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Summary

In this thesis we address the problem of learning the cardinalities of hidden
variables and model parameters in tree-structured Bayesian networks with
hidden variables. We work with latent class (LC) models and hierarchical la-
tent class (HLC) models, which are among the simplest types of Bayesian net-
works with hidden variables for categorical data. The standard approaches
for learning cardinalities and parameters in Bayesian networks with hidden
variables often find only local maximum solutions or are too expensive com-
putationally. We propose the so-called parameter reusing approach that uses
parameters from a previously learned model for determining parameters of a
next model. Modified parameters of the previous model are used as a start-
ing configuration for the EM algorithm, which optimises the parameters of
the next model. We reuse the parameters by splitting or merging compo-
nents (i.e., states of a hidden variable). We discuss theoretical properties of
such operations in the context of LC models. We propose algorithms that
learn cardinalities and parameters in LC and HLC models by performing
component splitting, merging, and an operation that combines these two. In
experiments with synthetic and real data, these algorithms in a majority of
cases performed better than the algorithms that use standard starting con-
figurations for EM. In particular, the parameter reusing approach was better
for bigger-sized training data. At the end, we propose some improvements
of our algorithms and discuss how the parameter reusing approach could be
extended to unrestricted Bayesian networks with hidden variables.
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Chapter 1

Introduction

Bayesian networks (Pearl, 1988), also known as probabilistic networks or
Bayesian belief networks, allow a representation of joint probability distri-
butions in a compact way and have become popular in the field of Artificial
Intelligence. As construction of Bayesian networks by using human expert
knowledge is often a hard process, recently lots of research has been done
on automatic learning of Bayesian networks from data (Neapolitan, 2003).
For complete data (i.e., data where each variable from a Bayesian network is
always observed), many algorithms have been proposed and strong theoret-
ical results have been obtained (Chickering, 2002). For Bayesian networks
with hidden variables (i.e., variables that are never observed in given data),
the problem of learning a network from data becomes more challenging and
the available algorithms provide only partial solutions. When learning with
hidden variables, the problems of determining the number and cardinalities
of hidden variables appear in addition to the usual problems of determining
links between variables and model parameters. And even the problem of de-
termining model parameters alone is much more difficult than in the case of
complete data.

In this thesis, we address the problem of determining the cardinalities of
hidden variables and model parameters assuming a fixed number of hidden
variables and fixed links between variables in a model. The standard ap-
proaches for determining cardinalities and parameters often find only local
maximum solutions or are too expensive computationally. We propose the
so-called parameter reusing approach that uses parameters from a previously
learned model for determining parameters of a next model. This often al-
lows to find better solutions in the same time. We work with tree-structured
Bayesian networks: latent class (LC) (Lazarsfeld and Henry, 1968; Good-
man, 1974) and hierarchical latent class (HLC) (Zhang, 2004) models. They
are among the simplest types of Bayesian networks with hidden variables for
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Introduction

categorical data. A nice feature of tree-structured Bayesian networks is that
inference there is faster than in unrestricted Bayesian networks, because each
variable can have no more than one parent.

This thesis is organised as follows. In next chapter we introduce the no-
tation and definitions that will be used throughout the thesis. In Chapter 3
we overview the related work on learning with hidden variables. There we
discuss learning of Bayesian networks with hidden variables, overview the
related work on parameter reusing, and give an introduction to LC and HLC
models. In Chapter 4 we discuss approaches for increasing the cardinality
of a hidden variable while reusing the parameters in LC models. We prove
the theoretical properties of the proposed approaches, discuss the implemen-
tation, and present the experiments performed. In Chapter 5 we discuss
approaches for decreasing the cardinality of a hidden variable while reusing
the parameters in LC models. We discuss the theoretical properties of the
proposed approaches and the implementation. In Chapter 6 we discuss learn-
ing of LC models by combining the operations introduced in Chapters 4 and
5. We describe the algorithms for learning LC models and present the exper-
iments performed. In Chapter 7 we extend our parameter reusing approach
to HLC models. We describe the algorithms for learning HLC models and
present the experiments performed. In Chapter 8 we conclude this thesis and
discuss possible directions for further research.

2



Chapter 2

Notation and Definitions

In this chapter we give notation and definitions which will be used in this
thesis.

A categorical or continuous variable is denoted by an upper-case letter
(for example, Di), a state of a variable by a lower-case letter (for example,
di). A vector of states for a set of variables is denoted by a bold lower-
case letter (for example, d). Data (or data set) over variables D1, . . . , Dk

is D = (〈d1, n1〉, . . . , 〈dN , nN〉), where each instance dj is a k-dimensional
vector, instance weight nj ≥ 0 is a real number, and dj 6= dj′ for j 6= j′.1

The size of data D is |D| = ∑N
j=1 nj.

If a value of some Di is not observed in some dj, we say that dj contains
missing data. If there exists such dj, we say that D contains missing data.
Otherwise, D is called complete.

For a categorical variable X, |X| denotes the cardinality (the number of
possible states) and dom(X) denotes the domain (the set of possible states)
of X.

P denotes a probability distribution when it has variables as arguments.
Otherwise, it denotes a single probability. PD(D1, . . . , Dk) denotes the joint
probability distribution obtained from D.2 That is,

PD(d) =

{ nj

|D| if d = dj for some 1 ≤ j ≤ N

0 otherwise
(2.1)

The Kulbach-Leibler distance between probability distributions

1Please note that we do not require weights nj to be integers, but allow them to be
real numbers. This will simplify a notation in some places.

2Here we assume that D over D1, . . . , Dk is complete.
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Notation and Definitions

P1(D1, . . . , Dk) and P2(D1, . . . , Dk) is

KL(P1, P2) =
∑

d∈D1×...×Dk

P2(d) log
P2(d)

P1(d)
(2.2)

A model is denoted by an upper-case letter (for example, M) and is used
for representing a joint probability distribution PM(D1, . . . , Dk). Model M
is specified by its structure m and parameters θ. That is, M = (m, θ). The
marginal likelihood of data D given model structure m is

P (D|m) =

∫
P (D|θ,m) P (θ|m) dθ (2.3)

P (D|θ,m) = P (D|M) is called the likelihood of D given M .

P (D|M) =
N∏

j=1

PM(dj)
nj (2.4)

where PM(d) is the probability of d given M . The log-likelihood of D given
M is denoted as

LL(D|M) = ln P (D|M) =
N∑

j=1

nj ln PM(dj) (2.5)

We say that D is described perfectly by model M if PM(D1, . . . , Dk) =
PD(D1, . . . , Dk).

For fixed D and m, the maximum a posteriori (MAP) parameters are

θMAP = arg max
θ

P (θ|D,m) = arg max
θ

P (D|θ,m) P (θ|m)

P (D|m)

= arg max
θ

P (D|θ,m) P (θ|m) (2.6)

and the maximum likelihood (ML) parameters are

θML = arg max
θ

P (D|θ,m) (2.7)

For a model M , dim(M) denotes the number of independent parameters
in M (that is, the standard dimension of M). For a model structure m,
dim(m) is equal to dim(M) of any model M having structure m.

A variable from M that is never observed in D is called a hidden variable.
Otherwise, it is called an observed variable. So, if M contains a hidden
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variable, D over all the variables from M automatically contains missing
data.

When using the term structure for models with hidden variables, we as-
sume that cardinalities of hidden variables are also specified in a structure.
We use the term skeleton for what is left when information about cardinali-
ties of hidden variables is removed from a structure. So, structure m = (s, c),
where s is a skeleton of a model and c specifies cardinalities of hidden vari-
ables.

M is a mixture of m models if

PM(d) =
m∑

l=1

PM(hl) PM(d|hl) (2.8)

where PM(hl) is the weight of the lth model, PM(d|hl) depends only on
parameters of the lth model, and

∑m
l=1 PM(hl) = 1. So, a mixture can be

seen as a model containing hidden variable H with states h1, . . . , hm, where
each state corresponds to one of m models. For mixtures, we will also use the
term component to indicate one of m models (i.e., one of states h1, . . . , hm).

Dl denotes the part of D that probabilistically belongs to component hl

in a mixture model. Formally,

Dl = (〈d1, nl1〉, . . . , 〈dN , nlN〉) (2.9)

where nlj = njPM(hl|dj) (so,
∑m

l=1 nlj = nj,∀j = 1, . . . , N). Here

PM(hl|dj) =
PM(hl)PM(dj|hl)

PM(dj)
(2.10)

A mixture model M is a Gaussian mixture if each PM(d|hl) is a k-
dimensional Gaussian distribution. That is,

PM(d|hl) = (2π)−
k
2 |Cl|− 1

2 exp

(
−1

2
(d−ml)

TC−1
l (d−ml)

)
(2.11)

where mean vector ml and covariance matrix Cl constitute the parameters
of component hl.

Model M = (m, θ) is a Bayesian network with variables X1, . . . , Xn if (1)
structure m corresponds to a directed acyclic graph with nodes X1, . . . , Xn

3

and (2) parameters θ consist of probability distributions PM(Xi|pa(Xi)), i =
1, . . . , n, where pa(X) is a set of parents of X in m. Then

PM(X1, . . . , Xn) =
n∏

i=1

PM(Xi|pa(Xi)) (2.12)

3We use the terms node and variable interchangeably.

5



Notation and Definitions

In this thesis, we consider only Bayesian networks with categorical variables.
xv

i denotes the vth state of variable Xi and pau
i denotes the uth configuration

of parents of Xi. qi denotes the number of possible configurations of parents
of Xi (i.e., qi =

∏
Y ∈pa(Xi)

|Y |).
Note that for a Bayesian network M

dim(M) =
n∑

i=1

(|Xi| − 1) qi (2.13)

6



Chapter 3

Related Work

In this chapter we overview the related work on learning with hidden vari-
ables. First, we discuss learning the structure of Bayesian networks with
hidden variables, then estimating their parameters. Then we overview the
related work on parameter reusing. Finally, we give an introduction to latent
class and hierarchical latent class models.

3.1 Learning the Structure with Hidden

Variables

Much research has been done on learning Bayesian network structure from
complete data (Heckerman, 1995), and strong theoretical results have been
obtained for tree-structured networks in particular (Chow and Liu, 1968) and
for unrestricted networks in general (Chickering, 2002). When learning from
complete data D, it is not difficult to evaluate a Bayesian network structure
m, because the marginal likelihood P (D|m) has a closed-form solution:

P (D|m) =
n∏

i=1

qi∏
u=1

Γ(αiu)

Γ(αiu + Niu)
·
|Xi|∏
v=1

Γ(αiuv + Niuv)

Γ(αiuv)
(3.1)

where Niuv is the sum of weights of instances where Xi is in state xv
i and

pa(Xi) are in configuration pau
i (i.e., Niuv =

∑
j: Xi=xv

i ,pa(Xi)=pau
i in dj

nj),

αiuv is the corresponding parameter of the Dirichlet prior, Niu =
∑|Xi|

v=1 Niuv,

and αiu =
∑|Xi|

v=1 αiuv.
The problem of learning Bayesian network structure becomes more chal-

lenging when some data is missing, especially when there are hidden vari-
ables. As shown by Cooper and Herskovits (1992) and Cooper (1995), in
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Related Work 3.1. Learning the Structure with Hidden Variables

theory one could consider all the possible assignments of hidden variable
states to the instances in the data set and then use Formula 3.1 for com-
plete data to evaluate a Bayesian network structure. However, in practice to
consider all the possible assignments of hidden variable states is extremely
expensive computationally.

Probably the best known practical contribution is the Structural EM algo-
rithm (Friedman, 1997; Friedman, 1998), where the EM algorithm (described
in Section 3.2) is extended to learning structures with hidden variables. The
main idea is to complete data as in the E-step of the standard EM, and then
to use the completed data to evaluate adjustments of a structure. These two
steps are repeated iteratively. The algorithm has been proved to converge
and experiments show good performance. The disadvantage is that the num-
ber of hidden variables and the cardinality of each hidden variable must be
fixed.

3.1.1 Detecting Hidden Variables

The problem of automatically detecting hidden variables has been addressed
by many researchers.

Pearl (1986) proposes an algorithm for learning tree-structured Bayesian
networks where non-leafs are hidden variables. All the variables are assumed
to be binary. The network structure is learned by computing correlations for
pairs of observed variables. The algorithm is fast and it discovers the true
Bayesian network. However, it assumes that the observed variables can be
described by such a tree-structured network and that precise correlation coef-
ficients are known. Liu et al. (1990) extend the algorithm of Pearl (1986) by
allowing errors in correlation data occur. Their algorithm performs greedy
search for network structure. This algorithm does not have theoretical guar-
antees any longer, but is applicable to real data.

The FCI algorithm of Spirtes et al. (1993); Spirtes et al. (2000) learns
the Bayesian network structure by performing multiple tests of conditional
independence. Under some assumptions, the algorithm sometimes indicates
the existence of a hidden common cause for observed variables. However, the
algorithm does not perform well on data of small size.

The algorithm of Connolly (1993) learns tree-structured Bayesian net-
works where non-leafs are hidden variables. Differently from Pearl (1986)
and Liu et al. (1990), the variables are not required to be binary. Observed
variables are grouped by computing mutual information. The cardinalities
of hidden variables are determined by conceptual clustering (Fisher, 1987).

The algorithm of Martin and VanLehn (1995) learns Bayesian networks
that contain edges only from hidden variables to observed ones. The al-
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gorithm computes correlation for each pair of observed variables and then
introduces hidden variables to explain dependencies between observed ones.
To determine the cardinalities of hidden variables and model parameters,
the algorithm uses a fast approximation of the normative approach of
Cooper and Herskovits (1992); Cooper (1995). Instead of considering assign-
ments of hidden variable states for all the instances in the data set at once,
it considers these assignments for one instance at a time. In the beginning,
the cardinality of each hidden variable is set to 1. Then the algorithm goes
through all the instances, one at a time. For the jth instance, it finds the
most probable state of each hidden variable (or introduces the new state of a
hidden variable, if this is the best for describing the jth instance) given the
current model, which is based on previous j−1 instances. Then the algorithm
updates model parameters according to these most probable assignments of
hidden variable states.

Kwoh and Gillies (1996) propose an algorithm that creates a hidden node
when the observed variables having the same parent are not conditionally in-
dependent. The hidden node is then introduced between those variables and
their parent. The algorithm searches for conditional dependencies by com-
puting conditional correlation and/or mutual information between observed
variables in the already available network.

Ramachandran and Mooney (1998) propose an algorithm that can add
hidden nodes in order to improve a classification accuracy of Bayesian net-
work classifiers with noisy-or and noisy-and nodes. For Dynamic Bayesian
networks, Boyen et al. (1999) introduce hidden variables by searching for vi-
olations of the Markov property.

Elidan et al. (2000) propose a heuristic for detecting hidden variables in
Bayesian networks. First, a network over the observed variables is learned.
Next, a search for “structural signatures” of hidden variables in the learned
network is performed. The algorithm searches for semi-cliques – sets of vari-
ables where each variable is linked to at least half of the variables in that set.
Candidate hidden variables are introduced as parents of variables in semi-
cliques. Finally, each candidate is evaluated and the best scoring network is
selected.

Tian and Pearl (2002) propose a systematic procedure of identifying
functional constraints induced by Bayesian networks with hidden variables.
Their procedure can be used for inferring structures with hidden variables
from data.

9
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3.1.2 Learning the Cardinalities

The simplest and probably the most popular approach for learning the car-
dinality of a hidden variable is to learn independently a different model for
different cardinalities of a hidden variable and then select the best model
(Chickering and Heckerman, 1997; Uebersax, 2001; NorsysSoftwareCorp.,
2005). However, this requires a separate estimation of parameters for each
model, which can be very time consuming.

The algorithms of Connolly (1993) and Martin and VanLehn (1995), de-
scribed in the previous section, try to determine the cardinalities of hidden
variables.

Another fast heuristic approach has been proposed by
Elidan and Friedman (2001). For each instance from training data, an
assignment to a particular state of a hidden variable is maintained. Because
of this, complete data scoring function can be used. The algorithm starts
with a maximal possible number of states of a hidden variable and merges
states pairwise in a greedy way until all the states are merged into one state.
Two states are merged into a new one by assigning to the new state all
the instances that have previously been assigned to one of these two states.
When merging in a greedy way, the algorithm selects to merge such two
states that the resulting model has the highest complete data score. After
a separate model for each cardinality has been obtained, the algorithm
selects the cardinality that corresponds to the highest scoring model. The
cardinalities of two or more interacting hidden variables are learned by
repeatedly selecting one variable and learning its cardinality while keeping
the cardinalities of other variables fixed.

3.1.3 Scoring the Structures

When selecting among structures of Bayesian networks with hidden vari-
ables, some problems with scoring methods also appear. For missing data, the
closed-form solution (Formula 3.1) for determining the marginal likelihood of
complete data can no longer be used. As Chickering and Heckerman (1997)
point out, one must use large sample approximations (such as Laplace, BIC,
Cheeseman-Stutz scores) or Monte-Carlo approaches, which are more ac-
curate but also more expensive computationally. When computing a large
sample approximation for a structure m, ML or MAP parameters θ′ for m
have to be computed. That is why we will also say that a large sample
approximation evaluates a parameterised model M = (m, θ), where θ is an
estimate of θ′.

10
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Mostly we will use a well-known BIC score (Schwarz, 1978), defined as

BIC (M) = LL(D|M)− dim(M)

2
ln |D| (3.2)

Assuming that the parameters of model M are those of maximum likelihood,
BIC score is asymptotically correct for Bayesian networks without hidden
variables (Schwarz, 1978; Haughton, 1988; Geiger et al., 2001).

Sometimes we will use Cheeseman-Stutz (CS) score (Cheeseman and
Stutz, 1995), defined as

CS (M) = LL(D|M)− LL(D′|M) + log P (D′|m) (3.3)

where m is the structure of model M and D′ is obtained by com-
pleting D using model M . Here P (D′|m) has a closed-form solution
(Formula 3.1), because data D′ is complete. In the experiments of
Chickering and Heckerman (1997), CS was more accurate than the BIC
score.

When a Bayesian network contains hidden variables, BIC, CS and other
large sample approximations can fail because of the following reasons. First,
the same model can be obtained by relabeling states of a hidden variable
(Chickering and Heckerman, 1997). This means that for a model with a
hidden variable that has m states there exist not one but m! maximum
likelihood parameterisations, while in a derivation of the BIC and CS scores
it is assumed that the likelihood function has a single maximum.

Second, the model dimension in the BIC score sometimes should be lower
than the standard dimension dim(M). Geiger et al. (1996) argue that the
dimension of a Bayesian network with hidden variables is the rank of the
Jacobian matrix of the transformation between the parameters of the network
and the parameters of the joint probability distribution over all the observed
variables. This rank is called the effective dimension of a Bayesian network
M = (m, θ). For any fixed structure m, the effective dimension was shown
to be constant for almost any parameterisation θ. This constant is called the
effective dimension of structure m.

Third, for some singular data D the Laplace approximation, which is a
base for the BIC and CS scores, is not correct (Rusakov and Geiger, 2003).
However, in spite of these properties, in practice the standard BIC score is
often used for models with hidden variables (Barash and Friedman, 2001;
Beal and Ghahramani, 2003; Zhang, 2004; Zhang and Kočka, 2004).

Recently, Beal and Ghahramani (2003) proposed to use the variational
Bayesian method for scoring structures of Bayesian networks with hidden
variables. The method computes a lower bound on the marginal likelihood.
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The main idea is to approximate the joint probability distribution over hidden
variables and parameters by a product of the probability distribution over
hidden variables only and the probability distribution over parameters only.
The algorithm optimises the probability distribution over hidden variables
while holding the probability distribution over parameters fixed and after
that optimises the probability distribution over parameters while holding
the probability distribution over hidden variables fixed. These two steps are
iterated until convergence. So, this method can be seen as a modification of
the standard EM algorithm for Bayesian networks.

3.2 Estimating the Parameters

Computing maximum a posteriori (MAP) or maximum likelihood (ML) pa-
rameters for a given structure of a Bayesian network with hidden variables
often is also a difficult problem. For a variable that is hidden or has a hidden
parent, the MAP or ML parameters can not be computed in a closed-form, as
it is done in the case of complete data (Heckerman, 1995). Iterative methods,
such as the EM algorithm (Dempster et al., 1977), Gibbs sampling (Geman
and Geman, 1984; Madigan and York, 1995), or the gradient ascent (Binder
et al., 1997) have to be used.

Probably the most popular choice is the EM algorithm. Generally, the EM
algorithm estimates parameters θ of a model M when training data for M is
not complete. This is done by iteratively alternating between the expectation
(E) and maximisation (M) steps. In the E-step, the current value of θ and
the observed data are used to estimate values for missing data. This way,
the complete data is obtained. In the M-step, this complete data is used to
compute the new value of θ. Lauritzen (1995) described how to apply the
EM algorithm to Bayesian networks. In the E-step, the following expected
sufficient statistics are computed:

Niuv =
N∑

j=1

nj · PM(xv
i ,pau

i |dj) (3.4)

where PM(xv
i ,pau

i |dj) is the probability of Xi being in state xv
i and pa(Xi)

being in configuration pau
i given current parameterisation of a Bayesian net-

work M and data instance dj. If Xi or a variable from pa(Xi) are not
observed in dj, this probability can be computed by entering dj as an ev-
idence and performing inference in a Bayesian network (for example, using
the algorithm of Jensen et al. (1990)). Then, in the M-step, these expected
sufficient statistics are used to compute new parameters of a Bayesian net-
work in the same way as computing ML or MAP parameters for complete
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data. That is, for ML parameters

PM(xv
i |pau

i ) =
Niuv∑|Xi|

v′=1 Niuv′
(3.5)

and for MAP parameters with Dirichlet prior parameters αiuv

PM(xv
i |pau

i ) =
αiuv + Niuv∑|Xi|

v′=1(αiuv′ + Niuv′)
(3.6)

Dempster et al. (1977) showed that the EM algorithm converges to
a local maximum (in terms of LL(D|M)). The initial parame-
ters, that is the starting point for EM, are usually taken randomly.
Meila and Heckerman (1998) performed the experiments with starting points
obtained from training data or from a clustering algorithm and found that
they give very similar performance to the random starting points.

The problem with using the EM algorithm is that Bayesian networks with
hidden variables usually have many local maxima. So, the EM algorithm
often finds local rather than global maximum parameters. It seems that this
problem becomes more serious as the number of states of a hidden variable
increases (Uebersax, 2000). The standard way of dealing with this problem
is to run the EM algorithm many times from random starting points. The
more starting points are used, the closer to the global maximum the best final
parameters should be. However, often a high number of starting points is
required, thus making the algorithm computationally very expensive. A more
feasible computationally is the multiple restart EM algorithm (Chickering and
Heckerman, 1997), where many different random starting points are used, but
repeatedly, after a specified number of EM iterations, only parameterisations
giving the highest likelihood are retained. Even though this algorithm is
faster, often it still requires much time. Other proposals for escaping local
maxima include simulated annealing (Kirkpatrick et al., 1983), tabu search
(Glover and Laguna, 1993), using a subsample of the whole training data
to create a starting point (Fayyad et al., 1998), reweighting of instances in
training data (Elidan et al., 2002), using the Information Bottleneck principle
(Elidan and Friedman, 2003), and reusing parameters from already available
models (Section 3.3).

Another problem is that the EM algorithm can converge slowly. Much
research has been done trying to speed up the EM algorithm for Bayesian
networks in particular (Thiesson, 1995; Zhang, 1996; Bauer et al., 1997;
Fischer and Kersting, 2003) and in other settings (Jamshidian and Jennrich,
1997; McLachlan and Krishnan, 1997; Meng and van Dyk, 1997; Bradley et
al., 1998; Neal and Hinton, 1998; Moore, 1999; Ortiz and Kaelbling, 1999;
Thiesson et al., 1999; Celeux et al., 2001; Salakhutdinov and Roweis, 2003).

13



Related Work 3.3. Parameter Reusing

3.3 Parameter Reusing

In this section we overview the approaches that iteratively use parameters
from a previously learned model for estimating parameters of a next model.
Often, by estimating parameters, at the same time the cardinality of a hidden
variable is learned.

Several authors propose to learn mixture models by starting with
a single component and then repeatedly adding mixture components.
Vlassis and Likas (2002) use this approach for learning Gaussian mixtures.
They add the mth component while keeping the relative mixture weights
and parameters of the first m − 1 components. For the mean of the mth
component, each point in training data is considered as a candidate. The
best candidate is taken as a starting point for EM. This EM learns the
weight and parameters of the mth component only. This is called the par-
tial EM. After that the weights and parameters of all the mixture compo-
nents are adjusted by the standard EM. Verbeek et al. (2003) modify the
above algorithm by initialising the mean of the mth component in such a
way that this new component would correspond to a part of one of the
m − 1 components. That is, one of the m − 1 components is split into
two parts, and one of these parts is taken as the mth component. Such
parameters of the mth component are taken as a starting point for the par-
tial EM. Verbeek et al. (2003) report an improvement over the algorithm
of Vlassis and Likas (2002). Blekas and Likas (2004) adapt the method of
Vlassis and Likas (2002) for categorical data. Their algorithm learns what
we call latent class models. The parameters of the mth component are ini-
tialised in the following way. The whole training data is partitioned ac-
cording to some method into a prespecified number of parts. Then each
part is considered as a candidate mth component. As in algorithm of
Vlassis and Likas (2002), the best candidate is taken as a starting point for
the partial EM. The usage of the standard EM afterwards is not indicated
by the authors. Meek et al. (2002) propose a method for learning mixtures
of density, regression, and classification models. They also add a new com-
ponent while keeping the relative mixture weights and parameters of the
previous components. Once a component has been added, its parameters
can not be changed later, when adding more components.

Figueiredo and Jain (2002) propose to learn mixture models by start-
ing with too many components and then removing unnecessary components.
Their algorithm incorporates automatic component removal into parameter
estimation. This is achieved by introducing Dirichlet priors with negative
parameters for the weights of components and then computing MAP esti-
mates of these weights. This way, in the M-step of the EM algorithm, the
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weights of components having weak support in data are set to zero. That is,
such components are removed. Also, when several components have similar
parameters, Dirichlet priors with negative parameters promote competition
among such components, eventually leaving only one of them. In the ex-
periments with Gaussian mixtures, a large number of initial components are
parameterised randomly, and then the algorithm iteratively estimates the pa-
rameters (which includes the removal of components). Additionally, after the
algorithm has converged, the component having the lowest positive weight is
removed and again the parameters are estimated in the same way. All this
is repeated until a prespecified minimum number of components is reached.
The model having the highest score is returned. Brand (1999) uses a similar
approach for learning hidden Markov models. His algorithm also starts with
many components and uses MAP estimates for removing weakly supported
components. This algorithm uses the minimum-entropy prior, which con-
trary to the Dirichlet prior, does not lead to the closed-form solution of the
M-step.

Ueda et al. (2000) propose an algorithm for improving parameters of a
mixture model with a fixed number of components. Their algorithm tries to
overcome the local maxima problem by repeatedly performing simultaneous
splitting of a component and merging of two other components. A component
is split into two new components by setting the weights of the new compo-
nents to be half of the initial component’s weight and the parameters to
be small random perturbations of the initial component’s parameters. Two
components are merged into a new component by setting the weight of the
new component to be the sum of the initial components’ weights and the
parameters to be a weighted average of the initial components’ parameters.
Parameterisation obtained by simultaneous splitting and merging is taken as
a starting point for the EM algorithm. The algorithm uses heuristic criteria
for selecting the most promising candidates for splitting and for merging.
For splitting, a component hs is considered to be promising if the distance
between the following probability distributions is large: the empirical distri-
bution given by Ds and the distribution specified by the parameters of the
component. For merging, a pair of components is considered to be promis-
ing if many instances from training data belong to these two components
with similar probabilities. The algorithm repeatedly tries to improve the
parameters by splitting-merging and then running the EM algorithm. The
algorithm stops when none of the several most promising split-merge opera-
tions with EM after them improve the parameters. The algorithm has been
applied to the training of Gaussian mixtures and mixtures of factor analysers.
Ueda and Ghahramani (2002) extend the algorithm of Ueda et al. (2000) so
that it is used together with the variational Bayesian method. Here, their al-
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gorithm learns both the number of components and the parameters of a model
by considering separately merge, split-merge, and split operations. During
each iteration, operations of each of the three types are tried. At the end
of each iteration, the algorithm applies an operation which gives the highest
increase in the scoring function. The algorithm stops when none of the sev-
eral most promising operations of each type increase the score. For selecting
the most promising candidates, the same criteria as in Ueda et al. (2000) are
used. The algorithm has been applied to continuous data.

For clustering of continuous data, splitting and merging of clus-
ters together with the k-means procedure has been used already by
Ball and Hall (1967). The algorithm of Richardson and Green (1997) for
learning Gaussian mixtures by using Markov chain Monte Carlo method,
tries both splitting/merging of components and adding/removing them.

For learning hidden Markov models, successive state splitting (Takami and
Sagayama, 1992; Montacié et al., 1996; Ostendorf and Singer, 1997; Stenger
et al., 2001) and merging (Stolcke and Omohundro, 1994) have been used.

3.4 LC and HLC Models

LC and HLC models are among the simplest types of Bayesian networks
with hidden variables. Here we give a brief introduction to these models and
overview the approaches for learning them.

3.4.1 Latent Class Models

Latent class analysis (Lazarsfeld and Henry, 1968; Goodman, 1974) is a
method for finding classes of similar instances from multivariate categori-
cal data. Data D is assumed to be generated by a latent class (LC) model,
shown in Figure 3.1. An LC model consists of a hidden class variable (H) and

Figure 3.1: A latent class model.
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observed manifest variables (D1, . . . , Dk). Manifest variables are assumed to
be conditionally independent given the class variable. Seeing an LC model
as a mixture model, each state of the class variable corresponds to a different
component (class) and a sub-model for each component consists of variables
D1, . . . , Dk with no edges. In the context of Bayesian networks, an LC model
is also known as a naive Bayes model with a hidden class variable. The pa-
rameters of an LC model L consist of a marginal probability distribution
PL(H) and conditional probability distributions PL(Di|H), i = 1, . . . , k. If
the states of H are h1, . . . , hm, then the probability of d = (d1, . . . , dk) given
L is

PL(d) =
m∑

l=1

PL(hl)PL(d|hl) =
m∑

l=1

PL(hl)
k∏

i=1

PL(Di = di|hl) (3.7)

If variable Dj is not observed in d, then terms P (Dj = dj|hl) are not present
in the equation above.

An LC model gives a “soft” classification of d. That is, d belongs to each
class hl with probability

PL(hl|d) =
PL(hl)PL(d|hl)

PL(d)
(3.8)

The goal in latent class analysis is for given data D to determine the
optimal number of components (|H|) and model parameters. This is done
by learning parameters for different |H| and then selecting |H| that gives the
best model according to some criterion (for example, according to the BIC
score).

To denote the structure of an LC model we will write out the cardinalities
of all the variables. The structure of a model from Figure 3.1 will be denoted
by |H| : |D1|, . . . , |Dk|. If |D1| = |D2| = · · · = |Dk|, the structure will be
often denoted by |H| : k × |D1|.

3.4.2 Hierarchical Latent Class Models

The assumption of an LC model that manifest variables are independent
within each class is often unrealistic. To deal with this problem in a sys-
tematic way, hierarchical latent class (HLC) models have been introduced
(Zhang, 2002; Zhang, 2004). Here, for variables that are not conditionally
independent given their parent, a new parent (hidden variable) is introduced,
which is made a child of an old parent. This can be done repeatedly, result-
ing in a tree-structured model. So, an HLC model is a Bayesian network
which has a rooted tree structure, with the leaves being observed variables
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and internal nodes being hidden variables. An example of an HLC model is
shown in Figure 3.2. Variables Di are observed and variables Hi are hidden.

Figure 3.2: An example of a hierarchical latent class model.

Now we will define some concepts regarding HLC models. For more de-
tails, see Zhang (2002); Zhang (2004).1 Two HLC models M and M ′ are
marginally equivalent if they share the same observed variables D1, . . . , Dk

and
PM(D1, . . . , Dk) = PM ′(D1, . . . , Dk).

Two models are equivalent if they are marginally equivalent and have the
same number of independent parameters. Root walking in model M is an
operation of reversing the arrow going from the root X to its hidden child Y .
This way, a new model M ′ with Y as a root is obtained. Parameters PM ′(Y )
and PM ′(X|Y ) are obtained from PM(X) and PM(Y |X), while all the other
parameters are kept the same. For example, a model in Figure 3.3 is obtained
from a model in Figure 3.2 by root walking from H1 to H2. Root walking
leads to an equivalent model. Because of this, the root of a model can not
be determined when learning from data. Instead, one learns unrooted HLC
models, which are HLC models with undirected edges. So, each unrooted
HLC model corresponds to n usual HLC models, where n is the number of
hidden variables in the model.

Regular HLC model structures have been introduced by setting upper
bounds on cardinalities of hidden variables based on cardinalities of observed
variables. An HLC model structure is regular if for each hidden variable H
with neighbors2 X1, . . . , Xl the following is true:

1In these papers, model structure means the same what we call model skeleton.
2Neighbors of a variable are its parent and children.

18



Related Work 3.4. LC and HLC Models

Figure 3.3: A model obtained by root walking.

• if l = 2, then |H| < |X1||X2|
max{|X1|,|X2|} ,

• if l > 2, then |H| ≤
Ql

i=1 |Xi|
maxl

i=1 |Xi| .

We say that an HLC model is regular if it has a regular structure. It has
been proved that for each non-regular HLC model a marginally equivalent
regular model can be obtained. This means that it is enough to consider
only regular models when learning. Also, it has been proved that the set of
regular HLC model structures is finite for a given set of observed variables.

Now we overview methods for learning HLC models. The algorithm of
Connolly (1993), mentioned in Section 3.1.1, is the first attempt to learning
what we call HLC models. A more systematic double hill-climbing (DHC)
algorithm (Zhang, 2002; Zhang, 2004) performs a two level search: (1) a
search for the best skeleton and (2) a search for the best structure given a
fixed skeleton. When searching for the best skeleton, the algorithm starts
with an LC model, and in each step it generates candidate skeletons. For
each candidate, level two search is performed where the algorithm learns the
cardinalities of the hidden variables. This is done by starting with a structure
where cardinalities of all the hidden variables are minimum (in most cases,
2). In each step, candidate structures are generated and the best structure
is selected. Each candidate structure is obtained by incrementing the car-
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dinality of one hidden variable. The best structure is selected by learning
parameters using the EM algorithm and then computing the score for each
candidate. When none of the candidate structures increase the score, the
algorithm returns to level one search, taking the score of the best structure
found as the score of the candidate skeleton. In the experiments, the DHC
algorithm has found good models, but its drawback is high complexity. That
is why Zhang and Kočka (2004) introduced a single hill-climbing (SHC) al-
gorithm, which optimises skeleton and cardinalities at the same time. The
algorithm starts with a simple model (an LC model) and repeatedly in-
creases the log-likelihood of the data by increasing the model complexity.
After that, it repeatedly decreases the model complexity while keeping sim-
ilar log-likelihood. These two phases of increasing and decreasing the model
complexity are repeated iteratively. When increasing the model complex-
ity, the algorithm considers candidate structures obtained by introducing a
hidden variable, introducing a state in a hidden variable, and changing the
parent of a variable. When decreasing the model complexity, the algorithm
considers candidate structures obtained by deleting a hidden variable and
deleting a state of a hidden variable. Even though being faster than the
DHC algorithm, this algorithm is still inefficient because in order to estimate
parameters it runs the EM algorithm for each candidate structure. That
is why Zhang and Kočka (2004) also propose a heuristic SHC (HSHC) al-
gorithm where, similarly to the structural EM, completed data is used for
evaluating candidate structures. Only for the candidate structures that are
the best according to completed data, a modified EM algorithm is run. This
modified EM algorithm optimises only the parameters in that part of a model
where the structure has been changed, while keeping all the other parame-
ters fixed. That is why it is called a local EM. These modifications make the
learning of HLC models much faster.
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Chapter 4

Increasing the Cardinality

In this chapter we discuss approaches for increasing the cardinality of a hid-
den variable while reusing the parameters. We do this for categorical data,
in the context of latent class (LC) models. Part of this chapter appeared in
Karčiauskas et al. (2004a).

First we give an overview of why and how the parameters can be reused.
Then we define formally how to do it. After that, we prove the theoretical
properties of the proposed approaches. Then we discuss the implementation
of cardinality increase. Finally, we present the experiments performed.

4.1 Overview

As mentioned in Section 3.1.2, models with different cardinalities of a hidden
variable are usually learned independently of each other. However, we could
try to take advantage of the fact that the states of a hidden variable H in
models with different |H| are not completely independent. For example, it
is natural to expect that some components from an m + 1–component LC
model are similar to some components from an m–component LC model when
these models are learned from the same data. So, if parameters of an m–
component model have already been estimated, it may be useful to somehow
use them when learning an m + 1–component model. This may allow us to
learn a better m + 1–component model than in the case of estimating its
parameters from scratch. One can think about two approaches for reusing
the parameters from an m–component model.

In the first approach, which we call component introduction, the m + 1–
component model is initialised by adding a new component to the m–
component model. All m “old” components are kept unchanged, only their
weights are scaled down. The new component could be initialised ran-
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domly or according to some method. Then the parameters of the m + 1–
component model can be optimised by running for example the EM al-
gorithm. Vlassis and Likas (2002) use this approach for continuous data
(learning Gaussian mixtures) and Blekas and Likas (2004) for categorical
data (learning LC models), as described in Section 3.3.

In the second approach, which we call component splitting, one compo-
nent from the m–component model is split into two new components. The
m + 1–component model is initialised to contain these two new components
and the other m − 1 “old” components. The parameters of the model can
then be optimised as in the first approach. As described in Section 3.3,
Ueda et al. (2000) and Ueda and Ghahramani (2002) use this approach for
continuous data. Verbeek et al. (2003) use a similar approach for continuous
data as well.

Next we will investigate these two approaches in more detail.

4.2 Definitions

Here we give formal definitions of component introduction and component
splitting operations for LC models.

Definition 4.1 We say that model L∗ is obtained from model L by introduc-
ing a component if L∗ contains all the components from L with their marginal
probabilities scaled down and one new component. More formally, if L con-
tains components h1, . . . , hm, then L∗ contains components h1, . . . , hm+1 and
the following is true for some p ∈ (0; 1):

• PL∗(hl) = (1− p)PL(hl), PL∗(Di|hl) = PL(Di|hl),
l = 1, . . . ,m, i = 1, . . . , k,

• PL∗(hm+1) = p.

Please note that here we do not impose any restrictions for PL∗(Di|hm+1).

Definition 4.2 We say that model L∗ is obtained from model L by splitting a
component hs if L∗ instead of hs contains components h1

s and h2
s that are both

similar to hs, and all the other components are identical in both models. More
formally, if L contains components h1, . . . , hm, then L∗ contains components
h1, . . . , hs−1, h

1
s, h

2
s, hs+1, . . . , hm and the following is true:

• PL∗(hl) = PL(hl), PL∗(Di|hl) = PL(Di|hl),
l = 1, . . . ,m, l 6= s, i = 1, . . . , k,
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• PL∗(h
1
s) = PL∗(h

2
s) = 1

2
PL(hs),

• ||PL∗(Di|h1
s)− PL(Di|hs)|| < ε,

||PL∗(Di|h2
s)− PL(Di|hs)|| < ε,

i = 1, . . . , k, where || · || is an L2-norm of a vector and ε ∈ R is chosen
in advance and is close to 0.

4.3 Theoretical Properties

Having defined the component introduction and component splitting oper-
ations, we now look at their theoretical properties. For convenience, we
assume that training data D over the observed variables is complete.

4.3.1 Component Introduction

We will show that if an LC model L does not describe perfectly data D, it
is possible to increase the log-likelihood of D by introducing a component in
L. The idea is to consider a configuration d′ from D for which PL(d′) is too
small. A new component in L∗ would have a very small marginal probability
and would correspond to d′ only. Below we give a formal proof 1.

Theorem 4.1 If for data D and LC model L we have PL(D1, . . . , Dk) 6=
PD(D1, . . . , Dk), then it is possible to obtain an LC model L∗ from model L
by introducing a component, such that LL(D|L∗) > LL(D|L).

Proof. Since PL(D1, . . . , Dk) 6= PD(D1, . . . , Dk), ∃d′ ∈ D1 × . . .×Dk such
that PL(d′) < PD(d′). Let L∗ be an LC model obtained from model L by
introducing a component (see Definition 4.1). Set

PL∗(Di = d|hm+1) =

{
1 if Di = d in d′

0 otherwise
(4.1)

and take p for PL∗(hm+1) so close to 0 that PL∗(d
′) < PD(d′). We will show

that KL(PL∗ , PD) < KL(PL, PD).
First note that

PL∗(d) =

{
p + (1− p)PL(d) if d = d′

(1− p)PL(d) otherwise
(4.2)

1Contributed by Tomáš Kočka.
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Then we have

KL(PL∗ , PD) =
N∑

j=1

PD(dj) log
PD(dj)

PL∗(dj)
= −

N∑
j=1

PD(dj) log
PL∗(dj)

PD(dj)

= −
N∑

j=1
dj 6=d′

PD(dj) log
PL∗(dj)

PD(dj)
− PD(d′) log

PL∗(d
′)

PD(d′)

= −
N∑

j=1
dj 6=d′

PD(dj)

(
log

PL(dj)

PD(dj)
+ log(1− p)

)

−PD(d′) log
p + (1− p)PL(d′)

PD(d′)

= −
N∑

j=1
dj 6=d′

PD(dj) log
PL(dj)

PD(dj)
−

N∑
j=1

dj 6=d′

PD(dj) log(1− p)

−PD(d′) log

(
PL(d′)

p
PL(d′) + 1− p

PD(d′)

)

= −
N∑

j=1
dj 6=d′

PD(dj) log
PL(dj)

PD(dj)
− (1− PD(d′)) log(1− p)

−PD(d′) log
PL(d′)
PD(d′)

− PD(d′) log

(
p

PL(d′)
+ 1− p

)

= KL(PL, PD)− (1− PD(d′)) log(1− p)

−PD(d′) log

(
p

PL(d′)
+ 1− p

)

= KL(PL, PD) + log
1

1− p
− PD(d′) log

(
p

(1− p)PL(d′)
+ 1

)
(4.3)

From Equation 4.2 we have that PL(d′) = PL∗ (d′)−p
1−p

. This together with

PL∗(d
′) < PD(d′) gives that

PD(d′) log

(
p

(1− p)PL(d′)
+ 1

)
= PD(d′) log

(
p

PL∗(d′)− p
+ 1

)

> PD(d′) log

(
p

PD(d′)− p
+ 1

)
= PD(d′) log

(
PD(d′)

PD(d′)− p

)
(4.4)
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Since in general
(

α
α−p

)α

≥ 1
1−p

for p < α ≤ 1, we have that

PD(d′) log

(
PD(d′)

PD(d′)− p

)
= log

(
PD(d′)

PD(d′)− p

)PD(d′)

≥ log
1

1− p
(4.5)

Combining (4.3), (4.4), and (4.5) gives that

KL(PL∗ , PD) < KL(PL, PD) (4.6)

From this we get

N∑
j=1

PD(dj) log
PD(dj)

PL∗(dj)
<

N∑
j=1

PD(dj) log
PD(dj)

PL(dj)
(4.7)

N∑
j=1

PD(dj) log PL∗(dj) >

N∑
j=1

PD(dj) log PL(dj) (4.8)

N∑
j=1

PD(dj)

|D| log PL∗(dj) >

N∑
j=1

PD(dj)

|D| log PL(dj) (4.9)

LL(D|L∗) > LL(D|L) (4.10)

¥

4.3.2 Component Splitting

We will show that component splitting has the same theoretical property.
That is, if an LC model L does not describe perfectly data D, it is possible
to increase the log-likelihood of D by splitting a component in L. At first
glance, this statement may seem obvious, because we increase the number
of parameters in a model when splitting. However, in Definition 4.2 we
require that the two components obtained by splitting be very similar to the
component that has been split. In other words, we have to prove that ∀ε > 0
we can increase the log-likelihood by splitting. The general idea of the proof
is to split a component by changing slightly the conditional probabilities of
variables for which the probability distributions obtained from the data and
from the model differ. Below we give a formal proof.

Lemma 4.1 If for data D and an m–component LC model L we have

PDl
(D1, . . . , Dk) = PL(D1|hl) · . . . · PL(Dk|hl), l = 1, . . . , m (4.11)

then PD(D1, . . . , Dk) = PL(D1, . . . , Dk).
2

2For definition of PDl
, see (2.9) and (2.1).

25



Increasing the Cardinality 4.3. Theoretical Properties

Proof.

PD(D1, . . . , Dk) =
m∑

l=1

P (hl)PDl
(D1, . . . , Dk)

=
m∑

l=1

P (hl)PL(D1|hl) · . . . · PL(Dk|hl) = PL(D1, . . . , Dk) (4.12)

¥

Lemma 4.2 Let P (X1, . . . , Xk) be a probability distribution over categorical
variables X1, . . . , Xk. For any X ⊂ {X1, . . . , Xk} let P (X ) denote the dis-
tribution obtained by marginalising {X1, . . . , Xk} \ X out of P (X1, . . . , Xk).
If

P (X1, . . . , Xk) 6= P (X1) · . . . · P (Xk) (4.13)

then with probability 1 (in respect of parameters of P (X1, . . . , Xk)) there exist
two variables A,B ∈ {X1, . . . , Xk} such that

P (A,B) 6= P (A)P (B) (4.14)

Proof. P (X1, . . . , Xk) is determined by |X1| · . . . · |Xk| − 1 free parameters.
Let Q denote the space of all the possible values of these parameters. Let
R denote the subspace of Q where the parameters satisfy P (X1, . . . , Xk) =
P (X1) · . . . ·P (Xk). Since this puts constraints on Q, R has measure 0 in Q.
So, R has measure 1 in Q.3

Let S denote the subspace of Q where for some variables A,B ∈
{X1, . . . , Xk} we have P (A,B) = P (A)P (B). Since this puts constraints
on Q, S has also measure 0 in Q. So, S has measure 1 in Q.

So, S has measure 1 in R. This means that with probability 1 there exist
variables A,B for which Inequality 4.14 holds. ¥

One may wonder whether a stronger statement, saying that there always
(not just with probability 1) exist such variables A and B, is true. Below we
provide an example where such A and B do not exist.

Example. Let X1, X2, and X3 be variables with states {0, 1} and let
P (X1, X2, X3) be as shown in Table 4.1.

It is easy to check that P (X1, X2, X3) 6= P (X1)P (X2)P (X3), but
P (X1, X2) = P (X1)P (X2), P (X1, X3) = P (X1)P (X3), P (X2, X3) =
P (X2)P (X3).

3We use U to denote the complement of a set U .
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X1 = 0 X1 = 1
X2 = 0 X2 = 1 X2 = 0 X2 = 1

X3 = 0 0.05 0.10 0.15 0.20
X3 = 1 0.07 0.08 0.13 0.22

Table 4.1: An example of P (X1, X2, X3) distribution.

Lemma 4.3 Let P (A,B) be a probability distribution over categorical vari-
ables A and B. Let P (A) and P (B) be the distributions obtained by marginal-
ising respectively B and A out of P (A,B). If

P (A,B) 6= P (A)P (B) (4.15)

then there exist states a1, a2 of A and states b1, b2 of B such that

P (a1, b1)

P (a1)P (b1)
+

P (a2, b2)

P (a2)P (b2)
6= P (a1, b2)

P (a1)P (b2)
+

P (a2, b1)

P (a2)P (b1)
(4.16)

Proof. Let a1, . . . , au be all the states of A, and b1, . . . , bv be all the states
of B. Denote

sij = sgn(P (ai, bj)− P (ai)P (bj)) (4.17)

1 ≤ i ≤ u, 1 ≤ j ≤ v. We will show that there exist i1, i2, j1, j2 such that

si1j1 ≥ 0, si2j2 ≥ 0, si1j2 ≤ 0, si2j1 < 0 (4.18)

This will mean that by reordering the states of A and B (taking a1 = ai1 , a2 =
ai2 , b1 = bi1 , b2 = bi2) we can make Inequality 4.16 true, because then its left
side becomes higher than or equal to 2 and its right side strictly lower than
2.

Assume that i1, i2, j1, j2 satisfying Condition 4.18 do not exist.
Let S be the matrix of sij, where i is a row index and j is a column index.

Since
u∑

i=1

P (ai, bj) = P (bj) =
u∑

i=1

P (ai)P (bj) (4.19)

then each column j of S containing s 6= 0 must also contain −s. Similarly,
each row i of S containing s 6= 0 must also contain −s.

Inequality 4.15 means that there exists sij 6= 0. Let i′ = min{i :
∃j such that sij 6= 0}. Let J+1 = {j : si′j = 1}, J−1 = {j : si′j = −1}, J0 =
{j : si′j = 0}. Define function r : J+1 → {i′ + 1, . . . , u} in the following way.
r(j) = min{i : sij = −1}. This means that

∀j ∈ J+1 : sij ≥ 0, i = i′, . . . , r(j)− 1 (4.20)
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Let i′′ = maxj∈J+1 r(j). Let j′ ∈ R+1 be such that r(j′) = i′′. Together with
(4.20) this means that

sij′ ≥ 0, i = i′, . . . , i′′ − 1 (4.21)

Then:

• ∀j ∈ J+1 : si′′j = −1. Otherwise, if ∃j′′ ∈ J+1 : si′′j′′ ≥ 0 then for
i1 = r(j′′), i2 = i′′, j1 = j′, j2 = j′′ we have si1j1 ≥ 0 (follows from
r(j′′) < i′′ together with (4.21)), si2j2 ≥ 0, si1j2 = −1 (follows from the
definition of function r), and si2j1 = −1 (follows from the definition of
j′). So i1, i2, j1, j2 would satisfy Condition 4.18.

• ∀j ∈ J−1 ∪ J0 : si′′j = −1. Otherwise, if ∃j′′ ∈ J−1 ∪ J0 : si′′j′′ ≥ 0
then for i1 = i′, i2 = i′′, j1 = j′, j2 = j′′ we have si1j1 ≥ 0 (follows from
(4.21)), si2j2 ≥ 0, si1j2 ≤ 0 (because j′′ ∈ J−1 ∪ J0), and si2j1 =
−1 (follows from the definition of j′). So i1, i2, j1, j2 would satisfy
Condition 4.18.

So, ∀j : si′′j = −1, which can not be true. So, the assumption that i1, i2, j1, j2

satisfying Condition 4.18 do not exist was wrong. ¥

Theorem 4.2 If for data D and LC model L we have PL(D1, . . . , Dk) 6=
PD(D1, . . . , Dk), then with probability 1 (in respect of D and parameters of L)
it is possible to obtain an LC model L∗ from model L by splitting a component,
such that LL(D|L∗) > LL(D|L).

Proof. According to Lemma 4.1, exists component hs such that

PDs(D1, . . . , Dk) 6= PL(D1|hs) · . . . · PL(Dk|hs) (4.22)

Assume that ∀i : PDs(Di) = PL(Di|hs) (the case when this is not true will
be considered at the end). Then, according to Lemma 4.2, with probability
1 there exist variables A,B ∈ {D1, . . . , Dk} such that

PDs(A,B) 6= PL(A|hs)PL(B|hs) (4.23)

For convenience, we will assume that A = D1 and B = D2. According to
Lemma 4.3, there exist states a1, a2 of A and states b1, b2 of B such that

PDs(a1, b1)

PL(a1|hs)PL(b1|hs)
+

PDs(a2, b2)

PL(a2|hs)PL(b2|hs)
6=

PDs(a1, b2)

PL(a1|hs)PL(b2|hs)
+

PDs(a2, b1)

PL(a2|hs)PL(b1|hs)
(4.24)
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Let us produce model L∗ by splitting component hs from L into compo-
nents hs and hm+1 from L∗ (the same way as in Definition 4.2 hs is split into
h1

s and h2
s). Set PL∗(Di|hs) and PL∗(Di|hm+1) in the following way:

PL∗(Di|hs) = PL∗(Di|hm+1) = PL(Di|hs),∀i > 2 (4.25)

PL∗(a|hs) = PL∗(a|hm+1) = PL(a|hs),∀a ∈ dom(A) \ {a1, a2}(4.26)

PL∗(b|hs) = PL∗(b|hm+1) = PL(b|hs),∀b ∈ dom(B) \ {b1, b2}(4.27)

PL∗(a1|hs) = PL(a1|hs) +
√

ε (4.28)

PL∗(a2|hs) = PL(a2|hs)−
√

ε (4.29)

PL∗(b1|hs) = PL(b1|hs) +
√

ε (4.30)

PL∗(b2|hs) = PL(b2|hs)−
√

ε (4.31)

PL∗(a1|hm+1) = PL(a1|hs)−
√

ε (4.32)

PL∗(a2|hm+1) = PL(a2|hs) +
√

ε (4.33)

PL∗(b1|hm+1) = PL(b1|hs)−
√

ε (4.34)

PL∗(b2|hm+1) = PL(b2|hs) +
√

ε (4.35)

where ε ∈ R.
Then for d = (d1, . . . , dk)

PL∗(d) =
m∑

l=1
l6=s

PL∗(hl)PL∗(d|hl) + PL∗(hs)PL∗(d|hs)

+PL∗(hm+1)PL∗(d|hm+1)

=
m∑

l=1
l6=s

PL(hl)PL(d|hl) +
1

2
PL(hs)

(
PL∗(d|hs) + PL∗(d|hm+1)

)

=
m∑

l=1
l6=s

PL(hl)PL(d|hl)

+
1

2
PL(hs)

(
PL∗(A = d1|hs)PL∗(B = d2|hs)

+PL∗(A = d1|hm+1)PL∗(B = d2|hm+1)
) k∏

i=3

PL(Di = di|hs)

(4.36)

Let D′ = {〈d, n〉 ∈ D : d1 ∈ {a1, a2} and d2 ∈ {b1, b2} in d}. If 〈d, n〉 6∈
D′, then (4.36) together with (4.26) and (4.27) gives PL∗(d) = PL(d).
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Now we will consider the case where 〈d, n〉 ∈ D′. For a ∈ {a1, a2} and
b ∈ {b1, b2} let us denote

P ∗(a, b) =
1

2

(
(PL∗(a|hs)PL∗(b|hs) + PL∗(a|hm+1)PL∗(b|hm+1)

)
(4.37)

By applying (4.28)–(4.35) we get

P ∗(a1, b1) = PL(a1|hs)PL(b1|hs) + ε (4.38)

P ∗(a1, b2) = PL(a1|hs)PL(b2|hs)− ε (4.39)

P ∗(a2, b1) = PL(a2|hs)PL(b1|hs)− ε (4.40)

P ∗(a2, b2) = PL(a2|hs)PL(b2|hs) + ε (4.41)

That is,
P ∗(a, b) = PL(a|hs)PL(b|hs) + σ(a, b) ε (4.42)

where σ(a, b) =

{
1, if a = a1, b = b1 or a = a2, b = b2

−1, otherwise
.

Putting this into (4.36) gives that for d = (d1, . . . , dk) from D′

PL∗(d) =
m∑

l=1
l6=s

PL(hl)PL(d|hl)

+PL(hs)
(
PL(A = d1|hs)PL(B = d2|hs) + σ(d1, d2) ε

)

k∏
i=3

PL(Di = di|hs)

= PL(d) + PL(hs)
k∏

i=3

PL(Di = di|hs) σ(d1, d2) ε (4.43)

So, LL(D|L∗) = LL(D|L) for ε = 0, and

∂LL(D|L∗)
∂ε

=
∑

〈d,n〉∈D′

∂(n ln PL∗(d))

∂ε

=
∑

〈d=(d1,...,dk),n〉∈D′

n

PL∗(d)
PL(hs)

k∏
i=3

PL(Di = di|hs) σ(d1, d2) (4.44)
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Since PL∗(d) = PL(d) for ε = 0, we get

∂LL(D|L∗)
∂ε

(0)

=
∑

〈d=(d1,...,dk),n〉∈D′

n

PL(d)
PL(hs)

k∏
i=3

PL(Di = di|hs) σ(d1, d2)

=
∑

〈d=(d1,...,dk),n〉∈D′

PL(hs)
∏k

i=1 PL(Di = di|hs)

PL(d)

1

PL(A = d1|hs)PL(B = d2|hs)
n σ(d1, d2)

=
∑

〈d=(d1,...,dk),n〉∈D′

PL(hs|d)

PL(A = d1|hs)PL(B = d2|hs)
n σ(d1, d2)

= |Ds|
∑

〈d=(d1,...,dk),n〉∈D′

σ(d1, d2)

PL(A = d1|hs)PL(B = d2|hs)

n PL(hs|d)

|Ds|

= |Ds|
∑

a∈{a1,a2},b∈{b1,b2}

(
σ(a, b)

PL(a|hs)PL(b|hs)

∑

〈d=(a,b,d3,...,dk),n〉∈D

n PL(hs|d)

|Ds|

)

= |Ds|
∑

a∈{a1,a2},b∈{b1,b2}
σ(a, b)

PDs(a, b)

PL(a|hs)PL(b|hs)
(4.45)

Because of Inequality 4.24, ∂LL(D|L∗)
∂ε

(0) 6= 0. If ∂LL(D|L∗)
∂ε

(0) > 0, we can make

LL(D|L∗) > LL(D|L) by taking ε small enough. Otherwise, if ∂LL(D|L∗)
∂ε

(0) <
0, we can make LL(D|L∗) > LL(D|L) by changing the sign before

√
ε in

(4.30), (4.31), (4.34), (4.35) (then σ(a, b) changes to −σ(a, b)), and taking ε
small enough.

So, we have proved the theorem under the assumption (made in the be-
ginning) that ∀i : PDs(Di) = PL(Di|hs). Now assume that ∃i′ : PDs(Di′) 6=
PL(Di′ |hs). For convenience, we will assume that i′ = 1 and denote A = D1.
Then there exist states a1, a2 of A such that

PDs(a1) > PL(a1|hs), PDs(a2) < PL(a2|hs) (4.46)

(for these states to be exactly a1 and a2, we may need to relabel the states
of A).
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Let us produce model L∗ by splitting component hs from L into compo-
nents hs and hm+1 from L∗. Set PL∗(Di|hs) and PL∗(Di|hm+1) in the following
way:

PL∗(Di|hs) = PL∗(Di|hm+1) = PL(Di|hs),∀i > 1 (4.47)

PL∗(a|hs) = PL∗(a|hm+1) = PL(a|hs),∀a ∈ dom(A) \ {a1, a2}(4.48)

PL∗(a1|hs) = PL∗(a1|hm+1) = PL(a1|hs) + ε (4.49)

PL∗(a2|hs) = PL∗(a2|hm+1) = PL(a2|hs)− ε (4.50)

where ε ∈ R.
Now the proof proceeds as in the previous pages. If we denote D′ =

{〈d, n〉 ∈ D : d1 ∈ {a1, a2} in d}, then for 〈d, n〉 6∈ D′ we get PL∗(d) = PL(d)
and for d = (d1, . . . , dk) from D′ we get

PL∗(d) = PL(d) + PL(hs)
k∏

i=2

PL(Di = di|hs) σ(d1) ε (4.51)

where σ(a) =

{
1, if a = a1

−1, if a = a2
. So, we have LL(D|L∗) = LL(D|L) for

ε = 0, and similarly as in (4.45)

∂LL(D|L∗)
∂ε

(0) = |Ds|
∑

a∈{a1,a2}
σ(a)

PDs(a)

PL(a|hs)

= |Ds|
(

PDs(a1)

PL(a1|hs)
− PDs(a2)

PL(a2|hs)

)
(4.52)

Because of (4.46), ∂LL(D|L∗)
∂ε

(0) > 0, and we can make LL(D|L∗) > LL(D|L)
by taking ε small enough. ¥

In our proof, the parameter ε approaches 0. That is, it is possible to
change the conditional probabilities PL(Di|hs) only slightly when splitting
and still increase the log-likelihood of D.

We have proved that with probability 1 it is possible to increase the
log-likelihood of D by splitting a component in L. However, we believe
that a stronger statement, saying that it is always possible to increase the
log-likelihood by splitting (if the log-likelihood is not already the maximum
possible, of course), is also true. Probability 1 has been introduced because
in our proof we consider only pairs of variables when splitting. To prove a
stronger statement, we would need to consider all the k observed variables,
which makes formulas much more complicated.
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4.3.3 Implications for Model Selection

We have shown that both component introduction and component splitting
allow to increase the log-likelihood of data D (provided that the log-likelihood
is not already maximum). However, for model selection the log-likelihood
alone is not used because that would lead to overfitting. Instead, a penalised
likelihood score is often used. Generally, it evaluates model M by computing

score(M) = LL(D|M)− penalty(M,D) (4.53)

where penalty(M,D) is a penalty for the complexity of M . Laplace, BIC,
and Cheeseman-Stutz approximations, mentioned in Section 3.1.3, are the
examples of a penalised likelihood score. So, for the BIC score

penalty(M,D) =
dim(M)

2
ln |D| (4.54)

and for the Cheeseman-Stutz score

penalty(M,D) = LL(D′|M)− log P (D′|m) (4.55)

where m is the structure of model M and D′ is obtained by completing D
using model M .

How do then component introduction and component splitting opera-
tions look in respect of a penalised likelihood score? Even when we increase
LL(D|M) by performing component introduction or component splitting in
M , we may lose more in the penalty term penalty(M,D) than gain in the
log-likelihood term LL(D|M). So, score(M) may decrease. However, the log-
likelihood term dominates over the penalty term as the size |D| increases.
For example, in the BIC score with fixed model M and fixed probability
distribution PD, the log-likelihood term decreases linearly while the minus
penalty term decreases only logarithmically as |D| increases. So, for D hav-
ing size big enough both component introduction and component splitting
allow to increase a penalised likelihood score.

4.4 Implementation

In this section we discuss our implementation of cardinality increase for LC
models.

4.4.1 Component Introduction vs. Component Split-
ting

First we have to choose whether to use the component introduction or com-
ponent splitting approach. As we have just shown, both of them have good
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theoretical properties. Another concern is their practical performance. For
continuous data, the algorithm of Verbeek et al. (2003), based on component
splitting, performed better than the algorithm of Vlassis and Likas (2002),
based on component introduction. Also, in our initial experiments of LC
model learning, component splitting performed better than component in-
troduction (with p = 0.01 and uniform PL∗(Di|hm+1) – see Definition 4.1).

The usefulness of each approach may also depend on particular data.
Assume that the two-dimensional training data D looks as in Figure 4.1.4

Assume that the two component model, shown in Figure 4.2, has been

Figure 4.1: Two-dimensional continuous training data.

learned. Here components are shown as ellipses. Each ellipse indicates a
two-dimensional Gaussian distribution, with the large part (let us say, 95%)
of the probability mass being inside the ellipse.5 The best three-component
model should be similar to the one depicted in Figure 4.3. In this case,
when moving from the two–component to a three–component model, com-
ponent splitting seems to be more appropriate than component introduction.
Splitting the lower component, as shown in Figure 4.4, and running the EM
algorithm afterwards should lead to the model from Figure 4.3.

On the other hand, the training data may look as in Figure 4.5 and the
two–component model as in Figure 4.6. The best three-component model
should be similar to the one depicted in Figure 4.7. In this case, when moving
from the two–component to a three–component model, component introduc-

4Even though we work with categorical data, for the sake of visualisation we use con-
tinuous data here.

5So, instances which are inside of one of the ellipses belong to the corresponding com-
ponent with much higher probability than to another component. In Figure 4.6, three
instances which are outside of the ellipses belong to the two components with similar
probabilities.
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Figure 4.2: The two–component model for the training data.

Figure 4.3: The three–component model for the training data.

tion seems to be more appropriate than component splitting. It is very
unlikely that splitting one of the components from Figure 4.6 and running
the EM algorithm afterwards would lead to the model from Figure 4.7.

Even though we have considered only small artificial examples here, it
seems that neither component introduction nor splitting is always to pre-
fer. Because of the experimental results, mentioned in the beginning of this
section, we choose use component splitting.
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Figure 4.4: Splitting of a component.

Figure 4.5: Another two-dimensional continuous training data.

Figure 4.6: The two–component model for the training data.
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Figure 4.7: The three–component model for the training data.
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4.4.2 Component Splitting in Detail

In this section we give a detailed description of our implementation of com-
ponent splitting for LC models.

In Definition 4.2, where we described component splitting formally,
PL∗(Di|h1

s) and PL∗(Di|h2
s) (i = 1, . . . , k) are not specified exactly, but only

said to be close to PL(Di|hs). One way of constructing PL∗(Di|h1
s) and

PL∗(Di|h2
s) could be making them equal to PL∗(Di|hs) and PL∗(Di|hm+1)

from the proof of Theorem 4.2. However, this approach makes changes only
for two observed variables when performing a split, while in practice we would
like to increase the log-likelihood as much as possible with a single split. So,
more reasonable is to try changing PL(Di|hs) for all variables Di. If changing
PL(Di|hs) is not necessary for some Di, the EM algorithm should move it to
the original value. So, we make small random perturbations in all PL(Di|hs).

6

More precisely, component hs is split by making PL∗(Di|h1
s)−PL(Di|hs) = ~ri

and PL∗(Di|h2
s)− PL(Di|hs) = −~ri. Each element of ~ri is a random number

from [−p; p], where p ∈ R is a small positive parameter. Random numbers
from [−p; p] are sampled from the uniform distribution. If according to vec-
tors ~ri some conditional probabilities from L∗ would be outside of (0; 1), those
probabilities are set to be near the edge of this interval. Finally, PL∗(Di|h1

s)
and PL∗(Di|h2

s) are normalised.
When trying to increase the number of components in model L, we split

each component of L in the way just described. This way we obtain a set
of models M that contains as many models as there are components in L
and each model from M has one component more than L. Then we optimise
the parameters of models from M and select the best model among them by
running the multiple restart EM, mentioned in Section 3.2. All the models
from M are used as the initial starting points for the multiple restart EM,
which at the end obtains the final model having one more component than
L.

As an alternative to random splitting, we have also tried the following
deterministic approaches of splitting. Here we assume that all the observed
variables are binary.

1. Having ~ri =

( −p
p

)
for odd i and ~ri =

(
p
−p

)
for even i.

2. Searching for the optimal (i.e., giving the highest increase in the log-

likelihood) splitting where each ~ri is either

( −p
p

)
or

(
p
−p

)
. Since

6This way, we follow the component splitting approach for continuous data of
Ueda et al. (2000), described in Section 3.3.
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there are 2 ways of choosing each ~ri, there are 2k possible ways of
splitting for k observed variables. Considering all the 2k possibilities
can be too expensive computationally, so we use a greedy search that
considers only O(k) possibilities. First, order variables Di according to

how far PL(Di|hs) is from

(
0.5
0.5

)
. Then go through all the variables

Di by starting from those for which PL(Di|hs) is closest to

(
0.5
0.5

)

and setting ~ri in the following way. For the first Di, set ~ri =

( −p
p

)
.

For each next Di, choose between ~ri =

( −p
p

)
and ~ri =

(
p
−p

)
by

performing the following computations:

• Produce two-component models L1 and L2, both having hidden
states h1

s and h2
s, and the following parameters:

– PLu(h1
s) = PLu(h2

s) = 0.5,

– PLu(Di|h1
s) = PL(Di|hs)+~ri and PLu(Di|h2

s) = PL(Di|hs)−~ri,
for those Di where ~ri has already been chosen,

– PL1(Di|h1
s) = PL(Di|hs) +

( −p
p

)
,

PL1(Di|h2
s) = PL(Di|hs)−

( −p
p

)
,

PL2(Di|h1
s) = PL(Di|hs) +

(
p
−p

)
,

PL2(Di|h2
s) = PL(Di|hs)−

(
p
−p

)
,

for the current Di,

– PLu(Di|h1
s) = PLu(Di|h2

s) = PL(Di|hs), for all the rest Di.

• If LL(Ds|L1) > LL(Ds|L2), set ~ri =

( −p
p

)
. Otherwise, set

~ri =

(
p
−p

)
.

3. Splitting component hs in the direction of highest variance of data
set Ds. Since all the observed variables are binary, we treat them as
having states 0 and 1. We compute the covariance matrix for data
set Ds and the leading eigenvector ~e of this matrix. Then we set

~ri =

( −~eip
~eip

)
, i = 1, . . . , k.

39



Increasing the Cardinality 4.5. Experiments

For all these approaches, in the same way as for random splitting, we make
sure that conditional probabilities from the new model are inside (0; 1) and
normalise them, if necessary. In our initial tests, none of these three ap-
proaches was clearly better than random splitting. Since random splitting
is simple and works for non-binary observed variables as well, we will use
random splitting further on.

4.5 Experiments

In this section we present the experiments where we compare the approach
based on component splitting and the standard approach for learning LC
models.

4.5.1 Algorithms

In this section we describe the algorithms that are tested in the experiments.
These algorithms are formulated as anytime algorithms – that is, their qual-
ity of results improves gradually as computation time increases (Zilberstein,
1996). The algorithms take training data D as an input. They try to find
an LC model that is the best according to the function score, which can be
any penalised likelihood scoring function. The algorithms can run arbitrarily
long, and they always maintain the best LC model found so far.

The first algorithm is called Splitting and its pseudocode is given be-
low. It starts with the one–component model (which can be seen as a model
containing only observed variables and having no edges), for which the max-
imum likelihood parameters are deterministically computed from D. Then
the algorithm repeatedly tries to increase the score of a model by splitting a
component. In step 3 the algorithm produces a set of models which in step 4
are used as starting points for EM, as described in Section 4.4.2. If model L′

obtained in step 4 has a higher score than the current model L, L′ is taken
as the new current model. This way the cardinality of a hidden variable is
increased. Otherwise, the current model L remains the same. Our algorithm
allows executing steps 3–7 many times for the same model L, because in
each iteration different set of models M is obtained by splitting components
randomly. Please also note that our algorithm only allows to increase the
number of components.

The second algorithm is called Standard, because it uses standard starting
points for EM. Its pseudocode is similar to that of Splitting and is given
below. The difference from Splitting is that in step 3 only one model having
one component more than model L is produced. The parameters of this new
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Procedure 4.1 Splitting(D)

1: Let L be the LC model with one component and with maximum likeli-
hood parameters computed from D.

2: loop
3: Produce a set of models M by randomly splitting each component of

L.
4: Obtain model L′ by running the multiple restart EM with M as start-

ing points.
5: if score(L′) > score(L) then
6: L ← L′.
7: end if
8: end loop

model L′ are sampled from the uniform distribution. In step 4 the parameters
are optimised by running the standard EM algorithm.

Procedure 4.2 Standard(D)

1: Let L be the LC model with one component and with maximum likeli-
hood parameters computed from D.

2: loop
3: Let L′ be a randomly parameterised model having one component more

than L.
4: Optimise the parameters of L′ by running the EM algorithm.
5: if score(L′) > score(L) then
6: L ← L′.
7: end if
8: end loop

Both Splitting and Standard try to determine the optimal number of com-
ponents of an LC model. They always try to increase the number of compo-
nents by one. However, this restriction of increasing by one is not necessary
for the approach that uses standard starting points for EM. Since the pa-
rameters of each new model are learned from scratch, there may be more
efficient ways of determining the number of components than it is done in
Standard. That is why we also compare the parameter reusing and standard
approaches when the latter has an unfair advantage of knowing the num-
ber of components from the start. The algorithm called StandardFixed uses
standard starting points for EM and estimates model parameters when the
number of components is fixed. Its pseudocode is given below. It repeatedly
tries to improve model parameters by running the multiple restart EM from
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random starting points. Constant N0 is the initial number of starting points
for EM. In step 4 the parameters of models from M are sampled from the
uniform distribution. In each iteration the number of starting points for EM
is doubled.

Procedure 4.3 StandardFixed(D,m)

1: Let L be an LC model with m components and random parameters.
2: N ← N0.
3: loop
4: Produce a set M of N models, where each model has the same number

of components as L and random parameters.
5: Obtain model L′ by running the multiple restart EM with M as start-

ing points.
6: if score(L′) > score(L) then
7: L ← L′.
8: end if
9: N ← 2N .

10: end loop

4.5.2 Setup of Experiments

The setup of experiments is the following. As a model scoring function, we use
the Cheeseman-Stutz score. The EM algorithm searches for MAP parameters
of a model. Prior distributions of model parameters are Dirichlet with its
parameters equal to 1 (that is, uniform in the model parameter space), as
described in Chickering and Heckerman (1997), page 196. We have chosen
this setup because it has been reported by Chickering and Heckerman (1997)
to be more suitable than other scores for an LC model selection. We set the
algorithm parameter p from Section 4.4.2 to 0.1. N0 in StandardFixed is 1.
Everywhere in the multiple restart EM, 1

q
th of the models giving the highest

log-likelihood are retained after 1, 3, 7, 15, ... iterations of EM, until only
one best model is left. After that the EM algorithm is run until either the
difference between successive values of log-likelihood is less than 0.01 or 200
iterations (including earlier iterations) are reached.7 In the experiments from
this chapter q = 2. In case of the standard EM, it is simply run until either
the difference between successive values of log-likelihood is less than 0.01 or
200 iterations are reached. We run the experiments on a JavaTM 2 platform,
2.8 GHz Intel(R) processor.

7If the number of starting points is very large, more than 200 iterations may be per-
formed before one best model is left.
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First, we produced data sets from the Reuters-21578 text categorisation
test collection (Lewis, 1997). The data was preprocessed as described in
Appendix A. All the observed variables are binary and data sets over the
observed variables are complete.

Next, from the UCI Machine Learning Repository (Blake and Merz, 1998)
we obtained Solar Flare (refered to as Solar), Large Soybean (refered to as
Soybean), and Mushroom classification data sets and discarded the class in-
formation. Here the cardinality of the observed variables ranges from 2 to
10. In Soybean and Mushroom, data sets over the observed variables contain
missing data.

These preprocessed text categorisation and UCI repository data sets are
used as an input data D for the algorithms described in Section 4.5.1. Since
all three tested algorithms are stochastic, a single algorithm is run 5 times
on a single data set. First, we run the algorithm Standard until the mean
score of model L stops to increase fast. More precisely, for each data set
we had that at stopping time t score(t)−score(2t/3)

score(2t/3)−score(t/3)
< 0.1, where score(u) is

the mean score for Standard at time u. After that we run the algorithm
Splitting for the same time as Standard on each data set. For data sets where
the mean score of the final model found by Standard and by Splitting are
significantly different we run the algorithm StandardFixed. The parameter
m of StandardFixed is the number of components in the best scoring model
found by Splitting for a given data set. This way, StandardFixed is given the
initial advantage over Splitting. We run StandardFixed for the same time as
Splitting on a given data set.

4.5.3 Results

The results for Standard and Splitting are summarised in Table 4.2. The
first 9 are text categorisation data sets, and the last 3 are from the UCI
repository. For each data set, the following is shown: the data set size, the
number of observed variables, the running time of an algorithm (in minutes),
the mean score (with a 95% confidence interval for the mean) and the average
number of components of the final model for both algorithms, and the time
ratio indicating how many times Splitting is faster than Standard.8 We say
that one algorithm finds better scoring models than another algorithm if the
difference in the mean score values is higher than 1. The names of data
sets where Splitting found better scoring models than Standard are written

8Time ratio is computed as timeStandard

timeSplitting
, where timeAlgorithm is the time when the mean

score of the model found by Algorithm is equal to the mean score of the final model found
by Standard (for Crude20 data set, the final model found by Splitting).
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in bold. We say that one algorithm finds significantly better scoring models
than another algorithm if intervals for the mean do not overlap and the
difference in the mean score values is higher than 1. For the score values,
bold text indicates a significantly better (and underlined – a significantly
worse) score when comparing Splitting with Standard.

Data set Size Vari- Time Standard Splitting Time
ables score |H| score |H| ratio

Corn10 10787 10 4 -10340.1 ± 1.7 8 -10339.1 ± 0.3 8 5.7
Crude10 10787 10 5 -10491.8 ± 0.7 6 -10491.3 ± 0.7 6 10.0
Earn10 10787 10 5 -26387.0 ± 7.1 11 -26380.7 ± 0.0 10 5.3
Corn20 10787 20 21 -23527.4 ± 2.4 10 -23527.2 ± 0.7 10 2.9
Crude20 10787 20 50 -23799.3 ± 1.0 9 -23799.4 ± 0.5 9 9.7
Earn20 10787 20 167 -46784.1 ± 13.5 15 -46767.2 ± 5.8 17 3.1
Corn30 10787 30 67 -40421.8 ± 8.2 11 -40409.9 ± 0.6 11 3.2
Crude30 10787 30 48 -28949.3 ± 10.3 9 -28943.4 ± 2.2 10 3.5
Earn30 10787 30 186 -74112.5 ± 71.4 14 -73922.3 ± 0.3 18 4.1

Solar 1389 10 1 -8343.2 ± 1.0 5 -8342.3 ± 0.5 5 2.3
Soybean 683 35 95 -11180.7 ± 29.2 14 -11072.4 ± 35.8 17 12.6

Mushroom 8124 22 280 -83858.7 ± 1400.2 15 -80935.0 ± 24.8 21 3.0

Table 4.2: Results for Standard and Splitting.

As mentioned in the previous section, we run algorithm StandardFixed for
data sets where the mean scores for Standard and for Splitting are significantly
different. The results from these tests are summarised in Table 4.3. For
convenience, we also include score values for Splitting from Table 4.2. As
indicated in the previous section, |H| for StandardFixed for a given data set
is always the same and is equal to the number of components in the best
scoring model found by Splitting. The same way as in Table 4.2, the time
ratio field indicates how many times Splitting is faster than StandardFixed.

Data set StandardFixed Splitting Time
score |H| score ratio

Corn30 -40431.2 ± 10.3 11 -40409.9 ± 0.6 5.4
Earn30 -73994.6 ± 48.9 18 -73922.3 ± 0.3 1.4
Soybean -11113.5 ± 11.1 15 -11072.4 ± 35.8 5.0

Mushroom -81796.7 ± 241.0 21 -80935.0 ± 24.8 2.4

Table 4.3: Results for StandardFixed and Splitting.

44



Increasing the Cardinality 4.5. Experiments

Figures 4.8 and 4.9 show how the mean score changes during time for two
data sets (bars at the end indicate 95% confidence intervals for the mean).
Graphs for the other data sets look similar.
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Figure 4.8: Score change during time for Corn10 data set.
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Figure 4.9: Score change during time for Mushroom data set.
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4.5.4 Discussion

As seen from Table 4.2, Splitting found better scoring models than Standard
for 7 out of 12 data sets. For other 5 data sets, the scores of the models
found by Standard and by Splitting are very similar. For 4 out of those 7 data
sets, Splitting found significantly better scoring models than Standard. The
general pattern is that Splitting outperforms Standard more as the number of
components (|H|) increases. The results from Table 4.3 show that even when
the standard approach was given the advantage of knowing the number of
components, Splitting was better on those many-component data sets. The
most likely reason for such results is that the more components an LC model
has, the lower the chances that a random starting point for the EM algorithm
will be a good starting point. Uebersax (2000) also points out that the main
factor contributing to local maximum solutions seems to be the number of
components. The time ratio field in both tables indicates that Splitting is
faster than standard approaches.

As seen from Figures 4.8 and 4.9, models found by Splitting at any mo-
ment have higher score than models found by Standard. Obviously, Stan-
dardFixed finds higher scoring models than Splitting in the beginning, but
later, when Splitting reaches a high number of components, it becomes bet-
ter than StandardFixed for those 4 data sets where StandardFixed has been
tested.

From Tables 4.2 and 4.3 we can also see that the variance of the score
for Splitting is lower than for the algorithms which use standard starting
points for EM (except for “Soybean” and “Crude10” data sets). A possible
explanation is that there is less randomness in Splitting: only the parameters
of two new components obtained by splitting are random (and they are still
close to the parameters of the component that has been split), while in the
other two algorithms all the initial parameters of a model are taken randomly.

So, by using the fact that LC models with different number of components
for the same data have similar parameters, we are able to construct better
than standard starting points for the EM algorithm. However, our algorithm
Splitting may still be improved. Since Splitting only allows to increase the
number of components, problems can appear when non-optimal parameters
for some number of components m are found. If m is the optimal number of
components, a model with m components should have a higher score than
a model with any other number of components. However, if parameters
of an m–component model are not optimal, Splitting may find an m + 1–
component model with a higher score. This model would be taken as the
new best model, and there is no way of going back to m components. This
way, Splitting overestimates the number of components. This has happened
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in our experiments: for some data sets, some final models found by Splitting
have more components but lower score than final models found by Splitting
in other runs for the same data set. That is why we believe that an operation
for decreasing the number of components (for example, component merging)
should be introduced.
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Chapter 5

Decreasing the Cardinality

In this chapter we discuss approaches for decreasing the cardinality of a hid-
den variable while reusing the parameters. Similarly as with the cardinality
increase, we do this for categorical data, in the context of latent class (LC)
models. Part of this chapter appeared in Karčiauskas et al. (2004b).

First we give an overview of how the cardinality can be decreased by
reusing the parameters. Then we define formally how to do it. After that,
we discuss the theoretical properties of the proposed approaches. Then we
discuss the implementation of the cardinality decrease.

5.1 Overview

In Section 4.5.4 we have noticed the need of an operation for decreasing the
number of components while reusing the parameters. By making analogies
to the cardinality increase, one can think about two approaches for obtaining
an m-1–component model from an m–component model.

The first approach is opposite to the component introduction and we call
it component removal. Here an m-1–component model is initialised by remov-
ing one component from an m–component model. All the other components
are kept unchanged, only their weights are scaled up. Then the parameters of
the m-1–component model can be optimised by running for example the EM
algorithm. The algorithm of Figueiredo and Jain (2002) repeatedly removes
components, as described in Section 3.3.

The second approach is opposite to the component splitting and we
call it component merging. Here an m-1–component model is initialised
by merging two components from an m–component model into one com-
ponent. The other m − 2 “old” components are kept unchanged. The
parameters of the m-1–component model can then be optimised as in
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the first approach. As described in Section 3.3, Ueda et al. (2000) and
Ueda and Ghahramani (2002) use this approach for continuous data. The
algorithm of Elidan and Friedman (2001), described in Section 3.1.2, has
similarities to this approach and works with categorical data. The biggest
difference is that their algorithm works with “hard” assignments of each in-
stance to a particular state of a hidden variable while this approach works
with “soft” assignments (i.e., an instance belongs to each state of a hidden
variable with some probability).

Next we will investigate these two approaches in more detail.

5.2 Definitions

Here we give formal definitions of component removal and component merg-
ing operations for LC models.

Definition 5.1 We say that model L∗ is obtained from model L by removing
a component hr if L∗ contains all the components from L except hr with their
marginal probabilities scaled up. More formally, if L contains components
h1, . . . , hm, then L∗ contains components h1, . . . , hr−1, hr+1, . . . , hm and the
following is true:

• PL∗(hl) = 1
1−PL(hr)

PL(hl), l = 1, . . . ,m, l 6= r,

• PL∗(Di|hl) = PL(Di|hl), l = 1, . . . , m, l 6= r, i = 1, . . . , k.

Definition 5.2 We say that model L∗ is obtained from model L by merging
components h1

s and h2
s into hs if hs in L∗ is a weighted average of h1

s and h2
s in

L, and all the other components are identical in both models. More formally,
if L contains components h1, . . . , hm−2, h

1
s, h

2
s, then L∗ contains components

h1, . . . , hm−2, hs and the following is true:

• PL∗(hl) = PL(hl), PL∗(Di|hl) = PL(Di|hl),
l = 1, . . . ,m− 2, i = 1, . . . , k,

• PL∗(hs) = PL(h1
s) + PL(h2

s),

• PL∗(Di|hs) = PL(h1
s)

PL∗ (hs)
PL(Di|h1

s) + PL(h2
s)

PL∗ (hs)
PL(Di|h2

s), i = 1, . . . , k.
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5.3 Theoretical Properties

Having defined the component removal and component merging operations,
we now look at their theoretical properties. For convenience, we assume that
training data D over the observed variables is complete.

First, let us see what properties we would like these cardinality decrease
operations to have. We would use these operations when a model contains
too many components. That is, when decreasing the cardinality, we expect
that training data D can be described equally well (or almost equally well) by
a model with one component less. If D is described perfectly by our current
m–component model and it is possible to describe D perfectly by an m-1–
component model as well, then we would obviously like a cardinality decrease
operation to be able to obtain this m-1–component model from our current
model. Immediately, we see that the component removal does not have this
property, except for trivial cases when the component being removed has a
marginal probability 0 or it is the combination of all the other components.
For the component merging, the situation is more interesting. We analyse it
below.

5.3.1 Identifiability

In our discussion of the theoretical properties of the component merging, we
will use the concept of LC model identifiability (Goodman, 1974).

Definition 5.3 The model structure m is identifiable if for almost every
data D the maximum likelihood parameters θML for m are unique (here it
is assumed that any two parameterisations that differ only in the ordering of
components are the same).1

So, if D denotes the set of all the possible D over the observed variables from
an identifiable structure m and D1 denotes the set of those D from D for
which θML for m are unique, then D1 has measure 1 in D. We will denote
the measure zero set D \ D1 by D0.

Let dc = |D1|·. . .·|Dk|−1 denote the complete dimension of D1×. . .×Dk.
If the parameters of a model L = (m, θML) are those of maximum likelihood,
then PL(D1, . . . , Dk) = PD(D1, . . . , Dk). So, estimation of θML can be seen
as solving dc equations with dim(m) unknowns. If dim(m) > dc, then
θML can not be uniquely determined from D, which means that structure
m is not identifiable. For example (Uebersax, 2001), the structure 2:2,2,2 is

1We would like to remind that the weights of instances in data D are real numbers, as
defined in Chapter 2. That is, each D over D1, . . . , Dk defines some PD(D1, . . . , Dk).
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identifiable: there are 7 independent parameters in an LC model that has
this structure, and the dimension of D1 × D2 × D3 is also 7. However, the
structure 3:2,2,2 is not identifiable: for any given D, there exist infinitely
many different maximum likelihood parameterisations.

Even though dim(m) ≤ dc very often indicates that m is identifiable,
in general this is not a sufficient condition. For example, for the structure
m = 3:2,2,2,2, dim(m) = 14 and dc = 15. However, this m is not identifiable
(Kočka and Zhang, 2002).

It turns out (Goodman, 1974; Geiger et al., 1996) that m is identifiable if
and only if the effective dimension of m, described in Section 3.1.3, is equal
to its standard dimension dim(m).

We will also use the concept of identifiability of a parameterised model.

Definition 5.4 The model M = (m, θ) is identifiable if for each θ′ 6= θ the
models M and M ′ = (m, θ′) define different joint probability distributions
over the observed variables, i.e. PM(D1, . . . , Dk) 6= PM ′(D1, . . . , Dk) (again,
it is assumed that θ = θ′ if they differ only in the ordering of components).

That is, a model is identifiable if its parameters are unique.

5.3.2 Component Merging for Identifiable Structures

First, we performed the initial experiments to check the properties of com-
ponent merging. We parameterised randomly an m–component model L
and generated perfectly described by L data D (that is, PL(D1, . . . , Dk) =
PD(D1, . . . , Dk)). Then we estimated the maximum likelihood (ML) param-
eters of an m+1–component model L′ given D. That is, D is described
perfectly by L′ as well. We did this for small models L, because when L
gets larger it becomes computationally difficult to find ML parameters for
L′.2 Each time, we checked if it is possible to obtain model L from model
L′ by merging two components of L′. In some cases it was possible, and in
some not. This lead us to making in Karčiauskas et al. (2004b) a conjecture
about the component merging, which we give here a little reformulated.

Conjecture 5.1 Assume that data D is described perfectly by an identifiable
LC model L. Assume that the structure of an LC model L′, having one

2Even for small models, we have to use iterative methods for finding ML parameters
with some precision. We have tried to find exact ML parameters with MapleTM , but
already for the 2:2,2,2,2 structure the number of equations and unknowns becomes too
high.

52



Decreasing the Cardinality 5.3. Theoretical Properties

component more than L, is identifiable. Then, if D is described perfectly by
L′, model L can be obtained by merging two components of L′.3

However, later we have discovered that for some models this conjecture
does not hold. For example, for a model L having the 2:3,3,2 structure we
obtained a model L′ having the 3:3,3,2 structure and describing D perfectly,
where L can not be obtained by merging any two states of L′. Since the
structure 3:3,3,2 is identifiable, this is a counter-example to the conjecture.
We obtained such a result for several different parameterisations of the 2:3,3,2
structure.

5.3.3 Component Merging when Variables are Binary

Having discovered that Conjecture 5.1 is not true in general, we restrict
ourselves to investigating the case when all the observed variables are binary.
First, we performed experiments similar to those of Section 5.3.2. For each
randomly parameterised model L, we estimated the ML parameters of L′

by running the standard EM from a random starting point (for larger L′,
this required running EM more than once, until the ML parameters with
some precision have been found). Then we checked if it is possible to obtain
model L from model L′ by merging two components of L′. The results of
these experiments are summarised in Table 5.1. Here a-b:kx2 indicates all the
structures with k binary variables where the number of components ranges
from a to b. For the models above the middle line, it is possible to obtain
model L from model L′ by merging some two components of L′. For the
models below the middle line, it is not possible. In all these experiments,
model L is identifiable. Here we did not include the trivial case when L
has only one component, because then merging the two components of L′

always produces L. Also, we did not test models with 7 or more observed
variables, because then it becomes computationally too difficult to find the
ML parameters for L′.

Based on these results, now we make the following conjecture.

Conjecture 5.2 Assume that D is described perfectly by an identifiable LC
model L with binary observed variables. Assume that for an LC model L′,
having one component more than L, we have dim(L′) ≤ dc. Then, if D is

3Please note that even though the structure m of L′ is identifiable, the model
L′ = (m, θ) itself is not identifiable, because θ is just one of infinitely many ML pa-
rameterisations of m given D. This is because L′ has one component more than L, and
so L′ has too many parameters for describing D. In other words, when considering the
structure m, the data D belongs to a measure zero set D0, introduced after Definition 5.3.
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Structure of L Structure of L′ Structure of L′ dim(L′) ≤ dc
identifiable

2:4x2 3:4x2 no yes
2-4:5x2 3-5:5x2 yes yes
2-8:6x2 3-9:6x2 yes yes
2:3x2 3:3x2 no no
3:4x2 4:4x2 no no
5:5x2 6:5x2 no no
9:6x2 10:6x2 no no

Table 5.1: Results of experiments about properties of component merging.

described perfectly by L′, model L can be obtained by merging two components
of L′.

Since for any identifiable structure m, dim(m) ≤ dc (see Section 5.3.1), this
conjecture is a little stronger then Conjecture 5.1 for LC models with binary
observed variables (in our counter-example to Conjecture 5.1, not all the
observed variables were binary).

5.3.4 Summary

We have studied the properties of the component merging by experimenting
with LC models of small size. We have tried to characterise model structures
for which component merging works, assuming that the structure contains
one component too much. First, we conjectured that it is enough for this
structure to be identifiable. However, we have found an example where this
condition is not sufficient. Then, for LC models with binary observed vari-
ables, we conjectured that it is enough for this structure to satisfy a condition
slightly weaker than identifiability. No counter-examples to this conjecture
have been found. In general, it seems that component merging works for
structures where the number of observed variables k is high enough or, alter-
natively, the number of components m is low enough. Our conjectures are the
attempts of specifying conditions for m and k under which the component
merging works.

So far, we have assumed that the current model contains one component
too much. In practice, it can of course differ from the true model by more
than one component. Can we expect that under some conditions it is possible
to arrive to the true model by repeatedly performing a pairwise component
merging? We have made the following test. The same way as in Section 5.3.3,
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for a randomly parameterised model L having structure 2:5x2, we estimated
the ML parameters of model L′ having structure 4:5x2. We repeated this
several times for different parameterisations of L. In some cases, it was
possible to arrive to model L by performing a pairwise component merging
in L′ and thus obtaining a 3–component model L′′ and then performing a
pairwise component merging in L′′. However, in other cases model L could be
obtained only by merging three components at once in L′ (when more than
two components are merged, they are combined into one new component the
same way as h1

s and h2
s are combined in Definition 5.2). So, it seems that

when the number of components is too high by more than one, a pairwise
merging is not enough.

Finally, we should remind that all these results about the component
merging are based on estimation of the ML parameters with some precision
(and the larger the model, the lower the precision). Our judgements on
whether the parameters are those of ML and whether merging some particu-
lar components leads to some particular model are based on those estimates
of parameters.

5.4 Implementation

In this section we discuss our implementation of cardinality decrease for LC
models. First we have to choose whether to use the component removal or
component merging approach. We choose component merging because it cor-
responds to component splitting, which we are already using, and because
it seems to have better (even though not strong) theoretical properties than
component removal. As discussed in Section 5.3.4, merging more than two
components at once may have better theoretical properties than a pairwise
merging. However, we use a pairwise merging because it has a lower com-
plexity and because we believe that it does not make a big difference for
practical data.

When trying to decrease the number of components in model L, we merge
each pair of components in the way specified in Definition 5.2. So, for an
m–component model L, we obtain a set M that contains

(
m
2

)
models, each of

them having one component less than L. Then we optimise the parameters
of models from M and select the best model among them by running the
multiple restart EM with M as starting points. Our initial tests showed
that the pair determined by the multiple restart EM is usually among the
best pairs determined by a separate standard EM for each merge candidate
(which is computationally much more expensive than the multiple restart
EM).
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Chapter 6

Learning of Latent Class
Models

In this chapter we discuss learning of latent class (LC) models by com-
bining the component splitting and component merging operations, intro-
duced in the previous two chapters. Part of this chapter appeared in
Karčiauskas et al. (2004b).

First, we introduce an operation for improving model parameters while
keeping the number of components the same. Then we describe the algo-
rithms that learn LC models by both increasing and decreasing the number
of components. Finally, we present experiments comparing the performance
of these algorithms.

6.1 Parameter Adjustment

In this section, we introduce an operation that tries to improve model pa-
rameters for a fixed number of components |H|. First, we give a motivation
for such an operation.

It is possible to learn an LC model by repeatedly incrementing and decre-
menting |H|, where starting points for EM are obtained only by splitting and
merging components, and it is required that any single increment or decre-
ment of |H| increases the model score. The algorithm would stop when nei-
ther incrementing nor decrementing |H| increases the model score. However,
the following situation can occur. The best model G has m components, and
by incrementing and decrementing |H| we have arrived at model L with m
components that has however a lower score than G because of not optimal
parameters. It can be that neither incrementing nor decrementing |H| in-
creases the score of L, and so L would be the final model. However, it can be
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that by both incrementing and decrementing |H| we obtain model L′ (with
m components) that has a higher score than L.

Even if the number of components in our current model L is not opti-
mal, it may still be worth trying to both increment and decrement |H|. For
example, it can happen that model L has m − 1 components, and neither
incrementing nor decrementing |H| increases the score of L. It can be that by
both incrementing and decrementing |H| we obtain a higher scoring model
L′, from which model G can be obtained by a single increment of |H|. A
similar situation in respect of a decrement of |H| can occur when L has m+1
components.

So, we introduce an operation that we call the parameter adjustment.
It consists of the successive component splitting and merging (or compo-
nent merging and splitting) with no requirement that a single increment or
decrement of |H| would increase the model score. Below we give a formal
definition.

Definition 6.1 We say that model L′ is obtained from model L by parameter
adjustment if there exists model L∗ such that:

• L∗ is obtained from L by splitting a component and then running EM,
and L′ is obtained from L∗ by merging two components and then run-
ning EM,
or

• L∗ is obtained from L by merging two components and then running
EM, and L′ is obtained from L∗ by splitting a component and then
running EM.

For an m-component model L, there are O(m3) possible ways to perform
the parameter adjustment, because for each of m ways to split there are(

m+1
2

)
ways to merge, or alternatively for each of

(
m
2

)
ways to merge there

are m − 1 ways to split. However, in our implementation we will consider
only O(m2) ways to perform the parameter adjustment, as described in the
next section.

Even if all the O(m3) ways to perform the parameter adjustment are tried,
there are no guarantees that such an operation will improve the parameters
of L when they are not optimal. Also, the only reason for choosing a single
splitting and a single merging rather than changing |H| by more than 1 is that
this approach is the fastest. However, as it will be seen from the experiments,
this operation often helps to find higher scoring models.
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6.2 Algorithms

In this section, we discuss the algorithms that will be used in our experiments
on learning of LC models.

6.2.1 Algorithm Based on Splitting and Merging

In this section, we provide our algorithm that learns LC models by using the
component splitting, component merging, and parameter adjustment oper-
ations. Algorithm SplitMerge takes training data D as input and returns
an LC model.1 It tries to find an LC model that is the best according to
function the score, which can be any penalised likelihood scoring function.
The pseudocode of SplitMerge is given in page 59. The algorithm starts with
the one–component model L, for which the maximum likelihood parameters
are deterministically computed from D. The algorithm repeatedly tries to
increase the score of L by either incrementing |H| (procedure Split), decre-
menting |H| (procedure Merge), or adjusting parameters (procedure Adjust).
In phase 1, |H| is repeatedly incremented until the score of L does not in-
crease. Similarly, in phase 2, |H| is repeatedly decremented until the score
of L does not increase. Phases 1 and 2 are performed repeatedly one after
another until none of them increases the score of L. Then one attempt to
adjust the parameters of L is made. If adjusting the parameters increases the
score of L, the algorithm goes back to running phases 1 and 2. Otherwise,
model L is returned.

So, algorithm SplitMerge follows the idea of the greedy equivalence search
(GES) algorithm for learning Bayesian network structures from complete
data (Meek, 1997; Chickering, 2002). GES starts with a network containing
no edges and in phase 1 repeatedly increases the model score by increasing the
model complexity. In phase 2 it repeatedly increases the model score by de-
creasing the model complexity and then it terminates. Algorithm SplitMerge
also repeatedly increases the model complexity in phase 1 and repeatedly
decreases it in phase 2. The difference is that in SplitMerge we allow phases
1 and 2 to be executed more than once.2 Also, we have introduced the third
phase of improving model parameters while keeping the complexity the same,
because in the presence of hidden variables the optimal parameters can not
be computed in a closed-form.

1Contrary to the anytime algorithms from Section 4.5.1, SplitMerge has a stopping
criterion.

2In this aspect, SplitMerge follows the approach of SHC algorithm for HLC models,
described in Section 3.4.2.
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Procedure 6.1 SplitMerge(D)

1: Let L be the LC model with one component.
2: doPhase1 ← true, doPhase2 ← true.
3: loop
4: if doPhase1 then
5: L0 ← L.
6: repeat
7: L′ ← Split(L,D).
8: if score(L′) > score(L) then
9: L ← L′.

10: end if
11: until L 6= L′.
12: if score(L) > score(L0) then
13: doPhase2 ← true.
14: end if
15: doPhase1 ← false.
16: end if
17: if doPhase2 then
18: L0 ← L.
19: repeat
20: L′ ← Merge(L,D).
21: if score(L′) > score(L) then
22: L ← L′.
23: end if
24: until L 6= L′.
25: if score(L) > score(L0) then
26: doPhase1 ← true.
27: end if
28: doPhase2 ← false.
29: end if
30: if not doPhase1 and not doPhase2 then
31: L′ ← Adjust(L,D).
32: if score(L′) > score(L) then
33: L ← L′, doPhase1 ← true, doPhase2 ← true.
34: else
35: return L.
36: end if
37: end if
38: end loop
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Procedure Split increments |H| by splitting a component in L. The pseu-
docode is given below. Here we introduce some improvements over the im-
plementation of component splitting from Section 4.4.2. One improvement is
that for each component hs, a number (constant N0 from step 2) of indepen-
dent random splits is performed (in Section 4.4.2, each component was split
only once). As in Section 4.4.2, component hs is split randomly by making
PL∗(Di|h1

s)− PL(Di|hs) = ~ri and PL∗(Di|h2
s)− PL(Di|hs) = −~ri (see Defini-

tion 4.2 on page 22). Each element of ~ri is a random number from [−p; p]
(and at least one of them is exactly p or −p), where p ∈ R is a small positive

parameter.3 And it is ensured that ∀i :
∑|Di|

j=1 ri,j = 0.
Another major improvement is that after splitting hs a partial EM rather

than a normal EM is run. That is, only the parameters for the two new com-
ponents are updated. This can be understood as running a normal EM for
the model containing only two new components and after that substituting
hs in L with those two components.4 A model that has the highest score
after a partial EM is selected and parameters of that model are updated by
running a normal EM. We have introduced a partial EM, because then the
algorithm time is used for learning those parameters that are most likely to
be different in a new model.

Procedure 6.2 Split(L,D)

1: for each component hs of L do
2: Produce set L0 of two-component models by performing N0 random

independent splits of hs and for each split producing a model that
contains only new components h1

s and h2
s from L∗ (see Definition 4.2

on page 22).
3: Obtain model L0 by running the multiple restart EM with L0 as start-

ing points and data Ds.
4: Obtain model Ls from L by substituting hs with the two components

from L0.
5: end for
6: L′ ← arg maxLs score(Ls).
7: Optimise the parameters of L′ by running the standard EM with data

D.
8: return L′.

3If ~ri causes any parameter from PL∗(Di|h1
s) or PL∗(Di|h2

s) to be outside of
[0.000001; 0.999999], ~ri is scaled down so that all the parameters are inside this inter-
val. If already PL(Di|hs) contains parameters outside of this interval, ~ri is set to ~0.

4Both in producing the two-component model and in substituting hs is L, marginal
probabilities of those two components are scaled so that the sum of marginal probabilities
of all the components in a model is equal to 1.
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Procedure Merge decrements |H| by merging two components in L. The
pseudocode is given below. The procedure is implemented as described in
Section 5.4.

Procedure 6.3 Merge(L,D)

1: L ← ∅.
2: for each pair of components {ha, hb} of L do
3: Obtain model L∗ by merging ha and hb.
4: Add L∗ to L.
5: end for
6: Obtain model L′ by running the multiple restart EM with L as starting

points and data D.
7: return L′.

Procedure Adjust tries to increase the score of L by performing the pa-
rameter adjustment operation. The pseudocode is given below. For an ad-
justment to be accepted, we require the increase in score to be higher than
a positive parameter δ. Otherwise, the algorithm may spend lots of time
making insignificant improvements in the parameters of L.

First, we try to increase the score of L by decrementing and then incre-
menting |H|. Here, when incrementing |H|, we consider only components
from the best model obtained by component merging (which is model L′ in
steps 1 and 2). If this does not succeed, then we try to increase the score of L
by incrementing and then decrementing |H|. Here, when decrementing |H|,
we consider only those pairs of components where one component has just
been obtained by splitting and the other is an “old” component inherited
from L. So, we try to save the computation time by considering only the
most promising candidates for splitting and merging.

Our operation of parameter adjustment is similar to the simultaneous
splitting and merging of components used by Ueda et al. (2000) (see Sec-
tion 3.3) to improve parameters of a mixture model with a fixed number of
components. There, the components involved in splitting are required to be
different from those involved in merging, and criteria for selecting the most
promising candidates for splitting and merging are used. We, on the other
hand, allow situations where the same component is involved in both split-
ting and merging. The best split or merge operation is determined by the
EM algorithm alone.

In the implementation of this procedure, model L′ in step 1 and models Ls

in step 8 are not computed directly but taken from the last run of Merge and
the last run of Split. This can be done because in SplitMerge the procedure
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Adjust is called only when model L remains unchanged both in phase 1 and
phase 2.

Procedure 6.4 Adjust(L,D)

1: L′ ← Merge(L,D).
2: L′′ ← Split(L′,D).
3: if score(L′′) > score(L) + δ then
4: return L′′.
5: else
6: L ← ∅.
7: for each component hs of L do
8: Obtain model Ls as in Split(L,D).
9: for each pair of components {ha, hb} where ha is a new component

and hb is an old component of Ls do
10: Obtain model L∗ by merging ha and hb in Ls.
11: Add L∗ to L.
12: end for
13: end for
14: Obtain model L′′ by running the multiple restart EM with L as starting

points and data D.
15: if score(L′′) > score(L) + δ then
16: L ← L′′.
17: end if
18: return L.
19: end if

6.2.2 Algorithms Based on Standard Starting Points

In the experiments, the algorithm SplitMerge will be compared with the
algorithms that use standard starting points for EM. One of them, called
Standard3 has almost the same main procedure as SplitMerge (see page 59).
It also has 3 phases: increasing |H|, decreasing |H|, and improving parame-
ters. The difference from SplitMerge is that instead of calling Split, Merge, or
Adjust it obtains L′ by running the multiple restart EM on a model that has
correspondingly one component more than L, one component less than L, or
the same number of components as L (in the latter case, the score increase
by more than δ is also required). Starting points for EM are sampled from
the uniform distribution.

Similarly to Section 4.5.1, we also test the StandardFixed algorithm, which
is described in page 42.

62



Learning of Latent Class Models 6.3. Experiments

6.3 Experiments

In this section we describe the experiments where we compare the approach
that uses the component splitting and merging (algorithm SplitMerge) with
the approach that uses standard starting points (algorithms Standard3 and
StandardFixed) for learning LC models. First, we describe the setup of ex-
periments. Then we give the results for synthetic and for real data. Finally,
we discuss the results.

6.3.1 Setup of Experiments

The setup of experiments is the following. As a model scoring function, we
use the BIC score. We have used the Cheeseman-Stutz (CS) score in our
earlier experiments from Section 4.5. However, we have noticed the following
undesirable property of the CS score. It can happen that for models M1 and
M2 having the same structure but different parameterisations CS (M1) <
CS (M2) while LL(D|M1) > LL(D|M2).

5 To understand why does this
happen, recall that for M = (m, θ)

CS (M) = LL(D|M)− (
LL(D′|M)− log P (D′|m)

)
(6.1)

where D′ is obtained by completing D using model M . So, D′ is a function
of D and θ, and thus the penalty term

(
LL(D′|M)− log P (D′|m)

)
depends

on θ. Since the CS score can be misleading when comparing different models
having the same structure, we have decided to use the BIC score, where the
penalty term does not depend on model parameters.

The EM algorithm searches for the ML parameters. N0 in Split and N0

in StandardFixed are set to 16. Otherwise, the setup of EM is the same
as described in Section 4.5.2. The parameter of the multiple restart EM
q = 2 in Split, Standard3, and StandardFixed. q = 10 in Merge and Adjust,
because the number of possible pairs to merge grows fast with the number
of components. The number of starting points for EM in Standard3 is set
to 64 in order to make a running time of SplitMerge and Standard3 similar.
Parameter p from Split is 0.001. Parameter δ from Adjust and Standard3
is 1. The experiments are run on a JavaTM 2 platform, 2.8 GHz Intel(R)
processor.

5To check how often does this happen, we have performed the following test. We
sampled D of size 10000 from a randomly parameterised 5:5x2 model. Then we created
5:5x2 models M1 and M2 and learned their parameters by using the multiple restart EM
with D as the training data. We repeated this whole procedure 20 times. In 7 out of those
20 runs, the model from M1 and M2 having higher CS score had lower log-likelihood.
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In the same way as in Section 4.5, a single algorithm is run 5 times on
a single data set. Again, the number of components m in StandardFixed is
the number of components in the best scoring model found by SplitMerge for
a given data set. For SplitMerge and Standard3, the algorithm is stopped if
it does not terminate in 5 hours (for synthetic data, in 10 hours), and the
current model L is returned. The running time of StandardFixed is equal to
the mean running time of SplitMerge for a given data set.

When displaying the results of the experiments, the same notation as in
Section 4.5.3 is used.6 That is, for each row in a table, the field in the first
column is written in bold if SplitMerge found better scoring models than both
Standard3 and StandardFixed. This field is underlined if both Standard3 and
StandardFixed found better scoring models than SplitMerge. For the score
values, bold text indicates a significantly better (and underlined – a sig-
nificantly worse) score when comparing pairwise SplitMerge with Standard3
and SplitMerge with StandardFixed. The field “t” in the tables indicates
the rounded mean running time in minutes. The field “|H|” indicates the
number of components in the best scoring model.

6.3.2 Results for Synthetic Data

In these experiments, training data D is always sampled from some LC
model. Forward sampling is used and D over observed variables is always
complete. The generative LC model is always parameterised randomly, with
its parameters sampled from the uniform distribution.

In the first series of tests, we sampled D of different sizes from the same
LC model. We did this for several different LC model structures. The results
are shown in Tables 6.1-6.6.

Then we have selected one D where t=600 (that is, the algorithms have
been stopped because of the time limit) and let Standard3 and SplitMerge
run until they terminate themselves. We did this for D of size 105 generated
from the 10:15x2 model (from Table 6.4). The results are shown in Table 6.7.

6Just to remind, we say that one algorithm finds better scoring models than another
algorithm if the difference in the mean score values is higher than 1. We say that one
algorithm finds significantly better scoring models than another algorithm if intervals for
the mean do not overlap and the difference in the mean score values is higher than 1.
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|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

102 -323.0 ± 0.0 0 1 -323.0 ± 0.0 0 1 -323.0 ± 0.0
103 -3030.9 ± 0.2 0 2 -3031.4 ± 0.0 0 2 -3030.8 ± 0.0
104 -29856.7 ± 0.3 0 2 -29857.4 ± 0.0 0 2 -29856.8 ± 0.5
105 -298224.8 ± 4.4 0 3 -298222.4 ± 1.3 0 3 -298223.0 ± 1.4
106 -2977109.7 ± 39.9 0 3 -2977072.4 ± 0.0 0 3 -2977079.3 ± 10.8
107 -29772167.8 ± 56.3 0 4 -29772008.3 ± 0.0 0 3 -29772100.9 ± 70.3
108 -297730211.6 ± 1388.3 0 4 -297728637.2 ± 17.2 0 5 -297728949.2 ± 375.3
109 -2977335064.3 ± 4568.8 0 5 -2977329260.2 ± 56.2 1 5 -2977328755.5 ± 1331.9

Table 6.1: Sampled from a 3:3x3 model.

|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

102 -498.1 ± 0.0 0 1 -498.1 ± 0.0 0 1 -498.1 ± 0.0
103 -4838.4 ± 0.0 0 1 -4838.4 ± 0.0 0 1 -4838.4 ± 0.0
104 -47712.1 ± 0.4 1 3 -47711.9 ± 0.0 0 3 -47712.3 ± 0.8
105 -475715.8 ± 54.1 3 7 -475664.4 ± 0.3 3 7 -475678.3 ± 12.0
106 -4753185.1 ± 196.4 3 8 -4752826.0 ± 11.2 7 8 -4752877.3 ± 31.1
107 -47531173.0 ± 779.6 4 10 -47528482.3 ± 30.2 13 10 -47529145.5 ± 270.2
108 -475327706.8 ± 67268.8 3 9 -475268998.1 ± 85.1 20 13 -475270455.1 ± 263.9
109 -4753270535.0 ± 777481.7 4 13 -4752732197.1 ± 355.3 73 19 -4752735541.9 ± 683.5

Table 6.2: Sampled from a 10:7x2 model.

|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

102 -693.7 ± 0.0 0 1 -693.7 ± 0.0 0 1 -693.7 ± 0.0
103 -6692.3 ± 0.0 5 4 -6692.5 ± 0.0 3 4 -6692.3 ± 0.0
104 -65436.7 ± 0.1 17 6 -65436.5 ± 0.0 16 6 -65436.5 ± 0.1
105 -650348.2 ± 107.9 34 9 -650302.2 ± 0.0 34 9 -650304.4 ± 4.0
106 -6497124.3 ± 334.5 40 9 -6496881.4 ± 0.0 59 9 -6496957.6 ± 89.6
107 -64966268.3 ± 3550.9 40 12 -64964215.0 ± 0.0 82 9 -64964233.1 ± 52.3
108 -649632767.5 ± 38429.8 48 10 -649612538.3 ± 360.2 159 10 -649614304.0 ± 493.4
109 -6496426973.9 ± 410587.2 49 11 -6496152390.6 ± 877.6 302 12 -6496161104.4 ± 9768.0

Table 6.3: Sampled from a 10:10x2 model.

65



Learning of Latent Class Models 6.3. Experiments

|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

102 -1049.3 ± 0.0 0 1 -1049.3 ± 0.0 0 1 -1049.3 ± 0.0
103 -10055.7 ± 0.0 16 4 -10055.7 ± 0.0 8 4 -10055.7 ± 0.0
104 -98283.1 ± 0.2 218 7 -98283.1 ± 0.0 203 7 -98282.9 ± 0.0
105 -980627.5 ± 0.0 600 7 -982084.0 ± 1010.8 600 7 -980627.5 ± 0.1
106 -9816413.3 ± 0.0 600 6 -9850314.1 ± 0.2 600 5 -9850314.1 ± 0.2

Table 6.4: Sampled from a 10:15x2 model.

|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

102 -1120.4 ± 0.0 0 1 -1120.4 ± 0.0 0 1 -1120.4 ± 0.0
103 -10914.4 ± 0.0 2 1 -10914.4 ± 0.0 1 1 -10914.4 ± 0.0
104 -107020.8 ± 0.0 271 8 -107029.5 ± 18.8 274 8 -107020.7 ± 0.1
105 -1067192.9 ± 0.0 600 6 -1069382.2 ± 0.0 600 5 -1069381.9 ± 0.2
106 -10720139.2 ± 0.7 600 4 -10720138.2 ± 0.0 600 4 -10720138.5 ± 0.2

Table 6.5: Sampled from a 10:10x3 model.

|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

102 -1310.4 ± 0.0 1 2 -1310.4 ± 0.0 0 2 -1310.4 ± 0.0
103 -12354.7 ± 0.0 22 4 -12354.7 ± 0.0 13 4 -12354.7 ± 0.0
104 -121655.4 ± 0.0 252 5 -121655.4 ± 0.0 212 5 -121655.4 ± 0.0
105 -1223176.0 ± 0.0 600 3 -1223176.0 ± 0.0 600 3 -1223176.0 ± 0.0
106 -13327103.2 ± 0.0 600 1 -13327103.2 ± 0.0 600 1 -13327103.2 ± 0.0

Table 6.6: Sampled from a 5:20x2 model.

|D| Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

105 -979691.3 ± 3.7 1701 10 -979689.0 ± 0.1 1978 10 -979689.4 ± 0.7

Table 6.7: Sampled from the 10:15x2 model, no time limit.
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In the second series of tests, we sampled D of the same size from models
having different structures. The size of D was always 106. The results are
shown in Table 6.8. Part of the results here comes from Tables 6.1-6.6.

Structure Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

10:7x2 -4753185.1 ± 196.4 3 8 -4752826.0 ± 11.2 7 8 -4752877.3 ± 31.1
10:10x2 -6497124.3 ± 334.5 40 9 -6496881.4 ± 0.0 59 9 -6496957.6 ± 89.6
10:15x2 -9816413.3 ± 0.0 600 6 -9850314.1 ± 0.2 600 5 -9850314.1 ± 0.2
5:20x2 -13327103.2 ± 0.0 600 1 -13327103.2 ± 0.0 600 1 -13327103.2 ± 0.0
3:3x3 -2977109.7 ± 39.9 0 3 -2977072.4 ± 0.0 0 3 -2977079.3 ± 10.8
10:5x3 -5362696.0 ± 222.0 6 9 -5362307.7 ± 61.8 17 9 -5362322.5 ± 34.4
10:7x3 -7478527.3 ± 213.3 89 10 -7478040.3 ± 1.0 165 10 -7478072.8 ± 39.7
10:10x3 -10720139.2 ± 0.7 600 4 -10720138.2 ± 0.0 600 4 -10720138.5 ± 0.2

10:2,2,2,5,5,5 -6722963.5 ± 897.6 30 10 -6722202.8 ± 4.5 64 9 -6722308.2 ± 72.5
10:2,3,4,5,6,7 -8222214.9 ± 1026.7 213 9 -8221544.7 ± 0.8 399 9 -8221556.4 ± 7.3

Table 6.8: Sampled from models having different structures.

In the third series of tests, we sampled D from models having different
parameterisations of the same structure. We did this for two different LC
model structures. We have chosen the structure 10:10x2 with |D| = 106 and
the structure 10:10x3 with |D| = 104, because in the first series of tests Split-
Merge was better than the standard algorithms for the former configuration
and worse for the latter one. The results are shown in Tables 6.9 and 6.10.
Here #θ indicates the number of parameterisation.

#θ Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

1 -6497124.3 ± 334.5 40 9 -6496881.4 ± 0.0 59 9 -6496957.6 ± 89.6
2 -6644081.3 ± 847.2 44 10 -6643109.8 ± 0.1 69 10 -6643212.3 ± 67.0
3 -6649520.6 ± 40.2 46 9 -6649407.2 ± 0.7 99 10 -6649424.5 ± 24.8
4 -6491945.9 ± 150.2 41 9 -6491335.3 ± 0.5 93 10 -6491580.7 ± 151.8
5 -6573339.8 ± 69.1 44 9 -6573111.5 ± 1.3 118 10 -6573197.0 ± 100.0

Table 6.9: Sampled from 10:10x2 models, |D| = 106.

In the fourth series of tests, we sampled D from models having 10 binary
observed variables and different number of components. The size of D was
always 106. The results are shown in Table 6.11.

In the first, second, and fourth series of tests, whenever |H| for SplitMerge
was different from the true |H| (that is, |H| in the model that data was
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#θ Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

1 -107020.8 ± 0.0 271 8 -107029.5 ± 18.8 274 8 -107020.7 ± 0.1
2 -107019.3 ± 0.1 294 8 -107019.2 ± 0.0 321 8 -107019.1 ± 0.0
3 -103540.0 ± 0.0 203 7 -103540.0 ± 0.0 205 7 -103539.9 ± 0.1
4 -105615.5 ± 0.1 251 8 -105615.5 ± 0.0 269 8 -105615.5 ± 0.1
5 -105723.3 ± 0.1 282 8 -105723.2 ± 0.0 272 8 -105723.3 ± 0.1

Table 6.10: Sampled from 10:10x3 models, |D| = 104.

m Standard3 SplitMerge StandardFixed
score t |H| score t |H| score

2 -5389022.4 ± 0.0 5 2 -5389022.5 ± 0.2 2 2 -5389022.5 ± 0.1
4 -6091546.9 ± 461.7 17 4 -6091279.2 ± 0.2 22 4 -6091337.3 ± 93.9
6 -6564076.8 ± 15.8 22 5 -6564031.3 ± 24.5 36 6 -6564074.6 ± 48.4
8 -6379315.8 ± 119.7 32 7 -6379119.1 ± 0.0 57 7 -6379189.2 ± 77.0
10 -6713825.3 ± 1894.0 41 11 -6711800.7 ± 1.0 78 10 -6711985.5 ± 59.7
12 -6526733.2 ± 424.8 46 10 -6525960.9 ± 0.2 186 10 -6525980.3 ± 11.8
14 -6621460.7 ± 35.9 50 10 -6621314.3 ± 0.3 59 10 -6621422.2 ± 97.2
16 -6762383.9 ± 1762.7 41 11 -6760153.5 ± 48.7 111 14 -6760326.5 ± 78.7
18 -6733141.8 ± 208.7 65 15 -6732492.2 ± 59.4 342 16 -6732537.8 ± 65.4
20 -6737257.7 ± 2433.0 59 18 -6733599.0 ± 4.1 343 17 -6733603.6 ± 5.5

Table 6.11: Sampled from m:10x2 models.

sampled from), we have also run StandardFixed with parameter m equal to
the true |H|. In all these runs, whenever “t” for SplitMerge was lower than
600 (that is, SplitMerge terminated itself), the mean score for StandardFixed
with true |H| was lower than the mean score for StandardFixed with |H|
given by SplitMerge.

We have selected three data sets (two for which SplitMerge performs bet-
ter than Standard3 and one for which it performs worse) and displayed how
the mean score changes during time. These three data sets are D of size
106 sampled from the 10:10x2, 10:15x2, and 10:7x3 models (the second, the
third, and the seventh entries in Table 6.8). The results are displayed in Fig-
ures 6.1-6.3 (bars at the end indicate 95% confidence intervals for the mean).
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Figure 6.1: Score change during time for data sampled from the 10:10x2
model, |D| = 106.
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Figure 6.2: Score change during time for data sampled from the 10:15x2
model, |D| = 106.
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Figure 6.3: Score change during time for data sampled from the 10:7x3 model,
|D| = 106.
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6.3.3 Results for Real Data

For training data, we selected 20 classification data sets from the UCI Ma-
chine Learning Repository (Blake and Merz, 1998) and discarded the class
information. Continuous variables were converted into binary ones by per-
forming the equal-frequency binning. When separate training and test data
were available, they were joined into a single training data. Some of these
data sets contain missing data. All the 20 data sets are listed in Table 6.12.7

The results of the experiments are shown in Table 6.13. To make the later
discussion easier, we partitioned data sets into two groups: data sets of size
higher than 4500 are above the middle line, and data sets of size lower than
4500 are below it.

Similarly as for synthetic data, we have selected one D where t=300
(that is, the algorithms have been stopped because of the time limit) and
let Standard3 and SplitMerge run until they terminate themselves. We did
this for “Spambase” data set. The results are shown in Table 6.14. Because
of long running time, SplitMerge and StandardFixed were run only 2 times
each.

We have also checked what impact the parameter adjustment operation
has on the performance of SplitMerge. In Table 6.15 we compare the per-
formance of SplitMerge with and without this operation.8 In SplitMerge-
NoAdjust, lines 31-36 in the pseudocode on page 59 are replaced by line 35.
Here we did run not any new tests, but used the runs of SplitMerge from Ta-
ble 6.13. In Table 6.15 we include only those data sets for which at least one
of the fields “score”, “t”, or “|H|” is different in SplitMerge and SplitMerge-
NoAdjust. For the other data sets, either the parameter adjustment has not
been tried in SplitMerge because of the 5 hour limit for the algorithm running
time or because trying the parameter adjustment did not improve the score
and did not make an impact on the “t” value (which is a rounded time in
minutes).

Similarly as for synthetic data, we have selected three data sets and dis-
played how the mean score changes during time. It is shown in Figures 6.4-6.7
(bars at the end indicate 95% confidence intervals for the mean).

7In the table, “Credit” stands for “Credit Card Application Approval”, “Heart” – for
the processed “Cleveland” data set from “Heart Disease”, “Image” – for “Image seg-
mentation”, “Letter” – for “Letter Recognition”, “Pen” – for “Pen-Based Recognition
of Handwritten Digits”, “Thyroid” – for the data set from “Thyroid Disease” suited for
training artificial neural networks, “Wisconsin” – for the original data set from “Wisconsin
Breast Cancer”. “Satimage”, “Shuttle”, and “Vehicle” are from the Statlog Project. For
“Audiology” and “Wisconsin”, the identifier variable has been discarded.

8In the same way as in the previous tables, bold and underlined fonts are used to show
differences in the performance of the algorithms.
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Data set Data set Number of Number of
name size variables categorical

variables
Abalone 4177 8 1
Adult 48842 14 8

Audiology 226 69 69
Credit 690 15 9
Heart 303 13 1

Housing 506 13 1
Image 2310 19 0
Letter 20000 16 0

Mushroom 8124 22 22
Page 5473 10 0
Pen 10992 16 0
Pima 768 8 0

Satimage 6435 36 0
Shuttle 58000 9 0

Spambase 4601 57 0
Thyroid 7200 21 15
Vehicle 846 18 0
Voting 435 16 16

Wisconsin 699 9 0
Yeast 1484 8 1

Table 6.12: Description of real data sets.
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Data set Standard3 SplitMerge StandardFixed
name score t |H| score t |H| score
Adult -532344.7 ± 2790.8 300 6 -520908.5 ± 375.5 300 11 -520907.8 ± 717.7
Letter -172561.3 ± 331.1 300 19 -172432.8 ± 248.7 300 18 -172314.8 ± 39.5

Mushroom -94155.0 ± 1090.5 300 8 -82935.1 ± 722.2 300 17 -83648.2 ± 302.7
Page -22768.1 ± 39.5 5 14 -22766.6 ± 2.9 5 14 -22735.1 ± 6.9
Pen -82411.6 ± 827.9 260 30 -81454.4 ± 11.5 300 41 -81402.1 ± 16.3

Satimage -66602.9 ± 457.0 300 16 -64598.4 ± 121.9 300 25 -64419.4 ± 87.1
Shuttle -256561.5 ± 265.9 5 14 -256027.6 ± 10.4 16 21 -256073.4 ± 28.3

Spambase -83800.0 ± 192.9 300 11 -83090.0 ± 74.8 300 15 -83127.5 ± 81.8
Thyroid -44562.9 ± 26.1 21 6 -44542.9 ± 0.2 21 7 -44534.6 ± 18.3
Abalone -12389.4 ± 0.0 2 5 -12389.5 ± 0.0 1 5 -12389.4 ± 0.0

Audiology -3403.0 ± 0.1 9 2 -3403.2 ± 0.0 2 2 -3403.1 ± 0.1
Credit -7564.7 ± 3.2 16 5 -7591.3 ± 22.7 3 4 -7568.3 ± 3.2
Heart -2388.1 ± 0.0 1 2 -2388.1 ± 0.0 0 2 -2388.1 ± 0.0

Housing -3192.6 ± 5.7 2 7 -3198.3 ± 9.4 1 7 -3190.8 ± 5.7
Image -15514.5 ± 35.2 32 14 -15516.5 ± 8.3 28 13 -15503.6 ± 5.5
Pima -3995.6 ± 0.2 1 4 -3995.7 ± 0.0 0 4 -3995.6 ± 0.0

Vehicle -6471.5 ± 7.4 13 10 -6471.1 ± 7.0 9 10 -6467.1 ± 1.3
Voting -3085.6 ± 0.0 5 5 -3085.6 ± 0.0 2 5 -3085.6 ± 0.0

Wisconsin -2560.7 ± 0.0 1 3 -2560.9 ± 0.0 0 3 -2560.7 ± 0.0
Yeast -6213.5 ± 0.0 0 2 -6213.7 ± 0.0 0 2 -6213.5 ± 0.0

Table 6.13: Results for real data.

Data set Standard3 SplitMerge StandardFixed
name score t |H| score t |H| score

Spambase -83425.8 ± 500.0 963 16 -82705.3 ± 4.1 3738 19 -82850.6 ± 79.3

Table 6.14: Results for “Spambase” data set, no time limit.
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Data set SplitMerge SplitMerge-NoAdjust
name score t |H| score t |H|

Mushroom -82935.1 ± 722.2 300 17 -83091.5 ± 924.3 165 17
Page -22766.6 ± 2.9 5 14 -22831.0 ± 4.7 2 15
Pen -81454.4 ± 11.5 300 41 -81455.2 ± 13.2 266 41

Shuttle -256027.6 ± 10.4 16 21 -256042.2 ± 2.6 9 21
Thyroid -44542.9 ± 0.2 21 7 -44542.9 ± 0.2 17 7

Audiology -3403.2 ± 0.0 2 2 -3403.2 ± 0.0 1 2
Credit -7591.3 ± 22.7 3 4 -7610.6 ± 13.0 1 4

Housing -3198.3 ± 9.4 1 7 -3201.7 ± 4.6 1 8
Image -15516.5 ± 8.3 28 13 -15534.3 ± 8.0 12 13
Vehicle -6471.1 ± 7.0 9 10 -6488.4 ± 11.3 5 11
Voting -3085.6 ± 0.0 2 5 -3086.3 ± 0.7 1 5

Table 6.15: Results for real data: SplitMerge without parameter adjustment.
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Figure 6.4: Score change during time for “Mushroom” data set.
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Figure 6.5: Score change during time for “Thyroid” data set.
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Figure 6.6: Score change during time for “Image” data set.

75



Learning of Latent Class Models 6.3. Experiments

-3160

-3150

-3140

-3130

-3120

-3110

-3100

-3090

-3080

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

S
co

re

Time (minutes)

Standard3
SplitMerge

StandardFixed

Figure 6.7: Score change during time for “Voting” data set.
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6.3.4 Discussion

First, we look at the results for synthetic data. In the first series of tests (Ta-
bles 6.1-6.7), SplitMerge was better than the standard algorithms for 3:3x3,
10:7x2, and 10:10x2 models, that is when the number of possible configura-
tions of the observed variables (i.e., of D1 × . . . × Dk) was around 1000 or
smaller. For small |D| the performance of different algorithms was similar,
but for |D| around 105 and higher SplitMerge found higher scoring models
than the standard algorithms. Even though the running time of SplitMerge
was higher than of Standard3, the comparison with StandardFixed shows that
SplitMerge was really better. For 10:15x2, 10:10x3, and 5:20x2 models (i.e.,
when the number of possible configurations of the observed variables was
around 30000 or larger) the performance of different algorithms was similar,
but for large |D| Standard3 increased |H| a little faster than SplitMerge. Be-
cause of this, for three data sets Standard3 found significantly better scoring
models than SplitMerge.9 But as seen from Table 6.7, the performance of
the algorithms was similar when they ran until they terminated themselves.
One special case is |D| = 104 in Table 6.5, where the standard algorithms
found better scoring models than SplitMerge and the algorithms terminated
themselves. There, SplitMerge simply terminated in one of its five runs with a
6–component model, because none of random splits led up to a better model.
But as seen from Table 6.10, SplitMerge performed the same as the standard
algorithms for other random parameterisations of the 10:10x3 structure with
|D| = 104.

In the second series of tests (Table 6.8) we see a similar pattern as in the
first series: SplitMerge was better than the standard algorithms when the
number of possible configurations of the observed variables was around 5000
(model 10:2,3,4,5,6,7) or smaller, and the performance of the algorithms was
similar otherwise (with Standard3 increasing |H| a little faster than Split-
Merge for the 10:15x2 model).

In the third series of tests (Tables 6.9 and 6.10) we see that different
random parameterisations of the same generative structure generally did not
make a big difference in the performance of the algorithms.

In the fourth series of tests (Table 6.11), SplitMerge was better than
the standard algorithms independently of the number of components in a
generative m:10x2 model (with the exception of the simplest case when m =
2). Again the running time of SplitMerge was higher than of Standard3, but
the comparison with StandardFixed shows that SplitMerge was really better.

Now we discuss the results of the tests where m in StandardFixed was

9Even though for |D| = 105 in Table 6.4 |H| for SplitMerge is the same as |H| for
Standard3, the final model contains only 6 components in most of the runs of SplitMerge.
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equal to the true |H|. We consider it normal that for those data sets where
|H| given by SplitMerge was lower than the true |H|, setting m to the true
|H| decreased the mean score for StandardFixed. This happened because
|D| was probably not big enough to support models with more components.
However, we were surprised that setting m to the true |H| decreased the
mean score for StandardFixed for two last data sets from Tables 6.1 and 6.2
and the last data set from Table 6.3 as well. There, |H| given by SplitMerge
was higher than the true |H|, that is SplitMerge overestimated the number of
components. But it turns out that this overestimation was “reasonable” in a
sense that StandardFixed also prefers models with too many components.10

We think that such a behaviour was caused by the local maxima problem
when estimating model parameters. It seems that increasing the number of
parameters by having too many components allows the EM algorithm to find
better local maximum parameters.

As seen from Figures 6.1-6.3, Standard3 increases the model score a little
faster than SplitMerge in the beginning, but in Figures 6.1 and 6.3 SplitMerge
finds higher scoring models at the end. In Figure 6.2, Standard3 stops with
higher scoring models, but for |H| = 5 both Standard3 and SplitMerge found
the same scoring models as StandardFixed.

We give a summary of our results for synthetic data in Table 6.16. Here
we show how did SplitMerge perform in comparison with Standard3 and Stan-
dardFixed for given data set size (|D|) and number of possible configurations
of the observed variables (|D1 × . . .×Dk|).

|D| |D1 × . . .×Dk|
Around 5000 or lower Around 30000 or higher

< 105 The algorithms performed similarly. The algorithms performed similarly.
SplitMerge performed better The algorithms performed similarly,

≥ 105 than the standard algorithms. but Standard3 was a little
faster than SplitMerge.

Table 6.16: A summary of the results for synthetic data.

Now we look at the results for real data. As seen from Table 6.13, the
results depend on the data set size. For all 9 data sets of size higher than
4500, SplitMerge found better scoring models than Standard3. For all 11
data sets of size lower than 4500, Standard3 found better scoring models
than SplitMerge (for 3 data sets) or the scores were similar (for 8 data sets).

10We made sure that the BIC score is not misleading by checking that for model M1

with true |H| and model M2 with too high |H| we have KL(PM2 , PG) < KL(PM1 , PG)
when BIC (M2) > BIC (M1), where G is the generative model.
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When |D| > 4500, SplitMerge found significantly better scoring models
than Standard3 for 6 data sets. For most of these data sets, the algorithms
stopped because of the 5 hour time limit. But contrary to the results for
synthetic data, there is a big difference in |H| values of SplitMerge and of
Standard3 when the algorithms stop because of the time limit. So, SplitMerge
increased the cardinality faster then Standard3. We have also performed the
experiments where the number of starting points for EM in Standard3 was
set to 16 rather than 64. This way, Standard3 increased the cardinality faster
than previously at a cost of worse parameters. In this setup, SplitMerge found
significantly better scoring models than Standard3 for 6 data sets again. Also,
the results in Table 6.14 indicate that letting the algorithms run until they
terminate themselves does not cause SplitMerge to perform the same as the
standard algorithms. When |D| < 4500, Standard3 found significantly better
scoring models than SplitMerge for 1 data set.

As for StandardFixed, on average it performed a little better than Split-
Merge.

For some data sets, the highest scoring models found by Standard3 and
by SplitMerge have different |H|. For those 6 data sets where SplitMerge
found significantly better scoring models than Standard3, |H| determined
by SplitMerge is much higher than |H| determined by Standard3. For
“Pen” and “Shuttle”, Standard3 was simply unable to increase |H|. For
“Adult”, “Mushroom”, “Satimage”, and “Spambase”, SplitMerge was faster
than Standard, and both algorithms were stopped because of the time limit.
For 4 more data sets (“Image”, “Letter”, “Credit”, and “Thyroid”), |H| de-
termined by Standard3 and by SplitMerge differ by 1. In all of them, the best
model found by Standard has a higher score than the best model found by
SplitMerge, even though for “Letter” and “Thyroid” SplitMerge performed
better on average. This is related to the fact that generally the variance of
the score is lower for SplitMerge than for Standard3.

The results in Table 6.15 show that the parameter adjustment operation
is useful. For 7 data sets, it allowed to find better scoring models. For 4 out
of those 7 data sets, it allowed to find significantly better scoring models. For
3 data sets (“Page”, “Housing”, and “Vehicle”), it led to different |H|, which
quite interestingly was always lower by 1 than |H| determined by SplitMerge-
NoAdjust. It was because after the parameter adjustment SplitMerge was able
to increase the score by performing the state merging operation. Only for 2
data sets (“Audiology” and “Thyroid”), using the parameter adjustment did
not cause the score to improve while at the same time increasing “t” a little.

As for the component merging operation, it caused the score to improve
for 7 out of 16 data sets where it has been tried (for 4 out of 5, when
considering only the data sets of size higher than 4500). So, the component
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merging seems to be useful as well.
As seen from Figures 6.4-6.7, models found by SplitMerge most of the time

have higher score than models found by Standard3. And usually, towards the
end SplitMerge gets close to StandardFixed.

Similar results for real data have been obtained in the experiments from
Section 4.5. It may seem surprising that compared to the experiments from
that section, where only the component splitting has been used, the param-
eter reusing algorithm does not show more improvement over the standard
algorithms. However, the setup of the experiments from Section 4.5 and of
the experiments here is quite different.

Summing up the results for both synthetic and real data, on average Split-
Merge performed better than Standard3. It seems that SplitMerge becomes
more useful as |D| increases. Another advantage of SplitMerge is that the
variance of the score for it is lower than for Standard3. SplitMerge performed
a little better than StandardFixed on synthetic data and a little worse on
real data. Since StandardFixed has the advantage of knowing the number of
components, we consider this to be a good result.

Of course, very often SplitMerge still does not find the global maximum
parameters. Indications of this are the situations where the variance of the
score for SplitMerge is not zero or models found by SplitMerge have lower
score than models found by StandardFixed.
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Chapter 7

Learning of Hierarchical Latent
Class Models

In this chapter we extend our algorithm that learns LC models to hierarchical
latent class (HLC) models. Here we assume that the skeleton of an HLC
model is fixed (that is, all the variables and edges between them are fixed)
and the goal is to determine the cardinalities of hidden variables and model
parameters.

First, we extend the component splitting, component merging, and pa-
rameter adjustment operations to HLC models. Then we describe the algo-
rithms that learn the cardinalities and parameters in HLC models by either
using these extended operations or standard starting points for EM. Finally,
we present experiments comparing the performance of these algorithms.

7.1 Parameter Reusing for HLC Models

In this section, we describe how parameters can be reused in HLC models.
We reuse them by extending the component splitting, component merging,
and parameter adjustment operations from Definitions 4.2 (page 22), 5.2
(page 50), and 6.1 (page 57). The extensions are quite straightforward: each
operation is performed on the root node in an HLC model. Below we give
formal definitions. For an HLC model M , LC (M) will denote the LC model
consisting of the root node of M and all the child nodes of the root, with the
probability distributions for these nodes being the same as in M .

Definition 7.1 We say that HLC model M∗ is obtained from HLC model
M by splitting a component if LC (M∗) is obtained from LC (M) by splitting
a component and the rest of M∗ and M are identical.
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Definition 7.2 We say that HLC model M∗ is obtained from HLC model M
by merging two components if LC (M∗) is obtained from LC (M) by merging
two components and the rest of M∗ and M are identical.

Definition 7.3 We say that HLC model M ′ is obtained from HLC model M
by parameter adjustment if there exists HLC model M∗ such that:

• M∗ is obtained from M by splitting a component and then running
EM, and M ′ is obtained from M∗ by merging two components and then
running EM,
or

• M∗ is obtained from M by merging two components and then running
EM, and M ′ is obtained from M∗ by splitting a component and then
running EM.

Here the EM algorithm updates all the parameters of an HLC model.1

All these three operations work with the root node of an HLC model.
When performing parameter reusing for a non-root node, first we do root
walking until the node of interest becomes the root and then we work with
this new root. So, by using the fact that root walking leads to an equivalent
model, we restrict ourselves to working with the root node and this way
avoid the problem of considering the parents of a node when changing its
cardinality.

We do not know about theoretical properties (like those from Sections 4.3
and 5.3) of these operations for HLC models.

7.2 Algorithms

In this section, we discuss the algorithms that will be used in our experiments
on learning the cardinalities and parameters in HLC models.

7.2.1 Algorithm Based on Splitting and Merging

In this section, we provide our algorithm that learns the cardinalities and
parameters in HLC models by using the component splitting, component

1We do not define the parameter adjustment for HLC models by simply requiring
LC (M ′) to be obtained from LC (M) by adjusting the parameters, because we allow the
EM algorithm to update all the parameters of an HLC model, not only those attached to
the root and its child nodes.
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merging, and parameter adjustment operations. Algorithm HLCSplitMerge
takes training data D and model skeleton s as input and returns an HLC
model. It tries to find an HLC model that is the best according to the
function score, which can be any penalised likelihood scoring function. The
pseudocode of HLCSplitMerge is given in page 84. This algorithm is very
similar to the SplitMerge algorithm (page 59). Only steps 1, 7, 20, and 31
are changed. In step 1, the algorithm starts with the HLC model L where
the cardinality of each hidden variable is one and the maximum likelihood
parameters are deterministically computed from D. In steps 7, 20, and 31,
the procedures HLCSplit, HLCMerge, and HLCAdjust instead of the corre-
sponding procedures for LC models are called. We will now describe these
three procedures.

The procedure HLCSplit increments the cardinality of one hidden variable
from an HLC model L. The pseudocode is given in page 85. The procedure
increments the cardinality of each hidden variable alone by making that
variable the root, splitting a component as described in Definition 7.1, and
running the EM algorithm. The model where incrementing the cardinality
gave the highest score is taken as the final one.

The procedure HLCMerge decrements the cardinality of one hidden vari-
able from an HLC model L. The pseudocode is given in page 85. The proce-
dure decrements the cardinality of each hidden variable alone by making that
variable the root, merging two components as described in Definition 7.2, and
running the EM algorithm. The model where decrementing the cardinality
gave the highest score is taken as the final one.

The procedure HLCAdjust tries to increase the score of an HLC model L
by performing the parameter adjustment operation. The pseudocode is given
in page 86. The procedure considers hidden variables one by one by making a
hidden variable to be the root and then trying to improve model parameters
similarly as in Adjust for LC models from page 62. The procedure terminates
without considering other hidden variables as soon as a model giving an
increase in score higher than a positive parameter δ is found. Similarly as in
Adjust, models L′ in step 3 and Ls in step 10 are not computed directly but
taken from the last run of HLCMerge and the last run of HLCSplit.

We can see that the algorithm HLCSplitMerge allows to have hidden vari-
ables with cardinality 1. This is different from the approach of Zhang (2002);
Zhang (2004), where the cardinality of a hidden variable can not be lower
than 2. We allow the cardinality to be 1, because this provides a natural
outset for the component splitting and because the algorithm can indicate
that a hidden node is not needed by making its cardinality 1 in the final
model. Strictly speaking, a model containing a hidden node with cardinality
1 is no longer an HLC model, because it is equivalent to the model where this
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Procedure 7.1 HLCSplitMerge(D, s)

1: Let L be the HLC model with skeleton s and the cardinality of each
hidden variable being one.

2: doPhase1 ← true, doPhase2 ← true.
3: loop
4: if doPhase1 then
5: L0 ← L.
6: repeat
7: L′ ← HLCSplit(L,D).
8: if score(L′) > score(L) then
9: L ← L′.

10: end if
11: until L 6= L′.
12: if score(L) > score(L0) then
13: doPhase2 ← true.
14: end if
15: doPhase1 ← false.
16: end if
17: if doPhase2 then
18: L0 ← L.
19: repeat
20: L′ ← HLCMerge(L,D).
21: if score(L′) > score(L) then
22: L ← L′.
23: end if
24: until L 6= L′.
25: if score(L) > score(L0) then
26: doPhase1 ← true.
27: end if
28: doPhase2 ← false.
29: end if
30: if not doPhase1 and not doPhase2 then
31: L′ ← HLCAdjust(L,D).
32: if score(L′) > score(L) then
33: L ← L′, doPhase1 ← true, doPhase2 ← true.
34: else
35: return L.
36: end if
37: end if
38: end loop
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Procedure 7.2 HLCSplit(L,D)

1: for each hidden variable Hi of L do
2: Obtain from L the HLC model L∗ with Hi as the root by doing root

walking.
3: Li ← Split(L∗,D), where the procedure Split is performed as in

page 60, but in each step (producing two-component models, data Ds,
model Ls, running EM) working with HLC rather than LC models.

4: end for
5: L′ ← arg maxLi

score(Li).
6: return L′.

Procedure 7.3 HLCMerge(L,D)

1: for each hidden variable Hi of L do
2: Obtain from L the HLC model L∗ with Hi as the root by doing root

walking.
3: Li ← Merge(L∗,D), where the procedure Merge is performed as in

page 61, but in each step (producing model L∗, running EM) working
with HLC rather than LC models.

4: end for
5: L′ ← arg maxLi

score(Li).
6: return L′.
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Procedure 7.4 HLCAdjust(L,D)

1: for each hidden variable Hi of L do
2: Obtain from L the HLC model L∗ with Hi as the root by doing root

walking.
3: L′ ← Merge(L∗,D), with Merge performed as in step 3 of HLCMerge.
4: L′′ ← Split(L′,D), with Split performed as in step 3 of HLCSplit.
5: if score(L′′) > score(L) + δ then
6: return L′′.
7: else
8: L ← ∅.
9: for each component hs of L∗ do

10: Obtain an HLC model Ls as in the procedure Split from page 60,
but in each step (producing two-component models, data Ds,
model Ls, running EM) working with HLC rather than LC models.

11: for each pair of components {ha, hb} where ha is a new component
and hb is an old component of Ls do

12: Obtain model L′ by merging ha and hb in Ls.
13: Add L′ to L.
14: end for
15: end for
16: Obtain model L′′ by running the multiple restart EM with L as

starting points and data D.
17: if score(L′′) > score(L) + δ then
18: return L′′.
19: end if
20: end if
21: end for
22: return L.
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hidden node and the adjacent edges are removed. Such a model partitions
the observed variables into groups, where variables in different groups are
assumed to be independent of each other.

Another difference from the approach of Zhang (2002); Zhang (2004) is
that we do not check whether the obtained models are regular. We allow the
cardinality of a hidden variable to be higher than required in the definition
of a regular structure, because this may allow to perform the component
merging later.

7.2.2 Algorithms Based on Standard Starting Points

Similarly as in the experiments with LC models, the algorithm HLCSplit-
Merge will be compared with the algorithms that use standard starting
points for EM. One of them, called HLCStandard3, has almost the same
main procedure as HLCSplitMerge (see page 84). HLCStandard3 also has
3 phases: increasing cardinalities, decreasing cardinalities, and improving
parameters. The difference from HLCSplitMerge is that instead of calling
HLCSplit, HLCMerge, and HLCAdjust it calls HLCIncrement, HLCDecre-
ment, and HLCNewParams, the pseudocodes for which are given below.

HLCIncrement (page 87) increments the cardinality of each hidden vari-
able alone and estimates model parameters by running EM from random
starting points. The model where incrementing the cardinality gave the
highest score is taken as the final one. In the same pattern, HLCDecrement
(page 88) decrements the cardinality of each hidden variable alone. HLC-
NewParams (page 88) simply runs EM from random starting points. In all
these three procedures, |M| is specified in advance and random parameters
are sampled from the uniform distribution.

Procedure 7.5 HLCIncrement(L,D)

1: for each hidden variable Hi of L do
2: Let m be the structure of L, where the cardinality of Hi is increased

by 1.
3: Produce a set M of HLC models having structure m and random

parameters.
4: Obtain model Li by running the multiple restart EM with M as start-

ing points.
5: end for
6: L′ ← arg maxLi

score(Li).
7: return L′.

87



Learning of Hierarchical Latent Class Models 7.2. Algorithms

Procedure 7.6 HLCDecrement(L,D)

1: for each hidden variable Hi of L where |Hi| > 1 do
2: Let m be the structure of L, where the cardinality of Hi is decreased

by 1.
3: Produce a set M of HLC models having structure m and random

parameters.
4: Obtain model Li by running the multiple restart EM with M as start-

ing points.
5: end for
6: L′ ← arg maxLi

score(Li).
7: return L′.

Procedure 7.7 HLCNewParams(L,D)

1: Let m be the structure of L.
2: Produce a set M of HLC models having structure m and random pa-

rameters.
3: Obtain model L′ by running the multiple restart EM with M as starting

points.
4: if score(L′) > score(L) + δ then
5: return L′.
6: else
7: return L.
8: end if
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The algorithm HLCStandardFixed uses standard starting points for EM
and estimates HLC model parameters when the model structure is fixed.
Its pseudocode is given in page 89. In the same way as StandardFixed for
LC models, it repeatedly tries to improve model parameters by running the
multiple restart EM from random starting points. The algorithm is stopped
when it reaches a time limit, and then L contains the best model. Parameters
of models from M are again sampled from the uniform distribution.

Procedure 7.8 HLCStandardFixed(D,m)

1: Let L be an HLC model having structure m and random parameters.
2: N ← N0.
3: loop
4: Produce a set M of N models, where each model has structure m and

random parameters.
5: Obtain model L′ by running the multiple restart EM with M as start-

ing points.
6: if score(L′) > score(L) then
7: L ← L′.
8: end if
9: N ← 2N .

10: end loop

7.3 Experiments

In this section, we describe the experiments where we compare the approach
that uses the component splitting and merging (algorithm HLCSplitMerge)
with the approach that uses standard starting points (algorithms HLCStan-
dard3 and HLCStandardFixed) for learning cardinalities and parameters in
HLC models. First, we describe the setup of experiments. Then we give the
results for synthetic and for real data. Finally, we discuss the results.

7.3.1 Setup of Experiments

The setup of experiments is the same as for LC models, described in Sec-
tion 6.3.1. In HLCIncrement, HLCDecrement, and HLCAdjust, |M| = 64.
Contrary to the experiments with LC models, the algorithms are not stopped
before they terminate themselves. The model structure m in HLCStandard-
Fixed is the structure of the best scoring model found by HLCSplitMerge for
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a given data set. The running time of HLCStandardFixed is equal to the
mean running time of HLCSplitMerge for a given data set.

The results are displayed in the same way as for LC models, except that
in the field “hidden” the cardinalities of all the hidden variables in the best
scoring model are shown (the cardinalities of the root, its children, and its
grandchildren are separated by colons).

7.3.2 Results for Synthetic Data

In these experiments, training data D is always sampled from some HLC
model. Forward sampling is used and D over observed variables is always
complete. The generative HLC model is always parameterised randomly,
with its parameters sampled from the uniform distribution. The skeleton of
the generative HLC model is provided as a parameter to HLCSplitMerge and
HLCStandard3.

In the first series of tests, we sampled D of size 104, 105, and 106 from the
same HLC model having the structure shown in Figure 7.1. The cardinality of
each observed variable is 3. This structure is taken from Zhang (2004). Here
and in further figures, hidden variables are labelled with their cardinalities.

3

3

D1 D2 D3

D4 3

D5 D6 D7

Figure 7.1: Structure with 7 observed variables.

We performed the experiments with two different parameterisations of the
structure from Figure 7.1. The first model was parameterised as usually. The
second model was also parameterised as usually, but it was ensured that each
conditional probability distribution contains an element no smaller than 0.6.
Also, it was ensured that in each conditional probability table, the largest
elements for different states of the child variable do not all correspond to the
same state of the parent variable. The idea of such a setup is taken from
Zhang (2004) and Zhang and Kočka (2004). The results of tests are shown
in Tables 7.1 and 7.2.

In the second series of tests, we sampled D of size 104 from HLC mod-
els having the structures shown in Figures 7.2 and 7.3. The cardinal-
ity of each observed variable is again 3. These structures are taken from
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|D| HLCStandard3 HLCSplitMerge HLCStandardFixed
score t hidden score t hidden score

104 -71381.2 ± 2.6 58 2:3,2 -71380.3 ± 0.0 35 2:3,2 -71378.6 ± 1.1
105 -712205.8 ± 5.8 71 2:3,2 -712200.7 ± 0.0 41 2:3,2 -712200.4 ± 1.3
106 -7121968.5 ± 85.6 128 2:3,3 -7121953.3 ± 71.8 148 2:3,3 -7121863.8 ± 18.1

Table 7.1: Sampled from the first model with 7 observed variables.

|D| HLCStandard3 HLCSplitMerge HLCStandardFixed
score t hidden score t hidden score

104 -65824.5 ± 0.3 62 3:3,3 -65824.4 ± 0.0 43 3:3,3 -65824.1 ± 0.3
105 -656733.5 ± 6.8 118 3:3,3 -656722.2 ± 0.7 158 3:3,3 -656721.4 ± 0.8
106 -6557966.9 ± 47.8 186 3:3,3 -6557889.6 ± 0.0 413 3:3,3 -6557887.5 ± 0.9

Table 7.2: Sampled from the second model with 7 observed variables.

Zhang and Kočka (2004). Models were parameterised in the same way as
the second model from the first series of tests. The results of tests are

2

2

3

D1 D2 D3

3

D4 D5 D6

2

3

D7 D8 D9

3

D10 D11 D12

Figure 7.2: Structure with 12 observed variables.

shown in Table 7.3. The field “t” indicates the rounded mean running time
in hours. For the 18-variable model, each algorithm was run only 2 times
because of long running time.

Similarly as in the experiments with LC models, we display how the mean
score changes during time for several data sets. It is shown in Figures 7.4-7.8
(bars at the end indicate 95% confidence intervals for the mean).
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3

D1 D2 D3

3

D4 D5 D6

2

3

D7 D8 D9

3

D10 D11 D12

2

3

D13 D14 D15

3

D16 D17 D18

Figure 7.3: Structure with 18 observed variables.

k HLCStandard3 HLCSplitMerge HLCStandardFixed
score t hidden score t hidden score

12 -108271.5 ± 52.8 77 1:2,2: -108302.8 ± 0.0 29 1:1,2: -108301.8 ± 0.1
3,3,3,3 2,2,3,3

18 -166025.7 ± 0.3 414 2:2,2,2: -166031.2 ± 0.0 289 2:2,2,2: -166030.1 ± 0.1
3,3,3,3,3,3 2,3,3,3,3,3

Table 7.3: Sampled from models with 12 and with 18 observed variables.
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Figure 7.4: Score change during time for data sampled from the first model
with 7 observed variables, |D| = 106.
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Figure 7.5: Score change during time for data sampled from the second model
with 7 observed variables, |D| = 104.
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Figure 7.6: Score change during time for data sampled from the second model
with 7 observed variables, |D| = 106.
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Figure 7.7: Score change during time for data sampled from the model with
12 observed variables.
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Figure 7.8: Score change during time for data sampled from the model with
18 observed variables.
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7.3.3 Results for Real Data

For training data, we used the CoIL Challenge 2000 (van der Put-
ten and van Someren (eds), 2000) data, preprocessed as described in
Zhang and Kočka (2004). The preprocessed data set contains 42 vari-
ables and has size 5822. Most of the variables are binary. The struc-
ture of the best HLC model for this data set found by the algorithm of
Zhang and Kočka (2004) is shown in Figure 7.9. For hidden variables, the
name of a variable and its cardinality are shown. For observed variables, the
name of a variable is shown.

The skeleton from Figure 7.9 was provided as an input to HLCSplitMerge
and HLCStandard3. The results of tests are shown in Table 7.4. The field
“t” indicates the rounded mean running time in hours. Each algorithm was
run only 2 times because of long running time. The cardinalities of hidden

HLCStandard3 HLCSplitMerge HLCStandardFixed
score t score t score

-51626.1 ± 7.4 971 -51516.5 ± 19.4 467 -51515.1 ± 30.1

Table 7.4: Results for CoIL data set.

variables in the final models found by HLCSplitMerge and HLCStandard3
were the same as the cardinalities in Figure 7.9 except for the following
differences. For HLCStandard3, the cardinalities of h8, h20, and h21 were
lower by 1 in the first run (model score -51621.8), and the cardinalities of h0,
h20, and h21 were lower by 1 in the second run (model score -51630.3). For
HLCSplitMerge, the cardinality of h21 was higher by 1 in the first run (model
score -51527.5), and all the cardinalities were the same as in Figure 7.9 in
the second run (model score -51505.5). The scores of the final models found
by HLCStandardFixed were -51497.9 and -51532.2.

In Figure 7.10, we display how the mean score changes during time (bars
at the end indicate 95% confidence intervals for the mean).
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Figure 7.10: Score change during time for CoIL data set.
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7.3.4 Discussion

First, we look at the results for synthetic data. For data with 7 observed
variables (Tables 7.1 and 7.2), the final models found HLCSplitMerge have
higher score than the final models found by HLCStandard3, especially for
|D| higher than 104. The structures of the best final models found by both
algorithms are the same. For data with 12 and with 18 observed variables
(Table 7.3), the results are the opposite: the final models found by HLC-
SplitMerge have lower score than the final models found by HLCStandard3.
This is because HLCStandard3 was able to increase the cardinalities more
and this way the structure of its final best model is closer to the structure of
the generative model (as seen from the fields “hidden” in Table 7.3).

When comparing HLCSplitMerge with HLCStandardFixed, we see that
the average final score was always higher for HLCStandardFixed (and some-
times it was even significantly better), but the difference in the average final
scores was really big for one data set only (namely, the last one from Ta-
ble 7.1). So, usually the parameters found by HLCSplitMerge were only
a little worse than those find by HLCStandardFixed for given HLC model
structures.

Figures 7.7 and 7.8 show that for the two data sets where HLCSplit-
Merge found worse models than HLCStandard3, HLCSplitMerge was about
two times faster, and only because of longer running time HLCStandard3
found better models.

Now we look at the results for real data. As seen from Table 7.4 and
Figure 7.10, HLCSplitMerge performed much better than HLCStandard3.
And as described at the end of Section 7.3.3, the structures found by HLC-
SplitMerge are closer to the structure from Figure 7.9. Having in mind the
results for synthetic data, it is interesting that this time HLCSplitMerge
ended up with higher cardinalities for some variables than HLCStandard3.
As for the HLCStandardFixed algorithm, we see that it finds similarly scor-
ing models as HLCSplitMerge: for the structure where the model score was
-51505.5 for HLCSplitMerge, it was -51497.9 and -51532.2 in the two runs
of HLCStandardFixed. It is interesting to compare that the BIC score of
the best model found by the HSHC algorithm (described in Section 3.4.2) of
Zhang and Kočka (2004) was -51465.2 It took 121 hours to learn this model
using a processor that has a similar rate as in our experiments. So, the
HSHC algorithm, which learns the model skeleton as well, learned better pa-
rameters than HLCStandardFixed and HLCSplitMerge. The reason for this
may be that in HSHC running local EM rather than EM that updates all the

2We remind that this model has the same structure as the one discovered by HLCSplit-
Merge and used by HLCStandardFixed.
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parameters of a model causes not only to save time but also to find better pa-
rameters. We believe that HLCSplitMerge can be improved by running local
EM after splitting or merging components, and only after that running EM
that updates all the parameters of a model. In local EM, only the probability
distributions for the root node and its children would be optimised.

Both in the experiments with synthetic and with real data, the parame-
ter adjustment operation (procedure HLCAdjust) often increased the model
score. But the component merging operation (procedure HLCMerge) in-
creased the model score only once (in one of the runs for real data). The
reason for this may be that in our experiments the cardinalities of hidden
variables in the optimal HLC models are not high, and in this case the com-
ponent splitting usually does not overestimate the cardinality.

So, on average HLCSplitMerge performed a little better than HLCStan-
dard3 on synthetic data, and it performed much better than HLCStandard3
on real data. For synthetic data, the variance of the score for HLCSplit-
Merge was lower than for HLCStandard3. For both synthetic and real data,
the score of models found by HLCSplitMerge was close to the score of models
found by HLCStandardFixed. As mentioned above, a promising future work
would be the introduction of local EM in HLCSplitMerge.
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Chapter 8

Conclusions and Research
Directions

In this thesis, we have addressed the problem of learning Bayesian networks
with hidden variables. We have concentrated on a sub-problem of learn-
ing the cardinalities of hidden variables and the parameters in latent class
(LC) and hierarchical latent class (HLC) models. These models are tree-
structured Bayesian networks with categorical variables and are among the
simplest types of Bayesian networks with hidden variables. The standard
method for learning cardinalities and parameters is to run the EM algorithm
from random starting points. We have proposed a method where starting
points for EM are obtained by reusing the parameters of the already learned
models. When we reuse the parameters by performing the so-called com-
ponent splitting operation, we increase the cardinality of a hidden variable.
When we reuse the parameters by performing the so-called component merg-
ing operation, we decrease the cardinality of a hidden variable. By repeatedly
performing these operations, we learn both the cardinalities of hidden vari-
ables and the parameters at the same time. We have proved that if some data
is not described perfectly by some LC model, then with probability 1 it is
possible to increase the log-likelihood of that data by splitting a component
in that LC model (Theorem 4.2 on page 28). Based on experimental results
we have conjectured that if some data over binary variables is described
perfectly by an LC model having one component more than the generative
model for that data, then the generative model can be obtained by merging
two components of that model, provided that the dimension of that model
is not higher than the complete dimension of that data (Conjecture 5.2 on
page 53).

In the experiments with LC and HLC models, our algorithms based on
component splitting and merging in a majority of cases performed better than
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the algorithms that use standard starting configurations for EM. In particu-
lar, the parameter reusing approach was better for bigger-sized training data.
However, we think that our algorithms can still be improved.

One possible improvement could be to introduce criteria for selecting
the most promising components for splitting and merging as it has been
done by Ueda et al. (2000) for continuous data (Section 3.3). For exam-
ple, component hs from model L could be considered for splitting when the
distance between the distribution specified by the parameters of the com-
ponent and the empirical distribution given by Ds is large. That is, when
KL

(
PL(D1|hs) · . . . · PL(Dk|hs), PDs(D1, . . . , Dk)

)
is large. Components hs

and ht could be considered for merging when the distance between the em-
pirical distributions given by Ds and Dt is small.1

Another possible improvement would deal with the implementation of
component splitting. Currently, we split a component randomly. It may be
worth trying to compute from data a good direction for splitting. One may
try to improve the deterministic approaches suggested in Section 4.4.2.

For HLC models only, the main improvement should be introduction of
local EM, as discussed in Section 7.3.4.

As discussed in Section 3.1.3, the scoring functions we use are not com-
pletely suited for networks with hidden variables. It would be interesting
to see if using better suited scoring functions would change the performance
of the algorithms. The first step here could be using a modified BIC score
where effective dimension of a Bayesian network and relabeling of states of
hidden variables (see Section 3.1.3) are taken into account.

In this thesis, we first proposed a parameter reusing approach for LC
models and after that extended it to HLC models. A natural next step would
be to move from tree-structured models to unrestricted Bayesian networks
with hidden variables. The main issue here is how to define component (i.e.,
state) splitting and merging for hidden variables that have parents. The most
obvious extension of Definitions 4.2 (page 22) and 5.2 (page 50) would be
the following. For a hidden variable H with parents A1, . . . , Aj and children
B1, . . . , Bk in model M , producing of model M∗ by splitting of state hs into
h1

s and h2
s would mean setting PM∗(h1

s|a) = PM∗(h2
s|a) = 1

2
PM(hs|a) for

every configuration a of A1, . . . , Aj, and setting PM∗(Bi|h1
s) and PM∗(Bi|h2

s)
to be close to PM(Bi|hs), ∀i = 1, . . . , k. Producing of model M∗ by merging
of states h1

s and h2
s into hs would mean setting PM∗(hs|a) = PM(h1

s|a) +
PM(h2

s|a) for every configuration a of A1, . . . , Aj, and setting PM∗(Bi|hs) =

1Measuring the distance between the distributions specified by the parameters of com-
ponents hs and ht could be computationally too expensive because each of these distribu-
tions may contain

∏k
i=1 |Di| non-zero probabilities.
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PM (h1
s)

PM∗ (hs)
PM(Bi|h1

s) + PM (h2
s)

PM∗ (hs)
PM(Bi|h2

s), ∀i = 1, . . . , k, where PM(h1
s), PM(h2

s),

and PM∗(hs) are marginal probabilities of states of H according to models
M and M∗. However, state splitting defined in this way has an undesirable
property of working differently for equivalent models. For example, consider
the Bayesian networks A → H → B and A ← H → B, where H is hidden
and A,B are observed variables. These two models are equivalent. For
the first model, the probability distributions P (A, h1

s) and P (A, h2
s) after

splitting would be identical, while for the second model not. This could be
repaired (i.e., the distributions forced to be different for the first model as
well) by setting during splitting PM∗(h1

s|a) = 1
2
PM(hs|a)+εa and PM∗(h2

s|a) =
1
2
PM(hs|a)−εa for every configuration a of A1, . . . , Aj, where each εa is a real

number close to zero. For models containing more than one hidden variable,
the easiest way of optimising the cardinalities seems to be the one used in
HLC models: increasing or decreasing the cardinality of one variable at a time
while keeping the cardinalities of other hidden variables fixed. When testing
this parameter reusing approach, the first step could be to perform tests with
hierarchical naive Bayes (HNB) models (Zhang et al., 2004), which are like
HLC models except that the root variable (i.e., class variable) is observed.
HNB models are not as complex a unrestricted Bayesian networks, but at
the same time contain hidden variables that have an observed parent.

We reuse the parameters by performing component splitting and merging.
As discussed in the beginning of Chapters 4 and 5, the parameters could also
be reused by performing component introduction and removal. Working on
algorithms that would use these two operations instead of (or in addition to)
splitting and merging could be yet another research direction.

A more theoretical research would be further investigation of properties
of component merging in LC models.

Concerning practical usage, one could consider another application of the
parameter reusing technique. In this thesis, we have assumed a completely
automatic learning where the algorithm learns the cardinalities and parame-
ters by using training data alone as input. However, there may be situations
where a model for given training data is already available and the goal is
to improve the available model rather than to find the model that describes
training data the best. In such a case, the parameter reusing approach that
would use the available model as the initial one would be very convenient be-
cause it would not forget the parameters of the available model while trying
to find better models.
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Appendix A

Preprocessing of Text Data

In this appendix, we describe how we preprocessed text data, which was used
then in the experiments from Section 4.5. The description here is based on
pages 29-30 of Karčiauskas (2002).

The Reuters-21578 text categorisation test collection (Distribution 1.0)
(Lewis, 1997) is a widely used test collection for text categorisation research.
It contains about 20000 documents (Reuters news stories), each of them
assigned to zero or more topics. We used the most popular “ModApte” split
of this collection into training and test sets. Following the test setup of
Yang and Liu (1999), we selected the topics that have at least one document
both in the training set and the test set. It resulted in selecting 90 topics.
After eliminating documents that do not belong to any of these 90 topics,
we got a training set of 7769 documents and a test set of 3018 documents.

When preprocessing documents, for simplicity we did not distinguish be-
tween text that appears in the title and text that appears in the body of a
document. First, for the extraction of features from a document, we con-
verted text to lowercase and selected from it words (i.e., sequences of alpha
symbols delimited by any other symbols). Then we removed function words
(i.e. topic-neutral words such as articles, prepositions). After this prepro-
cessing, each document had a number of features – the non-function words
appearing in the document. A feature set was then built by taking from the
documents in the training set all the features except those that appear only
in one document. The feature set consists of 15715 words. As in many other
works on text categorisation, we used binary features.

Since for many machine learning algorithms it is computationally impos-
sible to use 15715 features, we performed feature selection. For this, we used
the information gain criteria, because it has been reported as one of the most
effective by Yang and Pedersen (1997). For each topic, a separate set of the
most relevant features was selected.
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Preprocessing of Text Data

For the experiments from Section 4.5, we produced 9 different data sets:
for topics Earn, Crude, and Corn, with 10, 20, and 30 features for each
topic. For these experiments, we merged the training and test sets into one
set, giving the data of size 10787.
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