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Preface

This PhD thesis is based on the results obtained during my PhD studies from
September 1st 2001 to August 31st 2004 at the Institute of Physics and Nano-
technology, Aalborg University, Denmark, under the skilled supervision of Dr.
Thomas Garm Pedersen. The thesis has been submitted to the Faculty of Engi-
neering and Science at Aalborg University.

Outline

The motivation for studying the conjugated polymers trans-polyacetylene (tPA),
poly(para-phenylene) (PPP) and poly(para-phenylene vinylene) (PPV) is given
in Part T which also contains a description of the physical characteristics of a
conjugated polymer.

Part II contains the theoretical text book foundation for this work, while
Parts ITI-IV are based on the scientific papers [1, 2, 3, 4] which constitute the basis
of this thesis. Part III is concerned with optical susceptibility with Chap. 8 con-
taining an analytic derivation of the linear optical susceptibility of tPA and PPP,
while Chap. 9 deals with the electro-optic susceptibility of PPP. In Part TV, the
Density Functional-based Tight-Binding (DFTB) approach is applied to phonons
in tPA and PPP (Chap. 10) and to polarons in tPA, PPP and PPV (Chap. 11).
Part V contains a summary of conclusions and an outlook.

It has been the ambition to make this thesis accessible to physics student from
the bachelor level and up. The theoretical foundation in Part II is therefore quite
elaborate and might easily be skipped by anyone with a background in condensed
matter physics, maybe with the exception of Chap. 5 which describes the perhaps
less well-known DFTB approach.
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Motivation






Chapter 1

Conjugated Polymers

1

A monomer" is a small molecule that may become chemically bonded to other

monomers to form oligomer? chains called dimers, trimers, tetramers, pentamers?,
etc. according to the number of monomers in the chain. A polymer? is a long
chain of monomers put together through a chemical process known as polymer-
ization, and polymers are often treated as being infinitely long. Polymers can be
both organic (carbon based) as well as inorganic.

In a chemical terminology, conjugated means with alternating single and dou-
ble covalent bonds. In general, conjugation leads to electron delocalization, and
the term conjugated has consequently been somewhat generalized to characterize
systems containing communities of delocalized electrons.

By the term conjugated polymer (CP), one generally understands an organic
polymer in which the 2s, 2p, and 2p, atomic carbon orbitals are tied up in sp?-
hybridized covalent bonds with the neighboring atoms while the 2p, orbitals form
delocalized orbitals with symmetry axes perpendicular to the plane of the unit cell
in question. A CP is thus characterized by an unsaturated sp®p,-hybridization
that leaves one unpaired, delocalized electron per carbon atom.

Because of their p-like symmetry, the delocalized orbitals are known as -
orbitals®. The delocalized 7-electrons are the most loosely bound of the electrons
in a CP and therefore dominate the electric and optical properties. Due to the
relatively weak inter-chain interactions, the m-electrons are primarily delocalized
along the polymer chain. Furthermore, overlap between the m-orbitals create
occupied bonding m-orbitals and unoccupied anti-bonding 7*-orbitals that form
valence and conduction bands, respectively. Therefore, chain-aligned samples

! Mono and meros are the greek words for “one” and “part”, respectively.

2 Oligo is greek for “a few”.

8 Di, tri, tetra, penta is greek for “two, three, four, five”.

4 Poly is greek for “many”.

®More precisely, this type of conjugated system should be called w-conjugated as opposed to
o-conjugated systems in which the delocalized orbitals have s-like symmetry.
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of CP are quasi-one-dimensional semiconductors with metal-sized conductivities
obtainable through doping [5].

The simplest example of a CP is polyacetylene (PA) which is the polymer-
ization of the monomer acetylene (CoHs). As shown in Fig. 1.1, acetylene can
polymerize to either cis- or trans-polyacetylene. As these two polymers have the
same chemical formula, they are known as isomers®. Trans-polyacetylene (tPA),
which is treated in this work, is thermodynamically the most stable of the two
isomers [6], and cis to trans isomerization can therefore be obtained by heating.

n

Figure 1.1: Left: The unit cell of cis-polyacetylene. Right: The unit cell of ¢trans-polyacetylene.

Besides tPA, this work contains results obtained for the CP poly(para-phe-
nylene) (PPP) and poly(para-phenylene vinylene) (PPV). The unit cells of tPA,
PPP and PPV are shown in Fig. 1.2 where the m-orbitals have symmetry axes
out of the plane of the paper. Notice that, as discussed in Secs. 8.3 and 10.1.2,
the torsion between alternating benzene rings is ignored for PPP and PPV.

Figure 1.2: From left to right the unit cells of trans-polyacetylene, poly(para-phenylene) and
poly(para-phenylene vinylene). One electron per carbon atom occupies a delocalized m-orbital
with p-like symmetry axis out of the plane of the unit cell. For the phenyl rings, this electron
community is indicated by a ring.

6150 is greek for “same”.
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1.1 Conjugated Polymers in Modern Research

Due to the vast technological potentialities of CP, a lot of research effort has
been invested in this area within the last few decades. One of the pioneering
efforts leading to an overall interest in organic materials was the 1963 reporting
of electroluminescence’ from organic semiconductors [7]. Following the 1977 re-
port of metal-sized conductivities in doped polyacetylene [8], a substantial part
of that interest was devoted to CP. The recognition of CP as a fruitful area of
research culminated when Alan J. Heeger, Alan G. MacDiarmid and Hideki Shi-
rakawa were awarded The Nobel Prize in Chemistry 2000 ”for the discovery and
development of conductive polymers”.

Today, solar cells [9] and polymer light emitting diodes (PLED) [10, 11] have
been produced showing attractive device characteristics. Polymer-based solar
cells are expected to reduce the production costs of solar cell arrays substan-
tially, and PLED have already been implemented in various sorts of screen dis-
plays. In the future, colour screen displays based on PLED are expected to
combine high quality with low production costs as well as practicability and low
energy demands. Anno 2004, the market for computer and TV screens are still
dominated by the bulky, energy demanding and low quality but also low cost
cathode ray tubes that date as far back as 1928. As for the more modern flat
screen alternatives in Liquid Screen Displays (LCD) and plasma screens, besides
various technical imperfections, large production costs remain a problem. There-
fore, along with screens based on carbon nano tubes, PLED-based screens are
expected to assert their claim to the flat screen technology of tomorrow.

Solar cells and PLED owe their technological success to the following char-
acteristics of CP [12]: 1) Charge transport ability, 2) High photon-to-current
conversion efficiency (solar cells) and high-efficiency electroluminescence in the
visible (PLED) with wavelengths tunable by chemical modification® and 3) The
simple processing techniques, light weight and flexibility common to all plastics.
Furthermore, the fast response times characteristic of organic materials in general
make the use of CP appealing in connection with photo detection [13]. In short,
CP combine the desirable properties of plastics with the electronic and optoelec-
tronic properties of conventional inorganic semiconductors. When it comes to
practically all semiconductor-based devices, therefore, organic devices in general
and CP-based devices in particular have proved to be competitive with conven-
tional inorganic devices. In addition to the abovementioned solar cells and PLED,
such devices include plastic lasers [14] and field-effect transistors [15].

Being the simplest of all CP, the electronic, optical and structural properties
of PA has been thoroughly investigated over the years [6, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25], and tPA has been included in this work due to its status as

"Electroluminescence is the generation of light by electrical excitation and is the physical
mechanism behind light emitting diodes.
8This process is known as band gap engineering
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a well-studied model polymer for which comparable results are abundant. The
phenyl-based CP PPP and PPV have been chosen as supplement to the linear
polymer tPA because they are technologically promising. In 1990, PPV was the
first CP to display electroluminescence in the visible [10, 26], and in 1992, PPP
was the first CP to be used in a PLED showing blue light emission at room
temperature [27, 28, 29]. PPP and PPV have also drawn substantial interest
over the years [22, 30, 31, 32], but the obtained results have been somewhat less
exhaustive than for PA.

1.2 Modeling Conjugated Polymers

The models used for the CP treated in this work have some common features:

- Due to weak inter-chain interactions, parallel non-interacting chains are
treated.

- The treated chains are pristine (undoped).

- Torsion is disregarded in the phenyl-based polymers PPP and PPV.
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Chapter 2

Tight-Binding

This chapter contains a description of the tight-binding approximation applied
to a periodic crystal with Sec. 2.2.2 containing the extention to a finite molecule.
In Sec. 2.1, the characteristics of a periodic potential are described.

2.1 Periodic Potential

In a perfect crystal’, the atoms are arranged in a periodic lattice consisting of
identical unit cells, and the effective one-electron potential V' (see Sec. 4.6) has
the same periodicity as the lattice:

V(7+R) =V(f) , VR, (2.1)

in which the lattice vector R connects two identical lattice points.
For this time-independent potential, the solutions to the time-dependent
Schrédinger equation

) U (7, ¢
HU(7t) = m% (2.2a)
. R2V2
H=- 2.2b
, o, V() (2.2b)
can be written
(7 t) = e7 TR, 0) (2.3a)
N 2
—1i 7 ;ZHt ;ZHt
enflt =14 L +(h ) e (2.3b)

for some initial state W(7,0).

'n all real crystals, periodicity is broken because of impurities, lattice imperfections, thermal
vibrations of the atoms (phonons), etc.
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The energy eigenfunctions v (7) satisfy the time-independent Schrodinger equa-
tion

H() = e (). (2.4)

If the initial state is an energy eigenfunction, ¥(7,0) = ¢(7), Eq. (2.3a) takes the
much simpler form

U(7t) = e “Whp(F) , w=—. (2.5)

2.1.1 The Bloch Theorem

Electrons moving in a periodic one-electron potential as described in Eq. (2.1)
are known as Bloch electrons®. Due to the periodicity of the potential, the wave
functions of Bloch electrons have some characteristics that are stated in the Bloch
Theorem which will be derived in the following.

Since the electron density follows the periodicity of the lattice, one has

[ (F+ B)[* = 1), (2.6)

such that the translation operator Tél defined by

A

Ts () = ¢(F+ R) (2.7)

satisfies the eigenvalue equation

for some real, ﬁl—dependent number T .
Writing

TR = R (2.9)
one has introduced the crystal wave vector k as a quantum number associated
with the translation operator.

Since, due to the periodicity of the potential, the Hamiltonian and the trans-
lation operator commute:

[H,T] =0, (2.10)

simultaneous eigenfunctions exist for the two operators. Therefore, the solutions
to Eq. (2.4) can be written

I

Y7+ B) = e T (), (2.11)

2Free electrons occur for the simplest imaginable periodic potential V' (7) = 0.
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wlqleqre the band number a characterizes different solutions with same I;, and where
e B ig known as the Bloch factor.

Eq. (2.11) implies that the energy eigenfunctions can be written as a plane
wave multiplied by a so-called Bloch function which has the periodicity of the

lattice:
Q/Ja-‘('r_") = eiE'FU ~(F) (2.12&)
o (P Br) =@, VR (2.12b)

Egs. (2.11) and (2.12) are two equivalent statements of the same result known as
the Bloch Theorem.

2.1.2 Periodic Boundary Conditions

The Bloch electrons are assumed to be confined to the crystal. This corresponds
to the potential being infinite for ¥ outside the crystal or, equivalently, that the
wave functions ¢ (7) vanish outside the crystal. This condition can be satisfied
by two different choices of boundary conditions: Either the wave functions are
simply assumed to vanish outside the lattice, which leads to standing wave so-
lutions and an assumption of the electrons being reflected from the surfaces.
Alternatively, an electron leaving the lattice at one end is assumed to appear
instantaneously at the corresponding point at the opposite end of the crystal.
The latter, which is known as periodic boundary conditions or Born-von Karman
boundary conditions, corresponds to the surfaces being disregarded altogether
and leads to running wave solutions. Since running wave solutions turn out to
be more convenient, periodic boundary conditions have been applied throughout
this work.
The periodic boundary conditions correspond to

where the @; are the primitive lattice vectors spanning the lattice?, and where
N;d; is the shortest vector mapping 7 onto itself if the crystal is repeated in
the direction defined by a;. The product Ny, = N1N3N3 is thus the number of
primitive unit cells®.

Combining the Bloch Theorem from Eq. (2.11) with Eq. (2.13), one obtains

2 (F+ Nidy) = e NiF i () = 1 (F) (2.14)
and thus

Nk a1 (2.15)

3 All lattice points can be written as an integral linear combination of these primitive lattice
vectors: R) = a1d1 + axds + aszds , a; € Z.

“The primitive unit cells are spanned by the @; and are the smallest repetitive unit of the
lattice.
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Expanding k in the primitive reciprocal lattice vectors 51, 52, 53:

E = blgl + b232 + b3g3 (2.16&)
. bi-d@; = 2mdy, (2.16b)

in which d;; is the Kronecker delta, Eq. (2.15) corresponds to

el Nibi — 1 (2.17)
and consequently
n;
bij=— , n; €7Z. 2.18
= (2.18)

Since the plane wave fase k- ﬁl = 27(a1by + asbs + asbz) is defined modulus 27,
one can limit the n; in Eq. (2.18) to n; € {0,1,...,N; — 1}.

Under the periodic boundary conditions, the Ny, = NjNoNj3 physically dif-
ferent crystal wave vectors are thus given by

3
F=Y 25, mief{0,1,..., N —1}. (2.19)

Cubic Lattice

In a cubic lattice with

C_I:1 = lmﬂj , 62 == lyg 5 C_I:3 == lzﬁ, (220)
in which the /; are the 3 lattice constants, Eq. (2.16b) leads to

U T
b= T4 b= T4 by =13, (2.21)
Iy ly [

such that Eq. (2.19) takes the form

- 2w 21 21
k= 7 J + ——n,2 ; 0,1,...,N; —1}. 2.22
lemnxx‘i‘ Nylynyy+ Nzlznzz y Ty E{ 5 Ly y 1V4 } ( )

2.2 Tight-Binding Approximation

In an imaginary crystal with macroscopic distances between neighbouring atoms,
the electron orbitals in the lattice are identical to the atomic orbitals. As the
neighbour distances are reduced to a natural scale, the atomic orbitals begin to
overlap and consequently become altered. In the Tight-Binding (TB) approxi-
mation, the lattice orbitals are recognized as being different from the the atomic
orbitals but assumed to be close enough in resemplance to make the atomic or-
bitals a sensible starting point for a description of the crystal states.
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In the TB approximation, it is convenient to write the crystal Halmiltonian H
as the atomic Hamiltonian H?, of an atom placed at the origin plus a correction
potential AV (7) containing all corrections to the atomic potential required to
produce the full crystal potential:

H=HY + AV (7). (2.23)

Regarding 1 _(7) as a periodic function of k for fixed a and 7, one has the Fourier
expansion

Y (M) = Z B, Ry)ett I (2.24a)
. 1 I
Por(R) = 7 W, (Fe* ik, (2.24b)

where the integral is over the volume V. of the 1st Brillouin zone®.

Shifting 7 and K| with an arbitrary lattice vector in Eq. (2.24b) and using the
Bloch Theorem from Eq. (2.11), it can be seen that ®,7(R)) only depends on the
difference ¥ — R). Without loss of generality, one can therefore write

¢ak(F \/— Z i Rl¢a 7" - Rl) (2.25)

with 1/1/Nyc being a normalization factorS.
Using the fact that the atomic orbitals constitute a complete set, one has

bali— B) = 3 ap(R) pa(7 — F) + / non X (m, 7 — F)dm, (2.26)
B

in which 13 and T are bound and ionized atomic orbitals, respectively, and where
the k-dependence of aﬁ(E) allows the -sum to be limited to the bound atomic
orbitals belonging to the same unit cell as R.

Changing now to Dirac notation

al‘é> & (), (2.27a)
BR) & (7~ ), (2.27b)

®The 1st Brillouin zone consists of all points in reciprocal space that are closer to the origo
k = 0 than to all other reciprocal lattice points k = b1b1 + baba + bzbs 0, b; € Z.
5The ¢, are known as Wannier functions.
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and discarding the bound states in Eq. (2.26), Eq. (2.25) reads
. 1 o o m
ak> = ag(k)e* B
T 2
67Rl
> ag(k)
B

. 1 o
B e
| NUC é
1

ﬁﬁl> ;

ﬂl?> (2.28a)

ﬁﬁ1> (2.28b)

in which the |BE) are called the Bloch sums. The above expansion of a crystal
wave function in bound atomic orbitals is called Linear Combination of Atomic
Orbitals (LCAO) and is the hallmark of the TB approximation. Notice that the
Bloch sums serve as basis functions, so that there is one basis function for each
(bound) atomic orbital 8 centered on the different atoms in the unit cell.

As there are infinitely many atomic orbitals, it would be convenient if a rea-
sonable approximation could be obtained by limiting the G-sum in Eq. (2.28a) to
a finite number of orbitals. To this end, assume for simplicity that the unit cell
consists of one atom only”, and consider the crystal Schrédinger equation

H|ak) = eq(k)|ak), (2.29)

in which the e,(k) are the energy bands.
Applying the atomic orbital |a0) <> 1 (7) from the left yields

<a6‘ HY + AV ‘aE> = eq(F) <a6

al?:'> : (2.30)
Using the fact that HY is a Hermitian operator, such that

<a6\ 1Y, |ak) = A <a6\a/;;> = o (ol

al?:'>, (2.31)

Eq. (2.30) yields
(ea(E) - ea> <a6‘aE> = <a6‘ AV ‘aE> , (2.32)

and, since (aﬁﬂﬂﬁﬁ = 0qg8, one obtains the following eigenvalue equations for
€o(k) and corresponding eigenvector components aq (k):

[cal) = calaa®) = [ea = €a®)] Y e (al|BE) as(F)
B, R £0
+ Y et <a6‘ Av‘ﬂﬁ1> ag(k) | Ya. (2.33)
B,Ry

"The obtained results can be generalized to unit cells containing an arbitrary number of
atoms.
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The TB approximation is based on the following two assumptions:

- The overlap (a6|ﬁﬁ1) between atomic orbitals placed on different atomic
sites is small, i.e. the atomic orbitals are well localized with respect to the
atomic spacing in the lattice.

- The product AV]a0) is small, i.e. the correction potential AV (7) is signif-
icant only at points ¥ where the atomic wave function v, (7) is negligible®.

Within the TB approximation, the right-hand side of Eq. (2.33) is small, and
aq (k) is consequently only significant, when €4 (k) — €q is small. This means that
the significantly contributing atomic orbitals are those whose energy levels are
within the same range as the energy bands of interest, and these are the orbitals
that should be included in the -sum in Eq. (2.28a). Furthermore, due to the
assumption of small overlaps, the Fj-sum in Eqgs. (2.28) will in practice be limited
to the neighbouring unit cells.

In some cases the atomic levels give rise to separate energy bands with an
s-level giving rise to an s-band, a p-level to a p-band, etc. In other cases, the
bands are coupled, such that so-called hybridized sp, sp? or sp® bands are formed
from an s-level and one, two or three of the degenerate p-levels in the same shell.
In case of such sp-mixing or sp-hybridization, which is prominent in Group IV
elements such as C and S% or in Group ITI-IV compounds such as GaAs, a TB
model must include atomic orbitals with both s- and p-symmetry. Notice that
in all TB models, the number of included atomic orbitals is proportional to the
number of atoms in the unit cell.

2.2.1 The Matrix Eigenvalue Problem

The eigenvalue equations in Eq. (2.33) correspond to the generalized matrix eigen-
value equation

(?I - ea(“)S*)) a(k) =0, (2.34)

where the eigenvector @ has components ag, and where

Hyy = Y eFhi <a6‘ﬁ1‘5é1>, (2.35a)
R

Say = Y e <a6‘5ﬁ1> (2.35b)
R

are the Hamilton and overlap matrix elements, respectively.

In the extreme case AV (7)o (7) = 0, Eq. (2.29) degenerates to the atomic Schrodinger
equation leading to atomic eigenfunctions for the crystal electrons and non-dispersive energy
bands e, (k) = €a.
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Eq. (2.34) can be orthogonalized:

pd - —
(H' - ea(k)I) d' (k) = 0, (2.36)
with ? being the identity matrix, and®
<> AR wd
H = Z'HZ, (2.37a)
i = 7a, (2.37b)

<>
where T denotes Hermitian conjugation, agd where the column vectors of Z con-
sist of the orthonormal eigenvectors of S divided by the square roots of the
corresponding eigenvalues:

S5 = sis o, 88 =0y, (2.384)
7z L s (2.38b)
= ...,ﬁsz,... ) .

with * denoting complex conjugation.

The matrix eigenvalue problem in Eq. (2.36) has a dimension given by the
number of included atomic orbitals in the unit cell, and its solution yields the
energy bands e,(k) and corresponding eigenvectors @ (k) with the number of
bands being equal to the number of included atomic orbitals, taking account of
possible degeneration.

2.2.2 Finite Molecule

In a finite molecule, the potential is not periodic, and the Bloch description is
consequently invalid. Therefore, the LCAO expansion in Eq. (2.28a) is replaced
by

ja) = agB), (2.39)
B

where the $-sum is over atomic orbitals |53).
The matrix eigenvalue problem of Eq. (2.36) corresponds to

(IH{’ . eﬁ) @ =0, (2.40)
with Egs. (2.37) still valid, and

H,; = <a ‘ﬁ‘ ﬁ>, (2.41a)

Ses = (alB). (2.41b)

The dimension of the matrix eigenvalue problem in Eq. (2.40) is equal to the
number of included atomic orbitals in the molecule.

9This orthogonalization corresponds to a change of basis from the non-orthogonal Bloch sums
from Eq. (2.28b) to orthogonal Léwdin states |vk) = >_; Zg,|Bk).
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Optical Susceptibility

Information about optical properties such as index of refraction, absorption, etc.
can be derived from the optical susceptibility tensor ¥, and the derivation of
optical properties thus typically amounts to calculating components of either the
optical susceptibility tensor or, alternatively, the dielectric tensor

#=e(T+9%), (3.1)

g
in which gg is the vacuum permittivity, and I is the identity matrix.
The index of refraction tensor 7 is related to € and ¥ through

ni; = Eij = v/eo (1 + xij)- (3.2)

In Sec. 3.1, the concept of optical susceptibility is presented as the intermediary
between an electric field and its induced polarization, while Secs. 3.2 and 3.3 deal
with the linear optical susceptibility and the electro-optic effect, respectively.

3.1 Optical Susceptibility

The polarization P induced by an electric field E is given by
t
Pmﬂ:mﬁf?mﬁmﬂﬂﬁﬂﬂw, (3.3)
— 00

where the response function ¥ (7, 7;¢,¢') describes the response of the system to
the electric fields existing at earlier times. The upper limit of the time integration
is thus due to causality.
In a local medium, the response in a point 7 is determined by the field in that
point. This corresponds to ¥(7,#;t,t') = X(7t,t')0( — 7) and thus to
t
ﬂﬁw:m/ S, ) B ¢)de (3.4)

— 00

17
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As the polarization is a macroscopic quantity, so is the response function. In a
macroscopically homogeneous medium, therefore, the response function is inde-
pendent of 7

t
B(t) = e / VB )t (3.5)

— 00
In a medium in equilibrium, the response function depends only on the time
difference 7 =t — t:

t
Bt = 60/ Q) B, )t

— 00

- /0 TRV B t—1)dr. (3.6)

Fourier transforming Eq. (3.6) from the time domain into the frequency domain,
one has

P(Fw) = 60/ / 7)E(F, t—1)e™ drdt

= 0/ Z‘”/ 7)1 d(t — 7)dr

= YW EF w) (3.7)

with
Qw) = /0 T ()T dr, (3.8)

The Fourier transformation thus converts the convolution in Eq. (3.6) to the
product in Eq. (3.7). Again, the lower limit of the integration in Eq. (3.8) is due
to causality.

For frequencies in the optical range, ¥ (w) is known as the optical suscepti-
bility. Note, that whereas the response function relates the real functions ﬁ(f’, t)
and E(F, t) and therefore is a real function itself, the optical susceptibility is a
complex function.

Expanding ]3(F, w) in a power series of the electric field, one has

P(Fw) = eozxi-;) () B (7, w)

+ €0 Z Z Xzyk W = Wm +wn)E (7" wm)Ek(T wn)
3.k (m,n)

+ €0 Z Z ijkl W = Wy +wn + W) Bj (7, wi) By (7, wy ) By (T, wo)
J>k,l (m,n,0)
+ oy, iajakal € {xayaz}a (39)
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in which Z ) means summing over m and n under the condition wy, +w, = w.

q- (3.9) thus serves as the definition of the linear optical susceptibility tensor
)?(1) as well as the higher-order optical susceptibility tensors ¥, ¥®), . ... Note
that optical susceptibility tensors of different order have different units.

Note also that in a medium with inversion symmetry, inverting the fields
(E — —FE) will physically lead to the inversion of the polarization. Inspection of
Eq. (3.9) thus shows that all even-order susceptibilities must be zero in inversion-
symmetrical media.

For small electric fields, the polarization is approximately proportional to the
electric field. This corresponds to the optical susceptibility in Eq. (3.7) being
independent of E or, equivalently, that § = ¥(). As the electric field grows
larger, the higher-order terms in Eq. (3.9) become an increasingly important
correction.

3.2 Linear Optical Susceptibility

In this section, an expression for the linear optical susceptibility is obtained by
deriving an expression for that part of the polarization which is linear in the
electric field.

3.2.1 Dipole Approximation

In the dipole approximation, the wavelength of a light wave is assumed to be
large compared with the extent of any atoms with which the light wave interacts.
This has the following consequences:

- Displaced atomic electrons can be treated as point dipoles over which the
electromagnetic field of the light wave is constant.

- Photon momentum can be disregarded.

3.2.2 The Electric Dipole Moment

In the dipole approximation, a classical, monochromatic, linearly polarized, elec-
tric light field can be written

E(t) = E(t)2 = E(w) cos(wt)e?'2
1 L L
- = i(w—iy)t —i(w+iv)t\ 3
2E(w) (e +e ) z, (3.10)

with 2 being a unit vector, and the so-called switch-on parameter v > 0 being
introduced partly in order to have

lim E(t) =0, (3.11)

t——o00
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and partly because v will be seen to correspond to a classical damping/broadening
parameter. The role of v as a damping parameter will be commented on in
Sec. 3.2.4.

The time-dependent Schrodinger equation for an electron interacting with the
electric field is given by

A . 0D (r,t
(Hg + H,) O(7, 1) = ih#, (3.12)
where the unperturbed Hamiltonian is given by
- h2v?
Hy=— V(7 3.13
0=+ V(). (313)

and where, in the dipole approximation, the interaction Hamiltonian is given by'

A~ —

H = —d-E(t)
= eE(t)z, (3.14)

in which e is the elementary charge, and

-

d=—er (3.15)

is the electric dipole moment operator.
In a periodic potential as described in Eq. (2.1), the unperturbed solutions to
Eq. (3.12) are the Bloch wave functions

U () = e “akly) () (3.16)

described in Sec. 2.1. As eigen functions of the Hermitian operator Hy, these
Bloch wave functions constitute a complete set in which the field perturbed wave
functions ® can be expanded:

q)(”?’ t) = Z balkl ’k’ t) (3173,)
a’,k:’
= 3 bp e vty (), (3.17b)

a k!

in which the k-sum runs over the values indicated in Eq. (2.19).
Inserting Eq. (3.17b) in Eq. (3.12), one has

S eB(t)2b, g (e itz ( mz ’k’ —wau;ftq/)a,,-c—,(F). (3.18)

l,kl / k/

'To include photon momentum, use H= ﬁo + I;TI — (P — e.A) in which ﬁ and /_f are

2m
the operators for the vector momentum and vector potential, respectively.
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Multiplying Eq. (3.18) from the left with U* .(7,1) = eiwaﬁtz/):E(F) and integrating
over all space, one obtains the following due to the orthonormality of the U_(,t):

0b =(t) -
. k » gt
ih—4= = —B(t) > b (e ek e o (3.19a)
a’,l_c"
’ waE,a’E’ - waE B wa’l_c" (3'19b)
g = [N OV L =g (319)
where dz P is the z-component of the electic dipole matrix element.

The solution to the differential equation in Eq. (3.19a) is

. t
: 4 R e A
b z(t) = lim baE(t’)+ﬁ/ooE(t’)§ b (t)e ak,aktdaﬁja,ﬁ,dt’. (3.20)

t'——o00 —~
al k'

Because of Eq. (3.11), the system was initially in some eigen state

— —iw  zt —
Ui (Tot) = e Teokorep o () (3.21)
of the unperturbed Hamiltonian, and therefore
t_l)ir_noo baﬁ(t) = 6‘1“06]_5130' (3.22)
An expansion of b_p(t) in powers of E(t) can be written
0 1 2
boie(8) = 02 (8) + b (t) + 62 (1) + - - (3.23)

with bi%) (t) proportional to the nth power of E(t).
Inserting Eqgs. (3.10), (3.22) and (3.23) in Eq. (3.20) and equating terms with
equal powers in E(t), one has

0
bR (t) = Buas O, (3.24a)
M, Ew) Ui g ), iwp i (@)
baE (t) =i oF dZE,aoEo e( k,aqko ) —i—e( k,agko ) dt
E i(waﬁ,a i —I—(w—i'y))t i(“’aié,a z —(w-l—i’y))t
_ BW) 4 e pe . (3.24b)

2h akaoko | w e e 4 (W= 1Y) Wk, — (W)

b2 (t) = - (3.24c)

For a weak electric field, b_;(t) can be assumed to depend linearly on E(t) corre-

sponding to vanishing higher-order terms b((j;) (1), b((;.) (t),....
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The electric dipole moment of a field-perturbed crystal electron is given by

plt) = / o*(7,t) d ®(7,t)dF

- Z bZ’E’ (t)baE(t)elwalﬁl’agtdalfc'/’afc' (3253)
a,a’,E,E’
; @qu,a;; = / Wt (F) d 1 (7)dF, (3.25b)

where Eq. (3.17a) has been used.
Expanding p(t) in powers of E(t) and using Egs. (3.24) to equate terms of
equal power, one obtains

-

701 =d (3.26a)

agko,aoko’

F(w eiwtert e Wyt -
ﬁ(l)(t) = Q(fi) Z[ s+ (w— ) + oo — (w i) dzE aoﬁodaoﬁo,aﬁ
a E wak,aoko w vy wak,aoko w vy ’
+ cec., (3.26b)

) = - (3.26¢)

where c.c. denotes the complex conjugate of the preceding terms.

Eq. (3.26a) is the permanent electric dipole moment of an electron in the un-
perturbed state \I!ao Fo? whereas Eq. (3.26b) is the first-order field-induced electric
dipole moment.

Writing 5! in the same form as Eq. (3.10):

1 i(w—i —i(w+i
@) = §ﬁ<1>(w) (ez«u QL (+7)t)

= %ﬁ(l)(w)e*mew + c.c., (3.27)

comparison with Eq. (3.26b) yields

- —

2 o 4 z - -
_,(1)( ) E(w) Z daE,aoEonOkO:ak daoEo,aEdak:aokO

b Wk aghy — (W) Woggor, + (@ +17)

(3.28)

)

3.2.3 Linear Optical Susceptibility

Since the polarization is the total electric dipole moment per volume V', combining
Egs. (3.9) and (3.10) one has

(1)
Xzz (w)
(W) = eVEW) | X\ (w) |- (3.29)

XY (w)
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The linear optical susceptibility contribution Xf;l) from the above treated crystal
electron is thus found by comparison of Egs. (3.28) and (3.29):

i J J i

d . .d. . d . d.
e(1) 1 aoko,ak ak,apko aoko,ak ak,apko
c (W) = 070 + : - , (3.30
Xij (@) eoV zk: hw o o — (Aw +ihy) — hw g e+ (hw + ihy) (3:30)
a,

where V' is the volume of the crystal, and where the first and second terms are
called the resonant and anti-resonant contributions, respectively.

In an independent electron picture (see Sec. 4.6), the total linear optical sus-
ceptibility in a semiconductor is found by summing the one-electron susceptibility
contribution in Eq. (3.30) over all occupied valence band states \IIVEO and letting

the a, k-sum run over all unoccupied conduction band states? c, k:

9 L doood

(1) . vk,ck' ck'wvk vk,ck" ck'wvk

X (W) =— + : , (3.31)
ij eV ch;;:“ hwck, — (hw + ihry) hwcﬁ,’vl—é + (hw + ihy)

where the factor of 2 has been included because of spin degeneracy?.
As photon momentum is disregarded in the dipole approximation, conserva-
tion of momentum requires k = £’, and Eq. (3.31) thus reduces to

- - - -

2 di (K)dly (k di,
eV | Eey(k) — o cv(k) +hQ
, Boy(B) = Bo() — Bo(k) = hwg (3.32¢)
. Q=w+in. (3.32d)

and if the electric dipole matrix elements are real (d, = d.,), Eq. (3.32a) can be
simplified

(1) 0 By (k)
G = ST b0 ED

v,c,k

2Strictly speaking, all valence band states are only occupied and all conduction band states
only unoccupied at a temperature of absolute zero. However, even at room temperature, the
deviation from this picture will be insignificant in any semiconductor.

3Between every two spatial states ¥ and ¥z, spin up-spin up and spin down-spin-down
transitions can occur. Spin flip transitions spin up-spin down or spin down-spin up do not occur
in this context due to the orthogonality of the spin up- and spin-down states. Generalizing
Eq. (3.25b) to include spin states o, one would have J;,,;,o,,a,;o = [V (ﬁJwaE(ﬁdF Opor-
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3.2.4 Broadening

In the limit v — 0, the spectrum in Eq. (3.33) is seen to contain singularities oc-
curring when the photon energy hw exactly matches the energy difference ECV(E)
between an occupied and an unoccupied state. This infinitely sharp resonance
condition is unphysical for a number of reasons. First of all, the energy levels are
not infinitely sharp but subject to quantum mechanical uncertainties, and this
so-called lifetime broadening leads to a softening of the resonance condition cor-
responding to a spectral broadening of the susceptibility spectrum. In addition,
nature displays numerous different broadening mechanisms, such as e.g. Doppler
shifted energy levels, which all serve as the physical basis for the inclusion of the
empirical broadening parameter .

3.2.5 One-dimensional Crystal

According to Eq. (2.22), the allowed k-values in a one-dimensional (1D) crystal
are equally spaced:

2

=
Nyl

, ne{0,1,..., Nye—1}. (3.34)

In a macroscopic 1D crystal, for which N, is very large and Ak = 27 /Nyl thus
very small, the allowed k-values constitute a quasi-continuous set, and the k-sum
in Eq. (3.33) can be written

Ak Nyl _ Nudd
Xk: = zk: = o %:Ak N /kdk. (3.35)

As L = Nyl is the length of the crystal, Eq. (3.33) takes the 1D form

(D)) = 2 P i ) di () — BB
GO =g X [ & gt a6

where A is the cross-sectional area of the crystal.

3.3 Electro-optic Effect

The electro-optic effect is the change in the optical properties, here described
through the optical susceptibility ¥, induced by a static (or very low-frequency)
electric field F.

In non-inversion-symmetrical media, the electro-optic effect will be domi-
nantly described by the second-order optical susceptibility ). As §¥® van-
ishes in inversion-symmetrical media (see the comment following Eq. (3.9)), £G)
is the dominant electro-optic susceptibility for inversion-symmetrical media. In

(2) (3)

any case, the components y;, ik and x; ki are known as the electro-optic functions.
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3.3.1 Pockels Effect

That the electro-optic effect is described by {2 corresponds to the change in the
optical susceptibility depending linearly on the static electric field*:

PFw) ~ eoXW(w)E(F w)+ e ¥ P (w)E (7 w)F(F)
= &0 (YV() + X @) F()) B w
i3
V(Fw) ~ §O(w)+ ¥ (w)F(7), (3.37)

in which ¥(7,w) depends on 7, as the in general spatially variant static electric
field F'(7) breaks the assumed intrinsic homogeneity of the medium.
This linear electro-optic effect is also known as the Pockels effect.

3.3.2 Kerr Effect

An electro-optic effect described by §¥®) corresponds to a quadratic dependence
on the static electric field:

X (7 w) = XD (w) + X () F () F(7). (3.38)

The quadratic electro-optic effect is also known as the Kerr effect.

“The order of E(7,w) and F(7) can be interchanged according to the intrinsic permutation

symmetry of the susceptibility: ng,l(w =w+0) = XEQ (w=0+w).
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Chapter 4

Density Functional Theory

Since the formulation of quantum mechanics in the mid 1920ies by Heisen-
berg [33], Schrodinger [34] and others, there have existed two competing ways
of describing an electron system: By electron density p(7) or by many-electron
wave function ®(7, 7, ..., 7y).

After a description of the Born-Oppenheimer approximation, which will be
applied throughout this work, this chapter gives a historical introduction to the
evolution of Density Functional Theory (DFT) as an alternative to the wave
function based Hartree and Hartree-Fock models.

4.1 The Born-Oppenheimer Approximation

Due to the large difference between nuclear and electron masses, it is a widespread
assumption within condensed matter physics that nuclear and electron dynamics
occur on different time scales. This assumption of decoupled nuclear and electron
dynamics, which is known as the Born-Oppenheimer (BO) approximation [35],
has the following consequences:

- When describing electron dynamics, the nuclei can be treated as fixed, i.e.
the positions of the nuclei enter the calculations as parameters rather than
variables.

- For all processes occuring on the time scale of nuclear dynamics, the elec-
trons can be assumed to be in the ground state.

27
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4.2 Thomas-Fermi Model

In terms of a normalized many-electron wave function ®(7, 75, ...,7y), the elec-
tron density is given by

N

> (@fa(—7)| @) (4.1)

=1

N

. Lo L2 . .

= E :/"'/“I’(Th---ﬂ“i1,7“77“i+1a---a7“1v)‘ dry -~ dry 1driyy - - dry,
1=1 e —
NZ1

p(7)

where N is the number of electrons.
Note that

/p(f’)df’: N. (4.2)
If ® describes a single electron, Eq. (4.1) reduces to

p(7) = |B(7)]". (43)

The idea of discarding the many-electron wave function, which depends on 3N
parameters, in favour of the electron density, which depends on just 3 parameters,
was first presented by Thomas [36] and Fermi [37] (TF) in 1927. In the TF-
model, the electrons are treated as particles forming an electron gas, and each
electron is assumed to move independently of other electrons in the Coulomb
field created by the fixed nuclei and the averaged electron charge density. Such
an independent-electron model is a significant simplification from the true picture
of pairwise electron-electron interaction. In reality, of course, electrons do not
move independently of one another, but have to correlate their movements in
accordance with their mutual Coulomb repulsion. Indeed, the TF-model was
not very successful when it came to quantitative predictions in neither atomic,
molecular nor solid-state physics and was therefore viewed as an oversimplified
model without quantitative significance.

4.3 Hartree Model

A more successful approach was the wave function based Hartree-Fock (HF)
model that was based on the Hartree model put forward by Hartree [38] in 1928
and a few years later improved by Fock [39], Slater [40], and others.

In the BO approximation, the electron Hamiltonian is given by

H = T + Vext + Uee, (4-4)
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where T, Vext and Use are the operators for the kinetic energy of the electrons,
the external potential (e.g. the repulsion potential of the nuclei) and the electron-
electron interaction, respectively.

In atomic units, distance is measured in units of Bohr radii az = 0.529A,
charge is measured in units of elementary charge e = 1.602 - 10 '2C, and energy
is measured in units of Hartrees H (= 2 Rydbergs):

K2 e2

lH = =
mea?  4megag

= 27.2¢V. (4.5)

In the following, the external potential is limited to an electrostatic nuclear po-
tential. In this case, one has in atomic units

N
. 1 0?2 0?2 0?2
T = i v 2 2 2 _ 4 24— 4.
; 2 VZ ’ vl 8x12 ayZQ 8222 I ( 63’)
N NnUC Z
Voo = S Vi) = (— 3 7) (460
i=1 a=1 ‘” - Ra‘

Yoo
Uee = Zﬁ (4.6(3)

where Ny, is the number of nuclei, and where Z, and ﬁa is the charge and the
coordinate vector of the ath nucleus, respectively.
Inserting Egs. (4.6) in Eq. (4.4), one has

N
H = Y Hi+Ue (4.7a)
i=1
N 1 N
, Hi:—§V?+‘/;, (4.7b)

where H; is an operator concerning the ¢th electron only, and where the electron-
electron interaction Uge couples the movement of the electrons.
Had it not been for this coupling, one could have written

N
H=> H (4.8)
i=1

for some one-electron Hamiltonian f[l’ For such a separable Hamiltonian, the
solution to the many-electron Schrodinger equation
f[@(f’l, e TN STy ey Sy) = EO(7F, .0 PN 81,0y SN), (4.9)

in which the s; are the spin parameters, would be factorizable:

B(F1, .oy Tn3 8150y 8n) = G1(T1)o1(s1) - - P (TFy)on(sn), (4.10)
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where the o; are the spin wave functions corresponding to either spin up or
spin down, and where ¢; is that orthonormalized' solution to the one-electron
Schrodinger equation

ﬁé&:¢0&(F0¢) = E(Ixﬁba(Fa) ) <¢o¢‘¢ﬁ> = 50467 (4'11)

that characterizes the ith electron?. The spatial one-electron wave functions

¢;(7;) are known as orbitals, while the full one-electron wave functions ¢;(7;)o;(s;)
are known as spin orbitals.

In the 1920ies, Eq. (4.9) was in practice insoluble for all but the smallest
systems, and Hartree therefore adopted an independent-electron approximation
in which the sth electron interacts with the charge density of the remaining elec-
trons.

Inserting Eq. (4.10) in Eq. (4.1), one obtains the following density of inde-
pendent electrons:

N
GEDMIGIE (4.12)
i=1

Hartree’s independent-electron approximation thus corresponds to

N
Uee = Zﬁz (4.13a)
=1
N
non 1
; Ui(m):/2|¢j(ﬁ)|2mdﬁ, (4.13b)
j=1 ?
J#i

where U; is known as the Hartree potential.
Within this independent-electron approximation, the desirable form in Eq. (4.8)
is obtained with

N N N 1 N N

In Eq. (4.11), both Ej and Ej contain the Coulomb interaction between the ith
and the jth electrons. Therefore, correcting for double counting of electron-
electron interactions, the Hartree model has the following for the total energy in
a system of N electrons:

N N
E=) E - T (4.15)
i=1

1<j

!For a Hermitian operator, eigenfunctions corresponding to different eigenvalues are orthog-
onal, and degenerate eigenfunctions can be orthogonalized, e.g. by applying the Gram-Schmidt
algorithm.

*Notice the somewhat confusing notation here: ¢, is the ath solution to Eq. (4.11) whereas
¢i is that solution which characterizes the ith electron. Since a spatial orbital can hold two
electrons (with opposite spin), it it possible to have ¢; = ¢;, whereas ¢o # ¢g unless a = .
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where the Coulomb integral
. 1 .
Ty = [P Pt

7]
- <¢Z(F) <¢J(7ﬂ) |7:‘_1f7| ¢Z(F)>‘¢](’FI)> (4.16)

represents the Coulomb interaction between the ith and jth electrons.

Within the Hartree model, a many-electron problem is solved iteratively in
the following manner: The starting point is a reasonable choice of approximate
orbitals ¢EO) (e.g. solutions to the one-electron problem of the hydrogen atom).
Inserting these in Eq. (4.13b), one obtains an initial approximation to the Hartree

potential U'Z-(O) which by insertion in Eq. (4.14) leads to new solutions ¢51) to
Eq. (4.11). This algorithm is continued until the ¢; are sufficiently converged
to satisfy the need for accuracy. The converged ¢; are the Hartree orbitals of
Eq. (4.10) which are said to have been found self-consistently since, inserted in
the Schrodinger equation, the Hartree potential yields the same orbitals as have
been used to construct it. Accordingly, Eqgs. (4.11), (4.12) and (4.13b) are known
as the self-consistent Hartree equations.

4.4 Hartree-Fock Model

The Hartree wave function in Eq. (4.10) violates the Pauli principle for fermions
which states that the many-electron wave function has to be anti-symmetric with
respect to the exchange of any two parameter indices. Examplified by a 3-electron
system, this amounts to

Q(F13F23F3;81332333) = _Q(F23F13F3;82381333) = Q(F377?13F2;33331382)' (417)

In 1930, Fock [39] and Slater [40] independently of one another proposed a cor-
rection to this deficiency by replacing Eq. (4.10) with an anti-symmetric sum of
all the products of one-electron orbitals that can be achieved by index exchange.
This sum is conveniently written as a Slater determinant:

(7Y, Ty S1,eySy) =
¢1(1)oi(s1)  P2(m1)o2(s1) b (T1)on(s1)
$1(r2)o1(s2)  P2(ma)o2(s2) b (T2)on (52)

P(P)o1(sn) $aF)on(sn) - bu(Fn)on(sx)

in which 1/v/N! is a normalization factor.
As exchange of parameter indices is seen to correspond to row exchange,
the Slater determinant implies an a priori satisfaction of the Pauli principle in



32 Part II. Theoretical Foundation

Eq. (4.17). Specifically, one has ® = 0 if ¢; = ¢; and 0; = o for any two indices
7 and 7. The Pauli principle, or the Pauli exclusion principle, thus states that two
fermions cannot occupy the same quantum state. The fact that ¢; = ¢; implies
0; # o} corresponds to the well-known statement that any spatial electron state
can contain two electrons with opposite spin.

4.4.1 Exchange Energy

Consider, for simplicity, a system of two electrons with

‘1’(?1,772;81,82):% [¢1(771)01(81)@(7?2)02(32) — ¢1(72)o1(s2) P2 (71)o2(s1)| (4.19)

according to Eq. (4.18).

If the two electrons have parallel spin (o7 = 09), the total spin has three
possible projections on an arbitrary axis. If the two electrons have opposite spin
(01 # 03), the total spin is zero, leaving only one possible projection®. With
these two cases, one therefore associates the terms triplet state and singlet state,
respectively.

In the following, ®4, | is short for the state ®(r,7%;s1,s2) with o1 = 1 and
o9 = |. Furthermore, |11) and |]2) denote electron 1 in a spin up state and
electron 2 in a spin down state, respectively.

Assuming the energy, and thus the Hamilton operator, to be independent
of spin, and using the orthonormality of the spin states and the fact that H is
symmetrical with respect to the parameter index exchange 1 <> 2 %, the energy
of a singlet state is given by

Bs = <¢m ‘H‘ q)m>

— 3 (e |(r
= (a1 (1
+ ()| (12
= (01| (12 |{52(70)
= () (827 |B| 61(7))| (7)) (4.20)

3The spin angular momentum vector of each of the two electrons has the magnitude

S1 =52 =4/ (%) (% + 1) h= @h. In the case of parallel spin, the total spin angular momen-
tum vector has the magnitude S = /(1)(1 + 1) h = /2h with the three possible projections
S. € {—h,0,h}. In the case of opposite spin, S = 1/(0)(0 + 1) & = 0 with S. = 0 being the only
possible projection.

“Since the two electrons are indistinguishable, all physical entities must be invariant under
such an index exchange. Note in that connection that a wave function does not itself represent
a physically measurable entity.
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Analogously, the energy of a triplet state is given by
B = (04 ‘H‘ Dir)
= () [(627) |H| 617)| (7))
= (#1609 [(#2%) | ] 6172 ) | 42(70) ) (4:21)

Comparison of Egs. (4.20) and (4.21) shows that the triplet energy is smaller
than the singlet energy by an amount

Box = (n(71) | (#2(7%) [11] 1(72)) | (7)) (4.22)

This energy is known as the exchange energy. The term has its origin in the
exchange of indices between the different terms in the Slater determinant wave
function.

That the triplet energy is smaller than the singlet energy can be understood
by the following argument: The linear combination between the indistinguishable
states @4 | and @ 4:

1
|@5) = ﬁ (@14 —21)

= S[16160) 1) 8 1) — [1(P2)) 112} 7)) L)
— [d1(71)) 1) |92(72)) [T2) + | ¢1(72)) [d2) |da(7 |T1>}
= S[1610) e + B 2| [0 1) — ) 1)) (223)

shows that singlet states can be written as the product of a symmetrical spatial
state and an anti-symmetrical spin state. Conversely, the three degenerate triplet
states

@7~ = (I)T t

- Wl DId2(7)) = [1(7)) [ 2(7))] 1) I12) (4.24)
|B7-=7") = ‘I’u
_ [\qbl DId2(72)) — (7)) |6a7))] 1) 12) (4.24)
- 1
‘@5270> = ﬁ(q)ﬁi—i_q)iﬁ)

[‘¢1(7"1)> [11) P2 (72)) o) — [@1(F2)) [T2) |da(71)) [41)
7)) ) [#2(72)) [12) = [¢1(72)) Had [ 62(7)) 1]
“le (7)) |p2(72)) — | P1(72)) | B2 (1) ] 111) b2} 4+ [1) [12)] (4.24c)

N = 4 N
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can be written as the product of an anti-symmetrical spatial state and a sym-
metrical spin state. The anti-symmetrical spatial state of the triplet approaches
zero as 71 approaches 7. The small propability of finding the two electrons
close together corresponds to a repelling force between the two triplet state elec-
trons. This repelling force is called the exchange force and has nothing to do with
Coulomb repulsion, but is a consequence of the coupling between the spin and
space variables introduced by the required anti-symmetry of the total wave func-
tion in Eq. (4.18). Inversely, the probability density of the symmetrical spatial
state of the singlet approaches twice the average value when 7 approaches 75,
corresponding to an attractive exchange force between two singlet electrons. In
conclusion, as triplet electrons are farther apart than singlet electrons, the energy
of the triplet state is smaller than the energy of the corresponding singlet state.
As a consequence, Fey > 0.

4.4.2 The Hartree-Fock Energy

Inserting the non-separable Hamiltonian of Eq. (4.7a) in Eqs. (4.20) and (4.21),
for a system of 2 electrons one obtains

B = {ne|( ) ZH +Z = )}
2 2
= ZEi+ZJij = Ey + B + Ji2, (4.25)
i=1 1<j

with F; being the solution to
Hi|pi(7)) = Ei|¢i(7)). (4.26)

Analogously
(o S s
z<] ¢
Y R
1<)
2
ZEi+ZJiJ_ZKij = E1 + Ex + Ji2 — K2, (4.27)
=1 i<j i<j
where
Ky = / 70065 5) o O (T
1

Bi(7) )| (7)) (4:28)
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is called the exchange integral.
Generalizing Eqgs. (4.25) and (4.27) to a system of N electrons, one obtains
the following expression for the Hartree-Fock energy:

N
E = ZE +ZJ” > b0i0, Kijy (4.29)

1<j 1<j

where d5,5; is the Kronecker delta for the spin. Since J;; = Kj;, Eq. (4.29) can
also be written

N 1 N 1 N
E= Z_Zl Ei+ 3 %: Jii =5 izjégi[,j Kij, (4.30)

in which the self-interaction terms .J; — K;; cancel out®.

4.4.3 The Hartree-Fock Orbitals

The HF ground state orbitals can be found by applying the variational theorem
(see App. A), but as Eq. (4.30) is based on an assumption of normalized orbitals,
insertion in Eq. (A.3) will not lead to minimization, as arbitrarily small values of
FE could be obtained by choosing unnormalized orbitals. Therefore, the Lagrange
method of undetermined multipliers is applied:

5<E—i>\i (/|¢i(F)|2dF—1>> =0, (4.31)
=1

in which the \; are called Lagrange multipliers. Eq. (4.31) is seen to be identical
to Eq. (A.3) when the normalization condition is satisfied.
Insertion of Eq. (4.30) shows that Eq. (4.31) is satisfied for

N N
1 1 .
Ei + 5 El Jij - 5 El 6ai0j Kij </|¢Z | dr — 1) =0 , V. (4.32)

For 0¢;(7) denoting a small change in ¢;(7), variation of F; with respect to ¢;
yields

5(B) = (/gw 7)gi(F)d )

_ /(ﬁwﬁ+aﬁwﬂﬂxm(@(>+a@ )i — 6 </¢ZF F@fja

o$/WHMmmmﬁ4ﬂﬁmmm@mﬁ
2 [ 86:(7) B () . (4.33)

5Jii = Ki; describes the Coulomb interaction of an electron with itself, and such self-
interaction is not believed to occur in nature.
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where it has been used that the ¢; may be chosen such that [d¢} H; ¢; d7 is real.
Variation of J;; yields

drdr’

o [[ a0 )

|7 — |

= [[aeras @)L

‘E_L \34

rd
|77 — 7

. e difd
+ [ [ 1@ 0036)0,) £

drdr’

L&

T / 81 (1) 4i (7067 (7) 5 (7)

A

3L

+ / 55 (F) s (P 3 (7 ) b5 ()

drd
= / 6¢z ’F(ﬁl )¢]( ) -»’r T—»,a

where the invariance to the exchange 7 <+ 7 has been used, and variation of Kj;
yields

(//@ P ()65 () () o )—4/ 505 (7)) 5 (7 )¢J(7r)|d o

|7 — 7

N
(4.35)

Furthermore,

o [isopar 1) =2 [ 1o rar (4.36)

Insertion of Eqs. (4.33)-(4.36) in Eq. (4.32) yields

. al A
/5@‘(77) [Hi(F)@(F) +Z/|¢j(7ﬂ)|2m ¢i(7) (4.37)

al d
Z%@/% )i () 7 b3 (7) —Aigbi(v*)] di =0 , Vi.
J=

|7

Satisfying Eq. (4.37) for arbitrary d¢; () amounts to
¢ (7
( + Z/| ]_. z(_j -

Since the two terms in the j-sums cancel for i = j, Eq. (4.38) can be written

(4.38)

G -
(i + 0:) () zawj / o "0 = AR v, (@0)
J#l
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with U; being the Hartree potential of Eq. (4.13b). In this form, Eq. (4.39)
constitute the Hartree-Fock equations. The normalized solutions ¢; are the HF
orbitals which substituted in the Slater determinant in Eq. (4.18) yield the HF
many-electron wave function.

Comparison of Eq. (4.39) with Eqgs. (4.11) and (4.14) shows that the Hartree-
Fock model reduces to the Hartree model if electron exchange is disregarded. As
it includes electron exchange and satisfies the Pauli principle, the Slater determi-
nant wave function used in the HF model is a significant improvement compared
to the simple product wave function used in the Hartree model. However, the
coupled integro-differential HF equations in Eq. (4.39) are impractical for many
applications. In addition, the HF model still describes electron-electron interac-
tion as happening between an electron and the averaged charge density of the
remaining electrons while in fact electrons undergo pairwise correlation of move-
ments due to their mutual Coulomb repulsion. To include this dynamic correla-
tion, one would have to replace the single-determinant wave function in Eq. (4.18)
with a linear combination of determinants leading to a multi-determinant wave
function, and this would complicate matters even more. For this reason, histor-
ically many people tried to develop further the Thomas-Fermi concept of using
electron density instead of wave functions when describing electron systems. For
many years, this electron density approach was based on intuition rather than
rigorous proof. This changed in 1964 when Hohenberg and Kohn (HK) [41] pre-
sented their two famous theorems which were to form the basic framework of the
Density Functional Theory (DFT).

4.5 Hohenberg-Kohn Theorems

4.5.1 1st Hohenberg-Kohn Theorem (HK1)

In a system described by the Hamiltonian in Eq. (4.4), there is a one-to-one
correspondence between the external potential Ve and the ground state electron
density po(7).5

That Vext determines py(7) is rather obvious, as knowledge of Vext along with
the number of electrons N determines the Hamiltonian H which through the
Schrodinger equation determines the ground state wave function ®g(7,...,7y)
and thus the electron density py(7) through Eq. (4.1).

It is the reverse statement that it interesting. If pg, besides determining N
through Eq. (4.2), also determines Vext, then, according to the above statement,
po(7) also determines @y and thus everything there is to know about the ground

SNote that Vexs is not restricted to a Coulomb potential as the one in Eq. (4.6b). Also, Vxt
is only determined up to a trivial additive constant.
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state”. In other words, if Vg is uniquely determined from pgy, two different
configurations cannot yield the same electron density, and the electron density
will be sufficient for a unique description of the system. HK1 thus establishes the
rigourousness of DFT.

For a non-degenerate ground state, the contradiction proof of HK1 is ex-
tremely simple: Assume the existence of two external potentials Vi and Véxt
that differ by more than a constant but correspond to the same ground state
electron den31ty po(7). Then Vext and V «« would correspond to two different
Hamiltonians H and H' with two different normalized ground state wave func-

tions @y and ®j. According to Eq. (A.1), and using Eq. (4.1), this would imply

) = (25|
\<1>’ =Byt [on(r) | Vess (1) — Vi (7] 7. (1.400)
0) < <'1)0 1

= By — (@9 (Vext — Vi) [P0) = Fo — /pg(F) [Vext (7) — VI (7 )]dr (4.40Db)

By = @o\H\‘P@ < (@ ) + (@] (H — H')| @)
(Ve

= B+ (P

Ey = <<I>6 1

) = (@0 H|@0) = (@o|(H — H')|9)

Adding Eqs. (4.40a) and (4.40b), one obtains
Ey + E(l) < FEy + E(I), (4.41)

and the theorem is proved by contradiction. The theorem can be generalized to
degenerate ground states.

4.5.2 2nd Hohenberg-Kohn Theorem (HK2)

The ground state electron density po(7) can be found by applying the variational
theorem to the energy functional’ E[p], i.e.

Elp] < Elpo] = Eo

for any electron density that corresponds to some physical Ve and satisfies

p(7) >0 and [p(F)dF= N 0.

HK2 is actually a corollary of HK1, as any p(7) according to HK1 corresponds
to a wave function ® which satisfies Eq. (A.1). Note that, in principle, the HK
theorems only apply to the ground state electron density.

"The interpretation of the wave function as containing all information about a system of
particles was first put forward by Max Born in 1928.

8Functionals are described in App. B.

9This restriction is known as Izzxt—representability.

Y0This restriction is known as N-representability.
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As will be elaborated in the following, HK2 establishes a prescription for
finding the ground state electron density py of an electron system if the energy
functional E[p] is known.

Since, according to HK1, po(7) determines all ground state properties includ-
ing the electron kinetic energy and the electron-electron repulsion, one can write

Elp] = Tlp] + Vext[p] + Uee[p]
_ / Vo (F) p(F) dF + F™[g], (4.422)
Veald] = / w(7) p(7) dF (4.42)
F'[p] = T[p]+Uee[] (4.42c)

where the HK functional F"™ [p] is universal in the sense that its form is indepen-
dent of the system under consideration.
Using Eq. (B.2), a Lagrange variation of E[p] with respect to p yields

5(E[p]—u(/p(F)dF—N)> =
6(/Vext( F) p(7) dFf + F™[p ]) — 5(/p(F)dF> =

/ — 1) 6p(7) dit+ SF™ [p] =
( 5FH:[ ol ,u) dp(F) dF =0, (4.43)

A

which has to be satisfied for all 6p and thus corresponds to'!

N 1)
op

Vet (7) + = U, (4.44)

in which g has a physical interpretation as the chemical potential.

Insertion of an explicit expression for F"¢[p] in Eq. (4.44) would lead to the
ground state electron density py of any system of electrons moving in an external
potential Vext. The problem is, that such an expression has proved more than
hard to come by. In fact, to this day the exact form of the energy functional is still
not known. The HK theorems contain a prescription for finding the ground state
electron density if the energy functional is known, but contain no prescription
for constructing this energy functional. Isolating the classical Coulomb repulsion

"Eq. (4.44) can lead to solutions that are other kinds of extrema than minima. In that case,
the ground state electron density po is easily identified as the solution corresponding to the
lowest energy.
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part in the electron-electron interaction functional U [p]:

Ueelp) = Ualp] + (Ueelp] - Ualp]) (4.45a)
,» Ualpl = % / / % dr di’, (4.45b)

the problem can be narrowed down to constructing a functional for the kinetic en-
ergy T'[p] and a functional for the non-classical part Uee[p] — Udl[p] of the electron-
electron interaction. Notice that Uee[p] — Uq[p] also includes the correction for
the self-interaction introduced in Eq. (4.45b).

4.5.3 The Thomas-Fermi and Thomas-Fermi-Dirac Models

The TF model briefly described in Sec. 4.2 constitutes the simplest way of ob-
taining approximate expressions for T[p] and Uge[p] — Uel[p]. In the TF functional
for electron-electron interaction, all non-classical terms are disregarded:

Uee [p] = Ual[p)- (4.46)

The TF functional for kinetic energy T [p] is the functional for independent
electrons characterized by the free-electron wave functions

() = e (4.47)

-

where k is the wave vector, and where V is the volume in which the electron
moves. Using the three-dimensional equivalent of Eq. (3.35), one obtains

T [p] = 2§/V¢,§(F)<—%V2)¢E(f) dr

occ

1 1 . 1
:—/Zk2dfz—3// k2dde:—2// ktdk di
Vv - 87 Jv J Ik <ke 2% Jv ik <k

1

_ /V KR di | ke(P) = /3020(7),

1072

= %& 9rr / s (7) dif ~ 2.871 / p3 (7) dF, (4.48)
1% 1%

where kg is the Fermi wave number which has the property that, at absolute
zero'?, all occupied modes are characterized by |k| < kg.
The more reasonable Thomas-Fermi-Dirac (TFD) model [42] from 1930 has

T[p] = T [p], (4.49)

12The correction at room temperature is negligible.
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but adds to U[p] the exchange energy of a uniform electron gas.

For many applications, the results obtained with TF, TFD or subsequent im-
provements have been far from encouraging. Far more successful was the method
presented in 1965 by Kohn and Sham [43]. Since then, the KS method has been
the main contributor when it comes to turning DFT into a practical tool for
rigourous calculations.

4.6 Kohn-Sham Method

Instead of facing the difficulties of treating a system of mutually interacting elec-
trons head on, the idea of Kohn and Sham (KS) is instead to treat an auxilliary
electron system in which there is no electron-electron interaction, but in which
the electron density is nonetheless exactly the same as in the true system. So the
prominent contribution of KS was to construct an effective one-electron potential
Vesr for which the eigenfunctions of

N 1 N
= Y (-3 vat)) = S A
3 3
) 1 3
L HS = V4 Vi) (4.50

correspond to the electron density of the true system:

HS1i) = el (4.51a)

N
p(® = Y ni i@, (4.51b)
=1

in which n; is the occupation number of the i¢th orbital.

In this independent-electron picture, the many-electron wave function is a
Slater determinant as the one in Eq. (4.18). Notice that the KS method consti-
tutes a sort of compromise between wave function based methods and strict DFT
which is based on electron densities alone.

Instead of writing the energy functional as in Eq. (4.42a), the KS method has

Elp] = To[p] + Vext[o] + Ualp] + Exc[p], (4.52)

where the exchange-correlation functional

Bylp] = (Tlo) = Tolp]) + (Ueelo] = Uatlp]) (4.53)

contains the necessary corrections to the kinetic energy and the non-classical
part of the electron-electron interaction. The latter consists of electron exchange,
electron correlation, which is disregarded in the HF model, and the correction for
the self-interaction associated with Ug. The functionals T'[p] and Uee[p] — Udl[p],
which are hard to come by, are thus concentrated in Ey.[p].
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4.6.1 Effective Potential
In a system with independent electrons, one would have

Elp] = Tolp] + Verilo]-

(4.54)

Comparison of Egs. (4.52) and (4.54) thus yields
V;ext[ ] + Ucl[ ] + EXC P]

—» —v
= [Vea) oty a4 5 [ [ 2 j;ﬂg“' 7+ Blpl, (4.55)

where Eqs. (4.42b) and (4.45b) have been used.
Eq. (4.55) defines the functional for the effective potential Vog[p]. The effective

potential itself Veg(F) is found by performing on Eq. (4.54) a Lagrange variation
similar to the one performed in Eqs. (4.43) and (4.44). This leads to

Vest[p]

dTp]p] 5Ve1‘f[ ]
= L. 4.
5 5 (4.56)
Comparison with Eq. (4.44), which written in full corresponds to
oT oU, -
ol Weldd g, () = (4.57)
op op
shows that these two equations for p(7) are identical for
7% oU, o
Tl 7l A T Ly o), (4.59)

It can thus be concluded that independent electrons, for which Ue, = 0, moving
“external” potential given by

in an effectice,
- oV
are characterized by the same chemical potential 4 and the same electron density

p(7) as the electrons moving in the true system.
Inserting Eq. (4.55) in Eq. (4.59), one obtains

‘Z&ﬁ(F) = f/ext (’F) + AH (F) + VXC (F)a (4603’)
, V() = ;Y;,' dr, (4.60b)
, Vie(P) = 5E§;[p | (4.60c)

where the factor of 1 in the Hartree energy disappears because the derivation

leading to the Hartree potential Vi yields two terms.
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4.6.2 Energy Functional
As for an energy expression, according to Eqs. (4.50), (4.51a) and (4.60a), one

has
zi:nz' € = zz:nz <¢i ¢i>
= Tolpl + [ Vea) p(s) d (4.61)
Tolp] +/ oxt () p(F) dF +// :: pgT drdi +/VXC(F) p(7) dF.

Inserting in Eq. (4.54) Tplp] from Eq. (4.61) and Veglp] from Eq. (4.55), one
obtains!?:

o7 p(7) . o
S et // qu(ﬂ drd7:"+Exc[p]—/ch(7") o(7) dF. (4.62)

Egs. (4.51), (4.60a) and (4.62) are known as the Kohn-Sham equations.

Eq. (4.62) shows that the one-electron KS energies ¢; require a substantial
correction in order to yield the correct energy. In fact, besides yielding the
correct electron density, the KS orbitals 1; are stricly speaking an unphysical
abstraction, although an abstraction that in a highly efficient manner facilitates
the treatment of large electron systems. The band structure in a periodic crystal
is a plot of the ¢;, and the sum over ¢; in Eq. (4.62) is therefore known as the
electron band structure energy:

Ey = an €;- (4.63)

1 o5 o
- §Vz2 + Vest(75)

From a comparison of Eq. (4.51a) with the Hartree-Fock equations in Eq. (4.39)
it is obvious that the KS equation is much easier to solve. The exchange term
in the HF equations introduces a coupling that makes the HF equations different
for different electrons. So besides being simpler, the KS equation is the same
for all electrons. In addition, the KS method is in principle exact, whereas HF
disregards electron correlation. In practice, it is not necessarily a question of HF
or DFT. So-called hybrid DFT is based on functionals that are a mixture of HF
exchange and DFT exchange-correlation.

As seen in connection with the Hartree model, the KS solution to a many-
electron problem can be found by self-consistency in the following manner: A
reasonable guess for the effective potential Ve(f[f]) leads through Eqgs. (4.51) to a first

approximation for the KS orbitals ngo) and subsequently to a first approximation

for the electron density p(®. Using p(® in Eqs. (4.60) leads to an improved

effective potential V( ),

"*Notice that, as opposed to e.g. Coulombic potentials, Exc[p] # [Vic(F) p(F) dF.
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4.6.3 Approximations to F,,

The attainment of an exact solution to the KS equations requires an exact ex-
pression for the exchange-correlation functional Ey.[p]. A such has still to be
achieved, and the challenge within the KS approach can thus be boiled down to
finding that approximation of Ey.[p] which is most appropriate for the problem
at hand.

Local Density Approximation

The simplest of these approximations is the Local Density Approximation (LDA):

B[] = / exc (p(7) p(7) dr, (4.64)

in which ey (p(7)) is the exchange-correlation energy per electron in a uniform
electron gas of density p. Using Eq. (4.64) in Eq. (4.60c), one obtains

L OEA .  Oexe
Ve (7) = —5 L (p(7) + p(F)— () (4.65)
p P lp=p(

In general, LDA corresponds to the assumption that relations applicable to a
macroscopic, uniform electron system are valid on a local scale in a system with
varying electron density. This is a good approximation for slowly varying electron
densities. Eq. (4.48), by the way, is also obtained under LDA, since the relation
ke(7) = {/372p(7) is applied locally even though it is derived for a uniform
electron gas.

Local Spin Density Approximation

The Local Spin Density Approximation (LSDA) operates with seperate spin up
and spin down electron densities:

B prooi) = [ exelor(0: ) o) . (4.66)

which is necessary for a proper description of systems with unpaired electron
spin.

Generalized Gradient Approximation

LDA refined to include density gradients is called the Generalized Gradient Ap-
proximation (GGA):

Bl = [ £0(70,1V6(0]) o(7) . (4.67)
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where a proper choice of the function f can reduce the LDA-error by as much as
an order of magnitude.

For historical reasons, Fy.[p] is sometimes partioned into an exchange and a
correlation part:

Exelp] = Exlp] + Eelp). (4.68)

4.7 Ab initio, Empirical and Semi-empirical Methods

A calculation is said to be “ab initio” or “from first principles” if it is free of
any kind of parameters'*. Both DFT in the Kohn-Sham formulation as well as
the Hartree-Fock approach are examples of ab initio methods. To distinguish,
ab initio methods based on wave functions are sometimes termed traditional ab
initio.

There exist traditional ab initio methods which include the electron correla-
tion that was disregarded in the HF model. Propably one of the better known
among these is the MP2 (2nd order Mgller-Plesset) method. MP2, and other
methods like it, are very accurate but also computationally cumbersome for all
but the smallest systems.

At the other end of the scale of computational methods are the empirical
approaches which rely on simple, generic models based on parameters determined
through experiments!®. Empirical methods are computationally highly efficient,
but have limited accuracy.

Semi-empirical methods, in which the parameters used are mainly calculated,
serve as a compromise between ab initio and empirical approaches considering
both computational efficiency and reliability. An example of a semi-empirical
method is the Density Functional-based Tight-Binding approach presented in
Chap. 5.

Appendices

A The Variational Theorem

For any Hamiltonian H representing a physical system, the energy expectation
value Eg in any state |®) is greater than or equal to the ground state energy Ey
of the system:

(el (nfaf)

@R 2 @odgy (A1)

14The effective mass is an example of such a parameter.
5 Empeira means “through experience” in greek.
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and equality occurs if and only if ® = ®y.

This last statement in the variational theorem provides a prescription for
finding the ground state ® as the state in which the expectation value of the
energy is minimal.

The differential d Fg, in this case with respect to @, is defined as that part
of the difference E¢,s¢ — Ep which is linear in the small variation 6®. ILe. for
normalized ®:

Eors0 — Bo = <q> + 6D ‘H‘ o+ 5q>> _ <q> ‘H‘ <1>>

~ (o|n|so) + (s0|a|e)+ (5] o)

§Ey = <¢‘ﬁ1‘5@>+<5@‘ﬁ1‘@>. (A.2)
The ground state @ can thus be found as the state for which
0E3 = 0. (A.3)

The proof of the variational theorem is very simple: Expanding the state ® in
the complete set of orthonormalized eigenfunctions ®;,

|®) = Zci|q)i> , H|®;) = E;|0;) , (2;]®)) =y, (A.4)

)

one has, since Fy < B4 < Fy < -+,

Ei,j C;'kcj <(I)i H‘ (I)j> Zz |Ci|2EZ' S E (A 5)
. = = 0’ .
Zi,j cicj (Pi|®;) > leil?

with equality for ¢; = cydp; only.

Ep =

B Functionals

A functional is a mapping of a function into a number.
A simple example would be the functional for the number of electrons

Nipl = [ oty (B.1)

Another example is the energy functional E[p] which yields the total energy of
an electron system with electron density p(7).
In a generalized version of the chain rule, the differential of a functional
F[f(x)] can be written
_ [ OF[f(x)]

SE@) = | S50y o) do (B.2)
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Density Functional-based Tight-Binding

During the last decades, the Self-Consistent Density Functional Theory (SC-
DFT) scheme presented in Chap. 4 has proved to be a very powerful ab initio
computational tool with the range of practically solvable problems increasing
concurrently with the appearance of more and more powerful computers. The
superior predictability has a price, however, as the iterative nature of the scheme
makes it computationally cumbersome.

The purpose of this chapter is to present a computationally more efficient
semi-empirical alternative to SC-DFT. As shown in Chaps. 10 and 11, results
obtained with this method are in reasonable agreement with experimental re-
sults as well as with results based on more sophisticated methods. The method
in question is the non-SC parametrized Density Functional-based Tight-Binding
(DFTB) approach presented by Porezag and co-workers [44, 45] in 1995. In that
work, the model was successfully applied to the calculation of equilibrium con-
figurations and phonon frequencies of a number of small carbohydrate molecules.
As for the descriptions of electrons, the DFTB approach is based on LCAO
expanded Kohn-Sham (KS) orbitals and thus combines the tight-binding (TB)
approximation described in Sec. 2.2 with the KS method described in Sec. 4.6.

In this chapter, the DFTB approach is described in the context of finite
molecules consisting of carbon and hydrogen, but use of the Bloch formalism
presented in Chap. 2 leads to a straightforward generalization to periodic crystals,
and a generalization to other types of atoms is also quite feasonable.

5.1 The Model

Within the Born-Oppenheimer approximation, the Hamiltonian for an isolated
system of nuclei and electrons is given by

H = Thue + V(R), (5.1)

47
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where Ty is the kinetic energy operator of the N nuclei, where R is the 3N-
dimensional coordinate vector, and where the nuclear potential

V(R) = ES*(R) + Vyep(R) (5.2)

consists of the electron ground state energy E° and the nuclear repulsion poten-
tial Viep.

In the KS picture, ES® is given by Eq. (4.62), and for atomic sites R; and ﬁj,
Vyep is given by

Viep(R) = Z (5.3)

1<J R J

Within DFTB, however, the nuclear potential V(ﬁ) is approximated by a sum
over one-electron KS energies €, plus a sum over short-range repulsive two-body
potentials Vrep

R) o~ anfm Z V;Ze]p _" - Da (5.4)
m

1<j

with n,, being the occupation number of the mth orbital. As described in
Ref. [44], the approximation in Eq. (5.4) has been applied successfully by a variety
of authors in other connections than DFTB.

5.1.1 Electron Band Structure Energy
The first term in Eq. (5.4) is the electron band structure energy:

R) = nimem(R). (5.5)

The mth KS eigenvalue ¢, is a solution to the one-electron KS equation
Hp (7) = emtpm(7), (5.6)
in which the one-electron Hamiltonian
H =Ty + Veg(7) (5.7)

consists of the one-electron kinetic energy operator T., and the effective one-
electron potential V(7).

The KS orbitals v, are LCAO-expanded in a basis consisting of localized,
atom-centered wave functions ¢, :

= Zmu¢v(F_ R’u)’ (58)
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in which R” is the atomic site of ¢v. The basis includes one basis function for each
atomic valence orbital with the extra requirement that all subshells are completed.
For hydrogen, the v-sum is thus limited to an orbital with 1s-symmetry while it
for carbon includes one 2s- and three 2p-orbitals (2p,, 2py, 2p.).

As shown in Sec. 2.2, the energy is given as the solution to

(?I—emg)m =0 (5.92)
. Hu = {94 |0|00) (5.90)
» S = (uln) - (5.9¢)

Egs. (5.9) constitute the standard non-orthogonal! TB matrix eigenvalue prob-
lem. Within DFTB, the matrix elements are calculated analytically.

It is known from experience that true atomic orbitals do not constitute a very
efficient basis for large condensed system such as the polymers treated in this
work. The long range tails of true atomic orbitals, e.g., lead to numerical diffi-
culties without contributing much to the total energy. Within DFTB, therefore,
the basis functions ¢, are not atomic orbitals of any actual free atoms but are in-
stead so-called pseudoatomic wave functions constructed in the manner described
below.

Pseudoatomic Wave Functions

The pseudoatomic wave functions are constructed as the following linear combi-
nation of so-called Slater-type orbitals:

- _ 7
ou(F) = nXO;ana plvtn g=ar Yi,m, <;> , (5.10)

in which the Y}, ,,, are the spherical harmonics?. The pseudoatomic wave func-
tions thus have the same s- and p-symmetry, etc. as the true atomic orbitals?.
For n = 0,1,2,3 and for 5 values of « in the range 0.5 < a < Z, where Z
is the nuclear charge of the atom in question, Eq. (5.10) can be shown to be an
sufficient basis for all atoms up to the third row in the periodic table of elements.
The pseudoatomic wave functions are the self-consistent solutions to the fol-
lowing generalized KS equation:

HP2 g, (7) = D52t g, (7), (5.11)

n orthogonal TB, the overlap matrix elements are set to zero.
2The spherical harmonics Y7, are the simultaneous eigenfunctions of the angular momen-

tum operators L. = (FX %V)z = m%a% - %% and [? = I:i + ﬁ; + ﬁﬁ The Slater-type
orbitals r'**" e7°" Y} ... (g) enter in the analytic solutions to a single electron in the electro-
static Coulomb field of a fixed point charge. The hydrogen atom is an example of such a system.

3s- and p-orbitals correspond to I =0,m =0 and [ = 1, m = —1,0, +1, respectively.
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with
A ~ A A r 2
Hpsat — Tel‘i‘Vnuc('F)‘i‘VH( psat( )) VLDA( Dsat(,r—,*)) T <T_> (5.123)
0
- 1
o Ta=—5V7 (5.12b)
N Z
v Vie(F) = ——, (5.12¢)
T
R psat (=
L V(o) = [ g (5.12d)

|7 = |

where Vi is the electrostatic nuclear potential of Eq. (4.6b), where Vip is the
Hartree potential of Eq. (4.60b), and where the LDA exchange-correlation poten-
tial V:P* of Eq. (4.65) is expressed in terms of the Perdew and Zunger parametriza-
tion [46]. The term (%) makes it energetically favourable for the wave functions
to avoid areas far away from the nucleus and thus serves to compress the elec-
tron density compared with that in a free atom. By experience, this is known to
improve band structure calculations within DFTB. The radius r( is set to 1.42A

for carbon and 0.69A for hydrogen.

Effective One-electron Potential

The effective potential is approximated by a sum over spherically symmetric
atom-centered potentials:

EDA(GE Ri), (5.13)

where VZ(‘F — ﬁl‘) is the potential due to a neutral pseudoatom at ﬁl when
the pseudoatom is characterized by the compressed electron density but without
including the compression term (%)2 in V;. Le.

Vil|7 = Bl) = Viwe® + Va(pp™ (M) + Vi (o () (5:14a)

. Z;
, V() = —— 5.14b
(™) - ( )

com (= pfom(llﬂ)
. V(e (7)) = o F,| dr (5.14c)
P ( Zny|¢y 2, (5.14d)

where the ¢, are the compressed pseudoatomic wave functions of Eq. (5.11).
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Hamilton and Overlap Matrix Elements

In the two-centre approximation?, the Hamilton and overlap matrix elements of
Egs. (5.9) are given by

egee atom for p =v

H, ~ <¢M‘Te1 +V, + V,,‘(ﬁ,,} for R # R | (5.15a)
0 otherwise
1 forp=v

Sw = 3 (u]¢) for R* # RV | (5.15b)
0 otherwise

where Vu is the potential in Eq. (5.14a) centrered on R, and where egee atom

ensures the right atomic limit for large interatomic distances.

Resolving p-orbitals ¢}, in po-orbitals ¢, and pm-orbitals ¢}," with symmetry
axes along and perpendicular to the line of sight RH—RY , respectively, symmetry
considerations allow <¢M‘Te1 + Vu + V,,‘¢,,> and <¢u‘¢'/> to be written as linear
combinations of the following so-called Slater-Koster integrals [47] that depend
on interatomic distance r = ‘é“ — R¥ ‘ only:

Hysol(r) = (¢5|Ta+ Vi+ Vo|65), (5.16a)
Hapolr) = (¢5|Ta + Vi + Vi |65, (5.16b)
Hppo(r) = (57| Ter+ Vi + Vi |617), (5.16¢)
Hppre(r) = (5| Ter + Vi + Vi |#57), (5.16d)
Sesa(r) = (&5|95), (5.16e)
Sepa(r) = (#5|007), (5.16f)
Sppa(r) = <;ﬂ¢€g>a (5.16g)
Sppr(r) = <u7r‘¢€7r>- (5.16h)

As an example, for ¢, being an s-orbital on one atom and ¢, being a p,-orbital
on another atom, Fig. 5.1 shows that

T
Xep, = €081y Xgpo(r) + cos (nm+§)Xsp7r(r) , X €{H,S},

= [Xgpo(r) , 1 =cosny. (5.17)

In this manner, the different types of matrix elements can be written as the

“In the two-centre approximation, the potential in a Hamilton matrix element only includes
contributions centrered on one of the sites of the two wave functions in question.
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Figure 5.1: Calculation of the matrix element between an s- and a p.-orbital on different atoms.
The pz-orbital is written as the sum_ of its projections on R and R, which is perpendicular to
R and lies in the plane spanned by R and the unit vector .

following linear combinations of Slater-Koster integrals:

XSS

Xsstr('r)a
IXspo(T),
mXepe(r) , m = cosny,

nXspo(r) , n=cosn,,

— 1 Xopo (1),

P Xppo (r) + (1 = 1) Hpp (1),

ImXppo (1) — ImHppr(r),

InXppo (1) — InHppr(r),

—mXspo(r),

ImXppo(r) — ImHppr(r),

m2prU(T) +(1- )prn(r),

mnXppo(r) — mnHppx(r),
—nXpo (1),

InXppe(r) — InHppr(r),

mnXppo (1) — mnHppx(r),

1% Xppo (1) + (1 — n?) Hypr (7).

The Slater-Koster integrals are calculated analytically using the formula pre-
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sented in Ref. [48] and subsequently parametrized with respect to Chebyshev
polynomials T7:

10
c

X(r) = Y T a(y) — 51 (5.19a)

7j=1
, Tj(y) = cos (j . arccos(y)) (5.19b)

p— bta
y Y= (5.19¢)
2

where the interatomic distance 7 is defined on the interval [a,b]. In TABLE 1 of
Ref. [44], which contains c1,...,c19 and [a,b] for the 14 different® Slater-Koster
integrals, there occur the following errors: The parameters for Sp7 and Sp7.
should be interchanged, the parameters for H{! and Si5 have the wrong sign,

and the interval endpoint b for the Sii curve should be 6.0Bohr rather than
6.5Bohr.

5.1.2 Short-range Repulsive Two-body Potential

The second term in Eq. (5.4), the short-range repulsive two-body potential

Viep(R) = Y Vi (|R: — B;)), (5.20)
1<j
is seen to be the difference between the nuclear potential V' and the electron
band structure energy EJ°. The short-range repulsive two-body potential Vi, is
therefore found by fitting Eq. (5.20) to

Viep(R) = VII"N(R) — B (R), (5.21)

where VS@PA ig obtained through a self-consistent LDA calculation.

For HH- and CH-interactions, the fit is performed for the coresponding
diatomic molecules Hy and C'H, but due to energy level crossings in the Cob-
molecule, graphite and diamond have been used for fitting the C'C-interaction
for interatomic distances exceeding 1.4A.

Viep 1s written as

_ 22:2 dn(Rc - R)n for R < RC
Viep (R) = { 0 otherwise

such that the fit has 5 degrees of freedom in the form of ds,ds,ds,ds and the
cut-off radius R..

The three different types of repulsive two-body potentials® are also parametrized
with respect to Chebyshev polynomials.

(5.22)

SHSS, HS Sy Hyo oy Hyony HSE, HSh HEY and correspondingly for the overlap elements.
6VC(‘ VCH VHH
repy Yreps Yrep:*
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Chapter 6

Phonons

This chapter contains a description of phonon dynamics in a periodic crystal.
Sec. 6.1 deals with phonon dispersion while Sec. 6.2 contains a derivation of
the infrared absorption spectrum. Sec. 6.3 describes the phenomenon of Raman
scattering while Sec. 6.4 shows how to distinguish between infrared active and
Raman active phonon modes.

6.1 Phonon Dispersion

Consider a system of N atoms with 3N-dimensional atomic configuration

z1
Y1
z1
R= (6.1)
TN
Yn
N
According to Eq. (5.1), the Hamiltonian of the system is given by
H =Ty +V(R), (6.2)
with
. el 1 92
Thue = _E ﬁﬁa (63)
j=1""7 777

where M; is the nuclear mass of the atom to which the jth degree of freedom
belongs.

95
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A harmonic approximation of the nuclear potential yields

3N
_ - 1
V(R) ~ V(R") + 3 ;1 CjIAR;AR, (6.4)
]’ =

where RO is the equilibrium configuration for which V (R) is a minimum, where
AR; = (R; — R?) is the displacement of the jth degree of freedom, and where

0’V

il = R0 | 5

(6.5)
is the force constant matrix'. Since all atomic forces are zero in the equilibrium
configuration, the first-order term vanishes in Eq. (6.4)2.

Introducing the normal mode vectors X; and corresponding normal mode
coordinates @);:

< 22\ 2 .
(C—wiM)Xi = 0, ie{l,...,3N) (6.6a)
3N
R-R = Y QX (6.6b)
=1
N
XZTMX]' = (52']', (66C)
-Ml 0 0 0 0 0]
0 Mg 0 0 0 0
0 0 My 0 0 0
0 0 0 My 0 0
<>
’ M = 0 .'. 0 ] (6-6d)
0 0 My_1 0 0 0
0 0 0 My 0 0
0 0 0 0 My 0
| o 0 0 0 0 My |

where T denotes taking the transpose, the Hamiltonian can be separated and
thereby seen to represent a system of 3N decoupled harmonic oscillators with
frequencies w; = 2mv; (see the appendix):

3N
H = ZHZ (6.7a)
i=1
R h2 2 1
H; = 0 + —w?Q?. (6.7b)

=g e

! Also known as the Hessian matrix.
2 Apart from a sign, the force components are the first-order derivatives of the potential.
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As can be seen from Eq. (6.6b), the introduction of normal modes corresponds to
an expansmn of the displacement R— R in a basis consisting of the normal mode
vectors Xl. The XZ thus indicate the direction of movement of the N atoms in
connection with the ¢th vibrational mode, while (); and w; express the amplitude
and frequency of the vibration, respectively.

Due to the separability of the Hamiltonian, the solution to the energy eigen-
value equation

satisfies

¥n(Q) Hz/)nz Qi) (6.92)
. Hip,, (Q) = (ni+%>hwi Y (Qi) , mi=0,1,2,... (6.9b)

3N 1
, E,= Z <nl + 5) Fiw;. (6.9¢)
=1
Due to the energy quantization of the harmonic oscillators, it is convenient to
describe the vibrations through the concept of bosonic pseudoparticles known as
phonons®. A phonon associated with the ith vibrational mode carries the energy
hw;, and n; thus indicates the number of phonons in the ¢th vibrational mode.
The phonon frequencies w; can be found as the solutions to the generalized
matrix eigenvalue problem in Eq. (6.6a) which can be orthogonalized as

<> 2(—) =
(D—wil) 1=, (6.10)
where
<—>71 =3 —
M :X! = X, (6.11a)
1 ]_
, (M 2> - , (6.11b)
ij M;,
and where
> 1 2 e 1
D=M"3C M3 (6.12)

is the dynamical matrix.

Analogous to the matrix eigenvalue problem derived in Chap. 2 for the elec-
tron energy bands, in a periodic crystal with N atoms in the unit cell, Eq. (6.10)
can be written as the following 3/N-dimensional matrix eigenvalue equation:

(B(q-)—wg(qﬁ’) X(@H =0, ie{l,...,3NY}, (6.13)

3This is quite analogous to the concept of photons. Photo and phono are derived from the
greek words for “light” and “sound”, respectively.
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where ¢ is the phonon momentum?, and where

D(@) =Y Doeit fin—Fo) (6.14)

is the Fourier transform of the dynamical matrices B”O between the nth and ze-
roth unit cells® which are characterized by R, and Ry, respectively. In Eq. (6.14),
the contributions to the dynamical matrix from atoms in different unit cells are
“folded” into a dynamical matrix D(q) of reduced dimensions 3N. In this way,
the dimension of the matrix eigenvalue problem is reduced from 3N to 3NV.

The ith solution to Eq. (6.13) yields the phonon dispersion curve or phonon
spectrum w;(q) of the ith phonon mode. Allowing for degeneration, there are
thus seen to be 3N different phonon modes.

6.2 Infrared Absorption Spectrum

The absorption spectrum @ relates to the imaginary part ¥” of the susceptibility
tensor:

ap(w) o< WXy (W) a,b € {z,y, 2} (6.15)

For conjugated polymers, the electron contributions to ¥’ are mainly in the visible
range whereas the vibronic contributions are in the infrared (IR) range. The IR
absorption spectrum is therefore mainly determined by the vibronic susceptibility
VP In the dipole approximation (see Sec. 3.2.1), where the absorbed photons
are assumed to carry a negligible momentum, momentum conservation requires
¥V to depend on zone center (¢ = 0) phonon modes only.

Analogous to Eq. (3.33), one has
pord(®) ochnOan B h292 . Q=w+ih, (6.16)

where d, and E, are the a-component of the electric dipole matrix element and
energy difference, respectively, between the zone center ground state 1 (Q) and
nth vibronic state 1, (Q):

/zp:;@’) d(3) () dO, (6.17a)

En = E,—Fy= anhwl, (6.17b)

“The phonon momentum § enters in the phase difference between vibrational displacements
in different unit cells. For § = 0, all identical atoms in different unit cells vibrate in phase.

"The two degrees of freedom R; and R; in Eq. (6.5) correspond to atoms in the nth and
zeroth unit cells.
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- =

where Cj is the 3N-dimensional vector of normal coordinates and d(Q) is the
electric dipole moment of a unit cell, and where ¢ = 0 is implied.
Expanding d(Q) to the first order in @@ around the equilibrium yields

-

d(@) ~ & +pd] - G, (6.18)

where d” = d(R°) is the permanent dipole moment.
Inserting Eq. (6.18) in Eq. (6.17a), one has

o = Jﬁ/wn ) po(@) dG + d) 5, - /wn 0) G (@) dG.  (6.19)

According to Eq. (6.9a), one has

[41@ wo(@ ad =0 (6.20)

due to orthogonality unless n; = 0 Vi.
The permanent dipole moment is thus seen not to contribute to the dipole
matrix element, and Eq. (6.19) yields

3N

Jn[] Z |:8Q]

Due to the orthogonality and the selection rule for harmonic oscillator transitions,
Eq. (6.21) yields

/@bnj Q] Q] on(Qj dQ] /@% (Ql) dQZ] (6'21)
i#]

3N
doo = Z [ 56| s [ 3,(@) Q5 0(Q) Qs [T oo [47,(@0) v0(@) sz].
. (6.22)
cfno is thus zero unless the nth vibrational state for some x satisfies
(ni=0Vi#k) N (ng=1). (6.23)

The transitions contributing to the absorption spectrum are thus those in which
a single phonon is created.

Since
h
/@bT(Qn) Qx 1/)0(@5) dQ, = 2.’ (6.24)
one has
- [h ad
an — EBQK I‘{‘()’ (625)
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and by insertion in Eq. (6.16)
3N

i ade | odb 1
Xabb(w) OCZ
k=1

o P2w? — 202

(6.26)

8Qn RO aQn

=, =

where d” is the a-component of d(Q), and where wy, = w,(q = 0).
Finding the imaginary part of Eq. (6.26) for v < w, one finally obtains

odP
RO 0Qx

3N 9d®

2hwhry
agp(w) x w Z
= 0Qx

o (FPw2 — h2w?)? + (2hwhry)?’

(6.27)
where ¢ = 0 is implied.

6.2.1 Derivative of the Electric Dipole Moment
In this subsection, expressions are found for the electric dipole moment derivatives
% |0 in the context of a one-dimensional periodic crystal.

The electric dipole moment d consists of a nuclear contribution ci;luc and an
electron contribution dg:

- -

d = dyue + dg. (6.28)

Nuclear Contribution

The nuclear contribution is given by
N
dowe =€ ZpRy, (6.29)

where Zye is the charge of the pth nucleus in the unit cell, and where ﬁp is the
coordinate vector of the nucleus with respect to an arbitrary origo®.
Since from Eq. (6.6b)

R=R’+ X0, (6.30)
one has
. . 3N X3p—2,QO
Ry=R) +> | Xap-1mQm |, (6.31)
m=1 X3p,QO
and thus
N
od2 ..
o =e Zp Xaim , 6.32
aQK/ R‘o Z P 3(p 1)+0/,K/ ( )

p=1

with X = )H((q = 0), and with the convention x <> 1,y <> 2,z <> 3 for the values
of a.

For charge-neutral systems, the electric dipole moment is independent of the choice of origo.
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Electron Contribution

In the Born-Oppenheimer approximation (see Sec. 4.1), where the electrons are
assumed to be in the ground state, the electron contribution is given by
- 2e

dy = > (VK| 7 |vE), (6.33)
Nuc v,k

where Ny is the number of unit cells, where |vk) is the eigenstate of an electron
in the v’th valence band with wave number k, and where the factor of 2 occurs
due to spin degeneration.

In a LCAO-expansion as the one in Eq. (2.28a), one has

Nue N

1 n
|vk) = N zy:znjzp:v,,p(k)ezk !

where [ is the length of the unit cell, and |Uﬁnp> is an atomic orbital centrered
on

uﬁtn,,> : (6.34)

Rpp = nl# + Ry, (6.35)

which is the site of the pth atom in the nth unit cell.
Inserting Eq. (6.34) in Eq. (6.33), one obtains

da = }—2 SN S v ) vl €O By

The dipole matrix element between the atomic orbitals can be rewritten

i

yﬁn,,> . (6.36)

<1/Rn/p/ 7 I/Rnp> = <1/Rnrpr ¥ — p;_ P VRnp>
En/ ’ E N 5
p ; np <;/Rn,,,, an,,>. (6.37)

Assuming that only on-site contributions are significant, Eq. (6.37) yields

<V’Rn/p/ a ‘anp> ~ O Oppr <1/Rnp anp>

+ Oppr Oppy ﬁnp <V’ﬁnp‘VRnp>
= 0y Gt Oy R (6.38)

—

7 — Ryp

due to the symmetry” of the orthonormal atomic orbitals.

7All three cartesian components in 7 — Rnp change signs when inverted with énp as the
point of inversion, and, accordingly, ¥ — R, is said to have odd parity with respect to R,p.
Similarly, functions which are invariant to such an inversion are said to have even parity. For

J O
V Rup| T — Rup

uﬁnp> to be non-zero, [vRy,,) and |[v'R,,) must have different parities in all

three dimensions, and such atomic orbitals do not exist. Therefore, <V'Rnp 7— énp Vénp> =0.
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Inserting Eq. (6.38) in Eq. (6.36), one obtains

N
- —2e N
do = = S vup(k)[* Ry (6.39)

ue v,k,v p=1

The derivative of Eq. (6.39) with respect to QQ, may be taken quite easily if one
makes the bold assumption that the electron localization propabilities remain
unchanged under a change in the atomic configuration:

Ovyp(k)
—n | . =0 6.40
9Qr |0 (6.40)
In this case, use of Eqgs. (6.35) and (6.31) yields
ade, —26 ~ )
~ E E v X3, . A1
aQn 70 N |V p(k)| 3(p—1)+a,k (6 )

ue v,k,vp=1

Combining Egs. (6.32) and (6.41), one finally obtains

dd*
IQx

N
2 2
L ez Zp — N Z |V1/p(k)| X3(p—1)+a,m (6.42)
RO — uc
p=1 v,kw
. H H . oy . .

with X = X (¢ = 0), with v,,,(k) evaluated for the equilibrium configuration, and
with the convention z <+ 1,y <> 2, z <> 3 for the values of a.

Equation (6.42) is thus valid only when a change in the atomic configuration
results in a negligible electron charge transfer between atomic sites. The impacts
of this assumption will be discussed in Chapter 10.

6.3 Raman Scattering

Photons can scatter off an atom or a molecule either elastically or inelastically.
Elastic scattering, which is also known as Rayleigh scattering, implies that the
energy hw and frequency w of the photon is preserved in the scattering proces®.
In inelastic scattering, which is known as Raman scattering or the Raman effect,
the frequency of the photon undergoes a Raman shift. Raman scattering thus
involves a change in either the vibrational, rotational or electron energy of the
scatterer.

In a film consisting of conjugated polymer molecules, inter-chain interaction
will hinder rotations, so for photon energies in the IR range, vibrational Raman
scattering will be the dominant Raman effect. In the following, therefore, Raman

5Tt is the highly wavelength dependent nature of Rayleigh scattering of sun light from air
molecules and aerosol particles that gives the sky its blue colour.
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scattering will imply a change in the vibrational energy of the crystal or, in
other words, to a change in the number of phonons. If the Raman scattering
involves the creation of a phonon, the scattered photon frequency wgcat is smaller
than the incident frequency win. by an amount matching the energy wpnon of
one of the phonon modes. This proces is called a Stokes proces. The opposite
proces, in which a phonon is destroyed, is called an anti-Stokes proces. Both
processes are depicted in Fig. 6.1. At room temperature, the thermal population
of phonons is small, and Stokes scattering will be the dominant proces. As the
photon momentum is much smaller than the phonon momentum, the phonon
modes affected by Raman scattering will predominantly be zone-centre modes.

Stokes Anti—Stokes

Wscat
Wscat

Winc Winc

Wphon

Wphon

Figure 6.1: Left: Stokes Raman scattering involving the creation of a phonon and a lowering
of the photon frequency (wscat = Wine — Wphon)- Right: Anti-Stokes Raman scattering involving
the destruction of a phonon and an increase in the photon frequency (wscat = Wine + Wphon)-

Stokes and anti-Stokes scattering can be described as the two-stage processes
shown in Fig. 6.2: After absorbing the incident photon, the molecule is excited to
an intermediate, virtual state from which it almost instantaneously relaxes into
a different vibrational state under the emission of the scattered photon.

Just like IR absorption spectroscopy, Raman spectroscopy makes it possible
to characterize vibrations in molecules by measuring the absorption and trans-
mission of light.

6.4 Infrared Active and Raman Active Modes

The following argument shows that in inversion-symmetrical molecules, such as
the conjugated polymers treated in this work, the phonon modes are either IR
active or Raman active. I.e., the phonon modes that can be excited through
the absorption of photons in the IR frequency range do not take part in Raman
scattering of photons and vice versa.

As mentioned in Sec. 6.3 and shown in Fig. 6.2, Raman scattering involves
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Molecular .
Energy Stokes " é{\t_lft_oiqfs
A m
1/)in ————————
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¢f T,bi 1 w
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i Py 4

Figure 6.2: Energy level diagrams for Stokes Raman scattering (left) and anti-Stokes Raman
scattering (right).

two transitions from an initial vibrational state 1; via an intermediate, virtual
state 1, to a final vibrational state 1, whereas IR absorption only involves
one transition from an initial to a final state. An IR absorption process thus
requires a non-zero dipole transition matrix element (v |7] 1¢) # 0, whereas Ra-
man scattering requires (¢; |7 ¥in) # 0 and (¢in |7 ¢r) # 0. In a material with
inversion symmetry, the eigenfunctions can be chosen with definite parity around
the point of inversion?. For IR absorption, therefore, one has due to the odd
parity of 7 that par(¢y;) # par(iy¢), whereas Raman scattering corresponds to
par(v;) # par(¢in) # par(¢r) which is equivalent to par(t;) = par(¢f). The vi-
brational transition from 1; to ¢ can thus either be involved in IR absorption or
in Raman scattering. .

Equation (6.27) shows that the IR active modes are characterized by (%ii # 0.
Since the conjugated polymers treated in this work are inversion-symmetrical in
their equilibrium configurations, their equilibrium dipole moments are zero. The
Raman active modes with % = 0 are thus the modes that preserve this inversion
symmetry. The Raman active modes are therefore termed A, where g stands for
“gerade”, the german word for even, while the IR active modes are termed B,
with “ungerade” being the german word for odd.

While Eq. (6.27) shows the IR absorption intensity to be proportional to the
squared normal coordinate derivative of the electric dipole moment, the Raman
intensity can be shown to be proportional to the squared normal coordinate
derivative of the susceptibility!©.

?Choosing the point of inversion as origo, one has V(#) = V(—7). Therefore, since 1)(—7)
and v (7) are thus seen to be degenerate eigenfunctions, so are the even and odd eigenfunctions
Ye(7) = 5 [Y(F) + (=] and o () = 3 [(7) — (=]

OFor a single molecule, the relevant physical quantity is the polarizability which is defined as
the intermediary between an electric field and its induced electric dipole moment. According to
Chap. 3, the polarizability is thus the microscopic counterpart of the susceptibility.
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Appendix

A Separation of the Hamiltonian

Inserting Egs. (6.3) and (6.4) in Eq. (6.2), one has

IA{ — Anuc + V(E)
- L Z VW + V(R + 5 > CiARjAR,. (A.1)

Since, using Eqgs. (6.6¢) and (6.6b) one has

143\ 1
Qi = Z(M2X>ij VMGAR;, (A.2b)
J

0Q; B 1\ 1 ~— _ ($ril N
GR] N (MQX)Z] M] - (X MQ)'L] M]

= Zin\/Mk5kj\/M Miji, (A.QC)
0 _ 0@ 9 _ x., 2
i - ;aRj 8Qi_;M]XﬂaQi, (A.2d)
A ZM2X~X-782 (A.2¢)
oR? LT 0Q:0Q1 '

one obtains the following for the nuclear kinetic energy written in normal mode
coordinates:

52 AR n & 0? h? o~ 02
S Xapam 3 2 MNiXigaga =5 2 isgag,
Pt Qi0Q o1 9QioQ
2 SN 52
_ P A3
2 28@3 (A-3)

Concerning the nuclear potential, one has from Eq. (6.6b) that

AR; = Z QiXji, (A.4)
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and from Eq. (6.6a) that

o o

A
CX = MXw?, (A.5)

<~
where w? is the diagonal matrix of squared phonon frequencies w

Therefore

2
i

3N

% Z leARjARl = % Z le Z QZX]z Z Qlek
gl=1 7,5l i k
_ % > (6%Q) 3 eixis
j 2
1 “ o <_>2 o
- 53 (%) e
j J i

1
= 5 Z Mj(slelku)]%Qk Z Q’LX]Z
Jik,l i
1 1
i7j’k Z’k
3N

1

= 5wk (A.6)
i=1

Inserting Eqs. (A.3) and (A.6) in Eq. (A.1) and choosing V (R°) as the zero point

for the potential energy, one obtains Eqs. (6.7).
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Polarons

7.1 The Question of Polaron Formation

In an inorganic semiconductor crystal, the excitation of a valence electron is
normally described as a transition from the valence band (VB) to the conduction
band (CB), and vice versa for the opposite process of recombination. Similarly,
the injection or removal of an electron is described, respectively, by placing an
electron in the CB (reduction) or by placing a hole in the VB (oxidation). This
means that in inorganic semiconductor crystals, the creation of excess charges is
described in terms of the already existing band structure without considering any
new energy levels'. This assumption of the energy bands being the same whether
they are occupied by an electron or not is known as the rigid band approximation
(RBA). Since the band structure is a result of the periodicity of the crystal, the
RBA implies that the deformation introduced by the excess charge is negligible or,
equivalently, that the excess charge is completely delocalized over the in principle
infinitely large crystal. The validity of the RBA is given by the strength of the
coupling between an electron and the surrounding lattice. If this electron-phonon
coupling is appreciable, an excess charge will deform the lattice around it, and
the RBA is invalid.

Organic compounds are generally known to display a relatively large electron-
phonon coupling, and in an organic molecule, the equilibrium geometry in an
ionized state is in general substantially different from that in the ground state.
For an organic semiconductor crystal like the polymer chains treated in this work,
therefore, the question is whether the localization of an excess elementary charge
is energetically favourable or not.

'n the case of doping, where electron-donating (n-type doping) or electron-accepting (p-type
doping) impurity atoms are introduced, the donor or acceptor energy levels are typically close
enough to the CB or VB, respectively, for all of the excess charges to be released into the bands
due to thermal excitation. Even in this case, therefore, a description purely based on the band
structure will often suffice for a first approximation.

67
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Localization of an excess elementary charge corresponds to the formation of a
polaron which is a self-localized, charged lattice deformation. Such a deformation
will cause two localized polaron energy levels to split-off from the continuum
band structure and move into the band gap, and this has a significant impact
on the electrical and optical properties of the crystal: The excess charge will
be transported as a polaron, which implies dragging the lattice deformation and
concomitant polaron levels along, and the in-gap polaron levels will lead to optical
subgap transitions.

If, on the other hand, the excess charge is delocalized, the excess charge per
unit cell is zero, and the carrier is instead added to the band structure leading to
unfilled bands and band-like, or metallic-like, charge conduction.

The question of polaron formation or not is thus seen to be a matter of impor-
tance, whether it arises in connection with the addition of excess charges through
doping, or in connection with solar cells or light emitting diodes in which excess
charges are created by photoexcitation or injected from electrodes, respectively.

7.1.1 Polaron Binding Energy

A polaron formed upon injection of an electron or a hole is called an electron
polaron and a hole polaron, respectively.

The formation of an electron polaron is energetically favourable if the elastic
energy needed to deform the lattice is smaller than the concomitant increase in
electron affinity?. The in that case positive energy won by deforming the lattice
and forming the polaron is called the polaron binding energy. The hole polaron
binding energy is the decrease in ionization energy® minus the elastic deformation
energy.

7.1.2 Bipolarons

Injection of two like elementary charges can lead to charge delocalization, the
creation of two separate polarons, or to the creation of one strong, localized
deformation called a bipolaron. In a material that favours polaron formation,
bipolarons are favoured over polarons if the net energy gained by the increased
deformation is larger than the Coulomb repulsion energy between the like charges.
The bipolaron binding energy is defined in the same way as for polarons.

2The electron affinity is the energy won when the crystal receives an electron, i.e. the energy
of the neutral crystal plus the energy of a free electron minus the energy of the negatively
charged crystal.

3The ionization energy is the energy needed to remove an electron from the crystal.
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7.2 Characteristics of Polarons and Bipolarons

Fig. 7.1 shows schematically the energy levels and their occupation, the induced
subgap transitions and the charge and spin for electron and hole polarons and
bipolarons. For symmetrical VB and CB, there are only three distinct transition
energies in the polaron case. Notice that the energy levels of the bipolarons, which
correspond to the largest deformation, have moved the furthest into the band gap.
Also notice that charge conduction by bipolarons is an example of spinless charge
conduction. In fact, it was the 1980 discovery of spinless charge conduction in
polyacetylene [49] and poly(para-phenylene) [50] that challenged the until then
dominating assumption of metallic-like conduction in doped conjugated polymers.

q=—2e | g=-e | g=¢ 'og=2e

s=0 | 8::1:% ! s::lz%:szo
| CB |
TS Ny |

A | ! | | a
T | |

AP N L S
4+
il sl
| VB |

a . b . o | d

Figure 7.1: Energy levels and their occupation, induced subgap transitions and the charge ¢ and
spin s for a) electron bipolaron, b) electron polaron, ¢) hole polaron, and d) hole bipolaron. Er
is the Fermi energy.

7.3 Solitons

Due to its degenerate ground state, trans-polyacetylene (tPA) displays a speciel
kind of spinless conduction that is due to so-called solitons [5].

One of the two ground states is shown in Fig. 10.1 and the other is obtained
by interchanging the single and double bonds. The two different ground states
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thus correspond to two different bond alternation domains. As shown in Fig. 7.2,
a soliton is a domain wall separating two different domains*. From one side of
the soliton, the double and single bonds become gradually longer and shorter,
respectively, and at the center of the soliton, the bond length alternation is zero.

In a tPA chain characterized by one of the ground state configurations, solitons
can only be created or destroyed in pairs (a so-called soliton-antisoliton pair), but
single solitons can arise as isomerization defects is connection with cis- to trans-
isomerization, and solitons will also necessarily arise in tPA segments containing
an odd number of carbon atoms. Due to the degeneracy of the ground states,
the soliton is in principle free to move along the chain, and the word “soliton”

derives from the fact that the soliton preserves its shape as it propagates.

Figure 7.2: A neutral soliton on a trans-polyacetylene chain. The dot marks the center of the
soliton, and the square brackets mark its extent which in reality is about 7 unit cells.

Due to the degeneracy of the ground states, the Coulomb repulsion makes
tPA bipolarons unstable with respect to the creation of two charged solitons. In
tPA, therefore, the predominant spinless charge conduction mechanism is due to
solitons and not bipolarons. However, injection of one electron or hole will still
lead to the creation of a polaron corresponding to a bound soliton-antisoliton pair
with one soliton charged and the other one neutral. In this connection, the two
polaron energy levels correspond to the bonding and anti-bonding combinations
of the two mid-gap soliton levels.

The deformation associated with a soliton corresponds to the creation of a
localized mid-gap electron energy level, and Fig. 7.3 shows the occupation of this
soliton level for the three diffent types of solitons. Notice the reversed spin-charge
relation which is the hallmark of a soliton. As in the case of polarons, soliton
formation induces optical subgap transitions.

Note that while the existence of solitons requires degenerate ground states,
polarons and bipolarons are generic.

* A soliton is also called a bond alternation defect or a phase kink in the conjugation sequence.
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Figure 7.3: The occupation of the soliton energy level along with the charge ¢ and spin s in case
of a) a neutral soliton, b) a positively charged soliton, and c¢) a negatively charged soliton.
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Chapter 8

Linear Optical Susceptibility

Pioneering the field of calculating the optical properties of conjugated polymers,
in 1977 Cojan et al. [16] derived an analytic expression for the long-axis op-
tical susceptibility of polyene chains, such as trans-polyacetylene (tPA). Later,
Baeriswyl et al. [18] found an analytic expression for the imaginary part of the
dielectric tensor of tPA, and Neumann and von Baltz [25] found an analytic ex-
pression for the real and imaginary parts of the long-axis dielectric function of
tPA. In all three cases, the treated chains were parallel and infinite, and damping
was not included.

To this date, no analytic expressions for the various susceptibilities associated
with poly(para-phenylene) (PPP) have been derived. Such analytic expressions
would expectedly increase the understanding of the optical properties of PPP
and might ultimately serve to improve the application of PPP, e.g. in connection
with polymer-based light emitting diodes, solar cells or photodetecting devices.

The purpose of this chapter is firstly to derive analytic closed-form expres-
sions including damping for the complex linear optical susceptibilities of pristine,
infinite, parallel and non-interacting tPA and PPP chains. For tPA the complete
linear optical susceptibility tensor is derived, and for PPP the complex long-axis
linear optical susceptibility and the imaginary part of the short-axis linear optical
susceptibility are derived. Secondly, the purpose is to obtain through comparison
a general expression for the complex long-axis linear optical susceptibility appli-
cable to all conjugated polymers. The inclusion of damping, the calculations for
PPP, and the comparison of the long-axis susceptibilities of an acetylene- and a
phenyl-based polymer make the present results more general than the previous
results in this field.

The analytic susceptibility expressions are obtained in the free-carrier dipole
approximation using an orthogonal, nearest neighbour tight-binding model based
on carbon m-electrons only. All excitonic and polaronic effects are disregarded.
Polarons are described in Chap. 7 and treated in Chap. 11.

The results presented in this chapter have been published in Ref. [1].

75



76 Part TII. Linear Optical and Electro-optic Susceptibility
8.1 The Model

The conjugated polymers are treated as planar molecules lying in the zy-plane
with the polymer chain being oriented along the z-axis. The z- and y-axes
are accordingly called the long-axis and short-axis, respectively. In such planar
conjugated polymers, three of the four valence electrons of the carbon atoms
form sp?-hybridized bonds with the three neighbouring atoms in the xy-plane,
while the fourth electron forms a delocalized w-orbital with p,-symmetry. As the
excitation energy is smaller for the m-electrons than for the sp?-electrons, the
m-electrons will be the main contributors to the low-photon-energy part of the
optical susceptibility. Furthermore, since, due to symmetry, the w-orbitals couple
to other m-orbitals only, the w-electrons can be treated seperately.

8.1.1 Band Structure

The m-band states are characterized by a band number a and a crystal wave
number k and are therefore written |ak). In a tight-binding treatment applicable
to the energy range in the vicinity of the band gap, the m-band states are expanded
in the atomic 2p,-orbitals. Using the one-dimensional equivalents of Eqs. (2.28a)
and (2.22) one has

1 NuCaP

k) = Z ap (k)™ pn) (8.1)

27
Nuclu , uw€{0,1,...,Nyc—1},

where [ is the lattice constant, |pn) is the 2p,-orbital centered at the pth carbon
atom in the nth unit cell, Ny is the number of unit cells, and P is the number
of atoms in the unit cell.

Inserting Eq. (8.1) in the energy eigenvalue equation

Hlak) = E,(k)|ak) (8.2)

, k=

and applying the atomic orbital (gm| from the left yields

Z etknd [ <qm pn> — Ea(k)<qm‘pn>] ap(k) =0. (8.3)

.

H

Eq. (8.2) is thus seen to be equivalent to a p x p-matrix eigenvalue problem.
In this chapter, wavefunction overlap will be disregarded’:

(qm|pn> = 5pq5mna (84)

and only Hamilton matrix elements (gm|H|pn) between nearest neighbours will
be considered.

! According to Ref. [19], the correction to the optical susceptibility due to such overlaps is
significant only for photon energies much greater than the band gap.
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8.1.2 [Electric Dipole Matrix Element

The z- and y-components of the electric dipole matrix element between valence
and conduction bands v and c are given by

i, = —elck|z|vk), (8.5a)
@, = —elcklylvE), (5.5b)

where e > 0 is the elementary charge.
As linear combinations of 2p,-orbitals, all valence and conduction band states
|vk) and |ck) have odd parity in z, and therefore

dz, = 0. (8.6)

Long-axis Electric Dipole Matrix Element

Using Eq. (8.2), the long-axis electric dipole matrix element can be written

ck |Hz — zH| vk
) - b Ec(k>—Ev(L) /

= WﬁNm Z c;(k)vp(k)eik(”_m)l <qm ‘ﬁx - xﬁ‘pn>, (8.7)

n’p’m’q
where E., = E. — E, is the excitation energy.
The matrix element (gm|zH |pn) is found by inserting the completeness rela-
tion 3, [pn)(pn| =1 between z and H and using the fact that for 4y, being
the z-coordinate of the gth atom in the mth unit cell, due to symmetry one has

<qm q'm'> = 0. (8.8)

In this manner, one finds

Tagm =+ To'm/
2

T —

<qm oH pn> = Z (qm|x‘q'm'> <q'm' Ifl‘pn>
ml,ql
_ xqm+xQ’m’< 11 aAr
= Z _ qm‘qm> qgm H‘pn
> s ) (o)
= Zgm <qm H pn>, (8.9a)
<qm ﬁm‘pn> = Zpp <qm H pn>. (8.9b)
Inserting Eqs. (8.9) in Eq. (8.7), one obtains
W) = e 2 e gy —aqm) (gm |7 n)
n,p,m,q
= E;Egk) Z c;(k)vp(k)eik"l (Zpn — Tq0) <q0 ‘f[‘ pn> , (8.10)
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where it has been used that with periodic boundary conditions, all Ny, unit cells
are identical.

Short-axis Electric Dipole Matrix Element

d¢y (k) is obtained by replacing = with y in Eq. (8.10).

8.1.3 Linear Optical Susceptibility

Since dZ, = 0, the linear optical susceptibility tensor is given by

Xd Xby 0
0w = [ KD o, (8.11)
0 0 0

where, for this case of real electric dipole matrix elements, the components are
given by Eq. (3.36):

(1) _ 2 % i j Ecv(k)
W@ = g 2 0 e ke 612

8.2 Trans-polyacetylene

The trans-polyacetylene (tPA) chain is shown in Fig. 8.1 with the bond lengths
obtained from Ref. [23].

I = 1.184A

I, = 0.703A

H | = 2.434A

Figure 8.1: The trans-polyacetylene chain. The coordinates (n, p) indicate carbon atom p in the
nth unit cell. The bond lengths are Il = 1.377A and II' = 1.434A.
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8.2.1 Band Structure
For tPA, Eq. (8.3) corresponds to the following matrix eigenvalue problem:

—E(k) e ™3 1+ 8] (a1(k) 0
ikl gt = ) (8.13)

pte™p  —E(k) | \ax(k) 0
where 3 and ' are the Hamilton matrix elements along [l and [l’, respectively,
and where the energy of a carbon 2p,-orbital is chosen as the zero point of the

energy ((pn|f[|pn) = 0).

Nontrivial solutions to Eq. (8.13) are found for

‘ ﬁjﬂ;’fz)ﬂ, e__klg(,,;; ’ ‘ =0, (8.14)
corresponding to
E.(k) = +\/ B2 + % + 264" cos(kl), (8.15a)
Bo(k) = —\/B + B2+ 2680 cos(ki), (8.15b)
and
E. (k) = E.(k) — Ey(k) = 2\/ (2 + B'? 4 263" cos(kl). (8.16)

The m-electron band structure is shown in Fig. 8.2.
Inserting FE.(k) and E\ (k) in Eq. (8.13) and solving for the eigenvector @(k),
one obtains

1 1
= - EC

8.2.2 Electric Dipole Matrix Element
Long-axis Electric Dipole Matrix Element

Inserting Eq. (8.17) in Eq. (8.10), summing over nearest neighbours, and making
the approximation [y ~ /2 yields

dz (k) = ﬁ(ek) %qc;(k)vp(k)eiknl [ + (p = )] {q0 || pr)
- ﬁ% [(z AY: (ei’”W* n e*““lw) LB W+ W)]
= E;(Z) (1= 1)8® = 1B + (1 = 201)B B cos (ki)
~ Eg:zlk) (5'2 _ 52) . (8.18)
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E(k)

Figure 8.2: The m-electron band structure of trans-polyacetylene.

In connection with Eq. (8.18) it should be noted that tPA is degenerate in the
sense that Fig. 8.1 might just as well have been flipped 180° about the y-axis.
This would lead to the transformation 5 — 3’ and thus to a change of sign in
Eq. (8.18).

Introducing the band gap

T
By =B (T) =287 (8.19)
and the m-band width
Fo = Eey(0) =28+ 8, (8.20)
Eq. (8.18) yields
- elEgEo
dey (k) = I (h)° (8.21)

A plot of |d%,(k)|? is shown in Fig. 8.3.
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Figure 8.3: The absolute square of the long-axis electric dipole matrix element of trans-
polyacetylene.

Short-axis Electric Dipole Matrix Element

One obtains

W) = 5y 2 BB [(p — a)l] (a0 |F| pm)

n,p,q
2ly T, ,
- gl e ]
= % (8.22)

8.2.3 Linear Optical Susceptibility
Long-axis Linear Optical Susceptibility
Inserting Eq. (8.21) in Eq. (8.12), one has

0 _ CUEE [t 1 ! dk 8.23

Since, from Eq. (8.16) one has

1 (Ezv(k) —4p? — 4ﬁ’2>

k= 7 arceos 337 (8.24)
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and thus

_dk dEZ,
- dE2,dE., "

Eev

2
L (888) - (B2, - 4p2 - 4p?)?
2

E
= ~ dE., (8.25)

LR - B (8] - B2,

dk

dFE¢y

Eq. (8.23) can be written as the following integral over E:

e2IE2ER [Po 1 By
2re0A [, B2 (E2, — h2Q?) \/(E?v — EB2)(E? — E2,)

X on (@) = . (8.26)

Evaluating Eq. (8.26) as shown in App. A, one obtains the following result for
the long-axis linear optical susceptibility of trans-polyacetylene:

e?l E?
2meg A Egh?Q?

X:(DI:D),tPA (w) =

2 2 2 2 2
E; —h 02 Eg — h2Q? Eg

- H(Eg—Eg E§—E§>
BB

: (8.27)

where II(n, k) is the Complete Elliptic Integral of the Third Kind. In this work,
the MATHEMATICA definition of elliptic integrals has been adopted and repro-
duced in Eq. (A.3), and MATHEMATICA has been used to evaluate the various
expressions. It has been verified by numerical integration that Eqgs. (8.27) and
(8.26) are in agreement.

The result of Eq. (8.27) is the equivalent of equation 4.4 in Ref. [25] with the
present result generalized to include damping.

Plots in the vicinity of the band gap of the real part X;Ix):tm(w) and imag-

inary part X:(vlm):;m(w) of Eq. (8.27) are shown in Fig. 8.4. The band gap F,
and the m-band width Ej are set to their experimental values F, = 1.9¢V? and
Ey = 12.8eV [22] corresponding to § = —3.7eV and ' = —2.7¢V. The damp-
ing parameter Ay = 0.2eV is obtained by fitting to the experimental curves in
Ref. [22]. According to Ref. [6], the cross sectional area of tPA is A = 15.5A%, Tn
addition to the band gap resonance shown in Fig. 8.4, there is a weak resonance
around Fy also.

2This band gap corresponds to a wavelength of 653nm which is the wavelength of visible
light in the red part of the spectrum.
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Figure 8.4: The real part ¥’ and imaginary part '’ of the long-axis linear optical susceptibility
of trans-polyacetylene for E; = 1.9eV, Ep = 12.8eV, hy =0.2¢V, and A = 15.5A2.

Approximate Linear Optical Susceptibility Expression For iiw < Ey,
Eq. (8.26) can be approximated as

ClELE dE
0 () ~ 0 / o 8.28
Xm,tPA( 27(60A E2 — n202) /7EgV — Eg ( )
leading to
21E2 R, arcsin (m> 1
M il s D (8.29)

Xzz,tPA(w) =~ 27(601471292 HQ) /7Eg — 22 - E_g .

As an evaluation of this approximation, Fig. 8.5 shows a plot of Eq. (8.29) together
with a plot of Eq. (8.27). The approximation is seen to be excellent in the vicinity
of the band gap.

Notice that comparison of Eqs. (8.27) and (8.29) yields

E?-E} E2-E}\ B\ B he
H(EQg 0 gE2 0) ~ Ze V.8 arcsin(E—> , hw < Ey, (8.30a)
g g g

—h202’ ~ E O

EZ o E2 E2 o EZ E
g 0 g 0 g
H( moom ) S B (8.30b)

l
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X(IIJ?,tPA
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Figure 8.5: A comparison of Egs. (8.29) and (8.27) with parameters as in Fig. 8.4.

Effective Mass Approximation In the effective mass approximation (EMA),
the band structure is given by the following parabolic expansion in the vicinity
of the band gap:

n2k” 7r
Eey(k) ~ Eqy + 2 K =k— T (8.31)
where p is the reduced mass given by
h2
= k)
2
dR? |
_ 4h_2 ZEg
12 E5 — E2
~ 0.06my, (8.32)

where mg = 9.109 - 103! kg is the electron rest mass.

Writing the electric dipole matrix element in terms of the momentum matrix
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element p? (k), one has

& (k) = E;(ek) <ck‘(Hm—xH)‘vk>

N N TGS
 2mg B (k) 0?2 dz?

ieh h O
= B <’“ i 0 V’“>
= 72671 pe (k). (8.33)

moEcv(k‘) eV

In the constant momentum matrix element approximation (CMMEA), one as-
sumes that pZ, (k) is constant and equal to its value at the band gap:

moFEey (T
i) 2 (1) = o) g (1)
- mol
= 4 Fo. (8.34)

From Fig. 8.6, which shows a plot of |pZ, (k)| together with |pZ, (7 /I)|?, it can be
seen that the CMMEA is a significant approximation.

2l2
el ||

160

140—-
120—-
100—-
80—-

60

40

————— & [1]
0.5 1.0

Figure 8.6: The absolute square of the long-axis momentum matrix element of trans-
polyacetylene together with the constant used in the CMMEA.

As shown in App. B, the EM-CMMEA linear optical susceptibility )Z(le),tPA(w)
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is given by

() e’l*\/2u Ej 1 N 1 2
T w) = — ,
Xoz,tea 16hegA 1202 | /By + 12 /B, —1Q /T,

(8.35)

which is in agreement with Ref. [51].

Fig. 8.7 shows a plot of the EM-CMMEA linear optical susceptibility Q;Q,tp A (W)

together with X(III),tPA(w). Inspection of Fig. 8.7 shows that X(mlm),tm(w) approaches

X(III),tPA
40 4
35 -
30 —
25 -
20 —
15 -

10 -

-10 -

Figure 8.7: The EM-CMMEA linear optical susceptibility § together with the ordinary linear
optical susceptibility x of trans-polyacetylene for Ey, = 1.9eV, Ey = 12.8¢V, hy = 0.2eV, and
A =155A2

zero faster than )Z;Ix),tm(w). This is due to the fact that in CMMEA, the factor
1/E2, (k) ~ 1/h*w? in the electric dipole matrix element is treated as a constant.

Zero Band Gap Limit The tPA chain is distorted in the sense that there is a
bond length alternation Il # I’ leading to 8 # (3'. As can be seen from Eq. (8.19),
this so-called Peierls distortion introduces a band gap Fg in the band structure
making tPA a semiconductor. This section treats the more or less hypothetical
case of an undistorted and thus metallic tPA chain.
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In the limit By — 0, Eq. (8.27) yields

E
lim y{Y o = —62l B lim /1 B ircli
Eg_}()Xl‘l’,tPA 271'6014 h292 Eg_)o 0 B2 5 B2
(1= )y /(1= 221+ F4a?)
g

B /1 ELgdx
0 ( 2 5\3/2 2

1+§—:2x2) l—=z

E2 E? 9
_ 62l Eg . _EO /1 E;% (E%_ +x ) dx
20 A h2Q2 Eg—0 | 20202 _1(Eé N 3:2> 3/2(1 _ hféz x2> T— 22
Eg
2
1 /1 B2 dz
2Ey )4 (Eé +m2>3/2 V1—22
Bg
€2l EO
T 2meg A2 (8.36)
since
By
lim —0__ — 95(z) (8.37)
Eg—0 (%g N $2)3/2 ’
0

where §(z) is the Dirac delta function.

A plot of the linear optical susceptibility of tPA in the zero band gap limit
is shown in Fig. 8.8. The figure shows that the present result is well-behaved in
the metallic limit.

At this point it may be noted that Eq. (8.36) is in accordance with the Drude
theory of metals [52] according to which

() = — L%
Xoz (W) = T a2’ (8.38)
where p = All is the m-electron density, and where
(m*)y = I E, = _Eo cos <ﬂ>
o J70 Tk T2 A2/
_ ‘Z_flf (8.39)

is an effective mass averaged over all valence states.
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Figure 8.8: The real part X’ and imaginary part x"” of the linear optical susceptibility of trans-
polyacetylene in the limit E, — 0 for Ey = 12.8eV, hy = 0.2eV, and A = 15.5A%.

Short-axis Linear Optical Susceptibility

As shown in App. C, the following result is obtained for the short-axis linear
optical susceptibility of trans-polyacetylene:

o (B-EB E2-E\  (E-F
o \E - B )T B2

(8.40)

2¢%13 1
7T60lA Eg

X](J;),tPA (u}) =

’

where F' (k) is the Complete Elliptic Integral of the First Kind. A plot of X&ltm(w)
is shown in Fig. 8.9.

Off-diagonal Linear Optical Susceptibility

As shown in App. D, one obtains

X(Ily),tPA (w) = X:l(Jlx),tPA (w)

_ tbe’ By o BB BB (8.41)
- megA E2-m2Q? O\ E2-hr2Q%" E? ' ‘
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1
X:l(Jy),tPA
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Figure 8.9: The real part X’ and imaginary part x" of the short-axis linear optical susceptibility
of trans-polyacetylene for E; = 1.9eV, Ep = 12.8eV, hy =0.2¢V, and A = 15.5A2.
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where the different signs apply to the two degenerate states mentioned in the
comment following Eq. (8.18) with the plus sign applying to the configuration of
Fig. 8.1. A plot of X(l)xwm(w) is shown in Fig. 8.10.

X:(vz,tm
3.5 1
3.0—-
25 -
20-
1.5—-
1.0—-
0.5—-
004 . : :

4 1 2 3 4
-0.5

 hw [eV]

Figure 8.10: The real part ' and imaginary part x'' of the off-diagonal linear optical sus-
ceptibility of trans-polyacetylene for Eg =1.9eV, Eo = 12.8¢V, hy = 0.2eV and A = 15.5A2,

Note that the following relation applies [18]:

X (@) = 0/ X ten (@) X ren (). (8.42)

8.3 Poly(para-phenylene)

The poly(para-phenylene) (PPP) chain is shown in Fig. 8.11 with structure pa-
rameters from Ref. [31]. Note that adjacent phenyl rings in an isolated PPP chain
are twisted approximately 26° with respect to each other [31]. In this work, this
torsion is disregarded, and the PPP chain is treated as a planar molecule with
m-orbitals coupling to other m-orbitals only, since this assumption simplifies the
derivations considerably.
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[ =4.26A

Figure 8.11: The poly(para-phenylene) chain. The coordinates (n,p) indicate carbon atom p in
the nth unit cell. Bond lengths are [; = 1.407A, I = 1.388A, and I3 = 1.465A, and angles are
/123 = 121° and £612 = 118°.

8.3.1 Band Structure

Using the same value § for all Hamilton matrix elements, one obtains

Bk B 0 e®g 0§ 1 /mk)\ [0

8 —Ek) 8 0 0 0 as (k) 0

0 3 _Ek) 8 0 0 | etk | o

gy 05 B s 0 ||amw|=|o] &
0 0 0 3 —E(k) B as (k) 0

s 0 0 0 B —BEWl \eaw) \o

Since the xz-plane is a plane of symmetry for the PPP chain, all eigenstates
can be chosen with definite parity in y. The 6 x 6-matrix eigenvalue problem of
Eq. (8.43) can therefore be decomposed into two smaller eigenvalue problems for
which the eigenstates have even and odd parity in y, respectively.

Eigenstates of Even Parity

For eigenstates of even parity, one has the following eigenvector components:

a1, a2 = a4, a3 = a5, a4, (844)

which leads to the following matrix eigenvalue problem:

~-E(k) 28 0 ek 3T [ai(k) 0
B —E(k) B 0 az(k) 0

o 5 —E® 8 ||lak| " |o (8.45)
ekl 0 28  —E(k)| \as(k) 0
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Eq. (8.45) has the following four nontrivial solutions:

E(k) = i|ﬁ|\/3i V8 cos <%> (8.46)

with corresponding eigenvectors

(9271)e—ikl+2

3.3
liefigl
0?3
1 9272+e—lk‘l
ae(k) = 3 93139 (8.47a)
92_2+e—ik‘l
-3
lﬁ_e—igl
0?3
E(k)
y 0= (8.47b)
5]
Note that Eq. (8.47a) shows that
il = —01, C2 =702, C3 = —03. (8.48)
Eigenstates of Odd Parity
In this case, one has
a1 =a4 =0, as = —ag, a3 = —as (8.49)
and thus
—B(k) B ] <az(k)> <0>
= , 8.50
5 o) (i) = G (5:50)
which has the two nontrivial solutions
E(k) = 3] (8.51)
with corresponding eigenvectors
0
1
. 1] -1
Co(k) = 1o | (8.52a)
1
-1
0
1
. 111
Vo(k) = 31 o (8.52b)
-1
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The m-electron band structure is shown in Fig. 8.12.

E(k) [16]]

0.5 1.0

Figure 8.12: The m-electron band structure of poly(para-phenylene) with the bands numbered
from 1 to 6. The bands 1,2,5,6 and 3,4 correspond to eigenstates with even and odd parity in
y, respectively.

8.3.2 Electric Dipole Matrix Element
Long-axis Electric Dipole Matrix Element

Making the approximation

/123 ~ /612 ~ 120°, (8.53a)
I ~ Iy ~ I3 ~ 1/3=1424A, (8.53b)
Eq. (8.10) yields
ey — CBIL] Lk V2 Ve (UL a—
di, (k) = 3F.. cl< vge +2+2)+02( 2+U3>+C3( vg+2>
* _0_3_1)_5 ikl w [ U_4 * _v_l
+c4< 5 2—1—1)16 )+c5< U6+2)+06< 2—1—1}5) (8.54)

Inspection of Eq. (8.54) shows that d%, (k) is zero for transitions between states
of different parity®. Furthermore, a more careful inspection shows that dZ, (k) is

*The dipole operator z is an even function in y, so when (c| and |v) have different parity in
Y, (clz|v) = 0.
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also zero for the transitions 1 — 5 and 2 — 6. The only transitions contributing
to the linear optical susceptibility are thus

1—6 , 2—=5, 34, (8.55)

where 1 — 6 and 2 — 5 are even-even transitions and 3 — 4 is an odd-odd
transition.

Even-even Transitions Using Eqgs. (8.44) and (8.48) in Eq. (8.54), one ob-
tains

—e|B|l 1 + cos(kl)

dgv,ee(k) = 3F. Q% “30.
el 0’ —3
Ec(k)
y  Oc = . 8.56b

Plots of |d%, (k)| and |d%,(k)|? are shown in Figs. 8.13 and 8.14, respectively.

g, (K)[? [e*A7]

——N k[T
0.5 1.0

Figure 8.13: The absolute square of the long-axis electric dipole matrix element of the 1 — 6-
transition in poly(para-phenylene).
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Figure 8.14: The absolute square of the long-axis electric dipole matrix element of the 2 — 5-
transition in poly(para-phenylene).

Odd-odd Transitions Using Egs. (8.52) in Eq. (8.54), one obtains

el|l
dgv,oo(k) = E
el
= —. 8.57
: (8.57)
Short-axis Electric Dipole Matrix Element
The y-part of Eq. (8.10) yields
3e|B|l
) = LAt oyt 463 ) + ¢ ()
6Fcy
+ ¢ (—vs +vs) + i (—va) + ¢ (—v1) |,  (8.58)
which shows that the contributing transitions are
1—-4, 2—=4, 35, 3—6, (8.59)

where 1 — 4, 2 - 4 and 3 — 5, 3 — 6 are even-odd and odd-even transitions,
respectively?.

*(cly|v) = 0 unless (c| and |v) have different parity in y
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Even-odd Transitions Inserting Eq. (8.52a) in Eq. (8.58) and using Eq. (8.47a),
one has

) 02 5212 )
|dgv,oe(k)| = 12E2V |Ul - U4|
i €2ﬁ2l2 (0v + 1)2(912; — 20, — 1)
122, ~80,
_ e’l? (ov + 1)2(912; —20, — 1)
96 _Qv(l - Qv)2
2[2 5 1 2 5 1 2
- ¢ [2(g+)2—(9+)]. (8.60)
96 Qv(Qv - 1) Ov
Odd-even Transitions Inserting Eq. (8.52b) in Eq. (8.58), one has
€2 322 L.
|dY, oo (K)|* = m| —c —af
212 (1 — p.)2 1—0.)2
96 Oc Qc(l + Qc)

Fig. (8.15) shows plots of |dé (k)|%.

|de (k)2 [e* A?]

Figure 8.15: The absolute square of the short-axis electric dipole matrix element of
poly(para-phenylene). The solid line shows |d¥%, (k)|?> = |dis(k)|?, and the broken line shows
|di, (k)I” = |dEs (k).
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8.3.3 Linear Optical Susceptibility
Long-axis Linear Optical Susceptibility
Inserting Eqs. (8.56a) and (8.57) in Eq. (8.12), one has

T 2 2
MO 2|B|i2 (™' (0t -3 6 N 0} -3 05
TE,PPP 2megA Jo g% 4B2g% — K202 Qg 4B2g§ — h20)?
e’l 2|8
0e0 A 437 — 1202

Introducing the normalized band gap g, and normalized m-band width go:

0s = Eg/IBl =23 -8, (8.63a)
o0 = FEof/|Bl =2\/3+ V8, (8.63b)

and evaluating as shown in App. E, one obtains the following for the long-axis
linear optical susceptibility of poly(para-phenylene):

dk

(8.62)

M () el E} | R2Q? » E; — E}
w =
Xaz,Pee dregA B,h2Q2 | 92 E?
2
202
(B 52) E?-E} E?-E
+ | U -
EZ — 1202 EZ 1202 B
- H(Eg—Eg E§—E§>
By B
e’l 2|f]

9e0A 432 — R2O2 (8:64)

which can be approximated using Egs. (8.30).

Plots of X:(DII):PPP(w) and X:(plz),,;pp (w) are shown in Fig. 8.16. The band gap is
set to its experimental value of Fy = 2.9eV? [22] corresponding to 8 = —3.5eV
and Fy = 16.9¢V, and by fit to the experimental curves of Ref. [22], the damping
parameter is set to iy = 0.03eV. The cross sectional area is A = 21.5A2 [30].

Short-axis Linear Optical Susceptibility

As shown in App. F, one obtains the following approximate expression for the
imaginary part of the short-axis linear optical susceptibility of poly(para-phe-
nylene):

®This band gap corresponds to a wavelength of 428nm which is the wavelength of visible
light in the blue part of the spectrum.
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(1)

Xzx,ppP

40

30

20

10 -

0 T T T T T T T T T T - hw [eV]

-10

Figure 8.16: The real part ¥’ and imaginary part x' of the long-axis linear optical susceptibility
of poly(para-phenylene) for Ey = 2.9eV, hy = 0.03eV, and A = 21.54%.



Chapter 8. Linear Optical Susceptibility 99

2 2\2 2
(1) oefpl (1 =22 —2(1 - 2)
Xyere () 3megA z(1+ 2) Im

1 4(18) — h2)? H( E? - E} E? - ES)
e Eg(Eg—4(|ﬁ|—hQ)2) B2 —4(|8 - ) Ef
8] — &2
m—a(8 - n9)t\ B — 4(18 - h)?
_ 4(18) + 19)” H( By — B By — Eg)
Eg(Eg—4(|5|+hQ)2) 2 4(1p) +h0)> B

(16 +h2) /B2 + 4(1] + h)® ”

\/E2 1181 + h2)” (B2 - 4(16] + h) )3/2

& for hw<|B](1+ %)
, z= —h‘“'g‘m' for |Bl(1+%) <hw<|Bl(1+%) .  (8:65)
L for hw>|B](1+ %)

Fig. 8.17 shows a plot of Eq. (8.65) together with a numerical evaluation of
Eq. (F.1). The figure shows a resonance at hw = |3|(1 + 04/2) ~ 4.95eV which
corresponds to the 2 — 4- and 3 — b5-transitions. Another resonance lies at
hw =~ |B|(1 + 00/2) ~ 11.95eV corresponding to the 1 — 4- and 3 — 6-transitions.

8.4 Comparison

A significant advantage of the closed-form analytic expressions in Eqgs. (8.27)
and (8.64), e.g. over the expressions in Eqs. (8.26) and (8.62), is that certain
similarities are readily identified. Hence, comparison of Eqgs. (8.27) and (8.64)
shows that the F,- and Ep-dependence of the II-function parameters is identical.
Furthermore, for photon energies well below 3FEj, the factors preceding the II-
integrals are approximately identical. The differences between the two expressions
are a factor of 2 and two additional terms in the PPP-expression. As for the
additional term containing the F-integral, the preceding factor is approximately
zero for iw < 3Ep, and the odd-transition contribution is significant for photon
energies in the vicinity of 2|3| = 7eV only. The factor of 2 in favour of tPA has
the following origin: According to Eqgs. (8.15) and (8.46), the cosine arguments of
the tPA- and PPP-expressions for E(k) are kl and kl , respectively, which yields a
factor of 2 in favour of PPP in the density-of-states dk Furthermore, comparison
of Egs. (8.21) and (8.56a) yields a factor of 4 in favour of tPA in the expressions
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0.00 = T . T . T . — hw [eV]
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Figure 8.17: The full line shows a numerical evaluation of Eq. (F.1), while the dashed line shows
the approximate result in Eq. (8.65).
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for |d%,|?:

el EgEO

devies = 7 B2 (8.662)
5 _ —el B2, —126?  —el B, —3E,E,
COFPP 24 E2, 24 E2,
el EgEO
~ — hw < Ey. 8.66b
s gz 0 W< (8.66b)

8.5 Conclusion

In this chapter, the linear optical susceptibility tensor of trans-polyacetylene and
the long-axis linear optical susceptibility as well as the imaginary part of the
short-axis linear optical susceptibility of poly(para-phenylene) have been derived.
Even though the structures of these two conjugated polymers are widely different,
remarkably similar results have been obtained. Hence, the present work suggests
that for photon energies in the vicinity of the band gap, the long-axis linear
optical susceptibility of a general conjugated polymer can be written

(1) ) = e’ E? Eg - Eg - E? Eg - E?
Xaworl0) = B e A B2 | B2 — 202\ B2 — 122" B2
2 2 2 2
_ H<Eg _2E° , By _2E°> (8.67)
Eg Eg
,  hQ = hw + ihy,

where v is the damping parameter, and where E;, Ey, A, [ and K are material
dependent constants. The band gap E; and the m-band width Ej characterize the
band structure, the cross sectional area A and the lattice constant [ characterize
the size of the unit cell, and K is given by the density-of-states and the size of the
long-axis electric dipole matrix element. For trans-polyacetylene and poly(para-
phenylene), K** = % and KPP = i.

It is hoped that the distinct way in which Eq. (8.67) depends on the above-
mentioned parameters serves to clarify the influence of these parameters on the
optical properties of conjugated polymers.
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Appendices

A Long-axis Linear Optical Susceptibility of tPA

Introducing the following shorthand notation:

o> = E? —Eg, (A.1a)
E2 _E2
= 3 (A.1b)
Ey — Eg
S B E; AL
N 27T60A ’ ( ' C)

one has the following for Eq. (8.26):

@ S/l 1 1 1 ar d
T, PA o a2zt Eg a2x? + Eg — K202 \/GQIQ(GQ — a?z?) \/Eg + a242

B S/I 1 1 dz
- "o a®z?+ EZ a?a? 4+ E2 — R2Q? \/(1 —2?)(E2 + a%2?)

(A.2)

1
/ E2h2§22 EZR2Q2—hi0* EZhQ? dz
E 1+ Jop h292x2 1+ %_2;9”2 \/(1 —x?)(1 + %_22"”2)
g

Eq. (A.2) is a sum of two Complete Elliptic Integrals of the Third Kind II(n, k)
defined by

! 1
/o (1 —nz?)\/(1 — 22)(1 — kz?)

(n, k) = dr, (A.3)

and Eq. (A.2) can thus be written

(1) S a® a?
XCECE,tPA(w) = Eg’hZQZ — Egh4Q4 I _Eg — hQan_E_g
S a’ a’®
L sn( g "

With @ and S written in full, one obtains Eq. (8.27).
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B EM-CMMEA Linear Optical Susceptibility of tPA

Using Egs. (8.31), (8.33) and (8.34) in Eq. (8.12), one obtains

2712 2 poo !
(1) _efl EO/ 1 dk
Xa;a;,tPA(w) - 72 272 (Bl)
Weodlo Ty 1 B (B 1 B 00
212\2uE2 [ 1 1 da Rk
= — Tr =
8rheoA Jo By +x (Ey +2)° — h2Q2 V7 20
_ E\2uE} /°° 1/Vz 1/vr = 2/\z y
T 16mheo A2 Jy |1+ Byt hQ w4+ By —hQ  mt By |

which integrates to Eq. (8.35).

C Short-axis Linear Optical Susceptibility of tPA

Inserting Eq. (8.22) in Eq. (8.12) and using the shorthands in Eqgs. (A.la) and
(A.1b), one obtains

26212 [! 1 1/Eg—i-a?ach

weglA o Eg — K202 +a2x2 /1 — 12 v

1 2 2,2 279
1 FEz +a“x 2e?l

= S/ 5 503 5 5 de , S= €

o Eg —h*Q*+a’x \/(1 x2)(Eg a22) megl A
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Be o 1+ prtppma’ \/(1—x2> (1+ 8502)
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X?(ﬁ/),tPA (w) =

dr

— SL I @ a
B2 — 202 B2 - 1202 E2

S a’ a’ a?
P T ) R
E, B2 B2 —h2Q?" B2
where F' is the Complete Elliptic Integral of the First Kind:
! 1
F(k) = / dx C.2
(k) o /(1 —22)(1 — kx?) (©.2)

Writing Eq. (C.1) in full, one obtains Eq. (8.40).
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D Off-diagonal Linear Optical Susceptibility of tPA

Inserting Eqgs. (8.21) and (8.22) in Eq. (8.12) and using Egs. (A.la) and (A.1b),
one has

X(mz),tPA(w) = X:l(JII),tPA(w)

1262EgE0 /1 dz
oA Jo (B2 — 202 +a%a?), /(1 — 2)(E} + a%a?)

(D.1)

and thus Eq. (8.41).

E Long-axis Linear Optical Susceptibility of PPP

Evaluation of the first two terms in Eq. (8.62) yields

2
Wt = S s O das
v ee 12me0A | Jyosa \ 02 402 05 — h?Q2 dog
+/¢§ (gg_3>2 o5 LU
oz \ ) 4370 —RP0%dgs "
2
Sy /\/g (0% —3> 2 —2sdes
w2\ G ) AP0 — PO \/(03/4—9%)(—0§/4+9%)
+/\/§ <Q§ 3)2 05 05d o5
2 2
0e/2 \ 0f 453202 — n2Q? \/(gg/4—g§)(—g§/4+g§)
00/2 /2 _ 2 1
=48 (Q 3> 13202 — 22 do (B.1)
o2 \ 0 APE IR f(g2 —402)(— g} + 40?)
Cogo el
187r€0A
Introducing
F = (G- = BB (B2
B o= o2 - 102 = E - 127 (E.2b)
4 2 _ 2
2 = 92 928;, (E.2¢)
Oy — Qg

one obtains
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Eg (b _Eg) g g

Use of the relation (Eg + Eg) /2 = 3EyE, and inclusion of the odd-odd contribu-
tion leads to Eq. (8.64).

F Short-axis Linear Optical Susceptibility of PPP

Inserting Egs. (8.60) and (8.61) in Eq. (8.12), one obtains

W g [ (=) 20 -0
Xirer () = S/g ( o1+ 0) 8

/2
1 odo (F.1)
2 2 _ K202 :
Pt 0 = B (2 —4%)(— g2 + 40?)
’ S:4eQ|ﬂ|l.
3megA

In the limit of zero damping, one has

1
Im{BQ(1 o= EQQQ} x 5(52(1 + g)z . h2w2>,
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Assuming that the slowly varying part is constant during differentiation, one
therefore has the following for the imaginary part of Eq. (F.1):

" 1— 2’2 2 —2(1 — 2 2
X?(;Z),PPP = S( ) ( ) X
z(1+ 2)

90/2 1 ng
i F.3
m{ /Qg” B+ =R fg2 —492)(—Q§+492)} )

& for hw<|ﬁ|(1+g)

y Z= |5“ﬁ| for |4 ( ) < hw < |f| (1 +

L for hw > |4 (1 + 2)

=)

0),

v

where Im indicates the imaginary part.
Using Egs. (E.2a), (E.2c) and

do = 2|B| £ 259, (F.4)

the integral in Eq. (F.3) can be written

! 1 dx
/0 (21| + \/a2a? + E2)* — 4p202 V1 —2?

1 /1 1 1 dz
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™ d_

2 \/ + E2 d2 \/EQ d2

A e e
Ey(EZ —d3) "\ -E;+d3’ E?

di (Ef +d2)

Ja+ B2 -2 (B2 - a2)?]

Writing Eq. (F.5) in full, one obtains Eq. (8.65).
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Chapter 9

Electro-optic Susceptibility

This chapter treats the long-axis electro-optic properties of poly(para-phenylene)
(PPP), since an improved understanding of these properties might ultimately
serve to optimize the application of PPP in connection with polymer-based light
emitting diodes, solar cells or photodetectors.

The chapter contains a derivation of an analytic, perturbative expression for
the complex long-axis optical susceptibility of pristine, infinite, parallel and non-
interacting chains of PPP in the presence of an electrostatic field directed along
the long-axis of the polymer. The obtained expression is valid for photon energies
in the vicinity of the band gap. To obtain the high-field electro-optic character-
istics and to assess the applicability of the low-field perturbation expression, a
numerical, non-perturbative tight-binding calculation of the high-field electro-
optic susceptibility is also presented.

The results presented in this chapter have been published in Ref. [2].

9.1 Analytic Derivations
Consider a both static and spatially invariant electric field
F=Fz (9.1)

directed along the long-axis of the polymer.
According to Eq. (3.38), in an inversion-symmetrical PPP chain, one has the
following perturbative! approximation to the long-axis electro-optic susceptibil-

1ty:

X(F,w) = xD(w) + x () F?, (9-2)

!The field can be treated as a perturbation if it is sufficiently small for the higher-order
corrections x® (w)F*, x(V(w)F®,... to Eq. (9.2) to be relatively small.
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in which the following shorthand notation has been used for the long-axis electro-

(3) (1)

optic function yzzz» and the long-axis linear optical susceptibility xzz :

XV(w) = xPo(w=w+0+0), (9.3a)
XDw) = xB(w). (9.3b)

According to Aspnes and Rowe [53], the electro-optic function x(® can be derived
from x(!) through

1 e2p2 <h202x(1)(w)>

(3) () ~
XTI > 50 s 9(h2)3 ’

hw ~ By, (9.4)

where e > 0 is the elementary charge, ;1 is the reduced mass, FE, is the band
gap, and where A2 = hiw + ih7y includes the photon energy fiw and the damping
parameter y. Eq. (9.4) is based on a two-band effective mass model and is
therefore valid for photon energies in the vicinity of the band gap only.

The analytic tight-binding derivation of the linear optical susceptibility W,
which is given in full detail in Chap. 8, follows the following outline: The deriva-
tion is made in the free-carrier m-electron dipole approximation, and local-field
effects and inter-chain coupling is disregarded. In unevaluated form, the linear
optical susceptibility is given by Eq. (8.12):

jus
I

2 o (k)
D) — 2 Fev
W00 = g E b g )

where g is the vacuum permittivity, | = 4.26A is the lattice constant, A = 21.54°
is the cross sectional area occupied by the PPP chain [30], E, (k) = E.(k)— E\ (k)
is the m-band excitation energy as a function of crystal momentum, and z. (k) is
the z-component of the electric dipole matrix element between the valence band
v and conduction band c.

The excitation energy F, is found by setting up a matrix eigenvalue problem
using the atomic 2p,-orbitals as basis while disregarding wave function overlaps
between neighbouring atomic sites and including nearest neighbour Hamilton
matrix elements only. The obtained band structure and conduction and valence
band expansion coefficients are then used to derive the electric dipole matrix
elements through Eq. (8.10):

Ter(k) = = D o (B)vp ()™ (wpn — wq0) (a0 | F|pn) (9.6)

Fey (k) 0,
where 1z, is the z-coordinate of the pth atomic site in the nth unit cell, cj (k) and
vp(k) are the conduction and valence band expansion coefficients, respectively,
and (g0|H |pn) is the Hamilton matrix element between 2p,-orbitals on atomic

sites g0 and pn.
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As an example, for the dominant transitions between the highest valence band
and lowest conduction band, Egs. (8.46) and (8.56) show that

E. (k) = 2|ﬁ|\/3 —V/8cos (%), (9.7a)

—el B2, — 1237
k) = — S —— 9.7b
xcv( ) 24 Egv ) ( )
where 3 is the Hamilton matrix element between any two neighbouring sites.
Finally, Eq. (9.5) is evaluated using the excitation energy F., as integration

parameter, and one ultimately obtains the combination of Eqgs. (8.30) and (8.64):
e’  Ey | h2Q? » E; — Ej
dmeg A 202 | 9B, Ey B2
2
h2Q02
(Eg T BEo )

m)
arcsin| — | — 1| , w~rE,; (9.8)
hQ ) E2 — 1202 <Eg ]

where Ej is the total width of the w-bands, and F(k) = fol W is the
—z2)(1—kzx

Complete Elliptic Integral of the First Kind. In Eq. (9.8), the contributions from
odd eigenstates have been neglected due to their negligible contributions to the
band edge susceptibility.

Inserting Eq. (9.8) in Eq. (9.4) and assuming that slowly varying factors are
constant during differentiation, one obtains the following end result:

X&)P (w) =~

_l’_

5 o [ aresin(B2)
By (B, — L) ? <\/W>
967eg AphQ3 d(hs2)3
e'1(3E, By - h292)2
864meg ApEyhQ?

X§’3P)P (w) =

4E, + TEZR*Q? — 111°Q*
(B2 — n22)"
: a2
3RQ(3E2 + 2202) arcsin (42
(B2 — m202)"”

+

] , hw~E, (9.9

From Fig. 9.1, which shows a plot of Xlg?;)l)(w), it can be seen that the field-

induced change in the susceptibility is appreciable for photon energies close to
the band gap only. Notice in Fig. 9.1 the field-induced absorption tail below the
band gap caused by field-induced tunnelling of electrons [51]. The present result
demonstrates that analytic expressions for the electro-optic properties can be
found for a conjugated polymer with a relatively complicated chemical structure
such as PPP.
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Figure 9.1: The real part x )" and imaginary part X(S)H of the long-axis electro-optic function

of poly(para-phenylene) for E; = 2.8¢V, Eg = 16.2eV, hy = 0.1eV, and p = 0.07mo [1].

9.2 Numerical Results

To assess the applicability of the analytic, perturbative approach presented in
Sec. 9.1, a numerical, non-perturbative tight-binding evaluation of the electro-
optic susceptibility has been made for comparison. The non-perturbative result
is valid for arbitrary field strengths, while the perturbative result is valid in the
low-field limit only. The numerical model is based on a PPP chain consisting of
100 unit cells and is in all other aspects identical to the PPP model used in the
analytic derivation.

Fig. 9.2 shows a comparison of the analytic result in Fig. 9.1 with the nu-
merical result Axppp (F = 1mTV,w) = Xrpp (F = 1mTV,w) —Xl()}))l)(w), and Fig. 9.3
shows a plot of Axppp (F = 2mTV,w). Inspection of Fig. 9.2 shows that the ana-
lytic, perturbative result of Eq. (9.9) is an excellent approximation to Axppp (F,w)
for fields smaller than ~ lmTV. For fields larger than ~ lmTV, however, Fig. 9.3
shows the emergence of oscillations above the band gap, which is characteristic
of the non-perturbative Franz-Keldysh regime [51].

9.3 Discussion

Ref. [54] contains an analytic expression for x(®) derived using the Keldysh di-
agram technique in a one-electron two-band continuum linearized model of a
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Figure 9.2: Comparison of the analytic result in Fig. 9.1 with the numerically obtained real part
Ax' and imaginary part Ax" of Axppp (F =127, w).
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Figure 9.3: Numerically obtained real part Ax’ and imaginary part Ax" of Axeer (F = 2255, w)
for Bz = 2.8eV, Ep = 16.2¢V, and hy = 0.1eV.
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conjugated polymer chain with constant dimerization. Comparison with the re-
sult in this work shows that the corresponding curves are quite similar, and that
our expression is considerably simpler than the one given in Ref. [54]. Further-
more, comparison of Fig. 9.1 with the corresponding figure in Ref. [53] shows good
agreement concerning the shape of the curves as well as the relative magnitudes
of the peaks.

In Ref. [51], a non-perturbative, analytic expression for the electro-optic sus-
ceptibility of one-dimensional semiconductors is derived using the effective mass
and constant momentum matrix element approximation (EM-CMMEA). Com-
parison of the second-order field-expansion of this expression with Eq. (9.9) of
this work shows that the EM-CMMEA is valid for photon energies close to the
band gap, as would be expected, but that for hw = 2.5eV, say, the EM-CMMEA -
induced error is 18%.

9.4 Conclusion

In this chapter, an analytic, approximate expression for the long-axis electro-optic
function of poly(para-phenylene) has been derived. To test the applicability of
this result in a perturbative expression for the electro-optic susceptibility, a non-
perturbative, numerical evaluation has been performed for comparison. This
comparison shows that the analytic, perturbative approximation to the electro-
optic susceptibility of poly(para-phenylene) given by Egs. (9.2) and (9.9) is valid
for electric fields weaker than ~ lmT}/.
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Chapter 10

Phonons

The treatment of phonons in extended systems such as conjugated polymers
is computationally cumbersome within ab initio DFT. With this in view, this
chapter confirms the applicability of the in Chap. 5 described computationally
effective Density-Functional-based Tight-Binding (DFTB) approach to phonon
dynamics in the conjugated polymers trans-polyacetylene (tPA) and poly(para-
phenylene) (PPP).

Whereas the first theoretical treatments of vibrations in tPA [6, 55, 56, 57, 58,
59, 60, 61] and PPP [62, 63, 64, 65] date back several decades, the first ab initio
LDA-DFT calculation of the in-plane phonon spectrum of tPA was performed in
1997 by Wu et al. [66] and extended in 1999 by Wu and co-workers [67] to include
the out-of-plane phonon modes as well. A DFT-based vibrational treatment of
the PPP oligomers biphenyle and terphenyle was presented in 2002 [68], but has
yet to be seen for the polymer itself.

This chapter contains calculations of the equilibrium configuration, the pho-
non dispersion curves, the relative atomic displacements in the zone-centre modes,
which are furthermore identified as being either Raman or infrared (IR) active,
and finally the infrared absorption spectrum. The presented results are compared
with experimental and calculated results from the literature.

While the general theoretical framework is based on Chap. 6, the presented
model and computational approach is somewhat similar to the one applied by
Sanchez-Portal and Herndndez in their calculation of the vibrational properties
of single-wall nanotubes [69]. The only required input in the present model
is the parametrized Hamilton and overlap matrix elements. Calculations are
performed on pristine, infinite and non-interacting polymer chains within the
Born-Oppenheimer and harmonic approximations. Electron-phonon coupling is
disregarded leaving important extensions to be considered in future work.

The results presented in this chapter have been published in Ref. [3].
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10.1 The Model

10.1.1 Super Cell

The polymer chains are assumed to be infinitely long, but the sum in Eq. (6.14)
is limited to a number of neighbouring unit cells constituting the so-called su-
per cell, which is then subsequently reproduced periodically along the polymer
chain. In choosing the size of this super cell, the tradeoff is between accuracy and
computational efficiency. This work includes results obtained for different sizes
of super cells.

10.1.2 Equilibrium Configuration

The equilibrium configuration RO is found by minimizing the semiconductor
equivalent of Eq. (5.4):

V(R) :2Zev(k,ﬁ) + 3 Vil (| R - By|) (10.1)
v,k

1<j

to an accuracy of 0.01eV'. To impose molecular symmetries and thereby simplify
the calculations, the Euclidian coordinates R are replaced by structural parame-
ters in terms of bond lengths and angles as parameters for this minimization.

Notice that trans-polyacetylene differs from almost any other polymer in
having two degenerate ground states with one ground state being as shown in
Fig. 10.1 while the other is flipped 180° around the y-axis. This degeneracy gives
rise to the intensively studied problem of solitons [5] which is disregarded in this
work (for a short description see Sec. 7.3).

In order to reduce the size of the PPP unit cell, the torsion between alternating
phenyl rings is ignored, and PPP is thus treated as a planar molecule with a unit
cell as shown in Fig. 10.2. Isolated PPP chains have a torsion angle of about
26° [70], but in the polymer films used for experiments, solid state packing will
strongly reduce this torsion angle making the approximation of planarity quite
reasonable. That the two molecules are planar leads to a decoupling of the zy-
and the z-components in the dynamical matrix. This permits in-plane (zy) and
out-of-plane (z) calculations to be performed separately leading to an increased
computational efficiency.

'Notice that Eq. (10.1) shows inter-atomic bond lengths to be the result of a compromise
between on the one hand the lowering of the valence band energy resulting from an increased
overlap of the electron clouds and on the other hand the increased nuclear repulsion caused by
a decrease in the bond lengths.
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10.1.3 Force Constant Matrix

e
Writing the elements of the force constant matrix C' in terms of the atomic force

vector and applying a harmonic approximation?, one has for a small displacement
d [71]:

oF;| _ Fj(R®+dé)

Cpj= ——d| ~ I T
J aRl R‘o d

(10.2)
where €; is the unit vector corresponding to the ith degree of freedom.

To reduce the number of numerical steps required to solve for the band struc-
ture, the force component in Eq. (10.2) is expressed in terms of the derivatives of
the Hamilton and overlap matrix elements H,3 and S,z [45] (see the appendix):

asaﬁ _ OHup\  OViE
ZZV \ (ev oR, )— R, (10.3)

v,k «a,3

SC
When numerically approximating the derivatives of X € {Sas, Hag, Viap,} via

0X X (R +dé; +dé;) — X (R° + dé; — dé;) _ AX

= = 10.4
OR; 2d 2d "’ (10.4)
one obtains
AH, S AS, AVES
ZZV RO v/3 ) Zab — €y (RS_) b L (10.5)
SC d i d2 d2
v,k «a,3
with
R = R® + dé,. (10.6)

In choosing the value of the displacement d, the following compromise is to be
made: Inherently, d is to be small for the approximation in Eq. (10.2) to be valid.
On the other hand, too small a displacement will lead to numerical instability,
since taking the difference AX will amplify the inherent errors of the in that case
almost identical values X(ﬁ0 + dé; + dé'j) and X(R’0 + dé; — dé'j). In this work,
the compromise landed on the value

d =0.01A. (10.7)

In this connection, the “forward-backward”-approach of Eq. (10.4) in taking
derivatives with respect to R; is applied to reduce the errors resulting from the
relatively large value of d. Furthermore, to compensate for anharmonicities, an
average is made over positive and negative displacements d and —d [69]. The
k-sum in Eq. (10.5) is performed using a 10 point Gaussian quadrature.

2In the harmonic approximation, the force on an atom is proportional to the atom’s displace-
ment from its equilibrium position.
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10.1.4 Symmetries

To avoid obtaining unphysical phonon spectra, all system symmetries are im-
posed on the force constant matrix. First of all, the force constant matrix is to
be symmetrical. Secondly, for tPA the two CH bonds in the unit cell are iden-
tical, and corresponding force constant matrix elements should thus be identical
also. The same argument holds for the CH interaction crosswise between the two
CH bonds. These symmetries are imposed by simple averaging over the matrix
elements in question. Similar considerations are made for PPP.

For small displacements from the equilibrium configuration, the ith compo-
nent of the force acting on the pth atom is given by

N
Fp==> Copdy; » j€{zy.2} (10.8)

=1 j

where N is the number of atoms in a super cell, and where d; is the displacement
of the gth atom in the direction of the j-axis.

For a displacement of the entire system as a whole, (d;, = d;) all atomic
forces are zero, and hence

N

ZC‘]jypi = 0 ) Vp,l,] (109)
q=1

This so-called acoustic sum rule is imposed by adjusting the 3 x 3 block diagonal
force constant matrix elements corresponding to interactions of an atom with
itself.

10.2 Results

10.2.1 Equilibrium Configuration

Figs. 10.1 and 10.2 show the equilibrium configurations of tPA and PPP, respec-
tively. As can be seen from Tabs. 10.1 and 10.2, the obtained results are in good
agreement with other results from the literature with the deviations being within
a few percent.

10.2.2 Phonon Dispersion

Figs. 10.3 and 10.4 show the in-plane and out-of-plane tPA phonon dispersion
curves, respectively, for a super cell consisting of 11 unit cells. The two in-plane
modes around 3100cm~" are CH bond stretching modes (see Fig. 10.7). As the
phonon momentum ¢ is a measure of the phase difference between vibrational dis-
placements in different unit cells, the almost dispersionless nature of these modes
indicates that CH bonds in different unit cells vibrate almost independently of one
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Figure 10.1: The trans-polyacetylene unit cell has the following structural parameters in the
equilibrium configuration: Iy = 1.369A, I = 1.414A, I3 = 1.113A, ¢; = 124.4° and 5 = 117.3°
corresponding to a lattice constant of [ = 2.461A.

Figure 10.2: The poly(para-phenylene) unit cell has the following structural parameters in the
equilibrium configuration: I; = 1.399A, I, = 1.380A, Is = 1.463A, I, = 1.113A, ; = 117.8° and
ty = 118.9° corresponding to a lattice constant of [ = 4.286A.
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Table 10.1: Comparison of the calculated equilibrium configuration of trans-polyacetylene with
calculated [72, 73, 74, 75] and observed [76] results from the literature. The columns marked
with % show the deviation of the present results with respect to the references indicated. The
symbol = indicates that the value has been fixed.

This [72] [73] [74] 7] [5)%  [76] [76]%
work
Ii 1.369A 1.377A  1.377A 1.327A  1.35A  1.4% 136A 0.7%
lo, 1.414A 1.434A  1.434A 1477A  1.42A -04% 145K -2.5%
Is; 1.113A 1.084 =1.08A 1.085A 1.10A 1.2% 1.09A 2.1%
t 124.4° =120° =120° 124.2° 124.53° -0.1%
ty  117.3° 117.01°  0.3%
I 2461A 2435A  2.435A 2479A 2443A  0.7%

Table 10.2: Comparison of the calculated equilibrium configuration of poly(para-phenylene)
with calculated results from Ref. [70]. The column marked with % shows the deviation of the
present results with respect to Ref. [70].

This [70]  [70]%

work
I, 1.399A 1.407A -0.6%
lo 1.380A 1.388A -0.6%
Is 1.463A 1.465A -0.1%
I, 1.113A 1.103A 0.9%
ty 117.8° 117.5°  0.3%
ty  118.9° 119.2° -0.83%
I 4.286A 4.31A -0.6%
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another. The high frequencies indicate that the CH bond stretching is decoupled
from the motion of the carbon backbone.
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Figure 10.3: The in-plane phonon dispersion curves of trans-polyacetylene for a super cell con-
sisting of 11 unit cells.

Comparison of the spectra in Figs. 10.3 and 10.4 with corresponding spectra
based on a super cell consisting of 3 unit cells will reveal substantial differences,
especially when it comes to the lower phonon bands. This demonstrates that
3 unit cells is insufficient as a tPA super cell. In this work, phonon dispersion
curves have been calculated for super cells containing 3, 5, 7, 9 and 11 unit cells
with results showing a steady convergence towards the phonon dispersion curves
displayed in Figs. 10.3 and 10.4.

The lowest in-plane tPA phonon band is imaginary for low g-values corre-
sponding to negative solutions for w? in Eq. (6.13). This unphysical behavior has
been minimized by imposing the system symmetries mentioned in Sec. 10.1.4.
That force constant matrix elements representing identical physical interactions
are made identical does not ensure, however, that the force constant matrix ele-
ments are not assigned unphysical values. To correct the imaginary frequencies,
the lowest phonon band in Fig. 10.3 is cut around ¢ = 0.3A"" and the part of the
band containing the imaginary frequencies replaced by a parabolic fit. The orig-
inal phonon band is seen as a dotted curve. The problem of unphysical phonon
bands decreases as the size of the super cell is increased. Hence, all the results
for tPA presented below are for a super cell consisting of 11 unit cells.
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Figure 10.4: The out-of-plane phonon dispersion curves of trans-polyacetylene for a super cell
consisting of 11 unit cells.

For PPP, a super cell consisting of 3 unit cells is found to be sufficient.
Figs. 10.5 and 10.6 show the in-plane and out-of-plane PPP phonon dispersion
curves, respectively. The lowest phonon band in Fig. 10.6 has been corrected for
imaginary frequencies in the same manner as described above. Notice again the
presence of the dispersionless high-frequency CH modes which serve as a hallmark
for carbohydrate molecules.

The literature contains numerous calculations of the phonon dispersion curves
of tPA [6, 55, 56, 58, 59, 61, 66, 67] and PPP [62, 63, 64, 65]. Among these,
Refs. [6, 67] and [62, 64] present the out-of-plane as well as the in-plane dispersion
curves. For tPA, comparison shows good agreement between the present results
and the results obtained in Ref. [67] via an ab initio LDA-DFT calculation as well
as with the results in Ref. [6] which were obtained by fitting the force constants
to experimental phonon frequencies.

For PPP, comparison shows reasonable agreement with the results obtained
for a planar PPP molecule in Refs. [62] and [64]. In Ref. [62], force constants
were transferred from the toluene molecule, and in Ref. [64], a quadratic simplified
valence force field was used.
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Figure 10.5: The in-plane phonon dispersion curves of poly(para-phenylene) for a super cell
consisting of 3 unit cells.
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Figure 10.6: The out-of-plane phonon dispersion curves of poly(para-phenylene) for a super cell
consisting of 3 unit cells.
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10.2.3 Zone-centre Modes

Figs. 10.7-10.9 show a graphical representation of the relative atomic displace-
ments Qifi(q = 0) associated with the different zone-centre modes. Different Q);’s
have been chosen for the different modes in order to obtain a useful length scale
of the arrows. Notice how the Raman active modes preserve inversion symmetry.
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Raman active IR active
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Figure 10.7: The relative displacements of the zone-centre phonon modes of trans-polyacetylene.

Comparison of Fig. 10.7 with the calculated tPA phonon mode displacements
in Refs. [57, 59, 60] shows good agreement on the relative displacements. Fur-
thermore, Tab. 10.3 shows a reasonably good agreement between the calculated
tPA zone-centre frequencies of this work and the calculated and observed frequen-
cies in Ref. [60] and Refs. [57, 59, 67, 77], respectively. Notice that for in-plane
tPA phonon frequencies larger than 1400cm™!, the frequencies of this work are
consistently larger.

Comparison of Fig. 10.8 with the calculated below 2000cm™! in-plane PPP
phonon mode displacements in Ref. [64] shows a handful of modes for which the
agreement is less than good. It has not been possible to find other calculations
with which to compare. Since it has not been possible to find other calculations
of the relative displacements of the out-of-plane PPP modes either, the results
in Fig. 10.9 seem to be the first of their kind. Tab. 10.4 shows a comparison of
the calculated PPP zone-centre frequencies of this work with calculated frequen-
cies found in the literature. Inspection shows good correspondence for phonon



Chapter 10. Phonons

125

pOS

886cm !

XX

1350cm™t

101

1831cmt

t
¥
ﬁg_

3029cm !

X
T

1136cmt
1468cmt

1832cmt

3049cm! ;j ii

N

X
S 00

Acoustic
Optic
Raman active IR active
513cm ! 622cm

Figure 10.8: The relative displacements of the in-plane zone-centre

poly(para-phenylene).

phonon modes of



126 Part IV. DFTB Treatment of Phonons and Polarons

Acoustic

Optic
Raman active IR active

Figure 10.9: The relative displacements of the out-of-plane zone-centre phonon modes of
poly(para-phenylene).
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Table 10.3: Comparison of the calculated zone-centre phonon frequencies of trans-polyacetylene
with calculated [60] and observed [57, 59, 67, 77| frequencies from the literature. R, indicates an
out-of-plane Raman active mode, and all frequencies are in units of cm™ . The columns marked
with % show the deviation of the present results with respect to the references indicated.

This [60] [57] 7% [B9  [67] [60% [771 [171%

work
R, 824 915 884 -6.8%
Ry 1032 1163 1060 -2.6% 1064 1012 2.0%
I, 1034 999 1066 -3.0% 1015 1.9%
I 1211 1284 1170  3.5% 1292 -6.3%
R, 1400 1278 1285 9.0% 1294  8.2%

Ry 1486 1639 1450 2.5% 1456 1457 2.0%
Ry 3075 2979 2990 2.8%
I 3093 3010 3013 2.7%

frequencies below about 1400cm~! and above 3000cm ™', whereas the present
in-plane frequencies in the intermediate interval are consistently larger than the
corresponding frequencies from the references. It should be noted that the above-
mentioned deviating phonon mode displacements are evenly distributed among
the below 2000cm ™" in-plane modes so that no apparent connection between the
displacement and frequency deviations can be ascertained.

10.2.4 Infrared Absorption Spectrum

Figs. 10.10 and 10.11 show the IR absorption spectra of tPA and PPP, respec-
tively, calculated from Eqs. (6.27) and (6.42). As can be deduced from symme-
tries in the vibrational modes presented in Figs. 10.7-10.9, the IR active modes
contribute to either ., oy, or a,,.

As can be seen from Fig. 10.10, observed IR spectra for tPA [60, 77] show
a strong absorption line around 1000cm ™!, a weak line around 3000cm ' and
an almost undiscernably weak line around 1300cm~'. Fig. 10.10 shows good
agreement on the resonant frequencies in question, but a poor agreement on the
relative amplitudes of the absorption lines. It is perhaps worth noting that in the
calculated TR spectrum in Ref. [60], the absorption line at 1284cm ! is nearly as
strong as the line at 999cm ™",

Being based on Eq. (6.42) and thus on the approximation in Eq. (6.40), one
would expect that the IR spectra could be made more accurate by taking the
derivative of Eq. (6.39) numerically. However, doing so results in a huge, un-
physical amplification of the CH bond stretching modes around 3000cm™". This
amplification can be attributed to the lack of self-consistency in the model, since
this means that the full prize in energy is not paid for a perturbation of the
electron distribution. The simultaneous CH bond stretching and compression
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Table 10.4: Comparison of the calculated zone-centre phonon frequencies of poly(para-
phenylene) with calculated frequencies from the literature. R, indicates an out-of-plane Raman
active mode, and all frequencies are in units of cm™". The columns marked with % show the
deviation of the present results with respect to the references indicated.

This

work  [62] [62]%  [64] [64]%
R, 411 399 3.0% 401 2.5%
R, 427 408  4.7% 402 6.2%
I, 439 415 5.8% 458 -4.2%
R 513 435 17.9% 460 11.5%
R 622 605 2.8% 602 3.3%
R, 760 740 2.7% 760 0.0%
I, 75 788 -1.7% 790  -1.9%
R, 831 805 3.2% 834  -04%
Ry 886 847  4.6% 846  4.7%
R, 945 944 0.1% 945 0.0%
R, 968 969 -0.1% 961 0.7%
I 1035 1016  1.9% 968 6.9%
I 1082 1045 3.6% 1075  0.7%
I 1129 1076  4.9% 1051 7.4%
Ry 1136 1169 -2.8% 1127  0.8%
Ry 1350 1298 4.0% 1328  1.7%
I 1430 1316  8.7% 1268 12.8%
Ry 1468 1335 10.0% 1289 13.9%
I 1586 1347 17.7% 1440 10.1%
I 1643 1469 11.8% 1510 8.8%
R, 1831 1609 15.8% 1661 10.2%
Ry 1832 1665 10.0% 1654 10.8%
I 3027 3055 -0.9%
Ry 3029 3059 -1.0%
R 3049 3064 -0.5%
I 3051 3067 -0.5%
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Figure 10.10: The infrared absorption spectrum a(w) = quz(w) + ayy(w) + .. (w) of trans-
polyacetylene (top) compared with the experimental spectrum of Ref. [60] (bottom). The vertical
bars in the bottom figure mark the infrared active zone-centre frequencies obtained in this work,
while the frequencies 1015cm ™", 1292cm ™", and 3013cm ™" are from Ref. [60].
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Figure 10.11: The infrared absorption spectrum a(w) = @z (w) + ayy(w) + .- (w) of poly(para-
phenylene) (top) compared with the experimental spectrum of Ref. [62] (bottom). The vertical
bars in the bottom figure mark the infrared active zone-centre frequencies obtained in this work.

The a..- and az.-contributing modes lying outside the scale of the bottom figure are at 439cm
and 1643cm ™, respectively. According to Fig. 10.8, there is an a,.-contributor at 1035cm™

-1
1

and an ay,-contributor at 1430cm ™" which are too weak to appear on the scale of the top figure.
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thus leads to an unphysically large oscillatory change in the electron distribution
within the molecule resulting in the induction of a huge change in the dipole
moment. This effect necessitates the use of the quite crude approximation stated
in Eq. (6.40).

For PPP [62, 78, 79], three weak absorption lines are observed around 775cm ™ *,
1000cm™" and 1400cm~™', one medium absorption line is observed around
3050cm !, and two strong absorption lines are observed around 800cm ™' and
1475cm™~!. As can be seen from Fig. 10.11, this work has two strong absorption
lines at 775cm ™! and 3027-3051cm~!, two medium absorption lines at 1082-
1129cm ™" and 1586-1643cm™", and one weak absorption line at 439cm™'. The
poor agreement on IR absorption intensities should not be surprising considering
that DFTB, as mentioned above, due to its lack of self-consistency has a poor
description of vibrationally induced perturbations of the electron distribution.

Besides the various approximations contained in the present model, the most
significant deviation from experimental reality is probably the fact that the model
treats a single molecule or, equivalently, a number of perfectly aligned, non-
interacting molecules, whereas experiments are performed on films containing
somewhat entangled molecules. Such entanglement would expectedly lead to
a weakening of especially the high frequency CH modes around 3000cm~" and
might therefore at least partly explain the enhancement of these modes in the
present IR spectra. Furthermore, this model disregards electron-phonon coupling,
the torsion in the PPP molecules and the soliton effect in tPA, and parameters
such as temperature and pressure, which have a role to play in experiments, are
also disregarded.

10.3 Conclusion

In this chapter, the applicability of the DFTB model has been tested by calcu-
lating equilibrium configurations, phonon dispersion curves, zone-centre phonon
mode displacements and IR absorption spectra for the two conjugated polymers
trans-polyacetylene (tPA) and poly(para-phenylene) (PPP).

When it comes to IR absorption intensities, DFTB is not able to provide
reasonable results due to its lack of self-consistency. Otherwise, the results for tPA
show good agreement with results from the literature, and for PPP the agreement
with the few other available results is reasonably good. Aslong as one does not try
to describe properties that are sensitive to the lack of self-consistency, DFTB is
seen to be a highly efficient computational method with which reasonable results
can be obtained for the vibrational properties of extended systems such as infinite
chains of conjugated polymers.
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Appendix

A Derivation of the Force Component

Using Eq. (10.1) while omitting the configuration parameter R for notational
reasons, the jth component of the force vector is given by?

1 v

Ny OR;

2 de(k) Vi

= — - , je{1,2,...,3N}, (A.1)
Ny &< OR; ~ OR,

)

F; =

where Ng. and N is the number of super cells in the chain and the number of
atoms in a super cell, respectively, and where

]. — —

Vi = 5o 2 Vi ([ By — R), (A-2)
SC p<q

with p and ¢ running over all atoms in the chain. V3 is thus the repulsive

potential of one super cell.

According to Eq. (2.28a), one has

1

VR = U

> va(k)e*|pn), (A.3)
B.n

where |Gn) is an atomic orbital in the nth super cell, and where L is the length

of a super cell.
Use of Eq. (A.3) leads to

e, 0 <vk ‘I:I‘ vk>
oR; OR;
ov aVﬁ 8Haﬁ
— g H Ay = * A4
azﬁ aR] Vﬁ aﬁ + Va 8R] CKB + Vavﬁ 8R] ) ( )

where H is the one-electron Kohn-Sham Hamiltonian of Eq. (5.7), and where
H.,z = Z etknl <a0 ‘IEI‘ ﬁn>, (A.ba)
n

Sap = ZeilmL<a0‘ﬁn> (A.5b)

®The factor Ng.' occurs in Eq. (A.1) since a change in R; implies the displacement of not
just one atom but of all the Ns¢ identical atoms that correspond to the jth degree of freedom.
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are the one-dimensional equivalents of the Hamilton and overlap matrix elements
presented in Egs. (2.35).
Applying (0| from the left on H|vk) = ey|vk) and |50} from the right on
(vk|H = €, (vk|, one obtains
ZVﬁHaﬁ = GVZV@S’aﬁ, (A6a)
B B
Z voHop = €v Z Ve Sag- (A.6b)
« «

With the help of Egs. (A.6), Eq. (A.4) can be rewritten

Oey ov* 0vg 0H,p
= o == 28, h . A.
R, ; e<8RjV5+VaaRj>Sg+vaV5 OR, (A.7)
Using the fact that (vk|vk) = 1 implies
0
_ *v3Sas =0, A.
IF, ,%5 VaVpSap =0 (A.8)
one obtains
Jey OH g 0Sas
— E : * . A
IR, Yol < oR; ' OR, ) ’ (4.9)

in which dependence on k and Ris implicit.
Insertion of Eq. (A.9) in Eq. (A.1) yields Eq. (10.3).
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Chapter 11

Polarons

As described in Chap. 7, the question of polaron formation is of importance
when describing the principles of operation for semiconductor devices based on
conjugated polymers (CP). Such devices include polymer-based solar cells and
polymer light emitting diodes (PLED). Due to the inherently large electron-
phonon coupling in organic compounds, the a priori expectation would be that of
polaron formation. And polaron formation has indeed been predicted for a variety
of CP in early Su-Schrieffer-Heeger (SSH)-based calculations [80, 81, 82, 83] as
well as in self-consistent calculations at the Hartree-Fock (HF) level [84, 85] (see
Chap. 4). However, more recent ab initio DFT calculations [86] using the BLYP
functional on hole-injected oligothiophenes have shown delocalization where a
corresponding HF calculation predicts the formation of a polaron. If one goes
beyond pure DFT, BHandH Hybrid DFT and MP2 calculations have indicated
polaron formation in hole-injected oligothiophenes [87]. There is thus seen to be
a discrepancy on this point between different theoretical approaches.

As Density-Functional-based Tight-Binding (DFTB) (see Chap. 5) is a DFT
method that shares the TB approach with the SSH scheme, it is hard to give an a
priori prediction of whether or not DFTB will predict the formation of polarons
in CP. The purpose of this chapter is to provide the answer to this question.
This is done by presenting the polaron binding energies and lattice deformations
of differently sized oligomers of trans-polyacetylene (tPA), poly(para-phenylene)
(PPP) and poly(para-phenylene vinylene) (PPV). Calculations have been per-
formed on finite oligomers partly because of the complexity of treating an infinite
chain with broken periodicity due to an excess charge. But in fact finite oligomers
are probably the entity of most practical interest, since, in real polymers, chain
breaks and conjugation defects limit the conjugation lengths to the range of 10-
100A [88]. Furthermore, this chapter presents the first comparative study of
electron and hole polaron binding energies in oligomers of tPA, PPP and PPV.

tPA has been chosen because of its status as an extensively studied model
polymer, and PPP and PPV have been chosen because of their potentialities in

135
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connection with PLED and solar cells [9, 10, 27]. Treating both linear and phenyl-
based polymers, one obtains a reasonable basis for generalizing the qualitative
results to all CP. Due to its degenerate ground state, tPA can contain topological
“kink” solitons [89] (see Sec. 7.3) in addition to the non-topological polarons
treated in this work. Polarons, however, are generic and concern all CP, and even
in tPA, at low doping levels the formation of polarons (a bound charged /neutral
soliton pair) is favoured over that of topological solitons [90].
The results presented in this chapter have been published in Ref. [4].

11.1 The Model

The electron and hole polaron binding energies are defined as the decrease in
energy associated with the atomic configuration being allowed to adapt to the
presence of an added electron and hole, respectively. In a system with the nuclei
at rest, the total energy Fio is given by the nuclear potential in Eq. (5.4). The
equilibrium configuration R° and the adjusted equilibrium configuration upon
carrier injection ﬁ?nj are found by minimization of Eq. (5.4), and the polaron

binding energy is thus given by
Epo = Biot (R) = Evor (), (11.1)

where Fi.; includes the excess carrier.

The oligomers are treated as quasi-1D structures, and interchain interaction
is thus disregarded along with the torsion between adjacent phenyl rings, which
in the solid phase is assumed to be small due to solid state packing.

11.2 Results

Figs. 11.1-11.3 show the electron and hole polaron binding energies in oligomers
of tPA, PPP and PPV. The non-zero polaron binding energies show that for the
finite oligomer chains, the ionized states have a different atomic configuration
than the neutral state. The numerical value of the binding energies are a measure
of the degree of deformation. Notice that the smaller polaron binding energies
for the phenyl-based polymers PPP and PPV are due to the larger rigidity of a
phenyl backbone compared with a linear chain such as tPA.

Figs. 11.4-11.5 show the changes in bond lengths resulting from electron in-
jection. Corresponding figures for hole injection show qualitatively the same
features with slightly weaker deformations. In Fig. 11.4 notice how the excess
charge causes the bond length alternation between single and double bonds to
be smoothed out. In pristine tPA, this Peierls distortion of the bond lengths
occurs as the result of a compromise between a lowering of the w-valence band
(increased ionization energy) and an increase in the elastic energy of the atomic
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Figure 11.1: The electron and hole polaron binding energies for oligomers of ¢rans-polyacetylene

as a function of the number of unit cells.
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Figure 11.3: The electron and hole polaron binding energies for oligomers of poly(para-phenylene
vinylene) as a function of the number of unit cells.

cores. However, the lowering of the m-valence band is accompanied by a corre-
sponding elevation of the 7*-conduction band (decreased electron affinity), and
this makes the dimerization less favourable in the presence of an injected elec-
tron, even though the electron is injected into a polaron energy level split of
from the 7*-band and not into the w*-band itself. In Fig. 11.5 notice how the
excess charge changes the structure from a somewhat benzenoid (aromatic) to
a more quinoid-like structure (see Fig. 11.6). This structural change occurs be-
cause the smaller ionization energy and larger electron affinity associated with a
quinoid structure more than compensates for the elastic energy required to form
the quinoid segment.

The deformations displayed in Figs. 11.4 and 11.5 show the hallmarks of a
polaron, and at a first glance, the polaron binding energies in Figs. 11.1-11.3 do
not seem to approach zero and thus seemingly indicate the presence of polarons
in the corresponding parent polymers. But when the chain length is increased,
the deformation spreads out as examplified in Figs. 11.7 and 11.8 which show
the delocalized deformation of an electron-injected tPA 30-mer and PPP 19-
mer, respectively. The deformation, and thus the charge, is concentrated at the
middle of the chain, but as the chain becomes longer, so does the extension of
the deformation. As an example, the deformation in Fig. 11.8 extends over about
11 unit cells, whereas similar figures for PPP 29- and 49-mers show deformations
extending over about 13 and 15 unit cells, respectively, with the electron polaron
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Figure 11.6: The benzenoid (aromatic) and quinoid structures.

binding energy reaching 0.019¢V for a PPP 49-mer. For comparison, Brédas et
al. reported a PPP polaron extension of 4 unit cells [82].
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Figure 11.7: The relaxed and unrelaxed bond lengths of an electron-injected ¢rans-polyacetylene
30-mer as a function of bond number (see inset to Fig. 11.4). Due to symmetry, only half of the
bonds are shown.

This qualitative picture of deformation spreading is seen for all three polymers
for electron as well as for hole injection. This means that in the limit where
the chains become infinite, there will be no deformation, and thus the polaron
binding energies in Figs. 11.1-11.3 do in fact approach zero, however slowly. The
deformation leading to the non-zero polaron binding energies for the oligomers
is due to the finite lengths of the oligomer chains and is not a sign of the self-
localization associated with polarons. When it comes to the question of polaron
formation, DFTB is thus seen to be in qualitative accordance with ab initio DFT.
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Figure 11.8: The relaxed and unrelaxed bond lengths of an electron-injected poly(para-

phenylene) 19-mer as a function of bond number (see inset to Fig. 11.5). Due to symmetry,
only half of the bonds are shown.

In this connection it should be noted that similar calculations for bipolarons
(two excess electrons or two excess holes) show qualitatively the same features
as mentioned above, e.g. with the electron bipolaron binding energy decreasing
from 0.131eV in a PPP 29-mer over 0.121eV in a PPP 39-mer to 0.116eV in a
PPP 49-mer.

Calculations similar to the ones presented here using the more sophisticated
Self-Consistent-Charge (SCC) extension to DFTB [91] yields the following results:
For tPA, one finds the same qualitative picture with ES(T being on the order of
0.01eV larger than the here presented FE,,. For the phenyl-based polymers, the
Ef)glc is of the order of 0.0leV" smaller than the present value of E,,, and as
shown in Fig. 11.9, the self-consistency in the electron charge distribution causes
the charge, and thus the deformation, to disperse evenly over all but the outmost
unit cells. Similar calculations performed within the spin-polarization extension
to SCC-DFTB [92] show results that are in practice indistinguishable from the
SCC-DFTB results.

11.3 Conclusion

In this chapter, the electron and hole polaron binding energies in oligomers of
trans-polyacetylene (tPA), poly(para-phenylene) (PPP) and poly(para-phenylene
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Figure 11.9: The SCC-DFTB equivalent of Fig. 11.8.

vinylene) (PPV) have been calculated using the computationally efficient DFTB
method. The calculations show that the injection of an excess charge into the
corresponding infinite parent polymers does not lead to the formation of a po-
laron. Instead the excess charge spreads out over the chain. In this prediction,
DFTB is in accordance with ab initio DF'T. In the finite oligomers, the boundary
induced deformations show the same qualitative features as would be seen in the
case of a polaron: In oligo-tPA the dimerization is smoothed out, whereas in
oligo-PPP and -PPV, the structure changes from a benzenoid-like to a quinoid-
like structure. The present comparative study of a linear polymer such as tPA
with phenyl-based polymers such as PPP and PPV also shows the larger rigidity
of the phenyl-backbone as indicated by the smaller polaron binding energies of
the phenyl-based polymers.
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Summary of Conclusions

Besides presenting analytic closed-form expressions for the linear optical suscep-
tibility tensor of trans-polyacetylene (tPA) along with the long-axis linear optical
susceptibility and the imaginary part of the short-axis linear optical susceptibility
of poly(para-phenylene) (PPP), Chap. 8 lead to an analytic closed-form expres-
sion for the long-axis linear optical susceptibility of a general conjugated polymer
(CP) valid for photon energies in the vicinity of the band gap. In Chap. 9, an
analytic, perturbative expression for the electro-optic susceptibility of PPP was
derived and its applicability assessed by comparison with a numerical evaluation.

Chap. 10 demonstrated the applicability of the computationally highly effi-
cient Density Functional-based Tight-Binding (DFTB) approach to phonon dy-
namics in CP. This was done by calculating equilibrium configurations, phonon
dispersion curves, zone-centre phonon mode displacements and IR absorption
peaks of tPA and PPP. The shortcoming of the non-self-consistent DFTB ap-
proach in calculating IR absorption intensities was also demonstrated. Besides
presenting the first comparative study of electron and hole polaron binding ener-
gies in oligomers of tPA, PPP and poly(para-phenylene vinylene) (PPV), Chap. 10
showed that DFTB, in accordance with ab initio density functional theory, does
not predict polaron formation in CP. The finite oligomers show the polaron-like
deformations, but as the chain lengths are increased, the deformations become
smeared out.

Outlook

This work leaves a large number of possible continuations and improvements. Be-
sides improving the model limitations listed in Sec. 1.2, obvious extensions would
be to consider excitonic (electron-electron coupling) and polaronic (electron-
phonon coupling) effects when treating the optical properties and to combine
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the phonon and polaron results by including polaronic effects in the treatment
of phonon dynamics. Another interesting extension would be to include static
electric fields in the treatment of both phonons and polarons. This short list is

by no means exhaustive.
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Dansk resume

Denne ph.d.-afhandling omhandler konjugerede polymerer, der udger et forsk-
ningsomrade i hastig vaekst. [ dag indgar konjugerede polymerer i forskningen
inden for bla. plastikbaserede solceller, fotodetektorer og lysdioder, og sadanne
plastikbaserede komponenter udggr allerede i dag et alternativ til de tilsvarende
traditionelle siliciumbaserede halvlederkomponenter. Hvis plastikbaserede halv-
lederkomponenter som ventet inden for en overskuelig fremtid bliver i stand til
at kombinere hgj kvalitet med relativt begraensede produktionsomkostninger, vil
plastikkomponenter komme til at spille en betydelig rolle i fremtidens elektron-
ikindustri.

I denne afhandling behandles specifikt de tre konjugerede polymerer trans-
polyacetylen (tPA), poly(para-phenyl) (PPP) og poly(para-phenyl vinyl) (PPV).
Afhandlingens forskningsresultater, som er opnaet inden for tight-binding-model-
len, bestar af to dele. T den ene del udledes analytiske udtryk for polymerernes
optiske egenskaber udtrykt ved den optiske susceptibilitet savel i tilstedevaerelsen
som i fravaeret af et statisk elektrisk felt. I den anden del anvendes den be-
regningsmeessigt effektive DFTB-model (taethedsfunktionalbaseret tight-binding-
model) til at beskrive fononer og polaroner i de ovennaevnte polymerer. Afhand-
lingens forste del indeholder de teoretiske forudsaetninger for en gennemgang af
de praesenterede forskningsresultater.



