
 

  

 

Aalborg Universitet

Flow Lines Under Perturbation within Section Cones

Wisniewski, Rafal

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Wisniewski, R. (2005). Flow Lines Under Perturbation within Section Cones. Department of Mathematical
Sciences, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://vbn.aau.dk/en/publications/40a6fd30-0d97-11db-9d20-000ea68e967b


Ph.D. Thesis

Flow Lines under Perturbations
within Section Cones

Rafał Wísniewski
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Summary

In this Ph.D. thesis we want to examine a closed smooth manifoldM together
with a certain partial order: In the setXr(M) of Cr vector fields onM , r ≥ 1, we
define a section cone - a convex subset ofK characterized by the property that ifp
is a singular point for some vector field inK then this is the case for all members
of K. We say that a pointq is greater than or equal to a pointp if there exists a
flow line from p to q corresponding to some vector field inK. The partial order
that – under a certain condition – arises from the transitive closure of thatrelation
– gives rise to (the concept of) adi-path(directed path). That is a continuous map
from the closed unit interval with the natural partial order inherited from the order
of the real numbers to the manifold with the partial order defined as above, which
furthermore preserves the partial orders. We examine di-paths betweentwo critical
points of minimal and of maximal index up to a particular homotopy relation.

We restrict the space ofCr vector fields to the set of Morse-Smale vector fields
without closed orbits denoted byEr(M) ⊂ Xr(M). We define agradient-like
section coneas a convex subset ofEr(M) consisting of fields whose singular points
all coincide. Since Morse-Smale vector fields are structurally stable, thereexists a
reproducing coneK of vector fields inEr(M) containingξ ∈ K.

Another interesting class of section cones are theLyapunov section cones. They
are defined by the property that there is a single real function that is a Lyapunov
function for all vector fields inK. We show that such a cone induces a partial order
relation onM . For two dimensional manifolds, the Lyapunov section cones are
gradient-like. In the general case we refine Lyapunov section cones toLyapunov-
Smale section cones which are both Morse-Smale and Lyapunov. We show that
such a section cone always exists.

The main result of this work relates the partial order induced by a Lyapunov-
Smale section coneK with the partial order induced by just one of the vector fields
in K. Two flow-linesγ0, γ1 of a vector fieldξ ∈ K joining two singular pointsp
andq of minimal and maximal index, respectively, are said to be homotopic byξ
if there is a homotopyH such thatHt is a flow line ofξ andH0 = γ0, H1 = γ1.
Two di-pathsα0, α1 are di-homotopic if there exists a homotopyF so thatFt is
a di-path, andF0 = α0, F1 = α1. We show that the classes of flow lines joining
p andq up to homotopy byξ are in one-to-one correspondence with the classes of
flow lines connectingp andq up to homotopy byK.
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Resuḿe
Titel: Variationer af vektorfelter og deres flowlinier indenfor snitkegler

I denne Ph.D. afhandling undersøger vi en kompakt, glat mangfoldighedM uden
rand som udstyres med en partiel orden på følgende m̊ade: Vi definerer en snitkegle
som en konveks delmængdeK i mængdenXr(M) af Cr vektorfelter. Mængden
K karakteriseres yderligere ved betingelsen, at hvisp er et kritisk punkt for et
vektorfelt iK, s̊a er det ogs̊a et kritisk punkt for alle andre vektorfelter iK. Vi siger
så, at et punktp er større eller lig et punktq hvis der eksisterer en flowlinie af et
vektorfelt tilhørendeK, som løber frap til q. Den partielle orden som fremkommer
- under visse betingelser - ved den transitive afslutning af denne relationbruges til
definitionen af en di-sti (sti med retning/direction).

Vi undersøger Morse-Smale vektorfelter uden lukkede baner og betegner mæng-
den af dem medEr(M) ⊂ Xr(M). En gradientlignende snitkegle er defineret som
en snitkegle iEr(M). En snitkegleK kaldes reproducerende hvis dimensionen af
K i ethvert punkt afM på nær de kritiske punkter svarer til dimensionen af mang-
foldighedenM . Morse-Smale vektorfelter er strukturelt stabile. Derfor eksisterer
for ethvert vektorfeltξ ∈ Er(M) en reproducerende snitkegleK således atξ ∈ K.

En anden familie af snitkegler omtalt i afhandlingen består af Lyapunov snitkeg-
ler. En Lyapunov snitkegle har den egenskab, at der eksistererén reel funktion som
er en Lyapunov funktion for alle vektorfelter i keglen. Vi viser, at en Lyapunov
snitkegle inducerer en partiel ordens relation påM . HvisM har dimension to er
enhver Lyapunov snitkegle gradientlignende. I det generelle tilfælde forfiner vi
Lyapunov snitkegler til Lyapunov-Smale snitkegler, som er både Morse-Smale og
Lyapunov. Vi viser eksistensen af sådanne Lyapunov-Smale snitkegler.

Afhandlingens hovedresultat sætter den partielle ordenen frembragt afen Lyapu-
nov -Smale snitkegleK i forbindelse med den partielle orden frembragt af kun et af
vektorfelterne tilhørendeK. To flowlinierγ0 ogγ1 af et vektorfeltξ ∈ K, der løber
fra et kritisk punktp til et kritisk punktq med henholdsvis minimal og maksimal
indeks kaldesξ-homotope hvis der eksisterer en homotopiH, s̊aledes atHt er en
flowline afξ,H0 = γ0 ogH1 = γ1. To di-stierα0, α1 er di-homotope, hvis der ek-
sisterer en homotopiF sledes atFt er en di-sti fort ∈ [0, 1] ogF0 = α0, F1 = α1.
Vi viser at klassen af flowlinier som fødes ip og som dør iq op til ξ-homotopi
korresponderer en-til-en til klassen af flowlinier frap til q op til K-homotopi.
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1 Introduction

This thesis comprises a part of a program initiated at the Department of Mathemat-
ical Sciences, Aalborg University, which aims at developing mathematical founda-
tions of concurrency theory using ideas from geometry and topology.

Concurrency deals with scheduling computer resources in a situation where sev-
eral tasks must be performed at the same time. This can be a true parallelism like
in the case of several processors running concurrently, or also the particular case of
a mono-processor machine where a unique processor is sharing its calculation time
between several different tasks.

1.1 Partial Order and Concurrency

The execution of a computer program can be treated as a flow line of a certain
vector field. The flow line is born at a pointa, which is the start of a program,
and dies at a pointb, the end of the program. Due to different scheduling scenarios
the execution of the same program may result in flow lines of vector fields close to
each other. Small variations of a concurrent program do not change qualitatively its
performance. To test a program it means to execute it and check if - for instance -
it leads to a deadlock; that is a situation when two or more tasks access a computer
resource at the same time and prevent each other from proceeding. Computational
burden of such a validation might be huge. Therefore there is a wish to testonly
representative cases.

It is demonstrated in Fajstrup et al. [2005] that the execution of a programcan
be treated as a continuously increasing path in a po-space(X,≤), i.e a topological
spaceX with a partial order relation≤, which is a closed subset ofX ×X in the
product topology; at least locally.

Definition 1.1.1 (Definition 3.7, Fajstrup et al. [2005]).Let(X,≤) and(Y,-) be
po-spaces. A continuous mapf : X → Y is called a di-map (directed map) if and
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1 Introduction

only if it preserves partial orders, that is,

x1 ≤ x2 ⇒ f(x1) - f(x2), for all x1, x2 ∈ X.

A model for a concurrent program is a di-mapα : I → X from the unit interval
I with its natural order to a po-space(X,≤).

Definition 1.1.2 (Definition 4.2, Fajstrup et al. [2005]).Let(X,≤) be a po-space
and leta, b ∈ X. A di-path inX froma to b is a di-mapα in X withα(0) = a and

α(1) = b. The set of all di-paths froma to b will be denoted by
−→
P 1(X; a, b).

The equivalence of execution paths can be modelled geometrically by a homo-
topy relation on di-paths.

Definition 1.1.3 (Definition 4.2, Fajstrup et al. [2005]).Let(X,≤) be a po-space
and leta, b ∈ X.

1. A di-homotopy froma to b is a continuous mapH : I × I → X such that
every mapHs : I → X, Hs(t) = H(s, t), s ∈ I, is a di-path froma to b.

2. Two di-pathsα, β in X froma to b are di-homotopic froma to b if and only
if there is a di-homotopyH : I × I → X from a to b with H0 = α and
H1 = β.

Di-homotopy froma to b is an equivalence relation. The equivalence classes
- di-homotopy classes - constitute the di-homotopy set−→π 1(X; a, b). Now, we are
able to state the aim of this research program as - classification of di-homotopy sets.

We attack the problem from the point of view of differential topology. In our
case the topological space is a closed smooth manifoldMn (n is the dimension of
the manifoldM ) with flow lines arising from a variety of vector fields onM . Let
Xr(M) denote the set of allCr vector fields onM , andSr(M) be the subset of
Morse-Smale vector fields. For a vector fieldξ ∈ Xr(M), let Cr(ξ) denote the set
of singular (“critical”) points.

Definition 1.1.4 (Definition 6.1.1 in this report). ACr section coneK on a smooth
manifoldM is a subset ofXr(M) that satisfies the following two conditions:
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1.1 Partial Order and Concurrency

1. For every pairξ, η ∈ K, if p ∈ Cr(ξ) thenp ∈ Cr(η). (All vector fields in
the section coneK have the same singularities).

2. If ξ andη are inK andα, β > 0 thenαξ + βη ∈ K.

We define a counterpart of a di-path in the new geometric setup as concatenation
of flow lines.

Definition 1.1.5 (Definition 6.2.3 in this report). SupposeK is aCr section cone
on a closed smooth manifold. We call a piecewiseCr pathσ : I →M a di-path if
there exists a finite family of real numbers0 = t0 ≤ t1 ≤ ... ≤ tk = 1 and a family
of vector of fields{ξ1, ..., ξk} ⊂ K such thatσ|[ti,ti+1] is the flow line ofξi+1 from
σ(ti) to σ(ti+1) for i ∈ {0, ..., k − 1}. The set of all di-paths ofK from a singular
pointa to a singular pointb is denoted byP (a, b;K).

To characterize an equivalence of di-paths from Definition 1.1.5 we needa re-
formulation of di-homotopy.

Definition 1.1.6 (Definition 6.2.4 in this report). SupposeK is a section cone on
a closed smooth manifoldM anda, b are two singular points ofK.

1. A di-homotopy froma to b is a continuous mapH : I × I → M such that
every mapHs ∈ P (a, b;K), s ∈ I.

2. Two di-pathsγ, η ∈ P (a, b;K) are said to be di-homotopic if and only if
there exists a di-homotopyH : I × I →M withH0 = γ andH1 = η.

The set of equivalence classes of di-paths up to di-homotopy is denoted byπ(a, b;K).

To simplify the situation we suppose that there is only one singular point with
indexn, saya, and one singular point with index0, sayb. The aim of the thesis is
to characterize the setπ(a, b;K). We focus on a particularly nice section cone - a
Lyapunov-Smale section cone.

Definition 1.1.7 (Definition 6.1.11 in this report). A section coneK ⊂ Sr(M)
is Lyapunov-Smale if and only if there exists a Morse functionf : M → R and a
Riemannian metric onM such that for anyξ ∈ K we have

3



1 Introduction

1. ξ(f)(x) < 0 for all x ∈M − Cr(K),

2. there exist a constantκ > 0 and open neighborhoods{Uq}q∈Cr(K) of the
singular points such that

−ξ(f)(x) ≥ κd(x, p)2 for p ∈ Up, whered is the Riemannian distance.

For aCr vector fieldη, P (a, b; η) is the set of flow lines ofη from the singular
pointa to the singular pointb. The set of flow lines of the vector fields in a section
coneK, which are born ina and die inb are denoted byP (a, b;K). We denote the
flow line of the vector fieldξ by φξx(t), that is

d

dt
φξx(t) = ξ

(

φξx(t)
)

with φξx(0) = x.

Let W (a, b; ξ) = {x ∈ M | limt→−∞ φξx(t) = a and limt→+∞ φξx(t) = b}. We
define two notions of homotopy, by a vector field and by a section cone.

Definition 1.1.8 (Definition 7.1.1 in this report). LetM be a closed smooth man-
ifold. For r ≥ 1, let ξ ∈ Xr(M) andK be aCr section cone onM .

1. Supposeγ0, γ1 ∈ P (a, b; ξ). We say thatγ0 is homotopic toγ1 by ξ and
write γ0 ∼ξ γ1 if and only if there is a pathβ : I → M such thatβ(t) ∈
W (a, b; ξ), γ0(t) = φξβ(0)(t) andγ1(t) = φξβ(1)(t).

2. Supposeγ0, γ1 ∈ P (a, b;K) . We say thatγ0 is homotopic toγ1 by K
and writeγ0 ∼K γ1 if and only if there exist a pathσ : I → K and a
path β : I → M such thatβ(t) ∈ W (a, b;σ(t)), γ0(t) = φ

σ(0)
β(0)(t) and

γ1(t) = φ
σ(1)
β(1)(t).

The main result of the thesis is the following theorem.

Theorem 1.1.9 (Theorem 7.1.2 in this report).LetM be a closed smooth mani-
fold. SupposeK is a Lyapunov-SmaleCr section cone onM , r ≥ 5 , andξ ∈ K.
Leta, b be the only singular points with indices0 andn, respectively. Then there is
a bijectionΠ : P (a, b; ξ)/∼ξ

→ P (a, b;K)/∼K
.
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1.1 Partial Order and Concurrency

There are two steps remaining in the program of classification ofπ(p, q;K). The
first is to show that any di-path is homotopic byK to a flow line for someη ∈ K.
The second step is to establish results on detecting the connected componentsof
the moduli space of the flow lines joiningp andq corresponding to a particular
vector fieldξ. These subjects are not covered in this thesis and they are matters of
further work.

This thesis is organized as follows. Chapters 2, 3, 4 are mainly reviews of the
existing results. In Chapter 2 we introduce a notion of a cone in a vector space,
which we later on to generalize to a section cone in the space ofCr vector fields
on a closed manifold. Chapter 3 gives preliminaries of differential topology. The
focus is on tubular neighborhoods, transversality and framings. The aimof Chap-
ter 4 is to review Morse theory and to relate a framed connected manifold with the
homotopy class of a relative attaching map. Geometric theory of dynamic systems
is introduced in Chapter 5. It is mainly a review of the existing results with empha-
sis on perturbations of vector fields. We investigate Morse-Smale and gradient like
vector fields. We analyze the dependence of the invariant manifolds under pertur-
bations of vector fields. Chapters 6 and 7 comprise an original contributionof this
thesis. The notion of a section cone is formulated in Chapter 6. The emphasis ison
two classes of section cones: gradient-like and Lyapunov-Smale section cones. We
show that a Lyapunov-Smale section cone on a compact manifoldM induces a par-
tial order relation onM . The main theorem of this thesis is formulated and proved
in Chapter 7. It shows using the associated flow lines that the study of connected
components of the space of flow lines of the vector fields in a Lyapunov-Smale
section coneK can be reduced to the study of the connected components of flow
lines of an arbitraryξ ∈ K.
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2 Cones

We introduce the notion of a cone in a vector spaceV . A coneK is a convex subset
of V characterized by the property that ifx and−x are inK thenx = 0. A cone is
the primary object we shall generalize to a section cone - a subset of the space of
Cr vector fields on a manifoldM . The reason for our interest in cones is that they
define the set of admissible tangent vectors at each point of a di-path.

We use the following notation: IfK is a subset of a vector spaceV then

−K = {x ∈ V | − x ∈ K}.

ForC, K ⊂ V ,K−C is the subset{x ∈ V | x = k− c, k ∈ K, c ∈ C}. If U is a
subset ofV , we denote the interior ofU by int(U) and the closure ofU by cl(U).

2.1 Cones in Vector Spaces

We start with the definition of a cone in a vector spaceV .

Definition 2.1.1 (Barker [1981]). LetV be a real vector space. A coneK in V is
a subset ofV satisfying

1. If a, b ≥ 0 andx, y ∈ K, thenax+ by ∈ K;

2. K ∩ (−K) = {0}.

The family of all cones inV together with the empty set is denoted byD(V ).

It follows from the definition that a cone is a convex set containing0, that is

αx+ (1 − α)y ∈ K for all x, y ∈ K and0 ≤ α ≤ 1.

If x and−x are inK thenx = 0. For finite dimensional vector spaceV the
dimension of a coneK, dim(K) is by definition the dimension of the subspace
K −K.

7



2 Cones

Definition 2.1.2 (Barker [1981]). The coneK ∈ D(V ) is reproducing if and only
if K −K = V . We callK full if and only if int(K) 6= ∅.

In the case of finite dimensionalV a cone is reproducing if and only if it is full, cf.
Barker [1981].

Example 2.1.3. If {vi}i=1,...,n is a basis andn is the dimension ofV , then

span+{v1, ..., vn} ≡ {w ∈ V | w = a1v1 + ...+ anvn, ai ≥ 0}

is a reproducing cone. In particular the quadrantR
n
+ = {x ∈ R

n : xi ≥ 0} is a
reproducing cone.

Example 2.1.4.Suppose a vector spaceV is endowed with a symmetric non-
degenerate indefinite bilinear functiong : V × V → R with index 1. The vector
spaceV can be decomposed into the direct sumV = V + ⊕ V −, whereV + is
the subspace of maximal dimension such thatg is positive definite inV +, andV −

is the orthogonal complement with respect to the scalar product defined byg. In
fact g restricted toV − is negative definite, anddimV − = 1. We choose a vector
ξ ∈ V − and construct the Lorenz cone

L ≡ L(ξ) = {λ(ξ + v)| λ ≥ 0, v ∈ V + and− g(ξ, ξ) ≥ g(v, v)}.

We use the observation thatg(λ(ξ + v), λ(ξ + v)) = λ2(g(ξ, ξ) + g(v, v)) to
conclude that ifξ ∈ V − thenL is a (reproducing) cone. Analogously we may use
the inner producth onV to define a coneK(η) for η ∈ V

K(η) = {λ(η + v)| λ ≥ 0, h(v, η) = 0 andh(η, η) ≥ h(v, v)}.

In particular we may chooseh such thatL(ξ) = K(ξ).

Proposition 2.1.5. SupposeA is a subset of a real vector spaceV . If (i) A is
convex and (ii)v ∈ A implies−v /∈ A. Then

cA = {aw ∈ V | a ∈ R+, w ∈ A}

is a cone.

8



2.1 Cones in Vector Spaces

Proof. Suppose the conditions (i) and (ii) are satisfied. Leta ≥ 0, b ≥ 0 and
x, y ∈ cA. We show thatax + by ∈ cA. If a or b is zero the conclusion follows.
We assume thata > 0, b > 0 then

ax+ by = (a+ b)(αx+ (1 − α)y), whereα =
a

a+ b
∈ (0, 1].

thusax+ by ∈ cA sinceA is convex.
We show that ifx ∈ A andc ≤ 0 thencx /∈ A, which implies thatcA is a cone.

Due to (ii) 0 /∈ A. It is enough to assumec < 0. Let x ∈ A and assume that
cx ∈ A. Then

αx+ (1 − α)cx ∈ A, for α ∈ [0, 1].

Since −c
1−c ∈ (0, 1) there existsε > 0 such that both

α1 =
−c+ ε

1 − c
, α2 =

−c− ε

1 − c

are in the interval(0, 1). We see that

α1x+ (1 − α1)cx = εx andα2x+ (1 − α2)cx = −εx

are inA, which is a contradiction.�

Definition 2.1.6 (Barker [1981]). LetK be a closed cone in a finite dimensional
real vector spaceV (closed as a subset inV ). A subsetF ⊂ K is a face ofK if
and only if

1. F ∈ D(V ),

2. x ∈ F, y ∈ K, x− y ∈ K implyy ∈ F .

The collection of all faces ofK is denotedF(K). The trivial faces are{0}
andK. SinceF ∈ F(K) is a cone inV it has a dimensiondim(F ), defined as
dim(F ) = dim(F − F ). Each non-trivial face is a non-reproducing cone since
dim(F ) < dim(K) = dim(V ).

If dim(F ) = 1, F is called an extreme ray ofK. One can show thatK is the
convex hull of its extreme rays, cf. Barker [1972].

9



2 Cones

Definition 2.1.7 (Barker [1981]). A polyhedral cone is a cone which has a finite
set of extreme rays.

LetK be a cone inV . If x ∈ K, we writex ≥ 0. Thenx ≥ y meansx− y ≥ 0,
andK defines a partial order onV . Let V ∗ andHom(V ) ≡ Hom(V, V ) be the
dual space ofV and the space of linear mapsV → V , respectively. Set

K∗ = {f ∈ V ∗| f(x) ≥ 0 ∀x ∈ K}
Π(K) = {f ∈ Hom(V )| f(K) ⊂ K}.

ThenK∗ andΠ(K) are cones inV ∗ andHom(V ), respectively. If K is a closed
full cone so areK∗ andΠ(K).

Proposition 2.1.8. If A : V → W is a linear map of vector spaces,K ∈ D(V ),
andK ∩ ker(A) = {0}, thenAK ∈ D(W ).
If V is finite dimensional and(K−K)∩ker(A) = {0}, thendim(K) = dim(AK).

Proof. The property 1 of Definition 2.1.1 forAK follows immediately from the
assumption thatA is linear. To prove property 2, assumey,−y ∈ AK. Then there
existx1, x2 ∈ K such thatAx1 = y andAx2 = −y. Hence,A(x1 + x2) = 0, and
we see thatx1 + x2 ∈ ker(A) ∩K = {0}. Thus,x1 = −x2 and sox1 = x2 = 0
by property 2 applied toK. Therefore,y = 0.

If V is finite dimensional, thendim(ker(B))+dim(AK−AK) = dim(K−K)
whereB : K − K → AK − AK denotes the restriction ofA to K − K. Since
(K −K) ∩ ker(A) = ker(B) = {0} we havedim(K) = dim(AK). �

Immediately we have the following corollary.

Corollary 2.1.9. If A : V → W is an injective linear map of vector spaces and
K ∈ D(V ) thenAK ∈ D(W ).

Proposition 2.1.8 does not give sufficient conditions forAK to be a cone. Con-
sider a simple example;A : R × R → R is the projection on the first factor,
andK is the polyhedral coneR2

+. It is seen thatK ∩ ker(A) = {0} × R+ and
AK = R+ ∈ D(R).

Theorem 2.1.10.LetA : V → W be a linear map of finite dimensional vector
spaces andK ∈ D(V ). AK ∈ D(W ) if and only ifK ∩ ker(A) ∈ F(K).

10



2.1 Cones in Vector Spaces

Proof. Assume thatK ∩ ker(A) = F ∈ F(K). Property 1 of Definition 2.1.1 for
AK follows immediately from the assumption thatA is linear. To prove property
2, assumey,−y ∈ AK. Then there existx1, x2 ∈ K such thatAx1 = y and
Ax2 = −y. Hence,A(x1 + x2) = 0, and we see thatx1 + x2 ∈ ker(A)∩K = F .
Since(x1 + x2) − x1 = x2 ∈ K we havex1 ∈ F ⊂ ker(A). Therefore,y = 0.

Now assume thatAK ∈ D(W ). Sinceker(A) is a subspace ofV it is closed
under vector addition and scalar multiplication, and hence,K ∩ ker(A) ∈ D(V ).
Let x ∈ K ∩ ker(A), y ∈ K, and assume thatx − y ∈ K. ThenAy ∈ AK and
A(x− y) = −Ay ∈ AK. Thus,Ay = 0 andy ∈ K ∩ ker(A). �

11



2 Cones
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3 Elements of Differential Topology

The aim of this chapter is to review elements of differential topology. It consists
of standard results on existence of a tubular neighborhood, transversality, framed
cobordism and stable framings. These comprise a foundation for the workon per-
turbations of flow lines in this thesis. Our focus in this chapter is not distributed
evenly. Subjects more fundamental - not necessarily more complex - for thisthesis
are covered more thoroughly.

By ann-dimensional manifoldMn we understand a topological space that is lo-
cally homeomorphic toRn, Hausdorff and second countable withCr differentiable
structure. Particularly, a manifold in this thesis is a paracompact space. A vector
bundle over a manifoldX with total spaceE and projectionp : E → X is denoted
by µ = (p,E,X). A mapf : X0 → X induces a pullbackf∗µ = (p0, E0, X0),
where

E0 = {(x, y) ∈ X0 × E| f(x) = p(y)} andp0(x, y) = x.

The tangent space to aCr manifoldM is indicated by(π, T (M),M) or shortly
T (M).

We study ann-dimensional submanifoldM of aCr, (n + k)-dimensional man-
ifold N with a Riemannian structureg. The geometric normal bundle of a sub-
manifold i : M ↪→ N is identified with the subbundle ofTM (N) ≡ i∗T (N)
consisting of the tangent vectors inTp(N), p ∈ M , which are perpendicular, with
respect to the Riemannian metric onN , to Tp(M). Alternatively, we might define
the algebraic normal bundle ofM in N as the quotient bundleTM (N)/T (M). In
this section we shall not distinguish between them, and denote both of them by
ν(M,N).

13



3 Elements of Differential Topology

3.1 Tubular Neighborhoods

Denote byν0 the zero section ofν(M,N). We refer in the sequel to the following
theorem.

Theorem 3.1.1 (Theorem III.2.2 in Kosinski [1993]).Suppose thatM,N areCr

(r ≥ 3) manifolds andM is a closed subset ofN , ∂N = ∅. Then there is a neigh-
borhood ofν0 on which the exponential map is aCr−2-embedding.

A Riemannian metrich on aCr vector bundleµ = (π,E,B) provides a way of
shrinking it. Letε be aCr positive function onB. Consider a mapF : E → E
given by

F (v) = ε(π(v))
v

(1 + h(v, v))1/2
.

ThenF maps the fiber overp onto the open disk inEp centered at0 and diameter
ε(p). ThusF (E) is an open disk bundle. The mapF is aCr diffeomorphism, hence
the vector bundle structure onE induces aCr disk bundle structure onF (E). This
operation will be calledε-shrinking ofE.

Let X be aCr manifold andf : X → N be aCr embedding, then the normal
bundle tof is defined byνf = f∗ν(f(X), N). Suppose also thatf embedsX as a
closed subset ofN . Then by Theorem 3.1.1 there is a neighborhoodU of the zero
section inE, whereE is the total space of the vector bundleνf , and an embedding
h : U → N . We applyε-shrinkingF : E → E such thatF (E) ⊂ U . Hence
the compositionh ◦ F gives an embedding ofE in N . We summarize this into a
corollary.

Corollary 3.1.2 (Corollary III.2.3 in Kosinski [1993]). Let f : X → N be aCr

embedding,r ≥ 3, and supposef(X) is a closed subset ofN . Denote the total
space ofνf byE. Thenf extends to aCr−2 embeddingf̄ : E → N . If ∂X = ∅,
thenf̄(E) is an open neighborhood off(X) in N .

We recall that a tubular neighborhood ofX inN is a neighborhoodU of f(X) in
N such that there exists a vector bundleµ = (π,E,X) and there is an embedding

14



3.1 Tubular Neighborhoods

e : E → U making the following diagram commute

E
e

##HHHHHHHHH

X

µ0

OO

f // U ⊂ N,

whereµ0 is the zero section ofµ. If the subsetU is open then we shall call it an
open tubular neighborhood. In particular, it follows from the corollary that if X is
a closed manifold thenX possesses an open tubular neighborhood inN with the
vector bundle structure that of the normal bundle.

The same holds for a certain class of manifolds with boundary. Recall that inthe
definition of ann-dimensional manifold with boundary we allow homeomorphisms
onto open subsets of eitherR

n or R
n
+ ≡ {(x1, ..., xn) ∈ R

n| xn ≥ 0}. In the next
definition we make use of the subset

R
m,n
+ ≡ {(x1, ..., xn) ∈ R

n
+| x1, ..., xn−m = 0}, with n > m.

Definition 3.1.3 (Definition II.2.2 in Kosinski [1993]). A submanifoldM ⊂ N
is neat if it is a closed subset ofN and satisfies

1. M ∩ ∂N = ∂M ;

2. At every pointp ∈ ∂M there is a coordinate chartψ : U → R
n
+, such that

ψ−1(R
m,n
+ ) = U ∩ ∂M .

The last condition in the definition says that∂M meets∂N like R
m,n
+ meetsR

n
+.

Definition 3.1.4 (Definition III.4.1 in Kosinski [1993]). LetU be a tubular neigh-
borhood of a neat submanifoldM of the manifoldN . We say thatU is neat if
U ∩ ∂N is a tubular neighborhood of∂M in ∂N .

Theorem 3.1.5 (Theorem III.4.2 in Kosinski [1993]). If M is a neat submani-
fold ofN , then it has a neat open tubular neighborhood.

To conclude the subject of tubular neighborhoods we shall state anothertheorem
which has a consequence for the existence of a framing defined in the next section.

15



3 Elements of Differential Topology

The boundary of a manifold cannot have a tubular neighborhood. However, it
almost has a tubular neighborhood in the following sense. A collar on a manifold
M with boundary is an embedding

h : ∂M × [0,∞) →M,

such thath(x, 0) = x.

Theorem 3.1.6 (Collaring Theorem, 4.6.1 in Hirsch [1976]).SupposeM is a man-
ifold with boundary. Then∂M has a collar.

3.2 Framings

We assume in this section thatM is a smooth closed manifold, a submanifold of
N (n+k). A trivialization of the normal bundleν(M,N), i.e. a bundle isomorphism

ν(M,N)

$$IIIIIIIII

φ // M × R
k,

zzuuuuuuuuu

M

is called a framing ofM in N . We shall focus on the question of when a framing
of ν(M,N) exists and how to construct it.

For an n-plane vector bundle we have the following theorem.

Theorem 3.2.1 (2.2 in Milnor and Stasheff [1974]).An n-dimensional vector bun-
dle ξ is trivial if and only if ξ admitsn sectionss1, ..., sn which are nowhere lin-
early dependent.

We use the theorem above to formulate an equivalent definition of a framing.

Definition 3.2.2. A framing of a submanifoldM ⊂ N is a smooth mapσ which
assigns to eachp ∈M a basis

σ(p) = (σ1(p), ..., σk(p))

for the normal spaceνp(M,N). The pair(M,σ) is called a framed submanifold
ofN .

16



3.2 Framings

We will use the following version of the Tubular Neighborhood Theorem.

Theorem 3.2.3 (Product Neighborhood Theorem in Milnor [1997]).Let(M,σ)
be a framed submanifold ofN . There is a neighborhoodU ofM in N diffeomor-
phic to the productM × R

k. Furthermore, the diffeomorphism can be chosen so
that eachx ∈ M corresponds to(x, 0) ∈ M × R

k and so that each normal frame
σ(x) corresponds to the standard basis forR

k.

The diffeomorphism in the Product Neighborhood Theorem is given by the com-

position M × R
k

id×φ // M × Uε
ψ // U , whereφ is a diffeomorphism taking

R
k onto a sufficiently smallε-neighborhoodUε of 0 in R

k, andψ is defined by

ψ(x, t1, ..., tk) = expx(t1σ
1(x) + ...+ tkσ

k(x)),

exp is the exponential map corresponding to the Riemannian metricg onN .
Not every compact manifold has a framing, therefore below we give examples of

framed manifolds.

Theorem 3.2.4 (Covering Homotopy Theorem 4.1.5 in Hirsch [1976]).Assume
ξ is a Cr (0 ≤ r ≤ ∞) vector bundle overB × I, with B a Cr manifold. Let
(ξ|B×0) = η = (p,E,B) andη × I = (p × idI , E × I,B × I)). Thenξ is Cr

isomorphic to the vector bundleη × I

A corollary of the covering homotopy theorem is that every vector bundle over a
contractible paracompact space is trivial, see Corollary 3.2.5 below.

Corollary 3.2.5. SupposeB is aCr manifold andξ is aCr vector bundle overM .
LetH : B × I →M be aCr homotopy,H0 = f andH1 = g. Then the pullbacks
f∗ξ andg∗ξ areCr isomorphic. In particular, ifg is constant thenf∗ξ is trivial.

Proof. H∗ξ is isomorphic toH∗ξ|B×0 × I. But H∗ξ|B×0 = H∗
0ξ = f∗ξ. By

replacingt by 1 − t in the homotopyHt, H∗ξ is isomorphic tog∗ξ × I. We
conclude thatf∗ξ andg∗ξ are also isomorphic.�

Another framing can arise when a 1-dimensional normal bundle is orientable.

17



3 Elements of Differential Topology

Theorem 3.2.6 (4.4.3 in Hirsch [1976]).An orientableCr 1-dimensional vector
bundle is trivial.

Proof. Let ξ = (p,E,B) be an orientable 1-dimensional vector bundle,e1 be the
standard orientation onR, andω be the orientation ofξ. Suppose that

Φ = {φα : ξ|Uα → Uα × R}α∈Λ

is an oriented atlas belonging toω that is

φα(x) : (Ex, ωx) → (R, e1)

is orientation preserving for allα ∈ Λ andx ∈ Uα. Let {λα}α∈Λ be partition of
unity subordinate to{Uα}α∈Λ. Thenψ : E → B × R, defined by

ψ(y) =
∑

α∈Λ

λα(x)φα(y)

gives the trivialization ofξ. �

We shall use Theorem 3.2.6 in connection with the remark that every vector bun-
dle over a simply connected space is orientable. More generally, a vector bun-
dle ξ over a CW-complexB is orientable if and only if the Stiefel-Whitney class
w1(ξ) ∈ H1(B; Z2) is zero.

3.3 Framed Cobordism and the Pontrjagin-Thom
Construction

We will now consider two closed framed submanifolds(M1, σ1) and(M2, σ2) of
a manifoldN.

Definition 3.3.1 (Ch.7 of Milnor [1997]). Two framed submanifolds(M1, σ1) and
(M2, σ2) ofN are framed cobordant if the subsets

M1 × [0, ε) ∪M2 × (1 − ε, 1]

ofN × [0, 1] can be extended to a compact manifoldX ⊂ N × [0, 1] so that

18



3.3 Framed Cobordism and the Pontrjagin-Thom Construction

1. ∂X = M1 × {0} ∪M2 × {1};

2. X does not intersectN × {0} ∪N × {1} except at points of∂X;

3. There exists a framingκ ofX in N × I, so that

κi(x, t) = (σi1(x), 0) for (x, t) ∈M1 × [0, ε)

κi(x, t) = (σi2(x), 0) for (x, t) ∈M2 × (1 − ε, 1].

The set of cobordism classes ofn dimensional framed submanifolds ofN is denoted
byΩfr

n,N .

The conditions 1. and 2. alone say that the manifoldsM1 andM2 are cobordant.
The relation of being (framed) cobordant will be called (framed) cobordism. Both
cobordism and framed cobordism are equivalence relations.

LetN be an+k-dimensional manifold. We consider a smooth mapf : N → Sk

with a regular valuey ∈ Sk, and a submanifoldf−1(y) of N . The differential

dfx : Tx(N) → Ty(S
k), wherex ∈ f−1(y)

has the subspaceTx(f−1(y)) of Tx(N) as its kernel. Therefore, the orthogo-
nal complementνx(f−1(y), N) of Tx(f−1(y)) maps isomorphically ontoTy(Sk).
Having chosen a positively oriented basisω = (ω1, ..., ωk) of Ty(Sk) we have a
unique basisσx = {σ1

x, ..., σ
k
x} on νx(f−1(y), N), such thatdfxσix = ωi. This

givesk smooth linearly independent sectionsσi : x → σix. We adopt here the
notationσ = f∗ω.

Definition 3.3.2 (Ch.7 of Milnor [1997]). The framed manifold(f−1(y), f∗(ω))
will be called the Pontrjagin manifold associated withf .

In the definition of the Pontrjagin manifold we have made a choice of the basis
ω, however if we choose some other positively oriented basisω′ the Pontrjagin
manifolds(f−1(y), f∗(ω)) and(f−1(y), f∗(ω′)) are framed cobordant. This fol-
lows from the observation that the space of matrices with positive determinantis
connected. A path joiningω with ω′ gives the desired framing off−1(y) × I.

We have the following fundamental result making a connection between homo-
topy and cobordism classes.
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3 Elements of Differential Topology

Theorem 3.3.3 (Theorem 7.B in Milnor [1997]). Two mappings fromN to Sk

are smoothly homotopic if and only if the associated Pontrjagin manifolds are
framed cobordant.

We shall now formulate the inverse to the construction of the Pontrjagin mani-
fold above. Given a closed framed submanifold(M,σ) of N we shall generate a
function f : N → Sk with a regular valuey, such that its associated Pontrjagin
manifold is(M,σ).

We use Product Neighborhood Theorem to find a diffeomorphism

ψ : M × R
k → U ⊂ N.

We denote the standard basis ofT0(R
k) ' R

k by ω = [e1, ..., ek] and define the
projectionπ : U → R

k given by

π ◦ ψ(x, y) = y.

The value0 is regular, andπ−1(0) = M , alsoσ = π∗ω. We choose a smooth map
φ : R

k → Sk satisfying

1. φ maps the open ballDk = {x ∈ R
k| ||x|| < 1} diffeomorphically onto

Sk − {s0},

2. φ maps everyx ∈ R
k −Dk onto a base points0,

3. dφ0 is orientation preserving.

An example of such a map is given in Milnor [1997], p. 48. We define a collapse
mapf : N → Sk, which gives the desired associated Pontrjagin manifold, by

f(q) =

{

φ ◦ π(q) for q ∈ U
s0 for q /∈ U .

(3.1)

The mapf is smooth, andφ(0) is a regular value off . The preimage

f−1(φ(0)) = π−1(0) = M,

furthermore,dfxσi(x) = dφ0ω
i, which are the basis ofTφ(0)(S

k). We have arrived
at the following theorem.
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3.4 Stably Framed Manifold Group

Theorem 3.3.4 (Theorem 7.C in Milnor [1997]). Any compact framed submani-
fold (M,σ) of co-dimensionk in N occurs as the Pontrjagin manifold for some
smooth mapf : N → Sk.

The method of translating between framed cobordism and the mapsf is called
the Pontrjagin-Thom construction.

Corollary 3.3.5. Let [N,Sk] = C∞(N,Sk)/ ', where' is the homotopy rela-
tion. The Pontrjagin-Thom construction induces a bijectionΩfr

n,N → [N,Sk].

3.4 Stably Framed Manifold Group

Suppose that the manifoldN in Corollary 3.3.5 is a sphereSn+k. The function
πn+k(S

k) → [Sn+k, Sk] obtained by forgetting base points is a bijection, cf. Davis
and Kirk [2001]. Sinceπn+k(S

k) is an abelian group, the set of framed cobordism
classesΩk

n ≡ Ωfr
n,Sn+k inherits an abelian group structure. In fact this group struc-

ture is given by taking the disjoint union

[V0] + [V1] := V0

⊔

V1 ⊂ Sn+k#Sn+k ∼= Sn+k,

where# stands for the connected sum. Inverses are obtained by changing the
orientation of the framing,−(M,σ) ≡ (M,σ−).

The embedding in the equatorSn+k ⊂ Sn+k+1 defines the homomorphisms
Ωk
n → Ωk+1

n . The resulting directed system

Ω0
n → Ω1

n → ...→ Ωk
n → ...

of abelian groups possesses a direct limit.

Definition 3.4.1. The stably framedn-manifold group is the direct limit

Ωfr
n = lim−→ Ωk

n.

Recall the definition of thek-stable homotopy group of a based spaceX, cf.
Hatcher [2002], asπSk (X) = lim−→ πk+l(S

lX), whereS is the reduced suspension.

In particular the stablek-stem isπSk = πSk (S0). By the Freudenthal suspension
theoremπSk = πk+l(S

l) for l ≥ k + 2. As conclusion of the discussions above we
have the following theorem.
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3 Elements of Differential Topology

Theorem 3.4.2 (Pontrjagin-Thom). The Pontrjagin-Thom construction defines an
isomorphism fromπSk to Ωfr

k .

3.5 Stable Tangential Framings

We shall denote a trivial line bundle over a space byε. Consider a submanifold
Mn of Sn+k. The inclusionSn+k ⊂ R

n+k+1 has a trivial 1-dimensional normal
bundle. This implies that

T (Sn+k) ⊕ ε ∼= εn+k+1,

and a framing of the normal bundleν(M,Sn+k) ∼= εk induces a trivialization

T (M) ⊕ εk+1 ∼= T (M) ⊕ ν(M,Sn+k) ⊕ ε = TM (Sn+k) ⊕ ε ∼= εn+k+1.

Conversely, a trivializationT (M) ⊕ ε ∼= εn+1 induces an isomorphism

ν(M,Sn+k) ⊕ εn+1 ∼= εn+k+1.

Similarly, if the sphereSn+k is substituted by an(n + k)-dimensional manifold
N with ν(M,N) ∼= εk andν(N,Rl) ∼= εl−n−k, then we haveT (M) ⊕ εl−n ∼= εl.

Definition 3.5.1 (Definition 8.12 in Davis and Kirk [2001]). A stable tangential
framing of ann-dimensional manifoldM is an equivalence class of trivializations
of

T (M) ⊕ εk.

Two trivializations

φ1 : T (M) ⊕ εk1 ∼= εn+k1 andφ2 : T (M) ⊕ εk2 ∼= εn+k2

are equivalent if∃N > max(k1, k2) such that the trivializations

φ1 ⊕ id : T (M) ⊕ εk1 ⊕ εN−k1 ∼= εn+N ,

φ2 ⊕ id : T (M) ⊕ εk2 ⊕ εN−k2 ∼= εn+N

are homotopic. Similarly, a stable normal framing of a submanifoldM of Sl,
l ∈ N, is an equivalence class of trivializations ofν(M,Sl) ⊕ εk.
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3.5 Stable Tangential Framings

Theorem 3.5.2 (Theorem 8.13 in Davis and Kirk [2001]).There is a bijection be-
tween stable tangential framings and stable normal framings of a manifoldM .

In the next chapter we shall use the following proposition.

Proposition 3.5.3. SupposeM is a manifold with boundary. Ifint(M) has a stable
tangential framing so doesM .

Proof. In the proof we shall construct a diffeomorphismφ : M → M ′, such that
M ′ ⊂ int(M).

By the collaring theorem we have an embeddingh : ∂M × [0,∞) → M such
that h(x, 0) = x. Denote the imageh(∂M × [0,∞)) by V . For a pair of real
numbersa < b construct a diffeomorphismψ : [0,∞) → [a,∞) such that the
restrictionψ|[b,∞) = id. The compositionf : V → M, f = h ◦ (id× ψ) ◦ h−1 is
a diffeomorphism onto its image. Choosingc > b and denotingh(∂M × [0, c]) by
W we define the mapφ

φ(q) =

{

f(q) for q ∈W
id for q /∈W.

DenoteM ′ ≡ φ(M) and observe thatT (M) ∼= φ∗T (M ′). Furthermore, since
M ′ ⊂ int(M) anddim(M ′) = dim(M) we have thatT (M ′) ∼= TM ′(int(M)).
But φ∗TM ′(int(M)) has a stable tangential framing so doesT (M). �

A stably framed nullcobordism for a stably framed manifold(M1, φ1) with a
stable framingφ1 : T (M1) ⊕ εk1 ∼= εn+k1 is (i) a compact manifold(X,Φ) with
a stable framingΦ : T (X) ⊕ εk1+k2 ∼= εn+1+k1+k2 and (ii) a bundle isomorphism
θ : T (M1)⊕εk1+1+k2 ∼= TM1(X)⊕εk1+k2 coming from an orientation preserving
diffeomorphismϑ : M1 → ∂X, so thatΦ ◦ θ = φ1 ⊕ idεk2+1 .

We define a notion of a stably framed cobordism from a stably framed mani-
fold (M1, φ1) to another stably frame manifold(M2, φ2) to be a stably framed
nullcobordism for the disjoint union of(M−

1 , φ
−
1 )) and (M2, φ2), whereM−

1 is
obtained formM1 by reversing the orientation andφ−1 is the composition:

φ−1 : T (M1) ⊕ εk1
φ1 // εk1+n = ε⊕ εk1+n−1

f // ε⊕ εk1+n−1 = εk1+n,

wheref = −idε ⊕ idεk1+n−1 .
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3 Elements of Differential Topology

Theorem 3.5.4 (Corollary 8.15 in Davis and Kirk [2001]). The stablek-stemπSk
is isomorphic to the group of stably tangentially framed cobordism classes ofstably
tangentially framedk-dimensional smooth, oriented, compact manifolds without
boundary.

3.6 The J-homomorphism

ConsiderSk ⊂ R
k+n. Denote the framing ofν(Sk,Rk+1) by η and the canonical

basis ofRk+n by {el}l∈{1,...,k+n}. Thenσ = (η, ek+2, ..., ek+n) is a framing of
ν(Sk,Rk+n). The framing gives rise to the trivialization of the normal bundle

φσ : ν(Sk,Rk+n)
∼= // Sk × R

n.

Given a smooth mapγ : Sk → O(n) we get a new framingσ′ induced by the
composition(pr1, (γ ◦pr1) ·pr2), wherepri is the projection ofSk×R

n on theith
factor. The Pontryagin-Thom construction applied toσ′ defines a mapSn+k → Sn.
This construction induces a map on homotopy groups

J : πk(O(n)) → πk+n(S
n),

which is a homomorphism, cf. Sec. IX.6 in Kosinski [1993]. We shall call it
J-homomorphism.

The inclusioni : O(n− 1) ↪→ 0(n) given by

A 7→
[

A 0
0 1

]

induces the mapi∗ : πk(O(n− 1)) → πk(O(n)). By Freudethal suspension theo-
remπk+n(S

n) is independent ofn for n > k + 1. The same is true forπk(O(n))
as we have a fibrationO(n− 1) ↪→ O(n) → Sn−1, thus the sequence

... // πk(S
n−1) // πk(O(n)) // πk(O(n− 1)) // πk+1(S

n−1) // ...
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is exact, cf. Corollary 6.44 in Davis and Kirk [2001], furthermoreπk(Sn−1) ≈
πk+1(S

n−1) ≈ 0 for n > k + 1. Since the following diagram commutes

πk(O(n))
i∗ //

J
��

πk(O(n+ 1))

J
��

πn+k(S
n)

S // πn+k+1(S
n+1),

whereS is the homomorphism induced by the suspension, the J-homomorphism
induces a stable J-homomorphism, cf. Sec. 8.2 in Davis and Kirk [2001].

3.7 Comments on Transversality

We shall finish this section by making a link between a regular value of a map and
transversality.

Lemma 3.7.1. LetM, U, V be smooth manifolds. The mapf : M → U × V is
transverse to{x} × V if and only if the composite map

M
f // U × V

π // U,

whereπ is the projection, hasx as a regular value.

Proof. Supposex is a regular value ofπ ◦ f . Let p ∈ f−1 ◦ π−1(x), thenf(p) =
(x, y) for somey ∈ V . Pick (a, b) ∈ T(x,y)(U × V ). The differentialdπ(x,y)dfp is
surjective, hence there existsc ∈ Tp(M) so thatdπ(x,y)dfp(c) = a = dπ(x,y)(a, b).
We have thatdfp(c) = (a, β), for some(0, β) ∈ T(x,y)({x} × V ). We conclude
that dfp(c) + (0, b − β) = (a, b). This proofs the necessity. The sufficiency is
proved along the same lines.�

Suppose we have the following commutative diagram

A
� � i1 //
� _

i2
��

M1� _

j1
��

M2
� � j2 // N,
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3 Elements of Differential Topology

wherei1, i2 andj1, j2 are inclusions. If the intersectionA = M1∩M2 is transver-
sal inN , denoted byA = M1 t M2, then there is a short exact sequence of vector
bundles

0 // T (A)
(di1,−di2) // TA (M1) ⊕ TA (M2)

dj1+dj2 // TA(N) // 0.
(3.2)

Lemma 3.7.2. SupposeA = M1 t M2 and the diagram above commutes then the
following are true

1. ν(A,M2) ∼= ν(M1, N)|A,

2. ν(A,N) ∼= ν(A,M1) ⊕ ν(A,M2),

3. ν(A,N) ∼= ν(M1, N)|A ⊕ ν(M2, N)|A.

Proof. The exact sequence (3.2) can be written

0 // T (A) // T (A) ⊕ ν(A,M1) ⊕ T (A) ⊕ ν(A,M2) // TA(N) // 0

which implies the exact sequence

0 // T (A) ⊕ ν(A,M1) ⊕ ν(A,M2) // T (A) ⊕ ν(A,N) // 0,

which gives the isomorphism in 2. The isomorphism in 1. follows from

0 // TA(M1) ⊕ ν(A,M2) //

∼=
��

TA(N) //

id
��

0

0 // TA(M1) ⊕ ν(M1, N)|A // TA(N) // 0.

The last isomorphism is a consequence of property 1 and

ν(A,N) = ν(A,M1) ⊕ ν(M1, N)|A.

�
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4 Stable, Unstable and Connecting
Manifolds

In this chapter we study framed connecting manifolds. The aim is two fold, we shall
review Morse Theory as exposed in Milnor [1965]. Secondly we shall present the
proof of Theorem 3.3 in Franks [1979]. The theorem says that framedconnected
manifolds are, by the Pontrjagin-Thom construction, in one to one correspondence
with homotopy classes of relative attaching maps.

4.1 Elements of Morse Theory

Let M be a closed smooth manifold,g0 a Riemannian metric onM , andf be a
Morse function onM . It follows that there are finitely many critical points and all
of them are nondegenerate.

We shall consider the gradient flow, that is the flow line throughx ∈M

γx : (a, b) →M

that satisfies the differential equation

dγx
dt

= −∇γx(f),

whereg0(∇f, ζ) = df(ζ) for any smooth vector fieldζ onM , andγx(0) = x.
We shall study the relation between the structure of the critical set off,

Cr(f) = {x ∈M | df(x) = 0}

and the topology ofM .
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4 Stable, Unstable and Connecting Manifolds

Lemma 4.1.1. Let Mn be a closed smooth manifold,f : M → R be a Morse
function andCr(f) the set of the critical points off . Then there is a metricg and
a family of open neighborhoods{Up}p∈Cr(f) of the critical points such that in a
local coordinate system(x1, ..., xn) ofUp

f(x1, ..., xn) = f(p) −
λp
∑

i=1

x2
i +

n
∑

j=λp+1

x2
j , and (4.1)

∇f(x1, ..., xn) = −2

λp
∑

i=1

xi
∂

∂xi
+ 2

n
∑

j=λp+1

xj
∂

∂xj
, (4.2)

whereλp is the index of a critical pointp.

Proof. The Morse Lemma ( Lemma 2.2 in Milnor [1997]) provides{Up}p∈Cr(f)

and the first statement of the lemma. Shrink theUp’s so that they are disjoint. We
choose the standard Euclidean metric onUp. Inside eachUp we consider an open
setVp containingp. On the open setV = M − ⋃p∈Cr(f) cl(Vp) we select an
arbitrary metricg0. Using a smooth partition of unity subordinate to{Up}p∈Cr(f)

andV we obtain the desired metricg. �

Definition 4.1.2 (Definition 6.30 in Banyaga and Hurtubise [2004]).A gradient
vector field∇f of a Morse functionf is said to be in standard form near a critical
point p if and only if there exists a smooth coordinate chart aroundp such that in
the local coordinates determined by the chart we have Equations (4.1), (4.2).

If the gradient vector field is in the standard form near every critical point,then
we shall say that the Riemannian metricg is compatible with the Morse charts for
the functionf .

We shall assume for the rest of this chapter that the Riemannian metricg onM
is compatible with the Morse charts forf .

Let a be a critical point forf . We define two subsets ofM :

W s(a) = {x ∈M | lim
t→+∞

γx(t) = a}, (4.3)

W u(a) = {x ∈M | lim
t→−∞

γx(t) = a}. (4.4)
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4.1 Elements of Morse Theory

Theorem 4.1.3 (3.9 in Milnor [1965]). Let a ∈ Cr(f), and the index ofa beλ.
The setsW s(a) andW u(a) on(M, g) are diffeomorphic to open disks of dimension
n− λ andλ respectively.

The subsetW s(a) is called the stable manifold ofa, and the subsetW u(a) is
called the unstable manifold ofa.

Proof. We prove the theorem forW u(a). The proof forW s(a) is analogous. Fol-
lowing Lemma 4.1.1 there exists a chartφ : U → R

n, so thata ∈ U , φ(a) = 0 and
in the local coordinates the Morse functionf and its gradient are of the forms (4.1)
and (4.2). Consider a ballW0 ⊂ φ(U) of dimensionλ, centered at0 and suffi-
ciently small radiusr0: W0 = {x ∈ φ(U)| xλ+1 = ... = xn = 0, ‖x‖ < r0}. We
see thatφ−1(W0) ⊂W u(a), since the gradient flow line starting at a pointx ∈W0

satisfies the following differential equation

d

dt
γi(t) = 2γi(t),

or explicitly
γi(t) = γi(0)e2t.

The manifoldM is compact thus the gradient vector field generates a 1-parameter
groupΦt : M →M, t ∈ R, of diffeomorphisms and the mapΦ : R ×M →M ,

Φ(t, y) = γy(t)

is smooth. Every element ofW u(a) when flown backward in time converges to
the pointa hence after some finite time ends up in the setφ−1(W0). Hence we
conclude thatW u(a) =

⋃

t≥0 Φ(t, φ−1(W0)).
In the next step we stretchφ−1(W0) to the wholeW u(a). For this we shall use a

smooth monotonic functionψ : [0, r20) → R, wherer0 is the radius of the ballW0,
with ψ(0) = 0 andlimt→r0 ψ(t) = +∞. The mapS : W0 → W u(a), defined by
S(x) = Φ(ψ(||x||2), φ−1(x)) is the desired diffeomorphism of theλ-ball onto the
unstable manifoldW u(a). �

The proof of Theorem 4.1.3 relies on the metricg compatible with the Morse
charts forf , nevertheless the theorem is true for an arbitrary Riemannian metric on
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4 Stable, Unstable and Connecting Manifolds

the manifoldM , see Theorem 4.2: Stable/Unstable Manifold Theorem for a Morse
Function in Banyaga and Hurtubise [2004]. As a matter of fact it is valid forall
vector fields with hyperbolic singular points, in which caseW u(a) is an injectively
immersedλ-open disk. We will postpone the discussion on stable manifolds for
vector fields until the next chapter.

In the following we shall assume that the functionf is Morse-Smale, that is
all stable and unstable manifolds intersect transversally. On the setCr(f) of the
critical points of a Morse-Smale functionf we define a partial order relation by
a � b if and only if W u(a) ∩ W s(b) 6= ∅ (there is a gradient flow lineγ with
limt→−∞ γ(t) = a andlimt→+∞ γ(t) = b).

Definition 4.1.4. Supposea is a critical point with indexλa. Let r < λa be the
largest integer for which there exists a critical pointb with the indexλb = r and
a � b. Then the pointsa andb are called successive.

Fora, b ∈ Cr(f) we shall use the notation

W (a, b) = W u(a) t W s(b).

If a � b the intersectionW (a, b) is nonempty and due to transversality it is
a manifold of dimension corresponding to the relative index ofa and b, that is
λa − λb.

Let τ ∈ R be a regular value off such thatf(a) > τ > f(b). Such a valueτ
exists since the functionf is strictly decreasing along the gradient flow line, which
does not contain a critical point. We will consider the preimage

Vτ = f−1(τ).

Lemma 4.1.5. Suppose thata and b are successive points and letτ be such that
f(a) > τ > f(b). The intersectionsSu(a) = W u(a)∩Vτ andSs(b) = W s(b)∩Vτ
are diffeomorphic to spheres of dimensionλa − 1 andn− λb − 1, respectively.

Proof. Away from the critical setCr(f), we consider the vector field

X(y) =
∇yf

|∇yf |2
,
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4.1 Elements of Morse Theory

and a flow lineηp ofX with initial conditionηp(0) = p ∈ (M −Cr(f)). It follows
that

d

dt
f(ηp(t)) = Xηp(t)

(

fηp(t)

)

= gηp(t) (∇f,X) = 1.

Let S0 = ∂ (cl(W0)) , whereW0 is the disk of radiusr0 as defined in the proof of
Theorem 4.1.3.

For allx, y ∈ S0, f(x) = f(y) = f(a) − r0, also

f (ηx(τ − f(a) + r0)) = f (ηy(τ − f(a) + r0)) = τ.

We define the mapR : ∂W0 → Su(a) by

R(x) = ηx(τ − f(a) + r0).

The mapR is a diffeomorphism. This proves thatSu(a) is diffeomorphic to a
sphere of dimensionλa − 1. The proof forSs(b) is analogous.�

Lemma 4.1.6. Suppose thata and b are successive points and letτ be such that
f(a) > τ > f(b). Then the stable sphereSs(b) and the unstable sphereSu(a)
intersect transversally in the level manifoldVτ . More generally, ifa � b (not
necessary successive) andτ is a regular value then the manifoldsW u(a)∩f−1(τ)
andW s(b) ∩ f−1(τ) intersects transversally.

Proof. The stable and unstable manifolds intersect transversely, which results in
the exact sequence onW u(a) t W s(b), see (4.5). We use the following shorthand
notationsWa,b ≡W (a, b),W u

a ≡W u(a) andW s
b ≡W s(b),

0 // T (Wa,b)
(diu,−dis) // TWa,b

(W u
a ) ⊕ TWa,b

(W s
b )

dju+djs // TWa,b
(M) // 0,

(4.5)
whereiρ : W (a, b) →W ρ(a), andjρ : W ρ(b) →M are the inclusions.

Sinceτ is a regular value, we have thatTSu(a)(W
u(a)) ∼= T (Su(a)) ⊕ ε. Let

R ≡ span{∇pf} and use the notationSua ≡ Su(a), andSsb ≡ Ss(b). From (4.5),
for p ∈W (a, b) ∩ Vτ we get the short exact sequence

0 // (Tp(S
u
a ) ∩ Tp(S

s
b )) ⊕R α // Tp(S

u
a ) ⊕R⊕ Tp(S

s
b ) ⊕R β // Tp(Vt1) ⊕R // 0,
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4 Stable, Unstable and Connecting Manifolds

whereα : (v, r) 7→ (v, r,−v,−r), andβ : (v, r, w, s) 7→ (v + w, r + s). The
mapβ is surjective, so is the map̃β : Tp(S

u(a)) ⊕ Tp(S
s(b)) → Tp(Vτ ) given by

(v, w) 7→ v + w. ThusSu(a) andSs(b) intersect transversally.
In the proof above we have only used the property thatτ is a regular value of

f |Wu(a). Observe also thatTWu(a)∩Vτ
(W u(a)) ∼= T (W u(a)∩ Vτ )⊕ ε. Hence the

second statement of the lemma follows.�

4.2 Connecting Manifolds

Definition 4.2.1. Leta andb be successive critical points of a Morse-Smale func-
tion f . The intersection of the stable and the unstable spheres,N(a, b) = Su(a) ∩
Ss(b), will be called their connecting manifold.

The connecting manifold is a compact submanifold ofSu(a), it has also a fram-
ing, as it is shown in the next proposition.

Proposition 4.2.2. If N(a, b) is the connecting manifold of two (not necessary suc-
cessive) critical pointsa and b of a Morse-Smale functionf , thenN(a, b) is a
framed manifold inSu(a).

Proof. The stable manifoldW s(b) is diffeomorphic to a disk thus it is contractible.
It follows that the normal bundleν(W s(b),M) is trivial.

The intersection ofSu(a) andW s(b) in M is transversal and inclusions induce
the following commutative diagram

N(a, b) � � //
� _

��

W s(b)
� _

��
Su(a) � � // M.

Then Lemma 3.7.2 gives the isomorphism

ν(N(a, b), Su(a)) ∼= ν(W s(b),M)|N(a,b).

�
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4.2 Connecting Manifolds

We shall study a CW-complex structure of the manifoldM associated to the
Morse functionf . Our aim is to describe the relative attaching maps.

Let Dm
r denote the open ball of radiusr with center0 in R

m, Dm ≡ Dm
1 , and

Sm−1 the boundary ofcl(Dm) in R
m. Supposep ∈M is a critical point with index

λ, and critical valuec. For some smallε > 0, V−ε = f−1(c−ε) andVε = f−1(c+ε)
are level manifolds such thatc is the only critical value in the interval[c− ε, c+ ε].
Already classical Morse theory, Theorem 3.2 in Milnor [1973] states thatthe set
M c+ε = f−1(−∞, c + ε] has the homotopy type ofM c−ε with aλ-cell attached.
However, in order to extract an explicit form of the attaching map we shall move
along the lines of Ch. 3 in Milnor [1965].

The manifoldsV−ε andVε are cobordant, since they comprise the two compo-
nents of the boundary ofW = f−1([c− ε, c+ ε]). We shall denote this cobordism
by (W ;V−ε, Vε), and call it an elementary cobordism.

There is a local coordinate systemθ : U → Dn
2
√
ε

such that the function and
the gradient vector field are locally given by the normal forms (4.1) and (4.2),
respectively.

Definition 4.2.3 (Definition 3.9 in Milnor [1965]). The characteristic embedding
φ : Sλ−1×Dn−λ → V−ε is given byφ(u, αv) = θ−1(

√
εu cosh(α),

√
εv sinh(α))

for u ∈ Sλ−1, v ∈ Sn−λ−1, and0 < α < 1.

Definition 4.2.4 (Definition 3.13 in Milnor [1965]). Given a manifoldV ′ of di-
mensionn−1 and an embeddingφ′ : Sλ−1×Dn−λ → V ′,χ(V ′, φ′) is the quotient
manifold obtained from the disjoint union

(

V ′ − φ′(Sλ−1 × 0)
)

t
(

Dλ × Sn−λ−1
)

by identifyingφ′(u, αv) with (αu, v) for eachu ∈ Sλ−1, v ∈ Sn−λ−1, and
0 ≤ α < 1. If V ′′ is any manifold diffeomorphic toχ(V ′, φ′) then we say that
V ′′ is obtained fromV ′ by surgery of type(λ, n− λ).

We define a manifoldLλ by

Lλ = {(x, y) ∈ R
λ×R

n−λ| −1 ≤ −|x|2+|y|2 ≤ 1 and|x||y| < sinh(1) cosh(1)}.

The boundary ofLλ has two components. One on−|x|2+|y|2 = −1 diffeomorphic
to Sλ−1 ×Dn−λ via the map

Sλ−1 ×Dn−λ → ∂Lλ, (u, αv) 7→ (u cosh(α), v sinh(α)),
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4 Stable, Unstable and Connecting Manifolds

and the second on−|x|2 + |y|2 = 1 diffeomorphic toDλ × Sn−λ−1 by

Dλ × Sn−λ−1 → ∂Lλ, (αu, v) 7→ (u sinh(α), v cosh(α)).

We construct a manifoldω(V−ε, φ) as follows. LetD̄1 ≡ [−1, 1] and

W ′ =
(

V−ε − φ(Sλ−1 × 0)
)

× D̄1 t Lλ,

and∼ denotes the following equivalence relation. For eachu ∈ Sλ−1, v ∈
Sn−λ−1, 0 < α < 1, andc ∈ D̄1, (φ(u, αv), c) ∈

(

Vε − φ(Sλ−1 × 0)
)

× D̄1

is identified with the unique point(x, y) ∈ Lλ such that

1. −|x|2 + |y|2 = c

2. (x, y) lies on the flow line of the gradient vector field (4.2), which passes
through the point(u cosh(α), v sinh(α)).

Then the manifoldω(V−ε, φ) is

ω(V−ε, φ) = W ′/ ∼ .

The boundary of the manifoldω(V−ε, φ) has two components:V−ε (correspond-
ing to the valuec = −1) and a component (corresponding toc = 1) identified with
χ(V−ε, φ) by the mapg : χ(V−ε, φ) → ∂ω(V−ε, φ) defined by

{

g(z) = (z, 1) for z ∈ Vε − φ(Sλ−1 × 0)

g(αu, v) = (u sinh(α), v cosh(α)) for (αu, v) ∈ Dλ × Sn−λ−1.

Theorem 4.2.5 (Theorem 3.13 in Milnor [1965]).Suppose(W ;V−ε, Vε) is an ele-
mentary cobordism, andφ : Sλ−1×Dn−λ → V−ε is the characteristic embedding.
Then there is a diffeomorphismk : (ω(V−ε, φ);V−ε, χ(V−ε, φ)) → (W ;V−ε, Vε).

Theorem 4.2.6 (Theorem 3.14 in Milnor [1965]).Suppose(W ;V−ε, Vε) is an ele-
mentary cobordism and̂W u(p) = W u(p)∩W . Then there is a deformation retract
r : W → V−ε ∪ Ŵ u(p).
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V
-e

CD
L

L
l

Figure 4.1:V−ε ∪DL is a deformation retract ofω(V−ε, φ).

Proof (sketch).LetDL andC be the following sets

DL = {(x, y) ∈ Lλ| y = 0},

and its collar neighborhood

C = {(x, y) ∈ Lλ| |y| ≤ 1/10}.

Since the setDL is diffeomorphic toŴ u(p), cf. Theorem 4.1.3, it is enough to
show thatV−ε ∪DL is a deformation retract ofω(V−ε, φ). For t ∈ [0, 1] we define
deformation retractionsr′t fromω(V−ε, φ) toV ∪C andr′′t fromV ∪C toV ∪DL.
The composition of these maps gives the desired retraction. The sketch of the
situation is drawn in Figure 4.1. For details see Milnor [1965].�

Supposea andb are two successive critical points off . We define the composi-
tion

h : Dλ × Sn−λ−1 � � j1 // χ(V−ε, φ)
k|χ(V−ε,φ)

≈
// Vε

� � j2 // W
r // V−ε ∪ Ŵ u(p)

c // Sλ,
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4 Stable, Unstable and Connecting Manifolds

wherej1, j2 are the inclusion andc collapses
{(

V−ε ∪ Ŵ u(p)
)

− int(Ŵ u(p))
}

to

a point. Analyzing the retractionsr′t andr′′t in the proof of Theorem 4.2.6 one sees
that the maph collapses the sphereSn−λ−1 to a point{∗}, and for a sufficiently
smallδ > 0, the restriction ofh toDλ

δ × {∗} is a diffeomorphism onto its image.
We shall denote this image byDh.

LetM(f) be a CW-complex associated tof , andM(f)k be itsk-skeleton. The
relative attaching mapφab of a λa-cell eλa to aλb-cell eλb in M(f) is defined by
the following composition, cf. Sec. IV.9 in Bredon [1993],

φab : Sλa−1 = ∂eλa
γab // M(f)λb // M(f)λb/

(

M(f)λb − int(eλb)
)

= Sλb
,

whereγab is the attaching map of theλa-cell to the CW-complexM(f)λb . The
mapφab is homotopic to the composition

Sλa−1 ∼= Su(a)
� � i // Vε

c◦r◦j // Sλb ,

wherei is the inclusion of the stable sphere in the level manifoldVε.
We have the commutative diagram

Su(a) � � i // Vε
c◦r◦j2 // Sλb .

Dλb

δ × Sn−λb−1.
?�

k◦j1

OO
h

88qqqqqqqqqqq

The image of{0} × Sn−λb−1 by the embeddingk ◦ j1 is Ss(b). Furthermore,
h(0, q) = v for somev ∈ Sλb and for allq ∈ Sn−λb−1. Denote the composition of
the upper maps in the diagram byβab = c ◦ r ◦ j2 ◦ i. It follows that

β−1
ab (v) = Su(a) ∩ Su(b),

and we have a situation

Su(a) ∩ Su(b) → Dλb

δ × Sn−λb−1 → Dh ≈ Dλb

δ
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4.2 Connecting Manifolds

as in Lemma 3.7.1. We conclude that sinceSu(a) andSu(b) intersect transversally,
v is the regular point ofβab.

We shall consider the attaching mapφab as an element in the homotopy group
πλa−1(S

λb) and see that the connecting manifold is the Pontryagin manifold as-
sociated toβab. Corollary 3.3.5 proves Connecting Manifold Theorem due to
J.M. Franks, cf. Theorem 3.3 in Franks [1979]. The formulation of Connect-
ing Manifold Theorem used in this chapter is not Frank’s original one, but taken
form Banyaga and Hurtubise [2004]. The second author of Banyagaand Hur-
tubise [2004] made us aware that an isomorphism betweenν(N(a, b), Su(a)) and
ν(W s(b),M)|N(a,b) in the proof of Proposition 4.2.2 gives an ambiguity of the
sign±1 in the formulation of Connecting Manifold Theorem.

Theorem 4.2.7 (Theorem 6.40 in Banyaga and Hurtubise [2004]).Suppose that
f : M → R is a Morse-Smale function on a finite dimensional compact smooth
Riemannian manifold(M, g), and assume that the metricg is compatible with
the Morse charts forf . Suppose thata, b are successive critical points and let
(N(a, b), σ) be a framed connecting manifold. LetM(f) be the CW-complex as-
sociated tof and letγab be the relative attaching map of the cell inM(f) cor-
responding toa to the cell corresponding tob. Then the Thom-Pontryagin con-
struction applied to the framed submanifold(N(a, b), σ) produces a map that is
homotopic toγab up to precomposing with a representative of±1 ∈ πj(S

j) where
j = λa − 1.

We follow Remark 6.41 in Banyaga and Hurtubise [2004] and state that the sign
±1 ∈ πj(S

j) depends on the homotopy class of the framing of the connecting
manifold (N(a, b), σ). An orientation ofW s(b) and an orientation onM will
determine a homotopy class for the framing ofN(a, b). So, the sign±1 ∈ πj(S

j)
is determined by the orientation chosen forW s(b) whenM is oriented.
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5 Morse-Smale Vector Fields

We shall review the main results of the geometric theory of dynamical systems. In
the exposition we have extensively used Palis and de Melo [1982]. We study prop-
erties of the Morse-Smale vector fields, i.e. vector fields with hyperbolic singular
elements whose stable and unstable manifolds intersect transversally. We bring
in the notion of structural stability. Morse-Smale vector fields form a nonempty
subset whose elements are structurally stable. We spend some time in this chapter
investigating gradient-like vector fields which are the building blocks of section
cones defined in the next chapter. To any Morse-Smale vector fieldξ we associate
a Lyapunov function that is a function, which decreases along the orbits of ξ apart
from its singular elements. The main contribution of this part is the analysis of
dependence of the invariant manifolds on small perturbations of vector fields. We
show that a local stable manifold depends continuously on a perturbation.

5.1 The C
r Topology

We shall recall a notion of the derivative of a map in a Banach space. We follow
Sec. I.3 in Lang [1999]. LetE andF be two Banach spaces andW open inE. Let
f : W → F be a continuous map. We say thatf is differentiable at a pointx0 if
there exists a continuous linear mapLx0 of E into F such that, if we let

f(x0 + h) = f(x0) + Lx0h+ αx0(h) (5.1)

for smallh, thenαx0 is tangent to0; that is

‖αx0(x)‖ ≤ ‖x‖β(x) with lim
‖x‖→0

β(x) = 0.

We say thatLx0 is the derivative off atx0. We denote the derivative bydf(x0). If
f is differentiable at every point ofW , thendf is considered as a map

df : U → L(E,F ).
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5 Morse-Smale Vector Fields

Definition 5.1.1 (Def. 5.28, Banyaga and Hurtubise [2004], Hirsch [1976]).
For 0 ≤ r ≤ ∞, let Cr(M,N) denote the space ofCr maps between twoCr

manifoldsM andN . Letf ∈ Cr(M,N), and let(φ,U) and(ψ, V ) be charts on
M andN respectively. LetK ⊂ U be a compact set such thatf(K) ⊂ V , and let
0 ≤ ε ≤ ∞. Define the subbasis element

N r(f ; (φ,U), (ψ, V ),K, ε)

to be the set ofCr mapsg : M → N such thatg(K) ⊂ V and

‖dk(ψ ◦ f ◦ φ−1)(x) − dk(ψ ◦ g ◦ φ−1)(x)‖ < ε

for all x ∈ φ(K) andk = 0, ..., r. TheCr topology onCr(M,N) is defined to be
the topology generated by the subbasis elementsN r(f ; (φ,U), (ψ, V ),K, ε). The
C∞ topology onC∞(M,N) is defined to be the union of topologies induced by
the inclusionsC∞(M,N) → Cr(M,N) for all 0 ≤ r ≤ ∞.

By Theorem 2.4.4 in Hirsch [1976],Cr(M,N), 0 ≤ r ≤ ∞, with theCr topol-
ogy arises from a complete metric. In the following we shall construct a metric
for the spaceCr(Mn,Rs) with M a compactCr manifold such that this metric
generates the topology, which coincides with theCr topology.

The spaceCr(M,Rs) has a canonical vector space structure:
Forf, g ∈ Cr(M,Rs) and a realλ we define

(f + g)(p) = f(p) + g(p), (λf)(p) = λf(p) for all p ∈M.

We shall take a finite open cover{Vi}i=1,...,k of M such that eachVi is contained
in the domain of a local chart(ψi, Ui) with ψi(Ui) = Dn

2 andψi(Vi) = Dn
1 , where

Dn
r denotes the open ball of radiusr with center0 in R

n. We shall use the notation

f i = f ◦ ψ−1
i : Dn

2 → R
s,

and define a norm

||f ||r = maxi sup{||f i(u)||, ||df i(u)||, ..., ||drf i(u)|| | u ∈ Dn
1 }.

In the proposition below we see that that the norm‖·‖r generates theCr topology
onCr(M,Rs).
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Proposition 5.1.2. LetMn be a compact manifold. The norm‖ · ‖r onCr(M,Rs)
generates theCr topology of it.

Proof. We show that for any mapf ∈ Cr(M,Rs) the ball

Bε(f) = {g ∈ Cr(M,Rs)| ‖g − f‖r < ε}

is open in theCr topology. Let{(ψi, Ui)}i∈{1,...,k} be the family of coordinate
charts and{Vi}i∈{1,...,k} be the cover ofM as in the definition of the‖ · ‖r norm.

We see thatBε(f) =
⋂k
i=1 N (f ; (ψi, Ui),R

s, cl(Vi), ε).
Now we prove that the topology generated by the‖·‖r norm, denoted in the sequel

by T , is finer than theCr topology. We show that for anyf ∈ Cr(M,Rs), any
i ∈ {1, ..., k}, any open setB in R

s, any compact subsetK of cl(Vi) andε > 0,
the setN (f ; (ψi, Ui), B,K, ε) is open inT . Pick g ∈ N (f ; (ψi, Ui), B,K, ε).
Becauseg(K) is compact we can chooseδ1 such that theδ1-neighborhood ofg(K)
is contained inB. Hence,h(K) ⊂ B for anyh ∈ Bδ1(g). For0 < δ ≤ min{δ1, ε}
we haveBδ(g) ⊂ N (f ; (ψi, Ui), B,K, ε).

Let (θ,W ) be a chart onM , K be a compact subset ofW , B as before be any
open set inRs andε > 0. SupposeK intersectsl of the elements of the family
{Vi}i∈{1,...,k}, sayV1, V2, ..., Vl. Let

bji = sup{‖dj(ψ ◦ θ−1)(x)‖ | x ∈ Vi ∩K}, i = 1, ..., l

and
b = min{bji | i ∈ {1, ..., l}, j ∈ {1, ..., r}}.

If δ ≤ ε/b then
⋂l
i=1 N (g; (ψi, Ui), B,K ∩ cl(Vi), δ) ⊂ N (f ; (θ,W ), B,K, ε).

Since the setsN (g; (ψi, Ui), B,K ∩ cl(Vi), δ) are open inT and they containg,
the setN (f ; (θ,W ), B,K, ε) is open inT . �

Proposition 5.1.3 (Proposition 2.1, Palis and de Melo [1982]).The vector space
Cr(M,Rs) with the norm|| · ||r is Banach.

Proposition 5.1.4 (Proposition 2.3, Palis and de Melo [1982]).Cr(M,Rs) is sep-
arable; that is, it has a countable base of open sets.
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Proposition 5.1.5 (Proposition 2.2.2, Hirsch [1976]).The subset of maps of class
Cr(M,Rs) (1 ≤ r ≤ ∞) is dense inC0(M,Rs).

Proposition 5.1.6 (Proposition 2.2.4, Hirsch [1976]).The subset of maps of class
C∞(M,Rs) is dense inCr(M,Rs).

Proposition 5.1.7. For r ≥ 0, letM be a compactCr manifold. The evaluation
map

e : M × Cr(M,Rs) → R
s

defined by the equation

e(p, ξ) = ξ(p)

isCr (withCr topology imposed onCr(M,Rs)).

Proof. We shall proof the proposition by induction. We start by showing thate is
continuous. Denote theCr mapsM → R

s with theC0 topology byCr0(M,Rs).
The compact-open topology onCr(M,Rs) coincides with the topology of compact
convergence thus with the topology generated by‖ · ‖0. We conclude that the
evaluation map̄e : M × C0(M,Rs) → R

s is continuous, cf. Theorem 46.10 in
Munkres [2000], so is its restriction toM × Cr0(M,Rs). By the standardδ − ε
argument we see that the inclusioni : Cr(M,Rs) → Cr0(M,Rs) is continuous.
We see that the evaluation mape factors through̄e|M×Cr

0 (M,Rs) ◦ (id × i), thus it
is continuous.

Now suppose that the evaluation mape isCr−1. We shall show that it is of class
Cr. The partial derivative with respect to the first variable is

d1e(x,f) = e(x, df).

It follows that d1e is a composition of twoCr−1 maps hence it isCr−1. The
derivative with respect to the second variable is

d2e(x,f)(h) = e(x, h),

which isCr−1 by the assumption. Thuse is indeed of classCr. �
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Suppose thatj : M ↪→ R
s is an inclusion map, then the differential

dj : T (M) ↪→M × R
s

shows that the spaceXr(M) of Cr vector fields onM is a subspace ofCr(M,Rs).
The tangent bundleT (M) is closed inM × R

s sinceT (M) = π−1(ν0), where
π : T (M) ⊕ ν(M,Rs) → ν(M,Rs) is the projection andν0 is the zero section in
ν(M,Rs). The evaluation mape : M × Cr(M,Rs) → R

s is continuous, thus the
spaceXr(M) is closed inCr(M,Rs), i.e. Xr(M) is the preimage ofT (M) under
the induced map

M × Cr(M,Rs) →M × R
s.

We define a norm on the spaceXr(M) by

‖ξ‖∼r = ‖ξ − 0M‖r,

where0M is the zero section ofT (M). The spaceXr(M) with the norm‖ · ‖∼r is a
Banach space. To suppress the notation we shall write‖ · ‖r instead of‖ · ‖∼r when
dealing withXr(M).

Definition 5.1.8 (Sec. 1.2 in Palis and de Melo [1982]).A subsetU of a topolog-
ical spaceX is called residual if and only if it is a countable intersection of open
dense subsets ofX, that isU =

⋂∞
j=1Gj withGj ⊂ X open and dense inX for

all j ∈ N. A subset of a topological spaceX is called generic if and only if it
contains a residual set. A topological spaceX is called Baire if and only if every
generic subset is dense.

Baire’s Category Theorem (Theorem 17.1 in Bredon [1993]) says that if X is
either a complete metric space or a locally compact Hausdorff space then the in-
tersection of countably many open dense sets is dense. So we conclude that both
Cr(M,Rs) andXr(M) are Baire spaces.

5.2 Vector Fields on a Closed Manifold

An integral curve of a vector fieldξ ∈ Xr(M) through a pointp ∈ M is aCr+1

mapα : (−ε, ε) → M , with a real numberε > 0, such thatα(0) = p and
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5 Morse-Smale Vector Fields

d
dtα(t) = ξ(α(t)) for all t ∈ (−ε, ε). The image of an integral curve is an orbit. The
set of singularities of a vector fieldξ is denoted byCr(ξ) = {p ∈ M | ξ(p) = 0}.
The theorems on existence, uniqueness and differentiability of solutions ofordinary
differential equations inRn extend to vector fields onM .

Theorem 5.2.1 (Proposition 1.1, Palis and de Melo [1982]).LetE be a Banach
space andF : E × M → TM a Cr map (r ≥ 1), such thatFλ = F (λ, ·) is
a section for anyλ ∈ E. For everyλ0 ∈ E and p0 ∈ M there exist an open
neighborhoodW ⊂ E of λ0 and an open neighborhoodV ⊂ M of p0, a real
numberε > 0 and aCr mapΦ : (−ε, ε) × V ×W →M such that

Φ(0, λ, p) = p and
∂

∂t
Φ(t, p, λ) = F (λ,Φ(t, p, λ)). (5.2)

for all t ∈ (−ε, ε), p ∈ V, λ ∈ W . Moreover, ifα : (−ε, ε) → M is an integral
curve of the vector fieldFλ with α(0) = p then

α = Φ(·, p, λ). (5.3)

Proposition 5.2.2. If the manifoldM is compact and a mapF satisfies the as-
sumptions of Theorem 5.2.1 then for anyλ0 ∈ E andp0 ∈M there exists an open
neighborhoodW ⊂ E of λ0 and aCr mapΦ : R ×M ×W →M such that (5.2)
and (5.3) are satisfied.

Proof. This proof is motivated by the proof to Lemma 2.4 in Milnor [1973]. We
fix λ0. For anyp ∈ M we have open neighborhoodsWp of λ0 in E andVp of p in
M andεp > 0 and the mapsΦp : (−εp, εp) × Vp ×Wp → M of Theorem 5.2.1.
SinceM is compact there is finite number of neighborhoodsVp coveringM . Let
ε > 0 denote the smallest of the numbers{εpi

}i∈{1...N}, andW =
⋂N
i=1Wpi

.
We shall not keep track of the subscriptp of the functionΦp, and use the notation
Φλ
t (x) = Φ(t, x, λ). We see thatΦ is defined for allt ∈ (−ε, ε), x ∈ M and

λ ∈W . It remains to defineΦ for |t| ≥ ε. We expresst = nε/2+ r, wheren ∈ N,
and|r| < ε/2. We define

Φ(t, x, λ) = Φλ
ε/2 ◦ ... ◦ Φλ

ε/2 ◦ Φλ
r (x).

Φ is well defined by (5.3), and it isCr as composition ofCr maps.�
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5.3 Stability Theory

5.3 Stability Theory

We shall briefly introduce the Lyapunov stability theory. The aim is to provide
necessary conditions for a dynamic system to be stable. Later on we shall associate
a function to a Morse-Smale vector fieldξ, which is non-increasing along the the
flow lines ofξ. We denote a flow line ofξ by φξx(t), that is

d

dt
φξx(t) = ξ

(

φξx(t)
)

with φξx(0) = x.

Definition 5.3.1 (Definition 2.1.24 in Abraham and Marsden [1977]).Let a be
a critical point ofξ ∈ Xr(M). Then

1. The pointa is stable if for any neighborhoodU of a, there is a neighborhood
V of a such that ifx ∈ V then

⋃

t≥0 φ
ξ
t (x) ⊂ U .

2. The pointa is asymptotically stable if it is stable and there is a neighborhood
V ′ of a such that ifx ∈ V ′, then

lim
t→+∞

φξt (x) = a.

Locally in R
n we can formulate the following sufficient conditions for stability.

Theorem 5.3.2 (Theorem 4.1 in Khalil [2002]).Let 0 be a singular point of a
vector fieldξ ∈ Xr(Rn) (r ≥ 1). If there exist an open neighborhoodU of 0
and aC1 functionf : U → R such thatf(0) = 0, f(x) > 0 for x ∈ U − {0},
and−ξ(f)(x) ≥ 0 for x ∈ U . Then0 is stable. Moreover, if−ξ(f)(x) > 0 for
x ∈ D − {0} then0 is asymptotically stable.

Corollary 5.3.3 (Theorem 4.2 in Khalil [2002]). Let 0 be a singular point of a
ξ ∈ Xr(Rn). If there is aC1 functionf : R

n → R such thatf(0) = 0, f(x) > 0
for x 6= 0, −ξ(f)(x) > 0 for x ∈ R

n andf(x) → +∞ as‖x‖ → +∞. Then0 is
asymptotically stable onRn, i.e. for anyx ∈ R

n, limt→+∞ φξt (x) = 0.

The singular point0 of a linear vector fieldL ∈ L(Rn) is asymptotically stable
if and only if all the eigenvalues ofL have negative real part. In the next theorem
we shall relate asymptotic stability to the solution of a certain equation.
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5 Morse-Smale Vector Fields

Theorem 5.3.4 (Lyapunov Stability Theorem 3.2 in Datta [1999]).The singular
point0 of a linear vector fieldL ∈ L(Rn) is asymptotically stable if and only if, for
any selfadjoint positive definite matrixQ there exists a unique selfadjoint positive
definite matrixP satisfying the Lyapunov equation

LTP + PL = −Q.

Proof. We show that ifL is asymptotically stable then there is a unique solution of
the Lyapunov equation. We shall show that the following selfadjoint matrix

P =

∫ ∞

0
eL

TtQeLtdt

is indeed a solution of the Lyapunov equation. SubstituteP into the Lyapunov
equation then

LTP + PL =

∫ ∞

0
LTeL

TtQeLtdt+

∫ ∞

0
eL

TtQeLtLdt

=

∫ ∞

0

d

dt
eL

TtQeLtdt = eL
TtQeLt

∣

∣

∣

∞

0
.

ButL is asymptotically stable thuseLt → 0 ast→ +∞. ThusLTP +PL = −Q.
To prove thatP is unique, assume that there are two solutionsP1 andP2 to the
Lyapunov equation. Then

LT(P1 − P2) + (P1 − P2)L = 0,

which implies that

eL
Tt
(

LT(P1 − P2) + (P1 − P2)L
)

eLt = 0

or
d

dt

[

eL
Tt(P1 − P2)e

Lt
]

= 0.
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It follows that the matrixeL
Tt(P1 − P2)e

Lt is constant for allt. Evaluating this
expression fort = 0 andt = +∞, we conclude thatP1 − P2 = 0. It is positive
definite, since

xTPx =

∫ ∞

0
xTeL

TtQeLtxdt

andeA is nonsingular andQ positive definite, thusxTPx > 0 for x 6= 0.
We prove the converse. Pick any selfadjoint positive definite matrixQ, then there

is a solutionP to the Lyapunov equation, and we can define a functionf : R
n → R

by x 7→ xTPx then

−L(f)(x) = −xT(LTP + PL)x = xTQx > 0

for x 6= 0. By Corollary 5.3.3, the singular point0 is asymptotically stable.�

Suppose thatξ ∈ Xr(Rn), r ≥ 1. By Taylor expansion , cf. Sec. XIII.6 in
Lang [1999],ξ may be considered as a perturbation of a linear ordinary differential
equation of the form

d

dt
φξx(t) = ξ ◦ φξx(t) = Lφξx(t) + η ◦ φξx(t), (5.4)

φξx(0) = x

in some open neighborhoodU of 0 in R
n, whereL ∈ L(Rn) andη : R

n → R
n is

aCr−1 map that satisfies

η(0) = 0

‖η(x) − η(y)‖ ≤ δ(ε)‖x− y‖ for ‖x‖, ‖y‖ < ε (5.5)

with the functionδ : [0,∞) → [0,∞) continuous and monotonically increasing.
In the next corollary we relate asymptotic stability of a vector field to asymptotic

stability of its linearization.

Corollary 5.3.5. Let 0 be a singular point of a vector fieldξ ∈ Xr(Rn), r ≥ 1.
SupposeL = dξ(0). If L is asymptotically stable, then the point0 is asymptotically
stable forξ.
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Proof. The linear systemL is asymptotically stable thus for any selfadjoint positive
definiteQ there is a unique solutionP to the Lyapunov equation. Define a map
f : R

n → R by x 7→ xTPx. By the Taylor expansion ofξ we have

−ξ(f)(x) = xTQx− 2xTPη(x).

The matrixQ is selfadjoint positive definite, therefore by the Spectral Theorem,
xTQx ≥ c‖x‖ wherec is the smallest eigenvalue ofQ. Furthermore, we use the
estimate

|xTPη(x)| ≤ ‖x‖ ‖P‖ ‖η(x)‖ ≤ δ(ε)‖P‖‖x‖2,

whereδ is continuous and monotonically nondecreasing as in (5.5). Therefore we
can chooseε such thatδ(ε) < d, whered is an arbitrary real number. For‖x‖ < ε
we have

−ξ(f)(x) = xTQx−2xTPη(x) ≥ c‖x‖2−2|xTPη(x)| ≥ (c− 2δ(ε)‖P‖) ‖x‖2.

We shrinkε such thatκ ≡ c− 2δ(ε)‖P‖ > 0 and get

−ξ(f)(x) ≥ κ‖x‖2, ∀ ‖x‖ < ε.

Thus by Theorem 5.3.2, the singular point0 of ξ is asymptotically stable.�

The result below relates the spectrum ofP with the spectrum ofL. First we
define an inertia.

Definition 5.3.6. The inertia of a matrixL ∈ L(Rn) of order n, denoted byIn(L),
is the triplet

(π(L), ν(L), δ(L)),

whereπ(L), ν(L) andδ(L) are, respectively, the number of eigenvalues ofL with
positive, negative, and zero real parts, counting multiplicities.

Note thatπ(L)+ν(L)+δ(L) = n, andL is stable if and only ifIn(L) = (0, n, 0).
Below we state the Main Inerta Theorem.
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Theorem 5.3.7 (Theorem 2.5 in Stykel [2002]).. A necessary and sufficient con-
dition that there exists a selfadjoint matrixP such that

LTP + PL = −Q, whereQ is selfadjoint and positive definite,

is thatδ(L) = 0. Furthermore, we haveπ(L) = ν(P ) andπ(P ) = ν(L).

Supposeξ ∈ Xr(M) anda is a singular point ofξ. Consider a local chart(ψ,U)
with a ∈ U andφ(a) = 0. Thenξ in the local coordinates iŝξ = dψξ ◦ ψ−1.
Notice thatIn(dξ̂0) is independent of the local chart.

Definition 5.3.8. Supposeξ ∈ Xr(M). A singular pointa ∈ M is called hyper-
bolic if and only ifdξ̂0 : R

n → R
n is hyperbolic, i.e.δ(dξ̂0) = 0 (dξ̂0 does not

have any complex eigenvalues whose real part is zero).

Proposition 5.3.9. Supposeξ ∈ Xr(M), r ≥ 1 and a is a hyperbolic singular
point of ξ. Then there exist an open neighborhoodU ⊂ M of a, a Cr function
f : U → R and a real numberκ > 0 such that−ξ(f)(x) ≥ κd(x, a)2, whered is
the distance introduced by the Riemannian metric onM .

As in the proof of Corollary 5.3.5

Proof. Use the exponential map to get the normal coordinates,ψ : V → Ta(M).
We representξ in local coordinateŝξ = dψξ ◦ ψ−1. By the Taylor expansion
we haveξ̂ = L + η with ‖η(x)‖ ≤ δ(ε)‖x‖ for ‖x‖ < ε. Pick a selfadjoint
and positive definiteQ then there is a unique selfadjoint hyperbolicP solving the
Lyapunov equation

LTP + PL = −Q.
Define the functionf̂ : ψ(V ) → R by x 7→ xTPx. Then following the proof of
Corollary 5.3.5 there is a neighborhoodV ′ ⊂ ψ(V ) of 0 and a constantκ such that

−ξ̂(f̂)(x) = xTQx− 2xTPη(x) ≥ κ‖x‖2.

The desired function isf = f̂ ◦ ψ−1 defined onU = ψ−1(V ′). Then

df ◦ ξ(p) = dfdψ ◦ dψ−1ξ(p) = −df̂ ◦ ξ̂(x) ≥ κ‖x‖2 = κd(a, p)2,

wherex = ψ(p). �
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5.4 Invariant Manifolds and Their Perturbations

We study invariant manifolds of aCr vector field on a closedCr manifoldM ,
r ≥ 1. We will restrict out attention to the stable manifolds. The results on un-
stable manifolds are analogous. It will be shown that a stable manifold depends
continuously on perturbations of a vector field in a sense specified later in this
section.

The stable manifold ofξ at a singular pointa is defined by

W s
a (ξ) = {x ∈M | lim

t→+∞
φξx(t) = a},

and the unstable manifold ofξ ata is

W u
a (ξ) = {x ∈M | lim

t→−∞
φξx(t) = a}.

At this stage it is not clear that the setsW s
a (ξ) andW u

a (ξ) are manifolds. This is in-
deed the case if the singular points are hyperbolic. This is shown in Theorem 5.4.1
and Corollary 5.4.2.

Significance of the notion of a hyperbolic singular point stems from the follow-
ing observation. IfL ∈ L(Rn) and it is hyperbolic then there is a direct sum
decomposition

R
n = Es ⊕ Eu,

whereEs andEu are invariant subspaces forL. Moreover the eigenvalues of
Ls ≡ L|Es have negative real part and the eigenvalues ofLu ≡ L|Eu have positive
real part, cf. Ch. 7 in Hirsch and Smale [1974]. In particularW s

0 (L) = Es and
W u

0 (L) = Eu. We shall use the projections

P s : R
n → Es andP u : R

n → Eu. (5.6)

For a hyperbolicL there arec0, α > 0 such that

‖eLtP s‖ ≤ c0e
−αt for t ≥ 0

‖eLtP u‖ ≤ c0e
αt for t ≤ 0.

(5.7)
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We define the local stable and unstable manifold

W s
0 (ξ, U) = {x ∈ U : φx(t) is defined and contained inU for all t ≥ 0, and

lim
t→+∞

φξx(t) = 0},
W u

0 (ξ, U) = {x ∈ U : φx(t) is defined and contained inU for all t ≤ 0, and

lim
t→−∞

φξx(t) = 0}.

Theorem 5.4.1 (Local Stable Manifold Theorem, Theorem 6.3.1, Jost [2002]).
Letφx(t) satisfy the differential equation (5.4) with a hyperbolic linear operatorL
andη ∈ Xr(Rn) obeying inequality (5.5). Then there is an open neighborhoodU
of 0 such thatW s

0 (ξ, U) is a Lipschitz graph overU ∩ Es, which is tangent toEs

at 0. If η is of classCk in U , so isW s
0 (ξ, U).

Let ξ ∈ Xr(Rn) and suppose0 is a hyperbolic singular point. DenoteL = dξ0
and letEs, Eu be the stable and unstable subspaces ofR

n for L. Furthermore, let
Ds
r, D

u
r be centered at0 open balls respectively inEs andEu, both with the radius

r. By the Local Stable/Unstable Manifold Theorem there are two mapsαs : Ds
r →

Eu, andαu : Du
r → Es, such thatW s

a (ξ,Ds
r ⊕ Du

r ) andW u
a (ξ,Ds

r ⊕ Du
r ) are

graphs ofαs andαu, respectively. The differentials,dαs(0) = dαu(0) = 0.
We define a mapα : Ds

r ⊕Du
r → Es ⊕ Eu by

α(xs, xu) = (xs − αu(x), xu − αs(x)). (5.8)

The mapα is Cr anddα(0) = idRn . Thusα is a diffeomorphism when restricted
to some open neighborhood of0 in R

n. If we representξ in the local coordinates
determined byα, ξ̂ = dαξ ◦ α−1 then the local stable manifold of̂ξ is an open
neighborhood of the origin inEs and the local unstable manifold is an open neigh-
borhood of the origin inEu.

Suppose now thatξ ∈ Xr(M) anda is a hyperbolic singular point, we formulate
a global version of Theorem 5.4.1.

Corollary 5.4.2 (Global Stable Manifold Theorem for Vector Fields). Suppose
ξ ∈ Xr(M), r ≥ 1, a is a hyperbolic critical point andλ is the index ofξ. Then
W s
a (ξ) is the surjective image of aCr injective immersion

αs : R
λ →W s

a (ξ) ⊂M.
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Hence,W s
a (ξ) is an injectively immersed open disk inM . Furthermore,

Ta(W
s
a (ξ)) = Ta(M)s.

In the proof of the corollary we shall use the following lemma.

Lemma 5.4.3. For r ≥ 1, let ξ be aCr vector field onRn such thatξ(0) = 0 and
L = dξ0. SupposeL is asymptotically stable. Then there is a neighborhood U of0
and an extensionξ′ of ξ|U to R

n such thatW s
0 (ξ′) = R

n.

Proof. For eachr > 0 there is a smooth bump functionρ : R
n → [0, 1] with

the properties:ρ(x) = 1 for ‖x‖ < r/2, ρ(x) = 0 for ‖x‖ > r. By Taylor
expansion,ξ has the form (5.4) and (5.5). We define the vector fieldξ′ = L + θ,
whereθ(x) = ρ(x)η(x). It is equal toξ on the open ballDn

r/2 and it coincides with
L for ‖x‖ > r.

SinceL is asymptotically stable, by Theorem 5.3.4 for any choice of a selfadjoint
positive definite matrixQ there is a selfadjoint positive definite matrixP such that
LTP + PL = −Q. Let c be the smallest eigenvalue ofQ. Pick r such that
κ ≡ c− 2δ(r)‖P‖ > 0. We define a functionν(x) = xTPx and see that

−ξ′(ν)(x) = xTQx− 2ρ(x)xTPη(x) ≥ κ‖x‖2

for x ∈ R
n − {0}, thus by Corollary 5.3.3, the systemξ′ is asymptotically stable

onR
n. �

Proof (of Corollary 5.4.2).The argument below follows the proof of Theorem 4.15
in Banyaga and Hurtubise [2004]. It is modified it to deal with the stable manifolds
for vector fields.

Consider an open neighborhoodU ′ ⊂M of the pointa and apply the exponential
map to get a coordinate chartψ : U ′ → U ⊂ Ta(M) with U an open neighborhood
of 0. We represent the vector fieldξ in the local coordinates̄ξ = dψξ ◦ (ψ)−1. De-
note the stable and unstable subspaces ofTa(M) for ξ̄ by respectivelyTa(M)s and
Ta(M)u. Note that the fact thatξ is of classC1 implies that inequality (5.5) holds
locally. By Theorem 5.4.1 we can shrinkU ′ such thatψ(W s

a (ξ, U ′)) is a graph of
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a functiong : U ∩ Ta(M)s → Ta(M)u. Sinceψ is the inverse of the exponen-
tial map, we havedaψ = idTa(M). Moreover,Ta(ψ(W s

a (ξ, U ′))) = Ta(M)s thus
Ta(W

s
a (ξ)) = Ta(M)s.

On an open neighborhoodV of a inW s
a (ξ) , the compositionψ′ = P s◦ψ|W s

a (ξ,U ′)

is a coordinate chartψ′ : V → Ta(M)s. We shall denote the imageψ′(V ) byW .
We are ready to define a differentiable structure onW s

a (ξ) by

W s
a (ξ) =

⋃

k ∈ Z

k ≤ 0

Φ(k, V ), whereΦ is the flow ofξ, that isΦ(t, x) = φξx(t).

Fork ∈ {0, 1, 2, ...} we defineVk = Φ(−k, V ) andψk : Vk → Ta(M)s, ψk(x) =
ψ′ ◦ Φ(k, x). The atlas(Vk, ψk) makes the inclusionW s

a (ξ) ↪→M an immersion.
We represent the restriction of the vector fieldξ to V in the local coordinates

ξ′ = dψ′ξ ◦ (ψ′)−1.

By Lemma 5.4.3 we can extend the vector fieldξ′ ∈ Xr(W ) to a stable vector field
ξ′′ ∈ Xr(Ta(M)s) and define a mapαs : T sa (M) →W s

a (ξ) by

αs(x) = φξ−t ◦ (ψ′)−1 ◦ φξ′′t (x),

wheret is any positive real such thatφξ
′

t (x) ∈ V . The mapαs is well defined since
for τ ≥ t we have

φξ−τ ◦ (ψ′)−1 ◦ φξ′′τ (x) = φξ−τ ◦ (ψ′)−1 ◦ φξ′′τ−t ◦ φξ
′′

t (x)

= φξ−τ ◦ φξτ−t ◦ (ψ′)−1 ◦ φξ′′t (x)

= φξ−t ◦ (ψ′)−1 ◦ φξ′′t (x).

By the flow properties the mapαs is Cr, it is injective and also surjective since
for any q ∈ W s

a (ξ) there ist > 0 such thatφξt ∈ V . The differentialdαs is a
composition of injective maps thusαs is an injective immersion ofTa(M)s onto
W s
a (ξ). �

We shall remark that there is an ”unstable” counterpart of the global andlocal
stable manifold theorems. A version of Theorem 5.4.1 for aCr diffeomorphism on
M can be found in Banyaga and Hurtubise [2004] and Palis and de Melo [1982].

In the remaining of this section we will discuss perturbations of vector fields.
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5 Morse-Smale Vector Fields

Definition 5.4.4. SupposeU is an open subset inRn, ξ, ϑ ∈ Xr(U), andp is a
singular point for bothξ andϑ. We say thatξ is locally topologically conjugate to
ϑ at p if there are two neighborhoodsV andV ′ of p in U and a homeomorphism
h : V → V ′ such that

h(φξt (x)) = φϑt (h(x))

for x ∈ V andt ∈ R and both sides of the equation are defined.

SupposeU ⊂ R
n is an open neighborhood of0 with compact closurecl(U).

According to the Grobman-Hartman Theorem any hyperbolicξ ∈ Xr(U) with
ξ(0) = 0 is locally topologically conjugate to its linearizationdξ0. We modify
the Grobman-Hartman Theorem to deal with small perturbations. For an open
neighborhoodV ⊂ U andϑ ∈ Xr(U) with a hyperbolic critical point0 we define
a setBδ(ϑ, V ) ⊂ Xr(U) by

Bδ(ϑ, V ) = {ξ ∈ X
r(U)| ‖ξ′ − ϑ′‖1 < δ whereξ′ = ξ|V , ϑ′ = ϑ|V ∈ X

r(V )

andξ(0) = 0},

where forξ ∈ Xr(V ) we have||ξ||1 = sup{||ξ(x)||, ||dξ(x)|| | x ∈ V }. Note that
Bδ(ϑ, V ) is open in the space{ξ ∈ Xr(U)| ξ(0) = 0} with the topology generated
by the norm‖ · ‖1.

Proposition 5.4.5. LetU be an open subset ofR
n with compact closure. Suppose

ϑ ∈ Xr(U), 1 ≤ r < ∞, and0 is a hyperbolic singular point. DenoteL = dϑ0.
Then there is a neighborhoodV ⊂ U of 0, a realδ > 0 and a continuous map

h : V ×Bδ(ϑ,U) → U

such that for anyξ ∈ Bδ(ϑ,U),

1. hξ : V → U is a homeomorphism onto its image,

2. hξ(φ
ξ
t (x)) = φLt (hξ(x)).

In the proof of this proposition and Proposition 5.4.7 we use the following version
of the Banach fixed point theorem, cf. Lemma 10.2 in Jost [1998].
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5.4 Invariant Manifolds and Their Perturbations

Lemma 5.4.6. LetC be a closed set in a Banach spaceA andP be an open set in
a Banach spaceB. For r ≥ 0, letT : P × C → C be aCr map that satisfies

‖Tx(y1) − Tx(y2)‖ ≤ λ‖y1 − y2‖ for all y1, y2 ∈ C andx ∈ P

with 0 ≤ λ < 1.
Then there is a uniqueCr mapY : P → C such that

Tx(Yx) = Yx.

Proof. By Lemma 10.2 in Jost [1998], the lemma is true forr = 0. We prove it for
r ≥ 1. Supposey = Y (x) andy0 = Y (x0). SinceT is of classCr in particular it
is differentiable. We use Eq.(5.1) to write

T (x, y)−T (x0, y0) = A(x0,y0)(x−x0)+B(x0,y0)(y−y0)+α(x0,y0)(x−x0, y−y0),
(5.9)

whereα(x0,y0) is tangent to0. Sincey andy0 are assumed to be fixed points, the
above equation yields

y− y0 = A(x0,y0)(x− x0) +B(x0,y0)(y− y0) + α(x0,y0)(x− x0, y− y0). (5.10)

From (5.10) we get

(

idA −B(x0,y0)

)−1
(y − y0) = A(x0,y0)(x− x0) + α(x0,y0)(x− x0, y − y0).

Since the mapTx0 is a contraction for allx0 ∈ P , the norm of the linear operator
B(x0,y0) is less than 1 for all(x0, y0) ∈ P × C. This is seen by substituting in
Eq. (5.9)x for x0 andy − y0 for hv with h ∈ R andv such that

‖B(x0,y0)v‖ = ‖B(x0,y0)‖.

This yields

λ|h| ≥ ‖B(x0,y0)‖|h| − ‖α(x0,y0)(0, hv)‖ ≥ (‖B(x0,y0)‖ − β(hv))|h| ∀h ∈ R
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5 Morse-Smale Vector Fields

with lim‖z‖→0 β(z) = 0. Thus‖B(x0,y0)‖ ≤ λ < 1. It follows that the matrix
(

idA −B(x0,y0)

)

is nonsingular and

y − y0 =
(

idA −B(x0,y0)

)−1
A(x0,y0)(x− x0)

+
(

idA −B(x0,y0)

)−1
α(x0,y0)(x− x0, y − y0).

We conclude that the derivativedY (x) =
(

idA −B(x,y(x))

)−1
A(x,y(x)) is of class

Cr−1. �

Proof (of proposition).The theorem follows from the proof of Grobman-Hartman
theorem, cf. Chicone and Swanson [2000], and Lemma 5.4.6.�

Proposition 5.4.7. Supposeϑ ∈ Xr(Rn), 1 ≤ r < ∞, and 0 is a hyperbolic
singular point ofϑ. LetL = dϑ0 andEs, Eu be stable and unstable subspaces of
R
n for L. Then there are (1) two open neighborhoodsU, V of 0 in R

n with V ⊂ U
andcl(U) compact, (2) a realδ > 0 and (3) aCr map

βs : (V ∩ Es) ×Bδ(ϑ,U) → Eu,

such that for anyξ ∈ Bδ(ϑ, V ), W s
0 (ξ, V ) is the graph ofβsξ : V ∩ Es → Eu,

whereβsξ(x) = βs(x, ξ).

Proof. The proposition follows from the proof of Theorem 6.3.1 in Jost [2002].
The difference lies in extending it to cope with small perturbations inBδ(ϑ). Here
we give a sketch of the proof.

Considerc0, α as in the inequalities (5.7) on page 50. For0 < λ < α we define
the following Banach space

Mλ =

{

Y : R
+ → R

n | ‖Y ‖exp,λ ≡ sup
t≥0

eλt‖Y (t)‖ <∞
}

.

We chooseε > 0 and consider a closed subset

Mλ(ε) = {Y ∈Mλ | ‖Y ‖exp,λ ≤ ε} ⊂Mλ.

ThusMλ(ε) is the set of thoseY for which‖Y (0)‖ ≤ ε and that are exponentially
decreasing.
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5.4 Invariant Manifolds and Their Perturbations

In the following we keepλ fixed. Pickδ > 0 andξ ∈ Bδ(ϑ,D2ε). We define
θ ≡ ξ − ϑ and consider the following ordinary differential equation

d

dt
φξx(t) = ξ(φξx(t)) = ϑ(φξx(t)) + θ(φξx(t)) = Lφξx(t) + ω(φξx(t)) + θ(φξx(t)),

(5.11)

with φξx(0) = x. We think aboutL andω as fixed (obtained from the Taylor
expansion ofϑ) andθ plays the role of a perturbation. Thus the vector fieldω :
R
n → R

n satisfiesω(0) = 0 and

‖ω(x) − ω(y)‖ ≤ δ′(ε)‖x− y‖ for ‖x‖, ‖y‖ < ε

with the functionδ′ : [0,∞) → [0,∞) continuous and monotonically increasing.
If ‖θ|D2ε

‖1 < δ′′ thensup{‖dθ(u)‖ | ‖u‖ < 2ε} < δ′′, by the definition of‖ · ‖1

norm . We use the Mean Value Theorem to show that

‖θ(x) − θ(y)‖ ≤ δ′′‖x− y‖ for ‖x‖, ‖y‖ < ε.

Denotingη = ω + θ andδ(ε) = δ′(ε) + δ′′ we see that

‖η(x) − η(y)‖ ≤ δ(ε)‖x− y‖ for ‖x‖, ‖y‖ < ε.

Our setup is like the one in the proof of Theorem 6.3.1 in Jost [2002]. The only dif-
ference is thatδ(0) is no longer0 butδ′′. However, we can permit the perturbations
‖θ|D2ε

‖1 < δ′′ to be as small as desired.
LetDs

ε ⊂ Es be an open disk of radiusε centered at0. For sufficiently smallε
andδ we can define an operatorT : Ds

ε ×Mλ(ε) ×Bδ(ω,D2ε) →Mλ(ε) by

T (x, Y, η)(t) = eLtx+

∫ t

0
eL(t−s)P sη(Y (s))ds−

∫ ∞

t
eL(t−s)P uη(Y (s))ds,

whereP s andP u have been defined in Equation (5.6) on page 50.
The form of the operator is such that ifỸ is bounded and̃Y (t) = T (x, Ỹ , η)(t)

then it is a solution ofddtY (t) = ξ(Y (t)).
Following the equations (6.3.20) to (6.3.21) on page 298 in Jost [2002] we ob-

serve that

‖T (x, Y, η)(t)‖ ≤ c0e
−αt‖x‖ + c1δ(ε)e

−λt‖Y ‖exp,λ,

57



5 Morse-Smale Vector Fields

wherec0 andc1 are positive real numbers, furthermore

‖T (x, Y1, η)(t) − T (x, Y2, η)(t)‖ ≤ 2c1δ(ε)e
−λt‖Y1 − Y2‖exp,λ.

We shrinkε andδ′′ such that2c1δ(ε) < 1/2 and pick0 < ε′ ≤ ε
2c0

. Then we
have that for anyY1, Y2 ∈Mλ(ε)

‖T (x, Y1, η)‖exp,λ ≤ ε

and

‖T (x, Y1, η) − T (x, Y2, η)‖exp,λ ≤ 1

2
‖Y1 − Y2‖exp,λ

for all x ∈ Ds
ε′(open disk inEs centered at0 and radiusε′) andη ∈ Bδ(ω,D2ε).

In conclusion the operatorT is such thatT (x, ·, η)(Mλ(ε)) ⊂ Mλ(ε) for all x ∈
Ds
ε′ andη ∈ Bδ(ω,D2ε) and has a contraction constant equal to1

2 . Therefore, by
applying the Banach Fixed Point Theorem, Lemma 5.4.6, we get a unique solution
Y(x,η) ∈Mλ(ε) to the equation

Y (t) = T (x, Y, η)(t) for anyx ∈ Ds
ε′ andη ∈ Bδ(ω,D2ε). (5.12)

Observe thatT is Cr, so does the mapDs
ε′ × Bδ(ω,D2ε) → Mλ(ε) taking(x, η)

to the solutionY(x,η).

Notice thatT (0, 0, η) = 0. SinceY(x,η) ∈ Mλ(ε) is decaying exponentially,
limt→∞ Y(x,η)(t) = 0 , therefore

Y(x,η)(0) ∈W s
0 (ξ) = W s

0 (L+ η).

It is shown in Jost [2002] that for any open neighborhoodV ′ of 0 with

V ′ ⊂ (D2ε ∩ (P s)−1(Ds
ε′))

and for anyη ∈ Bδ(ω,D2ε) we have a map

gη : V ′ ∩ Es →W s
0 (L+ η), x 7→ Y(x,η)(0),

satisfying
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5.4 Invariant Manifolds and Their Perturbations

1. gη is a bijection betweenEs ∩ V ′ and its image inW s
0 (ξ);

2. ‖Y(x1,η)(0) − Y(x2,η)(0)‖ ≤ 2c0‖x1 − x2‖ (gη is Lipschitz);

3. There exists an open neighborhoodVη ⊂ R
n such thatVη ∩ Es = V ′ ∩ Es

and the imagegη(Vη ∩ Es) = W s
0 (η, Vη).

Let V =
⋃

η∈Bδ(ω,D2ε)
Vη, thenV is an open neighborhood of0 and

gη(V ∩ Es) = W s
0 (η, Vη) = W s

0 (η, V ) for all η ∈ Bδ(ω,D2ε).

The last equality follows from the following observation: Ifx, y ∈ W s
0 (ξ, V ) and

P s(x) = P s(y) thenx = y, cf. Lemma 2.6.3 in Palis and de Melo [1982]. We
define a mapg : (V ∩ Es) × Bδ(ω,D2ε) → Es × Eu by g(x, η) ≡ gη(x) =
Y(x,η)(0), and the desired mapβs : (V ∩ Es) ×Bδ′′(ϑ,D2ε) → Eu is given by

(x, ξ) 7→ P ug(x, ξ − L).

�

Let U be an open subset ofR
n with compact closure. Supposeϑ ∈ X(U) and

0 is a hyperbolic singular point ofϑ. Without loss of generality we may assume
that the stable manifold ofϑ is a neighborhood of the origin inEs if not apply the
diffeomorphismα in Equation (5.8) and considerdαϑ ◦ α−1.

For any differential equation of the forṁx = ϑ(x) = Lx + η(x) whereη(0) =
dη(0) = 0 andL is hyperbolic, there exist two matricesP andQ, Q is selfadjoint
positive definite andP is selfadjoint nonsingular, such thatLTP +PL = −Q and
π(L) = ν(P ). We define a functionf(x) = xTPx. By the Lyapunov arguments,
cf. Proposition 5.3.9, there exists a sufficiently small neighborhoodV ⊂ U of 0
and a constantκ > 0 such that

−ϑ(f)(x) ≥ κ‖x‖2 for x ∈ V. (5.13)

We will consider the preimageVτ = f−1(τ) for a regular valueτ . By Equa-
tion (5.13) the intersectionSs0(ϑ, V ) ≡ Vτ∩W s

0 (ϑ, V ) is transversal, thusSs0(ϑ, V )
is a manifold. By assumptionSs0(ϑ, V ) ⊂ Ss0(ϑ, V ) ⊂ Es therefore all eigenval-
ues ofP |Es are positive definite, henceV ′

τ ≡ f |−1
Es(τ) is a sphere. We conclude

thatSs0(ϑ, V ) = V ′
τ ∩ cl(W s

0 (ϑ, V )) is a closed manifold. For sufficiently smallτ
the manifoldSs0(ϑ, V ) is nonempty, and its dimension is equal toν(L) − 1, where
ν(L) is the index ofL.
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Proposition 5.4.8. Letϑ ∈ Xr(Rn), r ≥ 1, and0 is a hyperbolic singular point of
ϑ. LetU, V be the sets as in Proposition 5.4.7. Suppose there is a Morse function
f : U → R with

ϑ(f)(x) ≥ κ‖x‖2 for all x ∈ U,

there is a regular valueτ and there is a neighborhoodV of0 so that the intersection
Ss0(ϑ, V ) ≡ f−1(τ) t W s

0 (ϑ, V ) is nonempty closed manifold. Then for any open
neighborhoodN of Ss0(ϑ, V ) in f−1(τ) ∩ V there isδ > 0 such that

⋃

ξ∈Bδ(ϑ,U)

Ss0(ξ, V )) ⊂ N .

Proof. Define a map

β : (V ∩ Es) ×Bδ(ϑ,U) → Es × Eu by β(x, ξ) = (x, βs(x, ξ)).

Without loss of generality we may assume that the given neighborhoodN has
compact closure. Pick a tubular neighborhoodB of Ss0(ϑ, V ) in V such thatN ′ ≡
B ∩ f−1(τ) ⊂ N . Define the following set

K = cl(P sN ′) ⊂ Es.

The setK is compact. For anyx ∈ K there is a neighborhoodVx of x andδx > 0
such thatβ(Vx, Bδx(ϑ)) ⊂ B. Since the setK is compact there is a finite number
of {Vxi

}i∈{1,...,N} coveringK.
If δ = min{δxi

| i = 1, ..., N} thenβ(K,Bδ(ϑ,U)) ⊂ B. We observe that

⋃

ξ∈Bδ(ϑ,U)

Ss0(ξ, V )) =
⋃

ξ∈Bδ(ϑ,U)

Ss0(ξ, V ) ∩N ′

=
⋃

ξ∈Bδ(ϑ,U)

f−1(τ) ∩W s
0 (ξ, V ) ∩N ′

=
⋃

ξ∈Bδ(ϑ,U)

f−1(τ) ∩ β(P sN ′, ξ)

⊂ f−1(τ) ∩ β(P sN ′, Bδ(ϑ,U))

⊂ f−1(τ) ∩ β(K,Bδ(ϑ,U)).
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Thus
⋃

ξ∈Bδ(ϑ,U)

Ss0(ξ, V )) ⊂ f−1(τ) ∩ β(K,Bδ(ϑ,U)) ⊂ f−1(τ) ∩B = N ′ ⊂ N .

�

We remark that the similar results can be formulated for the unstable manifolds.

5.5 Structural Stability

We shall define Morse-Smale vector fields and see that they are structurally stable.
A Morse-Smale vector field has a finite number of hyperbolic singular points and
a finite number of closed orbits that are hyperbolic. Furthermore, all the stable and
the unstable manifolds intersect transversally. We do not focus the attentionon
the closed orbits, since they do not give rise to the partial order discussed in the
Introduction. We refer instead to Ch. 3 in Palis and de Melo [1982] for details.
In the next section we shall introduce the primary object of our study: an essential
gradient-like vector field, which is a Morse-Smale vector field that does nothave
any closed orbits.

Definition 5.5.1 (Sec. 3.1 of Palis and de Melo [1982]).Let γ be a closed orbit
of a vector fieldξ ∈ Xr(M) andx ∈ γ. LetΣ be a section transversal toξ through
the pointx. We sayγ is a hyperbolic closed orbit ofξ if p is a hyperbolic fixed
point of the Poincaŕe mapP : V → Σ, whereV is an open neighborhood ofx and
P is a diffeomorphism onto its image.

Definition 5.5.2 (α- and ω-limit sets). If ξ ∈ Xr(M) andx ∈M , then theα- and
ω-limit sets forξ are

α(x) =
⋂

τ≤0

⋃

t≤τ
φξt (x) and

ω(x) =
⋂

τ≥0

⋃

t≥τ
φξt (x).
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If γ is a hyperbolic closed orbit of a vector fieldξ ∈ Xr(M) we define stable and
unstable manifolds ofγ by

W s
γ (ξ) = {x ∈M | ω(y) = γ}

W u
γ (ξ) = {x ∈M | α(y) = γ}.

The setsW s
γ (ξ) andW u

γ (ξ) are immersed manifolds ofM of classCr, cf. Propo-
sition 3.1.5 and the following Corollary in Palis and de Melo [1982].

Definition 5.5.3 (Sec. 4.1 in Palis and de Melo [1982]).Let ξ ∈ Xr(M). We say
that p ∈ M is a wandering point forξ if there exists a neighborhoodV of p and
a numbert0 such thatφξt (V ) ∩ V = ∅ for |t| > t0. Otherwise we say thatp is
nonwandering.

The set of nonwandering points ofξ will be denoted byΩ(ξ).

Definition 5.5.4 (Morse-Smale Vector Field, Sec. 4.1, Palis and de Melo [1982]).
A vector fieldξ ∈ Xr(M) will be called Morse-Smale provided it satisfies the fol-
lowing five conditions:

1. ξ has a finite number of singular points, sayβ1, ..., βk, each hyperbolic,

2. ξ has a finite number of closed orbits (periodic solutions), sayβk+1, ..., βN ,
each hyperbolic;

3. For anyx ∈M, α(x) = βi andω(x) = βj for somei andj;

4. Ω(ξ) = {β1, ..., βN};

5. The stable and unstable manifolds associated with theβi have transversal
intersection.

The set of all Morse-Smale vector fields onM is denoted bySr(M).

The setsβ1, ..., βN will be called the singular elements of the vector fieldξ.
The set of the singular elements ofξ will be denoted byCr(ξ). As for Morse-
Smale functions we can define a partial order relation on the singular elementsof
a Morse-Smale vector field.
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Proposition 5.5.5 (Smale [1960]).Letξ be a Morse-Smale vector field onM . Let
βi � βj mean that there is a trajectory not equal toβi nor βj whoseα-limit set is
βi and whoseω-limit set isβj . Then� satisfies:

1. It is never true thatβj � βi;

2. If βi � βj andβj � βl thenβi � βl;

3. If βi � βj thendim(W u
βi

) ≥ dim(W u
βj

) and equality can only happen ifβj
is a closed orbit.

We use this proposition to define a partial order relation on the singular elements:
βi � βj if and only if βi = βj or βi � βj .

We shall conclude the section by stating the results on structural stability of
Morse-Smale vector fields.

Definition 5.5.6. Two vector fieldsξ, η ∈ Xr(M) are topologically equivalent if
there exists a homeomorphismh : M →M such that

1. h ◦ Φξ(R, x) = Φη(R, h(x)) for eachx ∈M ,

2. h preserves the orientation, that is ifx ∈ M and δ > 0 there existsε > 0
such that, for0 < t < δ, h ◦ Φξ(x, t) = Φη(h(x), τ) for some0 < τ < ε.

We say thath is a topological equivalence, and use a notationξ ∼ η to denote that
ξ andη are topologically equivalent.

The first condition of the definition states that the homeomorphismh takes orbits
into orbits. The second states that a stable manifold ofξ goes to a stable manifold
of η. Specifically, for a pair of topologically equivalent vector fieldsξ andη via a
homeomorphismh : M →M andp ∈ Cr(ξ) we haveW s

ξ (p) = h(W s
η (h(p))).

We will be interested in behavior of a vector field whose orbits do not change
qualitatively under small perturbations.

Definition 5.5.7. A vector fieldξ ∈ Xr(M) is structurally stable if there exists
an open neighborhoodU of ξ in Xr(M) such that everyη ∈ U is topologically
equivalent toξ.
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We have the following result.

Theorem 5.5.8 (Theorem 4.1, Palis and Smale [1970]).If ξ ∈ Xr(M) is a Morse-
Smale vector field thenX is structurally stable.

If the dimension of the manifoldM is 2 then the subset consisting of Morse-
Smale vector fields,S1(M), is dense inX1(M), and if in additionM is orientable
the setSr(M) is dense inXr(M) for r ≥ 1, c.f. Palis and de Melo [1982], Ch.4.

5.6 Gradient-like Vector Fields

Slightly confusingly the literature provides two definitions of a gradient-like vector
field.

Definition 5.6.1 (Essential Gradient-like Vector Field). A Morse-Smale vector
field ξ ∈ Sr(M) for which the only singular elements are singular points (there
are no closed orbits) is called an essential gradient-like vector field. We denote the
set of all essential gradient-like vector fields byEr(M).

Another definition of a gradient-like vector field was introduced by Smale in
Smale [1961].

Definition 5.6.2 (Gradient-like Vector Field). AC∞ vector fieldX on a smooth
compact manifoldMn (with or without boundary) is called gradient-like if it sat-
isfies the following conditions:

1. At each singular pointpi, i = 1, ..., N , ofX, there is an open neighborhood
Ui and aC∞ functionfi on Ui such thatX is the gradient offi in some
Riemannian structure onUi. Furthermorepi is a non-degenerated critical
point offi.

2. If x ∈ ∂M ,X is transversal atx (X has no singular points on∂M ).

3. The setΩ(X) of nonwandering points ofX is equal to{p1, ..., pN}.

4. The stable and unstable manifolds of the singularitiespi, pj , i 6= j, intersect
transversally.
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It is not true that all singularities of Morse-Smale flows are of standard form, the
first condition of Definition 5.6.2, therefore the two definitions of a gradient-like
vector field are not equivalent. In fact, the gradient-like vector field of Defini-
tion 5.6.2 is a gradient vector field of a Morse-Smale function if we are allowedto
change the Riemannian metric onM .

Theorem 5.6.3 (Theorem B in Smale [1961]). LetX be a gradient-like vector
field onM , V1 be the connected component of∂M at whichX is oriented in, and
V2 the connected component of∂M at whichX is oriented out. Then there is a
C∞-functionf onM , which has the following properties:

1. The critical points off coincide with the singularities ofX. For i = 1, ..., N ,
f coincides with the functionfi of Condition (1) in Definition 5.6.2 plus a
constant in some some neighbourhood ofpi.

2. If X is nonzero atx ∈ M , then it is transversal to the level hypersurface of
f at x.

3. If pi is a critical pointf(pi) = λpi
, whereλpi

is the index ofX at pi.

4. The functionf has value−1
2 onV1 andn+ 1

2 onV2.

The theorem shows that a gradient-like vector field is the gradient of a function
in some Riemannian structure.

Corollary 5.6.4. There is a Riemannian metric onM such that∇f = X.

Proof. Away from the singular points ofX construct a Riemannian metricg such
that∇gf = X. SinceM is compact it is enough to show that for eachp ∈ M
there exist an open neighborhoodU of p and a Riemannian metricg0 onU such
that∇g0f = X. There are local coordinates inU such that the vector fieldX is
writtenX = ∂

∂x1
, anddf = v1dx1 + ... + vndxn. Sincedf(X) 6= 0 without loss

of generalization we may assume thatdf(X) = v1 = 1. Let

S = {A ∈ GL(n,R)| A = AT}
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5 Morse-Smale Vector Fields

and picka > 0; consider the smooth map

φ : U → S, q 7→ A(q) =













1 v2(q) v3(q) ... vn(q)
v2(q) a 0 ... 0
v3(q) 0 a ... 0
...

vn(q) 0 0 ... a













.

If a > maxq∈cl(U)

∑n
i=2 v

2
i (q) thenA(q) is positive definite for eachq ∈ U , and

the mapφ defines the desired Riemannian metricg0 onU .
As in the proof of Lemma 4.1.1 use a smooth partition of unity to extend the

Riemannian metric to the wholeM , such that it coincides with the Riemannian
structure in Condition (1) of Definition 5.6.2 on a neighborhood of each critical
point.�

The next proposition shows that an essential gradient-like vector field can be
connected by a curve inXr(M) with a gradient-like vector field.

Proposition 5.6.5 (Lemma 2 in Newhouse and Peixoto [1976]).LetM be a com-
pact smooth manifold andX be an essential gradient-like vector field onM . For
k ≥ 1 andr ≥ 2 there is a curveσ ∈ Ck(I,Xr(M)) withσ(0) = X, σt is a Morse
Smale vector field fort ∈ I, andσ1 = ∇gf for some Morse functionf and some
Riemannian metricg onM .

Using compactness ofI and structural stability of the Morse-Smale vector fields
we see that the vector fieldsσ1 andX = σ0 are topologically equivalent. This
remark can be used to translate the result on the gradient vector fields of Morse-
Smale functions to essential gradient-like vector fields.

Fora, b ∈ Cr(ξ) we shall denoteW (a, b; ξ) = W u
a (ξ) ∩W s

a (ξ).

Proposition 5.6.6. Let a, b be singularities of a gradient-like vector fieldξ. Then
cl(W (a, b; ξ)) is compact andcl(W (a, b; ξ)) =

⋃

a�a′�b′�bW (a′, b′; ξ).

Proof. By Proposition 5.6.5, for any essential gradient-like vector fieldη there is a
Morse functionf : M → R

n and a Riemannian metricg onM makingf Morse-
Smale such thatη and∇gf are topologically equivalent. That is, there exists a
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homeomorphismh : M → M taking orbits ofη into orbits of∇gf preserving
their orientation. Thus for anyp, q ∈ Cr(η) we have that

h(W (p, q; η)) = W (h(p), h(q);∇gf)).

By Corollary 6.28 in Banyaga and Hurtubise [2004] the proposition is already true
for ξ = ∇gf . Therefore it is also true for the essential gradient-like vector fieldη.
�

5.7 Lyapunov Functions

This section is based on Meyer [1968]. We consider a closed smooth manifold M
and a smooth functionf : M → R with the set of critical points denoted as usual
by Cr(f). Let ∆i denote the set of points inCr(f), where the Hessian off has
nullity i.

Definition 5.7.1 (Lyapunov function for M , Meyer [1968]). A smooth function
f : M → R will be called Lyapunov function forM provided the following condi-
tions are satisfied:

1. Cr(f) = ∆0 ∪ ∆1;

2. ∆1 is the disjoint union of a finite number of embedded circles inM , say
δ1, ..., δl, such that the index off is constant on each circle;

3. For i = 1, ..., l there exists a neighborhoodVi of δi and a diffeomorphismψi
such thatψi mapsVi into the product ofDn−1 andS1 if Vi is orientable or
into twisted product ofDn−1 andS1 if Vi is nonorientable with the property
thatf ◦ψ−1

i (x) = f(δi)+Q(x), whereQ is a nonsingular quadratic form in
x1, ..., xn−1, the coordinates inDn−1, and it is periodic inxn, the coordinate
onS1.

Notice also that ifδl+1, ..., δN ∈ ∆0 then by the Morse Lemma, cf. Lemma 2.2 in
Milnor [1973], there is a family of coordinate systems{(Vi, ψi)}i∈{l+1,...,N} such
that

f ◦ ψ−1
i (y) = f(δi) +Q(y),
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5 Morse-Smale Vector Fields

whereQ is a nonsingular quadratic form inx whose index is equal to the index of
f .

Definition 5.7.2 (Lyapunov function for a vector field, Meyer [1968]). LetX ∈
X∞(M). Then a Lyapunov functionf for M will be called a Lyapunov function
for ξ provided

1. ξ(f)(x) < 0 for all x ∈M − Cr(f);

2. If p is a singular point ofξ thenp /∈ ∆1;

3. There exists a real numberκ > 0 such that on eachVi, i = 1, ..., N , we have

−ξ(f)(x) ≥ κd(y, δi)
2 for y ∈ Vi,

whered is the distance induced by some Riemannian metricsg onM .

The next theorem shows that Morse-Smale vector fields admit Lyapunov func-
tions. This result will be extensively used in the proof of the Central Vector Field
Theorem in Ch. 7.

Theorem 5.7.3 (Meyer [1968]).If ξ ∈ X∞(M) is Morse-Smale then there exists
a Lyapunov function forξ. Furthermore the Lyapunov functionf can be chosen
in the following way. Let{pi}i∈{1,...,l} be the sequence of singular points ofξ and
{ri}i∈{1,...,l} be a sequence of real numbers so that ifpi � pj thenri > rj . Thenf
can be chose such thatf(pi) = ri.

Proof (sketch of).We shall only give an outline of the proof for a gradient-like
vector field. For details we refer to Meyer [1968]. Suppose{p1, ..., pk} = ∆0 =
Cr(ξ). By Proposition 5.5.5 we can findk real numbersri such thatri > rj
wheneverpi � pj . First step is to define the functionf on thepi by f(pi) = ri.
The next step is to definef in a neighborhood of each singular pointpi. Using a
local coordinate chart(Vi, ψi) of pi, the vector fieldξ has the form

ξ̂ = dψiξ ◦ ψ−1
i = Li + ηi,

whereLi hyperbolic andηi(0) = dηi(0) = 0. By Theorem 5.3.7, there are nonsin-
gular symmetric matricesPi andQi with Qi positive definite such that

LT
i Pi + PiLi = −Qi
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andπ(Li) = ν(Pi), π(Pi) = ν(Li).
We definef in Vi by f(x) = ri + xTQx then by Proposition 5.3.9 there exists a

real numberκi > 0 such that in a neighborhoodUi ⊂ Vi of 0 we have

−ξ(f)(x) ≥ κd(y, pi)
2.

We may assume that all theUi are sufficiently small so that they do not overlap. In
conclusion we have defined Lyapunov function forξ in open neighborhoods of the
singular points ofξ. The extension of this function toM can be accomplished by
the same procedure as in the proof of Theorem B in Smale [1961].�

The theorem above has a partial converse.

Proposition 5.7.4 (Meyer [1968]).Let ξ ∈ X∞(M). If there exists a Lyapunov
function forξ thenξ satisfies the conditions 1), 2), 3) and 4) in Definition 5.5.4
of a Morse-Smale vector field. Moreover, the vector fieldξ can be approximated
arbitrary closely in theCr topology by a Morse-Smale vector field.

Corollary 5.7.5 (Lyapunov function Meyer [1968]). If M is compact and two
dimensional then a necessary and sufficient condition forξ to be structurally stable
is the existence of a Lyapunov function forξ.
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We formulate the definition of a section cone. We keep the conventions from the
previous chapter:M = Mn is a closed smooth manifold,Sr(M) denotes the
set of Morse-SmaleCr vector fields onM , Er(M) stands for the set of essential
gradient-likeCr vector fields onM . All maps are continuous. By a path on a
topological spaceY we mean a mapI → Y .

A section cone is a convex subset ofK characterized by the property that ifp
is a singular point for some vector field inK then this is the case for all members
of K. A section cone induces a di-path. A di-path is a curve which is a finite
concatenation of integral arcs of the vector fields within the section cone. We
define a relation�K onM by p �K q if and only if there is a di-path fromp to
q. We ask the question whether this relation is a partial order relation. For this we
define a Lyapunov section cone. It is defined by the property, that there is a single
real function that is a Lyapunov function for all vector fields in this sectioncone.
We show that a Lyapunov section cone gives rise to a relation�K satisfying the
properties of a partial order relation. An important feature of a section coneK is
that there exists a path inK joining any two vector fieldsξ, η ∈ K. We introduce a
notion of a stable and unstable manifold for a pathσ ∈ Cr(I,K). If K is a subset of
Er(M) then all the stable and the unstable manifolds of an elementσ ∈ Cr(I,K)
intersect transversally.

6.1 Construction of a Section Cone

We use the notationR+ = {x ∈ R| x ≥ 0} andR
+
∗ = R+ − {0}. Recall that the

set of singularities of a vector fieldξ is denoted byCr(ξ) = {p ∈M | ξ(p) = 0}.

Definition 6.1.1 (Section Cone).LetM be a smooth manifold. ACr section cone
K onM is a subset ofXr(M) satisfying the following two conditions:
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1. For every pairξ, η ∈ K, if p ∈ Cr(ξ) thenp ∈ Cr(η).

2. If ξ andη are inK anda, b ∈ R
+
∗ thenaξ + bη ∈ K.

We shall denote the set of all section cones on a manifoldM byD(M).

The first condition says that all vector fields in a section cone have the samesingu-
larities. Also if the zero section0M is in K thenK = 0M . The second condition
imposes convexity on the subsetK. Particularly, ifξ ∈ K thenaξ ∈ K for a > 0.

The condition 1. allows to speak about singular points of a section cone.

Definition 6.1.2. A pointp is a singular point of a section coneK if p ∈ Cr(ξ) for
some, thus for all,ξ ∈ K. We denote the set of singular points ofK byCr(K).

Note that a section cone without singular points can only be constructed on a
manifold with zero Euler characteristic.

We shall use the notationK(p) ≡ {s(p)| s ∈ K} ⊂ Tp(M). In particular,
p ∈ Cr(K) if and only ifK(p) = {0}.

Proposition 6.1.3. Let K be a section cone. Ifξ, η ∈ K and ξ(p) = −η(p) for
somep ∈M thenp ∈ Cr(ξ). As a consequence, for eachx ∈M

K(x) ∪ {0} ∈ D(Tx(M)).

Proof. Sinceξ, η ∈ K, ϑ = ξ + η ∈ K. In particular

ϑ(p) = ξ(p) + η(p) = −η(p) + η(p) = 0.

We conclude thatp ∈ Cr(ϑ). By condition 1. the pointp is also a singular point of
ξ. �

To suppress the notation, the set of all cones without the tip (without the point 0)
in a vector spaceV is denoted byD̆(V ). In other wordsK ∈ D̆(V ) if K ∪ {0} ∈
D(V ).

SinceXr(M) has a structure of a real vector space we may consider a cone
in D(Xr(M)). Proposition 6.1.3 implies that ifK is a section cone thenK ∈
D̆(Xr(M))), that isK ∪ {0M} ∈ D(Xr(M)), where0M is the zero section in the
tangent bundle.
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6.1 Construction of a Section Cone

Definition 6.1.4. A Cr section coneK, r ≥ 1, on a closed smooth manifoldM
is Morse-Smale if and only ifK ⊂ Sr(M). It is gradient-like if and only if the
section coneK ⊂ Er(M).

Proposition 6.1.5. LetK be a Morse-Smale section cone. If there is an essential
gradient-like vector fieldξ ∈ K, thenK is gradient-like, i.e. every vector field inK
is an essential gradient-like vector field.

Proof. For any vector fieldη ∈ K we defineση : I → Xr(M) by t 7→ tη+(1−t)ξ.
By the second condition of Definition 6.1.1, for allt ∈ I, ση(t) ∈ K ⊂ Sr(M).
Since the Morse-Smale vector fields are structurally stable and the unit interval
is compact, all the vector fields on the pathσ are topologically equivalent. In
particularξ andη are topologically equivalent, henceη is essential gradient-like.
�

If K is a Morse-Smale section cone then the singular points are isolated. More-
over, any twoξ, η ∈ K are topologically equivalent, i.e. there exists a homeo-
morphismh : M → M taking orbits ofξ to orbits ofη, cf. Section 5.5, and the
restrictionh|Cr(ξ) is a permutation. Another consequence is that the indices ofξ
andη at the same singular pointp are the same. This will be shown in Proposi-
tion 6.1.6. Therefore it makes sense to define the index ofK at a singular pointp
as the index of some (thus all) vector field inK atp.

Define a setXr
p(M) = {ξ ∈ Xr(M)| ξ(p) = 0 andp is hyperbolic}. The index

function onXr
p(M) is

Indp : X
r
p(M) → N, ξ 7→ indexξ(p),

whereindexξ(p) is the index of the vector fieldξ at the singular pointp. Recall
that the index of a vector fieldξ at a singular pointp is the index of the linear map
L = dψξ0 (the number of eigenvalues ofL with negative real parts) for some thus
any coordinate chart(U,ψ) with p ∈ U .

Proposition 6.1.6. SupposeK is a Morse-Smale section cone andp ∈ Cr(K). The
index function onK at p, IndK

p ≡ Indp|K, is continuous and thus constant.

In the proof we make use of the following proposition.
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Proposition 6.1.7 (Proposition 2.2.18, Palis and de Melo [1982]).The eigenval-
ues of an operatorL ∈ L(Rn) depend continuously onL.

Proof (of Proposition 6.1.6).We shall denote the map in Proposition 6.1.7 byθ

θ : L(Rn) → C
n/Sn, L 7→ [(λ1, ..., λn)],

whereSn is the symmetric group of degreen, andλ1, ..., λn are eigenvalues ofL,
possibly with multiplicities.

Let (ψ, V )) be a coordinate neighborhood of the pointp with U ≡ ψ(V ). Con-
sider the setXr(U) of Cr vector fields onU , that isCr mapsU → R

n. Define
the compositionκ = θ ◦ ep ◦ d, whered : Xr(U) → Cr(U,L(Rn)) is the deriva-
tive, e : U × Cr(U,L(Rn)) → L(Rn) is the evaluation map andep(·) = e(p, ·).
By Proposition 6.1.7,θ is continuous, so is the compositionκ. We denote by
% : (C − iR)n/Sn → N the map assigning the number of complex numbers
with negative real part in then-tuple of complex numbers. The map% is a con-
tinuous discrete valued map. The local representation ofIndp is the composition
Indp = % ◦ κ. Thus we conclude thatIndp is continuous.

A topological space is connected if and only if every discrete valued map defined
on it is constant. The spaceXr

p(M) hasn+1 connected component corresponding
to index0 to n. On the other hand any pairξ, η ∈ K can be connected by a path
in K. HenceK is a subset of one and only one connected component ofXr

p(M).
ThereforeIndK

p is constant.�

Proposition 6.1.6 says that the index of a Morse-Smale section cone at a singular
pointp ∈ Cr(K), agreeing with the index of one of its vector fields, is well-defined.

Definition 6.1.8. SupposeK is a Morse-Smale section cone andp is a singular
point. Then the index ofK, indexK(p) = indexξ(p), for some (thus all)ξ ∈ K.

The objective of this chapter is to introduce a section cone which induces a partial
order relation onM . The candidates are those section cones which do not allow
closed orbits. For this we define a Lyapunov section cone.

Definition 6.1.9. ACr section coneK, r ≥ 1, on a smooth manifoldM is Lyapu-
nov if and only if there exists aCr Morse functionf : M → R and a Riemannian
metric onM such that for anyξ ∈ K we have
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1. ξ(f)(x) < 0 for all x ∈M − Cr(K),

2. there exist a constantκ > 0 and open neighborhoods{Uq}q∈Cr(K) of the
singular points such that

−ξ(f)(x) ≥ κd(x, p)2 for p ∈ Up, whered is the Riemannian distance.

Proposition 6.1.10. If M is two dimensional compact manifold then any Lyapunov
section cone onM is a Morse-Smale section cone.

Proof. Corollary 5.7.5 says that the vector fields in a Lyapunov cone are struc-
turally stable. By Peixoto’s Theorem, cf. Peixoto [1962], a vector field ona com-
pact 2-manifold isCr structurally stable if it is Morse-Smale.�

In general for dimension greater than2 the above corollary is not valid. IfK is a
Lyapunov cone andξ ∈ K, then by Proposition 5.7.4,ξ satisfies conditions 1) to 4)
of Definition 5.5.4 of a Morse-Smale vector field. In particular all singular points
of K are hyperbolic.

Definition 6.1.11. A Lyapunov-Smale section cone is a Lyapunov section cone
which is Morse-Smale.

In particular a Lyapunov-Smale section cone is a gradient-like section cone.

Proposition 6.1.12.SupposeK is a Lyapunov section cone. For each singular
pointp, we have

(

⋃

X∈K
W s
p (X)

)

∩
(

⋃

X∈K
W u
p (X)

)

= {p}

Proof. Supposeη andξ are vector fields inK and there existsq ∈W s
p (ξ)∩W u

p (η).
Since the stable and unstable manifolds are invariant sets

∀t ∈ R, φξt (q), φ
η
t (q) ∈W s

p (ξ) ∩W u
p (η). (6.1)
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On the other hand the section coneK is Lyapunov, henceη(f)(x), ξ(f)(x) < 0
for x ∈ M − Cr(K), or in other words the functionf is nonincreasing along the
trajectories ofξ andη. Then

f(q) ≤ f(p) ≤ f(q).

Hencef(p) = f(q) and because of (6.1)p = q. �

Definition 6.1.13. A gradient section coneK is a Morse-Smale section cone, which
satisfies the following: There is a Riemannian metricg and a Morse-Smale function
f such that∇gf ∈ K.

Due to Proposition 6.1.5 a gradient section cone is gradient-like.

Definition 6.1.14. A section coneK onM is reproducing if the conecl(K(x)) is
reproducing for allx ∈ (M − Cr(K)).

Next we shall give some examples of sections cones onM and cones inXr(M),
1 ≤ r <∞.

Example 6.1.15.Let g be a Riemannian metric onM . We pickη ∈ Xr(M) and
define the setK(η) ⊂ Xr(M) by

K(η) = {α(η + ξ) ∈ X
r(M)| ξ ∈ X

r(M), α > 0, g(ξ, η) = 0, g(η, η) ≥ g(ξ, ξ)}.

Note that forη + ξ ∈ K(η) we haveη(p) = 0 for somep ∈ M if and only if
(η+ ξ)(p) = 0. Furthermore, ifϑi = αi(η+ ξi) ∈ K(η) for αi > 0 andi ∈ {1, 2}
then

‖α1ξ1 + α2ξ2‖2 ≤ (α1 + α2)
2‖η‖2, where‖ · ‖2 ≡ g(·, ·).

Henceϑ1 + ϑ2 = (α1 + α2)η + α1ξ1 + α2ξ2 ∈ K(η), andK(η) is a section cone.

Example 6.1.16.Let ‖ · ‖r be the norm onXr(M) discussed in Section 5.1. For
a pair of real numbers0 < δ < ε suppose thatη ∈ Er(M) with ||η||r > ε and
consider an open ballB(η, δ) centered atη and radiusδ

B(η, δ) = {ξ ∈ X
r(M)| ||η − ξ||r < δ}.
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Define the set

C(η, δ) = {aξ ∈ X
r(M)| ξ ∈ B(η, δ), a ≥ 0}.

We shall show thatC(η, δ) is a cone inXr(M). If ξ and−ξ are inC(η, δ) then for
somea, a′ ∈ R

+
∗ we have thataξ,−a′ξ ∈ B(η, δ) and

‖η − aξ‖r < δ and‖η + a′ξ‖r < δ.

It follows that

‖a′η − aa′ξ‖r < a′δ and‖aη + aa′ξ‖r < aδ,

thus
(a+ a′)‖η‖r < (a+ a′)δ,

and hence‖η‖r < δ, which is a contradiction. By Proposition 2.1.5 we conclude
thatC(η, δ) is a cone inXr(M).

Example 6.1.17.Supposef : M → R is a smooth Morse-Smale function on
a closed smooth manifoldM with Riemannian metricg. We define the subset
∆(f) ⊂ Xr(M) as follows: a vector fieldξ ∈ ∆(f) if and only if

1. Cr(ξ) = Cr(f),

2. ξ(f)(x) < 0 for all x ∈M − Cr(f),

3. there exist a constantκ > 0 and open neighborhoods{Up}p∈Cr(f) of the
singular points such that

−ξ(f)(x) ≥ κd(x, p)2 for x ∈ Up, whered is the Riemannian distance.

Proposition 6.1.18.The set∆(f) is a Lyapunov section cone.

Proof. The singular points of the vector fields in∆(f) coincide. For a pair of
vector fieldsξ1, ξ2 ∈ K and functionsa1, a2 ∈ R

+
∗ we have

df(a1ξ1 + a2ξ2) = a1df(ξ1) + a2df(ξ2).
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Furthermore, there are open neighborhoodsU1
p andU2

p of p ∈ Cr(K) and constants
κ1, κ2 > 0 such that

−ξi(f)(x) > κid(x, p) for x ∈ Up, i = 1, 2.

Choosing an open neighborhoodUp of p with Up ⊂ U1
p ∩ U2

p and defining

κ = min{a1κ1, a2κ2}

gives−(a1ξ1 + a2ξ2)(f)(x) > κd(x, p) for p ∈ Up. �

Suppose that the Riemannian metric onM is compatible with the Morse charts
for f , cf. Definition 4.1.2, then−∇f ∈ ∆(f) and hence∆(f) is nonempty. This
is also true for an arbitrary Riemannian metric.

Lemma 6.1.19. If f be a Morse function on a closed Riemannian manifoldM then
∆(f) is nonempty.

Proof. By Lemma 3.2 in Milnor [1965] for every Morse functionf on a closed
manifold there exists a gradient-like vector fieldξ, cf. Definition 5.6.2. Hence
−ξ ∈ ∆(f). �

Example 6.1.20.Let M be a closed smooth manifold with a Riemannian metric
compatible with the Morse charts for the Morse-Smale functionf . Supposeδ > 0
is sufficiently small so thatB(∇f, δ) ⊂ Er(M) andδ < ‖∇f‖r. Such aδ exists
because Morse-Smale vector fields are structurally stable. Define the set

K(f, δ) = C(−∇f, δ) ∩ ∆(f).

Since re-scaling leaves the orbits unchanged,K(f, δ) ⊂ C(−∇f, δ) ⊂ Er(M).
Both C(−∇f, δ) and∆(f) are convex sets thusK(f, δ) is a convex set. All sin-
gular points of the vector fields inK(f, δ) coincide becauseK(f, δ) ⊂ ∆(f). We
conclude thatK(f, δ) is Lyapunov-Smale section cone.

Proposition 6.1.21.LetM be a closed smooth manifold andf : M → R be a
smooth Morse-Smale function. Suppose a Riemannian metricg onM is compatible
with the Morse charts for the Morse-Smale functionf . Then for1 ≤ r < ∞ the
setK(f, δ) with δ < ‖∇f‖r is a reproducing Lyapunov-SmaleCr section cone on
M .
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Proof. To prove that for allq ∈ M − Cr(f) the coneK(f, δ)(q) is reproducing,
it is enough to show that for eachv ∈ Tq(M) there existsξ ∈ K(f, δ) such that
v ∈ span{ξ(q) −∇f(q)}.

Pick a nonzero vectorv ∈ Tq(M). Consider a local coordinate neighborhood
(U, φ) of q. We use the local trivializationdφ : T (U) → φ(U) × R

n to define a
constant vector fieldϑU onφ(U) by

ϑU : x 7→ (x, dφq(v)).

Then(dφ)−1(ϑU ) ∈ Xr(U). Since all critical points of a Morse function are iso-
lated, there exists a smooth bump functionh : M → R

+
∗ with compact support

such that there are no critical points off in supp(h) andsupp(h) ⊂ U . We extend
(dφ)−1(ϑU ) to the wholeM :

ϑ(x) =

{

h(x)(dφ)−1(ϑU (x)) for x ∈ U
0 for x ∈M − U

For a constantα ∈ R+
∗ we define a vector fieldξα = −∇f + αϑ. It is possible to

choosêα > 0 such that

1. α̂‖ϑ‖r < δ and

2. α̂min{g(∇f, ϑ)(x)| x ∈ supp(h)} < g(∇f,∇f).

Condition 1. says thatξα̂ ∈ K(f, δ). Condition 2. implies thatξα̂(f)(x) < 0 for
all x ∈M − Cr(K(f, δ)) since

df ◦ ξα̂ = g(∇f, ξα̂) = −g(∇f,∇f) + α̂g(∇f, ϑ) < 0.

We conclude thatξα̂ ∈ ∆(f) ∩ K(−∇f, δ) andξα̂(q) + ∇f(q) = α̂v. �

The last proposition shows that there are nonempty reproducing gradient section
cones.

Corollary 6.1.22. There exists a reproducing gradient section cone.

79



6 Section Cones

6.2 Partial Orders

A LyapunovCr section coneK on a closed smooth manifoldM will be used in
this section to define a partial order onM . We keep the notation from Chapter 5
and denote the flow line of a vector fieldξ ∈ Xr(M) passing throughx ∈ M by
φξx(t), that is

d

dt
φξx(t) = ξ

(

φξx(t)
)

with φξx(0) = x.

We start by introducing the notion of an integral arc from a pointp to a pointq on
M . This will be a segment of the flow lineφξx for a ξ ∈ Xr(M) and anx ∈ M
joining p with q. Letα ∈ R

+
∗ andξ ∈ Xr(M). The orbits ofξ and ofαξ coincide.

Definition 6.2.1. γ : I →M is an integral arc of a vector fieldξ if there exists an
α ∈ R

+
∗ and anx ∈M such thatφαξx (t) = γ(t) for all 0 < t < 1.

The definition allows to re-parameterize flow lines. Given a flow lineφξx for a
vector fieldξ and anx ∈ M let φξx(t1) = p andφξx(t2) = q with t1 < t2. We are
allowed to re-parameterize the flowφξx by a functionβ : R → R, β = (t2−t1)t+t1.

Thenφ(t2−t1)ξ
x (t) = φξx(β(t)) with φ

(t2−t1)ξ
x (0) = p andφ(t2−t1)ξ

x (1) = q. We
notice that ifξ is in a section coneK andα ∈ R+

∗ , then alsoαξ ∈ K.
We will study paths consisting of a concatenation of a finite number of integral

arcs of vector fields inK.

Definition 6.2.2. If γ is an integral arc fromx0 tox1, andµ is an integral arc from
x1 to x2, then the productγ ∗ µ is the pathσ defined by the equation

σ(t) =

{

γ(2t) for t ∈ [0, 1
2 ],

µ(2t− 1) for t ∈ [12 , 1].

The functionσ is well defined, continuous (by the pasting lemma, cf. Theorem
18.3 in Munkres [2000]) and piecewiseCr.

Definition 6.2.3. SupposeK is a Cr section cone. We call a piecewiseCr path
σ : I → M a di-path ofK if there exists a finite set of integral arcs{γ1, ..., γk},
for i = 1, ..., k whereγi is an integral arc of the vector fieldξi satisfying
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6.2 Partial Orders

1. {ξ1,...,ξk} ⊂ K and

2. σ = γ1 ∗ ... ∗ γk.

If all γi, i ∈ {1, ..., k} is an integral arc of the same vector field, i.e.ξ1 = ... = ξk,
then we shall callσ a simple di-path. Otherwise we shall call it a shattered di-path.
The set of all di-paths ofK fromx to y is denoted byP (x, y;K).

Given a vector fieldξ ∈ Xr(M), we define the section cone associated toξ by

ξ = {αξ ∈ X
r(M)| α ∈ Cr(M,R+

∗ )}. (6.2)

In particular all di-paths ofP (x, y; ξ) are simple. Thus a simple di-path is either a
broken or an unbroken flow line. We want to investigate deformations of di-paths
by appropriate homotopies.

Definition 6.2.4. SupposeK is a section cone onM and a, b are two singular
points ofK.

1. A di-homotopy byK from a to b is a continuous mapH : I × I → M such
thatHs ∈ P (a, b;K) for all s ∈ I.

2. Two di-pathsγ, η ∈ P (a, b;K) are said to be di-homotopic byK if and only
if there exists a di-homotopyH : I × I →M withH0 = γ andH1 = η.

The set of equivalence classes of di-paths up to di-homotopy byK is denoted by
π(a, b;K).

Definition 6.2.5. SupposeK is a section cone on the manifoldM . For a pair of
pointsx and y in M we say thatx �K y if and only if there exists a di-path
σ : I →M ofK with σ(0) = x andσ(1) = y.

Theorem 6.2.6.LetK be a Lyapunov-Smale cone. Then the relation�K is a par-
tial order relation.

Proof. For reflexivity notice that for any vector fieldξ and any pointx ∈ M ,
φξx(0) = x. Also transitivity follows directly from the definition of the di-path.
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6 Section Cones

We show antisymmetry. Supposex �K y andy �K x. Let f be the Lyapunov
function associated to the Lyapunov section cone. Then

x �K y ⇒ f(x) ≥ f(y)

y �K x ⇒ f(x) ≤ f(y),

thusf(x) = f(y). Assumex 6= y and letσ be a di-path joiningx with y then if
x 6= y there exists an integral arcγ of a ξ ∈ K such thatγ(I) ⊂ σ(I) ⊂ f−1(x).
However, away from the singular points,f is strictly decreasing along the flow
lines of the vector fields inK. This is a contradiction.�

6.3 Invariant Manifolds of Paths in Section Cones

If a Cr section coneK on a smooth closed manifoldM is a Lyapunov or Morse-
Smale section cone then all its singular points are hyperbolic. Letp ∈ Cr(K) and
recall that for anyξ ∈ K, W s

p (ξ) is an injectively immersed open disk inM . We
consider aCr (r ≥ 1) pathσ ∈ Cr(I,K) and define its stable manifold. We will
show thatσ gives rise to a notion of stable and unstable manifolds onI ×M . If
the section cone is Morse-Smale then the stable and unstable manifolds intersect
transversally.

Supposeσ : I → Xr(M) is aCr map. We define a maps : I ×M → T (M)
by s = e|Xr(M) ◦ (σ × idM ), wheree is the evaluation map in Proposition 5.1.7.
The maps is a composition ofCr maps, thus it is of classCr. Observe thatst is a
vector field onM for all t ∈ I.

Definition 6.3.1. Let K be a Lyapunov or Morse-SmaleCr section cone,r ≥ 1.
Let σ ∈ Cr(I,K) andp ∈ Cr(K). The stable manifoldW s

p (σ) ⊂ I ×M of the
pathσ is defined by

W s
p (σ) =

⋃

t∈I
{t} ×W s

p (σ(t)).

Likewise, we define the unstable manifoldW u
p (σ) of σ.

In the next theorem we confirm that the setW s
p (σ) is an immersed submanifold of

I ×M .

82



6.3 Invariant Manifolds of Paths in Section Cones

Theorem 6.3.2.LetM be a closed smooth manifold. For1 ≤ r < ∞, let p be
a singular point of a Lyapunov or Morse-Smale section coneK ⊂ Xr(M) (p is
hyperbolic) with indexλ andσ ∈ Cr(I,K). Then the setW s

p (σ) is an immersed
Cr submanifold of dimensionλ+ 1.

Proof. We follow the proof of Corollary 5.4.2 we consider an open neighborhood
U ′ ⊂ M of the pointp and apply the exponential map to get a coordinate chart
ψ : U ′ → U ⊂ Tp(U), whereU is an open neighborhood of0. Pick τ ∈ I.
We represent the vector fieldσ(τ) in local coordinates̄σ(τ) = dψσ(τ) ◦ ψ−1.
Denote the stable and unstable subspaces forσ̄(τ) by respectivelyEsτ andEuτ , and
letU sτ = U ∩Esτ . Then by Proposition 5.4.7 there is a real numberδ > 0 and aCr

map
gτ : Iτδ × U sτ → Euτ , whereIτδ = I ∩ (τ − δ, τ + δ),

such that for anyt ∈ Iτδ , ψ(W s
0 (σ(t), U ′)) is the graph ofgτt , wheregτt (x) =

gτ (t, x). We define a map

hτ : Iτδ × U sτ → Iτδ × U sτ × Euτ by hτ (t, x) = (t, x, gτ (x, t)).

We conclude thatf τ ≡ (idI×ψ)◦(hτ ) : Iτδ ×U sτ →W s
p (σ) is a homeomorphism

onto its image. Its inverse is used for defining a coordinate mapψτ : Vτ → Iτδ ×Esτ
on an open neighborhoodVτ ⊂ imf τ .

Since the intervalI is compact there is a finite number ofτi, i = 1, ..., l such that
Iτiδi coversI. We define the differentiable structure onW s

p (σ). We see thatW s
p (σ)

is an extension ofVτi ’s using the flows

W s
p (σ) =

l
⋃

i=1

⋃

k ∈ Z

k ≤ 0

Ψτi(k, Vτi),

whereΨτi : R×Iτiδi ×M → Iδiδi ×M given byΨτi
t (x) = (π1(x), φ

σ(π1(x))
t (π2(x)))

is aCr diffeomorphism, cf. Proposition 5.2.2.
The family {Ψτi}τi∈{τ1,...,τl} defines the mapΨ : R × I ×M → I ×M by:

If τ ∈ Iτiδi thenΨ(t, τ, x) = Ψτi(t, τ, x). This map is well defined by uniqueness
of solutions of differential equations. It isCr by the pasting lemma, cf. Theorem
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6 Section Cones

18.3 in Munkres [2000]. It can be shown thatΨt : I ×M → I ×M given by
Ψt(τ, x) = Ψ(t, τ, x) is aCr diffeomorphis for eacht ∈ I.

Fork ∈ {0, 1, 2, ...} we define

V k
τ i

= Ψ(k, Vτ i
) andψkτi : V k

τi → Iτiδi × Esτi , byψkτi(x) = ψτi ◦ Ψ(−k, x). (6.3)

The atlas(V k
τi , ψ

k
τi) makes the inclusionW s

p (σ) ↪→ I ×M an immersion.�

We shall use the two projectionsπ1 : I ×M → I andπ2 : I ×M →M .

Corollary 6.3.3. For any coordinate chart(V k
τi , ψ

k
τi) onW s

p (σ) the following dia-
gram commutes:

V k
τi

π1

��

ψk
τi // Iδi × Eτis

p1

��
Iδi

id // Iδi ,

(with p1 the projection on the first factor).

Proof. The corollary follows from the observation that the diagram

V k
τi

π1

��

Ψτi (−k,·) // Vτi

π1

��

ψτi// Iδi × Eτis

p1

��
Iδi

id // Iδi
id // Iδi

commutes.�

The next corollary shows that the stable and unstable manifolds of a Morse-Smale
section cone just like for the Morse-Smale vector fields intersect transversally.

Proposition 6.3.4. LetM be a smooth closed manifold. IfK is a Morse-SmaleCr

section cone onM , r ≥ 1. Then for allp, q ∈ Cr(K) the intersectionW u
p (σ) ∩

W s
q (σ) is transversal.
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6.3 Invariant Manifolds of Paths in Section Cones

Lemma 6.3.5. The restrictionπ′ = π1|W s
q (σ) :

⊔

t∈I{t} ×W s
q (σ(t)) → I given

by (t, x) 7→ t is a submersion (no critical points).

Proof. We representπ′ in the local coordinates of a chart(V k
τ , ψ

k
τ ), cf. (6.3), and

conclude by Corollary 6.3.3 that

π′ ◦ (ψkτ )
−1 = p1.

The mapp1 has no critical points, neither doesπ′. �

Proof (of 6.3.4).For any t ∈ I the intersectionW (p, q;σ(t)) = W u
p (σ(t)) ∩

W s
q (σ(t)) is transversal. ThereforeTx(M) = Tx(W

u
p (σ(t)) + Tx(W

s
q (σ(t)). We

observe thatdπ1|T (W s
q (σ)) is nonsingular, then by the dimension argument

T(t,x)(I ×M) = T(t,x)(W
u
p (σ)) + T(t,x)(W

s
q (σ)).

�

In the following we want to introduce a new object, a certain manifold, which will
substitute for the stable and unstable manifolds ofσ. To ease subsequent arguments
we want it to be compact. More importantly we wish to represent a flow line by a
single element. We have met similar objects in the chapter on Morse Theory where
we studied intersections of stable manifolds with the preimage of a regular pointof
a Morse function.

Let K be a Lyapunov section cone, and letf : M → R be the Morse function
from Definition 6.1.9 andp be a singular point ofK. All critical points of a Morse
function are isolated therefore there is an open neighborhoodV of f(p) in R such
that

∀v∈V−{p} v is a regular value forf. (6.4)

Pick ac ∈ V − {p}. Sincef(σt)(x) < 0 for all x ∈ M − Cr(K) andt ∈ I we
have thatW s

p (σt) t f−1(c) inM . ThusW s
p (σ) intersectsI×f−1(c) transversally

in I ×M . We conclude thatSsp(σ) ≡W s
p (σ) t I × f−1(c) is a compact manifold

with boundary given by

∂Ssp(σ) = (∂W s
p (σ) ∩ I × f−1(c)) ∪ (W s

p (σ) ∩ ∂I × f−1(c))

= {0} × Ssp(σ(0)) ∪ {1} × Ssp(σ(1)).

We shall recall a definition of a manifold triad.
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6 Section Cones

Definition 6.3.6 (Definition 1.3 in Milnor [1965]). (W ;V0, V1) is aCr manifold
triad if W is a compactCr manifold and∂W is the disjoint union of two connected
submanifoldsV0 andV1.

We observe that(Ssp(σ); {0}×Ssp(σ(0)), {1}×Ssp(σ(1))) is aCr manifold triad.

Definition 6.3.7 (Definition 3.4 in Milnor [1965]). A triad (W ;V0, V1) is said to
be a product cobordism if it isCr diffeomorphic to the triad

([0, 1] × V0; {0} × V0, {1} × V0).

Proposition 6.3.8. Letp be a singular point ofK. Then the manifold triad

(Ssp(σ); {0} × Ssp(σ(0)), {1} × Ssp(σ(1)))

is a product cobordism.

Lemma 6.3.9. The projection mapπ1 : I × M → I restricted toSsp(σ) is a
submersion.

Proof. The normal bundleν(Ssp(σ),W s
p (σ)) is one dimensional and orientable,

thus trivial, cf. Theorem 3.2.6. There is a vector bundle isomorphism

φ : ν(Ssp(σ),W s
p (σ)) → Ssp(σ) × R.

By Product Neighborhood Theorem 3.2.3 there is a neighborhoodU of Ssp(σ) in
W s
p (σ) and a diffeomorphism

% : Ssp(σ) × R → U ⊂W s
p (σ)

such thatφ|Ss
p(σ)×{0} is the identity map.

We fix x ∈ Ssp(σ) and see thatπ1 ◦ %(x, s) is a constant map for eachs ∈ R.
Thus each fibre ofν(Ssp(σ),W s

p (σ)) goes to0 underdπ1, that isdπ1d%(ν0⊕ε) = 0,
whereν0 is the zero section ofT (Ssp(σ)×R) andε trivial line bundle. On the other
hand by Lemma 6.3.5,dπ1|W s

p (σ) is a submersion, and so isdπ1|%(Ss
p(σ)×R). We

have observed thatdπ1d%(ν0 ⊕ ε) = 0, thereforedπ1|%(Ss
p(σ)×0) = dπ1|Ss

p(σ) is a
submersion.�
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6.3 Invariant Manifolds of Paths in Section Cones

Proof (of proposition).Recall that a Morse function on a manifold triad(W ;V0, V1)
is aCr functionf : W → [a, b] such that

1. f−1(a) = V0, f−1(b) = V1;

2. All the critical point off lie in W − ∂W and are non-degenerate.

We conclude thatπ|Ss
p(σ) is a Morse function on the manifold triad(Ssp(σ); {0} ×

Ssp(σ(0)), {1} × Ssp(σ(1))) with no critical points. By Theorem 3.4 in Milnor
[1965] this manifold triad is a product cobordism.�

Corollary 6.3.10. The diffeomorphismΨ : I × Ssp(σ(0)) → Ssp(σ) in Proposi-
tion 6.3.8 is such that, for any(t, x) ∈ I × Ssp(σ(0)) we havet = π1 ◦ Ψ(t, x).

Proof. The corollary follows from the proof of Theorem 3.4 in Milnor [1965].�

Let K be a Lyapunov section cone on M andf : M → R be the Morse func-
tion from Definition 6.1.9. Supposec, c′ ∈ R, c > c′ are two regular values of
the functionf and f−1([c′, c]) does not contain any critical points. We define
θ ∈ Cr(I,Xr(M − Cr(K))) by θ(t) = σt/σt(f), thenf(θt) = 1 for all t ∈ I.
Furthermore, we define a map

Θ : I × (M − Cr(K)) → I × (M − Cr(K)) by Θ(t, x) = (t, φ
θ(t)
c−c′(x)).

The mapΘ is a diffeomorphism which takesSsp(σ)′ ≡W s
p (σ) t I × f−1(c′) onto

Ssp(σ) ≡W s
p (σ) t I × f−1(c).

Proposition 6.3.11.For 1 ≤ r < ∞, let K be a LyapunovCr section cone on
a smooth manifoldM and f : M → R be theCr Morse function from Defini-
tion 6.1.9. Letp be a singular point ofK. Supposec ∈ V − {p} ⊂ R, whereV is
an open neighborhood off(p) in R as defined in (6.4) (c is a regular value off ).
Then the normal bundleν(Ssp(σ), I × f−1(c)) is trivial.

Proof. The intersection ofI × f−1(c) andW s
p (σ) in I × M is transversal and

inclusions induce the following commutative diagram

Ssp(σ) � � //
� _

��

W s
p (σ)

� _

��
I × f−1(c)

� � // I ×M.
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Then Lemma 3.7.2 shows that the normal bundles

ν(Ssp(σ), I × f−1(c)) and ν(W s
p (σ), I ×M)|Ss

p(σ)

are isomorphic. We note that the latter is trivial sinceW s
p (σ) is contractible.�
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7 The Central Vector Field Theorem

We formulate and prove the main theorem of this thesis. IfK is a Lyapunov-Smale
section cone on a closed smooth manifoldMn, a is a singular point of the section
coneK of index 0 andb is a singular point ofK of indexn. Then the study of
the connected components of the space of flow lines of the vector fields within
the section coneK can be reduced to the study of the connecting components of
W (a, b; ξ) for an arbitraryξ ∈ K.

7.1 Problem Formulation

For η ∈ Er(M), r ≥ 1, P (a, b; η) is the set of flow lines ofη from the singular
point a to the singular pointb. The set of flow lines of the vector fields in aCr

section coneK born ina and dying inb is denoted byP (a, b;K).

Definition 7.1.1. LetM be a closed smooth manifold. Forr ≥ 1, let ξ ∈ Xr(M)
andK be aCr section cone onM .

1. γ0, γ1 ∈ P (a, b; ξ). We say thatγ0 is homotopic toγ1 by ξ, write γ0 ∼ξ γ1,
if and only if there is a pathβ : I → M such thatβ(t) ∈ W (a, b; ξ),
γ0(t) = φξβ(0)(t) andγ1(t) = φξβ(1)(t).

2. Supposeγ0, γ1 ∈ P (a, b;K) . We say thatγ0 is homotopic toγ1 by K
and writeγ0 ∼K γ1 if and only if there exist a pathσ : I → K and a
path β : I → M such thatβ(t) ∈ W (a, b;σ(t)), γ0(t) = φ

σ(0)
β(0)(t) and

γ1(t) = φ
σ(1)
β(1)(t).

The relations∼K and∼ξ are equivalence relations.
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7 The Central Vector Field Theorem

Theorem 7.1.2.LetM be a closed smooth manifold. SupposeK is a Lyapunov-
SmaleCr section cone onM , r ≥ 5 , andξ ∈ K. Leta, b be singular points with
indices0 andn, respectively. Then there is a bijection

Π : P (a, b; ξ)/∼ξ
→ P (a, b;K)/∼K

.

We shall present two proofs for the surjectivity ofΠ. The reason is that two
entirely different techniques were developed for this purpose and bothare used in
the proof of injectivity for the mapΠ. The first proof relies on the properties of
Ssp(σ), σ ∈ Cr(I,K), as developed in Section 6.3. For the second proof we will
introduce the subject of stability of a one-parameter family of diffeomorphisms.
Our exposition of this subject follows Newhouse et al. [1983]. We shall introduce
the notion of a proper selfconjugacy of a vector fieldξ that takes a connected com-
ponent ofW (a, b; ξ) to itself. We will show that ifK is a Lyapunov-Smale section
cone, then a pathσ ∈ Cr(I,K), r ≥ 5, induces a proper selfconjugacy.

7.2 A First Proof for the Surjectivity of Π

We recall thatW (a, b; ξ) = W u
a (ξ)∩W s

b (ξ). For0 ≤ r ≤ ∞, let‖·‖r be the norm
onXr(M) discussed in Section 5.1. We define the open ballBK

δ (η) ⊂ K centered
atη ∈ K and the radiusδ by

BK
δ (η) = {ξ ∈ K : ‖ξ − η‖r < δ}.

The first proposition shows that a perturbation of a vector field within a section
cone and a small perturbation of the initial values do not change the points where
the flow lines are born and die.

Proposition 7.2.1. Let Mn be a smooth Riemannian manifold. SupposeK is a
gradient-like or LyapunovCr section cone onM , r ≥ 1, with a singular pointa of
index0. Letη ∈ K. If y ∈ W u

a (η) then there isδ > 0 and an open neighborhood
U of y such that for anyξ ∈ BK

δ (η) and x ∈ U we have thatx ∈ W u
a (ξ). In

particular, if b is a singular point ofK of indexn andy ∈ W (a, b; η) then there
is δ′ > 0 and an open neighborhoodU ′ of y such that for anyξ ∈ BK

δ′ (η) and
x ∈ U ′, x ∈W (a, b; ξ).
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7.2 A First Proof for the Surjectivity ofΠ

Lemma 7.2.2. LetMn be a smooth Riemannian manifold. Ifη ∈ Er(M), r ≥ 1,
then there is a Morse functionf : M → R and a real numberδ > 0 such thatf is
a Lyapunov function for anyξ ∈ BK

δ (η).

Proof. Any Morse-Smale, hence also gradient-like vector field, has an associated
Lyapunov function, cf. 5.7.3. Supposef is such a function forη. For each critical
pointp there exist an open neighborhoodN of p and constantsκ > 0 such that

−η(f)(x) ≥ κd(x, p),

whered is the Riemannian metric. On the other hand, for eachp ∈ Cr(K) there is
a coordinate chart(U,ψ) such that

f̂ ≡ f ◦ ψ−1 = f(p) +Q(x, x),

whereQ is a nonsingular quadratic form whose index is the same as the index of
the Hessian off atp.

We want to show that there exists a continuous monotonically increasing function
c : [0,∞) → [0,∞) such that

|(η − ξ)(f)(x)| ≤ c(δ)d(x, p) wheneverx ∈ U and‖η − ξ‖r < δ.

We denote the vector fieldsη andξ in the local coordinates ofψ by η̂ and ξ̂, re-
spectively. We get

(η̂ − ξ̂)(f̂)(y) = df̂y(η̂(y) − ξ̂(y)) = Q(y, (η̂(y) − ξ̂(y))).

Thus|(η̂ − ξ̂)(f̂)(y)| < δ‖Q‖ ‖y‖ for y ∈ ψ(U). On the open setN ∩ U we have

−ξ(f)(x) = −η(f)(x) + (η − ξ)(f) ≥ κd(x, p) − c(δ)d(x, p).

For sufficiently smallδ, κ′ ≡ κ− c(δ) > 0 and−ξ(f)(x) ≥ κ′d(x, p).
Denote by{Nq}q∈Cr(K) open neighborhoods of the singular points ofη for which

the above inequality is valid for someδ > 0. Let K = M − ⋃q∈Cr(K)Nq. By
compactness ofK, the functiong : K → R

+, x 7→ −df(η)(x) has a minimum,
sayr > 0. Suppose also thate = ‖df‖0 onK, where‖ · ‖0 stands forC0 norm. If
δ′ = min(δ, r/e) then for anyξ ∈ BK

δ′ (η)

−df(ξ)(x) = −df(η)(x) + df(η − ξ)(x) > 0 for x ∈M − Cr(η).
We conclude thatf is a Lyapunov function for allξ ∈ BK

δ′ (η). �
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Proof (of proposition).By the lemma there is a Morse functionf and a constantδ
such thatf is a Lyapunov function for anyξ ∈ BK

δ (η). Hence, for eachp ∈ Cr(η)
there exist a real numberκp > 0 and an open neighborhoodNp of p for which

−ξ(f)(x) ≥ κpd(x, p).

In particular, ifξ ∈ BK
δ (η), then the singular pointa is asymptotically stable for

−ξ in Na andb is asymptotically stable forξ in Nb .
On the other hand by Proposition 5.2.2 there exists aCr mapΦ : R × M ×

BK
r (η) → M such thatΦ(·, x, ξ) = φξx(·) is an integral curve of the vector fieldξ.

Pick τ such thatφηy(−τ) ∈ Na andφηy(τ) ∈ Nb. By continuity ofΦ it is possible
to chooseδ′′ and an open neighborhoodU of y such thatφξx(−τ) ∈ Na whenever
x ∈ U andξ ∈ Bδ′′(η).

Let δ = min(δ′, δ′′). For anyξ ∈ Bδ(η) andx ∈ U we have

lim
t→−∞

φξt (x) = a.

�

Definition 7.2.3. A nondecreasing surjective mapα : (I, {0}, {1}) → (I, {0}, {1})
is called a re-scaling of the unit interval.

LetMn be a closed smooth manifold,K be a gradient-likeCr section cone and
let σ ∈ C0(I,K). Suppose thatK has one singular pointa with index 0, one
singular pointb with indexn, k singular points with index1, sayp1, ..., pk andl
singular points with indexn− 1, sayq1, ..., ql. Forx ∈M with x ∈W (a, b, σ(0))
we define the subsetBσ

x of C0(I,M) by the following conditions: A pathβ is in
Bσ
x if and only if

1. β(0) = x;

2. β(I) ⊂M − Cr(K);

3. There exists a re-scalingα of the unit interval such that for eachτ ∈ I

lim
t→∞

(

φ
σ◦α(τ)
−t (β(τ)), φ

σ◦α(τ)
t (β(τ))

)

∈ D,

whereD = {(a, b), (p1, b), ..., (pk, b), (a, q1), ..., (a, ql)}.
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7.2 A First Proof for the Surjectivity ofΠ

The re-scalingα of the unit interval from condition 3. will be called an associated
re-scaling forβ.

The setBσ
x consists of paths of initial conditions forσ such that theα-limit sets

are singular points ofK of index0 or 1, andω-limit sets are singular points of index
n− 1 or n. The next proposition demonstrates that the setBσ

x is nonempty.

Proposition 7.2.4. Let Mn be a closed smooth manifold,K be a gradient-like
Cr section cone,r ≥ 1, and letσ ∈ Cr(I,M). Suppose thatK has only one
singular pointa of index0 and one singular pointb of indexn. Then for any
x ∈W (a, b;σ(0)), the setBσ

x is nonempty.

In the proof of the proposition we shall make the use of the following lemma.

Lemma 7.2.5. LetMn be aCr manifold (r ≥ 0) and{Ni}i∈N be a collection of
immersed submanifolds ofI ×M of co-dimension2 or more. Letπ1 : I ×M → I
be the projection on the first factor. Then for any open subsetU of M there is a
pathυ ∈ C0(I, I ×M − ⋃k

i=1Ni) such thatυ(0) ∈ {0} × U and the following
diagram commutes

I
υ //

id

""F
F

F
F

F
F

F
F

F I ×M

π1

��
I.

(7.1)

Proof. For some sufficiently larges ∈ N we have an embeddingf : M → R
s

and the embeddingidI × f : I ×M → R
s+1. Consider Hausdorff dimension of a

subsetF ⊂ R
s+1, cf. Falconer [1986],

dimH F = inf{v ∈ R
+| Hv(F ) = 0},

whereHv(F ) is thev-dimensional Hausdorff measure ofF . We observe that for
i ∈ N, dimH Ni ≤ n − 1. We define the mapp : R × R

s → R × R
s by

p(x, y) = (0, y). The mapp is Lipschitz. LetN =
⋃

i∈N
Ni. By Lemma 1.8

in Falconer [1986],dimH(p(Ni)) ≤ dimH Ni and hencedimH (p(N)) ≤ n − 1.
We have

n = dimH ({0} × U) = dim (({0} × U − p(N)) ∪ p(N))

= max{dim({0} × U − p(N)),dimN}
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7 The Central Vector Field Theorem

Thusdim(({0} × U − p(N))) = n. It follows that the set{0} × U − p(N) is
nonempty. Therefore for anyy ∈ U − π2(N), whereπ2 : I ×M → M is the
projection on the second factor, we have thatI × {y} ∩ N = ∅. Now, take the
constant pathυ(t) = (t, y). �

Proof (of proposition 7.2.4).By Proposition 7.2.1 there is an open neighborhood
U ′ ⊂ M of x such that ifz ∈ U ′ thenz ∈ W (a, b;σ(0)). We choose a path
connected open neighborhoodU ⊂ U ′ of x.

We define a collection{Ni}i∈{1,...,k} consisting of

1. W s
p (σ) with p a singular point of index less thann− 1,

2. W u
q (σ) with q a singular point of index greater than1,

3. W u
q (σ) t W s

p (σ) whereq, p are singular points with relative indexIndK
q −

IndK
p = n− 2,

4. Cr(K).

Then the co-dimension of eachNi is 2 or more. Lemma 7.2.5 applies and for
x ∈ M and the open neighborhoodU ⊂ M of x there is a pathυ : I → I ×M −
⋃k
i=1Ni with (0, y) ≡ β′(0) ∈ {0} × U that satisfies (7.1). Defineβ′ = π2 ◦ υ,

whereπ2 : I×M →M is the projection. Pick a pathβ′′ : I → U with β′′(0) = x
andβ′′(1) = y. Then the desired pathβ = β′′ ∗ β′, that is

β(t) =

{

β′′(2t) for t ∈ [0, 1/2]
β′(2t− 1) for t ∈ [1/2, 1]

and the associated re-scalingα for β is

α(t) =

{

0 for t ∈ [0, 1/2]
2t− 1 for t ∈ [1/2, 1].

�

Corollary 7.2.6. LetM , K andσ be as in Proposition 7.2.4. Supposeλ is a re-
scaling of the unit interval andσ′ = σ ◦λ. Then for anyx ∈W (a, b, σ′(0)) the set
Bσ′

x is nonempty.
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7.2 A First Proof for the Surjectivity ofΠ

Proof. We have seen in the proof of Proposition 7.2.4 that there is a pathυ : I →
I ×M −⋃k

i=1Ni. We define the desired pathβ by

β(t) =

{

β′′(2t) for t ∈ [0, 1/2]
π2 ◦ υ ◦ λ(2t− 1) for t ∈ [1/2, 1].

For the re-scaling of the unit iterval

α(t) =

{

0 for t ∈ [0, 1/2]
2t− 1 for t ∈ [1/2, 1]

β satisfies condition 3. of the definition of the setBσ′

x . �

We are ready to proof the surjectivity of the mapΠ in Theorem 7.1.2.

Proposition 7.2.7. LetMn be a closed smooth manifold,K be a gradient-likeCr

section cone,r ≥ 1. Suppose thatK has only one singular pointa of index0
and one singular pointb of indexn. If ξ ∈ K then for anyη ∈ K and anyγ0 ∈
P (a, b; η) there is someγ1 ∈ P (a, b; ξ) such thatγ0 ∼K γ1. That is, the following
composition

P (a, b; ξ) ↪→ P (a, b;K) → P (a, b;K)/ ∼K

is surjective.

Proof. Sinceξ, η ∈ K we can define a pathσ ∈ Cr(I,K) by σ(t) = tξ+(1− t)η.
We have thatσ(0) = η andσ(1) = ξ. Sinceγ0 ∈ P (a, b; η) there is a point
x ∈W (a, b; η) such thatγ0(t) = φηx(t) for all t ∈ R. Our aim is to show that there
is a pathβ : (I, {0}) → (M, {x}) and a re-scalingα of the unit interval such that
β(t) ∈W (a, b;σ ◦ α(t)) for all t ∈ I. For this we define a set

A = {τ ∈ I| there existβ ∈ Bσ
x with a re-scalingα for β such that

β(t) ∈W (a, b;σ ◦ α(t)) for 0 ≤ α(t) ≤ τ}.

We want to show that the setA is equal the whole intervalI. This will be proven
by the following five claims.

Claim (A). The setA is open.
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7 The Central Vector Field Theorem

Proof (A). Assumeτ ∈ A then there is aβ1 ∈ Bσ
x with an associated re-scaling

α1 for β1 such that

β1(t) ∈W (a, b;σ ◦ α1(t)) for 0 ≤ α1(t) ≤ τ.

Let ν = minα−1
1 (τ). By Lemma 7.2.1, there isε > 0 such that for allτ − ε < ρ <

τ + ε we haveβ1(ν) ∈W (a, b;σ(ρ)). Define a constant path

β2 : [ν, ν + ε) →M, β2(t) = β1(ν).

Defineς : I → K by ς(t) = σ((1 − τ)t+ τ). Chooseβ3 ∈ Bς
β1(ν) 6= ∅ and pick a

re-scalingα3 for β3.
The desired pathβ is obtained by extendingβ1|[0,τ ] by a constant pathβ2 andβ3.

0nβ2 we change the vector fields according toσ from σ(ν) to σ(ν + ε), and onβ3

from σ(ν + ε) to σ(1). Explicitly, the pathβ is defined by

β(t) =







β1(t) for t ∈ [0, ν]
β2(t) for t ∈ [ν, ν + ε]

β3((t− ν − ε)/(1 − ν − ε)) for t ∈ [ν + ε, 1],

and the associated re-scalingα for β is given by

α(t) =







α1(t) for t ∈ [0, ν]
t+ τ − ν for t ∈ [ν, ν + ε]

(1 − ν − ε)α3((t− ν − ε)/(1 − ν − ε)) + ν + ε for t ∈ [ν + ε, 1].

�

It follows that the setA is of the form[0, T ) or I.

Claim (B). Let ϑ ∈ C0(I,K). Suppose that there is a pathβ : I → M such
that ∀t<T β(t) ∈ W (a, b;ϑ(t)) andβ(T ) ∈ W s

p (ϑ(T )) for somep ∈ Cr(K).
Then for any neighborhoodU of p there is a pathβ′ satisfyingβ′(0) = β(0),
∀t<T β′(t) ∈W (a, b;ϑ(t)) andβ′(T ) ∈W s

p (ϑ(T )) ∩ U .

Proof (B). Pick τ such thatφϑ(T )
τ (β(T )) ∈ U . If β1(t) = φ

ϑ(t)
τ (β(t)) then for any

t ∈ [0, T ] the orbits ofβ1(t) andβ(t) coincide. Furthermoreβ1(T ) ∈ U . Let β2

be the integral arc of the vector fieldϑ(0) from β(0) to β1(0). Then the desired
pathβ′ is the concatenation ofβ2 with β1. �
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7.2 A First Proof for the Surjectivity ofΠ

Claim (C). Let ϑ ∈ C0(I,K). Suppose that there is a smooth functionf : M →
R, which is a Lyapunov function for eachϑ(t), t ∈ I. Assume there are real
numbersr1, r2 > 0 so thatH ≡ {x ∈ M | r1 ≤ f(x) ≤ r2} contains no singular
points forK. For any pathβ : I → H there is a pathβ′ : I → f−1(r2) such that
the orbits ofβ(t) andβ′(t) coincides.

Proof (C). We define

ϑ′ ∈ C0(I,Xr(H)) by τ 7→ ϑ(τ)

ϑ(τ)(f)
.

If β′(t) = φ
ϑ′(τ)
r2−f(β(t))(β(t)) thenf(β′(t)) = r2 for all t ∈ I. The conclusion

follows from the observation that the orbits of the vector fieldsϑ andϑ′ coincide
onH. �

Claim (D). If A = [0, T0) thenT0 ∈ A. HenceA = I.

Proof (D). Let T = minα−1(T0). Choose anyβ ∈ Bσ
x and any associated re-

scalingα for β such that∀t<T β(t) ∈W (a, b;σ◦α(t)) andβ(T ) ∈W s
p (σ◦α(T ))

or β(T ) ∈ W u
p (σ ◦ α(T )) for somep ∈ Cr(K) − {a, b}. We will prove the claim

by extending the pathβ|[0,T−δ], for some smallδ > 0, to a pathβ′ ∈ Bσ
x with a

re-scalingα′ for β′ such that∀t≤T β′(t) ∈W (a, b;σ ◦ α′(t)).
Without loss of generality we suppose thatβ(T ) ∈W s

p (σ ◦ α(T )) and the index
of p is n − 1. We make an observation that, sinceβ(T ) ∈ W u

a (σ ◦ α(T )) andα
is continuous there is, by Proposition 7.2.1, a real numberδ > 0 such that for any
T − δ < t < T + δ we haveβ(t) ∈W u

a (σ ◦ α(t)).

Let f : M → R be a Lyapunov function forσ ◦ α(T ). We shall postpone the
discussion on the choice off for a while. By Lemma 7.2.2 there is a real number
c1 > 0 such thatf is a Lyapunov function forσ(t) whenever−c1 ≤ t− T0 ≤ c1.

Let σ′′ be the restriction ofσ to the segmentJ ≡ [T0 − c1, T0 + c1]. Let V be
an open neighborhood off(p) in R such that∀v∈V−{p} v is a regular value forf.
Pick λ ∈ V − {p} and consider the manifoldsSsp(σ

′′) = W s
p (σ

′′) ∩ I × f−1(λ)
andSup (σ′′) = W u

p (σ′′) ∩ I × f−1(λ), cf. Section 6.3. SinceSsp(σ
′′) andSup (σ′′)

are compact and disjoint they have disjoint closed tubular neighborhood both with
radiusε, sayN s

ε andN u
ε , respectively.
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7 The Central Vector Field Theorem

By Claim (B) we may assume that there isc2 > 0 such thatβ((T−c2, T+c2)) ⊂
(V − {0}). Then by Lemma 7.2.2 and Claim (C) we may additionally assume that
there is a real numberc3 with 0 < c3 < c2 such thatβ([T −c3, T +c3]) ⊂ f−1(λ).
Pick a real numberδ with 0 < δ < c3 such that(T0 − δ0, β(T − δ)) ∈ N s

ε , where
δ0 = T0 − α(T − δ). This is possible since(T0, β(T )) ∈ Ssp(σ(T0)) ⊂ N s

ε .

The one-dimensional vector bundleν(Ssp(σ
′′), J × Sn−1) is trivial by Proposi-

tion 6.3.11. Therefore, there is an embeddinge : Ssp(σ
′′) × [−ε, ε] → N s

ε , cf.
Theorem 3.2.3. Let(v, r) = e−1(T0 − δ0, β(T − δ)).

Claim (D.1). There exists a pathγ : [T0 − δ0, T0] → N s
ε with γ(T0 − δ0) =

(T0 − δ0, β(T − δ)) such that

1. π1 ◦ γ = id[T0−δ0,T0], whereI × Sn−1 → I is the projection on the first
factor;

2. im(γ) ∩ SSp (σ′′) = ∅.

Proof (D.1). By Corollary 6.3.10, there is a diffeomorphism

Ψ : J × Sp
(

σ′′(T ′ − c1)
)

→ Ssp(σ
′′)

such that, for any(t, x) ∈ J × Ssp(σ
′′(T ′ − c1)) we havet = π1 ◦ Ψ(t, x). Let

(τ, z) = Ψ−1(v) and note thatτ = T0 − δ0. We define

ω : [T0 − δ0, T0] → J × Sp
(

σ′′(T ′ − c1)
)

by ω(t) = (t, z).

Then the desired pathγ is

γ(t) = e−1 (Ψ ◦ ω(t), r) .

�

We are ready to define the desired pathβ′ ∈ Bσ
x . We followβ1 ≡ β|[0,T−δ] in the

interval[0, T − δ] simultaneously changing the vector field according toσ ◦α from
σ ◦ α(0) to σ ◦ α(T − δ). Then, we followβ2 ≡ π2 ◦ γ, whereπ2 : I ×M →M
is the projection on the second factor. We change the vector field linearly from
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7.2 A First Proof for the Surjectivity ofΠ

σ(T0 − δ0) to σ(T0). Final step is to extend the resulting path to the whole interval
I by a pathβ3. For this we defineς : I → K by ς(t) = σ((1 − T )t+ T ) and pick
β3 ∈ Bς

β2(T0)
and an associated re-scalingα3 for β3. The desired pathβ′ is

β′(t) =







β(t) for t ∈ [0, T − δ],
β2 ◦ α(t) for t ∈ [T − δ, T ],

β3(1/(1 − T )(t− T )) for t ∈ [T, 1].

The associated re-scalingα′ for β′ is

α′(t) =







α(t) for t ∈ [0, T − δ],
t for t ∈ [T − δ, T ],

α3(1/(1 − T )(t− T )) for t ∈ [T, 1].

We observe thatβ′(t) /∈ W s
p (σ ◦ α′(t)) for t ∈ [0, T ]. It remains to show that

β′(t) ∈W (a, b;σ ◦ α′(t)) for t ∈ [0, T ].
At this point we shall proceed our postponed discussion on the choice ofa Lya-

punov function. LetCrn−1(K) be the set of singular points of indexn − 1. By
Theorem 5.7.3 there is a Lyapunov function forσ(T0) such that for anyq ∈
(Crn−1(K) − {p}) we havef(p) < f(q). By Lemma 7.2.2 there is a positive
realδ′ > 0 such that the functionf is Lyapunov for eachσ(t) with |t − T0| < δ′.
We can shrink the neighborhoodV of p so that

f(x) < min{f(q)| q ∈ Crn−1(K) − {p}} for all x ∈ V

and pick0 < δ0 < min{δ′,minα−1(c3)}. Then by the property

df(σ(t))(y) < 0 for |t− T0| < δ0 andy ∈M − Cr(K)

we conclude thatφσ◦α
′(t)

β′(t) dies atb for t ∈ [0, T ], sinceb is the only singular point

of indexn. We conclude thatβ′(t) ∈W (a, b;σ ◦ α′(t)) for all t ∈ [0, T ]. �

This ends the proof of the proposition.�
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7 The Central Vector Field Theorem

7.3 Stability of One-Parameter Families of
Diffeomorphisms

We study a one-parameter family{κt}t∈I of diffeomorphisms starting at a Morse-
Smale diffeomorphism. For a bifurcation pointt0 ∈ I the diffeomorphismκt0
ceases to be Morse-Smale, that isκt0 have a nonhyperbolic singular point or its
stable and unstable manifolds do not intersect transversally. We shall recall that
if p is a hyperbolic singularity for a diffeomorphismκt, then the stable manifold
W s
p (κt) is an injectively immersed open disk inM . The same is true for the strong

stale and strong unstable manifolds at a nonhyperbolic singular point, cf. Appendix
III, Shub [1986].

Let Mn be a closed smooth manifold. We follow Newhouse et al. [1983] and
consider the set ofCr diffeomorphisms onM denoted byDiffr(M).

Definition 7.3.1 (Newhouse et al. [1983]).We call aCr mapκ : I ×M → I ×
M an arc of diffeomorphisms onM if and only if κ(t, x) = (t, κt(x)), where
x 7→ κt(x) is a Cr diffeomorphism for eacht ∈ I. The space of arcs ofCr

diffeomorphisms on M will be denoted byPr(M).

We giveDiffr(M) andPr(M) theCr topology.
Suppose an arcκ ∈ Pr(M) with κ0 ∈ MSr, whereMSr is the set of Morse-

SmaleCr diffeomorphisms onM . Let b = b(κ) = inf{t ∈ I| κ(t) /∈ MSr}. As
for diffeomorphisms also for arcs (of diffeomorphisms) we can introducea notion
of conjugacy.

Definition 7.3.2 (Newhouse et al. [1983]).If κ, κ′ ∈ Pr(M), then we say that
(h,H) is a conjugacy ifh : I → I is a homeomorphism withh(b(κ)) = b(κ′),
H : I ×M →M is a map withHt being a conjugacy betweenκt andκ′h(t) for all
t in some neighborhood of[0, b(κ)].

The definition of conjugacies gives rise to the concept of structural stability for
arcs of diffeomorphisms.

Definition 7.3.3 (Newhouse et al. [1983]).An arcκ ∈ Pr(M) is stable if there is
an open neighborhoodU of κ in Pr(M) such that anyκ′ ∈ U is conjugate toκ.

100



7.3 Stability of One-Parameter Families of Diffeomorphisms

The necessary and sufficient conditions for structural stability of arcsof diffeo-
morphisms have been formulated and proven in Newhouse et al. [1983].

Definition 7.3.4 (Newhouse et al. [1983]).Letr ≥ 5, the subsetSr(M) ⊂ Pr(M)
is the set of arcsκ that satisfy:

1. The limit set of eachκt has finitely many orbits,t ∈ I;

2. κ has only finitely many bifurcation values, sayb1 to bs in (0, 1);

3. All stable, strong stable, unstable, and strong unstable manifolds intersects
transversally;

4. For eachi ∈ {1, ..., s}, κbi has no cycles and has exactly one non-hyperbolic
periodic orbit which is either a noncritical saddle-node, cf. Sec. 3, New-
house et al. [1983], or a flip, cf. Sec. 4, Newhouse et al. [1983]; this non-
hyperbolic orbit unfolds generically.

We shall not explain the meaning of Definition 7.3.4, instead we refer to Newhouse
et al. [1983] for details and remark merely that any arc of diffeomorphismsκ, such
thatκt ∈ MSr for t ∈ I belongs to the setSr(M).

Theorem 7.3.5 (Theorem 4.4 in Newhouse et al. [1983]).For r ≥ 5, the arcs in
Sr(M) are stable.

For r ≥ 5 we define the subsetRr(M) ⊂ Sr(M) of arcsκ that satisfyκt ∈
MSr.

Corollary 7.3.6. LetG : I → Rr(M), r ≥ 5, be a map. Then there is a conjugacy
between the arcG0 andG1. In particular there exist a homeomorphismh : I → I
and a mapH : I×M →M , whereHt is a conjugacy betweenG0(t) andG1(h(t))
for t ∈ I.

Proof. The conclusion follows from compactness of the unit interval. We coverI
be finite number of open intervals{Ui}i∈{1,...,l} and propagate the conjugacy from
the neighborhood of0 to 1. �

101



7 The Central Vector Field Theorem

We shall relate the results on conjugacy of arcs of diffeomorphism with arcs of
vector fields, which is the primary object of the study in this thesis. Below, we
show that the Stable Manifold Theorem for Vector Fields follows from for the
Stable Manifold Theorem for Diffeomorphisms.

Let M be a compact smooth manifold. A vector fieldξ ∈ Xr(M), r ≥ 1,
determines a one-parameter family ofCr diffeomorphismsφt : M → M for
t ∈ R given by

φξt (x) = φξx(t).

SupposeΨ is aCr diffeomorphism anda is a fixed point, then we define the stable
manifold forΨ ata by

W s
a (Ψ) = {x ∈M | lim

n→+∞
Ψn(x) = a}.

Since(φξt )
n = φξnt for all n ∈ N, for any singular pointa of ξ and any fixed

t > 0 we have

W s
a (φξt ) = {x ∈M | lim

n→+∞
φξtn(x) = a} = {x ∈M | lim

λ→+∞
φξx(λ) = a} = W s

a (ξ).

7.3.1 A Second Proof for the Surjectivity of Π

As an application of Corollary 7.3.6 we will give an alternative and more elegant
proof of Proposition 7.2.7 for classCr with r ≥ 5. Additionally we release the
assumption that the singular points are of maximal and minimal indices.

Proposition 7.3.7. LetMn be a closed smooth manifold,K be a gradient-likeCr

section cone,r ≥ 5. Suppose thata, b are singular points ofK with a �K b. If
ξ ∈ K then for anyη ∈ K and anyγ0 ∈ P (a, b; η) there is someγ1 ∈ P (a, b; ξ)
such thatγ0 ∼K γ1. That is, the following composition

P (a, b; ξ) ↪→ P (a, b;K) → P (a, b;K)/ ∼K

is surjective.
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Proof. Sinceξ, η ∈ K we can define a pathσ ∈ Cr(I,K) by σ(t) = tξ + (1− t)η
with σ(0) = η andσ(1) = ξ. Let cη be a constant pathcη(t) = η. We define a
Cr mapg : I × I → K by g(s, t) = (1 − s)cη(t) + sσ(t). The mapg gives rise

to a mapG : I → Rr(M). Pick τ > 0 thenG(s)(t) ≡ Gτ (s)(t) =
(

t, φ
g(s,t)
τ

)

.

We shall use the notationGs(t) = G(s)(t). We note thatG0(t) = (t, φητ ) and

G1(t) =
(

t, φ
σ(t)
τ

)

.

By Corollary 7.3.6 there exists a homeomorphismh : I → I and there is a map
H : I ×M → M with Ht : M → M , whereHt(z) = H(t, z), is a conjugacy
betweenG0(t) andG1(h(t)) for all t ∈ I.

Sinceγ0 ∈ P (a, b; η) there is a pointx ∈ W (a, b; η) such thatγ0(t) = φηx(t)
for all t ∈ R. Let cx be a constant path inM given by cx : t 7→ x. Then
cx(t) ∈W (a, b, cη(t)).

We define a pathβ : I → M by β(t) = H−1
0 ◦ Ht ◦ cx ◦ h(t) if h(0) = 0. If

h(0) = 1 then we defineβ byβ(t) = β′(1− t) whereβ′(t) = H−1
1 ◦Ht ◦cx ◦h(t).

We observe thatβ(t) ∈ W (a, b;σ(t)), β(0) = x, σ(0) = ξ, andσ(1) = η. If
γ1(t) = φξβ(1)(t) thenγ1 ∈ P (a, b; ξ) andγ0 ∼K γ1. �

7.4 A Proof for the Injectivity of Π

We consider a closed smooth manifoldMn. By the discussion in Section 5.1,
Xr(M), 0 ≤ r ≤ ∞, with theCr topology arises from a complete metric. Pick
such a metric and denote it bydr(·, ·). Furthermore, on the spaceC0(I,Xr(M))
we impose the topology of compact convergence.

Let K be aCr section cone onM , r ≥ 1. Let a, b be two singular points of
K of index 0 andn, respectively. In the proof for the injectivity of the mapΠ
we will need an approximation of elements inC0(I,K) by elements inCs(I,K)
(0 ≤ s ≤ r). This is resolved by the following proposition.

Proposition 7.4.1. LetMn be a closed smooth manifold,K be aCr section cone
onM with r ≥ 1. Leta, b be two singular points ofK of index0 andn, respectively.
Supposeσ ∈ C0(I,K) andβ ∈ C0(I,M) such thatβ(t) ∈ W (a, b;σ(t)), t ∈ I.
Then there isσ′ ∈ Cs(I,K), 0 ≤ s ≤ r, such thatσ′(0) = σ(0), σ′(1) = σ(1)
andβ(t) ∈W (a, b;σ′(t)) for eacht ∈ I.
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7 The Central Vector Field Theorem

Lemma 7.4.2. Let K be aCr section cone,r ≥ 0, on a smooth closed manifold
M . Then the setCs(I,K), 0 ≤ s ≤ r, is dense inC0(I,K).

Proof. For everyσ ∈ C0(I,K) and everyε > 0 we shall find a pathς ∈ Cs(I,K)
such thatsupt∈I dr(ς(t), σ(t)) < ε. By compactness ofI and continuity ofσ we
coverI by a family of open neighborhoods{Vi}i∈{1,...,l} of ti ∈ I such thatt0 = 0,
t1 = 1 anddr(σ(t), σ(ti)) < ε for t ∈ Vi. We define constant pathsci ∈ Cs(I,K)
by ci(t) = σ(ti). We use a smooth partition of unity{λ}i∈{1,...,l} subordinate to
{Vi}i∈{1,...,l}. Define

ς(t) =
l
∑

i

λi(t)ci(t),

then

dr(ς(t), σ(t)) = dr

(

l
∑

i

λi(t)σ(t),
l
∑

i

λi(t)ci(t)

)

≤
l
∑

i

λi(t)dr(σ(t), ci(t))

<
l
∑

i

λi(t)ε = ε

as desired.�

Proof (of Proposition 7.4.1).By Proposition 7.2.1 for eacht ∈ I, there is an open
neighborhoodUt of β(t) and a ballBK

δt
(σ(t)) such that for anyx ∈ Ut and any

θ ∈ BK
δt

(σ(t)) we have thatx ∈ P (a, b; θ). Let Vt ⊂ Ut be an open neighbor-
hood of t such that for eachτ ∈ Vt, ‖σ(τ) − σ(t)‖r < δt/2. The intervalI is
compact and we get a finite family of suchVt’s, say{Vi}i∈{t1,...,tl} coveringI. Let
δ = min{δt1/2, ..., δtl/2}. By Lemma 7.4.2 we can findσ′ ∈ Cs(I,K) such that
supt∈I dr(σ

′(t), σ(t)) < δ. Then fort ∈ Vi

dr(σ
′(t), σ(ti)) ≤ dr(σ

′(t), σ(t)) + dr(σ(t), σ(ti)) < δ + δi/2 ≤ δ.

Thereforeβ(t) ∈ P (a, b;σ′(t)) for all t ∈ I. �

In our preparation for the proof of injectivity ofΠ we consider an essential
gradient-like vector fieldξ and study connected components ofW (a, b; ξ). Sup-
poseξ hasl singular points of index1, sayp1, ..., pl, andk − l singular points of
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7.4 A Proof for the Injectivity ofΠ

indexn−1, saypl+1, ..., pk. We consider a selfconjugacy of the vector fieldξ, that
is a homeomorphismH : M → M such thatH ◦ φξt (x) = φξt ◦H(x). Note that
H preserves the stable and unstable manifolds ofpi, 1 ≤ i ≤ k. We shall assume
thatH(pi) = pi for i = 1, ..., k.

Pick a singular pointp of ξ of indexn − 1. By the discussion in Section 5.4, cf.
Equation (5.8), there is a local coordinate system(V, ψ) of p

ψ : V → R
n = Es ⊕ Eu, ψ(p) = 0, (7.2)

whereEs andEu are the stable and unstable subspaces ofR
n for dξ̂0 where

ξ̂ = dψξ ◦ ψ−1. The local stable manifold of̂ξ is an open neighborhood of the
origin inEs and the local unstable manifold is an open neighborhood of the origin
in Eu. We restrict the homeomorphismH to a sufficiently small neighborhoodV ′

of p such thatH(V ′) ⊂ V withW ≡ ψ(V ′) convex. We definêH = ψ◦H◦ψ−1|W
and see that̂H is a homeomorphism onto its image. Finally we note that since the
index ofp is n − 1, the stable subspaceEs is a point in the Grassmann manifold
Gn−1(R

n).

Let V 0
n−1(R

n) be the Stiefel manifold of orthonormal(n − 1)-tuples of vectors
in R

n. A principal bundle

O(Rn−1) // V 0
n−1(R

n)
P // Gn−1(R

n)

over the Grassmann manifoldGn−1(R
n) is defined by the mappingP takingX ∈

V 0
n−1 to the hyperplane spanned byX.
Fix an orientationω on R

n. There is a correspondenceX 7→ X⊥, which as-
signs to each(n − 1)-tuple of orthonormal vectors inRn the n-th orthonormal
vector making then-tuple positively oriented, i.e.[X ⊕X⊥] = ω. This correspon-
dance defines a homeomorphism betweenV 0

n−1(R
n) andV 0

1 (Rn) ∼= Sn−1 and a
homeomorphism betweenGn−1(R

n) andG1(R
n) ∼= RPn−1. In conclusion, the

following diagram commutes

V 0
n−1(R

n)

P
��

∼= // Sn−1

P̃
��

Gn−1(R
n)

∼= // RPn−1,
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7 The Central Vector Field Theorem

whereP̃ is the quotient map corresponding to the antipodalZ2 action.
Fix an(n− 1)-tupleX which spans the stable subspaceEs. The complement of

the subspaceEs = P (X) in R
n has two connected components:

E− = {x ∈ R
n|
〈

x,X⊥
〉

< 0} andE+ = {x ∈ R
n|
〈

x,X⊥
〉

> 0}. (7.3)

LetW+ = E+ ∩W andW− = E− ∩W .
Since the mapĤ takes a stable (unstable) manifold to itself we have either

Ĥ(W+) ⊂ E+ or Ĥ(W+) ⊂ E−.
We can also apply the above construction for a singular point of index1. The

subspaceEs is then replaced byEu and an(n−1)-tupleX spans nowEu instead.
The rest of the construction remains unchanged.

Definition 7.4.3. LetMn be a closed smooth manifold,ξ ∈ Er(M), r ≥ 1, and
H : M →M be a selfconjugacy ofξ. Letp be a singular point ofξ of index n− 1
(or 1). Suppose a triple(ψ,W,X) is as follows

1. ψ is a coordinate chart atp

ψ : V → R
n = Es ⊕ Eu, ψ(p) = 0

with ψ(W s
p (ξ, V )) ⊂ Es andψ(W u

p (ξ, V )) ⊂ Eu

2. W is a convex neighborhood of0 in R
n such thatH ◦ ψ−1(W ) ⊂ V ,

3. X is an(n− 1)-tuple which spansEs (Eu).

Let Ĥ = ψ ◦ H ◦ ψ−1|W . If Ĥ(E+ ∩W ) ⊂ E+ , whereE+ as in (7.3) thenH
will be called proper atp.

The next proposition shows that ifH is proper atp for a triple(ψ,W,X) then it is
proper atp for any other triple satisfying conditions 1., 2. and 3. of Definition 7.4.3.

Proposition 7.4.4. LetMn be a closed smooth manifold,ξ ∈ Er(M), r ≥ 1, and
H : M →M be a selfconjugacy ofξ. Letp be a singular point ofξ of index n− 1
or 1. If H is proper atp with respect to a triple(ψ1,W1, X1) then it is proper with
respect to any other triple(ψ2,W2, X2) which satisfies conditions 1., 2. and 3. of
Definition 7.4.3.
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7.4 A Proof for the Injectivity ofΠ

Proof. We prove the proposition by contradiction. Letx ∈ ψ−1
1 (W1) ∩ ψ−1

2 (W2)
andxi = ψi(x), i = 1, 2. Without loss of generality we may assume thatx2 ∈ E+

2 .
Suppose that̂H2(x2) ∈ E−

2 . The compositionψ1 ◦ ψ−1
2 is a homeomorphism,

which takesx2 to x1 and takesĤ2(x2) to Ĥ1(x1). But x1 andĤ1(x1) lie in the
same component ofRn − P (X1), which is a contradiction.�

Definition 7.4.5. LetMn be a closed smooth manifold andξ ∈ Er(M), r ≥ 1.
We say a selfconjugacyH : M → M of ξ is proper if and only if it is proper at
each singular point ofξ with index1 andn− 1.

Proposition 7.4.6. LetMn be a closed smooth manifold andξ ∈ Er(M), r ≥ 1.
Supposea, b are singular points of indices0 andn respectively. If a selfconjugacy
H : M → M of ξ is proper, thenH maps every connected componentUα of
W (a, b; ξ) into itself.

We define a collection{Ni}i∈{1,...,N} consisting of

1. singular points ofξ,

2. stable manifoldsW s
p (ξ) of co-dimension more than 1,

3. unstable manifoldsW u
q (ξ) of co-dimension more than 1 and

4. connecting manifoldsW (p, q; ξ) of co-dimension more than 1.

LetN =
⋃k
i=1Ni.

Lemma 7.4.7. For any pair of pointsx, y ∈W (a, b; ξ) there is a path

β : I → (M −N)

such thatβ(0) = x, β(1) = y.

Proof. By Thom’s Transversality Theorem, cf. Theorem 3.2.1 Hirsch and Smale
[1974], the set of mapsγ ∈ Cr(I,M) that are transversal toNi is dense. Therefore
the set of maps inCr(I,M) that are transversal to allNi is dense. Note that if
γ ∈ Cr(I,M) andγ t Ni thenγ(I) ∩Ni = ∅.
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7 The Central Vector Field Theorem

Since the pointsx, y are inW (a, b; ξ), there are open neighborhoodsUx of x and
Uy of y such that for anyz ∈ Ux ∪ Uy, z ∈ W (a, b; ξ). Furthermore, there is
γ′ ∈ Cr(I,M −N) such thatγ′(0) ∈ Ux, γ′(1) ∈ Uy. Connectx with γ′(0) by a
pathβ′ in Ux, andγ′(1) with y by a pathβ′′ in Uy. Concatenation ofβ′, γ′ andβ′′

gives the desired pathβ. �

Proof (of Proposition 7.4.6).ForM of dimension 2 the proposition is trivially true.
We assume in the following thatdim(M) ≥ 3.

We shall show that for anyx ∈ Uα there is a pathβ : I → Uα such thatβ(0) = x
andβ(1) = H(x). Using Lemma 7.4 pick a pathγ : I → M connectingx with
H(x) such thatim(γ) ⊂ (M −N). Supposeγ leavesUα. Defineτ by

τ = inf{t ∈ I| γ(t) ∈W s
p (ξ), index(p) = n−1 or γ(t) ∈W u

q (ξ), index(q) = 1}.

Without loss of generality we suppose thatγ(τ) ∈W s
p (ξ). Pick a triple(ψ,W,X)

which satisfies conditions 1., 2., and 3. of Definition 7.4.3. We may suppose
that γ(τ) belongs to an open neighborhoodψ−1(W ) of p (if not concatenateγ
with a flow line as in Claim (B) in the proof of Proposition 7.2.7). We shall show
below that for a sufficiently small real numberδ > 0 there exists a pathγ′ : I →
W (a, b; ξ) with γ′(0) = γ(τ − δ) andγ′(1) = H ◦γ(τ − δ). Then the desired path
β joining x with H(x) is a concatenation ofγ|[0,τ−δ], γ′ andH ◦ γ|[0,τ−δ], that is

β(t) =







γ(t) for t ∈ [0, τ − δ],
γ′(t+ 2(τ − δ)(t− 1)) for t ∈ [τ − δ, 1 − τ + δ],

H ◦ γ(1 − t) for t ∈ [1 − τ + δ, 1].

We constructγ′. Observe thatγ(τ) ∈ W u
a (ξ) therefore there is an open neigh-

borhoodN of γ(τ) such thatx ∈ W u
a (ξ) wheneverx ∈ N . Pick δ such that

γ(τ−δ) ∈ N . SinceH is properγ(τ−δ) andH◦γ(τ−δ) are both inE+ (orE−).
The complement ofEu in E+ has only one connected component, therefore there
is a pathγ′ : I → (E+ −Eu) with γ′(0) = γ(τ − δ) andγ′(1) = H ◦ γ(τ − δ). �

Proposition 7.4.6 says that the study of a selfconjugacy can be reduced toa local
analysis of the induced mapŝH for each singular point ofξ of index1 or n− 1.

We shall study a selfconjugacy originated from the following situation. LetK be
a gradient-like section cone. We regard a pathσ : I → K with σ(0) = σ(1) = ξ
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7.4 A Proof for the Injectivity ofΠ

and we suppose that there is a mapG : I ×M →M with Gt a conjugacy between
σ(0) andσ(t). In particularH = G(1) is a selfconjugacy forξ. The singular points
of K are isolated andG is continuous thereforeH(pi) = pi for eachi ∈ {1, ..., k}.

Definition 7.4.8. Let M be a closed smooth manifold,K be aCr section cone,
r ≥ 1, onM . Letσ : I → K be a path in a section coneK. We say that a map
G : I×M →M is an arc of conjugacies forσ if Gt is a conjugancy betweenσ(0)
andσ(t) for all t ∈ I.

Proposition 7.4.9. LetK be a Lyapunov-SmaleCr section cone,r ≥ 1, andξ ∈
K. Supposeσ : (I, ∂I) → (K, ξ) is a loop inK andG : I ×M →M is an arc of
conjugancies forσ. ThenG(1) is a proper selfconjugacy.

Lemma 7.4.10.SupposeK is a LyapunovCr section cone,r ≥ 1, and p is a
singular point ofK. Let ξ, η ∈ K and (ψ, V ) be a local coordinate chart with
p ∈ V and ψ(p) = 0. Let Lξ, Lη ∈ Xr(ψ(V )) be linear approximations of
dψξ ◦ ψ−1 anddψη ◦ ψ−1, respectively. ThenW s

0 (Lξ) ∩W u
0 (Lη) = {0}.

Proof. SinceK is a Lyapunov section cone there exists a functionf : M → R

which is a Lyapunov function for bothξ andη. Moreover, by Lemma 7.2.2 for
sufficiently small open neighborhoodU of 0 the functionf̂ = f ◦ ψ−1|U is a
Lyapunov function forLξ andLη. Then by Proposition 6.1.12

W s
0 (Lξ, U) ∩W u

0 (Lη, U) = {0},

butW s
0 (Lξ) andW u

0 (Lη) are both linear subspaces ofR
n, thus also

W s
0 (Lξ) ∩W u

0 (Lη) = {0}.

�

Proof (of Proposition 7.4.9).We shall show thatG(1) is proper at each singular
point of index1 andn−1. We present the proof for a singular point of indexn−1.
The proof for a singular point of index 1 is analogous.

Let p be a singular point of the vector fieldσ(0) = σ(1) with indexn − 1. Pick
a triple(ψ,W,X) satisfying conditions 1., 2. and 3. of Definition 7.4.3. Letσ̂ be
the local representation ofσ, that isσ̂(t) = dψσ(t) ◦ ψ−1 for t ∈ I. Define a path
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7 The Central Vector Field Theorem

ς : I → Xr(Rn) consisting of linear vector fields defined byςt : x 7→ dσ̂(t)0x. We
observe thatW s

0 (ς(0)) = W s
0 (ς(1)).

Let f : M → R be the Morse function forK from Definition 6.1.9. Without loss
of generality we assume thatp is the only critical point off in ψ−1(W ). Pick a
regular valuec of f with c < f(p) sufficiently closed tof(p) so that

f−1(c) ∩W u
p (σ(t)) ⊂ ψ−1(W ) for all t ∈ I. (7.4)

By Proposition 5.4.8 and compactness ofI such ac exists.
Let f̂ be the local representation off , f̂ = f ◦ ψ−1. For sufficiently smallW f̂

is a Lyapunov function for eachς(t), t ∈ I. Recall Definition 6.3.1 and consider
W u

0 (ς), thenSu0 (ς) = W u
0 (ς) t I × f̂−1(c) is nonempty by (7.4). We apply

Proposition 6.3.8 to conclude thatSu0 (ς) andI×Su0 (ς(0)) are diffeomorphic. Note
thatSu0 (ς(0)) ∼= S0 = {−,+}. We define the following composition

g : I × {−,+} ∼= // Su0 (ς) � � j1 // W u
0 (ς) � � j2 //

⊔

t∈I{t} × (W u
0 (ς(t)) +W s

0 (ς(0)))

� � j3 // I × R
n id×Q // I × (Rn/W s(ς(0))) ∼= I × R,

wherej1, j2 andj3 are the inclusions andQ : R
n → R

n/W s(ς(0)) is the quotient
map.

Suppose thatG(1) is not a proper atp. Theng(1,−) andg(0,−) are in two
different connected components of the complement ofW s(ς(0)) in R

n. It follows
thatg(0,−)g(1,−) < 0. Sinceg is continuous there isτ ∈ I such thatg(τ) = 0.
But this implies thatSu0 (ς(τ)) ⊂ W s(ς(0)). The section coneK is Lyapunov
therefore by Lemma 7.4.10, for anyt ∈ I,W u

0 (ς(t)) ∩W s
0 (ς(0)) = {0}. This is a

contradiction.�

We are ready to prove injectivity of the mapΠ.

Proposition 7.4.11.LetM be a closed smooth manifold andK be a Lyapunov-
SmaleCr section cone onM , r ≥ 5. Leta, b be singular points ofK with indices
0 andn, respectively. Supposeξ ∈ K. If γ1, γ2 ∈ P (a, b; ξ) andγ1 ∼K γ2 then
γ1 ∼ξ γ2.
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7.4 A Proof for the Injectivity ofΠ

Proof. Suppose there is a mapσ ∈ C0(I,K) such thatσ(0) = σ(1) = ξ and a path
β : I → M with β(t) ∈ W (a, b;σ(t)) for t ∈ I. We will show that there is a path
β′ : I →M with β′(0) = β(0) andβ′(1) = β(1) such thatβ′(t) ∈W (a, b; ξ).

By Proposition 7.4.1 there isσ′ ∈ Cr(I,K) such thatσ′(0) = σ′(1) = ξ and
β(t) ∈W (a, b;σ′(t)) for t ∈ I.

Let cξ be a constant pathcξ(t) = ξ. We define aCr map g : I × I → K
by g(s, t) = (1 − s)σ′(t) + scξ(t). We use the same argument as in the proof
of Proposition 7.3.7. The mapg gives rise to a mapG : I → Rr(M), where
Rr(M) is the set of arcs of Morse-Smale diffeomorphisms onM . Pickτ > 0 then

G(s)(t) ≡ Gτ (s)(t) =
(

t, φ
g(s,t)
τ

)

. We shall use the notationGs(t) = G(s)(t).

Note thatG0(t) =
(

t, φ
σ′(t)
τ

)

andG1(t) = (t, φξτ ).

By Corollary 7.3.6 there exist a homeomorphismh : I → I and a mapH :
I ×M → M , whereHt is a conjugacy betweenG0(t) andG1(h(t)) for t ∈ I.
We observe thatH0 andH1 are both selfconjugacy ofΦξ

τ . SinceK is a Lyapunov-
Smale section cone the selfconjugaciesH0 andH1 are proper.

The homeomorphismh takes0 to 0 or 0 to 1. Without loss of generality we
assume thath(0) = 1. We define a pathγ : I → M by γ(t) = H−1

1 ◦ H(1−t) ◦
β ◦ h−1(1− t). SinceHt(·) ≡ H(t, ·) is a conjugacy betweenG0(t) andG1(h(t))
(orbits go to orbits) we have thatHτ ◦ β ◦ h−1(τ) ∈ W (a, b; ξ) for eachτ ∈ I.
Thereby,γ(t) ∈ W (a, b; ξ). We see thatγ(0) = β(0). Moreover, the pointsγ(1)
andβ(1) are in the same connected component ofW (a, b; ξ). This can be deduced
form the fact thatH−1

1 ◦H0 is a proper conjugacy and the use of Proposition 7.4.6.
It follows that there is a pathγ′ : I → M connectingγ(1) with β(1) such that
γ′(t) ∈ W (a, b; ξ) for all t ∈ I. The desired pathβ′ is then the concatenation ofγ
andγ′:

β′(t) =

{

γ(2t) for t ∈ [0, 1
2 ],

γ′(2t− 1) for t ∈ [12 , 1].

�

Propositions 7.3.7 and 7.4.11 prove Theorem 7.1.2. A consequence of Theo-
rem 7.1.2 is the following corollary.

Corollary 7.4.12. LetM be a closed smooth manifold andK be a Lyapunov-Smale
Cr section cone onM , r ≥ 5. Let a, b be singular points ofK with indices0
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7 The Central Vector Field Theorem

and n, respectively. Ifξ, η ∈ K then there is a bijectionΘ : P (a, b; ξ)/∼ξ
→

P (a, b; η)/∼η .

Let p, q ∈ Cr(K). Recall thatp �ξ q means that there is an orbit ofξ not equal
to p nor q whoseα-limit set isp and whoseω limit set isq.

Corollary 7.4.13. LetM be a closed smooth manifold andK be a Lyapunov-Smale
Cr section cone onM , r ≥ 5. Leta, b be singular points ofK with indices0 and
n, respectively. Ifξ, η ∈ K then

a �ξ b⇔ a �η b.

7.5 The Central Vector Field Theorem for Di-paths

This section differs from the rest of the thesis in the sense that we shall present a
conjecture here whose proof is left for further work.

To complete the program started by this thesis we need to establish results on
detecting the connected components ofW (a, b; ξ) for an essential gradient-like
vector fieldξ. Due to Proposition 5.6.5 (up to homeomorphism) it is enough to
consider a gradient vector field. The second task is to extend the CentralVector
Theorem to deal with genuine di-paths.

Conjecture 7.5.1. Let M be a closed smooth manifold andK be a Lyapunov-
SmaleCr section cone onM , r ≥ 1. Let a, b be singular points ofK with indices
0 andn, respectively. Ifξ ∈ K then there is a bijectioñΠ : π(a, b; ξ) → π(a, b;K).

The proof of the conjecture follows from the Central Vector Field Theorem if we
could demonstrate that any shattered di-path (Definition 6.2.3) is di-homotopic by
K to an unbroken flow line for someη ∈ K. Conjecture 7.5.2 below says that any
shattered di-path from the singular pointa to b is di-homotopic byK to a simple
one. Thus to prove Conjecture 7.5.1 it remains to show that any broken flowline
of a gradient-like vector fieldη is homotopic byη to an unbroken flow line, see
Conjecture 7.5.3.
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7.5 The Central Vector Field Theorem for Di-paths

Conjecture 7.5.2. Let M be a closed smooth manifold andK be a Lyapunov-
SmaleCr section cone onM , r ≥ 1. Let a, b be singular points ofK with indices
0 andn, respectively. Every shattered di-path froma to b is di-homotopic byK to
a simple di-path.

Conjecture 7.5.3. LetM be a closed smooth manifold andη ∈ Er(M). Suppose
a, b are singular points ofη with a � b. If γ be a broken flow line ofη born ina and
which dies inb then there is a flow line (unbroken)γ′ ∈ P (a, b; η) di-homotopic to
γ by η, cf. Equation 6.2.
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