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Summary in English

Extreme value predictions for application in wind turbiresin are often based on asymptotic
results. Assuming that the extreme values of a wind turb@sponses, i.e. maximum values
of the mud-line moment or blades’ root stress, follow a derait unknown probability density
(mass) distribution, we are interested in estimating thggitdution accurately far in its tail(s).
This is typically done by assuming the epochal extremes i@ mihute interval are distributed
according to some asymptotic extreme value distributioth wnknown parameters to be esti-
mated based on simulated low order statistical moments.r@hets obtained by extrapolation
of the extreme values to the stipulated design period of e turbine depend strongly on the
relevance of these adopted extreme value distributions.

The problem is that this relevance cannot be decided frorddteeobtained by the indicated
so-called crude Monte Carlo method. With failure probdieii of the magnitude0—7 during a
10 min. sampling interval the tails of the distributions aever encountered during normal op-
erations. To circumvent this problem the application ofasace reduction Monte Carlo methods
i.e. importance sampling (IS) might be considered. Thigessffrom strict requirement on the
so called sampling density for a high dimensional paramegetor.

Newly developed advanced (controlled) Monte Carlo metlpwdpose alternative solutions
to this problem. Splitting methods such as Double & Clump @&Russian Roulette & Splitting
(RR&S) and finally distance controlled Monte Carlo (DCMCg ame class of these methods.
The idea behind these methods is to artificially enforceg'eents” to happen more frequently.
This can be done by distributing the statistical wight of saenples such that it is an estimate of
their true probability density. Introducing sample wemyatlows increasing the number of sam-
ples which carry low statistical weights, i.e. low probépibf occurrence, by further lowering
their weights. This enables more accurate analysis of bediavior in the vicinity of the failure
surface i.e. estimation of the probability of failure.

Another approach to this problem is to condition the Montel@aimulations using the
so-called Markov Chain Monte Carlo (MCMC) technique. Thanstard method in this direction
is the subset simulatiorfSS). Here the idea is to start by a standard Monte Carlo sioul
with very low number of samples, compared to the true numbeguired for estimation of the
required probability. The next generation of samples aea imulatecdconditionedon those
samples which have the least probability of occurrenceewipus simulation.

Yet an alternative approach for estimation of the first egicur probability of any system is
based on calculating the evolution of the Probability Dgnsunction (PDF) of the process and
integrating it on the specified domain. Clearly this progitlee most accurate results among the
three classes of the methods. The solution of the FokkereRi&olmogorov (FPK) equation for
systems governed by a stochastic differential equatioredriby Gaussian white noise will give
the sought time variation of the probability density funati However the analytical solution of
the FPK is available for only a few dynamic systems and theerigal solution is difficult for
dynamic problem of more than 2-3 degrees of freedom. Thisimes the applicability of the
FPK to a very narrow range of problems. On the other hand ttently introduced Generalized
Density Evolution Method (GDEM), has opened a new way towesdization of the evolution
of the PDF of a stochastic process; hence an alternativeetbRiK. The considerable advantage
of the introduced method over FPK is that its solution dogseguire high computational cost
which extends its range of applicability to high order stanal dynamic problems. The problem
with method is that the number of basic random variablestigerdimited.
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Summary in Danish

Bestemmelsen af ekstremveerdier for vindmglle designdgest i regelen ved hjeelp af asymp-
totiske metoder. Antages ekstremveerdien af en givet respamelse, f.eks. maximalveerdien af
tdrnmomentet ved fundamentet eller bladspaendingerneodey at falge en given, men ukendt
sandsynlighedstaethed, er problemet at estimere endedenaé teethedsfunktion. Dette fore-
tages typisk ved at antage at ekstremveaerdien i en perioderairutters varighed er fordelt efter
en antaget ekstremveerdi fordeling med ukendte paramar&stimeres efter givne atatistiske
momenter af lav orden for den underliggende fordeling. Dmtéede resultat af ekstradpola-
tionen af ekstremveerdien til den stipulerede design peradindmgllen afhaenger i vaesentlig
grad af den valgte ekstremveerdifordeling.

Problemet er, at gyldigheden af den benyttede fremgangskaatikke veficeres ved sakaldt
crude Monte Carlo simulering. Med svigtsamdsynlighedstaifrelseri0~7 i et samplingsinter-
val af 10 min. vil enderne af fordelingen sjeeldent eller @adas under normale driftbetingelser.
En made at omga dette problem er anvendelsen af sékaldsnseatiucerende Monte Carlo
metoder, som importance sampling (IS). Denne metode hampdagemr ved fastleeggelsen
samplingstaethedsfunktionen for parameter vektorer aflinggnsionalitet.

Som alternative lgsningsalgoritmer er der i de senere adeikiet sakaldte controlled
Monte Carlo metoder til Ilgsning af det beskrevne problemkiBsse af disse metoder udggres
af Double & Clump (D&C), Russian Roulette & Splitting (RR&8BY distance controlled Monte
Carlo (DCMC). Ideen bag disse metoder er kunsigt af frengtwiat "ekstrem haendelser" sker
med hgjere frekvens. Dette kan foretages ved at fordele @iske veegt of de simulerede
tidsserier pa en sdden made, at et estimat af deres virlsgiggsynlighedstaethedsfunktion op-
nas. Det er abenmbart that introduktionen af veegte i Igbsinaileringen muligger, at antallet
af tidsserier med lav statistik vaegt, dvs, med lav sandglell, kan gges ved yderligere at re-
ducere deres veegt. Ved at gge antallet af disse tidssemésan mere preecis estimering af
deres opfarsel i omegnen af svigtfladen, herunder fastlagyef svigtsandsynligheden.

En anden fremgangsmade er anvendelsen af betingede Morites@aularingsmetoder,
kendt som Markov Chain Monte Carlo (MCMC) metoder. Standaetoden esubset simula-
tion (SS). Ideen er her at starte simuleringen med en standardeMzarlo simulering med et
steerkt. Den neeste generation af simuleringer startes deloetingetaf de tidsserier, der i den
foregdende simulering havde den laveste sandsynlihed forekomme.

Endnu en alternativ fremsgansmade til fastleeggelse akfadkrydsningssandsynligheder
er baseret pa bestemmelsen af sandsynlighedstaethedsfiankaf processen som funktion af
tiden, og integrere denne over det relevante omrade. Détesbért, at denne fremgangsmaéader
vil give de mest ngjagtige resultater blandt de naevnte ti®dee Lasningen Fokker-Planck-
Kolmogorov (FPK) ligningen for systemer styret af en titeladiffrential ligning pavirket af
Gaussisk hvid stgj vil give den sggte tidsvariation af tashenktionen. Imidlertid kendes der
kun ganske fa analytiske lgsninger FPK ligningen, og nuskerlgsning er vanskelig for dy-
namiske problemer af mere end 2-3 frihedsgrader. Dettestreggr anvendelsen af FPK lignin-
gen til et meget begraenset antal problemer. For nyligt eisdkaldte Generalized Density Evo-
lution Method (GDEM) blevet foreslaet som en méade at omgsletevne dimensionsproblem.
| denne metode bestemmes udviklingen af sandsynlighdustaftinktionen, som det sker ved
FPK metoden, men der er ingen begraensninger pa antallétedégrader. Problemet ved meto-
den er at antallet af basisvarible, der fastleegger laséiss®srne, ma veere relativt begraenset.
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CHAPTER 1
Introduction

In this chapter the statement of the problem in dynamic béitg of the wind turbines is
presented. The route map of the thesis is addressed in tyEeshand the relationship of the
represented publications to the direction of the study istpd out. The main focus of the thesis
has been on applying VRMC methods on a wind turbine model. primary requirement for
this is a wind turbine model in a correlated wind field. Therary works consist of developing a
wind field generator and a wind turbine model. Among all thdW®method the following have
been considered for application on the wind turbitportance Sampling, Distance Control
Monte Carlo, Asymptotic Sampling, Subset Simulation, uBisnulation with Reduced Chain
Correlation, Subset Simulation with Delayed Rejection;ddtacing Simulatiorand the method
of the Average Conditional Exceedance Rates short summary of the methods used in the
thesis with their way of tackling the problem is providedh@&tmethods such as Line Sampling,
Directional Sampling, Adaptive Sampling etc. have onlyrbsaudied but not considered in
detail.

1.1 Wind turbine failures

Wind turbines have a growing rate of use due to the considesafor renewable energy pro-
duction. The development of these machines and their imgadation have been changed from
their early designs which shows positive attitude and beimefiem. There exist two major types
of wind turbines e.g. the Horizontal Axis Wind Turbines (HAWand the Vertical Axis Wind
Turbines (VAWT); only the HAWT will be considered in this tis. The development of the
wind turbines has led to setting up wind farms, a grid of wimdines, designed for harvesting
maximum wind power c.f. figure 1.1.a. More innovative ideastaward installing them on tow-
ers and sky scrapers. Figure 1.1.b shows the three windheslnstalled on Bahrain world trade
center and turned on for the first time on August 8, 2008. Eddhese turbines is capable of
generating 225KW energy which altogether provide about-18% of the towers’ total power
consumption. Creation of such innovative ideas requirsggdeng safe wind turbines with low
probability of failure according to the safety regulations

A wind turbine during its typical 20 or 50 years operationlvidice some very extreme
conditions. Equipment problem such as gearbox failure loerotinplanned events may happen
during this period of time. Other sources of defects or nmadfioning in a wind turbine may
rise within installation process. In modern wind turbinles blades and the nacelle need to be
installed about hundred meters above the ground which neexlty of crane work. The potential
equipment and installation imperfections are detecteddmponent condition monitoring of
the turbine. This is the key toward optimized lifetime anghaeity besides the profitability

-1 —



2 Chapter 1 — Introduction

Figure 1.1 Different wind turbines installations; a) The 20 x 2 MW winghines provide 40 MW of clean power for
the city of Copenhagen, b) Wind turbines on Bahrain worldéreenter. The two towers are linked via three skybridges,
each holding a 3 x 225KW wind turbine providing 675kW of winalyer production

of the wind turbine. The maintenance sections is in chargeeating these potential failure
spots. Nevertheless a wind turbine, just like any mechéricem, is always subject to failure
during its operation. This could be due to extreme weathadition or other reasons - such
as emergency shut downs - during operation which enfordesreg working conditions on the
turbine. Such circumstances may lead into catastrophewhreads both human being and the
turbine life. Examples of such failures are the Searsburgndat catastrophic turbine failure
on September 15, 2008. Turbine No.10 of the 11 turbine Seagshind facility collapsed on
September 15 in high wind conditions. One of the turbine édakit the base causing the tower
to buckle and the nacelle and rotor assembly to crash to thengrc.f. figure 1.2.a. On October
24, 2008 a Suzlon wind turbine in Waynet lllinoise had onet®fli40 foot long blades break
off. A failure in the design procedure has been mentionedhasrtain reason for this failure.
In February 2008 a Vestas wind turbine in Vig, Denmark hadaarditic self-destruction. The
controller of the wind turbine did not function and the rostarted spinning out of control. One
of the blades hits the tower cutting it to half and its debits bther blades crushing them to
parts as well c.f. 1.2.b. In order to decrease the possilnfithese failures the codes of practice
recommend safety factors of for the wind turbine parts. Dgdim of these safety factors is
based on the designated probability of failure of the wintbine. This necessitates estimation
of the failure probability of the wind turbines down to prdiiiies of order10~7. The factors
associated to these probabilities are the so-catan periodsof the wind turbines. These
return periods may be calculated on the basis of either 20 ge&rs of working condition called
the 50-yearor 20-yearreturn periods respectively.

1.2 Statement of the problem

According to the IEC61400-1 standard (IEC 2005a; IEC 200#hig)design value of a stochas-
tic response {R(t) ,&[0,00[ }(bending moment, stress, deformation, etc.) is obtaimgdxtrap-
olation of the failure probability of the design valueinder normal operation in a referential
epochel’, e.g. arealization of length of the proces$(t), to a given recurrence time (expected
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a) b)

Figure 1.2 Examples of the failures of the wind turbines. a) Searsbemnént turbine, b) The Danish wind turbine

first-passage time},.. Presuming independent failure events in adjacent refiatepoches the
exceedance probability of the design value is given as

)TT/T TT

~ ?P(Rmax(T) > r) (1.1)

Rinaz(T) = max{R(t) : 0 <t < T} andRy,q.(T) = max{R(t) : 0 < t < T;.}. The failure
probability in the referential epoche is given as

P(Rmax(m > r) —1- (1 — P(Runaa(T) > 1)

Vo
P(Rmaz(TT) > r) - /P(Rmm(n) > r|v) For(v)do = %P (RmaI(T) > r) (1.2)
Vi

where fy (v) is the pdf of the mean wind velocity and (Rmaz(Tr) > r|v) is the failure
probability on condition of” = v. V; andV,, are the cut-in and cut-out wind speeds of the rotor.
Since, T is the expected first-passage time, it follows tﬁ%(tRmax(Tr) > r|v> < 1. With

T, = 50 year andl’ = 600s, (1.1) provides the relation

T
< = -7
P(me(T) > r) S g =38x10 (1.3)
The design value r is obtained as the solution to (1.3). luisob question to determine this by
conventional (crude) Monte Carlo simulation due to thegatkd low failure probability. The
suggested approach in the IEC61400-1 standard is to usetal@i a Gumbel distribution as

the distribution functionf’z . (r) =1 — P(Rm,m (T) > r) for Ryaz

T—7T0 ”
Froo(r) =1 —exp <—( " ) 2)

r—"To
=0 (o0 (52))

(1.4)
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wherer,,r; andry > 0 are locations, scale and shape parameters, which are &slifinam
the available samples. The results obtained by an extrégolaf the extreme values to the
stipulated design period of the wind turbine depend strpogl the relevance of these adopted
extreme value distributions combined with additional aggtions such as the choice of thresh-
old level for considered peak. The problem is that the relegaof these assumptions cannot
be decided from the data obtained by standard (so-callategionte Carlo (SMC) method.
With failure probabilities of the magnitude) =7 during a 10 min. sampling interval the tails
of the distributions are very seldom encountered duringnaboperations. To circumvent this
problem the time-efficient, so-called Controlled MontelG#€MC) simulation techniques need

to be taken into account. In the present work the failure abdty P(Rmm (T) > r) will be
determined directly by means of a variance reducing MontéoGamulation method.

1.3 An overview into the problem

The problem of dynamic reliability analysis of the wind tumés falls into the category of high
dimensional nonlinear first passage probability estinmatithe termhigh dimensiorhere refers
to the number of théasic random variableesf the problem i.e. white noise realizations which
enter the turbulence filter. This should not be misintegaeis the number of degrees of freedom
of the structural system as is normally the case in struktlyiaamic problems. Typically the
dimensionhere can be calculated as the number of the system excigatiaitiplied by the
number of points in their temporal discretization.

Classical reliability methods, such as importance sargpkstimate the failure probability
of a predefined barrier level. This is sufficient in relialyilassessment problems but not in de-
sign problems; where the barrier level of a predefined faijnobability, e.g. the value of “r”
in Eq.(1.3), is required to be estimated. Neverthelessthasthods are still applicable condi-
tioned on coupling them with an additional optimization eldptimization scenario would be to
estimate the barrier level by interpolation(extrapolafiwom the obtained probabilities of some
trial barrier levels.

The drawback of this approach is that it requires estimaifdailure probability for several
barrier levels which urges repetition of the major partshaf ¢stimation procedure. Examples
are re-calculation of the control functions (critical dations) in IS (Macke and Bucher 2003)
or important directions in LS (Schuéller 2008). This neitatss repetition of the majority of the
computation procedures and causes significant reductieffioiency of the method. Based on
the mentioned discussions it is concluded that a high coatipnial load will be demanded in
such cases, especially for nonlinear systems, which désates use of these methods. Therefore
a proper method for our aim should have the following charéstics

Capability of estimating the barrier level for a given prbligy
Needless of significant a-priori system information i.dlack-boxmethod
Applicable on high dimensional problems without significdrop on efficiency

Low demands on the memory (memaory overflow can be expected)
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Figure 1.3 Extreme values of the response of the fixed speed wind turbinEitted distributions within the range of
samples, b) Extrapolation of the fits to the 50 year returioger—: 50 year return period, -.-: 3 parameter Weibull; :
Gumbel, - - -: 3 parameter Lognormal, —: Generalized Extrsfalae

1.4 Curve fitting approach

The simplest approach to obtain such information is thealed “curve fitting” approach in
which an extreme value distribution with unknown paransetah be fitted to the available sam-
ples of the process (Caires and Sterl 2005; Maaiagl. 2010). The distribution can be of any
type i.e. Weibull, Gumbel, Lognormal, Generalized Extrévakie (GEV) etc. Here it is implic-
itly assumed that the parent distribution of the processriz to the domain of attraction of one
of the extreme value distributions; therefore the excekgegaabove a given threshold follow a
Generalized Pareto (GP) distribution (Naess and Claus@h)2Uhe required failure probability
will be extrapolated from the fitted distribution. The datayi be taken either from measured
responses of a real wind turbine or from epoches of the regpsimulated by computer.

Additionally some sample refinement methods such as epaouétilod or the Peaks Over
Threshold (POT) can be combined in order to obtain more auawnéresults. The POT method
has been used frequently in the wind engineering industrggtimation of the extreme condi-
tions of wind turbines i.e. extreme wind load. It can be shokat if the parent distribution of
the outcrossing event belongs to one of the extreme valtigodisons then outcrossing above a
sufficiently large level follows a Generalized Pareto (GBjribution, (Naess and Clausen 2001).
The most controversial part of the method is the type of ithistion which should be fitted to the
data. The type of probability distribution has high impaettbe further analysis which is to be
made based on such extrapolations. For instance it is Egpbytsome authors that incorporation
of the Gumbel distribution results in very low safety levigsstructures subjected to wind load
than to gravity load, (Minciarellet al. 2001; Simiu and Heckert 1996). The extrapolations based
on Weibull distribution will always lead to lower values fdesign loads, (Harris 2005); hence
Weibull distribution might be used instead. From practaiht of view Gumbel distribution is
among the most popular distributions for the wind speedin@hoodet al. 1980; Cook 1982).
Nevertheless the use of POT and Monte Carlo simulation ignmoiavor of the reverse Weibull
distribution, (Simiu and Heckert 1996). Simiu et al. (Singiual. 2001) analyzed 100 wind
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2 3 a 5 6
b
Figure 1.4 Extreme values of the response of the variable speed wibthjra) Fitted distributions within the range of
samples, b) Extrapolation of the fits to the 50 year returioder—: 50 year return period, -.-: 3 parameter Weibull; :
Gumbel, - - -: 3 parameter Lognormal, —: Generalized Extrstiae

records from different stations and fitted the distributiorthe dynamic wind pressure, as an
alternative to the wind speed, and concluded that WeibsttiBution fits better than the Gumbel
distribution to the dynamic pressure of the wind. From thesital point of view assuming the
Weibull distribution for the maxima of the annual epochsh# vind speed makes sense since
Weibull distribution has limited upper tails which meanattin reality an upper limit for the
wind speed exists; while Gumbel distribution assumes n@uppund for the extreme value i.e.
wind speed, (Simiu and Heckert 1996). Although theordiicaleaking, if it is assumed that the
wind speed is Weibull distributed, the parent distributafrmaxima, then its maximas should
be Gumbel distributed, (Harris 2005; Harris 2004; Cook amadrid 2004). Clearly it can not be
said for sure which distribution should be used since Weikumbel, Log-normal have all been
used by different authors, (Freudenreich and Argyriad@®20aess and Gaidai 2009).

The advantage of this approach is its simplicity (the corapomal task is confined to find
the distribution’s parameters through fitting) and apflitty to both measurement and simula-
tions Another advantage is that it can be appliedow number of samplesThe disadvantage
of this approach is that due to the inherent uncertaintid¢isarfitting type, these methods do not
yield accurate estimates of the low failure probabilities, it is not clear which extreme value
distribution should be used in different situations. Inartb illustrate the uncertainty in these
extrapolation procedures four different extreme valugithistions have been fitted to maxima of
100 epoches of the wind turbine model of chapter 3. In the foped model it is assumed that
the turbine is rotating with constant rotational speed etputhe rotor's nominal speed. In the
variable speed model the blade pitch controller is in chafgieeping the rotational speed of the
rotor constant around its nominal value. The simulatedesabf the maxima (barrier levels) are
normalized by the mean value and standard deviation of the hiistory of all responses. The
results of fits for fixed and variable speed models are shovigunes 1.3 and 1.4 respectively. It
is seen from the figures that in both cases the extrapolatidifferent fits results in significantly
different values for the 50 year return period hence indhigatigh uncertainty in the estimates.
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1.5 Sampling approach 7

1.5 Sampling approach

The other approach to the problem is sampling. This apprasistrict requirement that a math-
ematical model of the system, which can be solved numeyibglicomputer, is available. Next
the population space of the problem can be simulated bydakimdom samples (realizations) of
the process under consideration i.e. responses of the uibihe. As the number of realizations
increases toward infinity the distribution of the procedsaainverge to its true distribution. This
procedure is the basis of the so-called Standard Monte CaNIC). The drawback of this ap-
proach is that it has very high computational demand foneston of the low probability events.
Therefore the variance reduction methods are proposedhryito cross over this computational
demand by controlling the sample generation procedure.

1.5.1 Standard v.s. Variance Reduction Monte Carlo
Standard Monte Carlo

The subject of SMC is estimation of (1.5) by sampling. Hé(&) denotes the joint PDF of
the stochastic variabX andé(X) < 0 is the Limit State Function (LSF) of the problem. The
simplest way to approximate this integral is to take sampfes and examine if they are in the
failure domain § = {X|G(X) < 0}, or thesafe domain& = {X|G(X) > 0}.

Py :// f(X)dX:/-~-/ p(E)d=E (1.5)
G(X)<0 G(E)<0

whereG(E) = G(X) is the LSF when its variableX = {X,,---, X,,} are transformed into

normalized iid Gaussian variabl& = {=;,--- ,=,} using i.e. Rosenblatt transformation.

©(.) denotes the standard normal density function. The tramsfton is necessary in order to
guarantee invariance of the solution toward definition efltisF function (Madseet al. 2006).
Introducing the indicator functioi|.] defined as (1.6) allows changing the boundaries of the
integrals in (1.5) into the domain of normal random varialde shown in (1.7).

_ J1 aE =0

The procedure of SMC consists of simulating the space of thegss= by generating random
samples fromp(E). At this point the drawback of this approach becomes cleaichvis, ex-
cessive number of samples should be generated for accstateaton of the low probability
events. Next, it is possible to choose those realizatiorishwiave any specific characteristics
according to the specifications of the LEFX). The LSF in structural dynamic is typically
defined as exceedance of one(some) of the components ofibesgrfrom a certain level, called
the “barrier level” (or alternatively called “thresholdvid”) b, within a prescribed time frame.
The mean value and the standard deviation of the probabflibgcurrence of the event can then
be estimated by simple counting rules as indicated in (1.8).

Py(1 - Py)

N
Py = % dYoI6E) o = (1.8)

n=1
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Figure 1.5 Schematic view of the Standard Monte Carlo

whereg, denotes a realization of the stochastic variableThe variance of the SMC estimate,
c.f. (1.8), proposes that if probability @, = 10~° is to be estimated with standard deviation
of the estimationppf, of about 0.3,N ~ 10° samples should be generated. As a rule of
thumb the sample generation is continued until at least ifpkes of the required event occur
i.e. ten samples fall within the failure region. This gudems that the coefficient of variation
of the estimate is less than or equal to 0.3 indicating go@diracy in results. It is obvious
that events with low probability of occurrence need moreuation (more samples) to let them
happen. Figure 1.5 shows a schematic view of the samples ofraah Gaussian stochastic
process composed of two iid random variabdes~ N(0,1) andés ~ A(0,1). Here the set
of dots shows the so-calleshmpling densitpf the SMC concentrated around the origin of the
space and the solid line indicates the LSF. The failure doma@. domain of occurrence of the
considered event, is shown Byin grey. It can be seen that only one dot(sample) falls withig
domain while many others are in the so-caldade domainhence a rare event.

Variance Reduction Monte Carlo

The idea of the Variance Reduction Monte Carlo (VRMC) methisdto estimate the required
probability with lower variance of the estimation compatedhe variance of the estimations of
the SMC,a%f in (1.8) c.f. (1.9) wherd [, ] denotes anodifiedindicator function consistent

with the changes proposed by the method.

N -
~ - . Pr(1—-P

B =Y fGE)N=F . of <UD (L.9)
n=1

Therefore with the same number of samples higher accuratlyeirsimulation is achievable.
Among the available VRMC methods four methods are consitlier¢éhis work e.g. Importance
Sampling (IS), Distance Controlled Monte Carlo (DCMC), Asgytotic Sampling (AS) and Sub-
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set Simulation (SS). The “importance sampling” and thetatise controlled Monte Carlo” are
described in detail in the abstract of the thesis. The aatalescription of the “asymptotic sam-
pling” and “subset simulation” and their application on theveloped wind turbine model are
provided within the papers in the appendix.

1.5.2 Importance Sampling

One of the most well-known methods for this purpose is theditgmce Sampling(lS) based on
the Girsanov theorem (Newton 1994; Tanaka 1998). The methdts the sampling density
of the simulation to the boundaries of the failure domainerBfiore more samples in the failure
domain will be produced, c.f. figure 1.6. This shift is donéie multi-normal integral of (1.5) by
changing the density as shown in (1.10). The red dots in fijlf@re the samples generated by
the shifted sampling density(E) in (1.10). However now it is obvious that the probability mas
that is carried by each red sample is not equal to the prabatass of its counterpart within
blue samples. More precisely the probability mass of thepsesrof the SMC, blue samples, is
equal to one while for IS samples, red samples, it is equa{®).

Fr= /.“/G(E)<0 :ZE:; HE)d= = /.”/G(E)<oh(8)¢(a)dE (1-10)

As can be seen from figure 1.6 this action located many motizagans in the failure domain
hence allows a more accurate estimate of the event. Themhftthe SMC sampling density to
the IS sampling density takes place by introducing a set@$thcalled control functions. These
will be added to the system excitation as deterministictslrifThis scheme has been reported
successful in some simple Stochastic Differential Equasti®GDE) such as a Brownian motion,
(Tanaka 1998; Naess and Skaug 1999a; Olsen and Naess 2006j)aok growth model, (Tanaka
1999). Success of this scheme for non-oscillatory systeralso witnessed by other researchers
and with somewhat different approach, (Dahl 2002). Newets the introduced original scheme
is incapable of satisfactory estimation of low probabiétsents for high dimensional oscillatory
systems, (Naess and Skaug 1999b). This urges changingrtreldanctions which are depend
more on the system behavior (Bucher 2000). The extensioorttinear problems was studied by
Au and Beck, (Au and Beck 2001b), and separately by Macke amth&, (Macke and Bucher
2003). Since the failure region for the oscillatory systesn®latively large, it is not efficient to
produce samples in the region with the largest probabififiaiture. To overcome this problem
the so-called multi modal sampling density might be usecttvigienerates the samples around
a number of points in the failure domain. The sample germratiocess is emphasized around
each point relative to the PDF at that point, (Karamchan#ia®0). Such approach is considered
in (Macke and Bucher 2003), i.e. the multi-modal samplimgl B shown that the method has a
very satisfactory performance on linear and non-linearcstiral dynamic systems. The concept
of design points from the reliability point of view and the timed to choose them using FORM is
discussed by Koo et. al, (Kaat al. 2005). They have mentioned an alternative way of designing
the control functions based on the free vibration analystfzave compared their results with
the exact design points, calculated using optimizatiorhodd, for both linear and non-linear
structural systems which is in very good agreement withiptewliterature. Other possibilities
for determination of the design points are optimizationlmes such as Genetic Algorithm (GA),
(Obadage and Harnpornchai 2006). A modified version of tlkegaure proposed in previous
literature with an iterative scheme is proposed and is shibatris capable of approximating low
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Figure 1.6 Schematic view of the importance sampling

failure probabilities for non-linear SDOF systems such affibg and Van der Pol oscillators
(Olsen and Naess 2007; Naess and Gaidai 2008). In case afiwoms Gaussian excitation it
is necessary to introduce a rational shaping filter at theeles@ of increasing the dimensions
of the dynamic state vector, (Ogawa and Tanaka 2009). Thislggm has been considered by
some authors, (Koet al. 2005; Olsen and Naess 2007), and a rigorous study on this&usj
specifically performed by Ogawa and Tanaka, (Ogawa and Ba2@B9), where they have used
the Ornstein-Uhlenbeck process to construct a stochastitagon having a specified power
spectrum.

1.5.3 Distance Controlled Monte Carlo

The strategy of the splitting methods such as the Double &PIYD&C) or the Distance Con-
trolled Monte Carlo (DCMC) is to increase the number of rztions in the tails of the distribu-
tion function by splitting those closer to the indicatederavent. Figure 1.7 shows a schematic
view of the DCMC approach which is the counterpart of the #gls5 in section 1.5.1. These
methods categorize the importance of the realizationschaseheir closeness to the failure re-
gion, whereby the samples in the low probability regiorss, tails of the PDF, are considered
important while the rest are considered unimportant. Thgoitant samples are then Doubled
while the unimportant ones are Clumped together, (Prattwat al. 1994; Pradlwarteet al.
1998). Russian Roulette & Splitting (RR&S) is a special aaoin of D&C in which the clump-
ing unimportant realizations is replaced by Russian RejléPradlwarter and Schuéller 1997).
Itis also shown that as a penalty of numerical simplificatibe variance of the failure estimate
of the RR&S is larger than the D&C due to the unbalance of théssical moments it urges
during the killing process. An important issue in the RR&8gadure being the definition of the
important from unimportant processes is addressed bydattion of the Distance Control (DC)
in (Pradlwarter and Schuéller 1999); nevertheless the RR&Snay be favorable compared to
the D&C since its proof for unbiasedness can be done rattsiliy @and it does not suffer from

Mahdi Teimouri Sichani



1.5 Sampling approach 11

2t

4t

6 4 2 0 2 4 6
&

Figure 1.7 Schematic view of the distance controlled Monte Carlo

the artificial spatial dislocation as is the case for D&C. fHfere in the Distance Controlled
Monte Carlo (DCMC) the distance measure is used to definerthertance of each realization.
Furthermore in order to avoid monotone increase of the numbgamples sue to the splitting
the RR&S is used to kill some unimportant processes.

1.5.4 Asymptotic Sampling

The fundamental problem of the reliability is defined as thletioon of the (multi-normal) prob-
ability integral (1.11) i.e. an alternative way of repretien (1.5)

N
Py(E) = / ng(f%Ef)dE (1.11)
aE)<o =1

©(.) denotes the standard normal density function. There existra with highest influence on
the solution to this integral called thigesign point£€*. The characteristic of this point is that it
is the point on the Limit State Function (LSF) with minimuns@ince to the origin in the space
of the transformed variablé=. The primary approximation of this integral consists ofirt

a (hyper)surface to the LSF at the design point and estigdfiril1) by this approximation;
this is the idea of the so-called the First Order Reliabiltgthod (FORM). A more accurate
approximation of the LSF at the design point can however haiodd by fitting a paraboloid
to it which is the basis of the Second Order Reliability MethgSORM). Breitung (Breitung
1984) showed that the effect of the shape of the integral doimg@rojected into (1.11) through
the principal curvatures of the LSF i.e. the eigenvaluetsdfiessian matrix. Later the asymptotic
approximation of this integral, as is expressed in (1.12heé standard normal random space was
obtained by Kiureghian et al. (Kiureghiatal. 1987) and in the space of the random variables
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Figure 1.8 Schematic view of the asymptotic sampling
using the Laplace’s integrals and Mill's ratio by Breiturgy¢itung 1989).

N
r=3m= [ Ile(-52)a= (112)
G(s-1=)<0 =1

[ in the parentheses on the left hand side denotes scaling gétiables in the LSF. The bound-
aries of the integral in (1.12) can be changed to unscaledit8€h reads

CEREA ﬂsﬁ( ~Z=)a
cE)<o =1

Since then several methods are proposed for the SORM appatirins of the (1.11) (Tvedt
1983; Tvedt 1990; Koyluglu and Nielsen 1994). The key difference between FORM aridi80
approximations is played by the curvatures of the LSF as shmimarily in (Breitung 1984).
Nevertheless calculation of the curvatures of the LSF atdigsgn point is not an easy task
for high dimensional problems. The numerical estimatiotheke curvatures can be performed
using aGradient Projection(GP) optimization algorithm (Kiureghian and Stefano 1993jill
the gradient of the LSF is required which is computation@dynanding. The mentioned methods
did not propose any sampling scheme which takes the adwaofagymptotic estimation of the
failure probabilities. Bucher (Bucher 2009a) introducedlsa sampling scheme and called it
the Asymptotic Sampling (AS). The idea of this sampling is¢ale up the random variables of
the problemg, in order to get more samples in the failure domain c.f. figuB A primary
discussion on the applicability of the method on design otheguake elements was reported in
(Bucher 2009b). Sichani et al. (Sichaatial. 2011a) showed the application of the method for
the reliability of several linear and nonlinear structigytems. The applicability of the method
for efficient estimation of the first passage probability afiad turbines and a new scheme for
fine tuning the estimation parameters is discussed in (Bital. 2011b).

(1.13)

[
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Figure 1.9 Schematic view of the subset simulation

1.5.5 Subset simulation

Another approach is the Subset Simulation (SS) (Au and B86H &), which starts by taking a
relatively wide superset of the intended failure regiorhveithigh probability of occurrence. This
superset is chosen so that it includes the entire failuriemnegs its subset. The Monte Carlo sim-
ulation is then used to generate some realizations in tipisrsat. In the second step, the method
incorporates a modified Metropolis algorithm (Metropdtisal. 1953) and takes advantage of
the Markov property of the state vector, to evolve thosdzatabns inside the superset. The first
superset is taken as the whole probability region. The ngeiset is chosen as a subset of this
superset with the same considerations as for the presemts®ipThe second step is repeated
times, until the final failure region is completely attaindsly this approach, a low probability
is represented as multiplication of high(-er) probabilities; the first superset representsra no
mal probability, and is estimated via Monte Carlo simulatiand the next supersets represent
conditional probabilities, estimated by the Metropoligaithm and the Markovian assumption.

Following the concept of the splitting, Ching et al. (Chitgal. 2005) introduced it into the
original SS and later combined it into a hybrid subset sitate(Chinget al. 2005). The spheri-
cal subset simulation (S3) is introduced in (Katafygiotid €heung 2007) which transforms the
excitations into a unit hyper sphere allowing to concepttla¢ sampling density of the simulation
around the directions in which the so-called seeds or inapodirections for the Markov Chains
are concentrated. A new scheme that combines the methodmithrtance Sampling (IS) and
also the reliability sensitivity analysis with SS have beddressed in (Soret al. 2009). On the
same bases of the subset simulation the horseracing sionu{@uev and Katafygiotis 2011a;
Zuev 2009) constructs the Conditional Cumulative Distiitiu Function (CCDF) as the simu-
lations are running. This allows the method to recognizentlost reliable realizations within
simulation and use them for estimating the system’s prdibabence increases the rate at which
lower barrier levels are achieved.
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The recent proposals in this field have focused their atiaratn increasing efficiency of the
method by modifying its sampling scheme. In this respect&anet al. (Santoset al. 2011)
proposed the modification which reduces the correlatiomefMarkov chains of the method.
This should lead in reduced variance of the estimations efntlethod. They proposed to re-
generate a new Markov chain whenever it is rejected by thedgetis-Hastings accept\reject
test. However for high dimensional problems, i.e. problevith thousands of basic random
variables, this may not result in any improvement of theltsstihis is since the probability that
the Markov chains move to the next state in the Metropolistiigs algorithms approaches to
zero exponentially as the number of basic random varialfléseoproblem increases. Another
approach but in the similar concept is proposed in (Zuev aathfggiotis 2011b) by delaying
the rejection test of the algorithm. The main differencevasn this approach with previous one
is that here the sample regeneration takes place wheneegrdidate sample is rejected in the
accept\reject by the dynamic analysis i.e. the candidatgkadid not increase the barrier level.

1.5.6 Average Conditional Exceedance Rates (ACER)

The distribution of the extreme values of the stochasticeseX (¢) over the time intervat €
[0, T'] under the Poisson assumption is given by (Naess 1984)

T
Farey(b) = Prob{M(t) < b} = exp <_/0 vt(b; t)) (1.14)

wherev ™ (b; ) denotes the mean up-crossing rate of the extreme values sfdbhastic process
X (t) attimet € [0, 7] from the barrier leveb. Itis clear that for a stationary stochastic process
the mean up-crossing rate is independent of time thus canitiemas

T

vt (b) = l/ v (b t)dt (1.15)
T 0

Therefore if the mean up-crossing rate of the process is kndistribution of its extreme values

can be calculated using (1.14). For this reason Rice’s faamilows expressing the distribution

of the mean up-crossing rate of the stochastic pro&dgsfrom the barrier leved, e.9. Fy; 4 (),

as (Soong and Grigoriu 1992)

vh(bit) = /oo ifx (b, &, t)di (1.16)
JO

wheref (b, ,t) denotes the joint PDF of th& () and X (t) = dX (t)/dt. However this ap-
proach requires having the joint distribution of the pracasd its first time derivativgy i (b,,t)
which for most nonlinear processes can not be calculatedrawaerically. Another approach to
this problem can be to introduce conditions in (1.16) whiaims$ into (Naess and Gaidai 2008)

V) = [l fx(0) = BCIX =0} x0) (1.17)

whereX = max{X(t);0 < X < T'}. For stationary processes it is proposed, based on (1.17),
to assume the following mathematical format for the up-sirggrate of the process

v (b) = R(b) exp(—a(b — 7)”) (1.18)
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wherez(b) will be a slowly varying function of the barrier level and Wie approximately
constant for high barrier levels that meabﬂim R(b) =~ k. Therefore the methods ends up
— 00

in estimating the parameteks«,y andd of (1.18). These parameters are estimated from the
simulation time histories by some methods primarily degetbby (Naess and Gaidai 2008). The
method further elaborated regarding the statistical dégecies of the extreme value samples of
the system response (Naess and Gaidai 2009). Here thegiuotd a numerically efficient way
of estimating the Average Conditional Exceedance Rate RCEthe process which is assumed
to have a similar mathematical closed form expression aggsed in (1.18). The advantage
is that the ACER approach takes into account the statistiepéndence of the samples of the
process (Naess and Gaidai 2009; Na&tsal. 2009). The latter approach is further elaborated
as described in appendix G. It worth noting that the undegyissumption of these approaches
is that the extreme values of the process are asymptotiGaliyibel distributed c.f. (Naess and
Gaidai 2008).

1.6 Probability density evolution approach

The evolution of the joint PDF of a process governed by a ststithdifferential equation driven
by Gaussian white noise is defined as the solution to the FdRlemck-Kolmogorov (FPK)
equation. If this solution is available, it can be integdad® the specified domain to obtain the
probability of failure. However the factor that makes thadusion difficult is the dimensions of
the problem. The recently introduced Generalized Densigliion Method (GDEM), (Li and
Chen 2004; Chen and Li 2009; Li and Chen 2009), has opened avagwoward realization of
the evolution of the PDF of a stochastic process; hence amaltive to the FPK. The introduced
method can handle high dimensional problems more easilyehemhas some strict limitations
on the number of basic random variables of the system. Tleeigt® obtain the evolution of the
PDF of the process on the characteristic curves of the Lileusijuations obtained for evolution
of the PDF. However this approach has not been within theesobghis study, which has been
the VRMC methods, it may be considered in future in case ipdiegbility can be confirmed.

1.7 Chaotic motion of shallow cables

Wind turbine models include highly nonlinear structureBe3e nonlinearities stem from differ-
ent sources such as structural nonlinearities due to lagfprmation and gyroscopic forces on
the structural elements, loading nonlinearities due to-atastic load calculations and the time
dependency of the system due to the wind turbine controberthe pitch controller. All these
elements may cause issues in stability or chaotic behafitbesystem. A critical point on these
problems is the whirling motion of the wind turbine rotor #hahich may cause instability or
chaotic motion of the system. Obviously if the system bebaleotic or runs into instability
the reliability analysis of the system requires a more garin detail study of the system. This
is since the population of the system responses may chamgaleoably. As in chaotic systems
it is not only the loading which should be the basis of the ysialbut also the initial conditions.
In order to study these problems the flap-wise degrees addreg DOF) are not sufficient and
the edgewise degrees of freedom should be included in thelmétbwever developing such
a model has been out of scope of this work as a warm start upathe analysis is performed
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Figure 1.10 Different realizations of the benchmark problem; a) Exmtarealizations, b) Response realizations

on the chaotic motion of a shallow cable (Nielsen and SicB@dil). The cable model is also
reduced to a two DOF model and then it is used for the chaottysis. This is done in order
to decrease the computational cost of the analysis. Thiy stan be followed by developing the
nonlinear wind turbine model and applying similar analgsist which is subject to future study.

1.8 Benchmark problem for VRMC methods

The relative performance of the variance reduction Montéddaethods is evaluated based on
a single DOF linear oscillator (1.19), characterizedy= 1s~! and¢,, = 0.01

E(t) + 2Cawnd(t) + w2z (t) = w(t) (1.19)

w(t) is zero-mean Gaussian white noise with unit intensity. Téier level is normalized with
respect to the standard deviation of the respense= (4¢w?)~1/2.

by = (1.20)

For all methods in the benchmark examples 500 time seridseafsponse to the excitation are
simulated for analysis. Figure 1.10 shows some realizatafrithe system on the left column;
realizations of the responses to these excitations arersbowhe right column of the figure. In
all numerical simulations performed in this study the listite function is defined by the first
passage outcrossing of the response from the given baviel In order to make maximum use
of the simulation outcomes it is more convenient to choosenthximum of the absolute value
of each simulated realization and sort them c.f. figure &.1This makes possibility of having
the outcrossing from any certain barrier lebeluring the given time framec [0, T] c.f. figure
1.11.b.

For estimation of probability of failure in a long time int&d, IS urges use of largekt
for time integration than the DCMC. This comes from the pdiatt all of the control functions
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Figure 1.11 Transformation to the LSF and failure probability for thenblemark problem; a) Absolute values of the
realizations of the response, b) Failure probability

which cause barrier crossing at each time instant in theauimok interval should be available for
calculating the failure probability i.e. due to the requient of the multi-modal sampling density.
This requires either high memory to save total time histdrglbof the control functions or to
compute all of the the control functions each time the situteis performed, thus a dilemma
between memory and speed. This is while in DCMC the opposigetually preferred. This is
since the more time points available within the same timmé&athere exist more possibilities
of pushing processes toward failure region by Russian Reusnd Splitting. Moreover the
requirements of the DCMC on saving information is rather lsence no memory allocation
problem will be encountered in this regard. However the micaktime integration should be
repeated on more time points which clearly increases theddran the computation cost.

Application of SS also needs saving some of the realizatibrescitations of the previous
simulations i.e. the so-calleskedsc.f. appendix F. The number of seeds is not constant and
is related to both théotal number of realizationand theintermediate probability levelsf the
simulations, i.epg in appendix F. These parameters together define the numbeeds$ needed
to be stored in the memory. Nevertheless this is typicalyuab0% of all realizations which is
still acceptable considering storage memory requirements

Asymptotic sampling has no limitations or demands on eitheitime resolution of the nu-
merical time integration or memory for storing the simuthtiata. Therefore the time resolution
of the simulation could be set to the highest possible inormeave computation time. In the
benchmark solution of all methods except DCMZ = 0.02[s] andt € [0, 30]s has been used.
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1.9 Layout of the thesis

The thesis is then written in the following chronologicader:

Chapter 1  The overview on the problem of reliability of wind turbinesgiven in this chapter.
The outline of the thesis and summary of the methods which@msidered within this work are
presented in this chapter.

Chapter 2 Describes the wind field generation based on stochastippasbsmethod. The
method incorporates the Kalman filter to construct a scedétirward innovation modelvhich

is the final state space format that its parameters will benagtd. These parameters will then
be estimated using a balanced realization method. A nuaileziample is presented which
demonstrates use of the method.

Chapter 3 Describes the details of the reduced order model of the wirtalrte model. The
model is represented in its final form which integrates thiéective pitch controller in it. The
structural part is modeled based on the Finite Element (F&had and a modal reduction is
applied. Integration of the reduced order model with théesspace wind generator results in a
model with low computational demand - compared to the cotmveal wind turbine codes i.e.
FAST, FLEX or BLADED - suitable for statistical analysis lealson sampling i.e. Monte Carlo.

Chapter 4 Addresses the application of “importance sampling” for grahoscillatory sys-

tems. The main part of this chapter deals with theory of ingure sampling. A cook book for
applying the method on any system is also presented in thgeh&inally flaws of the method
in application on the wind turbine are discussed in the @rapt

Chapter 5 Addresses application of the Distance Controlled MontddCam the benchmark
problem. Similar to chapter 4, the details of the steps takéine method are described in detalil
and a cook book for application of the method is presented.prbs and cons of the method for
application on the wind turbine are discussed at the endeothiapter.

Chapter 6  Provides an abstract conclusion achieved in this study.

Appendix A Provides a short derivation of the Kalman filter gain and Ricequation used
in the wind field generation.

Appendix B Describes details of the derivations of the importance siagor Wind tur-
bines.

Appendix C  Discusses the application of the “asymptotic sampling” enegal nonlinear
high dimensional structural dynamic problems. The impurfactors which affect quality of
the results when AS is applied to structural dynamic systaresaddressed in the paper. An
algorithm which increases efficiency of the method is algsented in the paper.
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Appendix D Provides a quick overview on the four VRMC method e.g. IS, DGMS and
SS and their performance is compared on a common problenedRasthe results of this anal-
ysis and considerations of the wind turbine requirementtherfailure probability estimations,
conclusions are made on the applicability of the methodfiemind turbine model.

Appendix E  Addresses a proper scheme for applying “asymptotic sagipbn the wind
turbine model. The developed algorithm takes advantaglesfreulation results for construction
of the Cumulative Distribution Function (CDF) of the proivle This algorithm is then applied
for failure estimation of the wind turbine model.

Appendix F incorporates the PID pitch controller in the wind turbinedab The failure
probability of the pitch regulated model is then estimatgdhe standard “subset simulation”
and two of its most recent modifications e.g. the “reducedncbarrelation” and the “delayed
rejection” algorithms. The results of the three method®hmen compared together on the wind
turbine model.

Appendix G  Presents an enhancement on the estimation of the Averagditicoal Ex-
ceedance Rates (ACER) of stochastic processes. Here théheapnfidence bounds of the
method are being estimated and estimation of the fittingrpeters using an optimization al-
gorithm are enhanced. This results in more robust estimatidghe fit to the ACER functions.
Finally the failure probability of the pitch regulated witgrbine using this method is carried
out.

Appendix H addresses analysis of the chaotic motion of the shallowesalh the paper the
chaotic motion of cables with small sag in its sub and supenbaic frequencies are considered.
The Lyapunov exponents are used to identify the range orhih&systems behaves in a chaotic
regime.

Note The details of the “importance sampling” and “distancetobiMonte Carlo”, as
they have been applied on the benchmarks problem, have leserilged in the abstract of the
thesis. However due to difficulties in application on theaviarbine model only the “asymptotic
sampling”, “subset simulation” (the original method and tkcent developments with two new
sampling schemes) and the "ACER method” have been appli¢gkeowind turbine model. The
“horseracing simulation” has also been applied on the baiack problem which showed bias in
its estimates, therefore was not considered further foliegijon on the wind turbine model.
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CHAPTER 2
Correlated wind field generation

Turbulence of the incoming wind field is of paramount impod& to the dynamic response
of wind turbines. Hence reliable stochastic models of thbulence should be available from
which time series can be generated for dynamic responsetamdusal safety analysis. In the
paper an empirical cross spectral density function for thegawind turbulence component over
the rotor plane is taken as the starting point. The specteuspatially discretized in terms of
a Hermitian cross-spectral density matrix for the turbaotestate vector which turns out not
to be positive definite. Since the succeeding state spacABRMA modeling of the turbu-
lence rely on the positive definiteness of the cross-speatgresity matrix, the problem with the
non-positive definiteness of such matrices is at first adeéeand suitable treatments regarding
it are proposed. From the adjusted positive definite crpssigsal density matrix a frequency
response matrix is constructed which determines the teroel vector as a linear filtration of
Gaussian white noise. Finally, an accurate state spacelimpaeethod is proposed which al-
lows selection of an appropriate model order, and estimatia state space model for the vector
turbulence process incorporating its phase spectrum irstage, and its results are compared
with a conventional ARMA modeling method.

2.1 Introduction

Modern wind turbine wings are flexible and hence sensiblgt@achic loads such as gusts caused
by turbulence of the wind field impinging on the rotor disk.€eltiynamic response may lead to
both fatigue failure and collapse due to the yielding begditresses or collision between the
deflected blade and the tower. It follows that turbulencetrbagaken into consideration at the
design of wind turbines. In the IEC 61400-1, Ed. 3.0 desigtecof practice for large wind
turbine, (IEC 2005a), the applied turbulence field is priégct in terms of a frozen, homoge-
neous, non-isotropic turbulence field, which is convected the rotor according to Taylor's
hypothesis. Veers (Veers 1988) has suggested the use ofiegthpross-spectral density func-
tions for the time-stationary turbulence components betwgo points in the rotor plane, as
has a long time been the practice in civil engineering, (Glmicand Iwayani 1971). The pre-
sented spectra presume stochastic independence amorgeblditrbulence components, with
the consequence that the well-known negative correlatawden the along wind and vertical
components in turbulence boundary layer is not modeledthByrthe influence of the phase
spectrum is ignored, rendering the coherence functionshende the cross-spectral densities
real. During past decades people have tried various magaigthods to simulate a turbulent
wind field such as Fourier Analysis, ARMA modeling, Artifitiaeural network etc. (Solari
and Tubino 2002; Kareem 2008). Among the proposed methd@b)Amodels have received
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considerable attention specifically due to their short ngmequirement. These models are
especially advantageous in controlled Monte Carlo sinmratfor low failure probability esti-
mation, where it is very advantageous that turbulence iesgmted as a filtration of white noise
processes. ARMA models are reported to be quite successfiabdeling wind field as long as
the coherence function between discretized nodal pointserotor plane is assumed to be real,
(Kareem 2008; Chen and Kareem 2001). However, their capefoit modeling stochastic wind
field with complex coherence function, which is the aim oftlmivestigation, has not yet been
demonstrated. The basic assumption in what follows is tiattoss-spectral density function
of the along wind turbulence component is available overdhber plane. Further, the turbulence
field is assumed to be spatial homogeneous and stationargén Next, the turbulence field is
discretized in a number of nodal points as shown in Figura.2The approach is illustrated with
an empirical cross-spectral density function, where the-apectral density function is given by
Kaimal power spectrum and the complex coherence functitaken from Shiotani and lwayani
(Shiotani and lwayani 1971). An important issue is the laicasitive definiteness of the cross-
spectral density matrix of the turbulence vector at low daginequencies. Positive definiteness
is required to achieve numerical stability of the suggestedels. Therefore, two modification
schemes are proposed to guarantee positive definitenelse ofddified cross spectral density
matrix. The modified cross-spectral density matrix is theeduto estimate an impulse response
matrix which provides the turbulence vector by a convolutioth a Gaussian white noise with
independent unit intensity component processes. Thedtetidmpulse response matrix is not
causal, which is of great conceptual importance, sincedtvstthat the ARMA model and the
state space models, which make implicit use of causaliti@process, approximate the original
acausal process with a causal equivalent. Eventually a sgetce modeling (SSM) method is
applied. The method takes advantage of singular value degsition as a numerical tool to
estimate both the optimum model order, and the state spadelrimoone stage. Two numerical
simulations are carried out to study the accuracy of the SSihad. It is concluded that the
suggested state space modeling provides substantial viempents in simulating multivariable
wind fields.

2.2 Turbulence model

The mean wind and the turbulence field are described ifzthes, z3) — coordinate system with
origin at the hub. The;-axis is horizontal, orthogonal to the rotor plane, andrigd towards
the nacelle. Thezz-axis is vertical, and oriented in the upwards directior Begure 2.1. The
mean wind velocityy” is assumed to be co-directional to theaxis, and is considered constant
over the rotor areal = 7R?, whereR is the length of the blades. In what follows we shall only
consider the turbulence componei(z, ¢) in the z;-direction in neutral atmospheric turbulence
at position = [z1, 22, 23] in the rotor plane and at arbitrary timesThe turbulence field in the
rotor plane will be modelled as a zero-mean, Gaussian ttat@sary proces$v(z,t), (z,t) €

R3 x R}. Then, the turbulence process is completely determinetslyass-covariance function
defined as, (Papoulis 1991)

Koo (21,1322, t2) = Efv(z1,t1)0(22,t2)] = Koo (r, 7) (2.1)

r==2, —2; , T:tgftl (22)
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2.2 Turbulence model 23

Figure 2.1 a) Discretization of rotor area. b) Three-bladed rotor.

whereE[-] is the expectation operator, aad andz, are the position vectors to two points in
the rotor plane, see Figure 2.1. Alternatively, the cotiefastructure can be defined by the
double-sided cross-spectral density function via the \&fig¢hintchine relation, (Papoulis 1991)

1 > )
Sov (21, 22; W) / e " Kyy(21,22;T) dT (2.3)

:% .

Suv(21,22; w) may be written on the form

S’U’U (Zla Z2; UJ) = Yov (Zlv Zy; W)SE'U (Zl; UJ)SE'U (ZZ; W) (24)

wherev,, (z1, z2; w) is the so-called coherence function a#id (z; w) is the double-sided auto-
spectral density of the turbulence. Due to the assumed hensity of the field over the rotor area
the former depends any, andz, via the differenca = z; — z;, and the latter is independent
of the position vector. In the inertial sub-range of equilibrium range the dousitked auto-
spectral density function may be given by the following eriggil expression

1 w
Suw(r;w) = VF (V)
O (1 |k

V' is the mean wind velocity at the hub, which is assumed to bsteahover the rotoro, is
the standard deviation of the turbulendejs the correlation length, angl is a normalization
parameter given as

o, =218V,
L =525h (2.6)
v =3

V., is the friction velocity given a¥, = Viok:x, whereVg is the mean wind velocity at 10m,
k; = 0.17 is a friction coefficient, and: = 0.40 is von Karman’s constant. The cross-spectral
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density function fulfils the symmetry properties, (Paped®91)
Svv(2z1,22;w) = Sy, (22, 21;w) = S, (21, 22; —Ww) (2.7)

wherex denotes complex conjugation. Due to the homogeneity thereolze function merely
depends om; andz, via the difference vectar = z, — z;. Then due to (7), the coherence must
fulfil the following asymptotic values and symmetry projest

Yy(r;w)=1 , r=0

Y(r;w)=0 , |r|=00 2.8)
Y(r;w) =" (-1r;w) '
Y(riw) =" (r; —w)

An empirical expression, which complies with the indicateduirements has been given by
(Shiotani and lwayani 1971)

riw S ()| w
y(r;w) = exp (—%dl) exp (Z%dg) (2.9)
where the sign function is defined so thét) = 1 ands(—r) = —1. The non-dimensional

parameterd, andd, are given agl; ~ 1.5 andd, ~ 1.3, (Shiotani and lwayani 1971).

2.3 Discretization of the turbulence field

The rotor plane is divided by angular segments of magnitude = 27“ see Figure 2.1. Along
each side of a segment the radid®f the rotor plane is divided inte: equidistant intervals of
the lengthAr = %, definingm nodes. The total number of nodes becomés= nm + 1,
where the first node refers to the hub. Then, the discretieéd] fiepresenting the turbulence in
the defined nodes may be represented by the stochastic vector

v(z1,t) v (t)
v(t) = U(Z:Q’ R :(t) (2.10)
ozant)|  on(®)

The double-sided cross-spectral density matrix of theuerice vector becomes

S’Uv(zlvzl;w) va(zlsz;w)
S’u1;(z2azl§w) t S'UU(ZQaZM;w)

Suy(w) = _ . _ 2.11)
S’U’U(Z]\/Iazl;w) cot Sm)(ZMaZM§W)

Svv(w) is a Hermitian matrix fulfilling the symmetry properties

Suv(w) = SIy () = Siy () (2.12)
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Using the symmetry property (2.12) the cross-covariandexat the turbulence vector may be
obtained from the following Finite Fourier Transform

cwvy:/mamswwym:> (2.13)
N—-1 i

cwquAmm<§:me%%>sww0 (2.14)
k=0

j=0,1,...,N—1

where the abbreviated notatiofs,v(j) = Cyv(jAT) andSyv (k) = Syv(kAw) have been
introduced, and where the time and frequency incrementeetated asA7Aw = QW’T Svv(w)
may be Gauss factorized on the form

Svv(w) = L*(w) D(w) LT (w) (2.15)

whereL(w) is a lower triangular complex matrix with 1 in the main diaghrandD(w) is a
real diagonal matrix. Sincé&, (w) is not necessarily positive definite the diagonal compaent
need not be positive real. If not so, we may define an auxilitgonal matrixD(w), in which
the negative components Bf(w) are set to zero. Correspondingly, the following positiveise
definite cross-spectral density matrix may be constructed

Svv(w) = L*(w) D(w) LT (w) (2.16)
S,v(w) may be factorized on the form

Syv(w) = H} (w)HY (w) (2.17)
where

H, (w) = L' (w)D? (w) (2.18)

Dz (w) is a diagonal matrix with the square rootdf (w) on the main diagonaH., (w) has the
form of a lower complex triangular matrix

Hll(w) 0 0
H,(w) = }55”) }h%w) 2: ? (2.19)
HMl(w) H]ug(w) HMILI(W)

Obviously, the columns ofL, (w) corresponding to the elements in the diagonaDof(w) set
to zero become zero as well. Alternatively, the followingexivalue decomposition may be
considered

Svv(w) = ¥(w) Alw) T (w) (2.20)

where ¥ (w) is a modal matrix storing the eigenvectorsSf, (w) column wise, and\ is a
diagonal matrix storing the corresponding eigenvaluegicdpthe formulation (2.20) assumes
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u(t) iltesi ek v(t)

Figure 2.2 Turbulence vectov(t) as a linear filtration of a Gaussian white noise veetér).

that the eigenvectors have been normalized to unit lengtihich case® —!(w) = ¥*T(w).
Next, the negative and zero eigenvalues\ifw) are set to a small positive number, eqg=
1019, providing a modified eigenvalue matr[\((w), from which the following positive definite
cross-spectral density matrix may be constructed

Svv(w) = ¥(w) A(w) T*T(w) (2.21)

Finally, the lower triangular matri¥ , (w) is obtained by a Cholesky decomposition of (2.21).
The matriced , (w) obtained by the two methods are not identical. The latteraaah turns
out to introduce smaller errors in the constructed posiiggnite cross-spectral density matrix
compared to the target spectrum, as demonstrated in therimafrexample. This improvement
is obtained at the cost of a significant increase in the coatjmmal expenses. Notice, in both
casesS, (w) andS,(w) only differ at angular frequencies, where the former is rugifive
definite. The symmetry propert¥,.(w) = Si,(—w) implies that the following symmetry
property prevails foH,, (w)

Hy(w) = H{(—w) (2.22)

Let {u(t), t € R} denote an/-dimensional white vector noise process with the double-
sided cross-spectral density and cross-covariance regigigen as

Suu(w) =1 (2.23)

Cuu(r) =276(7) I (2.24)

whered(7) is the Dirac delta function. Then, it follows from (2.17) tHav(¢), ¢t € R} may be
obtained by filtering{u(¢), ¢t € R} through a linear filter with the frequency response matrix
H, (w). The related impulse response matuix(t) is the inverse Fourier transform &f, (w).
Using the symmetry property (2.2R),(¢) may be determined by the following Finite Fourier
Transform

hy (f) = % / e H () dw = (2.25)
Aw N—-1 ik
hy(j) = =~ Re (Z exp (m%) Hv(k)> (2.26)
k=0

j=0,1,...,N—1

h, (t) becomes a lower triangular matrix similarkh, (w). The causality condition is generally
not fulfilled, i.e. hy(¢) # 0, ¢ < 0. Notice thath,(—j) = hy(N — j), and hence is avail-
able from (2.25) up to the Nyquist frequend¥/2. Hence the turbulence vector process can be
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obtained from the stochastic convolution integral

v(t) = / hy(t —7)u(r)dr (2.27)
which is approximated by the following Riemann sum
N/2
vi) = D hw(@-1) . j=01... . N-1 (2.28)
I=—N/2

In (2.28) w(j) denotes anV/ x 1 dimensional zero mean normal vector with mutually inde-
pendent, identically distributed random variables with ¥ariancer At, whereAt denotes the
time step in the discretization of the convolution integiidien the cross-covariance function of
the stationary stochastic sequence is given as

0 , jFEk
cww(k—j):E[w(ﬁwT(k)}={2WI j: (2.29)

The cross-covariance matrix based on the filter method Y28 mes

kn\ax
Colj) =27t S by (k)BT (k + ) (2.30)
k=Kmin
where
kmin = max (_% ) _% B ]) (2 31)
k = min(ﬂ N_j .
max - 290 2 J)

2.4 ARMA modeling

In principle, simulation of the turbulence vector may bedshen (2.28). Howeveh, (/) con-
verges to zero very slowly with as seen in Figure 2.5. This truncation error together with
numerical integration error introduced by (2.25) in estiorof h, (1), cause discrepancy of the
variance function oh,, (I) with (2.13) as seen in Figure 2.11. Hen¥eshould be very large to
keepAt at an acceptable level. To circumvent this problem an etpriv@®RMA vector model
with finite lengthsp and ¢ of the auto-regressive and moving average parts might bkedpp
corresponding to the model

v(k) + z”: Avk—1)= zq: Byw(k —1) (2.32)
=1 =0

whereA; andB; are real matrices of dimensial x M. Following the suggestion of Samaras
et al.(Samarast al. 1985) the Two Stage Least Square (2SLS) method will at firsidsal to
estimateA; andB; of (2.32). The algorithm consists of two major steps; in thet tep an AR
model of sufficiently high ordef is calibrated for the process, and in the second step theebita
AR model is approximated by a shorter ARMA(p,q) model. Torgméee sufficient accuracy of
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28 Chapter 2 — Correlated wind field generation

the modelling, Samaras et.al.(Samagtal. 1985) proposed to chooge> p + ¢ + 2, whereas
Li and Kareem (Li and Kareem 1990) proposed the empiricatiaip > 3(p + q)

v(k)+ Y Aw(k—1) = Bow(k) (2.33)
=1

To calibrateA; coefficients, (2.33) is post multiplied byt (k —j),k = 1,2,--- and its expec-
tation is taken which yields in (2.34)

P
=1

whereC,(j) = CJ,(—j) is used. AlsoE[w(j)v"'(j — k)] = 0 for k > 0 according to the
causality of the model. Evaluating (2.34) for= 1,--- , p allows calibration ofA; in a least
square sense. Next, post multiplying (2.33)wY¥ (k) and taking its expectation results in

va(O) = 27TAtB0 (235)

Post multiplying (2.33) by (k) and taking its expectation together with using (2.35) dexiv
(2.36) that will be used to estimai&y B}

p
CLy(0) + > A CL, (1) = 2nAtBB] (2.36)
=1

(2.36) is used for the estimation 8, by performing Cholesky decomposition B{B{. The
next step of the method is to calibrate an ARMA(p,q) modet fhs at best to the estimated
high order AR model. Therefore, the second least squarerislyfer shortening the memory of
the model. Consequently the high order AR model is the mocarate of the two. This is the
reason why the high order AR model of the 2SLS method is coetpaith the estimated model
of the state space method in simulations. In the simulatitvescovariance function of the 2SLS
method is calculated recursively using equation (2.34).

Clearly accuracy of the model in capturing second order nmis@ the process increases as
the model orderincreases. Itis not only the higher accutetynmakes high order ARMA models
more elegant but in modeling stochastic fields typicallyhhigders for models are required for
correct estimation of the second order statistical momeitise field. However a well-known
problem which defines the upper bounds on the model orderivtnerability of this type
of models to stability (Soderstrom and Stoica 1981). ARMAd®ls soon become unstable as
the model order increases. This makes practical limitatimm simulating stochastic fields i.e.
vector (multi-variable) ARMA models. The reason is thatikelin the simulation of the scalar
stochastic process, the energy of vector processes toncentrated along only a few principal
directions, e.g. the singular vectors of the Hankel matafireed from (2.36) for estimation of
the coefficients of the AR model. This is the key factor whidfiied the relationship of the
model order and its energy harvesting ratio e.g. the amdwemergy of the process captured by
the model. Therefore systems which have more significamt-@evo) principal values (singular
values) require higher model orders to capture the samer@trbthe energy of the process.
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Recently a low order ARMA modeling technique is introducddah allows calibration of
a low order ARMA model suitable for simulating stochastidd# c.f. (Krenk 2011) . A multi-
variable AR model with order one, e.g= 1in (2.33), is proposed to be used here. For an order
one AR model the Yule-Walker equation (2.35) matches thaamce function at zero and first
separation times e. €L (0) andC], (1) respectively. In (Krenk 2011) it is proposed to match
the covariance function at zero separation time kffidseparation time instead e.@.L, (0) and
CT_(k) respectively. The direct outcome of the least square swliri this case will be tha ¥,
then itsk!” root will be calculated which results in the;. The method is stated to provide very
close estimations of the covariance function at all searéimes for stochastic field simulation
without critical stability problems.

2.5 State Space Modeling

In this section, a modified outline of the State Space ModlglISSM) method are given to fit
into the present framework. The method starts by the stateespepresentation of the ARMA
model shown in (2.37), (Overschee and Moor 1996; Markoetlgl. 2006)

x(j+1) = Ax(j)+©())

v(j) Cx(j) + ®(j) (2.37)

where the auxiliary state vecta(;j) is of dimensionL x 1, and®(j) and®(j) are stationary
Gaussian white noise vector processes of the dimerdsienl andM x 1, respectivelyA is a
system matrix of the dimensiah x L andC is an observation matrix of the dimensidh x L.
The cross-covariance matrices of the stochastic sequé@gs} and{®(j)} are given as

B H 283 } [©T(k) ®T(k) ]} - [ S“?F 3}@ (2.38)

whered ;. is the Kronecker delta. The idea of the state space modédliogestimate the matrices
Q of dimensionL x L, R of dimensionM x M andS of dimension)M x L are noise covariance
matrices, which are to be estimated along wAttof dimensionL x L, C of dimensionM x L,

so the output process(j) satisfies a given target cross-covariance magtx (7). At first, an
equivalent Kalman filter model is formulated which provideselation betwee andC and
some auxiliary matrices (Kalman gald, cross-covariance matrix of the Kalman state vector
33, and the covariance matrix between the next state vectothanpresent output vector for the
forward innovation modeGT). Next, the system realization theorem is applied, whidivistes
the estimation results fok, C andG™. Starting from (2.38), the state vector procéss;)} is

a zero mean stationary Gaussian process fulfilling the ptiege

Elx(j)] =0 (2.39)
Ex(j)x"(j)] == (2.40)
E[x(j)0"(j)] = 0 (2.41)
Ex(j)®" ()] = 0 (2.42)

October, 2011



30 Chapter 2 — Correlated wind field generation

(2.41) follows from (2.38) and the resulting mutual stoclaisidependence at(j) and®(j).
From (2.37) and (2.41) the following Lyapunov equation fog tovariance matrix may be de-
rived

T=AZAT+Q (2.43)

Similarly, the following relations for the output covar@mmatrixCL, (i) = E[v(j + i)v1(j)]
and the covariance matrix in the stationary st&€,= E[x(j + 1)vT(j)], may be achieved

GT = AXCT+S
C,,(0) = CZC'+R (2.44)
ClL() = cA™'GT

Accuracy of the modeling requires that the states of the inm@eestimated with the least pos-
sible error compared to the true states of the system. The sp@ace model (2.37) might be
transformed to the following so-called forward innovationdel admitting the standard form of
a Kalman filter, (Katayama 2005; Verhaegen and Verdult 2007)

X(j+1) = A%(j)+K()el))

v(j) = Cx(j)+el)) (2.43)
whereK(j) is a set of non-steady state Kalman filter gain matrices,{&fd)} is a zero-mean
Gaussian white noise vector sequence. Notice that whelneastdte vector and the noise pro-
cesses are affected by the transformation, the outputivéetg)} is not changed. Accordingly,
the covariance matrix between the next state vector andrésept output vector for the model
(3.36) is given byG™(j) = E[x(j + 1)vT(j)]. Let{x(j)} denotes the forward Kalman filter
estimate of the procegx(j)} which is related with deterministic initial valuig0) = 0. Then
equation (2.46) shows the development of the state estimugia the Kalman filter

X(j +1) = AX(j) + K(5) (v(4) — Cx(j)) (2.46)
The second equation of (3.36) estimates the noise crossiaace matrixE[e(j)e (j)], as
Ele(j)e" ()] = C(0) — CE(j)CT (2.47)

From (2.44), (3.36) and (2.47) the following forward digeralgebraic Riccati equation can be
derived and solved for the development®f The Riccati equation (2.48) is time dependent
in general, (Simon 2006), while gs— oo, the cross-covariance matrix approaches a constant
valueX = X(o0). Similarly the covariance matri& ™ (j) and the Kalman gain matrik ()
approach constant values, i@ = GT(o0) andK = K(c0), respectively.

S = ASAT 4+ (GT-ASCT) (2.48)
x(CL,(0) - CECT)"}(GT — AZCHT '
Therefore, if{A,C,G"} are available, it is required to solve (2.48) only once toaobk.
There exist various methods for solving the indicated Riaguation; among them the eigen-
value method is employed in the current work. The idea is tmduce the factorizatioX =
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W1W2‘1. Next, the matriceW; andW,, of the dimensior x L are obtained from the gener-
alized eigenvalue problem of dimensidh.

~GTC;T0)G I || W,
I -C'cl(0)cC LN
0 A-GTC;r0)C || W,

AT - CTC;T(0)G 0 } [ W, }
(2.49)

wherel is the square identity matrix of dimensidnx L. A containsL stable eigenvalues of the
generalized eigenvalue pencil i.e. inside unit circle. M itke stationary Kalman gain mati
is estimated from

K= (G'" - AZCh)(CL,(0)-cEch)! (2.50)

Knowledge of the quadrupléA, C, X, K} is sufficient for constructing a state space model
in the form of (3.36) capable of generating a stochastic ggeavith any specified covariance
function.

2.5.1 System realization theory

Next, the so-called realization algorithm, (Katayama 90@5used as the starting point to es-
timate the triplet{ A, C, (_}T} which are then used to estimafeandK. In what follows, the
hat sign over matrixes shows that they are estimation of tlggnal matrix. At first the block
Toeplitz matrixT of the cross-covariance matrices of the outputs, of dinbendii x Mi is
constructed

y T y PR T
. cv:v<z+1> cv:vu) _. cv:v<2> 51
Cr,(2i—1) CL2i-2) --- CL()

Referring to (2.44) it is clear th& can be constructed by multiplication of extended obsetvabi
ity matrix O, of dimensionM i x L, and the reversed extended stochastic controllabilityimat
P of dimensionL x M defined below

C

CA o L
T=0P= _ [ A'GT ... AGT GT ] (2.52)

CAi—l

The phrase extended observability matrix is used, sincemel the number of block rows of
the matrix is longer than the number of system states;ie.L. The same explanation holds
for the reversed extended stochastic controllability mafrhe strategy to estima® andP in
the next step is to decompodeinto its singular values, sorted in a monotone non-inCrepsi
manner, and their corresponding singular vectors in tHeviahg way

T
T=[U; UQ][SO1 SOQH%] (2.53)
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32 Chapter 2 — Correlated wind field generation

S; of dimension- x r is a diagonal matrix consisting of the firssingular valuestJ; of dimen-
sion M3 x r is the block of the left singular vectors correspondin@toand VT, of dimension

r x Mi, is the corresponding block of right singular vectors. Oma tlondition that system is
stable - all of the eigenvalues of the matAxare inside unit circle - and the system is excited by
white noise,T will have justr non-zero singular values which equals the system ordewudh s
circumstanceS, = 0 is a square matrix of dimensidd/i — r) x (M4 — r), andL can be cho-
sen asl = r. A proper model order is then proposed by the number of noasiagular values
of the'T matrix. In practice, for instance in vector turbulence moug singular values of th&
matrix decrease to zero gradually. This behavior, makesatfleof selecting the non-zero sin-
gular values not so straight forward, see Figure 2.12. Ih sircumstances, the optimum model
order is usually chosei for whichs; > s;,.1, wheres; is thei'" singular value. The extended
observability and the reversed extended stochastic diatiility matrices are then estimated as

60=u,8{? |, P=sy/?VT (2.54)

Although it is possible to use different fractions of thegsifar values for estimation ad and
P, the benefit of the proposed decomposition is that it causesallability and observability of
the estimated system to be balanced. Balancing here meatrth¢hnumber of controllable and
observable states of the system are eqGahndG™ might be estimated as the first M rows of
O and the last M columns d? respectively. Defining the following weights

We = [Tuxm Omx(v—1)i)

W _ (M—1)ix M

“ [ I]VI><M (2.55)
Wa, = [T—jixv—1)i Ou—1yixnm)

Wa, = [0ar—vjixar Tr—1yix (-1

¢, GT andA are then be estimated as

cC = WO
GT = PWgq T (2.56)
A = (wAlo) WA,0

Here()" denotes the pseudo inverse of the matfik., C, GT} are then used to calcula¥and

K from (2.48) and (2.50) , respectively. Cross-covarianceines of the estimated state space
model can then be calculated from equation (2.44). Althcstgte space representation of the
model is quite convenient for any purpose, by introducirgfibrward shift operatozr so that
v(j — 1) = 27 1v(j), transfer function of the state space model might be coctstdLas

v(j) = H(z)e(j)
H(z) = C(I-A)'K+I (2.57)
2.5.2 Remarks on the algorithm

In order to guarantee feasibility of the state space mocmi,doAnditions should be fulfilled.
First, the model must be stable, therefore all of the eigegof A must be located inside the
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2.6 Numerical simulation 33

unit circle in the complex plane. Second, estimated noisart@nce matrix by (2.47) must be
symmetric and positive definite. Furthermore, define a lawiangular matrixI”, obtained by
Cholesky decomposition of the noise covariance matrixrgive (2.47). Then the white noise
vector sequence in (3.36) might be generateelgs = T'w ()

0, j#k

2.58
L. =k @5

Curn (= ) = B[wali)wT (k)] = {

wherew(j) is a zero mean stationary Gaussian white noise vector ofrdilme M x 1 with
mutually independent random variables and cross-cowegiaratrix indicated by (2.58).

2.6  Numerical simulation

The along-wind turbulence will be simulated in the 5 nodesdated in figure 2.3, all placed
in the same plane perpendicular to the wind direction. Nodefdrs to the hub of the rotor
plane, where the mean wind velocity is givenlas= 15[m/s|. To investigate efficiency of
the SSM method for vector turbulence modeling in the firsedasbulence is simulated only
on node 1 and in the second case on all five nodes shown in Rgair&Simulation parameters
for the filter model are choseN = 2048, At = 0.0488s. Figure 2.4 illustrates the accuracy
of the modified cross-spectral density matrix, for 5 nodgs,(w) defined by (2.16) and (2.21),
respectively, in comparison to the corresponding unmatlifi@trix Sy (w). The figure shows
the relative error oSW(w) compared tdS,(w) as expressed by the fractions of Euclidean
norms|| Syy(w) — Syv(w) ||/||Svv(w)|| as a function of the angular frequency in the interval
w € [0,4s~"], where non-positive definiteness®§. (w) occurs. As seen, the normalized error
related to the modification (2.16) may be uplt®% at some frequencies. In contrast the modi-
fication (2.21) is related to much smaller errors. Figuresh@&ws the components of the impulse

3
z3
8.5m
4, 2, 1 32
zZ1
‘,‘_'”,,«/”//
5

Figure 2.3 Definition of nodes in numerical example.

response matrix (2.25). Here and in the following the modifieoss-spectral density matrix
(2.21) is used. As seen, both(t) related to nodd, and the cross functiohy; () between
nodes2 and1 are almost symmetric with time. In order to provide a commmmework for
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Figure 2.4 Relative error of Eucledian norm of modified cross-specttahsity matrix. —va(w) given by
Eq.(2.21). — — —:Syv(w) given by Eq. (2.16).

a) b)
2.5 : 0.9
2
™
~
“n 1.5
~
=
= 1
<
0.5
0 0
5 0 5 5 0 5
t[s] t[s]

Figure 2.5 Components of the impulse response matrix2 g)(¢). b) ha1(t).

comparing results of different methods, the same whiteen@@alization is used for simulation
of the time series of the turbulence process with all of tlgoathms in this example. Figure
2.6 illustrates the quality of the time series based on (2.28 AR model of ordery = 30
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is calibrated with the 2SLS method and is used for simulatiregturbulence at node 1. Fig-
ure 2.7 shows time series simulated using the calibrated AReln Next the SSM method is

0 10 20 30 40 50

Figure 2.6 Numerical simulation of turbulence in node 1 based on EG8(2.

used to estimate a state space model for the turbulence atlnogigure 2.8 showks(s; + 1)
versus singular value numbér,of the block Toeplits matridI’, wheres; denotes?” singular
value. As can be seen the first five singular values are caaitydarger than the others. This
inculcates that the optimum model order is 5 in this caseur€i@.9 shows the simulated time
series of turbulence using a state space model of order 5.hat fellows plots of auto- and
cross-covariance functions are only indicated for posititne separation due to their symmetry
property,Cy (1) = CL, (—7). Figure 2.10 illustrates the relative performance of satiahs
obtained by the filter model with Eq.(2.28), the 2SLS methond the SSM method. In figure
2.10the convergence of the standard deviation estitnatey ergodic sampling is shown. Figure
2.11 shows the covariance function of the various modelspewed to the theoretic covariance
function as given by Eq.(2.13) for the model orders 30 andr®28LS and SSM methods, re-
spectively. As can be seen, second order statistics of thé &8 more akin to the original
turbulence compared to the AR model calibrated by 2SLS nekithboth cases. From the pre-
sented example it can be concluded that variance estinsatiball these models are of equal
quality. However, the auto-covariance function estimdthe SSM method is much better than
the estimates of the filter method and the 2SLS method. Tasiigage efficiency of the SSM
method for vector turbulence modelling, in the next exanmpter plane is discretized into five
nodes shown in Figure 2.3. Figure 2.12 shows singular vaitigee block Toeplitz matrix used
for SSM. As seen, there exist approximately 26 non-zerasanyalues which suggest a model
order of 26 for this case. Furthermore, the 2SLS method id tsealibrate an AR model of
order 60 which is compared to the SSM model. Figure 2.13 slamiia-covariance function of
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0 10 20 30 40 50

Figure 2.7 Numerical simulation of turbulence in node 1 based on AR(B06del, Eq. (2.33).

45—
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Model order

Figure 2.8 Singular values of the block Toeplits matrix of the crossac@nces used for model estimation in SSM.

the state space model of order 26 at node 1 and the AR modetief 60. Figure 2.14 shows
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0 10 20 30 40 50

Figure 2.9 Numerical simulation of turbulence in node 1 based on SSMehafidorder 5, Eg. (3.36).
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Figure 2.10 Convergence of standard deviation estimates for numesicallation of turbulence in node 1—. — .—:
Filter model, Eq. (2.28)...... : 2SLS, order 30.— — —: SSM, order 5.
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\
30 40 50
Figure 2.11 Auto covariance function of scalar model at node 1. ——: Gavae function, Eq. (2.13).—. —.—: Filter
model, Eq. (2.28)...... : 2SLS, order 60, Eq.(2.34)— — —: SSM, order 14, Eq.(2.44).
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Figure 2.12 Singular values of the block Toeplits matrix of the crossec@nces used for model estimation in SSM.
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Figure 2.13 Auto-covariance function of the SSM model for vector tudmde at node 1. —: Covariance matrix,
Eq.(2.13). .....: 2SLS, order 60, Eq.(2.34)— — —: SSM, order 26, Eq.(2.44).

6

5r |

50
Figure 2.14 Cross-covariance function of the SSM model for vector tlahce between nodes 1 and 2. —: Covari-
ance matrix, Eq. (2.13)...... : 2SLS, order 60, Eq.(2.34)— — —: SSM, order 26, Eq.(2.44).
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40 Chapter 2 — Correlated wind field generation

cross-covariance function of the state space model betneses 1 and 2 compared to the theo-
retical cross-covariance function. As seen the crossf@wvee functions of the SSM are in very
good agreement with the theoretical cross-covariancdifumewhile the discrepancy of the AR
model of the 2SLS is considerable. It should be noted thatttier of the SSM model is consid-
erably lower than the AR model of the 2SLS, neverthelesisicance function is much more
accurate.
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_ - CHAPTER 3
The Wind Turbine Model

A reduced order model of a wind turbine is developed in thisgt The model specifications
are adopted from the 5SMW NREL Reference wind turbine. The ehedn be divided into
four major parts (modules), the wind field simulator, theodgnamic load calculation unit, the
structural dynamic solver and the pitch controller. Theatural model is based on a reduced
order Finite Element (FE) model. The aerodynamic loadsaitated using the Blade Element
Momentum theory (BEM) and the controller isPaoportional-Integrator-Differentiator(P1D)
collective blade pitch controller aiming at keeping theatmnal speed of the rotor around its
nominal value. However a brief description of the wind tagbimodel is already presented in
some of the presented papers included in the thesis, thigerhia added in favor of providing
an integrated detailed view into the wind turbine model usetie thesis.

3.1 Overview of the model

A general perspective of a wind turbine model is shown in g8ul. The modules within the
grey area denotes the wind turbine model. The main partsyofard turbine model are theé/ind
field generator, Aerodynamic load calculation uaitd thestructural model solverFinally the
controllermodule can also be considered as a subsection of the strbatitrsince the governing
equations of the system can be combined with the contratiéh solved simultaneously. The
so-callednfluence functiotis the function responsible for determining the positioeaéh blade,
e.g. the azimuth angle of the rotor, hence determining thieeagodes of the wind field at each
instant of time. In the following sections each part of thedeladeveloped for this study will be
described in detail.

3.2 Mechanical Model

The motions of the blades relative to the hub and the motiothe@ftower in the mean wind
direction are modeled by single degree-of-freedom mod@sly motions in the mean wind
direction is considered for which reason no gyroscopicderare present, save the centripetal
forces. Lety;(x,t),i = 1,2,3 denote the displacement fields of the blades relative to tire h
wherez € [0, L] is measured from the hub ardis the length of the blades of figure 3.2.
Furthery,(x,t) denote the displacement of the tower in the same directiberew: € [0, h] is
measured from the foundation ahds the height of the nacelle above the ground surface. Then,
the indicated displacement fields may written

yi(z,t) d(x)gi(t) , i=1,2,3
ya(,1) Do ()qa(t) } 3.1)

1

1
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Figure 3.1 Flowchart of the wind turbine model

Dy (z) is the part of the fundamental eigenmode of the wind turbelerging to the tower and
®(x) is the fundamental fixed base mode shape of the blade. Theshages are normalized to
one at the nacelle and the blade tip, respectively, so thergkred coordinates (), ¢2(t), ¢3(t)

may be interpreted as the tip displacement of the bladetveel® the hub, andy(¢) is the
displacement of the nacelle. Note that a quasi-static deition of the nacelle due to the mean
rotor thrust will only affectg,(¢). The blades are modeled as Bernoulli-Euler beams with the
bending stiffnessZ1(x) around an axis orthogonal to the rotor plane, and the massarper
lengthu(x). Similarly, the tower is modeled as a Bernoulli-Euler beaitinthe bending stiffness
Ely(x). The mass per unit length is formally written as

ﬂo(l‘) = Mo(l‘) + MO(S(ZL‘ — h) (32)

1o (x) denotes the continuous mass distributibfy, is the mass of the nacelle and the haip) is
Dirac’s delta function. The dynamic load per unit length loa tower in the mean wind direction
is denotecb4(z, t). Correspondingly, the load on the tree blades in the sareet@in are denoted
p1(x,t), p2(x, t) andps(x,t). The rigid body motion of the drive train is modeled as a ®ngl
rotational degree of freedogy by assuming infinite stiff drive shafts and no elastic defation

in the gear, whereby the following kinematic relation enadfigy the angular rotation of the rotor
of the generator

49 = Ngs (3.3)

whereN is the gear ratio, cf. figure 3.3. Furthermore, the mass mowfanertia of the gear
wheels and the connected shafts are included into the masenmof inertia/, and.J, of the
rotor and the generator rotor, respectively. The kinenatit potential energy of the system are
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Figure 3.2 Definition of degrees of freedom section moments and pitcflean

A g =Ngs J,
U Gearbox | g«—‘ " M,
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T g5, JT 5
ﬂ Hub Drive shafts

Figure 3.3 Single degree of freedom representation of drive train

calculated as

h 3 L
= Fole) (@ule)in) "t + 33 | e @) + o(a)it) e

0 (3.4)

1 ) 1 .
+ §Jr(q5(t))2 + §J9<N(]5)2
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/EI (d%‘)( )) dm—i— /EI ( >) @ (t)dx

(3.5)
- Z/ (@0()as(t) + ©(@)a; (1) pi(z, )z — / @0(@)qs (s (e, 1)da
0
— (My — (1 +n)NM,)qs(t)
Using Lagrange’s equations (Meirovitch 2001),
()=

whereF,,. denotes the non-conservative forces. The following gangrequations of the system
may be obtained

mq(t) + cq(t) + kq(t) = £(t) 3.7)
miy 0 0 mg O k0 0 0 O
0 m 0 mg O 0Ok 0 0 O
m = 0 0 mi me O , k=00 k 0 O (3.8)
ma mg ma2 mgy 0 0 0 0 k O
o o o0 o0 J 00 0 0 O
m = fOL (x)dx , My = fOL zpu(z)®(z)dx
my = fo (2)®%(z)dz , my = foh zpo(2)®o (v)dx (3.9)
my = fo (2)®(z)dx , Mg = foh po(x) @3 (z)dx + Mo + 3m
ms = fo xp(z)dx , Jr = 3f0L 2?p(x)dw
m is the mass of the bladep, and m; are the generalized masses related to the degrees of
freedomg,(t),i = 1,...,4. mg is a coupling parameter in the mass matrix, angl m, and

my Will be used later at the calculation of the bending momemntthe blade at the hub and
in the lower foundation.J is the generalized mass moment of inertia related to thd kigdy
degree-of-freedongs (¢) given as

J=J,+N?J, (3.10)

The damping matrix: merely includes structural damping. Aerodynamic dampiigcluded
later via the aerodynamic load. Themay be written as

2¢wm 0 0 0 0
0 2¢wm 0 0 0
c= 0 0 2¢wm 0 0 (3.11)
0 0 0 2C0w0m0 0
0 0 0 0 nM:.0/0
qi(t) fi(?)
a2(t) f2(t)
q(t) = | qs(t) , ft)y="1 fs3(t) (3.12)
qa(t) fa(t)
5 (1) f5(t)
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where, o = ¢s o is the referential (nominal) rotational speed of the rotoand( denote the
eigenfrequency and damping ratio of the blades, when fixadeidwub. Correspondinglyg
and(, denote the eigenfrequency and damping ratio of the lowesdembthe tower, which are
assumed to be known.is the loss factor of the transmission system due to fridtiagears and
bearings, which typically is a few percent ahfl. , = P/, ¢ is the referential rotor torque for
P = 5MW nominal power output. The generalized stiffness coeffisieh the blades and the
tower are given as

k :/OLEI(x)<d2(I)(x))dx:w2m1

dx?
h d2(1)0(.1‘)
k;():/ EIO(:C)< T2 )dx:wgmo
0

ko is determined, so the generalized eigenvalue problem defioen (3.8) provides the pre-
scribed angular lower eigenfrequengy. The generalized external dynamic loads become

(3.13)

Lty = [Fe@pi(e,tyde ,  i=1,2,3
flt) = foh@o(x)p4(:c,t)dx+i [ ®(@)pi(x, t)dz (3.14)
fs(t) = M,—(1+mNM,

where M, and M, are the instantaneous rotor and generator torques resggcind asyn-
chronous slip variable generator is considered for whielginerator torque under normal oper-
ation conditions is linearly dependent on the rotationaksiiV s (¢). The relation may be given
on the form

. Ngs(t) — Q.00
Qg0 — Qg.00

whereM, o = M, /N is the nominal generator torqu@, o = NS, is the nominal gen-
erator rotational speed arfd, o is the generator speed for the zero generator torque. Using
d’Alembert’s principle the bending moments; (¢), Ms(t), Ms(t) at the hub of the blades and
M, (t) at the foundation of the tower are given by, see figure 3.2

M,(t) = M, (3.15)

M;(t) = fOL opi(w, t)dr — mada(t) —magi(t) , i=1,2,3
My(t) = foh apa(z,t)de — (m5 + (MO + 3m)h) Ga(t) (3.16)

3 L .
+h > (fo pi(z,t)de — mgqi(t))
j=1
which may be assembled in the following matrix equation
M(t) = Mo(t) — Maq(t) (3.17)

[ fOL xpy (z,t)dx 1
fOL xpa(z,t)dx

fOL xps(z,t)dx

3
foh xpy(z,t)de +h > fOL pi(z,t)dx
i=1

(3.18)

October, 2011



46 Chapter 3 — The Wind Turbine Model

my 0 0 ms 0
0 my 0 ms 0
M, = 0 0 ma ms 0 (3.19)

mgh Trlgh mgh m5+(M0+3m)h 0

My (t) specifies the bending moment from the external loads-aMi, §(¢) are the moment
constraints from the inertial forces; (t), 52(t) and3s(t) denote the pitch angles of the blades,
see figure 3.2. These are controlled by the 1st order filteattapns assembled in the vector
relation

B() =~ (8~ Bola a.1)) (3.20)
Bu(t) Bi0(a,q,t)

/B(t) = BQ(t) ) BO(qa Q7 t) = ﬁZO(q? él? t) (321)
Bs(t) B30(d,q,t)

T is a constant specifying the time-delay of the pitch actsatd; o(q, g,t) denotes the pitch
control demand. This might be designed via different teghes either to suppress the undesir-
able vibrations of the structure, or to control the rotatiiocspeed of the rotor. In the first case,
g , 1=1,...,4will be incorporated into the controller, while in the sedarase, the controller
acts only orngs and its derivative. Only the latter case will be considereécbm various avail-
able techniques for controller design, the PID controtlee to its wide range of applications in
industry and its simplicity, (Ogata 2009), is chosen in thawk. The control command is then
expressed as

Bjola,a,t) = G(e(t) + 1 /Ot e(t)dr + Td%e(t)>

- G<q5(t) — Qo+ Tl (q5 (t) — mno) + (3.22)

Td MrO
— t — 2
J (f5() "QT,O

i) . i-123
wheree(t) is the error signal defined as

e(t) = qs(t) — ds0 (3.23)

as seen the control demand is identical for all bladeéss the controller gain which is chosen
inverse proportional to the partial derivati\‘?%, 7; is the integral control time constant and
74 IS the differentiator time constant which is chosen as atisacwf ;. There exist several
techniques for designing the indicated controller i.e. ®ans of the Ziegler-Nichols empirical
tuning formula, (Ogata 2009). In practice a pure differatati is rarely used due to its noise
amplification effect, therefore it is usually replaced byratforder low-pass filter, (Xuet al.
2008). In the present work the controller gains are tunedualnwith the gains indicated in
table 3.1. The equations of motion (3.7) and the control #gog (3.20) may be combined into
the state vector equations

z(t) = Az(t) + Bf (v(t),z(t)) + Bo(t) (3.24)
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q(t) 0 I 0
z(t) = | q(t) , A=| -m'k -m'c O (3.25)
B(1) 1h,  lb, i1
0 0
B=| m! , Bo(t) = 0 (3.26)
bs by (¥)
whereby(t), by, by andbg are given as
G0 ey | !
bo(t) = ———0 (1 + —) 1 (3.27)
T Ti
1
0 00 01
M,
blzg 0 O O 0 1 5 bQZTyj(l—??E—’O)bl 5 bgzzbg
"o 0001 J Sro 7

3.3 Aerodynamic load modeling

Only the aerodynamic load on the blades is considered, iied lwad on the tower is ignored;
pa(z,t) = 0. Aerodynamic damping is included via a quasi-static effecangle of attack
a(x,t) so changes of the angle of attack is instantly felt in the @gmamic loads. This means
that the time scale for adjustment of the non-stationary oassumed to be small compared to
the fundamental eigenperiod of the blade. The wind loadsalailated by the BEM method,
(Hansen 2007). In this respect the following parameterslefiaed

Vil t) = \(V 40— s — §2)2(1 — a)? + @@r2(1 + a')?

(1_a)(V+U_Q4—yi)> (3.28)
(1+a')gsr

Oé(:C, t) = (;S(LL‘,t) - ﬂz(t) - R(“L)

V.. is the relative wind speed c.f. figure 3.4/ denotes the mean wind speed ands the
turbulence contribution to the wind speed. The turbulenitie svprescribed correlation structure
is generated in 30 points on a circle with radiu8L as seen in figure 3.2. Next, the turbulence
on a given blade is obtained by linear interpolation betwtbengiven points. The interpolated
turbulence value is assumed common to all points on the blathe mean wind speel is
assumed constant over the rotor areanda’ are the axial and the tangential induction factors
respectively, which are calculated below by means of the BE#thod, and + ;(z, t), where
vi(x,t) = ®(x)¢;(t), indicates the velocity of the cross-section of the abacida the direction

of the mean wind. This term is responsible for the aerodyonalamping of the blades and the
turbine as a wholep is the so-called flow angle and= «(x) denotes the pre-twist of the blade.
The lift and drag force per unit of the blagg (x, t) andpp(x, t) are given as

pr(z;t) = %p‘/}-z(xvt)CL(a)C(w)}
po(z,t) = 5pV,%(x,1)Cp(a)c(z)

¢(x,t) = arctan (

(3.29)
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Zero lift line

Rotor plane

(V4+v—qs—3:)(1 —a)
Figure 3.4 Blade profile definition of velocities and forces.
wherep is the density of airg(x) is the chord length an@', (o) andCp («) are the lift and drag
coefficients. The load in the normal direction of the planedme

pi(x,t) = %erz(:c,t)CN(a)c(x) (3.30)

whereCy («) is the normal coefficient.Cn(«) and the corresponding tangential coefficient
Cr(«) for the determination of the rotor torque are obtained freee figure 3.4

Cn | | coso sin ¢ Cy,
[ Cr ] o [ sing —cos¢ } { Ch } (3:31)
a anda’ are then obtained as
1 ) 1
-t - : (3.32)
4F sin” ¢ 14 4F sin ¢ cos ¢
+ oCn oCr

whereF' is the Prandtl’s tip loss factor given as

F:%cosf1 (exp(BLm>> (3.33)

stinqﬁ

whereB = 3isthe number of blades. The above procedure needs to btedenatil convergence
of the induction factors have been achieved. Figure 3.5 shawiation of the aerodynamic load
versus wind speed at two diffenet locations on the blade efil\W reference wind turbine
calculated using BEM method described above.

3.3.1 Wind modeling

Various wind speed distribution functions are used in satioh of wind loads i.e. Log-normal,
Gumbel, etc. nevertheless the IEC standard (IEC 2005a)me@mds that the mean wind speed
over a time period of 10 min at the hub height is Rayleigh tiated with the following PDF

fv (Vi) = % exp { . (2\\[/h>2] (3.34)
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Figure 3.5 Aerodynamic load coefficient of the SMW wind turbine blade fo = x = v = 0 andgs = wy0; @)
Normal load coefficient at 30m distance from blade’s rootTéngential load coefficient at 30m distance from blade’s
root, c) Normal load coefficient at 60m distance from bladetst, d) Tangential load coefficient at 60m distance from
blade’s root

whereV, = 0.2V, andVy, is the wind speed at the hub height. Next, it is assumed tleat th
mean wind speed in terms of height obeys the following powefilp whereu is given in table
3.1

V(z) = vh(%)v (3.35)

In this work it is assumed that the mean wind velocity V is ¢ansover the rotor area. Following
the requirements of the RR&S on the load vector, c.f. sed@ianit is required that turbulence -
the stochastic part of the wind load - is modeled as a procisshort memory. ARMA models
and state space models both satisfy this requirement. TWerigiog equations of the system and
the controller are usually represented in the state space o it is advantageous if the load
is represented in the same form. A calibrated ARMA model mighrepresented in the state
space format, (Akaike 1974), alternatively a state spaagefrfor turbulence might be calibrated
directly using the SSM method represented in chapter 2 wdisztards this transformation. The
SSM method is even more attractive since its model seemsitwobe accurate, stable and with
shorter memory (lower model order) than an ARMA model, (8idlet al. 2010). Accordingly,

in this work this approach is used to calibrate a state spackehfior the turbulence. The method
is used to construct a state space model of the form (3.368)hich x(j + 1) is an internal
state vector at each discrete time stdp; andC, are system matrices an@  is the steady
state Kalman gain matrixe(;) is a random excitation vector characterized with its carmmze
matrix, Ele(j)e” (j)] = Ry, andv(j) is the g-dimensional vector of turbulence realizations on
the discretized nodes of the rotor plane.

x(j4+1) = Arx(j)+ Kre(j)
v(j) = Crx(j)+e(j) (3.36)
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100
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=00 tls]

Figure 3.6 Realization of the turbulent wind field

The role of SSMis to calibrate the quadrupler, K+, Cr, Rr) in a way that cross-covariance
function of (3.36) matches best to the cross-covariancetiom of the turbulence. If it is pre-
ferred to have the turbulence directly based on mutuallgpethdent unit intensity Gaussian
white noise variables i.62(j) ~ N(0,1I), (3.36) can be written in the form of (3.37) in which ,
® is the square matrix which satisfie§j) = ®1=(j). 1 can be obtained by any decompo-
sition of the covariance matrix of the noise such Rat = ®,®% i.e. Cholesky decomposition.
ThenBr = Ky ®1r andDy = &1

x(j+1) Arx(j) +BrE(j)
v(j) = Crx(j) +DrE())

(3.37)

A realization of the generated wind field on the perimeterhef totor is shown in figure The
presented approach for turbulence modeling does not tageagtount the rotational sampling
effect of the turbulence process. Therefore it is neededakenan interpolation as the blades
pass through different turbulence nodes in between twosiodlea certain instant of time the
portion of a given blade is defined by the center ang(@) placed in the sector delimited by the
center angles; andd,, representing the turbulence components$) andv, 1 (¢). Then, the
turbulencev(t) on the blade is obtained by linear interpolation as follow

vip1(t) —vilt)

v(t) = vit) + Oit1 —0;

(g5(t) — 0:) (3.38)
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Figure 3.7 Interpolation of turbulence.

3.4 Model specifications

Structural properties of the tower and the blades are addpien the definitions of the NREL
5MW wind turbine (Jonkmaet al. 2009; Kooijmanet al. 2003), and have been indicated in
Table 1 along which the derived parameters entering thecestimodel and the control param-
eters. The fundamental undamped fixed bay angular eigerdney,w, and eigenmodep(x),

of the blades are determined by FE analysis where the blatiedetized in 49 Bernoulli-Euler
beam elements with piecewise constant bending stiffil@sand mass per unit lengfln The
variation of EI andu has been shown in figure 3.8. The blade has 7 different apfoililes
from stem to tip, (Jonkmaet al. 2009), nevertheless in figure 3.8, the lift and drag coeflitsie
of only the tip profile are shown as a sample. The lift and d@effecients for each profile are
interpolated with two piecewise polynomials, each of ordem two different intervals ofv.
The two fitting intervals for lift and drag coefficients areosen so to allow best overall fit i.e.
the least Sum of Squared Error (SSE) for all data points. I18itpi the eigenmodé () of the
tower is determined by FE analysis, where the tower is digee in 10 Bernoulli-Euler beam
elements, with piecewise constant bending stiffness argsmer unit length. The mass of the
nacelle and the bladéd, + 3m is attached as a point mass at the free end. The variatiorof th
bending stiffness and the mass per unit length has been shdignre 3.8.
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Table 3.1 Structural and control parameters of the wind turbine model

h 87.6 m N 97 w 4.2 rad/s
L 61.5 m My 296780 kg wo 2.0 rad/s
m 17415 kg k 14120 N/m T 0.2s

mo 404520 kg ko 1667914 N/m T; 5s

my 791 kg ¢ 0.005 Td 0s

Mo 1893 kg o 0.01 G 0.1 rad
ms 359304 kgm n 0.05 v 0.2

my 83228 kgm p 1.25 kg/m? Vo 25 m/s
ms 6100058 kgm Q0 1.27 rad/s V; 5m/s
Jr 35337324 kgn? Q.00 73.7 rad/s Vi 15 m/s
Jg 535 kgm? M, o 3946018N m V. 15 m/s

Table 3.2 Blade aerodynamic properties.

Node[-] | Location | Element length [m] Airfoil

1 2.8667 2.7333 Cylinder

2 5.6000 2.7333 Cylinder

3 8.3333 2.7333 Cylinder

4 11.7500 4.1000 DU40A17
5 15.8500 4.1000 DU35A17
6 19.9500 4.1000 DU35A17
7 24.0500 4.1000 DU30A17
8 28.1500 4.1000 DU25A17
9 32.2500 4.1000 DU25A17
10 36.3500 4.1000 DU21A17
11 40.4500 4.1000 DU21A17
12 44.5500 4.1000 NACAG64A17
13 48.6500 4.1000 NACAG64A17
14 52.7500 4.1000 NACAG64A17
15 56.1667 2.7333 NACAG64A17
16 58.9000 2.7333 NACAG64A17
17 61.6333 2.7333 NACAG64A17

The rated wind speed of the model i.e. the wind speed at wihiembminal power is
produced ig/,. = 10.72m/s as indicated in table 3.1. For values higher than this vdiaettch
controller is turned on which decreases the rotor speed taoitminal value. The turbulence is
generated in 31 nodes on the rotor plane as shown in figureCh2.node on the hub and 30
nodes on the perimeter of rotor plane on 0.8L distance from fihe turbulence value between
the nodes are interpolated from these nodes. The decrerini lmads and responses as well
are the effect of the controller which tries to adjust thedla a way that brings the rotational
speed to its nominal value. The rated rotor speed in whiclntminal power is generated is
approximately 10m/s for this model. Accordingly it is expegtthat the controller increases the
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Figure 3.8 Structural properties of the NREL 5MW wind turbine. a) —: tlabefficient of the NACA64-618,- — —:
Drag coefficient of the NACA64-618, b) Blade’s mode shapeTawer's mode shape , d) Bending stiffness of the tower
, €) Mass per unit length of the tower , f) Bending stiffnesshef blade , g) Blade’s mass per unit length , h) Blade’s
inertial load , i) Blade’s cord length.

pitch in extreme wind conditions, i.8/, € [15,25]m/s, to decrease the rotational speed to its
nominal value.

3.5 Effect of the pitch controller

Simulations show that the controller changes the systerai@tsignificantly. Therefore a more
detailed study with the aim of analyzing controller’s effexcperformed in this section. The two
cases of operation referred to faeed speedndvariable speedvill be considered. In the first
case the rotational speed of the rotor is set to the nominait speed?, , while in the second
case the controller is in charge of keeping the speed ardwnddminal speed. According to the
coupling between the rotor torque and the normal load, pisef the the pitch controller will
affect the vibration level of the wind turbine. For furthustration a simulation of the wind
turbine is carried out within 600 seconds. The same wind figddization is used for both fixed
and variable speed models. As seen in Fig. 3.10 the vibratigplitude of the variable speed
case during normal operation is lower than the fixed speegl ¢d@wever this is not guaranteed
and the opposite also happens. As a counter example thensespto a specific realization of
the wind field - the realization at hub hight is shown in Fig®® 3are shown in Fig. 3.11. As
seen in this figure, in extreme conditions, itez [100, 200]s, the vibration level of the variable
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Figure 3.9 Turbulent wind realization at the hub hight. ...: Mean wipeed; —: rated rotor speed
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Figure 3.10 Modal responses of the wind turbine under normal operdtiomadition. blue: fixed speed; red: variable

speed

speed model exceeds its value for the fixed speed model.tResthis study show that this case
is dominant in the extreme conditions. This analysis is jgled in order to illustrate the effect
of the pitch controller which may be either increment or éecent of the safety margin of the

system in extreme conditions.
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Figure 3.11 Modal responses of the wind turbine under extreme opeudtmondition. blue: fixed speed; red: variable
speed
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CHAPTER 4
Importance Sampling

The basics of the importance sampling goes back to the lehastic differential equations.
Therefore the dynamic system should be represented inahisif not primarily done so. The
main role in this method is actually played by the theory aditg to Girsanov which states that
a Wiener process under a certain probability measure renWdianer after adding a determin-
istic drift to it on the condition that the probability measuakes into account the effect of this
additional drift term. This permits use of the so-calledteolfunctions which brings the system
state to the boundaries of the failure region.

4.1 1t6 Stochastic Differential Equations

Suppose the system is described by the It6 Stochastic Biffeed Equations (SDE) (4.1)

= (4.1)
X’L(S) =I5 5 ’L:].,,p
where X, (t),i = 1,---,p are p-dimensional system responses subjected to thel ioita
ditions X;(s) = z; forany0 < s < T andW;(t),j = 1,---,¢ are g-dimensional unit

Wiener processes. Given that the failure domain boundaspésified by the failure surface
g(X(t, W)) = 0 such that

f:{X|g(X)>0} (4.2)
using (4.1), (4.2) can be written in the terms of the Wieneitation i.e. F = {W lg(W) >
0 } the failure probability can be defined as

Py = /FdPW(w) - /R I[g(x(t, W))} dPw (W) = Ey [1 [g(X)H (4.3)

where I[] is an indicator function which is equal to 1 if the process bagrossed to the
failure domain and else is zero. The probability measté€/3) relates a probability to any
sub-domainB € R? i.e. a differential volume around a sample powtcan be written as
dP(W) = fw(w)dw. E, signifies the expectation operator under the probabilitasnee
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fw(w). Based on (4.3) Monte Carlo simulation estimates the faiprobability of the system
by (4.4); whereN is the number of Monte Carlo simulations.

N
Py = S Ifo(X)] (@)
n=1

4.2 Girsanov Transformation

The idea of the IS based on the Girsanov theorem is to int@dwsguare integrable driﬁé” (t)

-ie Y7 fOT (ugT)('y))Qd'y < oo - to the excitation, (4.5), which brings the systems respaas

the failure region at the specific time instant [0, 7).
dW (t) = u"(t)dt + dW (t) (4.5)
The 1t6 SDE (4.1) can then be written as

q q
dXi(t) = pa(t, X)dt — Y oy (8, X)ul” (O)dt + Y 03 (t, X)dW(t)

j=1 j=1
X’L(S) =I5 5 Z:]-v?p

(4.6)

The Girsanov theorem then states that the pro¥¥ss a Wiener process under the probability
measurePz,. Therefore generating samples Wf under the probability measut@y corre-
sponds to generating samplesWfunder the probability measufgs,. This is useful since then
the drift of the excitation might be designed in any sens¢ lhiags the system to the failure
at the desired time instance. Next, the probability meashoalld be changed properly to take
into account the effect of this transformation. The probighineasure of equation (4.3) can be
changed in the following way

Py :/qu{g(X(t,W))}%fW(w)dw

B d Py (W) i
_ /R q[{g(X(t,W))}%fw(W)dW (4.7)
(

I[g(X)} M

— dPg, (W)

whereg(X) = g(X(t, W)) and the ratial Pw (w) /d Py, (w) is the well-known Radon-Nikodym
derivative of the probability measuiddw (w) with respect to the measudés, (w). Ew signi-
fies the expectation operator under the probability meaggew ). Upon the Girsanov theorem
the probability measure of (4.7) changesf{g (w) hence (4.8)

Py = Ey

SID

I[g(X)] AP (W)

Pw ” (4.8)

whereg(X) = ¢(X(t, W)). The significance of equation (4.7) is that the probabiligasure
can be changed so that the proc®éscan be used instead of the original proc®égo estimate
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the failure probability of a system provided that the Radldbkedym derivative is taken into
account. Based on (4.7), the failure probability of the systan be estimated using (4.9)

A N ) w(n)
= L0k () h

4.3 Radon-Nikodym derivative

Suppose the simulation is carried out within the time frange[0, 7] with the time resolution is
AT =T/N,; whereN, is the number of time samepls. Discretizing (4.5) results in

AW, i = ulT) At + AW, (4.10)
where
AW,y = W;(kAt) — Wi ((k — 1)At) (4.11)

Hereafter for all of the introduced parameters except tirae W;;, and X, the index(es)

before comma refer(s) to the spatial degrees of freedomranithtiex after comma refers to the
time sample.ugf,g is the so-called control function(s) (Macke and Bucher 3008ich brings
responses of the system, i.e. displacement, velocitgstte., to the barrier levef at the time

tr = kAL ThereforeAI/T/j,;C ~ N(ugk)At, v/ At). The increments of the Wiener process can be
transformed to normal space

AW, =E; VAL (4.12)
where the following properties are satisfied

W;(0) = 0
E{W;(t)} =0 (4.13)
E{W;(t1)W;(t2)} = min(t,2)

andZ;, j = 1,---, q are vectors with identically distributed Gaussian randambers, with

zero mean and unit standard deviation, components. Thisftramation is required in order to
express the random variables of the problem in the nornthlizepace. Therefore the reliability

index 3 is independent of the definition of the limit state functig®, 1, - - - ,=n,,q), (Madsen
et al. 2006). Next the following relations hold
. 1 (Aw; k)2
A1) = ——— TR
Faw, . (Awjk) 2an)/z P ( 2At
q 1 | M (4.14)
faw(Aw) = 31:[1 QapNz P (2—At 1; ij,k)

The probability density i, (Aw) is written

N () A4)2
- 1 (Awjp —u; At
o, (B0) = Gy P ( v
4.15
. q 1 1 Ny ) ) 9 ( )
j=1 k=1
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60 Chapter 4 — Importance Sampling

Then the Radon-Nikodym derivative is

dPaw(AW)  faw(AW) NI
P (W)~ faw(Bw) 7 ZZ“ A“’M‘TZZ( )| @as

j=1k=1 j=1k=1

Which is continuous space can be expressed as, (Macke arfteBRO03; Olsen and Naess
2006),

) dPyw (dw)
R = deV-V(d\'fv)
’ . (4.17)
faw (dw) o | r ) (£)d 1 T J
T oo (@) exp ;/0 u; (t)dw, ;/0 ( j (t)) t

4.4 Control functions

Lets assume th&" component of the proceS§(t) of (4.1) has reached the required barrier
level x? at timer = N, At i.e. X;(7) = xb. The barrier level is a known value for which the

probability of outcrossing is to be estimated ix&.= Ux, (1) + 30x, (1) Whereux, ;) andox, (1)

are the mean value and the standard deviation of the proBegsesenting (4.1) in its discrete

form follows

q
Xig = Xigp—1 + pi(te—1, X p—1)At + Z 0ij(tr—1, X p—1) AW 11 (4.18)
j=1

Considering (4.12) and (4.18) thieit state functioris then defined as
9(51,1, T aECLNf,) = Xi,Nr (El,l, o 7Eq7Nt) - X'? (419)

The design point™ = (¢}, (T) X,) is the point in the U- space e.@&, which has two

important properties. First, it brlngs the system to theibatevel x? at the design time-.
Second, it has the minimum distance from the origin. Theadist from the origin to the design
point for reaching the barrier level at timds written as

1/2

AT = ZZ GHN (4.20)

j=1k=1

Therefore design point excitation for outcrossing at timgantr can be defined as the solution
to the following minimization problem

1/2

¢ =min | |33 (F50)° st Xin (11, Zqn,) =X (4.21)

The control functionfor arriving at the barrier levet = 25 at timer = 40]s] for the single
DOF linear oscillator of section 1.8 and its response argvaho figure 4.1.a and figure 4.1.b
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a)

—~
-~
=
—~
-
-
S

0 20 40 60 80 100

20 40 60 80 100

Figure 4.1 SDOF linear oscillator. a) Control function(”)(t) for outcrossing at- = 40[s], b) Response:(t) to
(™) (1)
u

respectively. According to the Girsanov theorem the pred&sis Wiener under probability
measureP;, therefore is zero mean under this measure therefore

Ep AW )} = Ep {ull)At + AW} =0 = Ep (AW} = —ull)At  (4.22)

whereW is replaced with (4.10). Introducing (4.12) into (4.22)o&ls obtaining the control
functions in terms of the normally distributed iid variablg; ;. as

Epg (S0} = & = —ul VAL (4.23)

It worth noting that (4.23) is valid for outcrossing barrlevel at any time instant i.e§;;, =

gj(Tk) , 7 =1,---, N;. The design point can be transformed into continuous sppdeserting
(4.23) in (4.20) and taking the limit a&t — 0

1/2

q T
B =13 / (ul7 (1))t (4.24)
j=170

Comparison of the system respons@tt (¢) anddiV (t) for the SDOF linear oscillator is shown
in figure 4.2.a. The reliability index for the same oscillatersus time is shown in 4.2.b.
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_40 L L L L
0 20 40 60 80 100
b)
15
10
=
Q
5 L
0 ! ! ! !
0 20 40 60 80 100
t(s)
Figure 4.2 SDOF linear oscillator; = 40[s]. a) —: Response tdW¥ (t), ——: Response taW¥ (¢) , b) Reliability

index 8(t) for all time instants

4.5 Multi-modal sampling

The statement of the problem for importance sampling Estitnate the probability that the
system response exceeds the given barrier level (i.e. atdédlure), z?, within the time frame

t € [0,7]". In crack growth problems the failure always occurs at thd ef the simulation,
e.g. t = T. Therefore it is requited to calculate only one control mimm:ujT)(t) and do the
calculations c.f. figure 4.3.a. However for oscillatoryteyss a considerable under estimation of
the first passage probability is reported in the literat(Maess and Skaug 1999b; Bucher 2000).
This is since in oscillatory systems the failure can happamgtime withint € [0, T'] c.f. figure
4.3.b. Indeed here the control functions of failure at défe time instants interact with each
other, (Macke and Bucher 2003). This suggests that firsbgasat timer; (or outcrossing) from

a barrier levelk? could possibly happen at time with a certain probability. Therefore there
should exist a correct scenario for choosing the failurestinior oscillatory systems. Bucher
(Bucher 2000) suggested construction of the failure tirpesbability density function using the
distance of their control functions from origin i.eulti-modal sampling density

Jo @(=B(7)dy

where®(.) denotes the cumulative standard Gaussian distributioctitmandf(¢) is the dis-
tance defined in (4.24). For consistency of integration weshiatroduceds(t) = (7,7 =t
here. Therefore the failure time instant in each simulasioould be chosen (sampled) from this
distribution. The multi-modal sampling probability detyslunction)V(t) is shown in figure 4.4

(4.25)
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a) b)
Zo Himit State Function =9 Limit State Function
5(1)
Failure domain 5(2) Failure domain
i)
€(T)
&7
Safe domai
B B(T) £
ﬁ(Nt)
Safe domain

(1]

1

Figure 4.3 Limit state function for different problems;
Oscillatory systems

=1

a) Non-osatlbry systems i.e. crack growth problems, b)

0.025

0.02}

0.005F

0 20 40 60 80 100

Figure 4.4 Multi-modal sampling density function for the SDOF lineacdlator

for the SDOF linear oscillator. Second, the Radon-Nikodmnative (4.17) for all time instants

int € [0, 7] should be calculated, i.e. failure could happen at arlyitiere / utilizing the control
functionu® (¢) and the Wiener procesdWV (t)

AW;(t) = u{7 (t)dt + dW; ()
dw;(t) = ulP (t)dt + dW, (¢)

} = dW;(t) = (uy)(t) - @”(t)) dt + dW;(t) (4.26)
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64 Chapter 4 — Importance Sampling

According to (Macke and Bucher 2003) the likelihood that plagh generated byET)(t) and
dW,(t) was generated biy;l)(t) anddW ;(t) is given by

RO = exp ( B i /OT (u§T>(t) i ug-l)(t)) dw;

- %i /0 : (70~ )’ dt)

and the multi-modal derivative which takes into accountitieractions first passage at different
time instants is given as the ratio of (4.17) by (4.27)

(4.27)

(r) R ~ [T
R (1) = —o | — E / u;’ (t)dw; (t)
R j=1"0

LT (4.28)
-5 /O (2u§‘>(t) - ugﬂ(t)) @”(t)dt)
j=1
and weighted with its associated probability
T
R = [ 20) (4.29)

R ()

where we have introducéd,,, (y) = RQ), ~ = 7in (4.17) for consistency of integration. Finally
(4.9) is re-written as (4.30)

1 N

= 3 g Rl (430

n=1

The final estimations of the “importance sampling” for thetiemark problem of chapter 1 is
shown in figure 4.5
4.6 Applying importance sampling

The procedure of applying importance sampling based on libgeadescription falls into the
below steps

Find the set of control functionﬁy)(t), T=1,---, N, according to (4.21)
Calculate3(™) for all control functions = 1,--- , N, and

Calculate the multi-modal density functiofi(¢) according to (4.25) and sample the failure
time from it e.g.7;

Generate a set adkIV; ;. according to (4.12)
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0 100 200 300 400 500 600

t(s)
Figure 4.5 Estimations of the failure probability with IS; Solid liIn&MC, dots : IS

Calculate thelrifted excitationdW (¢) according to (4.5)
B solve (4.1) withiW (¢) as excitation
Calculate the Radon-Nikodym derivativ/é,;) using (4.28) and (4.29)

E Repeat steps 3to N times and calculaté’f using (4.30)

Note For finding the control functions, the first step above, foedr systems analytical
relationships are available (Bucher 2000; Macke and Bu28B). It turns out to be the time
reversed and scaled impulse response function (IRF) ofysters.

Note Finding the control functions for the Non-linear systeraltsfinto a high dimensional
optimization. Koo et al. (Kot al. 2005) proposed, as a warm starting point, to solve the equa-
tions of system with initial conditions consistent with tharrier level, i.ex;(0) = 2%, ;(0) =
0, and then time reverse the corresponding excitation.

Note Steps 1 and 7 above have very high demands on the computatbrspecifically
for nonlinear multi degree of freedom systems. This may eemaportance sampling (practi-
cally) inapplicable to such systems as the cost may be cahfgato the standard Monte Carlo
simulation.

4.7 1S for linear systems

In this section an abstract discussion on the calculatidineofontrol functions for linear systems
is presented. This is since for such systems there is no meexpfimization and the control
functions can be obtained analytically. More detailed uéstons on obtaining control functions
for nonlinear systems is available in (Olsen 2006). The L&fR® problem can be written as
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66 Chapter 4 — Importance Sampling

The control functions for linear systems for failure at timstantr, e.qg. ugT)(t), can be
obtained by

4.8 IS for wind turbines

There are several problems associated with the presensedotahe wind turbine which de-
motivates use of IS. The most critical problems in this mdtae due to the nonlinearity of the
loads and the high dimension of the system. It should be nibi@ddimension here refers to
the number obasic random variablesf the system i.e. white noise realizations which enter
turbulence filter. Both complexity and memory requiremesftshe IS increases with system
dimensions. For nonlinear systems there exist no analyd@ation for finding design point
excitations, hence using an optimization algorithm, whs@nificantly decreases efficiency of
the method, is inevitable.

Next, construction of thenulti-modal sampling density.f. section 4.5, requires calcu-
lation of the control functions of the problem at any timetamee withint € [0,600]s. This
requires not only many optimization runs but also very higémmory to save the designed con-
trol functions. Last but not least unlike SDOF problems or ®Dstructural systems with only
one stochastic excitation, i.e. a shear frame exposed toceake, the wind turbines is related
to many stochastic processes used as excitations. Thisesgery lengthy computation for the
IS procedure.

The problems that appear due to dimensionality, nonlityearid non-whiteness of the ex-
citations pose serious critics to the applications of th&t&se problems have also been noticed
by other researchers who have tried different methods tocowee them. Nevertheless to the
best knowledge of authors the cases are confined to the BanBDOF systems excited by non-
white noise having a specified filter equation, (Olsen andskl2007; Naess and Gaidai 2008),
linear SDOF systems excited by white noise having a spegifeeer spectrum, (Ogawa and
Tanaka 2009), or linear MDOF systems with only one stocbasttitation process (Jensen and
Valdebenito 2007). The above reasons conclude that using i8e wind turbine model seems
not to be applicable.
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_ CHAPTER 5
Distance Controlled Monte Carlo

The idea of the Distance Controlled Monte Carlo (DCMC) i the realizations in a sim-
ulation can be weighted, such as the Radon-Nikodym dereatiimportance sampling, while
the sum of weights of all realizations estimates the degiretlability. Therefore the density of
the realizations can be increasé¢imes if weightl/« is given to each realization. However the
main concern of the method is to achieve a high density ofeaeats by splitting them, in the
same time the Russian Roulette game is played to kill ranglsorhe unimportant realizations
to keep the number of samples constant.

5.1 Distance Control & Russian Roulette

The difference between the SMC and the DCMC methods is tkedbtimer distributes the sam-
ples with uniform statistical weights within the sample apac.f. figure 5.1; whereas the latter
distributes the sample space with a density proportiontilégoint probability density function
(JPDF) of the process, figure 5.2. Therefore more samplesaat the tails in DCMC. The
method starts by simulating all realizations simultangousth equal weights i.e.l/N where
N is the number of realizations. The method encompassed tmpaoents “Distance Control”

a) i b)
2 X10 ‘ ‘ ‘ 102 ‘
*
350 % . . *
(&)
o 3t 510 * o« * * r
< 7] * *
[<) © ** *
‘D 25} Q * *,
> 5 J*};g
= [ 1
S 2 g 10 i**& 44—***3?6 M***%L
3 I} . [ 9.8
= = Q@
& 15 S oc%o g% ocﬁbéj e O%O &8
v € o 8@ @ 0.0 @
1F - 10 C@@ EE) O &9 O+ 09 ® q
@ ® o
05} ® @ ® ®
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10 10 10° 10" 10 0 100 200 300 400 500
Normalized importance measure Sample No.

Figure 5.1 The standard Monte Carlo simulation a) Statistical weigtitthe samples versus normalized importance
measure b)Distribution of the importance measure versuplea(realization) no. of each realization —: Importance
margin, * (black): Important processes, * (grey): Unimpmittprocesses, o (red): Killed processes
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Figure 5.2 The distance controlled Monte Carlo simulation a) Sta@stiveights of the samples versus normalized
importance measure b)Distribution of the importance measarsus sample (realization) no. of each realization —
. Importance margin, * (black): Important processes, * ygreUnimportant processes, o (red): Killed processes o
(purple): Not-splittable

(DC), which determines the importance of the realizatioith the aim of obtaining a uniform
distribution of samples within the safe domain. The secardmonent is the “Russian Roulette
and Splitting” (RR&S), which replaces some “unimportamalizations with the splitted “impor-
tant” realizations. This aims in increasing the densityhef tealizartions in the important region
i.e. closer to the barrier level. The action of killing, domighin the game of Russian Roulette, is

T1 T2 T3 T4

- Splitted x Qut-crosses + Killed by Russian Roulette

Figure 5.3 Development of processes in DCMC

only to keep the number of samples constant or in other wordgdid an ever increasing sample
number. The candidates for killing are chosen from the uoit@nt processes, e.g. processes
with low probability of outcrossing the barrier level. Ne#te empty spaces of these unimpor-
tant processes will be substituted by the splitted impaonpaocesses e.g. processes with high
probability of outcrossing the barrier level. The splittimight be readily done by duplicating
some of the important processes. The statistical weightseofmportant processes should be
controlled such that the statistics of the simulation isai@nged after splitting c.f. figure 5.1.
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a) b)

Figure 5.4 Absolute versus relative distance measuresprocess, Hatch: Safe domain, Dashed circle: Important
realizations, a) Absolute distance measure, b) Relatstaute measure

5.2 Splitting

In general a process with weigitcan be splitted tex identical processes with weightg o

on each. Here whenever a process is splitted fiyocesses the state of the realization will be
exactly copiedy times while the weight of each new process will by times the weight of
the original process. In case the process evolves as Makevg. has independent increments,
each of the duplicated states will evolve independentlgufé 5.1 shows development of four
realizations of a stochastic process in DCMC simulatiorchEaurve represents a realization and
the number next to it shows its statistical weight e.g. pbiliig of the process being in that
state. The RR&S takes place at each time s = 1,2,3,--- which kills some unimportant
realizations and duplicates some of the important oneshdtilsl be noted that the probability
of each realization after duplication is set to half of thelgbility of the original process so the
splitting does not change the probability mass of the sitrara

5.3 Distance measures

The importance of the distance measure is that it definedwvgaicples should survive and which
should splitted to form new ones. It can be defined as a fumdfitheabsolutedistance between
the processes and the barrier level. This forms the soecélesolute distance measure” i.e.
mechanical energy of the system c.f. figure 5.4.a. Altevehtiit can be defined as a function
of the relative distance between realizations i.e. “relative distancesmes! i.e. the distance
measure proposed by Pradlwarter and Schuéller (Pradiwaamte Schuéller 1999) c.f. figure
5.4.b. Both of these distance measures have been implednemtbe benchmark example. Itis
seen that the relative distance measure performes bedteltle absolute distance measure i.e.
less coefficient of variation in the estimates are obtainedigure 5.6.
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5.3.1 A Relative distance measure

A given reallzanonx(”)( t) of the i** component of the state vectdt(t) at timet = 7 is
associated with the statistical weiglntgl) For example in the standard Monte Carlo simulation

with N samples the weights at each time instant are gw@fl =1/N r=1,---,N. During
the simulation whenever a realization is killed its weiglilt e deleted from the total probability
mass and whenever a process is splitted, its weight will bidell between its splits. Next, each
realization is associated with the normalized vector witin-aimensional components =

1(z{" (7). Here, the components of are given as

L = 1(2™ (r)) = 20 = 1xi(7) =1,---,N 5.1
(a"(7)) o () ,on=1, (5.1)
wherepx, (7) andox, (7) denotes sample mean value and sample standard deviatitve of t

simulated processes

N

N
=530 o= 3 @) - (1)’ 52)

n=1

The distance measure is used to distribute the samples istéite space. Pradlwarter and
Schuéller (Pradlwarter and Schuéller 1999) defines tharmistmeasuré (x(¢)) related to the
realization in the following way

(n) ZarHl (n) Z(LL‘,EH)(T)) |, a1>ax>--->ag (5.3)

L|’L

Wherex( ‘i( 7) denotes the'" closest realization tm(")( ) and||.|| is the Eucledian norm. The
closest reallzatlon with the weight is weighted highest. The weights were chosen as

a, = 247" (5.4)

5.3.2 An Absolute distance measure

For a SDOF oscillator subjected to Gaussian white ngiée)|| with 1(z(¢)) defined by (5.1) is
proportional to the mechanical energy of the oscillator. fi@are 5.5 is shown two trajectories
A and B with the same mechanical energy. If the external l@adisdamping forces are small
these should be considered equally important, since thiégpproach the boundary in the same
distance with a phase lag. The mechanical energy, itselflcaternatively be used as a dis-
tance measure. This property carries over to multi-degresedom. However, (5.1) does not
represent the mechanical energy in any other case thandhwated. Instead, (5.3) is replaced
with

(n) Z ar By, mzk‘ x(t )) (5.5)
where the mechanical energy is given as
En(a(1) = 50" (0Ma(1) + 5 (a(t) — Ela()]) 'K (a(t) ~ Ela(0)) (5.6)
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Figure 5.5 Mechanical energy of a SDOF oscillatary : Mean value of the process, Barrier level

whereM and K denotes the mass matrix and the stiffness matrix and thewgctt) stores
the generalized degrees of freedom. This possibility is alamined by the authors though no
better results than the weighting proposed by (5.3) is eleskwhich has already been reported
in literature (Pradlwarter and Schuéller 1997; Pradlwastel. 1998).

5.4 Importance measure

The importance measure is used to segregate the importdizete®ns from unimportant ones.
This parameter is defined as

o) — d(x(_") (1)) . (5.7)

(lnv( (")( )))

wheref is a real valued parameter which controls the level at whicalbweighted realizations
are suppressed and theight measure (z;(7)) is defined as

v(x (n)( (n) Za w(r‘n) (5.8)

z‘rrl

Wherew( "I are the weights associated to the sam@éﬂ’#( ). The importance measure is
normahzed with its mean value. Therefore those realinatioith their importance measure
higher than the mean value will be assumed important onesharseé with importance measure
less than this mean are assumed to be unimportant (lesstempoiThis mean value is shown by
the solid black line as the importance border in figures 5difeyure 5.2. Finally the probability
of survival of the less important processes is defined asatifumof their importance measure

P =1 po(1l - &) (5.9)
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with assigned as a real number such that (0, 1] i.e. the probability of Kill. HereE(T") denotes
the normalized importance measure by its mean e.g.

ém = (5.10)
&

wheree™ = 1/N SN ). In order to keep the method an unbiased estimator of the- prob
ability, the weight of the survived processes should be fiertiafter the killing - note that the
weight of the killed processes is zero afterwards - takesep{Rradlwarter and Schuéller 1999)
as
(n)
~(n) _ wi,‘r
1, T gn)

(5.11)

Finally a minimum weight for splittable processes is defit@évoid high variance of the re-
liability estimates (Pradlwarter and Schuéller 1999). As@nable choice for such weight is
proposedw,,;, = P;/50. This acts as the lower bound for the splittable processesing
that any process having its statistical weight lower that,, is not allowed to be splitted during
simulation. The probability for a given barrier (threshtddel) will then be estimated as

N
Py = 3 1o 0)] ) (5.12)
n=1

Itis clear that (5.12) is very similar to (4.30) in the sertsa& the weights are only defined in two
different manners i.el.z(v;") in (4.30) is replaced withu,gf;) in (5.12).

5.5 Applying Distance Controlled Monte Carlo

The procedure of applying DCMC is as follows

Decide about the simulation parametefsr, K, 3, po, Wmin

GenerateN realizations of the system simultaneously with weigﬂnf%) =1/N,n =
1,---,N

Evolve all realizations until the next time= 7, , s = 1,2, 3, - - - being the times at which
the RR&S-DC takes place

Find the processes that have outcrossed the boundariessdfindomain and subtract their
statistical weight from the total statistical weight of tienulation

Construct thedistance measuré(xﬁ’” (7)) for all N realizations according to either (5.3)
or (5.5)
<7L)

7

B calculate thaveight measure (z;"’ (7)) for all processes (5.8)

Calculate themportance measuré”) for all processes (5.7) using the calculadifédgn) (T))
andv(wﬁ”) (1))
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E Normalize the importance measure according to (5.10)
E] For the less important and splittable realizatiods= {n|e!™ < 1N wf’? > Wpnin b
calculate the probability of survival (5.9)

Kill some unimportant processes by playing the Russian &tibn the members of the set
N. This is done by drawing a random numbeEe [0, 1] for each member of the set, if the
number is higher that the survival probability of it the igation will be killed, else it will
be kept in the simulation

modify the weights of the survived processes according.tbl(5
Replace the killed processes and their weights by spligorge of the important processes

Stop the simulation if = T" else go to step 3 above

Note The main assumption of the method is that the system statdgeecas Markove
processes with independent increments.

Note Estimation ofw,,;, is based on thanknownP; which is to be estimated. Therefore
a reasonable guess for the probability which is to be estichstiould be at hand.

Note Simulation parameters K, 3, po, wmin Can have considerable effect on the results.

Note According to the procedure of the method, the finer the tieselution and larger the
time frame of the simulation are, the more reliable the tesaile. However this increases the
computational load.

In the simulation, time series are generated with= 0.041s and the DCMC is performed
147 times withA7 = 0.041 x 10%s. The distance measure is calculated as a weighted summa-
tion of six closest neighbor processes iE. = 6. The parameters of the DCMC are chosen
B = 0.8,p0 = 0.5, wmin = b x 107° and the results are shown in the figure 5.6. Figure 5.6
shows the DCMC results with two different distance measufid®e results with the distance
measure introduced by Pradlwarter et al. (Pradiwarter aidi&ler 1999), i.e. a relative dis-
tance measure, is shown in figure 5.6.a and the results wihéuhanical energy as the distance
measure, i.e. an absolute distance measure, is shown ia Bgiib. Comparison of these figures
show that the former distance measure shows better overdiirmance i.e. less coefficient of
variation in the estimates.

5.6 DCMC for wind turbines

The advantage of the DCMC in application is that it does ngtire high amount of data to be
kept in memory during simulation. Indeed the only data ndedebe kept is the present state
of each realization. However there exist some difficultiéh\its application which gives less
motivation in using the method for the failure probabilistienation of wind turbines. First, this
method, like IS, provides failure probability of a(any) givthreshold which is not encouraging
since it decreases efficiency of the method in applicatibnsection 1.3. Second, parameter
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0 100 200 300 400 500 600 0 100 200 300 400 500 600
t(s) t(s)

Figure 5.6 Ten estimations of first passage probability distributiond single DOF oscillator using RR&S using 500
simulations; a) Pradlwarter’s distance measure b)Mecharnergy distance measure

wWmin defines the minimum weight of the processes which are alldeée splitted during the
RR&S. This is typically defined as a ratio of the final probyilvhich is aimed to be estimated.
Therefore an approximation of this probability should beikable before the simulation starts.
The wind turbine model can not satisfy this requirement. tNthere exist no global sugges-
tion when (how often) RR&S should be played as the procedsesoThis is important since
firstly the time delay between two RR&S takes place need tatgelenough in order to allow
independence of the samples. On the other hand for the bdstrpance, the processes should
be splitted as many times as possible. This makes a potentiflision to define the optimum
number of time steps the samples should be allowed to evaf@dthe next splitting actions
take place. Last but not least from the programming pointi@fvwvcommunication of the pro-
cesses during evolution, e.g. exchanging states during RB&uld be done carefully when
the method is to be applied on large dynamic systems. Accgitdi the mentioned reasons the
DCMC method has not been applied on the wind turbine modskgprted in this thesis.
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CHAPTER 6
Conclusions and Future

directions

Following are the conclusions and proposals for the futuoekes are deduced from the
research done within this thesis.

The VRMC methods however provide very good estimates forgireeral structural dy-
namic problems, in case of variable speed wind turbindsnstite work is required to increase
applicability of these methods. The major problems in thlsyséems stem from their high dimen-
sions coupled with nonlinearities in the system. It is sé&wn ih the case of the fixed speed wind
turbine the methods are more successful than the variabldspase which is due to the addi-
tional nonlinearities that the controller adds to the modlékerefore still a reliable method which
can work based on low number of samples without breaking douid be of great interest in
this type of problems.

Observation of the results of VRMC methods on the developedetshows that unlike the
normal operating conditions, during which the pitch colradecreases the effective load of the
wind turbine, in extreme conditions the controller may ease the possibility of failure. It is
however understood that the conditions made on the typehrensbiecifications of the controller
have considerable effect on this phenomenon. Therefore nareful study is needed for more
accurate judgement in this respect.

Computational efficiency and speed are two important isshiewneeds special attention
when it comes to analysis of the statistical behavior of thliurbines. Therefore development
of a model which allows fast generation of samples of the tiiséory of the wind turbine will
contribute in this regard. Inclusion of detailed model s$fiestions such as non-homogeneous
wind field, probabilistic structural properties and incorgtion of more structural modes in the
dynamic model are interesting aspects of the model.

The possibility of realizing evolution of the probabilityedsity function of wind turbines
would be a very powerful tool for the failure probability issation of these systems. This offers
many possibilities for future improvement of the machirmesésign process. However a strict
requirement for this, in case of using PDEM, is to reduce talmer of basic random variables
of the model to as low as possible. The is possible by usingaehunen-Loéve transformation.
The power point of such approach is that nonlinearitiesénttodel do not seem to pose critical
difficulties toward application of the method.
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APPENDIX A
Derivations of Kalman filter gain

and Riccati equation

Detailed derivation of the Kalman filter gain (2.50) and thedati equation (2.48) are presented
respectively. Kalman filter gain equation is derived asofio$

GT(j) = EIRG+ V')
= B|(A%()+K() {v() - Cx()} V7 ()] (A1)
= ABR()VI()] +K() (CL (0) - CERGVI ()

WhereCy, (0) = CT(0) is used. Next

ERGIVIG) = E[x() (RTG)CT + ()] _
S()CT (A-2)

Substituting (A-2) into (A-1) results in

G (j) = AS(j)CT + K(j) (CL,(0) — CS(j)CT) (A-3)
That can be solved fdK(j) which ends up in (2.50)

K(j) = (GT(j) - AS(j)CT) (CL, (0) - CS()CcT) ™ (A-4)

The Riccati equation (2.48) is derived as follows
T
El&(j + DRT(j+1)] = E [(Ai(y‘) +K(j)e(j)) (AZ() + K()e()) } (A5)

2(j+1) = AZ(H)AT +K(j) (Ciy (0) - CE(H)CT) KT (j) (A-6)
Substituting Kalman gain from (A-4) results in

S(G+1) = AZ(HAT+ (GT(> A% )CT)

(CL,(0) - CE()CT) " (E7()) - AS()CT)" ()

— 83 —



84

Chapter A — Derivations of Kalman filter gain and Riccati eq

uation

Mahdi Teimouri Sichani



APPENDIX B
Importance sampling for Wind

turbines

B.1 Representation of the model in the 1td SDE form

To apply IS based on (Macke and Bucher 2003) it is necessdrguve estimation of the system
responses, i.e. displacements, at the failure time instatien it is excited by the increments of
the Wiener process. This estimation is the base for constguthe so-called control functions.
Their characteristic is: “ if the system is excited with théma response will be at the failure state
(boundary of the LSF) at failure time instance, itg, = mAt ”. These deterministic drifts are
then added to the Wiener increments and the result is usbe &isal system excitation. Starting
by designing control functions, if excitations are not Weemcrements themselves, they should
be represented in terms of them. The turbulence can be esjieekas filtered increments of the
unit intensity Wiener process

m—1

vim) = 3 glm — k)AW(k) (B-1)

k=0

AW (k) € R7*™ is a stochastic matrix containing identically distributetutually independent
normal random variables

AW (k) ~ N (0, VAtI) (B-2)

g(k) is a time-invariant impulse response matrix function whiglletermined from (3.37) as
follows

[ Dr , k=0 ]
g(k) = { CrAX By | k>0 (B-3)

(B-1) is a linear filter equivalent given the solution{e(t),t € [to, 0] } at discrete instants
of time. Alternatively,{ v(t),t € [to,o0[} may be obtained as the solution to the linear I1td
differential equation

(B-4)

dv(t) = av(t)dt+de(t)}
) = 0
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the drift matrixa and the diffusion matrix are yet unknown quadratic constant matrices of di-
mensiony x ¢, which may be specified as indicated beldWV (¢), t € [to, o] } is g-dimensional
vector process of mutually independent unit intensity \WWretcomponent process. The solution
of (B-4) at the discrete instants of time is given as

m—1
v(m) = e2™Av(0) + A=At AW () (B-5)
k=0

ea(m=k)Atindicates the matrix exponential based on the mairixComparison of (B-1) and
(B-5) provides the following relationship betweens andg (k)

g(k) = e*kAls (B-6)

a ands may be determined so (B-6) is fulfilled at best wit) given by (B-3). Notice that
a ands are not needed in the method, which merely requests to enlgtien by (B-1). Since
(B-3) is a linear differential equation i(t), the solution of (3.24) at the discretized instant of
time may be written as

m—1

z(m) = zo(m) + »_ h(m — k)f (v(k), z(k)) (B-7)

k=0

where the initial condition is given as

zo(m) = AR z4(0)+

+ (((1 + t—o,)A*1 + i,AQ) eAmAL 4 ((1 + mAt)A*1 + lA2>>B1 59

T T Ti Ti

0
0
GQ
By =-—"|1 (B-9)
Ti 1
1
where the impulse response function is given as
h(k) = eAFABAL (B-10)

eARAL At represents the matrix exponential function ands the system matrix in (3.26). (3.26)
and (3.27) have been used at the derivation of (B-8). Thertpee of the load vectdron
the state vectoz (k) is via the azimuthal angles (k), its derivativeg; (k) and the pitch angles
B(k). h(k) represents the impulse response matrix for the structtata sariable. The solution
to (B-1) and (B-7) form the solutions to an integrated cambins time vector procedsX (t),t €
[to, oo] } of dimension(13 4 ¢) x 1 defined as

X() = [ ff% } (B-11)
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Formally{ X(¢),t € [to, 00 } may be written as the solution to the It6 differential eqoiati

Az + Bf(v,z) 4+ Bo(t)

av

dX(t) = {

El

X(t) is a Markov diffusion process driven by the g-dimensionat Wiener process. The drift
vector and diffusion matrix may be determined based on thaiso equation (B-1) and (B-7).

] dt + [ 0 } aW (1) o

X(0)

B.2 Control functions : Nonlinear model

Letv(k) € R? denote the turbulence vector ag(k) € R?2*? denote the IRF matrix of turbu-
lence. It is obvious that the number of turbulence nodesti®qoal to the number of structure’s
DOF in generalg # p. the so-callednfluence functionwill assign the right turbulence node to
each DOF. The vector of Wiener increments is defined 3% (k) = VAtE(k) whereE(k) €
R9*! are mutually independent standard Gaussian random numitbr&[=(k)=" (k)] = L
System response, e.g. displacement, of the aimed DOF aitheeftime instance,, = mAt is
written as
P m
zi(m) = At > hig(m — k) f (v; (k) (B-13)

j=1 k=0

wherep is the number of system DOF$(v;(k)) € RP*! is the function that determines the
aerodynamic loads in terms of turbulence. This functiomesents the iterative BEM method for
the blades’ DOFs and is zero for the other DO#8k),j = 1, - - - , p are the components of the
turbulence vector exciting each DOF at tithAt. In order to define; (k) provided thaw (k) is
available a function is required which determines the gpatibset of turbulence nodes that are
exciting the blades at the specified time instance. Thistfands defined adN (6;(k)) € Rr*¢
and is multiplied by the turbulence vector, iwg(k) = N(6;(k))v(k), which will be referred to
asinfluence functiomereafter. In the numerical case here- 5; the4* row of N(-) indicates
the turbulence at the hub height and its last row can be setrtosince the rotational DOF is not
affected by the turbulence directly. The elements of thétfirge rows of the influence function
are defined as

[T 6 e [0 - 400+ 4
Ni; (Gj(ki)) —{ 0 , otherwise ’ ’

whered; (k) defines thej’" blade position at time instandeAt and6,,l = 1,--- ,q defines
the angular positions of the turbulence nodAsg. = 27/(¢ — 1) indicates the angular distance
between turbulence nodes. Incorporating this influencetfonin (B-13), the system responses
is written as

zi(m) = 301 2o hi(m — k) f (v;(k))
s> B RN CTOINE) 15

DS hyy(m ) f N@AM)ziﬂgkmAﬁmm>

) .7 = 1a273 (B_14)
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In case that rotational speed of the rotor is assumed to be égeaal to its nominal value, the
position of the first blade i8; (k) = kAtS,. ¢ and the other two blades aig(k) = 61 (k) +27/3
andfs(k) = 0,(k) + 47/3. In such case the influence function is predicted for any trme
N(6;(k)) = N(k); which can be replaced in (B-15). It is clear that (B-15) isanlimear
equation with many basic random variables inside &dV (). The control functions should
then be obtained via optimization as described in sectién 4.

B.3 Control functions: Linear model

The nonlinearity in (B-15) comes from the aerodynamic loaltwation functionf(-). There-
fore if a linearization is available for the model, the cahfunctions can be designed in a more
efficient way. This is possible by defining the virtual IRFelsash(k) € R?*?, i.e. a com-
bination of the system IRFs and the excitation IRFs thateedgistem responses directly to the
normal space in which excitations &#k). They may be represented in the following form

m m

ZZh” —r)AW; (r FZZ% m —1)E;(r) (B-16)

Jj=1r=0 j=1r=0

where=;(r) is thej** component of the vect&(r). Thus the safety margin for thé€"DOF,
reaching the margin of failure at*" time instant is written

q m

G =2 —z(m)=a) = VALY Y hij(m —r)E;(r) (B-17)

j=1r=0

The mean value and the standard deviation of the process read

1/2
q m
pg =2t oY = (At DD him— r)) , (B-18)

j=1r=0

the reliability indexﬂg”), can be estimated as

(m) b

gmf G = Li (B-19)
ol \/Atzg:1 S o B2 (m — 1)

the unit normal vector toward the design point is calculasd

(m), \ _ O0GJOZ;(r) hij (m —r)
J \/Z 7 O z]( - T)
whereby the desifn point becomes
b
m m m l‘i 7
&5 (r) = 86" gV (r) = i (m =) (B-21)

VALY YL y(m =)
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and the control functionsy;” (r), which cause failure of theé” DOF at the target failure time

instance can be designed as

u{™ (r)= i hij(m —r) s=1 5 (B-22)
1] - m 7 i - ) =L B

! At Z?’:l > reo h72j (m—r)
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The paper represents application of the asymptotic sampling on various structural models subjected to
random excitations. A detailed study on the effect of different distributions of the so-called support
points is performed. This study shows that the distribution of the support points has considerable effect
on the final estimations of the method, in particular on the coefficient of variation of the estimated failure
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the support points so that the coefficient of variation of the method is minimized. Next, the method is
applied on different cases of linear and nonlinear systems with a large number of random variables rep-
resenting the dynamic excitation. The results show that asymptotic sampling is capable of providing good
approximations of low failure probability events for very high dimensional reliability problems in struc-

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of small failure probabilities and large safety indices
of structures are important issues in which Monte Carlo simulation
loses its efficiency due to the excessively high number of samples
required to be simulated. Recently methods have been developed
which allow efficient estimation of these low probability events.
These methods tackle this problem from very different points of
view i.e. importance sampling [1,2] moves the sampling density
function to the boundaries of the failure domain, directional sam-
pling [3] tries to find the boundaries of the limit state function G(X)
in different directions of the random variables within the U-space.
Here primarily the original random variables of the limit state
function, X, with joint probability distribution function Fx(x) are
transformed into the standard normally distributed random vari-
ables U, the domain of which is called the U-space, using the
Rosenblatt transformation T: X — U [3]. On the other hand the sub-
set simulation methods [4-6] or the S3 method, [7] work on the
basis of the Markov Chain Monte Carlo (MCMC) which is capable
of generating samples of a conditional stochastic process. A com-
prehensive comparison of the performance of these methods can
be found in [8]. Nevertheless the applicability of all the methods
seems to have practical restrictions regarding both the temporal
and spatial dimensions of the problem under consideration and
also the presence of nonlinearity in the system, [9]. In [10] it is

* Corresponding author. Tel.: +45 9940 8570; fax: +45 9814 8243.
E-mail addresses: mts@civil.aau.dk (M.T. Sichani), soren.nielsen@civil.aau.dk
(S.R.K. Nielsen), christian.bucher@tuwien.ac.at (C. Bucher).

0167-4730/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.strusafe.2011.05.002

shown that importance sampling can lead to biased results for high
dimensional problems on a linear Single Degree of Freedom (SDOF)
oscillator. The paper indicates that very careful and detailed anal-
ysis of the system is required when using importance sampling in
high dimensions to make sure that the results are unbiased. In [11]
it is reported that the importance sampling loses its efficiency on a
SDOF elasto-plastic oscillator. A geometrical explanation of the
reason why importance sampling fails for high dimensional prob-
lems and also the difficulties concerning nonlinear problems is
provided in [12]. On the other hand the subset simulation [4]
which reportedly performs quite satisfactory on many systems
might still fail for estimation of first passage excursion probability
of order 10~> of a SDOF Duffing oscillator, [9].

Considering a realistic engineering problem in which a Multi
Degree of Freedom (MDOF) system with possibly strong nonlinear-
ities is excited by multiple non-white stochastic excitations and
the failure probability is to be estimated within a long time interval
(thus defining a high dimensional reliability problem) applicability
of most of these methods can not be guaranteed due to severe
problems related to complexity, very high computation cost or
excessively high memory requirements. A good example of such
a case is a wind turbine in which a highly nonlinear MDOF system
is excited by many stochastic processes, say 100, for which the fail-
ure probability is to be estimated within a time interval of 600 s. In
such a case applicability of most of the available methods in the lit-
erature can be questioned.

Another important issue which is not considered in the previous
studies is the cases of high dimensional multiple non-white stochas-
tic excitations. In such cases, readily applicable methods are the ones
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which best satisfy the following two conditions in essence. First, the
method should not need the so-called tractable data of the system,
i.e. the critical excitations in case of the importance sampling meth-
od, since nonlinearities and high dimension of the problem do not al-
low efficient calculation and tracing of such data. Second, for large
systems the memory limits do not allow saving large amount of
information from the pre-processing, time history of the previous
simulations in terms of excitation or response. The first restriction
proposes use of the so-called black box methods which do not incor-
porate any specific information of the model. The second limitation
would restrict the available choices to those which do not have high
demand on the data storage. Severity of these conditions varies con-
siderably according to the specific case of the problem under consid-
eration. This inculcates that choosing the proper method to solve a
specific problem might not be a trivial task and requires a good in-
sight into both the methods and the problem.

A method recently proposed and shown to be efficient for such
cases is asymptotic sampling. The method is based on an asymptotic
approximation of the failure probability, [ 13]. Due to its very low de-
mand both on the memory requirement and also the a-priori knowl-
edge of the system behavior, the method seems to have a wide range
of applicability among practical problems which typically have high
spatial as well as temporal dimensions in their excitations compris-
ing some sort of nonlinearity. Nevertheless, accuracy of the method
on such systems is not reported in the literature yet. In the present
article application of the method on linear and nonlinear SDOF and
MDOF systems exposed to different stochastic excitations has been
studied. Calibration of support points and its effect on the estima-
tions of the method is studied in detail and simulations are carried
out to illustrate the discussions. Finally an optimization algorithm
is proposed which locates the support points in the order which in-
creases accuracy and precision of the method.

2. Asymptotic sampling

The idea in the Asymptotic Sampling (AS) is to change the excita-
tion level to cause more Monte Carlo simulations to exit from the
barrier and then adjust the estimated probabilities, [3,14]. In this re-
gard the intensity of the white noise driving the system is increased
artificially by the factor f~! which causes more processes to outcross
from the boundaries of the safe domain. It is shown, [13,14], that the
reliability index asymptotically has a linear relation with f factor
B(f) = fp(1) which is utilized to estimate (1) by estimating A(f) using
standard Monte Carlo simulation. In this concept it is proposed to
use the following function for the extrapolation.

B
B(f) = Af + 7 (1)

The procedure then follows as the following steps

1. Transform the random variables of the problem into the U-
space, e.g. E, using Rosenblatt transformation T: X — U.

2. Choose an f € [0,1] and increase the standard deviation of = to
obtained scaled random variables &; = E/f.

3. Perform the standard Monte Carlo simulation with Z¢ and cal-

culate the scaled failure probability p(f)

. Estimate the scaled reliability index as f(f) = @~ '(1 — p{f)).

5. Repeat the steps 2-4 for different values of “f’ to construct a set
of (f, B(f)) which will be referred as “support points” hereafter.

6. Estimate coefficients A and B of (1) using constructed set of
(f,B(f)) by regression analysis. In order to put equal weights
on all support points in regression analysis (2) may be used
instead of (1)

PO _ 4 B

f P @)

S

7. Estimate the un-scaled reliability index p(1)=A + B and failure
probability p{1)=1 — &(p(1)).

The method is examined on a simple problem for which limit
state is defined as a multiplication of random variables as (3)
where X; ~InN(38,14.44) and X, ~ N(54,7.29). For this problem
the exact results are =5.151 which is related to ps=1.3 x 1077,
[15]. It is seen that choosing the minimum and maximum limits
for number of out-crossings are related to the nature of the prob-
lems and a general judgement can not be made in this state.
Fig. 1 shows results of AS for the problem which its limit state
function is defined as g(X;,X2) <0 where g(X;,X,) is defined in
(3). Five different “f” values, hence five support points, have been
chosen for each simulation case. 1000 Monte Carlo simulations,
corresponding to the step 3 in the above procedure, are performed
for each support point. (1) is estimated from these support points
as described in steps 6 and 7 above. In order to obtain coefficient of
variation of the estimated p(1) values for each distribution type
and range of support points, this procedure is repeated 100 times
and the results are shown in Fig. 1. In order to demonstrate effect
of the optimized range for distribution of the support points Fig. 1a
shows the simulations results for f< [0.3,0.5] while in Fig. 1b-d
f€10.0516 ,0.3290 ]. Distribution of the support points in each
simulation is indicated in the caption of the figure. In what is re-
ferred as the exponential distribution, support points are concen-
trated around the maximum “f’ value while in the logarithmic
distribution, support points are concentrated around the minimum
“f” value. The figure shows that both the range from which f factor
is chosen and the way support points are distributed affect the fi-
nal results. To find the optimum range of f, its minimum and max-
imum limits are chosen so that on the maximum at least 40% of the
realizations cross out and in the minimum at most 20% of the real-
izations cross out. The percentage of error in the mean value of the
estimated beta is shown by (4) in the figure.

g(X1,X2) = X1X2 — 1140 3)
e(p) = <g— ) x 100 (4)
where f = E[f].

3. Sampling methods

Together with the mentioned methods, low-discrepancy se-
quences of random numbers might be used instead of a standard
pseudo random number generator. These methods generate qua-
si-random numbers which are less random than a set of pseudo
random numbers but are more uniformly distributed therefore
have a lower discrepancy. There exist different methods of low-
discrepancy random number generation such as Latin Hypercube
Sampling (LHS) [16], Good Lattice Point (GLP) [17], Hua-Wang
point set (H-W) [18], Sobol sequences [19] etc. In [14] the applica-
tion of LHS and Sobol algorithm are also considered for various
problems and is reported that use of Sobol quasi-random numbers
increases efficiency of AS up to 2 times compared to the use of
pseudo random numbers. A recent study on the application and
performance of utilizing these sampling methods with the stan-
dard Monte Carlo and also importance sampling can be found in
[20,21]. Although it is stated that using low-discrepancy random
sequences increases efficiency of the estimation techniques for
low dimensional problems, it is mentioned that high dimensional-
ity poses problems on the accuracy of the estimations which needs
further considerations.
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Fig. 1. 100 estimations of the reliability index with asymptotic sampling. (a) Uniformly distributed support points, CoV(P;) = 1.7,e(f) = 1.72. (b) Uniformly distributed

support points, CoV(Py) =0.93,e(f) = 0.47. (c) Exponentially distributed support points, CoV(P;) =1.25,e(B) = 0.52. (d) Logarithmical distributed support points,

CoV(Py) = 0.56,e(f) = 0.14.
4. Calibration of support points

It is seen (c.f. Fig. 1) that both location and distribution of the
support points have considerable effect mainly on the precision
of the method. So far, no method has been proposed to determine
the range and the distribution of the support points in an optimal
way. Therefore it is interesting to study the effect of these param-
eters on the performance of the method. Unfortunately the appro-
priate value of the scaling parameter f depends on the type of the
problem i.e. the shape of its limit state function, the barrier level,
etc. For example for high barrier levels elements of f should be dis-
tributed in a smaller range than the range for low barrier levels.
Nevertheless the distribution of points seems to be quite problem
independent. Based on these observations an optimization proce-
dure is developed in this study which allows calibration of the sup-
port points’ locations with rather low computation cost. Although
this algorithm increases the computation cost of the method in the
first step, this effort has justification due to the considerable ben-
eficial effect it has on the accuracy and precision of the estimates.
The significance of the optimization is that for different problems
the suitable range in which support points should be distributed
cannot be known in advance. Defining the support points’ range as

f S [fminvfmax]
Nsim

fmin = {f' Z; I(fv Ei) = N?cax}
Nsim B

fmax = {f| Z I(fin) = Ncr?cm}
i=1

where I(.) is the indicator function, i.e. I(f,E;) = 1if {f,E;} € F and

I(f,Z;) = 0 else; where F indicates the failure domain and Z; is the
ith realization of the excitation process in the so-called U-space

i.e. E ~ N(0,I) is Gaussian distributed random variables as defined
in Sections 1 and 2. N;™ is the maximum outcrossing nomber of
simulations expected to have when f=fi,. NO"’C"n is the minimum
outcrossing number expected to have when f= f,.. Simulations
indicate that points close to f, and fq are both important and
should be present in the support points if minimum Coefficient of
Variation (CoV) of the estimated failure probability is desired. The
maximum number of outcrossings obviously is limited by the num-
ber of simulations, but depending on the geometry of the actual
limit state function it may be considerably smaller (e.g.
N = Ngim/2 for a linear limit state passing through the origin in
U-space). In this study these parameters are set to Nf,"f” = 0.02Ngj,
and N\ = 0.98Nim; Nsim is the number of simulations for each sup-
port point.

4.1. Start point of the algorithm

Although in general the proposed optimization algorithm
should be able to find the optimum values starting from any initial
value, providing a good (close to optimum) initial point fi,; in-
creases efficiency of method by doing less iterations in the optimi-
zation loop. We start by discretizing the excitation process which
is transformed to the U-space, W(k)=W(t)|xar» and doing the
same for the response process X(k)=X(t)|-kar Where k=0, ...,
N — 1corresponds to the continuous time interval t < [0,T], i.e.
T=(N — 1)At. Assuming the following transformation from excita-
tion to response

X(k) = G(w (k) (6)
where #7(k) = [W(k),...,W(0)]. Decomposing the transformation

in (6) into its linear and nonlinear parts and substituting
W(k) = fW(k) results in
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X (k) = Xain. (k) + Xnonin. (k) = FGuin (9 (K)) + Gronin (F#°(K))  (7)
where % (k) = [W(k),...,W(0)] =f""#"(k) is the scaled counter-
part of W(k) by f. The scaled response, X(k) = G(f#"(k)), can also
be decomposed into

X (k) = Xiin (k) + Xnoniin (k) = Guin (4 (K)) + Gronin (W () (8)

(7) and (8) derive the following relation between normal and scaled
responses

3 X(k — 1 —

X0 = (X4 Grn (700 ~  Grn 7)) (©)

for the linear part of the transformation (9) the following applies
S 1

E[Xuin (k)] = TE[XLin.(k)] (10)

Eq. (10) means that for linear (part of) systems the factor f simply
scales the response process. Therefore it is clear that the nth maxi-
mum of the stochastic response X sorted in descending order can be
scaled up to the required barrier level where the scaling factor is de-
fined as fXn = X" /Xp. The schematic illustration of the effect of
the f factor on the PDF of the response is shown in Fig. 2. This anal-
ysis provides a very simple yet efficient relationship for choosing
the initial guess for f in the optimization algorithm as
e W
finit Xmax(f - l)

where Xj; is the required barrier level, f;
mation for f,;, for barrier level and X};’gx(f = 1) is the nth maximum
of the stochastic response process X(k), k € [0,N — 1] to unscaled
excitation, i.e. f=1, sorted in descending order. The approximation
used in (11) counts for the nonlinear part of the transformation
which is not considered in the last parts of the derivation. n is the
maximum outcrossing number therefore is equal to N;™ for esti-
mating f,,;; and is equal to N™" for estimating finax. Eq. (11) gener-
ally provides a good approximation for nonlinear systems if
accompanied by a Monte Carlo simulation with Ny, number of
samples. In such case the PDF depicted in Fig. 2 represents the
PDF of the maximas of the samples of the Monte Carlo simulation.
Obviously N;;, for calibration of support points is not required to
be equal to the number of simulations in asymptotic sampling i.e.
in this study it is set to 100. In case of linear systems it is further
possible to take advantage of the ergodicity of the response process
and have a very efficient approximation of the above formula using
only one realization of the response. In this sense X" (f = 1) is the
nth maximum of the time samples of a single realization of the re-
sponse process sorted in descending order. Once the range of f is
determined the parameters a, b and c of optimization, c.f. Fig. 4,

X denotes the initial esti-

Sfx(x)

Y ! Y
Xnax(f = 1) X X an(f < 1) = Xpr

Fig. 2. The effect of f on scaling PDF of the (maximas of the) response.

can be calibrated adaptively to cover the required range in the least
possible steps. Nevertheless these parameters do not change con-
siderably therefore in this study for all examples they are set to
a=b=1.5and c=0.5. The values of f,;; and f;,.x obtained using only
one realization from (11) with ergodic sampling assumption, with
100 Monte Carlo simulations and their corresponding optimized
values are mentioned in Table 1. The initial guess of Eq. (11) with
ergodic sampling for the SDOF linear oscillator is very close to the
optimum values and optimization does not seem to be necessary.
On the other hand for nonlinear systems the difference between
ergodic sampling’s initial guess and the optimum values is consid-
erable, therefore urging use of optimization. For convenience sorted
maximum values of 500 samples of a standard Monte Carlo simula-
tions are plotted together with the sorted absolute maximum val-
ues of one sample of dynamic analysis for the Duffing oscillator in
Fig.9c. The figure indicates there is no considerable difference for
the maximum values only in this case while for the other two cases
the difference is considerable c.f. Table 1. In case of nonlinear sys-
tems it is beneficial to find the initial guess by performing some ex-
tra Monte Carlo simulations and then using the optimization to
prevent unnecessary loops in the optimization algorithm.

4.2. Optimization algorithm

The optimization algorithm has two main stages. First to find
the values of f,;;; at which maximum number of outcrossing from
the barrier level takes place, e.g. Njw* and finqx at which minimum
number of outcrossing from the barrier level, e.g. N’J}f” takes place.
Second stage is to distribute the points as desired in the found
range of f € [fiin.fmax]- The general perspective of the optimization
algorithm is shown in Fig. 3 while the detailed procedure of each
block of Fig. 3, indicated with block labels A-G, is represented in
Fig. 4. Here we want to leave f,;, as fast as possible and find more
support points around f,4,, however with some support points in
between. The strategy is to start from a reasonably small “f” value,
i.e. the initial guess of (11), and increase it until the number of out-
crossed processes is close enough to the Nj.*. Once the initial “f’
value is found, next “f’ value is approximated as f(j)=f(j — 1),
c.f. Fig. 4, until we reach the NL“J”. This type of function especially
with ¢ € (0,1] is favorable in our context since it leaves f;, very
quickly and becomes more careful in increasing “f’ values as the
values approach f,q. Defining j as the counter of the loop for “f’
values, Ny as the total number of elements of the vector f and N,
as the number of outcrossed processes from the barrier level. Ini-
tially f is set to zeros, e.g. f =[0,...,0];, .-

fmin is defined as any value for “f’ which results in
0.9Ngim < Noe < N2, If the initial candidate of the f;,;, causes too
many outcrossing, e.g. N, > N3, we increase f, by setting
fU)=fG)° and then fi, = f(j). This loop will continue until we find
an “f’ value which satisfies 0.9N, < Noe < Noo*. In case the candi-
date value does not satisfy Nyc > 0.9Ns;, the algorithm will decrease
the candidate “f* according to f(j) =1f())(1 +f(j)") and checks if
the change made in the value is more than 50% of the initial guess,
finic, far from it. This check is to avoid getting too close to the initial
guess which decreases the convergence speed of the algorithm. If
not too close, we choose this value as fu,, else we choose
fmin =3f(j) and do the checks to see if N is in the expected range.
This procedure is repeated until f,;, is found accurately.

In the next step the middle points will be estimated. Since it is
not known in advance when we are going to hit f;,,.x- defined as any
“f* value with the condition N™™ < Ny < 0.2Ng,, care must be ta-

oc

ken into account. If for the candidate “f’ value N, < Ng";'", which
indicates that we are in the region close to f;,.x, We increase the
number of out-crossings by decreasing “f" as f{Ny) = fj)? and set

fmax =f(Ny). Next we take the average of f(j — 1) and f{iNyas f(j). If
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Table 1
Values of fiin and fiex using (11) and the final values by optimization.
Case Barrier level fmin fmax
SDOF oscillator 25 1 sample 0.392 0.676
100 samples 0.393 0.767
Optimum value 0.400 0.709
Duffing oscillator 0.55 1 sample 0.335 0.695
100 samples 0.289 0.727
Optimum value 0.210 0.557
Bouc-Wen oscillator 0.64 1 sample 0.017 0.215
100 samples 0.164 0.603
Optimum value 0.277 0.618
Linear MDOF oscillator 0.0115 1 sample 0.179 0.300
(subcase.4) 100 samples 0.258 0.702
Optimum value 0.277 0.618
Nonlinear MDOF oscillator 0.028 1 sample 0.098 0.220
(subcase.4) 100 samples 0.113 0.465
Optimum value 0.186 0.678

calculation of the middle “f”” values

Check the
iteration number

calculation of the f,,;,; increase “f”

Calculation of

D

Tuning fiin}

decrease “f” and keep it
if not too close to fi,;; else increase it

number of outcrossings

E .
Tuning fnax;

decrease “f” in case of
too few outcrossings; else increase it

F

outcrossings and deciding the next action
according to the region of existence of the “f” value

Checking the number of

G

and check if more support points are required

Increase the iteration number

Stop

Fig. 3. The general view of the optimization scheme for calibration of support points’ locations.

for the candidate “f’ value N, > Nomci” one of the following may at f{Ny). It is advantageous to improve our estimate for the cur-
occur rent candidate of “f’ in order to get N,:<0.2Ns;,. Here we
increase “f” by setting f{Ny) = f(j)° - as a last chance to obtain a

f(Np) # 0 and Ny > 0.2Ngj,,, Which indicates that a good approx- higher value for f,,x - and take average of this value with

imation for fj,q has been found in previous steps and is placed f(j — 1). The average is taken in favor of the fact that in this
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Fig. 4. The details of the optimization scheme for calibration of support points’ locations. The block labels A-G refer to Fig. 3.

region we do not want to risk more simulation without new
information in them i.e. simulation with too few out-crossings.
fiNp) =0 or Ny <0.2Nsim This means that a good candidate for
fmax 1S Not available or the candidate “f’ value is already in the
region close to f.. Therefore we increase the candidate “f’
value by f(j) = f(j — 1)° and go to the next step

In practice the proposed algorithm is very general and typically
only some of its blocks are used within a simulation. The simula-
tions show that it is fast and robust in finding the support points’
range [fminfmax] and distributing them within this range. It worth

mentioning here that it is desired that the algorithm satisfies
Noc < NI™ at least once during simulation. This ensures that the re-
gion in which f;,., exists has been found with good accuracy. It is
seen that the proposed algorithm is successful in fulfilling this cri-
terion in the numerical simulations.

4.3. Bias
Although obviously the asymptotic sampling method yields

asymptotically unbiased results as the sample size approaches
infinity (since in this case asymptotic sampling reduces to crude
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Monte Carlo), there may be some bias at small sample sizes. This is
inherently related to the location of support points as defined by
the numerical values for the factor f discussed in the previous sec-
tion. As mentioned in [14], the cases in which the failure domain
form a closed region (i.e. an “island”) are rather unsuitable for
the application of asymptotic sampling as the general prerequisites
of the asymptotics as described by Breitung [13] are not satisfied.
In order to investigate the potential bias introduced by asymptotic
sampling in such a case, consider a simple two-dimensional prob-
lem with an elliptical failure domain in standard Gaussian space as
shown in Fig. 5. The failure domain is characterized by the lengths
of the principal axes o and 7 of the ellipse and by the distance g
from the origin. This distance is equal to the reliability index as
obtainable from the First Order Reliability Method (FORM). By
adjusting the numerical values of « and 7, the failure domain can
be made to approach various shapes from a hyperplane to an iso-
lated point. Due to the rotational symmetry of the probability den-
sity function in standard Gaussian space it is sufficient to consider
a special orientation of the failure domain such that the design
point u* lies on the uy-axis as shown in Fig. 5. For a numerical
study, the values =4 and y = 2 are fixed and the value of o is var-
ied from 0.2 to 5. Also, the magnitude of the factor f for support
points is varied by choosing the intervals [0.3,0.6], [0.5,0.8], and
[0.6,0.9], respectively. The results from asymptotic sampling are
shown in Fig. 6 along with reference solutions from crude Monte
Carlo (100 million samples). Fig. 6 shows that for the cases in
which o is rather small (i.e. the island is small) there is a bias such
that the probability of failure is overestimated. This bias is reduced
as « increases. Also, the bias becomes significantly smaller if the
support points for the extrapolation have f-factors closer to 1 (as
is to be expected). It should be mentioned that similar behavior
(in terms of the bias) can be expected from other standard reliabil-
ity methods such as directional sampling [22] since in this method
usually only the first intersection between the direction vector and
the limit state surface is searched for, thus neglecting possible re-
turns to the safe domain farther out along this direction. It should
be noted that more complex situations are possible in the case of
high-dimensional problems, but it may be anticipated that the rea-
son for a possible bias still lies in such “islands” (or “bubbles”) of
failure.

5. Numerical case study
In the numerical case studies for all cases the failure probabili-
ties are estimated 10 times with asymptotic sampling and their

mean value is considered as the final failure probability; the re-
lated coefficient of variation of the estimates are represented in Ta-

(%)

= 2y

<t -0 k0 —

‘ = U1

Fig. 5. Elliptical failure domain in standard Gaussian space.
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Fig. 6. Results from asymptotic sampling with elliptical failure domain.

ble 2. The optimization parameters, c.f. Fig. 4, are settoa=b=1.5
and c¢=0.5 in all cases.

5.1. Single DOF oscillator

The first simulation is based on a single DOF linear oscillator
(12), characterized by w,=1s"" and ¢, =0.01

R(t) + 20,0nX(t) + (1) = W(t) (12)

w(t) is zero-mean Gaussian white noise with unit intensity. The bar-
rier level is normalized with respect to the standard deviation of the

response gy = (4(w>)" 12,
b
by = o (13)

The normalized barrier level is assumed to be by =5 in simulations.
Simulations are carried out with At=0.0614s and t<[0,600]s
which involves 9772 samples to examine the performance of the
method in high dimensions. For each barrier level 500 time series
are simulated and five support points are chosen for curve fitting
with different Af and range of f. Fig. 7 illustrates the effect of distri-
bution of support points. Clearly very small f values will cause all of
the processes to cross out which does not give any information
while choosing very large f values will cause few out crossings
which increases the uncertainty of the estimation. To check the
accuracy of the above statement, various Monte Carlo simulations
are performed with different distributions of the support points. Re-
sults of this analysis are shown in Fig. 7. Exact failure probability
and reliability index for the problem, calculated with standard
Monte Carlo simulation with 2 x 10° samples, are Pr=2.07 x 107*
and B =3.5310 respectively. The black dots on the right hand side
of the figures show the exact value of the beta. It is seen that the
maximum accuracy of the method, i.e. the least standard deviation
of the estimate, is achieved in case support points are distributed in
the region where 2-98% of the realizations crosses out c.f. Fig. 7d
compared to Fig. 7a in which 2-50% of the realizations have crossed
out. This interval can be found using any simple search algorithm or
the proposed optimization algorithm. The simulations witness that
coefficient of variation (CoV) of the failure probability estimation
based on the estimated g is decreases by a factor of 6 if support
points are chosen in the optimal way. Fig. 8 shows estimations of
the failure probability for the same barrier level in different time in-
stants. Fig. 8a shows results of estimation with a uniform distribu-
tion of support points and Fig. 8b shows the results with optimally
distributed support points. Solid line in both figures shows the re-
sults of the standard Monte Carlo simulation. The results witness
that optimally distributed support points have clearly higher preci-
sion at all instants of time.
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Table 2
Estimated failure probabilities.
Simulation case Barrier Level Samples Py P Cov?s
Duffing oscillator 0.40 500 1.12 x 1072 1.13 x 1072 0.22
0.45 500 1.00 x 1073 1.15x 1072 0.37
0.50 500 3.50 x 10> 496 x 10°° 0.47
0.55 500 1.47 x 107 0.49
0.60 500 124 x 1078 0.63
Bouc-Wen oscillator 0.4 500 528 x 1073 5.55x 1073 0.14
0.5 500 470 x 1074 490 x 1074 0.35
0.6 500 420x 1073 535 x 1073 0.39
0.7 500 3.78 x 10°° 0.52
0.8 500 3.40 x 1077 0.66
Linear MDOF oscillator 0.0515 500 1.05 x 1074 1.78 x 10~* 0.31
0.0560 500 1.62 x 107> 2.80 x 107° 0.61
0.0100 500 3.14 x 1074 3.15x 1074 0.15
0.0115 500 143 x107° 1.59 x 107° 0.34
Nonlinear MDOF oscillator 0.047 500 1.46 x 1074 3.30x 107 0.32
1000 297 x 1074 0.28
5000 1.51 x 1074 0.17
0.052 500 541 x10°° 1.54 x 107° 0.36
1000 232 x10°° 0.28
5000 231 x10°° 0.14
0.024 500 463 x10°° 7.89 x 107° 0.39
1000 741 x 1073 0.27
5000 839 x 10°° 0.18
0.028 500 3.94 x 107 1.35x107° 0.98
1000 9.40 x 10°° 0.42
5000 951 x 1076 0.17
5 5
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Fig. 7. Ten estimations of the reliability index g with asymptotic sampling for 600[s] for the single DOF oscillator using 500 simulations and five support points. (a) fiax = 0.75,
Af=0.03, CoV(P{(600))=1.2. (b) fmax=0.7, Af=0.07, CoV(P{600))=0.4. (c) Exponentially distributed optimized support points, CoV(P{600))=0.6. (d) Logarithmical
distributed optimized support points, CoV(P{600)) = 0.2.
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Fig. 8. Estimations of the failure probability Fy(t) with Monte Carlo (solid line, 10° samples) and asymptotic sampling (dots, 500 samples). (a) Standard asymptotic sampling,

CoV(P(600)) = 1.2. (b) Optimized support points, CoV(P{600)) = 0.35.

5.2. Nonlinear Duffing oscillator

Despite being a simple case of a nonlinear system, Duffing oscil-
lator is interesting due to its wide range of applications. The
parameters of the oscillator are chosen as @, =10s"! and
{,=0.01 and € parameter which controls the intensity of the non-
linearity in the model is chosen € = 10. The equation of motion of
the oscillator is written as

X(0) + 20,k (1) + 7 (x(£))x(£) = w(t) (14)

where

0 01 02 03 04 05 06 07
XBL

0.15

o
50 100 150 200 250 300 350 400 450 500

n

W (x(t) = D2(1 + ex?(£)) (15)
where w(t)is the unit intensity Gaussian white noise i.e.
E[w(t)w(t + t)] = 6(t). The failure probability is to be estimated
within the time t € [0,15] s with At = 0.01 s for different barrier lev-
els as mentioned in Table 2. 500 samples are used to calculate the
failure probability with asymptotic sampling. Fig. 9a shows the re-
sults of 10° Monte Carlo simulation versus asymptotic sampling
using 500 samples. Fig. 9b shows histogram of the sample genera-
tion of the asymptotic sampling with 10* samples. Fig. 9c indicates
sorted maximum values of 500 samples of the Monte Carlo for this
oscillator versus the first 500 time samples of just one dynamic sim-
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Fig. 9. Asymptotic sampling for Duffing oscillator, t € [0,15] s, At = 0.01 s, € = 10. (a) Estimation of failure probability by Monte Carlo (solid line, 10° samples) and Asymptotic
sampling (asterisks, 500 samples). (b) Histograms of asymptotic sampling with 10* samples. (c) Sorted maximum values of the absolute response of the system; blue: Monte
Carlo with 500 samples, green: Ergodic sampling with one sample. (d) Histograms of asymptotic sampling with 500 samples. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Ten estimations of the reliability index g with asymptotic sampling for 20[s] for the Bouc-Wen oscillator using 500 simulations and five support points. (a) finax = 0.36,
Af=0.02, P; =5.52 x 1075, CoV(P(20))=1.79. (b) finax = 0.618,Af = 0.02,P; = 6.65 x 1075, CoV(P(20)) =2.27. (c) Exponentially distributed optimized support points,
Py =2.74 x 1075, CoV(P(20)) = 0.47. (d) Logarithmical distributed optimized support points, P; = 1.44 x 1075, CoV(P(20)) = 0.46.

ulation of the oscillator which is used for estimating the initial
guess for the optimization algorithm using ergodic sampling
assumption i.e. the linear part of the oscillator. Fig. 9d shows a his-
togram of the sample generation of the asymptotic sampling with
500 samples. Comparison of Fig. 5b and d show that the sampling
density of the asymptotic sampling is not severely affected by
changing the sample sizes. These simulations are also performed
to illustrate the mechanism in which asymptotic sampling moves
the PDF of the simulation.

5.3. Nonlinear Bouc-Wen oscillator exposed to non-stationary
excitation

The Bouc-Wen oscillator is chosen as the next single DOF non-
linear case. This model simulates a single storey shear frame ap-
plied to non-stationary earthquake excitation which is modeled
as a Kanai-Tajimi filtered modulated white noise. The systems
equations of motion are written as

mx + cx + (1 — a)kz + okx = —ma(t)

Z=AX — px|z| — y|X|z (18)
where a(t) is the ground acceleration given by

J+ 2(wy + 0%y = e(t)w(t)

a(t) = —(2lwy + w’y) 47
where e(t) is the envelop process modeled as

e(t) = 4(exp(—0.25t) — exp(—0.5t)) (18)

w(t) is Gaussian white noise process E[w(t+T)w(t)]=Ie*(t)s(t)
where I = 0.64 m?/s* is the intensity of the white noise. Parameters

of the model are chosen as the ones used in [3] i.e. m = 40 x 10° kg,
k=1 x10°N/m, c=5 x 10*> Ns/m, o = 0.603, = —1.8548, 7 = 39.36,
A =5.868. The failure probability estimated using Monte Carlo sim-
ulation for barrier level Xg, = 0.64 within t € [0,20] s with 6 x 10°
samples is py= 1.3 x 107>, Fig. 10 shows estimations of (1) for dif-
ferent distributions of support points with 500 samples for this
oscillator. Fig. 11a and b show the results of the AS compared to
the standard Monte Carlo estimates and the histogram of the sam-
ples of the asymptotic sampling with 500 samples, respectively. The
results indicate that the least coefficient of variation for estimated
failure probability is obtained by the logarithmic distribution of
support points, e.g. Fig. 10d, like the linear case and that the estima-
tions of the model are in very good agreement with the standard
Monte Carlo simulation.

5.4. Linear MDOF oscillator

The linear MDOF oscillator is simulated as a special case of the
next example where € = 0. Standard Monte Carlo simulation is per-
formed on this case with 1.05 x 10° samples and the results are
compared with estimations of the asymptotic sampling.

5.5. Nonlinear MDOF oscillator

The Duffing type MDOF oscillator of the Benchmark problem
according to [8] is adopted to investigate the performance of the
asymptotic sampling on a common problem. The system consists
of a 10DOF shear frame subject to the earthquake load. The earth-
quake excitation is simulated as a filtered modulated white noise
as
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Fig. 11. Asymptotic sampling for Bouc-Wen oscillator, t € [0,20]s, At=0.02 s. (a) Estimation of failure probability by Monte Carlo (solid lines, 10° samples each) and
Asymptotic sampling (asterisks, 500 samples). (b) Histograms of asymptotic sampling with 500 samples.

X(t) = ApgX(t) + Beow(t)

(19)
p(t) = CeoX(t) + Deow(t)
where
0 1 0 0 0
-0, 20,0, 0 0 1
A= | 0 0 1 - B=1,
Qf, 20, 05, 205, 0
(20)
CEQ:[Qfg 2015 —Q, *ZngQZg]-, Dgq = [0] (21)

where w(t) is the white noise i.e. Eflw(t)w(t + 7)] = I5(t) with inten-
sity I = 0.08 m?/s® modulated by the function

t/2, Os<t<2s
hit) =4 1, 2s <t < 10s (22)
exp(—0.1(t — 10)), t > 10s

where Qqg=15rad/s, w,e=0.3rad/s, {1g=0.8and {;=0.995. The
equations of motion for the system are

Mii(t) + Ca(t) + K(u(t))u(t) = F(t) (23)
m 0 0 . 0 C1+C —C 0 0
0 m 0 . 0 —-C; C+c3 - ... O
M=|0 0 0 . 0], c= 0 —C3 C3+C4 0
Soon .0 : : : 0
0 0 0 0 miyo 0 0 0 —C10 Ci0
(24)
]}1+k2 7122 0 0 1
—kz k2+k3 —’7(3 0 1
K=| O —ks ks +ka 0], 1=
: : 0 1
0 0 0 —]_(10 I_(m 1 10x1
(25)
and
. T 2
ki = k; 1+6<M> , fori=1,...,10 (26)
5uref

where F(t) = —M{1}p(t), dure=0.02 m and €=0.1. System parame-
ters are assumed to be

my=---=mp=10x10°kg, Kk =k, =ks =40x10°N/m, k,
:](521(6:36X106N/m, k7:k8:kg:k10
=32x10°N/m, ¢ =2{v/mik;

and {;=0.04 fori=1, ..., 10. The results of failure probability esti-
mation for different cases of barrier levels with asymptotic sam-
pling with various number of samples are shown in Table 2. The
time interval of the simulations in all subcases is t € [0,20] s with
the resolution At=0.005s. In the first two subcases the failure
event is defined as the displacement of the first storey exceeds
0.047 m and 0.052 m while the next two subcases are defined as
when the relative displacement of the tenth storey exceeds
0.024 m and 0.028 m within the mentioned time interval. Results
of the standard Monte Carlo simulations are as reported in [8].
The results show that asymptotic sampling overestimates the fail-
ure probability in this case. In order to study the reason for this
overestimation, the number of samples is increased to 1000 and
5000. In all cases the method consistently over estimates the failure
probability which indicates that there exist some bias on the esti-
mations of the method.

6. Conclusions

The paper provides some practical guidelines for the application
of the asymptotic sampling method to problems in structural
dynamics involving a large number of random variables. This
method is based on Monte Carlo simulation with artificially in-
creased standard deviations of the basic random variables in stan-
dard Gaussian space and some asymptotic properties of the failure
probability. Hence the application is basically straightforward. This
study aimed at an optimal choice for the increased standard devi-
ations with particular focus on the efficiency and accuracy of the
method. For this purpose, a simple and effective optimization
strategy was developed and implemented.

The numerical examples show that the asymptotic sampling
method can handle complex stochastic dynamics problems reason-
ably well. As shown in this study, the choice of appropriate support
points for the extrapolation of the safety index or failure probabil-
ity has a significant effect on the estimation uncertainty. This per-
tains to both bias and sampling error. The method is not negatively
affected by the dimensionality of the problem, i.e. several thou-
sands of random variables do not pose any difficulties. The cases
of nonlinear SDOF oscillators (Duffing, Bouc-Wen) show that accu-
rate results down to probability levels of 1072 can be achieved with
less than 3000 simulations.
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The case of a Duffing-type MDOF system indicates a bias in the
estimated failure probabilities. This bias can be explained by iso-
lated regions of failure in the space of random variables. A respec-
tive simple example shows that this bias can be removed by
shifting the factors of support points for the probability extrapola-
tion closer to unity. This step, however requires increased numer-
ical effort since then the probabilities for the interpolation become
smaller and more simulations are needed for reliable estimates.

It may be summarized that asymptotic sampling treats some
well-known problems in structural dynamics reasonably well.
While the method is certainly not most efficient and/or most accu-
rate in all cases, it appears that due to its simplicity the method
may be considered a very versatile tool for reasonably accurate
estimation of failure probabilities, in particular for very high-
dimensional problems.

Further studies will focus on the application of the concepts as
developed here to practical cases such as the potential failure of
wind turbines under the dynamic action of a turbulent and spa-
tially correlated stochastic wind field.
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Variance reduction Monte Carlo methods for wind turbines
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Department of Civil Engineering
Aalborg University, 9000 Aalborg, Denmark

ABSTRACT: Development of Variance Reduction Monte Carl&*(MC) methods has proposed the possibil-
ity of estimation of rare events in structural dynamics.di#incy of these methods in reducing variance of the
failure estimations is a key parameter which allows efficiesk analysis, reliability assessment and rare event
simulation of structural systems. Different methods haserbproposed within the last ten years with the aim
of estimating low failure probabilities especially for higimensional problems. In this paper applicability of
four of these methods i.e. Importance Sampling (1S), Dsta@ontrolled Monte Carlo (DCMC), Asymptotic
Sampling (AS) and Subset Simulation (SS) are compared to ether on a common problem. The aim of
the study is to determine the most appropriate method faicgtion on realistic systems, e.g. a wind turbine,
which incorporate high dimensions and highly nonlinearctires.

1 INTRODUCTION lution of the PDF of the process within time. This is
of great interest since it gives a good insight into the
Assessment of reliability and design of highly nonlin- statistical characteristics of the system and effect of
ear and high dimensional structures such as wind turdifferent components, i.e. controller, on it.
bines require estimation of very low failure probabili- ~ Another approach for estimation of the first excur-
ties of the system. This task can be tackled from thregion probability of any system is based on calculat-
different points of view. The first class of methods areing the evolution of the Probability Density Function
the extreme value distribution fittings to the extracted(PDF) of the process and integrating it on the spec-
data of a wind turbine (Caires & Sterl 2005, Mackay, ified domain. Clearly this provides the most accu-
Challenor, & Baha 2010). These data might be takemate result among the three class of the methods. The
either from measured responses of a real wind turFokker-Planck-Kolmogorov (FPK) equationis a well-
bine or from epoches of the response simulated bknown tool for realizing the evolution of a stochastic
computer. This can be done in combination with someprocess governed by a differential equation. Although
sampling methods such as the epochal method or theplution of the FPK for even low order structural dy-
Peaks Over Threshold method (POT). It is implicitly namic problems require excessive numerical compu-
assumed that the parent distribution belongs to the daations. This confines the applicability of the FPK to
main of attraction of one of the extreme value dis-a very narrow range of problems. On the other hand
tributions; therefore the excess values above a givethe recently introduced Generalized Density Evolu-
threshold follow a Generalized Pareto (GP) distribu-tion Method (GDEM), (Li & Chen 2009, Chen & Li
tion (Naess & Clausen 2001). The required failure2009), has opened a new way toward realization of
probability will be extrapolated from the fitted distri- the evolution of the PDF of a stochastic process. It is
bution. an alternative to the FPK. The considerable advantage
On the other hand the so-called Variance Reductionf the introduced method over FPK is that its solution
Monte Carlo simulations (VRMC) might be used for does not require high computational cost which ex-
estimating the failure probabilities (Sichani, Nielsen,tends its range of applicability to high order structural
& Bucher a). The applicability and efficiency of the dynamic problems.
VRMC methods on wind turbines is the subject of
this study in order to understand advantages and lim-
itations of VRMC methods within the framework of 2 ESTIMATION OF LOW FAILURE
wind turbines. The VRMC methods enable efficient ~PROBABILITIES
estimation of the first excursion of the wind turbines
within reasonable computation charge. However, the¥stimation of failure probabilities of a wind turbine
do not provide any means of understanding the evomodel is not a trivial task since it incorporates a highly



nonlinear model for which the failure probability is to for global comparison of accuracy of the methods.

be estimated within a long time duration e.g. 600s. This study prevails advantages and disadvantages

However on the structure part, the wind turbine con-of each of the methods in application on dynamic sys-

sists of a simple linear model, nonlinearities in suchtems. Next, the method with highest merit is chosen

models appear from loading. These stem from twaand applied on a wind turbine model developed in pre-

origins namely the nonlinear aerodynamic loads andious study c.f. figure 7.

the presence of a controller. The aerodynamic loads

are highly nonlinear functions of the instantaneou

wind speed and the pitch angles of the blades whic?“l?' IMPORTANCE SAMPLING

are calculated with different means e.g. Blade Ele ;

ment Momentum theory (BEM) in this study. The 31 Introduction

pitch-controller introduces additional nonlinearities To apply IS (Macke & Bucher 2003) it is necessary

to the model i.e. due to its saturation state. Next acto have estimation of the system responses at the fail-

cording to the design criterions the barrier level ofure time instance, i.e. displacements, when it is ex-

a specified failure probability, e.§.8 x 1077, is re-  cited by the increments of the Wiener process. This

quired to be defined. This can most efficiently be esestimation is the basis for constructing the so-called

timated if the Cumulative Density Function (CDF) of control functions which their characteristics are that

the failure probability can be derived down to low fail- they bring the system response to the failure state at

ure probabilities of the ordeil) 7. failure time instance, i.e,, = kAt, if the system is
The focus of this paper is on the VRMC meth- excited with them. Next, these deterministic drifts are

ods. Among the various available methods Impor-2dded to the Wiener increments and the result is used

tance Sampling (IS) (Bucher 2000, Au & Beck 2001,as the final system excitation. Starting by designing

Macke & Bucher 2003) , Distance Controlled Monte control functions, if excitations are not Wiener incre-

Carlo (DCMC) (Pradlwarter, Schuéller, & Melnik- ments themselves, they should be represented in terms

Melnikov 1994, Pradlwarter & Schuéller 1997, Pradl- of them. Suppose the system is described by the Itd

warter & Schuéller 1999), Asymptotic Sampling (AS) SDE (1)

(Bucher 2009, Sichani, Nielsen, & Bucher a, Sichani, -

Nielsen, & Bucher b), and Subset Simulation (SS) dZ(t) = p(t, Z)dt + o (1, Z)dW (?)

(Au & Beck 2001) are chosen primarily. Z(s) =2
All of the methods aim at the same subject, i.e. esti- 5 =

mation of the low failure probability events. However where Z(t) is p-dimensional system response sub-
they tackle the problem from very different points of jected to the initial conditionsZ (s) = z for any
view. IS moves the so-called sampling density of they < s < 7 and W (¢) is the vector of g-dimensional
problem to the boundaries of the failure region hencenit Wiener processes. Given that the failure do-

generates more samples in this area. DCMC workgnain boundary is specified by the failure surface
more on a logical basis where the idea is to run allg(z(t’\/\/)) — 0 such that

the simulation samples simultaneously and find those

processes which are closer to the boundaries of the 7 _ {Z 19(2) > 0} @)
safe domain and increase the outcrossing events by

putti(;19 mlore emphagis or:]I thesi important events. Thesing (1), (2) can be written in the terms of the Wiener
AS development is based on the asymptotic estimas, ... . _ :

tion of failure probabilities (Breitung 1989). Here theaexq.tatlon les o W ]g(W) >0 } the failure prob-
advantage of the linear relationship of the safety in-2bility can be defined as

dex for multi-normal probability integrals is consid-

ered to estimate low failure probabilities by proper Py = / d P (W)

scaling of the probability integral. AS forces more 7

outcrossing by increasing the excitation power. SS

takes its basis on the conditional probability estima- — / [[g (Z(t,W))} d Py (W) (3)
tion. It breaks the problem of a low failure probabil- Rd

ity estimation into estimation of a multiplication of

1)

some higher probabilities. Next a conditional sampler = E, [[ [g(z)]}
i.e. Modified Metropolis-Hastings algorithm is used
to estimate the conditional probabilities. wherel[] is an indicator function which is equal to 1

Primarily introduced methods are used for failureif the process has outcrossed to the failure domain and
probability estimation of a Single Degree of Freedomelse is zero. The probability measurg(B) relates a
(SDOF) oscillator. Comparison is made on the resultprobability to any sub-domaif € R?, i.e. a differen-
of the methods in terms of their accuracy, require-ial volume around a sample pomt and can be writ-
ments and computational load. Standard Monte Carlten asdP(W) = fw(w)dw. E,, signifies the expec-
(SMC) simulation for the same system is performedtation operator under the probability measyirgw).



Based on (3) SMC estimates the failure probability ofwhereg(Z) = ¢(Z(¢,W)). The significance of equa-

the system by (4); wher¥;,, is the number of Monte tion (7) is that the probability measure can be changed

Carlo samples. so that the proced#/ can be used instead of the orig-
inal proces$V to estimate the failure probability of a

. 1 N &) system provided that the Radon-Nikodym derivative
Pr=+- Ig(ZY))] (4) s taken into account. Based on (7), the failure proba-
=1 bility of the system can be estimated using (9)
3.2 The Girsanov Transformation . 1 Neim ~ d Py (W)
| | Py = I[g(Z9)] (ﬂ())) 9)
The idea of the IS based on the Girsanov theo- Nsim, d PRy (WV))

j=1
rem is to introduce a square integrable drift) - !

. T . . . .
L.e.> ] J, Uj(r)dr < oo - into the excitation, which ;  pys5|AN ROULETTE & SPLITTING WITH
brings the systems response to the failure region atthe pSTANCE CONTROL

desired time.

The method encompassed two components “Russian
Roulette and Splitting” (RRS), which replaces “unim-
R . portant” realizations with the “important” ones, and
The Ito SDE (1) can then be written as “Distance Control” (DC), which takes care of de-
_ - termining the importance of the realizations. The

dZ(t) =p(t,Z)dt — ot Z)u(t)dt method substitutes the processes with low probabil-
. ity of causing failure, called the unimportant pro-

AW (t) = u(t)dt + dW(t) (5)

+o(t,Z)dW(t) (6)  cesses, by the so-called important processes i.e. pro-
cesses with higher probability of failure. This substi-
Z(s) =z tution might be readily done by splitting(duplicating)

) some of the important processes with control over
The Girsanov theorem then states that the procesfeir statistical weights such that the statistics of the
W is a Wiener process under the probability mea-simulation is not changed after splitting. The dis-
sure Pj,. Therefore generating samples\&f under  tance measure is used to distribute the samples in the
the probability measuré}y corresponds to generat- state space. Pradlwarter and Schuéller (Pradlwarter,
ing samples otV under the probability measuig;,.  Schuéller, & Melnik-Melnikov 1994) define this in
This means that the drift of the excitation might be de-the following way. A given realizatiorz(¢) of the
signed in any sense that brings the system to the failb-dimensional state vectaf(t) is associated with
ure at the desired time instance. Next, the probabilitya vectorl (z(¢)) with non-dimensional components
measure should be changed properly to take into ad; (z(t)).
count the effect of this transformation which is done
in the following way l(2()) = 2i(t) — pz, (t)

. di=1,---,p (10
(@) p (10)

Jw(w) )

Fr= /qu[g(Z(t,W))} Fau(w) Fau(w)dw wherepz (t) andoy, (t) denotes the mean value and
the standard deviation of the possible non-stationary
d Py (W) proces¥(t). In case these cannot be determined an-

= / I [g (Z(t,W))} Py, (W) S (W)dw (7) alytically a preliminary SMC is performed. The com-

R w ponentd; (z(t)) may otherwise be specified with arbi-
trarily selected relative weight. The distance measure

d (z(t)) related to the realization is then defined as

dPW (W)

dPg (W)

19(2)]

7 K

where g¢(Z) = ¢(Z(t,W)) and the ratio d(z;(1) =) a;l1(2;5(1) =1 (1) |
dPy(wW)/dPg (w) is the well-known Radon-Nikodym =l (11)
derivative of the probability measuré?y (w) with
respect to the measur@Py (w). Ey signifies the
expectation operator under the probability measure o
f(w). Upon the Girsanov theorem the Iorobaloilitywhere z;,;(t) denote the R closest realization to

z;(t) and||.|| is the Euclidian norm. The closest re-
measure of (7) can be changedfip(w) hence (8) - Ziu 2 ion with the weight, is weighted highest. The

weights were chosen as

ap > ag >+ > ag

d Py (W)
d PRy (W)

P; = Ey|I[g(X)] (8)

CLj = 21_j (12)




For a SDOF oscillator subjected to Gaussian whiteconditional probability terms in (14) can not be esti-
noise||l(z)|| with 1(z(t)) defined by (10) is propor- mated by SMC and need a technique which is capa-
tional to the mechanical energy of the oscillator. How-ble of generating samples conditioned on the previous
ever, (10) does not represent the mechanical energy samples. Au and Beck (Au & Beck 2001) proposed
any other case than the indicated. Instead, (11) can hesing a Modified Metropolis-Hastings (MMH) algo-
replaced with rithm for this purpose and called it tis&ibset simula-
tion. The method starts with a SMC witN,;,, num-
K ber of samples which allows accurate estimation for
d(z;(t)) = ;B (2;,;(t) — (1)) (13)  the first term on the right hand side of (15). The real-

j=1 izations of the excitations in thé" level of the sim-

_ _ ulation, i.,e W® = {w{” ... W’ }whereW® de-
whereF,, is the mechanical energy of the system. The,stes increments of the Wieneér process, which their
mechanical energy, itself could alternatively be use¢esponse corresponds to the barrier levels higher than
as a distance measure. This possibility is also exame harrier leveb, . These realizations provide a set of
ined by the authors though no improvement of the reyhe so-called seeds for generating the next generation
sults compared to the weighting proposed by (11) iy excitations. Candidates for next generation of ex-
observed; which has already been reported in the litzjtations are generated using a conditional sampler
erature (Pradlwarter, Schuéller, & Melnik-Melnikov e.g. MMH, using these seeds. This step provides the

1994, Pradiwarter & Schugller 1997). estimation for the conditional terms in (15) and will
be repeatedn times , c.f. (15), to reach the required
5 SUBSET SIMULATION failure probability i.e pj* provided (16).
The subset simulation strategy starts from the reach- pimt Neim ‘
able barrier level(s) by a predefined low number of p}=-L—3"LoW) | i=1,-,m (17)
. ) N.. J
samples and increase the level gradually until the stm 5y

highest barrier level required. This can be done by

defining intermediate probability levels = p}m) < where pgl =1 p} represents the minimum failure

P << pgcl) corresponding to the intermediate Probability calculated in th¢" step of the simulation.

! . . (s )
barrier levelsh = b,, > b,,_; > --- > b;. Using this & denotes the failure domain arigh, (W\") is the in-

property taken from the fact that failure probability dicator function which will be one if the response to
can not increase as the barrier level increases, the rafy) lies in the: ™* intermediate failure domain and is

quired failure probability ; is written as zero otherwise.
pr(b2(Nb1) _ py(bo)
balbr) = = 14
Py (b2b1) o) ps(oy) (14) 6 ASYMPTOTIC SAMPLING

using (14) the final failure probability, i.e. the lowest The method is developed based on the asymptotic

failure probability required, is written as the following estimation of multi-normal integrals. The problem

product of approximating a multi-normal probability integral
(18) on the scaled LSF which can be represented after

ml proper transformation of random variables as
pr(®) = ps(01) [ ] ps(bisalbi) (15)
=1

. _ 1 2
The method then follows with estimation of each of ~ P(3:8) = / HSO( — 56 >d5 (18)

them terms on the right hand side of (15) using some g(3-1e)<0 7!

type of Monte Carlo simulation. Therefore it is bene-

ficial to let the barrier level be chosen in an adaptivewhere¢ = {¢&;,--- ,{y} denotes the vector of stan-
manner and fix the intermediate failure probabilitiesdardized independent multi-normal random variables;
associated to them. All of the terms in the productLSF is defined ag(5~'¢) < 0. The first parameter in
are chosen large enough so that they can be estimatéte parentheses on the left hand side denotes scaling
with low number of samples, i.ey = 0.1 in conjunc-  of the variables in the LSkx(.) denotes the standard

tion with (16). normal density function. The boundaries of the inte-
gral in (18) can be changed to unscaled LSF which
pr(b1) = po } (16) reads
pf<bi+1|bi) = p , t=1--m-1

N
62
p;(by) can then be estimated efficiently by SMC with ~ p(5;€) = 87 / 1T <P< - 7§f>d€ (19)
low number of samples i.&V,;,, = 100. However the g(E)<0 =1



which is shown to be asymptotically equal to
d(—p)|J|71/? asB — oo; where|J|~'/? is a param-
eter related to the first and second order derivatives =
of the LSF at the design point. (18) and (19) mean N
that the desired low probabilities can be approximated -1t
on a scaled failure domain and then transformed back 0 100 200 300 200 500 600
into the unscaled domain. This idea forms the proce- T

dure of AS (Bucher 2009) which starts with a SMC
on the scaled variables i.e. excitations vattificially 2of
increased standard deviation. The reliability index is  ~

b)

primarily estimated based on the scaled failure prob- =0
ability, e.9.3(f) = ®(1 — p*aed), and is then scaled -20¢
back to the unscaled space, €il) = f~'3(f). The -40;

. - . . 160 260 360 460 5(50 600
desired probability is estimated ds™'(3(1)) then. T

More details of the method and some practical aspectsigure 1: Control function and response of the SDOF osoiljat
for improving its efficiency on dynamic problems are &) Control function, b) response.

presented in (Sichani, Nielsen, & Bucher a, Sichani,
Nielsen, & Bucher b).

7 NUMERICAL SIMULATION 10l

7.1 SDOF oscillator 10|

t

The first simulation is based on a single DOF linear =

oscillator (20), characterized by, = 1s~! and(, = <
0.01 ol !
F(t) 4+ 2Cwni (t) + wia(t) = w(t) (20) w0l
w(t) is zero-mean Gaussian white noise with unit 1o° P ‘ ‘ ‘ ‘
intensity. The barrier level is normalized with re- o 100 200 fFSO] 400500 600
spec; tE)l/che standard deviation of the respanse= Figure 2: Estimations of the failure probability with IS; Ib
(4Cw?) /= line: SMC, dots : IS
by = b (22)
N7 ox considerable. Since failure may occure at any time in-

. . . . stance within a distinguished time period [0, T's,
The failure event is defined as the maximum of theg requires that all of the control functions that cause
absolute value of the response of the oscillator exsajjyre during this time interval should be available
ceeds a certain threshold *b”, i.e.(R¥(¢)| > b) for 4 ql0w considering the interaction between different
t € [0,600]. The normalized barrier level is assumedyesign point control functions. This requires heavy
to beby = 5 in simulations. Simulations are carried gynamic analysis in order to compute these control
out with At = 0.0614s and € [0,600}s which in- ) ctions primarily and also high memory is required
volves 9772 samples to examine the performance qf; saye them. Unfortunately this requirement specifi-
the method in high dimensions. Exact failure proba-)ly for Multi Degree Of Freedom (MDOF) nonlin-
bility and reliability index for the problem, calculated g5 'systems poses severe difficulties as in such cases
with standard Monte Carlo simulation withx 10°  there’exist no analytical solution for the design point
samples, aré’;(600) = 2.07 x 107" and# = 3.5310  gycitations. In such cases a high dimensional opti-

respectively. mization algorithm should be used to find the design
points excitations, alternatively called control func-
7.1.1 Importance sampling tions, which is very expensive, (Koo, Der Kiureghian,

Figure 1.a shows one of the control functions of the& Fujimura 2005).

SDOF oscillator. The response of the system to this These problems have also been noticed by other re-
excitation, i.e. deterministic drift, is shown in 1.b. Es- searchers however to the best knowledge of authors
timation of the failure probability for different time IS applications are very limited i.e. nonlinear SDOF
instances are shown in figure 2. As seen from this figsystems, (Naess & Gaidai 2008), or linear MDOF
ure IS is very attractive in the first sight due to its highsystems with only one stochastic excitation process
accuracy for failure levels. However its shortcomings(Jensen & Valdebenito 2007). The above reasons con-
in application to more complicated problems are alsalude that using IS with presented scheme may not be
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Figure 3: Estimations of the failure probability with DCMC;
Solid line: SMC, dots: DCMC

considered a proper candidate for for application to

wind turbine models. S ol
7.1.2 Russian roulette & splitting with distance 107}
control :
The DCMC with the distance measure considered as 10°h
a weighted summation of six closest neighbor pro-
cesses i.el = 6. The parameters of the DCMC are L v I T T
chosens = 0.8, py = 0.5, Wmin = 5 x 1072, (Pradl- t[s]

warter & Schuéller 1999), and the results are showlkigure 5: Estimations of the failure probability with AS; 1B

in the figure 3. A unique feature of DCMC compared line: SMC, dots: AS

to the other algorithms implemented in this study is

that it works directly on the responses and does not

make any changes in the excitations. Advantages gfercent of the realizations crosses out c.f. figure 4.b
DCMC are generality of application and low memory compared to figure 4.a in which 2 to 50 percent of
requirements and its capability in handling high di-the realizations have crossed out. The black dots on
mensional problems. The method’s shortcomings aréhe right hand side of the figures show the exact value
the implementation of it which requires all of the sam-of the beta. Figure 5 shows estimations of the failure
ples to run in parallel i.e. all 500 simulations should probability for the same barrier level in different time
evolve simultaneously to allow statistical weighting instants where solid line shows the SMC results.
adjustment. This requires to change the states during

the time integration of the governing equations. This; 1 4 g bset simulation

may cause some practical issues during implementqqesults of SS apoli : -

: . : pplied on the oscillator for failure
tion of t_he algorithm on pract_lcal cpdes. Next, D.CMCfor different time instants within the time interval
like IS is capable of estimating failure probability of ¢ € [0,600]s are shown in figure 6 as counterpart of

a predefined threshold level. This is less motivating | igures 2, 5 and 3. For estimation of failure probability
wind turbine problems where the opposite is require n this fig’ure 4 Ie\}els of MCMC is used only faF —

i.e. the threshold for a given failure probability. 400s. 4505 600s: for T' = 150s.200s. 250. 300. 350

5 MCMC levels are used and fa@r = 100s, 75s, 50s
7.1.3 Asymptotic sampling respectively 6,7 and 8 MCMC levels wifty = 0.1
For each barrier leveV,;,, = 500 number of samples with N;,, = 500 samples in each step. The pro-
with 5 support points are used with differefttf and  posal distribution is assumed uniform with half spread
range off. Figure 4 illustrates the effect of distribu- equal to the standard deviation of the excitation seeds
tion of support points. Clearly too low values for (Au, Cao, & Wang 2010).
will cause all of the processes to cross out which does The SS approach is based on changing the excita-
not give any information while choosing too larfie tion realizations like IS and AS. The method is based
will cause few out crossings which increases the unen designing new excitations within a fixed time du-
certainty of the estimation. It is seen that the maxi-ration based on previous excitation realizations which
mum accuracy of the method, i.e. the least standartave reached the highest barrier levels in previous
deviation of the estimate, is achieved when the supsimulations e.g. seeds. In this way it may be inter-
port points are distributed in the region where 2 to 98preted as a stochastic optimization procedure. The



Aerodynamic
loads
BEM

White —Turbulenc Inﬂue_nc
noise ‘ filter function

|
E 10°} Rotor’s Azimuth

7 LI i Structural

107 ¢ : E | Pitch controller Rotor’s speed dynamic —
. s N solver |

-8 . F | I

o 1 auﬂgpmpamny Structural responses
. estimation
10° ¢ ) ) ) ) S 1l
0 10 200 300 400 500 600 Figure 7: Flowchart of the wind turbine model.

t[s]
Figure 6: Estimations of the failure probability with SS;lilo

line: SM : . .
ine: SMC, dots: SS (22) provides the relation

method has several interesting features which is in P(Rmax(T) > r) < T —38x%1077 (23)
line with requirements of the wind turbine design r

criteria. An advantage of SS is that it estimates thel_ . . . ,
thresholds related to a given failure probability. This | N€ design value ris obtained as the solution of (23).
It is out of question to determine this by SMC simula-

is what is required in wind turbine design codes, (IEC

2005), while the other three methods provide the fail-ilon dué to the indicated low failure probability. The
ure probability given for a predefined threshold level.Su99ested approach in the IEC61400-1 standard is to
SS is a very accurate method for low failure proba—use a Weibull or a Gumbel distribution as the distribu-

bility estimation of high dimensional nonlinear sys- tion functionfFy, . r) =1 — P<Rmaz(T) > 7’>- The
tems (Au, Ching, & Beck 2007). However some prac-locations, scale and shape parameters, which are es-
tical procedures should be taken into account for verfimated from the available sample. Applicability of
high number of basic variables which should be kepthe selected method on a reduced order model of a
in memory during simulations e.g. random numberssMW reference wind turbine developed in previous
required to generate the turbulent wind field. Neverstudy c.f. figure 7, (Sichani, Nielsen, & Bucher b),
theless the method seems to propose a good candidagetested. Specifications of the wind turbine model
for application on the wind turbine model. Most fa- are adopted from the NREL reference wind turbine
vorably the method is a so-called acts as a black-boxJonkman, Butterfield, Musial, & Scott 2009). It is at-
which means it does not require any a-priori knowl-tempted to cover the principal behavior of a wind tur-
edge of system which adds to its advantages. bine.
The model consists of structural and aerodynamic

_ _ loads but no controller, i.e. fixed rotational speed is as-

7.2 Wind turbine sumed. The details of the model specifications are ex-

Design codes for wind turbines are based on a returﬁlamed in (Sichani, Nielsen, & Bucher b). The wind

period (expected first-passage time)mof— 50year eld is simulated in 31 nodes on 50m distance from

o : : . nacelle of the rotor with 63m blades using a state
which |tself_r_eqU|res deslgn valu_es related to the fall'space model. Failure probabilities of the model are es-
ure probability of the wind turbine models down to

the order10-7. According to the IEC61400-1 stan- timated with the AS as the primary candidate method.

. Figure 8 shows failure probability of the wind tur-
dard (IEC 2005), the design value r of a Sto.ChaS'bige model estimated wFi)th SMC )\/Nitﬂlx 10° sam-
tic responsel R(Y) , t[0,00] }(deformation, bending les, AS with32 x 500 samples (Sichani, Nielsen, &
moment, stress, etc.) is obtained by extrapolation OE ' ’ '

the failure probability under normal operation of the _ucher b), Weibull and Gumbel fi'gs Wi.th 500 simula-
. ‘ . tions each. The results of AS estimations show good
design value r in a referential epoclieto 7,. Pre-

suming independent failure events in adjacent referConSiStenCy with the SMC results. The AS method has

; S the advantages of very low memory requirement and
ential epoches the exceedance probability of the dez; ~ ~- . L : - )
sign value is given as simplicity of application even for very high dimen

sional problems.

P <Rm“m(T7‘) >T> = %P <RW(T) >T> (22) g concLUSIONS

R (T) and R, (T,.) denote the maxima value in Among the methods considered in this paper IS shows
intervalsT andT,.. With T,. = 50 year andl’ = 600s,  the highestaccuracy however faces serious difficulties
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1. Introduction

Efficient estimation of the first excursion probability of complex
structural systems such as wind turbines is a challenging task,
since a wind turbine is governed by a highly nonlinear and
high-dimensional model. However, the term “dimensionality” as
used here mainly refers to the basic stochastic variables of the
system, i.e. excitations or structural model uncertainties, rather
than the dimensions of the structural system. There already
exist a number of variance reduction Monte Carlo simulations
which overcome the task of efficient estimation of low failure
probabilities; see [1,2]. However, although efficient estimation of
low failure probabilities for low-dimensional problems especially
with linear characteristics has been shown to be possible by these
methods, high-dimensional cases face serious problems; see [3,4].
These problems might be of either analytical or numerical nature;
in each case they can easily render a method inapplicable;
see [5-7]. One class of available methods is the black-box methods,
i.e. methods which do not need any a priori knowledge of the
system under consideration, sometimes called trackable data. The
remaining methods might therefore be called grey-box methods,
denoting the demand for some a priori knowledge of the system.
This a priori knowledge traces back to the limit state function (LSF)

* Corresponding author. Tel.: +45 9940 8570; fax: +45 9814 8243.
E-mail addresses: mts@civil.aau.dk (M.T. Sichani), soren.nielsen@civil.aau.dk
(S.R.K. Nielsen), christian.bucher@tuwien.ac.at (C. Bucher).

0266-8920/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.probengmech.2011.05.013

of the problem. However, they might appear in different forms,
such as critical design point excitations in importance sampling
(IS) [8,9], the gradient of the limit state function, or important
directions through the design point in line sampling (LS) [10,11].
The amount of a priori system information required by grey-box
methods varies for different methods. An important problem that
exists with respect to these data is that an efficient calculation of
this a priori information is not always guaranteed. It may require
complicated mathematical analysis of the system, which may
not be possible for complex systems, or an excessive number of
numerical dynamic analyses, which clearly decreases the efficiency
of the method. Furthermore, as the complexity of the system
increases, for example, due to the presence of nonlinearities, non-
white excitations, or multiple excitation processes, calculation of
these a priori data becomes more difficult. In such cases black-box
methods, which do not have limitations regarding the parameters
mentioned, are preferred. Examples of such methods can be
found in the family of subset simulation techniques; see [12,13].
Another method has recently been introduced [14,15] with the
ability of estimating very low failure probabilities of order 10~/
with considerably lower computation cost compared to standard
Monte Carlo (MC) simulation. The method is conceptually based
on asymptotic approximation of the probability integrals proposed
by Breitung [16,17]. It has previously been shown that the
method provides good estimations of the low failure probabilities
with low sensitivity to the problem dimensions. Furthermore,
according to the generality of the concept, which keeps quite
close to standard Monte Carlo simulation, nonlinearities of any
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kind do not increase its computational cost considerably. Other
advantages of the method are its very low memory requirements
and simplicity of implementation, which extend the range of
the problems it is applicable to. In this paper, a very efficient
scheme for analysis of high-dimensional systems with any type of
nonlinearity is proposed. The proposed scheme allows calculation
of the very low failure probabilities of the system needed in design
problems. Three numerical examples are provided to illustrate the
applications of the method on popular nonlinear systems. Further,
a reduced-order model of a wind turbine is developed, and its
failure probability is estimated with the proposed method. The
wind turbine model is a very difficult example for which most of
the variance reduction methods are not applicable. It is shown that
the proposed scheme provides very good estimations of the failure
probability of such a complicated case with a very low computation
cost compared to Monte Carlo simulation.

2. Statement of the method

The basis of the proposed scheme is asymptotic sampling
(AS), proposed by Bucher [15]. The proposed scheme consists of
simulating Ny, simulations with the artificially increased intensity
of the driving white noise of the excitation in the so-called U-space,
which is done by the scaling factor f starting from 1. Note that,
according to [15], f denotes an artificial increase of the standard
deviation of the basic variables in standard Gaussian space by a
factor of 1/f. Some remarks about the underlying concept are given
here. It relies on the asymptotic behavior of the failure probability
in n-dimensional i.i.d. Gaussian space as the reliability index 8
tends to infinity (see [16]). This can equivalently be expressed by
the limit that the standard deviation o of the variables, and hence
the failure probability py, approach zero. Breitung also states that
the generalized reliability index B¢ as defined by

Be=—® (py) (1)

is asymptotically equal to the linearized reliability index B as
both tend to infinity. Consider a (possibly highly nonlinear) limit
state function g(X) in which g < 0 denotes failure. Let o be
the standard deviation of the i.i.d. Gaussian variables X, k =
1...n.Weare going to determine the functional dependence of the
generalized safety index 8 on the standard deviation o by using an
appropriate sampling technique. This is aided by some analytical
considerations in which we study the case of a linear limit state
function. Let this limit state function be defined as

g(X)=—Z§—|—1. )
i=1 !

If X is a vector of standardized Gaussian variables, then we have
the reliability index 8(1) from (see, e.g., [15])

1 11

If we now change the standard deviation from unity to a value of fl

for all variables x;, and keep the limit state function as it was, then
we can relate this to standardized variables U; = fX; such that

n

U;
— 41, (4)
= i

and the reliability index is given by

gU) = —

1 1 1
B0 s T RO )

i=1
Hence, we observe

BE) =f- B, (6)

Fig. 1. Linear limit state under scaling of standard deviations.

0 100 200 300 400 500
N.\'im

Fig. 2. Schematic plot of sorted maxima of a system for various f values. Black
curve: f = 1, blue curves: f < 1, MC: standard Monte Carlo simulation, AS:
asymptotic sampling, HU: high uncertainty. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

in which (1) is the safety index evaluated for f = 1. This
means that, in order to obtain a good estimate for (1), we
can compute the safety index for a smaller value of the scale
f using Monte Carlo simulation and then simply extrapolate by
multiplying the obtained result by f. Further details are given
in [14,15]. The geometric relations are shown in Fig. 1. While
this result is exact for linear limit state functions, it holds only
asymptotically as 8 — oo for general nonlinear cases, as shown
by Breitung [16]. Therefore, the concept of asymptotic sampling
utilizes the asymptotic behavior of the safety index g by applying
an extrapolation and regression technique.

In the first step, a Monte Carlo simulation corresponding to

f = 1 with Ny, samples is performed. Next, the maximum of
each realization is stored as Yime (i) = max{y? ()}, t € [0,T],i =
1, ..., Ngm, where y@ (t) refers to the ith realization of the process.

The maximum values of the realizations are then sorted in an

incrementing manner denoted as y*°. This procedure is then

repeated for different values of f. The y*o"® for different f values
are shown schematically in Fig. 2. In Fig. 2, the first region, denoted

MC, refers to the standard Monte Carlo region defined as yqx €

[min{y(f = 1)}, min{y{%%(f < 1)}[. The second region, AS
& MC, is defined as ymex € [min{y??™@(f < 1)} max{y?od(f =

1)}]. This region can be used as a check that AS estimates the
correct values for f = 1. The whole region above, defined as
Ymae € 1max{y?®(f = 1)}, max{y%%(f < 1)}], is where only
asymptotic estimation of failure probability is possible, where the
uppermost part might not be used for anything due to the high
level of uncertainty. For each barrier level, i.e. each horizontal line
in Fig. 2, in the AS region, the sum of the points above the line
divided by N, gives the scaled failure probability with the scaling
factor f related to the curve. The reliability index of each barrier
level is calculated as 8™ = & (1 — p{"). Finally, curve fitting

to the obtained 8 values is performed and is used to obtain (1),
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which is used to calculate the probability of exceeding the related
barrier level.

2.1. Scale factor increments

The next issue to be dealt with is the way the f values are
chosen. Noticing that the response of the system at each time
instant is a transformation of the excitation variables, denoted
G, the excitation(s) and response processes can be discretized as
W(k) = W(t)|;=kar and X(k) = X(t)|c=kat, respectively. k =
0,...,N — 1 corresponds to the continuous time interval t €
[0,T]; i.e. T = (N — 1)At. The following relationship between
excitation and response holds:

X(k) = G(W(k)), (7)

where W(k) = [W(k), ..., W(0)]. The transformation is then

decomposed into its linear and nonlinear parts W(k) = fW(k),
which results in

X(k) = XLin. (k) + XNonlinA (k)
= fGin. (W(K)) + Gioniin. (f W(K)), (8)

where W (k) = [V~V(k),~. . W(O)] = f~1W(k) is the scaled coun-
terpart of ‘W(k) by f. X(k) = G(‘W(k)) can also be decomposed
into

X(k) = Xgin. (k) 4 Xnoniin, (k)
= Gyin.(W(K)) + Gyoniin. (W (K)). 9)

(8) and (9) produce the following relation between normal and
scaled responses:

FX(k) = X (k) + f Gontin. (W (k) — Gnoniin. f W(K)). (10)

Assuming dominance of the linear part of (10), X(k), over the non-
linear terms, f Gnoniin. (W (k)) — Goniin. (f W(k)), the following ap-
plies:

E[Xpin (k)] & fE[Xuin. (K)]. (11)

Therefore, the nth maximum of the stochastic response X sorted
in descending order can be scaled up to the required barrier level

where the scaling factor is defined as f*6. = X,E.,'L)x /Xgp1. However,
while using only the linear part of (10) decreases the accuracy of
the estimate in general, it does not pose a critical deficiency in the
algorithm. This is since the exact “f” value is not necessary and a
good estimate of it works as well. Indeed, the better the two non-
linear terms in (10) cancel out each other, i.e. the smaller the term
fGrontin. (W(K)) — Goniin. (f W (k)), the sooner we obtain a certain
Xp, as the nth maximum according to (11); nevertheless, this re-
quirement will be satisfied anyway. Therefore, (11) is to be seen as
a tool which allows finding only a sensible estimate of the “f” value
which scales up the system responses such that Xp; is their nth
maximum. The consequence is that some more simulations may
be required to reach the required level. The simulations considered
in this study witness that (11) works well in this respect. Next, in
order to guarantee sufficient points for curve fitting, the domain in
which the maxima of the simulations are spread is divided into the
msipnimum desired number of support points in the curve fitting,
N

min» 45

A 20
g2 (12)
f My N

where ;= E[yma(f)] and oy = Ely2, (f) — u}1. The next f value
is then calculated as f + Af. (12) returns the values within 2oy
spread around the mean value of the process. For Gaussian dis-
tributed samples, 2o spread around th mean includes erf(1/ V2) x

Py

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

‘l O’ L L
Barrier level

Fig. 3. Comparison of cumulative distribution functions (CDFs) of the Duffing
oscillator. Bold black: Monte Carlo estimate, black: AS with 8 = Af + B/f, blue:
AS with smoothed 8 = Af + Bf ~¢. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

100 ~ 68% of the points; however, it is obvious that the maxima
do not follow a Gaussian distribution but an unknown distribution
which is to be estimated. Nevertheless, since only a rough estimate
of the range in which the points are located is required, (12) pro-
vides a good estimate of the range of maxima. Alternatively,
Af  minfy’ored} — max(ysorted (13)
f Novalts =+ Sn s
could be used instead of (12), where 6y € N is to ensure the
whole range will be covered with the required number of support
points. Nevertheless, both (12) and (13) give similar results in this
context. In the numerical examples in this paper, N,ifm = 5and
(12) are used. A conventional choice for 6y would be 3 if (13) is
preferred.

2.2. Scale factor bounds

Next, it is beneficial to also consider a lower bound for f to avoid
numerical difficulties, i.e. instability in numerical integration.
Considering that 10° samples are used in each dynamic analysis,
a failure probability of 10~2 can be obtained with a coefficient of
variation(CoV) of about 0.3. This value for the failure probability
gives the reliability index 8 = ®~'(1 — py) ~ 2. The relationship
B(f) = fB(1) [15] shows that in the ideal case a probability
of order 10716 can be estimated with 1000 samples with f >
0.2. However, for real cases, and especially for nonlinear systems,
this simple assumption might be used only to provide a practical
expected range for f. Therefore, a reasonable range of scaling factor
is proposed as f € [0.1, 1].

2.3. Curve fitting

Originally, it is proposed to use (14) with equal weights on all
the points.

B
ﬂ(f)=Af+j7- (14)
As mentioned in the previous section, a criterion for checking the
accuracy of the AS estimation is to predict the failure probability
of the MC & AS region, see Fig. 2, by asymptotic sampling. This
study shows that, although for most cases the proposed curve
provides good estimations of the failure probability in this area
(see Fig. 3), for more complicated cases, e.g. a wind turbine (see
Fig. 16), the linear curve seems to have some errors in estimating
the probability in this area i.e. the black curve shows a noticeable
jump from the standard Monte Carlo curve around p; = 1072,
Therefore it is proposed to use a more general curve (15), which



542 M.T. Sichani et al. / Probabilistic Engineering Mechanics 26 (2011) 539-549

includes (14) as a special case when c = 1:

B(f)=Af +Bf, c=>0. (15)

It should be mentioned that the process of fitting (15) would be
computationally more demanding than fitting (14), although not
considerably. Another advantage of (15) is that it allows examining
the validity of (14) by checking the values of the power c¢ for
different values of the failure probability. In order to check this,
plots of ¢ versus Np,ins denoting the number of barrier levels are
provided in the paper for all the numerical examples. In almost
all cases, clear growth of the power c is observed as the failure
probability decreases. In order to make a smooth estimation of
failure probabilities, a linear interpolation is then performed on the
calculated powers and is used to obtain the failure probability.

3. General nonlinear systems

In all numerical simulations - including the wind turbine model
of Section 4 - 500 realizations are simulated for each f value. In the
case of the Duffing oscillator, Bouc-Wen oscillators and the wind
turbine model, 30, 16, and 32 f values are used, respectively, within
the range indicated in Section 2.2. The main computational cost of
the algorithm is in dynamic analysis of the systems at hand, while
the rest of the procedure, i.e. curve fitting and extrapolation of
values for each barrier level, has rather low computational cost,
comparable to one dynamic analysis of the system.

3.1. Duffing oscillator

The first case represents failure probability estimation of a
Duffing-type oscillator. The equation of motion of the oscillator is
written as

X(t) + 2LnwnX(8) + @y (X(0))x(t) = w(t)
W2 (x(t)) = &2 (1 + ex*(t)) '

The linear angular eigenfrequency and damping ratio of the
oscillator are chosen as @, = 10 s~ ! and £, = 0.01, and the
parameter which controls the intensity of the nonlinearity in the
model is chosen as ¢ = 10. w(t) is the unit intensity Gaussian
white noise with the auto-covariance function E[fw(t)w(t + 7)] =
8(t). The failure probability is to be estimated within the time t €
[0, 15]s with At = 0.01 s for different barrier levels. 500 samples
are used to calculate the failure probability with the proposed
scheme on asymptotic sampling. Fig. 3 shows a comparison of
the estimated failure probability of the Duffing model with three
different curves. The solid black curve shows the results of a
standard Monte Carlo simulation with 10® samples. The thin black
curve shows the fitting with the curve 8(f) = Af + B/f with A
and B as parameters of the fit. The exponents c of the second fit are
plotted for 100 points evaluated as the barrier levels of the model,
and are shown in Fig. 4. The blue curve in Fig. 3 shows the results of
the fit with the linear interpolated power of Fig. 4. The magnitude
of the power in Fig. 4, c € [0.7, 1.4], suggests that 8(f) = Af +B/f
with power fixed to ¢ = 1 might be used as a good candidate for
this model, and the predictions are reliable.

(16)

3.2. Bouc-Wen oscillator

The second simulation consists of a single-degree-of-freedom
(SDOF) Bouc-Wen oscillator excited with non-stationary earth-
quake excitation modeled as a Kanai-Tajimi filtered modulated
white noise. The system’s equations of motion are written as

mx + cgx + (1 — a)kz + akx = —ma(t)

. . 17
z = Ax — Bx|z| — y x|z, (a7

08 r

0.7

N, points

Fig. 4. Exponents c of S(f) = Af + Bf° of the Duffing oscillator. Asterisk:
exponents of the fit, line: line fitted to the exponents.

pr

i i

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Barrier level
Fig. 5. Comparison of CDFs of the Bouc-Wen oscillator. Bold black: Monte Carlo
estimate, black: AS with 8§ = Af + B/f, blue: AS with smoothed 8 = Af + Bf .

(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

where a(t) is the ground acceleration given by

V4 2¢ oy + 0ty = e(t)w(t)

T (18)
at) = — (2 wy + 0%y),
where e(t) is the envelope process modeled as
e(t) = 4(exp(—0.25t) — exp(—0.5t)), (19)

and w(t) is a Gaussian white noise process E[w(t + T)w(t)] =
Ie?(t)8(z), where I = 0.64 m?/s* is the intensity of the white
noise. The parameters of the model are chosen as those used
in [15],ie.m = 40 x 10° kg, k = 1 x 10° N/m,c; = 5 x

103 Ns/m,a = 0.603,8 = —1.8548,y = 39.36,A = 5.868.
The failure probability estimated using standard Monte Carlo sim-
ulation for barrier level X5 = 0.64 with 6 x 10° samples is

pr = 1.3 x 107°. Fig. 5 shows the failure probability estimation
of the model for different barrier levels. Fig. 5 shows a comparison
of the estimated failure probability of the Bouc-Wen model with
three different curves with the same specifications as described for
the Duffing model. The results show that the black curve generally
performs well in this case, as well as the Duffing oscillator. Next,
the powers of the second fit plotted versus the barrier levels of the
model are shown in Fig. 6. The values of ¢ € [0.5, 2] indicate that
for this model the predictions of the original fit are also acceptable.
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Fig. 6. Exponents “c” of 8(f) = Af + Bf ¢ of the Bouc-Wen oscillator. Asterisk:
exponents of the fit, line: line fitted to the exponents.

m —= T3
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ur —= X2
k

ur —= I
k

Fig. 7. Three-degree-of-freedom shear frame with Bouc-Wen-type nonlinearity.
3.3. Nonlinear shear frame

A shear-frame-type structure as shown in Fig. 7 subjected to a
random ground acceleration a(t) is investigated. The inter-story
restoring force r, is given in terms of the relative displacement
Xik = X; — Xy, the relative velocity X = X; — X, and the internal
plastic variables z; as

rie = (1 — a)k(x; — z;) + ok + CaXig. (20)

This includes a viscous damper with damping constant c;. The
differential equations governing the state variables are

zi = Axie — BXitlzi — xi| — v Xl (zi — x;)

X = —ri/m — a(t). 21)

The numerical values chosen for the example are the same as pre-
viously used in the SDOF Bouc-Wen example. The ground acceler-
ation is a non-stationary Kanai-Tajimi-type random process. The
Kanai-Tajimi (K-T) parameters are the same as before. The noise
driving the K-T filter has an intensity of 0.0064, i.e. by a factor of
100 smaller than before.

3.3.1. Case 1: absolute displacement of the first story

Fig. 8 shows the cumulative distribution function (CDF) of the
shear frame for two different curves fitted to the data of maxima.
Fig. 9 shows the change of the power of the second fit, as shown
for the previous model in Fig. 6.

Py

0 0.01 0.02 0.03 0.04 0.05

Barrier level
Fig. 8. Comparison of CDFs of the shear frame with Bouc-Wen nonlinearity, case
1. Bold black: Monte Carlo estimate, black: AS with 8 = Af + B/f, blue: AS with

smoothed 8 = Af + Bf . (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

2.6 T T T T

241 * 1

20 40 60 80 100

N, points

Fig. 9. Exponents ¢ of B(f) = Af + Bf° of the shear frame, case 1. Asterisk:
exponents of the fit, line: line fitted to the exponents.

pr

0 0.05 0.1 0.15 0.2 0.25
Barrier level

Fig. 10. Comparison of CDFs of the shear frame with Bouc-Wen nonlinearity, case
2. Bold black: Monte Carlo estimate, black: AS with 8 = Af + B/f, blue: AS with
smoothed 8 = Af + Bf~°. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

3.3.2. Case 2: relative displacement of the last story
Fig. 10 shows the CDF of the shear frame for two different
curves fitted to the data of maxima. Fig. 11 shows the change of
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0 20 40 60 80 100
Npoims

Fig. 11. Exponents c of the S(f) = Af + Bf ~° of the shear frame, case 2. Asterisk:
exponents of the fit, line: line fitted to the exponents.

the power of the second fit, as shown for the previous model in
Fig. 6. Comparison of Figs. 9 and 11 with Figs. 4 and 6 shows that the
probability distribution function (PDF) of the shear frame has more
irregularity than the previous two cases, while the main difference
of this model from the previous one, i.e. the SDOF Bouc-Wen
oscillator, is the presence of many degrees of freedom, and hence
interaction between them. In both cases of the nonlinear shear
frame, both curves provide close estimations to the Monte Carlo
simulation results down to a failure probability of 10~%. However,
the second curve seems to be more accurate in estimating lower
probabilities.

4. Failure probability estimation of a nonlinear wind turbine

In order to assess the applicability of the method and reliability
of its estimations for wind turbines, a reduced-order model of
a wind turbine was developed and its failure probabilities were
estimated with the proposed method. In the following sections
the developed structural model, aerodynamic loads, wind field,
and specifications of the wind turbine are explained in detail.
Finally, the failure probabilities of the model are estimated using
the proposed method.

4.1. Mechanical model

The motions of the blades relative to the hub and the motion
of the tower in the mean wind direction are modeled by single-
degree-of-freedom (SDOF) models. Only motions in the mean wind
direction are considered, for which reason no gyroscopic forces are
present, save the centripetal forces. Let y;(x, t), i = 1, 2, 3 denote
the displacement fields of the blades relative to the hub, where
x € [0, L] is measured from the hub and L is the length of the
blades of Fig. 12. Further, y4(x, t) denotes the displacement of the
tower in the same direction, where x € [0, h] is measured from
the foundation and h is the height of the nacelle above the ground
surface. Then, the indicated displacement fields may be written
as

Yi(x, t) = @ (x)q;(t),
Ya(x, t) =2 Po(x)qa4(t),

where @ (x) is the part of the fundamental eigenmode of the wind
turbine belonging to the tower and @ (x) is the fundamental fixed
base mode shape of the blade. The mode shapes are normalized
to one at the nacelle and the blade tip, respectively, so the
generalized coordinates q;(t), q2(t), q3(t) may be interpreted as

i= 1,2,3} (22)

Fig. 12. Definition of degree of freedom section moments and pitch angles.

e ae=Nas S

U Gearbox — . ;‘

N Generator
H Hub =

Fig. 13. Single-degree-of-freedom representation of the drive train.

Mr qs, Qr

Drive shafts

the tip displacement of the blades relative to the hub, and
q4(t) is the displacement of the nacelle. Note that a quasi-static
deformation of the nacelle due to the mean rotor thrust will only
affect q4(t). The blades are modeled as Bernoulli-Euler beams
with bending stiffness EI(x) around an axis orthogonal to the
rotor plane, and mass per unit length . (x). Similarly, the tower is
modeled as a Bernoulli-Euler beam with bending stiffness El(x).
The mass per unit length is formally written as

fo(X) = po(X) + Mod(x — h), (23)

where 119(x) denotes the continuous mass distribution, My is the
mass of the nacelle and the hub, and §(-) is Dirac’s delta function.
The dynamic load per unit length on the tower in the mean wind
direction is denoted p4(x, t). Correspondingly, the loads on the
tree blades in the same direction are denoted p; (x, t), p>(x, t), and
p3(x, t). The rigid body motion of the drive train is modeled as a
single rotational degree of freedom gs by assuming infinite stiff
drive shafts and no elastic deformation in the gear, whereby the
following kinematic relation emerge for the angular rotation of the
rotor of the generator:

g = Ngs, (24)

where N is the gear ratio; see Fig. 13. Furthermore, the mass
moments of inertia of the gear wheels and the connected shafts
are included in the mass moments of inertia J, and J; of the ro-
tor and the generator rotor, respectively. Using Lagrange’s equa-
tions [ 18], the following governing equations of the system may be
obtained:

mq(t) + eq(t) + kq(t) = £(0) (25)
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myq 0 0 my, O
0 miq 0 my 0
m=| 0 0 m my O
m, mp; mp; My 0
0 0 0 0 J (26)
k 0 0 0 O
0 k 0 0 O
k=|0 0 k 0 O
0 0 0 ke O
0 00 0 O
L
m:/ (x)dx
0
L
m1=/ w(x)P?(x)dx
0
L
mzzf ux)® (x)dx
0
L
m3=/ xu(x)dx
0 , (27)

L
m4:/ xu(x)®(x)dx
0
h
ms = / X110(X) @0 () dx
0

h
mg = / o (X) @2 (x)dx + My + 3m
0

L
o= [ e
0
where mis the mass of the blade, and mg and m, are the generalized
masses related to the degrees of freedom q;(t), i = 1,...,4.
m, is a coupling parameter in the mass matrix, and ms, my, and
ms will be used later in the calculation of the bending moments
in the blade at the hub and in the lower foundation. J is the
generalized mass moment of inertia related to the rigid-body
degree of freedom g5 (t), given as

] :Jr +N2]gc (28)

The damping matrix ¢ merely includes structural damping.
Aerodynamic damping is included later via the aerodynamic load.
Then ¢ may be written as

2wwm; 0 0 0 0
0  2tem; O 0 0
c=| o 0 2com 0 0 (29)
0 0 0 2(0(001110 0
0 0 0 0 nMr,O/Qr,O
q1(t) fi(®)
q2(t) H(t)
q(t) = | g3(®) f(t) = | () |, (30)
qa(t) fa(t)
gs(t) f5(t)

where £2, o = (s, is the referential (nominal) rotational speed
of the rotor. w and ¢ denote the eigenfrequency and damping
ratio of the blades, when fixed to the hub. Correspondingly, wp
and ¢, denote the eigenfrequency and damping ratio of the lowest
mode of the tower, which are assumed to be known. 7 is the loss
factor of the transmission system due to friction in the gears and
bearings, which typically is a few percent, and M, o = P/$2,¢ is
the referential rotor torque for P = 5MW nominal power output.

Zero lift ljlgﬁ

Rotor plane

V+v—gs-y)1 —q

Fig. 14. Blade profile definition of velocities and forces.

The generalized stiffness coefficients of the blades and the tower
are given as

k = w?m, }

1
ko = a)gmo (3 )

ko is determined, so the generalized eigenvalue problem defined
from (26) provides the prescribed angular lower eigenfrequency
wo. The generalized external dynamic loads become

L
fi(®) =/ DX)pi(x,t)dx, i=1,2,3
0

" >t . (32)
70 = [ euwpitax+ Y [ @cocx o
0 0

i=1
fs(t) =M, — (1 —n)NM,

where M, and M, are the instantaneous rotor and generator
torques, respectively, and an asynchronous slip variable generator
is considered for which the generator torque under normal
operation conditions is linearly dependent on the rotational speed
Ngs(t). The relation may be given in the form

Ngs(t) — 25,00

Mg(t) = Mg o ,
¢ 87 20— §2¢.00

(33)
where M, o = M; /N is the nominal generator torque, 2,9 =
N$2; ¢ is the nominal generator rotational speed, and £2; (o is the
generator speed for the zero generator torque.

4.2. Load modeling

Only the aerodynamic load on the blades is considered, i.e. the
wind load on the tower is ignored; p4(x,t) = 0. Aerodynamic
damping is included via a quasi-static effective angle of attack
a(x, t), so changes of the angle of attack are instantly felt in the
aerodynamic loads. This means that the time scale for adjustment
of the non-stationary flow is assumed to be small compared
to the fundamental eigenperiod of the blade. The wind loads
are calculated by the Blade Element Momentum (BEM) method;
see [19]. In this respect, the following parameters are defined:

Vr(X, t) = \/(V +v— []4 _yl)Z(l _ 0)2 + qgrz(l N a,)z
¢(x, t) = arctan (“ —oV+v - qa —J"i)>
(1+a)gsr
a(x,t) = ¢, t) — Bi(t) — k(x). (34)

V; is the relative wind speed (see Fig. 14). V denotes the mean
wind speed, and v is the turbulence contribution to the wind speed.
The turbulence with a prescribed correlation structure is generated
at 30 points on a circle with radius 0.8L, as seen in Fig. 12. Next,
the turbulence on a given blade is obtained by linear interpolation
between the given points. The interpolated turbulence value is
assumed common to all points on the blade. The mean wind speed
V is assumed constant over the rotor area. a and a’ are the axial and
the tangential induction factors, respectively, which are calculated
below by means of the BEM method, and ¢4 + y;(x,t), where
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Table 1

Structural parameters of the wind turbine model.
h 87.6m % 0.01

61.5m 14 0.005

m 17,415 kg w 4.2 rad/s
mo 404,520 kg wo 2.0rad/s
m 791 kg n 0.05
m, 1893 kg o 1.25 kg/m>
ms 359,304 kg m 20 1.27 rad/s
my 83,228 kgm Mo 3946,018 Nm
ms 6100,058 kg m v 0.2
Jr 35,337,324 kg m? 24,00 73.7 rad/s
Je 535 kg m? Vi 15 m/s
N 97 vV 10.72 m/s
My 296,780 kg Vo 25 m/s
k 14,120 N/m Vi 5m/s
ko 1667,914 N/m

yi(x, t) = @(x)q;(t) indicates the velocity of the cross-section
of the abscissa x in the direction of the mean wind. This term is
responsible for the aerodynamic damping of the blades and the
turbine as a whole. ¢ is the so-called flow angle, and k = «(x)
denotes the pre-twist of the blade. The lift and drag force per unit
of the blade p; (x, t) and pp(x, t) are given as

1
pL(x, t) = Epvf(x, £)Cr(e)c(x)
, (35)

1
Po(x, ) = 2PV (x, DCp(@)c(x)
where p is the density of air, c(x) is the chord length, and C; («)

and Cp(«) are the lift and drag coefficients. The load in the normal
direction of the plane becomes

1
pi(x, t) = gpvrz(x, £)Cy (@) (x), (36)

where Cy () is the normal coefficient. Cy (o) and the correspond-
ing tangential coefficient C;(«) for the determination of the rotor
torque are obtained from (see Fig. 14)

Cnv| __|cos¢ sin ¢ C
|:CT:| - |:sin¢ —cos¢p | |Cp|” (37)
a and a’ are then obtained as

1

a= ——— a = ————————+
14 4sin’g’ 1 4 AFsingcosg’

oCy oCr

1

!

(38)

where F is the Prandtl tip loss factor, given as

2 1 BL—x
F = — cos exp| —=— , (39)
T 2 xsing

where B = 3 is the number of blades. The above procedure needs
to be iterated until convergence of the induction factors has been
achieved.

4.3. Wind modeling

Various wind speed distribution functions are used in the
simulation of wind loads: log-normal, Gumbel, etc. Nevertheless,
the IEC standard [20,21] recommends that the mean wind speed
over a time period of 10 min at the hub height is Rayleigh
distributed with the following PDF:

Vi Vi, \ 2
fo (Vi) = ZTg'eXp [—n (ﬁ) } (40)

where V, = 0.2Vy and Vj, is the wind speed at the hub height.
Next, it is assumed that the mean wind speed in terms of height

obeys the following power profile, where v is given in Table 1:

z 1%
V@) = Vj (H> . (41)
In this work, it is assumed that the mean wind velocity V is
constant over the rotor area. The governing equations of the
system are usually represented in the state space form, so it
is advantageous if the load is represented in the same form.
Moreover, implementation and change of turbulence level with
such loading is very easy and fast. A calibrated ARMA model might
be represented in the state space format [22]; alternatively, a state
space model for turbulence might be calibrated directly using the
stochastic subspace modelling (SSM) method [23], which discards
this transformation. The SSM method is even more attractive,
since its model seems to be more accurate, stable, and with
shorter memory (lower model order) than an ARMA model [23].
Accordingly, in this work, this method is used to calibrate a state
space model for the turbulence. The SSM shows the way to find
four matrices Ar, By, Cr, and Dy of the state space model (48) such
that the output of the model, v(j), simulates turbulence realizations
while the input is only Gaussian distributed stochastic variables,
e.g. E(j). The method finds these matrices through matching
the cross-covariance function of the model output v(j) with the
function prescribed for it, i.e. the cross-covariance function of the
turbulence here. Provided that the auto spectral density of the
turbulence is chosen, i.e. the double sided Kaimal auto-spectral
density function (42),

i 25 (2)
wlZ, 22 W) = — —_
, e A\ (42)
Flky =22
) = +————
y (1+|Lk[)*/3
where o, is the standard deviation of the turbulence, L is the
correlation length, and y is a normalization parameter, given as

o, =2.18 V,
L=5.25h (43)
y=3

V. is the friction velocity, given as V, = Viok:x, where Vg is the
mean wind velocity at 10 m, k, = 0.17 is a friction coefficient,
and k¥ = 0.40 is von Karman'’s constant. The cross-spectral density
might then be calculated using

1 1
Sun(Z1, 25 @) = Y (21, Z2; ©)Siu(Z1; ®)S50 (225 @), (44)

where y,,(z1, Z2; w) is the so-called coherence function. Among
various possibilities for the turbulence coherence function, the
following function, proposed by Shiotani and Iwayani [24], is used:

lwl|\/22 + 23
Y(21,2;0) = exp | ——————d,
Vi
(21, ),/ 2% + 72
x exp | i dy |. (45)
Vi

The non-dimensional parameters d; and d, are given as d; =~
1.5 and d; =~ 1.3 [24]. Next, the inverse Fourier transformation
of the cross-spectral density provides the cross-covariance of the
turbulence:

o0
Kyy(21,22;T) = / eiwt Sw(zZ1, ; w) dr. (46)

oo

A state space model (primarily) of the form (47) can be constructed
with the SSM. The quadruple (A7, Ky, Cr, Ry) required for the



M.T. Sichani et al. / Probabilistic Engineering Mechanics 26 (2011) 539-549 547

NACA64 - 618
a, b | c
= =
205 =05
S &
2 0 0
20 0 20 0 40 60 0 20 40 60 80
a|deg] x [m] x [m]
d o e f x10"
8 6000 2
w6 T 5000 15
I :
= = 4000 ; 1
= S =
) 2 3000 =05
S < 5 0
0 2000 0
0 20 40 60 80 0 20 40 60 80 20 40 60
x[m] x[m] x[m]
g h x10° I
800 6 5
T 600 —_ .
S z4 g
= 400 = =3
= =, =
T 200 Z. S
0 0 1
20 40 60 40 60 20 40 60
x[m] x [m] x[m]

Fig. 15. Structural properties of the NREL 5 MW wind turbine. (a) —: lift coefficient of the NACA64-618, - - -: drag coefficient of the NACA64-618, (b) blade’s mode shape,
(c) tower’s mode shape, (d) bending stiffness of the tower, (e) mass per unit length of the tower, (f) bending stiffness of the blade, (g) blade’s mass per unit length, (h) blade’s

inertial load, (i) blade’s cord length.

model is found by the SSM such that the cross-covariance function
of (47) matches best to the cross-covariance function of the
turbulence obtained from (46). Here, x(j + 1) is an internal
state vector at each discrete time step, Ar and Cr are system
matrices, and K7 is the steady-state Kalman gain matrix. e(j)
is a random excitation vector characterized with its covariance
matrix, E[e(j)e’ (j)] = Ry, and v(j) is the g-dimensional vector of
turbulence realizations on the discretized nodes of the rotor plane.

X(j + 1) = Arx(j) + Kre(j)
v(j) = Crx(j) + e().

Next, (47) can be written in the form of (48), in which the
E(j) ~ N(0,I) are mutually independent unit intensity Gaussian
white noise variables, and ®7 is a square matrix which satisfies
e(j) = ®7E(j). ¢ can be obtained by any decomposition of the
covariance matrix of the noise such that Ry = ®7 <I>§, i.e. Cholesky
decomposition. Then By = Ky ®1 and Dy = ®7.

X(j+ 1) = Arx(j) +BrE()

v(j) = Crx(j) + DrE().

The presented approach for turbulence modeling does not take into
account the rotational sampling effect of the turbulence process.

Therefore one needs to make an interpolation as the blades pass
through different turbulence nodes in between two nodes.

(47)

(48)

4.4. Model specifications

The structural properties of the tower and the blades are
adopted from the definitions of the NREL 5MW wind turbine
[25,26], and are given in Table 1, along with the derived parameters
entering the reduced model. The fundamental undamped fixed bay
angular eigenfrequency, w, and eigenmode, & (x), of the blades are
determined by finite element (FE) analysis, in which the blade is

Fig. 16. Estimated failure probability of the wind turbine for a fixed-speed wind
turbine. Dots: maxima of 100 epochs, —: 50-year recurrence period, bold black:
Monte Carlo simulation, - -: three-parameter Weibull distribution, - - -: Gumbel
distribution, black: AS with 8 = Af + B/f, blue: AS with smoothed 8 = Af + Bf .
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

discretized in 49 Bernoulli-Euler beam elements with piecewise
constant bending stiffness EI and mass per unit length . The
variation of EI and u is shown in Fig. 15. The blade has seven
different airfoil profiles from stem to tip [25]; nevertheless, in
Fig. 15, the lift and drag coefficients of only the tip profile are shown
as an example. The lift and drag coefficients for each profile are
interpolated with two piecewise polynomials, each of order 9, in
two different intervals of «. The two fitting intervals for the lift and
drag coefficients are chosen so as to allow the best overall fit, i.e. the
least sum of squared error (SSE), for all data points.

Similarly, the eigenmode @ (x) of the tower is determined by FE
analysis, in which the tower is discretized into ten Bernoulli-Euler
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Table 2
Blade aerodynamic properties.

Node (-) Location Element length (m) Airfoil

1 2.8667 2.7333 Cylinder

2 5.6000 2.7333 Cylinder

3 8.3333 2.7333 Cylinder

4 11.7500 4.1000 DU40A17

5 15.8500 4.1000 DU35A17

6 19.9500 4.1000 DU35A17

7 24.0500 4.1000 DU30A17

8 28.1500 4.1000 DU25A17

9 32.2500 4.1000 DU25A17
10 36.3500 4.1000 DU21A17
11 40.4500 4.1000 DU21A17
12 44.5500 4.1000 NACA64A17
13 48.6500 4.1000 NACA64A17
14 52.7500 4.1000 NACA64A17
15 56.1667 2.7333 NACA64A17
16 58.9000 2.7333 NACA64A17
17 61.6333 2.7333 NACA64A17

beam elements, with piecewise constant bending stiffness and
mass per unit length. The mass of the nacelle and the blades My +
3m is attached as a point mass at the free end. The variation of the
bending stiffness and the mass per unit length is shown in Fig. 15.
The rated wind speed of the model, i.e. the wind speed at which
the nominal power is produced, is V., = 10.72 m/s, as indicated
in Table 1. For values other than this value, the rotor speed is set
to its nominal value. The turbulence is generated in 31 nodes on
the rotor plane, as shown in Fig. 12: there is one node on the hub
and 30 nodes on the perimeter of rotor plane at 0.8L distance from
the hub. The turbulence value between the nodes are interpolated
from these nodes. The aerodynamic properties of the blades are
given in Table 2.

4.5. Failure probability estimation

Failure probability estimation of the represented wind turbine
is a highly nonlinear problem due to the presence of the
nonlinearity in the aerodynamic load modeling described in 4.2.
Moreover, even with a very coarse time integration increment such
as At = 0.2 s, 600 s of modeling assuming 200 s of transient
response needs 4000 discretized time samples, i.e. t; = 200 s and
t € [0, tenql, where t.,g = 800 s. However, since the wind field
is simulated on 31 spatially coherent nodes, the total number of
stochastic variables, i.e. the dimension of the problem, becomes
124,000. The failure event in this case is defined as the magnitude
of the tower tip deflection exceeding a certain barrier level ¢5° =
Uq, + apLOg,, ie. F(QEL) = {3t € [ts, tenal; |qa(t)| = qu}_ The
mean value and standard deviation of the tower tip deflection are
Mg, = 0.23 m and oy, = 0.03 m, respectively, for the developed
model. The simultaneous presence of strong nonlinearities, high
dimensions, and multiple excitations in this problem create a
difficult case for failure probability estimation that faces critical
difficulties for any of the grey-box methods. The failure probability
of this system is estimated using the proposed asymptotic scheme,
and the results are compared with those of the well-known peak
over threshold (POT) method, based on fitting extreme value
distributions to the maxima of 100 simulated epochs .

4.5.1. Peak over threshold (POT)

The so-called peak over threshold (POT) method has been used
frequently in the wind engineering industry for estimation of
the reliability of wind turbines [27]. It can be shown that if the
parent distribution of the outcrossing event is one of the extreme
value distributions, then outcrossing above a sufficiently large
level follows a generalized Pareto (GP) distribution [28]. The most
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Fig. 17. Exponents c of B(f) = Af + Bf —° of the wind turbine. Asterisk: exponents
of the fit, line: line fitted to the exponents.

controversial part of the method is the selection of the type of
distribution which should be fitted to the data. This selection
has high impact on the further analysis which is to be made
based on such extrapolations. For instance, it is reported by some
authors that incorporation of the Gumbel distribution results in
very low safety levels for structures subjected to wind load rather
than to gravity load, [27,29]. On the other hand, it is known that
extrapolations based on a Weibull distribution will always lead
to lower values for design loads [30], for which reason a Weibull
distribution might be a proper candidate to be used instead. From a
practical point of view, the Gumbel distribution is among the most
popular distributions for the wind speed [31,32]. Simiu et al. [33]
analyzed 100 wind records from different stations and fitted the
distribution to the dynamic wind pressure, as an alternative to the
wind speed, and concluded that the Weibull distribution fits the
dynamic pressure of the wind better than the Gumbel distribution.
It cannot be said for certain which distribution should be used since
Weibull, Gumbel, and log-normal distributions have all been used
by different authors [34,35]. Therefore, in agreement with wind
turbine code of practice IEC 61400-1, both the three-parameter
Weibull and Gumbel distributions were chosen in this context,
and were fitted to the data. 100 epochs with a duration of 600 s
were simulated and the candidate distributions were fitted to the
extracted maxima. The data and the fits for the wind turbine model
normalized by the mean value and standard deviation of the tower
tip deflection are shown in Fig. 16.

4.5.2. Proposed method

Failure probability estimations of the proposed method are also
shown in Fig. 16 with the black and blue curves as defined in
previous numerical examples. As was already observed for the
shear frame case, the power of the fitted curve might have various
values, determined only by the behavior of the model. The powers
of the fitted curves and the regression lines fitted to them for this
model are shown in Fig. 17. Based on the scheme in which the
points of the power of the fitting are scattered, points which seem
to have a linear correlation are chosen and a line is fitted to them
in the least square sense. These points provide enough information
for estimation of the failure probabilities down to 10~1°, For this
model, the power growth shows good correlation with the line
fitted to it. However, it is observed that the black curve related
to the original fit has a considerable jump in rather high failure
probability area, i.e. the AS & MC region in Fig. 2, which shows that
the estimations of this curve might lack some accuracy in this case.
The results of the Monte Carlo simulation with 4 x 10° samples are
shown in Fig. 16 by a solid black line. Comparison of this curve with
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the other curves reveal that the second fit gives results that are very
close to those of the Monte Carlo simulations.

5. Conclusions

The new asymptotic sampling scheme introduced in this paper
has some advantages over previous schemes. First, it discards the
optimization needed for calibrating the f factor, which decreases
the computational cost of the algorithm. Second, it provides all of
the failure probabilities of the system, down to the smallest. Mod-
ifications of the asymptotic expansion of the failure probability es-
timation are proposed which enhance the estimation results. The
low computational cost, very low memory requirements, and ca-
pability of handling high-dimensional highly nonlinear problems
make the proposed algorithm a good candidate for application in
real large-scale problems. As an instance, the failure probabilities
of a reduced-order model of a wind turbine exposed to a spatially
correlated turbulent wind field has been estimated with success.
This is an example of a problem which cannot be handled either
by standard Monte Carlo simulation, due to excessively high com-
putational time, or by most of the controlled Monte Carlo meth-
ods available in the literature, due to the simultaneous presence
of model complexity, strong nonlinearities, and very high dimen-
sions.
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Markov Chain Monte Carlo simulation has received considerable attention
within the past decade as reportedly being one of the most powerful tech-
niques for first passage probability estimation of dynamic systems. A very
popular method in this direction is the Subset Simulation (SS) which is ca-
pable of estimating probability of rare events with low computation cost. The
idea of the method is to break a rare event into a sequence of more proba-
ble events which are easy to be estimated based on the conditional simulation
techniques. Recently two algorithms have been proposed in order to increase
efficiency of the method by modifying the conditional sampler. In this paper
applicability of the original SS is compared to the recently introduced modi-
fications of the method on a wind turbine model. The model incorporates a
PID pitch controller which aims at keeping the rotational speed of the wind
turbine rotor equal to its nominal value. Finally Monte Carlo simulations are
performed which allow assessment of the accuracy of the first passage proba-
bility estimation by SS methods.

Keywords: MCMC; subset simulation; wind turbine; pitch controller.

1. Introduction

In order to estimate the return period of the wind turbines, required by wind turbine
design codes, it is necessary to estimate the low first passage probabilities, alternatively
called failure probability, of these systems IEC (2005a). For this aim the IEC standard
recommends fitting one of the extreme value distributions i.e. reversed Weibull or the
Gumbel distribution to the peaks extracted from six epoches of 10min. duration, of the
wind turbine data IEC (2005b). Unfortunately the choice of Extreme Value Distribution
(EVD) combined with the part of the data used to find EVD parameters result in con-
siderably different extrapolated design values. Therefore there is a high uncertainty in
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the design values extrapolated from these fits Harris (2005), Freudenreich and Argyriadis
(2007).

Alternative to extreme value curve fitting and extrapolation, simulation techniques
may be used for estimating these return periods. The natural choice for this purpose
is the Standard Monte Carlo (SMC) simulation. Considering the design value, i.e. the
threshold level for which the probability of the first passage is given, corresponding to
the first passage probability of the order 1077, 10® simulations are required to estimate
the barrier level corresponding to this probability with coefficient of variation of approx-
imately 0.3. This is far beyond reach of the available computers’ power in practice even
on a modern machine. The Variance Reduction Monte Carlo (VRMC) methods are an
alternative choice which are able to produce estimations similar to SMC but with less
variance in their estimates compared to SMC. This readily results in lower computation
effort if the same variance in estimations, as those of SMC, are desired Schueller and
Pradlwarter (2009). The conditional Monte Carlo simulation using Markov Chains has
recently received considerable attention in different fields of probabilistic systems’ mod-
eling and analysis Kelly and Smith (2009) i.e. risk-based life-cycle management Yuan
et al. (2009).

The Subset Simulation (SS), introduced by Au and Beck Au and Beck (2001), for
estimation of small probabilities of high dimensional systems is reportedly one of the
most powerful techniques in the field of structural dynamics. Ching et al. Ching et al.
(2005) introduced the splitting concept into the original SS which resulted in a hybrid
subset simulation. The spherical subset simulation (S3) is introduced in Katafygiotis
and Cheung (2007) which transforms the excitations into a unit hyper sphere allowing
to concentrate the sampling density of the simulation around the directions in which
the so-called seeds or important directions for the Markov Chains are concentrated. A
new scheme that combines the method with Importance Sampling (IS) and also the
reliability sensitivity analysis with SS have been addressed in Song et al. (2009). The
recent proposals in this field have focused their attention on increasing efficiency of the
method by modifying its sampling scheme Santoso et al. (2010), Zuev and Katafygiotis
(2011).

It is interesting to determine applicability of SS techniques, as a powerful representative
of VRMC methods, on the wind turbine systems specifically with an active controller.
Presence of an active pitch controller is a new feature of this model which, to the best
knowledge of authors, has not been considered in previous studies on the VRMC methods.
This increases motivation for this study to analyze the effect of the controller on the
statistical behavior of the structures. An advantage of SS over other VRMC methods
such as IS is that the it can handle high dimensional and complicated problems within
reasonable effort Schueller and Pradlwarter (2007). In this paper we start by a brief
explanation of each method followed by a primary application assessment of the chosen SS
schemes on a linear SDOF oscillator. This serves as a simple test to check the applicability
of the methods regarding the dimensions of the problem. It should be noted that in view
of reliability analysis the term dimension refers to the number of basic random variables,
i.e. the actual random variables of the system transformed into iid standard normally
distributed variables, of the model. This here refers to the iid Gaussian random variables
that enter the turbulence filter to generate the wind field c.f. figure 1. Next the wind
turbine model is described in brief and the applicable methods are used for estimating
its small failure\first passage probabilities.
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Figure 1. Flowchart of the wind turbine model

2. Reliability of wind turbines

Wind turbines have rather complicated models which does not allow extraction of their
statistical characteristics within a reasonable effort with SMC, c.f. figure 1. Here a reduced
order model of a 5MW reference wind turbine is used with the specifications adopted
from the NREL reference wind turbine Sichani et al. (2011a,b), Jonkman et al. (2009).
The developed model consists of the essential parts of a real 5SMW wind turbine and
hence may indicate the use of the methods when applied on a full scale wind turbine.
The simplifications of the model are made in order to allow SMC simulations possible
within a reasonable computation time yet covering the important aspects of the problems
encountered in practice.

The main problem of these systems is their high dimensions coupled with nonlinear-
ities Valdebenito et al. (2010). This makes the rare event simulation of the system a
difficult task Katafygiotis and Zuev (2008). The coupling is due to presence of several
interconnected model components, i.e. structural module, load calculation module and
the rotational speed controller, while strong nonlinearities exist in some of the i.e. in load
calculation module and the controller. Moreover the high computational cost for eval-
uation of the Limit State Function (LSF) requires prohibitively high computation time
if many simulations are needed. Therefore a method which can handle these problems
and is able to estimate the rare events of this system within reasonable effort could be
of great interest in this area.

3. Subset simulation

Assume the LSF is defined as G(X) where X consists of the random variables of the prob-
lem. The barrier level b; which corresponds to a sample of X, i.e. x;, is then given by
b; = G(x;). In view of structural dynamics X can be recognized as the stochastic excita-
tion within a given time duration and b as the maximum of the magnitude of the response
to the given excitation c.f. 4.1. The strategy of the SS is to obtain samples of b which have
low probability of occurrence, starting by that which can be accuractely estimated with
low number of simulations e.g. b(1). Next, this barrier level will be increased gradually
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until the highest(required) barrier level or probability is estimated with desired accuracy.
This is done by defining intermediate probability levels py = p;m) < p;m_l) << p?)
corresponding to the intermediate barrier levels b = b(™ > p(m=1) > ... 5 p(1) Using
this property taken from the fact that first passage probability can not increase as the

barrier level increases, the required first passage probability ps can be written as

@ A0 b))
@y - PP NOY)
(b [61) pf(b(l)) pf(b(l)) (1)

Py (b(2)|b(1)) is the conditional probability of exceeding b on the condition that b™)
is exceeded. Using (1) the final first passage probability, i.e. the lowest first passage
probability required, may be written as the following product

m—1

pr(®) =pr (W) T] pr (0" p) 2)

i=1

The SS method aims at estimating each of the m terms on the right hand side of (2)
by some type of Monte Carlo simulation. Therefore it is beneficial to let the barrier
level be chosen after the simulation of each stage is performed and fix the intermediate
first passage probabilities associated with them. All the terms in the product are chosen
large enough so that they can be estimated with low number of samples i.e. pg = 0.1 in
conjunction with (3).

pf(b(l)) =po (3)
pf(b(i+1)|b(i)) =py , i=1,---m—1

bW with its probability py (b(l)) = pg, is determined by performing SMC with low
number of samples, i.e. Ny, = 500, as the (pg X Neim )™ barrier level when all simulated
barrier levels are sorted in descending order. The conditional probability terms on the
right hand side of (1) can not be estimated by SMC and need a technique which is
capable of generating samples conditioned on the previous samples. For this reason those
samples of X which correspond to the barrier levels higher than b)), the so-called
seeds, are saved for simulating the next generation of excitation. This consists of Ngeeq =
po X Ngim seeds to be kept in memory. Au and Beck Au and Beck (2001) proposed
using a modified Metropolis Hastings algorithm for generation of the conditional samples
which is explained in 3.3. In the next section the original Metropolis Hastings algorithm
is described which is the basis for the conditional sampling scheme. In the following
sections the proposed modifications are explained with emphasis on their difference with
the original algorithm.

3.1 Metropolis-Hastings algorithm

Let (k) denote the samples of a discrete stochastic load process X (k) at the instants of
time kK = 1,--- | N - in the reliability analysis these refer to the basic random variables
used to generate the loads -. The random variables X (k) are assumed to be mutual inde-
pendent and identical distributed with the Probability Density Function(PDF) 7 (z(k)).
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X (k) is assembled in the random vector X with the Joint Probability Density Func-
tion(JPDF) 7(x). Due to the iid components 7(x) becomes as indicated in (4). It should
be noted that the original Metropolis Hastings (MH) algorithm does not require iid com-
ponents of the random variables X (k) and only needs their JPDF to be known. In our
context since we refer to the basic random variables the iid is also considered. Corre-
spondingly the samples are stored in the vector x. Let X and X1 denote stochastic
vectors representing (or transformed into) the load process, when changing from barrier
level b®) to barrier level bt1). Both of these vectors are identical distributed, but not
independent. The transition kernel, or alternatively called the proposal distribution, that
X = x moves to X1 is shown by p(X*+D|X®). Due to the independence and iden-
tical distribution of the components within X1 and X respectively, this may be
written as

W(x(i)(k))

I
—=

)

p(x(i—i—l) |XZ)

A
o
Eond
i
I,

(4)
(e (k) |2 (k)

I
—=

=
Il
—

where 7(-) and p(-) are the one dimensional PDFs of the discrete components X (k).
Consider “Ng;,,” samples {xgl),--- ,XS\Z,)} of X from the it simulation level. The

transition kernel that X = Xg-i) moves to a state in X0+ e.g. p(XO+HD|XO) = xéi)),

can be chosen with the mean value X§i), but can otherwise be arbitrarily chosen Santoso

et al. (2010). For instance a uniform or Gaussian distribution with an arbitrary standard

deviation, such as the sample standard deviation of the seeds Au et al. (2010), and

its mean value at the value of xgz)(k) for k = 1,---,N. Initially a candidate §; for

(i+1) x 1)
J

x; ,j=1,-", Ngm is drawn from p(-|x§i)). In order to ensure that samples of

generated by MH will also be distributed with distribution 7(-), it is necessary that the
so-called “reversibility condition”, which states that 7(&;) p(xg.l) &) = 7T(X§»Z)> p(€ j|x§l)),
be satisfied for all samples of xgi) and &;, Chib and Greenberg (1995), Santoso et al.
(2010). For this reason (5) is used as the probability of accepting candidate samples.

n(&)) p0cIg)) } 5

(@) :
a(x;’,€;) =minq 1, . ‘

n { () p(& )
(i+1

. ) : .
Next, §; is accepted as the next sample, e.g. X; = §;, with probability

. , G ¢
X§z+1) _ {Ej(i) w.p. a(x; ,5(2)) (©)
x;’ w.p.1— a,(xj &)

where the term w.p. means “with probability”. Therefore after generation of a candidate
sample §; a random number is drawn from a uniform distribution between 0 and 1 e.g.

U(0,1). If this number is less than a(xg-i) ,&;) of (5), &; will be accepted as the next sample;

else will be rejected and replaced by the seed xg-i). This procedure guarantees that the

distribution of the samples will not be changed as barrier levels increase Hoff (2009). In
case the proposal distribution is chosen to be symmetric, i.e. p(B\A) = p(A[B), it is
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called the random walk Metropolis Hastings and (5) reduces to

a(xgi),ﬁj) :min{l, W(E(]) } (7)

W(ij))

3.2 Conditional probability estimation

The method follows the procedure described in section 3 that started by a SMC and
defining the first barrier level b("). In the next step(s) N, candidate samples for

D)

: ,j = 1,--+ Ngm will be generated using a conditional sampler, i.e. MH. The
next generation of excitations are conditioned on a randomly chosen seed of the previous
simulation. If §; is accepted according to (5) or (7) and (6), the second accept\reject test

will be performed as
J XE‘Z) if Ej ¢ S:(z)

where @ denotes the failure domain of the i*" level e.g. §¥ = 1&;1G(€;) > b}, (8)
means that §; is accepted (after being accepted in the accept\reject test of the MH)
only if it increases the barrier level to higher than b else is rejected and replaced with
its seed. This step provides the estimation for the conditional terms in (2) and will be
repeated m — 1 times, c.f. (2). The same strategy that was described in section 3 for
choosing barrier levels and seeds will be used in all m — 1 stages of the simulation. This
results in

i—1 Nsim
. pz . .
p}: ]szm E Ig(i)(xg-z)) R Z:1,--- ,m (9)
j=1

plj} represents the minimum failure\first passage probability calculated in the i " step of

the simulation. pé_l means po raised to power “i —17. Iz (xgi)
which will be one if the response to xgi) lies in the 7" intermediate failure domain and
is zero otherwise.

) is the indicator function

3.3 Modified Metropolis-Hastings algorithm

The MH algorithm as presented in 3.1 breaks down in high dimensional problems. This

is since the probability of moving from x\¥ to §;, defined as (5), decreases exponentially
as the number of basic variables - dimension of the problem - increases Au and Beck
(2001). Therefore the Markov chains do not move so frequently from their current state
to the next state and get stocked where they are. This problem can be solved by taking
advantage of independency between candidate coordinates(components) and breaking the
N-dimensional JPDFs W(ng)) and p(.]xgz)) into their corresponding /N independent one

dimensional PDFs 7T(x§z) (k)) and p(\xy) (k)) respectively. Accordingly the probability of
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accepting the next state for each sample is defined independently as

a2 (k), (k) =

. {1’ r(& () P I (1) } (10)
() () (& (k)| ()

which in case of symmetry proposal distribution p(B \A) = p(A |B) reduces to

a(z (k), ¢ (k) = mm{ M} "

71'(9551 (k))

Next, the accept\reject test will be performed for each component of each realization.
Sofork=1,---,N

z;' (k) w.p. (l‘j()ff]( )
This process will be repeated for j = 1,---, Ny, times to generate the next set of
excitations i.e. X0+ = {x (ZH), e (ZH } This modification is proposed in Au and

Beck (2001) and is called the M od@ﬁed M etmpol@s Hastings (MMH). Hereafter when this
sampling scheme is used for the SS, it is invoked by the term SS-MMH.

3.4 Modified Metropolis Hastings with Reduced Chain Correlation

The Modified Metropolis-Hastings with Reduced chain Correlation(MMHRC) is recently
proposed Santoso et al. (2010) which aims in reducing the correlation between the Markov
chains in the MMH. In view of the sample generation MMHRC follows the original MH
algorithm based on (5), (6) and (7), i.e. the N-dimensional JPDF is used. However every
time the generated & is rejected according to (6), a new sample is generated conditioned
on the same seed. This process is repeated as many times as needed to let the generated
candidate be accepted by (6). Clearly this modification takes more time for sample
generation compared to MMH. SS-MMHRC shows good performance for low to medium
dimensional problems i.e. N < 100 Santoso et al. (2010). However on the numerical
simulation performed in this study, c.f. 4.1, the Markov chains generated by MMHRC

have high tendency to stay in the initial state, i.e. a(xg.l),gj) ~ 0. This means that
the barrier level is rarely increased. This is due to the high dimensions of the problem
N = 1501 which is the same problem that causes breaking down of the original MH
algorithm in high dimensions Au and Beck (2001).

3.5 Modified Metropolis Hastings with Delayed Rejection

Following the idea of Tierney and Mira (1999) the so-called Modified Metropolis-Hastings
with Delayed Rejection (MMHDR) Zuev and Katafygiotis (2011) is proposed. Here the
MMH approach is followed for generation of the conditional samples. Although in case
a candidate sample does not belong to the failure region, i.e. §; ¢ F@ in (8), it will
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not be rejected and will be given a second chance. In such a case the components of the
candidate §;, e.g. §;(k), are divided into two non-overlapping sets. Set 7' = {k | xg-l)(k:) =
§;(k)} which consists of the set of coordinates which have evolved to new states and its
complementary set T" which includes the rest of the components. Next the coordinates
which belong to T" will be given another chance to evolve to a new state § ), The proposal
density of moving to 5](2) (k), e.g. q(.\xg-l) (k),&;(k)), can in general be chosen different from
the proposal density of moving from xgz)(k) to &;(k), e.g. p(\xgl)(k)) It should be noted
that the candidate samples for 552) are again generated around the original seed xgl)(k:)

and not &;(k) Le. q(z\” (k)& (k) = a(.|z\” (k)), Katafygiotis and Cheung (2007). The
probability of accepting the new samples conditioned on the two previous samples is
defined as Tierney and Mira (1999)

S|
*
—~
8
S~
=
—
&
~
Lo
— —
&y
~
I
a2
—~
I
~—
~—
I

where a(&;(k), fj(g) (k)) determines the probability of moving from &;(k) to f](.2) (k) in the
same manner as defined in (10). In case that both transition kernels are chosen symmetry
(13) reduces to

f@?@»@wxéwm):mm{L

@ (14)
p(&(k)lg;” (k) min {x(¢®(k)), 7 (£(k)) }

p(&; ()1 (k) min { (a7 (k) (¢(k)) }

where in (14) the equality a x min {1,b/a} = b x min{1,a/b} is used which is true for
any positive pair {a, b}.

4. Numerical simulations

4.1 Linear SDOF oscillator

The purpose of this simulation is to test applicability of the introduced SS schemes and
chose the applicable algorithm(s) to be implemented on the wind turbine model. 500
initial samples, e.g. N, = 500, are chosen for all of the simulations on the SDOF
oscillator. The addressed methods are applied on a SDOF linear oscillator presented in
Au and Beck (2001) with its equation of motion

(1) + 2Cwy(t) + wy(t) = (1) (15)
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Figure 3. Estimations of the first passage probability of the SDOF oscillator with SS-MMHDR,

where ¢ = 0.02,w = 2.5wrad/s. (15) is solved at discrete time steps t, = kAL, k =
1,---,N. The time resolution is set to At = 0.02 which results in N = 1501. The
excitation is assumed to be Gaussian white noise with unit spectral intensity Sp = 1.
Variance of the response process is O'g( = 7/2¢w? = 0.4026. The failure event is defined as
the first passage of the maximum of the magnitude of the response of the oscillator from
the barrier level “b”, i.e. Pf(b) = Prob(tg%(?)Tc} ly(t)| > b) with T = 30[s]. This probability

)

is estimated using SS-MMH, SS-MMHRC and SS-MMHDR. The proposal distributions
are chosen uniform distributions with their spread equal to the standard deviation of

the previous samples and centered around the initial sample’s seed i.e. pk(\xéz)(k)) =
qK (|x§l) (]4;)7 Cj(kj)) = u<x§Z)(k;) _Ul’('i)(k)’ xgl) (kj) +O’m(vi)(k)> . The SS-MMHRC breaks down
after the first (SMC) stage due to the mentioned reason. Ten estimations of the SS-
MMH and SS-MMHDR are shown in figures 2 and 3 respectively. It should be noted
that MMHDR algorithm makes a re-calculation whenever evaluation of the LSF rejects

a candidate sample. This is not a minor computation effort since it requires the major
part of the calculation, i.e. dynamic analysis, to be repeated.
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L

Figure 4. Definition of degrees of freedom and pitch angles

4.2 Fixed speed Wind turbine

The wind turbine model used in this study consists of four major modules e.g. the turbu-
lence generator, Aerodynamic load calculation, structural dynamics and pitch controller.
The spatially correlated turbulent wind field is generated using a state space model
Sichani et al. (2010). The motions of the blades relative to the hub and the motion of the
tower in the mean wind direction are modeled using modal model by one mode shape.
Only motions in the mean wind direction is considered for which reason no gyroscopic
forces are present, save the centripetal forces. Let y;(x,t),7 = 1,2,3 denote the displace-
ment fields of the blades relative to the hub, where x € [0, L] is measured from the hub
and L is the length of the blades, c.f. figure 4. Further y4(z,¢) denotes the displacement
of the tower in the same direction, where x € [0, h] is measured from the foundation and
h is the height of the nacelle above the ground surface. Then, the indicated displacement
fields may be written as

yi(z,t) ~ ®(x)q;(t) , i= 1,2,3}

(16)
ya(x,t) =~ Po(x)qa(?t)

Oy (z) is the part of the fundamental eigenmode of the wind turbine belonging to the
tower and ®(z) is the fundamental fixed base mode shape of the blade. The mode shapes
are normalized to one at the nacelle and the blade tip, respectively, so the generalized
coordinates ¢ (t),q2(t), g3(t) may be interpreted as the tip displacement of the blades
relative to the hub, and ¢4(t) is the displacement of the nacelle. The blades are modeled
as Bernoulli-Euler beams with the bending stiffness EI(z) around an axis orthogonal to
the rotor plane, and the mass per unit length p(z). Similarly, the tower is modeled as
a Bernoulli-Euler beam with the bending stiffness Ely(z). The mass per unit length is
formally written as

fio(x) = po(x) + Mod(x — h) (17)
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Figure 5. Structural properties of the NREL 5MW wind turbine. a) Tower’s mode shape, b)
Blade’s mode shape, ¢) Bending stiffness of the tower, d) Bending stiffness of the blade, e)
Tower’s mass per unit length, {) Blade’s mass per unit length

to(z) denotes the continuous mass distribution, My is the mass of the nacelle and the
hub; 6(+) is Dirac’s delta function. The dynamic load per unit length on the tower in the
mean wind direction is denoted py(x,t). Correspondingly, the load on the three blades
in the same direction are denoted p;(x,t), p2(z,t) and p3(x,t). The rigid body motion of
the drive train is modeled as a single rotational degree of freedom g5 by assuming infinite
stiff drive shafts and no elastic deformation in the gear, whereby the kinematic relation
for the angular rotation of the rotor of the generator emerges as g, = Ng5. IV is the gear
ratio between high and low speed shafts. Furthermore, the mass moment of inertia of
the gear wheels and the connected shafts are included into the mass moment of inertia
Jr and Jj; of the rotor and the generator rotor, respectively. Using Lagrange’s equations
the following governing equations of the system may be obtained

mé(t) + ca(t) + ka(t) = £(1 (18)
where

mq 0 0 mo 0
0 mq 0 mo 0
0 0 mq 1Mo 0 (19)
mo ™o ™Mo Mg 0
00 0 0J

m
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kOO OO
0kKk0OO0OO
k=[00k00O (20)
000kyO
00000
where
m = OL w(x)dz
L
= f u(x)<1>2
fo p(w)®(z)

ms = fo T x)dx o1
my = fOL xp(z)®(x)dw (21)
ms = [y wpo(z)@o(x)dx

moy = foh po(x)®E(x)dx + My + 3m

= fy 2?u(z)dz )

J is the generalized mass moment of inertia related to the rigid body degree-of-freedom
g5(t) given as J = J, + N2J,. q(t) and f(t) represent the generalized (modal) dis-
placements and the loads vectors respectively. The damping matrix ¢ merely includes
structural damping. Aerodynamic damping is included later via the aerodynamic load.
Then ¢ may be written as a diagonal matrix with its first three diagonal elements, e.g.
blades’ structural damping, equal to 2{wm, the tower’s structural damping 2{ywomg
and the energy loss in the gearbox modeled by the term nM, o/Q0. Qr0 = ¢50 is the
referential (nominal) rotational speed of the rotor. w and ¢ denote the eigenfrequency
and damping ratio of the blades, when fixed to the hub. Correspondingly, wg and (g
denote the eigenfrequency and damping ratio of the lowest mode of the tower, which are
assumed to be known. 7 is the loss factor of the transmission system due to friction in
gears and bearings, which typically is a few percent and M, o = P/, is the referential
rotor torque for P = 5MW nominal power output. The generalized stiffness coefficients
of the blades and the tower are given as k = w?my and kg = wgmo. The generalized
external dynamic loads become

£(t) =[] ®@)pi(z, t)de,  i=1,2,3

fa(t) = fh‘I) (z)p4(z,t)dx + Z fo (x)pi(z,t)dx (22)
f5(t) = M, — (1 —n)NM,

where M, and M, are the instantaneous rotor and generator torques respectively. Asyn-
chronous slip variable generator is considered for which the generator torque under nor-
mal operation conditions is linearly dependent on the rotational speed Ng5(t). The rela-
tion may be given in the form

Ngs(t) — Q.00

My(t) = M,
g( ) 970 Qg70 _ Qg700

(23)

where My o = M, /N is the nominal generator torque, 40 = N, is the nominal
generator rotational speed and €2, o is the generator speed for the zero generator torque.
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In the fized speed wind turbine the rotational speed of the rotor is set equal to its nominal
value wy.q.

4.3 wind model

The turbulent wind field is modeled using a state space formulation which results in
a state space model of the form of (24) where v(j) = [v1(j), -+ ,vm(j)] represents the
vector of turbulence in all of the nodes where realizations are simulated. E(j) ~ N (0,I)
are mutually independent identically distributed Gaussian white noise variables, i.e. basic
random variables, and x(j + 1) is a temporary state vector which defines the order of the
model.

x(j +1) = Arx(j) + BrE(j) (24)

v(j) = Crx(j) + DrE(j)
Calibration of the quadruple (Ap, K7p, Cp,Dr) is out of scope of this work and is de-
scribed in detail in Sichani et al. (2010). Here the idea is to calibrate the stated quadruple
such that the cross-covariance function of (24) matches best to the cross-covariance func-
tion of the turbulence. In this study the Kaimal power spectral density function with
exponentially decaying coherence function is assumed for the turbulence Sichani et al.
(2011a). The presented approach for turbulence modeling does not take into account the
rotational sampling effect of the turbulence process. Therefore it is needed to make an
interpolation as the blades pass through different turbulence nodes in between two nodes
which is done by the so-called influence function c.f. figure 1.

4.4 Variable speed wind turbine

In this case a controller is in charge of keeping the rotational speed of the rotor around
its rated speed €, . The controller does this by changing the pitch angles of the blades,
denoted as f31(t), S2(t) and SB3(t). These are controlled by 1st order filter equations as-
sembled in the vector relation (25)

B(0) = ——(8(0) ~ By(a.a.1)) (25)
Bi(t) Bro(a, a,t)

B(t) = | B2 (t) ) 160 (qv q, t) = /32,0 (qa q, t) (26)
Bs(t) Bs.0(a,4,1)

7 is a constant specifying the time-delay of the pitch actuators. $5;0(q,q,t) denotes the
pitch control demand. From various available techniques for controller types, the PID
controller is chosen in this work. The control command is then expressed as

Biola,d,t) = G<e(t) + 1 /0 e(t)dr + Td%B(t)> (27)

Ti
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where j = 1,2,3 is the blade counter. e(t) is the error signal defined as
e(t) = ¢5(t) — ds0 (28)

as seen the control demand is identical for all blades. G is the controller gain, 7; is the
integral control time constant and 7, is the differentiator time constant. There exist
several techniques for designing the indicated controller i.e. by means of the Ziegler-
Nichols empirical tuning formula, Ogata (2009). In practice a pure differentiator is rarely
used due to its noise amplification effect, therefore it is usually replaced by a first order
low-pass filter, Xue et al. (2008). In the present work the controller gains are tuned
manually with the gains indicated in table 1. The equations of motion (18) and the
control equations (25) may be combined into the state vector equations

z(t) = Az(t) + Bf (v(t),z(t)) +Bo(t) (29)
q(t)
z(t) = | 4(t) (30)
B(t)
[0 I 0
A=|-mk-m'lc 0
| sbi 7by 1
[0
B=|m! (31)
b3
0
Bo(t)=| 0
bo(t)

where by (t), b1, bs and bs are given as

1
GQ, t
bdw__——;49<y+;> 1 (32)
1
00001
by =%100001
00001

33)
b2:Ti<1—77T7d?2/[+£>b1 (

by = Tiby
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Table 1. Structural parameters of the wind turbine model

h 87.6 m Co 0.01

L 61.5 m ¢ 0.005

m 17415 kg w 4.2 rad/s
mo 404520 kg wo 2.0 rad/s
mq 791 kg k 14120 N/m
mso 1893 kg ko 1667914 N/m
ms 359304 kgm Q.0 1.27 rad/s
my 83228 kgm Q.00 73.7 m/s
ms 6100058 kgm V, 15 m/s
J, 35337324 kg m? V. 25 m/s
Jg 535 kg m? Vi 5 m/s
N 97 T 0.2 S

M, 296780 kg T 5 s
M, 3946018 Nm 4 0 s

n 0.05

Table 2. Subset simulation parameters

Ngim  po m  CPU time [s] Memory [GB]

500 0.1 6 1.5 x 10% 1.2
500 0.5 15 3.4 x 10* 6.0
1000 0.1 6 3.0 x 10* 2.4
2000 0.1 6 6.0 x 10* 4.8
3000 0.1 6 8.5 x 104 7.2

4.5 Rare event estimation of the wind turbine

The time duration for simulation is chosen 800[sec] where the first 200s are discarded
to take into account the effect of the transient phase of the system response. The rest
simulates a 10min. interval which is prescribed in design codes for extraction of prob-
abilistic behavior of the turbines IEC (2005b). The resolution of the time integrator is
set to At = 0.2s. Turbulent wind field is simulated on 31 nodes, one on the hub and
others at 0.8L radial distance from hub on an equi-distance angular grid. The mean
wind is set to V, = 15[m/s] and the cut-in and cut-out speeds are set to V; = 5[m/s]
and V, = 25|m/s| respectively. The limit state function is defined as the first passage
of the magnitude of the tower displacement from the threshold (barrier) level b i.e.
pf(b) = Prob (tg?(?):;] |z4(t)| > b) with T' = 600[s] of simulation. Discarding the transient

)

simulation time, the LSF is defined as a function of 93000 stochastic variables. Failure
probability of the model is estimated by SS with parameters indicated in table 2 and SMC
with 4.95 x 10° samples. A practical issue is the very high number of the basic random
variables, e.g. the iid Gassian random numbers which will pass through the turbulence
filter, needed to be stored in the memory for the next stage of the simulation. These
consists of seeds for two consecutive simulation levels which contains 2/N,..q sets of basic
random variables requiring approximately 12MB of disc space for only one simulation.
Therefore a simulation with 500 initial samples and pg = 0.1 requires approximately
1.2GB memory (or disc space) to save 2N.eq = 100 seeds for two simulation levels. The
proposal distributions are chosen uniform centered at the sample seed and with spread
equal to 2 times standard deviation of the seeds of the previous level.
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Figure 6. First passage probability estimation SS-MMH. Fixed speed wind turbine; 6 stages with
po = 0.1 Thick black: Standard Monte Carlo, Thin blue: Subset simulation with MMH sampling
scheme

Figures 4.5 and 4.5 show estimates of the first passage probability of the fixed speed
wind turbine with SS-MMH and SS-MMHDR, respectively. In both figures number of
samples is Ng;y, = 500 and probability increment is set to pg = 0.1. Each figure shows
10 estimates of the first passage probability with SS together with the SMC results.
The figures show that both methods are successful in increasing barrier levels and their
estimates are close to that of the SMC. However SS-MMHDR results suffer from small
over estimation of the first passage probability at high barrier levels. Figures 4.5 and 4.5
show the estimates of the first passage probability of the variable speed wind turbine.
The figures show that presence of the controller has considerable effect on first passage
probability estimation. The controller not only changes the range of barrier levels but
also makes the estimation of the first passage probability a more difficult task. As seen
in figures 4.5 and 4.5 both methods have rather poor estimates of the first passage
probabilities of order 10~7 for the variable speed wind turbine case.

For the fixed speed wind turbine the value pg = 0.1 is shown to be a good choice and
both methods overcome the difficulties faced by high dimensions of the model. However
the variable speed model has difficulties in estimating very low probabilities c.f. figures 4.5
and 4.5. In order to give more chance of uniform distribution of the seeds in the failure
region of the problem, the intermediate failure probability has been increased by setting
po = 0.5. This clearly requires increasing the number of the simulation stages, e.g. m in
(2) and (3), for estimation of the same failure probability. Here 15 stages of simulation
have been used which allows estimation of the failure probabilities down to 1.2 x 1077.

Moreover it is interesting to assess the efficiency of the method by increasing the
initial sample number compared to decreasing the intermediate threshold levels since
they both end up in increasing the number of seeds and the computation cost. Therefore
in the next steps N, has been changed from 500 to 1000, 2000 and 3000 while keeping
po = 0.1. Figures 4.5 and 4.5 show estimated first passage probabilities for the fixed
and the variable speed cases respectively by SS-MMH with different configurations. It is
seen that increasing number of samples has similar effects as decreasing the intermediate
threshold level. However the recorded computation time, c.f. table2, on a 2.80GHz Intel
i7 CPU with 8GB memory is in favor of choosing less initial samples, Ng;,, with bigger
probability increments, pg, but with more simulation stages, m. Figures 4.5 and 4.5 are
the counterparts of figures 4.5 and 4.5 but the SS-MMHDR method is used here. It is
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Figure 7. First passage probability estimation SS-MMHDR. Fixed speed wind turbine; 6 stages
with pg = 0.1 Thick black: Standard Monte Carlo, Thin green: Subset simulation with MMHDR
sampling scheme

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 8. First passage probability estimation SS-MMH. Variable speed wind turbine; 6 stages
with pg = 0.1 Thick black: Standard Monte Carlo, Thin blue: Subset simulation with MMH
sampling scheme

seen that increasing number choosing bigger py with more simulation stages increases
the over estimation of the probability in the fixed wind turbine case. Although on the
variable speed case the conclusion is the same as the SS-MMH method.

5. Conclusions

The low first passage probability of a reduced order wind turbine model is estimated
based on the Makov Chain Monte Carlo. A well-known method for this aim, e.g. SS-
MMH, with two of the most recent modifications to the original algorithm have been
implemented and compared to the original method on a linear SDOF oscillator. The
results show that in high dimensions the chains constructed by SS-MMHRC algorithm
do not move to the next state often, and tend to stay in their initial state. However
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Figure 9. First passage probability estimation SS-MMHDR. Variable speed wind turbine; 6
stages with pg = 0.1 Thick black: Standard Monte Carlo, Thin green: Subset simulation with
MMHDR, sampling scheme
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Figure 10. First passage probability estimation SS-MMH. Fixed speed wind turbine. blue: 6
stages with 500 samples and py = 0.1; red : 15 stages with 500 samples and py = 0.5; green: 6
stages with 1000 samples and pg = 0.1; magnet: 6 stages with 2000 samples and py = 0.1; cyan:
6 stages with 3000 samples and pg = 0.1

the SS-MMH and the SS-MMHDR are both successful in moving to the next states and
increase the barrier levels.

The estimated first passage probability of the fixed speed wind turbine is in good
agreement with SMC with all different simulation configurations with SS-MMH. On
the other hand SS-MMHDR results have small over estimations in their predictions.
Estimations of the first passage probability of the variable speed wind turbine is also
presented. This is a high dimensional nonlinear first passage estimation of a dynamic
system incorporating a controller; which to the best knowledge of authors is the first time
being reported in the literature on VRMC methods. It is seen that presence of a controller
has considerable effect on first passage probability estimation. The controller not only
changes the range of barrier levels but also makes the estimation of the first passage
probability a more difficult task. The SS estimations of the first passage probability of
the variable speed wind turbine underestimate the failure probability of the high barrier
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Figure 11. First passage probability estimation SS-MMH. Variable speed wind turbine. blue: 6
stages with 500 samples and py = 0.1; red : 15 stages with 500 samples and py = 0.5; green: 6
stages with 1000 samples and pg = 0.1; magnet: 6 stages with 2000 samples and py = 0.1; cyan:
6 stages with 3000 samples and pg = 0.1
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Figure 12. First passage probability estimation SS-MMHDR. Fixed speed wind turbine. blue: 6
stages with 500 samples and py = 0.1; red : 15 stages with 500 samples and py = 0.5; green: 6
stages with 1000 samples and pg = 0.1; magnet: 6 stages with 2000 samples and py = 0.1; cyan:
6 stages with 3000 samples and pg = 0.1
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levels i.e. of order 10~ 7.
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Figure 13. First passage probability estimation SS-MMHDR. Variable speed wind turbine. blue:
6 stages with 500 samples and py = 0.1; red : 15 stages with 500 samples and py = 0.5; green: 6
stages with 1000 samples and pg = 0.1; magnet: 6 stages with 2000 samples and py = 0.1; cyan:
6 stages with 3000 samples and pg = 0.1
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Failure Probability Estimation of Wind Turbines by
Enhanced Monte Carlo
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ABSTRACT

This paper deals with the estimation of the failure probability of wind turbines required
by codes of practice for designing them. The Standard Monte Carlo (SMC) simulations
might be used for this reason conceptually as an alternative to the popular Peaks Over
Threshold (POT) method. However, estimation of very low failure probabilities with
SMC simulation easily leads to unacceptably high computational costs. In this study an
Enhanced Monte Carlo (EMC) method is proposed that overcomes this obstacle. The
method has advantages over both POT and SMC in terms of low computational cost
and accuracy. The method is applied to a low order numerical model of a 5 MW wind
turbine with a pitch controller exposed to a turbulent inflow. Two cases of the wind
turbine model are investigated. In the first case the rotor is running with a constant
rotational speed. In the second case the variable rotational speed is controlled by the
pitch controller. This provides a fair framework for comparison of the behavior and
failure event of the wind turbine with focus on the effect of the pitch controller. The
Enhanced Monte Carlo method is then applied to the model and the failure probabilities
of the model are estimated down to the values related to the required 50 year’s return
period of the wind turbine.

Keywords: Wind turbine; pitch controller; reliability analysis; return period.
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Introduction

Design codes for wind turbines are based on a return period (expected first-
passage time) of T, = 50 years, (IEC 2005a). This requires estimation of the
design values of the wind turbine models related to the failure probability of the
order 1077, According to the IEC61400-1 standard (IEC 2005b), the design value
r of a stochastic response process R(t), t € [0, 00) (deformation, bending moment,
stress, etc.) is obtained by extrapolation of the failure probability of the design
value, r, in a reference epoch T' to the return period 7,.. Presuming independent
failure events in adjacent reference epochs, the exceedance probability of the
design value is given as

P(Roas (1) > 7) = %P(Rmam(T) >1), (1)

where Ry, (T) and Ryq.(T,) denote the maximum values in intervals 7" and T,
respectively. With T, = 50 years and T' = 600s, Eq. (1) provides the relation

T
P(RW(T) > 7“) S 7 =38x107 (2)

T

(Ao}

The design value “r” is obtained as the solution to Eq. (2). It is out of the
question to determine “r” by SMC due to the indicated low failure probability.
The suggested approach in the IEC61400-1 standard is to use a Weibull or a
Gumbel distribution (Harris 2004; Cook and Harris 2004) as the distribution

function Fg, . . (r) =1-P <Rmam (T) > r) for Ryq.. This provides the following
two alternative distributions:

r—ro\

oot 1o (2]
1
r—r

o) =exp (o (7270
1

where rg,7; and ry > 0 are locations, scale and shape parameters, which are
estimated from the available sample. Many other choices of the distributions
have been suggested such as reversed Weibull, log-normal (Harris 2005; Simiu
et al. 2001; Freudenreich and Argyriadis 2007) etc., combined by the well-known
Peaks-Over-Threshold (POT) method. Due to the inherent uncertainties in the
fitting type, these methods do not yield accurate estimates of the low failure
probabilities, i.e. it is not clear which extreme value distribution should be used
in different situations. Clearly, it is beneficial to use a robust technique for
estimating these failure probabilities which has the robustness of the SMC but
with lower computation cost. In this regard there exist possibilities for efficient
estimation of these low failure probabilities such as Importance Sampling (IS)
(Macke and Bucher 2003), Line Sampling (LS) (Schuéller 2008), local domain

(3)
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Monte Carlo (Pradlwarter and Schuéller 2010) etc. which might all be called
Variance Reduction Monte Carlo (VRMC) methods.

The critical problem that renders most of the available methods inapplicable
in practice is their high vulnerability in analysis of high dimensional nonlinear
systems (Sichani et al. 2011; Valdebenito et al. 2010). It should be noted
that dimensionality in the context of the VRMC methods refers to the number
of basic stochastic variables in the normal space, (Katafygiotis and Zuev 2008),
i.e. discrete approximations of the white noise entering turbulence filter in this
study. Next the aerodynamic loads are calculated based on the turbulent wind
field. These are governed by a highly nonlinear relationship which is solved by
iteration. These steps not only increases the complexity of the problem but also
prohibit the development of a straight forward input-output relationship for the
system. Therefore the calculation of the required a-priori data for these methods,
e.g. the gradient of the Limit State Function (LSF) required by local domain
Monte Carlo (Pradlwarter and Schuéller 2010), requires a high computational
effort which is out of budget in practical applications.

Additionally to the above mentioned problems, methods such as IS or LS
make it possible to calculate the failure probability of a predefined barrier level
very accurately. However this might suffice in reliability assessment problems,
it does not in design problems where the barrier level for a predefined failure
probability, e.g. the value of r in Eq. (2), is required to be estimated. The use of
these methods in such cases is conditional on coupling them with an additional
optimization. The drawback is that the optimization requires estimation of failure
probability for several barrier levels which urges tuning the whole set of a-priori
system information, i.e. control functions (critical excitations) in IS (Macke and
Bucher 2003) or important directions in LS (Schuéller 2008), each time the barrier
level is changed. This necessitates repetition of the majority of the computation
procedures and causes significant reduction of efficiency of the method. Based on
the mentioned discussions it is concluded that a high computational load will be
demanded in such cases, especially for nonlinear systems, which demotivates the
use of these methods as also pointed out by other researchers (Pradlwarter et al.
2007).

Therefore it is motivating to use more general methods for such systems which
can cross over these problems without losing much accuracy or efficiency. Re-
cently, the new so-called Enhanced Monte Carlo (EMC) method has been pro-
posed by Naess et al. (Naess and Gaidai 2008b), which has been successfully ap-
plied for extreme response prediction and reliability analysis of structures (Naess
and Gaidai 2008a; Naess et al. 2009). The method is further elaborated re-
garding the statistical dependencies of the extreme value samples of the system
response (Naess and Gaidai 2009). An advantage of this method is its closeness
to the POT, although it is a more general approach. In the present paper the
performance of the method on a nonlinear model embedding a controller is in-
vestigated. The presence of the controller adds a secondary nonlinearity to the
model and makes tracing the system’s behavior even more difficult. This problem
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FIG. 1. Definition of degrees of freedom section moments and pitch angles.

has specific motivations for the wind turbines since it addresses a practical issue
on demand by codes of practice.

Wind turbine model

In order to test the applicability of the proposed method on fixed and variable
speed wind turbines a reduced order model of a 5 MW reference wind turbine is
developed. The specifications of the wind turbine structure are adopted from the
NREL reference wind turbine (Jonkman et al. 2009). It is attempted to cover the
principal behavior of the wind turbine therefore the model consists of structure,
pitch controller, aerodynamic loads and wind modules which are explained in
detail in the following sections.

Mechanical Model

The motions of the blades relative to the hub and only the motion of the tower
in the mean wind direction are modeled by single degree-of-freedom systems. Let
yi(x,t),i = 1,2,3 denote the displacement fields of the blades relative to the hub,
where « € [0, L] is measured from the hub and L is the length of the blades
of Fig. 1. Further y4(x,t) denotes the displacement of the tower in the same
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FIG. 2. Single degree of freedom representation of drive train.

direction, where = € [0, k| is measured from the foundation and h is the height
of the nacelle above the ground surface. Then, the indicated displacement fields
may written

ys(z,t) =~ Dg(x)qa(t).

®y(x) is the part of the fundamental eigenmode of the wind turbine belonging
to the tower and ®(x) is the fundamental fixed base mode shape of the blade.
The blades and the tower are modeled as Bernoulli-Euler beams (Sichani et al.
2011). The dynamic load per unit length on the tower in the mean wind direction
is denoted py(x,t). Correspondingly, the load on the three blades in the same
direction are denoted p;(x,t), pa(z,t) and ps(z,t). The rigid body motion of the
drive train is modeled as a single rotational degree of freedom ¢5 by assuming
infinite stiff drive shafts and no elastic deformation in the gear, whereby the
following kinematic relation emerge for the angular rotation of the rotor of the
generator

Qg = NQE) (5)

where N is the gear ratio, cf. Fig. 2. Furthermore, the mass moment of inertia
of the gear wheels and the connected shafts are included into the mass moment
of inertia J, and J, of the rotor and the generator rotor, respectively. Using
Euler-Lagrange’s equations (Meirovitch 2001), the following governing equations
of the system may be obtained

mq() + cq(t) + kq(t) = £(7) (6)
m;y 0 0 my O k0O 0 0 0
0 mi 0 mg O 0 k0 0 0
m = 0 0 m me O , k=100 %k 0 O (7)
meo Mo Mo My 0 0 0 0 ko 0
o o o0 0 J 000 0 O
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m = fOL (x)dx my = fOL zpu(z)®(z)dr
my = fo r)®*(x)dx ms = fh :v,uo( )CIDO( )dx
my = fo r)dr my = fo po(2)®%(z)dx + My + 3m

mg = fo xu(x)dx J = foxu(x)dx )

J is the generalized mass moment of inertia related to the rigid body degree-of-
freedom ¢5(t) given as

(8)

J=J,+ N?J, 9)
The damping matrix ¢ merely includes structural damping. Aerodynamic damp-
ing is included later via the aerodynamic load. Then ¢ may be written as

¢ = diag(2¢wmy, 2¢wmy, 2Cwma, 2owomo, NM,0 /) (10)
a1 (t) fi(?)

qt)=| , f)=1| (11)
qs(t) f5(t)

where €, = g5 is the referential (nominal) rotational speed of the rotor. w and
¢ denote the eigenfrequency and damping ratio of the blades, when fixed to the
hub. Correspondingly, wy and ¢, denote the eigenfrequency and damping ratio of
the lowest mode of the tower, which are assumed to be known. 7 is the loss factor
of the transmission system due to friction in gears and bearings, which typically
is a few percent and M, o = P/, is the referential rotor torque for P = 5MW
nominal power output. The generalized stiffness coefficients of the blades and the
tower are given as

k=w?my , ko= wimo (12)
ko is determined, so the generalized eigenvalue problem defined from Eq. (7)
provides the prescribed angular lower eigenfrequency wy. The generalized external
dynamic loads become

fit) = [y e@)pi(e t)de . i=1,2,3)
fa(t) = th)o( )p4(x t)dz+
Z Jo ®(@)pi(x,t)da
() = M, - (1+77)NM )
where M, and M, are the instantaneous rotor and generator torques respectively
and asynchronous slip variable generator is considered for which the generator

torque under normal operation conditions is linearly dependent on the rotational
speed Ngs(t). The relation may be given on the form

ONC)5(f) — 00
" Qg0 — Qg0
where My = M, (/N is the nominal generator torque, €, = N, is the

nominal generator rotational speed and €, o is the generator speed for the zero
generator torque.

(13)

Mg (t) = Mg

(14)
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Controller model

B1(t), Bo(t) and Ps(t) denote the pitch angles of the blades, see Fig. 1. These are
controlled by the 1st order filter equations assembled in the vector relation

B() = ——(B(0) - Byla 1)) (15)
51 (t) Bl,O(qa (.L t)

Bt)= | Bt) | » Bola,a4t) = | Prola,d,t) (16)
Bs(t) Bso(d, q,t)

7 is a constant specifying the time-delay of the pitch actuators. f,0(q,q,t) de-
notes the pitch control demand. From various available techniques for controller
design, the PID controller, due to its wide range of applications in industry and
its simplicity, (Ogata 2009), is chosen in this work. The control command is then
expressed as

Biofaat) = G(et0)+ - [ eltar+ruipetn)
_ G(q'g,(t) — Qg + %(qg,(t) — 19, (17)

Td MT,O . -
# 2 (00 - s) ) i =123

where e(t) is the error signal defined as

e(t) = gs(t) — gs.0 (18)

as seen the control demand is identical for all blades. G is the controller gain
which is chosen inverse proportional to the partial derivative 88]\;[;, 7; is the integral
control time constant and 74 is the differentiator time constant which is chosen
as a fraction of 7;. There exist several techniques for designing the indicated
controller i.e. by means of the Ziegler-Nichols empirical tuning formula, (Ogata
2009). In practice a pure differentiator is rarely used due to its noise amplification
effect, therefore it is usually replaced by a first order low-pass filter, (Xue et al.
2008). In the present work the controller gains are tuned manually with the gains
indicated in table 1. The equations of motion (6) and the control equations (15)
may be combined into the state vector equations

z(t) = Az(t) + Bf (v(t),z(t)) + Bo(t) (19)
q(t) 0 I 0
z(t) = | q(t) , A= -m'k —m'c 0 (20)
B() %bl %bg —%I
0 0
B=| m! , Bo(t) = 0 (21)
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where by(t), by, by and bs are given as

1 0000 1
GQ, ¢ G
bo(t) = ——L(14+=) | 1| , by==]00 0 0 1 (22)
T i/ ilo o000 1
bg = T,(l — n%%)bl 5 b3 = Tjde (23)

Aerodynamic Load model

Only the aerodynamic load on the blades is considered, i.e. wind load on the tower
is ignored; py(z,t) = 0. Aerodynamic damping is included via a quasi-static ef-
fective angle of attack a(x,t) so changes of the angle of attack is instantly felt
in the aerodynamic loads. The wind loads are calculated by the BEM method,
(Hansen 2007). The turbulence with a prescribed correlation structure is gener-
ated in 30 points on a circle with radius 0.8L as seen in Fig. 1 and one on the
hub. The mean wind speed V' is assumed constant over the rotor area. This
results in neglecting the effect of the shear effects. Nevertheless the dynamic part
of the solution - versus the quasi-static part caused by the shear loads - which
is of interest for the extreme value events of the wind turbine will be captured
by the model. Therefore this assumption is made in favor of the numerical effi-
ciency of the algorithm. A state space model for turbulence is calibrated using
the SSM method, (Sichani et al. 2010; Sichani et al. 2011). The method is
based on matching the cross-covariance function of the turbulence process with
its prescribed function. This approach for turbulence modeling, like the spectral
methods, does not take into account the rotational sampling effect of the turbu-
lence process and just generates the turbulence at fixed grid points. Therefore
it is needed to make an interpolation as the blades pass through different tur-
bulence nodes in between two nodes which is done in the following way. At a
certain instant of time the portion of a given blade is defined by the center angle
g5(t) placed in the sector delimited by the center angles §; and 6;,, representing
the turbulence components v;(t) and v;41(¢) c.f. Fig.. Then, the turbulence v(t)
on the blade is obtained by linear interpolation as follow

olt) = ui) + 2= (1) - 0) 21

Model specifications

Structural properties of the tower and the blades are adopted from the definitions
of the NREL 5MW wind turbine (Jonkman et al. 2009; Kooijman et al. 2003),
and have been indicated in table 1 along which the derived parameters entering
the reduced model and the control parameters. The rated wind speed of the model
i.e. the wind speed at which the nominal power is produced is V, = 10.72m/s
as indicated in table 1. For values higher than this value the pitch controller is
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FIG. 3. Interpolation of turbulence.

turned on which decreases the rotor speed to its nominal value. Modal responses
of the first blade and the tower are shown in Figs. 4.a and 4.b. As seen, the
blade response relative to the hub is broad banded. This is due to the significant
aerodynamic damping of the blade. The variable rotational speed of the rotor
and the pitch command of the controller - which is the same for all three blades
- are then shown in Figs. 4.c and 4.d.

Fixed versus variable speed model

Simulations show that the controller changes the system behavior significantly.
Therefore a more detailed study with the aim of analyzing controller’s effect is
performed in this section. The two cases of operation referred to as fixed speed
and variable speed will be considered. In the first case the rotational speed of
the rotor is set to the nominal rotor speed (2, while in the second case the
controller is in charge of keeping the speed around the nominal speed. According
to the coupling between the rotor torque and the normal load, presence of the
the pitch controller will affect the vibration level of the wind turbine. For further
illustration a simulation of the wind turbine is carried out within 600 seconds.
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TABLE 1. Structural and control parameters of the wind turbine model.

Parameter Value Dimension Parameter Value Dimension
h 87.6 m w 4.2 rad/s
L 61.5 m wo 2.0 rad/s
m 17415 kg T 0.2 s

mo 404520 kg T; 5 s

my 791 kg T4 0 s

Mo 1893 kg G 0.1 rad
ms 359304 kgm n 0.05

my 83228 kgm p 1.25 kg/m?
ms 6100058 kgm Q0 1.27 rad/s
J, 35337324 kgm? Vi 15 m/s
Jy 535 kgm? M, 3946018 Nm
N 97 v 0.2

M, 296780 kg V, 25 m/s

k 14120 N/m Vi 5 m/s
ko 1667914 N/m Q.00 73.7 rad/s
¢ 0.005 V. 15 m/s
Co 0.01

a[m]

a[m]

s [rad/s|

d) 025 ‘ ‘ ‘ ; ;

= 021 i

w015}

0.1 I I I I I I
50 100 150 200 250 300 350 400

t[s]

FIG. 4. Modal responses of each DOF of the wind turbine.
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FIG. 5. Modal responses of each DOF of the wind turbine. blue: fixed
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The same wind field realization is used for both fixed and variable speed models.
As seen in Fig. 5 the vibration amplitude of the variable speed case during normal
operation is lower than the fixed speed case. However this is not guaranteed and
the opposite also happens. As a counter example the responses to a specific
realization of the wind field - the realization at hub hight is shown in Fig. 6 - are
shown in Fig. 7. As seen in this figure, in extreme conditions, i.e. ¢ € [100,200]s,
the vibration level of the variable speed model exceeds its value for the fixed
speed model. Results of the next section show that this case is dominant in the
extreme conditions. This analysis is provided in order to illustrate the effect of
the pitch controller which may be either increment or decrement of the safety
margin of the system in extreme conditions.

Enhanced Monte Carlo

In the Enhanced Monte Carlo method the first step is to estimate the so-called
Average Conditional Exceedance Rate (ACER) functions of each of the time series
available. To fixideas, let Xy, ..., X, denote a time series of data allocated to the
discrete times ¢y, ..., ty,. Our goal now is to accurately determine the distribution
function of the extreme value My, = max{X;;j = 1,...,N,}. Specifically, we
want to estimate P (1) = Prob(My, <) accurately for large values of .
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FIG. 7. Modal responses of the wind turbine to stochastic wind field. blue:
fixed speed; red: variable speed
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From the definition of My, it follows that,
P(n) = Prob(Muy, < ) = Prob{X; <n,..., Xy, <n} (25)

This equation is of no use in general for estimating P(n) directly from the data.
However, by introducing a cascade of conditioning approximations Py(n) of P(n),
where Py(n) — P(n) as k increases, this problem can be solved in practice in
a very efficient manner (Naess and Gaidai 2009; Naess et al. 2010). It can be
shown that for N, >>1and k=1,2,...

Pp.(n) ~ exp ( - i akj(ﬁ)) ) (26)

where
agj(n) = Prob{X; >n|X; 1 <n,..., Xjpp <} (27)

For the empirical estimation of the requisite quantities in the Py (n), it is ex-
pedient to introduce the concept of average conditional exceedance rates (ACER)
as follows,

Np

1
Ek(n) Np o ]{f + 1 § : O‘M(”)» k )< ( 8)

j=k

The empirical estimation of the ACER function (n) proceeds by counting the
relative number of exceedances conditional on the requisite number of preceding
non-exceedances, for the total data time series. This counting process is expressed
by introducing the following random functions,

Pk]<77) = 1{XJ > n’X]'*l S .- '7Xjfk+1 S 77}7
ij(n) = 1{Xj—1 <n,..., Xj g < n},
j=k,...,Ny, k=23,... (29)

where 1{.A} denotes the indicator function of some event A, that is, 1{A} = 1 if
A occurs, while 1{ A} = 0 otherwise. Then

akj(n):%),j:k,...,zvp,/-c:2,..., (30)

where E[-] denotes the expectation operator. Assuming an ergodic process, then
obviously €x(n) = a(n) = ... = agn,(n), and it may be assumed that for the

time series at hand N
. Z]:pk prj(n)
ex(n) = Jim Zg=—""
P Zj:k ar;(n)

where py;(n) and g;;(n) are the realized values of Py;(n) and Q;(n), respectively,
for the observed time series.

, (31)
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The sample estimate of €,(n) is,

alm) =5 ). (32)

where R is the number of realizations (samples), and

Np (r)
Zj:pk Qi ()

where the index (r) refers to realization no. r. The empirical variance is calculated
as,

R
1 2
A 2 A(T) 2
= gy (&) = &lm) (34)
The estimated mean value and standard deviation are then used to estimate
the confidence intervals according to Eq. (35).

CI(n) = () + 1.965,(n) /VR (35)

where the coefficient 1.96 = ®~'((1 + pc1)/2) where pc; denotes the confidence
level e.g. 0.95 for 95% confidence intervals. Each of the empirical ACER functions
is now used to achieve an optimal fit to a parametric function of the type,

Ex(n) = qrexp{—ar(n — by)*} (36)

for tail values of n, that is, for n > 1y, where 7y denotes a suitably chosen tail
marker. The class of parametric functions expressed by Eq. (36) reflects the basic
underlying assumption that the correct asymptotic extreme value distribution
is of the Gumbel type. This assumption is based on the observation that the
statistical distributions that describe the response of the wind mills under study
all belong to the domain of attraction of the Gumbel extreme value distribution.
We believe that it is of some importance to have a method that captures the
correct asymptotic behavior, otherwise the whole procedure runs the risk of being
nothing but a curve fitting exercise without proper statistical justification.

Finding the values of the parameters (ay, by, cx, gx) of the ACER function will
be done by mean square optimization. This requires the specification of an initial
guess as the starting point of the optimization process. As the starting point,
a set of values for the parameter dy = In(qgx) is constructed. It is important to
note that according to Eq. (36) dy > In (£,(n)) which must be satisfied in order
to ensure convergence of the optimization algorithm.

There are several procedures that can be suggested for the optimization pro-
cess. Here we shall describe one such approach. First, the set of d values is
constructed as a vector of geometrically spaced values in the range of [d,in, dimaz]
with the base (4 as d,,y1 = d,, + Ba(d, — d,,—1) which results in Eq. (37), where
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Ny is the total number of grid points of d. The range of d values is defined as
i = In [5k(7]0/1-02)} and dyay = 1.5+ In (5,(0)).

1— n—1
dop1 =dy + ——%—Ag, n=1,...,Ng— 1

Acl - dma:ﬁ - dmm

For each value of d, optimization is performed to find the other parameters related
to it, that is, (a, b, c). The objective function of the optimization is defined as a
weighted error of the fit. The weights are then defined as a function of the ACER
functions and their confidence intervals as

o 4 —p
In (?’W )] (38)
I (n)

where p is a user defined power which controls the weight of the different points of
the data for fitting i.e. 0.5 or 1. Finally the defined weights may be normalized to
have their sum be equal to 1, but this does not affect the result of the optimization.
In order to make an initial guess for the parameters (a, b, ¢) a further smoothing
is then performed on the ACER functions by replacing the original data with the
data extrapolated from a 3rd order polynomial fitted to the natural logarithm
of the ACER functions e.g. &"(n) where &/"(n) = exp (d— S, an’) =~ ex(n).
Then the following procedure is used,

3
Y;m‘t(n) =1In (d - Z ami>
i=0

w(n) =

\

h= NminTlmaz — nzmd
nmin + nmax — 277mzd
o — 1Yt (hmaz) = Yinit (lmin) (39)

2 ln < Nmaz —Nmid )
Nmid —"min
exXp <Y;mt (T/mzn ))
(nmin - b)c )

a =

where

_ Y;nit(’r/maa:) + Y;nit (nmzn) |

In case estimated parameters are such that b > 1,,,, or ¢ < 0 the following initial

(40)
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estimates are proposed

)

b = Nmin — 0'05(7]maw - T/mm)
c=2
(41)
€xp (ant(ﬁmm))
a =
(nmid - b)c )
In the next step the objective function is defined as
§(b,a,c) = min [|F|[3
! (42)

F = [f(anTw ba a, C) e f(nmaza b’ a, C)]

where f(n;,0,a,¢) =w(n;)| —a(n;, —b)+d—1In (ék(m))} )

In the next step an optimization is carried out with respect to all four pa-
rameters (a,b,c,d) i.e. F = [f(min,a,b,¢,d) -+ f(Mmaz, a, b, ¢,d)]. The initial
values for the optimization are estimated in exactly the same way as before until
Eq. (41). Then, optimization is performed with various initial conditions - start
points - to see if it will converge to the same values. The final values of the
parameters (d,b,a,c) is chosen from the optimization results e.g. s = [a,b, ¢, d]
and its fit denoted as &5 (n).

Once the solution is found, the extra data in the tail are cut under the condi-
tion which defined the modified ACER function €3(n) as €3(n) = {&5.(n) | &5.(n) >
1.965:(1)/(6mazVR)}. The confidence intervals are re-anchored to the £5(n).
Re-anchoring consists of moving the mean value of the estimates for the ACER
function from the estimated values £, () to the fitted values £5(n) using Eq. (43).
Re-anchoring makes it possible then to obtain smooth estimates of the confidence
intervals from the information extracted from the data points.

CI™ () = 5(n) + 1.965:()/VR (43)

In order to obtain the estimation of the confidence intervals of the fit analyti-
cal expressions for the confidence intervals are obtained by perturbing values of
the optimum solution s. C'I5%(n) are then defined as the curves with the least
weighted mean square error MSE, defined as

MSE = 3" w(n) (1n (e4(n, ##7(0))) — n (=) ) (4

Where the weights are modified as

() = lln (62(77) + 1.96§k<n>/¢ﬁ>

—-p

=+ (n) — 1965 (n)/VE 45)
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This can be done either with a deterministic or a stochastic updating way. In
the deterministic approach a grid of ng points perturbed 5% around the mean
s is generated. All of the possible combination of these values should be checked
to see if they lie in the specified interval specified by the re-anchored confidence
intervals, CT Si(n). Next the values which lead to curves with minimum MSE
are chosen as the C'I5(n). This clearly involves high computation effort e.g. for
ng = 10 this process requires 10* function evaluations which might not be desired.
Therefore the second approach based on the stochastic updating and the Gibbs
sampler may be taken into account.

In the stochastic approach the parameters (d,b,a,c) for the confidence in-
tervals are obtained based on Bayesian updating based on the Gibbs sampling.
This needs a distribution of specified spread around the initial guess i.e. s. This
requires a good candidate distribution for generating parameters (d, b, a, ¢) which
is clearly not available from theory. Nevertheless it is observed that using a uni-
form distribution with 0.1CL - where C'L denotes the confidence level i.e. 0.05
for 95% confidence interval - spread around s will result in fast convergence of
the algorithm.

Fixed speed wind turbine

The failure event is defined as the tower tip exceeds a certain barrier level, ¢, > r.
This is a highly nonlinear problem due to the nonlinearities which exist within
modeling the aerodynamic loads. Moreover even with a very coarse time inte-
gration increment as At = 0.2s, 600s assuming 200s of transient response , i.e.
t € [0,800], on 31 spatially coherent nodes involves 124001 number of stochastic
variables in calculations. This means that the limit state is a hyper surface of
dimensions 124001 which makes estimation of the low failure probability of this
problem very difficult.

ACER functions from 20 time series realizations of the tower tip deflection
are simulated shown in Fig. 8. Clearly ACER functions for five different “k”
values, c.f. Fig. 9, are converging to each other as the barrier level increases.
This inculcates that using the proposed method on any of the ACER functions
extracted from the time series should not make difference if the tail marker from
where the data points are selected is chosen high enough. In this study the &;(k)
is chosen as the ACER function to use the maximum data available from the
simulation. Standard Monte Carlo (SMC) is also performed on the model using
240000 samples(epochs) and epochal peaks are extracted from it c.f. Fig. 8. As
seen from the figure the extracted ACER functions show a shift which suggests
that the response is not yet reached the stationary state. This may be surpassed
by two approaches, either to continue simulation for a longer time or continue with
the method using the epochal maximas. However the second approach takes more
computational effort is still preferred since it guarantees that the extracted data
points both for the SMC and the ACER method are from the same population.
In this respect, 500 epochs are simulated and their maximas are extracted, the
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FIG. 8. ACER functions of the wind turbine; fixed speed. dots: ACER
functions, Solid line: SMC
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FIG. 9. ACER functions constructed based on the epochal maximas for the
fixed speed wind turbine. dots: ACER functions, Solid line: SMC

ACER functions are then constructed based on these data and further analysis is
performed on them c.f. Fig. 9 The figure shows that obviously these results belong
to the same distribution family and analysis can be furthermore be followed based
on them. Next the 95% confidence intervals of the data are estimated using (35)
and are shown in Fig. 10. Fitting is then performed on the extracted ACER
functions. It is observed that the tail marker location induce changes on the final
predictions of the method and may result in non-trustable fits. Therefore the tail
marker is chosen where the ACER functions for different values of k are already
converged i.e. 79 ~ 0.29. The estimated confidence intervals are then re-anchored
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to the fitted curve shown in Fig. 11. The final fit together with its 95% confidence
intervals together with the SMC results are shown in Fig. 12. The figure shows
good agreement between the predictions and the SMC however at some points
small errors can be seen which are not considerable. The method seems to be
capable of capturing the general trend of the extreme values of the time series
and worth being applied on the more complicated case, e.g. the pitch controlled
variable speed wind turbine, which is presented in the next section.
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FIG. 13. ACER functions of the wind turbine; variable speed. dots: ACER
functions, Solid line: SMC

Variable speed wind turbine

The second case simulates a variable speed wind turbine where the described
PID controller is keeping the rotor speed in the vicinity of the nominal speed.
This case is even more difficult to solve than the previous case since the con-
troller introduces significant additional nonlinearity in the model. The failure
probability of this case has been evaluated with the same method as the previous
case. ACER functions are directly extracted from 500 epochal maxiams shown
in Fig. 13. Estimated ACER functions together with the fitted function and the
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95% confidence intervals for this case are shown in Fig. 14. The figure shows
that the fit matches very well within the range of the extracted data. Estimated
confidence intervals of the fit are shown in Fig. 14

Confidence intervals of the fitted curve are estimated by after re-anchoring
the estimated confidence intervals to the fit c.f. Fig. 15. The final fit versus
SMC results together performed on 240000 samples are shown in Fig. 16. The
figure shows that also in the case of the variable speed wind turbine where a
controller acts on the turbine - by controlling the pitch of the blades - the EMC
still performs quite good.

Conclusions

A simplified model of a 5SMW wind turbine is developed and its failure probabil-
ity is estimated by use of the EMC method. In order to evaluate the effect of
controller on the structure a PID pitch controller is implemented in the model
which is responsible to keep the rotor speed around its nominal value. The pitch
controller decreases the load level in normal operational conditions nevertheless
it may cause increase in the vibration level in extreme conditions as shown in
the paper. This study shows that presence of a controller in a system effectively
changes system behavior in extreme situations. However the conclusions made
on the controller in this model can not be generalized to all models. This is since
the type and tuning parameters of the controller also play an important role in
the final behavior of the system. The EMC method proposed seems to be a good
candidate for prediction of the extreme value distribution of both the fixed and
variable speed wind turbine models; provided that sufficient number of simula-
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tions are available. It is noted that for reliable results with the EMC method
more simulations are required to be carried out compared to the problems with
stationary responses, i.e. 500 instead of 20 for a stationary process. For low
number of simulations highly uncertain results or difficulties with convergence of
the optimization algorithm may be encountered. However, considering the diffi-
culties stemming from the nonlinearities and high dimensions of the problem the
method appears to be a good candidate compared to the SMC simulation.
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1. Introduction

The paper deals with the non-linear response of shallow cables driven by stochastically varying chord
elongations caused by random vibrations of the supported structure. The chord elongation introduces
parametric excitation in the linear stiffness terms of the modal coordinate equations, which are
responsible for significant internal subharmonic and superharmonic resonances. Under harmonically
varying support motions coupled ordered or chaotic in-plane and out-of-plane subharmonic and
superharmonic periodic motions may take place. If the harmonically varying chord elongation is replaced
by a zero-mean, stationary narrow-band random excitation with the same standard deviation and center
frequency, qualitatively and quantitatively completely different modes of vibration are registered no
matter how small the bandwidth of the excitation process is. Additionally, the stochastic excitation
process tends to enhance chaotic behavior. Based on Monte Carlo simulation on a reduced non-linear
two-degree-of freedom system the indicated effects have been investigated for stochastic subharmonic
resonance of order 2:1, and stochastic superharmonic resonances of orders 1:2 and 2:3. By analyzing the
responses for two chord elongation processes with almost identical auto-spectral density function, but
completely different amplitudes, it is shown that the indicated qualitative and quantitative changes of the
subharmonic resonance primarily are caused by the slowly varying phase of the stochastic excitation. The
superharmonic stochastic responses are dominated by random jumps between a single mode in-plane and
a coupled mode attractor, which are caused by the variation of the amplitude of the random excitation.
Such jumps do not occur in the subharmonic response, because the single mode in-plane attractor is
unstable.

© 2010 Elsevier Ltd. All rights reserved.

orthogonal direction of the chord line of the static equilibrium
suspension merely induce an external excitation of the modal
equations of motion. In addition, the chord elongation also appears

Cables used as structural support elements of masts, towers and
cable-stayed bridges are characterized by a sag-to-chord-length
ratio below 0.01, which means that the natural frequencies for
eigenvibrations in the plane of the equilibrium suspension and
in the orthogonal direction, subsequently referred to as the in-
plane and out-of-plane modes, are pairwise close. The slenderness
and low inherent damping of the cables make them prone to
vibrations, either induced as external loads on the cable from
the wind or a combination of wind and rain, or via motions of
the support points, [1,2]. Especially, the chord elongation caused
by the difference between the components of the support point
motions along the cable chord is of importance for the cable
dynamics. The components of the support point motions in the

* Dedicated to professor K. Sobczyk in honor of his seventieth birthday.
* Corresponding author. Tel.: +45 9940 8570; fax: +45 9814 8243.
E-mail addresses: soren.nielsen@civil.aau.dk (S.R.K. Nielsen), mts@civil.aau.dk
(M.T. Sichani).

0266-8920/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.probengmech.2010.06.006

as a parametric excitation of the linear stiffness terms in the modal
equations of motion. These parametric excitations are the primary
cause for the internal resonances considered in this study.

Critical situations arise when the chord elongation is harmoni-
cally varying with an angular frequency wy close to rational values
of the frequency ratio wg /w1, where w; is the fundamental out-of-
plane angular eigenfrequency. Especially, coupled resonant vibra-
tions of the in-plane and the out-of-plane modes may take place.
For wy/w1 =~ 1, harmonic resonance takes place driven by the ad-
ditive load term of the in-plane mode. The out-of-plane mode is
caused by internal resonance via the geometrical non-linear stiff-
ness terms, and has a phase lead close to 7 /2 to the in-plane har-
monic component, leading to a whirling motion around the chord
line with an elliptical trajectory of the midpoint, [3]. Subharmonic
and superharmonic resonances, synonymously known as internal
resonances, imply that the resonant vibrations in the fundamental
modes take place for rational frequency ratios wg/w; significant
larger and smaller than one, respectively. Especially important are
the subharmonic resonance of order 2:1 and the superharmonic
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resonances of orders 1:2 and 2:3, corresponding to wy/w; =~ 2,
wo/ w1 % and wg/wy =~ % No stable subharmonic resonance of
order 3:2 exists at realistic chord elongation amplitudes. The sub-
harmonic resonance of order 2: 1 and the superharmonic resonance
of order 2:3 are caused by a combination of internal resonance due
to the parametric excitation of the linear stiffness terms and the
external excitation of the in-plane mode, [4,5]. The superharmonic
resonance of order 1:2 is entirely caused by the parametric exci-
tation of both modes, [4]. Due to the geometrical nonlinearities,
the response may become chaotic under harmonic or internal reso-
nances for sufficiently large amplitude of the chord elongation. The
resonant response is enhanced at low structural damping of the ca-
ble, for which reason the chaotic behavior is more pronounced in
this case than at higher damping.

In reality, the chord elongation is narrow-band stochastically
varying, driven by the narrow-band random response of the
supported structure. The bandwidth and the angular center-
frequency of the auto-spectral density function of the chord
elongation process may often be identified as the modal damping
ratio and the angular eigenfrequency of one of the eigenmodes
of the supported structure. It turns out that the subharmonic
resonant response under stochastically varying chord elongation,
qualitatively and quantitatively, is completely different from what
is observed under a comparative harmonic excitation, even for
extremely small bandwidths of the excitation. The superharmonic
stochastic resonances are dominated by random jumps between a
single mode in-plane attractor and a coupled mode attractor.

Chaotic behavior under stochastic excitation is defined as
extreme sensitivity of the response on the initial conditions in a
way that the response of two realizations of cable motion with
close initial values, generated by the same arbitrary realization
of the chord elongation process, deviate exponentially with time.
The exponential growth rate is measured by the maximum
Lyapunov exponent, which in this paper will be estimated by
ergodic sampling by the algorithm of Wolf et al. [6]. A positive or
negative Lyapunov exponent indicates chaotic or ordered behavior,
respectively. It turns out that the tendency of chaotic behavior
increases with increasing values of the bandwidth up to a certain
value.

A narrow-band stochastic chord elongation differs from the
comparative harmonic excitation in having a slowly varying
amplitude and phase with time. It is the aim of the present
study to investigate to what extent the indicated changes of the
stochastic response are caused by the variation of the amplitude
or by the phase. The solution approach is based on Monte Carlo
simulation using two stochastic chord elongation models with
almost identical auto-covariance functions. One is obtained by
a linear filtration of Gaussian white noise through a narrow-
band linear 2nd order filter, leading to realizations with slowly
varying amplitudes and phases. The other model is based on a
cosine transformation of a Wiener process, leading to realizations
with the same constant amplitudes as the reference harmonic
excitation, so the randomness is completely caused by a varying
phase, see Wedig [7].

Deterministic superharmonic resonances of orders 2:3 and
1:n,n = 2,3,... of a shallow cable were analyzed by Nielsen
and Kirkegaard [4] based on analytical solutions to a reduced
two-degree-of-freedom model. The effect of harmonic forced
support motions has also been considered by Perkins, [8], who
obtained analytical solutions for coupled in-plane and out-of-plane
responses. The emphasis was on cables with relative large sag-to-
chord length ratios to analyze 2:1 internal resonances close to the
cross-over frequency of the fundamental in-plane eigenfrequency.
Tien et al. [9] considered the analog subharmonic resonance of
order 2:1 of a shallow arch under periodic excitation, based
on an averaging procedure. Pinto de Costa et al. [10] studied

Fig. 1. Schematic view of a stay cable in a cable stayed bridge.

oscillations in the static equilibrium plane of bridge stay cables
subjected to periodic motions of the bridge and/or towers using a
Galerkin method. El-Attar et al. [11] evaluated the nonlinear cable
response to multiple periodic support excitations with different
phases using a 2DOF model. Rega and co-workers [3] performed a
theoretical and experimental in-depth investigation on nonlinear
multi-modal interactions and chaotic motion of the cable using a
multi-mode model. An analysis of the harmonic resonance of the
2DOF model for a shallow cable exposed to a stochastically varying
chord elongation was performed by Larsen and Nielsen [5]. It was
shown that the whirling mode becomes unstable under stochastic
chord elongation excitation. Instead, the cable jumps randomly
between a coupled mode and a single in-plane mode attractor
depending on the magnitude of the chord elongation process.
A theory for determining the probability of occupying either of
these modes of vibration was derived based on a continuous
time two-state Markov chain model. The corresponding stochastic
resonance of order 2:1 was investigated by Zhou et al. [12] based
on analytical solutions for the deterministic ordered response, and
the subharmonic stochastic response was analyzed by Monte Carlo
simulations. It was found that the stochastic variations of the chord
elongation enhanced the tendency to chaotic response relative to
the comparable harmonic excitation, and that the coupled mode of
vibration only exists for bandwidths below a certain critical value.

2. Theory

2.1. Mechanical model

Fig. 1 shows a stay cable in a cable stayed bridge, making
the angle 6 with the bridge deck. u(0, t) and u(L, t) denote the
components of the support point motions at the bridge and the
tower along the chord of the cable, where L denotes the chord
length. Fig. 2 defines the parameters of the mechanical model of
the cable. f is the sag at the midpoint, caused by the component
g cos O of the acceleration of gravity in the orthogonal direction
to the chord. The linear springs with the spring constants k;
and k, model the flexibility of the bridge deck and the tower,
respectively. The plane equilibrium state is maintained by a
prestress force H along the chord line, which is assumed to be
sufficiently large that a symmetric parabolic approximation may
be used for the equilibrium suspension. Obviously, all components
of the support point motions at the upper and lower support
point along the axes of the indicated (x, y, z)-coordinate system
induce dynamic displacement components u(x, t), v(x, t), w(x, t)
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Fig. 2. Parameters in the mechanical model.

of a referential point of the cable. The components of the support
point motions in the transverse direction of the chord merely
induce an external (additive) load term of the modal equations of
motion. These modal loads are important at harmonic resonance,
where the excitation frequency is close to the fundamental angular
eigenfrequencies. In the present investigation the focus is on
sub—and superharmonic resonance, which is caused by harmonic
excitations with frequencies significantly different from the
fundamental eigenfrequencies. In this case the resonant response
is caused by the chord elongation AL(t) u(L,t) — u(0,t),
which induces internal resonance via a parametric (multiplicative)
excitation of the modal equations of motion. The remaining
components of the support point motions have small influence on
the qualitative and quantitative behavior of the cable response, and
will be ignored in the following analysis. Conveniently, the chord
elongation may be described by the following non-dimensional
parameter

EA AL(t)

where E is the elasticity modulus and A is the cross-sectional
area. Based on the parabolic equilibrium suspension the chord
elongation AL(t) during quasi-static deformations can be written
AL(t) AH(t)

N H

as [13]
162 H 1.,
—— 4+ — = — A2 +1
L (3L2+EA> EA<12 + H

AH(t) denotes the change of the chord force caused by the chord
elongation AL(t), and A? is the Irvine stiffness parameter [13].
The first term within the brackets represents the contribution
from an inextensible deformation of the equilibrium suspension,
whereas the second term specifies the contribution from the elastic
deformation. It follows that the contribution from the deformation
of the equilibrium suspension can be ignored in comparison to the
elastic deformation if the Irvine parameter is significantly small,
say A2 < 0.5. The upper bound for this inequality will be used to
define shallowness quantitatively, and hence indicates the upper
limit for application of the following theory. As a consequence,
e(t) defined in (1) becomes approximately equal to the fraction
H(t)/H. Then, since negative chord forces are not allowed, |e(t)|
should be well below 1. Even though the excitation only affects
the in-plane motion, stable out-of-plane displacements may be
generated by non-linear couplings in both harmonic, subharmonic
and superharmonic resonances in the fundamental modes. The
in-plane and out-of-plane displacement components v(x, t) and
w(x, t) are dominated by the fundamental eigenmodes. Then, the
following single mode expansions of the in-plane and out-of-plane
displacements turn out to be appropriate

v(x, 1) = P2(0)q2(1),  w(x, ) = D1(X)qa(L). (3)

The eigenmodes @1(x) and &,(x) are normalized to 1 at the
midpoint, so that the corresponding modal coordinates q;(t)
and g, (t) are approximations to the actual displacements at this
position. The related out-of-plane circular eigenfrequency w; is
slightly smaller than the in-plane eigenfrequency w, due to the

AH(t) H

o)

straining of the cable under symmetric in-plane eigenvibrations.
These quantities have been specified in the Appendix. Retaining up
to cubic non-linear terms in the equations of motion, the following
highly reduced 2 degrees-of-freedom system may be formulated,
Larsen and Nielsen [5]

i + 20011 + @F (14e(0) @1
+B16162 + q1 (4] + 1245) =0

G2 + 20w202 + w5 (1+ ae(t)) g2 + B2q5 + B345
+42 (v3q; + v443) = —ne(t)

¢; and &, are the modal damping ratios, and «, B, 82, B3, V1, V2,
¥3, Y4, 1) are parameters depending on the eigenmodes &1 (x) and
@, (x), which have been given in the Appendix along with the
angular eigenfrequencies. As seen, the non-dimensional chord
elongation e(t) is exposing the system both to external and
parametric excitation.

Based on simulations with a full non-linear finite difference
model, it was demonstrated by Zhou et al. [12] that the indicated
two degree-of-freedom model was adequate in predicting to a
high degree of accuracy the qualitative, and even quantitative,
dynamic responses and chaotic behavior of the cable as seen from
the midpoint trajectories under stochastic excitation, as shown
in Fig. 3, and from the Poincare-maps of the in-plane modal
coordinate shown in Fig. 4. This accuracy is obtained because the
anti-symmetric modes are not excited by the chord elongation, and
because higher order symmetric modes are merely quasi-statically
excited. Further, the influence of non-linearities of higher than
cubic order is ignorable.

(4)

2.2. Chord elongation models

2.2.1. Harmonically varying chord elongations
The referential harmonically varying chord elongation is given
as

(3)

where wg denotes the circular frequency, ey is the non-dimensional
chord elongation amplitude defined by (1), and wy is a constant
deterministic phase.

e(t) = eg cos(wot + wo)

2.2.2. Stochastic chord elongations obtained by filtered white noise

One model for the stochastic chord elongation obtained by the
filtration of a unit intensity white noise through a second order
filter is given as

€+ 2uéwo + wie = /2pwieow(t) (6)

where u is the bandwidth (damping ratio) of the filter, and w(t)
is a zero mean unit intensity Gaussian white noise with the auto-
covariance function

Kkww(7) = E[w®w(t + )] = 8(1). (7
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Fig. 3. Subharmonic stochastic resonance of order 2:1, filtered white noise, ey = 0.3, {; = ¢, = 0.01. (a) Non-linear finite difference model. (b) 2DOF model, [12].
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The auto-covariance function and the one-sided auto-spectral
density function of the output process become:

Kee(T) = leﬁ e Mol | cos(wgt) + Kk sin (wq|T|)
2 /1— p?
wSe(w) 2 2
2 m

2
<1 _ f) a2

@0 “o
wg = woy/ 1 — 2. (9)

wq denotes the damped angular eigenfrequency of the filter.

2.2.3. Stochastic chord elongations by variable phase model
Alternatively, the chord elongation may be modelled as a cosine
transformation of a Wiener process (Wedig [7])

e(t) = ep cos (wot + W(t)) (10)
t

Wi(t) = \/Z,uwof w(t)dr (11)
0

where w(t) is a unit intensity white noise process as defined by
(7). After a transient phase the auto-covariance function and the
one-sided auto-spectral density function of (10) can be shown to
be ([7])

1
Kee(T) = =€ e "0l cos(wyT)

@oSe(@) _ 1 p z (12)

6 (1+w%)2+u2+ (1—£)2+u2

The models (5), (6) and (10) all have zero mean, variance % e(z),

and the dominating angular frequency wg. The amplitudes of (5)
and (10) are both constant and equal to e, whereas the amplitude
of (6) is slowly varying around eg.

Despite the completely different realizations of (6) and (10)
as shown in Fig. 5(a) and (b) the corresponding one-sided auto-
spectral density functions (8) and (12) are almost identical
as illustrated in Fig. 6. The main difference appears to be a
frequency shift. The filtered white noise model has its peak value
approximately at the angular frequency w = (1 — u?)wg, whereas
the random phase model has its peak value approximately at the
angular frequency w = (1 4+ u?)w,. Hence, the frequency shift
amounts to Aw = 2u%w,. For 4 < 0.1, as used in Fig. 6, this
discrepancy is considered acceptable. Obviously, higher order joint
statistical moments of the two excitation models differ completely.
In the numerical analysis the unit intensity white noise process is
replaced by an equivalent broad-band Gaussian process with an
auto-spectral density function, which is flat at the value 1/27 over
all angular frequencies of importance.
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Table 1
Data for stay cable.
EA 2.17 x 10° N
H 5.5x 10° N
m 81.05kg/m
L 260 m
6o 30.4°

3. Stochastic and chaotic analysis

The analysis will be performed for the longest stay in the cable
stayed bridge across the @resund between Sweden and Denmark,
with data given in Table 1. The supports are assumed fixed,
corresponding to k; = k, = o0.Basically, the damping ratios of the
cable are taken as {; = ¢, = 0.002. Additionally, the somewhat
higher damping ratios {; = ¢, = 0.01 will be considered. These
are supposed to model the case, where additional damping has
been introduced via linear viscous dampers placed in the vicinity
of the lower support point of the cable. The total weight of the
cable is W = 2.038 x 10° N. The sag-to-chord-length ratio is
% = 4.05 x 1073 and the Irvine stiffness parameter [ 13] becomes

A2 = 0.4140. An amplitude ALy = 0.5 m of the chord elongation
corresponds to eg = 0.759, which is considered the maximum
value for which the theory applies.

3.1. Subharmonic resonance of order 2:1

Fig. 7(a) shows the trajectory at the midpoint under sub-
harmonic resonance of order 2:1 due to harmonically varying
chord elongations. The damping ratios are & = ¢ = 0.01,
representing a cable with dampers. The response appears as a
coupled periodic motion, where the in-plane modal coordinate is
dominated by a small harmonic response at the angular frequency
wg, and the out-of-plane coordinate by a resonance subharmonic
motion at the angular frequency %wo, resulting in the shown infin-
ity sign like trajectory. It turns out that the in-plane single mode
deterministic subharmonic attractor is unstable for arbitrary small
excitation amplitudes, and the stable motion always appears as

2 T

15t 1

1F 4

woS [(w)/ e}

05 ]

0 .
0.5 1 15

wfwy [-]

Fig. 6. One-sided auto-spectral density function for the two stochastic chord
elongation processes, 1« = 0.1. Thick line: Filtered white noise process. Thin line:
Variable phase process.
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(a) Filtered white noise process. (b) Variable phase process. © = 0.01, e = 0.3.

a coupled motion between the two modal coordinates. Fig. 7(b)
show the corresponding trajectory during a comparable stochastic
chord elongation obtained as filtered white noise with the band-
width @ = 0.01. The related time-series are shown in Fig. 8(a).
As seen, the motion has changed dramatically qualitatively and
quantitatively. Both modal coordinates are at subharmonic reso-
nance, and the trajectories appear as ellipses with slowly vary-
ing semi-axes, rotating slowly around the chord line. Fig. 7(c) and
Fig. 8(b) show the corresponding results at the smaller bandwidth
@ = 0.001. In this case the motion is still dominated by the de-
terministic attractor shown in Fig. 7(a), although the magnitude of
the in-plane modal coordinate has increased significantly in mag-
nitude. Finally, Fig. 7(c) shows the trajectory, when the bandwidth
parameter is increased to u = 0.05. Now, the out-of-plane compo-
nent has vanished totally, and the response of the in-plane modal
coordinate is in subharmonic resonance.

Fig. 9(a) and (b) show the variances E [oq2 landE [0 ] of the out-
of-plane and the in-plane modal coordinates as a functlon of the
bandwidth parameter u for the two considered stochastic chord
elongation models. The damping ratios are {&; = ¢ = 0.01
and ¢, = & = 0.002, respectively, where the latter represents
a cable without dampers. As seen, E [oqzl] decreases, and E[oqzz]
increases with w. Especially, the out-of-plane response vanishes
above a critical bandwidth value, which depends on the damping
ratio and the parameter eq. The existence of the critical bandwidth
value explains the trajectory on Fig. 7(d). Further, it is seen that the
variance estimates produced by the two models are in quite good
agreement. Notice that the variance estimates for the stochastic
chaotic response contain contributions from both the stochastic
response and from the chaotic behavior. These components can
hardly be separated, and hence their relative contribution cannot
be quantified.

The stochastic chaotic behavior of the response subjected to
the two alternative stochastic chord elongation processes has been
investigated by comparing the estimated maximum Lyapunov
exponent of the response using the same realization for the
underlying unit intensity white noise process w(t) in Egs. (6) and
(11). Fig. 10(a) and (b) show the estimated maximum Lyapunov
exponent for high and low dampings as a function of x and
for discrete values of eg. As seen, the stochastic response loses
predictability above a critical bandwidth parameter. However,
if ep is not too large, predictability is eventually recovered at
sufficiently large bandwidth values. Generally, the tendency of
chaotic behavior is more pronounced at low structural damping
ratios than at high damping ratios. From Fig. 9(a) it is concluded
that the stochastic response in Fig. 7(b) with 4 = 0.01 must be
chaotic, whereas the stochastic responses in Fig. 7(c) and (d) with
bandwidths & = 0.001 and « = 0.05 are ordered. The result for
the referential harmonic chord elongation process is obtained in
the limit as © — 0. As seen, these are all negative. Hence, the
response under harmonic varying chord elongation is predictable,
at least for non-dimensional chord elongation amplitudes e, <
0.3.
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Fig. 7. Trajectory of the cable midpoint, subharmonic resonance of order 2:1,e9 = 0.1, wg = 2w1, {1 = & = 0.01.(a) Ordered response due to harmonically varying chord
elongation. (b) Chaotic stochastic response, i = 0.01. (c) Ordered stochastic response, ;© = 0.001. (d) Ordered stochastic response, ;© = 0.05.
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Fig. 8. Realizations of the cable midpoint, stochastic subharmonic resonance of order 2:1, ey = 0.1, wg = 2w1, {1 = ¢ = 0.01.(a) u = 0.01. (b) = 0.001.
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Fig. 12. Fourier transform of single mode in-plane modal coordinate, e, =
0.3, wp = 0.52w4. Harmonically varying chord elongation.

The responses obtained by the two narrow-banded stochastic
chord elongation models agree quite well. Hence, it may be
concluded that the dramatic qualitative and quantitative changes
of the subharmonic resonant response under stochastic excitation
at realistic bandwidth parameters are caused by the 2nd order
statistical moments of the excitation. Physically, the changes are
due to the slowly varying phase of the excitation, which destroys
the phase locking of the deterministic attractor. The amplitude
variation has no influence on the response because the single mode
in-plane subharmonic attractor is unstable for all amplitudes.

3.2. Superharmonic resonance of order 1:2

Fig. 11(a) shows the trajectory of the midpoint under coupled
mode superharmonic resonance of order 1:2 due to harmonic vary-
ing chord elongations. The damping ratios are {; = ¢ = 0.002,
representing a cable without dampers. Both modal coordinates are
at superharmonic resonance. Additionally, another stable single
mode in-plane subharmonic attractor exists. An FFT plot of the re-
sponse in this attractor has been shown in Fig. 12, revealing a small
harmonic amplitude B, at the angular frequency w = wy, a signif-
icant superharmonic amplitude at the frequency w = 2wy, and
a small higher order harmonic amplitude B; at the angular fre-
quency @ = 3wy. Fig. 11(b) shows the corresponding trajectory
during comparable stochastic chord elongations obtained as fil-
tered white noise with the bandwidth ; = 0.001. In this case, ran-
dom jumps between the two deterministic attractors take place.
The single mode in-plane motion is visible in the trajectory as the
vertical filled-in area in the vicinity of q;(t) = 0. Fig. 11(c) shows
the coupled mode trajectory during stochastic excitation with the
variable phase model. No jumps to the single mode in-plane at-
tractor take place. From this observation it is concluded that the
jumps between the attractors are caused by the slow variation of
the amplitude of the filtered white noise model.
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Because of the random jump between the two superharmonic
attractors it is not possible with the applied ergodic sampling
technique to obtain reliable estimates of the variance of the modal
coordinates and the maximum Lyapunov exponent in the case of
filtered white noise excitation. For this reason, these quantities
will only be determined for the variable phase excitation. Fig. 13
shows the obtained variances as a function of the bandwidth
parameter. The variances are approximately constant up to a
certain bandwidth value, where the in-plane component starts
to increase and the out-of-plane component to decrease in
magnitude. The variance of the out-of-plane component attains a
minimum at an unrealistic large bandwidth value, and increases
monotonously beyond this minimum value. Fig. 14 shows the

Q
N

q> [m]

varying chord elongation.

variation of the estimated maximum Lyapunov exponent as a
function of x. As seen, the response is ordered as © — 0, as
displayed by the trajectory shown in Fig. 11(a). However, for any
realistic bandwidth value the stochastic response is chaotic.

3.3. Superharmonic resonance of order 2:3

Fig. 15(a) shows the trajectory of the midpoint under cou-
pled mode superharmonic resonance of order 2:3 due to harmonic
varying chord elongations. Both modal coordinates are at super-
harmonic resonance. Additionally, another stable single mode in-
plane attractor exists. The FFT plot of the response is shown in
Fig. 16, revealing that the dominating component is the harmonic
response amplitude at the angular frequency w = wy. In particular,
there is no superharmonic response component present. Fig. 15(b)
shows the corresponding trajectory during comparable stochastic
chord elongations obtained as filtered white noise with the band-
width & = 0.001. As seen, random jumps take place between the
two attractors, as was the case for the superharmonic resonant case
of the order 1:2. Fig. 15(c) shows the coupled mode trajectory dur-
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Fig. 15. Trajectory of the cable midpoint, ordered superharmonic resonance of order 2:3, ey = 0.7, wy = %wl, ¢1 = & = 0.002. (a) Harmonic varying chord elongation.
(b) Stochastic varying chord elongation, filtered white noise, © = 0.001. (c) Stochastic varying chord elongation, variable phase process, 1 = 0.001.
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ing stochastic excitation with the variable phase model. No jumps
to the single mode in-plane attractor take place, and it is concluded
that the jumps between the attractors are caused by the slowly
varying amplitude of the narrow-band stochastic chord elongation,
whereas the variation of the phase is of no importance. Again, the
variance of the modal coordinates and the maximum Lyapunov ex-
ponent will only be determined for the variable phase excitation.

Fig. 17 shows the obtained variances as a function of the
bandwidth parameter. The variances are approximately constant
up to a certain bandwidth value, where the in-plane component
starts to increase and the out-of-plane component to decrease in
magnitude. The variance of the out-of-plane component attains
a minimum, and increases monotonously beyond this minimum
value. Fig. 18 shows the variation of the estimated maximum
Lyapunov exponent as a function of w. As seen, the response is
ordered as © — 0. At finite, but unrealistic low bandwidth values,
the stochastic response changes between ordered and chaotic
behavior. However, for any realistic bandwidth value the stochastic
response is always chaotic.

4. Conclusions

The stochastic response and chaotic behavior of a shallow cable
have been analyzed by two comparable stochastic models for the
chord elongation for the subharmonic resonance of order 2:1 and
the superharmonic resonances of orders 1:2 and 2:3. One model
is obtained by linear filtration of Gaussian white noise through a
second order filter. The other model is based on a zero-time lag
cosine transformation of a Wiener process. Both processes have
almost identical auto-covariance functions, whereas higher order
statistical moments are different.

The results for the stochastic subharmonic resonance of order
2:1 obtained by the two narrow-band stochastic chord elongation
models agree quite well, from which it is concluded that the
qualitative and quantitative changes of the stochastic subharmonic

resonant response compared to the response obtained under
harmonically varying chord elongation are caused by the 2nd order
statistical moments of the excitation. Physically, the changes are
due to the slowly varying phase of the excitation, which destroys
the phase locking presumed by the deterministic attractor. The
amplitude variation has no influence on the response because
the single mode in-plane subharmonic attractor is unstable for
all amplitudes. It is shown that a critical value of the bandwidth
parameter exists above which the out-of-plane response vanishes,
and the subharmonic resonant response takes place entirely in the
in-plane modal coordinate. Based on a numerically determined
maximum Lyapunov exponent stochastic it is demonstrated
that the stochastic response loses predictability above a critical
bandwidth parameter. If the variance of the chord elongation
excitation is not too large, predictability is eventually recovered
at sufficiently large bandwidth values. Further, the tendency of
chaotic behavior is more pronounced at low structural damping
than at high damping.

Two stable deterministic superharmonic resonance attractors
of order 1:2 exist, which influence the stochastic superharmonic
resonant response. One attractor is a coupled mode response,
where both modal coordinates are at superharmonic resonance.
The other attractor is a stable single mode in-plane subharmonic
attractor. In the case of filtered white noise excitation a random
jump between the two attractors takes place. These jumps do
not take place for the variable phase excitation. Hence, the jumps
are caused by the slowly varying amplitude of the narrow-band
stochastic chord elongation, whereas the variation of the phase is
of no importance. Variances and the chaotic behavior have only
been analyzed for the random phase excitation. The variance of the
components is approximately constant up to a certain bandwidth
value, where the in-plane component starts to increase and the
out-of-plane component to decrease in magnitude. The variance of
the out-of-plane component attains a minimum at an unrealistic
large bandwidth value, and increases monotonously beyond this
minimum value. The stochastic response is ordered as © — 0.
However, for any realistic bandwidth value the stochastic response
becomes chaotic.

The stable deterministic superharmonic resonance attractor of
the order 2:3 consists of a coupled mode response. Additionally,
a single mode in-plane harmonic varying attractor exists. In the
case of filtered white noise excitation a random jump between
the two attractors takes place. These jumps do not take place
for the variable phase excitation. As for the superharmonic
resonance of order 1:2, it is concluded that these jumps are
caused by the slowly varying amplitude of the narrow-band
stochastic chord elongation, whereas the variation of the phase
is of no importance. Variances and the chaotic behavior have
only been analyzed for the random phase excitation. The variance
of the components is approximately constant up to a certain
bandwidth value, where in-plane components start to increase
and the out-of-plane component to decrease in magnitude. The
variances are approximately constant up to a certain bandwidth
value, where the in-plane component starts to increase and
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the out-of-plane component to decrease in magnitude. The
variance of the out-of-plane component attains a minimum, and
increases monotonously beyond this minimum value. At finite, but
unrealistic low bandwidth values, the stochastic response changes
between ordered and chaotic behavior. However, for any realistic
bandwidth value the stochastic response is always chaotic.

Appendix. Eigenfrequencies, eigenmodes and coefficients en-
tering the reduced cable model

The eigenmodes @1 (x) and &, (x) are given as (see Irvine [13])

@1(x) = sin(wé)
cos[£(1—§)]—cos £

2
l—cos2

2 13
E=1 (13)

Dy (x) =

where 2 is the lowest positive solution to the transcendental
equation

2 o 4/(2\
tan — = — — — | — (14)
2 2 a2\ 2
A2 is the Irvine stiffness parameter, [13]
EA f?
2= 64—f— (15)
H L.L

L. is an equivalent cable length which takes the flexibility of the
supports into consideration defined as, [ 14]

AE  AE
Le=L+— 4+ —. (16)
kl kz
Then, the fundamental angular eigenfrequencies at fixed
supports are given as

w1:7rc7)

where

_ 1 /H

o= ——. (18)
LY m

From (13) the following parameters may be evaluated, 5]
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2 . 4+27r—n2AQ
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b2=/ @5 dE = o
0 22 (1—cos 2)

where the last expressions for a,, b, and ¢, represent first order
expansions in the parameter

AR =0 —1. (20)

A is a non-dimensional measure of the difference w, —
w1 between the fundamental in-plane and out-of-plane angular
eigenfrequencies, cf. (17).

Then, the following results can be evaluated for the coefficients
entering (4)
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8 f ’by 4 f axr
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