly 

attributable to asymmetrical and different projectile angles of attachment of the bulk of 

the FDI to the 1st metacarpal (osseous) segment with the general conclusion that the 

greater projected muscle attachment angle is influential upon isometric force production 



56 

and lateralization at the periphery. The articular relationship between the trapezium and 

1st metacarpal bones during the isometric contractile state was also analysed and an 

instantaneous point of rotation representing the moment of the movement calculated and 

assigned using the AUTOCAD software. The resolution of the MRI images produced 

highly detailed anatomical images of the articular anatomy. Visual study of the trapezium 

and the 1st metacarpal articular interface confirms the involvement of a spherical facet 

adjacent to the anterior radial tubercle of the trapezium.  This facet is probably 

responsible for the axial rotation of the metacarpal during compartmental movements. 

This is in accord with the view of Zancolli and Ziadenberg et al. (1987) who report that 

the saddle shaped facets are concave in the sagital plane (abduction and adduction) and 

convex in the frontal plane (flexion and extension). The spherical facet is convex in all 

directions (opposition and reposition).  This implies that flexion and extension of the joint 

occurs along an oblique antero-posterior axis while abduction and adduction occur 

around a modified oblique coronal axis because of the angle of inclination and orientation 

of the trapezium.  

This complex interrelationship dictates the range of movement performed by the first 

carpometacarpal joint and was  initially reported by (Cooney 1981).  In this report, 

flexion and extension occur in parallel orientation to the palm of the hand. Abduction and 

adduction are performed perpendicular to the palm and they simply state that the 

rotational movement occurs without offering a precise description. These descriptions 

prefigure discussion on the complex interplay of segmental movements of the thumb and 

index finger and the two main vectors associated with the complex interplay of osseous 

segments and locus of muscle attachments and insertions within the movement moment.  
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One of these vectors is associated with the rotary force that is considered to be primarily 

responsible for the pushing action on the button in Study IV, Part A (Smith et al., 1996; 

Hall, 1999).  This vector is applied perpendicular to the osseous axis of attachment. The 

other vector represents the so-called “joint reaction force” that exhibits a type of 

dislocation action projected upon the trapezio- metacarpal joint involving both previously 

described articular facets on the lateral surface of the trapezium. Terminology to describe 

the complexity of this movement is lacking in the literature and is not discriminated by 

the standard texts in movement studies.  Hence if the angle of attachment of the FDI is 

greater on the left hand, then the magnitude of the rotary force is potentially greater and 

consequently the muscle tension (force) produced is likely to be used more economically 

and/or with more effect. This would suggest that conventional dynamometric 

measurements of maximal isometric muscle force, even when derived from a single 

muscle, are imprecisely adopted when used to predict handedness.This type of study is an 

example of  precision when modern clinical imaging techniques are integrated into the 

design of whole muscle in vivo study methods (Herzog 2000).   
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General Conclusions made from the results of the Four 
Studies 
A comprehensive report and analysis of the results is contained within the associated 

reports and publications arising from each study. This brief section presents the general 

conclusions that directly relate to the formulated aims in this thesis leading to a short 

commentary on some of the practical implications and possibilities for future work. 

   

Study I Biomechanical indices (yield points, the level of strain, viscoelastic energy, 

Young’s modulus) in vivo and in post mortum examination have not demonstrated a 

significant difference between dominant and non-dominant hands. These results support 

the existence of molecular residues and functional states at the periphery that are not 

directly cortically influenced and are contributory to lateralised differences 

 

Study II Stiffness of the FDI- this study has reported “new data” concerning the 

stiffness of the FDI in vivo from a sequence of compression movements in the dorsal- 

palmar direction. The range of this data for muscle is between (3.26 – 0.35 Newtons 

per/mm). Also quantified and reported is the specific energy of deformation of the 

muscle. This ranges between (23.9 - 1.04 Joules/mm). 

 

Study III-this study reported reliability data for an automated version of the 

viscoelastometer.  The automated device showed high inter-trial reliability with intraclass 

correlation co-efficients ranging from 0.7 to 0.95 for total energy, specific energy and 

Young’s modulus. 
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Study IV (A) Reactive “push” force from previous studies is not representative of the 

intrinsic quantum of force generated by the FDI. The calculated force originates from the 

reciprocal contribution of central and peripheral factors. These parameters are highly 

individual and specific to individuals.  

Study IV (B)  

Anatomical Analysis indicates that the angle of attachment of the muscle to the osseous 

territory is significant when calculating muscle force: 67% of right handed participants 

produced greater muscle force from the non-dominant hand and this appeared to be 

related to attachment angle. 

     



60 

Practical Implications  

Study I offers a method for the quantification of residual energy stored within inert 

tissue.While it is acknowledged that a cadaveric approach has limitations because 

preserved muscle tissue undergoes significant post mortem changes, the findings indicate 

that cortical asymmetry is not entirely reflected in the peripheral properties of muscle 

offering qualified support for Bernstein’s overall view that a complimentary interplay 

exists between cortical and peripheral levels 

Study II introduced the principle of the method and use of the elastometer with 

improvements made to the original device trialled and tested in study III. 

Study III demonstrated that the automated visco-elastometer was highly reliable and has 

the capability to contribute to studies involving the assessment of muscle tone and muscle 

stiffness. 

Study IV presents the possibility that the statistical tolerance involving the 10% rule may 

be anatomically and bio-mechanically explained.specifically because of the size, 

magnitude and geometry of the attachment arrangement between muscle and bone in 

combination with the viscoelastic properties of connective tissues.  

The general trend that emerges from consideration of the results of the four studies would 

support the suggestion that the classical model of manual asymmetry in motor 

performance could be enriched by a reformulation that includes the complexity of the 

peripheral muscle-osseous relationship and visco-elastic properties. This reformulation 

could be considered to be complimentary to conventional theory and current practical 

testing procedures especially in cases when force production from the left hand is 
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recognisably stronger even though grip dynamometry and handedness questionnaires 

indicate so called right handed dominance.  

Possible Future work. 
 

Study I   Featured the residual viscoelastic properties of muscle present in the 

dennervated state post mortem. The conditioning and relative states of these viscoelastic 

components during various life stages could be studied using the viscoelastometer in 

transient denervation experiments to differentiate the contribution of active 

neuromuscular tissue from the passive components in vivo. 

Study II and III   

Given that muscle is anisotropic, it would be interesting to apply the elastometer at 

different directions (angles of pennation) relative to the lines of action of the muscle to 

determine the effects on measured visco-elastic parameters. We also attempted to 

measure stiffness in relaxed muscle, but as our results demonstrated stretch reflexes were 

possibly elicited, local anaesthetic nerve block could be used to transiently denervate the 

muscle so the peripheral factors could be studied independently of innervation (in vivo) 

It would be possible to utilize the viscoelastometer to characterize alterations in muscle 

and connective tissue properties that accompany various pathological states. 

The possible relationship of cellular asymmetry to the origins of handedness is discussed 

in a motoneuron morphometric study performed at spinal cord level by (Melsbach et al. 

1996) This study compared segmental innervation of the arms and hands with segments 

that innervated the upper trunk These authors demonstrated a pattern of morphological 

asymmetry within the spinal cord on a single cell level The viscoelastometry approach 
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could be applied for investigation of spinal segmental reflex asymmetry between the right 

and left sides, we would be able to assess the amplitude and frequency of the stretch 

reflexes from the skeletal muscle tissue from both sides of the body and possibly graduate 

the level of asymmetry on the spinal level. 

 

Study IV  

It would be interesting to extend the modelling approach of the MRI study to determine if 

there are volume differences between the left and right sided muscles and also to perform 

a volumetric analysis to more accurately describe skin and muscle depth for the Young’s 

modulus calculations in the stiffness study. 

With regard to the internal forces that are generated within individual muscles,  

Comparative analysis of asymmetries in fibre type, blood flow and muscle function 

between the dominant and non-dominant hand has not previously been investigated for 

the FDI muscle. However recent work has indicated that functional magnetic resonance 

imaging (fMRI) has the potential to discriminate the relative proportion of slow twitch 

oxidative muscle fibres in relation to blood supply and capilliarisation (Liebner, 2002).  

This type of study could be very well matched to a morphological dissection study that 

reports the conformity of the muscle bellies, the topography of the so called attachment 

and insertion sites and also the nerve innervation to the discrete muscle heads and the 

pattern of arterial perfusion pathways. 
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