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Summary

In this Ph.D. thesis we want to examine a closed smooth manifblebgether
with a certain partial order: In the s&t'(M ) of C” vector fields onM/, » > 1, we
define a section cone - a convex subsetafharacterized by the property thapif
is a singular point for some vector field ka then this is the case for all members
of K. We say that a poing is greater than or equal to a pointf there exists a
flow line from p to ¢ corresponding to some vector field s The partial order
that — under a certain condition — arises from the transitive closure ofezdion
— gives rise to (the concept of)di-path (directed path). That is a continuous map
from the closed unit interval with the natural partial order inherited froenctider
of the real numbers to the manifold with the partial order defined as abdwehw
furthermore preserves the partial orders. We examine di-paths betweeritical
points of minimal and of maximal index up to a particular homotopy relation.

We restrict the space @f” vector fields to the set of Morse-Smale vector fields
without closed orbits denoted b§" (M) C X"(M). We define agradient-like
section conas a convex subset &f (1) consisting of fields whose singular points
all coincide. Since Morse-Smale vector fields are structurally stable, éeis a
reproducing conéC of vector fields in¢” (A/) containingé € K.

Another interesting class of section cones arelijmpunov section cone3hey
are defined by the property that there is a single real function that is pubpa
function for all vector fields iriC. We show that such a cone induces a partial order
relation onM. For two dimensional manifolds, the Lyapunov section cones are
gradient-like. In the general case we refine Lyapunov section corig@punov-
Smale section cones which are both Morse-Smale and Lyapunov. We shbw th
such a section cone always exists.

The main result of this work relates the partial order induced by a Lyapuno
Smale section conk with the partial order induced by just one of the vector fields
in K. Two flow-lines~y, 1 of a vector field € K joining two singular point®
andq of minimal and maximal index, respectively, are said to be homotopi¢ by
if there is a homotopyd such thatH, is a flow line of¢ and Hy = ~o, H1 = 1.
Two di-pathsag, a; are di-homotopic if there exists a homotopyso thatF; is
a di-path, andty = ag, F1 = a1. We show that the classes of flow lines joining
p andq up to homotopy by are in one-to-one correspondence with the classes of
flow lines connecting andg up to homotopy bycC.



Resune
Titel: Variationer af vektorfelter og deres flowlinier indenfor snitkegler

I denne Ph.D. afhandling undersgger vi en kompakt, glat mangfoldiyheden
rand som udstyres med en partiel ord&rfgigende rade: Vi definerer en snitkegle
som en konveks delmeaengdiei meengderiX” (M) af C™ vektorfelter. Maengden
K karakteriseres yderligere ved betingelsen, at ey et kritisk punkt for et
vektorfelt ik, s er det og& et kritisk punkt for alle andre vektorfelteki. Vi siger
sa, at et punkp er starre eller lig et punkg hvis der eksisterer en flowlinie af et
vektorfelt tilhgrenddC, som lgber fra til ¢. Den partielle orden som fremkommer
- under visse betingelser - ved den transitive afslutning af denne relatiges til
definitionen af en di-sti (sti med retning/direction).

Vi undersgger Morse-Smale vektorfelter uden lukkede baner ogristegpeng-
den af dem med” (M) C X"(M). En gradientlignende snitkegle er defineret som
en snitkegle i€"(M). En snitkeglelC kaldes reproducerende hvis dimensionen af
K i ethvert punkt af\/ pa naer de kritiske punkter svarer til dimensionen af mang-
foldighedenM . Morse-Smale vektorfelter er strukturelt stabile. Derfor eksisterer
for ethvert vektorfelt € " (M) en reproducerende snitkeglesaledes at € K.

En anden familie af snitkegler omtalt i afhandlingen Bestf Lyapunov snitkeg-
ler. En Lyapunov snitkegle har den egenskab, at der eksigemeel funktion som
er en Lyapunov funktion for alle vektorfelter i keglen. Vi viser, at grapunov
snitkegle inducerer en partiel ordens relatiéd. Hvis M har dimension to er
enhver Lyapunov snitkegle gradientlignende. | det generelle tilfeeldmdorvi
Lyapunov snitkegler til Lyapunov-Smale snitkegler, som &ié Morse-Smale og
Lyapunov. Vi viser eksistensen édanne Lyapunov-Smale snitkegler.

Afhandlingens hovedresultat seetter den partielle ordenen frembragisfpu-
nov -Smale snitkegl& i forbindelse med den partielle orden frembragt af kun et af
vektorfelterne tilhgrendi. To flowlinier v, og~; af et vektorfeltt € K, der Igber
fra et kritisk punktp til et kritisk punktq med henholdsvis minimal og maksimal
indeks kaldeg-homotope hvis der eksisterer en homotéhisaledes atf; er en
flowline af¢, Hy = v9 0g H1 = 7. To di-stierag, «; er di-homotope, hvis der ek-
sisterer en homoto’ sledes af; er en di-sti fort € [0, 1] og Fy = ag, F1 = aj.

Vi viser at klassen af flowlinier som fadegiog som dgr ig op til £-homotopi
korresponderer en-til-en til klassen af flowlinier frdil ¢ op til C-homotopi.

Vi
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1 Introduction

This thesis comprises a part of a program initiated at the Department of Mathe
ical Sciences, Aalborg University, which aims at developing mathematioati-
tions of concurrency theory using ideas from geometry and topology.
Concurrency deals with scheduling computer resources in a situatioe wéer
eral tasks must be performed at the same time. This can be a true parallelism like
in the case of several processors running concurrently, or als@athieytar case of
a mono-processor machine where a unique processor is sharing ifatafctime
between several different tasks.

1.1 Partial Order and Concurrency

The execution of a computer program can be treated as a flow line of @ncerta
vector field. The flow line is born at a poiat which is the start of a program,
and dies at a poirit, the end of the program. Due to different scheduling scenarios
the execution of the same program may result in flow lines of vector fields thos
each other. Small variations of a concurrent program do not charagagively its
performance. To test a program it means to execute it and check if -Stamice -
it leads to a deadlock; that is a situation when two or more tasks access ateompu
resource at the same time and prevent each other from proceedingu@diomal
burden of such a validation might be huge. Therefore there is a wish tortgst
representative cases.

It is demonstrated in Fajstrup et al. [2005] that the execution of a progeam
be treated as a continuously increasing path in a po-gpace), i.e a topological
spaceX with a partial order relatior<, which is a closed subset &f x X in the
product topology; at least locally.

Definition 1.1.1 (Definition 3.7, Fajstrup et al. [2005]). Let(X, <) and(Y, ) be
po-spaces. A continuous mgp X — Y is called a di-map (directed map) if and



1 Introduction

only if it preserves partial orders, that is,
T < T9 = f(xl) :5 f(xQ), for all xr1,T9 € X.

A model for a concurrent program is a di-map I — X from the unit interval
I with its natural order to a po-spa¢&’, <).

Definition 1.1.2 (Definition 4.2, Fajstrup et al. [2005]). Let (X, <) be a po-space
and leta, b € X. A di-path inX froma to b is a di-mapa in X witha(0) = a and

a(1) = b. The set of all di-paths frora to b will be denoted bw_ﬁl(X; a,b).

The equivalence of execution paths can be modelled geometrically by a homo-
topy relation on di-paths.

Definition 1.1.3 (Definition 4.2, Fajstrup et al. [2005]). Let(X, <) be a po-space
and leta, b € X.

1. A di-homotopy froma to b is a continuous mag{ : I x I — X such that
every mapH, : I — X, Hq(t) = H(s,t), s € I, is a di-path fromu to b.

2. Two di-pathsy, 5 in X froma to b are di-homotopic frona to b if and only
if there is a di-homotopyd : I x I — X froma to b with Hy = « and
Hy = 4.

Di-homotopy froma to b is an equivalence relation. The equivalence classes
- di-homotopy classes - constitute the di-homotopy&et X; a,b). Now, we are
able to state the aim of this research program as - classification of di-hoyrsstsp

We attack the problem from the point of view of differential topology. Im ou
case the topological space is a closed smooth manifiid» is the dimension of
the manifoldM) with flow lines arising from a variety of vector fields dd. Let
X" (M) denote the set of all" vector fields onM/, andS" (M) be the subset of
Morse-Smale vector fields. For a vector figléd X" (M), letCr(¢) denote the set
of singular (“critical”) points.

Definition 1.1.4 (Definition 6.1.1 in this report). AC" section conéC on a smooth
manifold M is a subset ok” (M) that satisfies the following two conditions:



1.1 Partial Order and Concurrency

1. For every pairé,n € K, if p € Cr(§) thenp € Cr(n). (All vector fields in
the section con& have the same singularities).

2. If¢andnarein K anda, 8 > 0 thenal + n € K.

We define a counterpart of a di-path in the new geometric setup as coaiaten
of flow lines.

Definition 1.1.5 (Definition 6.2.3 in this report). SupposéC is aC" section cone
on a closed smooth manifold. We call a piecev@i$epathos : I — M a di-path if
there exists a finite family of real numbérs= ¢ < ¢; < ... <t = 1 and a family
of vector of field§¢y, ..., {} C K such thato |, ,, . ) is the flow line o€, from
o(ti) too(ti41) fori € {0,...,k — 1}. The set of all di-paths df from a singular
pointa to a singular point is denoted byP(a, b; K).

To characterize an equivalence of di-paths from Definition 1.1.5 we aged
formulation of di-homotopy.

Definition 1.1.6 (Definition 6.2.4 in this report). SupposeC is a section cone on
a closed smooth manifolt/ anda, b are two singular points ofC.

1. A di-homotopy frona to b is a continuous mag{ : I x I — M such that
every mapH, € P(a,b;K), s € 1.

2. Two di-pathsy, n € P(a,b;K) are said to be di-homotopic if and only if
there exists a di-homotop¥ : [ x I — M with Hy = vand H; = n.

The set of equivalence classes of di-paths up to di-homotopy is deryotéd b; ).

To simplify the situation we suppose that there is only one singular point with
indexn, saya, and one singular point with index sayb. The aim of the thesis is
to characterize the sef(a, b; ). We focus on a particularly nice section cone - a
Lyapunov-Smale section cone.

Definition 1.1.7 (Definition 6.1.11 in this report). A section coné&l C &" (M)
is Lyapunov-Smale if and only if there exists a Morse funcfion\/ — R and a
Riemannian metric oM/ such that for any € K we have
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1. &(f)(z) < Oforall x € M — Cr(K),

2. there exist a constamt > 0 and open neighborhoodd/, },ccr(x) of the
singular points such that

—&(f)(w) > kd(x,p)* for p € U, whered is the Riemannian distance.

For aC" vector fieldn, P(a,b;n) is the set of flow lines of) from the singular
pointa to the singular poink. The set of flow lines of the vector fields in a section
conekC, which are born iz and die inb are denoted by’(a, b; KC). We denote the
flow line of the vector field by ¢§(t), that is

9650 = £ (65(1)) with 65(0) = .

Let W(a,b;€) = {z € M| limy—_o ¢5(t) = a and limy_.4o0 ¢5(t) = b}. We
define two notions of homotopy, by a vector field and by a section cone.

Definition 1.1.8 (Definition 7.1.1 in this report). LetM be a closed smooth man-
ifold. Forr > 1, let{ € X" (M) and K be aC” section cone oi/.

1. Supposey, 11 € P(a,b;&). We say thaty, is homotopic toy; by ¢ and
write 79 ~¢ 1 if and only if there is a pathﬁ I — M such thatg(t) €

W(a,b;€),v0(t) = ¢§(0) (t) andy (1) = ¢g(1 (t).

2. Supposeyy, 71 € P(a,b;K) . We say thaty, is homotopic toy; by £
and writeyy ~x 1 if and only if there exist a patlr : I — K and a
path 3 : I — M such that3(t) € W(a,b;a(t)), vo(t) = ¢7\°(t) and

0 8(0)
N(t) = 650 (1).
The main result of the thesis is the following theorem.
Theorem 1.1.9 (Theorem 7.1.2 in this report).Let M be a closed smooth mani-
fold. SupposéC is a Lyapunov-Smal€™ section cone o/, r > 5, and¢ € K.

Leta, b be the only singular points with indic@sandn, respectively. Then there is
a bijectionIl : P(a,b;€)/~, — P(a,b;K) /.



1.1 Partial Order and Concurrency

There are two steps remaining in the program of classificatiarfq; ). The
first is to show that any di-path is homotopic kyto a flow line for some; € K.
The second step is to establish results on detecting the connected commdnents
the moduli space of the flow lines joiningand ¢ corresponding to a particular
vector field¢. These subjects are not covered in this thesis and they are matters of
further work.

This thesis is organized as follows. Chapters 2, 3, 4 are mainly reviewg of th
existing results. In Chapter 2 we introduce a notion of a cone in a vectoespa
which we later on to generalize to a section cone in the spacg okctor fields
on a closed manifold. Chapter 3 gives preliminaries of differential topoldge
focus is on tubular neighborhoods, transversality and framings. ThefaChap-
ter 4 is to review Morse theory and to relate a framed connected manifold with the
homotopy class of a relative attaching map. Geometric theory of dynamic systems
is introduced in Chapter 5. It is mainly a review of the existing results with empha-
sis on perturbations of vector fields. We investigate Morse-Smale anigbgtéike
vector fields. We analyze the dependence of the invariant manifolds pader-
bations of vector fields. Chapters 6 and 7 comprise an original contribofitis
thesis. The notion of a section cone is formulated in Chapter 6. The emphasis is
two classes of section cones: gradient-like and Lyapunov-Smale secties.cNVe
show that a Lyapunov-Smale section cone on a compact madifatetuces a par-
tial order relation on\/. The main theorem of this thesis is formulated and proved
in Chapter 7. It shows using the associated flow lines that the study oéctath
components of the space of flow lines of the vector fields in a LyapunoveSma
section coneC can be reduced to the study of the connected components of flow
lines of an arbitrary¢ € K.
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2 Cones

We introduce the notion of a cone in a vector speEceé\ coneK is a convex subset
of V' characterized by the property thatifand—z are inK thenz = 0. A cone is
the primary object we shall generalize to a section cone - a subset ofdbe sp
C" vector fields on a manifold/. The reason for our interest in cones is that they
define the set of admissible tangent vectors at each point of a di-path.

We use the following notation: IK is a subset of a vector spakethen

—-K={zecV| —ze K}

ForC, K CV,K—-Cisthesubsefzr € V|z =k—c, ke K,ceC}. IfUisa
subset ofl”, we denote the interior df by int(U) and the closure aff by cl(U).

2.1 Cones in Vector Spaces

We start with the definition of a cone in a vector sp&te

Definition 2.1.1 (Barker [1981]). LetV be a real vector space. A cod€in V' is
a subset o/ satisfying

1. Ifa,b>0andzx, y € K, thenaz + by € K,
2. KN (—=K) ={0}.
The family of all cones i together with the empty set is denotedby/).
It follows from the definition that a cone is a convex set contaitintat is
ar+ (Il —a)ye Kforallz,y € Kand0 < a < 1.

If  and —x are in K thenxz = 0. For finite dimensional vector spadé the
dimension of a cond(, dim(K) is by definition the dimension of the subspace
K- K.
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Definition 2.1.2 (Barker [1981]). The conek € D(V) is reproducing if and only
if K — K =V.We callK fullif and only ifint(K) # 0.

In the case of finite dimension&l a cone is reproducing if and only if it is full, cf.
Barker [1981].

Example 2.1.3.1f {v;};=1,...» is a basis and is the dimension o/, then
spant{vy,...,v,} = {w € V| w = a1v1 + ... + apvn, a; >0}

is a reproducing cone. In particular the quadifit= {z € R" : z; > 0} is a
reproducing cone.

Example 2.1.4. Suppose a vector spadé is endowed with a symmetric non-
degenerate indefinite bilinear functign: V' x V" — R with index 1. The vector
spaceV can be decomposed into the direct siim= V* @& V~, whereV T is
the subspace of maximal dimension such thist positive definite i/, andV —

is the orthogonal complement with respect to the scalar product defined lioy
fact g restricted toV/ ~ is negative definite, andim VV— = 1. We choose a vector
¢ € V~ and construct the Lorenz cone

L=L() = {Me+v)| A >0, ve VFand—g(£,€) > g(v,0)}

We use the observation thatA(¢ + v), A\(€ + v)) = A(g(£,€) + g(v,v)) to
conclude that it € V'~ thenL is a (reproducing) cone. Analogously we may use
the inner produck on V' to define a coné((n) forn € V

K(n) ={A(n+v)| A =0, h(v,n) = 0andh(n,n) = h(v,v)}.
In particular we may choosesuch thatZ(§) = K (§).

Proposition 2.1.5. SupposeA is a subset of a real vector spadé If (i) A is
convex and (iip € A implies—v ¢ A. Then

cA={aw e V]aeRy,we A}

is a cone.
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Proof. Suppose the conditions (i) and (ii) are satisfied. ket 0, b > 0 and
z,y € cA. We show thatx + by € cA. If a or b is zero the conclusion follows.
We assume that > 0, b > 0 then

ax + by = (a + b)(ax + (1 — a)y), wherea = CLLH) € (0,1].
thusaz + by € cA sinceA is convex.

We show that ifr € A ande < 0thencz ¢ A, which implies that A is a cone.
Due to (i) 0 ¢ A. Itis enough to assume < 0. Letz € A and assume that
cx € A. Then

azx + (1 —a)cx € A, fora € [0,1].

Since=< € (0, 1) there exists > 0 such that both

—Cc+¢€ —Cc— €
o] = a9 =
1—¢’ 1—c

are in the interval0, 1). We see that
a1z + (1 — ay)ex = ex andasgx + (1 — ag)cx = —ex
are in A, which is a contradiction]

Definition 2.1.6 (Barker [1981]). Let K be a closed cone in a finite dimensional
real vector spacé’” (closed as a subset ii). A subsetF’ C K is a face ofK if
and only if

1. Fe D),

2. zeF,ye K, z—ye Kimplyy € F.

The collection of all faces of is denoted”(K). The trivial faces arg0}
and K. SinceF € F(K) is a cone inV it has a dimensiolim(F’), defined as
dim(F) = dim(F — F). Each non-trivial face is a non-reproducing cone since
dim(F') < dim(K) = dim(V).

If dim(F') = 1, F is called an extreme ray df. One can show thak is the
convex hull of its extreme rays, cf. Barker [1972].
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Definition 2.1.7 (Barker [1981]). A polyhedral cone is a cone which has a finite
set of extreme rays.

Let K beaconei/. If z € K, we writex > 0. Thenxz > y meanst — y > 0,
and K defines a partial order ovi. Let V* and Hom(V) = Hom(V,V') be the
dual space of/ and the space of linear maps— V, respectively. Set

K* = {feV*f(x)>0Vze K}
(K) = {feHom(V)| f(K)C K.

ThenK* andII(K) are cones i/* and Hom(V'), respectively. If K is a closed
full cone so arg<™* andII(K).

Proposition 2.1.8.1f A : V' — W is a linear map of vector space&’ € D(V),
and K Nker(A) = {0}, thenAK € D(W).
If V'is finite dimensional anfK — K')Nker(A) = {0}, thendim(K') = dim(AK).

Proof. The property 1 of Definition 2.1.1 foA K follows immediately from the
assumption that is linear. To prove property 2, assume-y € AK. Then there
existzy, xo € K such thatdz, = y andAze = —y. Hence A(z1 + z2) = 0, and
we see that) + 2 € ker(A) N K = {0}. Thus,z; = —xs and sar; = 22 = 0
by property 2 applied té. Thereforey = 0.

If V'is finite dimensional, thedim (ker(B)) +dim(AK — AK) = dim(K — K)
whereB : K — K — AK — AK denotes the restriction of to K — K. Since
(K — K)Nker(A) = ker(B) = {0} we havedim(K) = dim(AK). O

Immediately we have the following corollary.

Corollary 2.1.9. If A : V — W is an injective linear map of vector spaces and
K € D(V)thenAK € D(W).

Proposition 2.1.8 does not give sufficient conditions Adc to be a cone. Con-
sider a simple exampled : R x R — R is the projection on the first factor,
and K is the polyhedral con&2. It is seen that N ker(A) = {0} x Ry and
AK =R, € D(R).

Theorem 2.1.10.Let A : V — W be a linear map of finite dimensional vector
spaces andS € D(V). AK € D(W) ifand only if K N ker(A) € F(K).

10



2.1 Cones in Vector Spaces

Proof. Assume thatf< Nker(A) = F € F(K). Property 1 of Definition 2.1.1 for
AK follows immediately from the assumption thatis linear. To prove property
2, assumey, —y € AK. Then there exist,xo € K such thatdz; = y and
Azg = —y. Hence A(z1 + x2) = 0, and we see that; + z2 € ker(A)N K = F.
Since(zy + xz2) — x1 = x9 € K we haver; € F C ker(A). Thereforey = 0.

Now assume thal K € D(W). Sinceker(A) is a subspace of it is closed
under vector addition and scalar multiplication, and hed#€e) ker(A) € D(V).
Letx € K Nnker(A),y € K, and assume that— y € K. ThenAy € AK and
A(x —y) = —Ay € AK. Thus,Ay = 0 andy € K Nker(A4). O

11
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3 Elements of Differential Topology

The aim of this chapter is to review elements of differential topology. It ist&1s

of standard results on existence of a tubular neighborhood, traafityerfamed
cobordism and stable framings. These comprise a foundation for theomqukr-
turbations of flow lines in this thesis. Our focus in this chapter is not distributed
evenly. Subjects more fundamental - not necessarily more complex - fdhésis

are covered more thoroughly.

By ann-dimensional manifold/™ we understand a topological space that is lo-
cally homeomorphic t®"™, Hausdorff and second countable witfi differentiable
structure. Particularly, a manifold in this thesis is a paracompact spacectérve
bundle over a manifolX” with total space? and projectiorp : E — X is denoted
by u = (p,E,X). Amap f : Xo — X induces a pullback™n = (po, Fo, Xo),
where

Ey ={(z,y) € Xo x E| f(z) = p(y)} andpo(z,y) = =.

The tangent space to@" manifold M is indicated by(w,T'(M), M) or shortly
T(M).

We study am-dimensional submanifold/ of aC", (n + k)-dimensional man-
ifold N with a Riemannian structure. The geometric normal bundle of a sub-
manifoldi : M — N is identified with the subbundle &fy;(N) = *T(N)
consisting of the tangent vectorsTh(N), p € M, which are perpendicular, with
respect to the Riemannian metric 6 to 7,,(A). Alternatively, we might define
the algebraic normal bundle @f in N as the quotient bundl&,,;(N)/T'(M). In
this section we shall not distinguish between them, and denote both of them by
v(M,N).

13



3 Elements of Differential Topology

3.1 Tubular Neighborhoods

Denote by, the zero section af (M, N). We refer in the sequel to the following
theorem.

Theorem 3.1.1 (Theorem 111.2.2 in Kosinski [1993]). Suppose that/, N areC"
(r > 3) manifolds and\/ is a closed subset @, 9N = (). Then there is a neigh-
borhood ofvy on which the exponential map i —2-embedding.

A Riemannian metrid on aC" vector bundleu = (7, E/, B) provides a way of
shrinking it. Lete be aC™ positive function onB. Consideramag’ : £ — E
given by

v

F(v) = G(W(U))W.

ThenF' maps the fiber ovep onto the open disk i, centered ab and diameter
e(p). ThusF(E) is an open disk bundle. The maps aC” diffeomorphism, hence
the vector bundle structure dninduces aC" disk bundle structure of'(E). This
operation will be called-shrinking of E.

Let X be aC” manifold andf : X — N be aC” embedding, then the normal
bundle tof is defined by = f*v(f(X), N). Suppose also thgtembedsX as a
closed subset av. Then by Theorem 3.1.1 there is a neighborhbodf the zero
section inF, whereFE is the total space of the vector bundig and an embedding
h : U — N. We applye-shrinkingF : E — FE such thatF'(E) C U. Hence
the compositiorh o F' gives an embedding df in N. We summarize this into a
corollary.

Corollary 3.1.2 (Corollary 111.2.3 in Kosinski [1993]). Letf: X — N beaC”
embeddingr > 3, and supposég(X) is a closed subset df. Denote the total
space of/; by E. Thenf extends to &2 embeddingf : E — N. If 9X = 0,
then f(E) is an open neighborhood ¢f X ) in N.

We recall that a tubular neighborhoodX®fin NV is a neighborhood’ of f(X) in
N such that there exists a vector bungdle- (7, E, X') and there is an embedding

14



3.1 Tubular Neighborhoods

e : B — U making the following diagram commute

E
NOT \
x J-vUcn,
wherepy is the zero section gf. If the subsetl/ is open then we shall call it an
open tubular neighborhood. In particular, it follows from the corollagt thX is
a closed manifold thefX possesses an open tubular neighborhood iwith the
vector bundle structure that of the normal bundle.

The same holds for a certain class of manifolds with boundary. Recall ttiad in
definition of ann-dimensional manifold with boundary we allow homeomorphisms
onto open subsets of eithBf or R, = {(z1,...,2,,) € R"| x,, > 0}. In the next
definition we make use of the subset

=m,n

Ry ={(z1,...,2p) € Ri] Ty oy Tnem = 0}, Withn > m.

Definition 3.1.3 (Definition 11.2.2 in Kosinski [1993]). A submanifoldM C N
is neat if it is a closed subset &f and satisfies

1. MNON = 0M,

2. Atevery poinp € 9M there is a coordinate chanp : U — RZ, such that
YR =UNOM.

The last condition in the definition says tfét/ meetsdN like R’} meetsR'} .

Definition 3.1.4 (Definition 111.4.1 in Kosinski [1993]). LetU be a tubular neigh-
borhood of a neat submanifolti/ of the manifoldV. We say thal/ is neat if
U N ON is atubular neighborhood a?M in ON.

Theorem 3.1.5 (Theorem I11.4.2 in Kosinski [1993]).If M is a neat submani-
fold of IV, then it has a neat open tubular neighborhood.

To conclude the subject of tubular neighborhoods we shall state artbdmeem
which has a consequence for the existence of a framing defined in theaution.

15



3 Elements of Differential Topology

The boundary of a manifold cannot have a tubular neighborhood. WHowd
almost has a tubular neighborhood in the following sense. A collar on a nidnifo
M with boundary is an embedding

h:OM x [0,00) — M,
such that:(z,0) = x.
Theorem 3.1.6 (Collaring Theorem, 4.6.1 in Hirsch [1976]).Supposé/ is a man-
ifold with boundary. The@M has a collar.

3.2 Framings

We assume in this section th&f is a smooth closed manifold, a submanifold of
N(®+k) " Atrivialization of the normal bundle(M, N), i.e. a bundle isomorphism

(M, N) ¢ M x RF,

~N 7

M

is called a framing of\/ in N. We shall focus on the question of when a framing
of v(M, N) exists and how to construct it.
For an n-plane vector bundle we have the following theorem.

Theorem 3.2.1 (2.2 in Milnor and Stasheff [1974]).An n-dimensional vector bun-
dle ¢ is trivial if and only if ¢ admitsn sectionssy, ..., s, which are nowhere lin-
early dependent.

We use the theorem above to formulate an equivalent definition of a framing.

Definition 3.2.2. A framing of a submanifold/ C N is a smooth map which
assigns to each € M a basis

o(p) = (o (p), ..., " (p))

for the normal space,, (M, N). The pair(M, o) is called a framed submanifold
of N.

16



3.2 Framings

We will use the following version of the Tubular Neighborhood Theorem.

Theorem 3.2.3 (Product Neighborhood Theorem in Milnor [1997]).Let(M, o)

be a framed submanifold é¥. There is a neighborhootl of M in N diffeomor-
phic to the product\/ x R*. Furthermore, the diffeomorphism can be chosen so
that eache € M corresponds tdx,0) € M x R* and so that each normal frame
o(x) corresponds to the standard basis ®F.

The diffeomorphism in the Product Neighborhood Theorem is givenédgdm-

position Jf x R¥* 1dxg M x U, v U , where ¢ is a diffeomorphism taking
R* onto a sufficiently smakt-neighborhood/, of 0 in R*, andy is defined by

V(x,t, . ty) = exp,(tiot (@) + ... + tro®(z)),

exp is the exponential map corresponding to the Riemannian mgtncV.
Not every compact manifold has a framing, therefore below we give ebesnop
framed manifolds.

Theorem 3.2.4 (Covering Homotopy Theorem 4.1.5 in Hirsch [1976])Assume
¢isaC" (0 < r < oo) vector bundle oveB x I, with B a C" manifold. Let
(&|Bxo) =n = (p,E,B)andn x I = (p xid;, E x I,B x I)). Then{ is C"
isomorphic to the vector bundiex I

A corollary of the covering homotopy theorem is that every vector bundie &
contractible paracompact space is trivial, see Corollary 3.2.5 below.

Corollary 3.2.5. Supposé3 is aC” manifold andt is aC" vector bundle ovel .
LetH : B x I — M be aC"” homotopyH, = f and H; = g. Then the pullbacks
f*¢andg*¢ are C" isomorphic. In particular, ify is constant therf*¢ is trivial.

Proof. H*¢ is isomorphic toH*{|pxo x I. But H*{|pxo = Hi¢ = f*¢. By
replacingt by 1 — ¢ in the homotopyH;, H*¢ is isomorphic tog*¢ x I. We
conclude thaff*¢ andg*¢ are also isomorphidJ]

Another framing can arise when a 1-dimensional normal bundle is orientable

17



3 Elements of Differential Topology

Theorem 3.2.6 (4.4.3 in Hirsch [1976]).An orientableC™ 1-dimensional vector
bundle is trivial.

Proof. Let{ = (p, E, B) be an orientable 1-dimensional vector bundlebe the
standard orientation dR, andw be the orientation of. Suppose that

¢ = {¢a : f‘Ua — Uy X R}QEA
is an oriented atlas belongingdothat is
¢a($) : (Exawm) - (Ra 61)

is orientation preserving for at € A andz € U,. Let{\,}.ca be partition of
unity subordinate tqU, }oca- Theny : E — B x R, defined by

P(y) =Y Aalr)daly)

acel

gives the trivialization of. O

We shall use Theorem 3.2.6 in connection with the remark that every vegter b
dle over a simply connected space is orientable. More generally, a veater b
dle £ over a CW-complexB is orientable if and only if the Stiefel-Whitney class
w1 (€) € HY(B; Zy) is zero.

3.3 Framed Cobordism and the Pontrjagin-Thom
Construction

We will now consider two closed framed submanifoldd;, o1) and (Ms, o2) of
a manifold V.

Definition 3.3.1 (Ch.7 of Milnor [1997]). Two framed submanifold9/,, o) and
(M, 02) of N are framed cobordant if the subsets

M1 X [O,E)UMQX (1—6,1]

of N x [0, 1] can be extended to a compact manifald_ N x [0, 1] so that

18



3.3 Framed Cobordism and the Pontrjagin-Thom Construction

1. 0X = M1 X {0}UM2 X {1},
2. X does notintersedV x {0} U N x {1} except at points a.X;
3. There exists a framing of X in N x I, so that

Kz, t) = (oi(x),0)for (z,t) € My x [0,¢€)
K'(x,t) = (04(x),0)for (z,t) € My x (1 — ¢, 1].

The set of cobordism classesafimensional framed submanifoldsifis denoted
by QfF .

The conditions 1. and 2. alone say that the manifdlisand M- are cobordant.
The relation of being (framed) cobordant will be called (framed) colsordBoth
cobordism and framed cobordism are equivalence relations.

Let N be an + k-dimensional manifold. We consider a smooth nfapN — S*
with a regular valug € S*, and a submanifolg—'(y) of N. The differential

dfy : To(N) — T,(S*), wherez € f~1(y)

has the subspacg,(f~'(y)) of T,(N) as its kernel. Therefore, the orthogo-
nal complement,(f~*(y), N) of T..(f~*(y)) maps isomorphically ont®), (S*).
Having chosen a positively oriented basis= (w!, ..., w*) of T,(S*) we have a
unique basisr, = {ol,...,0%} on v, (f~'(y), N), such thatdf,c! = w’. This
gives k smooth linearly independent sectiomns: = — o%. We adopt here the
notations = f*w.

Definition 3.3.2 (Ch.7 of Milnor [1997]). The framed manifoldf~'(y), f*(w))
will be called the Pontrjagin manifold associated wijth

In the definition of the Pontrjagin manifold we have made a choice of the basis
w, however if we choose some other positively oriented basithe Pontrjagin
manifolds(f~*(y), f*(w)) and(f~1(y), f*(u')) are framed cobordant. This fol-
lows from the observation that the space of matrices with positive determant
connected. A path joining with «’ gives the desired framing gt~ (y) x I.

We have the following fundamental result making a connection between homo-
topy and cobordism classes.
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3 Elements of Differential Topology

Theorem 3.3.3 (Theorem 7.B in Milnor [1997]). Two mappings fromV to S*
are smoothly homotopic if and only if the associated Pontrjagin manifolds are
framed cobordant.

We shall now formulate the inverse to the construction of the Pontrjagin mani-
fold above. Given a closed framed submanifoM, o) of N we shall generate a
function f : N — S* with a regular valug, such that its associated Pontrjagin
manifold is(M, o).

We use Product Neighborhood Theorem to find a diffeomorphism

v:MxRF S U CN.

We denote the standard basispiR*) ~ R by w = [e', ..., ¢¥] and define the
projectionr : U — R* given by

mo(x,y) =y

The value0 is regular, andr—1(0) = M, alsoo = 7*w. We choose a smooth map
¢ : RF — S* satisfying

1. ¢ maps the open balb* = {z € R*| ||z|| < 1} diffeomorphically onto
Sk - {80},

2. ¢ maps every: € RF — DF onto a base poir,
3. d¢y is orientation preserving.

An example of such a map is given in Milnor [1997], p. 48. We define a cadlap
mapf : N — S*, which gives the desired associated Pontrjagin manifold, by

_[¢pom(q) for qeU
f(q)—{ S0 for ¢¢U.

The mapf is smooth, and(0) is a regular value of . The preimage
FHe(0) = 77H(0) = M,

furthermoref,o'(x) = dpow', which are the basis df¢(0)(Sk). We have arrived
at the following theorem.

3.1)
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3.4 Stably Framed Manifold Group

Theorem 3.3.4 (Theorem 7.C in Milnor [1997]). Any compact framed submani-
fold (M, o) of co-dimensiork in N occurs as the Pontrjagin manifold for some
smooth magf : N — S*.

The method of translating between framed cobordism and the rhapsalled
the Pontrjagin-Thom construction.

Corollary 3.3.5. Let [N, S*] = C*(N, S*)/ ~, where~ is the homotopy rela-
tion. The Pontrjagin-Thom construction induces a bljecmth [N, S¥].

3.4 Stably Framed Manifold Group

Suppose that the manifolt in Corollary 3.3.5 is a spher8™**. The function
Tex(SF) — [S™HE, S¥] obtained by forgetting base points is a bijection, cf. Davis
and Kirk [2001]. Sincer,,, (S*) is an abelian group, the set of framed cobordism
classe)t = Qf Gtk inherits an abelian group structure. In fact this group struc-
ture is given by taking the disjoint union

Vol + V1] == Vo || Vi © 5™ Hhgpsmth o gnth,

where # stands for the connected sum. Inverses are obtained by changing the
orientation of the framings-(M, o) = (M,07).
The embedding in the equatéi*t* c Sn*++1 defines the homomorphisms
QF — Q1 The resulting directed system
QY O Y Lo

of abelian groups possesses a direct limit.
Definition 3.4.1. The stably framed-manifold group is the direct limit

OfF = 1lim QF.

—

Recall the definition of theé-stable homotopy group of a based spacgecf.
Hatcher [2002], as (X) = lim 744;(S' X), whereS is the reduced suspension.
In particular the stablé-stem ismf = w,f(SO). By the Freudenthal suspension

theoremmy = my4(S!) for I > k + 2. As conclusion of the discussions above we
have the following theorem.
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3 Elements of Differential Topology

Theorem 3.4.2 (Pontrjagin-Thom). The Pontrjagin-Thom construction defines an
isomorphism fromry to Q.

3.5 Stable Tangential Framings

We shall denote a trivial line bundle over a spacezbyConsider a submanifold
M™ of S***. The inclusionsS™™* ¢ R"t#*+1 has a trivial 1-dimensional normal
bundle. This implies that

T(S"F) @ e = enthtl
and a framing of the normal bundié M, S"**) = ¢* induces a trivialization
T(M) @ e = T(M)®v(M, 5" ) @ e =Ty (S"F) @ e = nthtl
Conversely, a trivializatio' (M) & £ = ¢"*! induces an isomorphism
v(M, S”*k) @ et o gtk

Similarly, if the spheres™** is substituted by afn + k)-dimensional manifold
N with v(M, N) = ¥ andv(N, RY) = £l="=F then we havd' (M) @ !~ = £,

Definition 3.5.1 (Definition 8.12 in Davis and Kirk [2001]). A stable tangential
framing of ann-dimensional manifold/ is an equivalence class of trivializations
of

T(M) @ e”.

Two trivializations
¢1: T(M) @M =™ randgy : T(M) @ eh2 = enthe
are equivalent iEN > max(k;, ko) such that the trivializations

pr@id : T(M) @k @eVNh ot
po®id : T(M) @ ek @eNhe = gntN

are homotopic. Similarly, a stable normal framing of a submanifbldof S?,
I € N, is an equivalence class of trivializationsief)M, S') @ &*.
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3.5 Stable Tangential Framings

Theorem 3.5.2 (Theorem 8.13 in Davis and Kirk [2001]).There is a bijection be-
tween stable tangential framings and stable normal framings of a manifold

In the next chapter we shall use the following proposition.

Proposition 3.5.3. Supposé/ is a manifold with boundary. Iht()/) has a stable
tangential framing so doe&/.

Proof. In the proof we shall construct a diffeomorphigim A — M’, such that
M’ C int(M).

By the collaring theorem we have an embedding oM x [0,00) — M such
that h(z,0) = x. Denote the imagé (oM x [0,00)) by V. For a pair of real
numbersa < b construct a diffeomorphisnp : [0,00) — [a, c0) such that the
restrictions|, o) = id. The compositiory : V' — M, f = ho (id x ¢) o h~1is
a diffeomorphism onto its image. Choosiag- b and denotingh(OM x [0, ¢]) by
W we define the map

[ f(q) for ew
¢(Q)_{i§ for ggéW.

DenoteM’ = ¢(M) and observe thdf'(M) = ¢*T(M'). Furthermore, since
M’ C int(M) anddim(M’) = dim(M) we have thafl'(M') = Ty (int(M)).
But ¢*T),/(int(M)) has a stable tangential framing so d@&3/). O

A stably framed nullcobordism for a stably framed manif¢ld,, ¢;) with a
stable framingp; : T'(M;) @ ¥ = "tk is (i) a compact manifold.X, ®) with
a stable framingp : T(X) @ ek th2 = gntl+kitk2 gand (i) a bundle isomorphism
0 : T(M;)@ehtithk: =~ 1 (X)@eh+k2 coming from an orientation preserving
diffeomorphismy : M; — 90X, sothatd o 0 = ¢y @ id_ky+1.

We define a notion of a stably framed cobordism from a stably framed mani-
fold (M, ¢1) to another stably frame manifold\/s, ¢2) to be a stably framed
nullcobordism for the disjoint union ofM; , ¢ )) and (Ma, ¢2), where M| is
obtained form\/; by reversing the orientation ang is the composition:

_ é1 f
(;51 . T(Ml) D Skl — > chitn — ¢ D chitn-1 __~ 5 o D 8lcl—i-n—l _ 6lcl-i-n’

wheref = —id. @ idx;+n-1.
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3 Elements of Differential Topology

Theorem 3.5.4 (Corollary 8.15 in Davis and Kirk [2001]). The stablde-stemyr,f

is isomorphic to the group of stably tangentially framed cobordism classealulf
tangentially framedk-dimensional smooth, oriented, compact manifolds without
boundary.

3.6 The J-homomorphism

ConsiderS* c R*+". Denote the framing aof (S*, R*+1) by , and the canonical
basis ofR**" by {ethieqr,.. k4ny- Theno = (0, exy2, ..., ex1y) is a framing of
v(S*, R¥), The framing gives rise to the trivialization of the normal bundle

b0 : (SF, RN == gk« RN,

Given a smooth map : S* — O(n) we get a new framing’ induced by the
composition(pry, (yopr;) - pry), Wherepr; is the projection of5* x R™ on theith
factor. The Pontryagin-Thom construction appliedtdefines a mag”+* — S”.
This construction induces a map on homotopy groups

J:me(O(n)) = T (S5"),
which is a homomorphism, cf. Sec. IX.6 in Kosinski [1993]. We shall call it

J-homomorphism.
The inclusioni : O(n — 1) — 0(n) given by

A0
A [0 1]
induces the map, : 7, (O(n — 1)) — m(O(n)). By Freudethal suspension theo-
remmy4,(S™) is independent of for n > k + 1. The same is true for(O(n))
as we have a fibratio®@(n — 1) < O(n) — S™~1, thus the sequence

= (8" —= m(O(n)) — m(O(n — 1)) —> mpeyq (S 1) —= -
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3.7 Comments on Transversality

is exact, cf. Corollary 6.44 in Davis and Kirk [2001], furthermoarg(S™~1) ~
Ty 1(S™1) & 0 for n > k + 1. Since the following diagram commutes

m(O(n)) — == m,(O(n + 1))
g £
Ttk (S™) s Tontkt1(S™TY),

where S is the homomorphism induced by the suspension, the J-homomorphism
induces a stable J-homomorphism, cf. Sec. 8.2 in Davis and Kirk [2001].

3.7 Comments on Transversality

We shalll finish this section by making a link between a regular value of a map and
transversality.

Lemma 3.7.1. Let M, U, V be smooth manifolds. The mgp M — U x V' is
transverse tqdz} x V if and only if the composite map

M—t-Uxv-—"s1,
wherer is the projection, has as a regular value.

Proof. Suppose: is a regular value of o f. Letp € f~! o 7= !(z), thenf(p) =
(w,y) for somey € V. Pick(a,b) € T(,,)(U x V). The differentialdr,, ,\df, is
surjective, hence there exists T),(M) so thatdr, . df,(c) = a = dr, ) (a,b).
We have thatif,(c) = (a, 3), for some(0, 3) € T(, , ({z} x V). We conclude
thatdf,(c) + (0,b — 8) = (a,b). This proofs the necessity. The sufficiency is
proved along the same lindsl.

Suppose we have the following commutative diagram

praine M,

N

Mfi) N,
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3 Elements of Differential Topology

whereiq, iy andjy, jo are inclusions. If the intersectioh = M N Ms is transver-
sal in N, denoted byAd = M; h Ms, then there is a short exact sequence of vector
bundles

(diy,—diz) dj1+djo

(3.2)

0 T(A) Ta (M) ® Ta (M)

Lemma 3.7.2. Supposel = M; th M, and the diagram above commutes then the
following are true

1. v(A, M) = v(My, N))|a,
2. V(A,N) =2 v(A, M) ® v(A, M),
3. (A, N) 2 (M, N)|4 & v(Ma, N)| .

Proof. The exact sequence (3.2) can be written
0 —> T(A) —= T(A) ® v(A, My) ® T(A) ® v(A, My) —= T4(N) —=0
which implies the exact sequence
0——=T(A)av(A,M)®dv(A M) —T(A) @ v(A, N)—=0,
which gives the isomorphism in 2. The isomorphism in 1. follows from

0 —Ta(M) & v(A, My) ——T4(N) —0

= lid
(

v
0—>TA(M1> EBI/(Ml,N)|A ——=T N) — (.
The last isomorphism is a consequence of property 1 and

v(A,N)=v(A, M) ®v(Mi,N)|a.
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4 Stable, Unstable and Connecting
Manifolds

In this chapter we study framed connecting manifolds. The aim is two foldhalk s
review Morse Theory as exposed in Milnor [1965]. Secondly we shiagnt the
proof of Theorem 3.3 in Franks [1979]. The theorem says that fraszoadected
manifolds are, by the Pontrjagin-Thom construction, in one to one camelgnce
with homotopy classes of relative attaching maps.

4.1 Elements of Morse Theory

Let M be a closed smooth manifolgy a Riemannian metric on/, and f be a
Morse function onl/. It follows that there are finitely many critical points and alll
of them are nondegenerate.

We shall consider the gradient flow, that is the flow line through M
Yz ¢ (a,b) — M
that satisfies the differential equation

dve
i V. (),

wheregy(V £, () = df (¢) for any smooth vector field on M, andy,(0) = x.
We shall study the relation between the structure of the critical sgt of

Cr(f) = {z € M| df (z) = 0}

and the topology of\/.
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4 Stable, Unstable and Connecting Manifolds

Lemma 4.1.1. Let M™ be a closed smooth manifold, : M — R be a Morse
function andCr(f) the set of the critical points of. Then there is a metrig and
a family of open neighborhoodd/, },,c¢,(s) Of the critical points such that in a
local coordinate systertxy, ..., z,) of U,

Ap n

i=1 J=Ap+1
Ap 9 n 9
i=1 R R e

where),, is the index of a critical poinp.

Proof. The Morse Lemma ( Lemma 2.2 in Milnor [1997]) provid€s), },cc ()
and the first statement of the lemma. Shrink th¢s so that they are disjoint. We
choose the standard Euclidean metriclgn Inside eaclU,, we consider an open
setV,, containingp. On the open se¥ = M — J,c¢, (s cl(Vp) we select an
arbitrary metricgo. Using a smooth partition of unity subordinate{ts, },cc,s)
andV we obtain the desired metric O

Definition 4.1.2 (Definition 6.30 in Banyaga and Hurtubise [2004]) A gradient
vector fieldV f of a Morse functiory is said to be in standard form near a critical
pointp if and only if there exists a smooth coordinate chart aroprglich that in
the local coordinates determined by the chart we have Equations (4.2), (

If the gradient vector field is in the standard form near every critical pdhmn
we shall say that the Riemannian metgits compatible with the Morse charts for
the functionf.

We shall assume for the rest of this chapter that the Riemannian metnd/
is compatible with the Morse charts fgr
Let a be a critical point forf. We define two subsets af:

Wia) = {zeM]| Jim y(0)=a), (4.3)
W a) = {xe€ M| tl%r_noo vz(t) = a}. (4.4)
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4.1 Elements of Morse Theory

Theorem 4.1.3 (3.9 in Milnor [1965]). Leta € Cr(f), and the index of. be .
The setdV*(a) andW*"(a) on (M, g) are diffeomorphic to open disks of dimension
n — A and \ respectively.

The subsei?V*(a) is called the stable manifold af, and the subséi’*(a) is
called the unstable manifold af

Proof. We prove the theorem fdiV*(a). The proof forl*(a) is analogous. Fol-
lowing Lemma 4.1.1 there exists a chart U — R", so thata € U, ¢(a) = 0 and

in the local coordinates the Morse functigrand its gradient are of the forms (4.1)
and (4.2). Consider a balWy, C ¢(U) of dimension\, centered a0 and suffi-
ciently small radiugy: Wy = {z € ¢(U)| zr11 = ... = 2, = 0, ||z]| < ro}. We
see that—1(Wy) € W¥(a), since the gradient flow line starting at a paing W,
satisfies the following differential equation

Su(t) = 2(0),

or explicitly

7i(t) = 7:(0)e*.
The manifoldM is compact thus the gradient vector field generates a 1-parameter
group®; : M — M, t € R, of diffeomorphisms andthe map: R x M — M,

(I)(tv y) = ’Yy(t)

is smooth. Every element 3/ *(a) when flown backward in time converges to
the pointa hence after some finite time ends up in the get(17;). Hence we
conclude that?V“(a) = > @(¢, ¢~ (Wh)).

In the next step we streteb ! (1W;) to the wholelV“(a). For this we shall use a
smooth monotonic function : [0,72) — R, wherer is the radius of the ballVy,
with ¢(0) = 0 andlim;_.,, (t) = +o0c. The mapS : Wy — W*(a), defined by
S(z) = ®((||z||?), p~1(x)) is the desired diffeomorphism of theball onto the
unstable manifold?V"(a). O

The proof of Theorem 4.1.3 relies on the metgicompatible with the Morse
charts forf, nevertheless the theorem is true for an arbitrary Riemannian metric on
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4 Stable, Unstable and Connecting Manifolds

the manifold)M/, see Theorem 4.2: Stable/Unstable Manifold Theorem for a Morse
Function in Banyaga and Hurtubise [2004]. As a matter of fact it is valichfior
vector fields with hyperbolic singular points, in which cad8é(a) is an injectively
immersed\-open disk. We will postpone the discussion on stable manifolds for
vector fields until the next chapter.

In the following we shall assume that the functignis Morse-Smale, that is
all stable and unstable manifolds intersect transversally. On thér§éj of the
critical points of a Morse-Smale functiofiwe define a partial order relation by
a = bif and only if W*(a) N W*(b) # 0 (there is a gradient flow line with
limy—, oo (t) = a andlim;_, 4 y(t) = b).

Definition 4.1.4. Suppose: is a critical point with index\,. Letr < A, be the
largest integer for which there exists a critical pointvith the index\, = » and
a = b. Then the pointa andb are called successive.

Fora,b € Cr(f) we shall use the notation
W(a,b) = W*(a) h W*(b).

If @ = b the intersection¥V (a,b) is nonempty and due to transversality it is
a manifold of dimension corresponding to the relative index: @nd b, that is
Aa — Ap-

Let 7 € R be a regular value of such thatf(a) > 7 > f(b). Such a value-
exists since the functiofiis strictly decreasing along the gradient flow line, which
does not contain a critical point. We will consider the preimage

Ve = fH(r).
Lemma 4.1.5. Suppose that and b are successive points and letbe such that

f(a) > 7> f(b). Theintersections“(a) = W"(a)NV,; andS*(b) = W*(b)NV;
are diffeomorphic to spheres of dimensign— 1 andn — A\, — 1, respectively.

Proof. Away from the critical se€r( f), we consider the vector field

Vyf

X(y)zm—ﬂQ,
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4.1 Elements of Morse Theory

and a flow linen, of X with initial condition,(0) = p € (M —Cr(f)). It follows
that

d
af(ﬁp(t)) =X, (Foo)) = nppy (VLX) = 1.

Let Sy = 0 (cl(Wy)) , whereTV, is the disk of radius, as defined in the proof of
Theorem 4.1.3.
Forallz,y € So, f(z) = f(y) = f(a) — 1o, also

f (T = f(a) +70)) = f (7= fla) +r0)) =T

We define the mag : OW, — S*%(a) by

R(x) = (7 — f(a) +70).

The mapR is a diffeomorphism. This proves that‘(a) is diffeomorphic to a
sphere of dimensioi, — 1. The proof forS*(b) is analogousl]

Lemma 4.1.6. Suppose that andb are successive points and tetoe such that
f(a) > 7 > f(b). Then the stable spherg®(b) and the unstable spheig”(a)
intersect transversally in the level manifold. More generally, ifa = b (not
necessary successive) ang a regular value then the manifold&“(a) N f~1(7)
andW$(b) N f~1(7) intersects transversally.

Proof. The stable and unstable manifolds intersect transversely, which results in
the exact sequence &#“(a) h W*(b), see (4.5). We use the following shorthand
notationsiW, , = W(a,b), W} = W*(a) andW; = W*(b),

(diuyfdis) d]u+d]s
—_—

00— T(Wa,b) TWa,b (Wty) @ TWa,b (Wbs) TWa,b(M) —0,
(4.5)
wherei, : W(a,b) — W*(a), andj, : W*(b) — M are the inclusions.
Sincer is a regular value, we have th&t. ) (W*(a)) = T(S%(a)) ® . Let
R = span{V, f} and use the notatio; = S“(a), andS; = S*(b). From (4.5),

for p € W(a, b) NV, we get the short exact sequence

0 — (T,(S2) NT(S7) & R > T, (S2) & R @ Ty (S5) © R - T, (Vi,) @ R — 0.

31



4 Stable, Unstable and Connecting Manifolds

wherea : (v,7) — (v,r,—v,—r), andg : (v,r,w,s) — (v+ w,r + s). The
map (3 is surjective, so is the map: T,(S“(a)) @ T,(S*(b)) — T,(V;) given by
(v,w) — v+ w. ThusS"(a) andS*(b) intersect transversally.

In the proof above we have only used the property thi a regular value of
flwu(a)- Observe also thdyu gy, (W*(a)) = T(W*(a) NV;) ©e. Hence the

second statement of the lemma follokls.

4.2 Connecting Manifolds

Definition 4.2.1. Leta andb be successive critical points of a Morse-Smale func-
tion f. The intersection of the stable and the unstable sphé¢s,b) = S*(a) N
S*(b), will be called their connecting manifold.

The connecting manifold is a compact submanifoldtfa), it has also a fram-
ing, as it is shown in the next proposition.

Proposition 4.2.2. If N(a, b) is the connecting manifold of two (not necessary suc-
cessive) critical points and b of a Morse-Smale functioyi, then N(a,b) is a
framed manifold in5“(a).

Proof. The stable manifold *(b) is diffeomorphic to a disk thus it is contractible.
It follows that the normal bundle(W*(b), M) is trivial.

The intersection ob*(a) andW*(b) in M is transversal and inclusions induce
the following commutative diagram

N(a, b)— W*(b)

|

S"(a)—— M.
Then Lemma 3.7.2 gives the isomorphism

v(N(a,b), 5"(a)) = v(W?*(b), M)|N(ap)-
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We shall study a CW-complex structure of the manifdlfl associated to the
Morse functionf. Our aim is to describe the relative attaching maps.

Let D" denote the open ball of radiuswith center0 in R™, D™ = D7*, and
S™=1 the boundary ofl(D™) in R™. Suppose € M is a critical point with index
A, and critical value. For some small > 0, V_. = f~!(c—¢) andV; = f~1(c+e)
are level manifolds such thats the only critical value in the intervéd — e, c + €.
Already classical Morse theory, Theorem 3.2 in Milnor [1973] statesttimset
MeT¢ = f~1(—o0, c + €] has the homotopy type dff“— with a A\-cell attached.
However, in order to extract an explicit form of the attaching map we shallemo
along the lines of Ch. 3 in Milnor [1965].

The manifoldsV_. andV; are cobordant, since they comprise the two compo-
nents of the boundary &% = f~1([c — ¢, c + ¢]). We shall denote this cobordism
by (W;V_, V,), and call it an elementary cobordism.

There is a local coordinate systeim: U — D;‘\/E such that the function and
the gradient vector field are locally given by the normal forms (4.1) an®),(4
respectively.

Definition 4.2.3 (Definition 3.9 in Milnor [1965]). The characteristic embedding
¢ : SMEx DA — V. is given byg(u, av) = 0! (y/eu cosh(a), y/evsinh(a))
forue M1 ve S» A and0 < a < 1.

Definition 4.2.4 (Definition 3.13 in Milnor [1965]). Given a manifoldV’ of di-
mensiom —1 and an embedding’ : S* ' x D" — V’, x(V', ¢') is the quotient
manifold obtained from the disjoint unigi’” — ¢/(S*~! x 0)) L (D* x S*=2~1)
by identifying ¢’ (u, av) with (au,v) for eachu € S*1 v € S"~*~1 and
0 < a < 1. If V" is any manifold diffeomorphic tg(V’, ¢’) then we say that
V" is obtained from/’ by surgery of typé\,n — \).

We define a manifold., by
Ly = {(z,y) € R*xR"*| -1 < —|z*+]y|* < 1 and|z||y| < sinh(1) cosh(1)}.

The boundary of., has two components. One efiz|?+|y|> = —1 diffeomorphic
to A1 x D" via the map

SAL % D" 5 9Ly, (u, av) — (ucosh(a),vsinh(a)),
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4 Stable, Unstable and Connecting Manifolds

and the second on|z|? + |y|? = 1 diffeomorphic toD* x S»~*~! by
DM x "1 5 9Ly, (au,v) — (usinh(a), v cosh(a)).
We construct a manifold (V_,, ¢) as follows. LetD! = [-1,1] and
W' = (V_e — (S L 0)) x D'U Ly,

and ~ denotes the following equivalence relation. For eacke S*~!, v €
Sn=A71 0 < a < 1,andc € DY, (¢(u, av),c) € (Ve —¢(SM1 x0)) x D!
is identified with the unique poiritc, y) € Ly such that

1 —Jaf? + [yf2 = c

2. (z,y) lies on the flow line of the gradient vector field (4.2), which passes
through the pointu cosh(a), v sinh(a)).

Then the manifoldv(V_,, ¢) is
W(erygb) = W// ~

The boundary of the manifold(V_,, ¢) has two componentd._. (correspond-
ing to the value: = —1) and a component (corresponding:te- 1) identified with
x(V_e, ¢) by the mapy : x(V_., ¢) — 0w (V_, ¢) defined by

g9(z) = (2,1) forz € V. — ¢(SM 1 x 0)
g(au,v) = (usinh(a),vcosh(a)) for (au,v) € D* x S"=A~1,

Theorem 4.2.5 (Theorem 3.13 in Milnor [1965]). SupposéW; V_., V;) is an ele-
mentary cobordism, ang : S*~! x D"~* — V__ is the characteristic embedding.
Then there is a diffeomorphisin: (w(V_c, #); V_e,x(V_e, @) — (W;V_(, Vo).

Theorem 4.2.6 (Theorem 3.14 in Milnor [1965]). SupposéWV; V_, V,) is an ele-

mentary cobordism antd’“(p) = W*(p)NW. Then there is a deformation retract
r:W —V_.UWH(p).
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Figure 4.1:V_. U Dy, is a deformation retract af(V_, ¢).

Proof (sketch).Let Dy, andC be the following sets
Dp ={(z,y) € Lx|y = 0},
and its collar neighborhood
C = {(z,y) € Lx| ly| < 1/10}.

Since the seD, is diffeomorphic tolW*(p), cf. Theorem 4.1.3, it is enough to
show thatV_. U Dy, is a deformation retract af(V_., ¢). Fort € [0, 1] we define
deformation retractiong fromw(V_,, ¢) to V. UC andr} fromVUCto VU Dy..

The composition of these maps gives the desired retraction. The sketck of th
situation is drawn in Figure 4.1. For details see Milnor [1963].

Supposer andb are two successive critical points 6f We define the composi-
tion

: klyv_c,e) i r A c
h: D x §7 AT (Vo ¢) =5 VW L= Ut (p) > S
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4 Stable, Unstable and Connecting Manifolds

wherejy, jo are the inclusion andcollapses{ (V_e U W“(p)) - int(W”(p))} to

a point. Analyzing the retractions andr;’ in the proof of Theorem 4.2.6 one sees
that the maph collapses the spherg”—*~! to a point{*}, and for a sufficiently
small§ > 0, the restriction of: to D x {x} is a diffeomorphism onto its image.
We shall denote this image ly;,.

Let M (f) be a CW-complex associated fpandM (f)* be itsk-skeleton. The
relative attaching map,;, of a \,-cell e*« to a\,-cell e in M(f) is defined by
the following composition, cf. Sec. IV.9 in Bredon [1993],

Gup i ST = PP 2 M(fP0 —— M(FP0/ (MFP = imnt(e) = S

where~,; is the attaching map of thi,-cell to the CW-complexi/(f)*. The
map ¢, is homotopic to the composition

coroj

Sha—l o gu(g)ts v, LGN,

wheres is the inclusion of the stable sphere in the level manifdld
We have the commutative diagram

coroja

S*(a)— V.

"

Ab n—Ap—1
Dsb x Snmre T

S,

The image of{0} x S"~%~! by the embedding: o j; is S*(b). Furthermore,
h(0,q) = v for somev € S* and for allg € S"~*~!. Denote the composition of
the upper maps in the diagram By, = c o r o j5 o 4. It follows that

B (v) = 8%(a) N S“(b),

and we have a situation

SU(a) N S%(b) — Dyt x S"M~1 . Dy = D
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4.2 Connecting Manifolds

asinLemma 3.7.1. We conclude that sist€a) andS*(b) intersect transversally,
v is the regular point 0f,;.

We shall consider the attaching map, as an element in the homotopy group
7, —1(5*) and see that the connecting manifold is the Pontryagin manifold as-
sociated to3,,. Corollary 3.3.5 proves Connecting Manifold Theorem due to
J.M. Franks, cf. Theorem 3.3 in Franks [1979]. The formulation of ri@at
ing Manifold Theorem used in this chapter is not Frank’s original onétdken
form Banyaga and Hurtubise [2004]. The second author of BangagaHur-
tubise [2004] made us aware that an isomorphism betweéaita, b), S*(a)) and
v(W?(b), M)|n(ap) in the proof of Proposition 4.2.2 gives an ambiguity of the
sign=+1 in the formulation of Connecting Manifold Theorem.

Theorem 4.2.7 (Theorem 6.40 in Banyaga and Hurtubise [2004])Suppose that

f : M — R is a Morse-Smale function on a finite dimensional compact smooth
Riemannian manifold M, g), and assume that the metricis compatible with

the Morse charts forf. Suppose that, b are successive critical points and let
(N(a,b),0) be a framed connecting manifold. L&f(f) be the CW-complex as-
sociated tof and lety,; be the relative attaching map of the cell M (f) cor-
responding taz to the cell corresponding tb. Then the Thom-Pontryagin con-
struction applied to the framed submanifdl&/ (a, b), o) produces a map that is
homotopic toy,;, up to precomposing with a representativetof € ;(S7) where

j =g — 1.

We follow Remark 6.41 in Banyaga and Hurtubise [2004] and state that the sig
+1 € m;(S7) depends on the homotopy class of the framing of the connecting
manifold (N (a, b), o). An orientation ofi¥*(b) and an orientation od/ will
determine a homotopy class for the framingéfa, b). So, the signt1 € m;(S7)
is determined by the orientation chosen ¥or (b) whenM is oriented.
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5 Morse-Smale Vector Fields

We shall review the main results of the geometric theory of dynamical systems. |
the exposition we have extensively used Palis and de Melo [1982]. W jstag-
erties of the Morse-Smale vector fields, i.e. vector fields with hyperboliatng
elements whose stable and unstable manifolds intersect transversally. ingfe br
in the notion of structural stability. Morse-Smale vector fields form a nonempty
subset whose elements are structurally stable. We spend some time in this chapte
investigating gradient-like vector fields which are the building blocks of sectio
cones defined in the next chapter. To any Morse-Smale vectokfiglassociate

a Lyapunov function that is a function, which decreases along the oftqtajpart
from its singular elements. The main contribution of this part is the analysis of
dependence of the invariant manifolds on small perturbations of vechds.fid/e
show that a local stable manifold depends continuously on a perturbation.

5.1 The C" Topology

We shall recall a notion of the derivative of a map in a Banach space.oldgevf
Sec. 1.3in Lang [1999]. LeE andF' be two Banach spaces ald open inE. Let
f : W — F be a continuous map. We say thats differentiable at a point; if

there exists a continuous linear map, of £ into F' such that, if we let

f(xo + h) = f(xO) + Lagh + oz (h) (5.1)
for small, thena,, is tangent ta); that is

oo (@) < ||| 5(x) with Hii”{{oﬂ(w) =0.

We say thatl,, is the derivative off atzo. We denote the derivative lif (zo). If
f is differentiable at every point d¥/, thendf is considered as a map

df : U — L(E, F).
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5 Morse-Smale Vector Fields

Definition 5.1.1 (Def. 5.28, Banyaga and Hurtubise [2004], Hirsch [19]).

For 0 < r < oo, let C"(M, N) denote the space @f” maps between twe”

manifolds)M and N. Letf € C"(M, N), and let(¢,U) and (¢, V') be charts on
M and N respectively. LeK C U be a compact set such thatK) c V, and let
0 < € < co. Define the subbasis element

N'(f: (0, U0), (¥, V), K, €)
to be the set o™ mapsg : M — N such thaty(K) C V and

|d¥ (o fod ) (z) —d*(Wogoo )(a)| <e

forall z € ¢(K) andk = 0, ...,r. TheC" topology onC" (M, N) is defined to be
the topology generated by the subbasis elemafitsf; (¢, U), (¢, V), K, €). The
C* topology onC*°(M, N) is defined to be the union of topologies induced by
the inclusiong®>* (M, N) — C"(M,N) forall 0 < r < oc.

By Theorem 2.4.4 in Hirsch [1976{;" (M, N ), 0 < r < oo, with theC" topol-
ogy arises from a complete metric. In the following we shall construct a metric
for the spaceC” (M™,R?®) with M a compaciC” manifold such that this metric
generates the topology, which coincides with ¢ifetopology.

The space’” (M, R*) has a canonical vector space structure:
For f, g € C"(M,R®) and a real\ we define

(f+9)) = f(p) +9), (Af)(p) =Af(p) forallp e M.

We shall take a finite open covéV;};—; .., of M such that eacly; is contained
in the domain of a local chaft);, U;) with 1;(U;) = D% andy;(V;) = D}, where
D7 denotes the open ball of radiusvith center0 in R™. We shall use the notation

fr=rfou;': Dy - R,
and define a norm
| £1]r = max; sup{|| f*(w)|], [|df* (W), .., ||d" f*(w)|| | w € D}}.

In the proposition below we see that that the ndriffy. generates th€” topology
onC"(M,R?).
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Proposition 5.1.2. Let M™ be a compact manifold. The nofm||, onC" (M, R?)
generates th€' topology of it.

Proof. We show that for any map € C" (M, R?) the ball

Be(f) ={g € C"(M,R*)[ llg — fll» < €}

is open in theC” topology. Let{(v;,U;)}ieq1,..xy b€ the family of coordinate
charts andV; };c1,... k) be the cover of\f as in the definition of thef - ||, norm.
We see thaB. (f) = ", N(f; (i, Us), R%, cl(V;), €).

Now we prove that the topology generated by|tHg norm, denoted in the sequel
by 7, is finer than the_" topology. We show that for any € C”"(M,R®), any
i € {1,...,k}, any open seB in R?, any compact subsét of cl(V;) ande > 0,
the set\'(f; (v;,U;), B, K, ¢€) is open in7T. Pickg € N(f;(¥:,U;), B, K, ¢).
Becausg(K) is compact we can choose such that thé, -neighborhood of( K)
is contained inB. Henceh(K) C B foranyh € Bs,(g). For0 < § < min{d;, €}
we haveB;(g) C N(f; (v:,U;), B, K, €).

Let (6, V) be a chart onV/, K be a compact subset &, B as before be any
open set iR ande > 0. SupposeX intersectd of the elements of the family
{Vitiequ,...ky» SQYV1, Vo, ..., V). Let

bl = sup{[|d’ (Yo 0 ) (@) [z € ViN K}, i=1,...,1

and ‘
b=min{b!|i e {1,....l}, j € {l,...r}}

If 6 < ¢/bthen(Y._, N'(g; (i, Ui), B, K N cl(V;),8) € N(f;(8,W), B, K, e).
Since the setd/(g; (¢4, U;), B, K N cl(V;), ) are open irZ and they contairg,
the set\/(f; (0,W), B, K,¢) isopenin7. O

Proposition 5.1.3 (Proposition 2.1, Palis and de Melo [1982])The vector space
C"(M,R?) with the norm|| - ||, is Banach.

Proposition 5.1.4 (Proposition 2.3, Palis and de Melo [1982])C" (M, R®) is sep-
arable; that is, it has a countable base of open sets.
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Proposition 5.1.5 (Proposition 2.2.2, Hirsch [1976]).The subset of maps of class
C"(M,R®) (1 < r < o0) is dense irC%(M, R#).

Proposition 5.1.6 (Proposition 2.2.4, Hirsch [1976]).The subset of maps of class
C>(M,R?) is dense irC" (M, R?).

Proposition 5.1.7. For » > 0, let M be a compactC” manifold. The evaluation
map
e: M x C"(M,R%) — R®

defined by the equation
e(p,€) = &(p)

is C" (with C" topology imposed o6 (M, R?)).

Proof. We shall proof the proposition by induction. We start by showing ¢hat
continuous. Denote th€” mapsM — R? with the C° topology byC} (M, R?).
The compact-open topology @ (M, R*) coincides with the topology of compact
convergence thus with the topology generated||byi|o. We conclude that the
evaluation mag : M x C°(M,R®) — R? is continuous, cf. Theorem 46.10 in
Munkres [2000], so is its restriction td/ x Cj(M,R®). By the standard — e
argument we see that the inclusion C"(M,R®) — Cj(M,R®) is continuous.
We see that the evaluation magactors througte| s, «cr(arrs) © (id x 9), thus it
is continuous.

Now suppose that the evaluation majs C”~!. We shall show that it is of class
C". The partial derivative with respect to the first variable is

die(z,5) = e(x, df).

It follows that dye is a composition of twaC"~! maps hence it i€"~'. The
derivative with respect to the second variable is

dge(x7f) (h) = €($, h),

which isC"~! by the assumption. Thusis indeed of clas§”. O
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Suppose that : M — R? is an inclusion map, then the differential
dj : T(M) — M x R®

shows that the spac¥€ (M) of C" vector fields onV/ is a subspace a@f” (M, R®).
The tangent bundl@& (M) is closed inM x R® sinceT(M) = 7~ (1), where
m:T(M)®v(M,R%) — v(M,R?) is the projection andy is the zero section in
v(M,R®). The evaluation map : M x C"(M,R®) — R? is continuous, thus the
spacex” (M) is closed inC" (M, R®), i.e. X" (M) is the preimage of (M) under
the induced map

M x C"(M,R®%) — M x R®.

We define a norm on the spa&&(M) by

€17 = 1€ = Onrllr

where0), is the zero section 6f (M). The spacé&” (M) with the norm|| - ||~ is a
Banach space. To suppress the notation we shall Wrife instead ofj| - ||” when
dealing withX" (M).

Definition 5.1.8 (Sec. 1.2 in Palis and de Melo [1982])A subsetl/ of a topolog-
ical spaceX is called residual if and only if it is a countable intersection of open
dense subsets of, thatisU = (172, G; with G; C X open and dense i for

all 7 € N. A subset of a topological spac€ is called generic if and only if it
contains a residual set. A topological spa&eis called Baire if and only if every
generic subset is dense.

Baire’'s Category Theorem (Theorem 17.1 in Bredon [1993]) saysifthd is
either a complete metric space or a locally compact Hausdorff space then the in
tersection of countably many open dense sets is dense. So we conclubdettha
C"(M,R?) andX" (M) are Baire spaces.

5.2 Vector Fields on a Closed Manifold

An integral curve of a vector field € X" (M) through a poinp € M is aC"*!
mapa : (—e,e) — M, with a real numbee > 0, such thatw(0) = p and
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%a(t) = ¢(a(t)) forallt € (—¢,€). Theimage of an integral curve is an orbit. The
set of singularities of a vector fielis denoted byr (&) = {p € M| {(p) = 0}.
The theorems on existence, uniqueness and differentiability of solutiemdiofry
differential equations ifR™ extend to vector fields o .

Theorem 5.2.1 (Proposition 1.1, Palis and de Melo [1982]).et E be a Banach
space andl’ : Ex M — TM aC" map ¢ > 1), such thatly, = F(),-) is
a section for any\ € E. For every)\y € E andpy, € M there exist an open
neighborhoodiV C E of Ay and an open neighborhood C M of pg, a real
numbere > 0 and aC” map® : (—e,e) x V. x W — M such that

®(0,A,p) = pand
S bt ) = FOL(Lp ), (5.2)

forall t € (—e,€), p € V, A € W. Moreover, ifa : (—e,e) — M is an integral
curve of the vector field, with a(0) = p then

a=®(,p,A). (5.3)

Proposition 5.2.2. If the manifoldM is compact and a map’ satisfies the as-
sumptions of Theorem 5.2.1 then for anye E andpy € M there exists an open
neighborhoodV C E of \gand aC” map® : R x M x W — M such that (5.2)

and (5.3) are satisfied.

Proof. This proof is motivated by the proof to Lemma 2.4 in Milnor [1973]. We
fix A\g. For anyp € M we have open neighborhoots, of \q in £ andV,, of pin

M ande, > 0 and the map®,, : (—¢,,€,) x V, x W, — M of Theorem 5.2.1.
Since M is compact there is finite number of neighborhodfsoveringM. Let

¢ > 0 denote the smallest of the numbeks, }icqi.. vy, andW = ﬂf\il W,
We shall not keep track of the subscrjpof the function®,,, and use the notation
O)Mz) = ®(t,x,\). We see thatb is defined for allt € (—e¢,¢), z € M and

A € W. Itremains to defin@ for |t| > €. We express = ne/2 + r, wheren € N,
and|r| < ¢/2. We define

O(t,z,\) = @?/2 0...0 (I)i‘/Q o CI)i‘($)
® is well defined by (5.3), and it i€ as composition o™ maps.[]
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5.3 Stability Theory

5.3 Stability Theory

We shall briefly introduce the Lyapunov stability theory. The aim is to provide
necessary conditions for a dynamic system to be stable. Later on wesswdlate

a function to a Morse-Smale vector figgdwhich is non-increasing along the the
flow lines of£. We denote a flow line of by ¢§(t), that is

%ﬁg () = £ (65(0)) with 5(0) = =

Definition 5.3.1 (Definition 2.1.24 in Abraham and Marsden [1977]).Let a be
a critical point of¢ € X" (M). Then

1. The point is stable if for any neighborhoad of a, there is a neighborhood
V ofa such thatifz € V then{J,» ¢ (z) C U.

2. The point: is asymptotically stable if it is stable and there is a neighborhood
V' of a such that ifx € V’, then

lim gbf(a:) =a.

t——4o00
Locally in R™ we can formulate the following sufficient conditions for stability.

Theorem 5.3.2 (Theorem 4.1 in Khalil [2002]).Let 0 be a singular point of a
vector field( € X"(R") (r > 1). If there exist an open neighborhoad of 0
and aC! functionf : U — R such thatf(0) = 0, f(x) > 0 forz € U — {0},
and —¢(f)(z) > 0for z € U. Then0 is stable. Moreover, it=£(f)(z) > 0 for
x € D — {0} then0 is asymptotically stable.

Corollary 5.3.3 (Theorem 4.2 in Khalil [2002]). Let 0 be a singular point of a
¢ € X"(R"). If there is aC! functionf : R® — R such thatf(0) = 0, f(z) > 0
forz # 0, =¢(f)(x) > 0forz € R" and f(x) — +oo as||z|| — +oo. ThenO is
asymptotically stable oR", i.e. for anyz € R”, lim;_, 4, gzsf(a:) =0.

The singular poin® of a linear vector field. € £(R") is asymptotically stable
if and only if all the eigenvalues df have negative real part. In the next theorem
we shall relate asymptotic stability to the solution of a certain equation.
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5 Morse-Smale Vector Fields

Theorem 5.3.4 (Lyapunov Stability Theorem 3.2 in Datta [1999]).The singular
point0 of a linear vector field. € £(R") is asymptotically stable if and only if, for
any selfadjoint positive definite matr} there exists a unique selfadjoint positive
definite matrixP satisfying the Lyapunov equation

LTP+ PL=—-Q.

Proof. We show that ifL is asymptotically stable then there is a unique solution of
the Lyapunov equation. We shall show that the following selfadjoint matrix

o0 T
P:/ el tQertat
0

is indeed a solution of the Lyapunov equation. Substifdteto the Lyapunov
equation then

oo oo
L"P+PL = / LT Qe dt + / X Qe Lat
0 0
— /OO ieLTthLtdt — eLTthLt‘OO
0 dt 0

But L is asymptotically stable thu€* — 0 ast — +oo0. ThusLTP + PL = —Q.
To prove thatP is unique, assume that there are two solutithsand P, to the
Lyapunov equation. Then

LY(P, — P)+ (P, — P,)L =0,
which implies that

HH(LT(PL — Py) 4 (P — Py)L) e =0

or

% [eLTt(Pl - PQ)eLt} =0.
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5.3 Stability Theory

It follows that the matrixe”"*(P; — P;)elt is constant for alt. Evaluating this
expression fot = 0 andt = +o0, we conclude thaP; — P, = 0. It is positive
definite, since

o
T
xTPx:/ zTel tQeltxdt
0

ande” is nonsingular and) positive definite, thus™ Pz > 0 for = # 0.

We prove the converse. Pick any selfadjoint positive definite métrithen there
is a solutionP’ to the Lyapunov equation, and we can define a funcfioR” — R
by z — zT Pz then

—L(f)(x) = 2" (L"P + PL)z = 27Qz > 0
for z # 0. By Corollary 5.3.3, the singular poiftis asymptotically stablé.]

Suppose thaf € X"(R"™), » > 1. By Taylor expansion , cf. Sec. XIII.6 in
Lang [1999].¢ may be considered as a perturbation of a linear ordinary differential
equation of the form

SOM = €od5(t) = Lef(r) + mo k(1) (5.4
050 = @

in some open neighborhodd of 0 in R™, whereL € £L(R™) andn : R — R" is
aC"~! map that satisfies

n(0) = 0
In(z) —n()ll < dae)lle -yl for [l [lyl <e (5.5)
with the functiond : [0, c0) — [0, c0) continuous and monotonically increasing.

In the next corollary we relate asymptotic stability of a vector field to asymptotic
stability of its linearization.

Corollary 5.3.5. Let 0 be a singular point of a vector field € X" (R"), r > 1.

Supposd. = d£(0). If L is asymptotically stable, then the poinis asymptotically
stable for¢.
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5 Morse-Smale Vector Fields

Proof. The linear systenk is asymptotically stable thus for any selfadjoint positive
definite Q there is a unique solutioR to the Lyapunov equation. Define a map
f:R® = Rbyz — 2T Pz. By the Taylor expansion af we have

—&(f)(@) = 2" Qu — 22" Pn(x).

The matrix@ is selfadjoint positive definite, therefore by the Spectral Theorem,
zTQxz > c|z| wherec is the smallest eigenvalue ¢f. Furthermore, we use the
estimate

2" Py(2)| < ||zl |IP] [In(2)]| < s(e) Iz,

whereé is continuous and monotonically nondecreasing as in (5.5). Therefore we
can choose such thati(e) < d, whered is an arbitrary real number. Fdr:|| < e
we have

—€(f)(x) = 2" Qu 22" Py(z) > cl|z]|* — 2l Pn(z)| > (c — 26(e) || P])) [l]|*.

We shrinke such that: = ¢ — 2§(¢)|| P|| > 0 and get
—&(f)(@) = kllz], ¥ [lz]| < e
Thus by Theorem 5.3.2, the singular pdindf £ is asymptotically stable(]

The result below relates the spectrum@fwith the spectrum ofl.. First we
define an inertia.

Definition 5.3.6. The inertia of a matrix. € £(R™) of order n, denoted bin(L),
is the triplet

(w(L), v(L),6(L)),

wherer(L),v(L) andé(L) are, respectively, the number of eigenvalue$ afith
positive, negative, and zero real parts, counting multiplicities.

Note thatr(L)+v(L)+d(L) = n, andL is stable ifand only ifn(L) = (0, n, 0).
Below we state the Main Inerta Theorem.
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5.3 Stability Theory

Theorem 5.3.7 (Theorem 2.5 in Stykel [2002]). A necessary and sufficient con-
dition that there exists a selfadjoint matrx such that

LYP + PL = —Q, whereQ is selfadjoint and positive definite,
is thato(L) = 0. Furthermore, we have(L) = v(P) andn(P) = v(L).

Suppos€ € X" (M) anda is a singular point of. Consider a local cha(t), U)
with a € U and¢(a) = 0. Then¢ in the local coordinates i§ = dy§ o L.
Notice thatln(d&y) is independent of the local chart.

Definition 5.3.8. Suppos€ € X" (M). A singular pointa € M is called hyper-
bolic if and only ifd¢, : R™ — R™ is hyperbolic, i.e.d(d&y) = 0 (d&, does not
have any complex eigenvalues whose real part is zero).

Proposition 5.3.9. Suppos& € X"(M), r > 1 anda is a hyperbolic singular
point of &. Then there exist an open neighborhdddc M of a, a C" function

f: U — R and areal number > 0 such that-£(f)(z) > kd(x,a)?, whered is

the distance introduced by the Riemannian metrid¥n

As in the proof of Corollary 5.3.5

Proof. Use the exponential map to get the normal coordinatesy — T,(M).
We represent in local coordinatef = dy€ o ¢p~'. By the Taylor expansion
we haveé = L + 5 with ||n(z)|| < d(e)||z| for ||z|| < e. Pick a selfadjoint
and positive definité) then there is a unique selfadjoint hyperbahcsolving the
Lyapunov equation

L'P+ PL =—Q.

Define the functionf : Y(V) — R by z +— 2T Pz. Then following the proof of
Corollary 5.3.5 there is a neighborho®d C v (V') of 0 and a constant such that

—{(f)(@) = 2" Qx — 22" Py(w) > k||,
The desired function i = f o ¢! defined onJ = Y~ (V'). Then
df o £(p) = dfdip o ™ E(p) = —df 0 () = k|jal|* = rd(a, p)?,
wherez = ¢ (p). O
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5 Morse-Smale Vector Fields

5.4 Invariant Manifolds and Their Perturbations

We study invariant manifolds of &” vector field on a closed’™ manifold M,

r > 1. We will restrict out attention to the stable manifolds. The results on un-
stable manifolds are analogous. It will be shown that a stable manifold depen
continuously on perturbations of a vector field in a sense specified lateisin th
section.

The stable manifold of at a singular point is defined by
Wa(€) = {z € M| lim ¢5(t) =a},
and the unstable manifold gfata is
W) = { € M| Tim g5(t) = a}.

At this stage it is not clear that the sét5 () andIW}(£) are manifolds. This is in-
deed the case if the singular points are hyperbolic. This is shown in Tinénrel
and Corollary 5.4.2.

Significance of the notion of a hyperbolic singular point stems from the fellow
ing observation. IfL € L£(R™) and it is hyperbolic then there is a direct sum
decomposition

R™ = E° & EY,
where E° and E* are invariant subspaces fdr. Moreover the eigenvalues of
L*® = L|gs have negative real part and the eigenvaluek'of L|z. have positive

real part, cf. Ch. 7 in Hirsch and Smale [1974]. In particdlgf(L) = E* and
Wi (L) = E*. We shall use the projections

P :R" — E°andP" : R" — E“. (5.6)
For a hyperbolid. there are, a > 0 such that

|eFtPs|| < cpem for t>0
|eFtPY| < et for t<0

(5.7)
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5.4 Invariant Manifolds and Their Perturbations

We define the local stable and unstable manifold

W5(E,U) = {xeU: ¢,(t)is defined and contained ¥ for all ¢ > 0, and
Jlim g8 (t) =0},

Wi, U) = {xzeU: ¢;(t)Iis defined and contained & for all t < 0, and
lim #5(t) = 0.

Theorem 5.4.1 (Local Stable Manifold Theorem, Theorem 6.3.1, Jos202]).
Let ¢, (t) satisfy the differential equation (5.4) with a hyperbolic linear operdtor
andn € X"(R™) obeying inequality (5.5). Then there is an open neighborhdod
of 0 such thati¥j (¢, U) is a Lipschitz graph ovet/ N £, which is tangent td*
at0. If nis of classC* in U, so isW§ (&, U).

Let¢ € X"(R™) and supposé is a hyperbolic singular point. Denofe = d¢,
and letE*, E“ be the stable and unstable subspacé®"ofor L. Furthermore, let
D;, D! be centered dt open balls respectively iB® and E*, both with the radius
r. By the Local Stable/Unstable Manifold Theorem there are two mapsD; —
E" anda" : DY — E*, such thatV?(¢, Dy @ DY) andWkX(¢, Di @ DY) are
graphs ofo® anda, respectively. The differentialgn®(0) = da*(0) = 0.

We define amap : D ® D* — E° @ E* by

a(Ts,xy) = (zs — " (2), 2y — &°(2)). (5.8)

The mapa is C" andda(0) = idg». Thusa is a diffeomorphism when restricted
to some open neighborhood @in R™. If we represent in the local coordinates
determined by, £ = dag o a~! then the local stable manifold @fis an open
neighborhood of the origin if® and the local unstable manifold is an open neigh-
borhood of the origin in*.

Suppose now that € X" (M) anda is a hyperbolic singular point, we formulate

a global version of Theorem 5.4.1.

Corollary 5.4.2 (Global Stable Manifold Theorem for Vector Fields). Suppose
£ e X" (M), r > 1, ais a hyperbolic critical point and\ is the index of. Then
W7 (&) is the surjective image of @” injective immersion

o (RY = W) € M.
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5 Morse-Smale Vector Fields

Hence W7 (&) is an injectively immersed open diski. Furthermore,

Ta(Wg(€)) = Ta(M)®.

In the proof of the corollary we shall use the following lemma.

Lemma 5.4.3. For r > 1, let¢ be aC” vector field orR™ such that;(0) = 0 and
L = d&y. Supposd. is asymptotically stable. Then there is a neighborhood U of
and an extensiog of {|; to R™ such thati; (¢') = R™.

Proof. For eachr > 0 there is a smooth bump functign: R" — [0, 1] with

the properties:p(z) = 1 for ||z|| < r/2, p(z) = 0 for ||z|| > r. By Taylor

expansion¢ has the form (5.4) and (5.5). We define the vector f@éle- L + 6,

wheref(x) = p(z)n(z). Itis equal ta on the open baID;?/2 and it coincides with
L for [|z|| > r.

SincelL is asymptotically stable, by Theorem 5.3.4 for any choice of a selfadjoint
positive definite matrix there is a selfadjoint positive definite matdkxsuch that
LTP + PL = —Q. Letc be the smallest eigenvalue ¢f. Pick r such that
k = c—26(r)||P|| > 0. We define a functiow(z) = 2™ Px and see that

—€(0)(x) = 2 Qx — 2p(x)2" Pr(x) > nla]?

for z € R™ — {0}, thus by Corollary 5.3.3, the systefhis asymptotically stable
onR". [

Proof (of Corollary 5.4.2). The argument below follows the proof of Theorem 4.15
in Banyaga and Hurtubise [2004]. It is modified it to deal with the stable miaisifo
for vector fields.

Consider an open neighborhobtid C M of the pointa and apply the exponential
map to get a coordinate chart: U’ — U C T, (M) with U an open neighborhood
of 0. We represent the vector fiefdn the local coordinates = dv¢ o () 1. De-
note the stable and unstable subspacds 0f/) for £ by respectivelyl, (M )* and
T,(M)“. Note that the fact that is of classC* implies that inequality (5.5) holds
locally. By Theorem 5.4.1 we can shriiK such that)(W?:(&,U")) is a graph of
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5.4 Invariant Manifolds and Their Perturbations

a functiong : U NT,(M)* — T,(M)*. Sincey is the inverse of the exponen-
tial map, we havel,y = idr, a). Moreover,T,((W; (£,U"))) = To(M)* thus
Tu(W3(6) = Tu(M)’.

On an open neighborhoddof a in W; (£) , the composition)’ = P01y ¢ vy
is a coordinate chart’ : V' — T,(M)*. We shall denote the imagg (V') by W.
We are ready to define a differentiable structuré®Bf(&) by

Wi = |J @k, V), whered is the flow of¢, that is®(t, z) = ¢5(t).
kelZ
k<0

Fork € {0,1,2,...} we defineVy, = ®(—k, V) andyy, : Vi, — To(M)*®, Yp(z) =
' o ®(k, ). The atlag V%, ¢, ) makes the inclusiofl’?(£) < M an immersion.
We represent the restriction of the vector fi€ltb V' in the local coordinates
g =dy'go ()
By Lemma 5.4.3 we can extend the vector fig¢ld: X" (W) to a stable vector field
¢’ € X" (T,(M)?®) and define amap?® : T3(M) — WE(£) by
of(x) = ¢% 0 () o ¢ (),

wheret is any positive real such thaf' (x) € V. The map® is well defined since
for 7 > ¢ we have

o8 0 (¥) odt (@) = 6L o) Todl 06 (x)
= ¢ 0dr 0 (W) odf (2)
= 650 (W) o g (@),
By the flow properties the map® is C", it is injective and also surjective since
for anyq € W2(¢) there ist > 0 such thawf € V. The differentialda?® is a

composition of injective maps thus’ is an injective immersion of, (M )* onto
Wa(6). O

We shall remark that there is an "unstable” counterpart of the globalcad
stable manifold theorems. A version of Theorem 5.4.1 f6f aiffeomorphism on
M can be found in Banyaga and Hurtubise [2004] and Palis and de Me8@]19

In the remaining of this section we will discuss perturbations of vector fields.
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5 Morse-Smale Vector Fields

Definition 5.4.4. Supposé/ is an open subset iR", £,¢ € X"(U), andp is a
singular point for both¢ and+. We say that is locally topologically conjugate to
9 at p if there are two neighborhoodig and V' of p in U and a homeomorphism
h:V — V' such that

h(6; (x)) = ¢} (h(x))
for z € V andt € R and both sides of the equation are defined.
Supposel/ C R™ is an open neighborhood of with compact closurel(U).
According to the Grobman-Hartman Theorem any hyperbplie X"(U) with
€(0) = 0 is locally topologically conjugate to its linearizatiatyy. We modify
the Grobman-Hartman Theorem to deal with small perturbations. For an open

neighborhood” C U and¥ € X" (U) with a hyperbolic critical poin® we define
asetBs(9,V) C X"(U) by

Bs(0,V) = {£€ X (U)|||¢ =], < 5where¢' =¢ly, o' = 0|y € X7(V)
and¢(0) = 0},

where for € X"(V) we have|[€||1 = sup{||£(z)]|, ||d¢(z)|| | = € V'}. Note that
Bs(9,V) is openin the spacf € X" (U)| £(0) = 0} with the topology generated
by the norm|| - ||;.

Proposition 5.4.5. Let U be an open subset & with compact closure. Suppose
¥ e X"(U),1 <r < oo,and0 is a hyperbolic singular point. Denote = dvy.
Then there is a neighborhodd C U of 0, areal§ > 0 and a continuous map

h:V x Bs(9,U) - U
such that for any € Bs(¥,U),
1. he : V — U is a homeomorphism onto its image,

2. he(85(x)) = oF (he(w)).

In the proof of this proposition and Proposition 5.4.7 we use the followingiemer
of the Banach fixed point theorem, cf. Lemma 10.2 in Jost [1998].
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Lemma 5.4.6. LetC be a closed set in a Banach spa¢end P be an open set in
a Banach spac®. Forr > 0, letT : P x C — C be aC" map that satisfies

1 Te(y1) — Tu(y2)|| < Alyr — y2| forall y1,y2 € C andx € P

with0 < X\ < 1.
Then there is a uniqu€” mapY : P — C such that

To(Y,) = Y.

Proof. By Lemma 10.2 in Jost [1998], the lemma is truefor 0. We prove it for
r > 1. Suppose = Y (z) andyy = Y (z¢). SinceT is of classC” in particular it
is differentiable. We use Eq.(5.1) to write

T(I’, y) _T(x()v yO) = A(xo,yo) (x_x0)+B(x0,y()) (y_yO)_'_O‘(:cmyo) (x—:to, y_y0>7
(5.9)

wherea,, ., is tangent td). Sincey andy, are assumed to be fixed points, the
above equation yields

Y—Y = A(zo,yo)(l‘ - :UO) + B(mo,yo) (y - yO) + a(ro,yo)(:C —Z0,Y — yO) (510)

From (5.10) we get

. —1
(ida = Baowe) U= 40) = Azo.0) (@ — T0) + Q(ag0) (T — 0,y — 10)-

Since the mafi’,, is a contraction for alky € P, the norm of the linear operator
Blzy,40) I less than 1 for al(zg,y0) € P x C. This is seen by substituting in
Eq. (5.9)x for ¢ andy — yq for hv with A € R andv such that

HB(Io,yo)UH = HB(IO,yO) I

This yields

)“h| > HB(CCOﬂO)mh‘ - ”a(xo,yo)(ov hv)” > (HB(IO,ZJO)H - 5(hv))\h| Vh e R
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with lim, o B(z) = 0. Thus|[B, )l < A < 1. It follows that the matrix

(idA — B(zy.40)) is nonsingular and

. —1
Yy—Y = (ldA - B(ﬂﬁmyo)) A(Jfovyo)(x — Zo)

. —1
+ (ldA - B(a:o,yo)) a(xo,yo)(x —0,Y — yO)'

We conclude that the derivativ®’ (z) = (ida — B(w(z)))_l A(zy(2)) is Of class
cr—t.0O

Proof (of proposition). The theorem follows from the proof of Grobman-Hartman
theorem, cf. Chicone and Swanson [2000], and Lemma 5[4.6.

Proposition 5.4.7. Suppose?) € X"(R"), 1 < r < oo, and0 is a hyperbolic
singular point ofd. Let L = dy and £¥, E* be stable and unstable subspaces of
R™ for L. Then there are (1) two open neighborhodds” of 0 in R” with V- C U
andcl(U) compact, (2) aread > 0 and (3) aC” map

G°: (VNE?®) x Bs(9,U) — E“,

such that for any, € B;(J,V), W§(&, V) is the graph of3; : V. N E° — EY,
whereg;(z) = 5°(, §).

Proof. The proposition follows from the proof of Theorem 6.3.1 in Jost [2002].
The difference lies in extending it to cope with small perturbation840). Here
we give a sketch of the proof.

Considercy, « as in the inequalities (5.7) on page 50. Bot A < « we define
the following Banach space

My = {Y R 5 R [ [|Y Jexpn = supeM [V ()] < oo} -
t>0

We choose > 0 and consider a closed subset
My(e) ={Y € My | [|[Y[lexpx < €} C M.

ThusM, (e) is the set of thos& for which ||Y(0)|| < e and that are exponentially
decreasing.
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In the following we keep\ fixed. Pickd > 0 and¢ € Bs(9, Da). We define
0 = ¢ — 9 and consider the following ordinary differential equation

%qﬁi(t) = £(85()) = D(B5(1)) + 0(¢5(t)) = Li(1) + w(g5 (1)) + 0(¢5(1)),
(5.11)

with ¢§(0) = x. We think aboutl. andw as fixed (obtained from the Taylor
expansion of) and# plays the role of a perturbation. Thus the vector field
R™ — R™ satisfiesv(0) = 0 and

lw(@) = wm)l < ' (e)llz =yl for ||zl [lyll <e

with the functiond’ : [0,00) — [0, c0) continuous and monotonically increasing.
If [|0]p,. |l1 < 6" thensup{||dO(u)|| | |lul| < 2¢} < 6", by the definition off| - ||;
norm . We use the Mean Value Theorem to show that

10() =0l < &"llx —yll for ||zl [lyll <e.

Denotingn = w + 6 andd(e) = §'(e) + 6" we see that

In(z) = n()ll < o(e)llz =yl for [l [lyll <.

Our setup is like the one in the proof of Theorem 6.3.1 in Jost [2002]. Ttyedif-
ference is that(0) is no longei0 buté”. However, we can permit the perturbations
0], [1 < ¢” to be as small as desired.

Let D? C E* be an open disk of radiuscentered a0. For sufficiently smalk
andd we can define an operatdr: D? x M) (€) x Bs(w, Do) — My(€) by

t o]
T(z,Y,n)(t) = "z + / L= pop(Y (s))ds — / eH=9) P (v (s))ds,
0 t

whereP¢ and P* have been defined in Equation (5.6) on page 50.

The form of the operator is such thatlifis bounded and’ (t) = T'(x, Y, n)(t)
then it is a solution of% Y (t) = £(Y'(2)).

Following the equations (6.3.20) to (6.3.21) on page 298 in Jost [2002]bae 0
serve that

I (2, Y, m) ()] < coe™ [lz[| + c18(e)e™ Y llexp,a,
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wherecy andc; are positive real numbers, furthermore
|7 (, Y1, m) () = T(x, Yo, n) (B)]| < 2c18(e)e Y1 = Yalexp-

We shrinke andé” such that2e;5(e) < 1/2 and pick0 < ¢’ < 52-. Then we
have that for any;, Y, € M), (¢)

”T(l‘a Y1, n)Hexp,)\ <e

and .
|7 (x,Y1,7m) — T($7Y27n)|’eXp,A < §||Yl - Y2HeXp,>\

for all z € D?(open disk inE* centered ab and radius’) andn € Bj(w, Da).

In conclusion the operatdf is such thatl'(x, -, n)(Mx(e)) C My (e) for all z €

D? andn € Bs(w, D) and has a contraction constant equa%toTherefore, by
applying the Banach Fixed Point Theorem, Lemma 5.4.6, we get a unique solutio
Y(zn) € Mx(e) to the equation

Y(t) = T(z,Y,n)(t) foranyz € D2 andn € Bs(w, Dac). (5.12)

Observe thaf” is C", so does the map?, x Bjs(w, Da) — M) (e) taking (z, n)
to the solutionY,, ).

Notice that7'(0,0,7) = 0. SinceY(,,) € My(e) is decaying exponentially,
limy o0 Y50 (t) = 0, therefore

Vi (0) € W3 (6) = Wi (L + ).
It is shown in Jost [2002] that for any open neighborh®8df 0 with
V' C (Dae N (P*)"H(D2))
and for anyy € Bs(w, Dac) we have a map
gy V! VB = WE(L+1), = Yip ) (0),

satisfying
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5.4 Invariant Manifolds and Their Perturbations

1. g, is a bijection betweei’® N V' and its image iV (€);
2. HYV(xl,n) (O) - Yr(:rg,n)(O)H < 2CO”xl - x?H (gr] is Lipschitz);

3. There exists an open neighborhdgdc R™ such thatl;, N E* = V' N E*
and the image, (V,, N E*) = W§(n, V).

LetV = U, ep;(w,ps.) Vo thenV is an open neighborhood ofand
gn(V N E®) =W5(n,Vy) =W5(n, V) foralln € Bs(w, D).

The last equality follows from the following observation:afy € W§(¢, V) and
P3(z) = P*(y) thenz = y, cf. Lemma 2.6.3 in Palis and de Melo [1982]. We
define a mag : (V N E®) x Bs(w, Da2c) — E* x E* by g(x,1) = gy(x) =

Y2 (0), and the desired map® : (V N E®) x Bs» (9, Do) — E* is given by

(z,§) — Pig(x,§ = L).

z,n)

0

Let U be an open subset &" with compact closure. Supposgec X(U) and
0 is a hyperbolic singular point aof. Without loss of generality we may assume
that the stable manifold of is a neighborhood of the origin i if not apply the
diffeomorphismu in Equation (5.8) and considénd o o~ L.

For any differential equation of the forin= ¥(z) = Lz + n(z) wheren(0) =
dn(0) = 0 and L is hyperbolic, there exist two matricésand(@, @ is selfadjoint
positive definite and? is selfadjoint nonsingular, such thal P + PL = —Q and
7(L) = v(P). We define a functiorf (z) = =T Pz. By the Lyapunov arguments,
cf. Proposition 5.3.9, there exists a sufficiently small neighboriéod U of 0
and a constant > 0 such that

—9(f)(x) > k||z||* forz € V. (5.13)

We will consider the preimag&, = f~!(r) for a regular valuer. By Equa-
tion (5.13) the intersectiof; (9, V') = V.NW{ (¥, V) is transversal, thuS§ (9, V')

is a manifold. By assumptiof;(J, V) C S§(v,V) C E? therefore all eigenval-
ues of P|ps are positive definite, hendé’ = f|.!(r) is a sphere. We conclude
that S5 (0, V) = V. n c(W§(9,V)) is a closed manifold. For sufficiently small
the manifoldS§ (¥, V') is nonempty, and its dimension is equaiAd.) — 1, where
v(L) is the index ofL.
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5 Morse-Smale Vector Fields

Proposition 5.4.8. Let¢ € X"(R™), r > 1, and0 is a hyperbolic singular point of
¥. LetU, V be the sets as in Proposition 5.4.7. Suppose there is a Morse function
f:U — Rwith

I(f)(z) > kl|z|? forall z € U,

there is a regular value and there is a neighborhodd of 0 so that the intersection
S5(9,V) = f~Y(r) h W§(9, V) is nonempty closed manifold. Then for any open
neighborhoodV of S§(9, V) in f~1(7) NV there isd > 0 such that

U siev)cw.

£€Bs (ﬂzU)

Proof. Define a map
B:(VNE®) xBs(W,U) = E° x E* by 3(z,§) = (2, 6°(x,¢)).

Without loss of generality we may assume that the given neighboridths
compact closure. Pick a tubular neighborhd®df S§(9, V') in V such that\" =
BN f~1(r) c N. Define the following set

K =cl(P°N') C E”.

The setK is compact. For any € K there is a neighborhood, of x ands, > 0
such that3(V,, Bs,(9)) C B. Since the sef is compact there is a finite number
of {Vi, }ieqa,....ny coveringK..

If 6 = min{d,,| i =1,..., N} theng(K, Bs(9,U)) C B. We observe that

U sievy = U ssevina

5635(’19,[]) §€B§(197U)

= U rmonwgEvinn

£eBs(9,U)
= U mnsrNe
£eBs(9,U)
C SN NB(PEN', Bs(9,U))
C fHr)NB(K, Bs(9,U)).
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5.5 Structural Stability

Thus

U S5(6,V)) C f_1<7') NB(K, Bs(9,U)) C f_l(T) NB=MNcCN.

£€Bs (’lng)

g

We remark that the similar results can be formulated for the unstable manifolds.

5.5 Structural Stability

We shall define Morse-Smale vector fields and see that they are stilycstmble.

A Morse-Smale vector field has a finite number of hyperbolic singular poirds a
a finite number of closed orbits that are hyperbolic. Furthermore, all thiestad
the unstable manifolds intersect transversally. We do not focus the attemtion
the closed orbits, since they do not give rise to the partial order distiusshe
Introduction. We refer instead to Ch. 3 in Palis and de Melo [1982] forildeta
In the next section we shall introduce the primary object of our studyssential
gradient-like vector field, which is a Morse-Smale vector field that doehan
any closed orbits.

Definition 5.5.1 (Sec. 3.1 of Palis and de Melo [1982]).et v be a closed orbit
of a vector field € X" (M) andz € +. LetX be a section transversal tothrough
the pointz. We sayy is a hyperbolic closed orbit of if p is a hyperbolic fixed
point of the Poincaé mapP : V' — 3, whereV is an open neighborhood efand
P is a diffeomorphism onto its image.

Definition 5.5.2 (- and w-limit sets). If ¢ € X" (M) andx € M, then then- and
w-limit sets for¢ are

a@) = @) and

7<0t<T

wie) = U@

T>0t>T1
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5 Morse-Smale Vector Fields

If v is a hyperbolic closed orbit of a vector figdd= X" (M) we define stable and
unstable manifolds of by

Wi(€) = {zeMlw(y) =1}
Wi = {zeMlaly) =~}

The setdV;(£) andIV} (&) are immersed manifolds dff of classC”, cf. Propo-
sition 3.1.5 and the following Corollary in Palis and de Melo [1982].

Definition 5.5.3 (Sec. 4.1 in Palis and de Melo [1982]Let¢ € X"(M). We say
thatp € M is a wandering point fo€ if there exists a neighborhodd of p and

a numbert, such thatgi)f(V) NV = 0 for [t| > ty. Otherwise we say that is

nonwandering.

The set of nonwandering points &fill be denoted by2(¢).

Definition 5.5.4 (Morse-Smale Vector Field, Sec. 4.1, Palis and de Melo982]).
A vector field¢ € X"(M) will be called Morse-Smale provided it satisfies the fol-
lowing five conditions:

1. £ has afinite number of singular points, say, ..., 8;, each hyperbolic,

2. ¢ has a finite number of closed orbits (periodic solutions), 8aw, ..., On,
each hyperbolic;

3. Foranyz € M, a(z) = 8; andw(x) = (3, for somei and j;

4. Q&) = {Br, ... On };

5. The stable and unstable manifolds associated with3Heave transversal
intersection.

The set of all Morse-Smale vector fields khis denoted bys" (M).

The setsf, ..., By will be called the singular elements of the vector fi¢ld
The set of the singular elements ©fwill be denoted byCr(£). As for Morse-
Smale functions we can define a partial order relation on the singular eleofents
a Morse-Smale vector field.
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5.5 Structural Stability

Proposition 5.5.5 (Smale [1960]) Let¢ be a Morse-Smale vector field dr. Let
B; = [; mean that there is a trajectory not equal fpnor 3; whosea-limit set is
B; and whosev-limit set is3;. Then)- satisfies:

1. Itis never true thaB; >~ 3;;

2. If B; = Bjand3; = B thenp; = Gy

3. If8; = B thendim(ng) > dim(ng) and equality can only happen
is a closed orbit.

We use this proposition to define a partial order relation on the singular efgmen
Bi = ﬂj if and onIy if 3, = ﬁj org3; » ﬁj.

We shall conclude the section by stating the results on structural stability of
Morse-Smale vector fields.

Definition 5.5.6. Two vector fieldg,n € X" (M) are topologically equivalent if
there exists a homeomorphism M — M such that

1. ho ®¢(R,z) = ®"(R, h(z)) for eachx € M,

2. h preserves the orientation, that isif€ M andd > 0 there exists > 0
such that, fol) < ¢t < 6, h o ®&(z,t) = ®"(h(x), ) for some) < 7 < e.

We say that: is a topological equivalence, and use a notat{for n to denote that
& andn are topologically equivalent.

The first condition of the definition states that the homeomorpliisakes orbits
into orbits. The second states that a stable manifolgigdes to a stable manifold
of n. Specifically, for a pair of topologically equivalent vector fiefdandn via a
homeomorphisnt : M — M andp € Cr(£) we haveW¢ (p) = h(W,/ (h(p))).

We will be interested in behavior of a vector field whose orbits do not ahang
qualitatively under small perturbations.

Definition 5.5.7. A vector field§ € X" (M) is structurally stable if there exists
an open neighborhood of ¢ in X" (M) such that every) € U is topologically
equivalent tce.
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5 Morse-Smale Vector Fields

We have the following result.

Theorem 5.5.8 (Theorem 4.1, Palis and Smale [1970]) ¢ € X" (M) is a Morse-
Smale vector field theX is structurally stable.

If the dimension of the manifold/ is 2 then the subset consisting of Morse-
Smale vector fieldsS! (M), is dense irk! (M), and if in addition) is orientable
the setS” (M) is dense iriX” (M) for r > 1, c.f. Palis and de Melo [1982], Ch.4.

5.6 Gradient-like Vector Fields

Slightly confusingly the literature provides two definitions of a gradient-liketwe
field.

Definition 5.6.1 (Essential Gradient-like Vector Field). A Morse-Smale vector
field¢ € &"(M) for which the only singular elements are singular points (there
are no closed orbits) is called an essential gradient-like vector field. \Wetdehe
set of all essential gradient-like vector fields®Yy( /).

Another definition of a gradient-like vector field was introduced by Smale in
Smale [1961].

Definition 5.6.2 (Gradient-like Vector Field). A C'* vector fieldX on a smooth
compact manifoldi/™ (with or without boundary) is called gradient-like if it sat-
isfies the following conditions:

1. Ateach singular poing;, i = 1, ..., NV, of X, there is an open neighborhood
U; and a(C*® function f; on U; such thatX is the gradient off; in some
Riemannian structure ofy;. Furthermorep; is a hon-degenerated critical
point of f;.

2. Ifz € OM, X is transversal atr (X has no singular points o8M).
3. The sef2(X) of nonwandering points oX is equal to{p1, ..., pn }

4. The stable and unstable manifolds of the singularitie®;, i # j, intersect
transversally.

64



5.6 Gradient-like Vector Fields

It is not true that all singularities of Morse-Smale flows are of standard,fthe
first condition of Definition 5.6.2, therefore the two definitions of a gradiiet-
vector field are not equivalent. In fact, the gradient-like vector field efifd-
tion 5.6.2 is a gradient vector field of a Morse-Smale function if we are alldoed
change the Riemannian metric ah.

Theorem 5.6.3 (Theorem B in Smale [1961]). Let X be a gradient-like vector
field on M, V7 be the connected componentodf/ at which X is oriented in, and
V5 the connected component@d/ at which X is oriented out. Then there is a
C*°-function f on M, which has the following properties:

1. The critical points off coincide with the singularitiesof. Fori =1,..., N,
f coincides with the functiorf; of Condition (1) in Definition 5.6.2 plus a
constant in some some neighbourhoog;of

2. If X is nonzero atr € M, then it is transversal to the level hypersurface of
fatx.

3. Ifp; is a critical point f(p;) = Ap,, where),,, is the index ofX at p;.

4. The functionf has value-1 onV; andn + § on V.

The theorem shows that a gradient-like vector field is the gradient ofctiéumn
in some Riemannian structure.

Corollary 5.6.4. There is a Riemannian metric ad such thatV f = X.

Proof. Away from the singular points ok construct a Riemannian metrcsuch
thatV,f = X. SincelM is compact it is enough to show that for egeke A
there exist an open neighborhobddof p and a Riemannian metrig on U such
thatV,, f = X. There are local coordinates i such that the vector field" is
written X = %, anddf = vidzy + ... + v,dz,. Sincedf(X) # 0 without loss
of generalization we may assume thHAfX) = v; = 1. Let

S={AcGL(n,R) A= A"}
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5 Morse-Smale Vector Fields

and picka > 0; consider the smooth map

L walq) ws(q) vn(q)
va(q) a 0 0
¢:U—S, qg— Alqg) = |v3(q) 0 a 0
Un((]) 0 0 a

If a > maxgeq@) D its v?(q) then A(q) is positive definite for each € U, and
the mapy defines the desired Riemannian metjon U.

As in the proof of Lemma 4.1.1 use a smooth partition of unity to extend the
Riemannian metric to the whol&/, such that it coincides with the Riemannian
structure in Condition (1) of Definition 5.6.2 on a neighborhood of each alitic
point. [

The next proposition shows that an essential gradient-like vector fieldbea
connected by a curve " (M) with a gradient-like vector field.

Proposition 5.6.5 (Lemma 2 in Newhouse and Peixoto [1976]).et M be a com-
pact smooth manifold and be an essential gradient-like vector field éh. For
k > 1andr > 2thereisacurver € C*(I,X"(M))witho(0) = X, o; is a Morse
Smale vector field fot € I, ando; = V, f for some Morse functiorf and some
Riemannian metrig on M.

Using compactness dfand structural stability of the Morse-Smale vector fields
we see that the vector fields and X = o are topologically equivalent. This
remark can be used to translate the result on the gradient vector fieldsreéM
Smale functions to essential gradient-like vector fields.

Fora, b € Cr(§) we shall denoté&V (a, b; ) = W2(§) N WS (§).

Proposition 5.6.6. Let a, b be singularities of a gradient-like vector fiefd Then
cl(W(a, b;€)) is compact an@dl(W(a, b;§)) = Uy grspsp W (', V5 6).

Proof. By Proposition 5.6.5, for any essential gradient-like vector figlldere is a

Morse functionf : M — R™ and a Riemannian metricon M making f Morse-
Smale such that andV, f are topologically equivalent. That is, there exists a
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5.7 Lyapunov Functions

homeomorphisnt : M — M taking orbits ofy into orbits of V, f preserving
their orientation. Thus for any, ¢ € Cr(n) we have that

h(W (p,q;m)) = W(h(p), h(q); V4 f))-

By Corollary 6.28 in Banyaga and Hurtubise [2004] the proposition is dyrtaie
for £ = V, f. Therefore it is also true for the essential gradient-like vector fjeld
O

5.7 Lyapunov Functions

This section is based on Meyer [1968]. We consider a closed smooth dahifo
and a smooth functiori : M — R with the set of critical points denoted as usual
by Cr(f). Let A; denote the set of points i€ (f), where the Hessian of has
nullity 4.

Definition 5.7.1 (Lyapunov function for M, Meyer [1968]). A smooth function
f+ M — R will be called Lyapunov function fa¥/ provided the following condi-
tions are satisfied:

1. C’I”(f) = AgUAq;

2. A is the disjoint union of a finite number of embedded circleddinsay
41, ..., 07, such that the index ¢f is constant on each circle;

3. Fori =1, ..., 1 there exists a neighborhodq of §; and a diffeomorphisnj;
such thaty; mapsV; into the product ofD"~! and S* if V; is orientable or
into twisted product o™ ~! and S* if V; is nonorientable with the property
that f ot ! (z) = f(;) +Q(z), whereQ is a nonsingular quadratic form in
x1, ..., Tn_1, the coordinates iD”~!, and it is periodic inz,,, the coordinate
on St

Notice also that i1, ...,dn € Ag then by the Morse Lemma, cf. Lemma 2.2 in
Milnor [1973], there is a family of coordinate systef(d;, ¥) }ic(i+1,... v} Such
that

Foui(y) = f(5) + Qy),
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5 Morse-Smale Vector Fields

where( is a nonsingular quadratic form inwhose index is equal to the index of
I
Definition 5.7.2 (Lyapunov function for a vector field, Meyer [1968). LetX €

X°°(M). Then a Lyapunov functiofi for M will be called a Lyapunov function
for £ provided

1. &(f)(z) < Oforall x € M —Cr(f);
2. If pis asingular point of thenp ¢ Aq;
3. There exists a real number> 0 such that on each;,i = 1, ..., N, we have

—&(f) (@) > wd(y, 8;)* fory € Vi,
whered is the distance induced by some Riemannian mejrms M .

The next theorem shows that Morse-Smale vector fields admit Lyapwmay f
tions. This result will be extensively used in the proof of the Central \ef€ield
Theorem in Ch. 7.

Theorem 5.7.3 (Meyer [1968]).1f £ € X>°(M) is Morse-Smale then there exists
a Lyapunov function fo€. Furthermore the Lyapunov functighcan be chosen
in the following way. Le{p;};c(1,... ;3 be the sequence of singular pointstadnd
{riticq1,...;y be asequence of real numbers so thaf it p; thenr; > r;. Thenf
can be chose such th#tp;) = r;.

Proof (sketch of).We shall only give an outline of the proof for a gradient-like
vector field. For details we refer to Meyer [1968]. Supp$se ...,pr} = Ay =
Cr(§). By Proposition 5.5.5 we can fink real numbers-; such thatr; > r;
wheneverp; > p;. First step is to define the functiofion thep; by f(p;) = 7.
The next step is to defing in a neighborhood of each singular pot Using a
local coordinate chafiV;, v;) of p;, the vector field has the form

£ =dp oyt = L+,

whereL; hyperbolic andj;(0) = dn;(0) = 0. By Theorem 5.3.7, there are nonsin-
gular symmetric matriceB; and@; with @; positive definite such that

L P+ PiLi = —Qi
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5.7 Lyapunov Functions

andn(L;) = v(Fy), m(FP;) = v(L;).
We definef in V; by f(x) = r; + 2T Qx then by Proposition 5.3.9 there exists a
real numbek; > 0 such that in a neighborhodd c V; of 0 we have

—&(f)(x) > wd(y,pi)?.

We may assume that all tfi§ are sufficiently small so that they do not overlap. In
conclusion we have defined Lyapunov function§on open neighborhoods of the
singular points of. The extension of this function td/ can be accomplished by
the same procedure as in the proof of Theorem B in Smale [1861].

The theorem above has a partial converse.

Proposition 5.7.4 (Meyer [1968]).Let ¢ € X°>°(M). If there exists a Lyapunov
function for¢ then¢ satisfies the conditions 1), 2), 3) and 4) in Definition 5.5.4
of a Morse-Smale vector field. Moreover, the vector fietlthn be approximated
arbitrary closely in theC" topology by a Morse-Smale vector field.

Corollary 5.7.5 (Lyapunov function Meyer [1968]). If M is compact and two
dimensional then a necessary and sufficient conditiog forbe structurally stable
is the existence of a Lyapunov function §or

69



5 Morse-Smale Vector Fields

70



6 Section Cones

We formulate the definition of a section cone. We keep the conventions frem th
previous chapter:M = M™ is a closed smooth manifold>” (M) denotes the
set of Morse-Smal€" vector fields onM, ¢"(M) stands for the set of essential
gradient-likeC" vector fields onM. All maps are continuous. By a path on a
topological spac& we meanamap — Y.

A section cone is a convex subset/ofcharacterized by the property thatpif
is a singular point for some vector field a then this is the case for all members
of IC. A section cone induces a di-path. A di-path is a curve which is a finite
concatenation of integral arcs of the vector fields within the section cone. W
define a relatior=x on M by p > ¢ if and only if there is a di-path from to
g. We ask the question whether this relation is a partial order relation. For ¢éhis w
define a Lyapunov section cone. It is defined by the property, that ther single
real function that is a Lyapunov function for all vector fields in this sectione.
We show that a Lyapunov section cone gives rise to a relatigrsatisfying the
properties of a partial order relation. An important feature of a sectioe kois
that there exists a path iG joining any two vector fieldg, n € K. We introduce a
notion of a stable and unstable manifold for a path C" (I, K). If K is a subset of
¢" (M) then all the stable and the unstable manifolds of an elementC” (1, K)
intersect transversally.

6.1 Construction of a Section Cone

We use the notatioR* = {z € R| z > 0} andR} = R, — {0}. Recall that the
set of singularities of a vector fielgis denoted by’r(§) = {p € M| &(p) = 0}.

Definition 6.1.1 (Section Cone).Let M be a smooth manifold. &” section cone
K on M is a subset of" (M) satisfying the following two conditions:
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1. Forevery pairg,n € K, if p € Cr(§) thenp € Cr(n).
2. If ¢ andn are inK anda, b € R} thenaé + by € K.

We shall denote the set of all section cones on a manibloy D (M ).

The first condition says that all vector fields in a section cone have thesame

larities. Also if the zero sectiofi,, is in K then/C = 0,,. The second condition

imposes convexity on the subgét Particularly, if§ € K thena& € K for a > 0.
The condition 1. allows to speak about singular points of a section cone.

Definition 6.1.2. A pointp is a singular point of a section coré if p € Cr(&) for
some, thus for al§ € K. We denote the set of singular pointskoby Cr(K).

Note that a section cone without singular points can only be constructed on a
manifold with zero Euler characteristic.

We shall use the notatiokl(p) = {s(p)| s € K} C T,(M). In particular,
p € Cr(K) ifand only if C(p) = {0}.

Proposition 6.1.3. Let C be a section cone. f,n € K and{(p) = —n(p) for
somep € M thenp € Cr(&). As a consequence, for eacte M

K(z) U {0} € D(T,(M)).

Proof. Sinceé,n € K, 9 = ¢+ n € K. In particular

J(p) = &(p) +n(p) = —n(p) +n(p) = 0.

We conclude thap € Cr(¥). By condition 1. the poinp is also a singular point of
& g

To suppress the notation, the set of all cones without the tip (without thé @oin
in a vector spac# is denoted byD(V). In other wordsk € D(V) if K U {0} €
D(V).

SinceX"(M) has a structure of a real vector space we may consider a cone
in D(X"(M)). Proposition 6.1.3 implies that i is a section cone thelt <
D(X7(M))), that isk U {0x;} € D(X"(M)), where0,, is the zero section in the
tangent bundle.
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Definition 6.1.4. A C" section congC, » > 1, on a closed smooth manifold/
is Morse-Smale if and only £ ¢ &"(M). It is gradient-like if and only if the
section conéC C €"(M).

Proposition 6.1.5. Let I be a Morse-Smale section cone. If there is an essential
gradient-like vector field € K, thenK is gradient-like, i.e. every vector field i6
is an essential gradient-like vector field.

Proof. For any vector field) € K we definer,, : I — X"(M) byt — tn+(1—t)E.

By the second condition of Definition 6.1.1, for alk I, 0, (t) € K C &"(M).
Since the Morse-Smale vector fields are structurally stable and the unitahterv
is compact, all the vector fields on the pathare topologically equivalent. In
particularé andn are topologically equivalent, henegeis essential gradient-like.

O

If X is a Morse-Smale section cone then the singular points are isolated. More-
over, any two¢,n € K are topologically equivalent, i.e. there exists a homeo-
morphismh : M — M taking orbits of¢ to orbits ofr, cf. Section 5.5, and the
restrictionhlc, () is a permutation. Another consequence is that the indicgs of
andn at the same singular poiptare the same. This will be shown in Proposi-
tion 6.1.6. Therefore it makes sense to define the indeéx af a singular poinp
as the index of some (thus all) vector fieldkinat p.

Define a sei (M) = {{ € X"(M)| £(p) = 0 andp is hyperbolig. The index
function onX7 (M) is

Ind, : X,(M) — N, &+ indexe(p),

whereindex¢(p) is the index of the vector field at the singular poinp. Recall
that the index of a vector fielgat a singular poinp is the index of the linear map
L = dvy&, (the number of eigenvalues @fwith negative real parts) for some thus
any coordinate chaftU, v) with p € U.

Proposition 6.1.6. Supposé&C is a Morse-Smale section cone gnd Cr(K). The
index function orkC at p, Indf = Ind,|x, is continuous and thus constant.

In the proof we make use of the following proposition.
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Proposition 6.1.7 (Proposition 2.2.18, Palis and de Melo [1982])'he eigenval-
ues of an operatof. € £(R™) depend continuously oh.

Proof (of Proposition 6.1.6) We shall denote the map in Proposition 6.1.7by
0: LR") — C"/Sp, L [(A1,..r; A\n)],

whereS,, is the symmetric group of degreg and4, ..., \,, are eigenvalues df,
possibly with multiplicities.

Let (¢, V')) be a coordinate neighborhood of the pgintith U = (V). Con-
sider the se” (U) of C" vector fields onU, that isC™ mapsU — R". Define
the compositions = 6 o e, o d, whered : X"(U) — C"(U, L(R™)) is the deriva-
tive,e : U x C"(U, L(R™)) — L(R") is the evaluation map ang,(-) = e(p,-).

By Proposition 6.1.76 is continuous, so is the compositien We denote by

o : (C—-iR)"/S, — N the map assigning the number of complex numbers
with negative real part in the-tuple of complex numbers. The maypis a con-
tinuous discrete valued map. The local representatidm@f is the composition
Ind,, = ¢ o k. Thus we conclude thahd, is continuous.

A topological space is connected if and only if every discrete valued miagede
on itis constant. The spadg, (M) hasn + 1 connected component corresponding
to index0 to n. On the other hand any pdjr n € K can be connected by a path
in K. HenceK is a subset of one and only one connected componeXf,at/).
Thereforelnd); is constant.[]

Proposition 6.1.6 says that the index of a Morse-Smale section cone ati&sing
pointp € Cr(K), agreeing with the index of one of its vector fields, is well-defined.

Definition 6.1.8. SupposeC is a Morse-Smale section cone apds a singular
point. Then the index df, indexx(p) = index¢(p), for some (thus allf € K.

The objective of this chapter is to introduce a section cone which inducatial p
order relation onM/. The candidates are those section cones which do not allow
closed orbits. For this we define a Lyapunov section cone.

Definition 6.1.9. A C" section condC, » > 1, on a smooth manifold/ is Lyapu-
nov if and only if there exists @” Morse functionf : M — R and a Riemannian
metric onM such that for any € K we have
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1. &(f)(z) < Oforall x € M — Cr(K),

2. there exist a constamt > 0 and open neighborhoodd/, },ccr (k) Of the
singular points such that

—&(f)(x) > kd(x, p)? for p € U, whered is the Riemannian distance.

Proposition 6.1.10. If M is two dimensional compact manifold then any Lyapunov
section cone o/ is a Morse-Smale section cone.

Proof. Corollary 5.7.5 says that the vector fields in a Lyapunov cone are struc-
turally stable. By Peixoto’s Theorem, cf. Peixoto [1962], a vector field aom-
pact 2-manifold igC" structurally stable if it is Morse-Smaléd.]

In general for dimension greater tharthe above corollary is not valid. I is a
Lyapunov cone and € I, then by Proposition 5.7.4,satisfies conditions 1) to 4)
of Definition 5.5.4 of a Morse-Smale vector field. In particular all singulan{so
of K are hyperbolic.

Definition 6.1.11. A Lyapunov-Smale section cone is a Lyapunov section cone
which is Morse-Smale.

In particular a Lyapunov-Smale section cone is a gradient-like section cone

Proposition 6.1.12. SupposeX is a Lyapunov section cone. For each singular
pointp, we have

(LMWMQH(UWWM)—@}

Xek Xek
Proof. Suppose) and¢ are vector fields iiC and there existg € W, (§) "W (n).
Since the stable and unstable manifolds are invariant sets

vVt € R, ¢;(q), 67 (q) € WS(€) N W2(n). (6.1)
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On the other hand the section cokids Lyapunov, hence(f)(x), £(f)(x) < 0
forz € M — Cr(K), or in other words the functioyfi is nonincreasing along the
trajectories of andn. Then

fla) < flp) < fa).
Hencef(p) = f(q) and because of (6.1)= ¢. O

Definition 6.1.13. A gradient section conk is a Morse-Smale section cone, which
satisfies the following: There is a Riemannian megrésad a Morse-Smale function
fsuchthatv,f € K.

Due to Proposition 6.1.5 a gradient section cone is gradient-like.

Definition 6.1.14. A section con& on M is reproducing if the conel(fC(z)) is
reproducing for allx € (M — Cr(K)).

Next we shall give some examples of sections cone&/cend cones k" (M),
1<r < oo

Example 6.1.15.Let g be a Riemannian metric ab/. We pickn € X" (M) and
define the sek’(n) C X" (M) by

Kn) ={an+§) e X" (M)|§ € X" (M),a>0, g(§,n) =0,9(n,n) > g(§,&)}

Note that forn + £ € K(n) we haven(p) = 0 for somep € M if and only if
(n+¢€)(p) = 0. Furthermore, it); = a;(n+&;) € K(n) for o; > 0andi € {1,2}
then

larér + az&a||* < (a1 + a2)?|Inl?, wherel| - ||> = g(-, ).

Henced; + ¥ = (a1 + a2)n + a1&1 + a6 € K(n), andK(n) is a section cone.

Example 6.1.16.Let || - ||, be the norm or¥” (M) discussed in Section 5.1. For
a pair of real number8 < § < e suppose thay € ¢"(M) with ||n||, > € and
consider an open bali(n, §) centered a and radius)

B(n,6) = {& € X" (M)| [In = &lf» < 6}
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6.1 Construction of a Section Cone

Define the set
C(n,0) ={a € X"(M)| &£ € B(n,0),a > 0}.

We shall show tha€(n, d) is a cone irk" (M). If £ and—¢& are inC(n, §) then for
somea,a’ € R} we have that&, —a’é € B(n,§) and

In = agllr < and|ln + a¢]|, <.
It follows that
la'n — ad'€||, < d’§ and|an + ad’¢||, < ad,

thus
(a+d)|nl- < (a+a)s,

and hencd|n||, < ¢, which is a contradiction. By Proposition 2.1.5 we conclude
thatC(n, d) is a cone ink” (M).

Example 6.1.17.Supposef : M — R is a smooth Morse-Smale function on
a closed smooth manifold/ with Riemannian metrigz. We define the subset
A(f) C X"(M) as follows: a vector field € A(f) if and only if

1. Cr(&) =Cr(f),
2. £(f)(x) < Oforallz € M — Cr(f),

3. there exist a constaat > 0 and open neighborhoodg/, },cc(y) Of the
singular points such that

—&(f)(x) > kd(x,p)* for z € U,, whered is the Riemannian distance.

Proposition 6.1.18. The setA(f) is a Lyapunov section cone.

Proof. The singular points of the vector fields ib(f) coincide. For a pair of
vector fields¢y, & € K and functionsiy, as € R} we have

df (a1&1 + azéa) = ardf (&1) + azdf (&2).
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Furthermore, there are open neighborhoUﬁIsandUZ? of p € Cr(K) and constants
K1, ko > 0 such that

=& (f)(x) > kid(z,p) forx € Up, i =1,2.
Choosing an open neighborhob of p with U, c U,y N U7 and defining
k = min{a1k1, azkz)
gives—(a1&1 + a262)(f)(x) > rd(x,p) forp € Up. O

Suppose that the Riemannian metric fhis compatible with the Morse charts
for f, cf. Definition 4.1.2, then-V f € A(f) and hence\(f) is nonempty. This
is also true for an arbitrary Riemannian metric.

Lemma 6.1.19.If f be a Morse function on a closed Riemannian manifaldhen
A(f) is nonempty.

Proof. By Lemma 3.2 in Milnor [1965] for every Morse functiofion a closed
manifold there exists a gradient-like vector figldcf. Definition 5.6.2. Hence

—§{€A(f). O

Example 6.1.20.Let M be a closed smooth manifold with a Riemannian metric
compatible with the Morse charts for the Morse-Smale funcfioBuppose > 0

is sufficiently small so thaB(V f, ) C &€ (M) andd < ||V f||,. Such & exists
because Maorse-Smale vector fields are structurally stable. Define the set

Since re-scaling leaves the orbits unchandégf,d) ¢ C(—Vf,d) C ¢"(M).
BothC(—V f,d) and A(f) are convex sets thus(f,J) is a convex set. All sin-
gular points of the vector fields iK( f, ) coincide becausk(f,d) C A(f). We
conclude thafC( f, ) is Lyapunov-Smale section cone.

Proposition 6.1.21. Let M be a closed smooth manifold arfd: M — R be a

smooth Morse-Smale function. Suppose a Riemannian metmnad/ is compatible
with the Morse charts for the Morse-Smale functitnThen forl < r < oo the

set/C(f, ) with § < ||V f]|, is a reproducing Lyapunov-Smalé’ section cone on
M.
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Proof. To prove that for ally € M — Cr(f) the conel(f,0)(q) is reproducing,
it is enough to show that for eaehe T;,(M) there existg € K(f, ) such that

v € span{¢(q) — Vf(q)}-

Pick a nonzero vector € T,(M). Consider a local coordinate neighborhood
(U, ¢) of q. We use the local trivializatiody : T(U) — ¢(U) x R™ to define a
constant vector field;; on ¢(U) by

Yyt x— (z,ddg(v)).

Then(d¢)~(9y) € X"(U). Since all critical points of a Morse function are iso-
lated, there exists a smooth bump function M — R with compact support
such that there are no critical points 6 supp(h) andsupp(h) C U. We extend
(d¢)~(9y) to the wholeM:

(W))W (z)) for  weU
29(:'3)_{ 0 : for zeM-U

For a constantr € R, we define a vector field, = —V f + a. Itis possible to
choose&i > 0 such that

1. &||Y|» < é and

2. amin{g(Vf,9)(z)| z € supp(h)} < g(Vf,Vf).

Condition 1. says thag, € K(f,d). Condition 2. implies tha§s;(f)(x) < 0 for
allz € M —Cr(K(f,0)) since

df 0 & = g(Vf,8a) = —g(Vf,Vf) + ag(Vf,9) <0.

We conclude thag; € A(f) NK(—V f,d) andés(q) + Vf(q) = auv. O

The last proposition shows that there are nonempty reproducing graeietion
cones.

Corollary 6.1.22. There exists a reproducing gradient section cone.
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6.2 Partial Orders

A LyapunovC" section coneC on a closed smooth manifoltf/ will be used in
this section to define a partial order di. We keep the notation from Chapter 5
and denote the flow line of a vector fiefde X" (M) passing through: € M by
¢S (1), that is

%455 (t) =€ (65(1)) with 65(0) = .

We start by introducing the notion of an integral arc from a ppitd a pointg on
M. This will be a segment of the flow ling$ for a¢ € X"(M)and anzr € M
joining p with ¢. Leta € R} and¢ € X" (M). The orbits oft and ofa& coincide.

Definition 6.2.1. v : I — M is an integral arc of a vector field if there exists an
o € R} and anz € M such thatp2®(t) = (¢) forall 0 < ¢ < 1.

The definition allows to re-parameterize flow lines. Given a flow Hﬁefor a
vector field¢ and anz € M let ¢§(t,) = p and g (t2) = g with ¢, < t5. We are
allowed to re-parameterize the f|Q§§[ by afunctions : R — R, 8 = (ta—t1)t+t1.
Thengl> ™5 (t) = 65(8(1)) with ¢{*"%(0) = p ande* (1) = ¢. We
notice that if¢ is in a section con& anda € R, then alsa¢ € K.

We will study paths consisting of a concatenation of a finite number of integral
arcs of vector fields iifC.

Definition 6.2.2. If - is an integral arc fromzq to 21, andy is an integral arc from
x1 10 9, then the product * u is the paths defined by the equation

B (2t)  for te|0,1],
olt) = {u(gt— ) for te [l 1],

The functions is well defined, continuous (by the pasting lemma, cf. Theorem
18.3 in Munkres [2000]) and piecewisg".

Definition 6.2.3. SupposeC is a C" section cone. We call a piecewi6& path

o : I — M adi-path of if there exists a finite set of integral ar¢s;, ..., v},
fori =1, ...,k where~; is an integral arc of the vector fielg} satisfying
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6.2 Partial Orders

1. {&,..4} € Kand

2. 0 =91 koo kYo

Ifall ~;, 7 € {1,...,k} is an integral arc of the same vector field, i&g.= ... = &,
then we shall calb a simple di-path. Otherwise we shall call it a shattered di-path.
The set of all di-paths o fromz to y is denoted byP(x, y; K).

Given a vector field € X" (M), we define the section cone associated by
E={af e X" (M) aeC" (MR} (6.2)

In particular all di-paths of(z, y; £) are simple. Thus a simple di-path is either a

broken or an unbroken flow line. We want to investigate deformations péttis
by appropriate homotopies.

Definition 6.2.4. SupposeC is a section cone od/ anda, b are two singular
points ofiC.

1. A di-homotopy byC froma to b is a continuous magf : I x I — M such
that H, € P(a,b;K) forall s € I.

2. Two di-pathsy, n € P(a, b; K) are said to be di-homotopic by if and only
if there exists a di-homotopy/ : I x I — M with Hy = ~vyand H, = n.

The set of equivalence classes of di-paths up to di-homotopy isydenoted by
m(a, b; C).

Definition 6.2.5. SupposeX is a section cone on the manifold. For a pair of
pointsxz and y in M we say thatr >, y if and only if there exists a di-path
o:1— Mof Kwitho(0) =z ando(1) = y.

Theorem 6.2.6. Let I be a Lyapunov-Smale cone. Then the relatignis a par-
tial order relation.

Proof. For reflexivity notice that for any vector fielfl and any pointx € M,
¢§;(O) = x. Also transitivity follows directly from the definition of the di-path.
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We show antisymmetry. Suppose>x y andy =, z. Let f be the Lyapunov
function associated to the Lyapunov section cone. Then

-y = f(z)>f(y)
yzcr = f(x) < fly),

thus f(z) = f(y). Assumer # y and leto be a di-path joining: with y then if

x # y there exists an integral arcof a¢ € K such thaty(I) C o(I) C f~!(x).
However, away from the singular pointg,is strictly decreasing along the flow
lines of the vector fields iiC. This is a contradiction[]]

6.3 Invariant Manifolds of Paths in Section Cones

If a C" section con&C on a smooth closed manifolty is a Lyapunov or Morse-
Smale section cone then all its singular points are hyperbolicp leeCr(K) and
recall that for any € K, W () is an injectively immersed open disk M. We
consider & (r > 1) patho € C"(I,K) and define its stable manifold. We will
show thato gives rise to a notion of stable and unstable manifoldd eni/. If
the section cone is Morse-Smale then the stable and unstable manifolds intersec
transversally.

Supposer : [ — X"(M) is aC” map. We defineamap: I x M — T(M)
by s = e|xr(ar) © (o x idpr), wheree is the evaluation map in Proposition 5.1.7.
The maps is a composition o™ maps, thus it is of clasS”. Observe that; is a
vector field onM for all t € I.

Definition 6.3.1. Let X be a Lyapunov or Morse-Smal¢” section coney > 1.
Leto € C"(I,K) andp € Cr(K). The stable manifoldV,; (o) C I x M of the
patho is defined by

Wi(o) = | J{t} x W (o(t).

tel

Likewise, we define the unstable manifdlg (o) of o.

In the next theorem we confirm that the $Ef (o) is an immersed submanifold of
I x M.

82
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Theorem 6.3.2.Let M be a closed smooth manifold. For< » < oo, letp be
a singular point of a Lyapunov or Morse-Smale section ckhe: X" (M) (p is
hyperbolic) with indexA ando € C" (1, K). Then the selV;j(o) is an immersed
C" submanifold of dimensiok + 1.

Proof. We follow the proof of Corollary 5.4.2 we consider an open neighborhood
U’ c M of the pointp and apply the exponential map to get a coordinate chart
¢ : U — U C T,(U), whereU is an open neighborhood 6f Pickr € I.

We represent the vector field(7) in local coordinates (7) = diwo(r) o 1.
Denote the stable and unstable subspaces(foy by respectively£? and £, and
letUZ = U N EZ. Then by Proposition 5.4.7 there is a real number 0 and aC”

map

g™ If x U — EY, wherel{ =1N (1 —0,7+9),

such that for any € I7, v(W§(o(t),U")) is the graph ofg], whereg] (z) =
g”(t,x). We define a map

R I x U — I x U x EX byh™(t,x) = (t,z,g9" (x,t)).

We conclude that™ = (id; x)o(h") : If xU; — W, (o) is ahomeomorphism
onto its image. Its inverse is used for defining a coordinateapV, — I x E?
on an open neighborhodd C imf7.

Since the interval is compact there is a finite number=®fi = 1, ..., 1 such that
I3 covers]. We define the differentiable structure @y, (o). We see thatV;) (o)
is an extension o¥..’s using the flows

l
W;(U)ZU U Uik, Vy,),
=lrez
k<0

wherewT : Rx I x M — I;S x M given byWTi (z) = (1 (z), ¢7 ™) (my(2)))
is aC" diffeomorphism, cf. Proposition 5.2.2.
The family {¥7i} c( - definesthe ma : R x I x M — I x M by:
If 7 € Ig then¥ (¢, 7,x) = ¥ (¢, 7,x). This map is well defined by uniqueness
of solutions of differential equations. It 8" by the pasting lemma, cf. Theorem
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18.3 in Munkres [2000]. It can be shown th&f : I x M — I x M given by
U, (r,x) = ¥(t,7,z) is aC" diffeomorphis for each € I.
Fork € {0,1,2,...} we define

VE = W(k,Vy,) andyk : VE — I71 x B3, by ¢l (x) = oy, 0 W(—k, z). (6.3)
The atlag V%, 4% ) makes the inclusiofV’; (o) < I x M an immersion.]

We shall use the two projectiong : I x M — I'andmy : I x M — M.

Corollary 6.3.3. For any coordinate chartV*, 4% ) on W, (o) the following dia-
gram commutes:

Iy, ——1Is,,

(with p, the projection on the first factor).

Proof. The corollary follows from the observation that the diagram

l/ﬂ'l lﬂ'l lpl
I, id I, —4 s

K3 K3 K3

commutes.[]

The next corollary shows that the stable and unstable manifolds of a Nonsd¢e
section cone just like for the Morse-Smale vector fields intersect tresediyer

Proposition 6.3.4. Let M be a smooth closed manifold.Afis a Morse-Smal€™

section cone oM/, r > 1. Then for allp, ¢ € Cr(K) the intersectionV;'(o) N
W; (o) is transversal.
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Lemma 6.3.5. The restrictiont’ = Tilws (o) © Ler{t} x W5 (o(t)) — I given
by (¢, x) — t is a submersion (no critical points).

Proof. We represent” in the local coordinates of a chai*, «/%), cf. (6.3), and
conclude by Corollary 6.3.3 that

o () =p1.
The mapp; has no critical points, neither does [

Proof (of 6.3.4).For anyt € I the intersectionV (p,q;o(t)) = Wi (o(t)) N
W;(o(t)) is transversal. _Therefp@(M) = TI(W;(U@)) + _Tx(W;(a(t)). We
observe thadim|T(qu(a)) is nonsingular, then by the dimension argument

Tty (I X M) =Ty 0 (W' (0)) + Tig,0) (W (0)).
|

In the following we want to introduce a new object, a certain manifold, which will
substitute for the stable and unstable manifolds.ofo ease subsequent arguments
we want it to be compact. More importantly we wish to represent a flow line by a
single element. We have met similar objects in the chapter on Morse Theorg wher
we studied intersections of stable manifolds with the preimage of a regulargfoint
a Morse function.

Let I be a Lyapunov section cone, and Jet M — R be the Morse function
from Definition 6.1.9 angh be a singular point oK. All critical points of a Morse
function are isolated therefore there is an open neighborhooftlf (p) in R such
that

Vyev—{py v is aregular value foy. (6.4)

Pick ac € V. — {p}. Sincef(o:)(z) < 0forallxz € M — Cr(K) andt € I we
have thatV$(o;) h f~'(c) in M. ThusW; (o) intersectd x f~'(c) transversally
in I x M. We conclude tha$(c) = W;(o) h I x f~!(c) is a compact manifold
with boundary given by

85;(0) = (8W1f(a) NI x f‘l(c)) U (W;(J) N oI x f‘l(c))
= {0} x S5(c(0)) U {1} x S55(a(1)).
We shall recall a definition of a manifold triad.
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Definition 6.3.6 (Definition 1.3 in Milnor [1965]). (W;Vj, V1) is aC™ manifold
triad if W is a compactC” manifold and)W is the disjoint union of two connected
submanifoldd/, and V3.

We observe thatS; (o); {0} x S;(a(0)), {1} x S;(o(1))) is aC” manifold triad.

Definition 6.3.7 (Definition 3.4 in Milnor [1965]). A triad (W; 1}, V1) is said to
be a product cobordism if it i€ diffeomorphic to the triad

(0, 1] x Vo; {0} x Vo, {1} x Vo).
Proposition 6.3.8. Letp be a singular point ofC. Then the manifold triad
(85(0): {0} x S3(a(0)), {1} x S3(0(1))
is a product cobordism.

Lemma 6.3.9. The projection mapr; : I x M — [ restricted toS;(o) is a
submersion.

Proof. The normal bundle/(S; (o), W, (o)) is one dimensional and orientable,
thus trivial, cf. Theorem 3.2.6. There is a vector bundle isomorphism

¢:v(Sp(a), W,(a)) — Sp(o) x R.

By Product Neighborhood Theorem 3.2.3 there is a neighborbbodl S; (o) in
W (o) and a diffeomorphism

0:8,(0) xR —=UCWj(0o)

such thatb\sﬁ(o)x{o} is the identity map.

We fix z € S;(o) and see that; o o(z, s) is a constant map for eache R.
Thus each fibre af (S, (o), W, (o)) goes td) underdry, that isdm do(vo@e) = 0,
whereu is the zero section df (S, (o) x R) ande trivial line bundle. On the other
hand by Lemma 6.3.5i771|W;(0) is a submersion, and so dBrl|g(Sg(o)xR)- We
have observed thatrido(vy @ €) = 0, thereforedm\g(sg(a)xo) = dmysg(g) is a
submersion.tJ
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Proof (of proposition).Recall that a Morse function on a manifold tridd’; V5, V1)
isaC" functionf : W — [a, b] such that

1. f~Ya) = Vo, f71(b) = V1;
2. All the critical point off lie in W — 0 and are non-degenerate.

We conclude tha’xr\sg(a) is a Morse function on the manifold trigd,; (o); {0} x
S;(O‘(O)),.{l} x.S;(a(_l)))_ with no critical pqints. By Theorem 3.4 in Milnor
[1965] this manifold triad is a product cobordisrl

Corollary 6.3.10. The diffeomorphisn¥ : I x S;(o(0)) — S;(o) in Proposi-
tion 6.3.8 is such that, for anf¢t,») € I x S;(o(0)) we havet = m o ¥(¢,z).

Proof. The corollary follows from the proof of Theorem 3.4 in Milnor [1968].

Let K be a Lyapunov section cone on M ayid: M — R be the Morse func-
tion from Definition 6.1.9. Supposec € R, ¢ > ¢ are two regular values of
the functionf and f~([¢’, c]) does not contain any critical points. We define
e C(I, X" (M —Cr(K))) by 8(t) = o¢/oe(f), thenf(6;) = 1forall t € I.
Furthermore, we define a map

O:1x (M—Cr(K)) — I x(M—Cr(K)) by O(t,z) = (t, ¢""), (x)).
The mapo is a diffeomorphism which takes; (o)’ = W3 (o) th I x f~*(¢/) onto
Si(o) =Wgi(o) M I x f~(c).
Proposition 6.3.11.For 1 < r < oo, let £ be a LyapunoC” section cone on
a smooth manifold/ and f : M — R be theC"” Morse function from Defini-
tion 6.1.9. Lep be a singular point ofC. Suppose € V' — {p} C R, whereV is

an open neighborhood gf(p) in R as defined in (6.4)(is a regular value off).
Then the normal bundle(S; (o), I x f~Y(c)) is trivial.

Proof. The intersection of x f~!(c) and Wy (o) in I x M is transversal and
inclusions induce the following commutative diagram

Sp(0)——W; (o)

L]

Ix f~He)——=1x M.
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Then Lemma 3.7.2 shows that the normal bundles
v(Sp(0). I x f7H(c)) and v(W3 (o). 1 x M)|sy(s)

are isomorphic. We note that the latter is trivial sin€§ (o) is contractible.[
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7 The Central Vector Field Theorem

We formulate and prove the main theorem of this thesik. i a Lyapunov-Smale
section cone on a closed smooth maniféld, « is a singular point of the section
cone/C of index0 andb is a singular point ofC of indexn. Then the study of

the connected components of the space of flow lines of the vector fields within
the section con& can be reduced to the study of the connecting components of
W (a, b; €) for an arbitrary¢ € K.

7.1 Problem Formulation

Forn € ¢" (M), r > 1, P(a,b;n) is the set of flow lines of) from the singular
point a to the singular poinb. The set of flow lines of the vector fields in@&
section conéC born ina and dying inb is denoted byP(a, b; K).

Definition 7.1.1. Let M be a closed smooth manifold. Fer> 1, let¢ € X" (M)
andC be aC" section cone oi/.

1. 70, 71 € P(a,b;§). We say thaty, is homotopic toy; by &, write yo ~¢ 71,
if and only if there is a path3 : I — M such that3(t) € W(a,b;¢),

20(t) = 650y (1) and (1) = 65 ().

2. Supposeyy, 71 € P(a,b;K) . We say thaty, is homotopic toy; by £
and writeyy ~x 7 if and only if there exist a patr : I — K and a
path 3 : I — M such thatB(t) € W(a,b;a(t)), 0(t) = d3)(t) and

N(t) = 650 (0).

The relationsv and~ are equivalence relations.
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7 The Central Vector Field Theorem

Theorem 7.1.2.Let M be a closed smooth manifold. Suppé#sés a Lyapunov-
SmaleC"” section cone o/, » > 5, and¢ € K. Leta, b be singular points with
indices0O andn, respectively. Then there is a bijection

12 P(a, b:6)/~e = P(a; b;K) /.

We shall present two proofs for the surjectivity if The reason is that two
entirely different techniques were developed for this purpose anddrethsed in
the proof of injectivity for the magl. The first proof relies on the properties of
Sy(0), o € C"(I,K), as developed in Section 6.3. For the second proof we will
introduce the subject of stability of a one-parameter family of diffeomorphisms
Our exposition of this subject follows Newhouse et al. [1983]. We shathdtuce
the notion of a proper selfconjugacy of a vector figlthat takes a connected com-
ponent ofil¥ (a, b; €) to itself. We will show that ifiC is a Lyapunov-Smale section
cone, then a path € C"(I,K), r > 5, induces a proper selfconjugacy.

7.2 A First Proof for the Surjectivity of II

We recall thatV (a, b; £) = W) NW(£). For0 < r < oo, let|| - ||, be the norm
on X" (M) discussed in Section 5.1. We define the open B&l(n) C K centered
atn € K and the radiug by

Bf (n) ={¢ € K: |I€ —nll, < 6}

The first proposition shows that a perturbation of a vector field within asec
cone and a small perturbation of the initial values do not change the poietgwh
the flow lines are born and die.

Proposition 7.2.1. Let M™ be a smooth Riemannian manifold. Supp#ses a
gradient-like or Lyapuno¢'” section cone o/, r > 1, with a singular point of
index0. Letn € K. If y € W¥(n) then there isf > 0 and an open neighborhood
U of y such that for any € B} (n) andx € U we have thatr € W2(¢). In
particular, if b is a singular point oflC of indexn andy € W(a, b;n) then there
is o' > 0 and an open neighborhoad’ of y such that for any e B§(n) and
xeU,xeW(a,b).
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7.2 A First Proof for the Surjectivity dit

Lemma 7.2.2. Let M™ be a smooth Riemannian manifoldnlE &" (M), r > 1,
then there is a Morse functiofi: M — R and a real numbed > 0 such thatf is
a Lyapunov function for ang € B (n).

Proof. Any Morse-Smale, hence also gradient-like vector field, has an asabciate
Lyapunov function, cf. 5.7.3. Suppogés such a function for). For each critical
point p there exist an open neighborhoddof p and constants > 0 such that

—n(f)(z) > kd(z,p),

whered is the Riemannian metric. On the other hand, for gaehCr(KC) there is
a coordinate chafi/, ¢») such that

f=rfoyv™ = fp)+Qz,2),

where( is a honsingular quadratic form whose index is the same as the index of
the Hessian of atp.

We want to show that there exists a continuous monotonically increasingdanc
¢ :]0,00) — [0, 00) such that

[(n = &)(f)(@)] < ¢(d)d(z, p) whenever: € U and|[n — &||» < 6.

We denote the vector fieldsand¢ in the local coordinates ap by 7 andf, re-
spectively. We get

(7 — () = dfy,(7y) — EW)) = Qy, (A(y) — EW)))-
Thus|(/ — €)(f) ()] < 8]1Q|| |ly|| for y € ¥ (U). On the open sel N U we have
=&(N)(@) = —n(f)(@) + (n = E)(f) = rd(z,p) — c(d)d(z, p).

For sufficiently smalb, x' = k — ¢(6) > 0 and—¢(f)(z) > «'d(z, p).
Denote by{ N, },ccr (k) Open neighborhoods of the singular pointsyér which
the above inequality is valid for some> 0. Let K = M — UqECr(IC) Ny. By

compactness of, the functiong : K — R™, x — —df(n)(z) has a minimum,
sayr > 0. Suppose also that= ||df||o on K, where| - ||o stands forC° norm. If
&' = min(8,7/e) then for any¢ € B (n)

—df (§)(x) = —df (n)(z) + df (n — §)(z) > 0 forz € M —Cr(n).

We conclude thaf is a Lyapunov function for af € B(’ﬁ(n). O
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7 The Central Vector Field Theorem

Proof (of proposition).By the lemma there is a Morse functignand a constant
such thatf is a Lyapunov function for ang € B (n). Hence, for each € Cr(n)
there exist a real number, > 0 and an open neighborhoadd, of p for which

—E(N)(x) = wpd(, p).

In particular, if¢ € B(’Sc(n), then the singular point is asymptotically stable for
—£in N, andb is asymptotically stable fof in IV, .

On the other hand by Proposition 5.2.2 there existg"amap® : R x M x
BX(n) — M such tha®(-,z,¢) = #5(-) is an integral curve of the vector fiefd
Pick 7 such thaty,)(—7) € N, and¢,(7) € N;. By continuity of® it is possible
to choose)” and an open neighborhodd of y such thatbﬁ,(—f) € N, whenever
x € U and € B (n).

Letd = min(¢’,6”). For any¢ € Bs(n) andz € U we have

tlilln d)f(:c) =a.
U

Definition 7.2.3. A nondecreasing surjective map (1,{0},{1}) — (I,{0},{1})
is called a re-scaling of the unit interval.

Let M™ be a closed smooth manifolff, be a gradient-like”" section cone and
let 0 € C°(I,K). Suppose thakl has one singular point with index 0, one
singular pointb with indexn, k singular points with index, sayps, ..., pr andl
singular points with index — 1, sayq, ..., ¢;. Forz € M with x € W (a, b, 0(0))
we define the subset? of C°(I, M) by the following conditions: A patl® is in
B?Z if and only if

1. 5(0) = =;
2. p(I) c M —Cr(K);

3. There exists a re-scalingof the unit interval such that for eaghe T

tim (6757 (3(r), 67> (B(7))) € D,

t—o0

whereD = {(a,b), (p1,b), ..., (Pk,b), (a,q1), ..., (a,q) }
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7.2 A First Proof for the Surjectivity dit

The re-scalingy of the unit interval from condition 3. will be called an associated
re-scaling fors.

The setBJ consists of paths of initial conditions fersuch that thex-limit sets
are singular points of of index0 or 1, andw-limit sets are singular points of index
n — 1 or n. The next proposition demonstrates that thefsgts nonempty.

Proposition 7.2.4. Let M™ be a closed smooth manifold; be a gradient-like
C" section coner > 1, and letc € C"(I, M). Suppose thak has only one
singular pointa of index0 and one singular poinb of indexn. Then for any
x € W(a,b;c(0)), the setBZ is nonempty.

In the proof of the proposition we shall make the use of the following lemma.

Lemma 7.2.5. Let M™ be aC" manifold ¢ > 0) and{ N, };cn be a collection of
immersed submanifolds éfx M of co-dimensior2 or more. Letr; : I x M — [
be the projection on the first factor. Then for any open subsef M there is a
pathv € CO(I,1 x M —J¥_, N;) such that(0) € {0} x U and the following
diagram commutes
I—>IxM (7.1)
N

1.

Proof. For some sufficiently large € N we have an embedding : M — RS
and the embeddingl; x f : I x M — R**!. Consider Hausdorff dimension of a
subsetF ¢ R**!, cf. Falconer [1986],

dimy F = inf{v € RT| H"(F) = 0},

whereH"(F') is thev-dimensional Hausdorff measure Bf We observe that for
i € N,dimgN; < n—1. We define the map : R x R® — R x R® by
p(z,y) = (0,y). The mapp is Lipschitz. LetN = |J,.Ni. By Lemma 1.8
in Falconer [1986]dimy (p(N;)) < dimg N; and hencelimg (p(IV)) < n — 1.
We have

0= dimg ({0} x U) = dim ({0} x U = p(N)) U p(N))
= max{dim({0} x U — p(N)),dim N}
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7 The Central Vector Field Theorem

Thusdim(({0} x U — p(N))) = n. It follows that the se{0} x U — p(N) is
nonempty. Therefore for any € U — mo(N), wheremy : I x M — M is the
projection on the second factor, we have that {y} N N = (). Now, take the
constant path(t) = (¢,y). O

Proof (of proposition 7.2.4) By Proposition 7.2.1 there is an open neighborhood
U’ C M of z such that ifz € U’ thenz € W(a,b;0(0)). We choose a path
connected open neighborhobdc U’ of .

We define a collectiof N; };c (1 ... x} consisting of

1. W, (o) with p a singular point of index less than— 1,
2. W (o) with g a singular point of index greater than

U s . . . . . ’C
3. Wi (o) h W (o) whereg, p are singular points with relative indéxd,; —
Ind§ =n—2,

4. cr(K).

Then the co-dimension of ead¥; is 2 or more. Lemma 7.2.5 applies and for
x € M and the open neighborhodd C M of z thereisapath : I — I x M —
UL, NV; with (0,) = 8/(0) € {0} x U that satisfies (7.1). Defing = m o v,
wherer, : I x M — M is the projection. Pick a path’ : I — U with 5”(0) = x
andg”(1) = y. Then the desired path= 5" « 3, that is

o B2ty for tel0,1/2]
B(t) = {gf(gt —-1) for te[1/2,1]

and the associated re-scalindor g is

B 0 for te[0,1/2]
aft) = {2t —1 for te[1/2,1].

g

Corollary 7.2.6. Let M, K and o be as in Proposition 7.2.4. Supposas a re-
scaling of the unitinterval and’ = o o \. Then for any: € W (a, b, ¢’(0)) the set
B7' is nonempty.
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7.2 A First Proof for the Surjectivity dit

Proof. We have seen in the proof of Proposition 7.2.4 that there is awpath —
I x M — U, N;. We define the desired pathby

_ B (2t) for te[0,1/2]
Ble) = {772 ovoA2t—1) for tel[1/2,1].

For the re-scaling of the unit iterval

0 for tef0,1/2]
a(t) = {21& -1 for te[1/2,1]

3 satisfies condition 3. of the definition of the g&f . [
We are ready to proof the surjectivity of the mdpn Theorem 7.1.2.

Proposition 7.2.7. Let M™ be a closed smooth manifold, be a gradient-like_C"
section coner > 1. Suppose thakC has only one singular point of index0
and one singular poink of indexn. If £ € K then for anyp € K and any~y, €
P(a,b;n) there is somey; € P(a,b;¢) such thatyy ~x 1. That is, the following
composition

P(aa b7§) - P(CL,b; IC) - P(a7 b; ,C)/ ~K

is surjective.

Proof. Since¢,n € K we can defineapaihe C"(I,K) byo(t) =t&+ (1 —t)n.
We have that(0) = n ando(1) = £. Sincevyy € P(a,b;n) there is a point
x € W(a, b;n) such thaty(t) = ¢:(t) for all t € R. Our aim is to show that there

isapaths : (I,{0}) — (M, {z}) and a re-scaling of the unit interval such that
B(t) € W(a,b;o 0o «t)) for all t € I. For this we define a set

A = {7 eI there exist? € BY with a re-scalingx for 5 such that
B(t) € W(a,b;oo0at)) for0 < a(t) < T}.

We want to show that the sdtis equal the whole intervdl. This will be proven
by the following five claims.

Claim (A). The setA is open.
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7 The Central Vector Field Theorem

Proof (A). Assumer € A then there is &; € BZ with an associated re-scaling
oy for 31 such that

Bi(t) € W(a,b;ooai(t)) for0 < a;(t) <.

Lety = mina; (7). By Lemma 7.2.1, there is> 0 such that for al —¢ < p <
T + e we haves; (v) € W(a, b;o(p)). Define a constant path

ﬂg : [V,U—i—e) — M, ﬁg(t) = 61(1/).

Defines : I — K by<(t) = o((1 — 7)t + 7). Choose3s € By o) 7 () and pick a
re-scalingas for (s.

The desired pat¥ is obtained by extending, |y - by a constant path, andgs.
On 3, we change the vector fields accordingsterom o(v) to o (v + €), and onjs
fromo(v + €) to o(1). Explicitly, the paths is defined by

Bi(t) for  te€[0,v]
B(t) = Ba(t) for tev,v+¢
Bs((t—v—e€)/(1—v—¢)) for telv+el],
and the associated re-scalindor g is given by
aq(t) for t € [0,v]
a(t) = t+717—v for tev,v+¢€
(I-v—-—easz((t—v—¢€)/(l—v—e¢)+v+e for tev+el]

O
It follows that the setA is of the form|[0,T") or 1.

Claim (B). Let ¥ € C°(I,K). Suppose that there is a path: I — M such
thatVi<r B(t) € Wi(a,b;9(t)) and3(T) € W7 (¥(T)) for somep € Cr(K).
Then for any neighborhool of p there is a path?’ satisfying3’(0) = 3(0),
Vier B'(t) € W(a,b;9(t)) and3'(T) € W7 ((T))NU.

Proof (B). Pick 7 such thatbf(T) (B(T)) eU. If Bi(t) = gbf(t) (6(t)) then for any
t € [0,T] the orbits off; (t) and5(t) coincide. Furthermorg, (T) € U. Let 3,
be the integral arc of the vector fielt{0) from 3(0) to 5;(0). Then the desired
path/3’ is the concatenation gf;, with 5;. [J

96



7.2 A First Proof for the Surjectivity dit

Claim (C). Let¥ € C°(I,K). Suppose that there is a smooth functjon M —
R, which is a Lyapunov function for eac#(t), t € I. Assume there are real
numbersy,ry > 0 so thatd = {z € M| r; < f(z) < r2} contains no singular
points forkC. For any path3 : I — H there is a pati®’ : I — f~!(r2) such that
the orbits of3(¢) and 3’ (¢) coincides.

Proof (C). We define

9 € CO(I, X" (H)) by r ﬁzi(;()f).
If 5'(t) = ¢f;(f}(6(t))(ﬁ(t)) then f(3'(t)) = ro for all t € I. The conclusion

follows from the observation that the orbits of the vector fiefdsnd¥’ coincide
onH.[O

Claim (D). If A =0,Tp) thenT; € A. HenceA = 1.

Proof (D). Let T = mina~!(Ty). Choose any3 € BZ and any associated re-
scalinga for 8 such that/,r 3(t) € W(a,b;o0a(t)) and3(T) € W (ooa(T))
or 3(T) € Wy (o o a(T)) for somep € Cr(K) — {a,b}. We will prove the claim
by extending the patf¥|, 7—s), for some smalb > 0, to a path3’ € By with a
re-scaling’ for 5’ such that,<r 8'(t) € W(a, b; o 0 o/ (t)).

Without loss of generality we suppose ti#f") € W, (o o o(T')) and the index
of pisn — 1. We make an observation that, singe€l’) € W*(o o «(T)) anda
is continuous there is, by Proposition 7.2.1, a real number0 such that for any
T—§<t<T+dwehaves(t) e W¥(o o a(t)).

Let f : M — R be a Lyapunov function fos o «(7"). We shall postpone the
discussion on the choice ¢gffor a while. By Lemma 7.2.2 there is a real number
c1 > 0 such thatf is a Lyapunov function foe (¢) whenever—c; <t — Ty < ¢;.

Let o” be the restriction of to the segmenf = [Ty — ¢1, Ty + ¢1]. LetV be
an open neighborhood ¢f(p) in R such thatv,cy 1, v is a regular value fof.
Pick A\ € V — {p} and consider the manifolds;(c”) = W3(c”) N1 x f~1(})
andS¥(o”) = W¥(c”) NI x f~*(X), cf. Section 6.3. Sincé3(o”) and .Sy (0”)
are compact and disjoint they have disjoint closed tubular neighborhatbdath
radiuse, say/N? and N, respectively.
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7 The Central Vector Field Theorem

By Claim (B) we may assume that there-ss> 0 such thap3((T —c2, T+¢2)) C
(V —{0}). Then by Lemma 7.2.2 and Claim (C) we may additionally assume that
there is a real numbep with 0 < c3 < ¢y such thaB([T —c3, T +c3]) C f~H(N).
Pick a real numbef with 0 < ¢ < ¢3 such tha{(Ty — do, B(T — §)) € NZ, where
6o = To — a(T — 0). This is possible sinc€ly, 5(T)) € S;(a(To)) C NZ.

The one-dimensional vector bundi¢Ss (o), J x S™~1) is trivial by Proposi-
tion 6.3.11. Therefore, there is an embedding S, (") x [—¢,¢] — N, cf.
Theorem 3.2.3. Lefv, ) = e~ (T — 6o, B(T — 6)).

Claim (D.1). There exists a path : [Ty — do, To] — N2 with v(Ty — §p) =
(Th — 6o, B(T — §)) such that

1. m oy = idipy_s,,10]» Wherel x Sn=t — T is the projection on the first
factor;

2. im(y) N S;?(J”) = 0.
Proof (D.1). By Corollary 6.3.10, there is a diffeomorphism
:J xS, (o"(T" = 1)) — Sp(0”)

such that, for anyt,z) € J x S;(c"(T" — c1)) we havet = m o ¥(t,x). Let
(1,2) = U~1(v) and note that = Ty — §. We define

w: [Ty — 0o, To) — J x Sp (6"(T" = ¢1)) by w(t) = (t,2).
Then the desired pathis
Y(t)=e L (Tow(t),r).
(]

We are ready to define the desired patke B7. We follow 8, = 3 r—s) in the
interval [0, T'— §] simultaneously changing the vector field according tax from
ooa(0)toooa(T —§). Then, we follows, = w9 oy, wherery : I x M — M
is the projection on the second factor. We change the vector field linearty fr
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o(Ty — do) too(Tp). Final step is to extend the resulting path to the whole interval
I by a pathgs. For this we defing : I — K by (t) = o((1 — T')t + T') and pick
B3 € B;Q (To) and an associated re-scalingfor 33. The desired path’ is

B(t) for te[0,T -],
B(t) = { B2 0 at) for te [T —06,T],
Bs(1/(1=T)(t—-1T)) for te[T,1].

The associated re-scaling for 3’ is

a(t) for te[0,T 4],
o (t) = { t for te|[T—4,T],
as(1/(1=T)t-T)) for te[T,1].

We observe that'(t) ¢ W;(oo a/(t)) for t € [0,T)]. It remains to show that
B (t) € W(a,b;o0d(t)) fort € [0,T].

At this point we shall proceed our postponed discussion on the chod.yd-
punov function. LeCr"~!(K) be the set of singular points of index— 1. By
Theorem 5.7.3 there is a Lyapunov function #(Z) such that for any; €
(Cr"=Y(K) — {p}) we havef(p) < f(q). By Lemma 7.2.2 there is a positive
realé’ > 0 such that the functiorf is Lyapunov for eaclr (¢) with |t — Tp| < ¢&'.
We can shrink the neighborhodd of p so that

f(z) < min{f(q)| ¢ € Cr" " YK) — {p}} forallz € V
and pick0 < 6y < min{¢’, mina~!(c3)}. Then by the property
df (o(t))(y) < 0for |t — Tp| < dp andy € M — Cr(K)

goa’(

we conclude thacbﬁ,(t) Y dies ath for t € [0, T, sinceb is the only singular point
of indexn. We conclude that’(t) € W (a,b;o o o/(t)) forall t € [0,7]. O

This ends the proof of the propositioil
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7 The Central Vector Field Theorem

7.3 Stability of One-Parameter Families of
Diffeomorphisms

We study a one-parameter family, } . of diffeomorphisms starting at a Morse-
Smale diffeomorphism. For a bifurcation poifat € I the diffeomorphisme,
ceases to be Morse-Smale, thakjs have a nonhyperbolic singular point or its
stable and unstable manifolds do not intersect transversally. We shalll tieett
if p is a hyperbolic singularity for a diffeomorphisr), then the stable manifold
W, (k) is an injectively immersed open disk M. The same is true for the strong
stale and strong unstable manifolds at a nonhyperbolic singular pointppedix
[, Shub [1986].

Let M™ be a closed smooth manifold. We follow Newhouse et al. [1983] and
consider the set af”" diffeomorphisms on\/ denoted byDiff" (M ).

Definition 7.3.1 (Newhouse et al. [1983])We call aC" mapk : [ x M — I x
M an arc of diffeomorphisms of/ if and only if k(t,z) = (¢, k¢(x)), where
x — ke(z) is a C" diffeomorphism for eacth € I. The space of arcs af”
diffeomorphisms on M will be denoted BY (M ).

We giveDift" (M) andP" (M) theC" topology.

Suppose an arg € P"(M) with kg € MS", where MS" is the set of Morse-
SmaleC™ diffeomorphisms onV/. Letb = b(k) = inf{t € I| x(t) ¢ MS"}. As
for diffeomorphisms also for arcs (of diffeomorphisms) we can introgunetion
of conjugacy.

Definition 7.3.2 (Newhouse et al. [1983))If x,x’ € P"(M), then we say that
(h, H) is a conjugacy ifh : I — I is a homeomorphism with(b(x)) = b(x'),
H: I x M — M isamap withH; being a conjugacy between andm;L(t) for all

t in some neighborhood @, b(x)].

The definition of conjugacies gives rise to the concept of structurailisgeir
arcs of diffeomorphisms.

Definition 7.3.3 (Newhouse et al. [1983])An arcx € P"(M) is stable if there is
an open neighborhooll of x in P"(M) such that any:’ € U is conjugate tos.
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The necessary and sufficient conditions for structural stability of @frcéffeo-
morphisms have been formulated and proven in Newhouse et al. [1983].

Definition 7.3.4 (Newhouse et al. [1983])Letr > 5, the subses” (M) C P"(M)
is the set of arc that satisfy:

1. The limit set of each; has finitely many orbitg, € I;
2. r has only finitely many bifurcation values, dayto b, in (0, 1);

3. All stable, strong stable, unstable, and strong unstable manifolds ictsrse
transversally;

4. Foreachi € {1, ..., s}, ks, has no cycles and has exactly one non-hyperbolic
periodic orbit which is either a noncritical saddle-node, cf. Sec. 3, New
house et al. [1983], or a flip, cf. Sec. 4, Newhouse et al. [1983§ tton-
hyperbolic orbit unfolds generically.

We shall not explain the meaning of Definition 7.3.4, instead we refer to Neseho
et al. [1983] for details and remark merely that any arc of diffeomorphismach
thatx; € MS" for ¢t € I belongs to the se§” (M).

Theorem 7.3.5 (Theorem 4.4 in Newhouse et al. [1983]for » > 5, the arcs in
S"(M) are stable.

Forr > 5 we define the subs&®’” (M) C S"(M) of arcsk that satisfyx, €
MS".

Corollary 7.3.6. LetG : I — R"(M),r > 5, be amap. Then there is a conjugacy
between the aré;p andG;. In particular there exist a homeomorphism I — I
andamapH : I x M — M, whereH, is a conjugacy betweeH,(t) andG1 (h(t))
fort e I.

Proof. The conclusion follows from compactness of the unit interval. We céver

be finite number of open intervald/; };<(; ...,y and propagate the conjugacy from
the neighborhood dito 1. [
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7 The Central Vector Field Theorem

We shall relate the results on conjugacy of arcs of diffeomorphism withafrc
vector fields, which is the primary object of the study in this thesis. Below, we
show that the Stable Manifold Theorem for Vector Fields follows from fa th
Stable Manifold Theorem for Diffeomorphisms.

Let M be a compact smooth manifold. A vector figJde X" (M), r > 1,
determines a one-parameter family @f diffeomorphisms¢; : M — M for
t € R given by

¢; (x) = 65(0).

Supposel is aC" diffeomorphism and is a fixed point, then we define the stable
manifold for ¥ ata by

W3 (V) = {zeM| lim V"(z)=a}.

n—-+00

Since(¢f)” = (;Sit for all n € N, for any singular point: of £ and any fixed
t > 0 we have

Wileh) = {w e M| Tim ¢}, (z) =a}={reM| lim ¢5(\)=a}=W().

7.3.1 A Second Proof for the Surjectivity of IT

As an application of Corollary 7.3.6 we will give an alternative and more ekega
proof of Proposition 7.2.7 for clagSs” with » > 5. Additionally we release the
assumption that the singular points are of maximal and minimal indices.

Proposition 7.3.7. Let M™ be a closed smooth manifold, be a gradient-likeC"
section coneyr > 5. Suppose thad, b are singular points ofC with a = b. If
¢ € K then for anyn € K and anyy, € P(a, b;n) there is somey; € P(a,b;§)
such thatyy ~x 1. That is, the following composition

P(a,b;§) — P(a,b;K) — P(a,b;K)/ ~x

is surjective.
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7.4 A Proof for the Injectivity of 1

Proof. Since,n € K we can defineapathe C"(I,K) byo(t) =t£+ (1 —t)n
with o(0) = n ando(1) = &. Letc, be a constant path,(t) = . We define a
C"mapg : I x I — Kbyg(s,t) = (1—s)c,(t) + so(t). The mapg gives rise
toamapG : I — R’ (M). Pickr > 0 thenG(s)(t) = G7(s)(t) = (£, 67°").
We shall use the notatiofs(t) = G(s)(t). We note thaiGy(t) = (¢, ¢7) and
G(t) = (t.077).

By Corollary 7.3.6 there exists a homeomorphism/ — I and there is a map
H:IxM — Mwith H, : M — M, whereH,(z) = H(t,z), iS a conjugacy
betweenG(t) andGy (h(t)) forall t € 1.

Sinceyy € P(a,b;n) there is a point € W (a, b;n) such thatyy(t) = @2 (t)
forall t € R. Let ¢, be a constant path in/ given byc, : ¢ — 2. Then
cx(t) € W(a,b,cy(t)).

We define a pat : I — M by 3(t) = H, ' o Hy o ¢, o h(t) if h(0) = 0. If
h(0) = 1 then we defingd by 3(t) = 5'(1—t) wheref'(t) = H; ' o Hyoc, o h(t).
We observe thati(t) € W(a,b;o(t)), 5(0) = z, 0(0) = &, ando(1) = 7. If
() = @Z%(l)(t) theny, € P(a, b;€) andyo ~x v1. O

7.4 A Proof for the Injectivity of II

We consider a closed smooth manifald™. By the discussion in Section 5.1,
X"(M), 0 < r < oo, with theC" topology arises from a complete metric. Pick
such a metric and denote it b (-, ). Furthermore, on the spac& (I, X"(M))
we impose the topology of compact convergence.

Let L be aC" section cone oM/, r > 1. Leta,b be two singular points of
KC of index 0 andn, respectively. In the proof for the injectivity of the map
we will need an approximation of elementsd@if (I, K) by elements irC*(I, K)

(0 < s <r). This is resolved by the following proposition.

Proposition 7.4.1. Let M™ be a closed smooth manifoli, be aC” section cone
on M withr > 1. Leta, b be two singular points o€ of index0 andn, respectively.
Supposer € CY(I,K) and € C°(I, M) such that3(t) € W (a,b;o(t)),t € I.
Then there i’ € C*(1,K), 0 < s < r, such thato’(0) = ¢(0), o/(1) = o(1)
andj(t) € W(a,b;o’(t)) for eacht € I.
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7 The Central Vector Field Theorem

Lemma 7.4.2. Let K be aC" section coney > 0, on a smooth closed manifold
M. Then the se€*(I,K),0 < s < r, is dense irC°(I, k).

Proof. For everys € C°(1,K) and every > 0 we shall find a path € C*(I,K)
such thasup,; d.(s(t),o(t)) < e. By compactness af and continuity ofc we
cover! by a family of open neighborhood$/; };c(; ... ;3 of ; € I such that, = 0,
t1 = 1landd,(o(t),o(t;)) < efort € V;. We define constant pathse C*(1, K)
by ci(t) = o(t;). We use a smooth partition of unifA};c¢; ;3 subordinate to
{Vi}iequ,...;y- Define

then

l l l
dr(s(t),0(t)) = dr (Z /\i(t)ff(t)aZ/\i(t)cz'(t)> <D X (o(t), cilt)

as desired.]

Proof (of Proposition 7.4.1) By Proposition 7.2.1 for eache I, there is an open
neighborhood’; of 3(t) and a baIIB(’;f(a(t)) such that for anyr € U; and any
NS Bgf(a(t)) we have thatt € P(a,b;6). LetV; C U, be an open neighbor-
hood oft such that for eaclr € V4, ||o(7) — o(t)|l» < 6:/2. The intervall is
compact and we get a finite family of suefis, say{Vi}cy, ...,y coveringl. Let

§ = min{dy, /2, ...,0;,/2}. By Lemma 7.4.2 we can find’ € C*(I, K) such that
sup;cr dr(0'(t),0(t)) < 4. Thenfort € V;

d-(o'(t),0(t;)) < d.(0'(t),0(t)) + dr(o(t),o(t;)) <6 +6;/2 <6.
Therefores(t) € P(a,b;o'(t)) forallt € I. O

In our preparation for the proof of injectivity dil we consider an essential
gradient-like vector field and study connected componentsifa, b; £). Sup-
pose¢ hasl singular points of indexX, sayp, ..., p;, andk — [ singular points of
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7.4 A Proof for the Injectivity of 1

indexn — 1, sayp;+1, ..., px. We consider a selfconjugacy of the vector fig)dhat
is @ homeomorphismil : M — M such thatd o ¢§(x) = ¢§ o H(x). Note that
H preserves the stable and unstable manifolds 0ofl < ¢ < k. We shall assume
thatH(p;) = p;fori=1,... k.

Pick a singular poinp of £ of indexn — 1. By the discussion in Section 5.4, cf.
Equation (5.8), there is a local coordinate systémy)) of p

Y:V —-R"=E®E", ¢(p) =0, (7.2)

where E¢ and E* are the stable and unstable subspace®&'bffor d<, where

¢ = dy¢ o b1, The local stable manifold of is an open neighborhood of the
origin in £ and the local unstable manifold is an open neighborhood of the origin
in E*. We restrict the homeomorphishf to a sufficiently small neighborhodd’

of psuch thatd (V') ¢ V with W = (V") convex. We definél = o Hoy~ |y

and see thaf is a homeomorphism onto its image. Finally we note that since the
index ofp is n — 1, the stable subspade® is a point in the Grassmann manifold
Gr-1(R™).

Let VO | (R") be the Stiefel manifold of orthonorméh — 1)-tuples of vectors
in R™. A principal bundle

OR™ ) —— VO (R") 2= Gy (R?)

over the Grassmann manifole,_; (R™) is defined by the mapping taking X €
VY | to the hyperplane spanned by

Fix an orientations on R™. There is a correspondencé — X, which as-
signs to each{n — 1)-tuple of orthonormal vectors iR" the n-th orthonormal
vector making thex-tuple positively oriented, i.6.X © X*] = w. This correspon-
dance defines a homeomorphism betw&gn, (R") and V?(R"*) = S"~! and a
homeomorphism betwee,,_;(R") andG;(R") = RP"~!. In conclusion, the
following diagram commutes

o)

V??—I(Rn) sn—1

|+ |»

Gp_1(R") —=RPr—1,

105



7 The Central Vector Field Theorem

whereP is the quotient map corresponding to the antipdahction.
Fix an(n — 1)-tuple X which spans the stable subspdce The complement of
the subspac&® = P(X) in R has two connected components:

E~={z cR"| <x,XL> <0} andE™ = {z € R"| <m,XL> >0}, (7.3)

LetW*™ =EtnWandW-=E NnW.

Since the mapH takes a stable (unstable) manifold to itself we have either
HW*)c EtorHW*) C E~.

We can also apply the above construction for a singular point of indekhe
subspacé’® is then replaced bg* and an(n — 1)-tuple X spans nowE" instead.
The rest of the construction remains unchanged.

Definition 7.4.3. Let M™ be a closed smooth manifold,e ¢" (M), » > 1, and
H : M — M be a selfconjugacy &. Letp be a singular point of of indexn — 1
(or 1). Suppose a tripl¢y, W, X) is as follows

1. ¢ is a coordinate chart ap
YV ->R"=E°® E", (p) =0
with (W, (€, V) C E® andy (W (€,V)) C B
2. W is a convex neighborhood 6fin R™ such thatd o (W) C V,
3. X isan(n — 1)-tuple which span#’® (E“).

LetH = o Hoo Y. If H(ET NW) c E*, whereE™ as in (7.3) thenH
will be called proper ap.

The next proposition shows that#f is proper ap for a triple (v, W, X)) then itis
proper ap for any other triple satisfying conditions 1., 2. and 3. of Definition 7.4.3.

Proposition 7.4.4. Let M be a closed smooth manifolgl,e ¢" (M), r > 1, and

H : M — M be a selfconjugacy @f. Letp be a singular point of of indexn — 1

or 1. If H is proper atp with respect to a triplé);, W1, X1) then it is proper with
respect to any other tripléys, W5, X5) which satisfies conditions 1., 2. and 3. of
Definition 7.4.3.
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7.4 A Proof for the Injectivity of 1

Proof. We prove the proposition by contradiction. Let ;' (W;) Ny L (Wa)
andz; = v;(x), i = 1, 2. Without loss of generality we may assume that E .
Suppose thaﬁg(xg) € E,. The composition); o z/;gl is @ homeomorphism,
which takesr; to 1 and takesH, (z2) to H(z1). Butz; and Hy (1) lie in the
same component &” — P(X), which is a contradiction

Definition 7.4.5. Let M™ be a closed smooth manifold agde ¢"(M), r > 1.
We say a selfconjugady : M — M of ¢ is proper if and only if it is proper at
each singular point of with index1 andn — 1.

Proposition 7.4.6. Let M be a closed smooth manifold agid= ¢" (M), r > 1.
Suppose, b are singular points of indice@ andn respectively. If a selfconjugacy
H : M — M of ¢ is proper, thenH maps every connected componéit of
W (a, b;§) into itself.

We define a collectiof N; } ¢y, ) consisting of

1. singular points of,

2. stable manifold$V; (&) of co-dimension more than 1,

3. unstable manifold&/;'(£) of co-dimension more than 1 and

4. connecting manifold8/ (p, ¢; &) of co-dimension more than 1.
LetN =, NV..
Lemma 7.4.7. For any pair of pointse, y € W(a, b; €) there is a path

B:I— (M~—N)

such that3(0) = z, 5(1) = y.

Proof. By Thom'’s Transversality Theorem, cf. Theorem 3.2.1 Hirsch and Smale
[1974], the set of maps € C" (I, M) that are transversal ti; is dense. Therefore
the set of maps " (I, M) that are transversal to aV; is dense. Note that if
S CT<I, M) andy M N; then’)/(f) N N; = 0.
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7 The Central Vector Field Theorem

Since the points, y are inW (a, b; £), there are open neighborhodds of « and
U, of y such that for any: € U, U Uy, z € W(a,b;¢). Furthermore, there is
v € C"(I,M — N) such thaty(0) € U, /(1) € U,. Connect: with v/(0) by a
paths3" in U,, and+(1) with y by a paths” in U,. Concatenation of’, 4" and 3"
gives the desired path. [

Proof (of Proposition 7.4.6)For M of dimension 2 the proposition is trivially true.
We assume in the following thaim () > 3.

We shall show that for any € U, thereisapatls : I — U, suchthat3(0) = =
and3(1) = H(x). Using Lemma 7.4 pick a path : I — M connectingr with
H(x) such thaim(y) C (M — N). Supposey leavesl,. Definer by

7 = inf{t € I|y(t) € W;(§),index(p) = n—1ory(t) € W;(§),index(q) = 1}.

Without loss of generality we suppose that) € W, (§). Pick a triple(y, W, X)
which satisfies conditions 1., 2., and 3. of Definition 7.4.3. We may suppose
that v(7) belongs to an open neighborhoad ! (W) of p (if not concatenatey

with a flow line as in Claim (B) in the proof of Proposition 7.2.7). We shall show
below that for a sufficiently small real numbé&r> 0 there exists a pathy’ : I —

W (a, b; &) with +/(0) = v(7 — §) andy/(1) = H oy(7 — §). Then the desired path

/3 joining x with H (x) is a concatenation of|y s, 7' andH o 7| ,_s), that is

v(t) for tel0,7—4],
B(t) = {y’(t+2(76)(t1)) for te[r—0,1—71+4],
Ho~(1-1t) for te[l—7+0,1]

We constructy’. Observe that(7) € WY (&) therefore there is an open neigh-
borhood\ of ~(7) such thatr € W*(¢) wheneverz € N. Pick ¢ such that
v(T—48) € N. SinceH is propery(r—4) andH oy(7—¢) are both inE+ (or E7).

The complement of?“ in E* has only one connected component, therefore there
isapathy : I — (ET — E*) with+/(0) = (7 —§) andy/'(1) = Ho~(r —§). 0O

Proposition 7.4.6 says tha’E the study of a selfconjugacy can be reduadacal
analysis of the induced maps for each singular point of of index1 orn — 1.

We shall study a selfconjugacy originated from the following situation AL bt
a gradient-like section cone. We regard a path/ — C with ¢(0) = o(1) = ¢
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7.4 A Proof for the Injectivity of 1

and we suppose that there isa n@ap/ x M — M with G; a conjugacy between
o(0) ando (t). In particularH = G(1) is a selfconjugacy fof. The singular points
of IC are isolated and is continuous thereforf (p;) = p; for eachi € {1, ..., k}.

Definition 7.4.8. Let M be a closed smooth manifol#; be aC" section cone,
r > 1,onM. Leto : I — K be a path in a section confe. We say that a map
G : I x M — M is an arc of conjugacies faor if G, is a conjugancy betweer0)
ando(t) forall ¢t € I.

Proposition 7.4.9. Let K be a Lyapunov-Smal@” section coney > 1, and¢ €
K. Suppose : (I,0I) — (K,&)isaloopink andG : I x M — M is an arc of
conjugancies for. ThenG(1) is a proper selfconjugacy.

Lemma 7.4.10. SupposeC is a LyapunovC” section coney > 1, andp is a
singular point ofC. Leté,n € K and (1, V) be a local coordinate chart with
p € Vandy(p) = 0. LetL¢, L, € X"(y(V)) be linear approximations of
dip€ o p~1 anddym o ¢~ 1, respectively. TheW/§(Le) N W (L,) = {0}.

Proof. SinceK is a Lyapunov section cone there exists a function M — R
which is a Lyapunov function for both andn. Moreover, by Lemma 7.2.2 for
sufficiently small open neighborhodd of 0 the functionf = f o ¢!y is a
Lyapunov function forL¢ andL,,. Then by Proposition 6.1.12

W()S(L§7 U) N WéL(Ln’ U) = {O}u
but W (L¢) andW'(L,,) are both linear subspaces®?t, thus also
Wo (Le) N Wo'(Ly) = {0}
(]

Proof (of Proposition 7.4.9)We shall show thatz(1) is proper at each singular
point of indexl andn — 1. We present the proof for a singular point of index 1.
The proof for a singular point of index 1 is analogous.

Let p be a singular point of the vector fietd0) = o(1) with indexn — 1. Pick
a triple (¢, W, X)) satisfying conditions 1., 2. and 3. of Definition 7.4.3. lkebe
the local representation of, that isg(t) = dio(t) o»~! for t € I. Define a path
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7 The Central Vector Field Theorem

¢: I — X"(R™) consisting of linear vector fields defined y: = +— da(t)gz. We
observe thatV§(c(0)) = W§(s(1)).

Let f : M — R be the Morse function fokC from Definition 6.1.9. Without loss
of generality we assume thatis the only critical point off in ¢»~*(W). Pick a
regular value: of f with ¢ < f(p) sufficiently closed tof (p) so that

e nWi(o(t)) c v~ (W) forall t eI (7.4)

By Proposition 5.4.8 and compactnesd &uch ac exists.

Let f be the local representation ¢f f = f o ¢»—. For sufficiently smallV f
is a Lyapunov function for eac(t), t € 1. Recall Definition 6.3.1 and consider
Wi(s), thenS{(s) = Wi(s) h I x f~(c) is nonempty by (7.4). We apply
Proposition 6.3.8 to conclude th&§ (¢) andI x Si'(s(0)) are diffeomorphic. Note
that S¥(s(0)) = S° = {—, +}. We define the following composition

911 x {4} = SYO)T W)= e {t} x (W(s()) + Wi((0))

B xR L T X (RYWS((0) 2 T xR,

wherej;, j» andjs are the inclusions an@ : R™ — R"™/W*(¢(0)) is the quotient
map.

Suppose tha&/(1) is not a proper ap. Theng(1,—) andg(0,—) are in two
different connected components of the complementsfs(0)) in R™. It follows
thatg(0, —)g(1,—) < 0. Sinceg is continuous there is € I such thay(7) = 0.
But this implies thatSg (¢(7)) € W#(s(0)). The section conéC is Lyapunov
therefore by Lemma 7.4.10, for any I, W' (s(t)) N W;;(s(0)) = {0}. Thisis a
contradiction. [

We are ready to prove injectivity of the m&p
Proposition 7.4.11. Let M be a closed smooth manifold aidbe a Lyapunov-
SmaleC" section cone o/, r > 5. Leta, b be singular points ofC with indices

0 andn, respectively. Supposee K. If y1,72 € P(a,b;§) and~y; ~x v then
Y1 ~e V2.
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7.4 A Proof for the Injectivity of 1

Proof. Suppose there is a mape C°(1, K) such that(0) = o(1) = £ and a path
B : I — M with 3(t) € W(a,b;o(t)) fort € I. We will show that there is a path
g : I — M with 5/(0) = 5(0) and’(1) = 8(1) such that¥' (t) € W(a,b; ).

By Proposition 7.4.1 there i8' € C"(I,K) such thatz’'(0) = ¢/(1) = £ and
B(t) € W(a,b;o'(t)) fort € I.

Let cc be a constant path:(t) = . We define aC” mapg : I x I — K
by g(s,t) = (1 — s)o’(t) + sce(t). We use the same argument as in the proof
of Proposition 7.3.7. The ma# gives rise to a mag: : I — R"(M), where
R"(M) is the set of arcs of Morse-Smale diffeomorphisms\iénPickr > 0 then

G(s)(t) = G7(s)(t) = (t,qﬁi’(s’t)). We shall use the notatiofi,(t) = G(s)(t).

Note thatG(t) = <t, ¢Z,(t)) andG(t) = (¢, ¢§).

By Corollary 7.3.6 there exist a homeomorphigm I — [ and a mapH :

I x M — M, whereH, is a conjugacy betweefi,(t) andG1(h(t)) fort € 1.
We observe thatly and H; are both selfconjugacy @. Sincek is a Lyapunov-
Smale section cone the selfconjugadiésand H; are proper.

The homeomorphism takes0 to 0 or 0 to 1. Without loss of generality we
assume thak(0) = 1. We define a path : I — M by ~(t) = H; ' o Hy_y o
Boh~1(1—t). SinceH,(-) = H(t,-) is a conjugacy betweefiy(t) andGy (h(t))
(orbits go to orbits) we have th@f, o 3 o h=1(7) € W(a,b;&) for eachr € I.
Therebyy(t) € W(a,b;§). We see that/(0) = 5(0). Moreover, the points/(1)
andg(1) are in the same connected componeritt(a, b; £). This can be deduced
form the fact thaiHl‘1 o Hy is a proper conjugacy and the use of Proposition 7.4.6.
It follows that there is a path’ : I — M connectingy(1) with 5(1) such that
v'(t) € W{(a,b;¢) forall t € I. The desired path¥’ is then the concatenation of
and~’: X

fon ~(2t) for tel0,5],
gl = {7’(2t C1) for te [l 1.
U

Propositions 7.3.7 and 7.4.11 prove Theorem 7.1.2. A consequenceeof Th
rem 7.1.2 is the following corollary.

Corollary 7.4.12. Let M be a closed smooth manifold aiche a Lyapunov-Smale
C" section cone o/, r > 5. Leta, b be singular points ofC with indices0
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7 The Central Vector Field Theorem

andn, respectively. I, € K then there is a bijectio® : P(a,b;§)/~, —
P(a’7 b? n)/"ﬂ]'

Letp,q € Cr(K). Recall thaipp ¢ ¢ means that there is an orbit hot equal
to p nor ¢ whosea-limit set isp and whosev limit set isq.

Corollary 7.4.13. Let M be a closed smooth manifold afiche a Lyapunov-Smale
C" section cone o/, r > 5. Leta, b be singular points o with indices0 and
n, respectively. 1€, € K then

a=c¢bsa=yb.

7.5 The Central Vector Field Theorem for Di-paths

This section differs from the rest of the thesis in the sense that we skabmra
conjecture here whose proof is left for further work.

To complete the program started by this thesis we need to establish results on
detecting the connected componentsi®Bfa, b;£) for an essential gradient-like
vector field(. Due to Proposition 5.6.5 (up to homeomorphism) it is enough to
consider a gradient vector field. The second task is to extend the Ceattalr
Theorem to deal with genuine di-paths.

Conjecture 7.5.1. Let M be a closed smooth manifold ard be a Lyapunov-
SmaleC" section cone od/, r > 1. Leta, b be singqlar points of with indices
0 andn, respectively. I£ € K then there is a bijectioHl : 7 (a, b; ) — m(a,b; K).

The proof of the conjecture follows from the Central Vector Field Thieoifeve
could demonstrate that any shattered di-path (Definition 6.2.3) is di-homotppic b
K to an unbroken flow line for some € K. Conjecture 7.5.2 below says that any
shattered di-path from the singular pointo b is di-homotopic byKC to a simple
one. Thus to prove Conjecture 7.5.1 it remains to show that any brokenirflew
of a gradient-like vector field) is homotopic byn to an unbroken flow line, see
Conjecture 7.5.3.

112



7.5 The Central Vector Field Theorem for Di-paths

Conjecture 7.5.2. Let M be a closed smooth manifold ard be a Lyapunov-
SmaleC™ section cone o/, r > 1. Leta, b be singular points ok with indices
0 andn, respectively. Every shattered di-path franto b is di-homotopic bykC to
a simple di-path.

Conjecture 7.5.3. Let M be a closed smooth manifold and= ¢"(M). Suppose
a, b are singular points of with a > b. If v be a broken flow line ofy born ina and

which dies inb then there is a flow line (unbroken) € P(a, b; ) di-homotopic to
7 by, cf. Equation 6.2.
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