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Summary

The main object of study in this thesis is the space of broken (gradient) flow
lines of a Morse-Smale function. Throughout we fix a Morse function f : M→ R

on a closed n-manifold M and a Riemannian metric g on M such that the pair
(f, g) is Morse-Smale.1

For critical points p, q ∈ Crit(f) one defines the space of connecting orbits
W(p, q) ⊂ M as the transverse intersection of the unstable manifold Wu(p)
and the stable manifold Ws(q). The orbit space M(p, q) = W(p, q)/R induced
by the flow of the negative gradient −∇f is called the moduli space of orbits;
it lies at the foundation of modern Morse theory.

We start this thesis by recalling some background material from the theory of
dynamical systems, such as the stable manifold theorem and various concepts
related to it. We then use a dynamical system approach to present Morse theory.
In particular we describe the Morse-Smale-Witten chain complex using moduli
spaces, which leads to the statement of the Morse homology theorem.

The space of broken flow lines2 M(q, p) can be viewed as a compactification of
M(p, q). It is a subspace of C([f(q), f(p)],M), the space of continuous functions
[f(q), f(p)]→ M with the compact open topology, and defined by β ∈M(q, p) iff
dβ/dt = ∇f(β)/|∇f(β)|2 on M−Crit(f) with boundary conditions β(f(q)) = q
and β(f(p)) = p.

Each element β ofM(q, p) has the important property of being height-parameter-
ized, i.e. f(β(t)) = t for all t ∈ [f(q), f(p)]. This description of the space

1Assumptions such as f is self indexing and/or has only one minimum/maximum, g is
compatible with the Morse charts, and M orientable will be applied when necessary.

2The order of the pair (q, p) in M(q, p) is to indicate that elements of this space start at q
and ends at p, whereas elements of M(p, q), when identified with flow lines, does the opposite.
See also remark 2.6 and below this.
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of broken flow lines appeared in the preprint [CJS95], which is a followup to
[Coh92].

In the first part of this thesis we prove that M(q, p) is a compactification of
M(p, q). More precisely we identify M(p, q) with a subspace M′(p, q) of the
compact metric space (CM, dH), the set of nonempty closed subspaces of M with
the Hausdorff distance dH . The closure of M′(p, q) is then a compactification of
M(p, q). On the other hand, we may identify M(p, q) with a subspace M(q, p)
of C([f(q), f(p)],M) and take the closure (which is compact by the Arzela-
Ascoli theorem) of this space as a compactification of M(p, q). A standard result
concerning the convergence of flow lines to broken ones enables us to show that
the two compactifications of M(p, q) are the same and agree with M(q, p) (as
topological spaces).

This compactification result also appeared in [CJS95], however our approach is
not the one used in [CJS95]. In [CJS95] the compactification result rests upon
a gluing construction of flow lines, whereas it does not in this thesis.3

Having given a careful description of M(q, p) we proceed by first investigating
the connectivity of M(q, p). Secondly we address the question of whether or
not the number of path components of M(q, p) and its compactification M(q, p)
are the same, i.e. does the inclusion M(q, p) →֒ M(q, p) induce a bijection on
π0? This should be seen as the start of a project where we investigate whether
the inclusion M(q, p) →֒ M(q, p) induces a (weak) equivalence in homotopy
or homology. Since M(q, p) ≈ M(p, q) can be given the structure of a smooth
(λp−λq−1)-manifold it is clear that homology computations forM(q, p) becomes
easier, in particular since duality theorems are at hand.4

To study the connectivity of M(q, p), we consider, for each β ∈M(q, p) various
restrictions β|[τi, τj ] with [τi, τj ] ⊆ [f(q), f(p)]. In this way we obtain a family
of (quotient) spaces where each element can be described by these restrictions,
and a family of restriction maps between these spaces. Since these maps are
closed surjections and the elements of the two families fit together in pullback
diagrams, we can apply the Vietoris-Begle mapping theorem to conclude that
the restriction maps induce isomorphisms in Čech cohomology in a certain range
of degrees. In particular we are able to conclude that M(q, p) is connected if
there are no critical points of index 1 (or n− 1) and precisely one critical point

3It should be mentioned that the aim of [CJS95] (and [Coh92]) are not the compactification
result as such, but to recover the topology of M from the classifying space of a topological
category C, with Obj = Crit(f) and Mor(q, p) = M(q, p).

4See also section 6.1 in chapter 6.
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q of index 0 and precisely one critical point p of index n.

The next part of this thesis concerns the question of whether or not the inclusion
ι : M(q, p) →֒ M(q, p) induces a bijection on π0, i.e. is the number of path
components of M(q, p) invariant under closure. The surjectivity of π0(ι) is
proven in the case where the Riemannian metric g is compatible with the Morse
charts. It is a consequence of a (new) gluing theorem for height-parameterized
flow lines, which allows us to continuously deform any broken flow line into a
height-parameterized flow line.

Concerning the injectivity of π0(ι) we have so far only obtained partial re-
sults. We prove that if f is self indexing with precisely one minimum q and
one maximum p, and g is compatible with the Morse charts, then the inclusion
M(q, p) →֒ (M(q, p) ∪B1 ∪B2) induces a bijection on π0, where B1 ⊂ M(q, p)
denotes the subspace whose elements are flow lines which break precisely at one
critical point (between q and p) and B2 ⊂M(q, p) denotes the subspace whose
elements are flow lines which break precisely at two critical points, say a and b,
with either λa = 1 and λb = 2, or λa = n − 2 and λb = n − 1. If dim(M) = 3
this implies that M(q, p) →֒ M(q, p) induces a bijection on π0. The basic idea
of the proof is first to consider a map ρ ∈ C(([0, 1], 0, 1), (M (q, p), η, η′)) with
η, η′ ∈M(q, p), such that im(ρ(s)) contains at most two critical points (besides
q and p) for all s ∈ [0, 1]. For τ ∈ ]0, 1[ we then consider the level τ -map
s 7→ ρ(s)(τ) ∈ Mτ = M ∩ f−1(τ), and perturb it to a continuous map with im-
age in W(p, q). It is then easy to show that this perturbation induces a map in
C(([0, 1], 0, 1), (M(q, p), η, η′)). The perturbation relies on a technical construc-
tion which, loosely described, splits a neighborhood of the unstable manifold
connected to a critical point of index n − 2 (or 2) into a number of cone like
sections.

Moreover, if the compatibility assumption on g is omitted then M(q, p) →֒
(M(q, p) ∪ A1) (and M(q, p) →֒ M(q, p) if dim(M) = 3) induces an injection
on π0, where A1 ⊂ M(q, p) denotes the subspace whose elements are flow lines
which break precisely at one critical point, say a, with either λa = 1 or λa =
n− 1.

We proceed in the final part of this thesis with an analysis of the number of
path components #M(q, p) of M(q, p) in the special case of an orientable three
dimensional manifold, f self indexing with precisely one minimum q and one
maximum p, and g compatible with the Morse charts. The main result is an
estimate of #M(q, p) which only depends on the number of critical points and
the intersection numbers used to define the boundary operator from the Morse-
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Smale-Witten chain complex. To obtain this estimate we define three graphs
(one dimensional CW-complexes), each embedded at different level surfaces.
Using Poincaré-Lefschetz duality we obtain an expression for #M(q, p) in terms
of these graphs. More precisely, let Γ be the union of the stable and unstable
spheres at level τ ∈ ]1, 2[ and i : Γ →֒ f−1(τ) the inclusion. If we consider
Γ as a graph the expression for #M(q, p) is given in terms of the number of
components of Γ, the number of vertices of Γ, and dim(H1(i)) where H∗ denotes
singular homology with real coefficients. The first two terms can be computed
by means of the number of critical points and the intersection numbers. The
only unknown term in the expression for #M(q, p) is dim(H1(i)). We show that
2g − dim(H1(M)) ≤ dim(H1(i)) ≤ 2g, where g denotes the number of critical
points of index one (or equivalently, of index two).

For a given Morse-Smale pair (f, g) on a closed n-manifold with g compatible
with the Morse charts we prove, in the appendix of this thesis, that the closure
of any unstable manifold is a prestratified space which is (A)-regular (that is,
satisfies the Whitney condition (A)) at any noncritical point. This result is
unrelated to the results obtained in the main text.



Summary in Danish

Denne afhandling er centreret om et studie af rummet af brudne flow linjer
hørende til en Morse-Smale funktion. Lad os i det følgende fastholde en Morse
funktion f : M → R på en lukket n-mangfoldighed og en Riemannsk metrik g

på M således at parret (f, g) er Morse-Smale.5

For kritiske punkter p, q ∈ Crit(f) defineres rummet W(p, q) ⊂ M af forbindende
baner som det transverse snit af den ustabile mangfoldighed Wu(p) og den
stabile mangfoldighed Ws(q). Banerummet M(p, q) = W(p, q)/R induceret af
flowet hørende til den negative gradient −∇f , kaldes modulirummet af baner;
det udgør en af hjørnestenene i moderne Morse teori.

Vi starter denne afhandling med at genkalde baggrundsmateriale fra teorien om
dynamiske systemer, så som den stabile mangfoldigheds sætning, samt andre
koncepter forbundet hertil. Vi giver herefter en præsentation af Morse teori via
dynamiske systemer. Specielt beskrives Morse-Smale-Witten kædekomplekset
ved hjælp af modulirum, hvilket leder til Morse homologi sætningen.

Rummet af brudne flow linjer6 M(q, p) er en kompaktifisering af M(p, q). Det er
et delrum af C([f(q), f(p)],M), rummet af alle kontinuere funktioner [f(q), f(p)]
→ M med den kompakt åbne topologi, og defineret ved β ∈M(q, p) hvis og kun
hvis dβ/dt = ∇f(β)/|∇f(β)|2 på M− Crit(f) med randbetingelser β(f(q)) = q
og β(f(p)) = p.

Ethvert element β i M(q, p) har følgende vigtige egenskab f(β(t)) = t for alle
t ∈ [f(q), f(p)], og siges at være højde parametriseret. Denne beskrivelse af

5Antagelser så som f er selv indekserende og/eller har kun et minimum/maksimum, g er
kompatibel med Morse kortene, og M er orienterbar vil blive anvendt om nødvendigt.

6Ordenen af parret (q, p) i M(q, p) indikerer at elementer i dette rum starter i q og slutter
i p, hvorimod elementer i M(p, q), når identificeret med flow linjer, opføre sig modsat. Se også
remark 2.6 og teksten under denne.

ix
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rummet af brudne flow linjer optræder i preprintet [CJS95], som er en opfølgning
til [Coh92].

I den første del af denne afhandling bevises det, atM(q, p) er en kompaktifisering
af M(p, q). Mere præcist, M(p, q) identificeres med et delrum M′(p, q) af det kom-
pakte metriske rum (CM, dH), bestående af ikke-tomme lukkede delmængder af
M med Hausdorff afstanden dH . Aflukningen af M′(p, q) er da en kompakti-
fisering af M(p, q). På den anden side kan vi identificere M(p, q) med et del-
rum M(q, p) af C([f(q), f(p)],M) og bruge aflukningen (som er kompakt pga.
Arzela-Ascoli’s sætning) af dette delrum som en kompaktifisering af M(p, q). Et
standard resultat omhandlende konvergens af flow linjer til brudne flow linjer
gør os da i stand til at vise at de to kompaktifiseringer af M(p, q) er de samme
og stemmer overens med M(q, p) (som topologiske rum).

Dette kompaktifiserings resultat nævnes også i [CJS95], men vores tilgang er
ikke den brugt i [CJS95]. I [CJS95] afhænger kompaktifiseringen af et gluing
resultat, dette er ikke tilfældet her.7

Efter at have givet en detaljeret beskrivelse af M(q, p) fortsætter vi med en
undersøgelse af sammenhængsegenskaber ved M(q, p). Derudover adresseres
spørgsmålet om hvorvidt antallet af sammenhængskomponenter for M(q, p)
og dens kompaktifisering M(q, p) er de samme, dvs. inducerer inklusionen
M(q, p) →֒ M(q, p) en bijektion på π0? Dette skal ses som starten på et pro-
jekt hvor vi ønsker at afgøre hvorvidt inklusionen M(q, p) →֒ M(q, p) induc-
erer en (svag) ækvivalens i homotopi eller homologi. Eftersom man kan give
M(q, p) ≈ M(p, q) strukturen af en glat (λp − λq − 1)-mangfoldighed, er det
klart, at homologi beregninger af M(q, p) bliver lettere, specielt da dualitets
sætninger nu kan anvendes.8

For at studere sammenhængsegenskaberne ved M(q, p) analyseres, for ethvert
β ∈ M(q, p), forskellige restriktioner β|[τi, τj ] hvor [τi, τj ] ⊆ [f(q), f(p)]. På
denne måde opnås en familie af (kvotient-) rum hvori ethvert element kan
beskrives ved disse restriktioner, samt en familie af restriktions afbildninger
mellem rummene. Da restriktions afbildningerne er lukkede surjektioner, og
de to familier passer sammen i et pullback diagram, kan Vietoris-Begle’s afbild-
nings sætning anvendes til at konkludere at restriktions afbildningerne inducerer
isomorfier i Čech kohomologi indenfor et vist interval af grader. Specielt kan

7Det skal nævnes at målet med [CJS95] (og [Coh92]) ikke er kompaktifiserings resultatet
som sådan, men at rekonstruere topologien på M fra det klassificerende rum hørende til en
topologisk kategori C, hvor Obj = Crit(f) og Mor(q, p) = M(q, p).

8Se også afsnit 6.1 i kapitel 6.1.
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vi konkludere at M(q, p) er sammenhængende hvis der ikke er nogle kritiske
punkter med indeks 1 (eller n − 1) samt præcist ét kritisk punkt q af indeks 0
og præcist ét kritisk punkt p af indeks n.

Den næste del af afhandlingen drejer sig om hvorvidt inklusionen ι : M(q, p) →֒
M(q, p) inducerer en bijektion på π0, dvs. er antallet af kurvesammenhængskom-
ponenter af M(q, p) invariant under aflukning? Surjektiviteten af π0(ι) bevises
under antagelse af, at den Riemannske metrik g er kompatibel med Morse ko-
rtene. Dette er en konsekvens af en (ny) gluing sætning for højde parametris-
erede flow linjer, hvilken tillader os at deformere enhver bruden flow linje kon-
tinuerligt til en højde parametriseret flow linje.

Angående injektiviteten af π0(ι) har vi indtil videre kun opnåt delresultater. Vi
beviser at hvis f er selv indekserende med præcist ét minimum q og præcist ét
maksimum p, og g er kompatibel med Morse kortene, så inducerer inklusionen
M(q, p) →֒ (M(q, p) ∪ B1 ∪ B2) en bijektion på π0, hvor B1 ⊂ M(q, p) beteg-
ner delrummet hvis elementer er de flow linjer som knækker præcist i ét kritisk
punkt (mellem q og p), og B2 ⊂ M(q, p) betegner delrummet hvis elementer
er de flow linjer som knækker præcist i to kritiske punkter, f.eks. a og b, hvor
enten λa = 1 og λb = 2, eller λa = n − 2 og λb = n − 1. Hvis dim(M) = 3
medfører dette, at M(q, p) →֒ M(q, p) inducerer en bijektion på π0. Ideen bag
beviset er først at betragte en afbildning ρ ∈ C(([0, 1], 0, 1), (M (q, p), η, η′)) hvor
η, η′ ∈M(q, p) og im(ρ(s)) højst indeholder to kritiske punkter (udover q og p)
for alle s ∈ [0, 1]. For τ ∈ ]0, 1[ betragtes da følgende niveau τ -afbildning
s 7→ ρ(s)(τ) ∈ Mτ = M ∩ f−1(τ), som perturberes til en kontinuert afbildning
med billede i W(p, q). Det er da ikke svært at vise at denne perturbation in-
ducerer en afbildning i C(([0, 1], 0, 1), (M(q, p), η, η′)). Perturbationen afhænger
af en teknisk konstruktion som, løst sagt, opsplitter en omegn af den ustabile
mangfoldighed, hørende til et kritisk punkt af indeks n−2 (eller 2), op i et antal
kegle lignende områder.

Hvis kompatibilitets betingelsen på g ikke medtages, inducerer M(q, p) →֒
(M(q, p) ∪ A1) (og M(q, p) →֒ M(q, p) hvis dim(M) = 3) en injektion på π0,
hvor A1 ⊂ M(q, p) betegner delrummet hvis elementer er de flow linjer som
knækker præcist i et kritisk punkt, f.eks. a, hvor enten λa = 1 eller λa = n− 1.

I den sidste del af denne afhandling analyseres antallet af kurvesammenhængskom-
ponenter #M(q, p) afM(q, p), i tilfældet af en orienterbar tre dimensional mang-
foldighed, f selv indekserende med præcist ét minimum q og præcist ét maksi-
mum p, og g er kompatibel med Morse kortene. Hovedresultatet er her et esti-
mat for #M(q, p) som kun afhænger af antallet af kritiske punkter og snittallene
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hørende til rand operatoren fra Morse-Smale-Witten kædekomplekset. For at
opnå dette estimat defineres først tre grafer (1-dimensionale CW-komplekser).
Ved anvendelse af Poincaré-Lefschetz dualitet opnås et udtryk for #M(q, p)
givet ved disse grafer. Mere præcist, lad Γ betegne foreningen af de ustabile og
stabile cirkler på niveau τ ∈ ]1, 2[ og lad i : Γ →֒ f−1(τ) betegne inklusionen.
Hvis vi betragter Γ som en graf, kan #M(q, p) udtrykkes ved antallet af sammen-
hængskomponenter af Γ, antallet af punkter i Γ, og dim(H1(i)) hvor H∗ betegner
singulær homologi med reelle koefficienter. De to første kan udregnes ved hjælp
af antallet af kritiske punkter og snittallene. Den eneste ubekendte i udtrykket
for #M(q, p) er dim(H1(i)). Vi viser at 2g − dim(H1(M)) ≤ dim(H1(i)) ≤ 2g,
hvor g betegner antallet af kritiske punkter med indeks 1 (eller ækvivalent, med
indeks 2).

For et givet Morse-Smale par (f, g) på en lukket n-mangfoldighed hvor g er
kompatibel med Morse kortene beviser vi, i appendikset til denne afhandling,
at aflukningen af enhver ustabil mangfoldighed er et pre-stratificeret rum som er
(A)-regulær (dvs. tilfredsstiller Whitney’s betingelse (A)) i ethvert ikke kritisk
punkt. Dette resultat er ikke relateret til resultaterne fra hovedteksten.
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Chapter 1

Preliminaries

In this chapter we present various elements from the theory of dynamical system
and Morse theory. The reason being an attempt to make this work as self
contained as possible. The reader familiar with basic concepts and results from
these two fields should be able to skip this chapter, with the exception of section
1.1.

In section 1.2 we present some basic concepts and results from the theory of
dynamical systems, the aim being to state the stable manifold theorem. The
main reference for this section is [Irw01] and [PdM82]. Using notation and
results from section 1.2 we give an account for present day Morse theory in
section 1.3 ending with the Morse homology theorem. The main reference for
this section being [BH04] and to some extent [Web06]. In appendix 1.3.1 we
summarize some of the classical theorems of Morse theory.

Since this chapter only contains background material and to keep the text read-
able, we have decided to put most references in footnotes. Moreover and as said
above the references [Irw01], [PdM82], [BH04] and [Web06] will be sufficient in
most cases.

1.1 Notes to the reader

The following are assumed throughout the thesis unless otherwise stated. Mani-
folds are finite dimensional, 2nd countable, and Hausdorff. Manifolds are always
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2 1. Preliminaries

connected and without boundary. In addition to the above it will be assumed in
most of the text that manifolds are closed i.e. compact and without boundary.
Objects and morphisms are in smooth categories whenever this makes sense.

The notation ≈ will always denote an isomorphism in the category under con-
sideration, and ⋍ will denote a homotopy.

References are written as ([Irw01],Ch.4.II) meaning chapter 4.II of [Irw01],
where Ch. can be replaced by App. or p. meaning appendix and page re-
spectively.

1.2 Dynamical systems

Let R be the abelian Lie group of real numbers. By a dynamical system on a
manifold M we understand a group action ϕ : R×M→ M; (t,m) 7→ ϕ(t,m) =
t.m, called a flow on M. Hence the theory of group actions applies. In the sequel
fix a flow ϕ on M .

The group action axioms imply that ϕt ∈ Diff(M) for the time t map m 7→
ϕt(m) = t.m, therefore ϕ or {ϕt} are sometimes called a one parameter group
of diffeomorphisms of M. The flow defines an equivalence relation on M by
m ∼ m′ iff there exist t ∈ R such that ϕt(m) = m′. The resulting quotient space
M/ ∼= M/R is called the orbit space and the equivalence class [m] ∈ M/R the
orbit through m, which basically is the same as the orbit R.m of m.

The partial map t 7→ ϕm(t) = t.m is called the flow line (or integral curve) at
m, and d

dt
ϕm(t) = ϕ̇m(t) the velocity at ϕm(t) at time t. The flow generates a

vector field Xϕ = X by X(m) = ϕ̇m(0), sometimes called the velocity vector
field of ϕ or the infinitesimal generator of ϕ. Hence X(m) = ϕ̇m′(t) if m =
ϕm′(t) since the velocity at any point is independent of time by the group
action axioms. Therefore ϕm is an integral curve of X (X(ϕm) = ϕ̇m) for all
m. As a consequence of the Picard-Lindelöf theorem we have conversely that
any X ∈ TM gives rise to a partial flow ψX = ψ : D → M, here D ⊂ (R ×M)
an open neighborhood of {0} ×M, such that for all m ∈ M, ψm : Dm ⊆ R→ M

is the maximal integral curve of X at m. Basically a partial flow is a “flow”
which is not defined for all time but still fulfills the axioms of a group action
whenever this makes sense. If D = R×M then X is called complete. Moreover,
if M is compact, then X is complete and hence ψ is a flow, sometimes called an
integral flow.1

1The above can be found in ([Irw01],p.39,60-75) and ([AM78],Ch.2.1).
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Let ϕ be a flow with velocity vector field X, and let Fix(ϕ) = {p ∈ M | R.p = p}
denote the set of fixed points of ϕ, which of course is equal to Sing(X) =
{p ∈ M | X(p) = 0}, the set of singular points of X. Let p ∈ Fix(ϕ), then
dϕt(p) ∈ GL(TpM) induces a smooth map Φ : R × TpM → TpM; (t, u) →
dϕt(p)u which is linear in u, i.e. Φt is linear. Moreover, Φ is a flow2 and hence
generates a (linear) vector field H : TpM → TpM. From the theory of linear
systems we know that Φ(t, u) = exp(tH)u. In fact, H is the (Riemannian)
Hessian HpX of X at p, i.e. the vertical part of the tangent map of X at
p. For details regarding the Hessian see ([Irw01],p.111) or ([AM78],p.72), we
merely remark that TX : TM → TTM; (p, u) 7→ (p,X(p), u, dX(p)u) and
TpX : u 7→ (u, dX(p)u), hence HpX = dX(p).3

Since dϕt(p)u = exp(tHpX)u, we have that u is an eigenvector of HpX with
eigenvalue λ of multiplicity k iff u is an eigenvector of dϕt(p) with eigenvalue
exp(tλ) of multiplicity k. In particular, for t > 0 we have that span{uj , vj},
where uj+ivj is the generalized eigenvector of dϕt(p) corresponding to an eigen-
value aj + ibj with a2

j + b2j > 1, is precisely the generalized positive eigenspace
Eig+HpX of HpX, i.e Eig+HpX = span{uj , vj} where uj+ ivj is the generalized
eigenvector of HpX corresponding to an eigenvalue aj + ibj with aj > 0.4

A p ∈ Fix(ϕ) is called hyperbolic if σ(dϕt(p)) ∩ S
1 = ∅ for some (hence any)

t 6= 0, where S
1 ⊂ C is the unit circle and σ(dϕt(p)) denotes the spectrum of the

linear automorphism dϕt(p) ∈ GL(TpM). Hence p is a hyperbolic fixed point
if dϕt(p) has no eigenvalues of modulus 1. Note that p ∈ Fix(ϕ) hyperbolic iff
p ∈ Sing(X = Xϕ) hyperbolic, that is if HpX has no eigenvalues with real part
zero. As a passing remark we note that hyperbolic singularities/fixed points are
isolated if M is compact. Now an application of Hartman’s theorem yields that
a hyperbolic singularity p of X is flow equivalent to the zero of HpX i.e. there
exists a homeomorphism h : M′ → E

′ from an open neighborhood of p to an
open neighborhood of 0 = h(p) and an increasing continuous homomorphism
f : R → R (i.e. f is multiplication by a positive constant) such that h ◦ ϕ =
Φ ◦ (f × h) where ϕ and Φ are the flows of X and HpX respectively.5

Let p ∈ Fix(ϕ) be hyperbolic. The spectral decomposition theorem applied to

2With c a smooth curve on M such that c(0) = p and ċ(0) = u we have Φ(0, u) =
dϕ0u = ∂s=0ϕ0(c(s)) = ∂s=0c(s) = u and Φ(t+τ, u) = ∂s=0ϕt(ϕτ (c(s))) = ∂ϕt(p)dϕτ (p)u =
Φ(t, Φ(τ, u)).

3With notation as above we have Hv = ∂t=0Φ(t, u) = ∂t=0dϕ(t, u) = ∂t=0∂s=0ϕ(t, c(s)) =
∂s=0∂t=0ϕ(t, c(s)) = ∂s=0X(c(s)) = dX(p)u, hence H = dX(p).

4See ([PdM82],Ch.2.2) or ([Irw01],Ch.4) for details.
5For details see ([PdM82],Ch.2.3(2.4)) and ([Irw01],Ch.5.III).
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the linear vector field HpX then yields a decomposition TpM = E
u
p⊕E

s
p into HpX-

invariant subspaces. Note then that E
u
p = Eig+HpX (and E

s
p = Eig−HpX), so

E
u
p may be characterized as {x ∈ E | ϕ(t, x)→ 0, t→ −∞} or equivalently, for

t > 0 fixed and n ∈ N as {x ∈ E | (ϕt)−nx→ 0, n→∞}. Now if we apply the
spectral decomposition theorem to the linear automorphism dϕt(p) with t > 0
fixed, the splitting of TpM agrees with that induced by HpX, so E

u
p can also be

described as the generalized eigenspace corresponding to eigenvalues of modulus
greater than 1. Moreover, there exists an (equivalent) norm | · | on TpM given by
|x| = max{|xu|, |xs|} with x = xu+xs such that max{|(dϕt(p)u)−1|, |dϕt(p)s|} <
1, with dϕt(p) = dϕt(p)

u⊕ dϕt(p)s. Hence dϕt(p)u is an expansion and dϕt(p)s

is an contraction w.r.t. | · |.6

For p ∈ Fix(ϕ) the unstable and stable set of ϕ at p are then defined as Wu(p) =
{m ∈ M | limt→−∞ ϕ(t,m) = p} and Ws(p) = {m ∈ M | limt→∞ ϕ(t,m) = p}
respectively. The (un)stable manifold theorem we now present can be seen as a
global version of the spectral decomposition theorem. For a proof, other versions
and generalizations see either [Irw01], [PdM82], [AR67], [Jos02] or [BH04].

1.1 Theorem.
Let p be a hyperbolic fixed point of a flow ϕ on M and TpM = E

u
p ⊕ E

s
p the

decomposition induced by dϕt(p) for fixed t 6= 0. Then Wu(p) and Ws(p) are
immersed submanifolds, tangent at p to the (un)stable summands of dϕt(p).
Moreover, Wu(p) and Ws(p) are the surjective images of injective immersions
E
u
p →Wu(p) and E

s
p →Ws(p) respectively.

We end this section by introducing the concept of a Liapunov function. As we
shall see the existence of such a function will imply that the immersions above
are embeddings.

A function f : M → R is called positive definite at p ∈ M if f has a strict
local minimum at p and f(p) = 0. We define positive semi definite by excluding
the word strict, and negative (semi) definite in the obvious way. Let ϕ be a
flow on M with X = Xϕ. A function f : M → R is said to be a Liapunov
function for X (or ϕ) at a singularity p ∈ M if f is positive definite at p and
LXf : M → R; m 7→ d

dt

∣

∣

t=0
f(ϕt(m)) is negative semi definite at p. We have

the following variation of the above definition. Let ϕ be a flow on a compact
manifold M with X = Xϕ. A function f : M → R is said to be a Liapunov
function for X (or ϕ) if LXf < 0 on M− Fix(ϕ) i.e. on the complement of the
fixed points of ϕ.7

6The above can be found in ([Irw01],Ch.6.2) and ([PdM82],Ch.2.6).
7See ([Irw01],App.5) and ([Shu87],Ch.3). One can also compare with ([Fra79],p.200),
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1.2 Theorem.
Let the assumptions be as in theorem 1.1. Furthermore assume that M is com-
pact and that there exists a Liapunov function for ϕ. Then E

u → Wu(p) and
E
s →Ws(p) have continuous inverses, hence they are embeddings.

Proof:
Lemma 4.20 in [BH04] has the same conclusion but the assumptions are that ϕ
is the flow of minus the gradient of a Morse function (see section 1.3). However,
the proof only uses the fact that flow lines can not start and end at the same
fixed point. But this is also true in our case. �

1.3 Morse Theory

In this section we apply the notions from dynamical systems to the concept
of a Morse function. Throughout let M denote a connected closed manifold
modelled on R

n = E. Whenever possible we let ψ : M′ → U denote a chart
with x = ψ(m), M′ ⊆ M, U ⊆ E, and if this chart is around a point p ∈ M we
sometimes set ψ(p) = 0.

Let f : M→ R be smooth and g = 〈·|·〉 denote a Riemannian metric on M. The
gradient (vector field), ∇f = gradf ∈ TM, of f is then defined by 〈X|∇f〉 =
df(X) = X(f) where X ∈ TM. It is complete since M is compact.

Now let ϕ : R×M→ M denote the flow corresponding to the negative gradient
−∇f , and Crit(f) = {m ∈ M | df(m) = 0} denote the set of critical points
of f . It is easy to see that f is a Liapunov function for −∇f and, since g is
positive definite, p ∈ Crit(f) iff it is a singularity of −∇f , hence p ∈ Crit(f) iff
p ∈Fix(ϕ). A critical point p is called non-degenerate iff p is a hyperbolic fixed
point of ϕ. Hence, p ∈ Crit(f) is non-degenerate iff p is a hyperbolic singularity
of −∇f . In this case, Hartman’s theorem implies that the hyperbolic singularity
p of −∇f is flow equivalent to the zero of the Hessian Hp(−∇f) = −Hp∇f . For
p ∈ Crit(f) non-degenerate the index λp of p is defined as λp = dimWu(p) =
dimE

u
p = dim(Eig−Hp∇f), hence dimWs(p) = n − λp and by theorem 1.2 the

unstable and stable manifolds are embedded open disks, therefore contractible
hence orientable.8

Let us look at the situation locally. In a chart ψ let {∂i(x) = ∂
∂xi

(x)} denote a

([Fra82],p.8) or [Mey68].
8See ([Hir94],p.104). This can be compared to ([Web06],Ch.2.2)
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basis for TxU = E, and [gij ] = [gij ]
−1 = [g(∂i, ∂j)]

−1. By abuse of notation we
write ∇f for the principal part of ψ∗(∇f) the local representative of ∇f , and ϕ
for ψ ◦ϕt ◦ψ−1 the local representative of ϕ. We then have local formulas ∇f =
[gij ]D(f ◦ψ−1) and D∇f = D[gij ]D(f ◦ψ−1)+ [gij ]D2(f ◦ψ−1). If ψ is a chart
around p ∈ Crit(f) then D∇f(0) = [gij(0)]D2(f◦ψ−1)(0) is a symmetric matrix,
hence diagonalizable with real eigenvalues. So λp is the number of negative
eigenvalues counted with multiplicity of the Hessian −Hp∇f = −D∇f(0), and
p is non-degenerate iff det(D2(f ◦ ψ−1)(0)) 6= 0 since [gij ] is positive definite.9

Since λp = dimWu(p), the local description of λp is of course independent of
the choice of chart. As a consequence of Sylvester’s law of inertia, this can also
be seen directly since a change of coordinates does not alter the signs of the
eigenvalues of −Hp∇f (see e.g. ([HJ85],p.224)). Moreover, since [gij ] is positive
definite we may choose a basis (i.e. a coordinate change) such [gij ] = 1, hence
λp is uniquely determined by D

2(f ◦ ψ−1)(0) the local Hessian of f at p.10

1.3 Remark: Note that globally D
2(f ◦ψ−1)(0) correspond the symmetric bi-

linear function Hpf : TpM
2 → R; (v, w) 7→ v′p(w

′(f)) = v(w′(f)) where v′, w′ ∈
TM are vector field extensions of v, w. Moreover, p ∈ Crit(f) is non-degenerate
iff Hpf is non-degenerate, i.e. dim(Null(TpM)) = 0 where Null(TpM) = {v ∈
TpM | Hpf(v, w) = 0 ∀w}, and λp can equivalently be described as the maxi-
mal dimension of a subspace of TpM on which the quadratic function Hpf(v) =
Hpf(v, v) is negative definite (Hpf(v) < 0, ∀v ∈ TpM − {0}). This is the
classical way of introducing the notion of a non-degenerate critical point. �

The function f is called Morse (or a Morse function) if all its critical points are
non-degenerate. Let Criti(f) = {p ∈ Critf | λp = i}. In particular, Crit(f) is
finite and closed if f is Morse, and limt→±∞ ϕ(t,m) ∈ Crit(f) for allm ∈ M. The
existence of Morse functions is guaranteed since the set of Cr Morse functions
is open and dense in Cr(M,R) for 2 ≤ r ≤ ∞.11

1.4 Theorem. (Morse Lemma)
Let f ∈ Cr+2(M,R) for 1 ≤ r ≤ ∞ with M a connected n-manifold. Then

9For the local computations see ([BH04],Ch.4.1). One can compare this with
([Jos02],p.139+289).

10See ([Gre67],Ch.IX.2) and compare with ([Kos93],Ch.IV.4).
11For the first part see ([BH04],Ch.3.2), ([Jos02],Ch.6.4) or ([Web06],Ch.2.1). For the second

part see ([Hir94],p.147) and compare with ([BH04],p.50) and ([Mat02],p.47).
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p ∈ Criti(f) non-degenerate iff there exists a Cr (Morse) chart ψ such that

f ◦ ψ−1(x) = f(p)−
i

∑

j=1

x2
j +

n
∑

j=i+1

x2
j

For a traditional proof based on the diagonalization of symmetric matrices see
([Hir94],Ch.6) or ([Mil63],§2). For a proof based on the Moser path method see
([BH04],Ch.3.1), ([Jos02],Ch.6.3) or ([Lan99],Ch.VII.5).

Note that, in general, we can not compute an explicit formula for ∇f from
the Morse lemma, due to g. A gradient vector field ∇f , with f Morse, is in
standard form near a hyperbolic singularity p if there exists a chart ψ such that
∇f = 1

2D(f ◦ ψ−1) in U . Moreover, g is compatible with the Morse charts if
∇f is in standard form near all p. Using a bump function one can, however,
always pull back the standard metric on E, to modify g, such that gij = δij on
a small neighborhood of p. Hence g can always be modified to be compatible
with the Morse charts for f .12

1.5 Remark: Before we proceed to the Morse-Smale property we remark that
there is yet another (equivalent) way of introducing the notion of a Morse func-
tion.

Let f : M → R be smooth and Z∗ ⊂ T ∗M denote the zero section of the
cotangent bundle. Then p ∈ M is called critical if df(p) ∩ Z∗

p 6= ∅ and non-
degenerate if df ⋔p Z

∗, i.e. critical if df intersects Z∗ over p and non-degenerate
if this intersection is transversal. The function f is called Morse if df ⋔ Z∗, i.e.
if all critical points are non-degenerate.

Since transversality is a generic property, one usually use the above view point
when proving generic properties of the space of Morse functions. Moreover, the
notion of hyperbolic can be described purely by means of transversality.13 �

A Morse function f (or the pair (f, g)) is Morse-Smale if Wu(p) ⋔ Ws(q) for
all critical points p and q. Note that this depends on both f and g.14 We
remark that the spaces W(p, q) and M(p, q) (to be defined below) are described
in more detail in chapter 2, for now we only need these spaces to define the
Morse-Smale-Witten chain complex.

12See ([BH04],Ch.6.4) and [Wis05].
13See ([Kos93],Ch.IV.3) for the first part, and ([PdM82],Ch.2.3) for the last part.
14For genericity results related to a Morse-Smale pair see ([BH04],p.160-164),

([Sch93],Ch.2.3) and ([Web06],Ch.3.1). For comparison see [Sma61], [Pal68] or [PS70].
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In the sequel we fix a Morse-Smale function f . By transversality W(p, q) =
Wu(p) ⋔ Ws(q) is an embedded submanifold of dimension λp − λq, and we
obtain the following disjoint decompositions of M (as a set)

M =
⋃

p,q∈Crit(f) W(p, q) =
⋃

p∈Crit(f) Wu(p) =
⋃

p∈Crit(f) Ws(p) (1.1)

since all spaces are flow invariant (for the last two we of course only need the
Morse property). Moreover, as a consequence of the λ-lemma we have

1) (Crit(f),≤) is a poset, with p ≥ q iff W(p, q) 6= ∅ (p is succeeded by q).

2) Wu(p) =
⋃

p≥q Wu(q) and Ws(p) =
⋃

q≥p Ws(q).

3) W(p, q) = Wu(p) ∩Ws(q) =
⋃

p≥p′≥q′≥q W(p′, q′).

Note that 3) together with the fact that f is Liapunov implies that there are
only finitely many flow lines from p to q if dimW(p, q) = 1, that is if the relative
index µ(p, q) = λp − λq is equal to one. On W(p, q) the flow ϕ is a free and
proper R-action, hence the orbit space M(p, q) = W(p, q)/R is a smooth (λp −
λq − 1)-manifold. In particular, M(p, q) corresponds to the finite number of
flow lines connecting p with q if µ(p, q) = 1. We remark that M(p, q) is in fact
diffeomorphic to the transverse intersection W(p, q)t = W(p, q) ⋔ f−1(t) with
t ∈ [f(q), f(p)] a regular value, and that M(p, q) may be replaced by W(p, q)t

throughout the sequel.15

For each pair p, q of critical points with relative index one we recall how to
define the boundary operator of the Morse-Smale-Witten chain complex by as-
signing a ±1 to each of the finitely many elements of M(p, q). To do so we
first indicate how orientations on Wu(q) and Wu(p) induce an orientation on
W(p, q) = Wu(p) ⋔ Ws(q) whenever this intersection is non empty.

Let x ∈W(p, q) and choose a linear subspace V in TxWu(p) such that TxWu(p) =
TxW(p, q) ⊕ V . Then V is a direct summand of TxWs(q) in TxM, and one can
prove that dϕt(x)V → TqW

u(q) for t → ∞ where the convergence is in the
Grassmann bundle of λq-planes in TM. Now fix an orientation on Wu(q), then
for t large dϕt(x)V , and therefore also V , has an orientation induced by the
orientation on TqW

u(q). For a fixed orientation on Wu(p) we orient TxW(p, q)
by demanding that TxWu(p) = TxW(p, q) ⊕ V is a oriented sum, this does not
depend on the choice of V .16

15See section 2.2 and ([BH04],Ch.6) for details. On can also compare with ([Jos02],Ch.6.5).
16For details see [Abb]. This can be compared to ([GRS03],p.7) and ([Sal90],p.117).
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Fix an arbitrary orientation on each unstable manifold and let µ(p, q) = 1. We
then associate to each R.x ∈ M(p, q) a number n(x) = +1 if the orientation of the
connected component of W(p, q) corresponding to R.x agree with the orientation
given by −∇f(x), and n(x) = −1 if not. Let Ci(f,Z) be the free abelian
group on Criti(f) and define the homomorphism ∂ : Ci(f,Z)→ Ci−1(f,Z) on a
generator by

p 7→
∑

q∈Criti−1
x∈M(p,q)

(f)

n(x)q =
∑

q∈Criti−1(f)

n(p, q)q, n(p, q) =
∑

x∈M(p,q)

n(x) (1.2)

and extend by linearity. We remark that n(p, q) also can be defined as the
intersection number of the unstable sphere Wu(p) ⋔ f−1(t) and the stable sphere
Ws(q) ⋔ f−1(t) in f−1(t). The pair (C∗(f,Z), ∂) is called the Morse-Smale-
Witten chain complex, and we have the following classical result:

1.6 Theorem. (Morse Homology Theorem)
The Morse-Smale-Witten chain complex is a chain complex whose homology is
isomorphic to the singular homology H(M,Z).

By the Universal Coefficient Theorem, Z can be replaced by any commutative
ring with unit.

There are several ways to prove theorem 1.6. To prove that (C∗(f,Z), ∂) is in
fact a chain complex one can use techniques inspired by Floer. This approach
has two main parts (1) a compactness result for M(p, q) and (2) a gluing result.
The compactness result describe “the ends” of M(p, q) as broken orbits. We give
a detailed description of this concept in section 2.3, for now just think of a broken
orbit as an element in the product M(p, a1)×M(a1, a2)× · · · ×M(ak, q) or as a
“concatenation” of flow lines. In the case µ(p, q) = 2 each connected component
of M(p, q) is diffeomorphic to either S

1 or ]0, 1[, since M(p, q) is a one dimensional
manifold without boundary. The compactness result then implies that to each
end of ]0, 1[ there correspond a unique pair (x, y) ∈ M(p, a)×M(a, q). Moreover,
the gluing result implies that every pair (u, v) correspond precisely to one end
of a component of M(p, q). Since each component has two (or no) ends we may
summarize the above as “pairs (x, y) of orbits come in pairs”. This observation
together with an orientation argument implies that ∂2 = 0. For details we refer
to [Web06], [Sch93] and ([Jos02],Ch.6).

1.7 Remark: In the case of Z/2Z coefficients we let n(x) = 1, hence there are
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no orientation issues. Moreover, using (1.2) and rewriting we have

∂2p =
∑

q∈Critλp−2(f)
(x,y)∈M(p,a)×M(a,q)

n(x)n(y)q

For fixed q ∈ Critλp−2(f) we know by the above that each coefficient is even,
hence 0 mod 2. We can illustrate the above by

p

a

x
��������

y >>
>>

>>
>>

a′

x′

???????

y′��
��

��
�

q

n(x)n(y) + n(x′)n(y′) ≡ 0 mod 2

where the square represent a component of W(p, q). �

Finally for the isomorphism part of theorem 1.6 there are again several ap-
proaches. For a complete proof using the Conley index see ([BH04],Ch.7), and
for a complete proof using methods from Floer homology see ([Sch93],Ch.4) or
([Jos02],Ch.6).

1.3.1 Appendix

For completeness we list below some of the main theorems of Morse theory. Fix
a Morse function f : M → R on a connected n-manifold M with ∂M = ∅, and
let SI = S ∩ f−1(I) for any subset S ⊆ M and I ⊆ R. If I = ]−∞, t ] we also
write S≤t for SI

The classical approach to Morse theory can very briefly be summarized in the
following three results17

1.8 Theorem.
Assume M [a,b] is compact and Crit(f) ∩M[a,b] = ∅. Then M≤a ≈ M≤b, M≤a is

17for proofs see e.g. ([BH04],Ch.3.2-3.3), ([Mil63],§3) or ([Hir94],Ch.6.2-6.3).
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a deformation retract of M≤b, and there exists a diffeomorphism such that

Ma × [a, b]

pr2
%%KKKKKKKKKK

≈
// M[a,b]

f

��

[a, b]

commutes.

The retract and diffeomorphisms above are all defined via the flow of β∇f/|∇f |2
with β a bump function. We remark that the vector field ∇f/|∇f |2 will play a
central role in the forthcoming chapters.

1.9 Theorem.
AssumeM [a,b] compact and p = Crit(f)∩M[a,b] with p ∈ Criti(f) non-degenerate.
Then

M≤b
⋍ M≤a ∪ϕ ei with ei an i-cell and ϕ an attaching map

and M≤a ∪ϕ ei is a deformation retract of M≤b.

The above two theorems are the cornerstone in the following theorem which is
the classical equivalent of theorem 1.6.

1.10 Theorem.
Assume that Mt compact for all t. Then M ⋍ X for a CW-complex X with one
cell of dimension λp for every p ∈ Crit(f).

The above theorems can also be formulated in terms of handlebodies, we briefly
recall this approach.18 In a Morse chart (U,ψ) around p ∈ Criti(f) write
f(x, y) = f(p)− |x|2 + |y|2. A (n-dimensional) i-handle for p is the set Hε(p) =
{(x, y) ∈ U | |y|2 ≤ ε and |x|2 ≤ |y2|+ ε}. Let f(p) = c then

Wu
ε (p) = Wu(p) ∩M[c−ε,c+ε] ≈ D

i (the core of H(ε))

Ws
ε(p) = Ws(p) ∩M[c−ε,c+ε] ≈ D

n−i (the co-core of H(ε))

Hε(p) ≈ D
i × D

n−i

The (closed) disk D
i corresponds to the i-cell appearing in theorem 1.10. The

following classical results are versions of theorem 1.9 and 1.10 which keep track
of the topological/differentiable structure.

18For details see e.g. ([Mat02],Ch.3), ([Fra82],p.7-11) or [Mil65].
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1.11 Theorem.
With notation as above, we have the following homeomorphism

M≤c+ε ≈ M≤c−ε ∪ϕ Hε(p) with ϕ : ∂D
i × D

n−i → ∂M≤c−ε an attaching map

and M≤c−ε ∪ϕ Hε(p) is a strong deformation retract of M≤c+ε.

1.12 Theorem. (Handle decomposition theorem)
With notation as above, we have the following homeomorphism M ≈ H for a
handlebody

H =
⋃

ϕp
Hε(p) ≈

⋃

ϕp
D
λp × D

n−λp

The homeomorphisms and attaching maps above are determined by the flow of
a gradient-like vector field (for f). Moreover, if one “rounds the corners”19 of
M≤c−ε ∪ϕ Hε(p) then one can replace homeomorphism with diffeomorphism in
the above results.

1.13 Remark: We recall the definition of a gradient-like vector fields. A
gradient-like vector field for a Morse function f is an X ∈ TM such that
X(f) > 0 away from all p ∈ Crit(f), and X is in standard form near all p,
that is for each p there is a chart such that locally f has the form given by the
Morse lemma and X is the gradient of f with respect to the standard metric on
R
n. The existence of gradient-like vector fields are guaranteed since any Morse

function give rise to such a vector field.20 �

19Or “straightening angles”, see ([Con79],Ch.I.3)
20For details and more information see ([Mil65],p.20), ([Mat02],Ch.2), [Sma61], [Fra79] or

[Fra82].



Chapter 2

The space of broken flow lines

and related spaces

The main objective of this chapter is to study the topology and the relationship
between the following four spaces: the space of connecting orbits, the moduli
space of orbits, the space of height-parameterized flow lines and the space of
broken flow lines. The first is a submanifold of M, the second a quotient space
with the structure of a manifold, and the last two are function spaces. Notation
and various relationships are summarized in the diagram and the table on page
25.

In this chapter we fix a Morse function f : M → R on a closed n-manifold M

and a Riemannian metric g on M such that the pair (f, g) is Morse-Smale. For
details and notation we refer the reader to chapter 1 and references therein.

In section 2.1 we introduce the space of connecting orbits as a submanifold of
M, and study its topological structure. In section 2.2 we define the moduli
space of orbits via an R-action on the space of connecting orbits. Moreover,
relations between the moduli space of orbits and spaces derived from the space
of connecting orbits are studied.

In section 2.3 we introduce the notion of a broken orbit and the concept of being
compact up to broken orbits. This enables us to state a compactness theorem
for the moduli space of orbits. We end the section with a remark concerning
other versions of the compactness theorem, and with a comment regarding the

13
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convergence of an orbit to a broken orbit which leads to a compactification of
the moduli space of orbits. More precisely, it is shown that the moduli space
can be embedded as a subspace, with compact closure, of a space having the
Hausdorff topology.

In section 2.4 we define the space of height-parameterized flow lines by reparam-
eterizing the flow lines of −∇f . We end by exploring the relationship between
the space of height-parameterized flow lines and the previously defined spaces.
In particular, it is shown that the space of height-parameterized flow lines has
compact closure with respect to the compact open topology, that the space of
height-parameterized flow lines is homeomorphic to the moduli space with the
Hausdorff topology, and that this homeomorphism extends to the closures of
these spaces in their respective topologies.

In section 2.5 we define the space of broken flow lines and study its topology
together with its relations to the previously defined spaces. In particular, we
show that the space of broken flow lines is compact and that the space of height-
parameterized flow lines is open and dense in the space of broken flow lines.

Appendix 2.5.1 concerns the construction of a compact space which in the lit-
erature is described as a compactification of the moduli space of orbits into a
smooth manifold with corners.

2.1 The space of connecting orbits

Let ϕ : R×M→ M; (t,m) 7→ ϕ(t,m) = t.m denote the flow of the complete vec-
tor field −∇f and C(R,M) be the space of continuous functions R→ M with the
c-topology (compact-open topology). Since (M, d), with d the Riemannian dis-
tance function, is a (complete) metric space the notion of sequential convergence
in C(R,M) is equivalent to the notion of uniform convergence on every compact
subset, and by continuity of ϕ the map M → C(R,M); m 7→ ϕm (t 7→ t.m) is
continuous.1

Let p, q ∈ Crit(f), the space of connecting orbits from p to q is the transversal
intersection W(p, q) = Wu(p) ⋔ Ws(q) ⊂ M, where Wu(p) and Ws(q) denote
the unstable (resp. stable) manifolds at p (resp. q) w.r.t. −∇f (or equivalently
w.r.t. ϕt for t > 0 fixed). Hence W(p, q) is an embedded (λp − λq)-submanifold
of M without boundary, and consists of those m ∈ M for which t.m → q for
t → ∞ and t.m → p for t → −∞, so W(p, q) is flow invariant. Moreover, if

1Regarding the c-topology see e.g. ([Dug66],Ch.XII).
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W(p, q) 6= ∅ then either p 6= q and λp > λq or p = q, in particular p, q ∈W(p, q)
iff p = q in which case W(p, p) = {p}.
For the height function on S

n we have W(N,S) ≈ R × S
n−1 ⋍ S

n−1 where N
and S denote the north and south pole respectively. In particular, W(N,S) is
(path) connected for n > 1. However, in general, W(p, q) is not path connected,
basically because neither of the two critical points lie in the manifold of connect-
ing orbits. But since W(p, q) is a manifold it is locally path connected, hence
each connected component of W(p, q) is path connected.

If codim(W(p, q)) > 0, then W(p, q) has measure zero. Hence M −W(p, q) is
dense in M. If codimW(p, q) = 0 then W(p, q) is open in M, indeed in this case
λp = n and λq = 0 so Wu(p) and Ws(q) are open in M by invariance of domain.

2.2 The moduli space of orbits

We now turn our attention to the moduli space of orbits. The flow ϕ induces
an action of R on W(p, q) since W(p, q) is flow invariant. Let (t,m) 7→ t.m
denote the R-action on W(p, q) induced by ϕ and π : W(p, q) → W(p, q)/R
the open quotient map. This action is free (if µ(p, q) ≥ 1 which we assume)
since f is Liapunov, and proper since if mi → m and ti.mi → m′ both con-
verges in W(p, q) then {ti} must contain a bounded subsequence {tij} since
Crit(f)∩W(p, q) = ∅.2 So {tij} contains a convergent subsequence by the theo-
rem of Bolzano-Weierstrass. Hence we give the orbit space W(p, q)/R the unique
smooth structure of a (λp − λp − 1)-manifold (without boundary) such that π
is a smooth submersion. The quotient space M(p, q) = W(p, q)/R is called the
moduli space of orbits from p to q.3

The relation between the space of connecting orbits and the moduli space of
orbits can now be studied. In the sequel let t ∈ [f(q), f(p)] be any regular value
for f .

Consider the transversal intersection W(p, q)t = W(p, q) ⋔ f−1(t), an em-
bedded (λp − λq − 1)-submanifold of M. It follows that the free and proper
R-action (u,m) 7→ u.m on W(p, q), induced by ϕ, induces a diffeomorphism
R ×W(p, q)t

≈−→ W(p, q); (s,m) 7→ ϕ(s,m). Moreover, this diffeomorphism is

2More precisely, for m′ and each a ∈ Crit(f) choose open neighborhoods Um′ and Ua such
that Um′ ∩ U = ∅, with U = ∪aUa. Now if {ti} contains no bounded subsequence then
{ti.mi} ⊂ U for i ≥ N and some N ∈ N. This contradicts ti.mi → m′.

3For results and definitions see ([Lee03],p.216-223).
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R-equivariant w.r.t the smooth, free and proper R-actions (u, s,m) 7→ u.(s,m) =
(u + s,m) and (u,m) 7→ u.m, and it follows that it induces a homeomorphism
(R × W(p, q)t)/R

≈−→ M(p, q) on the corresponding orbit spaces. As above
give (R×W(p, q)t)/R the unique smooth structure of a (λp − λp − 1)-manifold
such that the open quotient map π′ is a smooth submersion, then the induced
homeomorphism becomes a diffeomorphism. Moreover, the smooth projection
R × W(p, q)t → W(p, q)t is a homotopy equivalence with homotopy inverse
m 7→ (t′,m) for any fixed t′ (and homotopy (u,m, s) 7→ (s(u− t′) + t′,m)), and
since the projection is constant on each fiber of the surjective submersion π′, it
induces a unique smooth map (R×W(p, q)t)/R→W(p, q)t which can be seen to
be a diffeomorphism. In summary we have the following commutative diagram4

R×W(p, q)t
≈

//

⋍

wwnnnnnnnnnnnn

π′

��

W(p, q)

π

��

W(p, q)t (R×W(p, q)t)/R
≈

oo
≈

// M(p, q)

(2.1)

The identification W (p, q)t ≈ M(p, q) given by m↔ R.m will be used frequently
throughout. That is, a class R.m′ = [m′] = π(m′) ∈ M(p, q) will be identified
with the representative m = π−1([m′]) ∩ f−1(t) = π−1([m′])t ∈W (p, q)t.

2.3 Broken orbits and convergence

In the sequel we will introduce the notion of being compact up to broken orbits,
which allows us to describe the limit of any sequence in the moduli space. To do
so we need some terminology, see also figure 2.1. Let b = {b0, b1, . . . , bl} denote
a finite sequence with l ≥ 1 in the poset (Crit(f),≤). Then b is called a chain
if bi ≤ bi+1, and an inverse chain if bi ≥ bi+1. In any case we let b0 = sou(b),
bl = tar(b) and l(b) = l which is called the source, the target, and the order
of b, respectively.5 A chain b of order l is called strict if bi < bi+1, trivial if
l = 1 and degenerate if equality occurs i.e. bi = bi+1. By replacing < with >

4See ([Let03],Ch.3.2) and ([Lee03],p.170) for details. One can also compare with
([Sch93],Ch.2.4.1).

5Note that, for a chain the terminology source and target are “backwards” when compared
to the orientation of the flow lines of −∇f . However, the terminology is in agreement with the
orientation of the flow lines of ∇f (and ∇f/|∇f |2), and such flow lines will be used throughout
(see also remark 2.6).
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in the strict condition, the above terminology applies to inverse chains as well.
Note that an (inverse) chain would be strict if the word sequence was replaced
by subset. Moreover, we let M(b) =

∏l
j=1 M(bj−1, bj) and write x ∈ M(b) with

x = (x1, . . . , xl) and xj ∈ M(bj−1, bj) a connecting orbit from bj−1 to bj . The
element x is called a broken orbit (from sou(b) to tar(b) of order l = l(b)).

Now let Uε(S) denote the open ε-neighborhood of a subset S ⊂ M with respect to
the Riemannian distance d, i.e. Uε(S) = {m ∈ M | ε > d(m,S) = infs∈S d(m, s)}
or equivalently Uε(S) =

⋃

s∈S Bε(s) with Bε(s) = {m ∈ M | d(s,m) < ε}. A
subset K ⊆ M(p, q) is called compact up to broken orbits of order l if for every
sequence {mk} ⊆ K there exists a subsequence {mn}, a strict inverse chain b

of order l′ ≤ l with p = sou(b) and q = tar(b), and a broken orbit x ∈ M(b)
such that for all ε > 0 there exists N ∈ N with R.mn ⊂ Uε(R.x1 ∪ · · · ∪ R.xl′)
whenever n ≥ N . In this situation we write mn → x as n → ∞ and say that
mn converges to the broken orbit x of order l′.

b0 = p

x1

b1

bl′−1

xl′

bl′ = q

Figure 2.1: A sequence of orbits converging to a broken orbit of order l′, where
the shaded area represents an ε-neighborhood of the broken orbit.
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2.1 Theorem.
The moduli space of connecting orbits M(p, q) is compact up to broken orbits
of order at most µ(p, q) = λp − λq.

In ([Web06],Ch.3.2) the above compactness theorem is stated (and proven) with
M(p, q) replaced by W(p, q)t, but as we have seen W(p, q)t ≈ M(p, q). Note that
if µ(p, q) = 1 the compactness theorem says that M(p, q) is compact.

2.2 Remark: In [AB95] the orbit space M(p, q) is defined as above, but there
M(p, q) is identified with “a set of flow lines”. The explanation regarding this
set and the identification is unfortunately nowhere to be found. Presumably
this “set of flow lines” is defined as follows. Let M(p, q) denote the set of
all parameterized flow lines from p to q i.e. M(p, q) = {ϕm}m∈W(p,q). Since
W(p, q) → M(p, q); m 7→ ϕm is a bijective correspondence, with inverse γ 7→
γ(0), we may give M(p, q) the manifold structure of W(p, q). In this setting
the smooth, free and proper R-action on W(p, q) induces a smooth, free and
proper R-action on M(p, q) by (t, γ) 7→ t.γ = γ(t + ·). As above we get a
diffeomorphism on the orbit spaces M(p, q)

≈−→ M(p, q)/R; R.m 7→ R.ϕm,
hence the “flow model” of M(p, q) could be M(p, q)/R. With this in mind one
could consult ([AB95],Ch.2) for a proof of the compactness theorem. For other
versions of theorem 2.1 see ([Sch93],Ch.2.4.2) or ([Jos02],Ch.6.4).

Note that if we only needed a topological “flow model” of M(p, q) one could
view M(p, q) as a subspace of C(R,M) with the c-topology. Indeed this model
(of W(p, q)) is homeomorphic to the above differentiable model, and we may
proceed as above to obtain a homeomorphism M(p, q)

∼=−→M(p, q)/R. �

2.3 Remark: We will now discuss the above convergence with respect to Haus-
dorff topology. Let CM denote the set of nonempty closed (hence compact)
subspaces of M. It is well known (see e.g. ([AT04],Ch.4.4), ([BBI01],Ch.7.3)
or ([BH99],Ch.I.5)) that (CM, dH) is a compact (since M is compact) metric
space with dH the Hausdorff distance, i.e. dH(A,B) = inf{ε ∈ R+ | A ⊂
Uε(B) and B ⊂ Uε(A)} or equivalently dH(A,B) = sup{supa∈A d(a,B), supb∈B
d(b, A)}. Note that d(A,B) < k iff A ⊂ Uk(B) and B ⊂ Uk(A).

For p, q ∈ Crit(f) and each m ∈W(p, q)t let l(m) = R.m∪{p, q}, and define the
subspace M′(p, q) ⊂ CM by M′(p, q) = {l ∈ CM | l = l(m), m ∈ W(p, q)t}. Note
that with the identification W(p, q)t ≈ M(p, q); m↔ R.m the sets W(p, q)t and
M′(p, q) are equal (in Set), in fact this is true even as spaces i.e. the correspon-
dence m → l(m) defines a homeomorphism. To show this recall that (lemma
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5.32 in ([BH99],p.71)); ln → l in CM iff (1) for all x ∈ l there exists a sequence
xn ∈ ln such that xn → x in M, and (2) every sequence xn ∈ ln has a convergent
subsequence whose limit point is an element of l.

Now let ln = l(mn), l = l(m) and assume that mn → m in W(p, q)t. By
(1) and (2) above we will show that ln → l, hence m 7→ l(m) is continuous.
If x ∈ l − {p, q}, then there exists s ∈ R such that x = s.m so xn → x
where xn = s.mn ∈ ln. If x = p (resp. x = q) let xn = p (resp. xn = q),
this proves (1) above. Moreover, let xn ∈ ln be any sequence. Since M is
compact this sequence has a convergent subsequence, also denoted xn. For each
n there exists sn ∈ R such that xn = sn.mn with either sn → s implying that
xn → s.m ∈ l or sn → ±∞ implying that xn converges to p or q according
to the sign of ∞ (note that this is the only way sn can diverge since xn is
convergent and mn converges to an non critical point). This proves (2) above
so the map M(p, q) → M′(p, q); m 7→ l(m) is continuous. To prove that the
inverse l = l(m) 7→ m is continuous assume that ln → l. Then there exists
mn,m ∈ W(p, q)t such that ln = l(mn) and l = l(m) so we have to prove
that mn → m. By (1) above there exists a sequence xn → m in M, but
since xn ∈ ln ⊂ W(p, q) ∪ {p, q} and m ∈ W(p, q)t is not a critical point we
may assume that {xn} ⊂ W(p, q). It follows that π(xn) → π(m) where π is
the quotient map W(p, q) → M(p, q). Hence mn → m by the identification
W(p, q)t ≈ M(p, q); m↔ π(m) = [m].

By a broken trajectory from b0 to bk of order k we understand an element
l ∈ CM of the form {b0} ∪ R.x1 ∪ {b1} ∪ R.x2 ∪ · · · {bk−1} ∪ R.xk ∪ {bk} where
b = {b0, b1, . . . , bk} is a strict inverse chain and x = ([x1], [x2], . . . , [xk]) ∈ M(b)
a broken orbit.

We will now examine the cluster points of M′(p, q). Let ln be a sequence in
M′(p, q); by theorem 2.1 we have that for all ε > 0 there exists N ∈ N, a
subsequence ln(i) of ln and some broken trajectory l from p to q of order at
most µ(p, q) such that ln(i) ⊂ Uε(l) for n(i) ≥ N . To show that ln(i) converges
to l in CM we need to show that l ⊂ Uε(ln(i)) for n(i) large, or equivalently
(1) above, since ln(i) ⊂ Uε(l) =

⋃

x∈l Bε(x) implies that for all ε > 0 there
exists N ∈ N such that for all xn(i) ∈ ln(i) there exists x ∈ l with xn(i) ∈ Bε(x)
whenever n(i) ≥ N i.e (2) holds. Therefore let x ∈ l, f(x) = t and define the
sequence xn(i) ∈ ln(i) by xn(i) = ln(i) ∩ f−1(t). By (2) above xn(i) → x′ but
f(xn(i)) = t so f(x′) = t = f(x) implying that x′ = x. Hence ln(i) → l so
any sequence in M′(p, q) has a convergent subsequence (which we already knew
since CM is compact) with cluster point a broken trajectory from p to q of order
at most µ(p, q). So the closure M′(p, q), which is compact, consists of M′(p, q)
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and all such broken trajectories. It follows that M′(p, q) is a compactification of
M(p, q), so in summary we have proven:

2.4 Claim.
With notation as above. The maps W (p, q)t → M′(p, q); m 7→ l(m) and
M(p, q) → M′(p, q); [m] 7→ l(m) are both homeomorphisms. Moreover, the
closure M′(p, q), which is compact, is a compactification of both W(p, q)t and
M(p, q).

The above should be compared to appendix 2.5.1. Moreover the approach in
this paragraph can also be found in ([Abb],Ch.1.6) or [Hur00]. �

2.4 The space of height-parameterized flow lines

We now proceed to the function spaces mentioned in the introduction of this
chapter. Unless otherwise stated all sets of maps will have the c-topology, and
we refer to ([Bre93],Ch.VII.2) or ([Dug66],Ch.XII) for standard results in this
realm6. We start by reparameterizing the flow lines ϕm in the following way.
For m ∈ M̃ = M−Crit(f), with say m ∈W(p, q), define the (strictly decreasing)
diffeomorphism hm : R→ ]f(q), f(p)[ by t 7→ f(ϕm(t)) and the “reverse height-
parameterization” of ϕm by η̃m : ]f(q), f(p)[→ M; t 7→ η̃m(t) = ϕm(h−1

m (t)), so
f ◦ η̃m = 1 where 1 denotes the identity. Note that hm depends continuously
on m ∈W(p, q) since m 7→ ϕm and left composition with f (ϕm 7→ f ◦ ϕm) are
continuous. To see this for m 7→ η̃m we need:

2.5 Claim.
Let A ⊂ C(X,Y )× C(Y,X) be the subspace {(g, k) | g ◦ k = 1 and k ◦ g = 1},
A1 = pr1(A) ⊂ C(X,Y ) and A2 = pr2(A) ⊂ C(Y,X). Then ι : A1 → A2; g 7→
g−1 is a homeomorphism (in the c-topology).

Proof:
Since the diagram

A
pr2 //

pr1

��

A2

A1

ι

>>||||||||

6For comparison see ([Irw01],App.B.II) or ([Hir94],Ch.2).
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commutes and pr1 (resp. pr2) is an identification map it follows that ι (resp.
the inverse A2 → A1; k 7→ k−1 of ι) is continuous, hence proving the claim. �

Hence η̃m depends continuously on m ∈W(p, q) since the maps hm 7→ h−1
m and

(ϕm, h
−1
m ) 7→ ϕm ◦ h−1

m are continuous. Now define the map

η̃ : ]f(q), f(p)[ ×W(p, q)→W(p, q); (t,m) 7→ η̃(t,m) = η̃m(t)

which is continuous since (1) the map m 7→ η̃m is continuous by the above, and
(2) the map t 7→ η̃m(t) is (smooth hence) continuous for each m ∈W(p, q). Since
this construction applies for any p, q ∈ Crit(f) (with p 6= q and W(p, q) 6= ∅)
and the domains of the various maps are disjoint (as subset of R ×M) we let,
by abuse of notation, η̃ denote the union of all such maps i.e.

η̃ : D̃ → M̃; (t,m) 7→ η̃(t,m) = η̃m(t)

D̃ = {(t,m) ∈ R× M̃ | m ∈W(p, q) and t ∈ ]f(q), f(p)[ }
with (f(m),m) ∈ D̃ for all m ∈ M̃

Now let X be the vector field X = ∇f/|∇f |2 ∈ T M̃ then it is easy to see that
d
dt
η̃m = X(η̃m) for all m ∈ M̃, hence η̃m is an integral curve of X for each

m ∈ M̃. Note however that η̃(t + s,m) 6= η̃(t, η̃(s,m)) since both points lie
on the orbit l = R.m but η̃(t + s,m) = lt+s and η̃(t, η̃(s,m)) = lt. In fact
η̃(t, ·) : l = R.m 7→ lt so it is constant on orbits of ϕ (see also remark 2.6, claim
2.9, the paragraph above this claim, and remark remark 2.10).

Moreover, since limt→±∞ ϕm(t) ∈ Crit(f) each η̃m may be extended to a con-
tinuous curve ηm : [f(q), f(p)] → M with ηm(f(q)) = q and ηm(f(p)) = p. So
we obtain a continuous map η : [f(q), f(p)] ×W(p, q) → M; (t,m) 7→ η(t,m)
with η = η̃ on dom(η̃). If p = q we define η to be the trivial continuous map
[f(p)] × {p} → {p}, and as above we let, again by abuse of notation, η denote
the union of all such maps i.e.

η : D → M; (t,m) 7→ η(t,m) = ηm(t)

D = {(t,m) ∈ R×M | m ∈W(p, q) and t ∈ [f(q), f(p)]}

with η = η̃ on D̃. The curves t 7→ ηm(t) are called height-parameterized flow
lines, and when m is of no concern we sometimes write γ (or simply η) for these
curves.

2.6 Remark: The ηm’s are “reverse height-parameterizations” of the ϕm’s, i.e.
they start at q = η(f(q)) and end at p = η(f(p)). This is a reflection of the fact
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that these flow lines are “height-parameterized” flow lines with respect to −f
i.e. for ∇f . Moreover, it is not difficult to see that the integral ξ of X is given
by D′ → M̃; (t,m) 7→ ξ(t,m) = η̃(t + f(m),m) where D′ = {(t,m) ∈ R ×M |
m ∈W(p, q) and t ∈ ]f(q)− f(m), f(p)− f(m)[ }. Hence ξ and η̃ are related by
ξ = η̃ ◦ (α,pr2) where α is the continuous map D′ → [f(q), f(p)]; (t,m)→ s =
pr1(t,m) + f(pr2(t,m)) = t+ f(m).7 �

Let C([f(q), f(p)],M) have the c-topology, and note that it is second countable
and regular.8 We are now in a position to describe the remaining two (function)
spaces. With notation as above let M(q, p) be the subspace of C([f(q), f(p)],M)
defined by

M(q, p) = {ηm ∈ C([ f(q), f(p) ],M) | m ∈W(p, q)}

which of course is second countable and regular. Elements of this space are
curves ηm starting at q and ending at p with im(ηm) − {q, p} = l = im(ϕm′)
for m′ ∈ l, but ηm and ϕm′ run through l in opposite directions as noted in
remark 2.6 above. The space M(q, p) is called the space of height-parameterized
flow lines from q to p, and elements are called either height-parameterized flow
lines, M -maps or by abuse of language flow lines. It might be confusing that the
elements of M(q, p) and {ϕm}m∈W(p,q) have opposite orientation. This could
be fixed if we from the start had considered the gradient ∇f instead of −∇f ,
but in that case the dimension of the unstable and stable manifold would be
interchanged which is in conflict with standard Morse theory. Another way of
dealing with the above problem is to define the elements of M(q, p) as curves
t 7→ ηm(f(p)+f(q)−t), i.e. they run through the trajectories of {ηm}m∈W(p,q) in
the same direction as {ϕm}m∈W(p,q), but then f(q) (resp. f(p)) is mapped to p
(resp q), which is confusing. Moreover, the question of which parameterization
(or dynamical system) we consider is more a technical detail than a real issue,
hence we are content with the above setup.9

2.7 Remark: Let J = [f(q), f(p)] and note that the c-topology on C(J,M)
(and hence on M(q, p)) is induced by the uniform metric d∞(γ, γ′) = supt∈J
d(γ(t), γ′(t)) with d the Riemannian distance, see e.g. ([Bre93],Ch.VII.2). In
particular M(q, p) is perfectly normal and paracompact (see ([Dug66],p.186)).

Moreover M(q, p) is in fact a subspace of C ′∞(J,M) ⊂ C(J,M) the space of

7See ([Let03],p.15-16).
8See ([Dug66],p.258.265)
9One can compare with ([Sch93],Ch.2.4.1).
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piecewise smooth curves (or even more precisely, a subspace of Ω(M, q, p) ⊂
C ′∞(J,M) the space of piecewise smooth curves from q to p).

In the following three paragraphs we will mention some facts related to the
above spaces. This is for comparison only and is somewhat out of context, so
if the reader desires these paragraphs can be skipped. For details we refer to
([Kah80],Ch.7), ([Kli95],Ch.2.3) or ([Jos98],Ch.5.4). Also see ([Mil63],§16+§17).

Let I ⊂ R denote a compact interval, 〈·|·〉 the standard inner product on R
n and

| · | the induced norm. (1) the completion of the (real) vector space C ′∞(I,Rn)
w.r.t. the norm |c|∞ = supt |c(t)| is C(I,Rn), hence (C(I,Rn), |·|∞) is a Banach
space. Since there exists curves in C(I,Rn) which are nowhere differentiable,
the length L(c) =

∫

I
|ċ(t)|dt and energy 2E(c) =

∫

I
〈ċ(t)|ċ(t)〉dt =

∫

I
|ċ(t)|2dt

functionals do not posses extensions (even as set maps) to the completion
(C(I,Rn), | · |∞) of (C ′∞(I,Rn), | · |∞). (2) therefore let | · |1 be the H1,2-
norm induced by the inner product 〈c|u〉1 = 〈c|u〉0 + 〈ċ|u̇〉0 where 〈c|u〉0 =
∫

I
〈c(t)|u(t)〉dt (also an inner product), and H1(I,Rn) = H1,2(I,Rn) the com-

pletion of C ′∞(I,Rn) w.r.t. | · |1. Hence (H1(I,Rn), 〈·|·〉1) is a Hilbert space.
We then have that |c|∞ ≤ |c|1 i.e. the inclusion H1(I,Rn) →֒ C(I,Rn) is con-
tinuous, and there exists continuous extensions of the length L and energy E to
H1(I,Rn).

The above can be “extended” from R
n to a complete smooth manifold (M, g =

〈·|·〉,∇, d) where 〈·|·〉 is a Riemannian metric (with | · | the induced norm), ∇
is the Levi-Civita derivation and d is the Riemannian distance. Let C ′∞(I,M)
be the set of piecewise smooth curves and H1(I,M) the set of curves c such
that ψ ◦ c ∈ H1(I ′,Rn) where (M′, ψ) is a chart and I ′ = c−1(M′). Let
(C(I,M), τ) be the space of continuous curves with the compact open topol-
ogy τ . The topology τ∞ on the (complete) metric space (C(I,M), d∞), where
d∞(c, u) = supt d(c(t), u(t)), agrees with τ and we have the following. There are
(set) inclusions C ′∞(I,M) →֒ H1(I,M) →֒ C(I,M) and C ′∞(I,M) is a dense
subspace of (C(I,M), d∞) (hence also of H1(I,M)). Now as set maps the length
L(c) =

∫

I
|ċ(t)|dt and energy 2E(c) =

∫

I
|ċ(t)|2dt are well defined on H1(I,M),

but τ∞ is not fine enough to yield continuity of these maps. Guided by (2) above
we therefore proceed by letting C ′∞(c∗TM) denote the vector space of piece-
wise smooth vector fields along c ∈ C ′∞(I,M) and for ξ, ρ ∈ C ′∞(c∗TM) define
the norm |ξ|∞ = supt |ξ(t)| and inner product 〈ξ|ρ〉1 = 〈ξ|ρ〉0 + 〈∇ξ|∇ρ〉0 with
〈ξ|ρ〉0 =

∫

I
〈ξ(t)|ρ(t)〉dt (also an inner product). The completion of C ′∞(c∗TM)

w.r.t. | · |∞ (resp. | · |1 = 〈·|·〉1) is denoted C(c∗TM) (resp. H1(c∗TM))
and we have toplinear isomorphisms (C(c∗TM), | · |∞) ≈ (C(I,Rn), | · |∞) and
(H1(c∗TM), | · |1) ≈ (H1(I,Rn), | · |1). Moreover, |ξ|∞ ≤ |ξ|1 i.e. the inclusion
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H1(c∗TM) →֒ C(c∗TM) is continuous.

2.8 Theorem.
(1) C ′∞(I,M) can be given the structure of a smooth Banach manifold modeled
on (C(c∗TM), | · |∞). Moreover, the manifold topology agrees with τ∞ = τ .
([Kah80],Ch.7 Theorem 7.2)
(2)H1(I,M) can be given the structure of a smooth Hilbert manifold modeled on
(H1(c∗TM), | · |1) = TcH

1(I,M), which has a Riemannian metric that coincides
with 〈·|·〉1. Moreover, d1(c, u) = d∞(c, u)+(

∫

I
(|ċ(t)|−|u̇(t)|)2)1/2 is the distance

on H1(I,M) derived from 〈·|·〉1 which generates a topology τ1 that agrees with
the manifold topology. ([Kli95],Ch.2.3 Theorem 2.3.12(19))

Since d∞ ≤ d1 (or | · |∞ ≤ | · |1) we have that τ∞ ⊂ τ1 i.e. τ1 is finer than
τ∞ so the inclusion (H1(I,M), τ1) →֒ (H1(I,M), τ∞) is continuous, and any
continuous map on (H1(I,M), τ∞) is also continuous on (H1(I,M), τ1). More-
over, the length L and energy E are continuous on (H1(I,M), τ1) ([Jos98],Ch.5.4
Lemma 5.4.1), and the inclusion (Ω(M, q, p), τ1) →֒ (Ω(M, q, p), τ∞) is a homo-
topy equivalence ([Mil63],§17 Theorem 17.1). Since (Ω(M, q, p), τ∞) has the
c-topology, theorem 3 in [Mil59] applies (with A = (M, q, p) and C = (I =
[a, b], a, b)) so (Ω(M, q, p), τ∞), and hence (Ω(M, q, p), τ1), has the homotopy
type of a CW-complex. In contrast (C(I,M), τ∞) is an absolute neighborhood
retract ([Kur35],p.284) hence has the homotopy type of a finite CW-complex
([Mil59],Theorem 1(d)). See also ([Bor67],Ch.IV.5) and [Jac52]. �

We now turn to the study of the relationship between the moduli space and the
space of height-parameterized flow lines. As noted above, if m ∈ W(p, q) and
m′ ∈ Orbit(ϕm) then ηm = ηm′ , hence M(q, p) could just as well be defined as
M(q, p) = {ηm ∈ C([f(q), f(p)],M) | m ∈ W(p, q)t}, reflecting the fact that
there is a kind of quotient structure on M(q, p). Indeed we have that;

2.9 Claim.
The evaluation map et : M(q, p) → W(p, q)t ≈ M(p, q) at t ∈ ]f(q), f(p)[ is a
homeomorphism.

Proof:
Let W(p, q)t → M(q, p); m 7→ ηm be the induced partial map of η and note
that ηm(t) = m since t = f(m). It follows that this map is the inverse of et,
hence proving the claim since both maps are continuous.10 �

10This result can properly be extended to the smooth case, see ([Irw01],App.B.II) or
([AR67],Ch.2).



Section 2.4 25

2.10 Remark: In this remark we prove that η : ]f(q), f(p)[ ×W(q, p)t →
W(p, q) is smooth. Define θ : W(p, q) → ]f(q), f(p)[ ×M(q, p) by θ = (f, π).
Hence θ is smooth and the diagram

]f(q), f(p)[ ×W(q, p)t
η

//

1×ψ

��

W(p, q)

θ
vvmmmmmmmmmmmmm

]f(q), f(p)[ ×M(p, q)

commutes, with ψ the diffeomorphism m↔ R.m. Since π is a submersion and
∇f 6= 0 on W(p, q) we may apply the inverse function theorem to conclude that
θ−1 exists and is smooth. Hence η is smooth, since it factors through smooth
maps by the above diagram. �

Because of the claim above M(p, q) is sometimes referred to as the moduli space
of flow lines. Moreover, it follows that the evaluation map e : ]f(q), f(p)[ ×
M(q, p) → W(p, q) is a homeomorphism since it factors homeomorphically
through R ×W(p, q)t. To summarize we extend 2.1 to the commutative dia-
gram

]f(q), f(p)[ ×M(q, p)

⋍

vvnnnnnnnnnnnn

≈

��

∼=

''PPPPPPPPPPPP
M(p, q)

π∗

��

M(q, p)

∼=

��

R×W(p, q)t
≈

//

⋍

vvnnnnnnnnnnnn

π′

��

W(p, q)

π

��

∼=

99tttttttttt
M(p, q)/R M′(p, q)

W(p, q)t (R×W(p, q)t)/R
≈

oo
≈

// M(p, q) ∼=
//

∼=

99tttttttttt
M′(p, q)

,
� embedding

99ttttttttt

(2.2)

where ∼= denotes a homeomorphism, ≈ a diffeomorphism, and

Space Name Reference
W(p, q) The space of connecting orbits. Section 2.1
W(p, q)t Section 2.1
M(p, q) The moduli space of orbits. Section 2.2
M′(p, q) Remark 2.3
M(q, p) The space of height-parameterized flow lines. Section 2.4
M(p, q) Remark 2.2
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Note then that M(q, p) (and M(p, q)) can be given the structure of a smooth
(λp − λq − 1)-manifold, however we do not need this. Moreover, by remark 2.3
we see that (M′(p, q), γ 7→ R.γ(t) ∪ {p, q}) is a compactification of M(q, p).

2.11 Claim.
The closure M(q, p), in C([f(q), f(p)],M), of the space of height-parameterized
flow lines is compact.

Proof:
The claim will be a consequence of the Arzela-Ascoli theorem (see e.g.
([Dug66],Ch.XII.6)). Let ε > 0 and t ∈ ]f(q), f(p)[ a regular value. For
each η ∈M(q, p) let tη ∈ ]f(q), f(p)[ be such that tη < t, η(tη) ∈ ∂Bε(η(t)) and
η( ]tη, t]) ⊂ Bε(η(t)), where Br(c) is the open ball of radius r and center c with
respect to the Riemannian distance d. Now consider the set S = {tη}η∈M(q,p),
it is clear that α′ = supS ≤ t. Assume that α′ = t. Since t is a regular
value, |∇f | is bounded below away from zero. Hence for all δ > 0 there exists
a tη such that d(η(tη), η(t)) ≤ L(η, tη, t) ≤ δ with L the length functional on
[tη, t]. In particular we may choose δ < ε which is impossible by definition of
d, hence α′ < t. It follows that η( ]α, t]) ⊂ Bε(η(t)) for all η ∈ M(q, p) and all
α ∈ ]α′, t[ . Now by arguments similar to the above we obtain a ω′ > t such
that η([t, ω[ ) ⊂ Bε(η(t)) for all η ∈ M(q, p) and all ω ∈ ]t, ω′[ . Since ε was
arbitrary we conclude that for all ε > 0 there exists an open neighborhood Ut
of t such that η(Ut) ⊂ Bε(η(t)) all η ∈M(q, p), hence M(q, p) is equicontinuous
at t.

If t is a critical value we need the following estimate for |∇f | which apply in
neighborhoods of the critical points on f−1(t).

We estimate |∇f | near a critical point b. Let (ψ,U) be a Morse chart around
b. We identify U with E = E

u ⊕ E
s having coordinates z = (x, y). By abuse

of notation we write f for the local representative f ◦ ψ−1. Moreover we let
ψ(q) = 0 and f(0) = 0 hence f(x, y) = −|x|2 + |y|2 by the Morse lemma.
Now let z = z(t) denote a height-parameterized flow line, i.e. f(z) = t, and
A(z) : TzU → TzU

∗ the linear isomorphism induced by the Riemannian metric
g. We then have

|Df(z)| = 2
√

|x|2 + |y|2 ≥ 2
√

| − |x|2 + |y|2| = 2
√

|t|

and

|∇f(z)| ≥ |A(z)|−1|Df(z)| ≥M−1|Df(z)| with M = max
z
|A(z)| ≥ 0
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Hence L(z, t, 0) = L(z, 0, t) ≤M
√

|t|, with L the length functional on [t, 0] and
[0, t], respectively.

It now follows that M(q, p) is equicontinuous. Since if t is a critical value we
may apply the first part of the proof away from the critical points on f−1(t),
and use the second part in neighborhoods of the critical points on f−1(t).11

To fulfill the hypothesis of the Arzela-Ascoli theorem we need to show that the
closure of {η(t) | η ∈ M(q, p)} is compact for each t ∈ [f(q), f(p)]. But this is
clear since M is compact, so M(q, p) is contained in a compact subset, hence
the claim follows. �

Let β be a cluster point of M(q, p) not in M(q, p), hence there exists a sequence
{ηn} ⊂ M(q, p) such that ηn → β. It is clear that β is height-parameterized
so let t0 = f(q), t1, . . . , tk = f(p) be the points in [f(q), f(p)] such that β(ti) ∈
Crit(f). If necessary rearrange the ti’s such that ti < ti+1 and let Ii = ]ti−1, ti[.
Let X = ∇f/|∇f |2, since composition is continuous we see that lim η̇n = X(β)
on each Ii, and by theorem 2.12 below it follows that β̇ = lim η̇n on each Ii.
Hence im(β) is a broken trajectory from q to p of order k as defined in remark
2.3.

We have used the following theorem, a proof of which can be found in
([Apo74],Ch.9.10) (theorem 9.13)

2.12 Theorem.
Assume that each term of {fn} is a real-valued function having a finite derivative
at each point of an open interval I ⊆ R. Assume that for at least one point
x0 ∈ I the sequence {fn(x0)} converges. Assume further that there exists a
function g such that f ′n → g uniformly on I. Then:

a) There exists a function f such that fn → f uniformly on I.

b) For each x ∈ I the derivative f ′(x) exists and equals g(x).

How is the compactification (M′(p, q), η 7→ R.η(t)∪ {p, q}) of M(q, p) related to
the closure M(q, p)? Let M′(p, q)→M(q, p); l(m) 7→ ηm, where l(m) = R.m ∪
{p, q} = im(ηm), be the homeomorphism which factors through W(p, q)t via the
homeomorphisms l(m) 7→ m 7→ ηm (the inverse being ηm 7→ R.ηm(t) ∪ {p, q})).
By the above the inverse extends naturally to a continuous map M(p, q) →
M′(p, q). This map is surjective since if l is a cluster point of M′(p, q) not

11Note that if t = f(p) (resp. t = f(q)) then ]α′, t] (resp. [t, ω′[ ) is an open neighborhood
of t in [f(q), f(p)].
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in M′(p, q) there exists a sequence {l(m)n} ⊂ M′(p, q) such that l(m)n → l.
Hence there is a sequence {ηn} ⊂ M(q, p) such that ηn → β (possibly for a
subsequence) with β a cluster point of M(q, p) not in M(q, p), so β 7→ l proving
surjectivity. Moreover, injectivity of this map is also easily proven (the inverse
being the extension of l(m) 7→ ηm), hence we have proven that:

2.13 Claim.
The homeomorphism M′(p, q) → M(q, p) extends to a homeomorphism on the
closures (i.e. the completions) M′(q, p)→M(q, p).

In other words the above says that compactification (of M(q, p) ≈ W(p, q)t ≈
M(p, q) ≈ M′(p, q)) w.r.t. Hausdorff topology is homeomorphic to compactifi-
cation w.r.t c-topology. Moreover, it is important to note that the closure of
W(p, q)t ⊂ M is not homeomorphic to the compactification above.

2.5 The space of broken flow lines

Let p, q ∈ Crit(f) with µ(p, q) ≥ 0, M̃ = M − Crit(f) and X = ∇f/|∇f |2. The
last (function) space to be defined is

M(q, p) = {β ∈ C([f(q), f(p)],M) | β̇ = X(β) on M̃, β(f(q)) = q, β(f(p)) = p}

which is is second countable, perfectly normal and paracompact (see remark
2.7). Elements of this space are curves β starting at q and ending at p with
im(β) =

⋃l
i=1 im(ηmi

) for some ηmi
∈ M(bi−1, bi) with b0 = q and bl = p. The

space M(q, p) is called the space of broken flow lines from q to p, and elements
are called either broken flow lines (even though some are non broken), piecewise
flow lines, M -maps or by abuse of language flow lines. Note that if β ∈M(q, p)
then β(f(p)) = p, if q 6= p and µ(p, q) = 0 then M(q, p) = ∅, and M(q, q) has
one element the trivial curve f(q) 7→ q.

2.14 Claim.
The space of broken flow lines from q to p is compact.

Proof:
We show that M(q, p) = M(q, p) which is enough since both spaces carry the
subspace topology w.r.t. C([f(q), f(p)],M). Obviously M(q, p) is a subset of
both so such elements are of no concern. Now let β ∈ M(q, p) so im(β) is a
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broken trajectory, hence β is a cluster point of M(q, p) (by claim 2.13) and
therefore β ∈ M(q, p). Conversely, let β ∈ M(q, p) then, by the arguments
above claim 2.13, β is height-parameterized and β̇ = X(β) on M̃. �

It follows from the proof and the above that the space of broken flow lines
M(q, p) is a compactification of the space of height-parameterized flow lines
M(p, q).

2.15 Claim.
The space of height-parameterized flow lines is open in the space of broken flow
lines, so M(q, p) →֒ M(q, p) is an open embedding. Moreover, the two spaces
are equal if the relative index is one or if Crit(f) ∩ f−1(]f(q), f(p)[) = ∅.

Proof:
Since im(β) ⊂W(p, q) for any β ∈M(q, p) we see that the topology onM(q, p) is
the subspace topology coming from C([f(q), f(p)],W(p, q)). Moreover, W(p, q)
is open in W(p, q) since any submanifold is locally closed and therefore also
open in its closure.12 Now let γ ∈ M(q, p) and m = γ(t), then m ∈ W(p, q)
so let U be an open neighborhood of m in W(p, q). The subbasis element
({t}, U) = {β ∈ M(q, p) | β({t}) ⊂ U} is then an open neighborhood of γ in
M(q, p), hence β ∈M(q, p) for all β ∈ ({t}, U) thus proving the first statement.

Now the second statement follows by the formula on page 8 for W(p, q), and the
last since f is Liapunov. �

The above proof could be simplified since M(q, p) is the complement of the
closed set ∪ie−1

f(ai)
(ai) where {ai} = Crit(f) ∩ f−1(]f(q), f(p)[). However we

prefer the above method since it describes the topology of M(q, p) in a more
precise manner. Moreover, by modifying the above proof slightly it is easy to
see that M(q, p) is not open in C([f(q), f(p)],M).

We now define a (concatenation) map which in some sense corresponds to the
gluing map of theorem 2.16 below with the fixed parameter 0. Let b be any
chain and M(b) =

∏l(b)
i=1M(bi−1, bi). If b has order at most two we define the

function # : M(b) → M(sou(b), tar(b)) by letting # = 1 if l(b) = 1 or if
b = {q, b, p} say, by (β, β′) 7→ #(β, β′) = β#β′ where

β#β′(t) =

{

β(t) f(q) ≤ t ≤ f(b)

β′(t) f(b) ≤ t ≤ f(p)
(2.3)

12See ([Lan99],Ch.II.2) and ([Bou98],Ch.I.3.3)
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By adjusting the proof of continuity of the concatenation map ([Dug66],p.377)
one sees that # is continuous13, hence for any chain b there is a continuous map

M(b)→M(sou(b), tar(b)); (β1, β2, . . . , βl(b)) 7→ β1#β2# · · ·#βl(b)

which we by abuse of notation also denote #.

By definition of M(q, p) we thus have that if β ∈ M(q, p) then either it is
a height-parameterized flow line β = ηm ∈ M(q, p) or there exists a strict
chain b with q = sou(b) and p = tar(b), and a sequence {mi}l(b)

i=1 with mi ∈
W(bi, bi−1) (or equivalently mi ∈ W(bi, bi−1)

ti ≈ M(bi, bi−1)) such that β =
#(ηm1

, ηm2
, . . . , ηml(b)

) for (ηm1
, ηm2

, . . . , ηml(b)
) ∈ M(b) i.e. β is the concate-

nation of height-parameterized flow lines. Note that there are infinitely many
chains corresponding to β ∈ M(q, p), namely one strict chain and infinitely
many degenerated chains, that is chains which contains more than one copy of
the same element. To avoid this, a chain is henceforth considered to be strict if
it occurs in connection with the map #.

The forthcoming chapters are devoted to a more detailed analysis of the space
of broken flow lines. More precisely we study the connectivity of M(q, p) and
the relation between the path components of M(q, p) and M(q, p).

2.5.1 Appendix

In this appendix we will comment on a construction of a compact space which in
the literature is describe as a compactification of M(p, q) into a smooth manifold
with corners. This compactification consists of two results, the first one being
the compactness statement of theorem 2.1 and the second result describes how
one can glue orbits from lower dimensional moduli spaces together to form an
orbit in a higher dimensional moduli space. Geometrically this corresponds to
gluing flow lines together to form another flow line.

2.16 Theorem.
Let b be a strict inverse chain of order l with p = sou(b) and q = tar(b). For
sufficiently small ε > 0 there exists an embedding

Gb = G : M(b)×
l

∏

i=2

]0, ε[→ M(p, q); (m, t) 7→ G(m, t)

13See ([Let03],Ch.2.2)
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mapping dom(G) diffeomorphically onto an open set in M(p, q). Moreover,
G(m, t) → x for t → 0, and if mn ∈ M(p, q) converges to a broken orbit of
order l(b) then mn ∈ im(Gb) for large n.

The map G is called the gluing map and usually written as G(m, t) = m1#t2 · · ·
#tlml. The statement of theorem 2.16 can be found in ([AB95],Ch.2). However,
the proof in ([AB95],Ch.A.2) only shows that theorem 2.16 is true in the case of a
simple gluing map i.e. l(b) = 2. Furthermore, there is no explanation regarding
the construction of a “general” gluing map as above. Presumably a general gluing
map is defined recursively by means of simple gluing maps, but this immedi-
ately raises the question of associativity (m1#t2m2)#t3m3

?
= m1#t2(m2#t3m3)

which seems to be highly non trivial. In ([Sch93],Ch.2.5) the problem of asso-
ciativity is mentioned. Moreover in [Coh92] and [CJS95] the question of associa-
tivity is addressed but not proven. When l(b) = 2 other versions of the gluing
theorem can be found in ([Sch93],Ch.2.5) or ([Web06],Ch.3.3).

We can now depict the statement of ([AB95],Ch.2) that M(p, q) has a compactifi-
cation M(p, q) = M(p, q)∪⋃

b
M(b)×∏l(b)

i=2[0, ε[ which is a smooth manifold with
corners. Here the union is taken over all nontrivial strict inverse chains b with
p = sou(b) and q = tar(b). In ([AB95],Ch.2) it is claimed that the compactifi-
cation follows from theorem 2.1 and 2.16, however there is no description of the
manifold structure or even the topological structure of M(p, q). In [Coh92] and
[CJS95] one can find a discussion regarding the topology of M(p, q), where the
latter describe the compactification as M(p, q) = M(p, q) ∪ ⋃

b
M(b). It should

be noted that a complete proof of the compactification statement in the realm
of Floer theory can be found in ([BC03],App.A).

In the sequel we present two constructions which might give a clue as to what
topology M(p, q) should have. The first construction is based on the categori-
cal pushout construction (see e.g. ([Bor94],Ch.2.5) or ([ML98],Ch.III.3)), which
should be compared to the general method of pasting topological spaces together
as found in ([Bou98],Ch.I.2.5). The second construction is a somewhat naive
construction. Even though we do not prove it, it seems to be true that these
two constructions are topologically equivalent.

Let L be the set of all nontrivial (l(b) ≥ 2) strict inverse chains b with p = sou(b)
and q = tar(b). For convenience set M = M(p, q), and for each b ∈ L define
the product space X(b) = M(b) ×∏l(b)

i=2[0, ε[ and the subspaces X(b) ⊂ X(b)

by X(b) = M(b)×∏l(b)
i=2]0, ε[.
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By means of general nonsense we now proceed with the first construction. For
each b ∈ L we have, in the category Top, a pushout diagram

X(b)
� _

��

G // M

��

X(b) // P (b) = M ∗X(b) X(b)

which, by means of the right vertical maps, induces the pushout graph (with
l = #L)

a10 // a11 // a12 // a13 // · · · // a1l

a20 // a21

55kkkkkkk
// a22

66mmmmmm
//

66mmmmmmm

a30 // a31

55kkkkkkk
//

...

a(l−1)0 // a(l−1)1

77nnnnnnnn
//

al0 // al1

55kkkkkkkkk

(2.4)

with ai0 = M , ai1 = P (bi) and aij = ai(j−1)∗a(i+1)(j−2)
a(i+1)(j−1) for 1 ≤ i ≤ #L

and 2 ≤ j ≤ #L.

Note that X is topologically independent of how the elements of L are indexed.
Indeed, by consider the pushout diagram

ai1 // ai2 // ai3

a(i+1)1

))RRRRRR

OO

ai0

77nnnnnn

''PPPPPP

f

OO

f

��

h // a(i+1)2

��

OO

a(i+2)1

��

55llllll

ai1 // P // P ′

we see that a13 is the pushout of the pair (f, h) but so is P ′, hence ai3 ∼= P ′.
We conclude that if the maps M → ai1 and M → a(i+1)1 in diagram (2.4)
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are interchanged we obtain a pushout homeomorphic to X. By recursion this
clearly generalizes to any permutation of the index set. It now follows that (with
l = #L)

X = a1l

= a1(l−1) ∗a2(l−2)
a2(l−1)

= a1(l−2) ∗a2(l−3)
a2(l−2) ∗a2(l−2)

a2(l−2) ∗a3(l−3)
a3(l−2)

= a1(l−2) ∗a2(l−3)
a2(l−2) ∗a3(l−3)

a3(l−2) = · · · = a11 ∗a20
a21 ∗a30

· · · ∗al0
al1

= P (b1) ∗M P (b2) ∗M · · · ∗M P (bl)

= M ∗X(b1) X(b1) ∗M M ∗X(b2) X(b1) ∗M · · · ∗M M ∗X(bl) X(bl)

= M ∗X(b1) X(b1) ∗X(b2) X(b1) ∗X(b2) · · · ∗X(bl) X(bl)

That is X is formed by pasting the X(b)’s to M along the X(b)’s. The equalities
above follow by either definition or associativity of the pushout. That is, if C is
a category with pushouts then (A∗BC)∗DE = A∗B (C ∗DE) since the pushout
diagram

D //

��

E

��

B //

��

C //

��

P2

��

A // P1
// P

shows that P1 ∗D E = P1 ∗C P2 = A ∗B P2.

The (quotient) space X is not quite the topological model of M(p, q) we are
looking for, as the next example will show. Let b = {p, b1, b2, q}, b

′ = {p, b2, q}
and consider G : X(b) → M ; (m1,m2,m3; t2, t3) 7→ m1#t2m2#t3m3. The
subspace M(p, b1)×M(b1, b2)×M(b2, q)× ]0, ε[ ×{0} ofX(b) is not identified with
M(p, b2)×M(b2, q)×{0} ⊂ X(b′) via the above construction. As a consequence
we have that (m1,m2,m3; t2, 0) 6= m1#t2m2#0m3 = (m1#t2m2,m3) and these
two points of X can not be separated by open sets, hence X /∈ Haus i.e. X is not
an object of the category Haus. To solve this problem we use the functor H :
Top→ Haus which is left adjoint to the inclusion functor, see ([ML98],Ch.V.9).
This is in fact how one creates pushouts in Haus. Moreover, the functor H
(obtained by the adjoint functor theorem) or more precise HX can be described
as “the largest Hausdorff quotient” of X.

It seems reasonable to conjecture that the inclusion ι : M →֒ HX is an embed-
ding, that HX is a compact Hausdorff space (as a consequence of theorem 2.1)
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and that ι(M) ⊂ HX is dense (by the description of a neighborhood in HX
of a broken orbit, via the gluing maps). Hence (HX, ι) is a compactification
of M = M(p, q). Since the above construction is fairly obvious when given the
gluing data we speculate that the underlying topology on M(p, q) could in fact
be that of HX.

Before proceeding to the second construction note that as a set HX can be write
as HX = M(p, q) ∪⋃

b∈LM(b) where we use the identification M(b) ≈ M(b) ×
{0}l(b)

i=2, and
⋃

b∈Lk M(b) where Lk = {b ∈ L | l(b) = k} is a “codimensional
k − 1 strata” for HX.

Now the second construction is simply to consider Y ∈ Set the object in the
category Set defined by Y = M(p, q)∪⋃

b∈L M(b), and give Y the final topology
with respect to the family {Gb : X(b)→ Y }b∈L of “extended” gluing maps. Each
Gb then becomes an embedding, and again it seems reasonable to conjecture
that Y is a compactification of M(p, q).

It is important to note that both constructions above relies crucially on theorem
2.16 i.e. the existence of gluing maps with more than one parameter. Moreover,
the discussion above should be compared to the last paragraph of remark 2.3.



Chapter 3

Connectivity and the space of

broken flow lines

In this chapter we investigate the connectivity of the space of broken flow lines
by means of its (co)homology. To do so we introduce equivalence relations on the
space of broken flow lines which enable us to make a local analysis of this space.
Together with a pullback construction (derived from the equivalence relations)
this local analysis yields an “inductive” procedure to analyse the (co)homology
of the space of broken flow lines.

As in chapter 2 we fix a Morse function f : M → R on a closed n-manifold M

and a Riemannian metric g on M such that the pair (f, g) is Morse-Smale.

In section 3.1 we setup some assumptions and notation which applies to the rest
of this chapter. In section 3.2 we define equivalence relations on the space of
broken flow lines and investigate the resulting quotient spaces. In section 3.3 we
construct pullbacks of the quotient spaces defined in section 3.2. Moreover, by
means of the Vietoris-Begle mapping theorem we show that, in certain dimen-
sions, these pullbacks induce isomorphisms in Čech cohomology. In particular,
when there is exactly one critical point of index 0 and one critical point of index
n these isomorphisms can be used to show that the space of broken flow lines
is connected if there are no critical points of index 1 or n− 1.

35
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3.1 Assumptions

In the rest of this chapter the following will be assumed. Let Crit(f) = {ai}
where i = 0, 1, . . . , w = #Crit(f)−1. We choose the indexing such that λa0

= 0,
λaw

= n and assume that #Criti(f) = 1 for i = 0, n, where we usually prefer
to write q (resp. p) for a0 (resp. aw). Moreover, we assume that f(ai) 6= f(aj)
for all i 6= j, and let τi ∈ R denote a scalar such that f(ai) < τi < f(ai+1). In
summary we have

f(q = a0) < τ0 < f(a1) < τ1 < f(a2) < τ2 < · · · < f(aw−1) < τw−1 < f(p = aw)
(3.1)

When we write W(ai, aj)
t it will be understood that t is chosen appropriately,

i.e. t = τl a regular value with i ≤ l ≤ j. The same applies for Wu(ai)
t and

Ws(ai)
t with the obvious changes.

We comment on the above assumptions. First, by ([Mat02],Ch.3.3) one can
perturb any Morse function such that the assumption f(ai) 6= f(aj) for all
i 6= j holds. Moreover, as we shall see at the end of this chapter this assumption
is in fact redundant and only included for simplicity. Secondly, the assumption
#Criti(f) = 1 for i = 0, n can also be obtained for any Morse function by a
perturbation (see the proof of theorem 3.35 in [Mat02]).

3.1 Remark: When restricting to W(p, q), most of the results in this chapter
generalizes to the case of #Criti(f) > 1 for i = 0, n. This fact will not be used,
hence we leave this generalization to the reader. �

3.2 Quotients of the space of broken flow lines

We begin this section by constructing various quotient spaces of M(q, p). For
i ≤ j we define the (equivalence) relation ∼τi,τj

⊂M(q, p)×M(q, p) by β ∼τi,τj

β′ iff β(t) = β′(t) for all t ∈ [τi, τj ]. Since f(ai) < τi < f(ai+1) and f(aj) <
τj < f(aj+1), it is trivial to check that;

3.2 Claim.
For any pair (τ ′i , τ

′
j) with τ ′i ∈ ]f(ai), f(ai+1)[ and τ ′j ∈ ]f(aj), f(aj+1)[ we

have ∼τi,τj
=∼τ ′

i
,τ ′

j
.
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Furthermore, it follows that

∼τi,τj
∩ ∼τk,τl

=

{

∼τi,τl
if i ≤ k ≤ j ≤ l

∼τi,τj
if i ≤ k ≤ l ≤ j (3.2)

and in particular ∼τi,τj
⊂ ∼τk,τl

if i ≤ k ≤ l ≤ j. Hence from (3.2) we immedi-
ately obtain that;

3.3 Claim.
For i1 ≤ i2 ≤ i3 ≤ i4 the diagram (3.3) is a pullback diagram in Set, the
category of sets.

∼τi1
,τi4

� � //
� _

��

∼τi2
,τi4
� _

��∼τi1
,τi3

� � // ∼τi2
,τi3

(3.3)

With the relation above we define the quotient spaceM(τi, τj) = M(q, p)/ ∼τi,τj
,

and note thatM(τi, τj) = M(τ ′i , τ
′
j) for any pair (τ ′i , τ

′
j) as in claim 3.2. By claim

2.14 it follows that this quotient space is compact, and as we shall see below
(claim 3.5) this space is in fact compact Hausdorff.

3.4 Claim.
The inclusion M(q, p) →֒ M(q, p) induces an embedding M(q, p)/ ∼τi,τj

→֒
M(τi, τj).

Proof:
If β, β′ ∈ M(q, p), then β(t) = β′(t) for all t ∈ [τi, τj ] iff β(t) = β′(t) for
some t ∈ [τi, τj ]. Thus, M(q, p)/ ∼τi,τj

≈ M(q, p). The claim now follows by
considering the diagram

M(q, p)

π=1

��

� � ι // M(q, p)

π′

��

M(q, p)
� � ι′ //___ M(τi, τj)

where ι′ is the unique continuous map such that π′ ◦ ι = ι′ ◦ π (since π′ ◦ ι is
constant on the fibers of π i.e. π′ ◦ ι respects the equivalence relation ∼τi,τj

,
([Lee00],Ch.3.3)). �
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It follows from the above that ι′ is in fact an open embedding. Indeed, let
O ⊂M(q, p) be open, then ι′(O) = π′ ◦ ι(O) is open iff π′−1(π′ ◦ ι(O)) is open.
But by the above diagram, π′−1(π′ ◦ ι(O)) = ι(O), which is open by claim 2.15.

3.5 Claim.
The map M(τi, τj) → C([τi, τj ],M); [β] 7→ β|[τi, τj ] is a homeomorphism onto
its image i.e. an embedding. Hence M(τi, τj) is a compact Hausdorff space.1

Proof:
The composition M(q, p) →֒ C([f(q), f(p)],M)

res−→ C([τi, τj ],M), where res de-
notes the restriction map, factors through M(τi, τj) as

M(q, p)
β 7→β|[τi,τj ]

//

π
%%KKKKKKKKKK

C([τi, τj ],M)

M(τi, τj)

[β] 7→β|[τi,τj ]

88ppppppppppp

Now β 7→ β|[τi, τj ] is continuous since res is continuous ([Bre93],Ch.VII.2).
Hence by the defining property of the quotient/identification map π,
([Bre93],Ch.I.13) we see that that [β] 7→ β|[τi, τj ] is continuous. Moreover,
[β] 7→ β|[τi, τj ] is injective because ∼τi,τj

identifies maps that agree on [τi, τj ],
i.e. differences outside of [τi, τj ] are ignored in M(τi, τj). This proves the claim
since M(τi, τj) is compact and C([τi, τj ],M) is Hausdorff, ([Lee00],Ch.4.2). �

Thus the above claim gives us a model for the topology on M(τi, τj), which is
more comprehensible than the original one. Moreover, the identification [β] ↔
β|[τi, τj ] will be used throughout the rest of this chapter.

3.6 Remark: Let [β] ∈ M(τi, τj) and write a representative β ∈ [β] as β =
ηm1

# · · ·#ηml(b)
. It follows that; 1) if l(b) = l = 1, the only representative of

the class [β] is the non broken flow line β = ηm. 2) if l > 1 then, with say
τi ∈ [f(bv−1), f(bv)] and τj ∈ [f(bu−1), f(bu)] for 1 ≤ v < u ≤ l − 1, the class
[β] is uniquely determined by ηmv

# · · ·#ηmu
.

As a consequence of the above we sometimes write [β] = [•ηmv
# · · ·#ηmu

•].
Note that 1) and 2) above reflects the statements of claim 3.4 and 3.5, respec-
tively.

1The last part can also be proven directly. The compactness is trivial, and the Hausdorff
property follows since we may separate β([τi, τj ]) and β′([τi, τj ]) in M if β 6= β′ in M(τi, τj).
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Moreover, note that if β ∼τi,τj
β′, with b (resp. b

′) the chain connected to β
(resp. β′), then b∩ b

′ 6= ∅ and we may write β = β1#α#β2 and β′ = β′
1#α#β′

2,
where the chain connected to α is b∩ b

′. �

Now consider the (non-injective) evaluation map (at τi) M(q, p)
eτi−→ f−1(τi).

This is clearly continuous, and it respects the relation ∼τk,τj
(for k ≤ i ≤ j).

Hence there is an induced (continuous) map on the quotients. In light of claim
3.5 we also denote the induced map by eτi

and call it the evaluation map (at
τi).

3.7 Claim.
The evaluation map (at τi) M(τi, τi)

eτi−→ f−1(τi) is a homeomorphism.

Proof:
We see that eτi

is a continuous bijection between a compact space and a Haus-
dorff space. �

3.3 Pullbacks and induced isomorphisms

We start by defining maps between the various quotient spaces of section 3.2.
If i ≤ k ≤ l ≤ j let Π : M(τi, τj)→M(τk, τl) be the map defined by β|[τi, τj ] 7→
β|[τk, τl]. As a passing remark we note that Π would not be well defined if j < k.

3.8 Claim.
The map Π is a closed continuous surjection. Moreover, for τij ≤ τij+1

the
following diagram commutes

M(τi0 , τi7)
//

��

M(τi2 , τi6)

��

M(τi1 , τi5)
// M(τi3 , τi4)

(3.4)

where all the maps are defined as Π above.

Proof:
It is clear that both the diagram (3.4) commutes and Π is a continuous sur-
jection. Moreover, Π is closed since it is a map between compact spaces.
�
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Hence, this says that Π is a closed identification map. Now as hinted by claim 3.3
we may turn diagram (3.4) into a pullback diagram by making some restrictions
on the τij ’s.

3.9 Claim.
For τij ≤ τij+1

, diagram (3.5) represents a pullback diagram in CompHaus, the
category of compact Hausdorff spaces.

M(τi1 , τi4)
//

��

M(τi2 , τi4)

��

M(τi1 , τi3)
// M(τi2 , τi3)

(3.5)

Proof:
Diagram (3.5) commutes by claim 3.8. Now let

P = M(τi1 , τi3)×M(τi2
,τi3

) M(τi2 , τi4)

denote the pullback of M(τi1 , τi3) −→ M(τi2 , τi3) ←− M(τi2 , τi4). It is easy
to see that the map M(τi1 , τi4) → P ; β|[τi1 , τi4 ] → (β|[τi1 , τi3 ], β|[τi2 , τi4 ]) is a
continuous bijection. Hence the claim follows. �

Now consider the following special case of diagram (3.5)

M(τi−2, τi)
Π′

//

Π

��

M(τi−1, τi)

Π

��

M(τi−2, τi−1)
Π′

// M(τi−1, τi−1)

(3.6)

We wish to apply the Vietoris-Begle mapping theorem to the map Π (and Π′)
in diagram 3.6.

3.10 Theorem. (Vietoris-Begle mapping theorem)
Let P : Y → X be a closed continuous surjection between paracompact Haus-
dorff spaces and G a module. Assume that there is an l ≥ 0 such that the
reduced Čech cohomology group ˜̌Hk(P−1(x);G) = 0 for all x ∈ X and for k < l.
Then P ∗ : Ȟk(X;G) → Ȟk(Y ;G) is an isomorphism for k < l and a monomor-
phism for k = l. ([Spa81],p.344(334))
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In [Spa81] the above theorem is stated for Alexander cohomology H
∗, but sinceX

(and Y ) are paracompact Hausdorff spaces we have H∗(X) = Ȟ∗(X) by corollary
8 in ([Spa81],p.334). By abuse of notation we let H∗ = Ȟ∗ in the sequel.

3.11 Claim.
The fibers of Π in diagram (3.6) are

Π−1(m) =

{

a point if m ∈ f−1(τi−1)−Wu(ai)
τi−1

S
n−λai

−1 if m ∈Wu(ai)
τi−1

where we have used the identification M(τi−1, τi−1) ≈ f−1(τi−1) of claim 3.7.

Proof:
With the above identification Π is simply the evaluation map at τi−1. Let
m ∈ f−1(τi−1)−Wu(ai)

τi−1 and assume that β|[τi−1, τi], β
′|[τi−1, τi] ∈ Π−1(m),

i.e. β(τi−1) = β′(τi−1). But then β|[τi−1, τi] = β′|[τi−1, τi] since ai /∈ b∩ b
′,

where b (resp. b
′) represent the chain connected to β (resp. β′).

If m ∈ Wu(ai)
τi−1 then Π−1(m) = {β|[τi−1, τi] ∈ M(τi−1, τi) | ai ∈ im(β) and

β(τi−1) = m} which is compact. Now the map Π−1(m) → {m} × Ws(ai)
τi ;

β|[τi−1, τi] 7→ (β(τi−1), β(τi)) is easily seen to be a continuous bijection, and
hence a homeomorphism. This proves the claim since {m}×Ws(ai)

τi ≈ S
n−λai

−1.
�

The Vietoris-Begle mapping theorem now yields that Π∗ : Hk(M(τi−1, τi−1))→
Hk(M(τi−1, τi)) is an isomorphism for k < n−λai

− 1 and a monomorphism for
k = n − λai

− 1. Now by the pullback property of diagram (3.6) we will see,
in the following remark on abstract nonsense, that the fibers of Π and Π are in
fact identical.

3.12 Remark: Let C be a category with pullbacks. The fiber of a morphism
f : A → C over a morphism g : E → C is by definition the pullback E ×C A.
Note that if C = Set, g is the inclusion, and E a subset of C, the above definition
agrees with the set theoretic notion of f−1(E), the inverse image of E under f .

Now given the pullback diagram

A
h′

//

f
��

B

f ′

��

C
h // D
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We claim that the fiber over g : E → C of f is the fiber over E
g−→ C

h−→ D of
f ′. This follows by considering the pullback diagram

E ×C A //

��

A
h′

//

f
��

B

f ′

��

E
g

// C
h // D

and noting that E ×D B ≈ E ×C A since both squares are pullback diagrams
([Bor94],Ch.2.5). �

It now follows that Π
−1

([β]) = Π−1(Π′([β])). Hence the fiber of Π is either a
point or the sphere S

n−λai
−1, so Π

∗
: Hk(M(τi−2, τi−1)) → Hk(M(τi−2, τi)) is

an isomorphism for k < n− λai
− 1 and a monomorphism for k = n− λai

− 1.
Similar arguments shows that the pair of maps (Π′,Π′) also induce isomorphisms
in Čech cohomology for k < λai−1

− 1 and monomorphisms for k = λai−1
− 1.

In summary, we have the following commutative diagram

Hk(M(τi−2, τi)) Hk(M(τi−1, τi))
Π′

∗

oo

Hk(M(τi−2, τi−1))

Π
∗

OO

Hk(M(τi−1, τi−1))
Π′∗

oo

Π∗

OO
(3.7)

where the vertical maps are isomorphisms for k < n − λai
− 1 and monomor-

phisms for k = n − λai
− 1, and the horizontal maps are isomorphisms for

k < λai−1
− 1 and monomorphisms for k = λai−1

− 1.

We proceed by showing how M(q, p) (or rather Hk(M(q, p))) fits into the above
construction. First consider the following commutative diagram induced by the
diagram on spaces

Hk(M(τi−2, τi+1)) Hk(M(τi−1, τi+1))oo Hk(M(τi, τi+1))oo

Hk(M(τi−2, τi))

OO

Hk(M(τi−1, τi))oo

OO

Hk(M(τi, τi))oo

OO

Hk(M(τi−2, τi−1))

OO

Hk(M(τi−1, τi−1))oo

OO

(3.8)

The lower square and the right square in the above diagram are of the same
type as diagram 3.7. Moreover, the (upper) left square comes from a pull-
back diagram (claim 3.9), so as above we conclude that the horizontal (resp.
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vertical) map into Hk(M(τi−2, τi+1)) is a isomorphisms for k < λai−1
− 1 and

monomorphisms for k = λai−1
− 1 (resp. a isomorphisms for k < λai+1

− 1 and
monomorphisms for k = λai+1

− 1).

Now if we proceed by expanding diagram 3.8 we obtain the following commu-
tative diagram induced by the diagram on spaces

Hk0,w−1 Hk1,w−1
oo Hki−1,w−1 Hki,w−1

oo Hkw−2,w−1 Hkw−1,w−1
oo

Hk0,w−2

OO

Hk1,w−2
oo

OO

Hki−1,w−2

OO

Hki,w−2

OO

oo Hkw−2,w−2

OO

Hki,i+2 Hki+1,i+2
oo

Hk0,i+1 Hk1,i+1
oo Hki−1,i+1 Hki,i+1

oo

OO

Hki+1,i+1
oo

OO

Hk0,i

OO

Hk1,i

OO

oo Hki−1,i

OO

Hki,i
oo

OO The (i+ 1)’th row of
vertical maps. These

maps are isomorphisms
for k < n − λai+1

− 1
and monomorphisms
for k = n − λai+1

− 1.

Hk0,2 Hk1,2
oo

Hk0,1

OO

Hk1,1

OO

oo

Hk0,0

OO

The i’th column of horizontal maps. These
maps are isomorphisms for k < λai

− 1
and monomorphisms for k = λai

− 1.

(3.9)

where Hki,j = Hk(M(τi, τj)) and we note that Hk0,w−1 = Hk(M(τ0, τw−1)) =

Hk(M(q, p)). Moreover, all the horizontal maps in the j’th column (j = 1, 2, . . . ,
w − 2, w − 1 and starting from the left) are isomorphisms for k < λaj

− 1 and
monomorphisms for k = λaj

− 1, and all the vertical maps in the j’th row
(j = 1, 2, . . . , w−2, w−1 and starting from the lower left) are isomorphisms for
k < n− λaj

− 1 and monomorphisms for k = n− λaj
− 1. In particular we see

that, for k = 0 all the maps in diagram 3.9 are isomorphisms onto there image,
since 1 ≤ λaj

≤ n− 1 for all j = 1, 2, . . . , w − 2, w − 1.
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Using the identification M(τi, τi) ≈ f−1(τi) of claim 3.7 we immediately obtain
the following lemma.

3.13 Lemma.
Let J = {1, 2, . . . , w − 1} and J ′ = {i+ 1, i+ 2, . . . , i+ l}, then

1) Hk(M(q, p)) ≈ Hk(f−1(τw−1)) if 0 ≤ k ≤ m− 2, where m = minj∈J{λaj
}.

2) Hk(M(q, p)) ≈ Hk(f−1(τ0)) if 0 ≤ k ≤ n−2−M , whereM = maxj∈J{λaj
}.

3) Hk(f−1(τi)) ≈ Hk(f−1(τi+l)) if 0 ≤ k ≤ minj∈J ′{λaj
− 2, n− 2− λaj

}.

In particular H0(M(q, p)) ≈ H0(f−1(τj)) for all j ∈ J if λaj
6= 1, n − 1 for all

j ∈ J .

3.14 Remark: Note that the lemma is an empty statement if n = dim(M) ≤ 2,
that (1) is an empty statement if m = 1, that (2) is an empty statement if
M = n− 1, and that (3) is an empty statement if λaj

= 1, n− 1. �

We can now say a bit about the connectivity of M(q, p). More precisely we
obtain a necessary condition for M(q, p) to be connected.

3.15 Corollary.
The space of broken flow lines is connected if there exists no critical point
of index 1 (or n − 1). Moreover, the number of path components of a level
surface remains constant when passing a critical level surface if the index of the
corresponding critical point is different from 1 and n− 1.

Proof:
The rank of H0(M(q, p)) can be interpreted as the number of components of
M(q, p) (see ([Spa81],Ch.6.4)). Hence we obtain the first assertion by lemma
3.13(1), since f−1(τw−1) ≈ S

n−1. Moreover, since f−1(τi) is an ENR (Eu-
clidean Neighborhood Retract, see ([Dol80],Ch.IV.8)) for any i, the Čech coho-
mology coincides with ordinary singular cohomology (see e.g. proposition 6.12 in
([Dol80],Ch.IV.8)). Hence we may interpret the rank of H0(f−1(τi)) as the num-
ber of path components of f−1(τi) (see ([Spa81],Ch.5.4)). By lemma 3.13(3),
this proves the last part of the corollary �

To this end we indicate that the assumption f(ai) 6= f(aj) from section 3.1 is
redundant. Assume that on the level surface corresponding to ai there are k
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critical points ai1, . . . , aik. In this case only claim 3.11 needs to be changed, all
other results holds without any changes to statements and proofs. The correct
conclusion of claim 3.11 in this case is

Π−1(m) =

{

a point if m ∈ f−1(τi−1)−
⋃

j Wu(aij)
τi−1

S
n−λaij

−1 if m ∈Wu(aij)
τi−1

and the proof holds readily. We summarize in the following theorem.

3.16 Theorem.
Let f : M → R be a Morse-Smale function with only one minimum q and one
maximum p, and let τi, τj be regular values such that f(q) < τi ≤ τj < f(p).
With m = mina6=q{λa | f(a) < τi} and M = maxa6=p{λa | f(a) > τj}, the
restriction map M(q, p) → M(τi, τj); β 7→ β|[τi, τj ] induces an isomorphism in
Čech cohomology in degree < min{m− 1, n− 1−M} and a monomorphism in
degree min{m − 1, n − 1 −M}. In particular M(q, p) is connected if there are
no critical points of index 1 (or n− 1).

In ([Mat02],p.90) a Morse function f : CP
n → R is constructed, with n + 1

critical points of index 0, 2, . . . , 2n. Hence CPn(q, p) is connected with respect
to this Morse function.

3.4 Appendix

Recall that for k = 0 all the maps in diagram 3.9 are isomorphisms onto there
images. Hence maxτ{Rank(H0(f

−1(τ)))} ≤ Rank(H0(M(q, p))), and by corollary
3.15 this lower bound only depends on the critical points of index 1 and n− 1.
In this appendix we will elaborate a bit more on how the path components of
level surfaces changes when passing a critical point of index 1 or n − 1. The
following is implicit in the literature on handle body’s. Moreover, we make no
assumptions on the critical points of the Morse function.

Assume that λai
= 1, λaj

= n − 1 and for k = i, j let Wk = f−1([τk−1, τk]),
Vk = Mτk−1 and V ′

k = Mτk . The triple (Wk, Vk, V
′
k) is then an elementary

cobordism in the sense of ([Mil65],p.28) since f is a Morse function on the
manifold triad (Wk, Vk, V

′
k) with exactly one critical point (see ([Mil65],p.2,8)).

By lemma 3.2 in [Mil65] there exists a gradient like vector field for f , so we may
apply corollary 3.15 (of theorem 3.14) in [Mil65] to conclude that H∗(Wk, Vk)
is Z (generated by [Wu(ak)]) in dimension λak

and zero otherwise. Moreover,
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with minor modifications (replace DL by DR) the proof of theorem 3.14 also
yields a dual corollary; H∗(Wk, V

′
k) is Z (generated by [Ws(ak)]) in dimension

n− λak
and zero otherwise. Now assume that n = dim(M) > 2, then we obtain

the following two exact sequences based on the long exact sequence of the pairs
(Wk, Vk) and (Wk, V

′
k)

0 // H1(Vi) // H1(Wi)
αi // Z // H0(Vi) // H0(V

′
i )

// 0

0 // H1(V
′
j ) // H1(Wj)

αj
// Z // H0(V

′
j ) // H0(Vj) // 0

where the isomorphisms H0(Wi) ≈ H0(V
′
i ) and H0(Wj) ≈ H0(Vj) are due to the

assumption n > 2. Since H0(·) is free we see that αk is either 0 or surjective,
hence

β0(V
′
k) =

{

β0(Vk) if αk surjective
β0(Vk)± 1 if αk = 0 with - if k = i and with + if k = j

where βl(X) = Rank(Hl(X)) the l’th Betti number of X. It then follows that
the number of path components of a level surfaces either remains constant or
reduces (resp. increases) by one when passing a critical point of index 1 (resp.
n− 1). Hence 1 ≤ maxτ{Rank(H0(f

−1(τ)))} ≤ 1 + #Critn−1(f).

It follows that in the case of one minimum and one maximum, all αj as above
are surjective if all the critical points of index 1 lie below the critical points of
index n−1, in which case we also have that all αi’s as above are surjective. This
is e.g. the case for f : RP

n → R; (x1, . . . , xn+1) 7→
∑

cix
2
i /|x|2 where ci < ci+1

(see [Mat02]). Moreover, since the above method generalizes to the case of more
than one critical point ([Mil65],p.35) we have

3.17 Corollary.
If f : M → R is a self indexing Morse function with one minimum and one
maximum and dimM > 2 then β0(f

−1(t)) = 1 for all t ∈ R.

Now if αj = 0 for some αj (and critical point aj as above) then it must be the
case that there exists a critical point ai with λai

= 1 such that f(aj) < f(ai)
i.e. ai lies above aj , hence W(aj , ai) = ∅, and αi = 0. The above is e.g. the
case when there exists an elementary cobordism Wj as above which is simply
connected.

As a passing remark note that we could obtain the conclusion of corollary 3.15
by the above arguments since, in these cases, Z is replaced by 0 in the above
diagrams.
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We could now proceed by investigating when (and under what conditions) the
inclusions, inducing α and α′, are zero or surjective. However, we choose to
change the above approach slightly and follow ([Bro72],Ch.IV). Let (Wi, Vi, V

′
i )

be the elementary cobordism above. We may describe V ′
i as being the result of

doing surgery (of type (1, n−1)) on Vi as follows. Let E = S
0×D

n−1 and ϕ : E →
Vi the characteristic embedding ([Mil65],p.28) i.e. a smooth embedding into the
interior of Vi, then V ′

i is homeomorphic to (Vi − intϕ(E))∪S0×Sn−2 (D1 × S
n−2)

where int denote the interior (compare ([Mil65],p.31)).

3.18 Remark: A cobordism between Vi and V ′
i can be obtained as W = (Vi×

[0, 1])∪S0×Dn−1 (D1×D
n−1) with (x, y) ∈ S

0×D
n−1 identified with (ϕ(x, y), 1).

Note that W is the result of attaching a 1-handle to Vi × [0, 1] (see appendix
1.3.1, ([Bro72],p.83) and compare ([Mil65],p.31)). �

Now let M0 = Vi − intϕ(E) then by ([Bro72],p.98) we have

0 // H1(M0) // H1(V
′
i )

y·
// Z // H0(M0) // H0(V

′
i )

// 0

where z 7→ y · z is the map induced by the intersection product, y = ψ∗(µ
′),

ψ : E′ = D
1 × S

n−2 → V ′
i the natural (smooth) embedding, µ′ = i′∗([S

n−2]), i :
S
n−2 →֒ E′ = D

1×S
n−2 the inclusion, and [Sn−2] ∈ Hn−s(S

n−2) the fundamental
class. Note that if we consider E′ as a 1-disc bundle over S

n−2 then µ′ =
τ ∩ [E′] with τ = DE′(i′∗([S

n−2])) the Thom class and where DE′ : Hn−2(E
′)→

H1(E′, ∂E′) is the inverse to ∩[E′] the Poincaré map.

We want to replace H0(M0) with H0(Vi) in the above sequence. This is possible
since H0(Vi,M0) ≈ H0(E, ∂E) ≈ 0 where the first isomorphism is excision and
the second is by the long exact sequence for (E, ∂E). Hence H0(M0) ≈ H0(Vi)
by the long exact sequence for (Vi,M0), so

0 // H1(M0) // H1(V
′
i )

y·
// Z // H0(Vi) // H0(V

′
i )

// 0

is exact and z 7→ y · z is either zero or surjective. Moreover, arguments similar
to the above apply to (Wj , Vj , V

′
j ) and we obtain an exact sequence

0 // H1(M0) // H1(Vj)
x· // Z // H0(V

′
j ) // H0(Vj) // 0

where x = ϕ∗(µ), ϕ : S
n−2 × D

1 → Vj is the characteristic embedding and
µ = i∗([S

n−2]) is as above. Hence we obtain the same conclusion as above, that
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the number of path components of a level surfaces either remains constant or
reduces (resp. increases) by one when passing a critical point of index 1 (resp.
n−1). But we now know a bit more about the maps determining this behavior.
We end this appendix with a list of some special cases.

1) If there are no critical points of index n − 1 below Vj then it is connected.
So Hn−2(Vj) has no torsion (corollary VI.7.13 in [Bre93]) since all level surfaces
are orientable. Hence x = 0 iff z 7→ x · z is zero (lemma 4.35 in [Mat02]).

2) Let S = ϕ(Sn−2) (identifying S
n−2 ≈ S

n−2 × {∗}) and assume that S ⊂ Vj
bounds D ⊂ Vj an embedded copy of D

n−1. It is clear that there exists a singular
n− 2 simplex c : ∆n−2 → S (collapsing ∂∆n−2 to a point), and a singular n− 1
simplex b : ∆n−1 → D such that c = ∂b. Hence x = ϕ∗([S

n−2]) = 0 (using that
i : S

n−2 →֒ S
n−2 × D

1 induces an isomorphism in homology).

3) Let S be a closed 1-manifold (i.e. a finite union of circles) embedded in Vj
intersecting S transversely in a finite number of points, then [S] · [S] = 〈S〉 · 〈S〉
where the right hand side is the intersection number (see ([Mat02],p.159)). So
if there exists S such that S ∩ S = {∗} then z 7→ x · z is surjective.

4) Let the critical points be arranged as in (3.1). If λa1
= n− 1 then z 7→ x · z

is zero since Vj ≈ S
n−1.

5) Let the critical points be arranged as in (3.1). Let ai be the first critical
point of index n− 1. If there are no critical points of index 2 below ai the map
z 7→ x · z is zero since all level surfaces below ai are simply connected. This
follows by a simple computation using the long exact sequences of pairs (Wi, Vi)
and (Wi, V

′
i ).



Chapter 4

Path components and the

space of broken flow lines

In this chapter we address the question of whether or not compactifying the
space of height-parameterized flow lines alters the number of path components
of this space.

As always we fix a Morse function f : M → R on a closed n-manifold M and a
Riemannian metric g on M such that the pair (f, g) is Morse-Smale. Through
the course of this chapter additional assumptions on f and g will be made.
These are as follows: f must be self indexing with only one minimum and
one maximum, and g must be compatible with the Morse charts (we refer the
reader to the last part of section 3.1 and remark 4.5 for comments on these
assumptions).

In section 4.1 we construct a gluing procedure for height-parameterized flow
lines. This is a local construction that relies on data contained in the normal
bundle ν(W(p, q)τ ,Wu(p)τ ). In section 4.2 we use the gluing procedure to show
that the inclusion of the space of height- parameterized flow lines into the space
of broken flow lines induces a surjection on π0 (the 0’th homotopy group) i.e.
no path component of the space of broken flow lines consists only of broken flow
lines.

In section 4.3 we show that adding flow lines which only break once to the space
of height-parameterized flow lines does not alter the number of path components

49
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of this space (for a precise statement see lemma 4.11). Moreover, in the case
of dim(M) = 3 we show that the inclusion of the space of height-parameterized
flow lines into the space of broken flow lines induces a bijection on π0, hence
compactifying the space of height-parameterized flow lines does not alter the
number of path components. In section 4.4 we extend the result of section 4.3
to include flow lines which break at critical points of either index n − 1 and
n− 2, or index 2 and 1 (for a precise statement see lemma 4.14).

4.1 A gluing construction

The aim of this section is to construct a gluing map. This construction will rely
on the following observation regarding the normal bundle ν(W(p, q)τ ,Wu(p)τ ).

4.1 Claim.
We have ν(W(p, q)τ ,Wu(p)τ ) ≈W(p, q)τ×E

u
q . That is, the (λp−1)-dimensional

normal bundle of W(p, q)τ in Wu(p)τ is trivial with fiber the unstable summand
E
u
q in TqM = E

u
q ⊕ E

s
q.

Proof:
The statement will follow from standard transversality arguments. Let A and
B be submanifolds of M , we will show that TCM ≈ ν(C,A) ⊕ TC ⊕ ν(C,B)
whenever C = A ⋔ B i.e. A and B are transverse. First

C = A ⋔ B ⇔ 0→ TC
i−→ TCA⊕ TCB j−→ TCM → 0 is exact

where i : z 7→ (z, z) and j : (x, y) 7→ x − y. Now with the identification
TCA ⊕ TCB = TC ⊕ ν(C,A) ⊕ TC ⊕ ν(C,B) : (x, y) = (xc, xa; yc, yb) we
have, for i, a splitting map s : (xc, xa; yc, yb) 7→ xc (one could also choose yc
instead of xc). Hence1 there exists an idempotent endomorphism ϕ = i ◦ s :
(xc, xa; yc, yb) 7→ (xc, 0;xc, 0) such that ker(ϕ) = im(1−ϕ), im(ϕ) = im(i) and
TCA ⊕ TCB = im(1−ϕ) ⊕ im(ϕ) = ker(ϕ) ⊕ im(ϕ). Since im(i) = ker(j) this
implies that

TCA⊕ TCB = ker(ϕ)⊕ im(ϕ)
j⊕s≈ TCM ⊕ TC

(xc, xa; yc, yb) = (0, xa; yc, yb : xc, 0;xc, 0) ≈ (xa − y : xc)

Hence TCM ≈ ker(ϕ) = ν(C,A)⊕TC⊕ ν(C,B) and so TCM ≈ ν(C,A)⊕TCB
which implies ν(C,A) ≈C ν(B,M) where ≈C denote isomorphism over C.

1See ([Bre93],p.179-180)
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Now with A = Wu(p)τ , B = Ws(q)τ and M = Mτ we have C = W(p, q)τ and
ν(W(p, q)τ ,Wu(p)τ ) ≈C ν(Ws(q)τ ,Mτ ) Moreover, with A = Mτ , B = Ws(q)
and M = M we have C = Ws(q)τ and ν(Ws(q)τ ,Mτ ) ≈C ν(Ws(q),M). Since
ν(Ws(b),M) is an λb-dimensional vector bundle over Ws(b) which is contractible
we have, with C = W(p, q)τ and C ′ = Ws(q)τ

ν(W(p, q)τ ,Wu(p)τ ) ≈Cν(Ws(q)τ ,Mτ )

≈C′ν(Ws(q),M) ≈Ws(q)× ν(Ws(q),M)x (4.1)

where ν(Ws(b),M)x is the fiber over x ∈Ws(b). Note that (4.1) implies that

ν(W(p, q)τ ,Wu(p)τ ) ≈W(p, q)τ × ν(Ws(q),M)x

with x ∈W(p, q)τ . Moreover, by theorem 1.1 and since TWs(q)M ≈ ν(Ws(q),M)⊕
TWs(q) we have

E
u
q ⊕ E

s
q = TqM ≈ νq(Ws(q),M)⊕ TqWs(q) ≈ νq(Ws(q),M)⊕ E

s
q

with all isomorphisms in Vect the category of vector spaces. So by identifying
each fiber of ν(Ws(q),M) with E

u
q we have ν(W(p, q)τ ,Wu(p)τ ) ≈W(p, q)τ×E

u
q ,

proving the claim. �

We now begin the construction of a continuous (gluing) map [0, ε] → M(p, q);
s 7→ G(η1, η2; s), with η1 ∈M(q, a) and η2 ∈M(a, p) fixed, such that G(η1, η2; s)
∈ M(p, q) for s 6= 0, and G(η1, η2; 0) = η1#η2 ∈ M(p, q). That is, the gluing
map associates to each strictly positive (gluing) parameter a non broken flow
line and at zero gives the broken flow line η1#η2.

•
η2







•

η1

11
11

11
11

11
//

•

Figure 4.1: An illustration of the gluing procedure, where • denote the critical
points q, a and p listed from below, − denote orbits, and the dotted arrow
indicate the increase in s ∈ [0, ε].
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Let νS(W(p, q)τ ,Wu(p)τ ) denote the unit sphere bundle in ν(W(p, q)τ ,Wu(p)τ )
that is νS(W(p, q)τ ,Wu(p)τ ) ≈W(p, q)τ × S

u
q . Now for m ∈W(p, q)τ let expm :

TmWu(p)τ → Wu(p)τ denote the exponential map at m, where TmWu(p)τ ⊆
TmWu(p)τ denotes the domain of expm, with equality if there are no critical
points between p and q.

For ε = ι(m) > 0, where ι(m) denote the injectivity radius ([Kli95],p.131) wrt.
expm, and I = [0, ε], we then define a continuous map Expm by the composition

ν
S
m(W(p, q)τ

, W
u(p)τ ) × I → νm(W(p, q)τ

, W
u(p)τ ) →֒ T mW

u(p)τ expm
−→ W

u(p)τ

(m; y, s) 7→ (m; sy) 7→ expm(sy)

Note that for s 6= 0 the map Expm defines a diffeomorphism onto im(expm) −
{m} and the curve I →Wu(p)τ ; s 7→ Expm(x, s) is a geodesic.

Let (Uq, ψ) be a Morse chart around q and assume that the Riemannian metric g

is compatible with (Uq, ψ). Hence im(ψ) = E = E
u
q ⊕E

s
q and ψ◦ϕt ◦ψ−1(x, y) =

(xe2t, ye−2t). Let E
τ = E ∩ ψ(f−1(τ)) and choose τ and κ such that (Esq)

τ =
S
s
q and (Euq )

κ = S
u
q . By direct calculations it is then easily verified that the

involution

F : E
τ − (Ssq)

≈−→ E
κ − (Suq ); (x, y) 7→ (|y|x/|x|, |x|y/|y|) (4.2)

has the property that (x, y) and F (x, y) lie on the same local flow line.

Fix (m0;x0) = (m0;x0
u, 0) ∈ νS(W(p, q)τ ,Wu(p)τ ), let ψ(m0) = y0 = (0, y0

s)
and note that |y0| = 1 since ψ(W(p, q)τ ) ⊂ S

s
q. With I ′ = ]0, ε] we then define

the following local curves

I → E
τ ; s 7→ ψ(Expm0(x0, s)) = (x(s), y(s))

I ′ → E
κ; s 7→ (u(s), v(s)) = F (ψ(Expm0(x0, s)))

= (|y(s)|x(s)/|x(s)|, |x(s)|y(s)/|y(s)|)

Observe that

(ẋ(0), ẏ(0)) =
d

dt

∣

∣

∣

∣

∣

s=0

ψ(Expm0(x0, s)) = x0 = (x0
u, 0)

and for s→ 0 we have

(x(s), y(s))→ (x(0), y(0)) = (0, y0
s)

v(s)→ 0 and |y(s)| → 1
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Moreover, u1(s) = x(s)/|x(s)| → x0
u ∈ S

u
q as s → 0 since u1(s) ∈ S

u
q for all

s ∈ I, hence

(u(s), v(s))→ x0 = (x0
u, 0) for s→ 0

and so we extend s 7→ (u(s), v(s)) to a continuous map on I.

4.2 Claim.
With notation as above we have x0 = x0.

Proof:
We just calculate the right-hand derivative

ẋ+(0)/|ẋ+(0)| = lim
s→0+ x(s)/s

| lim
s→0+ x(s)/s| = lims→0+

x(s)/s
|x(s)/s| = lims→0+ x(s)/|x(s)| = x0

u

But the right and left-hand derivative are the same since s 7→ x(s) is smooth
(meaning, by definition, that this map extends to a smooth map on ]− δ, ε+ δ[
for some δ > 0). Hence x0

u = ẋ(0)/|ẋ(0)| = x0
u/|x0

u| = x0
u, proving the claim. �

We can now prove our version of the gluing lemma, we refer to figure 4.2 for an
illustration of the proof.

4.3 Lemma.
Let f : M→ R be a Morse function on a Riemannian manifold (M, g) such that
(f, g) is Morse-Smale and g is compatible with the Morse charts. Given p, a, q ∈
Crit(f) with λp > λa > λq = 0, and let η1 ∈M(q, a) and η2 ∈M(a, p). For ε > 0
small there exists a continuous map [0, ε]→ M(q, p); s 7→ G(η1, η2; s) = η1#sη2
such that η1#0η2 = η1#η2 and η1#sη2 ∈M(q, p) for s > 0.

Proof:
With notation as above let η2(τ) = m0 ∈ W(p, a)τ , η1(κ) = m1 ∈ W(a, q)κ,
ψ(m1) = x0 and η : [f(q), f(p)] ×W(p, q) → M be the continuous “flow” map
defined below claim 2.5.

By claim (4.2) we have ψ−1(u(0), v(0)) = m1 ∈Ws(q)κ. Now Ws(q)κ is open in
Mκ because λq = 0, hence im(ψ−1(u(s), v(s))) ⊂ Ws(q)κ for all s ∈ [0, ε] where
ε is chosen smaller that ι(m0) if necessary. From the above we then conclude
that

1) ψ−1(F (ψ(Expm0(x0, t)))) and Expm0(x0, t) belong to the same flow line
for each t ∈ I ′
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2) For t ∈ I ′, both ψ−1(F (ψ(Expm0(x0, t)))) and Expm0(x0, t) belong to
W(p, q).

3) ψ−1(F (ψ(Expm0(x0, 0)))) = m1 ∈ W(a, q) and Expm0(x0, 0) = m0 ∈
W(p, a).

Now let η : [f(q), f(p)] ×W(p, q) → M be the continuous “flow” map defined
below claim 2.5. Then by (1) and (2) above we have a well defined map

]0, ε]→M(q, p); s 7→ G(s) = G(η1, η2; s) =

{

t 7→ ηg(Exp
m0 (x0,s))(t) t ∈ J(q, a)

t 7→ ηExp
m0 (x0,s)(t) t ∈ J(a, p)

with J(q, a) = [f(q), f(a)], J(a, p) = [f(a), f(p)] and g = ψ−1 ◦F ◦ψ. Moreover,
it is clear that G is continuous and by (3) above that lims→0G(s) = ηm1#ηm0 =
η1#η2. Hence we may extend G to a continuous map [0, ε]→M(q, p) which is
the required map. �

η1

η2

E
τ

E
κ

a ψ(m1) = x0

p

q

E = E
u ⊕ E

s

ψ(m0)

Figure 4.2: The gluing construction of lemma 4.3.

Note that the gluing map G is a continuous curve with no self intersections,
hence injective. Moreover, since [0, ε] is compact and M(q, p) is Hausdorff we
have the following.
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4.4 Corollary.
The gluing map is an embedding.

4.5 Remark: Note that we can not talk about G as a Cr (r > 0) map since
M(q, p) does not carry any Cr structure.2 However if we restrict G to ]0, ε] then
im(G) ⊂ M(q, p), and so using the evaluation map eτ say to identify M(q, p)
with W(p, q)τ (according to claim 2.9) we see that G(s) = Expm0(x0, s). Hence
G| ]0, ε] is a diffeomorphism onto its image in this case.

Moreover, the compatibility condition on g in lemma 4.3 is not severe, since any
metric can be modified to be compatible with the Morse charts (see page 7).

Finally, the gluing map G above should be compared to the gluing constructions
mentioned at the beginning of appendix 2.5.1. �

4.1.1 Extension of the gluing map

In this subsection we show how one may extend the gluing map G from lemma
4.3 to a (continuous) map M(q, a) × D → M(q, p), where D ⊆ M(a, p) × R

+

and R
+ = [0,∞[. This result is not used elsewhere.

Let TWu(p)τ ⊂ TWu(p)τ be the domain of exp, and consider the homeomor-
phism

M(q, a)×M(a, p)
≈−→W(p, a)τ ×W(a, q)κ

≈−→W(p, a)τ × S
u
a,q, S

u
a,q ⊆ S

u
a

where the first map is (eτ ◦ pr2, eκ ◦ pr1) and the second map is 1×ψ with
ψ(W(a, q)κ) = S

u
a,q. Now with D = {(η, s) ∈ M(a, p) × R

+ | s ∈ [0, ι(eτ (η))]}3
the following composition is well defined

Exp :M(q, a)×D → νS(W(p, a)τ ,Wu(p)τ )× R
+ → TWu(p)τ

exp−→Wu(p)τ

(η1, η2, s) 7→ (eτ (η2), ψ(eκ(η1)), s) 7→ (eτ (η2), ψ(eκ(η1))s)

7→ expeτ (η2)(ψ(eκ(η1))s)

where we have used the identification νS(W(p, a)τ ,Wu(p)τ ) ≈ W(p, a)τ × S
u
a

of claim 4.1. It is clear that Exp is continuous. Moreover, by replacing the
constants x0 = ψ(η1(κ)) and m0 = η2(τ) in the above construction of G, with

2If this property is wanted one has to proceed along the lines mentioned in remark 2.7.
3Just as a passing remark, recall that ι the injectivity radius is a continuous function

([Kli95],p.131).
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the continuous functions η1 7→ x0(η1) = ψ ◦ eκ(η1) and η2 7→ m0(η2) = eτ (η2)
respectively, one sees that the map

M(q, a)×D → M(q, p); (η1, η2; s) 7→
{

t 7→ ηg(Exp(η1,η2;s))(t) t ∈ [f(q), f(a)]

t 7→ ηExp(η1,η2;s)(t) t ∈ [f(a), f(p)]

with g = ψ−1 ◦F ◦ψ, is well defined and continuous (after extension to s = 0, as
above). By abuse of notation we denote this map by G and write G(η1, η2; s) =
η1#sη2. As above we have that G(η1, η2; 0) is the height-parameterized flow
line ηeκ(η1)#ηeτ (η2) = η1#η2, and for s 6= 0 that G(η1, η2; s) is the height-
parameterized flow line through Exp(η1, η2; s) ∈ W(p, q)τ (or equivalently,
through g(Exp(η1, η2; s)) ∈W(p, q)κ)

As a passing remark we note that if the injectivity radius ι(W(p, a)τ ) is positive
and s 6= 0 then G is a homeomorphism onto its image.

4.2 Surjectivity of M(q, p) →֒M(q, p) on π0

In this section we show, by means of the gluing map, how one may continuously
deform any broken flow line into a height-parametrized flow line. As a corollary
of this construction we show that the inclusion M(q, p) →֒ M(q, p) induces a
surjection on π0 (the 0’th homotopy group), hence we obtain an upper bound
for the number of path components of M(q, p).

4.6 Theorem.
Let f : M → R be a Morse function on a Riemannian manifold (M, g) such
that (f, g) is Morse-Smale and g is compatible with the Morse charts. If β =
η1# · · ·#ηk ∈M(q, p) with λq = 0 and λp = n, then there exists η ∈M(q, p), an
ε > 0 and a path p ∈ C(([0, ε], 0, ε), (M (q, p), β, η)). Moreover, if b(s) denotes
the (strict) chain connected to p(s) then s 7→ l(b(s)) is a decreasing function
from k to 1.

Proof:
Let b(0) = {q = b0, b1, . . . , bk−1, bk = p} denote the chain connected to β,
and p1 : [0, ε1[ → M(q, p) be the path defined as the composition of the con-
tinuous maps [0, ε1[ → M(q, b2); s 7→ η1#sη2, and M(q, b2) → M(q, p); α 7→
α#η3# · · ·#ηk the partial map of the concatenation map M(q, b2)×M(b2, p)→
M(q, p); (α, ν) 7→ α#ν. Hence p1 is continuous, p1(s) = η1#sη2#η3# · · ·#ηk
and p1(0) = β.
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Now fix s1 ∈ ]0, ε1[ and let b(s1) = {q = b0, b2, . . . , bk−1, bk = p} denote the
chain connected to p1(s1). Proceeding as above we obtain a continuous path
p2 : [0, ε2[→M(q, p); s 7→ η1#s1η2#sη3# · · ·#ηk with p2(0) = p1(s1).

If we proceed k − 1 times we obtain, for i = 1, . . . , k − 1, continuous paths
pi : [0, εi[ → M(q, p) such that pi+1(0) = pi(si), p1(0) = β and pk−1(s) ∈
M(q, p) for s > 0. Let ε = min{si}, we may then assume that dom(pi) = [0, ε]
for all i. Moreover, by replacing each si by ε in the above we may define
p : [0, ε]→M(q, p) by p = p1#p2# · · ·#pk−1 i.e.

p(s) = pi((k − 1)s− (i− 1)ε) = η1#εη2#ε · · ·#εηi#(k−1)s−(i−1)εηi+1# · · ·#ηk
on [(i − 1)ε/(k − 1), iε/(k − 1)] for i = 1, . . . , k − 1. Moreover, by the above
construction l(b(s)) is k for s = 0 and k − i on ](i− 1)ε/(k − 1), iε/(k − 1)] for
i = 1, . . . , k − 1, hence proving the theorem. �

We make the following observation regarding the construction of the path p. Let
notation be as above and consider (as always w.r.t. the uniform metric d∞) the
open r-ball Br(β) in M(q, p) centered at β. Since the function s 7→ d∞(β, p(s))
is continuous (mapping 0 to 0) we see from the above construction of p that,
given r > 0 we may assume that p(s) ∈ Br(β) for all s ∈ [0, ε] by choosing ε
sufficiently small.

Let τ ∈ ]f(q), f(p)[ and #S denote the number of path components of the
space S. We then note that #W(p, q) = #W(p, q)τ = #M(q, p) since W(p, q) ⋍

W(p, q)τ ≈ M(q, p) (see above diagram (2.2)) so their homology agrees. In
particular #W(p, q)τ does not depend on τ . Moreover, by theorem 4.6 above,
we may connect any broken flow line to a non broken flow line by a continuous
path. Hence we conclude that there are no path component of M(q, p) consisting
only of broken flow lines.

Now let W ⊂ W(p, q)τ denote a path component and x, y ∈ W , hence there
exists a path ρ ∈ C(([0, 1], 0, 1), (W,x, y)). Let η : [f(q), f(p)] ×W(p, q) → M

be the continuous “flow” map defined below claim 2.5, then [0, 1] → M(q, p) ⊂
M(q, p); s 7→ ηρ(s) defines a continuous map. Hence each path component of
M(q, p) is contained in a path component of M(q, p) i.e.

4.7 Corollary.
The inclusion M(q, p) →֒ M(q, p) induces a surjection on π0. So #M(q, p) ≤
#M(q, p) in particular.

4.8 Remark: Note that in theory it could be that #M(q, p) is infinite. How-
ever we believe that this is not the case. Moreover, if dim(M) = 2 (or = 3) then
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#M(q, p) is finite by the proof of the Morse homology theorem (resp. by (5.3)
of chapter 5). �

The obvious question is now whether or not path components of M(q, p) remain
disjoint whenM(q, p) is included inM(q, p) i.e. can it happen that two (or more)
path components of M(q, p) are merged under the inclusion, by means of broken
flow lines, to form only one path component in M(q, p). In the next two sections
we give a partial answer to this question.

4.3 On the injectivity of M(q, p) →֒M(q, p) on π0

In this section we show that the number of path components remains constant
when we add to M(q, p) the set of broken flow lines which only break once (for
a precise statement see lemma 4.11). Moreover, in the three dimensional case
(dim(M) = 3) we show that the inclusion M(q, p) →֒M(q, p) induces a bijection
on π0, hence #M(q, p) = #M(q, p) in this case. The results/techniques of this
section are also used in section 4.4.

We assume that f is self indexing with one minimum q and one maximum p.
Throughout let I = [0, 1], J = [f(q), f(p)], b denote a critical point of index
n−1, and ρ ∈ C((I, 0, 1), (M(q, p), η, η′)) with η, η′ ∈M(q, p). Finally, for fixed
τ ∈ J we let pτ : I → Mτ denote the map s 7→ pτ (s) = ρ(s)(τ) and call this the
induced level τ -map.

Let W denote one of the (un)stable manifolds. Since W is contractible (being
diffeomorphic to an open disk) we conclude that any vector bundle over W is
trivial (see ([Hus75],p.29) or ([Hir94],p.97)) and orientable (see ([Hir94],p.104)).
As in section 4.1 let ν(Wu(b),M) ≈Wu(b)×R denote the orientable one dimen-
sional normal bundle of Wu(b) in M, and Tb ⊂ ν(Wu(b),M) a normal tubular
neighborhood of Wu(b) which we (as usual) identify with an open neighborhood
of Wu(b) in M.

Since ν(Wu(b),M) is orientable we say that (x, u) ∈ Tb is on the positive side of
Wu(b) if u > 0, i.e. the normal coordinate is strictly positive.

Fix τ ∈ J and let I ′ = ]s1, s2[ be an open connected interval such that p(s) =
pτ (s) ∈ Tb for all s ∈ I ′ and some b. We assume that I ′ is maximal (wrt. p) in
the sense that there exists no other open connected interval I ′′ such that I ′ ⊂ I ′′
and p(s) ∈ Tb for all s ∈ I ′′. On I ′ we write p(s) = (x(s), u(s)).
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Wu(b)

Tb

Figure 4.3: The image of s 7→ p(s) on a neighborhood of I ′.

Now assume that p crosses Wu(b) i.e. there exists an ε > 0 and a closed interval
I ′′ = [s′1, s

′
2] ⊂ I ′ such that u = 0 on I ′′, u > 0 on ]s′1 − ε, s′1[ and u < 0 on

]s′2, s
′
2 + ε[. Note then that ρ(s, t) = ρ(s)(t) ∈ Wu(b) ⊂ Tb for s ∈ I ′′ and t ∈

[τ, f(b)], since Wu(b) is flow invariant. Now fix τ ′ = f(b)+ε for some ε > 0 such
that ρ(s, t) ∈ Tb for t ∈ J ′ = [τ, τ ′], s ∈ I ′′ and write ρ(s, t) = (x(s, t), u(s, t))
for t ∈ J ′ and s ∈ I ′′. Then clearly u = 0 on I ′′× [τ, f(b)] and u is either strictly
positive or strictly negative on I ′′× ]f(b), τ ′], say strictly positive.4 Since ρ is
continuous d∞(ρ(s′), ρ(s)) < ε for any ε > 0 and s close to s′, hence ρ(s, t) ∈ Tb
for t ∈ J ′ and s close to s′ ∈ I ′′. In particular this implies that for fixed
t′ ∈]f(b), τ ′] the normal coordinate u(s′, t) is strictly positive for all s close to
s′2. But by our assumption u(s, τ) = u(s) < 0 for all s close to s′2 with s > s′2,
hence u(s′, t) < 0 for all s close to s′2 with s > s′2, since flow lines t 7→ ρ(s)(t)
do not cross Wu(b). This is a contradiction and so we conclude that; p can not
cross Wu(b). The above argument also shows that: If u(s) = 0 for some s ∈ I ′
and u(s, t) > 0 (resp. u(s, t) < 0) for t ∈]f(b), τ ′] then u ≥ 0 (resp. u ≤ 0) on
I ′. And if u 6= 0 on I ′ then either u > 0 or u < 0 on I ′. Finally note that the
above applies equally well in the case where Wu(b) is replaced by Ws(a) with
λa = 1.

4.9 Lemma.
Let f : M→ R be a self indexing Morse-Smale function with only one minimum
q and one maximum p, and let B1 ⊂ M(q, p) denote the subspace of all flow
lines β ∈ M(q, p) for which b(β) = {q, c, p} and λc is either n − 1 or 1. Then
the inclusion M(q, p) →֒ (M(q, p) ∪ B1) induces an injection on π0. Moreover,
the inclusion induces a bijection if the Riemannian metric is compatible with
the Morse charts.

The assumption on λc may be removed if one adds the condition that the Rie-
mannian metric is compatible with the Morse charts, see lemma 4.11.

4In the case strictly negative the following argument has to be applied to a neighborhood
of s′1 instead of s′2.
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Proof:
The idea of the proof is as follows. Assume that b(ρ(s)) ⊂ Critn−1(f) ∪ {p, q}
for any s ∈ I. We will show that it is possible to perturb the level τ -map
(τ ∈ ]0, 1[ ) to a continuous map whose trajectory is contained in M(q, p). The
(right) perturbation relies on the following observation concerning Tb.

For each x ∈ Wu(b) there exists an open neighborhood Ux in M of x such that
Ux ∩ (∪b′ 6=bWu(b′)) = ∅, since Wu(b) 6⊂ ∪b′ 6=b∂Wu(b′). Moreover the subspace
∪bWu(b) ∪ Wu(p) ⊂ M is open since it is the complement of the closed set
∪c:λc<n−1Wu(c) = ∪c:λc<n−1Wu(c). We choose each Ux such that Ux ⊂Wu(b)∪
Wu(p), and if necessary we shrink Tb such that Tb ⊆ ∪xUx. Hence Tb ∩ Tb′ = ∅
iff b 6= b′ and m ∈ Tb implies that m ∈Wu(b) ∪Wu(p).

Let T = ∪bTb, fix τ ∈ ]0, 1[ , let p = pτ and note that Mτ = Ws(q)τ since f is
self indexing with one minimum q. Now O = {s ∈ I | p(s) ∈ T} is open hence
O = ∪Ii where each Ii is an open connected interval. We assume that each Ii
is maximal wrt. p and write p(s) = (x(s), u(s)) on each Ii.

Let C = {s ∈ I | p(s) ∈ ∪bWu(b)} which is closed (therefore compact), since
b(ρ(s)) ⊂ Critn−1(f) ∪ {p, q} for any s ∈ I. Hence we may assume that O is a
finite union since it covers C.

Fix some Ii = ]s1, s2[ and let I ′ = Ii ∩ C (which is closed but not necessarily
connected) i.e. u|I ′ = 0. From the above we then have that the normal coordi-
nate u of p is either > 0 or < 0 in a neighborhood of both s1 and s2, say > 0.
Let s′1 and s′2 denote the endpoints (s′1 ≤ s′2) of I ′ and choose ε > 0 small. Let
s1 < s′1 and s2 > s′2 be such that u(si) = ε for i = 1, 2 and replace the curve
segment p([s1, s2]) by (the image of) the curve c : [s1, s2]→ T, s 7→ (x(s), ε).

To be more precise regarding the choices of ε: For each s ∈ I ′ the exists an
εs > 0 such that Bεs

((x(s), 0)) ⊂ T ∩Ws(q). Now the union of such balls is an
open cover of the compact subspace (x(I ′), 0), hence letting ε = mins{εs} we
conclude that ε > 0 and im(c) ⊂ T . Note that by construction of Tb (hence of
T ) we have in fact that im(c) ⊂Wu(p) ∩Ws(q).

We now proceed as above for each Ii. So in conclusion we have constructed
a continuous curve p′ : I → M from η(τ) to η′(τ) which avoids ∪c 6=pWu(c)
i.e im(p′) ⊂ W(p, q). Hence if we define ρ′ : I → M(q, p); t → ηp′(t) then
ρ′ ∈ C((I, 0, 1), (M(q, p), η, η′)) so η and η′ are in the same path component of
M(q, p). This proves the first part of the lemma, and the second part follows
from corollary 4.7. �
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As a consequence of the above lemma we have the following result which will
be used in chapter 5.

4.10 Proposition.
Let dim(M) = 3, and f : M → R be a self indexing Morse-Smale function
with only one minimum q and one maximum p. Then the inclusion M(q, p) →֒
M(q, p) induces an injection on π0. Moreover, the inclusion induces a bijection
if the Riemannian metric is compatible with the Morse charts, so #M(q, p) =
#M(q, p).

The second half of the above proposition is an immediate consequence of lemma
4.14 in section 4.4.

Proof:
Let τ ∈ ]1, 2[ , and p(s) = ρ(s)(τ). The idea of the proof is to perturb p such
that it induces a continuous curve with values in M(q, p) ∪ B1, where B1 is as
in lemma 4.9.

First we make the follow observation. If ρ(s) = ρ(s′) = β for s < s′ then we
redefine ρ on [s, s′] to be the constant map s 7→ β. Applying this construction
for every intersection we obtain a loop free path, and by corollary 3.11 in [RF06]
we may reparameterize to obtain an embedding of I in M(q, p). It is then clear
that we may assume wlog. that ρ is injective.

Now let s′ be such that b(ρ(s′)) = {q, a, b, p}, with λa = 1 and λb = 2. Then
p(s′) ∈ W(b, a)τ and by transversality (see ([Kos93],p.62)) there is a chart U ⊂
Mτ around p(s′) such that U ≈ R × R with U ∩Wu(a)τ ≈ R × {0} and U ∩
Ws(a)τ ≈ {0} × R. Note that we may choose U such that the only (un)stable
manifolds (besides W(p, q) of course) which intersects U non trivially is Wu(b)
and Ws(a).

By the above there exists an interval I ′ around s′ such that p(s) = (u(s), v(s))
is in only one of the four quadrants, say the second quadrant i.e. u(s) ≤ 0
and v(s) ≥ 0 (see figure 4.4 below). Note that 0 = (u(s), v(s)) only at s′

since ρ is injective (in fact s′ is the only parameter with the above properties).
Choose s1 < s′ < s2 and let x1 = p(s1) and x2 = p(s2). Now redefine p
as follows; let l : [s1, s2] → Mτ be the linear map from x1 to x2 i.e. s 7→
x2(s1 − s)/(s1 − s2) + x1(s − s2)/(s1 − s2)), and redefine p as p = l on [s1, s2]
and otherwise unchanged.
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x1

u

v

x2

Figure 4.4: The image of s 7→ p(s) in U near a point in the transverse intersection
Wu(b) ⋔ Ws(a) ⋔ f−1(τ).

It is clear that p is continuous and we claim that p induces a curve in M(q, p).
This is clearly true if x1, x2 ∈W(p, q), hence assume that x1 ∈Wu(b), say (oth-
erwise x1 ∈ Ws(a) by the choice of U). Now ρ(s1) = β#β+ where β ∈ M(q, b)
with β(τ) = x1, and β+ is one of the two elements of M(b, p) = {β+, β−}. Note
that β+ is determined uniquely by which side of Wu(b) the point x2 is on. We
show lims→s1 ηp(s) = ρ(s1) in M(q, p). It is obvious that the limit exists (call it
β′) and that β′ = β#β±, where β± denotes either β+ or β−. But ηp(s)(τ) and
x2 are on the same side of Wu(b), hence by the above β± = β+. If necessary
we apply similar arguments at x2 to obtain a curve ρ′ : I →M(q, p) defined by
ρ′(s) = ηp(s) on [s1, s2] and ρ′ = ρ otherwise.

Note that there are at most 4
∑

(b,a) #M(b, a) such s′, hence we proceed as above
for each such parameter to obtain a curve, also denoted ρ′. Now l(b(ρ′(s))) ≤ 2
by construction hence we may apply (the proof of) lemma 4.3 to conclude that
C((I, 0, 1), (M(q, p), η, η′)) 6= ∅. So the inclusion M(q, p) →֒M(q, p) induces an
injection on π0, and by corollary 4.7 it is a bijection if the Riemannian metric
is compatible with the Morse charts. �

We now return to the general case of injectivity, and show that the assumption
from lemma 4.9 on the index may be removed, if the Riemannian metric is
compatible with the Morse charts.

As above let ρ ∈ C((I, 0, 1), (M(q, p), η, η′)) and assume that # b(ρ(s)) ≤ 2.
Now fix c ∈ Crit(f) − {q, p} for which c ∈ b(ρ(s)) for some s ∈ I. Let Uc ⊂ M

be a Morse chart at c and choose τ, κ such that Wu(c)κ ∩ Uc and Ws(c)τ ∩ Uc
both are non empty. The set Ic = {s ∈ I | ρ(s)(κ) ∈ Wu(c)} is clearly closed
(hence compact) and Oc = {s ∈ I | ρ(s)(κ) ∈ Uc} is an open cover of Ic, so we
may assume that Oc = ∪Ii for some finite union of open connected intervals.

In the sequel we make a purely local construction, hence we identify Uc with
E = E

u ⊕ E
s. Moreover, we let c = 0, f(0) = 0, τ = 1 and κ = −1. As in the

construction of the gluing map we have the level surfaces E
τ and E

κ, on which
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we use the following coordinates

ψτ : E
u × S

s ≈−→ E
τ

(x, v) 7→ (x, v
√

1 + |x|2), ψ−1
τ : (x, y) 7→ (x, y√

1+|x|2
) = (x, y|y| )

and

ψκ : S
u × E

s ≈−→ E
κ

(u, y) 7→ (u
√

1 + |y|2, y), ψ−1
κ : (x, y) 7→ ( x√

1+|y|2
, y) = ( x

|x| , y)

It follows that the "flow map" F (defined by (4.2)) in these coordinates is
E
τ−S

s ≈−→ E
κ−S

u; (x, v) 7→ (x/|x|, |x|v), or in polar coordinates F : (ru, v) 7→
(u, rv). Note that we need to assume here that the Riemannian metric is com-
patible with the Morse charts.

Now fix some I ′ = Ii from above and write ρ(s)(τ) = (x(s), v(s)) and ρ(s)(κ) =
(u(s), y(s)) on I ′. Note that Ic = {s ∈ I | ρ(s)(τ) ∈ Ws(c)}, hence x(s) =
0 = y(s) only on the closed set I ′c = I ′ ∩ Ic. So on I ′ − I ′c we may use polar
coordinates x(s) = rτ (s)uτ (s) and y(s) = rκ(s)vκ(s). But (u(s), rκ(s)vκ(s)) =
(u(s), y(s)) = F (x(s), v(s)) = F (rτ (s)uτ (s), v(s)) = (uτ (s), rτ (s)v(s)), hence
u(s) = uτ (s), v(s) = vκ(s) and rτ (s) = rκ(s) on I ′ − I ′c. It follows that we
may write ρ(s)(τ) = (r(s)u(s), v(s)) and ρ(s)(κ) = (u(s), r(s)v(s)) on I ′, where
r is defined as rτ = rκ on I ′ − I ′c and r = 0 on I ′c. It is then clear that r is
continuous.

Let I ′′ = [s1, s2] be such that I ′c ⊂ I ′′ ⊂ I ′, and note that ρ(I ′′)(κ) ⊂ Ws(q)
in particular.5 Since Ws(q) is open (in M and therefore also in E) we have
that for each s ∈ I ′′ there exists a δs > 0 such that Bδs

(ρ(s)(κ)) ⊂ Ws(q). In
particular, ∪s∈I′′Bδs

(ρ(s)(κ)) is an open cover of the compact set ρ(I ′′)(κ) and so
δκ = infs{δs} > 0. Now apply similar arguments in the case ρ(I ′′)(τ) ⊂ Wu(p)
to obtain a δτ > 0 and set δ = min{δκ, δτ}.
Let p : I ′′ → E

τ be the (continuous) curve defined by p(s) = (max{δ/2, r(s)}u(s),
v(s)). Note that we may assume that p(si) = ρ(si)(τ) (i = 1, 2) by choosing δ
smaller if necessary. By construction we then have |p(s) − ρ(s)(τ)| ≤ δ/2 and
|F (p(s)) − ρ(s)(κ)| ≤ δ/2, hence p(s) ∈ W(p, q) for all s ∈ I ′′. We can now
redefine ρ as the (continuous) curve I →M(q, p) which is ρ on I − I ′′ and ηψ◦p
on I ′′, where ψ is the Morse chart E

≈−→ Uc.

5ρ(I)(κ) ⊂ Ws(q) by assumption.
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As above we proceed for each Ii, and then repeat for each c ∈ ∪s b(ρ(s)). In the
end this construction yields an element of C((I, 0, 1), (M(q, p), η, η′)). Hence we
have proven.

4.11 Lemma.
Let f : M → R be a self indexing Morse function on a Riemannian manifold
(M, g) such that (f, g) is Morse-Smale and g is compatible with the Morse charts.
Assume that f only has one minimum q and one maximum p, and let B1 ⊂
M(q, p) denote the subspace of all flow lines β ∈ M(q, p) for which b(β) =
{q, c, p}. Then the inclusion M(q, p) →֒ (M(q, p) ∪ B1) induces a bijection on
π0. In particular, #π0(M(q, p)) = #π0(M(q, p) ∪ B1) i.e. the number of path
components #π0(M(q, p)) remains constant if we add to M(q, p) the subspace
B1.

4.4 Extending injectivity

In this section we show (see lemma 4.14) an extension of the result of lemma
4.11. Notation will be as above. We assume throughout that (as above) f is
a self indexing Morse-Smale function with only one minimum/maximum, and
that the Riemannian metric is compatible with the Morse charts.

To produce the generalization of lemma 4.11 we need the following technical
lemma. This should be seen as a generalization of the technique used to prove
the injectivity result in the three dimensional case (proposition 4.10).

4.12 Lemma.
Let b ∈ Critn−2f and choose δ > 0 small such that κ = f(b)−δ is a regular value.
Moreover, let k denote the (finite) number of flow lines from a to b where a runs
over all critical points of index n− 1, i.e. k =

∑

a∈Critf :λa=n−1 #M(a, b). There
exists a two dimensional ε-disk bundle Wu(b)κ × Bε(0) over Wu(b)κ in f−1(κ)
such that each fiber {u} × Bε(0) is separated into k sections by (the image of)
k smooth curves which all depend smoothly on the base point. Moreover, the
curves are all of the form

[0, ε[ ×Wu(b)κ →Wu(b)κ × Bε(0); (t, u) 7→ (u, tv(t, u)) |v(t, u)| = 1

with (u, tv(t, u)) ∈Wu(a)κ for all t 6= 0 when Wu(b)κ × Bε(0) is identified with
an open neighborhood of Wu(b)κ in f−1(κ).
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E
s

E
τ

Wu
loc(a)

E
τ

E
u

Sr(x0)

Figure 4.5: A graphic interpretation of the construction in the proof of lemma
4.12, with k = 2. Note that Sr(x0) is only partially illustrated.

Proof:
We recommend consulting figure 4.5 for a graphic interpretation of the following
construction.

The proof consists of a local construction, so let (ψ,U) be a Morse chart around
b. We identify U with E = E

u ⊕ E
s having coordinates (x, y), hence (x, y) =

(x1, . . . , xn−2, y1, y2) and we sometimes write x ∈ E
u instead of (x, 0) (similarly

for y ∈ E
s). By abuse of notation we write f and ϕ for the local representatives

f ◦ ψ−1 and ψ ◦ ϕt ◦ ψ−1 respectively. Moreover we let ψ(q) = 0 and f(0) = 0
hence f(x, y) = −|x|2 + |y|2 by the Morse lemma, and ϕt(x, y) = (xe2t, ye−2t)
since g is compatible with U .

For the moment let us assume that Critn−1(f) = {a}. Let Wu
loc(a) denote the

local representatives of Wu(a), i.e. Wu
loc(a) ≈ U ∩Wu(a) (Eu and E

s are the
local representatives of Wu(b) and Ws(b) respectively). If necessary we change
coordinates such that κ = −1, and let τ = 1. We may (and will) assume that
both κ and τ are regular values. Finally let E

τ = f−1(τ) and E
κ = f−1(κ).
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Now W(a, b) = Wu(a) ⋔ Ws(b) consists of finitely many orbits since µ(a, b) =
1. Hence Wu

loc(a) ⋔ S
s, where S

s = E
s ⋔ E

τ denotes the unit sphere in
E
s, consists of finitely many points, say {y1, . . . , yk} ⊂ E

s (or equivalently
{(0, y1), . . . , (0, yk)} ⊂ E).

Let Ex0
⊂ E denote the affine linear subspace at x0 ∈ E

u parallel to E
s i.e.

Ex0
= {(x, y) ∈ E | x = x0}. Note that E0 = E

s. Since transversality is an open
condition it follows that Ex0

⋔ E
τ and Wu

loc(a) ⋔ (Ex0
⋔ E

τ ), for |x0| small.
Let Sr(x0) ⊂ Ex0

denote the sphere centered at (x0, 0) of radius r2 = |x0|2 + 1,
then Sr(x0) = Ex0

⋔ E
τ and Wu

loc(a) ⋔ Sr(x0) consists of finitely many points
{(x0, y1(x0)), . . . , (x0, yk(x0))} with (0, yi(0)) = (0, yi). The notation yi(x0) is
simply to indicate that the point depends on x0. As we shall see now this
dependence is smooth.

Let ε > 0 be small, by varying x0 in the open ε-ball Buε (0) ⊂ E
u we obtain k

functions

Buε (0)→ Buε (0)× E
s; x 7→ (x, yi(x)) (4.3)

by specifying the image of x by the i’th map as the i’th element in

Wu
loc(a) ⋔ S√

|x|2+1
(x) = {(x, y1(x)), . . . , (x, yk(x))}

Assertion: For each i the function yi of (4.3) is smooth, and (x, yi(x)) ∈
Wu
loc(a) ⋔ E

τ for all x ∈ Buε (0).
Proof: The last part of the assertion is clear by construction. Smoothness will
be a consequence of transversality and the implicit function theorem. Write
Wu
loc(a)

τ = Wu
loc(a) ⋔ E

τ and identify E
τ with E

u × S
s using the coordinate

transformation ψ−1
τ on page 63. By abuse of notation we write Wu

loc(a)
τ for

ψ−1
τ (Wu

loc(a)
τ ). Let (x, v) denote the coordinates in E

u × S
s with (0, vi) repre-

senting (0, yi), hence (0, vi) ∈Wu
loc(a)

τ ⋔ S
s.

Now around each (0, vi) there exists, by transversality,6 a chart Ui
θ−→ R

n−2 ×
R; (x, v) 7→ (ν, σ), Ui ⊆ E

u × S
s, in which Wu

loc(a)
τ ∩ Ui is represented by

coordinates of the form (ν, 0) and ({0} × S
s) ∩Ui is represented by coordinates

of the form (0, σ), i.e. we have the following commutative diagram

({0} × S
s) ∩ Ui � � //

θ

��

Ui

θ

��

Wu
loc(a)

τ ∩ Ui? _oo

θ

��

{0} × R R
n−2 × R

//oo R
n−2 × {0}

6See e.g. ([Kos93],p.62) or ([Bre93],p.84)
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Let θn−1 : Ui → R denote the (n − 1)’th coordinate function of θ. Then
θn−1(0, vi) = 0 since (0, vi) ∈ Wu

loc(a)
τ ⋔ S

s, and D2θn−1(0, vi) 6= 0 by the
(left) diagram. Hence may apply the implicit function theorem to obtain a
smooth map vi(x) = v defined for |x| small, such that θn−1(x, vi(x)) = 0 (hence
(x, vi(x)) ∈ Wu

loc(a) ⋔ E
τ by the (right) diagram). This completes the proof of

the assertion.

It is clear that W(a, b) locally separates E
s − {0} into k cone like sections. We

will transfer this structure to a level below b.

We transport each of the k orbits corresponding to x 7→ (x, yi(x)) to the level
surface E

κ as follows. Let us use polar coordinates to denote points in E− {0}
i.e. (tu, sv) where u ∈ S

u and v ∈ S
s are unit vectors in E

u and E
s respectively,

and t, s ∈ ]0,∞[ . The maps of (4.3) can then be written as

[0, ε[ ×S
u → Buε (0)× E

s; (t, u) 7→ (tu, svi(tu)), (tu, svi(tu)) ∈Wu
loc(a) ⋔ E

τ

since 1 = −t2 + s2, hence s = s(t) =
√

1 + t2. Note that we have included 0
in the domain since (tu, s(t)vi(tu))→ (0, vi(0)) for t→ 0. Now using the “flow
map” defined by (4.2) we obtain, for each i, a map

[0, ε[ ×S
u →Wu

loc(a) ⋔ E
κ; (t, u) 7→ (s(t)u, tvi(tu)) (4.4)

In particular, for fixed u we obtain k curves

[0, ε[→Wu
loc(a) ⋔ E

κ; t 7→ (s(t)u, tvi(tu))

Now using the coordinate transformation ψ−1
κ on page 63 we identify E

κ with
S
u×E

s. Note that S
u is fixed under this transformation. Moreover we consider

S
u × Bsε(0) ⊂ S

u × E
s as a two dimensional ε-disk bundle over S

u. Since S
u =

E
u ⋔ E

κ ≈ Wu(b)κ, this gives the disk bundle of the lemma (with Bε(0) =
Bsε(0)). Moreover, the maps of (4.4) are transformed to

[0, ε[ ×S
u → S

u × Bsε(0); (t, u) 7→(u, tvi(tu))

(u, tvi(tu)) ∈ ψ−1
κ (Wu

loc(a) ⋔ E
κ), t > 0

Hence to each point u ∈ S
u in the base space there corresponds k smooth curves

in the fiber {u}×Bsε(0). These depend smoothly on u, and their images seperate
each fiber into k cone like sections. Finally, let Critn−1(f) = {a1, . . . , al}. Since
all the unstable manifold corresponding to the ai’s are disjoint it follows that
we may generalize the above to all k =

∑

ki curves. This completes the proof.
�
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Note that with some obvious changes the lemma applies in the case of index
one and two, i.e. λb = 2 and λa = 1. Moreover it follows (by the last part of the
lemma and since f is self indexing) that each point in the interior of a section
belongs to Wu(p)κ.

Now since the curves depend smoothly on the base point, the sections of each
fiber vary smoothly, hence the disk bundle is separated into k cone sections
bounded on each side by (the image) of one of the maps (t, u) 7→ (u, tvi(ut)),
see figure 4.6. More precisely, choose an orientation of Ws(b)τ ≈ S

s and index
the k points ∪aW(a, b)τ according to this orientation, where one of the points is
chosen as the start point. We then define a cone section of Wu(b)κ×Bε(0) to be
the subset of Wu(b)κ × Bε(0), bounded by the images of the i’th and (i+ 1)’th
maps (if i = k then i + 1 = 1). The maps (t, u) 7→ (u, tvi(ut)) will henceforth
be called boundary maps.

Figure 4.6: A (simplified) part of Wu(b)κ × Bε(0), with k = 3.

Let ρ be as in the last section. We assume throughout that l(b(ρ(s))) ≤ 4 and
if c ∈ b(ρ(s))−{q, p} then λc is either n− 1 or n− 2. Moreover, we identify the
disk bundle from the lemma with an open neighborhood of Wu(b)κ in f−1(κ).
Now let S ⊂ I be a maximal (open) connected interval such that the level curve
p(s) = ρ(s)(κ) is contained in the disk bundle Wu(b)κ × Bε(0).

With the above conventions we have (note the resemblance with the fact that
a level curve can not cross Wu(a), see the beginning of section 4.3 for details).
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4.13 Claim.
For all s ∈ S and some i ∈ {1, . . . , k}, the image of the level curve s 7→ p(s) is
contained in the subset of Wu(b)κ × Bε(0) bounded by the images of the i’th
and (i+ 1)’th boundary maps.

Proof:
In the following we will use notation and terminology as in the proof of lemma
4.12. Let Critn−1(f) = {a1, . . . , al}, ∪iW(ai, b)

τ = {m1, . . . ,mk}, Ij denote the
(closed) segment on the circle Ws(b)τ ≈ S

s from mj to mj+1 (with k + 1 = 1),
Bj the image of the j’th cone map, and Cj the cone section bounded by Bj and
Bj+1.

Assume that the claim is false. Since each point in the boundary of a cone section
belongs to either an unstable manifolds corresponding to critical points of index
n − 1 or the zero section of Wu(b)κ × Bε(0), we conclude, by the beginning of
section 4.3, that s 7→ p(s) must cross the zero section when going from one cone
section (say Cj) to another (say Cj′ , j′ 6= j).

Let S′ ⊂ S be a maximal (closed) connected interval such that p(s) = (u(s), 0)
on S′, and N an open neighborhood of S′ with S′ ⊂ N ⊂ S. We let L and R
denote the open intervals corresponding to the left and right part of N − S′.
Note that ρ(s)(τ) is contained in precisely one Ii for s ∈ S′.

1) Assume that p(s) ∈ Bj for s ∈ L and p(s) ∈ Bj′ for s ∈ R. Note that
j′ 6= j ± 1, j. The first assumption implies that ρ(s)(τ) is contained in either
Ij or Ij−1 for s ∈ S′, whereas the second assumption implies that ρ(s)(τ) is
contained in either Ij′ or Ij′−1 for s ∈ S′. This is a contradiction since neither
of these intervals agree.

2) Assume that p(s) is in the interior of Cj (resp. Cj′) for s ∈ L (resp. s ∈ R).
The first assumption implies that ρ(s)(τ) is contained in Ij for s ∈ S′, and the
second that ρ(s)(τ) is contained in Ij′ for s ∈ S′. Again this is a contradiction
since Ij 6= Ij′ .

3) Assume that p(s) ∈ Bj for s ∈ L and p(s) is in the interior of Cj′ for s ∈ R.
Note that j′ 6= j−1, j. The first assumption implies that ρ(s)(τ) is contained in
either Ij or Ij−1 for s ∈ S′, whereas the second implies that ρ(s)(τ) is contained
in Ij′ for s ∈ S′. As above this is a contradiction. Note that the symmetric
version of this case also yields a contradiction

This completes the proof, since the behavior of the level curve is described by
one of the above case. �

In the case of the claim we say that the level curve s 7→ p(s) is contained in one
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cone section for all s ∈ S. Strictly speaking this convention is ambiguous since
a boundary is shared by two (neighboring) cone sections.

The idea is now to use the above results and, for each b, to look at the behavior
of p(s) as it enters and leaves the disk bundle and then perturb it to a map with
chain length two or three. Lemma 4.11 will then imply the desired result above.
Note the resemblance with the proof strategy of lemma 4.11.

Before we begin the proof of the main lemma of this chapter we present the
following figures, illustrating some possible behaviors of ρ on S (or sub intervals
of S).

• • •
• • •
• • •
• • •

Figure 4.7: The progress of ρ on J ⊆ S, where • denote the critical points q,
b, a and p listed from below. Hence p(s) = ρ(s)(κ) enters and leaves the zero
section of the disk bundle through the interior of a section.

• • •
• • •
• • •
• • •

Figure 4.8: The progress of ρ on J ⊆ S, where • denote the critical points q,
b, a and p listed from below. Hence p(s) = ρ(s)(κ) enters and leaves the zero
section of the disk bundle through the boundary of a section.

• • •
• • •
• • •
• • •

Figure 4.9: The progress of ρ on J ⊂ S, where • denote the critical points q,
b, a and p listed from below. Hence ρ(s)(κ) is in the zero section of the disk
bundle for all s ∈ J .
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4.14 Lemma.
Let f : M → R be a self indexing Morse function on a Riemannian manifold
(M, g) such that (f, g) is Morse-Smale and g is compatible with the Morse charts.
Let B1 be as in lemma 4.11. Assume that f only has one minimum q and
one maximum p, and let B2 ⊂ M(q, p) denote the subspace of all flow lines
β ∈M(q, p) for which b(β) = {q, b, a, p} with either λb = n− 2 and λa = n− 1,
or λb = 2 and λa = 1. Then the inclusion M(q, p) →֒ (M(q, p)∪B1∪B2) induces
a bijection on π0. In particular, #π0(M(q, p)) = #π0(M(q, p) ∪ B1 ∪ B2) i.e.
the number of path components #π0(M(q, p)) remains constant if we add to
M(q, p) the subspaces B1 and B2.

Proof:
We proceed by using notation and terminology as in the proof of lemma 4.12
and claim 4.13. Moreover, since the strategy of this proof resembles that of
lemma 4.9, we leave some technical details to the reader.

Let ρ ∈ C((I, 0, 1), (M(q, p), η, η′), with I = [0, 1] and η, η′ ∈M(q, p), such that
ρ(s) ∈ B1 ∪B2 ∪M(q, p) for all s ∈ I.
For s′ ∈ I with b(ρ(s′)) = {q, b, a, p}, λb = n− 2, λa = n− 1, let S = ]s1, s2[ be
a maximal sub-interval of I such that p(s) = ρ(s)(κ) is in the ε-disk bundle of
lemma 4.11, and such that s′ ∈ S, i.e. p(s) belongs to the zero section for at least
one point in S. Moreover, we choose ε such that b(ρ(s))∩(Crit2(f)∪Crit1(f)) = ∅
for all s ∈ S, hence p(s) ∈Ws(q)κ for all s ∈ S.

Now for each s ∈ S choose an open neighborhood Up(s) ⊂Ws(q)κ in Mκ of p(s),
and let U = ∪sUp(s). We may assume that U is contained in the ε-disk bundle,
since the bundle is open in Mκ.

By claim 4.13, p(s) is contained in precisely one cone section, say, Ci with
boundary Bi and Bi+1. Note that V = U ∩ [Ci − (Bi ∪ Bi+1)] is contained in
W(p, q)κ, and that it is path connected.

1) Assume that s 7→ p(s) enters and leaves Ci at points in V . Then there is a
δ > 0 such that ρ(sj − (−1)jδ) ∈ M(q, p), for j = 1, 2. Let m1 and m2 denote
the points on these flow lines corresponding to the level κ. Since m,m′ ∈ V we
may redefine ρ on [s1 + δ, s2 − δ] such that it becomes a curve in M(q, p).

2) Assume that s 7→ p(s) enters Ci through Bi and leaves Ci through Bi+1, and
let δ > 0 be such that p(s1) ∈ Bi and p(s2) ∈ Bi+1, with sj = sj− (−1)jδ. Now
using the gluing map G of lemma 4.3 we continuously deform ρ(s1) and ρ(s2) to
non-broken flow lines. Note then that G(ρ(sj);u)(κ) is in the interior of Ci for
u > 0, since otherwise this would violate claim 4.13. Setting G(ρ(sj);u0)(κ) =
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mj for some fixed u0 > 0, we may use case 1 above to redefine ρ on S such that
it becomes a curve with chain length at most three.

Since the symmetric cases -p(s) enters (resp. leaves) through the boundary and
leaves (resp. enters) through the interior- and the cases -p(s) enter and leave
through Bi (resp. Bi+1)- is proven similar to the above, we conclude that ρ may
be redefined on S such that it becomes a curve in M(q, p) with chain length at
most three. With similar arguments we obtain the same conclusion in the case
λb = 2 and λa = 1.

By lemma 4.11 we are done if it can be proven that the family consisting of sub-
intervals of I defined as S above, is finite. This technical argument is similar to
that given at the beginning of the proof of lemma 4.9. �



Chapter 5

Estimating the number of

path components of the space

of broken flow lines

In this chapter we show how to estimate the number of path components of the
space of broken flow lines. Moreover, the estimate can be computed explicitly
(i.e. as a number) if the Morse data is known a priori (by the Morse data we
mean all critical points and intersection numbers).

Throughout this chapter M denotes an orientable closed 3-manifold and f :
M→ R denotes a self indexing Morse-Smale function with only one minimum q
and one maximum p. We will assume that the Riemannian metric is compatible
with the Morse charts.1 For a space S we write #S for the number of path
components (or the number of elements if S is a finite set), and let a = Crit1(f)
and b = Crit2(f)

In section 5.1 we define three graphs, each embedded on different level surfaces,
and discuss some basic properties of these graphs. The graphs will play an
important role in section 5.2 where we show how to estimate #M(q, p), the
number of path components of M(q, p).

1This assumption is included since we wish to use proposition 4.10.
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5.1 Graphs on level surfaces

We start this section by seperating (according to dimension) the various moduli
spaces into three different sets.

First assume that there are no one dimensional moduli spaces homeomorphic
to S

1 and let the edge set E be the (disjoint) union of E1 = ∪a∈aπ0(M(p, a))
and E2 = ∪b∈bπ0(M(b, q)). Hence an element e ∈ E, called an edge, is a path
component of a one dimensional moduli space, i.e. homeomorphic to the open
interval ]0, 1[.

The vertex set V is the (disjoint) union of V u = ∪b∈bπ0(M(p, b)), V m =
∪(b,a)∈b×aπ0(M(b, a)) and V l = ∪a∈aπ0(M(a, q)). Hence an element v ∈ V ,
called a vertex, is a path component of a zero dimensional moduli space, i.e.
homeomorphic to a point. Note that for V u and V l the use of π0 is in fact
redundant since M(p, b) and M(a, q) are discrete two point spaces.

Finally we let F = π0(M(p, q)) be the face set, hence an element of F , called a
face, is a path component of the two dimensional moduli space M(p, q).

5.1 Remark: If there where a one dimensional moduli space, say M(b, q),
homeomorphic to S

1 then we could add π0(M(b, q)−∗) to E and add the point ∗
to V . However, we choose to assume throughout that there are no such moduli
spaces, simply because it will have no effect on the computations in this chapter.

Moreover, the boundary of e ∈ E in the sense of theorem 2.1 consists of (v, u)
and (v′, u′) both pairs in V × V with (v, u) 6= (v′, u′) (see figure 5.1 below). �

We can now define the following three graphs: The (upper) graph H with vertex
set V (H) = V u and edge set E(H) = E1, the (middle) graph Γ with vertex set
V (Γ) = V m and edge set E(Γ) = E, and the (lower) graph G with vertex set
V (G) = V l and edge set E(G) = E2.

5.2 Remark: The graphs above are in general not simple graphs, e.g. if e ∈ E
with say e ∈ E1 and boundary (v, u′), (v, u) then e is a simple edge (with vertices
u′ and u) in Γ, and a pseudo edge (with vertex v) in H (see the right side of
figure 5.1 below). Moreover, if e′ ∈ E2 has boundary (u′, w′), (u,w) then e and
e′ are parallel edges in Γ.

Moreover, note that2 #a = # b. This number will be denoted by g in the
sequel. �

2See 5.3.1 in the appendix of this chapter.
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Figure 5.1:

The terms upper, middle and lower are due to the following. For i = 1, 2, 3 let
τi ∈ ]i − 1, i[ , then f−1(τi) ≈ S

2 for i = 1, 3, and f−1(τ2) ≈ Σg the orientable
closed surface of genus g (see ([Mat02],p.173)). Now by identifying M(p, a) with
W(p, a)τ3 (for each a), and M(p, b) with W(p, b)τ3 (for each b) we may consider
the upper graph H as a subset of S

2 ≈ f−1(τ3). With similar identifications we
also have Γ ⊂ Σg and G ⊂ S

2. Moreover, let Fi, i = 1, 2, 3, denote the face set
of G, Γ and H respectively. With the above identifications we then have

F1 = S
2−G = W(p, q)τ1 , F2 = Σg−Γ = W(p, q)τ2 , F3 = S

2−H = W(p, q)τ3

Hence F ≈ Fi by claim 2.9. In particular, the number of faces corresponding
to each graph is the same and equals #F = #M(q, p) = #M(q, p) = #M(q, p)
where the last equality is by proposition 4.10.

5.3 Remark: Let S denote any of the above surfaces and K ⊂ S the corre-
sponding graph. With the relative topology on K it is clear that V (K)∪E(K)
constitute a CW-decomposition of K (see ([Dol80],p.89)), hence K can be con-
sidered as a one dimensional CW-complex. �

The following result summaries some simple properties of the above defined
graphs.

5.4 Claim.
Let S denote any of the above surfaces and K ⊂ S the corresponding graph.

1) The graph K is planar.

2) If K = G,H then 2g = #V (K).
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3) #V (Γ) = #E(G) = #E(H) = #E(Γ)/2.

4) For v ∈ V (Γ) the valence val(v) is equal to 4, hence the number of edges
connected to v is either 2,3 or 4.

5) If K = G,H and v ∈ V (K) then val(v) = # ∪ M(b, a) where the union
is taken over all b ∈ b if v ∈ M(a, q) ⊂ V (G) and over all a ∈ a if
v ∈ M(p, b) ⊂ V (H).

Proof:
Ad 1): Since K can be described as ∪WS ∩W where W run over all components
of ∂W(p, q). Ad 2): Since 2 = #M(a, q) = #M(p, b) and g = #a = # b. Ad
3) For K = G and b ∈ b let Ub = E

u ⊕ E
s be a Morse chart and S

1 ⊂ E
u.

We may consider S
1 as a graph with vertex set Vb = ∪aM(b, a) and edge set

Eb = π0(M(b, q)). Then 0 = χ(S1) = #Vb − #Eb hence #V (Γ) =
∑

b #Vb =
∑

b #Eb = #E(G). Almost identical arguments show that #V (Γ) = #E(H).
Moreover #E(Γ) = #E(G) + #E(H) = 2#V (Γ). Ad 4): Let v ∈ V (Γ) with
v ∈ M(b, a), say. Since v is one of the points in the (transverse) intersection
Wu(b) ⋔ Ws(a) ⋔ Σg, there is a chart Uv = R × R on Σg such that locally
Wu(b)τ = R × {0} and Ws(a)τ = {0} × R. Let X± and Y± denote the strictly
positive/negative first and second axises, respectively. By choosing Uv such that
Uv ∩ V (Γ) = {v}, we see that each of the four sets X± and Y± represent part
of an edge in E(Γ). Hence val(v) ≥ 4, but equality clearly holds. Ad 5): For
K = G and v ∈ M(a, q) each pair (v, u), with u ∈ M(b, a), is in the boundary of
an unique edge in E2, hence val(v) = #{(v, u) | u ∈ ∪M(b, a)} = # ∪M(b, a).
The case K = H is similar. �

5.5 Remark: Note that the method of proof in Ad 5) applies in Ad 4) as well.
Moreover, Ad 3) follows from Ad 5) since

2#E(K) =
∑

v∈V (K) val(v) =
∑

b,a #M(b, a) = 2#V (Γ)

where the first equality follows from Euler’s theorem (see e.g. ([GT87],p.4)). �

5.2 Estimates of #M(q, p)

In the following two subsections we estimate the number #F = #M(q, p). As
above we let S denote the surface S

2 or Σg, and K ⊂ S the corresponding graph.
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5.2.1

In this subsection we estimate the number β0(F ) = #F by means of the up-
per/lower graph. Let H(·) = H(·; Z) denote singular (co)homology and χ(·) the
Euler characteristic.

Since S is a compact orientable manifold and K ⊂ S is closed we may apply the
Poincare-Lefschetz duality diagram from ([Bre93],p.352) to obtain the following
diagram with exact rows3

H
0(S,K) //

≈

��

H
0(S) //

≈

��

H
0(K) //

≈

��

H
1(S,K) //

≈

��

H
1(S) //

≈

��

H
1(K) //

≈

��

H
2(S,K) //

≈

��

H
2(S) //

≈

��

H
2(K)

≈

��
H2(F ) // H2(S) // H2(S, F ) // H1(F ) // H1(S) // H1(S, F ) // H0(F ) // H0(S) // H0(S, F )

0 Z Z
β0(K)

0,Z
2g

Z
β0(K)−χ(K)

Z 0

Starting from the left: 0 because ([Bre93],p.346), the next two are clear, the
fourth stands for the cases S = S

2,Σg, the fifth follows from χ(K) = β0(K) −
β1(K), and the last two are clear.

With K = G,H we have from the above diagram that H0(F ) = Z
β0(K)−χ(K)⊕Z

hence

#F = β0(F ) = β0(K)− χ(K) + 1 =











β1(K) + 1

β0(K)−#V (K) + #E(K) + 1

β0(K)− 2g + #V (Γ) + 1

(5.1)

where the second equality (in the bracket) follows from β0(K)−β1(K) = χ(K) =
#V (K)−#E(K), and the last equality follows from 2) and 3) of claim 5.4.

5.6 Remark: The above equation for #F could also be deduced from the for-
mula for χ(K) and the polyhedral formula 1 = #V (K) −#E(K) + #F (K) −
β0(K) which holds for any planar graph K on S

2. �

The question now is whether we can compute the entries in the formulas for
#F given by (5.1). Let us start with the special case where each face is simply
connected.

3In ([Bre93],p.352) the first row of the diagram is given in terms of Čech cohomology.
But S and K are both ENR’s, hence Čech cohomology coincides with ordinary cohomology
([Dol80],p.285).
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5.7 Claim.
Each face is simply connected iff K = G or K = H is connected.

Proof:
By ([Bre93],p.346(7.13)) H1(F ) is free, hence by the above diagram H1(F )⊕Z =
Z
β0(K) with K = G or K = H. �

Hence in this case #F = 2 − 2g + #V (Γ). Moreover, the computation of
#V (Γ) =

∑

i

∑

j #M(bi, aj) is given in terms of the boundary operator ∂ from
Morse Homology. Recall from section 1.3 that in general

∂c =
∑

c′∈Critλc−1(f)
x∈M(c,c′)

n(x)c′ =
∑

c′∈Critλc−1(f)

n(c, c′)c′

where n(c, c′) =
∑

x∈M(c,c′) n(x) with n(x) = ±1 denotes the intersection num-
ber of the stable and unstable spheres. So if we define

∂c =
∑

c′∈Critλc−1(f)
x∈M(c,c′)

|n(x)| =
∑

c′∈Critλc−1(f)

#M(c, c′) ∈ Z

we may compute #V (Γ) by

∂
∑

i

bi =
∑

i

∂bi =
∑

i

∑

j

#M(bi, aj) = #V (Γ)

That is, given the data from Morse homology, #F = #M(q, p) can be computed
in the special case where each face is simply connected.

In general we have to compute β0(K) because #F = β0(K)− 2g + #V (Γ) + 1.
Unfortunately the Morse data does not contain enough information for this
computation to be carried out, but in section 5.2.2 we will show how one can
estimate #F using the Morse data.

5.8 Remark: If we in addition to the Morse data know the explicit vertices
corresponding to each edge we may in fact compute β0(K) as follows. Let K ′ be
the graph obtained from K by adding one point to every parallel edge and two
points to every pseudo edges in K. This will not effect the formula for #F , and
K ′ is then a simple graph with β0(K

′) = β0(K). Now let D denote the incidence
matrix of K ′. By ([Big93],p.24) we then have Rank(D) = #V (K)− β0(K

′), so
β0(K

′) can be computed in this case. �
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We end this section with a minor result concerning the connectivity of Γ.

5.9 Claim.
If K = G or K = H is connected, then Γ is connected.

Proof:
Assume that K = G or K = H is connected, then by the Poincare-Lefschetz
duality diagram

0 //
Z

2g //
Z
β0(Γ)−χ(Γ) // H0(F ) // Z // 0

where H0(F ) = Z
1−χ(K) ⊕ Z. Hence

0 //
Z

2g //
Z
β0(Γ)−χ(Γ) //

��

Z
1−χ(K) ⊕ Z

// Z // 0

0 // Z
β0(Γ)−χ(Γ)/Z2g

66mmmmmmmmmmmm

��

0

and so 1−χ(K) = β0(Γ)−χ(Γ)− 2g. But 1−χ(K) = 1−#V (K) + #E(K) =
1− 2g + #V (Γ) and β0(Γ)− χ(Γ)− 2g = β0(Γ) + #V (Γ)− 2g, hence

1− 2g + #V (Γ) = β0(Γ) + #V (Γ)− 2g ⇒ β0(Γ) = 1

hence proving the claim. �

5.2.2

In this subsection we show how to estimate the number β0(F ) = #F by means of
the middle graph. In this section all (co)homology groups are real vector spaces
i.e. the coefficient group is R. Now the duality diagram of the last section gives
the exact sequence (with Σg = Σ)

H1(Σ)
i∗−→ H1(Γ)→ H0(F )→ H2(Σ)→ 0

where i : Γ →֒ Σ is the inclusion. Hence we have the short exact sequence 0→
coker(i∗) → H0(F ) → H2(Σ) → 0 which splits since we are dealing with finite4

4The (co)homology groups of Γ and Σ are finitely generated since Γ is a finite CW-complex
and Σ is a compact manifold ([Bre93],p.538).
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dimensional vector spaces, so #F = β0(F ) = dim(coker(i∗)) + 1. Moreover, by
a standard duality argument5 coker(i∗) ≈ ker(i∗), where i∗ : H1(Γ) → H1(Σ),
hence

#F = dim(ker(i∗)) + 1 = β1(Γ)− dim(im(i∗)) + 1

= β0(Γ) + #V (Γ)− dim(im(i∗)) + 1 (5.2)

where the last equality follows from the fact that β0(Γ) − β1(Γ) = χ(Γ) =
#V (Γ) −#E(Γ) and claim 5.4. We claim that each term in the formula (5.2)
for #F can be computed using the Morse data (recall that we have already
dealt with the case #V (Γ)).

For β0(Γ): Write S
s
i = Ws(ai)

τ2 and S
u
i = Wu(bi)

τ2 for each ai ∈ a and bi ∈ b,
respectively, and note that Γ = (∪iSsi )∪ (∪iSui ). Now define the bipartite graph
Γ′ as follows. Let each (un)stable sphere correspond to a vertex and let there be
an edge between two vertices if the corresponding stable and unstable spheres
intersects (see figure 5.2 below). Note then that the existence of an edge is

unstable spheres

stable spheres

Figure 5.2: The graph Γ′.

equivalent to the existence of a one dimensional flow line, so this information is
contained in the Morse data. Hence we can construct Γ′ explicitly and therefore
also calculate β0(Γ

′), but β0(Γ
′) = β0(Γ) clearly.

For dim(im(i∗)): Let notation be as in the above paragraph, and let si = i∗[S
s
i ] ∈

H1(Σ) where [Ssi ] denotes the image of the fundamental class [S1] ∈ H1(S
1) under

the diffeomorphism S
1 → S

s
i ⊂ Γ. It is standard6 that half the generators of

H1(Σ) can be chosen as {si} = {s1, s2, . . . , sg}, hence {si} generates a subspace
of im(i∗) of dimension g.

Now let I : H1(Σ) × H1(Σ) → R denote the intersection form, this is a bilinear
form which is antisymmetric and non-degenerate since we are in the middle

5See 5.3.2 in the appendix of this chapter.
6See e.g. ([Hat02],p.205)
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dimension, ([Mat02],p.163). With respect to I we may therefore form the dual
basis {s∗i } = {s∗1, s∗2, . . . , s∗g} of {si}, hence {si, s∗i } = {s1, . . . , sg, s∗1, . . . , s∗g} is
a basis for H1(Σ) under the following identification. First complete {si} to a
basis {si, s′i} of H1(Σ) and use the coordinate isomorphism H1(Σ) ≈ R

2g taking
si (resp. s′i) to ei (resp. ei+g), where {e1, e2, . . . , e2g} denotes the standard
basis for R

2g. Next, form the (external) direct sum V ⊕V ∗, with V = span{si},
V ∗ = span{s∗i }, and use a coordinate isomorphism V ⊕V ∗ ≈ R

2g similar to the
above.

5.10 Remark: Note that (H1(Σ), I) is in fact a symplectic vector space, and
that V = span{si} ⊂ H1(Σ) is a Lagrangian subspace. Hence we could have used
a standard result from linear symplectic geometry to conclude that {si, s∗i } is a
(symplectic) basis for H1(Σ), see e.g. ([MS98],Ch.2.1) �

Now let ui = i∗[S
u
i ] ∈ H1(Σ) then ui =

∑

j αijsj+
∑

j βijs
∗
j and span{s1, . . . , sg,

u1, . . . , ug} is a subspace of im(i∗). Therefore

g + dim(span{ui}) = g + Rank([βij ]) ≤ dim(im(i∗)) ≤ 2g

But the matrix [βij ] is know explicitly since βij = I(ui, sj) and I(ui, sj) =
∑

x∈M(bi,aj)
n(x). That is [βij ] is the matrix of the boundary operator ∂2 :

C2(f,R) → C1(f,R) from Morse homology, hence Rank([βij ]) = dim(im(∂2)).
Moreover, since M is assumed to be orientable and f only has one minimum
and one maximum we see that ∂1 = 0 (and for that matter ∂3 = 0). So
dim(im(∂2)) = g − β1(M), since the canonical projection

ker(∂1)→ ker(∂1)/im(∂2) = H1(M)

is a linear surjection with kernel im(∂2). In summary we have therefore proven

5.11 Lemma.
Let dim(M) = 3 and f : M → R be a self indexing Morse-Smale function with
only one minimum q and one maximum p. The following estimate for #M(q, p),
the number of path components of the space of broken flow lines, holds

β0(Γ) + #V (Γ)− 2g + 1 ≤ #M(q, p) ≤ β0(Γ) + #V (Γ)− 2g + β1(M) + 1
(5.3)

In particular, #M(q, p) = β0(Γ) + #V (Γ)− 2g + 1 if M is simply connected.

Moreover, by combining (5.1) and (5.3) we have the following corollary
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5.12 Corollary.
For K = G,H it holds that β0(Γ) ≤ β0(K) ≤ β0(Γ) + β1(M). In particular,
β0(Γ) = β0(K) if M is simply connected.

5.3 Appendix

In this appendix we prove (for completeness) some standard facts stated in the
main text.

5.3.1

We prove that #a = # b. Let C = {Ci} denote the Morse-Smale-Witten chain
complex. By ([Spa81],p.172) we have χ(C) = χ(H(C)) (with H(C) = H(M) of
course), thus

3
∑

i=0

(−1)iRank(Ci) =

3
∑

i=0

(−1)iRank(Hi(C))

But the left hand side is equal to Rank(C2)−Rank(C1) = # b−#a since there
is only one minimum/maximum, and the right hand side is zero by duality of
Betti numbers (see e.g. ([Mat02],p.158)).

5.3.2

We prove that coker(i∗) ≈ ker(i∗) by the universal coefficient theorem (UCT)
([Bre93],p.282). Let (i∗)

∗ denote the dual map (wrt. hom(·,R)) of i∗. By the
UCT we have the commutative diagram

H1(Σ)
≈

//

i∗

��

hom(H1(Σ),R) = H1(Σ)∗

(i∗)∗

��

H1(Γ)
≈

// hom(H1(Γ),R) = H1(Γ)∗
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and by applying the hom functor hom(·,R) to this diagram we obtain the com-
mutative diagram

H1(Σ)∗
≈

// H1(Σ)∗∗
≈

// H1(Σ)

H1(Γ)∗
≈

//

(i∗)∗

OO

H1(Γ)∗∗

(i∗)∗∗

OO

≈
// H1(Γ)

i∗

OO

where the right square arises from the fact that we are dealing with finite di-
mensional vector spaces. Hence ker((i∗)∗) ≈ ker(i∗).

Now H1(Σ)
i∗−→ H1(Γ)

π−→ coker(i∗) → 0 is exact, where π is the quotient

map. Hence 0 → coker(i∗)∗
π∗

−→ H1(Γ)∗
(i∗)∗−→ H1(Σ)∗ is exact since hom(·,R)

is right exact. Therefore coker(i∗)∗ ≈ im(π∗) ≈ ker((i∗)∗) and so coker(i∗) ≈
coker(i∗)∗ ≈ ker(i∗).
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Chapter 6

Main results and future work

In this chapter we give a brief description of the main results of each chapter,
together with suggestions on what might be the focus of future work. We refer
to section A.3 regarding future work related to the result of appendix A.

6.1 Chapter 2

For a given Morse-Smale pair (f, g) on a closed manifold, it was shown that the
moduli space M(p, q) (of orbits from p ∈ Crit(f) to q ∈ Crit(f)) can be embedded
as a subspace, with compact closure, of a space having the Hausdorff topology,
i.e. the closure M(p, q) is a compactification of M(p, q) with respect to Hausdorff
topology. Moreover, the space of height-parameterized flow lines M(q, p) (from
q to p) has compact closure with respect to the compact open topology, and
there exists a homeomorphism between M(q, p) and M(p, q) which extends to
the closures of these spaces in their respective topologies. So the closuresM(q, p)
and M(p, q) are homeomorphic compactifications of both M(q, p) and M(p, q).
Finally it was shown that the space of broken flow lines M(q, p) (from q to p)
is compact with respect to the compact open topology, and contains M(q, p)
as an open and dense subspace. In particular, M(q, p) can be considered as a
compactification of both M(q, p) and M(p, q).

Even though M(q, p) has some nice properties, e.g. it is a compact metric space,
we do not know whether M(q, p) has a fundamental property such as being

85
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an ENR (Euclidean Neighborhood Retract). Hence a more detailed study of
M(q, p) could be the focus of future work. Moreover, it seems that there is a
widespread agreement that M(q, p) has a compactification as a compact smooth
manifold with corners (see e.g. ([AB95],p.130) or ([Hut02],p.10), and compare
with section 2.5.1). Unfortunately, I have not been able to find any proof of
this. On the basis of the above I speculate that the following conjecture holds

6.1 Conjecture.
The space of broken flow lines has the structure of a smooth manifold with
corners.

Certainly this conjecture could form the basis for future work. Note that if
the conjecture holds then M(q, p) is an ENR, so in chapter 3 we may use or-
dinary singular cohomology instead of Čech cohomology, and therefore replace
“connected” with “path connected” in corollary 3.15. Moreover, the surjectivity
result of section 4.2 (corollary 4.7) would be obvious since M(q, p) is locally path
connected. Note also the important fact that duality theorems are at hand.

Besides the above mentioned references I believe that [Lat94],[Lau04], [Sch99],
[Lu04], [BC03] and [BC06] could be helpful in an attempt to prove this conjec-
ture.

Finally, it could also be interesting to see how perturbations of f and g would
affect M(q, p).

6.2 Chapter 3

For a given Morse-Smale pair (f, g) on a closed n-manifold with f having pre-
cisely one critical point q of index 0 and one critical point p of index n, it was
shown that the space of broken flow lines M(q, p) is connected if f has no critical
points of index 1 or n− 1.

The above result says nothing when there are critical points of index 1 or n− 1.
Hence this situation could be the focus of future work. At present the methods
used in this chapter do not seem sufficient. I speculate that a Mayer-Vietoris like
argument would be helpful. More precisely, the Mayer-Vietoris sequence could
provide some information (regarding H0(M(q, p)) at least), if one could find a
suitable open neighborhood of the subspace of M(q, p) consisting of flow lines
with chain length at least three (that is, of M(q, p)−M(q, p)). If one could prove
that M(q, p) is a (B)-prestratification (i.e. a Whitney prestratification) with
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subsets of M(q, p)−M(q, p) as strata, then the system of tubular neighborhoods
described in ([Mat73],Ch.II.6) might be a candidate for such a neighborhood.

6.3 Chapter 4

For a given Morse-Smale pair (f, g) on a closed n-manifold with g compatible
with the Morse charts, and f having precisely one critical point q of index
0 and one critical point p of index n, it was shown that the inclusion of the
space of height-parameterized flow lines M(q, p) into the space of broken flow
lines M(q, p) induces a surjection on π0. This was a consequence of a gluing
procedure for height-parameterized flow lines. If in addition f is self indexing,
then the inclusion M(q, p) →֒ (M(q, p) ∪ B1 ∪ B2) induces a bijection on π0,
where B1 ⊂ M(q, p) denotes the subspace whose elements have chain length
three and B2 ⊂M(q, p) denotes the subspace whose elements have chain length
four, say {q, a, b, p}, with either λa = 1 and λb = 2, or λa = n − 2 and λb =
n − 1. If the assumption on g is omitted then M(q, p) →֒ (M(q, p) ∪ A1) (and
M(q, p) →֒ M(q, p) if n = 3) induces an injection on π0, where A1 ⊂ M(q, p)
denotes the subspace whose elements have chain length three, say {q, a, p}, with
either λa = 1 or λa = n− 1.

It is clear that the following conjecture should be the aim of future work.

6.2 Conjecture.
The inclusion M(q, p) →֒M(q, p) induces a bijection on π0.

Note that this will be a step towards determining H0(M(q, p)). I believe that a
proof of this conjecture is within reach if one can generalize the “cone construc-
tion” in lemma 4.12. In this direction I think that the appendix (by Laudenbach)
in [BZ92] could be helpful.

6.4 Chapter 5

For a given Morse-Smale pair (f, g) on an orientable closed 3-manifold with g

compatible with the Morse charts, and f self indexing with precisely one critical
point q of index 0 and one critical point p of index n, it was shown that the
number of path components of the space of broken flow lines #M(q, p) can be
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estimated by

β0(Γ) + #V (Γ)− 2g + 1 ≤ #M(q, p) ≤ β0(Γ) + #V (Γ)− 2g + β1(M) + 1
(6.1)

where g = #Crit1(f) = #Crit2(f), βi denotes the i’th Betti number, and V (Γ)
denotes the set of 0-cells of the one dimensional CW-complex Γ defined by

Γ = [∪i(Ws(ai) ⋔ f−1(τ2))] ∪ [∪i(Wu(bi) ⋔ f−1(τ2))]

with Crit1(f) = {a1, a2, . . . , ag}, Crit2(f) = {b1, b2, . . . , bg} and τ2 ∈ ]1, 2[ . So

#M(q, p) = β0(Γ) + #V (Γ)− 2g + 1

if M is simply connected. Moreover, each term in the formula (6.1) can be com-
puted explicitly (i.e. as a number) if all critical points and intersection numbers
are known a priori.

Regarding future work, recall that the estimate (6.1) was due to

#M(q, p) = β0(Γ)+#V (Γ)−dim(im(i∗))+1 and 2g−β1(M) ≤ dim(im(i∗)) ≤ 2g

where i∗ : H1(Γ) → H1(f
−1(τ2)) and i is the inclusion. Hence to improve the

estimate (6.1) one could try to improve the estimate for dim(im(i∗)). For this
[GRS03] might be a useful reference.



Appendix A

In this appendix we prove that the closure of any unstable manifold is a pre-
stratified space which is (A)-regular at any noncritical point. This appendix is
unrelated to the results obtained in the main text.

I have benefited greatly from discussions with Dr. Lukáš Vokřínek, regarding
the results obtained here.

Throughout this appendix let f : M → R be a Morse function on a closed
n-manifold M and g a compatible Riemannian metric on M such that (f, g) is
Morse-Smale.

A.1 Stratification

Let X be a 2nd countable paracompact T2-space. A prestratification1 of X is
a pair (X,P) where P is a partition of X into subsets, called strata. For a
prestratification (X,P) we say that X is a prestratified space (with respect to
P). When the space X is understood we simply write P for the prestratification.
A prestratification is usually assumed to satisfy the following three conditions

P1) Each stratum U ∈ P is locally closed.

P2) P is locally finite.

P3) Let V,U ∈ P. If V ∩ U 6= ∅, then V ⊆ U . In this case we write V ≤ U .

1See ([Mat73],p.199)
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A prestratification (X,P) is called a decomposition of X with pieces U ∈ P if
it satisfies the above conditions and each stratum is a manifold (in the induced
topology).2

Now consider the triple (U,V, x), where U and V (with x ∈ V) are submanifolds
of a manifold X, and recall that the Whitney condition (A) on (U,V, x) is:3

Whitney’s condition (A): If {xi} ⊂ U with xi → x and Txi
U → T , then

TxV ⊆ T .

Here the convergence Txi
U→ T is in the Grassmannian of dim(U)-dimensional

subspaces of TX. In the above case we say that (U,V, x) is (A)-regular at x,
and (A)-regular if it is (A)-regular at x for all x ∈ V. We are now able to define
the notation of an (A)-prestratification.

Let X be a manifold with X′ ⊆ X. A prestratification (X′,P) is said to be an
(A)-prestratification if P is a decomposition (of X′), and (U,V) is (A)-regular for
every U,V ∈ P with V ≤ U. In this case we say that X′ is an (A)-prestratified
space.

A.2 The main result

Recall from section 1.3 that (Crit(f),≥) is a poset with a ≥ b iff W(a, b) 6= ∅
and that

Wu(a) =
⋃

a≥b Wu(b) (A.1)

as a consequence of the λ-lemma. The main result of this appendix is then;

A.1 Lemma.
Let f : M→ R be a Morse function on a closed n-manifold M and g a Rieman-
nian metric on M such that (f, g) is Morse-Smale and g is compatible with the
Morse charts. Consider the prestratification (Wu(a),P) where

P = {W(b)}b∈Crit(f):a≥b (A.2)

Let (Wu(p),Wu(q)) be any pair with Wu(p),Wu(q) ∈ P and Wu(q) ≤ Wu(p).
The triple (Wu(p),Wu(q),m) is (A)-regular for any m 6= q.

2See ([Pfl01],p.15)
3See ([Mat73],p.203) or ([Pfl01],p.36)
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The proof of this lemma will consists of the following three claims.4

A.2 Claim.
The pair (Wu(a),P) is a decomposition.

Proof:
By the Morse-Smale condition each stratum is a submanifold of M, so they
lie locally closed in M and therefore also in Wu(a) (of course in the induced
topology) hence P1). Condition P2) follows from (A.2), since M is compact,
and P3) is a consequence of (A.1). This proves the claim. �

Now let (Wu(p),Wu(q)) be as in lemma A.1, hence p ≥ q so Wu(p) ⋔ Ws(q).
We will prove that (Wu(p),Wu(q),m) is (A)-regular at m 6= q. Therefore let
{mi} ⊂ Wu(p) with mi → m ∈ Wu(q) and Tmi

Wu(p) → T , hence we need
to prove that TmWu(q) ⊆ T . We proceed by showing that lemma A.1 is true
whenever m 6= q is contained in a Morse chart.

A.3 Claim.
If m ∈Wu(q)−{q} be contained in a Morse chart around q, then TmWu(q) ⊆ T .

Figure 4.5 on page 65 can to some extent be helpful in visualizing the following
construction.

Proof:
Let (ψ,U) be a Morse chart around q and assume that m ∈ U − {q}. We may
work locally, hence we identify U with E = E

u ⊕ E
s having coordinates (x, y),

and by abuse of notation write f and ϕ for the local representatives f ◦ ψ−1

and ψ ◦ ϕt ◦ ψ−1 respectively. Moreover we let ψ(q) = 0 and f(0) = 0 hence
f(x, y) = −|x|2 + |y|2 by the Morse lemma, and ϕt(x, y) = (xe2t, ye−2t) since g

is compatible with U .

Let Wu
loc(p) denote the local representatives of Wu(p), i.e. Wu

loc(p) ≈ U ∩Wu(p),
and zi = (xi, yi) ∈ Wu

loc(p) → z = (x′, 0) ∈ E
u be the sequence corresponding

to mi → m. We thus have to show that

TzE
u ⊂ T = lim

zi→z
Tzi

Wu
loc(p).

Let (u, 0) ∈ TzE
u be any tangent vector. In the sequel we will construct a

sequence of tangent vectors in Tzi
Wu
loc(p) converging to (u, 0) implying that

4Note that (Wu(a),P) is an (A)-prestratification if dim(M) ≤ 2, by dimensional reasons.



92 A. Appendix

TzE
u ⊂ T , thus proving the claim. This is done by induction on the relative

index µ(p, q) = λp − λq. Hence assume that µ(p, q) = 1.

Let ti = 1/2 ln |yi| and consider the sequence wi = ϕti(zi) = (xi|yi|, yi/|yi|) in
Wu
loc(p). Since xi|yi| → 0 and yi/|yi| ∈ S

s, we have wi → w = (0, y′), y′ ∈ S
s, by

transition to a subsequence. Moreover, w 6∈ (Wu
loc(p)−Wu

loc(p)) since µ(p, q) = 1
and w ∈ S

s, hence w ∈ Wu
loc(p) ⋔ E

s and Twi
Wu
loc(p) → TwWu

loc(p). It follows
that

E
u ⊕ E

s ≈ νw(Wu
loc(p) ⋔ E

s,Wu
loc(p))⊕ Tw(Wu

loc(p) ⋔ E
s)⊕ νw(Wu

loc(p) ⋔ E
s,Es)

≈ νw(Wu
loc(p) ⋔ E

s,Wu
loc(p))⊕ E

s

hence (u, v) ∈ TwWu
loc(p) for some v ∈ E

s. Let (ui, vi) denote a sequence
with (ui, vi) ∈ Twi

Wu
loc(p) and (ui, vi) → (u, v). Now using the linear isomor-

phism Dϕ−ti(wi) : Twi
Wu
loc(p)→ Tzi

Wu
loc(p), we have Dϕ−ti(wi)(|yi|ui, |yi|vi) =

(ui, |yi|2vi) by direct calculations. Hence (ui, |yi|2vi)→ (u, 0) proving the basis
step in the induction.

By induction hypothesis assume that the pair (Wu(p′),Wu(q′)) is (A)-regular
for µ(p′, q′) < i.

Now consider the pair (Wu(p),Wu(q)) with µ(p, q) = i. We then repeat the
above argument and arrive at the sequence wi = (xi|yi|, yi/|yi|) ∈ Wu

loc(p) →
w = (0, y′) with y′ ∈ S

s. If w ∈ Wu
loc(p) we are done, if not then certainly w ∈

Wu(q′) for some Wu(q′) ⊂ Wu(p) =
⋃

p≥b Wu(b), in particular w ∈ Wu
loc(q

′) ⋔

E
s. Therefore

1) µ(p, q′) < i, hence (Wu(p),Wu(q′)) is (A)-regular

2) (u, v) ∈ TwWu
loc(q

′)

So there is a sequence (ui, vi)→ (u, v) with (ui, vi) ∈ Twi
Wu
loc(p), since (u, v) ∈

TwWu
loc(q

′) ⊂ limwi→w Twi
Wu
loc(p). It now follows that (Wu(p),Wu(q)) is (A)-

regular at m by repeating the last part of the above argument. �

We now show that claim A.3 is all we need if m 6= q.

A.4 Claim.
Let {mi} ⊂ Wu(p) with mi → m ∈ Wu(q) and ϕ be the flow corresponding to
−∇f .

1) If Tmi
Wu(p)→ T and ti → t then dϕti(mi)Tmi

Wu(p)→ dϕt(m)T .
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2) If dϕt(m)TmWu(q) ⊆ dϕt(m)T then TmWu(q) ⊆ T .

Proof:
ad 1): This is a local problem, hence let Um be a chart around m and TUm ≈
Um × R

n the local trivialization corresponding to Um. The above assumption
then becomes (mi,Fi)→ (m,F) where Fi,F ∈ G(n, λp) are the local representa-
tives of Tmi

Wu(p) and T , respectively, and G(n, λp) denotes the Grassmannian
of λp-dimensional subspaces of R

n.

Now let Uz be a chart around z = ϕt(m) and TUz ≈ Uz × R
n the local triv-

ialization. We then have to show that (zi, dϕti(mi)Fi) → (z, dϕt(m)F), where
zi = ϕti(mi).

Since ϕ is smooth zi = ϕti(mi) → z = ϕt(m). Moreover, dϕti(mi) → dϕt(m)
in GL(n) since dϕti : Um → GL(n) for each ti. Hence dϕti(mi)Fi → dϕt(x)F,
since the natural action GL(n)×G(n, λp)→ G(n, λp); (A,E)→ AE is smooth
(see e.g. ([Lee03],p.234)).

ad 2): This is clear since dϕt(m) : TmM→ TzM is a linear isomorphism. �

We can now prove lemma A.1.

Proof:
The partition P is a decomposition of Wu(a) by claim A.2.

Let (Wu(p),Wu(q)) be any pair with Wu(p),Wu(q) ∈ P and Wu(q) ≤ Wu(p).
Assume that {mi} ⊂ Wu(p) with mi → m ∈ Wu(q)− {q} and Tmi

Wu(p)→ T ,
hence we need to prove that TmWu(q) ⊆ T .

If m is contained in a Morse chart we may apply claim A.3. If not choose
t such that z = ϕ(t,m) ∈ Wu(q) is in a Morse chart around q. Let zi =
ϕt(mi) ∈ Wu(p) and apply part one of claim A.4 to conclude that Tzi

Wu(p) =
dϕt(mi)Tmi

Wu(p) → dϕt(m)T , and claim A.3 to conclude dϕt(m)TmWu(q) =
TzW

u(q) ⊆ dϕt(m)T . Hence TmWu(q) ⊆ T by part two of claim A.4. �

A.3 Future work

The above should be seen as the start of a project whose goal is to determine
whether or not (Wu(a),P) is a (B)-prestratification (i.e. a Whitney prestratifica-
tion, see [Mat73] or [Pfl01] for details). Of course this requires that (Wu(a),P)
is an (A)-prestratification i.e. one needs to prove the following conjecture.
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A.5 Conjecture.
Ifmi is a sequence in Wu(p) converging to q and Tmi

Wu(p)→ T , then TqWu(q) ⊆
T .

To this end we prove the following special case.

A.6 Claim.
Let m ∈ W(p, q). If mi is a sequence in the orbit of ϕm converging to q and
Tmi

Wu(p)→ T , then TqWu(q) ⊆ T .

Proof:
Let V be a direct summand of TmWs(q) in TmM i.e TmM = V ⊕ TmWs(q). In
[Abb] it is proven that dϕt(m)V → TqW

u(q) for t→∞. Now

TmM = νm(W(p, q),Wu(p))⊕ TmW(p, q)⊕ νm(W(p, q),Ws(q))

= νm(W(p, q),Wu(p))⊕ TmWs(q)

and νm(W(p, q),Wu(p)) ⊂ TmWu(p). Hence

dϕt(m)νm(W(p, q),Wu(p)) ⊂ dϕt(m)TmWu(p)

and therefore TqWu(q) ⊆ T . �
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