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Preface

This thesis is the result of my PhD-study at the Department of Math-
ematical Sciences, Aalborg University, Denmark. The topic of the
thesis is temporal and spatio-temporal processes.

Chapter 1 contains short introductions to point processes and
lattice processes, focusing on concepts that are used in later chapters.

Chapter 2–5 contains the following papers:
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4. Zhu, J., Møller, J., Rasmussen, J. G., Aukema, B. H. & Raffa,
K. F. (2006). Spatial-temporal modeling of forest gaps gener-
ated by colonization from below- and above-ground bark beetle
species. Research Report R-2006-4, Department of Mathemat-
ical Sciences, Aalborg University.

5. Rasmussen, J. G., Møller, J., Aukema, B. H., Raffa, K. F.
& Zhu, J. (2006). Bayesian inference for multivariate point
processes observed at sparsely distributed times. Research Re-
port R-2006-24, Department of Mathematical Sciences, Aalborg
University.
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The published papers and research reports have been included only
changing layout, numbering, and a few minor details from the version
that appears in the above list. As a consequence the notation is not
consistent between the chapters, and some material is repeated in
different chapters. On the other hand, the chapters may be read
independently of each other.

Chapter 6 contains a section on work in progress, and since this
thesis includes much programming to do the heavy computations
involved, it also contains a section describing the use of some of these
programs, so that others may be able to use or be inspired by these.

I wish to thank my supervisor Jesper Møller, who has proposed
many of the problems and solutions addressed in this thesis and has
been a great source of inspiration. I also wish to thank Jun Zhu
for hosting me in my stay at the University of Wisconsin-Madison,
for many useful discussions, and for collaborating with Jesper and
me on several projects. I also would like to thank Brian Aukema and
Kenneth Raffa for their participations in these projects. Furthermore,
I would like to thank Øivind Skare for letting me use his software and
for providing help with this. Finally, I wish to thank the rest of my
colleagues with whom I have had many small but useful discussions
on theoretical and practical issues.

Aalborg, August 2006 Jakob G. Rasmussen

Minor corrections have been made to this revised version.

Aalborg, February 2007 Jakob G. Rasmussen



Summary in English

This thesis treats temporal and spatio-temporal processes, particu-
larly point processes and lattice processes. Such processes are useful
models for many types of data of events occurring in time and space.
However, inference using these processes is often difficult, even when
one employs simulation. Various aspects of simulation algorithms and
simulation based inference are treated in this thesis from theoretical
and practical points of view.

The thesis begins with describing well-known theory of point pro-
cesses and lattice processes. The focus is (marked) temporal point
processes and, to a lesser extent, lattice processes, and the concepts
considered consist primarily of theory that is used in later chapters.
Furthermore, various simulation algorithms for point processes and
lattice processes are considered. The introduction is concluded by
considering various kinds of missing data, since the main issues in
this thesis are strongly related to this subject.

One of the two primary issues addressed in this thesis is edge
effects. Roughly speaking, edge effects means that a process is ob-
served on a time interval (or a region in space), but what happens
outside this interval may influence the process within the interval
causing errors in calculations or simulation algorithms.

Specifically, simulation algorithms for a particular class of point
processes called Hawkes processes are developed and examined. A
Hawkes process is an important (marked) temporal point process
with interesting theory and several practical applications. By view-
ing the Hawkes process as a Poisson cluster process with a certain
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branching and conditional independence structure, a straightforward
simulation algorithm for Hawkes processes is easily constructed, but
this algorithm suffers from edge effects. One solution to this prob-
lem, a perfect simulation algorithm, is constructed, where “perfect”
here refers to the fact that the algorithm does not suffer from edge
effects. Furthermore, various propositions and theorems are proved
to make this algorithm practically useful. Illuminating examples are
presented showing the usefulness as well as the limitations of the
algorithm, and empirical results are obtained.

The straightforward simulation algorithm is also examined in more
detail, and various measures for the error committed when using this
algorithm are discussed. Theoretical results are obtained for calcu-
lating these measures, and the examples used to illustrate the perfect
simulation algorithm are revisited. Empirical results regarding the
measures are obtained, and we show empirically that this algorithm
is much faster than the perfect simulation algorithm.

The other primary issue addressed in this thesis is continuous
time processes observed only at a discrete set of times. Many data
sets have events that may occur at any time point on the continu-
ous time line; that is, the natural model for such a data set would
be a (marked) temporal point process. However, some of these data
sets require the physical presence of an observer and are thus only
observed at a rather sparse set of discrete times. In this thesis two
modelling approaches for such data sets are considered. The first
approach is a discrete time process, where the situation at the ob-
servation times is modelled, and the fact that the events actually
happens between the observation times is ignored. The second ap-
proach is a continuous time process, where what happens between
the observation times is regarded as missing data. Both approaches
are explored from an applied point of view, using a data set involving
a plantation of red pine trees and two types of beetles attacking these
trees.

In the discrete time case, a complicated Bayesian autoregressive
type of spatio-temporal model is constructed, quantifying the rela-
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tions among mortality of the red pine trees and attacks of the two
types of beetles including correlation across space and over time. For
inference, Markov chain Monte Carlo algorithms are used, and prac-
tical results are obtained from these. Furthermore, simulation based
model checking is made.

In the continuous time case, the focus is changed from the appli-
cation to the methodology. The continuous and discrete time pro-
cesses are compared, and the strengths and limitations of the two
approaches are discussed. A subset of the data set used in the dis-
crete case is modelled using a multivariate temporal point process,
mainly with the purpose of illustrating the use of such a process in
the setup with sparsely distributed observation times. We here show
empirically that the continuous time processes can indeed be a useful
and efficient alternative to the discrete time processes.

All of the problems treated in this thesis have required program-
ing for calculations, and in the last part of the thesis the use of some
of these programs is explained. Furthermore, three works in progress
are described. These are a spatial point process model for the loca-
tion of barrows in a part of Jutland, a description of the biological
implications of the discrete and continuous time models for insect
spread, and finally some ideas on applications for a spatial version of
the Hawkes process.
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Summary in Danish

Denne afhandling omhandler tids- og rumtidsprocesser, specielt punkt-
processer og lattice processer. Disse processer er anvendelige som
modeller for mange typer data, som best̊ar af begivenheder i rum
og tid. Imidlertidigt er inferens for disse processer ofte problematisk,
selv n̊ar der anvendes simulation. Forskellige aspekter af simulations-
algoritmer og simulationsbaseret inferens bliver undersøgt i denne
afhandling fra teoretiske og praktiske indgangsvinkler.

Afhandlinger starter med en gennemgang af velkendt teori for
punktprocesser og lattice processer. Fokus lagt p̊a (mærkede) punkt-
processer i tid og i et mindre omfang lattice processer, og de kon-
cepter, der bliver betragtet, best̊ar primært af teori, der er brugt
i senere kapitler. Desuden bliver forskellige simulationsalgoritmer
for punktprocesser og lattice processer gennemg̊aet. Introduktionen
bliver afsluttet med at se p̊a forskellige former for manglende data,
da de primære problemstillinger i denne afhandling er grundet i dette
emne.

Et af de to primære problemer, der bliver undersøgt i denne af-
handling, er kanteffekter. Groft sagt betyder kanteffekter, at en pro-
ces bliver observeret p̊a et tidsinterval (eller en omr̊ade i rummet),
men det, der sker udenfor tidsintervallet, kan influere processen in-
denfor tidsintervallet og skabe fejl i beregninger og simulationsalgo-
ritmer.

Mere specifikt bliver simulationsalgoritmer for en speciel klasse af
punktprocesser kaldet Hawkes processer udviklet og undersøgt. En
Hawkes proces er en vigtig (mærket) punktproces p̊a tidslinjen med
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interessant teori og adskillige praktiske anvendelser. Ved at betragte
Hawkes processen som en Poisson klyngeproces med visse forgrenings-
og betingede uafhængigheds-strukturer, kan en simpel simulationsal-
goritme for Hawkes processer let konstrueres, men denne algoritme
er p̊avirket af kanteffekter. En løsning p̊a dette problem, en perfekt
simulationsalgoritme, bliver konstrueret, hvor “perfekt” her refererer
til det faktum, at algoritmen ikke bliver p̊avirket af kanteffekter.
Derudover bliver forskellige sætninger bevist med henblik p̊a at gøre
denne algoritme praktisk anvendelig. Illuminerende eksempler, som
viser anvendeligheden samt begrænsningerne for algoritmen, bliver
præsenteret, og empiriske resultater bliver opn̊aet.

Den simple simulationsalgoritme bliver ogs̊a undersøgt i flere de-
taljer, og forskellige mål for fejlen beg̊aet ved at bruge denne algo-
ritme bliver diskuteret. Teoretiske resultater til at beregne disse mål
bliver lavet, og eksemplerne brugt til at illustrere den perfekte simu-
lationsalgoritme bliver betragtet igen. Empiriske resultater omkring
målene bliver lavet, og vi viser empirisk, at denne algoritme er meget
hurtigere end den perfekte simulationsalgoritme.

Den anden primære problemstilling i denne afhandling er sto-
kastiske processer i kontinuert tid observeret kun til diskrete tider.
Mange datasæt har begivenheder, der kan ske p̊a et hvilket som helst
tidspunkt p̊a den kontinuerte tidslinje; det vil sige, den naturlige
model for et s̊adan datasæt er en (mærket) punktproces p̊a tidslin-
jen. Dog kræver nogle datasæt den fysiske tilstedeværelse af en ob-
servatør, og bliver derfor kun observeret p̊a et ret begrænset antal
diskrete tidspunkter. I denne afhandling bliver to metoder til model-
lering af s̊adanne datasæt betragtet. Den første metode er processer i
diskret tid, hvor situationen til observationstiderne bliver modelleret,
og det faktum, at begivenheder rent faktisk finder sted mellem ob-
servationstiderne, bliver ignoreret. Den anden metode er processer i
kontinuert tid, hvor det, der sker mellem observationstiderne, bliver
betragtet som manglende data. Begge metoder bliver undersøgt fra
et anvendt synspunkt, hvor der bruges et datasæt, der involverer en
plantage af fyrtræer og to typer biller, som angriber disse træer.
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I tilfældet med diskret tid bliver der konstrueret en kompliceret
Bayesiansk autoregressiv type af rumtidsmodel, som kvantificerer re-
lationerne mellem trædødelighed og billeangreb og inkluderer kor-
relation over rum og tid. Til inferens bruges Markov kæde Monte
Carlo algoritmer, og der opn̊as praktiske resultater ved hjælp af disse.
Desuden bliver der lavet simulationsbaseret model tests.

I tilfældet med kontinuert tid bliver fokus ændret fra anvendelse
til metode. Tilfældene med kontinuert og diskret tid bliver sam-
menlignet, og styrkerne og begrænsningerne af de to indgangsvinkler
bliver diskuteret. En delmængde af datasættet brugt i forbindelse
med det diskrete tilfælde bliver modelleret ved hjælp af en multi-
variat punktproces i tid, primært med det formål at illustrere brugen
af denne type proces i tilfældet med et lille antal observationstider.
Vi viser her empirisk, at processer i kontinuert tid virkeligt kan være
et brugbart og effektivt alternativ til processer i diskret tid.

Alle problemstillingerne i denne afhandling har krævet program-
mering til beregningerne, og i den sidste del af afhandlingen beskrives
nogle af disse programmer. Desuden bliver der beskrevet tre projekter
under udarbejdelse. Disse er en rumlig punktproces til modellering
af placeringen af gravhøje i en del af Jylland, en beskrivelse af de bi-
ologiske konsekvenser af modellerne for insektspredning i kontinuert
og diskret tid, og sidst nogle ideer til anvendelser af en rumlig version
af Hawkes processen.
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Chapter 1

Introduction

1.1 Temporal and spatio-temporal pro-

cesses

Many data sets consists of events or objects scattered randomly
throughout time and space. In order to obtain an understanding of
such data sets, it is important to construct realistic models of them.
In this thesis I work with various aspects of two general classes of
stochastic processes for modelling such data sets: point processes
and lattice processes.

A point process is a stochastic process whose realisations are pat-
terns of points in some arbitrary set. In practice, this set is often a
subset of the time line, in which case I use the term temporal point
process, or a subset of the physical space, in which case I use the
term spatial point point process. In a temporal point process the
points represent the times of events (and are thus often referred to
as events). Many types of data can be modelled by such processes,
for example times of earthquakes or other disasters, arrivals of cus-
tomers in a queuing system, or failures in a computer network. In
a spatial point process the points represent the location of events or
objects. In applications the points usually fall within some subset of
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2 Chapter 1. Introduction

R
2 or R

3. Examples of data in R
2 include the position of trees in a

forest, and the position of plants infected with a certain disease, and
in R

3 an example is the position of stars. Note that the term spatial
point process is often used for a point process defined on a general
space (including temporal point processes), but to keep the distinc-
tion between point processes in time and in space clear, I will use it
to refer to processes modelling locations in the physical space. Since
temporal point processes are the primary focus of this thesis, I will
often work with the temporal cases and just briefly discuss the spa-
tial cases. In Section 1.2, I introduce some theory of point processes;
for more comprehensive introductions to the subject, see Møller and
Waagepetersen (2004) or Daley and Vere-Jones (2003).

In applications we often have other information connected to an
event or object which is also of interest or which has impact on other
events or objects. For example, when modelling earthquakes, the
magnitude of the earthquake and the location of the epicentre may
be included to make a more realistic and useful model, or when mo-
delling the locations of trees, we may wish to include some measure
of the size of a tree. A point process including such additional in-
formation is called a marked point process. If a process includes
information on both time and space, we call it a spatio-temporal
(or spatial-temporal) point process. In Section 1.2.3, some theory
of marked point processes is described; again more comprehensive
introductions can be found in Møller and Waagepetersen (2004) or
Daley and Vere-Jones (2003).

Unlike point processes, which are (usually) used for modelling
events or objects on a continuous space, lattice processes are used
for modelling events or objects on a discrete space. Example of data
modelled by a lattice process include the number of beetles attacking
each tree in a plantations, or the number of cases of a disease in
different regions of a country. The spatio-temporal lattice processes
which we will encounter in this thesis are extensions of a spatial lattice
process, so I will focus on the spatial case in this chapter. Lattice
processes are treated in Section 1.3; for a more thorough treatment,
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see Besag (1974).

1.2 Point processes

1.2.1 Definition

One way of defining a point process is by using counting measures.
If we think of a temporal point process as a random countable set of
times (or events) X = {ti}, where each ti belongs to some subset of
the real numbers, say S ⊆ R, we can define such a point process by
the number of events located in various subsets of S. More precisely,
let B denote the set of Borel sets in S, and let N(B) be the number
of events falling in any B ∈ B. Furthermore, we restrict the attention
to locally finite point processes, i.e. if B0 denotes the bounded Borel
sets in S, then N(B) < ∞ for any B ∈ B0. Technically speaking, N
is an stochastic counting measure on B.

There are in fact many ways of defining a point process, for exam-
ple at page 41 in Daley and Vere-Jones (2003) four equivalent ways
of defining a temporal point process are shown, including the above
definition where the point process is defined by a stochastic counting
measure. One advantage of using counting measures is that this def-
inition immediately extends to spatial point processes: simply let S
be a subset of R

d instead of R (and in this case the points are called
xi instead of ti and are not referred to as events).

1.2.2 The temporal dimension

Usually we think of time as having an evolutionary character: what
happens now may depend on what happened in the past, but not
on what is going to happen in the future. Many important classes
of temporal point processes also has such an evolutionary character,
where the natural order of time is respected. I will use the term
evolutionary (temporal) point process for these processes. The central
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point of this section is that such processes can be described using the
so-called conditional intensity function.

To understand what the conditional intensity function is, we first
have to define the history of the process. The history Ht− is the σ-
algebra of events that has occurred strictly before time t (t− denotes
the “time just before time t” and should not be confused with t− used
in Section 1.5 and Chapters 2 and 3). In practice we can usually just
think of this as the set of times of all events that have occurred before
t. Using the history, the λ(t) can be defined somewhat heuristically:

λ(t) = E[N(dt)|Ht−]/dt,

i.e. the risk of an event occurring at time t conditional on what
has occurred before t. Note that the dependence of the conditional
intensity on the history is suppressed in the notation. For a more
strict definition of the conditional intensity function, see Daley and
Vere-Jones (2003).

The conditional intensity function turns out to have many uses.
Firstly, it is a convenient way of defining an evolutionary temporal
point process, since it describes what is happening locally at time t
and often is fairly easy to interpret. For example, the model used
in Chapter 5 is defined by specifying a conditional intensity function
that fits various aspects of the data set in that chapter. Secondly, the
conditional intensity function can be used for simulation-based model
checking and prediction, since some simulation algorithms are based
on the conditional intensity function (see Section 1.4.2). Thirdly,
the likelihood function can be expressed on closed form using the
conditional intensity function; if the point process is defined on the
interval S = [0, t+) for some fixed t+ > 0, then the likelihood function
is given by

L =





N([0,t+))
∏

i=1

λ(ti)



 exp

(

−

∫ t+

0

λ(s)ds

)

.

Finally, there are other uses of the conditional intensity function, for
example a goodness-of-fit test known as residual analysis for point
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processes (Ogata, 1988), or the distribution of the length of the time
intervals between subsequent events (see e.g. Daley and Vere-Jones
(2003)). It should be obvious from all of this that the conditional
intensity function is a powerful tool for dealing with evolutionary
temporal point processes.

Not all point processes have a temporal (or similar) dimension
with an evolutionary character. Purely spatial point processes usu-
ally have no natural order on the space. As a result of this, there is
no such thing as a history or a conditional intensity; actually there
is a similar concept called the Papangelou conditional intensity, see
Papangelou (1974), but, although it is quite useful, it does not have
the same general usage as the conditional intensity described here.
Thus we do not have an easy and general way of obtaining likeli-
hood functions, simulation algorithms, etc., but we can usually get
around the problems caused by this. For example, for many classes
of spatial point processes the likelihood is known only up to an un-
known normalising constant. There are many ways of approximating
or avoiding unknown normalising constants when the likelihood func-
tion is used in practice, for example importance sampling (see e.g.
Møller and Waagepetersen (2004)), bridge or path sampling (Gelman
and Meng, 1998), and auxiliary variables (Møller et al., 2006), but
they are usually rather computationally heavy.

1.2.3 Marked point processes

Sometimes we wish to include other information into a temporal point
process (or spatial point process; see e.g. Møller and Waagepetersen
(2004)) about an event than just its time, since this other informa-
tion may have impact on the times of later events or it may be of
separate interest. This extra information about an event is handled
by introducing marks: to each event ti is attached a mark zi ∈ M
where M is a probability space called a mark space equipped with a
probability measure Q. Furthermore, the mark space is also equipped
with a reference measure ℓM chosen such that Q has a density with
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respect to ℓM . Typically the reference measure is the Lebesgue mea-
sure if M = R

d, or counting measure if M is a discrete space. For
marked processes, N(B) is redefined to be the number of marked
events (ti, zi) ∈ B where B is a measurable set in R ×M , and the
ground process, i.e. the marginal process consisting of the unmarked
events, is denoted Ng.

Much of the theory of temporal point processes generalises to the
marked case, including the theory of evolutionary temporal point pro-
cesses described in Section 1.2.2. For evolutionary marked temporal
point processes, the conditional intensity generalises to

λ(t, z) = E[N(dt× ℓM(dz))|Ht−]/(dt ℓM(dz)),

where the history now contains information on the marks as well as
times of past events; for a strict definition of the conditional intensity
function for a marked temporal point process, see Daley and Vere-
Jones (2003). The ground intensity, i.e. the conditional intensity
for the ground process, is denoted λg for marked processes. It is
often convenient to factorise the conditional intensity into the ground
intensity and the conditional density with respect to ℓM for the mark
given the time t and the history Ht−,

λ(t, z) = λg(t)f(z|t).

Note that just as in the case with the conditional intensities, the
dependence on the past in the conditional mark density has been
suppressed in the notation. If the marked point process is defined
on [0, t+) ×M for some fixed t+ > 0, then the likelihood function is
given by

L =





Ng([0,t+))
∏

i=1

λ(ti, zi)



 exp

(

−

∫ t+

0

λg(s)ds

)

.

Most of the other uses of the conditional intensity function for the
unmarked case also generalises to the marked case, for example one
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of the simulation algorithms in Section 1.4.2 is described for marked
processes. See Daley and Vere-Jones (2003) for more details on the
conditional intensity function for the marked case.

If the distribution of an arbitrary mark zi is independent of the
past, i.e. (tj, zj) for all tj < ti, then the marks are said to be un-
predictable. Unpredictable marks may depend on the future times
(but not marks), or, reformulated in the spirit of the evolutionary
character of time, the future times may depend on the unpredictable
marks. Unpredictable marks are particularly easy to handle, since
we can treat them as a sequence of independent random variables.

An important special case of marked temporal point processes is
spatio-temporal point processes, where the marks denote spatial loca-
tions. A spatial location typically means a point in a rectangle or a
lattice in R

2 or R
3. Another important special case is multivariate

temporal point processes, where we have multiple dependent tempo-
ral point processes. Mathematically a multivariate temporal point
process is simply a marked temporal point process where the mark
space has a finite number of states.

1.2.4 Examples of point processes

There are many types of point processes, and I will only consider
a few examples below. For comprehensive introductions to different
classes of point processes, see e.g. Møller and Waagepetersen (2004),
Daley and Vere-Jones (2003), or van Lieshout (2000).

1.2.4.1 Poisson processes

The most basic example of temporal (or spatial) point processes is
the Poisson process. It is best thought of as a model for events
occurring independently of each other. To define it, let λ be a non-
negative measurable function on S. A point process is a Poisson
process with intensity function λ if for any disjoint B1, . . . , Bn ∈ B0,
N(B1), . . . , N(Bn) are independent and N(Bi) is Poisson distributed



8 Chapter 1. Introduction

with mean
∫

Bi
λ(t)dt for i = 1, . . . , n. The intensity function turns

out to be the conditional intensity function and hence I use the nota-
tion λ for both functions. If λ is constant, the process is called a ho-
mogeneous Poisson process, otherwise it is inhomogeneous. A homo-
geneous temporal Poisson process with intensity λ has a particularly
simple characterisation: the time intervals between subsequent events
are independent exponentially distributed random variables with in-
verse mean λ. This characterisation is very useful for constructing
a simulation algorithm for a homogeneous temporal Poisson process
(see Section 1.4.1).

Poisson processes have the advantage of being simple - many in-
teresting quantities can be analytically derived. However, Poisson
processes are not very useful for modelling real data, since all events
are assumed to happen independently. They are, however, a very
useful starting point for defining other processes; for example, the
Poisson process is used to define the class of Hawkes processes in
Chapters 2 and 3.

Poisson processes are also used as a reference mark for defining the
concepts of a clustered or regular point process. If the points of a point
pattern tend to fall in clusters more than a Poisson process we say
that the point pattern is clustered. Conversely, if the points instead
tend to be more evenly distributed than a Poisson process, we say
that it is regular. Figure 1.1 shows a realisation of a temporal Poisson
process. Furthermore, two clustered point processes are shown; these
processes are introduced in Sections 1.2.4.2 and 1.2.4.3. From the
figure it is clear that the events of the two clustered processes tend
more to fall in clusters than the events of the Poisson process.

Poisson processes are a huge subject, and e.g. Kingman (1993) is
dedicated to the study of these. Furthermore, many books on point
processes have a chapter on Poisson processes, see e.g. Møller and
Waagepetersen (2004) or Daley and Vere-Jones (2003).
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Figure 1.1: Three temporal point processes: a Poisson process, a shot
noise Cox process and a Hawkes process (top to bottom).

1.2.4.2 Cox processes

A rich class of temporal (or spatial) point processes that is con-
structed from Poisson processes is Cox processes (or doubly stochastic
Poisson processes), which were originally defined in Cox (1955). It
is a natural generalization of the Poisson process obtained by letting
the intensity function λ be stochastic; we say that the Cox process
is driven (or directed) by the intensity function λ. A very simple
example of a Cox process is obtained by letting the intensity of a
homogeneous Poisson process be a nonnegative random variable.

More interesting examples include shot noise Cox processes (also
called trigger processes). Following Daley and Vere-Jones (2003), a
temporal shot noise Cox process is driven by

λ(t) =
∑

si<t

αig(t− si),

where g is a density function on (0,∞), αi is a non-negative ran-
dom variable and {si} is a homogeneous Poisson process on R; g is
sometimes called a kernel. Figure 1.1 shows a realisation of a shot
noise Cox process with constant αi and the density of the exponential
distribution as the kernel g. For more on temporal shot noise Cox
processes, see Daley and Vere-Jones (2003), and for a spatial (and
indeed more general) version, see Møller (2003).
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Another interesting example is log Gaussian Cox processes. The
log Gaussian Cox processes are defined by their intensity, which is the
exponential of a Gaussian field. The theory of log Gaussian processes
can be found in Møller et al. (1998).

1.2.4.3 Cluster processes

A cluster process is a point process intended for modelling clustered
point patterns by constructing clusters individually. The definition
of a cluster process is divided into two parts. Firstly a point process
known as a centre process is generated. Then each point (or centre) in
the centre process generates a new point process called a component
process or a cluster. The cluster process consists of the superposition
of the clusters, where the centres may or may not be included. The
centres are also sometimes called ancestors, parents or immigrants,
the points in the clusters are sometimes called children or offspring,
and if the centres follow a Poisson process, the cluster process is called
a Poisson cluster process.

An example of a Poisson cluster process is the Thomas process
(Thomas, 1949). Here the clusters are i.i.d. relative to their centres
and each cluster is itself a Poisson process where the intensity func-
tion is proportional to the normal density function with the cluster
centre as mean and some fixed variance. Another example is the shot
noise Cox process described in Section 1.2.4.2.

An example of a Poisson cluster process where the clusters are
not simply Poisson processes is the Hawkes process (or self-exciting
process). There are two equivalent ways of defining the Hawkes pro-
cess. The first way is by specifying its conditional intensity function;
for example, in the unmarked case, this is given by

λ(t) = µ(t) +
∑

ti<t

γ(t− ti),

where µ and γ are non-negative, measurable functions and γ(t) = 0
for t ≤ 0. The conditional intensity function (or, more precisely,
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the ground intensity) for the marked case is given by formula (2.1)
in Chapter 2. The other way is to use a construction of clusters
with a certain branching structure of Poisson processes; this is done
in Definition 2.1 in Chapter 2. Figure 1.1 shows a realisation of
an unmarked Hawkes process, where γ is an exponentially decaying
function on [0,∞), and µ is constant. Since the Hawkes process is
the focus of Chapters 2 and 3, I will postpone all further details until
these chapters. For more theory on Hawkes processes, see Hawkes
(1971a,b, 1972); Hawkes and Oakes (1974); Brémaud and Massoulié
(2001, 2002); Torrisi (2002), and for applications of Hawkes processes,
see e.g. Vere-Jones and Ozaki (1982); Chornoboy et al. (1988); Ogata
(1988, 1998). A purely spatial version of this process also exists, see
Møller and Torrisi (2005).

1.3 Lattice processes

1.3.1 Definition

A lattice process (or lattice model) is used to model a system of ran-
dom variables associated to a set of sites, where sites for example
could represent a fixed set of physical locations or times. Basically,
a lattice process is just a random vector X, where each entry in the
vector xi correspond to a site i. Thus we could define a lattice process
by its joint distribution. However, as Besag (1974) points out, it is
usually more convenient to specify a lattice process by the conditional
distribution Pi of the random variable xi at a site i given the set of all
other sites. In Chapter 4 we refer to this as the local characteristic
since it describes the local behaviour of the process. Note that Pi

has much the same role as the conditional intensity defined for tem-
poral processes in Section 1.2.2. Much like the conditional intensity,
it provides an easy way of defining a model on a complex system
by defining what is happening locally. However, it does not have
the evolutionary character which makes the conditional intensity so
useful.



12 Chapter 1. Introduction

In practice, the conditional distribution Pi is usually assumed to
depend only on sites that are located close to site i. For each site
i let Ni be the neighbourhood of i, i.e. the set of sites that are close
to i. Of course what “close” means depend on the application at
hand. For example, on a regular square lattice it could mean the four
nearest sites; this is called the first order neighbourhood. Figure 1.2
illustrates the zeroth- to fifth-order neighbourhoods on a five times
five regular square lattice. Here the sites are indicated by numbers
which tell the order of the neighbourhood that the site belongs to
in relation to the site in the middle; for convenience the middle site
is said to be a zeroth order neighbour of itself. Finally, note that a
neighbourhood relation should be symmetric: i ∈ Nj if and only if
j ∈ Ni for all pairs of sites (i, j).
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Figure 1.2: The zeroth- to fifth-order neighbours of the middle site
in a five times five regular square lattice.

1.3.2 Auto-models

An important class of lattice processes is the class of auto-models.
Auto-models can be specified by letting the conditional distribution
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of a site i given its neighbours Pi(xi|Ni) have the form

Pi(xi|Ni) ∝ exp

(

xiGi(xi) +
∑

j∈Ni

βi,jxixj

)

,

where Gi is a real-valued function and βi,j ∈ R fulfills that βi,j = βj,i

for each pair of sites (i, j).
One example of an auto-model is the autologistic model. For each

site i, let xi be Bernoulli distributed and Gi(xi) = αi be constant.
The autologistic model can then be specified through its conditional
distribution at site i,

Pi(xi|Ni) =
exp(αixi +

∑

j∈Ni
βi,jxixj)

1 + exp(αi +
∑

j∈Ni
βi,jxj)

.

Locally βi,j is easily interpreted: a positive βi,j means that xi will
tend to have the same value as xj, whereas a negative βi,j means it
will tend to have a different value than xj. Globally an autologistic
model with numerically large, positive values for βi,j has large clusters
of zeros and ones. In the case of a first order neighbourhood on a
square lattice, an autologistic model with numerically large, negative
values for βi,j tends to have chess board patterns. These two cases
of patterns of zeros and ones are analogous to clustered and regular
point patterns. The size of the parameter space is usually reduced for
this model to be practically useful, for example by setting βi,j = β for
all neighbour pairs (i, j) and αi = α for all i. Figure 1.3 shows two
realisations of autologistic processes with a first order neighbourhood
on a 20 × 20 lattice; on the left-hand side β is positive, and on the
right-hand side β is negative.

One problem associated with the autologistic model is that the
likelihood function is known only up to an unknown normalizing con-
stant; by the Hammersley-Clifford theorem (see e.g. Besag (1974)),
the likelihood function can be shown to be

L =
1

c
exp

(

∑

i

αixi +
∑

i

∑

j∈Ni,j>i

βi,jxixj

)

,
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Figure 1.3: Left: a realisation of the autologistic model with positive
βi,j = β. Right: as left, but with negative βi,j = β.

where c denotes the normalizing constant. It is only feasible to calcu-
late the normalizing constant through brute force in cases with small
lattices. Otherwise techniques such as those mentioned at the end of
Section 1.2.2 are needed.

There are of course many other auto-models than the autologistic
model, for example the auto-Poisson model, where the conditional
distribution of xi is Poisson. For details on this and other auto-
models, see Besag (1974).

1.4 Simulation

Most point processes of any applicational value are quite complex
stochastic processes, and often it is impossible to derive quantities of
interest analytically. Instead one must turn to simulation algorithms
for approximating such quantities. Simulation is an invaluable tool
for example in parameter estimation, model checking, and prediction.
Even something as simple as getting an idea of what a typical reali-
sation of a particular type of point process looks like may require the
use of a simulation algorithm.

There are many different simulation algorithms available for sim-
ulating a point process with a given set of parameters; many of these
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algorithms are tailored to specific classes of point processes, while
others are rather general but not always very efficient. I will in no
way try to give a comprehensive introduction to the subject; instead
I will focus on algorithms that are relevant to the later chapters.

1.4.1 Poisson and related processes

Since the Poisson process is one of the simplest examples of point
processes, it is probably not much of a surprise that it is also one of
the simplest processes to simulate. The homogeneous temporal Pois-
son process with intensity λ is easily simulated on an interval [0, t+)
by using that the lengths of the time intervals between subsequent
events are i.i.d. exponentially distributed random variables. First
simulate i.i.d. exponential variables Yi with inverse mean λ. Each
event are then given by ti =

∑i

j=1 Yj. The algorithm terminates
once the end of the time interval t+ has been reached. Another way
of simulating a homogeneous Poisson process with intensity λ is as
follows: first simulate the number of events as a Poisson variable with
mean λt+ and then simulate the times of the events as i.i.d. uniform
variables on [0, t+). This latter method generalizes directly to the
spatial Poisson process, where we need to simulate uniform variables
on the simulation region.

Inhomogeneous Poisson processes can be simulated in several ways
depending on the shape of the intensity function. A quite general way
is independent thinning. Independent thinning means that we take
a point process X1 = {ti} and obtain another process X2 by inde-
pendently keeping each event ti from X1 with a specified probability
p(ti) (called the retention probability), or otherwise throw ti away.
If X1 is a Poisson process with intensity function λ1(t), then X2 is a
Poisson process with intensity λ2(t) = p(t)λ1(t) (see e.g. Møller and
Waagepetersen (2004)). This means we can simulate an inhomoge-
neous Poisson process X2 with a bounded intensity λ2(t) by using
independent thinning on a simulation of a homogeneous Poisson pro-
cess X1 with intensity λ1 = sup(λ2(t)). For specific functional forms
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of the intensity function, it may be more convenient to use other
algorithms. For example, if the intensity has the shape of an unnor-
malized exponential density function, then it is easiest to simulate it
by first simulating the number of events as the appropriate Poisson
variable, and then simulate the time of each event as i.i.d. exponential
variables.

Since many processes are defined using the Poisson process as
a starting point, it is often possible to simulate these directly by
exploiting the definition. For example, conditionally on the intensity,
a Cox process is a Poisson process, so if we can simulate the intensity,
then we can simply simulate the Poisson process afterwards using one
of the above techniques. Another example is the Hawkes process. If
the Hawkes process is defined using Poisson processes as in Chapter 3,
then Algorithm 3.1 is an straightforward procedure for simulating
the process once one knows a simulation algorithm for the Poisson
processes used in the definition.

1.4.2 Simulation using the conditional intensity

One of the reasons that the conditional intensity function is so use-
ful is that it leads to two rather general simulation algorithms for
evolutionary temporal point processes.

One of these algorithms is Ogata’s modified thinning algorithm
(Ogata, 1981), or rather, its generalization to marked processes (see
e.g. Daley and Vere-Jones (2003), page 273). This algorithm is a
generalization of the independent thinning algorithm used for simu-
lating inhomogeneous Poisson processes as described in Section 1.4.1.
The basic idea behind Ogata’s modified thinning algorithm is that
we start at the first time in the simulation interval (e.g. time 0 in
the interval [0, t+)) and go forward in time. We propose new events
one after another, and check right away whether to keep an event,
since this changes the conditional intensity function for later times.
More specifically, the algorithm requires that there exists two func-
tions m(t) = m(t|Ht−) and l(t) = l(t|Ht−) such that λg(t+u) ≤ m(t)
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for 0 ≤ u < l(t). The function l(t) is the maximum length of time we
will go forward in time in one step of the algorithm, and m(t) is the
maximum value that the conditional intensity may attain in this in-
terval. For simulating a process on the interval [0, t+), the algorithm
for the marked case is as follows:

Algorithm 1.1 (Ogata’s modified thinning algorithm.)

1. Set t=0 and n=0.

2. Repeat until t > t+:

(a) Compute m(t) and l(t).

(b) Generate independent random variables T ∼ Exp(m(t))
and U ∼ Unif([0, 1]).

(c) If T > l(t), set t = t+ l(t).

(d) Else if t+ T > t+ or U > λg(t+ T )/m(t), set t = t+ T .

(e) Otherwise, set n = n+1, tn = t+T , t = t+T and simulate
zn ∼ Q.

3. Output is {t1, . . . , tn}.

Here Exp(m(t)) denotes the exponential distribution with inverse
mean m(t), and Unif([0, 1]) denotes the uniform distribution on the
interval [0, 1]. This algorithm is very useful for simulating the point
process used in Chapter 5, but it is much less efficient than Algo-
rithm 3.1 in Chapter 3 for simulating Hawkes processes.

The other algorithm that uses the conditional intensity function
for simulating evolutionary temporal point processes is simulation by
inversion. The basic idea in this algorithm is that we simulate a
number of unit exponential variables, and then we transform these
into time intervals for the process we are simulating. Assuming that
we want to simulate the process on [0, t+), the algorithm is as follows:
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Algorithm 1.2 (Simulation by inversion.)

1. Set t = 0, t0 = 0 and n = 0 (note that t0 is not an event).

2. Repeat until t > t+:

(a) Generate T ∼ Exp(1).

(b) Calculate t, where T =
∫ t

tn
λ(s)ds.

(c) If t < t+, set n = n+ 1 and tn = t.

3. Output is {t1, . . . , tn}.

The difficult part of this algorithm is of course calculating t in step
(2b) since this requires finding the inverse of the integrated condi-
tional intensity function.

1.4.3 Simulation using MCMC

It often happens that a stochastic process is too complex to simu-
late directly, but when all else fails, one can usually turn to Markov
chain Monte Carlo (MCMC) techniques for simulating a point pro-
cess. Spatial point processes and spatial lattice processes are two
types of stochastic processes that frequently require the use of an
MCMC algorithm for simulation. Furthermore, inference for most
point processes or lattice processes is often not possible analytically.
Instead MCMC based simulation is useful for obtaining, for exam-
ple, an approximation of the posterior distributions of parameters in
the case of Bayesian inference (for an introduction to Bayesian infer-
ence, see e.g. Gelman et al. (2004)). I will assume that the concepts
of MCMC is well-known to the reader; for an introduction to Mar-
kov chains, see e.g. Meyn and Tweedie (1993) or Norris (1997), and
for an introduction to MCMC in practice with a focus on posterior
distributions, see Tierney (1994).

Since we never meet any point process that requires the use of
an MCMC algorithm for simulation in this thesis, I will not go
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into details with simulation algorithms for these; see e.g. Møller and
Waagepetersen (2004) or van Lieshout (2000) for introductions to
this subject. Instead I will consider the following algorithm for sim-
ulating a lattice process, since this is used in Chapter 4. We start at
some configuration (say all xi = 0) and use a Gibbs sampler where
we update each xi one at a time in some random or fixed order.
Each xi is updated by drawing a new value for xi from it conditional
distribution given the state of all the other sites Pi.

One of the problems with MCMC based approaches is that in
principle the Markov chains have to run infinitely long before reach-
ing the target distribution. One solution to this problem is to put
the MCMC algorithm into the framework of perfect simulation. By
perfect simulation is meant that the output of the algorithm follows
the target distribution exactly. In Chapter 4, the Gibbs sampler de-
scribed above is combined with a perfect simulation technique known
as Propp-Wilson’s coupling from the past (Propp and Wilson, 1996)
to obtain perfect simulations. Other examples of perfect simulation
include dominated coupling from the past (Kendall and Møller, 2000),
Wilson’s read-once algorithm (Wilson, 2000), and perfect simulation
using clans of ancestors (Fernández et al., 2002). For an overview of
various perfect simulation algorithms in relation to point processes,
see Møller and Waagepetersen (2004).

1.5 Missing data

Often it is the case that a useful model needs more information than
the observed data provides. That is, we have a so-called missing data
problem. In this thesis, missing data in various forms are central
parts of the problems studied, and therefore I will introduce the two
missing data problems which will be treated in Chapters 2–5.
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1.5.1 Edge effects

Many point processes are defined on an infinite set, e.g. the time
line R, but in practice we only observe data on a finite observation
region. However, the observed data may depend on the unobserved
data outside the observation region. If we try to simulate new data
on the observation region without taking this fact into account, then
the simulation will not be exact. Furthermore, calculations of various
functions, such as the likelihood function, may also contain errors.
The errors resulting from only observing the process on a limited
region without taking the region outside the observation region into
account are known as edge effects. Many kinds of stochastic processes
suffer from edge effects, but I will only consider point processes, and
furthermore I will focus on edge effects in relation to simulation.

Evolutionary temporal point processes are usually simulated on a
time interval, say [0, t+), but what happens during this time interval
may depend on the past. For example, we may wish to simulate a
temporal point process model for the times of earthquakes and their
aftershocks aftershocks. If we simply simulate the times of earth-
quakes and aftershocks on [0, t+) and completely ignore that there
may have been earthquakes before time 0, then the aftershocks of
earthquakes occurring before time 0 will be missing. Results based
on such a simulation will be biased and may lead to the wrong con-
clusions. Since simulation is an important tool for prediction and
model checking for point processes, methods are needed for dealing
with edge effects.

An easy, but only approximate, method for simulating a point
process without edge effects is to simulate it on a larger region. In
the case of an evolutionary temporal point process on [0, t+), this
means that we would start our simulation at some time before time
0, say t− < 0; the question is what value of t− we should choose to
obtain a simulation without significant edge effects. Algorithm 3.1
in Chapter 3 simulates a Hawkes process by starting at time t−. In
that chapter, various ways of quantifying edge effects are considered
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to obtain an idea of what t− to choose to make a simulation with
insignificant edge effects (see also Brémaud and Massoulié (2002) and
Brémaud et al. (2002)). In principle, most simulation algorithms,
for example Ogata’s modified thinning algorithm, can be used on a
larger region, but in general it is difficult to determine how large the
simulation region should be.

There are also algorithms which can simulate specific classes of
point processes completely without edge effects. Brix and Kendall
(2002) (see also Møller (2003)) introduces a clever way of simulating
point processes that are simultaneously Poisson cluster processes and
Cox processes without any edge effects. They simulate exactly those
clusters which have one or more events inside the simulation region,
whether or not the cluster centre is inside the simulation region. In
Chapter 2 we make a non-trivial extension to this simulation method
and obtain a simulation algorithm for the Hawkes process that does
not suffer from edge effects.

There are many other methods for dealing with edge effects in
various contexts. Møller and Waagepetersen (2004), Daley and Vere-
Jones (2003), and some of the references therein provide various tech-
niques of dealing with edge effects in simulations and calculations, e.g.
minus sampling, edge correction factors, and periodic boundaries.

1.5.2 Continuous time processes observed at dis-

crete times

Stochastic processes may be defined on a continuous subset of the
time line R, but sometimes it may only be possible to observe the
process on a discrete set of observation times. For example, an event
may be that a tree has become infested with insects, but in order
to detect the time of this event, we will need to observe the tree
continuously, which may not possible in practice. If the data is only
observed at discrete times, it only provides partial information about
the events, for example whether or not one or more events have oc-
curred between two observation times. Obviously, such a missing
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data setup of discrete observation times can apply to many types of
continuous time stochastic processes, but in this thesis the attention
will be restricted to multivariate temporal point processes.

There are several ways of dealing with this missing data prob-
lem for a multivariate temporal point process. One way is simply
to ignore that the observed and unobserved data are continuous and
instead model only the observed data using a discrete time process,
i.e. a lattice process can be used instead of a multivariate temporal
point process. This seems to be the standard approach for modelling
such systems, and has for example been done in Besag and Tantrum
(2003). However, this approach is not unproblematic. In Chapter 4, a
complex system of trees and insects with annual observations is mod-
elled using a spatio-temporal autoregressive type of model. However,
in this particular model unknown normalising constants appear in
the likelihood function, which complicates the computations consid-
erably.

Another way is to specify a continuous time model and then sim-
ulate the missing data using MCMC. In general, this approach may
seem to be conceptually and computationally more difficult than the
discrete time approach, and this approach seems to be avoided in the
literature. However, in some cases the inclusion of continuous time
may pay off. In Chapter 5, a part of the discretely observed data from
Chapter 4 is modelled using a multivariate temporal point process.
There the inclusion of continuous time means that the conditional
intensity function (see Section 1.2.2) can be used for specifying a
model, which implies that an expression for the likelihood function is
available without any unknown normalizing constants. In Chapter 5
the advantages and disadvantages of the discrete and continuous time
approaches to the missing data are discussed.
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Brémaud, P. and Massoulié, L. (2001). Hawkes branching point pro-
cesses without ancestors. Journal of Applied Probability , 38, 122–
135.
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Abstract

Our objective is to construct a perfect simulation algorithm for un-
marked and marked Hawkes processes. The usual straightforward
simulation algorithm suffers from edge effects, whereas our perfect
simulation algorithm does not. By viewing Hawkes processes as Pois-
son cluster processes and using their branching and conditional inde-
pendence structures, useful approximations of the distribution func-
tion for the length of a cluster are derived. This is used to construct
upper and lower processes for the perfect simulation algorithm. A
tail-lightness condition turns out to be of importance for the applica-
bility of the perfect simulation algorithm. Examples of applications
and empirical results are presented.
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2.1 Introduction

Unmarked and marked Hawkes processes (Hawkes, 1971a,b, 1972;
Hawkes and Oakes, 1974) play a fundamental role for point pro-
cess theory and its applications, cf., for example, Daley and Vere-
Jones (2003), and they have important applications in seismology
(Hawkes and Adamopoulos, 1973; Ogata, 1988, 1998; Vere-Jones and
Ozaki, 1982) and neurophysiology (Brémaud and Massoulié, 1996;
Chornoboy et al., 2002). There are many ways to define a marked
Hawkes process, but for our purpose it is most convenient to define
it as a marked Poisson cluster process X = {(ti, Zi)} with events (or
times) ti ∈ R and marks Zi defined on an arbitrary (mark) space M
equipped with a probability distribution Q. The cluster centres of X
are given by certain events called immigrants, while the other events
are called offspring.

Definition 2.1 (Hawkes process with unpredictable marks.)

(a) The immigrants follow a Poisson process with a locally inte-
grable intensity function µ(t), t ∈ R.

(b) The marks associated to the immigrants are independent and
identically distributed (i.i.d.) with distribution Q, and are in-
dependent of the immigrants.

(c) Each immigrant ti generates a cluster Ci, which consists of
marked events of generations of order n = 0, 1, . . . with the
following branching structure (see Figure 2.1). We first have
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(ti, Zi), which is said to be of generation 0. Given the 0, . . . , n
generations in Ci, each (tj, Zj) ∈ Ci of generation n recursively
generates a Poisson process Φj of offspring of generation n+ 1
with intensity function γj(t) = γ(t− tj, Zj), t > tj. Here γ is a
non-negative measurable function defined on (0,∞). We refer
to Φj as an offspring process, and to γj and γ as fertility rates.
Furthermore, the mark Zk associated to any offspring tk ∈ Φj

has distribution Q and Zk is independent of tk and all (tl, Zl)
with tl < tk. As in Daley and Vere-Jones (2003), we refer to
this as the case of unpredictable marks.

(d) Given the immigrants, the clusters are independent.

(e) Finally, X consists of the union of all clusters.

0

1

1

1

2

2

2 3

0 11 1 2 22 3
t

Figure 2.1: The branching structure of the various generations of
events in a cluster (ignoring the marks)(top), and the events on the
time axis (bottom).

The independence assumptions in (c) and (d) imply that we have
i.i.d. marks. In the special case where γ(t, z) = γ(t) does not depend
on its second argument (or if just P(γ(t, Z) = γ(t) for Lebesgue al-
most all t > 0 ) = 1 where Z denotes a generic mark), the events
follow an unmarked Hawkes process. Apart from in that case, the
events and the marks are dependent processes. Another way of defin-
ing the process is as follows (see e.g. Daley and Vere-Jones (2003)):
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The marks are i.i.d. and the conditional intensity function λ(t) at time
t ∈ R for the events given the previous history {(tk, Zk) : tk < t} is
given by

λ(t) = µ(t) +
∑

ti<t

γ(t− ti, Zi). (2.1)

Simulation procedures for Hawkes processes are needed for vari-
ous reasons: Analytical results are rather limited due to the complex
stochastic structure; statistical inference, especially model checking
and prediction, require simulations; and displaying simulated realiza-
tions of specific model constructions provides a better understanding
of the model. The general approach for simulating a (marked or
unmarked) point process is to use a thinning algorithm such as the
Shedler-Lewis thinning algorithm or Ogata’s modified thinning algo-
rithm (see e.g. Daley and Vere-Jones (2003)). However, Definition 2.1
immediately leads to the following approximate simulation algorithm,
where t− ∈ [−∞, 0] and t+ ∈ (0,∞] are user-specified parameters,
and the output consists of all marked points (ti, Zi) with ti ∈ [0, t+).

Algorithm 2.1 The following steps (i)-(ii) generate an approximate
simulation of those marked events (ti, Zi) ∈ X with 0 ≤ ti < t+.

(i) Simulate the immigrants on [t−, t+).

(ii) For each such immigrant ti, simulate Zi and those (tj, Zj) ∈ Ci

with ti < tj < t+.

In general Algorithm 2.1 suffers from edge effects, since clusters
generated by immigrants before time t− may contain offspring in
[0, t+). Brémaud et al. (2002) studied the ‘rate of installation’, i.e.
they considered a coupling of X, after time 0, with the output from
Algorithm 2.1 when t+ = ∞. Under a tail-lightness assumption (see
the paragraph after Proposition 2.3, below) and other conditions,
they established an exponentially decreasing bound for the probabil-
ity P(t−,∞), say, that X, after time 0, coincides with the output of
the algorithm. Algorithm 2.1 is also investigated in our own work
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(Møller and Rasmussen, 2004) where various measures for edge ef-
fects, including refined results for P(t−,∞), were introduced.

Our objective in this paper is to construct a perfect (or exact) sim-
ulation algorithm. Perfect simulation has been a hot research topic
since the seminal Propp-Wilson algorithm (Propp and Wilson, 1996)
appeared, but the areas of application have so far been rather limited
and many perfect simulation algorithms proposed in the literature are
too slow for real applications. As demonstrated in Møller and Ras-
mussen (2004) our perfect simulation algorithm can be practical and
efficient. Moreover, apart from the advantage of not suffering from
edge effects, our perfect simulation algorithm can also be useful in
quantifying the edge effects suffered by Algorithm 2.1 (see Møller and
Rasmussen (2004)).

The perfect simulation algorithm is derived using similar princi-
ples as in Brix and Kendall (2002), but our algorithm is a non-trivial
extension, since the Brix-Kendall algorithm requires the knowledge
of the cumulative distribution function (CDF) F for the length of a
cluster, and F is unknown even for the simplest examples of Hawkes
processes. By establishing certain monotonicity and convergence re-
sults, we are able to approximate F to any required precision, and,
more importantly, to construct a dominating process and upper and
lower processes in a similar fashion as in the dominated-coupling-
from-the-past algorithm of Kendall and Møller (2000). Under a tail-
lightness condition, our perfect simulation algorithm turns out to be
feasible in applications, while in the heavy-tailed case, we can at least
say something about the approximate form of F , cf. Example 2.7.

The paper is organised as follows. Section 2.2 contains some pre-
liminaries, including illuminating examples of Hawkes process models
used throughout the paper to illustrate our results. In Section 2.3, we
describe the perfect simulation algorithm, assuming that F is known,
while the above-mentioned convergence and monotonicity results are
established in Section 2.4. Section 2.5 completes the perfect simu-
lation algorithm, using dominated coupling from the past. Finally,
Section 2.6 contains a discussion of our algorithm and results, and
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suggestions on how to extend these to more general settings.

2.2 Preliminaries and examples

2.2.1 The branching structure and self-similarity

property of clusters

By Definition 2.1, we can view the marked Hawkes process X =
{(ti, Zi)} as a Poisson cluster process with cluster centres given by the
immigrants, where the clusters, given the immigrants, are indepen-
dent. In this section, we describe a self-similarity property resulting
from the specific branching structure within a cluster.

For events ti < tj, we say that (tj, Zj) has ancestor ti of order
n ≥ 1 if there is a sequence s1 . . . , sn of offspring such that sn = tj
and sk, k = 1, . . . , n, is one of the offspring of sk−1, with s0 = ti. We
then say that tj is an offspring of nth generation with respect to ti;
for convenience, we say that ti is of zeroth generation with respect to
itself. Now we define the total offspring process Ci as all those (tj, Zj)
such that tj is an event of generation n ∈ N0 with respect to ti (note
that (ti, Zi) ∈ Ci). The clusters are defined as those Ci for which ti
is an immigrant (see Definition 2.1).

The total offspring processes have the same branching structure
relative to their generating events. More precisely, since γi(t) = γ(t−
ti, Zi) for any event ti, we see by Definition 2.1 that conditional on
events ti < tj, the translated total offspring processes Ci − ti ≡
{(tl − ti, Zl) : (tl, Zl) ∈ Ci} and Cj − tj ≡ {(tl − tj, Zl) : (tl, Zl) ∈ Cj}
are identically distributed.

In particular, conditional on the immigrants, the clusters relative
to their cluster centres (the immigrants) are i.i.d. with distribution
P, say. Furthermore, conditional on a cluster’s nth generation events
Gn, say, in a cluster, the translated total offspring processes Cj − tj
with tj ∈ Gn are i.i.d. with distribution P. We refer to this last
property as the i.i.d. self-similarity property of offspring processes or,



2.2. Preliminaries and examples 33

for short, the self-similarity property. Note that the assumption of
unpredictable marks is essential for these properties to hold.

2.2.2 A basic assumption and some terminology

and notation

Let F denote the CDF for the length L of a cluster, i.e. the time
between the immigrant and the last event of the cluster. Consider
the mean number of events in any offspring process Φ(ti), ν̄ ≡ Eν,
where

ν =

∫ ∞

0

γ(t, Z) dt

is the total fertility rate of an offspring process and Z denotes a
generic mark with distribution Q. Henceforth, we assume that

0 < ν̄ < 1. (2.2)

The condition ν̄ < 1 appears commonly in the literature on Haw-
kes processes (see e.g. Brémaud et al. (2002), Daley and Vere-Jones
(2003), and Hawkes and Oakes (1974)), and is essential to our con-
vergence results in Section 2.4.2. It implies that

F (0) = Ee−ν > 0 (2.3)

where F (0) is the probability that a cluster has no offspring. It is
equivalent to assuming that ES < ∞, where S denotes the number
of events in a cluster: by induction on n = 0, 1 . . ., because of the
branching and conditional independence structure of a cluster, ν̄n is
the mean number of generation n events in a cluster, meaning that

ES = 1 + ν̄ + ν̄2 + · · · = 1/(1 − ν̄) (2.4)

if ν̄ < 1, while ES = ∞ otherwise.
The other condition, ν̄ > 0, excludes the trivial case where there

are almost surely no offspring. It is readily seen to be equivalent to

F < 1. (2.5)
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Furthermore,

h(t) = E[γ(t, Z)/ν], t > 0, (2.6)

and

h̄(t) = Eγ(t, Z)/ν̄, t > 0, (2.7)

are well-defined densities (with respect to the Lebesgue measure).
The density h̄ will play a keyrole later in this paper; it can be inter-
preted as the normalised intensity function for the first generation
of offspring in a cluster started at time 0. Note that h specifies the
density of the distance R from an arbitrary offspring to its nearest
ancestor. In the sequel, since the clusters, relative to their cluster
centers, are i.i.d. (see Section 2.2.1), we assume without loss of gener-
ality that L, R and S are defined with respect to the same immigrant
t0 = 0, with mark Z0 = Z.

Clearly, if L > 0 then R > t implies L > t, meaning the distribu-
tion of L has a thicker tail than that of R. The probability function
for S is given by

P (S = k) = P (Sn+1 = k − 1|Sn = k)/k, k ∈ N,

where Sn denotes the number of events of nth generation and n ∈ N

is arbitrary (see Dwass (1969) or Theorem 2.11.2 in Jagers (1975)).
Thus,

P(S = k) = E
[

e−kν(kν)k−1/k!
]

, k ∈ N. (2.8)

2.2.3 Examples

Throughout the paper, we illustrate the results with the following
cases.

Example 2.1 (Unmarked process) An unmarked Hawkes process with
exponentially decaying fertility rate is given by

ν̄ = ν = α, h̄(t) = h(t) = βe−βt,
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where 0 < α < 1 and β > 0 are parameters. Here 1/β is a scale
parameter for both the distribution of R and the distribution of L.

The left-hand panel of Figure 2.2 shows perfect simulations of
this process on [0, 10] when µ(t) = 1 is constant, α = 0.9, and β =
10, 5, 2, 1. By (2.4), we expect to see about 10 clusters (in total) and
100 events. The clusters of course become more visible as β increases.

The left-hand panel of Figure 2.3 shows six simulations of clusters
with α = 0.9. Here, α is an inverse scaling parameter; β is irrelevant
since, to obtain comparable results for this example and the following
two examples, we have omitted showing the scale. All the clusters
have been simulated conditional on S > 1 to avoid the frequent and
rather uninteresting case containing only the immigrant. These few
simulations indicate the general tendency of L vary widely. 2

Example 2.2 (Birth-death process) Consider a marked Hawkes pro-
cess with

γ(t, Z) = α1(t ≤ Z)/EZ,

where α, 0 < α < 1, is a parameter, Z is a positive random variable,
and 1(·) denotes the indicator function. Then X can be viewed as a
birth-death process with birth at time ti and survival time Zi of the
i’th individual. The birth rate is

λ(t) = µ(t) + (α/EZ)card
(

{i : ti < t ≤ ti + Zi}
)

, t ∈ R,

(cf. (2.1)). Moreover,

ν = αZ/EZ, ν̄ = α, h(t) = E(1(t ≤ Z)/Z), h̄(t) = P(Z ≥ t)/EZ.

Since ν is random, the distribution of S is more dispersed than in the
unmarked case (cf. (2.8)).

The special case where µ(t) = µ is constant and Z is exponentially
distributed with mean 1/β is considered at page 136 in Brémaud
et al. (2002). In this case, X is a time-homogeneous Markov birth-
death process with birth rate µ + αβn and death rate βn, where
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Figure 2.2: On the left, we display four perfect simulations on [0, 10]
of the unmarked Hawkes process (Example 2.1) with parameters
α = 0.9, µ = 1, and β = 10, 5, 2, 1 (top to bottom). Random jitter
has been added in the vertical direction to help distinguishing events
located close together. On the right, we display three perfect simula-
tions on [0, 10] of the birth-death Hawkes process (Example 2.2) with
parameters α = 0.9, µ = 1, and β = 5, 2, 1 (top to bottom), where
the projections of the lines onto the horizontal axis show the size of
the marks.
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Figure 2.3: On the left, we display six simulations of clusters started
at 0 and conditioned on S > 1 in the unmarked case with α = 0.9. In
the centre, we display the same simulations, in the birth-death case,
and, on the right, in the heavy-tailed case. Different scalings are used
in the three cases.

n is the number of living individuals. Furthermore, h̄(t) = βe−βt

and h(t) = βE1(βt), where E1(s) =
∫∞

s
e−t/t dt is the exponential

integral function. As in Example 2.1, 1/β is a scale parameter for the
distribution of L. As discussed in Example 2.8, below, the stationary
distribution (i.e. the distribution of X at any fixed time) is known up
to a constant of proportionality, and it is possible to simulate from
this by rejection sampling.

The right-hand panel of Figure 2.2 shows three perfect simulations
in the Markov case on [0, 10] with µ = 1, α = 0.9, and β = 5, 2, 1,
where the marks are indicated by line segments of different lengths.
The centre panel of Figure 2.3 shows six simulations of clusters (with
marks excluded) with α = 0.9, simulated conditional on S > 1.
These simulations indicate that L is slightly more dispersed than in
Example 2.1, since the marks introduce additional variation in the
cluster lengths. In fact, the coefficient of variation estimated from
10000 perfect simulations is 1.92 for Example 2.1 and 2.85 for the
present case. 2
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Example 2.3 (Heavy-tailed distribution for L) Suppose that γ(t, Z)
= αZe−tZ , where α ∈ (0, 1) is a parameter and Z is exponentially
distributed with mean 1/β. Then ν̄ = ν = α is constant, meaning
that the distribution of S is the same as in the unmarked case (cf.
(2.8)). Furthermore,

h(t) = h̄(t) = β/(t+ β)2

specifies a Pareto density. This is a heavy-tailed distribution, as
it has infinite Laplace transform (L(θ) = EeθR = ∞ for all θ > 0).
Moreover, it has infinite moments ( E

(

Rp
)

= ∞ for all p ≥ 1). Conse-
quently, L also has a heavy-tailed distribution with infinite moments
and infinite Laplace transform. Note that β is a scale parameter for
the distribution of L.

The right-hand panel of Figure 2.3 shows six simulations of clus-
ters with α = 0.9 and β = 1. These indicate that L is much more
dispersed than in Examples 2.1 and 2.2 (in fact, the dispersion is
infinite in the present case). 2

2.3 Perfect Simulation

Assuming for the moment that F (the CDF for the length of a clus-
ter) is known, the following algorithm for perfect simulation of the
marked Hawkes process is similar to the algorithm for simulation
of Poisson cluster processes without edge effects given in Brix and
Kendall (2002) (see also Møller (2003) and Møller and Waagepetersen
(2004)).

Algorithm 2.2 Let I1 be the point process of immigrants on [0, t+),
and let I2 be the point process of immigrants ti < 0 such that
{(tj, Zj) ∈ Ci : tj ∈ [0,∞)} 6= ∅.

1. Simulate I1 as a Poisson process with intensity function λ1(t) =
µ(t) on [0, t+).
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2. For each ti ∈ I1, simulate Zi and those (tj, Zj) ∈ Ci with ti <
tj < t+.

3. Simulate I2 as a Poisson process with intensity function λ2(t) =
(1 − F (−t))µ(t) on (−∞, 0).

4. For each ti ∈ I2, simulate Zi and {(tj, Zj) ∈ Ci : tj ∈ [0, t+)}
conditional on the event that {(tj, Zj) ∈ Ci : tj ∈ [0,∞)} 6= ∅.

5. The output is all marked points from (1), (2), and (4).

Remark 2.1 In steps (1) and (2) of Algorithm 2.2, we use Algo-
rithm 2.1 (with t− = 0). In step (4), it is not obvious how to con-
struct an elegant approach ensuring that at least one point will fall
after 0. Instead, we use a simple rejection sampler: we repeatedly
simulate Zi from Q and the successive generations of offspring tj to
ti (together with their marks Zj) until there is at least one event of
Ci after time 0.

The key point is how to simulate I2 in step (3), since this requires
the knowledge of F , which is unknown in closed form (Remark 2.3,
below). In Section 2.4, we address this problem and, in Section 2.5,
we construct an algorithm for simulating I2.

In practice we must require that I2 is (almost surely) finite or,
equivalently, that

∫ 0

−∞

(1 − F (−t))µ(t) dt <∞. (2.9)

In the case that µ(t) is bounded, (2.9) is satisfied if supt≥0 µ(t) EL <
∞. A condition for finiteness of EL is established in Lemma 2.1 and
Remark 2.2, below. 2

Proposition 2.1 The output of Algorithm 2.2 follows the distribu-
tion of the marked Hawkes process.

Proof. The immigrant process minus I1 ∪ I2 generates clusters
with no events in [0, t+). Since I1 consists of the immigrants on
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[0, t+), it follows directly that I1 is a Poisson process with intensity
λ1(t) = µ(t) on [0, t+). Since I2 is those immigrants on (−∞, 0) with
offspring after 0, I2 can be viewed as an independent thinning of the
immigrant process with retention probability p(t) = 1− F (−t), and,
thus, I2 is a Poisson process with intensity λ2(t) = (1 − F (−t))µ(t).
Since I1 and I2 are independent, it follows from Section 2.2.1 that
{Ci : ti ∈ I1} and {Ci : ti ∈ I2} are independent. Viewing the
marked Hawkes process as a Poisson cluster process, it follows from
Remark 2.1 that the clusters are generated in the right way in steps
(2) and (4) of Algorithm 2.2 when we only want to sample those
marked points (tj, Zj) with tj ∈ [0, t+). Thus, Algorithm 2.2 produces
realizations from the distribution of the marked Hawkes process. 2

Using the notation of Section 2.2.2, the following lemma gener-
alises and sharpens a result of Hawkes and Oakes (1974) about the
mean length of a cluster.

Lemma 2.1 We have that

1

Ee−ν
E
[

(1 − e−ν)E[R|Z]
]

≤ EL ≤
ν̄

1 − ν̄
ER̄. (2.10)

Proof. Consider a cluster starting with an immigrant at time
t0 = 0, with mark Z0 = Z (cf. Section 2.2.1). For tj ∈ G1, let
Rj denote the distance from tj to 0, and Lj the length of the total
offspring process Cj started by tj. Then L = max{Rj +Lj : tj ∈ G1},
so, if we condition on Z, and let Rj,z be distributed as Rj, conditional
on the event Z = z, then

EL = EE[L|Z] = E

[

∞
∑

i=1

e−ννi

i!
E [max{Rj,Z + Lj : j = 1, . . . , i}]

]

.

(2.11)
To obtain the upper inequality, observe that

EL ≤ E

[

∞
∑

i=1

e−ννi

i!
E

[

i
∑

j=1

(Rj,Z + Lj)

]]

= E[νE[R|Z]] + ν̄EL,
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where we have used that the Lj are identically distributed and has
the same distribution as L because of the self-similarity property
(Section 2.2.1), and the fact that the Rj are identically distributed
when conditioned on Z. Hence,

EL ≤
1

1 − ν̄
E[νE[R|Z]] =

1

1 − ν̄
E

[∫ ∞

0

sγ(s, Z)ds

]

=
ν̄

1 − ν̄
ER̄,

which verifies the upper inequality. Finally, by (2.11),

EL ≥ E

[

∞
∑

i=1

e−ννi

i!
(E[R|Z] + EL)

]

= E
[

(1 − e−ν)E[R|Z]
]

+ E[1 − e−ν ]EL,

which reduces to the lower inequality. 2

Remark 2.2 If either ν or γ/ν is independent of Z (in other words,
either the number or the locations of offspring in an offspring process
are independent of the mark associated to the generic event), then it
is easily proven that h̄ = h and, thus, (2.10) reduces to

(

1

Ee−ν
− 1

)

ER ≤ EL ≤
ν̄

1 − ν̄
ER.

Consequently, EL < ∞ if and only if ER < ∞. This immediately
shows that EL < ∞ in Example 2.1 and EL = ∞ in Example 2.3.
In Example 2.2, when Z is exponentially distributed with mean 1/β,
(2.10) becomes

α(α+ 2)

2(α+ 1)β
≤ EL ≤

α

β(1 − α)
,

so in this case EL <∞. Not surprisingly, apart from for small values
of α ∈ (0, 1), the bounds are rather poor and of little use except in
establishing finiteness of EL. 2
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2.4 The distribution of the length of a

cluster

In this section we derive various distributional results concerning the
length L of a cluster. The results are needed in Section 2.5 to com-
plete step (3) in Algorithm 2.2; however, many of the results are also
of independent interest.

2.4.1 An integral equation for F

Below, in Proposition 2.2, an integral equation for F is derived, and
we discuss how to approximate F by numerical methods, using a cer-
tain recursion. Proposition 2.2 is a generalisation of Theorem 5 of
Hawkes and Oakes (1974), which is proved using void probabilities
obtained from a general result for the probability-generating func-
tional for an unmarked Hawkes process. However, as was pointed
out in Daley and Vere-Jones (2003), the probability generating func-
tional for the marked Hawkes process is difficult to obtain. We give
a direct proof based on void probabilities.

For n ∈ N0, let 1n denote the CDF for the length of a cluster when
all events of generation n+1, n+2, . . . are removed (it becomes clear
in Section 2.4.2 why we use the notation 1n). Clearly, 1n is decreasing
in n, 1n → F pointwise as n→ ∞, and

10(t) = 1, t ≥ 0. (2.12)

Let C denote the class of Borel functions f : [0,∞) 7→ [0, 1]. For
f ∈ C, define ϕ(f) ∈ C by

ϕ(f)(t) = E

[

exp

(

−ν +

∫ t

0

f(t− s)γ(s, Z) ds

)]

, t ≥ 0.

(2.13)

Proposition 2.2 We have

1n = ϕ(1n−1), n ∈ N, (2.14)
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and

F = ϕ(F ). (2.15)

Proof. As in the proof of Lemma 2.1, we can consider a cluster
started at time t0 = 0, with associated marks Z0 = Z. For a fixed
t ≥ 0 and n ∈ N, split Φ(0) into three point processes Φ1, Φ2, Φ3:
Φ1 consists of those first generation offspring ti ∈ Φ(0) ∩ [0, t) that
do not generate events of generation n − 1 or lower with respect
to ti on [t,∞); Φ2 = (Φ(0) ∩ [0, t)) \ Φ1 consists of the remaining
first generation offspring on [0, t); and Φ3 = Φ(0) ∩ [t,∞) consists
of the first generation offspring on [t,∞). Conditional on Z, Φ1, Φ2,
and Φ3 are independent Poisson processes with intensity functions
λ1(s) = γ(s, Z)1n−1(t− s) on [0, t), λ2(s) = γ(s, Z)(1 − 1n−1(t − s))
on [0, t), and λ3(s) = γ(s, Z) on [t,∞), respectively. This follows by
an independent thinning argument since, conditional on Gn (the n-th
generation of offspring in C0), the processes Cj − tj with tj ∈ Gn are
i.i.d. and distributed as C0 (this is the self-similarity property from
Section 2.2.1). Consequently,

1n(t) = E[P(Φ2 = ∅|Z)P(Φ3 = ∅|Z)]

= E exp

(

−

∫ t

0

λ2(s, Z) ds−

∫ ∞

t

λ3(s, Z) ds

)

which reduces to (2.14). Taking the limit as n → ∞ on both sides
of (2.14), we obtain (2.15) by monotone convergence, since 1n(t) ≤
1n−1(t) for all t ≥ 0 and n ∈ N. 2

Remark 2.3 As illustrated in the following example, we have been
unsuccessful in using (2.15) to obtain a closed form expression for F
even for simple choices of γ. Fortunately, the recursion (2.14) pro-
vides a useful numerical approximation to F . As the integral in (2.13)
with f = 1n−1 quickly becomes difficult to evaluate analytically as n
increases, we compute the integral numerically, using a quadrature
rule. 2
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Example 2.4 (Unmarked process) Consider Example 2.1 with β =
1. Then (2.15) is equivalent to

∫ t

0

F (s)es ds =
et

α
ln(eαF (t))

which is not analytically solvable. 2

2.4.2 Monotonicity properties and convergence

results

As established in Theorem 2.1 below, many approximations of F
other than 1n exist, and their rates of convergence may be geometric
with respect to different norms. Notice that certain monotonicity
properties are fulfilled by ϕ, where, for functions f : [0,∞) 7→ [0, 1],
we recursively define ϕ[0](f) = f and ϕ[n](f) = ϕ(ϕ[n−1](f)), n =
1, 2, . . . and set fn = ϕ[n](f), n = 0, 1, . . .. Note that Fn = F for all
n ∈ N0. As 1n = ϕ[n](1) is decreasing towards the CDF F , cases in
which G is a CDF and Gn increases to F are of particular interest.

Lemma 2.2 For any f, g ∈ C, we have

f ≤ g ⇒ fn ≤ gn, n ∈ N, (2.16)

f ≤ ϕ(f) ⇒ fn is nondecreasing in n, (2.17)

f ≥ ϕ(f) ⇒ fn is nonincreasing in n. (2.18)

Proof. Equation (2.16) follows immediately from (2.13) when n = 1,
and then by induction in the remaining cases. Equations (2.17) and
(2.18) follow from (2.16). 2

Theorem 2.1 With respect to the supremum norm ‖f‖∞ =
supt≥0 |f(t)|, ϕ is a contraction on C, that is, for all f, g ∈ C and
n ∈ N, we have that fn, gn ∈ C and

‖ϕ(f) − ϕ(g)‖∞ ≤ ν̄‖f − g‖∞. (2.19)
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Furthermore, F is the unique fixpoint, i.e.

‖F − fn‖∞ → 0 as n→ ∞, (2.20)

and

‖F − fn‖∞ ≤
ν̄n

1 − ν̄
‖ϕ(f) − f‖∞, (2.21)

where ‖ϕ(f)−f‖∞ ≤ 1. Furthermore, if f ≤ ϕ(f) or f ≥ ϕ(f), then
fn converges to F from below or, respectively, above.

Proof. Let f, g ∈ C. Recall that, by the mean value theorem (e.g.
Theorem 5.11 in Apostol (1974)), for any real numbers x and y, we
have ex − ey = (x− y)ez(x,y), where z(x, y) is a real number between
x and y. Thus by (2.13),

‖ϕ(f)−ϕ(g)‖∞ = sup
t≥0

∣

∣

∣

∣

E

[

e−νec(t,f,g)

∫ t

0

(f(t− s) − g(t− s))γ(s, Z)ds

]∣

∣

∣

∣

where c(t, f, g) is random variable between
∫ t

0
f(t− s)γ(s, Z) ds and

∫ t

0
g(t− s)γ(s, Z) ds. Since f, g ≤ 1, we obtain ec(t,f,g) ≤ eν , cf. (2.2).

Consequently,

‖ϕ(f) − ϕ(g)‖∞ ≤ sup
t≥0

∣

∣

∣

∣

E

[∫ t

0

(f(t− s) − g(t− s))γ(s, Z) ds

]∣

∣

∣

∣

≤ E

[∫ ∞

0

‖f − g‖∞ γ(s, Z) ds

]

= ν̄ ‖f − g‖∞.

Thereby, (2.19) is verified. Since C is complete (see e.g. Theorem 3.11
in Rudin (1987)), it follows, from the fixpoint theorem for contrac-
tions (see e.g. Theorem 4.48 in Apostol (1974)), that the contraction
has a unique fixpoint: by (2.15), this is F .

Since f ∈ C implies that ϕ(f) ∈ C, we find that fn ∈ C by
induction. Hence, using (2.15), (2.19) and induction, we have

‖fn − F‖∞ = ‖ϕ(fn−1) − ϕ(F )‖∞ ≤ ν̄‖fn−1 − F‖∞ ≤ ν̄n‖f − F‖∞,
(2.22)
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for n ∈ N. Since ν̄ < 1, we recover (2.20).
Similarly to (2.22), we have

‖fn − fn−1‖∞ ≤ ν̄n−1‖f1 − f‖∞, n ∈ N. (2.23)

Furthermore, by (2.20), we have

‖F − f‖∞ = lim
m→∞

‖fm − f‖∞.

So, by the triangle inequality and (2.23), we have

‖F − f‖∞ ≤ lim
m→∞

(

‖f1 − f‖∞ + ‖f2 − f1‖∞ + · · · + ‖fm − fm−1‖∞
)

≤ lim
m→∞

‖f1 − f‖∞
(

1 + ν̄ + · · · + ν̄m−1
)

=
‖f1 − f‖∞

1 − ν̄

(see (2.2)). Combining this with (2.22), we obtain (2.21). Finally,
if f ≤ ϕ(f) or f ≥ ϕ(f) then by (2.17) or, respectively, (2.18)) and
(2.20), fn converges from below or, respectively, above. 2

Similar results to those in Theorem 2.1, but for the L1-norm, were
established in Møller and Rasmussen (2004). The following remark
and proposition show how to find upper and lower bounds on F in
many cases.

Remark 2.4 Consider a function f ∈ C. The conditions f ≤ ϕ(f)
and f ≥ ϕ(f) are satisfied for the extreme cases f = 0 and f =
1, respectively. The upper bound f = 1 is useful in the following
sections, but the lower bound f = 0 is too small a function for our
purposes; if we require that EL < ∞ (cf. Remark 2.1) then f = 0
cannot be used (in fact we use only f = 0 when producing the right-
hand plot in Figure 2.4, below). To obtain a more useful lower bound,
observe that f ≤ ϕ(f) implies f ≤ F < 1 (cf. (2.5) and Theorem 2.1).
If f < 1 then a sufficient condition for f ≤ ϕ(f) is

1

ν̄
≥

∫ t

0
(1 − f(t− s))h̄(s) ds+

∫∞

t
h̄(s) ds

1 − f(t)
, t ≥ 0. (2.24)
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This follows readily from (2.7) and (2.13), using the fact that ex ≥
1 + x.

The function f in (2.24) is closest to F when f is a CDF G and we
have equality in (2.24). Equivalently, G satisfies the renewal equation

G(t) = 1 − ν̄ + ν̄

∫ t

0

G(t− s)h̄(s) ds, t ≥ 0,

which has the unique solution

G(t) = 1 − ν̄ +
∞
∑

n=1

(1 − ν̄)ν̄n

∫ t

0

h̄∗n(s) ds, t ≥ 0, (2.25)

where ∗n denotes n-times convolution (see Theorem IV2.4 in As-
mussen (1987)). In other words, G is the CDF of R̄1 + · · · + R̄K

(setting R̄1 + · · · + R̄K = 0 if K = 0), where K, R̄1, R̄2, . . . are in-
dependent random variables, each R̄i has density h̄, and K has a
geometric density (1 − ν̄)ν̄n. Interestingly, this geometric density is
equal to ESn/ES (see (2.4)).

The next proposition shows that, in many situations, G ≤ ϕ(G)
when G is an exponential CDF with a sufficiently large mean. In such
cases, F has no heavier tails than such an exponential distribution.
2

Denote by

L(θ) =

∫ ∞

0

eθth̄(t) dt, θ ∈ R,

the Laplace transform of h̄.

Proposition 2.3 If G(t) = 1 − e−θt for t ≥ 0, where θ > 0 and
L(θ) ≤ 1/ν̄, then G ≤ ϕ(G).

Proof. Upon inserting f = G into the right-hand side of (2.24), we
obtain

∫ t

0

eθsh̄(s) ds+ eθt

∫ ∞

t

h̄(s) ds.
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Since this is an increasing function of t > 0, (2.24) is satisfied if and
only if L(θ) ≤ 1/ν̄. 2

Note that Proposition 2.3 always applies for sufficiently small θ >
0, except in the case where h̄ is heavy-tailed in the sense that L(θ) =
∞ for all θ > 0. The condition L(θ) ≤ 1/ν̄ is equivalent to the
tail-lightness condition (2.1) in Brémaud et al. (2002).

2.4.3 Examples

In Examples 2.5 and 2.6 below, we let

G(t) = 1 − e−θt, t ≥ 0, (2.26)

be the exponential CDF with parameter θ > 0.

Example 2.5 (Unmarked process) For the case in Example 2.1, L(θ)
= β/(β−θ) if θ < β, and L(θ) = ∞ otherwise. Interestingly, for ‘the
best choice’ θ = L−1(1/ν̄) = β(1−α), (2.26) becomes the CDF for R
times ES, which is easily seen to be the same as the CDF in (2.25).

The left-hand panel of Figure 2.4 shows 1n and Gn when θ =
β(1 − α) and (α, β) = (0.9, 1). The convergence of 1n and Gn (with
respect to ‖ · ‖∞) and the approximate form of F are clearly visible.
Since G is a CDF and Gn+1 ≥ Gn, we find that Gn is also a CDF. The
centre panel of Figure 2.4 shows the density F ′(t)/(1−F (0)) (t > 0)
approximated by

1

2

(

1′n(t)

1 − 1n(0)
+

G′
n(t)

1 −Gn(0)

)

when n = 50 (in which case 1′n(t)/(1− 1n(0)) and G′
n(t)/(1−Gn(0))

are effectively equal). As shown in the plot, the density is close to
the exponential density with the same mean, but the tail is slightly
thicker. 2
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Figure 2.4: On the left, we display plots of 1n and Gn for n =
0, 5, . . . , 50 in the unmarked case with α = 0.9 and β = 1 (see Ex-
ample 2.5); 150 and G50 are drawn solid to illustrate the approxi-
mate form of F , whereas the other curves are dashed. In the centre,
we display plots of the density 1

2
[1′n/(1 − 1n(0)) + G′

n/(1 − Gn(0))]
when n = 50 (solid) and the exponential density with the same mean
(dashed). On the right, we display the same plots as on the left, for
Example 2.7 with α = 0.9 and β = 1 using 1n and 0n as approxima-
tions of F .
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Example 2.6 (Birth-death process) For the case in Example 2.2,

L(θ) = E

∫ Z

0

eθs

EZ
ds =

LZ(θ) − 1

θEZ

where LZ(θ) = EeθZ is the Laplace transform of Z. In the special
case where Z is exponentially distributed with mean 1/β, L(θ) =
LZ(θ) = β/(β − θ) is of the same form as in Example 2.5. Plots of
1n, Gn, and

1

2

(

1′n
1 − 1n(0)

+
G′

n

1 −Gn(0)

)

for n = 0, 5, . . . , 50 and (α, β) = (0.9, 1) are similar to those in the
left-hand and centre panels of Figure 2.4 and are therefore omitted.
2

Example 2.7 (Heavy-tailed distribution for L) For the case in Ex-
ample 2.3, Proposition 2.3 does not apply, as L(θ) = ∞ for all θ > 0.
The CDF in (2.25) is not known on closed form, since the convolu-
tions are not tractable (in fact, this is the case when h̄ specifies any
known heavy-tailed distribution, including the Pareto, Weibull, log-
normal or loggamma distribution). Nonetheless, it is still possible to
get an idea of what F looks like: the right-hand panel of Figure 2.4
shows 1n and 0n for n = 0, 5, . . . , 50 in the case (α, β) = (0.9, 1). As
in Examples 2.5 and 2.6, the convergence of 1n and Gn (where, now,
G = 0) and the approximate form of F are clearly visible. How-
ever, as indicated by the plots and verified in Møller and Rasmussen
(2004), limt→0Gn(t) < 1 when G = 0, meaning that Gn is not a CDF.
2

2.5 Simulation of I2

To complete the perfect simulation algorithm (Algorithm 2.2), we
need a useful way of simulating I2. Our procedure is based on a
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dominating process and the use of coupled upper and lower pro-
cesses, in the spirit of the dominated-coupling-from-the-past algo-
rithm (Kendall and Møller, 2000).

Suppose that f ∈ C is in closed form, with f ≤ ϕ(f), and that
(2.9) is satisfied when we replace F by f (situations in which these
requirements are fulfilled are considered in Sections 2.3, 2.4.2 and
2.4.3). Particularly, if µ is constant and f is a CDF, (2.9) implies
that f has a finite mean. Now, for n ∈ N0, let Un and Ln denote
Poisson processes on (−∞, 0) with intensity functions

λu
n(t) = (1 − fn(−t))µ(t) and λl

n(t) = (1 − 1n(−t))µ(t),

respectively. By Theorem 2.1, λu
n is nonincreasing and λl

n is nonde-
creasing in n, and they both converge to λ2 (geometrically fast with
respect to the supremum norm). Consequently, we can use indepen-
dent thinning to obtain the following sandwiching/funneling property
(cf. Kendall and Møller (2000)):

∅ = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ I2 ⊆ · · · ⊆ U2 ⊆ U1 ⊆ U0. (2.27)

The details are given by the following algorithm.

Algorithm 2.3 (Simulation of I2.)

1. Generate a realization {(t1, Z1), . . . , (tk, Zk)} of U0, where t1 <
. . . < tk.

2. If U0 = ∅, then return I2 = ∅ and stop; otherwise generate inde-
pendent uniform numbers W1, . . . ,Wk on [0, 1] (independently
of U0), and set n = 1.

3. For j = 1, . . . , k, assign (tj, Zj) to Ln or Un if Wjλ
u
0(tj) ≤ λl

n(tj)
or, respectively, Wjλ

u
0(tj) ≤ λu

n(tj).

4. If Un = Ln, then return I2 = Ln and stop; otherwise increase n
by 1 and repeat steps (3)–(4).
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Proposition 2.4 Algorithm 2.3 works correctly and terminates al-
most surely within finite time.

Proof. To see this, imagine that, regardless of whether U0 = ∅ in step
(2) or Un = Ln in step (4), we continue to generate (U1, L1), (U2, L2),
etc. Furthermore, add an extra step: for j = 1, . . . , k, assign (tj, Zj)
to I2 if and only if

Wjλ
u
n(tj) ≤ λ2(tj).

Then clearly, because of the convergence properties of λu
n and λl

n (see
the discussion above), (2.27) is satisfied and, conditional on t1, . . . , tk,

P(Ln 6= Un for all n ∈ N0)

≤
k
∑

j=1

lim
n→∞

P(Wjλ
u
0(tj) ≤ λu

n(tj), Wjλ
u
0(tj) > λl

n(tj))

=
k
∑

j=1

P(λ2(tj) < Wjλ
u
0(tj) ≤ λ2(tj)) = 0.

Thus, almost surely Algorithm 2.3 terminates within finite time and
the output equals I2. 2

Remark 2.5 We compute 1n and fn numerically, using a quadrature
rule (see Remark 2.3). After step (1) in Algorithm 2.3, we let the last
quadrature point be given by −t1 (since we do not need to calculate
1n(t) and fn(t) for t > −t1). Since we have to calculate 1n and
fn recursively for all n = 0, 1, 2, . . . until Algorithm 2.3 terminates,
there is no advantage in using a doubling scheme for n, as in the
Propp-Wilson algorithm (Propp and Wilson, 1996). 2

Example 2.8 (Birth-death process.) We have checked our computer
code for Algorithms 2.2 and 2.3 by comparing with results produced
by another perfect simulation algorithm. Consider the case in Exam-
ple 2.2 when µ(t) = µ is constant and Z is exponentially distributed
with mean 1/β. If N denotes the number of events alive at time 0,
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we have the following detailed balance condition for its equilibrium
density πn:

πn(µ+ αβn) = πn+1β(n+ 1), n ∈ N0.

This density is well defined, since limn→∞ πn+1/πn = α < 1. Now,
choose m ∈ N0 and ǫ ≥ 0 such that a = α + ǫ < 1 and πn+1/πn ≤ a
whenever n ≥ m. If µ ≤ αβ, we can take ǫ = m = 0; otherwise, we
can use m ≥ (µ− αβ)/(βǫ) for some ǫ > 0. Define an unnormalized
density π′

n, n ∈ N0, by π′
n = πn/π0 if n ≤ m, and π′

n = an−mπm/π0

otherwise. We can easily sample from π′
n by inversion (see Ripley

(1987)), since we can calculate

∞
∑

0

π′
n =

m
∑

0

πn

π0

+
a

1 − a

πm

π0

.

Then, since π′
n ≥ πn/π0, we can sample N from πn by rejection

sampling (see Ripley (1987)). Furthermore, conditional on N = n,
we generate n independent marks Z ′

1, . . . , Z
′
n that are exponentially

distributed with mean 1/β (here, we exploit the memoryless property
of the exponential distribution). Finally, we simulate the marked
Hawkes process with events in (0, t+], using the conditional intensity

λ′(t) = µ+ αβ

(

n
∑

i=1

1[t < Z ′
i] +

∑

0<ti<t

1[t < ti + Zi]

)

.

We have implemented this algorithm for comparison with our al-
gorithm. Not surprisingly, it is a lot faster than our perfect simulation
algorithm (roughly 1200 times as fast in the case α = 0.9, β = µ = 1,
and t+ = 10), since it exploits the fact that we know the stationary
distribution in this special case. 2

2.6 Extensions and open problems

Except for the heavy-tailed case, our perfect simulation algorithm is
feasible in the examples we have considered. However, simulation
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of the heavy-tailed cases is an unsolved problem. In these cases,
we can only say something about the approximate form of F (see
Example 2.7).

For applications such as in seismology (Ogata, 1998), extensions
of our results and algorithms to the heavy-tailed cases are impor-
tant. The epidemic type aftershock sequences (ETAS) model (Ogata
(1988)) used for modeling times and magnitudes of earthquakes, is
a heavy-tailed marked Hawkes process. Its spatio-temporal exten-
sion, which also includes the locations of the earthquakes (see Ogata
(1998)), furthermore involves the problem of predictable marks (the
location of an aftershock depends on the location of the earthquake
that causes it). This problem is easily solved, though, since the times
and magnitudes are independent of the locations and can be simu-
lated without worrying about these. This, of course, still leaves the
unsolved problem of the heavy tails.

Extensions to nonlinear Hawkes processes (Brémaud and Mas-
soulié, 1996; Daley and Vere-Jones, 2003) would also be interesting.
However, things again become complicated, since a nonlinear Hawkes
process is not even a Poisson cluster process.

Simulations of Hawkes processes with predictable marks can, in
some cases, be obtained by using a thinning algorithm, if it is possible
to dominate the Hawkes process with predictable marks by a Hawkes
process with unpredictable marks. We illustrate the procedure with
a simple birth-death example.

Example 2.9 (Birth-death process) Consider two birth-death Haw-
kes processes as defined in Example 2.2. Let Ψ1 have unpredictable
marks, with Z1

i ∼ Exp(β), and let Ψ2 have predictable marks, with
Z2

i ∼ Exp(β + 1/Z2
An), where Z2

An is the mark of the first order an-
cestor of ti. Both models have γ(t, Z) = αβ1[t < Z], with the same
α and β, and they also have the same µ(t). The model Ψ2 has the in-
tuitive appeal that long-living individuals have long-living offspring.
Note that the intensity of Ψ1 dominates the intensity of Ψ2 if the
marks are simulated such that Z1

i > Z2
i .
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To simulate Ψ2, we first simulate Ψ1 using Algorithm 2.3, with
the modifications that we associate both marks Z1

i and Z2
i to the

event ti, and we keep all events from the algorithm whether they fall
in or before [0, t+). Each marked event (tj, Z

1
j ) is then included in

Ψ2 with retention probability

µ(t) + αβ
∑

ti<tj ,ti∈Ψ2
1[tj − ti < Z2

i ]

µ(t) + αβ
∑

ti<tj
1[tj − ti < Z1

i ]

and the final output is all marked events from Ψ2 falling in [0, t+). It
is easily proven that these retention probabilities result in the correct
process Ψ2. 2

Another process that would be interesting to obtain by thinning is
the Hawkes process without immigrants considered in Brémaud and
Massoulié (2001); this process has µ(t) = 0 for all t. However, for
this to be non-trivial (i.e. not almost surely empty), it is necessary
that ν̄ = 1, which means that any dominating Hawkes process has
ν̄ ≥ 1 and, thus, cannot be simulated by Algorithm 2.3.

Many of our results and algorithms can be modified if we slightly
extend the definition in Section 2.1 of a marked Hawkes process, as
follows. For any event ti with associated mark Zi, let ni denote the
number of (first generation) offspring generated by (ti, Zi), and sup-
pose that ni, conditional on Zi, is not necessarily Poisson distributed,
but ni is still conditionally independent of ti and the previous history.
A particular simple case occurs when ni is either 1 or 0, and

p̄ = E[P(ni = 1|Zi)]

is assumed to be strictly between 0 and 1 (here p̄ plays a similar role
as ν̄ introduced in Section 2.4). Then we redefine ϕ by

ϕ(f)(t) = 1 − p̄+ p̄

∫ t

0

f(t− s)h̄(s) ds

where, now,
h̄(s) = E(p(Z)h(s, Z))/p̄.
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Since ϕ is now linear, the situation is much simpler. For example, F
is given by G in (2.25) (with ν̄ replaced by p̄).

Another extension of practical relevance is to consider a non-
Poisson immigrant process, e.g. a Markov or Cox process. The results
in Section 2.4 do not depend on the choice of immigrant process, and
the straightforward simulation algorithm (Algorithm 2.1) applies pro-
vided it is feasible to simulate the immigrants on [t−, t+). However,
the perfect simulation algorithm relies much on the assumption that
the immigrant process is Poisson.

Finally, we notice that it would be interesting to extend our
ideas to spatial Hawkes processes (see Møller and Torrisi (2004a)
and Møller and Torrisi (2004b)).
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Abstract

Hawkes processes are important in point process theory and its appli-
cations, and simulation of such processes are often needed for various
statistical purposes. This article concerns a simulation algorithm for
unmarked and marked Hawkes processes, exploiting that the process
can be constructed as a Poisson cluster process. The algorithm suf-
fers from edge effects but is much faster than the perfect simulation
algorithm introduced in our previous work Møller and Rasmussen
(2004). We derive various useful measures for the error committed
when using the algorithm, and we discuss various empirical results
for the algorithm compared with perfect simulations. Extensions of
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the algorithm and the results to more general types of marked point
processes are also discussed.

Keywords: Edge effects; Hawkes process; marked point process; Pois-
son cluster process; simulation.

2000 Mathematical Subject Classification: Primary 60G55
Secondary 68U20

3.1 Introduction

This paper concerns a useful simulation algorithm for unmarked and
marked Hawkes processes (Hawkes, 1971a,b, 1972; Hawkes and Oakes,
1974; Daley and Vere-Jones, 2003). Such processes are important in
point process theory and its applications, cf., for example, p. 183
in Daley and Vere-Jones (2003). Particularly, marked Hawkes pro-
cesses have applications in seismology (Hawkes and Adamopoulos,
1973; Vere-Jones and Ozaki, 1982; Ogata, 1988, 1998) and neuro-
physiology (Chornoboy et al., 2002). The algorithm in this paper
suffers from edge effects but is of more practical importance than the
perfect simulation algorithm introduced in Møller and Rasmussen
(2004).

There are many ways to define a marked Hawkes process, but for
our purpose it is most convenient to define it as a marked Poisson
cluster process X = {(ti, Zi)} with events (or times) ti ∈ R and
marks Zi defined on an arbitrary (mark) space M equipped with a
probability distribution Q. The cluster centres of X correspond to
certain events called immigrants and the rest of the events are called
offspring.

Definition 3.1 (Hawkes process with unpredictable marks)

(a) The immigrants follow a Poisson process with a locally inte-
grable intensity function µ(t), t ∈ R.

(b) The marks associated to the immigrants are i.i.d. with distri-
bution Q and independent of the immigrants.
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(c) Each immigrant ti generates a cluster Ci, which consists of
marked events of generations of order n = 0, 1, . . . with the
following branching structure: First we have (ti, Zi), which is
said to be of generation zero. Recursively, given the 0, . . . , n
generations in Ci, each (tj, Zj) ∈ Ci of generation n generates a
Poisson process Φj of offspring of generation n+1 with intensity
function γj(t) = γ(t − tj, Zj), t > tj. Here γ is a non-negative
measurable function defined on (0,∞). We refer to Φj as an off-
spring process, and to γj and γ as fertility rates. Furthermore,
the associated mark Zk to any offspring tk ∈ Φj has distribu-
tion Q and Zk is independent of tk and all (tl, Zl) with tl < tk.
As in Daley and Vere-Jones (2003) we refer to this as the case
of unpredictable marks.

(d) The clusters given the immigrants are independent.

(e) Finally, X consists of the union of all clusters.

Simulation procedures for Hawkes processes are needed for various
reasons: Analytical results are rather limited due to the complex
stochastic structure; statistical inference, especially model checking
and prediction require simulations; displaying simulated realisations
of specific model constructions provide a better understanding of the
model. The general approach for simulating a (marked or unmarked)
point process is to use a thinning algorithm such as Shedler-Lewis
thinning algorithm or Ogata’s modified thinning algorithm, see e.g.
Daley and Vere-Jones (2003). However, Definition 3.1 immediately
leads to the following simpler and more efficient simulation algorithm,
where t− ∈ [−∞, 0] and t+ ∈ (0,∞] are user-specified parameters,
and the output is all marked points (ti, Zi) with ti ∈ [0, t+).

Algorithm 3.1 The following steps (i)-(ii) generate a simulation of
those marked events (ti, Zi) ∈ X with 0 ≤ ti < t+.

(i) Simulate the immigrants on [t−, t+).
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(ii) For each such immigrant ti, simulate Zi and those (tj, Zj) ∈ Ci

with ti < tj < t+.

Usually in applications steps (i) and (ii) are easy because (a)–(c)
in Definition 3.1 are straightforward. As discussed in Section 3.4.4,
Algorithm 3.1 and many of our results apply or easily extend to the
case where the immigrant process is non-Poisson.

Ideally we should take t− = −∞, but in practice we need to
determine t− such that

∫ 0

t
−

µ(t) dt < ∞. When
∫ t

−

−∞
µ(t) dt > 0,

Algorithm 3.1 suffers from edge effects, since clusters generated by
immigrants before time t− may contain offspring in [0, t+). The ob-
jective in this paper is to quantify these edge effects and to compare
Algorithm 3.1 with the perfect simulation algorithm in Møller and
Rasmussen (2004).

The paper is organised as follows. Section 3.2 contains some pre-
liminaries. Section 3.3 contains some convergence results needed in
this paper. In Section 3.4 various quantitative results for edge ef-
fects are introduced, and among other things we relate our results
to those in Brémaud et al. (2002) (which concerns approximate sim-
ulation of a stationary marked Hawkes process with unpredictable
marks). Section 3.5 presents various examples of applications and
empirical results for Algorithm 3.1, Ogata’s modified thinning algo-
rithm and the perfect simulation algorithm in Møller and Rasmussen
(2004).

3.2 Preliminaries

Let F denote the c.d.f. (cumulative distribution function) for L, the
length of a cluster, i.e. the time between the immigrant and the last
event of the cluster. Consider the mean number of events in any
offspring process Φi, ν̄ ≡ Eν, where

ν =

∫ ∞

0

γ(t, Z) dt
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is the total fertility rate of an offspring process and Z denotes a
generic mark with distribution Q. We assume that

0 < ν̄ < 1, (3.1)

which among other places is needed in Proposition 3.1. This as-
sumption is discussed in detail in Brémaud and Massoulié (2001)
and Møller and Rasmussen (2004). Finally, let

h̄(t) = Eγ(t, Z)/ν̄, t > 0, (3.2)

which can be interpreted as the normalised intensity function for the
first generation of offspring in a cluster started at time 0.

3.3 Approximations of F

It turns out that F is unknown even for very simple cases of Hawkes
processes, cf. Møller and Rasmussen (2004).

We first recall some convergence results from Møller and Ras-
mussen (2004) and next establish a new useful result (Proposition 3.1)
which provide useful approximations of F .

For n ∈ N0, let 1n denote the c.d.f. for the length of a cluster
when all events of generation n + 1, n + 2, . . . are removed. Clearly,
1n is decreasing in n, 1n → F pointwise as n→ ∞, and

10(t) = 1, t ≥ 0. (3.3)

Let C denote the class of Borel functions f : [0,∞) 7→ [0, 1]. For
f ∈ C, define ϕ(f) ∈ C by

ϕ(f)(t) = E

[

exp

(

−ν +

∫ t

0

f(t− s)γ(s, Z) ds

)]

, t ≥ 0. (3.4)

Then, as verified in Møller and Rasmussen (2004) the assumption of
unpredictable marks implies that

1n = ϕ(1n−1), n ∈ N, (3.5)
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and

F = ϕ(F ). (3.6)

The recursion (3.5) provides a useful numerical approximation to
F . As the integral in (3.4) with f = 1n−1 quickly becomes diffi-
cult to evaluate analytically as n increases, we compute the integral
numerically, using a quadrature rule.

Convergence with respect to the supremum norm of 1n and certain
other functions towards F is established in Møller and Rasmussen
(2004). In this paper establishing convergence with respect to the
L1-norm becomes relevant. We let C1 denote the class of functions
f ∈ C with ‖F − f‖1 <∞, where ‖g‖1 =

∫∞

0
|g(t)| dt is the L1-norm.

Proposition 3.1 With respect to the L1-norm, ϕ is a contraction
on C1, that is, for all f, g ∈ C1 and n ∈ N, we have that fn, gn ∈ C1

and

‖ϕ(f) − ϕ(g)‖1 ≤ ν̄‖f − g‖1. (3.7)

Furthermore, F is the unique fixpoint,

‖F − fn‖1 → 0 as n→ ∞, (3.8)

and if either f ≤ ϕ(f) or f ≥ ϕ(f), then fn increases respectively
decreases towards F with a geometric rate:

‖F − fn‖1 ≤
ν̄n

1 − ν̄
‖ϕ(f) − f‖1. (3.9)

Proof. Let f, g ∈ C1. Recall that by the mean value theorem (e.g.
Theorem 5.11 in Apostol (1974)), for any real numbers x and y,
ex − ey = (x− y)ez(x,y), where z(x, y) is a real number between x and
y. Thus by (3.4),

‖ϕ(f) − ϕ(g)‖1

=

∫ ∞

0

∣

∣

∣

∣

E

[

e−νec(t,f,g)

∫ t

0

(f(t− s) − g(t− s))γ(s, Z)ds

]∣

∣

∣

∣

dt (3.10)
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where c(t, f, g) is a random variable between
∫ t

0
f(t−s)γ(s, Z) ds and

∫ t

0
g(t− s)γ(s, Z) ds. Since f, g ≤ 1, we obtain ec(t,f,g) ≤ eν , cf. (3.1).

Consequently,

‖ϕ(f) − ϕ(g)‖1 ≤

∫ ∞

0

∣

∣

∣

∣

E

[∫ t

0

(f(t− s) − g(t− s))γ(s, Z) ds

]∣

∣

∣

∣

dt

(3.11)

≤ E

[∫ ∞

0

∫ ∞

0

|f(u) − g(u)| du γ(s, Z) ds

]

= ν̄ ‖f − g‖1

(3.12)

where in the latter inequality we have used first the triangle in-
equality, next Fubini’s theorem, and finally a simple transformation.
Thereby (3.7) is verified. The remaining part is verified along similar
lines as in the proof of Theorem 1 in Møller and Rasmussen (2004)
(with the minor observations that F is the unique fixpoint because
of (3.8), and that we use monotone convergence when establishing
(3.9)). 2

Remark 3.1 The following observation motivates why we restrict
attention to the class C1 in Proposition 3.1, at least when considering
functions f ∈ C such that f ≤ F : For such functions f convergence
fails as

‖F − f‖1 = ∞ ⇒ ‖F − fn‖1 = ∞, n ∈ N. (3.13)

To verify this, consider two non-negative Borel functions f ≤ g de-
fined on [0,∞). Then as in (3.10)–(3.12), but now observing that
c(t, f, g) is between 0 and ν,

‖ϕ(f) − ϕ(g)‖1 ≥ E

[∫ ∞

0

∫ ∞

0

(g(u) − f(u))e−νγ(s, Z) ds du

]

= ‖f − g‖1E[νe−ν ].

By (3.1), E[νe−ν ] > 0, and so letting g = F , we obtain (3.13) when
n = 1, whereby (3.13) follows by induction.
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As noted the sequence fn = 1n decreases towards F pointwise. In
order to obtain L1-convergence by Proposition 3.1 we need 10 ∈ C1,
that is, EL = ‖1−F‖1 is finite. A sufficient and necessary condition
for this is given in Lemma 1 in Møller and Rasmussen (2004).

To construct a sequence fn which increases towards F in the L1-
norm, it suffices to find f ∈ C1 such that f ≤ ϕ(f). Methods for find-
ing a c.d.f. G with G ≤ ϕ(G) are discussed in Møller and Rasmussen
(2004) (see in particular Proposition 3 in Møller and Rasmussen
(2004)), in which case G ≤ F (see Theorem 1 in Møller and Ras-
mussen (2004)). Note that ifG ≤ F is a c.d.f. and ‖1−F‖1 <∞, then
G needs to have a finite mean, since ‖1−G‖1 = ‖F −G‖1 +‖1−F‖1.
2

3.4 Edge effects

Let N(t−, t+) denote the number of missing events when using Algo-
rithm 3.1. In this section we consider the mean number of missing
offspring, E(t−, t+) ≡ EN(t−, t+), and the probability of having any
missing offspring, P(t−, t+) ≡ P(N(t−, t+) > 0). Furthermore, we
relate these to the total variation distance between simulations and
the target distribution.

3.4.1 The mean number of missing offspring

Consider a cluster C0 = {(si, Zi)} started at time t0 = 0. This has
conditional intensity function

λ0(t) = γ(t, Z0) +
∑

0<si<t

γ(t− si, Zi), t ≥ 0, (3.14)

and unpredictable marks with distribution Q. For t > 0, let λ(t) =
Eλ0(t) be the intensity function of the offspring in C0, and γ̄(t) =
Eγ(t, Z) = ν̄h̄(t) be the intensity function of the first generation of
offspring in C0. The following proposition expresses E(t−, t+) and
λ(t) in terms of µ and γ̄.
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Proposition 3.2 We have that

λ(t) =
∞
∑

n=1

γ̄∗n(t) =
∞
∑

n=1

ν̄nh̄∗n(t), t ≥ 0, (3.15)

where ∗n denotes convolution n times, and

E(t−, t+) =

∫ t
−

−∞

(∫ t+−t

−t

λ(s) ds

)

µ(t) dt. (3.16)

Proof. We claim that ρn = γ̄∗n is the intensity function of Gn, the
n-th generation of offspring in the cluster C0: This is clearly true for
n = 1, and so by induction

ρn+1(t) = E
∑

si∈Gn

γ(t− si, Zi) = E
∑

si∈Gn

E[γ(t− si, Zi)|si]

= E
∑

si∈Gn

γ̄(t− si) =

∫ t

0

ρn(s)γ̄(t− s) ds = γ̄∗(n+1)

where we have used Campbell’s theorem in the second last equality
and the induction hypothesis in the last equality. Thereby (3.15)
follows. Finally, if I denotes the Poisson process of immigrants,

E(t−, t+) = E
∑

ti∈I

∑

s∈Ci

1[ti < t−, 0 ≤ s < t+]

= E
∑

ti∈I: ti<t
−

E

[

∑

s∈Ci

1[0 ≤ s < t+]

∣

∣

∣

∣

ti

]

= E
∑

ti∈I: ti<t
−

∫ t+−ti

−ti

λ(u) du

which reduces to (3.16) by Campbell’s theorem. 2

The convolution γ̄∗n is only computable for a few kinds of models
(see Section 3.5).
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Remark 3.2 It follows immediately that

ρ = µ+ µ ∗ λ (3.17)

is the intensity function of all events. When quantifying edge effects
it is natural to consider E(t−, t+)/E(t+), where

E(t+) =

∫ t+

0

ρ(t) dt

is the expected number of events on [0, t+]. 2

3.4.2 The probability of having any missing off-

spring

Obviously, P(t−, t+) is an increasing function of t+ ∈ (0,∞]. Proposi-
tion 3.3 gives an expression and upper and lower bounds for P(t−,∞).

Proposition 3.3 We have that

P(t−,∞) = 1 − exp

(

−

∫ t
−

−∞

(1 − F (−t))µ(t) dt

)

. (3.18)

Further, for any f ∈ C1 such that f ≤ ϕ(f), we have an upper bound,

P(t−,∞) ≤ 1 − exp

(

−

∫ t
−

−∞

(1 − fn(−t))µ(t) dt

)

, (3.19)

which is a decreasing function of n, and a lower bound

P(t−,∞) ≥ 1 − exp

(

−

∫ t
−

−∞

(1 − 1n(−t))µ(t) dt

)

, (3.20)

which is a increasing function of n.
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Proof. Let It
−

be the point process of immigrants ti < t− with
{(tj, Zj) ∈ Ci : tj ≥ 0} 6= ∅. Then It

−

is a Poisson process with
intensity function λt

−

(t) = (1 − F (−t))µ(t) on (−∞, t−), since we
can view It

−

as an independent thinning of the immigrant process
on (−∞, t−), with retention probabilities p(t) = 1 − F (−t), t <
t−. Hence, since P(t−,∞) equals the probability that It

−

6= ∅, we
obtain (3.18). Thereby (3.19) and (3.20) follows from (3.18) and
Proposition 3.1. 2

Remark 3.3 Proposition 3.1 ensures that the upper bound in (3.19)
and the lower bound in (3.20) converge monotoneously to P(t−,∞)
provided e.g. that µ is bounded and EL <∞, cf. Remark 3.1. 2

3.4.3 The total variation distance between simu-

lations and the target distribution

Recently, Brémaud et al. (2002) derived related results to Proposi-
tions 3.2 and 3.3 when µ(t) is constant and t+ = ∞. Proposition 3.4
below generalises certain inequalities in Brémaud et al. (2002) (page
133, line 3 from below, and equation (3.13)) to the situation in the
present paper where µ(t) is not necessarily constant and t+ may be
finite. Moreover, our proof is much simpler.

We let X̃ be another marked Hawkes process obtained from X by
removing all clusters Ci with immigrants ti < t−. Furthermore, we let
Y and Ỹ denote the restriction of X and X̃ to the marked events on
[0, t+), and denote their distributions by π(t−, t+) and π̃(t−, t+). Thus
the output of Algorithm 3.1 follows π̃(t−, t+), which approximates the
target distribution π(t−, t+).

Proposition 3.4 Let ‖·‖TV denote the total variation distance, then

‖π(t−, t+) − π̃(t−, t+)‖TV ≤ P(t−, t+) ≤ E(t−, t+). (3.21)

Proof. By the construction of Ỹ , we have that Ỹ ⊆ Y . The first
inequality then follows immediately from the coupling inequality (see
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e.g. Lindvall (1992)), while the second inequality is trivially satisfied.
2

Remark 3.4 In contrast to the first upper bound in (3.21) the sec-
ond upper bound does not depend on knowing F or any approxima-
tion of F , cf. Propositions 3.2 and 3.3. 2

3.4.4 Extensions and open problems

It would be of practical importance to extend our results to the case
of predictable marks. Proposition 3.4 is still true if the conditional
intensity function for X is larger than or equal to the conditional
intensity function for X̃; this follows by a thinning argument, cf.
Daley and Vere-Jones (2003). However, this observation seems of lit-
tle use, since the assumption of unpredictable marks is essential in
the proofs of (3.15) in Proposition 3.2 and (3.19)–(3.20) in Proposi-
tion 3.3. Moreover, though (3.18) in Proposition 3.3 remains true, it
is expected to be of limited use, since F is expected to be of a more
complicated form in the case of predictable marks.

The following observations may also be of practical relevance.

Algorithm 3.1 applies for a non-Poisson immigrant process, e.g. a
Markov or Cox process provided it is feasible to simulate the immi-
grants on [t−, t+). Furthermore, Proposition 3.2 remains true for any
immigrant process with intensity function µ. Finally, Proposition 3.3
partly relies on the immigrants being a Poisson process: for instance,
if now µ is a random intensity function and the immigrant process is
a Cox process driven by µ, then (3.18)–(3.20) should be modified by
taking the mean of the expressions on the right hand sides.
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3.5 Examples and comparison with per-

fect simulation

Illustrative examples of specific unmarked and marked Hawkes pro-
cesses (with plots showing perfect simulations) are given in Møller
and Rasmussen (2004). In this section we consider the same exam-
ples of models and demonstrate the use and limitations of our results
in Section 3.4. We also demonstrate the practical differences be-
tween Algorithm 3.1 and the perfect simulation algorithm in Møller
and Rasmussen (2004).

3.5.1 An unmarked Hawkes process model

The events and marks of X are independent if and only if γ(t, z) =
γ(t) does not depend on the mark z (for almost all z) in which case
the events form an unmarked Hawkes process. In this section we
consider an unmarked Hawkes process with exponentially decaying
fertility rate given by γ(t) = αβe−βt, where 0 < α < 1 and β > 0 are
parameters.

Note that 1/β is a scale parameter for the distribution of L,
ν̄ = ν = α, and h̄ = βe−βt. Hence h̄∗n is the density for a gamma dis-
tribution with shape parameter n and inverse scale parameter β. Us-
ing (3.15), we obtain λ(t) = αβe(α−1)βt. Inserting this into (3.16), as-
suming that t− > −∞ and µ(t) = δeκt where δ > 0 and κ > (α−1)β
are parameters, we obtain that

E(t−, t+) =
αδ

(1 − α)((1 − α)β + κ)
(1 − e(α−1)βt+)e((1−α)β+κ)t

− .

Here the restriction on κ is equivalent to that ρ is finite, in which
case ρ(t) = δeκt(κ+ β)/(κ+ (1 − α)β), cf. (3.17).

Figure 3.1 shows E(t−, t+)/E(t+) as a function of −t− ≥ 0 in
the case α = 0.9, δ = β = 1, t+ = 10, and for different values
of κ. As expected numerically smaller values of t− are needed as
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κ increases. For κ ≥ 0, effectively perfect simulation are produced
when t− = −50.
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Figure 3.1: Plot of E(t−, t+)/E(t+) versus −t− for the unmarked
case with parameters α = 0.9, δ = β = 1, t+ = 10, and κ =
−0.04,−0.02, 0, 0.25 (top to bottom).

Let f(t) = 1 − e−θt be the c.d.f. for an exponential distribution
with parameter θ = β(1 − α). As verified in Møller and Rasmussen
(2004), f ≤ ϕ(f), and so the bounds of P(t−,∞) in Proposition 3.3
hold. Figure 3.2 shows these bounds when α = 0.9, β = δ = 1 and
κ = 0 (i.e. µ = 1), and n = 0, 7, . . . , 70. The convergence of the
bounds to P(t−, t+) is clearly visible, and for n = 70 both bounds are
practically equal. Also the plot reveals that for the present choice of
parameters, the probability for having one or more missing events is
effectively 0 for t− = −50.

We can determine N(t−, t+), or at least its distribution, from
the perfect simulation algorithm in Møller and Rasmussen (2004).
Figure 3.3 shows one minus the corresponding empirical distribution
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Figure 3.2: Upper and lower bounds (3.19) and (3.20) of P (t−, t+)
versus −t− in the unmarked case with α = 0.9, µ = β = 1, t+ = ∞,
and n = 0, 7, . . . , 70. The bounds using n = 70 are shown in black
to illustrate the approximate form of P(t−, t+), whereas the rest are
shown in gray.



76 Chapter 3. Approximate simulation of Hawkes processes

function based on 10000 perfect simulations when α = 0.9, β = δ = 1,
κ = 0, t+ = 10, and t− = 0,−10, or −50. In each of the three cases,
since E(t+) = 100, the number of missing events in the case t− = 0 is
substantially reduced, but still too large, when t− = −10, while edge
effects are practically non-existent for t− = −50.
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Figure 3.3: One minus the empirical distribution function for
N(t−, t+) in the unmarked case with α = 0.9, β = δ = 1, κ = 0,
t+ = 10, and t− = 0,−10,−50 (top to bottom).

Comparing Figures 3.1–3.3 when for example α = 0.9, β = δ = 1,
κ = 0, t+ = 10, and t− = −50, Algorithm 3.1 and the perfect simula-
tion algorithm from Møller and Rasmussen (2004) are effectively pro-
ducing identical results. Algorithm 3.1 uses roughly one-thousandth
of a second for each simulation in our implementation, while the
perfect simulation algorithm uses one-tenth of a second. For com-
parison we have implemented Ogata’s modified thinning algorithm
(Ogata, 1981), which is a general simulation algorithm for unmarked
processes. Ogata’s algorithm and our Algorithm 3.1 produce simu-



3.5. Examples and comparison with perfect simulation 77

lations with the same distribution; however, Ogata’s algorithm uses
approximately one-twentieth of a second to make an approximate
simulation.

3.5.2 A marked Hawkes process model with birth

and death transitions

Consider a marked Hawkes process with

γ(t, z) = α1[t ≤ z]/EZ,

where 0 < α < 1 is a parameter, Z is a positive random variable
with distribution Q, and 1[·] denotes the indicator function. Then
X can be viewed as a birth and death process, with birth at time ti
and survival time Zi of the i’th individual (more general birth and
death processes (even non-Markovian) are considered in Brémaud
and Massoulié (2002) and Torrisi (2002)).

The special case where µ(t) = µ is constant and Z is exponentially
distributed with mean 1/β is considered at page 136 in Brémaud et al.
(2002). Since h̄(t) = βe−βt is the same function as in Section 3.5.1,
E(t−, t+) is also the same as in Section 3.5.1. Further, a plot of
P (t−, t+) (omitted here) is similar to Figure 3.2 (when using the
same parameters). Also a plot of the empirical distribution function
of N(t−, t+) (omitted here) is similar to Figure 3.3.

When for example α = 0.9, β = µ = 1, t+ = 10, and t− = −50,
Algorithm 3.1 uses roughly one-five hundredth of a second for each
simulation, and the perfect simulation algorithm uses just under three
seconds. As in the unmarked case both algorithms are feasible, but
the difference is much more clear in the present case.

3.5.3 A heavy-tailed distribution for L

We conclude by observing that heavy-tailed cases of the distribution
of L are problematic. For instance, suppose that

γ(t, z) = αze−tz, (3.22)
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where α ∈ (0, 1) is a parameter, and let Q be the exponential distri-
bution with mean 1/β. As argued in Møller and Rasmussen (2004),
h̄(t) = β/(t + β)2 is a Pareto density and L has a heavy-tailed dis-
tribution with infinite moments and infinite Laplace transform. As
EL = ∞, Proposition 3.1 and hence Proposition 3.3 seem of rather
limited use, cf. Remark 3.1. Proposition 3.2 in Brémaud et al. (2002)
establish and upper bound for P (t−,∞) for such heavy-tailed cases
under certain mild conditions, however, in the case of 3.22 their re-
sult does not apply. Proposition 3.2 is also not applicable, since λ is
not known on closed form, cf. Example 7 in Møller and Rasmussen
(2004). It is a challenging open problem to handle such heavy-tailed
cases.
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Abstract

Studies of forest declines are important, because they both reduce
timber production and affect successional trajectories of landscapes
and ecosystems. Of particular interest is the decline of red pines
which is characterized by expanding areas of dead and chlorotic trees
in plantations throughout the Great Lakes Region. Here we examine
the impact of two bark beetle groups, namely red turpentine beetles
and pine engraver bark beetles, on tree mortality and the subsequent
gap formation over time in a plantation in Wisconsin. We construct
spatial-temporal statistical models that quantify the relations among
red turpentine beetle colonization, pine engraver bark beetle coloniza-
tion, and mortality of red pine trees, while accounting for correlation
across space and over time. For statistical inference, we adopt a
Bayesian hierarchical model and devise Markov chain Monte Carlo
algorithms for obtaining the posterior distributions of model param-
eters as well as posterior predictive distributions. Our data analysis
results suggest that red turpentine beetle colonization is associated
with higher likelihood of pine engraver bark beetle colonization and
pine engraver bark beetle colonization is associated with higher likeli-
hood of red pine tree mortality, whereas there is no direct association
between red turpentine beetle colonization and red pine tree mortal-
ity. There is strong evidence that red turpentine beetle colonization
does not kill a red pine tree directly, but rather predisposes the tree
to subsequent colonization by pine engraver bark beetles. The evi-
dence is also strong that pine engraver bark beetles are the ultimate
mortality agents of red pine trees.

Keywords: Autologistic model, Bayesian inference, forest entomol-
ogy, Markov chain Monte Carlo, perfect simulation, spatial-temporal
processes.
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4.1 Introduction

Studies of forest declines are of great interest to the timber indus-
try, natural resource managers, and ecologists alike, because these
declines both reduce timber production and affect successional tra-
jectories of landscapes and ecosystems. Decline syndromes occur in
forests throughout the world, and occur at a variety of scales (Auclair,
2005). Declines due to soil acidification and atmospheric pollution
may affect large areas (Battles and Fahey, 2000; Drohan et al., 2002;
Purdon et al., 2004) while declines due to insect and/or disease com-
plexes may exhibit smaller mosaics of mortality such as gap forma-
tion, which is our focus here (Klepzig et al., 1991; Erbilgin and Raffa,
2003). In some systems, areas of large-scale mortality to insects and
pathogens may originate from such small-scale mosaics. Character-
izing spatial patterns and gaining inference about the processes that
may create such patterns may assist in policy and management deci-
sions when dealing with declines. Indeed, linking pattern and process
is a key goal in ecology.

In particular we examine tree mortality and the subsequent gap
formation over time in red pine forests. Decline of red pines is charac-
terized by expanding areas, termed “pockets” of dead, slow growing,
and chlorotic trees in plantations throughout the Great Lakes Region
(Klepzig et al., 1991). Abiotic factors such as soil characteristics and
drought stress can predispose trees to biotic mortality agents such as
insects and root pathogens (Klepzig et al., 1991; Erbilgin and Raffa,
2002). Here we focus on the impact of two bark beetle groups, called
“turpentine beetles” and “Ips spp.” (for details of the species, see
Section 4.2), on the decline of red pines in a plantation in Wisconsin.

Past studies on red pine decline have yielded valuable insights on
individual components of this system by examining multiple levels of
scale, from detailed studies on individual trees (Klepzig et al., 1995;
Raffa and Smalley, 1995; Klepzig et al., 1996) to regional studies
comparing multiple sites (Klepzig et al., 1991; Erbilgin and Raffa,
2002, 2003). Despite these advances, elucidation of exact mechanisms
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of pocket development and expansion remain elusive since a single site
has never been observed over more than three years. In the present
study, we examine a seven-year data set of annual surveys of all trees
in a plantation. Each year, each of the 2,715 trees was examined
for presence/absence of Ips spp., tree condition (alive/dead), and
the number of pitch tubes, each of which signifies colonization by a
turpentine beetle. We attempt to answer several important ecological
questions. Of most interest is how the mortality rate of a tree is
associated with the turpentine beetle and Ips spp. colonization. For
example, how different are the mortality rates between a tree that
has been colonized by both groups and a tree that has been colonized
by just one group of bark beetles? Related to these questions are
the degree of association between turpentine beetle and Ips spp. For
example, what is the likelihood of a tree that has been colonized
by turpentine beetles will be colonized by Ips spp. subsequently?
Moreover it is also of interest to quantify the spatial and temporal
relations among turpentine beetle colonization, Ips spp. colonization,
and tree mortality.

The study of red pine declines poses statistical challenges, in that
processes giving rise to patterns of mortality may act at different lev-
els of temporal and spatial scales. Here we construct spatial-temporal
models that quantify the relations among the activities of turpentine
beetle, the activities of Ips spp., and the conditions of red pine trees.
Furthermore, we introduce spatial and temporal terms into the model
that account for correlations across space and over time. For statis-
tical inference, we adopt a Bayesian hierarchical model and Markov
chain Monte Carlo (MCMC) algorithms that enable us to obtain the
posterior distributions of the model parameters and posterior predic-
tive distributions. The model for Ips spp. also involves an unknown
normalizing constant. Thus when we use a Metropolis-Hastings algo-
rithm, we approximate a ratio of normalizing constants by path sam-
pling (Gelman and Meng, 1998) combined with the Propp-Wilson
algorithm for perfect simulation (Propp and Wilson, 1996; Møller,
1999).
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The remainder of the paper is organized as follows. In Section 4.2,
we describe some more biological background and the data. In Sec-
tion 4.3, we specify a set of spatial-temporal models for the data.
The Bayesian model and simulation algorithms are specified in Sec-
tion 4.4. We describe the results of the data analysis and address the
ecological questions in Section 4.5. Section 4.6 contains concluding
remarks.

4.2 Bark beetle and red pine data

4.2.1 Background

Bark beetle species are characterized by their ability to mine and
reproduce below the surface of the bark of trees. The red turpentine
beetle (Dendroctonus valens (LeConte)), which we in short call “tur-
pentine beetle”, is one of the most widely distributed bark beetles in
North America. Colonization by turpentine beetle adults concentrate
in the lower stems of pine trees. The larvae breed largely below the
soil line in the root collar and primary lateral root regions. An exter-
nal indicator of colonization by the turpentine beetle is a pitch tube
on the outer surface of the bark just above the soil line or pitch pellets
on the ground. Peak flight and colonization in Wisconsin occur in
late April and May. Turpentine beetles colonize primarily trees that
are weakened by drought and fire, for example, but may also colo-
nize apparently healthy trees. These beetles vector the staining fungi
Leptographium terebrantis and L. procerum (Klepzig et al., 1991). It
is hypothesized that a colonization of a healthy tree by turpentine
beetles does not kill the tree but may predispose it to subsequent
colonization by other bark beetles such as engraver beetles.

Engraver beetles (predominantly Ips pini (Say), although addi-
tionally some Ips grandicollis (Eichhoff) in our study site (Klepzig
et al., 1991)), which we in short call “Ips spp.”, may have up to
three generations from spring to early fall (Erbilgin et al., 2002; Er-
bilgin and Raffa, 2002; Aukema et al., 2005). Successful colonization
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by the Ips spp. is indicated by fine sawdust shavings pushed to the
outer surface of the bark and galleries inside the tree. Ips spp. bee-
tles produce aggregation pheromones as they enter host trees, thus
attacking trees en masse over very short periods. These mass attacks
typically result in complete utilization of the resource within a single
generation, making it unlikely that subsequent Ips spp. or turpentine
beetles will enter. Ips spp. also vector the fungal associate Ophios-
toma ips, whose colonization may impede the upward flow of water
to the tree crowns. Lack of water leads the needles to wither and die
while the color characteristically fades from green to red to brown.
Ips spp. brood adults leave the tree through emergence holes on the
surface of the outer bark, the most apparent external indicator that
a tree has been colonized by Ips spp. The tree is most likely to die
within a few weeks after an attack.

4.2.2 Description of data

The study area is a red pine plantation near Spring Green, Wisconsin.
In 1986, each of the 2,715 trees in the plantation was surveyed and its
condition (alive/dead) was recorded. From 1987 to 1992, subsequent
surveys were conducted not only of the tree condition, but also about
the colonization of turpentine beetles and Ips spp. For turpentine
beetles, the number of pitch tubes on the outer surface of a bark
was recorded, while for Ips spp., an indicator variable of Ips spp.
colonization (yes/no) was recorded. The survey took place in autumn
of each year, after beetles had become dormant.

Selected image plots in Figure 4.1 illustrate the nature of the data.
For 1987, colonization of turpentine beetles (zero or positive number
of pitch tubes), colonization of Ips spp. (yes/no), and condition of
trees (alive/dead) are shown (Figure 4.1(a)–(c)). For 1992, similar
plots are shown, except that colonization of Ips spp. here includes
colonization from 1987 to 1992 (Figure 4.1(d)–(f)). There is clear
indication of spatial dependence among tree conditions, Ips spp. col-
onization, and turpentine beetle colonization. A gap of dead trees
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was evident in the southeastern part of the plantation in the begin-
ning and expanded over the years. Furthermore there was a strong
association between the spatial pattern of Ips spp. colonization and
that of tree mortality, but the link was not as obvious between tur-
pentine beetle colonization and tree mortality.

There were 126 dead trees in 1986. From 1987 to 1992, a total
of 344 trees died, 339 trees were colonized by Ips spp., and 152 trees
were colonized by turpentine beetles. Among the 344 dead trees, a
majority of 330 were colonized by Ips spp. and 73 were colonized by
turpentine beetles. Only 9 out of 339 trees that were colonized by
Ips spp. survived by 1992, whereas 79 out of 152 of the trees that
were colonized by turpentine beetles survived. Ips spp. colonization
seemed to associate more with those trees with a larger number of
pitch tubes of turpentine beetles, although the evidence was subtle
due to the small number of trees that had a large number of pitch
tubes.

4.3 Observation model

4.3.1 Notation

Let t = −1, 0, . . . , 5 index the time of survey from 1986 to 1992
and let i = 1, . . . , 2715 index the sites of 2,715 red pine trees in
the plantation that were surveyed. For the purpose of modeling,
we consider time points t = . . . ,−1, 0, 1, . . . and define xt,i, yt,i, zt,i,
and ut,i as follows. Since the survey was conducted in autumn, after
insect and tree dormancy for any given year, the data reflect insect
activities and tree conditions throughout that year. At time t and site
i, let xt,i denote the turpentine beetle colonization variable such that
xt,i is the cumulative number of turpentine beetle pitch tubes on the
bark. Further, let yt,i denote the Ips spp. colonization variable such
that yt,i = 0, 1, 2 correspond respectively to no Ips spp. colonization,
colonization by Ips spp. in year t, and colonization by Ips spp. in a
previous year. Let ut,i denote an indicator variable of whether Ips
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Figure 4.1: (a) and (d) turpentine beetle colonization, (b) and (e) Ips
spp. colonization, and (c) and (f) tree condition by 1987 (top row)
and 1992 (bottom row). The site of a tree is colored black if the tree
was colonized by turpentine beetles ((a) and (d)), colonized by Ips
spp. ((b) and (e)), or dead ((c) and (f)); all other sites are colored
grey.

(a)

(d)

(b)

(e)

(c)

(f)
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spp. colonization took place during year t at site i, i.e. ut,i = 1 if
yt,i = 1 and ut,i = 0 otherwise. In consistency with the data, we
assume that Ips spp. colonization could only occur once at a given
site and after colonization of a tree, Ips spp. leaves the tree before the
end of the flight season of the same year (before the annual survey).
Thus ut,i = 1 for at most one year t. Finally, let zt,i denote the tree
condition variable such that zt,i = 0 if the tree was alive and zt,i = 1
if the tree was dead at time t and site i.

We let xt = (xt,1, . . . , xt,2715), yt = (yt,1, . . . , yt,2715), and zt =
(zt,1, . . . , zt,2715) denote the vectors of respectively the turpentine bee-
tle colonization variables, the Ips spp. colonization variables, and
the tree condition variables at time t and all the sites. Further, let
ut = (ut,1, . . . , ut,2715) and wt = (xt, yt, zt). Since turpentine beetle
colonization typically precedes Ips spp. colonization, which in turn
precedes the death of a tree, we order the variables xt, yt, zt such that
xt precedes yt and yt precedes zt. Thus, the data under study are
ordered as (z−1, x0, y0, z0, . . . , x5, y5, z5), while the unobserved data
in the past are ordered as (. . . , x−2, y−2, z−2, x−1, y−1).

4.3.2 Temporal model

In Sections 4.3.3–4.3.5, we shall construct a set of spatial-temporal
models to capture the relations among the variables xt,i, yt,i, and
zt,i, while accounting for spatial and temporal dependence. Before
specifying these details, it is useful to give a brief description of the
temporal process wt and how the likelihood factorizes.

In equations (4.1)–(4.3) below we naturally consider a sequen-
tial model construction such that for each time t, we specify the
conditional distribution of xt first, yt second, zt third given the rel-
evant past. The detailed model descriptions (4.5), (4.8), and (4.12)
in Sections 4.3.3–4.3.5 imply the following conditional independence
structure for the temporal process. Let [a|b] denote the conditional
distribution of a random component a given another random com-
ponent b. For the turpentine beetle colonization variables at time
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t,
[xt|(ws)s=t−1,t−2,...] ∼ [xt|xt−1, zt−1] (4.1)

depends on a parameter θ as specified in Section 4.3.3; for the Ips
spp. beetle colonization variables at time t,

[yt|xt, (ws)s=t−1,t−2,...] ∼ [yt|xt, yt−1, zt−1] (4.2)

depends on a parameter ψ (Section 4.3.4); for the tree condition
variables at time t,

[zt|xt, yt, (ws)s=t−1,t−2,...] ∼ [zt|xt, yt, zt−1] (4.3)

depends on a parameter ϕ (Section 4.3.5). For the corresponding
likelihood terms, we write L(1)(θ) = L(1)(θ;xt|xt−1, zt−1), L

(2)(ψ) =
L(2)(ψ; yt|xt, yt−1, zt−1), and L(3)(ϕ) = L(3)(ϕ; zt|xt, yt, zt−1).

For statistical inference we condition on

e = (z−1, x0, y0)

since by (4.1)–(4.3), the remaining data

d = (z0, x1, y1, z1, . . . , x5, y5, z5)

are conditionally independent of the unobserved (. . . , x−2, y−2, z−2,
x−1, y−1). We let L(θ, ψ, ϕ) = L(θ, ψ, ϕ; d|e) denote the likelihood
based on the conditional distribution of d given e. By (4.1)–(4.3),
this factorizes into

L(θ, ψ, ϕ; d|e) = L(1)(θ)L(2)(ψ)L(3)(ϕ)

given by the likelihood terms for each type of data

L(1)(θ) =
5
∏

t=1

L
(1)
t (θ), L(2)(ϕ) =

5
∏

t=1

L
(2)
t (ϕ), L(3)(ψ) =

5
∏

t=0

L
(3)
t (ψ), (4.4)

where L
(1)
t (θ)=L

(1)
t (θ;xt|xt−1, zt−1), L

(2)
t (ψ)=L

(2)
t (ψ; yt|xt, yt−1, zt−1),

and L
(3)
t (ϕ) = L

(3)
t (ϕ; zt|xt, yt, zt−1) are specified at the end of Sec-

tions 4.3.3–4.3.5.
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In Sections 4.3.3–4.3.5, our strategy is for each time, site, and
type of data xt,i, yt,i, or zt,i to specify a “local characteristic” which
only depends on “local information”. For example, by the local char-
acteristic of yt,i, we mean the conditional distribution of yt,i given the
other yt,j, j 6= i and the previous history xt, (ws)s=t−1,t−2,.... We ex-
press the local information with respect to the grid of tree locations
and consider for site i its first-, second-, . . . order neighbors which
are the (up to) four nearest, four second nearest, . . . sites to i.

4.3.3 Likelihood based on turpentine beetle col-

onization

The cumulative number of turpentine beetles at time t and site i is
assumed to depend on local information such that

[xt,i|(xt,j)j 6=i, (ws)s=t−1,t−2,...] ∼
[

xt,i|xt−1,Nx
i
, zt−1,i

]

(4.5)

where xt−1,Nx
i

is the vector of variables xj with j ∈ Nx
i . Here Nx

i

consists of i and its neighbors up to the fifth order, and we assume
that the conditional distribution of turpentine beetle colonization at
time t depends only on turpentine beetle colonization at time t − 1
and at sites in Nx

i , since this neighborhood is fairly large but is still
interpretable biologically (see Section 4.5 for further details). Since
turpentine beetles colonize red pines during only one brief period per
year, and a tree can be colonized by multiple turpentine beetles, we
assume conditional independence among nearby sites within the same
year. On the other hand, turpentine beetles that colonize a tree in
one spring tend to colonize nearby trees in the next spring. Thus we
build into the model a possible relation between turpentine beetle
colonization at time t and at time t− 1.

The local characteristic [xt,i|xt−1,Nx
i
, zt−1,i] is specified as follows.

If the tree at site i was dead at time t − 1 (i.e. zt−1,i = 1), the lo-
cal characteristic is deterministic with xt,i = xt−1,i, since turpentine
beetles will not colonize a dead tree. Turpentine beetles could the-
oretically colonize a tree that dies from competitive thinning, i.e., a
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process in which the growth of neighboring trees blocks out neces-
sary sunlight. However, such events were rare in the stand, as the
insects would likely colonize the weakened tree in advance of tree
death. Moreover, the diameter and subcortical tissues of trees that
have been crowded to death are frequently too thin to serve as a
suitable breeding substrate for this insect. Turpentine beetles could
also colonize a healthy tree that was killed suddenly, such as by a
lightning strike or during a wind storm. However, we did not find
any visual evidence of lightning (e.g., shredded bark, burn marks,
or shattered limbs) or windthrow (other than trees that had already
been killed) in any of our annual surveys. Hence, focusing on the
colonization of live trees, if the tree at site i was alive at time t − 1
(i.e. zt−1,i = 0), we assume that

[

xt,i − xt−1,i|xt−1,Nx
i
, zt−1,i = 0

]

∼ Poisson(λt,i)

where

log(λt,i) = θ0 + θ1

∑

j∈Nx
i

xt−1,j. (4.6)

Thus, given the past, the xt,i − xt−1,i with zt−1,i = 0 form a sample
from a Poisson regression, so

L
(1)
t (θ) ∝

∏

i:zt−1,i=0

λ
xt,i−xt−1,i

t,i exp(−λt,i)

= exp





∑

i:zt−1,i=0

[

(xt,i − xt−1,i)

(

θ0 + θ1

∑

j∈Nx
i

xt−1,j

)

− exp

(

θ0 + θ1

∑

j∈Nx
i

xt−1,j

)]



 . (4.7)
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4.3.4 Likelihood based on Ips spp. colonization

The conditional dependence structure for whether colonization by Ips
beetles has occurred is assumed to be

[yt,i|xt, (yt,j)j 6=i, (ws)s=t−1,t−2,...]

∼ [yt,i|xt,i, ut,N
y
i
, ut−1,N

y
i
, yt−1,i, zt−1,i]. (4.8)

Thus we assume that the conditional distribution of Ips spp. colo-
nization at time t depends on turpentine beetle colonization at time
t, Ips spp. colonization at sites j ∈ N y

i at both time t−1 and t, where
N y

i consists of the first and second order neighbors to i (note that N y
i

does not include i). Since it is hypothesized that turpentine beetles
predispose red pines to colonization by Ips spp., we include in the
model a possible relation to the number of turpentine beetle pitch
tubes on the tree. Since Ips spp. attack different red pines 1–3 times
per year and can overwinter near the trees they have colonized, we as-
sume relations among neighboring sites for both time t and t− 1 and
that a first- and second-order neighborhood would suffice to capture
spatial dependence in this study.

The local characteristic [yt,i|xt,i, ut,N
y
i
, ut−1,N

y
i
, yt−1,i, zt−1,i] is spec-

ified as follows. If the tree at site i was dead at time t − 1 (i.e.
zt−1,i = 1) or was colonized by Ips spp. at previous times (i.e.,
yt−1,i = 1 or 2), the local characteristic is deterministic with yt,i = 0
or 2, since Ips spp. will not colonize a dead tree. Ips spp. could the-
oretically colonize a tree that dies from competitive thinning, i.e.,
overshadowing and crowding by more dominant neighbors, although
in practice the insects would likely find and colonize a weakened tree
in advance of tree death, and would colonize only if the subcortical
tissue was sufficiently thick. Such trees also contribute little to the
ecological dynamics of the system, as they are commonly colonized by
competing species of insects against which Ips spp. fare poorly. We
also disregard the possibility that Ips spp. colonize lightning strikes
or recent windthrow of live trees, due to the absence of such events
observed during our annual surveys. Hence, focusing on colonization
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of live trees, if the tree at site i was alive at time t−1 (i.e. zt−1,i = 0)
and was not colonized previously (yt,i = 0), the local characteristic is
assumed to be a logistic regression,

[

yt,i|xt,i, ut,N
y
i
, ut−1,N

y
i
, yt−1,i = 0, zt−1,i = 0

]

∼ Bernoulli(pt,i) (4.9)

where

logit(pt,i) = ψ0 + ψ1xt,i + ψ2

∑

j∈N
y
i

ut−1,j + ψ3

∑

j∈N
y
i

ut,j. (4.10)

Since ut,i = yt,i in (4.9), by the Hammersley-Clifford theorem, L
(2)
t (ψ)

is equal to

exp





∑

i:yt−1,i=zt−1,i=0



ψ0 + ψ1xt,i + ψ2

∑

j∈N
y
i

ut−1,j



ut,i

+ψ3

∑

i<j: j∈N
y
i

ut,iut,j





/

c(xt, yt−1, zt−1, ψ) (4.11)

where c(xt, yt−1, zt−1, ψ) is a normalizing constant (note that j ∈
N y

i ⇔ i ∈ N y
j ). In other words, given the past, the ut,i with yt,i =

zt,i = 0 form an autologistic model (Besag, 1974).

4.3.5 Likelihood based on tree condition

The conditional dependence structure for tree condition is assumed
to be

[zt,i|xt, yt, (zt,j)j 6=i, (ws)s=t−1,t−2,...] ∼ [zt,i|xt,i, ut,i, zt−1,Nz
i
, zt−1,i] (4.12)

where the neighborhood N z
i consists of the neighbors up to the fifth

order. If the tree at site i was dead at time t − 1 (i.e. zt−1,i = 1),
the local characteristic is deterministic with zt,i = 1, because a dead
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tree remains dead. But if the tree at site i was alive at time t − 1
(i.e. zt−1,i = 0), the local characteristic is assumed to be a logistic
regression,

[

zt,i|xt,i, ut,i, zt−1,Nz
i
, zt−1,i = 0

]

∼ Bernoulli(qt,i)

where

logit(qt,i) = ϕ0 + ϕ1xt,i + ϕ2ut,i + ϕ3

∑

j∈Nz
i

zt−1,j. (4.13)

That is, mortality rate of a tree depends on both turpentine beetle
colonization and Ips spp. colonization. The additional term involving
the tree condition at time t−1 is a way of accounting for any potential
spatial dependence. Again we consider a fairly large neighborhood
that consists of neighbors up to the fifth order. Conditional on the
past, the zt,i with zt−1,i = 0 form a sample from a logistic regressions,
so

L
(3)
t (ϕ) =

∏

i:zt−1,i=0

exp(zt,ilogit(qt,i))

1 + exp(logit(qt,i))

=
∏

i:zt−1,i=0

exp(zt,i(ϕ0 + ϕ1xt,i + ϕ2ut,i + ϕ3

∑

j∈Nz
i
zt−1,j))

1 + exp(ϕ0 + ϕ1xt,i + ϕ2ut,i + ϕ3

∑

j∈Nz
i
zt−1,j)

.

(4.14)

4.4 Bayesian model and posterior simu-

lations

We assume independent improper uniform priors

p(θ) ∝ 1, θ ∈ R
2; p(ψ) ∝ 1, ψ ∈ R

4; p(ϕ) ∝ 1, ϕ ∈ R
4.

Thus θ, ψ, ϕ are a posteriori independent with densities

π(θ) ∝ L(1)(θ), θ ∈ R
2; π(ψ) ∝ L(2)(ψ), ψ ∈ R

4;

π(ϕ) ∝ L(3)(ϕ), ϕ ∈ R
4. (4.15)
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For a discussion of posterior properity, see Appendix A. For the re-
maining discussion of MCMC simulations, we assume the reader is
familiar with MCMC methods (e.g. Robert and Casella (2004)).

For turpentine beetles, we will simulate from the marginal pos-
terior distribution of θ using a Metropolis within Gibbs algorithm,
where we alternate between updating θ0 and θ1. Since the full condi-
tional for λ0 = exp(θ0) is a Gamma distribution with shape parameter
∑

t,i(xt,i−xt−1,i) and inverse scale parameter
∑

t,i exp(θ1

∑

j∈Nx
i
xt−1,j),

where in both cases the sum
∑

t,i is over those t, i with zt−1,i = yt−1,i =
0, we use a Gibbs update for this component. The full conditional
for the other parameter θ1 is not a standard distribution, so here
we use a Metropolis random walk algorithm with a normal proposal
distribution, cf. Robert and Casella (2004).

For Ips spp., suppose we use a Metropolis-Hastings algorithm to
simulate from the marginal posterior distribution of ψ. Let L

(2)
unnorm(ψ;u)

denote L(2) in (4.4) but without the unknown normalizing constant

c(ψ) =
5
∏

t=1

c(xt, yt−1, zt−1, ψ)

from (4.11); here u denotes the vector of all observed ut,i values.
If ψ is the current and ψ′ is the proposed parameter values in the
Metropolis-Hastings algorithm, then the Hastings ratio depends on
the ratio c(ψ′)/c(ψ) of unknown normalizing constants. This can be
approximated by path sampling (e.g. Gelman and Meng (1998)),

log
c(ψ′)

c(ψ)
≈

1

n

n
∑

k=1

[

d

ds
logL(2)

unnorm(ψ(sk); υk)

]

. (4.16)

Here we let s1, . . . , sn be independent and uniformly distributed on
[0, 1], and ψ(s) = sψ′ + (1 − s)ψ, 0 ≤ s ≤ 1 is a line segment.
Further, each υk is a perfect simulation of u = (u1, . . . , u5) where ut

given the past follows the autologistic model (4.11) with parameter
ψ(sk) (Propp and Wilson, 1996; Møller, 1999). Furthermore, given
s1, . . . , sn, the perfect simulations υ1, . . . , υn are independent.
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We use a Metropolis random walk algorithm with independent
normal proposal distributions for ψ0, ψ1, ψ2, ψ3, where we propose to
change all four parameters at the same time, since the main part of
the running time of the algorithm is by far used in generating the
perfect simulations, and this is the same amount of work whether we
are changing one or all four parameters.

In the case of ϕ, we use a Metropolis within Gibbs algorithm,
where we alternate between simulating from the marginal posterior
distribution of ϕ0, ϕ1, ϕ2, ϕ3, respectively. Neither of these param-
eters have standard distributions, so for each parameter we use a
Metropolis random walk update with a normally distributed pro-
posal.

When running the Metropolis random walk algorithm for either
θ1, ψ, ϕ0, ϕ1, ϕ2, or ϕ3, the standard deviation of the normal pro-
posal distribution is chosen to reach an average acceptance probabil-
ity about 0.3 (Roberts et al., 1997).

4.5 Statistical inference and discussion

of the ecological questions

4.5.1 Posterior distributions of the model param-

eters

For inference of the parameters θ in the turpentine beetle coloniza-
tion model, Figure 4.2 gives the posterior distributions based on an
MCMC run length of 100,000 with a burn-in length of 1,000. The
results suggest that there is a positive relation between the new tur-
pentine beetle colonization and the number of turpentine beetle tubes
in the previous year, at not only the same site, but also the sites that
are up to the fifth-order neighbors. That is, the more turpentine
beetles there were in the previous year on a tree and its neighboring
trees, the more new colonization can be expected to occur on this tree
in the current year. Here the extent of local temporal dependence
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is captured by a 1-year lag and that of local spatial dependence by
about 5.14 m, which is the distance between a fifth-order neighbor
and the site of a tree. We have also fitted a model that has one term
for the zero-, first-, second-order neighbors and another term for the
third- to fifth-order neighbors. The results there (not shown) suggest
that the regression coefficients for the two types of neighborhoods are
similar and thus we combine all the neighbors up to the fifth order.
This phenomenon is consistent with a hypothesis in which turpentine
beetles colonize trees that are being slowly weakened by the spread
of a root fungus, such as L. terebrantis or L. procerum. These fungi
are introduced to trees by the beetles and spread via root grafts at
a rate of 5m per year, according to our best estimates based on root
excavations and fungal isolations (Klepzig et al., 1991; Erbilgin and
Raffa, 2002). This hypothesis is consistent with the work of Erbilgin
and Raffa (2003), who found that the probability of tree death falls
below 50% at a distance of 5 m from the outer edge of the pocket
margin.

For inference of the parameters ψ in the Ips spp. colonization
model, Figure 4.3 gives the posterior distributions based on an MCMC
run length of 60,000 with a burn-in length of 1,000. For the approx-
imation (4.16), we use only n = 10 perfect simulations, which seems
to give a reasonable approximation of the normalizing constant ratio.
The results suggest that there is a positive relation between the Ips
spp. colonization in the current year and the number of turpentine
beetle tubes in the same year at the same site, Ips spp. colonization
in the previous year at the neighboring sites (excluding the same
site), and Ips spp. colonization in the current year at the neighboring
sites (excluding the same site), up to the second-order neighbors. In
other words, the more turpentine beetles there are on a tree, the more
likely that the tree will be colonized by Ips spp. Thus there is strong
evidence that turpentine beetles pre-dispose trees to colonization by
Ips spp. Moreover, there is clear spatial and temporal dependence in
the Ips spp. colonization. The more trees in the neighborhood that
were colonized by Ips spp. in the previous year, the more likely that
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Figure 4.2: Posterior distribution of (a) θ0; (b) θ1 in the turpentine
beetle colonization model.
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the tree is colonized by Ips spp. in the current year. Similarly the
more trees in the neighborhood that are colonized by Ips spp. in the
current year, the more likely that the tree is colonized by Ips spp.
in the current year. Here the extent of local temporal dependence
is captured by a 1-year lag and that of local spatial dependence by
about 2.07 m, which is the distance between a second-order neighbor
and the site of the tree. Concentration of Ips spp. attacks among
nearby trees may occur for three reasons, none of which are mutually
exclusive. First, insect brood emerging from a previously colonized
tree may preferentially colonize nearby trees. This may occur, for
example, if brood adults from late fall overwinter in the duff around
the base of their brood tree, and then emerges to colonize nearby
trees in the spring. Although little is known about relations be-
tween brood tree and overwintering locations, inclement weather and
predators exert substantial mortality on bark beetles engaging in host
seeking behaviors (Berryman, 1979). Second, localized attacks may
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occur when high numbers of bark beetles are attracted by aggregation
pheromones of a successful attack and begin to attack nearby trees,
a phenomena known as “switching” (Geiszler et al., 1980). Third,
turpentine beetles, and/or fungal root pathogens, may weaken trees
in local neighborhoods and make them more susceptible to attacks
and colonizations by Ips spp. (Owen, 1985).

Figure 4.3: Posterior distribution of (a) ψ0; (b) ψ1; (c) ψ2; (d) ψ3 in
the Ips spp. colonization model.
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For inference of the parameters ϕ in the tree condition model,
Figure 4.4 gives the posterior distributions based on an MCMC run
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length of 100,000 with a burn-in length of 1,000. The results sug-
gest that there is no evidence of a direct relation between a tree’s
condition and the number of its turpentine beetle tubes, but there
is a strong positive relation between Ips spp. colonization and sub-
sequent tree death. That is, the number of turpentine beetles does
not directly influence the mortality of tree, but there is a very large
increase in the probability that a tree dies after colonized by Ips
spp. in the same year. This is not surprising, as trees may survive
colonization of the root collar by turpentine beetles for more than
one year. However, Ips spp. utilize aggregation pheromones to at-
tract high numbers of conspecifics that quickly colonize all available
subcortical tissue. The water-conducting tissues are mined by the
developing larvae, and the tree dies soon thereafter. Furthermore
it appears necessary to account for the spatial-temporal dependence
among the tree conditions.

4.5.2 Empirical and predictive rates of mortality

and Ips spp. colonization

In this and the next subsection we check important aspects of the
model that correspond to the ecological questions of interest, particu-
larly the relations among turpentine beetle colonization, Ips spp. colo-
nization, and tree conditions (see Section 4.1). The model checking is
based on posterior predictive distributions obtained by a Monte Carlo
sample (x(s), u(s), z(s)), s = 1, . . . , S where the Monte Carlo sample
size is chosen to be S = 100. More precisely, since inference is per-
formed conditional on e, given a posterior simulation (θ(s), ψ(s), ϕ(s)),
we simulate “new data” (x(s), u(s), z(s)) from the conditional distribu-
tion of d given e as specified in Section 4.3. This is done using the
sequential model construction in Section 4.3, where simulation of xt

and zt given their relevant past is straightforward (see Sections 4.3.3
and 4.3.5), while we use perfect simulation for yt given the relevant

past (see Section 4.3.4). Note that x
(s)
0 = x0, y

(s)
0 = y0, and z

(s)
−1 = z−1.

The samples (θ(s), ψ(s), ϕ(s)), s = 1, . . . , S are chosen such that they
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Figure 4.4: Posterior distribution of (a) ϕ0; (b) ϕ1; (c) ϕ2; (d) ϕ3 in
the tree condition model.
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are effectively independent posterior simulations. Moreover, we let
(x(0), y(0), z(0)) denote the data.

In this section, we consider the posterior predictive distribution
of various statistics related to mortality rates of trees and rates of Ips
spp. colonization. First, define

I0,0 = {i : z−1,i = 0, x0,i = 0, u0,i = 0},

I0,1 = {i : z−1,i = 0, x0,i = 0, u0,i = 1},

I1,0 = {i : z−1,i = 0, x0,i > 0, u0,i = 0},

I1,1 = {i : z−1,i = 0, x0,i > 0, u0,i = 1},

and

p
(s)
k,l (t) =

1

|Ik,l|

∑

i∈Ik,l

1[z
(s)
t,i = 1], s = 0, . . . , S, t = 0, . . . , 5, k, l = 0, 1

where |A| denotes the cardinality of a finite set A. Then p
(0)
0,0(t) is

the observed tree mortality rate of trees, which were alive at time −1
and had no bark beetle colonization by time 0; p

(0)
0,1(t) is the observed

mortality rate of trees that were colonized by Ips spp.; p
(0)
1,0(t) is the

observed mortality rate of trees that were colonized by turpentine
beetles; and p

(0)
1,1(t) is the observed mortality rate of trees that were

colonized by both turpentine beetles and Ips spp. Figure 4.5 shows for
each value of (k, l) = (0, 0), (0, 1), (1, 0) and t = 0, . . . , 5 the observed

mortality rate p
(0)
k,l (t) and the 2.5th, 50th, 97.5th percentiles of the pos-

terior predictive distribution obtained from p
(s)
k,l (t), s = 1, . . . , S.

Further, for the case (k, l) = (1, 1) (not shown in Figure 4.5), the
2.5th, 50th, 97.5th percentiles for the mortality rates are for all times
t = 0, . . . , 5 given by 0.50, 1.00, and 1.00, respectively, and the
corresponding observed values are all 1.00. For all values of (k, l),
the observed rates lie in the centers of the corresponding predictive
distributions. Thus overall there is no evidence against our model.
Compared to p

(0)
0,0(t), which may be interpreted as a kind of observed
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baseline mortality rate, p
(0)
0,1(t) increased greatly and the large in-

crease occurred within the same year of Ips spp. colonization; p
(0)
1,0(t)

increased at time 1 and the increase leveled off at time 2; and p
(0)
1,1(t)

is nearly 100% within the same year of the colonization. The pre-
dictive distributions show a similar behavior. The fact that deaths
of trees occur in both the first and the second year after turpentine
beetle colonization gives further evidence that turpentine beetles pre-
dispose a tree to death rather than killing a tree directly. The result
here also supports the theory that Ips spp., unlike turpentine beetles,
are the ultimate mortality agents of red pines.

Figure 4.5: Central 95% prediction intervals and medians (indicated
by bars) for the tree mortality rates over time t = 0, . . . , 5 among
those trees that were alive at t = −1 and, (a) were not colonized
(xi,0 = ui,0 = 0), (b) were colonized by turpentine beetles (xi,0 >
0, ui,0 = 0), and (c) were colonized by Ips spp. (xi,0 = 0, ui,0 = 1) at
t = 0. The corresponding observed tree mortality rates are indicated
by crosses. Note the different scales on the y-axes.
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Next, let

Ik = {i : z−1,i = 0, x0,i = k}, k = 0, 1,

denote the collection of sites where a tree was alive at time −1 and
was (k = 1) or was not (k = 0) colonized by turpentine beetles by
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time 0, and let

p
(s)
k (t) =

1

|Ik|

∑

i∈Ik

1[u
(s)
t,i = 1], s = 0, . . . , S, t = 0, . . . , 5, k = 0, 1.

Then p
(0)
k (t) is the observed rate of Ips spp. colonization of a tree

from Ik by time t = 0, . . . , 5. Figure 4.6 is similar to Figure 4.5
but concerns p

(s)
k (t) for k = 0, 1 and t = 0, . . . , 5 Again there is no

evidence against our model. Compared to p
(0)
0 (t), the rates of Ips

spp. colonization p
(0)
1 (t) are much higher and leveled off after 2–3

years, which support the theory that turpentine beetles pre-dispose
the trees to subsequent colonization and thus kill by Ips spp.

Figure 4.6: Central 95% prediction intervals and medians (indicated
by bars) for the rate of Ips spp. colonization over time t = 0, . . . , 5
among those trees that were alive at t = −1 and (a) were not colo-
nized by turpentine beetles (xi,0 = 0) or (b) were colonized by tur-
pentine beetles (xi,0 > 0). The corresponding observed rate of Ips
spp. colonization are indicated by crosses. Note the different scales
on the y-axes.
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4.5.3 Checking further aspects of the model

To check whether the model captures the relation between turpentine
beetle colonization and Ips spp. colonization and between coloniza-
tion of Ips spp. and tree mortality, we consider

r(s)
x,u =

5
∑

t=1

∑

i

(x
(s)
t,i − x

(s)
t−1,i)u

(s)
t,i , r(s)

u,z =
5
∑

t=1

∑

i

u
(s)
t,i z

(s)
t,i , s = 0, . . . , S.

Here r
(0)
x,u summarizes the observed relation between new colonization

of turpentine beetles and new colonization of Ips spp. in the same
year and at the same site, and r

(0)
u,z summarizes the observed occur-

rences of Ips spp. colonization that is involved in mortality of trees.
Furthermore, for spatial dependence structure, we consider

v(s)
x,x(δ) =

∑

i,j:d(i,j)∈N(δ)

1[x
(s)
5,i > 0, x

(s)
5,j > 0], s = 0, . . . , S, δ > 0,

v(s)
y,y(δ) =

∑

i,j:d(i,j)∈N(δ)

1[y
(s)
5,i > 0, y

(s)
5,j > 0], s = 0, . . . , S, δ > 0,

v(s)
z,z(δ) =

∑

i,j:d(i,j)∈N(δ)

1[z
(s)
5,i = 1, z

(s)
5,j = 1], s = 0, . . . , S, δ > 0,

where d(i, j) denotes the Euclidean distance between sites i and

j, and N(δ) = (δ − 1, δ] is a half-open interval. That is, v
(0)
x,x(δ)

(v
(0)
y,y(δ), v

(0)
z,z(δ)) captures the observed spatial relation between tur-

pentine beetle colonization (Ips spp. colonization, tree mortality) at
two sites that are at least δ−1 and at most δ apart in distance. Here
we focus on cumulative effect of all three variables for simplicity.
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Finally, for temporal dependence structure, we consider

w(s)
x (t) =

1

N

N
∑

i=1

1[x
(s)
t,i = 0],

w(s)
y (t) =

1

N

N
∑

i=1

1[y
(s)
t,i = 0],

w(s)
z (t) =

1

N

N
∑

i=1

1[z
(s)
t,i = 0],

where s = 0, . . . , S, t = 0, . . . , 5 for wx(t) and wy(t), while t =

−1, . . . , 5 for wz(t), andN = 2715. That is, w
(0)
x (t) (w

(0)
y (t), w

(0)
z (t)) is

the observed proportion of trees that are not colonized by turpentine
beetles (that are not colonized by Ips spp., that are alive) by time t.

Figures 4.7 and 4.8 are similar to Figure 4.5 but concern the
statistics above except r

(s)
x,u and r

(s)
u,z, where the 2.5%, 50%, 97.5% per-

centiles are 14.0, 28.0, 149.0 for r
(s)
x,u, and 225.0, 314.5, 409.0 for r

(s)
u,z.

Thus the observed values r
(0)
x,u = 58 and r

(0)
u,z = 269 fall well within

the central 95% prediction intervals. Our model also adequately cap-
tures the spatial dependence for turpentine beetle colonization at all
lag distances (see v

(s)
x,x(δ) in Figure 4.7). For Ips spp. colonization

and tree condition (see v
(s)
y,y(δ) and v

(s)
z,z(δ) in Figure 4.7), the spatial

dependence is well captured by the model when the lag distances are
small. The observed values tend to be larger than what the model
predicts, which may be a result of the large cluster of trees that were
colonized by Ips spp. and/or were dead in the southeastern part of
the plantation. Our model furthermore adequately captures the tem-
poral dependence for Ips spp. colonization and tree condition at all
time points (see w

(s)
y (t) and w

(s)
z (t) in Figure 4.8). But for turpentine

beetle colonization (see w
(s)
x (t) in Figure 4.8), the observed values

tend to be slightly larger than what the model predicts.
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Figure 4.7: Central 95% prediction intervals and medians (indicated

by bars) for (a) v
(s)
x,x(δ), (b) v

(s)
y,y(δ), and (c) v

(s)
z,z(δ). The corresponding

observed values are indicated by crosses. Note the different scales on
the y-axes.
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Figure 4.8: Central 95% prediction intervals and medians (indicated

by bars) for (a) w
(s)
x (t), (b) w

(s)
y (t), and (c) w

(s)
z (t). The corresponding

observed values are indicated by crosses. Note the different scales on
the y-axes.
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4.6 Concluding remarks

In this article, we have examined the effect of two bark beetle groups
on the mortality of red pine trees in a Wisconsin plantation. We have
constructed spatial-temporal statistical models to quantify the rela-
tions among turpentine beetle colonization, Ips spp. colonization, and
mortality of red pine trees, while accounting for correlation across
space and over time. For statistical inference, we have adopted a
Bayesian hierarchical model and devised MCMC algorithms for ob-
taining the posterior distributions of model parameters. Based on
the results in Sections 4.5.2–4.5.3, our impression is that the spatial-
temporal model in Section 4.3 has adequately captured the relations
among the three variables, turpentine beetle colonization, Ips spp.
colonization, and tree condition. Moreover, our model has often
though not always captured adequately the spatial and temporal
structure. The data analysis in Section 4.5 suggests that turpentine
beetle colonization is associated with higher likelihood of Ips spp.
colonization and Ips spp. colonization is associated with higher likeli-
hood of red pine tree mortality, whereas there is no direct association
between turpentine beetle colonization and red pine tree mortality.
There is strong evidence that turpentine beetle colonization does not
kill a red pine tree directly, but rather predisposes the tree to sub-
sequent colonization by Ips spp. The evidence is also strong that
Ips spp. are the ultimate mortality agents of red pine trees. The
modeling approach here is of general utility to systems in which in-
teractions among several species affect overall dynamics, but likewise
generate spatial-temporal patterns that can complicate dissection of
underlying processes. Such systems are quite likely common in forest
ecosystems. Employment of this approach can help managers predict
insect and pathogen dynamics as well as direct preventative and re-
medial measures against inciting rather than merely ultimate agents
affecting forest health.
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Appendix A

From a practical viewpoint, we would expect our MCMC runs to di-
verge if an improper posterior distribution had been specified. From
a theoretical viewpoint, since the three likelihood functions in (4.15)
are log concave, properity of the posteriors with uniform improper
priors is equivalent to the existence of the maximum likelihood es-
timate (MLE) based on L(1)(θ), L(2)(ψ), and L(3)(ϕ), respectively.
This can be established as sketched below.

The likelihood functions L(1)(θ), L(2)(ψ), L(3)(ϕ) in (4.7), (4.11),

(4.14) are products of log concave functions L
(1)
t (θ), L

(2)
t (ψ), L

(3)
t (ϕ),

respectively. Therefore, to verify the existence of the MLE based
on L(1)(θ), L(2)(ψ), L(3)(ϕ), it suffices for each t = 1, . . . , 5 to verify

the existence of the MLE based on L
(1)
t (θ), L

(2)
t (ψ), L

(3)
t (ϕ), respec-

tively. This can easily be checked in the cases of the Poisson regres-
sion L

(1)
t (θ) based on the data xt and the logistic regression L(3)(ϕ)

based on the data zt, either by theoretical results (Barndorff-Nielsen,
1978; Jacobsen, 1989) or using software for generalized linear mod-

els. Moreover, by (4.11), L
(2)
t (ψ) is of regular exponential family form

with canonical statistic

s
(2)
t (ut) =

∑

i:yt−1,i=zt−1,i=0



ut,i, xt,iut,i,
∑

j∈N
y
i

ut−1,jut,i,
∑

j: j∈N
y
i

ut,iut,j



 .

Consequently, by a well-known result from exponential family theory
(Barndorff-Nielsen, 1978), the MLE of ψ based on the data ut exists

if s
(2)
t (ut) belongs to the interior of the convex hull of its support.

This condition seems less straightforward to check, so alternatively,
MCMC methods for finding the MLE may be applied (Geyer and
Thompson, 1992).
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Abstract

We consider statistical and computational aspects of simulation-based
Bayesian inference for a multivariate point process which is only ob-
served at sparsely distributed times. For specificity we consider a
particular data set which has earlier been analyzed by a discrete
time model involving unknown normalizing constants. We discuss
the advantages and disadvantages of using continuous time processes
compared to discrete time processes in the setting of the present pa-
per as well as other spatial-temporal situations.

Keywords: Bark beetle, conditional intensity, forest entomology, Mar-
kov chain Monte Carlo, missing data, prediction, spatial-temporal
process.

5.1 Introduction

This paper concerns statistical inference of spatial-temporal processes
that are observed on a spatial lattice but only at sparsely distributed
time points. Zhu et al. (2006) analyzed such a data set using a
spatial-temporal autoregressive type of model, which assumes that
time is discrete and coincides with the observation times. Here we
propose an alternative continuous time model, based on multivariate
point processes (Daley and Vere-Jones, 2003), and develop Bayesian
inference for estimating the model parameters and the times of events.
The proposed methodology is illustrated by a subset of the data set
featured in Zhu et al. (2006), but we do not attempt to address all
the scientific questions in that paper. Instead the focus is on the
methodology and our conclusion is that a multivariate point process
model may have several advantages compared to a spatial-temporal
autoregressive type of model.

The data set in Zhu et al. (2006) is from a study of a planta-
tion of red pines located near Spring Green, Wisconsin, USA. Each
tree was examined annually, and three types of data were recorded.
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The tree’s condition (alive or dead) was recorded from 1986 to 1992.
The number of Dendroctonus valens (LeConte), a bark beetle here-
after called “turpentine beetle” that attacks the base of the tree, was
recorded from 1987 to 1992. The presence or absence of Ips spp.
(predominantly Ips pini (Say) and to a lesser extent Ips grandicollis
(Eichhoff)), another bark beetle that mass attacks the main stem, was
also recorded from 1987 to 1992. The turpentine beetle has one gen-
eration per year, with new attacks occurring from late April through
June, and each beetle attacking only one tree (Furniss and Carolin,
1980). Ips spp. have two to three generations per year, depending
on temperature. They become active in early May and dormant in
September. Again, each beetle attacks only one tree. The primary
objectives in Zhu et al. (2006) were quantifying the relations between
the two types of beetles and the condition of the trees, as well as cap-
turing the spatial and temporal structure of colonization by the two
beetle types and the condition of the trees. Of special interest was
the fact that a large gap of dead trees appeared.

In the present paper, we model Ips spp., using the turpentine
beetles as a covariate. Furthermore, we only consider the area im-
mediately around the gap, where Figure 5.1 shows the Ips spp. data.
Focusing on a subset of the trees leads of course to loss of important
biological information, but since we want to illustrate the method-
ological aspects, we do not aim at an overly complex model. We spec-
ify a multivariate point process model for Ips spp., using a Bayesian
setting where we regard what happens between the observation times
as missing data. For short we refer to the multivariate point process
model as a continuous time model and the spatial-temporal autore-
gressive type of model in Zhu et al. (2006) as a discrete time model.

The paper is organized as follows. Section 5.2 introduces the
needed notation. Section 5.3 specifies the multivariate point process
model and prior assumptions, and Section 5.4 discusses simulation
based Bayesian inference. Section 5.5 concludes with a comparison
between continuous time and discrete time models for the specific
models considered in Zhu et al. (2006) and the present paper as well
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Figure 5.1: White squares are locations without trees or trees that
were already dead in 1986, and gray squares are trees that were alive
in 1986. The numbers indicate which year a tree has been attacked
by Ips spp.; trees without numbers have not been attacked during
the period of observation.
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as for more general models.

5.2 Notation

The data were collected during autumn, when Ips spp. were dormant
until the beginning of the next attack period the following spring. For
convenience we can therefore assume that the data were observed at
the times k = 0, 1, . . . , 5 which correspond to the end of the years
1987, 1988, . . . , 1992. Further, we let k = −1 correspond to the end
of year 1986, and we say that time t is in year k if k − 1 < t ≤ k.

We let i = 1, . . . , 807 index the sites, i.e. the locations with living
trees at time −1. Let yt,i = 0 if site i has not been previously attacked
by Ips spp. at time t, yt,i = 1 if it has been attacked earlier in the
same year, and yt,i = 2 if it has been attacked in a previous year. By
an “event” at the tree i we mean a transition of the zero-one process
vt,i = 1[yt,i ≥ 1], where 1[·] denotes the indicator function. We denote
the time of this transition ti. We do not consider a transition 1 → 2
for yt,i as an event, since it is certain that this transition happens at
the end of the year at which the event took place. Note that there
is a one-to-one correspondence between the process vs,i for s < t (or
s ≤ t) and the process ys,i for s < t (or s ≤ t).

The process vs = (vs,1, . . . , vs,807) is a particular kind of multivari-
ate point process (or counting process), where each vt,i is restricted
to be either zero or one. Such a process is specified by the condi-
tional intensity function (Daley and Vere-Jones, 2003): For each tree
i, given the history of the process vs for times s < t, let

λt,i = E [dvt,i| (vs)s<t] /dt

denote the conditional intensity of the tree being attacked by Ips spp.
In the next section we specify models for the conditional intensity,
allowing λt,i to depend on covariate information (xs,i)s<t, where xt,i

denotes the number of turpentine beetles at time t and site i. It will
also depend on external information related to Ips spp. activity and
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on “neighboring information”. For a site i, consider its first-, second-
,... order neighbors, which are the (up to) four nearest, four second
nearest,... sites to i, and let Ni denote the set of first to fifth order
neighbors of i. Finally, let ut,i = 1[yt,i = 1] and let nt,i =

∑

j∈Ni
ut,j

be the number of neighbors of i that are infested with Ips spp. by
time t in the same year.

5.3 Model

As usual, t− means the time just before time t. Assume that for t in
year k,

λt,i = 1[vt−,i = 0]ρ(t)
{

ψ0 + ψ1n
α1

t−,i + ψ2n
α2

(k−1)−,i
+ ψ3xk−,i

}

(5.1)

where ρ is a non-negative function, ψ0, ψ1, ψ2, ψ3 are non-negative
parameters, and α1 = α2 = 2 (this choice and alternative models are
discussed at the end of this section). The term 1[vt−,i = 0] is included,
since Ips spp. do not attack the same tree twice. The meaning of the
other terms in (5.1) is given below.

The function ρ incorporates external information about Ips spp.
activity due to seasonal variation. Figure 5.2 shows ρ and reflects the
fact that Ips spp. has a window of activity about four-five months
and normally peak around July. Specifically, for t in year k, ρ(t) =
ϕ((t− µk)/σk) where ϕ is the standard normal density function and
the parameters µk and σk are determined as follows. Aukema et al.
(2005) modeled Ips spp. activity as the number of Ips spp. caught in
traps every week during the flight period in 2001–2002, using a linear
regression model with various explanatory variables, but only the
temperature is available in our study. Therefore we refit the model
with temperature as the only explanatory variable, and estimate µk

and σk by the empirical mean and standard deviation obtained from
predicting the number of Ips spp. that would have been caught during
each week of the kth year. Since µk − k and σk do not depend
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greatly on k, the five normal densities in Figure 5.2 look rather similar
relative to the years.

0 1 2 3 4 5

0
2

4

Figure 5.2: The function ρ.

The function ρ is the same for all sites, and is a rough description
of Ips spp. activity depending only on the temperature. The term
{· · · } in (5.1) adjusts for this. The individual terms in {· · · } play the
following roles. The term ψ0 is included since the other terms can
be zero and we need then to scale the function ρ. The term ψ1n

α1

t−,i

appears, since Ips spp. may emerge from a tree attacked earlier in the
year to attack nearby trees. The term ψ2n

α2

(k−1)−,i
appears, since Ips

spp. overwinter in the ground close to a previously attacked tree and
emerge to attack nearby trees in the following year. The term ψ3xk−,i

reflects that Ips spp. tend to attack trees that previously have been
attacked by turpentine beetles. Since we have only observed which
trees the turpentine beetles have attacked at the end of the year, we
should ideally also model the turpentine beetles as a continuous time
process. However, to keep the model simple we refrain from doing
that, and instead assume that the turpentine beetles contribute to the
conditional intensity throughout the year. Since turpentine beetles
usually attack earlier in the year than Ips spp. and ρ(t) is close to
being zero early in the year, this is probably not so unrealistic.

For each year k, the processes (vt)t<k and (vt)t>k are conditionally
independent given vk (however, vt is not a continuous time Markov
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process). We therefore condition on v0 and consider the likelihood
function based on the remaining data d = (vt)0<t≤5 (i.e. including the
missing data on the time interval [0, 5]). Letting ψ = (ψ0, ψ1, ψ2, ψ3),
the likelihood is

L(ψ; d|v0) =
5
∏

k=1

[

∏

i: k−1<ti≤k

λti,i

]

exp

(

−

∫ k

k−1

∑

i

λt,i dt

)

. (5.2)

Furthermore, we specify an improper uniform prior for ψ on [0,∞)4.
Thus the conditional density of ψ given d (and v0) is proportional to
the likelihood (5.2). A rigorous proof that this conditional distri-
bution of ψ is proper seems difficult, but from a practical point of
view we would expect the MCMC runs described in Section 5.4.1 to
diverge if the distribution was improper. This is not the case, and
alternatively we could replace the range of ψ by a very large but
bounded region.

Actually, before considering the model (5.1), we analyzed the
model with

λt,i = ρ(t) exp
(

ψ0 + ψ1nt−,i + ψ2n(k−1)−,i + ψ3xk−,i

)

,

where ψ0, ψ1, ψ2, ψ3 are real parameters. This model is of a somewhat
similar form as the model in Zhu et al. (2006), but a model check
along similar lines as in Section 5.4.2 showed that the model did
not fit the data well. Partly inspired by the form of the Hawkes
process (Hawkes, 1971; Daley and Vere-Jones, 2003), we then turned
to the model (5.1) but with α1 = α2 = 1. We observed a misfit and
considered therefore alternative values α1, α2 ∈ {0, 1, 2}. We finally
concluded that the model (5.1) with α1 = α2 = 2 fit best.

5.4 Inference

5.4.1 Posterior simulation and estimation

The posterior distribution is the conditional joint distribution of ψ
and the missing data on [0, 5] given the observations y0, y1, . . . , y5.
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We use a Metropolis-within-Gibbs algorithm to simulate from the
posterior distribution — we assume that the reader is familiar with
Markov chain Monte Carlo (MCMC) methods; see e.g. Robert and
Casella (2004).

Specifically, we propose to update each of the four parameters
ψ0, ψ1, ψ2, ψ3 one at a time using Metropolis random walk steps with
normal proposal distributions, where the proposal variances are cho-
sen to reach an average acceptance ratio of approximately 0.25 (Ro-
berts et al., 1997). Moreover, within a given year k at a site i either
one event ti ∈ (k − 1, k] has happened, where we do not know the
exact value of ti, or nothing has happened. If an event has happened
at site i, we need to simulate the unknown ti from its conditional dis-
tribution given “everything else”, i.e. from the density proportional
to λt,i, with t ∈ (k − 1, k]. We do this by visiting all the sites with
events in some pre-determined order, updating ti by an independent
Metropolis sampler with proposal density ρ(t), t ∈ (k − 1, k].

Figure 5.3 shows plots of the posterior distributions of ψ0, ψ1, ψ2,
ψ3 based on an MCMC run length of 100,000 with a burn-in length
of 1,000. Note that all of the parameters are clearly bounded away
from zero. Obviously, since ψ1 respective ψ2 is significant, the prob-
ability that a tree is going to be attacked increases when more trees
in the neighborhood have been attacked earlier in the year respective
in the previous year. This leads to several potential biological mech-
anisms. One is that once a beetle enters a tree and emits aggregation
pheromones (Wood, 1982), large numbers of beetles from previously
attacked neighboring trees are available to respond and hence rapidly
exhaust the tree’s defenses (Raffa and Berryman, 1983). Second, fac-
tors that predispose trees to being susceptible to attack may be dis-
tributed in a highly clustered fashion, and the resident population
of beetles again respond to the first entries thereby generating the
observed pattern (Erbilgin and Raffa, 2003). Obviously these are not
mutually exclusive. Finally, the significance of ψ3 in (5.1) implies
that trees are more susceptible to being attacked by Ips spp. if they
have been attacked by turpentine beetles previously.
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Figure 5.3: Posterior distributions of ψ0, ψ1, ψ2, ψ3.

Figure 5.4 shows estimated results for the missing event times
ti. The results are based on an MCMC run length of 100,000 with
a burn-in length of 1,000 and sampling every 25th missing data set.
The first row in the figure shows for each year 1–5 the estimated mean
value of the ti, using a gray scale where white means that no event
happened at the site and darker values correspond to early events.
During the five years the missing data are located further and further
away from the initial gap of dead trees, and within each year the mean
values tend to be larger at locations further away from this gap. The
second row in Figure 5.4 shows the standard deviations of the event
times, where dark values correspond to small standard deviations.
For each year, the standard deviations are about twice as large for
isolated attacks than for those occurring in clumps. Since the degree
of clumping varies from year to year, the standard deviations in e.g.
year 3 are higher than in the other years. The histograms in the last
row in Figure 5.4 show for each year 1–5 the empirical distribution of
all times of events during the year. The histograms are rather similar
except for the difference in years, and they look much like the normal
densities given by ρ(t) except for a shift about half a month to the
right.
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Figure 5.4: Columns: years 1, 2, 3, 4, 5. First row: gray scale plots
of estimated mean event times. Second row: gray scale plots of esti-
mated standard deviations of event times. Last row: histograms of
all event times and ρ(t) within each year.
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5.4.2 Model checking

Following the idea of posterior predictive model checking (Gelman
et al., 1996), we consider posterior predictions: for each l = 1, 2, . . .,
we simulate a realization from the posterior distribution and use this
when simulating “new data” u

(l)
t,i and v

(l)
t,i from the observation model;

see Appendix A. For convenience, let u
(0)
t,i = ut,i and v

(0)
t,i = vt,i denote

the data.

To check how well the model fits the data, we first consider the
number of attacks in each year,

w
(l)
1 (t) =

∑

i

u
(l)
t,i ,

where t = 1, . . . , 5. The left plot in Figure 5.5 shows the 2.5, 50, 97.5
percentiles estimated from w

(l)
1 (t) for l = 0, . . . , 199. The values of

w
(0)
1 (t) is also shown in the figure. In all years except year 3 where

the number of Ips spp. attacks was particularly low, w
(0)
1 (t) is located

in the central interval.

Second, let d(i, j) denote Euclidean distance between site i and
j. For δ ≥ 1,

w
(l)
2 (δ) =

∑

i<j: d(i,j)∈(δ−1,δ]

v
(l)
5,iv

(l)
5,j,

is the number of pairs of sites between δ−1 and δ apart and attacked
at some time during the observation period. Thus w

(l)
2 (δ) quantifies

the degree of spatial clustering. The center plot in Figure 5.5 shows
w

(l)
2 (δ) for δ = 1, . . . , 5 in the same way as in the first plot. Again

there are no discrepancies between the model and the data.

Third, in order to combine temporal and spatial information, con-
sider the number of neighboring sites that are attacked in years time
t apart,

w
(l)
3 (t) =

∑

i,j,k: j∈Ni,k=t,...,5

u
(l)
k,iu

(l)
k−t,j
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for t = 1, . . . , 4, while

w
(l)
3 (0) =

∑

i,j,k: j∈Ni,k=0,...,5

u
(l)
k,iu

(l)
k,j/2

where we divide by 2 to avoid counting all the pairs twice. The right
plot in Figure 5.5 shows w

(l)
3 (t) for t = 0, . . . , 4 in the same way as

the plot for w
(l)
1 (t), except that we have taken the logarithm of w

(l)
3 (t)

to be able to see what happens at times t = 3, 4. For t = 0, . . . , 2,
w

(0)
3 (t) is located in the 95% central interval, but for t = 3, 4 the

model underestimates the number of pairs.
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Figure 5.5: Plots of w1(t), w2(δ), and log(w3(t)). The crosses indi-
cate the data and the bars indicate the 95% central interval and the
median.

Finally, the upper row in Figure 5.6 shows plots of the data for
each year t = 1, . . . , 5 where a site i at time t has been colored black
if v

(0)
t,i = 1 and gray otherwise. Simulating 1000 posterior predictions,

we let ṽt,i = 1 if v
(l)
t,i = 1 in more than 50% of the simulations and

ṽt,i = 0 otherwise. The lower row in Figure 5.6 shows plots of ṽt,i.
Comparing the two rows in the figure, we see that both the data
and the posterior predictive simulations show a clear formation of a
large cluster of infested trees in the middle. Furthermore, the clusters
seem to be roughly of the same size in the data and the simulations.
On the other hand, there are some discrepancies between the shape
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of the cluster in the data and in the simulations: the shape of the
cluster is more circular in the data than in the simulations. However,
in spite of this deviation, the general behavior still seems to have
been captured adequately well by the model.

Figure 5.6: Upper row: A site is colored black if vt,i = 1 and gray
if vt,i = 0 for times t = 1, . . . , 5 (left to right). Lower row: same as
upper row, but for ṽt,i.

5.5 Comparison between continuous and

discrete time models

We have illustrated how discrete time observations of a multivari-
ate point process can be analyzed using a Bayesian missing data
approach. We conclude with a discussion of the advantages and dis-
advantages of using continuous time processes compared to discrete
time processes in the setting of the present paper as well as other
spatial-temporal situations.

Computation: The most important advantage is the ease of com-
putation. The likelihood function for a spatial-temporal process with
discrete time often involves one or more unknown normalizing con-
stants which need to be estimated using MCMC methods, see e.g.
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the Markov random field models in Besag and Tantrum (2003) and
Zhu et al. (2006). In contrast the likelihood function for a multivari-
ate point process is completely specified by modeling the conditional
intensity, cf. equation (5.2). In Zhu et al. (2006), we modeled the
data set consisting of the three types of data given by turpentine
beetles, Ips spp. and tree conditions. The likelihood function for this
model factorized into three terms, one for each type of data, where
we can compare the term corresponding to Ips spp. and the model
used in the present paper, when we include the Ips spp. at all sites
(rather than restricting the data to the subset of sites considered so
far in the present paper). For this particular comparison, the com-
putation time of the MCMC algorithm for posterior distributions for
the discrete time model is roughly two hundred times longer than
the corresponding computation time for the continuous time model.
This improvement in speed means that we have been able to investi-
gate several variations of the model (5.1) (see the end of Section 5.3),
something we could not do within practical time limits in the case
of the discrete time process for Ips spp. in Zhu et al. (2006). On the
other hand, in Zhu et al. (2006) the likelihood terms corresponding
turpentine beetle colonization and tree conditions were easy to spec-
ify, and calculations for these terms were very fast. Extending the
continuous time model to include turpentine beetles and tree condi-
tions may be much more involved, and a comparison between such
a model and the full model in Zhu et al. (2006) may well turn out
differently.

External information: For a discrete time process as compared to
a continuous time process, it may be difficult to incorporate external
(or, in a broad sense, covariate) information in the form of another
stochastic process observed at a different time scale than the discrete
time process. For example, the ρ term in (5.1) incorporates external
information about Ips spp. activity due to seasonal variation; such
information can only be incorporated into the model in Zhu et al.
(2006) after some form of aggregation. On the other hand, we re-
quire the external information that was collected in the field across
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a full season of Ips spp. activity modeled into ρ to obtain a realis-
tic continuous time model for Ips spp. attacks. If we had no such
information or only unreliable information available, the continuous
time model approach would be problematic. It would also be a prob-
lem if the modeling form of ρ is misspecified. Specifying ρ is time
consuming, and this partially offsets the advantage of the shorter
computation time for the continuous time model.

Time scale comparability: While the parameters of two continuous
time processes may be compared even if their time scales for obser-
vations (i.e. time lengths between observation times) are different, it
may not be meaningful to compare the parameters of two discrete
time processes with different time scales. The choice of observation
times in Zhu et al. (2006) is biologically meaningful, since we have
annual observation after cessation of insect activity; however, sup-
pose that we had another data set with observations every second
year. Further, imagine that we wish to use a model of the same form
as in Zhu et al. (2006) for this other data set. Then, because of
the different time scales, we cannot directly compare the parameters
governing e.g. Ips spp. activity.

Consistency: Although observed only at discrete times, the types
of data considered in the present paper come from an underlying
continuous time process, and the existence of an underlying continu-
ous time process is not ensured by specifying a discrete time process.
Obviously, this is not an issue when we have specified a continuous
time model, but our continuous time model only approximates the
complexity of the system under study. Indeed, Ips spp. colonization
does not occur exactly at one time point; it is a complicated process
involving hundreds or thousands of beetles attacking over a short pe-
riod of time. On the other hand, the discrete time model reflects the
cumulative Ips spp. attacks throughout the past season, and in this
sense it is a perfectly sensible model for the system under study.

Estimation of missing data: A continuous time process allows us
to model what has happened between observation times, where in our
case the event times of within-season Ips spp. attacks can be readily
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estimated by the MCMC algorithm in Section 5.4.1. In contrast it is
not possible to do this kind of estimation for missing data based on
the model in Zhu et al. (2006), although it was not a part of the sci-
entific objectives there. In the present paper, the estimates provide
some trustful qualitative results regarding how the times of events
depend on the distance to the gap of dead trees and the similar be-
havior over the years. However, quantitative results depend much on
a careful modeling of external information, particularly the function
ρ.

Predictions: It is straightforward to predict what may happen at
any time after the final observation time, applying Ogata’s modified
thinning algorithm for the continuous time process in the present
paper (see Appendix A). The discrete time model in Zhu et al. (2006)
allows us only to predict what may happen annually.

In conclusion, spatial-temporal processes often suffer from being
computationally intensive, and we have demonstrated that in the
present case, using a continuous time process is indeed a viable al-
ternative to a discrete time process.

Appendix A

For model checking in Section 5.4.2, we need to simulate new data
from the observation model. For this we use Ogata’s modified thin-
ning algorithm extended to marked processes (Daley and Vere-Jones,
2003; Ogata, 1981).

Factorize the intensity, λt,i = λt × p(i|t), where λt =
∑

i λt,i is the
intensity for the temporal process of events disregarding the location,
and p(i|t) ∝ λt,i is the probability function for the location given
the time of the event. Note that the dependence on the past events
(locations and times) of both functions are suppressed in the notation.
Furthermore, define two functions l(t) and m(t) by l(t) = t+ 0.1 for
k−1 < t ≤ µk and l(t) = k for µk < t ≤ k, and m(t) = maxs∈[t,l(t)] λs.
Ogata’s modified thinning algorithm is then started at time t = 0 and
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the following steps are repeated until t > 5:

1. Compute l(t) and m(t).

2. Generate an exponentially distributed variable T with inverse
mean m(t) and a uniform variable U on [0, 1] independently of
each other.

3. If T > l(t), set t = t+ l(t).

4. Else if t+ T > 5 or U > λt+T/m(t), set t = t+ T .

5. Otherwise, let the next event be ti = t+T , where i is generated
using the probability function p(i|t), and set t = t+ T .

The output is the set of all ti obtained in step 5.
Combining this algorithm with a sample of the posterior distri-

butions in Section 5.4.1, we get posterior predictions. In practice we
get a sample of the posterior distributions by taking values from the
Markov chains at regular intervals chosen such that the sample is
effectively independent.
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Chapter 6

Software and work in

progress

6.1 Software

Since all the papers included in this thesis have been computation-
ally heavy and required much programming, I have added this sec-
tion describing some (though far from all) of the many programs
used. This allows other people to use or be inspired by the programs.
Section 6.1.1 describes some general issues of the programs, and Sec-
tions 6.1.2–6.1.4 are dedicated to the specific programs used in each
chapter. I assume that the reader is familiar with the corresponding
theoretical chapters before reading the following sections.

6.1.1 Downloading, compiling and running pro-

grams

All the implementations have been done in C++ on a Linux system,
but should work equally well on Windows. The files needed can be
downloaded from

www.math.aau.dk/∼jgr/downloads/

135
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where the name of the file needed is stated in each of the following
sections. All files have been compressed using zip, and can be uncom-
pressed using the command unzip filename (on a Linux system).
The specific files retrieved from the compressed file are described in
the following sections. To compile one of the programs on a Linux
system, use the command

g++ -o outputfile inputfile -lm

where inputfile is the name of the C++ source code file to be com-
piled, and outputfile is the user-specified name of the program
file to be generated. The program is then run with the command
outputfile. Any parameters should be set in inputfile prior to
compiling and running the program; the parameters are described
in the following sections. Note that only the files described as main
programs in the following sections can be compiled and run; trying
to compile other files will result in an error.

6.1.2 Software for Chapters 2 and 3

This section explains the use of some of the programs I have used for
simulating Hawkes processes in Chapters 2 and 3. From Chapter 2, I
have included the perfect simulation algorithms (Algorithms 2.2 and
2.3 combined) for the Hawkes process with exponentially decaying off-
spring intensity (Example 2.1) and the birth and death type Hawkes
process with exponential life times (Example 2.2). From Chapter 3, I
have included the approximate simulation algorithm (Algorithm 3.1)
for the same examples.

All the files needed can be extracted from the file SimHawkes.zip
as described in Section 6.1.1. There are two types of files included.
The first type are the main programs for simulating the two processes
with the two algorithms:

• SimHawkesASExp.cpp: Approximate simulation of the Hawkes
process with exponential offspring intensity.
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• SimHawkesASBD.cpp: Approximate simulation of the birth-death
Hawkes process.

• SimHawkesPSExp.cpp: Perfect simulation of the Hawkes pro-
cess with exponential offspring intensity.

• SimHawkesPSBD.cpp: Perfect simulation of the birth-death Haw-
kes process.

The other files contain the algorithms that the main programs use
(these files cannot be compiled and run as separate programs). The
files are:

• SimHawkesTools.cpp: Basic tools needed by the other pro-
grams.

• SimHawkesExp.cpp: Simulation algorithms for the Hawkes pro-
cess with exponential offspring intensity.

• SimHawkesBD.cpp: Simulation algorithms for the birth-death
Hawkes process with exponential life times.

Prior to compiling and running the programs, various parameters
found in the main programs can be changed:

• mu > 0: The intensity of the immigrant process.

• 0 < alpha < 1: The mean number of offspring generated by
any event.

• beta > 0: The parameter used in the exponential offspring
intensity (for the Hawkes process with exponential offspring
intensity) or the inverse mean of life times (for the birth-death
Hawkes process).

• tplus > 0: Simulation interval is [0, tplus].
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• tminus ≤ 0: Starting value for approximate simulation algo-
rithms, i.e. the approximate simulation algorithm simulates im-
migrants on the interval [tminus, tplus]

• ngrid ∈ N: Number of grid points used in quadrature rule for
approximating integrals in perfect simulation algorithms. Note
that this should not be set too low.

See Chapters 2 and 3 for more details on the parameters.
The output of either one of the four main programs is a text-file

called either hawkesexp.dat or hawkesbd.dat depending on whether
it is a Hawkes process with exponential offspring intensity or a birth-
death Hawkes process. The file hawkesexp.dat contains one col-
umn of simulated event times. The file hawkesbd.dat contains two
columns of real numbers - the first one is the event times, and the
second one is the marks (i.e. life times).

6.1.3 Software for Chapter 4

This section describes the implementation of one of the algorithms
used in Chapter 4. This is the MCMC algorithm for approximat-
ing the posterior distribution of parameters (ψ0, ψ1, ψ2, ψ3) (see Sec-
tion 4.4 for details). The reason for only including this single program
out of the many programs used is that it contains most of the inter-
esting algorithms (e.g. perfect simulation and path sampling), and
already it is rather comprehensive.

The files included can be extracted from BeetlesTrees.zip as
described in Section 6.1.1. The following file contain the main pro-
gram:

• mcmc psi path.cpp: The main program for the MCMC runs
for approximating the posterior distributions of the parame-
ters (ψ0, ψ1, ψ2, ψ3) using path sampling for approximating the
unknown normalizing constants.

The algorithms used by the main programs are included in the fol-
lowing files (these files cannot be compiled and run):
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• data.cpp: Algorithms for loading data and creating neighbour-
hood structures.

• sim autolog process.cpp: Algorithms for making perfect sim-
ulations of autologistic processes.

• random.c and random.h: Algorithms for simulating random
variables.

Finally all files with the extension .dat are data files. Note that since
the data is not publicly available the files included are fake data, i.e.
the data is fine for illustrative purposes, but will not give the same
results as those obtained in Chapter 4.

• turp87sim.dat,. . . ,turp92sim.dat: Matrices of turpentine bee-
tle data for each year, where each entry indicates the state of
the tree at a position in a regular grid; an entry of -1 means
there is no tree at the position, 0 means that the tree at this
position has not been attacked at this time, an entry larger
than 0 means that this number of turpentine beetles is present
in the tree at this position.

• ips87sim.dat,. . . ,ips92sim.dat: Ips spp. colonization data
represented as a matrix for each year; an entry of -1 means
there is no tree at the position, 0 means that the tree has not
been attacked at this time, 1 means it has been attacked.

• trees86sim.dat,. . . ,trees92sim.dat: Matrices of tree condi-
tion data for each year; an entry of -1 means there is no tree
at the position, 0 means that the tree at this position is alive,
and 1 means that it is dead.

The program contains the following parameters that can be ad-
justed before compiling and running the programs:

• NumSteps: Number of steps used in the MCMC run. Note that
the algorithm is rather slow, and setting NumSteps too high
may result in a very long running time.
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• NumSim: Number of perfect simulations used in the approxima-
tion of the normalizing constants when using path sampling.

• sigma0,. . . ,sigma3: Standard deviations used in the normally
distributed proposals for each of the four parameters.

The output of the program is a file named mcmc psi.dat con-
taining a matrix with one row for each step in the MCMC run.
Each row has five columns: the first four entries are the values of
(ψ0, ψ1, ψ2, ψ3) and the last row contains the acceptance ratio for this
particular MCMC step. This output is also written to the screen
when the program is running.

6.1.4 Software for Chapter 5

This section describes some of the programs used in Chapter 5.
Specifically, the software described is the implementations of the
MCMC algorithms for approximating the posterior distribution of pa-
rameters (see Section 5.4.1) and Ogata’s modified thinning algorithm
for generating posterior predictions (see Appendix A in Chapter 5).

The files needed can be extracted from the file BeetlesCont.zip

as described in Section 6.1.1. The following files contain the main
programs:

• mcmcclin.cpp: MCMC algorithms for approximating posterior
distributions of the parameters in the model.

• csimclin.cpp: Algorithms for simulating event times, i.e. the
times of Ips spp. attacks.

The algorithms used by the main programs are included in the fol-
lowing files (these files cannot be compiled and run):

• datac.cpp: Algorithms for loading data and creating neigh-
bourhood structures.
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• thinningclin.cpp: Ogata’s modified thinning algorithm used
for simulating times of Ips spp. attacks.

• random2.c and random2.h: Algorithms for simulating random
variables.

Finally all files with the extension .dat are data files. As in Sec-
tion 6.1.3, the data is not the real data, and will not give the same
results as those obtained in Chapter 5.

• rho.dat: Coefficients for ρ(t).

• ips87sim.dat,. . . ,ips92sim.dat: Ips spp. data represented as
a matrix; an entry of -1 means there is no tree at the position,
0 means that the tree has not been attacked at this time, 1
means it has been attacked.

• turp87sim.dat,. . . ,turp92sim.dat: Turpentine beetles data
represented as a matrix; an entry of -1 means there is no tree
at the position, 0 means that the tree has not been attacked
at this time, an entry larger than 0 means that this number of
turpentine beetles is present in the tree.

• treessim.dat: Tree data represented as a matrix; an entry of
-1 means there is no tree at the position, 0 means that the tree
is alive, 1 means it is dead. Only positions with living trees are
used by the algorithm.

The program mcmcclin.cpp contains the following parameters
that can be adjusted before compiling and running the programs:

• NumSteps: Number of steps used in the MCMC algorithm.

• inc0,. . . ,inc6: Various models have been tried in Chapter 5,
and the programs described in this section not only includes the
four parameters (ψ0, ψ1, ψ2, ψ3) from model (5.1) in Chapter 5,
but also three other parameters. In the program the parameters
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are numbered 0, . . . , 6, and the parameters numbered (0, 2, 4, 5)
correspond to (ψ0, ψ1, ψ2, ψ3). Parameters (1, 3) corresponds to
(ψ1, ψ2) but without squaring, and parameter 6 corresponds to
ψ3 but with xk−,i squared. Setting incx equal to one, where
x = 0, . . . , 6, includes the corresponding term.

• sd0,. . . ,sd6: Standard deviations used for making normally dis-
tributed proposals in the MCMC algorithm for each of the seven
parameters.

The output of the program mcmcclin.cpp is a file called psi.dat con-
taining a matrix, which includes a row for each step in the MCMC
run. Each row contains 14 entries of parameter values and accep-
tance ratios; the first two entries contain the parameter value and
acceptance ratio for parameter 0, entries three and four contain the
parameter value and acceptance ratio for parameter 1, and so on.
Any parameter not included (i.e. by setting incx equal to zero, where
x = 0, . . . , 6) is set equal to zero in this file.

The program csimclin.cpp contains the following parameters:

• type: If type equals 0 the parameters used in the simulation is
taken from the file psi.dat (i.e. it can be considered a random
draw from the posterior distributions of the parameters), and
if it equals 1 the parameters are user-specified.

• step: In the case of parameters being taken from psi.dat,
this specifies which step in the Markov chain the parameters
are taken from.

• psi0,. . . ,psi6: In the case of parameters being user-specified,
these specifies the values of the seven parameters. Here the four
parameters (psi0,psi2,psi4,psi5) correspond to (ψ0,ψ1,ψ2,ψ3)
from Chapter 5 as described above.

The output of this program is a matrix of times of Ips spp. attacks
saved in the file simtimes.dat. An entry of -1 specifies a position
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where there is no tree, and entry of −0.5 means that the tree at this
position has been attacked before time 0, and an entry of 1000 means
that the tree at this position has not been attacked in this simulation.
The values in the rest of the entries are the simulated times of Ips
spp. attacks.

6.2 Work in progress

This section describes other projects that has been started but not
finished during my PhD-study. These projects are at different stages
of completion, and may well be the focus of future work.

6.2.1 Modelling the spatial distribution of bar-

rows

One project concerns the spatial distribution of barrows (bronze age
burial sites). Figure 6.1 shows the location of barrows on an obser-
vation region in a part of Jutland in Denmark. From the plot it is
evident that, while some of the barrows are distributed fairly evenly
across the observation region, many tend to form linear shapes. The
classical theory states that the reason for these linear shapes is that
barrows are located close to roads, cf. Müller (1904) (this and other
theories are mentioned in Sahlquist (2001)). However, we are exami-
ning a model for the spatial distribution of barrows, where new bar-
rows are placed close to older barrows. It turns out that this model
results in linear shapes resembling those of the data.

More specifically, we have specified a point process model on a set
W ⊂ R

2 for the spatial point pattern of barrows, where the points
are placed one at a time conditionally on previously placed points.
Initially a new point xi follows some distribution on W independently
of everything else; denote this position yi. We can think of yi as the
place were a individual dies and xi as the place where this individual
is buried. The first point x1 = y1 keeps this initial position. There-
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Figure 6.1: The locations of barrows.

after each point xi has a small probability of staying at the initial
placement, i.e. xi = yi; otherwise xi will be moved close to the clos-
est previously placed point, say xj ∈ {x1, . . . , xi−1}. We have tried
various ways of moving a point xi closer to a previous point xj, and
finally settled on letting xi follow a truncated normal distribution on
the line going through the initial placement yi and the closest previ-
ously placed point xj. This normal distribution has mean parameter
xj, its variance parameter is a parameter in the model, and it is trun-
cated at the edges of the Voronoi cell of xj in the Voronoi tessellation
constructed from x1, . . . , xi−1. Since not all points in the data form
linear shapes, we superpose this process with another process where
a point follows some distribution on W independently of everything
else.

For inference we use a Bayesian approach, where we estimate the
unknown parameters of the model using MCMC. This also includes
the estimation of missing data; for examples, since we have no infor-
mation on when the individual barrows were built, we do not know
the order in which they should appear in the model. So far some
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preliminary results have been obtained using simulation, including
posterior distributions of the parameters of the model and model
checking based on various summary statistics. These results have
been obtained from programs I have made (except for the programs
generating the Voronoi tessellations which have kindly been lent to
us by Øivind Skare). They indicate that the model fits the data fairly
well.

We have also considered including various covariates regarding the
landscape to make a more realistic model. For example, the density
of settlements is lower in very marshy terrains than on good soil,
and it seems unlikely that people would cross a big river to bury a
person on the other side. Therefore, extending the model to include
information about population densities on different soil types and
the difficulty of moving on certain terrain types would be useful to
obtain a more realistic model. However, since the model without
these extensions already involves many calculations (mainly because
of the Voronoi tessellations), the computations are already somewhat
slow. It seems difficult to incorporate the landscape in a way that
is both realistic and computationally feasible. Fortunately, the data
shown in Figure 6.1 seems to be quite homogeneous with respect to
the landscape, and it should be possible to obtain a realistic model
for this particular data set without considering these covariates.

6.2.2 Biological conclusions derived from beetle

colonization models

The papers in Chapters 4 and 5 are treating the same data set from
two different points of view. Chapter 4 is an applied statistical pa-
per where the aim is a Bayesian spatio-temporal autoregressive type
of model describing the locations of beetle attacks and tree deaths.
In Chapter 5 the aim is an alternative statistical methodology, a
multivariate point process model with missing data, for modeling a
subset of this data. A third paper by the same authors is presently
in preparation. This paper treats the biological implications of the
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conclusions in the two previous papers (mainly the paper treated in
Chapter 4). Furthermore, the paper includes an additional type of
beetle known as root weevils (Coleoptera: Scolytidae; alt. Curculion-
idae: Scolytinae).

There are two primary biological issues treated in this paper. The
first one is the impact of the different types of beetles on tree mortal-
ity. The question here is what the role of the various types of beetles
are. For example, in Chapter 4 we discovered that Ips spp. are a cause
of death of the trees, and, although turpentine beetles are not killing
the trees directly, they predipose the trees to later attacks by Ips spp.
The second issue is the spatio-temporal spread of the different kinds
of beetles, and how they relate to gap formations. The full biological
implications of the conclusions derived regarding both of these issues
are important for formulating forest management strategies.

6.2.3 Spatial Hawkes processes and applications

The Hawkes process consider in Chapters 2 and 3 can easily be gener-
alized to a spatial version on R

d, see e.g. Møller and Torrisi (2005) for
the definition. As Møller and Torrisi (2005) points out, this process
is a natural process for modelling the spatial spread of epidemics or
individuals from a reproducing population.

Recently the spatial Hawkes process has received some attention
from a theoretical point of view. Møller and Torrisi (2005) obtain ex-
pressions for various summary statistics, while Brémaud et al. (2005)
consider power spectra. However, there seems to be no practical work
done using the spatial Hawkes processes so far. Jesper Møller and I
have discussed various possible data sets. Particularly, we have con-
sidered the weed data set modelled in Brix and Møller (2001) and
Brix and Chadoeuf (2002).



6.2. Work in progress 147

References
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