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Un jour, quand l’homme sera sage,
Lorsqu’on n’instruira plus les oiseaux par la cage,
Quand les sociétés difformes sentiront
Dans l’enfant mieux compris se redresser leur front,
Que, des libres essors ayant sondé les règles,
On connaı̂tra la loi de croissance des aigles,
Et que le plein midi rayonnera pour tous,
Savoir étant sublime, apprendre sera doux.
...

L’aube vient en chantant, et non pas en grondant.
Nos fils riront de nous dans cette blanche sphère;
Ils se demanderont ce que nous pouvions faire
Enseigner au moineau par le hibou hagard.
Alors, le jeune esprit et le jeune regard
Se lèveront avec une clarté sereine
Vers la science auguste, aimable et souveraine;
Alors, plus de grimoire obscur, fade, étouffant;
Le maı̂tre, doux apôtre incliné sur l’enfant,
Fera, lui versant Dieu, l’azur et l’harmonie,
Boire la petite âme à la coupe infinie.

Victor Hugo, À propos d’Horace





Abstract
The growth of digital music has yielded a high demand for applications able to orga-
nize and search in large music databases. This thesis focuses on the data management
aspects that underlie modern music applications: it introduces new conceptual rep-
resentations for music similarities and playlists; and it proposes effective techniques
facilitating the collection, storage, search, and manipulation of music data.

The thesis begins by presenting the concept of Music Warehouses, dedicated Data
Warehouses optimized for the storage and manipulation of music content. It also
provides an outline of related research challenges.

A scalable framework for collecting music features and distributing the computa-
tion of music similarities without infringing copyrights is presented. The framework
is evaluated on a large set of computers and is used to construct a data set of music
similarities. Several methods are then introduced to improve similarity search, using
weighted-combinations of collected similarities and features.

The concept of Fuzzy Song Sets is defined to flexibly capture music similarities
between pairs of songs. Innovative internal representations and their corresponding
implementations of the fundamental operators are studied. Bitmaps compressed with
the proposed enhanced version of the Word Aligned Hybrid compression scheme
prove to be well-suited for representing and manipulating Fuzzy Song Sets.

Next, the challenges bound to music search in a multidimensional space are ad-
dressed. A new bitmap compression scheme, referred to as the Position List Word
Aligned Hybrid, is introduced to perform multidimensional range queries. Analytical
and experimental results show significant improvements on existing bitmap compres-
sion techniques in terms of compression ratio and efficiency of bitmap operators.

Finally, the thesis defines Fuzzy Lists, a novel mathematical concept, which pro-
vides a powerful foundation for playlist manipulation. Additionally, a new compres-
sion scheme is introduced for the internal data representation of Fuzzy Lists and an
implementation of the fundamental Fuzzy List operators is presented.

In conclusion, this thesis covers major issues linked to the management of mu-
sic similarities and playlists and offers effective and flexible solutions that improve
upon existing state-of-the-art techniques. Although the thesis focuses on the music
domain, the presented techniques are general and can be applied to other domains;
this substantially leverages the impact of the reported results.
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Chapter 1

Introduction

The explosion of digital music technologies, such as DAB for radio broadcasting,
CD for music discs, and MP3 for compressed music, has yield digital music to be-
come the de-facto format of music distribution. Today, rare are the artists publishing
their new album on a classical vinyl disc. Instead, the albums get sold through on-
line music shops where consumers can instantly search, buy, and listen to new tracks
in a few clicks. This digital revolution has drastically shifted the music distribu-
tion paradigm to become increasingly user-centric by providing personalized music
recommendation to users. The challenge for music recommendation systems is to
provide automated, personalized, and accurate recommendations to a large number
of users on massive amount of music.

Music recommendation systems are constituted of three key elements: a feature
extractor, a similarity engine, and a Music Warehouse (MW). The feature extractor
transforms music into usable pieces of information, referred to as music features.
The music features can be organized into four categories: acoustic, social, editorial,
or physical features [29]. Extraction methods vary depending on the music features,
e.g, a social feature extractor may collect opinions using a user interface, or may
gather information from the Internet.

The similarity engine computes similarity measures between any pair of songs
using the extracted features. A similarity measure can thus be created for every com-
bination of extracted features. Typical similarity features include some parameters
allowing the similarity function to be adapted dynamically, for example to fit the
user’s preferences.

The MW is a central repository that stores and organizes the extracted features
and song similarity measures obtained from the feature extractor and the similarity
engine. It facilitates the management of large music collection, for example, by en-
abling search for songs based on their characteristics or resemblances to other songs.

1
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Figure 1.1: Research Topics and Related Chapters

This thesis addresses the challenges bound to the development of an MW. It relies
on the existence of accurate feature extractors and music similarity engines and de-
velops the necessary concepts and techniques required for the management of music
content. The thesis reports on the development of a prototypical MW; the presented
research contributions fit into its elaboration. The organization of the thesis is de-
picted in Figure 1.1. The topics are represented by rectangles, each topic is developed
in an individual chapter corresponding to the number situated in the rectangle upper
left corner.

The thesis begins by presenting the initial idea of an MW. Chapter 2 explains
the motivation of constructing an MW and offers a comparison with more classical
business-oriented data warehouses. It presents an overview of the different categories
of musical metadata commonly used to characterize songs, the relationships between
the songs and the different musical features, and proposes a system architecture. The
architecture is later used as a foundation for the implementation of MW. Finally,
Chapter 2 identifies ten promising challenges for the database community that are
particularly beneficial in the context of music.

Features extraction is a computationally intensive process. Therefore, on a large
music collection, the extraction process is typically distributed among a large num-
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ber of computers. Similarly, rather than being performed in the MW, the compu-
tation of some similarity features might have to be outsourced to other computers.
Chapter 3 deals with the challenges of developing a scalable framework for collect-
ing acoustic music features. This is done by distributing the feature extraction and
similarity computation tasks. The proposed framework proves to be scalable and al-
lows thousands of computers to participate in the features extraction and similarity
computations. The framework is flexible and allows similarities between songs to
be precomputed or computed on the fly. Precomputed similarity measures capture
the similarities between any pair of songs and do not have to fulfill any particular
mathematical property, e.g., the properties of a metric. They are referred to as rela-
tive similarity measures. Similarity measures computed on the fly are representing
each related song feature in a multidimensional space. They are referred to as abso-
lute similarity measures. For both relative and absolute similarity measures, initial
storage and indexing techniques are proposed. Major performance improvements of
these techniques are presented in the next two chapters.

In Chapter 4, we address the issue of dealing with relative similarity measures.
We present a first MW prototype able to perform efficient nearest neighbor searches
in an arbitrary song similarity space. The concept of Fuzzy Song Sets (FSS), fuzzy
set defined over a domain of songs, is proposed as fundamental data representation
for music content in MW. Using Fuzzy Songs Sets, the MW offers a practical solu-
tion to capture user musical preferences, user feedback, and song similarities. Three
approaches are considered for tackling the storage issues of FSSs: tables, arrays, and
compressed bitmaps. After constructing theoretical estimates and developing practi-
cal implementations, results prove that, from a storage point of view, both arrays and
compressed bitmaps are effective data structure solutions. With respect to speed, we
show that operations on compressed bitmaps offer significant gains in performances
over arrays for FSSs comprising a large number of songs. Finally, Chapter 4 explains
how the presented results can be applied to other domains.

In Chapter 5, the focus is brought on improving music search based on absolute
similarity measures. We propose to optimize multidimensional range queries by us-
ing bitmap indexing techniques. Compressed bitmap indexes are used for efficiently
querying very large and complex databases, for example populated with music con-
tent. The Word Aligned Hybrid (WAH) bitmap compression scheme is commonly
recognized as the most efficient compression scheme in terms of CPU efficiency.
However, WAH compression ratios are less than optimal, especially for modern CPU
architectures. Chapter 5 presents the Position List Word Aligned Hybrid (PLWAH)
compression scheme that improves WAH compression significantly by making better
use of the available bits and utilizing new CPU instructions. For typical bit distribu-
tions, PLWAH compressed bitmaps are often half the size of WAH bitmaps, and at the
same time PLWAH has even better CPU efficiency than WAH. Using PLWAH com-
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pressed bitmap indexed, storage requirements for storing the indexes are lowered and
results necessitating bitmap operations are computed faster. The results are verified
by theoretical estimates and extensive experiments on large amounts of both synthetic
data and absolute similarity measures generated from real world music collection.

Chapter 6 introduces the notion of generic playlists and presents a concrete sce-
nario to illustrate their possibilities. Generic playlists allow users to collaboratively
elaborate playlist and to adapt shared playlists to fit their music preferences. Ad-
ditionally, a formal foundation is provided to enable the development of playlist
management tools: the concept of Fuzzy List (FL) is defined and a corresponding
algebra is developed. A prototypical implementation of FL is presented. In or-
der to reduce the storage requirements and improving the MW scalability, FLs are
compressed using the Pattern Aware Word Aligned Hybrid (PAWAH) compression
scheme. PAWAH is a new compression scheme that allows FLs operators to manip-
ulate FL directly in their compressed format. FLs offer a flexible solution perfectly
suited to meet the demands of playlist management.

Finally, Chapter 7 proposes a summary of the conclusions and future research di-
rections. The key contributions of the thesis are summarized below. They inherently
constitute pragmatic solutions as they result from the elaboration of the prototypical
MW presented in the thesis.

1. Feature extraction is a CPU intensive process. On a large music collection,
the extraction process is typically distributed among computers. We propose a
scalable framework to distribute the extraction of the music features and com-
pute music similarities with respect of copyrights.

2. We present FSSs and propose to use them for representing music information.
An algebra for facilitating their manipulation is developed. Three usage sce-
narios and the corresponding multidimensional cubes extended with FSSs are
described; they illustrate the usage of Fuzzy Song Sets in MW.

3. We implement common fuzzy set operators for WAH and array compressed
fuzzy sets. We prove that fuzzy sets represented with WAH compressed bitmaps
are an efficient approach for manipulating large fuzzy sets.

4. We introduce PLWAH, a new bitmap compression scheme, that improves the
execution of multidimensional range queries commonly used for searching
among music features. PLWAH offers good compression ratio and allows bit-
wise operations to be performed directly on the compressed bitmaps. PLWAH
bitmap indexes allow efficient search on highly multidimensional data.

5. We define FLs and propose an algebra to manipulate them. FLs are a flexible
concept used to represent, manipulate, and share playlists.
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6. We propose a storage representation and the corresponding implementation of
the operators of FLs. FLs are stored in a new compressed format referred to as
PAWAH. PAWAH enables arithmetic operations on the membership degree to
be performed directly on the compressed representation.

These contributions offer new interesting research directions. Future work include the
integration of the feature extraction framework into new music information retrieval
platforms, such as the Networked Environment for Music Analysis (NEMA) [34].
The FFSs and FLs should be integrated into new music recommendation system
and dynamic playlist generator as presented in [16, 17]. Promising research on the
PLWAH and PAWAH compression schemes include the development of a variable
counter length and performance improvements thanks to a better usage of the multi-
core architecture of modern CPUs. A brief overview of promising research directions
is presented in Chapter 7.

The thesis is organized as a collection of individual papers. The papers have been
polished and grouped by theme in order to be integrated in this thesis. Chapters 2
to 6 are self-contained and can be read in isolation. Since these chapters are closely
related, this entails two minor overlaps: (1) some references to music databases in
the related work sections of the different chapters are repeated, and (2) the brief
paragraphs presenting the Fuzzy Song Sets and Fuzzy Lists in Chapter 2 are detailed
in Chapters 4 and 6 respectively. The mapping between the thesis’ chapters and
the published papers is given below. The unpublished extensions of the papers are
presented as annexes to the corresponding chapters.

Chapter 2:

• F. Deliège and T. B. Pedersen, Music Warehouses: Challenges for the Next
Generation of Music Search Engines. In Proceedings of the International
Workshop on Learning the Semantics of Audio Signals, LSAS, pages 95-105,
2006.

• F. Deliège, Foundations of Music Warehouses for Discovering New Songs
“I like”. In Proceedings of the Very Large DataBase 2007 PhD Workshop,
2007.

Chapter 3:

• F. Deliège, B. Y. Chua and T. B. Pedersen, High-Level Audio Features: Dis-
tributed Extraction and Similarity Search. In Proceedings of the 9th Inter-
national Conference on Music Information Retrieval, ISMIR, pages 565-570,
2008.
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Chapter 4:

• F. Deliège and T. B. Pedersen, Using Fuzzy Song Sets in Music Warehouses.
In Proceedings of the 8th International Conference on Music Information Re-
trieval, ISMIR, pages 21-26, 2007.

• F. Deliège and T. B. Pedersen, Using Fuzzy Song Sets in Music Warehouses.
In Scalable Fuzzy Algorithms for Data Management and Analysis: Methods
and Design. Editors: A. Laurent and M.-J. Lesot. IGI Global, 30 pages, 2009.
To appear.

Chapter 5:

• F. Deliège and T. B. Pedersen, Position List Word Aligned Hybrid: Optimizing
Space and Performance for Compressed Bitmaps. Submitted for publication.

Chapter: 6

• F. Deliège and T. B. Pedersen, Using Fuzzy Lists for Playlist Management.
In Proceedings of the 14th International MultiMedia Modeling Conference,
MMM, pages 198-209, 2008.



Chapter 2

Music Warehouses:
Challenges for the Next
Generation of Music Search
Engines

Music recommendation systems have recently become very popular. While their first
generation was only based on a few manually extracted musical descriptors, the new
generation will provide richer and more accurate metadata over very large volumes
of music and will be able to generate personalized playlists automatically. These
new major improvements call for the development of innovative data management
techniques. This chapter proposes to satisfy this need by extending technology from
business-oriented Data Warehouses to so-called Music Warehouses (MW) that inte-
grate a large variety of music-related information, including both low-level features
and high-level musical information. Our work on MWs focuses on nearest neigh-
bor searches and the generation of personalized user playlists. Finally, this chapter
presents a number of other new challenges for the database community that must be
taken up to meet the particular demands of music warehouses.

2.1 Introduction

The tremendous growth of digital music available on the Internet has created a high
demand for applications able to organize and search in large music databases. Thanks
to new digital music formats, the size of personal music collections often reaches up

7
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to thousands of songs and large online music stores and online radios are becoming
very popular. However, current search tools still remain very limited: popular search
engines only provide searches based on external annotations, but to offer truly nat-
ural and intuitive information retrieval, search and query into the primary media is
required. These needs have given further impulse to the development of new methods
for music information retrieval and research on digital music databases.

Companies have always spent a considerable amount of money and efforts to
ensure proper storage and management of their business information in order to an-
swer questions about sales, production, or any operation relevant to their particular
business concerns. Therefore, in large companies, each operational unit has always
gathered, on a regular basis, various pieces of knowledge using a number of systems.
Unfortunately, these systems have usually been provided by different vendors over a
long period of time and are based on different technologies and terminologies which
often make integration a major problem. This integration is, however, needed when
it comes to answering questions implying data from different operational units. For
example, in order to determine the profitability of a given product, data from sales
and production needs to be combined. Another example is trend analysis that re-
quires combining the budget and the performance information over time. To solve
this centralization problem, the data warehousing approach integrates data coming
from the various operational units into one common data store, referred to as the data
warehouse (DW), optimized for data analysis purposes.

The data warehousing approach has already demonstrated its strengths in the
business context and has been widely used as a solid ground for On-Line Analytic
Processing (OLAP) systems. OLAP systems allow queries such as calculating the
profitability of products categories over the years to be answered “live”. At the same
time, such systems, regardless of the database management system used, have com-
monly adopted the same conceptual multidimensional view of data.

In other contexts, however, applications call for more complex data structures
than the ones proposed in the classical multidimensional data model. One such
domain is music classification and retrieval. Automated classification of song de-
scriptors, computer or manually generated as in the Music Genome Project 1, has
already received a lot of attention from the signal processing and machine learning
research communities as well as from private companies. Also, the database commu-
nity has shown an increasing interest in creating new indexes able to search among
large amount of complex data such as music content descriptors. However, to the
best of the authors’ knowledge, no work has been reported so far concerning the
management of musical information using multidimensional models.

Music Warehouses (MWs) are dedicated DWs optimized for the storage and anal-
ysis of music content. They provide the advanced framework necessary to support

1http://www.pandora.com/mgp.shtml

http://www.pandora.com/mgp.shtml
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Figure 2.1: The Key Role of an MW

semantic tools able to close the gap between audio features and contextual repre-
sentations. In particular, the multidimensional view of data commonly adopted in
DWs facilitates the understanding of the mapping between low-level features and
high-level representations. Also, the summarization features integrated in multidi-
mensional models present a prominent advantage. As pictured in Figure 2.1, MWs
will play the key role of centralizing and integrating all music information pieces
together. In order to capture the context of a song, MWs will use an advanced data
model and its query language. Thanks to specifically designed query optimizations
fast responses time will be ensured. The unequaled amount of music information
available through MWs will be accessible to a large variety of clients, from personal
music players to large music label companies.

The main focus of this chapter is to identify and describe the various new chal-
lenges to multidimensional database models in the music classification field. The
music world requires more powerful data model constructs than the ones offered by
traditional multidimensional modeling approaches. However, the issues discussed
here are not confined to the music domain but will find applications in other contexts.

2.2 DW Background

The term “data warehouse”, first used by Barry Devlin [31], is best defined by Bill
Inmon who explains the concept as follows: “A data warehouse is a subject oriented,
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integrated, non-volatile and time-variant collection of data in support of manage-
ment’s decisions” [46]. A brief explanation of the different properties follows.

• subject oriented:
Data is traditionally organized to support specific processes, i.e., the same data
might be organized very differently depending on the process for which it has
been stored. For example, it is likely that user profiles in a online music store is
organized differently than on a play-list generator application of a online radio
station. In DWs, data is organized by subjects rather than by processes, i.e., the
same data organization is used regardless of the analysis performed.

• integrated:
A classical approach for handling complex problems is to split them into smaller
ones, each of them using its own structures, defining its own processes and us-
ing its own data storage format. To the contrary, in DWs, data is gathered from
a variety of sources and merged into a coherent whole. In the music context,
this implies that all aspects of music must be uniquely defined, a challenging
task given the many inconsistencies often found in music ontologies.

• non-volatile:
In process centric applications, data is often kept only for a relatively short
period of time, e.g., 3 to 6 months, as these applications are mostly interested
in short time horizon events. In data warehouses, however, data is kept for
longer period of time in order to perform data analysis. For example, queries
such as “what is the evolution of the most popular rhythm in rock music from
its beginning to the 90’s using 5 years time windows?” could be performed as
most DWs are keeping data for years.

• time-variant:
Time is one of the basic construct of a data warehouse. Frequently represented
by its own dimension, the tight integration of time in DWs allows data to evolve
over the time, i.e., data can be updated and changes can be tracked. In DWs,
data is marked to be valid given certain time windows. So, even if Sting played
in various bands during his career, it is possible to know when he was playing
in Police.

• management’s decisions:
The fact that data warehouses are designed and optimized for query and in-
formation retrieval and not for data entry is well captured by the word “deci-
sion”. First designed as a high level decision support tool at a strategic level,
data warehouses have proved their usefulness at many decision levels. To-
day, the expression “management’s decisions” is outdated. Instead, the term
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“knowledge worker” has replaced the word management, as decision points
are pushed down in the organizational hierarchy. This is particularly true in the
music context where music labels, music retailers, copyright companies, radio
stations and consumers will all interact with MWs.

DWs first appeared in the business context to integrate data from different op-
erational units together and provide complete understanding and better coverage of
the business matters. Driven by the market, academic research quickly showed inter-
est in the topic. A major focus from both worlds has always been to support OLAP
functionalities together with good performance. Research was performed on both
conceptual and physical levels and has led to the creation of many different multi-
dimensional models and OLAP systems. Multidimensional models can be divided
into 3 categories: simple cube models, structured cube models and statistical object
models [76]. OLAP systems have mainly been implemented using two technologies:
Relational OLAP (ROLAP), based on a Relational DataBase Management Systems
(RDBMS) [53], and Multidimensional OLAP (MOLAP), based on a dedicated Mul-
tidimensional DataBase Management Systems (MDBMS) [87]. Proper identification
of the requirements of music classification systems is a first step to determine which
conceptual and physical data warehouse elements are the best suited to take up the
challenges offered by MWs.

2.3 Related Work

Today, most of the music recommendation systems available online are solely based
on editorial information available through tags or on collaborative filtering. With
the growth of the Web, techniques based on publicly available data have emerged.
They combine data from many sources using text analysis and collaborative filtering
techniques to determine similarity. Since they are based on human opinion, these
approaches capture many cultural and other intangible factors. A main disadvantage
of these techniques, however, is that they are only applicable to music for which a
reasonable amount of reliable public information is available. MoodLogic2 is an ex-
ample of how editorial information and cultural information can be gathered. The
core idea of MoodLogic is to associate metadata to songs automatically, thanks to
two basic techniques: first, an audio fingerprinting technology able to recognize mu-
sic titles on personal hard disks, second, a database collecting user ratings on songs,
which is incremented automatically in a collaborative fashion. No acoustic analysis
of the song is, however, performed. Pandora3 adopts a radically different approach

2http://www.moodlogic.com
3http://www.pandora.com

http://www.moodlogic.com
http://www.pandora.com
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and bases its recommendations on acoustic metadata. The acoustic metadata is gener-
ated through the music genome project that consists of a small group of music experts
manually describing the audio content of songs. While these systems provide useful
services for Electronic Music Distribution (EMD) systems, their scalability remains
limited as they rely only on expensive and external sources of information.

Many researchers have studied the music similarity problem by analyzing sym-
bolic representations such as MIDI music data, musical scores, and the like. For
example, methods have been developed to search for pieces of music with a particu-
lar melody. The queries can be formulated by humming and are usually transformed
into a symbolic representation, which is matched against a database of scores, e.g., in
MIDI format [42]. However, techniques based on MIDI or scores are limited as they
are format dependent. Acoustic representation allows music content to be directly an-
alyzed and can, therefore, be applied to any music. A considerable amount of work
has been reported on automatic extraction of audio features [44]. For monophonic
music, Downie indexed with good results a database of 10000 songs by adapting ex-
isting text information retrieval techniques to music [36]. Blum et al. [14] present an
indexing system based on matching features such as pitch, loudness or Mel-frequency
cepstral coefficients, briefly MFCC. Tzanetakis extracts a variety of features repre-
senting the spectrum, rhythm and chord changes and concatenates them into a single
vector to determine similarity [89]. Aucouturier and Pachet model songs using local
clustering of MFCC features, determining similarity by comparing the models [10].
Using the extracted features, attention was drawn to enable music lovers to explore in-
dividual music collections [59,60]. Within this context, several research projects have
been conducted in order to pursue a suitable similarity measure for music [63, 68].

Research on distributed music database in P2P and Wireless Ad-hoc networks
was conducted by Karydis et al. [51]. They also have developed an algorithm that
efficiently retrieves audio data similar to an audio query. The proposed method uti-
lizes a feature extraction technique for acoustical music sequences [52]. Downie et
al. [35] describe a secure and collaborative framework for evaluating music informa-
tion retrieval algorithms but little attention has been paid so far to the storage issues
of audio features in data warehouses. A more traditional approach is to use classical
relational models such as the one proposed by Rubenstein that extends the entity-
relationship data model to implement the notion of hierarchical ordering, commonly
found in musical data [79]. Through some examples, Rubenstein illustrates how to
represent musical notation in a database using the extensions he introduces, but no
detailed data types and operations are given. A multimedia data model, following
the layered model paradigm that consists of a data definition layer, a data manipu-
lation layer, a data presentation layer, and a control layer, is presented by Wynblatt
et al. [95], but no query language is proposed. Surprisingly, none of these models
adopts a multidimensional approach by representing data in cubes, a very convenient
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structure for performing on-the-fly analysis of large volumes of data that has already
proved its strengths in data warehouses [72, 73]. Finally, the most relevant related
work is the music data model and its algebra and query language presented by Wang
et al. [90]. The data model is able to structure both the musical content and the meta-
data but does not address performance optimization issues. In particular, it does not
provide an adequate framework to perform similarity based search, dimensions do
not support hierarchies, and no discussion is provided about the indexing issues.

Existing indexing techniques, such as M-grid [32] or M-tree [25], can be applied
to index high dimensional musical feature representations. However, as a conse-
quence of the subjective nature of musical perception, the triangular inequality prop-
erty of the metric space is typically not preserved for similarity measures [13,58,74].
Therefore, additional techniques have to be employed to ensure a suitable founda-
tion for musical similarity search. Nearest neighbor searches are a popular topic
in the database community for their usage in content based retrieval and similarity
searches. An impressive amount of work can be found in the literature for both high
and low dimensional spaces [54, 81, 91, 97]. However, these techniques are inspired
by geometric problems and rely on the existence of a Euclidian space in order to
eliminate potential candidates using upper and lower bounds. Unfortunately, they are
not suitable for non-metric space and are therefore not applicable for the similarity
measures where the triangular inequality property is not fulfilled. Work on indexes
for non-metric space is presented in the literature [43, 80, 82, 96]. Though the simi-
larity function is non-metric, it remains confined in a pair of lower and upper bounds
specifically constructed. However, we aim to create MWs able to work with any sim-
ilarity function as no consensus has yet been reached among the MIR community.

2.4 Musical Classification

2.4.1 Musical Metadata

The music industry needs musical classification. While various classifications exist,
no real consensus seems to have emerged. Music retailers, music labels, copyright
companies, radio stations, end users, etc., have all designed their own taxonomies.
Music retailers taxonomies, for example, that are aimed at guiding consumers in
shops, are made up of four levels alphabetically ordered: global musical categories,
subcategories, artist names, and album names. Even among the same group of inter-
est, e.g., online music portals, inconsistencies are easy to find. One notable source of
inconsistencies is the use of different kinds of metadata, e.g., Moodlogic, Amazon
and Pandora that are using different recommendation systems based respectively on
editorial, cultural, and acoustic metadata, end up with end up with different classifi-
cations.
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Metadata is commonly used in the research field of audio mining covering areas
such as audio classification and retrieval. Literally “data about data”, metadata is
defined as information about another set of data. In his work on musical knowledge
management [66], Pachet classifies musical metadata into three categories depending
on the nature of the source from where the information can be extracted. We propose
a division in four categories presented below.

• In the audio context, metadata elements such as the title, the composer, the per-
former, the creation date and the publisher of a song are the most commonly
used. They are referred to as editorial metadata and give authoritative infor-
mation provided mostly manually by experts. Editorial metadata covers a wide
range of information, from administrative to historical facts.

• Cultural metadata is defined as knowledge produced by the environment or
culture resulting from an analysis of emerging patterns, categories or associ-
ations from external sources of documents. Typical methods for generating
such information are to use radio station play-lists to find correlations between
songs or to crawl music web sites to gather word associations. An example
of cultural metadata is the list of the most common terms associated with a
given artist. Many online music stores, e.g., Amazon.com, are using cultural
metadata based on user recommendations, a well-known collaborative filtering
technique.

• Acoustic metadata is the third category of music information. Acoustic meta-
data is defined as purely objective information obtained solely through an anal-
ysis of the audio content of the music. However, acoustic metadata remains
dependent on the internal primary support of the musical information. While
numerous approaches exist on what acoustic features to retain and how to select
these features, they can primarily be separated into two classes: symbolic rep-
resentation (MIDI) and acoustic representation (WAV, MP3). In the symbolic
representation, the features usually refer to pitch, rhythm, or their variations,
while in the acoustic representation the most common features are produced
by time analysis, spectral analysis and wavelet analysis.

• Physical metadata, a new fourth category of metadata, is defined as informa-
tion directly related to the medium holding the music. Contrarily to cultural
metadata, physical metadata is not produced by external elements such as the
culture but rather provides information on the physical storage characteristics
and its related practical constraints. A naive example would be the location of
a music file on a computer, a possibly helpful piece of knowledge about the
user’s classification. Physical metadata includes information such as the type
of medium, e.g., a CD or a vinyl record, the kind of media, e.g., a music or a
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video clip, the format of the source, e.g., PCM or MP3, the compression used,
e.g., lossless or lossy compression, etc. Physical metadata contains a lot of
useful information in the context of an online music store where, for example,
customers, depending on the speed of their internet connection, might want
to buy video clips, music with high sound quality or music with lower sound
quality.

Together, the four categories of metadata reflect the song context that can only
be captured by a large quantity of metadata, possibly of high dimensionality and
using heterogeneous units. Along with musical descriptions, methods to uniquely
identify pieces of music are needed. Various robust audio fingerprint techniques have
been developed to allow audio identification of distorted sources. Such techniques
have already been successfully implemented in some systems such as the Moodlogic
Music Browser4.

2.4.2 A Case Study of Musical Management

The case study illustrates the special demands of MWs. An ER diagram of the case
is shown in Figure 2.2 using the notation of [38]. It pictures at a conceptual level the
data model and is, therefore, not represented using a star-schema.

The song is the most important entity type, as indicated by the placement in the
center of the diagram. A song is uniquely defined with an song identifier (SID) and
has additional attributes such as Title, Length, Format, all of which are considered
to be static. Audio fingerprints allow the song to be identified uniquely based on its
audio content and independently of its storage format. A song has many relationships
with other entities, whose purposes are to describe the song. These other entities
might be viewed as dimensions and are shared by all songs.

First, a song can be characterized by its editorial information. Each song is au-
thored by one or more composers and can be played by one or more performers.
Both composers and performers are artists and are identified using their scene name
along with some biographic elements. Performers usually form bands together. Each
band is identified with a name and has at least one time interval in which it existed.
Performers may join or leave the band without the band being dissolved. Bands are
able to dissolve and reunite multiple times. A song is published by a music editor at
a given time, either in a single or in album identified by a name, using distribution
channels such as web radios, music television channels, online music stores, etc.

Second, using collaborative filtering and user profiles, the cultural context sur-
rounding a song can be depicted. Co-occurrence analysis is performed by tracking
user play-lists and by crawling the web [27]. Each time a song is played, the previ-
ously played song is stored, so that the list of a user’s most frequently played songs

4http://www.moodlogic.com/

http://www.moodlogic.com/
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after a given one can be inferred. A user is uniquely identified using a user identifier
(UID). Each user has a location, a date of birth, a language attribute, and possibly a
music profile. The music profile stores which descriptors a user values the most. A
music profile is defined on a user basis and is composed of a list of weights corre-
sponding to the music descriptors. Based on the user music profiles, groups of similar
profiles can be formed. Music profile groups link users that seem to have the “same
ear”, i.e., using the same criteria. Similar musical profiles, i.e., users identified as
having the same musical tastes, can be grouped together into musical audiences.

Third, a song is described with acoustic information. For each song, acoustic fea-
tures can be extracted using an extraction method and its parameters. Each acoustic
feature is characterized by a unique pair of an extraction method and its parameters.

Finally, each song is stored using at least one physical medium, e.g., a file where
the sound data has previously been encoded in one of the well known encoding for-
mats such as MP3, WMA, or OGG. Each file is given a unique file identifier (FID),
and is characterized by an identification tag such as a hash-key that permits to search
if a file is already present, an audio format representing the encoding format of the
sound, its size, its quality, etc.
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Figure 2.3: High Level Features in an MW

Figure 2.3 presents the music features at a higher abstraction level. The various
features capturing the song context are all considered as descriptors regardless of
the category of musical metadata they belong. Descriptors are represented in the
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center of the figure as they are the most important entity type. Each descriptor is
identified uniquely by its name. Multiple descriptors can be grouped together to
form fused descriptors. Each song should be represented using as many descriptors as
possible. Each descriptor has a weight reflecting its importance to each user. Finally,
each descriptor should have at least one similarity function attached to it. Similarity
functions allow comparison between values of a given descriptor for different songs.
Once the descriptor similarities between two songs have been calculated, they can be
computed into a general similarity value using the user weights.

2.5 Our approach

2.5.1 Scenario

We propose to develop a on-line music recommendation system able to find the song
the most similar to another with respect to one or a combination of musical aspects.
The musical aspects should represent high level metadata accessible to users such as
the beat or the genre of a song. They should not only be based on audio analysis but
also on cultural elements such as the targeted audience, on editorial aspects such as
the artists, or on physical information such as the type of format. Furthermore, the
MW has to handle user playlists and offer playlist manipulation tools. Eventually,
we want to offer to users an automatic music playlist generation service. The playlist
should be created with respect to constrains such as the user’s profile. Additionally,
the user could specify the length of the playlist and how the playlist should evolve.

2.5.2 Architecture Overview

Figure 2.4 shows our prototypical system architecture. The system is composed of a
client and a server. The client is responsible for extracting new music features, for
building the user profile, and for all the user interface related issues. The server is
responsible for centralizing music information, for storing the user profile, for finding
similar songs, and for generating playlists. First, the music not yet present on the
server gets analyzed and the low level features are extracted and transmitted to the
server. Based on the low level features, computationally expensive similarity value
are generated. Second, once the data cubes are generated, queries to obtain the songs
the most similar to a given seed song or to generate a playlist can be answered. User
feedbacks on the provided results are saved for a future integration in the MW.

2.5.3 Song Similarities

The music recommendation is able to compare and provide a similarity value for any
pair of songs. Using the similarity values, it is easy to tell if the two songs of any
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given pair of songs are “very different”, “different”, “somewhat similar”, or “very
similar” from the perspective of a given attribute such as the beat for example. But,
in order to keep our scenario as general as possible, as few assumptions as possible
should be made about the properties of the similarity functions. In particular, the sim-
ilarity aspects do not have to be a metric in a mathematical sense (positive, triangular
inequality, and symmetry properties). However, we assume that the similarity values
can be mapped to values in the interval from 0 to 1.

For each song, referred to as the seed song, the similarity values with the other
songs are computed and stored in a fuzzy set. The similarity value between two songs
is then represented using a membership degree, e.g., the more similar two songs are
the closer to 1 the membership degree will be. To retrieve the closest songs to a
given song seed, the MW reads the fuzzy set and returns the songs having the highest
membership degree. While this solution offers fast retrieval of the most similar songs
regardless of the properties of the similarity functions, it also suffers from major
drawbacks namely the storage consumption and the updating process.

We are currently extending the fuzzy set algebra presented by Galindo et al [41].
We have created operators to perform Topk selections, reductions, and average ag-
gregations among fuzzy sets. The Topk operator changes the membership degree to
zero to all elements that are not part of the k elements having the highest degree. The
reduction operator changes to 0 all membership degrees below a given threshold. As
an example, Figure 2.5 shows the aggregation of two song sets using the intersection
operator. Using the fuzzy set algebra, it is possible to execute complex queries such
as retrieving the songs that are the most similar to two given song seeds, or to one
song seed with respect to different similarity aspects.
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Additionally, we are now focusing on query optimization aspects of these oper-
ators for the different physical storage options. We have studied the use of tables,
arrays and WAH compressed bitmaps [92] as internal storage solutions for the fuzzy
sets and discussed the advantages of each. Tables are space consuming but allow
pivoting between songs seeds and songs in the fuzzy set. The choice between arrays
and compressed bitmaps depends on the number of bits required to identify uniquely
an element of the fuzzy set and to store the membership degrees. The choice is,
therefore, depending on the data set.

We envision the use of fuzzy sets in two additional cases. First, fuzzy sets can be
used to represent users’ opinion about the previously suggested songs. It is possible
to retrieve the set of the proposed songs which a user liked or disliked in a particular
session. Second, regardless of the context, e.g., the previously played songs, the
suggested songs, or the criteria used, a user is able to grade if he likes a song or not.
For example, a song banned by the user should never be played. To the contrary,
other songs should be proposed more often as the user likes them. The list of songs
a given user likes, and the songs he dislikes can also be stored using a fuzzy set. The
MW allows aggregation to be performed using the favorite songs fuzzy set attribute
of the user dimension, e.g., counting the users having marked a particular set of songs
as their favorite music.

The closest songs cube provides a set of songs which are the closest to a given
one, referred to as the seed song, with respect to a similarity function, so that, for
each song, for each similarity function, the closest songs are stored using a fuzzy set.
It is composed of the song and the similarity dimensions as shown in Figure 2.6. The
user feedback cube gathers relevance statistics about the songs proposed to users by
the music recommendation system. It is composed of the user dimension and the
query dimension. For each user and query, the user feedback is stored. The feedback
given for a particular song played is stored as a membership degree representing how
the proposed song is pertinent in the context of the query. A very low membership
degree is given when the user believes the song should not have been proposed.
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2.5.4 Generic Playlists

We want to build, through user collaborative filtering, playlists composed of a given
number of songs and a theme. For example, 100 users have to build a playlist that
is made of ten songs, that is composed of 3 rocky songs, 3 jazzy songs, 3 romantic
songs and 1 blues song. Furthermore, the users are asked to respect some smooth
transitions between the songs so that the third rocky song sounds a bit jazzy. Finally,
let’s also assume that independently from the playlist building process each registered
user has a list of songs he likes and dislikes.

The playlists created by the voting users are merged into a unique playlist, re-
ferred to as a generic playlist, that can be shared among all the users registered in
the system. However, some users might be disappointed by the generic playlist if
inserted blindly to their music player. For example, the user might have previously
banned some songs and would prefer the system to find alternatives. To the contrary,
if a song was very close from being selected as part of the playlist and the user rated
it as his favorite song, the system should switch the song originally present in the
generic playlist with the user’s favorite song. Figure 2.7 illustrates the construction
of a generic playlist and how it can at be derived into a personalized playlist a later
stage.

Generic playlists offer a concrete scenario for the usage of fuzzy lists, the fuzzy
counterpart of the well-known (crisp) lists. We propose to define a finite fuzzy list,
A, of size m, over a domain of discourse, denoted X , as follows:

A = {µA(x, n)/n/x :
x ∈ X,n ∈ {1, . . . ,m}, µA : X × N 7→ [0, 1]}
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where x is an element of X , where n is a non-negative integer, and where µA(x, n),
referred to as the sequential membership degree of x at position n, is a real number
belonging to [0, 1], with µA(x, n) = 0 when x does not belong to A at position
n, and µA(x, n) = 1 when x completely belongs to A at position n. The fuzzy
list concept is new and new operators such as the concatenation, the intersection,
the union, the subset, the inverse, and the negation have to be formally defined and
studied. We believe fuzzy lists are a superset of both fuzzy sets and classical crisp
lists theories, they could therefore be used in a large scope of applications. We are
currently conducting further investigations on the storage and the query processing
issues fuzzy lists introduce.

2.6 Challenges for MW

One of the most prominent demands for MWs is the creation of a data model sup-
porting more complex modeling constructs than classical multidimensional models,
while keeping their strengths for decision support, i.e., including the full generality of
ER models would be a turn back. The data model should provide integrated semantic
support for the demands that follow.

1. Time series:
Many acoustic descriptors, such as the beat or the pitch, can be represented as
multidimensional vectors at successive time points. Unlike typical DW facts,
these types of data clearly yield no meaning when summed up. Other standard
aggregation operators such as MIN, MAX and AVG do apply, but real demands
are for more complex operations, such as standard deviation and other statis-
tical functions that are useful for the similarity functions that underlay music
queries. The data model should include operators allowing to cut, add, and
compare time series along with aggregation operators enabling modifications
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of the sampling frequency of the time series. Furthermore, the model should
support irregular time series in which samples are separated by non-uniform
time intervals. Finally, it should be possible to use the above-mentioned ad-
vanced temporal concepts wherever meaningful.

2. Standards compatibility:
Many different formats are used to store music. While acoustic formats, e.g.,
MP3, OGG, WAV, contain information about the audio wave transmitted, sym-
bolic formats, e.g., MusicXML, Humdrum, Guido, represent high level encod-
ing information such as the duration and the intensity of the notes. The current
trend for representing audio content description is to use the symbolic MPEG-7
standard in XML format [48]. The MW should be able to integrate a number of
different standards such as MPEG-7 and capture data into its multidimensional
model.

3. Data imperfections:
In addition to the editorial, acoustic and cultural metadata, physical metadata,
such as sampling frequency and format, could also be integrated in an MW to
provide knowledge about the source quality. For example, a statistical measure
of correctness could be applied to the title of songs with regards to where the
information comes from, e.g., an original CD, a peer-to-peer sharing network,
or simply missing information. Furthermore, given the large variety of music
formats that support audio content, all automated extraction methods may not
always be applicable or may apply with various degrees of precision, creating
imperfections into the MW descriptors. Together, physical information and
knowledge of imperfections should enable quality-of-service in MWs.

4. Precision-aware retrieval:
Certain queries performed in an MW do not require exact answers. Rather,
rough approximations would be sufficient. For example, nearest neighbor
queries, such as the ranking of the k nearest neighbors of a given song, do
not focus on the exact position of each song compared to a given one, but
rather on coarser notion of distance, such as very close, close, or far. The exact
granularity of the answer should not be fixed but rather determined either im-
plicitly by an appropriate algebra, or explicitly in the query. Queries including
the notion of ranking, referred to as Top-K queries, are very frequent in data
warehouses. At the query processing level, optimizations can be performed in
order to drastically improve the response time. Operators such as ranked selec-
tion and ranked joins use specific algorithms that have already demonstrated
their usefulness for relational models.
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Figure 2.8: Precision Aware Retrieval

In MWs, however, Top-K queries require ranking at a coarse level of gran-
ularity where elements need to be ordered only in subsets, e.g., very close,
close and far. Another aspect of quality-of-service in MWs is the response
time. Time consuming queries, such as music comparison and nearest neigh-
bor searches, spark the need for new techniques able to trade fast response
time for precision. Query answers need to take the form of streams, updated
progressively with more precise and reliable information as pictured in Figure
2.8.

Our contribution will consist in developing an algebra and query processing
techniques to enable both coarse Top-K queries and precision improvement
streams. For example, asking what the common characteristics of a set of
songs are could result in the immediate creation of a stream of music charac-
teristics in their high-level representation, starting with coarse similarities and
progressively refining similarities as the query processing continues.

5. Many-to-many relationships:
In traditional multidimensional models, facts are linked to the base elements
of the dimensions using one-to-many relationships. Three classic alternatives
exist to encode many-to-many relationships using multidimensional modeling:
traditional dimensions, mini-dimensions, and snowflaking. Using traditional
dimensions, all the possible combinations of artists are created. Since the num-
ber of combinations grows at an exponential rate when adding artists, this solu-
tion quickly becomes infeasible. Limiting the enumeration to only the combi-
nations actually used still leads to a large number of dimension records. Using
mini-dimensions with one dimension for each possible artist will lead to a large
number of dimensions, causing performance problems. Finally, snowflaking
offers no advantage over traditional dimension as the number of basic elements
would remain equal. Classical multidimensional models are able to capture the
fact that an artist can perform many different songs but not the fact that mul-
tiple artists can perform together in a single song. Counting how many titles
where performed by either artist A or B, becomes a dreadful task if we consider
that songs performed by both artists should only be counted once. Instead, the
intended behavior should be directly captured by the schema.



2.6 Challenges for MW 25

6. Versioned irregular hierarchies:
An essential step when approaching the music classification field is to under-
stand the many issues related to how culture and sub-groups define musical cat-
egories, construct taxonomies and form interrelationships between categories.
These issues have been discussed in the work of Fabbri [40], Brackett [19],
Pachet and Cazaly [67], Aucouturier and Pachet [11], just to mention a few.
From a data warehouse point of view, the taxonomies presented shared com-
mon properties. In a multidimensional database, a dimension hierarchy is said
to be: strict, if all dimension values have no more than one direct parent,
onto, if the hierarchy is balanced, and covering, if no containment path skips
a level [71]. It is clear that, e.g., in a genre dimension, the hierarchy would be
non-strict, non-onto and non-covering. However, this is not sufficient. Since
very little consensus exists between taxonomies, the techniques already exist-
ing for slowly changing dimensions in multidimensional databases may not be
appropriate. Instead, MWs require support for versioning abilities, mimick-
ing software versioning systems such as CVS5 or Subversion6, where different
hierarchies could coexist and evolve.

Figure 2.9: Versioned Hierarchies

Figure 2.9 shows a versioned genre hierarchy that, for example, defines a clas-
sification of the genre dimension for different user profiles. Versioned hierar-
chies call for the creation of new database operators. Examples of such oper-
ators are: navigation in the different branches of the hierarchy, comparison of
the branches between users, evolution of a user hierarchy over time, and ability
to derive branches from existing ones.

7. Fuzzy hierarchies:
Non-strict hierarchies, i.e., hierarchies supporting elements having multiple

5http://www.nongnu.org/cvs/
6http://subversion.tigris.org/

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
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parents, allow different paths to be followed when performing roll-up opera-
tions. In the time dimension, days can be rolled-up into months and in turn into
years. Similarly, days can be rolled-up into weeks by following a different path
since there are overlaps between week–month and week–year precision levels.

Figure 2.10: Fuzzy Hierarchy of the Genre Dimension

The expected contribution of the project will consist in the creation of a data
model and its algebra enabling the use of fuzzy hierarchies. Fuzzy hierarchies
enable “children” to belong to multiple parents with various degrees of affilia-
tion evaluated through membership functions as defined by fuzzy logic. While
fuzzy hierarchies are not required to handle typical data warehousing demands,
they become unavoidable for MWs in order to represent complex hierarchies
such as in the genre dimension as illustrated in Figure 2.10. Sub-genres would
belong to genres to a certain degree, e.g., the genre Jazz-Rock could belong
60% to Jazz and 40% to Rock, a notion that multidimensional data models
have not been able to fully capture so far.

8. Navigation in n-dimensional space:
The mental representation of songs as objects in an n-dimensional space is
not new in the field of music classification. Far from being purely a dream,
projects such as MusicMiner 7 already offer a two-dimensional mapping of
personal music collections.

It is therefore very tempting to enrich the MW data model with multidimen-
sional navigation features such as notions of neighborhood, intersections, land-
scape, fuzzy borders, etc. In such a space, a play-list can be seen as a journey
from one song to another. Automatic play-list generation could be as like car
navigation systems able to recommend some itineraries with notions of primary
and secondary roads to reflect the musical tastes of the user.

9. Aggregates for dimensional reduction:
A very challenging aspect of MWs is the high number of dimensions used,

7http://musicminer.sourceforge.net/

http://musicminer.sourceforge.net/
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Figure 2.11: Navigation in music space

navigation systems able to recommend some itineraries with notions of primary
and secondary roads to reflect the musical tastes of the user.

9. Aggregates for dimensional reduction:
A very challenging aspect of MWs is the high number of dimensions used,
songs can be described using several hundred dimensions, hence, urging the
need for efficient ways to aggregate this massive amount of information in use-
ful ways. The traditional multidimensional approach is to reduce dimension-
ality by using projection, i.e., throwing out dimensions by omitting pieces of
available information. Instead, by using fused dimensions, many dimensions,
such as the rhythm, the notes, and the loudness could be summarized into a
more general one, reflecting the overall melody of the songs. Using aggregates
for dimensional reduction clearly offers many advantages as the complexity of
the data is reduced, while the essence is maintained. The MW should provide
efficient techniques to reduce or increase the number of dimensions.

10. Integration of new data types:
The musical world does not only deal with audio but also embraces a lot of
external multimedia content. New bands often aim to increase their audience
by creating interactive web sites, video clips, attractive CD covers, etc. MWs
should be able to deal with such information, as not including these non-audio
additions is neglecting an increasingly important part of the musical experi-
ence of the audience. Interactive web sites, for example, often make extensive
use of embedded application such as Flash. These applications offer biogra-
phies, an agenda of next concerts, rumors and forums to users. MWs should
provide users such pieces of information. It should be possible to define spe-
cific extractors for the applications and to perform analysis on the extracted
features. MWs should be able to handle queries requiring partial integration of
the applications, e.g., obtaining the list of Madonna’s next concerts.
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2.7 Conclusions and Future Work

Inspired by the previous successes of DWs in business integration issues and on-
the-fly analytical demands, this chapter proposes the development of MWs which
are centralized data stores based on the data warehousing approach and optimized to
answer the fast-search needs of future large music information retrieval systems.

Previous work on musical classification has shown multiple sources of inconsis-
tencies between ontologies. One source of these inconsistencies is the use of different
musical facets when describing a song. These facets can be described using musical
metadata. Four high-level categories of metadata are identified and briefly described:
editorial, cultural, acoustic and physical metadata. Using these four categories, a
case study of musical database management is presented. Based on the case study,
we propose an approach to develop a on-line music recommendation system able to
find the song the most similar to another with respect to one or a combination of
musical aspects and to manipulate music playlists.

Finally, ten exciting challenges offered by MWs for the existing DWs are iden-
tified. While these challenges originate from the requirements music classification
systems, they are, however, not confined to this area. In particular, data imperfec-
tions, precision-aware retrieval using coarse Top-K queries or streams, versioned ir-
regular hierarchies and fuzzy hierarchies are new and relevant to the general database
research community.

Work on these challenges should later be pursued in order to support the success-
ful integration of DWs in the musical world.



Chapter 3

High-Level Audio Features:
Distributed Extraction and
Similarity Search

Today, automatic extraction of high-level audio features suffers from two main scala-
bility issues. First, the extraction algorithms are very demanding in terms of memory
and computation resources. Second, copyright laws prevent the audio files to be
shared among computers, limiting the use of existing distributed computation frame-
works and reducing the transparency of the methods evaluation process. The iSound
Music Warehouse (iSoundMW), presented in this chapter, is a framework to collect
and query high-level audio features. It performs the feature extraction in a two-step
process that allows distributed computations while respecting copyright laws. Using
public computers, the extraction can be performed on large scale music collections.
However, to be truly valuable, data management tools to search among the extracted
features are needed. The iSoundMW enables similarity search among the collected
high-level features and demonstrates its flexibility and efficiency by using a weighted
combination of high-level features and constraints while showing good search per-
formance results.

3.1 Introduction

Due to the proliferation of music on the Internet, many web portals proposing mu-
sic recommendations have appeared. As of today, the recommendations they offer
remain very limited: manual tagging has proved to be time consuming and often
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results in incompleteness, inaccuracy and inconsistency; automatic tagging systems
based on web scanning or relying on millions of users are troubled, e.g., by mindless
tag copying practices, thus blowing bag tags. Automatic extraction of music infor-
mation is a very active topic addressed by the Music Information Retrieval (MIR)
research community. Each year, the Music Information Retrieval Evaluation eX-
change (MIREX) gives to researchers an opportunity to evaluate and compare new
music extraction methods [33]. However, the MIREX evaluation process has proved
to be resource consuming and slow despites attempts to address these scalability is-
sues [20,37]. So far, concerns with copyright issues have refrained the community to
distribute the extraction among public computers as most algorithms require the au-
dio material to be available in order to perform the feature extraction 1. The features
are therefore extracted from a relatively small music collection that narrows their
generality and usefulness. Additionally, the feature extraction, being run by private
computers on a private music collection, limits the transparency of the evaluation
process. These limitations call for the development of a system able to extract mean-
ingful, high-level audio features over large music collections. Such a system faces
data management challenges. Noteworthily, the impressive amount of information
generated requires an adapted search infrastructure to become truly valuable.

Our intention is to create a system able to cater for different types of features.
Present literature mainly focuses on features that have either absolute or relative val-
ues, thus motivating the handling of both kinds of features. In this paper, the exact
selection of the features is actually not as important as it is to demonstrate how ex-
traction can be handled on public computers and enabling researchers to compare
results obtained by using different algorithms and features.

The contributions of this chapter are two-fold. First, we propose a framework for
collecting high-level audio features (that were recently proposed by [22, 23, 24, 50])
over a large music collection of 41,446 songs. This is done by outsourcing the data
extraction to remote client in a two-step feature extraction process: (1) dividing the
audio information into short term segments of equal length and distributing them
to various clients; and (2) sending the segment-based features gathered during step
one to various clients to compute high-level features for the whole piece of music.
Second, we propose a flexible and efficient similarity search approach, which uses
a weighted combination of high-level features, to enable high-level queries (such
as finding songs with a similar happy mood, or finding songs with a similar fast
tempo). Additionally, to support the practical benefits of these contributions, we
propose a short scenario illustrating the feature extraction and search abilities of the
iSoundMW.

For the general public, the iSoundMW music offers recommendation without
suffering from a “cold start”, i.e., new artists avoid the penalties of not being well

1https://mail.lis.uiuc.edu/pipermail/evalfest/2008-May/000765.html

https://mail.lis.uiuc.edu/pipermail/evalfest/2008-May/000765.html
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known, and new listeners obtain good music recommendation before being profiled.
For researchers, the iSoundMW (1) offers flexible search abilities; (2) enables visual
comparison of both segment-based and aggregated high-level features; (3) provides
a framework for large scale computations of features; and (4) gives good search per-
formances.

The remainder of this chapter is organized as follows. Related work is pre-
sented in Section 3.2. Section 3.3 offers an overview of the system, explains the
process of collecting the high-level audio features, describes how similarity search
with weighted coefficients is performed, and how the search can be further optimized
by using range searches. Section 3.4 illustrates the similarity search on a concrete ex-
ample. Section 3.5 concludes and presents future system improvements and research
directions.

3.2 Related Work

Research on distributed computing has received a lot of attention in diverse research
communities. The Berkeley Open Infrastructure for Network Computing frame-
work (BOINC) is a well-known middleware system in which the general public
volunteers processing and storage resources to computing projects [4, 5] such as
SETI@home [6]. However, in its current state, BOINC does not address copyright
issues, does not feature flexible similarity search, and does not enable multiple steps
processes, i.e., acquired results serve as input for other tasks. Closer to the MIR
community, the On-demand Metadata Extraction Network system (OMEN) [62] dis-
tributes the feature extraction among trusted nodes rather than public computers.
Furthermore, OMEN does not store the computed results, and, like BOINC, does
not allow similarity search to be performed on the extracted features.

Audio similarity search is often supported by creating indexes [36]. Existing in-
dexing techniques can be applied to index high dimensional musical feature represen-
tations. However, as a consequence of the subjective nature of musical perception,
the triangular inequality property of the metric space is typically not preserved for
similarity measures [58, 74]. Work on indexes for non-metric space is presented in
the literature [43,80]. Although the similarity function is non-metric, it remains con-
fined in a pair of lower and upper bounds specifically constructed. Therefore, using
these indexes would impose restrictions on the similarity values that would limit the
flexibility of the iSoundMW.

3.3 System Description

In this section, we present an overview of the system followed by a more detailed
description of a two-step process for extracting high-level features. Later, we describe
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how flexible similarity searches are performed and how they are further optimized
using user-specified constraints.

3.3.1 iSoundMW Overview

The iSoundMW system has a client-server architecture, shown in Figure 3.1. The
server side is composed of a central data repository and an application server that
controls the extraction and similarity searches. The data repository stores all the audio
collection in MP3 format and uniquely identifies each by a number. It also contains
all the editorial information, e.g., the artist name, the album name, the band name,
the song title, the year, the genre, and copyright license, and the physical information,
e.g., the file size, the format, the bit rate, and the song length, that are stored in the
music information database. Additionally, the Music Information Database holds all
the extracted feature information.

The application server is composed of three distinct components. First, the job
manager assigns extraction or aggregation tasks to the clients, collects the results, and
prepares progress reports about each extraction process. Second, the segment handler
splits the audio information into short term segments overlapping or non-overlapping
of equal length, and makes them available to the clients they have been assigned.
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Future versions of the system will have multiple segment handlers, enabling multiple
music collections to be analyzed without violating copyright for any of them. Third,
the music search engine serves requests such as finding the most similar song to a
given seed song with respect to a combination of features.

The client side is composed of three different types of clients. First, the segment
extractors are receiving short term segments, and extracting their high-level features,
e.g., the pitch, or the tempo. Second, the segment aggregators are performing com-
putations based on the high-level features of the segments to produce other high-level
features requiring features over different segments, e.g., the mood. Third, the music
listeners perform similarity search queries on the extracted high-level features.

3.3.2 Collecting the High-Level Features

The increasingly fast growth of music collections motivates the adoption of a dis-
tributed approach to perform feature extraction. Such approach, however, brings
forward copyright issues, i.e., the copyrighted material in the music collection pre-
vents the audio content to be freely distributed. We propose to address this issue by
performing the feature extraction in a two-step process. In the proposed two-step
extraction process, the full songs are not available to, or re-constructible by, the com-
puters performing the extraction of the audio features.

Step 1, as illustrated by the A arrows in Figure 3.2, consists of dividing the audio
information into short term segments of equal length and distributing them to the
clients. Dividing the songs into segments offers the following advantages. First,
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it limits and normalizes the memory size and processor time needed on the client
side to perform the feature extraction, as most extraction methods require resources
proportional to the length of the audio source. Second, it avoids copyright issues as
the audio segments are very short and distributing them falls under “fair use” since
the segments are only temporally stored in memory on the client, and the full songs
cannot be reconstructed by the clients.

Step 2, as illustrated by the B arrows in Figure 3.2, consists of sending the
segment-based features gathered during step one to the clients. Using the features of
step 1, the clients are computing high-level features for the whole piece of music. The
computation of the aggregated features can be performed over the features obtained
from multiple segments, as they are not subject to copyright issues. While having
the segment based and the aggregated high-level features computed separately repre-
sents a potential overhead, it remains insignificant compared to the resources needed
to perform each of the two feature extraction steps.

A job is the smallest atomic extraction or aggregation task that a remote client
has to perform. Each job is uniquely identified for each extraction method and is
composed of the following attributes: a song reference, a segment number, a starting
point, an ending point, a lease time, a client reference, a counter of assignments, and
a result holder. The assignment of jobs to clients is a critical part of the segment
extraction process. Some randomness in the jobs assignment prevents clients to re-
construct the full song from the distributed segments as the segments assigned to a
client will belong to different songs. However, since all the segments of a song have
to be processed by step 1 before moving to step 2, assigning the segments randomly
to clients delays the obtainment of results. Some locality constraints are therefore
enforced in order to quickly acquire preliminary results and proceed to step 2.

In order to control which job should be assigned next, jobs are assigned in se-
quence. To avoid all the clients trying to obtain the same job, the assignment of a job
is relaxed from being the minimal sequence number to being one of the lowest num-
bers in the sequence. Assigning jobs “nearly” in sequence still allows the application
server to control which jobs should be prioritized for segment extraction and feature
aggregation, e.g., when a similarity search is requested for a new song without any
features extracted.

The current configuration of the system has shown its usability on a music collec-
tion of 41,446 songs composed of 2,283,595 non-overlapping 5 seconds segments. In
terms of scalability, the job manager, supported by a PostgreSQL 8.3 database run-
ning on an Intel Core2 CPU 6700 @ 2.66GHz, 4GB of RAM under FreeBSD 7.0, was
able to handle 1,766 job requests and submissions per second. Running on the same
computer, the job manager and the segment handler were able to serve 87 clients
per second; the bottleneck being the CPU consumption mostly due to the on-the-fly
segmentation of the MP3 files. At this rate, an average bandwidth of 13,282 KB/s
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Figure 3.3: The Absolute and Relative Similarity Tables

was consumed to transfer the segmented files of the data collection. Given that, by
experience, the average processing of a segment by a modern desktop computer takes
5 seconds, the presented configuration would be able to handle over 400 clients. In
a setup where the segment handler is run separately and not considering network
limitations, the job manager could serve close to 9000 clients.

3.3.3 Similarity Search

Search among the collected features is a valuable tool to compare and evaluate ex-
traction results. Similarity search raises two main challenges. First, similarities are
of two types: similarities that can be computed rapidly on-the-fly and similarities
that have to be pre-computed. Second, each similarity is tweaked dynamically with
different user defined weight coefficients in order to adjust the final similarity value.
In the following, we propose to find the 10 songs the most similar, with respect to a
user defined weighted combination of features, to a given seed song.

Similarities that can be computed on the fly are stored in a single table, abssim:
(“songID”, “abs1”, “abs2”, ...), where the songID is the primary key identifying the
song and abs1, abs2, ..., are the different attributes. The table is composed of 41,446
songs and 18 attributes, such as the tempo, the motion, the articulation, the pitch,
and the harmonic. Similarities that cannot be computed on the fly have to be pre-
computed and stored for each pair of songs as some similarities are not symmetric
and do not fulfill the triangular inequality. They are stored in a second table, relsim:
(“seedID”,“songID”,“rel1”), where the “seedID” and “songID” refers to a pair of
songs and “rel1” is the similarities value between the two songs. The relsim table has
1.7 billion rows and a timbre attribute. The abssim and relsim tables are illustrated in
Figure 3.3.
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The distance function, the similarity search is based on, is as follows:

dist(x, y) = a× | pitch(x, y)|+ b× | tempo(x, y)|
+ c× | timbre(x, y)|+ . . .

where x and y are two songs, tempo, pitch, and timbre are the computed differences
between x and y for each feature, and a, b, and c are their respective coefficients.
The pitch difference, like the tempo, can be computed on the fly: pitch(x, y) =
x.pitch−y.pitch. The timbre difference is pre-computed and requires a lookup in the
relsim table.

Assume the following query: find the 10 songs with the lowest distance from a
given seed song. First, we compute the difference between the values of the seed
song and the values of all the other songs in the table “abssim”. This requires a
random disk access using an index on the “songID” to read the values of the seed
song, followed by a sequential scan to compute on the fly all the similarity values
from the “abssim” table. Second, using an index on the “seedID”, we select all the
pre-computed similarities that correspond to the query songs. The song pairs with an
identical “seedID” are contiguous on disk to minimize the number of disk accesses.
Third, the 41,446 similarities from both resulting sets have to be joined. Fourth, the
final distance function is computed and the 10 closest songs are returned.

Hash join 123 ms
Merge join 141 ms
Nested loop 163 ms
Top K 405 ms
Total runtime 575 ms

Table 3.1: Time Cost of Similarity Search

Table 3.1 shows the average query processing time of the most costly operations
involved in queries run on the MW described in Section 3.3. The performance is
acceptable; most of the query processing time is cause by the join (20%) and the
ordering (75%) operations. Hash joins have shown slightly better performance than,
merge sort and nested loop joins. Merge joins should provide the performance results
if the sort operation can be avoided by respecting the data organization on disk.

3.3.4 Similarity Search within a Range

The query cost is mainly due to the join and the Top-K operations over the whole
music set. We introduce similarity searches within ranges to reduce the size of the set
on which the join and the Top-K are performed, thus decreasing the search time. We
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propose to search, within a user specified range for each feature, for the most similar
songs to a given seed song.

The abssim table is used for each similarity search. Its small size allows sequen-
tial scans to be performed fast. Therefore, filtering out the values outside the query
range effectively reduces the search time. Similarly, performing a filtering of the se-
lected rows from relsim contributes to reducing the search time. However, several
additional improvements can be made, they are illustrated in Figure 3.4.

First, a partial index on the seedID for the similarity values that are below a
given threshold can be created. If the partial index has a good selectivity, speed is
gained by trading the sequential scan for a few random disk access. This is of critical
importance as the database grows larger. Using a threshold with a too high selectivity
reduces the chances of the partial index being used.

Second, to further improve the search, one can create arrays containing pairs of
songID and similarity value for each seedID. Arrays offer the following advantages.
As the partial index, only the similar values are accessed, thus greatly reducing the
cost of filtering. The similar values are clustered on disk for each seed song, similarity
values are stored in the array in ascending order, and the array itself is compressed,
therefore allowing a complete array to be retrieved in a single disk access. Accessing
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Table Array Table + PI
Query time (ms) 130 15 54
Query time (%) 100 12 42
Size (MB) 70000 71550 70200
Size (%) 100 112 100

Table 3.2: Cost of Similarity Search within a Range

similarity values is done in an efficient way: one index lookup for locating the array,
and one disk access to read the pairs of songID and value.

Table 3.2 presents the costs in search time and in disk space of each approach for
the same set of constraints. As expected, specifying ranges for the similarity search
significantly improves the response time compared to searching in the complete mu-
sic collection; a simple filtering can improve the response time by a factor of 4. Using
a partial index or arrays, further decreases the search time but come with a storage
cost [30]. The search time improvements are dependent on the selected range as well
as the selectivity of the threshold chosen for both the array and the partial index.

Similarity searches using the partial index are slower than arrays due to the ran-
dom disk accesses that are required to read the values. However the partial index
offers two major advantages. First, it does not require any backstage processing; the
partial index is updated as new data is entered in the relsim table. Updating the ar-
rays requires some additional processing that could be performed automatically with
triggers. Second, the choice of using the partial index or not is delegated to the query
planner, all queries are treated transparently regardless of the range chosen, i.e., no
extra manipulation is needed to handle the array organization of the data when a
threshold is reached.

3.4 The iSoundMW

A web interface is connected to the iSoundMW. It offers a visual understanding of
the functioning of the system and gives an opportunity to observe the information
extracted from different songs and compare the result with the music being played
simultaneously.

The setup is as follows. The music collection has a size of 41,446 songs in MP3
format, segments are non-overlapping and have a 5 seconds length. The Music In-
formation Database is partially loaded with some segments information and some
aggregated feature information, but some segments still have to be extracted and ag-
gregated. Some clients are connected to the application server and are processing
some segment extraction and feature aggregation jobs. If all the segments have not
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been extracted, the corresponding jobs will be prioritized. to ensure that the extracted
features are available. The user interface, as shown in Figure 3.5, consists of a music
player and a graph showing the content of the extraction as the music is being played.

The main steps of a short scenario are presented below.

Step 1 A user searches for a famous song and provides its title, artist name, or album
name, e.g., the user enters “Madonna” for the artist and “Like” for the title. The
system retrieves a list of maximum 20 candidates present in the database based
on the ID3 tags of the MP3 in the music collection, 3 songs in this scenario.
The song “Like a Prayer” is listed twice, as it belongs to two different albums.
The user selects one of the two “Like a Prayer” songs.

Step 2 The system searches for the 10 most similar songs to the song selected, places
them in the playlist, and starts playing the songs. The most similar song to the
song selected is generally the song itself, therefore the song appears first in the
generated playlist. At this stage, the search is based on default coefficients and
one the complete database. The second version of the song “Like a Prayer”
appears further in the generated playlist.

Step 3 As the song is being played, the tempo analysis based on the extracted seg-
ments and the aggregated features is displayed in the graph. For each 5 seconds
(corresponding to a segment length), new points are placed on the graph. If the
segments have not been extracted, a request is sent to the application server to
prioritize the corresponding jobs. The graph updates as new extraction results
are arriving from the extraction and aggregation clients.

Step 4 Any extracted features given on an absolute scale can be displayed on the
graph, e.g., the user has selected to display the mood features.

Step 5 Moving to the playlist configuration panel, the user can select, for each of
the extracted features, the weight to be used as a coefficient for the similarity
search, e.g., we choose to put a high coefficient on the pitch and the mood.
Once the tuning of the weights is done, when the user selects a new song, the
system searches for the songs that, with the given coefficients, are the most
similar to the song currently being played. Additionally, the user can select a
range of values in which the search should be performed.

Step 6 When similar songs are being played, the user can select to compare the
currently played song with the song originally selected to generate the playlist,
e.g., the main difference between the two versions of “Like a Prayer” rely in
the harmonic feature.
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3.5 Conclusions and Future Work

The automatic extraction of high-level features over a large music collection suffers
from two main scalability issues: high computation needs to extract the features,
and copyright restrictions limiting the distribution of the audio content. This chap-
ter introduces the iSoundMW, a framework for extracting high-level audio features
that addresses these scalability issues by decomposing the extraction into a two-step
process. The iSoundMW has successfully demonstrated its ability to efficiently ex-
tract high-level features on a music collection of 41,446 songs. Furthermore, the
iSoundMW proves to be efficient and flexible for performing similarity searches us-
ing the extracted features. This is done by allowing users to constrain the search
within a range and specify a weighted combination of high-level features. To fur-
ther optimize the search, three different approaches are compared in terms of query
time and storage. The threshold for building the partial index and arrays are decisive
parameters to obtain good search performance.

Future work encompasses integrating different similarity functions in the features
search, providing comparison between them, and enabling user feedback and its reuse
for user specific recommendation.
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Appendix

3.A Son of Blinkie

The present section introduces Son of Blinkie (SoB), an interactive application for
audio extraction and music classification. SoB results from a 3 months long col-
laboration with the International Music Information Retrieval Systems Evaluation
Laboratory (IMIRSEL) at the University of Illinois at Urbana-Champaign.

Our personal contributions include the design of the new system architecture, the
definition of the API, and the development of the new system components. The latest
version of SoB obtained the second place at the JCDL’08 demo contest.

A major component of SoB is the dataflow platform referred to as Meandre. In
this Appendix, we propose a short introduction to Meandre, and present SoB and its
evolution. Finally, we draw a brief comparison between SoB and the iSoundMW and
offer future work directions.

3.A.1 Meandre

Meandre is defined by its authors as “a semantic enabled web-driven, dataflow ex-
ecution environment” [1]. It provides a framework for assembling and executing
applications based on data flows from already existing components. In a data flow
application, each software components processes data, e.g., it accesses a data store,
transforms data, performs analyses, or offers a visualization of the results. Within
Meandre, each flow is represented as a graph that shows executable components (i.e.,
basic computational units, or building blocks) as icons linked through their input
and output connections. Based on the inputs and properties of a executable compo-
nent, a unique output is generated upon execution. Meandre also provides publishing
capabilities for flows and components, enabling users to assemble a repository of
components for reuse and sharing. This allows users to leverage other research and
development efforts by querying and integrating component descriptions that have
been published previously at other shareable repository locations.

As shown in Figure 3.6, Meandre is originally composed of 3 subsystems, namely
Meandre Core, Meandre Manager, and Meandre Workbench. They are described
below.

Meandre Core Dataflow execution is based on the idea of applying transformational
operations to a flow or stream of data. In a data-driven model, data availability
determines in what sequence code instructions are executed. Meandre Core is
the subsystem responsible for the execution of the flows.

Meandre Manager Meandre Manager is a web application handling user and job
management administration for the Meandre web services-based engine. In
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Figure 3.6: Overview of Meandre Components

addition, it provides an interface to allow a user to create a code template for
new components as well as the ability to add new components. The Meandre
Manager allows for the display of components and flows, and the management
of the flows in execution.

Meandre Workbench Meandre Workbench is a visual programming environment
that allows users to easily connect software components together in a unique
data flow environment. The Workbench can be used to develop diagrams of
data operations to be performed. Each operation is represented by an icon,
and the icons are linked together in a flow representing the movement of data
through each operation. Each of these icons represent a component. The soft-
ware components are reusable components that facilitate collaboration among
developers. They can be written in Java, Python, or Lisp. Components and
flows have tags and additional meta data associated with them that can be used
to assist in searching and sorting.

3.A.2 Development of Son of Blinkie

Son of Blinkie (SoB) is an interactive web application allowing researchers to com-
pare classification models on public music collections. SoB is operated on top of
Meandre’s service-oriented architecture, taking the form of a series of reusable, open-
source components managed by and executed as a shareable workflow. Not only can
users run SoB against their own data sets with Meandre, but they can also reuse and
modify components and workflows to build their own music research applications,
such as classification tools.

Each component represents one step in processing the data. The components run
in the order established by the flow: from receiving the song filename and model
filenames from the web application, to loading the audio and model data into mem-
ory, to extracting a variety of features from the song, to applying the model to the
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extracted features, and to returning the predicted results to the web application for
visualization. Every time a different song is selected, the web application executes
this same flow.

3.A.2.1 SoB 1

Version 1 of SoB is relying on a new output component that was generating the
HTML code for the web interface. The advantage of this approach was to avoid
heavy modifications of the architecture of Meandre. However, it also presented some
inconveniences; the users had to execute workflows by accessing Meandre Manager,
then connect to the flow and wait for the workflow to generate an HTML output.

Core

Manager

Meandre

Generated 

Static HTML

Models & Songs 

Repository

Figure 3.7: Architecture of SoB 1

The web application is totally dependent of the new HTML generation compo-
nent, thus complicating its development and the management of user interactions.

3.A.2.2 SoB 2

Version 2 of SoB uses an external web application and Meandre as a data provider.
The advantage is to provide an interactive web interface. The user can now select
which models and songs should be analyzed. Results are shown in synchronization
with the music. It is also possible to browse forward and back in the results by
selecting a position on the audio track.

As shown in Figure 3.8, the architecture of Meandre had to be modified to allow
applications to initiate dataflow executions and obtain results back. These modifica-
tions resulted in the development of an API. Such architecture, however, still presents
drawbacks for a web application. A part of the application logic is now executed on
the client side through JavaScript. While the API was functional, it is not fully ma-
ture, e.g., obtaining a flow URL requires a listing existing flows, creating a new flow,



3.A Son of Blinkie 45

Core

Manager

API Web Interface

Meandre

Models & Songs 

Repository

Figure 3.8: Architecture of SoB 2

Figure 3.9: User Interface
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listing the existing flows, and identifying the newly created flow. A screenshot of the
interface is provided in Figure 3.9.

The data output from the API is XML. On long songs and when selecting many
classification models, the XML output tends to be very voluminous. We experienced
that XML parsers (Sax) use a lot of memory and cause the web browser to freeze. A
more usable data representation should therefore be used.

3.A.2.3 SoB 3

Version 3 of SoB is still under development. It relies on a proxy server between
Meandre’s API and the user application. The proxy quickly transforms the results in
XML format from Meandre into JavaScript Object Notation (JSON) that is directly
usable by the web application. Using JSON eliminates the need of parsing XML
results. The JSON encoded values can be directly interpreted in JavaScript, thus
allowing long results to be handled by the web application. Another main advantage
of the proxy is the possibility to act as a cache, avoiding multiple identical requests
to be performed. The caching is done with a PostgreSQL database.
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Models & Songs 

Repository

Figure 3.10: Architecture of SoB 3

3.A.3 Future Developments

ISoundMW and SoB 3 perform similar tasks in very different ways. Future work is
to develop an application able to take the best of each system. A brief comparison
between the ISoundMW and SoB 3 is provided below, it is followed by an explanation
on how the two systems could be merged.
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Comparison between ISoundMW and SoB

ISoundMW works with copy-
righted materials, the songs do
not have to be publicly available.

SoB requires songs to be fully
accessible by Meandre.

ISoundMW does not offer real-
time computation of the features
but is based on batch processing
with priority queues.

Sob is executing the work flow
on demand.

ISoundMW does not allow algo-
rithms to be changed once dis-
tributed to the clients.

SoB allows the algorithms to be
changed at any time and allows
power users to define new mod-
els.

ISoundMW performance scales
to a large number of clients and
users.

SoB performances are only ac-
ceptable when few users are con-
nected ( < 10 ).

ISoundMW offers post-
extraction processes involv-
ing multiple songs, e.g., song
similarity search.

SoB does not support any post-
processing of current or already
computed results.

We propose to integrate the two systems as presented in Figure 3.11. An auto-
matic updating system allows to update client extraction and aggregation algorithms.
This system thus interacts with the ISoundMW, the extraction model repository, and
the computing cloud. The computing cloud remains controlled by the ISoundMW.
Meandre acts as a special node of the computing cloud. As other nodes, it receives
updates from the automatic updating system and flow execution requests, i.e., jobs,
from the ISoundMW. Meandre differs from other nodes as it can access, if necessary,
the total length of the audio data to be extracted. The ISoundMW job assignment sys-
tem is improved to allow the assignment of specific jobs to particular clients. High
priority jobs are thus assigned to Meandre to ensure fast analysis. The extracted data
is indexed by the ISoundMW to allow efficient search among the features and ensure
reusability of previously completed extraction tasks. The database component of the
ISoundMW will allow the system to deal with thousands of users. The web interface
directly interacts with the ISoundMW.

This setup takes the best of ISoundMW and SoB. The integrated system would
be able to act on both public and private music audio sets. The system would be
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Figure 3.11: Integration of IsoundMW and SoB

able to offer real-time computation for a restricted number of high priority jobs. For
jobs that do not require immediate results, the system is scalable to gigantic music
collections by using the computational cloud. Thanks to the automatic client update
system, the computational nodes are running updated extraction and analysis models.
Finally, the system is able to re-use results from previously computed jobs.



Chapter 4

Using Fuzzy Song Sets in Music
Warehouses

The emergence of music recommendation systems calls for the development of new
data management technologies able to query vast music collections. In this chapter,
we present a music warehouse prototype able to perform efficient nearest neighbor
searches in an arbitrary song similarity space. Using fuzzy songs sets, the music
warehouse offers a practical solution to three concrete musical data management sce-
narios: user musical preferences, user feedback, and song similarities. We investi-
gate three practical approaches to tackle the storage issues of fuzzy song sets: tables,
arrays, and compressed bitmaps. We confront theoretical estimates with practical
implementation results and prove that, from a storage point of view, arrays and com-
pressed bitmaps are both effective data structure solutions. With respect to speed, we
show that operations on compressed bitmap offer a significant grain in performances
for fuzzy song sets comprising a large number of songs. Finally, we argue that the
presented results are not limited to music recommendations system but can be applied
to other domains.

4.1 Introduction

Automatic music recommendation systems have recently gained a tremendous pop-
ularity. To provide pertinent recommendations, music recommendation systems use
fuzzy set theory [98] to combine user profiles, music features, and user feedback
information. However, at the current growing speed, the database element of any
recommendation system will soon become a bottleneck. Hence, appropriate musical
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data management tools, able to manipulate fuzzy sets and scale to large music col-
lection and growing user communities, are needed. Music Warehouses (MWs) are
dedicated data warehouses optimized for the storage and analysis of music content.

The contributions of this chapter are fourfold. First, based on a previous case
study [29], we propose three generic usage scenarios illustrating the current demands
in musical data management. To answer these demands, we define fuzzy song sets
and develop a query algebra for them. Second, to demonstrate the usefulness of fuzzy
song sets, a prototypical MW composed of two multidimensional cubes is presented.
Fuzzy song sets prove to be an adequate data representation to manipulate musical
information. Third, we discuss three solutions for storing fuzzy song sets and fuzzy
sets in general. We construct theoretical estimates for each storage solution. A prac-
tical implementation shows that the storage overhead represents a major part of the
storage consumption and that two solutions are viable for large music collections.
Fourth, we benchmark and compare the performance of the main operators previ-
ously presented for various sizes of both data structures. Experiments are conducted
on a real music collection.

This chapter demonstrates how fuzzy set theory can be used in the context of
music recommendation systems. All results presented in this chapter can be directly
applied to standard fuzzy sets; the presented storage solutions remain generic and can
thus be applied to a vast range of domains besides music recommendation and user
preferences.

The remainder of this chapter is organized as follows. After presenting related
work on fuzzy sets for the management of musical data in Section 4.2, we present
three information scenarios that are commonly treated by music recommendation
systems in Section 4.3. We proceed in Section 4.4 by defining fuzzy song sets and
an algebra. In Section 4.5, two prototypical multidimensional cubes are presented;
they illustrate the use of the algebra through queries examples. Storage solutions
are then discussed in Section 4.6. For each, precise storage estimates are proposed
and experimentally validated. Next, in Section 4.7 a comparison of the performance
of the fuzzy song set operators on the bitmap and array representations is conducted.
Finally, we conclude and describe promising future research directions in Section 4.9.

4.2 Related Work

Research on music recommendation systems has received a lot of attention lately.
Current trends on playlist generation are focused on how to improve recommen-
dations based on user-specific constrains. For example, a playlist generator that
learns music preferences by taking user feedback into account was presented by [70].
Other new interesting approaches concentrate on aggregating different music fea-
tures; for instance in [18], the use of generalized conjunctions and disjunctions of
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fuzzy sets theory for combining audio similarity measures is studied. However, fewer
researchers have addressed the scalability issues raised by these methods in terms of
storage and performance [12, 68]. This chapter focuses specifically on the storage
and performance issues and proposes to manipulate a large collection of musical data
where song similarities, user preferences and user feedbacks are represented with
fuzzy sets.

A traditional database approach is to use a relational model such as the one pro-
posed by Rubenstein that extends the entity-relationship data model to implement the
notion of hierarchical ordering, commonly found in musical data [79]. A multimedia
data model, following the layered model paradigm that consists of a data definition
layer, a data manipulation layer, a data presentation layer, and a control layer, is pre-
sented in [95], but no query language is proposed. None of those models adopts a
multidimensional approach by representing data in cubes, a very convenient structure
for performing on-the-fly analysis of large volumes of data that has already proved
its strengths in data warehouses [72]. Finally, a music data model, its algebra and a
query language are presented in [90]. The data model is able to structure both the
musical content and the metadata but does not address performance optimization is-
sues. In particular, it does not provide an adequate framework to perform similarity
based search. In [49], Jensen et al. address this issue and offer a multidimensional
model that supports dimension hierarchies. We extend that multidimensional model
by integrating fuzzy sets and addressing additional usage scenarios. Furthermore,
this implementation proves to be able to handle a much larger music collection of a
realistic size in the context of an MW.

The use of bitmaps in multidimensional databases is frequent. Different com-
pression schemes exist to reduce the storage consumption of bitmaps. The Word
Align Hybrid [92], WAH, and the Byte aligned Bitmap Compression [7, 8], BBC,
are two very common compression algorithms. BBC offers a very good compres-
sion ratio and performs bitwise logical operations efficiently. WAH performs bitwise
operations much faster than BBC but consumes more storage space. We propose a
modified version of WAH compression technique to represent fuzzy sets. We show
how fuzzy set operators can be adapted to directly manipulate the compressed repre-
sentations in order to preserve the performance.

Significant efforts have been made in representing imprecise information in database
models [26]. Relational models and object oriented database models have already
been extended to handle imprecision utilizing the fuzzy set theory [75, 15]. This
chapter proposes pragmatic solutions to store and manipulate fuzzy sets within mul-
tidimensional data cubes. While our focus is on musical data, we believe our ap-
proach can easily be generalized to the similarity matrices extensively used in fuzzy
databases, e.g., to perform fuzzy joins.
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4.3 Usage Scenario

The data obtained from a music recommendations system has to be organized to
answer specific queries. Examples of such query scenarios are presented below.

4.3.1 The User Feedback

The user’s opinion about the system’s previous recommendations is a valuable piece
of information for improving the future suggestion, e.g., by reinforcement learning.
For each song played, the user can grade if the suggestion was wise based on the
criteria provided, referred to as the query context. The query context can be the artist
similarity, the genre similarity, the beat similarity, or any other similarity measure
available to the system to perform a selection. The grading reflects if a proposed
song was relevant in the given query context. For example, it is possible to retrieve
the list of songs Mary liked when she asked for a list of rock songs or the ten songs
she liked the most when she asked for similar songs to a song made by “U2”.

Typically, the data obtained should contain:

1. a reference to the profile of a registered user in the system;

2. a reference to a query context provided by the user; and

3. the list of songs and marks so that for each song proposed, the user can grade
how much she liked a particular song being part of the proposition.

Grades are given on a per song basis, they reflect if the user believes the song deserves
its place among the suggested list of songs: strongly disagrees, neutral, likes, and
loves. While the grade must not be a numerical value, we assume that a mapping
function to the interval [0, 1] exists so that when a user believes a song definitely
deserves its place in the list, a high value in the interval should be given.

4.3.2 The User Preferences

Regardless of any given query context, some songs should never be proposed to Mary
as she simply can’t stand them or, on the contrary, some songs should be proposed
more often as they are marked as Mary’s favorites. Therefore, recommendation sys-
tems often offer to their users the possibility to rate any song on a fan-scale ranging
from “I love it” to “I hate it” depending if they like the song or not. Such informa-
tion is useful for building network based on users having similar musical taste. The
database backend of the recommendation system should be able to find users similar
to Mary based on his favorite and loathed songs.

The User Musical Preferences contains two different pieces of information:
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1. a reference to a user registered; and

2. a list of songs associated with their respective grades on the fan-scale.

As above, we assume the mapping to the interval [0, 1] so that if Mary hates a song,
a low score is assigned; and if she loves it, a value close to 1 should be used. So,
musical profiles can be used to modify the frequency a given song appears as a rec-
ommendation and build recommendation based on profile similarities.

4.3.3 The Songs Similarities

Finally, music recommendation system should be able to compare songs. For each
pair of songs, the system is able to provide a similarity value with respect to a given
aspect of the song such as the release year, the genre, the theme, the lyrics, or the
tempo. The similarity values should indicate if two songs are “very different”, “dif-
ferent”, “somewhat similar”, or “very similar” from the perspective of any given
aspect of the song. For example, the song We will rock you by Queen is “very differ-
ent” from the song Twinkle, twinkle little star with respect to their genre similarity
aspect.

To compare songs, three pieces of information are necessary:

1. a pair of compared songs;

2. a similarity function that maps to a pair of songs to a similarity value; and

3. a similarity value reflecting how similar the two songs are.

Again, we assume that the similarity values can be mapped to the interval [0, 1] so
that, if two songs are very different, a value close to 0 should be used, and if they are
very similar, a value close to 1 should be used instead. The scenario is very generic;
very few assumptions are made about the properties of the functions used to compute
the similarity values. In particular, the similarity functions do not have to fulfill the
mathematical properties of a metric: the non-negativity, the identity of indiscernibles,
the triangular inequality, and the symmetry properties. They do not have to be defined
over the whole domain of song pairs. This allows similarities to be based on a wide
diversity of song attributes.

4.4 An Algebra for Fuzzy Song sets

In this section, we introduce song sets as well as operators and functions to manipu-
late them.
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Let X be the set of all songs. Then, a fuzzy song set, A, is a fuzzy set defined
over X such that

A = {µA(x)/x : x ∈ X,µA(x) ∈ [0, 1]} (4.1)

and is defined as a set of pairs µA(x)/x, where x is a song, µA(x), referred to as
the membership degree of x, is a real number belonging to [0, 1], and / denotes the
association of the two values as commonly expressed in the fuzzy logic literature [41].
When µA(x) = 0, song x does not belong to A, and when µA(x) = 1, x completely
belongs to A.

4.4.1 Operators

The following operators are classically used in order to manipulate song sets. They
form a closed algebra.

4.4.1.1 Equality

Let A and B be two fuzzy song sets. A is equal to B iff for all song the membership
degree of a song in A is equal to the membership degree of the same song in B.

A = B ⇔ ∀x ∈ X,µA(x) = µB(x) (4.2)

4.4.1.2 Subset

Let A and B be two fuzzy song sets. A is included in B iff for all song, the mem-
bership degree a song in A is lower than the membership degree of the same song in
B.

A ⊆ B ⇔ ∀x ∈ X,µA(x) ≤ µB(x) (4.3)

Note that the empty fuzzy song set defined with the null membership function, i.e.,
∀x ∈ X,µ(x) = 0, is a subset of all fuzzy sets.

4.4.1.3 Union

LetA andB be two fuzzy song sets overX . The union ofA andB is a fuzzy song set
with, for each song, a membership degree equal to the maximum membership degree
associated to that song in A and B.

A ∪B = {µ(A∪B)(x)/x}
µ(A∪B)(x) = max(µA(x), µB(x))

(4.4)
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4.4.1.4 Intersection

Let A and B be two fuzzy sets over X . The intersection of A and B is a fuzzy song
set with, for each song, a membership degree equal to the minimum membership
degree associated to that song in A and B.

A ∩B = {µ(A∩B)(x)/x}
µ(A∩B)(x) = min(µA(x), µB(x))

(4.5)

4.4.1.5 Negation

Let A be a fuzzy sets over X. The negation of A is a fuzzy song set with the member-
ship degree of each song equal to its symmetric value on the interval [0, 1].

¬A = {1− µA(x)/x} (4.6)

The following new operators are introduced specifically to manipulate song sets.

4.4.1.6 Reduction

Let A be a fuzzy set over X . The reduction of A is a subset of A such that member-
ship degrees smaller than α are set to 0.

Reduceα(A) = {µAα(x)/x}

µAα(x) =
{
µA(x) if µA(x) ≥ α,
0 if µA(x) < α

(4.7)

The reduction operator changes the membership degree of songs below a given thresh-
old to 0. It allows the construction of more complex operators that allow the reducing
the membership degree granularity over ranges of membership degrees.

4.4.1.7 Topk

Let A be a fuzzy set over X . The Topk subset of A is a fuzzy song with the mem-
bership degree of all elements not having the k highest membership degree set to
0 and the membership degree of the k highest elements of A set to their respective
membership degree in A.

Topk(A) = {µ
Âk

(xi)/xi|

∀xi, xj ∈ X, 1 ≤ i < j, µA(xi) ≥ µA(xj)}

µ
Âk

(xi) =
{
µA(xi) if i ≤ k,
0 otherwise

(4.8)
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Note that the Topk subset of A is not unique, e.g., when all elements have an
identical membership degree. The Topk operator returns a fuzzy song set with all
membership degrees set to zero except for k elements with the highest membership
degrees that remain unchanged. Topk is a cornerstone for the development of com-
plex operators based on relative ordering of the membership degrees.

4.4.1.8 Average

Let A1, . . . , Ai be i fuzzy song sets. The average of A1, . . . , Ai is a fuzzy song set
that assigns to each song a membership degree equal to the arithmetic mean of the
membership degrees of that song in the given sets.

Avg(A1, . . . , Ai) = {µavg(A1,...,Ai)(x)/x}

µAvg(A1,...,Ai)(x) =

i∑
j=1

µAj (x)

i

(4.9)

The average operator in fuzzy sets is the pendant of the common average operator
and is very useful to aggregate data, a very common operation in data warehousing
in order to gain some overview over large datasets.

4.4.2 Defuzification Functions

The following functions are defined on song sets. They extract information from the
song sets to real values or crisp sets.

4.4.2.1 Support

The support of A is the crisp subset of X that includes all the elements having a
non-zero membership degree in A.

Support(A) = {x ∈ X : µA(x) > 0} (4.10)

4.4.2.2 Cardinality

The cardinality of A is the sum of the membership degrees of all its elements.

#A =
∑
x∈X

µA(x) (4.11)
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4.4.2.3 Size

The size of A is the number of elements in A with non-zero membership degree, i.e.,
the size of the support set of A.

|A| = |{x ∈ X : µA(x) > 0}| (4.12)

4.4.2.4 Distance

The Minkowski distance of order p ∈ < between two song sets is defined as follows.

dp≥1(A,B) = p

√∑
x∈X
|µA(x)− µB(x)|p (4.13)

The 1-norm distance is the Manhattan distance, the 2 -norm distance is the Euclidean
distance, and the∞ -norm is the Chebyshev distance.

4.5 The Music Warehouse Cubes

In this section, we present two data cubes to store the information presented in the
scenarios. For each cube, the fuzzy song sets are used conformingly to Section 4.4.

4.5.1 The Song Similarity Cube

The Song Similarity cube captures similarity between songs with respect to selected
similarity functions. The cube is composed of two dimensions: a song dimension
and similarity dimension; they are represented in Figure 4.1. The song dimension
captures all the details about a song, including editorial information such as the artist
name, the publication year or any acoustic information such as the beat of the song
or its genre. For each of these attributes, similarity functions can be created, e.g.,
an artist similarity function that gathers information from external web sites and so-
cial networks, or a similarity function that compares the genre wherein songs have
been classified, aware that some genres are more similar than others, or the timbre
comparison that uses low-level extracted information to provide a full comparison
matrix.

Each dimension has a hierarchy, which defines how the data can be aggregated
to provide different degrees of granularity, e.g., the similarity of songs between sub-
genres and the similarity of songs between coarsely defined genres. Similarity func-
tion of coarser granularity can also span over different attributes, e.g., to provide
some average similarity values out of attributes obtained using different extraction
algorithms.
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Figure 4.1: Closest Songs Cube Dimensions

At its most detailed level, the cube is organized based on a star schema, using
three tables: the song dimension table, the similarity function table and the closest
songs fact table. The closest songs fact tables is composed of three attributes: a
reference to a song (referred to as the seed song), a reference to a similarity function,
and a fuzzy song set. The notion of similarity between a song and the seed song is
represented by the fuzzy song set membership degree. The closest songs take a high
membership degree while the farthest songs have a low membership degree. Some
usage examples of the Song Similarity Cube populated with the data in Table 4.1 are
presented below.

Typical queries involve the intersection, union, and reduction operators. The
queries can be performed on the song seeds using pieces of information such as the
artist or the creation year. Closest Songs Cube usage examples are presented below.
The example assumes the creation of a new SQL data type, called FZSET, using
object-relational extensibility functionality like found in PostgreSQL [86]. For ex-
ample, the closest songs attribute in the fact table is of type FZSET. The FZSET
implementation details will be discussed further.

Example 1: “What are the songs that have a similar beat to the song “One” by U2?”

SELECT SUPPORT(REDUCE(0.6, c.songs)
FROM closest_songs c
INNER JOIN songs as a USING (song_id)
INNER JOIN similarity_functions as b USING (c.sim_id)
WHERE a.title = "one" AND a.artist = "U2" and b.sim = "beat 1"

In a star schema, the fact table and the 2 dimensions tables are joined to form the
cube. As shown in Example 1, retrieving the similarities between a song and all the
others simply requires selecting a song and a similarity function from the dimension
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Song dimension

song id title artist Jazz Rock Beat
1 We will rock you Queen Low High Medium
2 One U2 Low Medium Medium
3 Hips Don’t Lie Shakira Low Low High

Similarity function dimension

sim id sim func sim group
1 Rock Acoustic
2 Jazz Acoustic
3 Beat Acoustic
4 Artist Editorial

Closest songs fact

song id sim id closest songs
1 1 { 1/1; 0.5/2; 0/3 }
2 1 { 1/2; 0.3/1; 0.2/3 }
3 1 { 1/3; 0.6/2; 0.4/1 }
1 2 { 1/1; 0.2/2; 0.1/3 }
2 2 { 1/2; 0.9/1; 0.2/3 }
3 2 { 1/3; 0.8/2; 0.7/1 }

Table 4.1: Data of the Song Similarity Cube

tables and retrieving the corresponding FZSET in the closest song table. The support
function transforms an FZSET data type into a regular SQL crisp set of elements
having non-zero membership degrees.

In Example 2, the mu function returns the membership value associated to a given
element. The similarity between two songs can be obtained by retrieving the full
fuzzy song set representing song similarities for the first song, and filtering out the
results to only return the element matching the second song. However, with such an
operation being so common, optimization based on the physical storage structure of
the fuzzy song set can be performed, thus motivating the need for creating a specific
element search function within a fuzzy song set.

Aggregation functions allow multiple fuzzy song sets to be retrieved and com-
bined. In Example 3, multiple songs are matching the selection criteria in the song
dimension, causing multiple fuzzy song sets to be retrieved from the closest song
table. The fuzzy song sets are then combined using the union operator; finally the
elements with the 100 highest membership degrees are returned.



60 Using Fuzzy Song Sets in Music Warehouses

User dimension

user country age favorite songs
John USA 52 { 0.8/1; 0.6/2; 0.3/3 }
Alice Spain 41 { 0.9/2; 0.5/1; 0.3/3 }
Maria Greece 28 { 0.6/1; 0.3/2; 0.1/3 }
Bob Denmark 22 { 0.1/1; 0.7/2; 0.7/3 }

Query dimension

query id query
1 return some rock music
2 return some traditional music
3 return some latin american music

User Feedback fact

user query id feedback
John 1 { 1/1; 0.5/2; 0/3 }
John 2 { 1/2; 0.3/1; 0.2/3 }
Alice 1 { 1/3; 0.6/2; 0.4/1 }
Alice 3 { 1/1; 0.2/2; 0.1/3 }
Maria 1 { 1/2; 0.9/1; 0.2/3 }
Bob 2 { 1/3; 0.8/2; 0.7/1 }

Table 4.2: Feedback Cube

Example 2: “Find the beat similarity between two songs; the first song is identified
with the artist, album, and title attributes from the song dimension, the second is
identified using its unique key.”

SELECT MU(c.songs,el)
FROM closest_songs c
INNER JOIN songs as a USING (song_id)
INNER JOIN similarity_functions as b USING (sim_id)
WHERE a.artist = "U2"
AND a.album= "Achtung Baby"
AND a.title= "One"
AND b.sim = "beat 1"
GROUP BY a.album_id

As in a spreadsheet, aggregation can be performed on both dimensions. Exam-
ple 4 retrieves all the versions of a song in the different albums of an artist and returns
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Example 3: “Retrieve the 100 songs having the most similar beat to the songs made
by U2.”

SELECT SUPPORT(TOP(100, UNION(c.songs))
FROM closest_songs c
INNER JOIN songs as a USING (song_id)
INNER JOIN similarity_functions as b USING (sim_id)
WHERE a.artist = "U2" AND b.sim = "beat 1"
GROUP BY a.album_id

Example 4: “Return the similar songs to the given song across the different beat
similarity functions available.”

SELECT SUPPORT(AVG(songs))
FROM closest_songs c
INNER JOIN songs as a USING (song_id)
INNER JOIN similarity_functions as b USING (sim_id)
WHERE a.title = "one" AND a.artist = "U2" and b.sim = "beat"
GROUP BY a.albumid, b.similarity_function_group

an average over similarity functions of the same type, such as the beat, the genre, or
the mood.

4.5.2 The User Feedback Cube

The User Feedback Cube collects relevance statistics about the songs proposed to
users by the music recommendation system. As illustrated by Figure 4.2, the User
Feedback Cube is composed of two dimensions: the user dimension and the query
dimension. For each user and query, the user feedback is stored. The feedback given
for a particular played song is stored as a membership degree representing how rele-
vant the proposed song is in the context of the query. A very low membership degree
is given when a user believes the song should not have been proposed. The Feed-
back and the Favorite Songs attributes are both defined using the FZSET abstract
data type. The user dimension is composed of a hierarchy allowing users to be ag-
gregated along the various attributes composing their profiles. One of these attributes
is a fuzzy song set representing the users favorite songs; it becomes thus simple to
compare groups of users created based on the users musical tastes. The hierarchy on
the query dimension permits to obtain overview along group of semantically close
queries.
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Figure 4.2: Dimensions Composing the User Feedback Cube

Example 5: “What are the favorite songs three users have in common?”

SELECT SUPPORT(REDUCE(0.8, INTER(Favorite songs))
FROM users
WHERE user_id = "1" OR user_id = "2" OR user_id = "3";

As shown in Example 5, retrieving the songs three users like is an immediate
query using the proposed algebra; only the user dimension table is required. Here, the
aggregation form of the intersection function allows straight-forward selection of the
intersection between three multiple sets. The Reduce operator selects only the songs
resulting from the intersection with a membership degree above 0.8. The support
operator transform the fuzzy song set object into a crisp set that can be manipulated
with the regular SQL algebra.

Example 6: “Who are the 100 users that have the most similar taste to Johns taste?”

SELECT b.user_id
FROM users as a, users as b
WHERE a.user_id = "1"
ORDER BY distance(a.favorite_songs, b.favorite_songs) ASC
LIMIT 100;

Example 6 illustrates how, using a self-join, the user dimension can be used to
findsimilarities between users based on their favorite songs.

In Example 7, using the user dimension, only the users born in the 80s are se-
lected, and the average feedback per query type is then calculated. Again, using the
reduce and support operators, only the songs with a high membership degree are
output as crisp sets.
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Example 7: “Per query type, what are the songs users born in the 80s were usually
happy to hear?”

SELECT SUPPORT(REDUCE(0.8, AVERAGE(uf.feedback)), q.query_type
FROM user_feedbacks as uf
INNER JOIN users as u USING (user_id)
INNER JOIN queries as q USING (query_id)
WHERE "1 JAN 80" <= u.DOB AND u.DOB <= "31 DEC 89"
GROUP BY q.query_type;

Example 8: “What are the 100 songs that fans of Elvis liked the most when they
asked for Rock songs?”

SELECT SUPPORT(TOP 100(AVERAGE(uf.feedback)))
FROM user_feedbacks as uf
INNER JOIN queries as q USING (query_id)
WHERE u.user_id IN (
SELECT user
FROM songs
WHERE SUPPORT(TOP(10,favorite song)) = song_id
AND artist = "Elvis"
) AND q.query = "Rock songs"

Example 8 performs an aggregation of the user feedback. The selection of the
users for the aggregation is performed using the favorite songs in the user dimension.
Thus, both fuzzy song sets in the user dimension table and the fact table are used.

4.6 Storage

In this section, three different storage options for representing fuzzy song sets in the
MW are presented: tables, arrays, and bitmaps. A prototypical MW where song
elements are uniquely identified using 32 bits is used to illustrate the discussion. The
proposed MW can reach a size of over 4 billion songs and at least 100 different
membership degrees.

4.6.1 Table

The first solution is to represent the fuzzy song set attribute as a table with three
columns: (seed song, song, membership degree). Let s be the size of the seed song
set, e the size of the song set, andm the size of the set of all the values the membership
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degree can take. The size of the payload, i.e., the size of the data when not considering
the overhead due to the DBMS, denoted p, can be calculated as follows.

p = s · e(log2 s+ log2 e+ log2m) (4.14)

where log2 s, log2 e, log2m are the minimum number of bits required to store re-
spectively a seed song, a song, and a membership degree.

The quadratic growth can be limited by admitting only k songs for each seed
song to be physically stored in the table and letting the remaining songs take a default
membership degree. The selection of which song should be represented is dependent
on the application. Here, we assume that the elements with the highest membership
degree are interesting; this is performed using the Topk operator. The size of the
payload can then be estimated as follows.

p = s · k · (log2 s+ f · (log2 e+ log2m)) (4.15)

When 232 seed songs are present, the database reaches its maximum capacity.
In such case, the size of the payload, if only the 1000 elements with the highest
membership degree are physically stored, reaches 36 TB. On a data set composed of
10,000,000 seeds, the payload attains 84 GB.

4.6.2 Array

A second approach is to use one-dimensional arrays containing the songs and their
associated membership degrees for representing fuzzy song sets. The data is stored
in a table with two columns: (seed song, array). As with tables, only the k ≤ e most
similar songs should be physically stored. The size of the payload grows as follows.

p = s · (log2 s+ k · (log2 e+ log2m)) (4.16)

When storing the 1000 closest songs of 232 song seeds, the size of the payload
is reduced to 19 TB; on a data set composed of 10,000,000 song seeds, the payload
reaches a size of 44 GB However, since the probability of having no songs for a
particular membership degree is small, ordering the fuzzy song set by membership
degrees allows membership degrees to be stored using one bit relatively to each other:
a bit set means to move to the next lower membership degree, a bit unset means to
keep the same membership degree. In the unlikely case of a gap in the sequence of
membership degrees, a dummy element, referred to as the empty element, is used to
jump to the next membership degree. For large gaps, successive empty elements are
used as shown in Figure 4.3.

For example, the fuzzy song set {100/1234, 100/2345, 99/3456, 97/4567, 96/5678}
is represented by the array [{1234, 100}, {2345, 100}, {3456, 99}, {4567, 97}, {5678, 96}]
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Figure 4.3: Closest Songs Cube Dimensions

that is compressed as [{1234, 0}, {2345, 1}, {3456, 1}, {0, 1}, {4567, 1}, {5678, 0}],
where only one bit is required to capture a decrement of the membership degree, and
0 is the empty element.

The compression ratio, r, obtained is as follows.

r =
k · (log2m+ log2 e)
(k + x)(log2 e+ 1)

(4.17)

In order to be efficient, i.e., r > 1, the number of empty elements in the data set has
to remain limited.

x < k · log2m− 1
log2 e+ 1

(4.18)

The compression ratio in the best (no empty element) and worst (m − 1 empty ele-
ments) case scenarios are:

r− = k · (log2m+ log2 e)
(k +m− 1) · (log2 e+ 1)

r+ =
log2m+ log2 e

log2 e+ 1

(4.19)
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For high k values, the likelihood of using empty elements vanishes, therefore
causing r− to asymptotically converge to r+ as k increases. Figure 4.4 shows the
compression ratio r+ and r− for membership degrees represented on 7 bits (128
different values), and fuzzy song set and song seeds represented using 32 bits. For
k = 1000, the compression ratio ranges between 1.04 and 1.18. The full similarity
matrix represented with compressed arrays takes 17 TB.

4.6.3 Bitmap

A third option is to use bitmaps to represent fuzzy song sets. In a bitmap [21], each
element is represented by a position in a sequence of bits. Typically, in a bitmap
index, a bitmap for each attribute value is created. The size of each bitmap is equal
to the cardinality of the indexed elements. Fuzzy song sets can be constructed using
the same structure. A fuzzy song set is composed of a bitmap for each member-
ship degree an element can have. As illustrated in Figure 4.5, each song element is
represented with a bit set in the bitmap corresponding to its membership degree.

0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 ... 1 0 0seed

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ... 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 ... 0 0 0

... ... ... ...

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

...

e bits

µ = 1

µ = 2

µ = 3

µ = m

µ = ...

 

Figure 4.5: Representation of a Fuzzy Song Set with an Array of Bitmaps

The size of the payload can be estimated as follows.

p = s · (log2 s+ f · e) (4.20)

The bitmap size can be dramatically reduced using compression algorithms. The
Word-Aligned-Hybrid (WAH) bitmap compression method offers a good compres-
sion ratio on sparse bitmaps while preserving query performance [92].

Briefly, in a WAH-compressed bitmap, the bitmap is divided in 32 bit long words.
The first bit of each word is used to mark if the word is a literal word or a fill word. If
the first bit of a word starts with a unset bit, the word is a literal word; the remaining
bits are then used to store a classical 31 bit long bitmap. A fill word starts with a set
bit and indicates the presence of a run composed of homogeneous 31 bit long groups
of set or unset bits; thus, fill words are of two kinds: 0-Fills or 1-Fills. The second
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bit of a fill word is used to differentiate runs of unset bits from runs of set bits. The
remaining 30 bits are used to count the number of homogeneous 31 bit long groups
the run contains.

Figure 6 shows an example of how the bitmap composed of 9× 0, 3× 1, 56× 0,
69×1, 98×0, 3×1, and 6×0 can be compressed using WAH. First, the uncompressed
bitmap is divided into groups of 31 bits. If a group forms a literal word, an unset bit
is prepended to it. Otherwise, the group is replaced by an appropriate fill word and a
counter of the number of identical consecutive groups following the current group.

00000000001110000000000000000000       10000000000000000000000000000001 

00000001111111111111111111111111       11000000000000000000000000000001 

01111111111111000000000000000000       10000000000000000000000000000010 

0000000000000000000111000000

WAH encoding in words of 32 bits 

Uncompressed bitmap organized in groups of 31 bits:

00000000 01110000 00000000 00000000 00000000 00000000 00000000 00000000 

00001111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 

11111111 10000000 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00011100 0000

Uncompressed bitmap:

Merging consecutive homogenous 31 bits groups:

0000000001110000000000000000000   x 1    0000000000000000000000000000000   x 1

0000001111111111111111111111111   x 1    1111111111111111111111111111111   x 1

1111111111111000000000000000000   x 1    0000000000000000000000000000000   x 2

000000000000000000111000000           x 1

0000000001110000000000000000000    0000000000000000000000000000000 

0000001111111111111111111111111    1111111111111111111111111111111 

1111111111111000000000000000000    0000000000000000000000000000000 

0000000000000000000000000000000    000000000000000000111000000

1 - Fill word, counter = 1

0 - Fill word, counter = 1

0 - Fill word, counter = 1

Literal word

Literal word

Literal word

Literal word

Figure 4.6: The WAH Bitmap Compression

The WAH compression becomes very efficient when many consecutive zeros or
ones can be represented with fill words. In the worst bit distribution, i.e., a random
bitmap, the WAH algorithm reduces the size of the bitmap as follows.

pWAH(n, d, w) ≈ w · n
w − 1

(
1− (1− d)2w−2 − d2w−2

)
b (4.21)

where n is the size of the bitmap in bits, d is the bit density, i.e., the fraction of bits
set, and w is the word length, 32 on most computers. Using the Topk operator, the
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bit density is d = k/e. On a fuzzy song set of 232 songs where only 1000 closest
songs are physically stored, n = 232, and d = 1000

232 . The size of each bitmap reaches
63883 b.

As previously illustrated by Figure 4.6, a bitmap is constructed for each of the
membership degree a song element can possibly take. The fuzzy song set is then
represented using an array composed of 100 bitmaps, but this does not affect the size
of the overall bitmap as the bit density of in each bitmap will proportionally decrease,
maintaining the bit density in the full bitmap unchanged.

p ≈ s ·
(

log2 e+ f · pWAH(e ·m, k

e ·m
,w)
)

(4.22)

In an MW of 232songs, where 1,000 song elements with the highest membership
degree are physically stored, the size of the payload reaches 33 TB. On a data set
composed of 10,000,000 song seeds, the payload size is 76 GB.

The size of the compressed bitmap for each song seed is only slightly increased
to 63999 b. Therefore, in an MW of 224 song seeds with one fuzzy song set attribute,
the size of the database reaches 140 GB.

4.6.4 Payload Estimates Comparison

Figure 4.7 shows the expected size for storing a Fuzzy Song Set Attribute (FSSA) for
each of the 232 song seeds and for different values of k. The linear growth of the WAH
bitmap with the number of stored elements is explained by considering k/n << 1
and applying a binomial decomposition. The payload can then be approximated by
pWAH ≈ 2 · k · w.
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Figure 4.7: Estimate of the Payload Storage Requirements

In arrays, the seed elements only have to be stored once per FZSET. Arrays take
thus half the storage requirements of tables. With arrays, however, the data need to
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be compressed and reorganized, thus leading to an overall increase in complexity.
The array compression scheme is focused on compressing the membership degree.
The compression occurs on the 7 bits used to represent the membership degree but
leave the 32 bits representing each element untouched; thus limiting the maximum
compression performance that can be achieved. Bitmaps, on the other hand, are fo-
cused in compressing the 32 bits representing the elements; this is done by imposing
a position to each song element. These important structural differences will have an
impact on the implementation of operators and functions.

4.6.5 Storage Estimates and Benchmark

This section describes the storage requirements for the implementation of the Song
Similarity Cube fact table. Therefore, some parts of the following are dependent on
the DBMS chosen for implementing the cube. We calculate some storage require-
ments estimates for each of data structure. As our estimates match experimental
results, we proceed on predicting the size of each storage option depending on the
number of fuzzy elements they contain. The experience was conducted on Post-
greSQL 8.3, well-known for its scalability.

As previously explained, the songs can be uniquely identified using 32 bits and
the membership degree of each song element has a granularity of 100. The dataset
used for the implementation consists of 150,834 songs, gathered from the Intelligent
Sound project. Song similarities are computed using a genre classifier collecting
acoustic features from a popular media player [56].

The expected table overhead in PostgreSQL can be estimated by considering tu-
ple overhead and page overhead [86]. In our configuration, pages have a fixed size
of 8 KB. Since tuples are not allowed to span over multiple pages, PostgreSQL uses
secondary storage tables, referred to as The Oversized-Attribute Storage Technique
(TOAST) tables, to store large attributes. Using TOAST, large field values are com-
pressed and/or broken up into multiple physical rows. TOAST tables use the Lempel-
Ziv, briefly LZ, compression technique to reduce their size [99]. The compression of
toasted attributes being optional, we will compare the different possible setups.

In a table, the number of rows is the product of the number of seeds and the
number of elements per seed: 150, 834 · 1000 = 150, 834, 000 rows. Each page has
a size of 8KB, with a header of 24 bytes, thus leaving 8,168 bytes of free space.
Each row has a payload of 4 + 4 + 4 + 1 = 17 bytes. Each tuple is stored after a
20 bytes long header, and is aligned to start on the 32nd byte. Therefore, the size
of each row in the table is 31 + 17 bytes. Thus, each page can accommodate 185
rows, and 150,834,000 rows will require 815,319 pages, thus taking a disk space of
815, 319 · 8 KB = 6, 369.67 MB. In our storage experiment on the 150,834 songs,
gathered from the iSound database, this is exactly the storage size taken on disk; thus
indicating that our estimate is precise.
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For arrays, each element has to be aligned on 4 bytes, thus 8 bytes are necessary
to store the element and the membership degree. Additionally, 4 bytes are used to
store the size of the array. Each array has therefore a size of 4 + 4 + 1000 · 8=8008
bytes not allowing two tuples to fit on a single page. Therefore 150,834 pages of 8
KB are needed, causing the storage requirements to be 1,178 MB.

For bitmaps, in the worst case compression scenario, each of the 1,000 elements
requires both a fill-word and a literal word, e.g., when a 0-fill word is required be-
tween each set bit. A word takes 4 bytes, thus 8 bytes per elements and 8,000 bytes
per bitmap. For each bitmap, an additional 4 bytes long integer is required to keep
track of the size of the data, thus adding 100 · 4 bytes. Thus a bitmap cannot fit on
a page and has to be moved to an auxiliary toast table, where each bitmap is split
into chunks of 2,000 bytes. In that case, 4 rows per bitmap attribute are required in
the auxiliary table. Storage estimates show that in the most pessimist case 1,472 MB
are required to store the bitmaps. In the selected dataset, 183,184 pages are required
to store the bitmaps. The total space taken by the WAH compressed bitmap storage
representation is therefore: 1,431 MB.

If the number of element increases, a similar storage technique using an auxiliary
TOAST table is required for the array data structure. As with bitmaps, data larger
than 2,000 bytes is split into 2,000 bytes chunks. Each array is therefore divided into
5 chunks, and 150, 834 · 5 chunks are needed. For each data chunk, a 31 bytes long
header has to be added. Since 8,168 bytes of storage are available per page, only 4
chunks can be stored per page and 188,543 pages are needed. The total size of the
array data structure is 1,472 MB when stored using a TOAST table.

Further compression of TOAST data using standard LZ algorithm can be per-
formed. The compression ratios are data depending. Table 4.3 shows the storage
requirements for the three storage options. In addition, the space required to index
seed songs and similarity functions using a standard B-Tree and storage requirements
for LZ-compressed data are presented.

Our experiments show that the real size requirements match the estimates. While
table are certainly the most straightforward solution, they are a bad choice for data
storage requirements and indexing purposes. With respect to the payload, the arrays
are very promising but suffer from an important overhead that makes arrays and WAH
compressed bitmaps very comparable in term of storage size. Furthermore, since ar-
ray elements are aligned on 8 bytes, compressing the array does not bring any storage
benefit and adds unnecessary complexity. LZ compression works better on bitmaps,
therefore creating a sensible difference in favor of bitmaps; this is observation might,
however, be data dependent. Finally, with respect to the implementation of the two
new data types, WAH-bitmaps are a more complicated data structure to build; the
compression requires some particular attention and the variable length nature of the
bitmap brings additional complexity.
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Size (MB)

Ta
bl

e

Payload est. (MB) 1,852
Overhead est. 4,518
Total est. 6,370
Real size 6,370
B-tree index size 3,231
Total 9,601

A
rr

ay

Payload est. (MB) 666
Overhead est. (MB) 511
Total est. (MB) 1,178
Real size (MB) 1,178
Real size + LZ (MB) 794
B-tree index size(MB) 3
Total 1,181

W
A

H
B

itm
ap

Payload est. (MB) 1,151
Overhead est. (MB) 296
Total est. (MB) 1,447
Real size (MB) 1,447
Real size + LZ (MB) 719
B-tree index size(MB) 3
Total 1,450

Table 4.3: Storage Comparison

Using identical storage estimates, we predict the size of tables, arrays, and bitmap
with respect to k. Considering that k elements are required in order for the data to be
useful, we can thus choose what data structure is the most appropriate. The results
of the size estimates are shown in Figure 4.8. For all values of k, tables are the worst
solution. For k > 2, 000, arrays and WAH-compressed bitmaps tend to behave very
similarly. For lower values of k, due to the data organization in pages, results vary
sensibly depending on k. However, arrays always keep a slight advantage.

4.7 Functions and Operators

In this section, we compare the array and bitmap storage structure with respect to the
performances of their operators.



72 Using Fuzzy Song Sets in Music Warehouses

10000

100000

Size (MB) Table estimate

Array estimate

Bitmap estimate

100

1000

10000

500 1000 2000 4000 8000 16000

k

Figure 4.8: Estimate of the Payload Storage Requirements

4.7.1 WAH Bitmap Operations

The original WAH compression method has been slightly adapted in order to ma-
nipulate bitmaps of different lengths. First, the last word, i.e., the remainder of the
uncompressed bitmap is stored as if the bitmap is extended with extra unset bits to
finish the last word. So a bitmap composed of: 10 ∗ 0’s, 21 ∗ 1’s, and 4 ∗ 1’s becomes
< 001FFFFF > < 78000000 > and not < 0001FFFF > < 0000000F > as
in the original algorithm. This allows no particular treatment for the last word and
allows expanding existing bitmaps without any extra manipulations. Logical oper-
ations on WAH-compressed bitmaps can be performed without decompressing the
bitmaps. Operations are performed by scanning both inputs word by word. If two
fill words are met, the result will be a fill word of type resulting from the operation;
its length is the minimum length of the two input fill words. If two literal words,
or a literal and a fill word are met, the result will be a literal corresponding to the
operation.

4.7.2 Intersection and Union

The computation of the intersection or the union of two fuzzy song sets represented
in arrays is performed by a modified sort-merge. The arrays are first decompressed
and sorted by element. In our experiment, the sorting of the array with respect to
its elements is done using the quicksort algorithm. Once sorted, the membership
degrees of identical elements are compared. For an intersection, if both elements
are present, the minimum membership degree is placed in the array; for a union,
the maximum membership degree of both elements or the membership degree of the
existing element are placed in the return array.
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Figure 4.9: CPU Time Required for the Various Steps of a Union of Fuzzy Song
Sets Represented with Bitmaps

The computation of the WAH union is performed as follows. In the WAH bitmap
representation, the elements are organized per membership degree. For each mem-
bership degree starting from the highest, we perform a logical OR on the compressed
bitmaps. To prevent future operations to set a bit already set previously for another
membership degree, we have to maintain a history of bit, also represented using a
WAH-bitmap. This costs two additional operations on the bitmaps, a compressed
“NOT-AND” to check that a bit was not previously set, and a compressed or, to
maintain the history up to date as we scan through the various membership degree.

Pseudo C code for performing the union is shown in Algorithms 4.1 and 4.2, .
The computational cost of the “OR”, the “NOT-AND”, and the “OR” for maintaining
the set bit history are shown in Figure 9. The WAH union is the sum of the three
operations.

No update of the history is needed when handling the last bitmap, thus the CPU
time reaches a ceiling when no more elements are added to a bitmap corresponding
to a level higher than 1. After 2000 elements, all the bitmaps have elements. New
elements are added in the last bitmap corresponding to the lowest membership degree.

For sparse bitmaps, the number of elements grows linearly with the number of el-
ements. As the density of bits set increases, the proportion of literal words increases,
thus increasing the likelihood of new element being added to existing literals rather
than splitting fill words into literals. Figure 4.10 shows the average input and output
length of the bitmaps used for benchmarking the CPU time of the “OR” operation.
After 2000 elements, the length growth diminishes due to the increase in the number
of literals.

The union of arrays is highly efficient for low numbers of elements. As expected,
their performances decrease as the number of elements increases. Additionally, the



74 Using Fuzzy Song Sets in Music Warehouses

Algorithm 4.1 Bitwise logical AND operator on two WAH compressed bitmaps
structure wahrun:

it . iterator
data . decompressed data
nWords . group counter
isF ill . flag for fill words

run decode(wahrun run, word)
1: if word is counter then
2: run.data← (word > onecounter?allones : allzeros)
3: run.nWords← word&mask counter
4: run.isF ill← 1
5: else
6: run.data← word&mast literal
7: run.nWords← 1
8: run.isF ill← 0

and(bitmap x, bitmap y, bitmap rtnBitmap)
1: nWords = 0 . counter set to minimum
2: run xrun, yrun . initialize to run structures
3: while xrun.it < size(x) and yrun.it < size(y) do
4: if xrun.nWords = 0 then . load a new word from x
5: run decode(xrun, x.last)

6: if yrun.nWords = 0 then . load a new word from y
7: run decode(yrun, y.last)

8: if xrun.isF ill and yrun.isF ill then
9: nWords← min(xrun.nWords, yrun.nWords)

10: appendF ill(rtnBitmap, nWords, xrun.data&yrun.data)
11: xrun.nWords← xrun.nWords− nWords
12: yrun.nWords← yrun.nWords− nWords
13: else
14: appendLit(rtnBitmap, xrun.data&yrun.data)
15: xrun.nWords← xrun.nWords− 1
16: yrun.nWords← yrun.nWords− 1

17: if xrun.nWords = 0 then
18: xrun.it← xrun.it + 1

19: if yrun.nWords = 0 then
20: yrun.it← yrun.it + 1

sort operation significantly increases the computation time. Note, however, that the
resulting set is sorted, thus preventing successive sort operations to be necessary, e.g.,
in case the function is used for an aggregation. But, even in the best case scenario,
when no sorting of the elements is required, the CPU time spent on the union of arrays
is proportional to the number of elements in the sets. Bitmap operations, however, are
linearly proportional to the number of words in the input bitmap and not directly to
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Algorithm 4.2 Union of fuzzy song sets represented with two arrays of WAH com-
pressed bitmaps with membership degree ranging from 0 to 100

bitmap ∗ union(bitmap ∗ x, bitmap ∗ y)
bitmaptmp, history . temporary and history bitmaps
bitmapz[100] . z is the return array of bitmap
mu . membership degree

1: for mu ranging from 100 to 2 do
2: tmp← or(x[mu], y[mu]) . logical or, saved in tmp
3: z[mu]← notand(history, tmp) . check with history
4: history ← or(history, tmp) . update history

no history update for mu = 1
5: tmp← or(x[mu], y[mu]) . logical or
6: z[1]← notand(history, tmp) . check with history
7: return z;
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Figure 4.10: Average Bitmap Input and Output Length Depending on the Number of
Song Elements Stored

number of elements, i.e., the number of bits set. As the number of elements increases,
bitmaps will keep a nearly constant processing time where arrays will be proportional
to the number of elements. Efficiency of the array and bitmaps union operations on
the song similarity dataset is shown in Figure 4.11.

4.7.3 Top

The top operation for the array data structure requires ordering the elements with
respect to their membership degrees. Since the number of membership degrees is
limited, the sort is performed using a bucket sort whose complexity is linear in the
number of elements.
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Figure 4.11: Comparison between the Performances of the Union Operator for
Arrays and WAH Bitmaps

For WAH bitmaps, the elements are already grouped by membership degree. The
only operation required is to scan the compressed bitmap, starting with the highest
membership degree. As soon as k elements are found, the scan stops. The number of
operations is thus only depending on the number of words needed to be read during
the scan before k set bits are found. Unlike arrays, the operation is independent from
the total number of elements in the bitmaps. Pseudo C code for performing the top
operation is shown in Algorithm 4.3.

Finally, returning the resulting WAH bitmaps is performed simply by copying the
input bitmaps and truncating it at the right place. Sorting the array is a slower process
as it requires copying elements one by one. The CPU time spent for performing top
operations depending on the size of the fuzzy song set are shown in Figure 4.12.

4.7.4 Reduce

On an array, the reduce operation requires scanning the elements of the array; the
computational cost is therefore proportional to the number of elements. In a WAH
bitmap, since the elements are already organized per membership degree, the opera-
tion only consists of deleting the bitmaps corresponding to membership degree lower
than alpha from the input bitmap. Pseudo C code for performing the reduce operation
is shown in Algorithm 4.4. The computation time results are shown in Figure 4.13.

4.8 Generalization to Other Domains

The generalization from fuzzy song sets to other domains with respect to the storage
solutions is immediate for both arrays and WAH bitmaps.
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Figure 4.12: Comparison between the Performances of the Top Operator for Arrays
and WAH Bitmaps
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Figure 4.13: Comparison between the Performances of the Reduce Operator for
Arrays and WAH Bitmaps
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Algorithm 4.3 Top operation of a fuzzy song set represented by an array of WAH
compressed bitmaps with membership degree ranging from 0 to 100

bitmap∗ top(bitmap ∗ x, k)
1: for mu ranging from 100 to 0 do
2: if k > 0 then
3: truncate(k, x[mu])
4: elsex[mu] = 0

5: return x

bitmap truncate(k, bitmapx)
1: while xrun− > it < size(x) do
2: tmp← getword(x, xrun.it) . get new word
3: decode(xrun, ∗tmp) . decode the current word
4: nWords+ = xrun.nWords . update the word counter
5: if xrun.isF ill and xrun.data = allones then
6: if setbitcount + 31 ∗ xrun.nWords > k then
7: append trailing fills then a literal
8: set k = 0 and leave
9: setbitcount+ = 31 ∗ xrun.nWords

10: else
11: if setbitcount + bitCount(xrun.data) > k then
12: finds which bit exactly corresponds to k
13: override trailing bit with 0
14: set k = 0 and leave
15: setbitcount+ = bitCount(xrun− > data)

16: xrun.it← xrun.it + 1 . points to next word
17: n− = setbitcount . remaining number of bits not found

For fuzzy sets requiring a fine level granularity, i.e., a high cardinality of mem-
bership degrees, the number of bits used to represent the membership degree on
uncompressed arrays grows logarithmically. On compressed arrays, for fuzzy sets
with at least one element per membership degree, no size difference will be noticed.
Similarly, WAH bitmaps are well known to scale very well with high cardinality at-
tributes as their size is bounded by the total number of elements and not the number
of bitmaps.

Finally, the performance studies of the previously presented operators are directly
applicable to fuzzy sets. For other operators, e.g., intersections defined using different
t-norms, new performance studies are required. For WAH bitmaps, the computational
time will be proportional to the number of logical bitwise operations required on the
compressed bitmaps.
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Algorithm 4.4 Top operation of a fuzzy song set represented by an array of WAH
compressed bitmaps with membership degree ranging from 0 to 100

bitmap∗ reduce(bitmap ∗ x, alpha)
1: for mu ranging from alpha− 1 to 1 do
2: x[mu]← 0

3: return x

4.9 Conclusions and Future Work

As music recommendation systems are becoming increasingly popular, new effi-
cient tools able to manage large collections of musical attributes are urgently needed.
Fuzzy sets prove to be well suited for addressing various problematic scenarios com-
monly encountered in recommendation systems. After defining fuzzy song sets and
presenting an algebra to manipulate them, we demonstrate the usefulness of fuzzy
song sets and their operators to handle various information management scenarios in
the context of a music warehouse. For this purpose we create two multidimensional
cubes: the Song Similarity Cube and the User Feedback Cube. Three data options,
arrays, tables and WAH bitmaps, are envisioned for representing fuzzy song sets. We
proceed by discussing the impact of these data structures on the storage space and
operators performance.

With respect to storage, while arrays first show to be a very good choice from a
theoretical point of view, they suffer from a significant overhead. Estimates taking
into account DBMS overheads show that the differences between WAH bitmaps and
arrays vanish as the number of elements grows. The different data organizations in
WAH bitmaps and in arrays cause operators to behave very differently depending
on the number of elements. Arrays are very efficient when the number of elements
remains limited. However, due to frequent sorting operations, arrays behave poorly
for larger sets. Requiring more complex management, bitmaps suffer from a higher
starting overhead that is mostly visible when the number of elements is low. As
the number of elements grows, operations on bitmap are faster than on arrays. In
our experiment with the largest number of elements, the Union operator on WAH
bitmaps is performed 5 times faster than on arrays, the speedup factor is 7 for the Top
operator and 85 for the Reduce operator.

Future research directions include the development of methods for the transparent
manipulation of arrays and bitmap and the automatic selection of a data structure
option during the query plan optimization phase. Further research on how to improve
the WAH compression performance by using a longer alignment without diminishing
the compression ratio seems also promising, e.g., for 64 bits system architecture.





Chapter 5

Position List Word Aligned
Hybrid:
Optimizing Space and
Performance for Compressed
Bitmaps

Compressed bitmap indexes are increasingly used for efficiently querying very large
and complex databases. The Word Aligned Hybrid (WAH) bitmap compression
scheme is commonly recognized as the most efficient compression scheme in terms
of CPU efficiency. However, WAH compressed bitmaps use a lot of storage space.
This paper presents the Position List Word Aligned Hybrid (PLWAH) compression
scheme that improves significantly over WAH compression by better utilizing the
available bits and new CPU instructions. For typical bit distributions, PLWAH com-
pressed bitmaps are often half the size of WAH bitmaps and, at the same time, offer
an even better CPU efficiency. The results are verified by theoretical estimates and
extensive experiments on large amounts of both synthetic and real-world data.

5.1 Introduction

Compressed bitmap indexes are increasingly used to support efficient querying of
large and complex databases. Example applications areas include very large sci-
entific databases and multimedia applications, where the datasets typically consist
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of feature sets with high dimensionality. Here, compressed bitmap indexes enable
efficient range queries over one dimension, as well as the combining several di-
mensions for multidimensional range queries. The present work was motivated by
the need to perform (one- or multi-dimensional) range queries in large multimedia
databases for music (Music Warehouses). Here, music snippets are analyzed on var-
ious cultural, acoustical, editorial, and physical aspects. The extracted features are
high-dimensional and range over very wide intervals. However, the exact same char-
acteristics apply to a wide range of applications within multimedia and scientific
databases. While bitmap indexes are very efficient for queries, the size of the in-
dex increases dramatically for high-cardinality attributes without good compression
schemes.

The first use of a bitmap index in a DBMS dates back to 1987 [64]. The in-
dex was made from uncompressed bitmaps and suffered from tremendous storage
requirements proportional to the cardinality of the indexed attributes. As a result, it
became too large to fit in memory and the performance deteriorated [94]. Since then,
various approaches have been studied to improve bitmap indexes for high cardinal-
ity attributes. These improvements can be organized in two categories: extensions
of the bitmap index structure and bitmap compression schemes. A deep review of
bitmap index extensions, compression techniques, and technologies used in commer-
cial DBMSes is presented in [85].

The binning technique partitions the values of the index attributes into ranges [78,
93]. Each bitmap captures a range of values rather than a single value. Binning
techniques prove to be useful when the attribute values can be partitioned into sets.
In [55], a binning technique using partitioning based on query patterns, their fre-
quencies, and the data distribution is presented and further improves the index per-
formance. Bit-slicing techniques rely on an ordered list of bitmaps [65]. If every
value of an attribute can be represented using n bits, then the indexed attribute is rep-
resented with an ordered list of n bitmaps, where for example, the first bitmap rep-
resents the first bits of the values of the indexed attribute. Dedicated arithmetic has
been developed to operate directly on the bitmaps in order to, for example, perform
ranges queries [77]. The Attribute-Value-Decomposition (AVD) is another bit-slicing
technique designed to encode both range-encoded and equality-encoded bitmap in-
dexes [21]. Both lossy and lossless bitmap compression schemes have been applied
to bitmap indexes. The Approximate Encoding, (AE), is an example of lossy bitmap
compression scheme [9]. An AE compressed bitmap index returns false-positives but
is guarantied not to return false-negatives. The accuracy of an AE compressed bitmap
index ranges from 90% to 100%.

The Byte-aligned Bitmap Compression (BBC) [8] and the Word Aligned Hybrid
(WAH) [92] are both lossless compression schemes based on run-length encoding.
In run-length encoding, continuous sequences of bits are represented by one bit of
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the same value and the length of the sequence. The WAH compression scheme is
currently regarded the most CPU efficient scheme, and is faster than, e.g., BBC. The
performance gain is due to the enforced alignment with the CPU word size. This
yields more CPU friendly bitwise operations between bitmaps. However, WAH suf-
fers from a significant storage overhead; an average of 60% storage overhead over
BBC was reported [92]. More recently, for attributes with cardinalities up to 10,000,
hybrid techniques based on combined Huffman run-length encoding have shown their
superiority from a size point of view [84]. However, both storage and performance
of such compressed bitmap indexes decrease for bigger cardinalities. Performing bit-
wise operations (OR/AND) on such bitmaps is very expensive since the bitmaps must
first be de-compressed and later re-compressed. General-purpose data compression
algorithms, such as PFOR and PFOR-DELTA [100], often offer very efficient de-
compression but are not well-suited for bitmap compression as they necessitate a
preliminary decompression to operate on the values.

This paper improves upon existing work by offering a lossless compression tech-
nique that outperforms WAH, currently considered as the leading bitmap compres-
sion scheme for high cardinality attributes, from both a storage and a performance
perspective. Other extensions to the bitmap index (bit-slicing, etc.) will thus also
benefit from the proposed compression scheme to represent their underlying bitmaps.

Specifically, the paper presents Position List Word Aligned Hybrid (PLWAH), a
new bitmap compression scheme. PLWAH is based on the observation that many
of the bits used for the run-length counter in the WAH compression scheme are in
fact never used, since runs never become long enough to need all the bits. Instead,
these bits are used to hold a “position list” of the set/unset bits that follow a 0/1 run.
This enables a significantly more efficient storage use than WAH. In fact, PLWAH
compressed bitmaps are often only half the size of WAH compressed ones. As at the
same time, PLWAH is faster than WAH, PLWAH provides “the best of both worlds.”
Specifically for uniformly distributed bitmaps, the hardest bitmaps to compress for
compression schemes based on run length encoding, PLWAH uses half the space of
WAH. On clustered bitmaps, PLWAH also uses significantly less storage than WAH.
These results are shown in a detailed theoretical analysis of the two schemes. The
paper also presents algorithms that perform efficient bitwise operations on PLWAH
compressed bitmaps and analyzes their complexity. Again, the analysis shows that
PLWAH is faster than WAH. The theoretical results are verified by extensive exper-
imentation on both synthetic and real-world (music) data. The experiments confirm
that PLWAH uses significantly less storage than WAH, while also outperforming
WAH in terms of query speed. While developed in the specific context of Music
Warehouses, the presented compression scheme is applicable to any kind of bitmaps
indexes, thus making the contribution generally applicable.
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The paper is structured as follows. Section 5.2 describes PLWAH compression
scheme. In Section 5.3, we establish upper and lower bounds, provide size estimates
for both uniformly distributed and clustered bitmaps, and discuss the impact of the
size of the position list. The algorithms for performing bitwise operations on the
compressed bitmaps are presented in Section 5.4, along with an analysis of the time
complexity of the presented procedures. In Section 5.5, the theoretical size and time
complexity estimates are verified through extensive experiments on both synthetic
and real data sets. Finally, in Section 5.6, we conclude and present future research
directions.

5.2 PLWAH Compression

The PLWAH compression is composed of four steps; they are explained with two
examples to ensure clarity. Assume an uncompressed bitmap composed of 175 bits
and a 32-bit CPU architecture. The PLWAH compression steps are detailed below
and are illustrated in Figure 5.1.

Step 1 The uncompressed bitmap is divided into groups of equal size, corresponding
to the word length of the CPU architecture minus one. In our example, the first
five groups have a size of 31 bits. The last group is appended with 11 zeros to
reach a size of 31 bits. We thus have six 31 bit long groups.

Step 2 Identical adjacent homogeneous groups, i.e., groups composed of either 31
set bits or 31 unset bits, are marked as candidates for a merge. In our example,
the first group is a candidate for a merge since it is exclusively composed of
homogeneous bits. Similarly, in the third and fourth groups, all bits are unset,
so the two groups are candidates for a merge. The second, fifth, and sixth
groups are not homogeneous and therefore are not candidates.

Step 3 An additional bit is appended to the groups at the position of their Most Sig-
nificant bit (MSB). A set bit represents a group composed of homogeneous bits.
Those 32 bit long words starting with their MSB set are referred to as fill words.
Fill words can be of two types, zero fill words and one fill words; they are iden-
tified by their second MSB. Candidate groups for a merge are transformed into
fill words. The last 25 Least Significant Bits (LSBs) are used to represent the
number of merged groups that each fill word contains. In our example, the first
group becomes a fill word. Similarly, the third and fourth groups become fill
words with their counters set to two; this corresponds to the number of merged
groups. An extra unset bit is added as MSB to heterogeneous groups. Encoded
words having their MSB unset are referred to as literal words. In our example,
the second, the fifth, and the sixth word are transformed into literal words; each
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Uncompressed bitmap organized 

in groups of 31 bits:

0000000000 0000000000 0000000000 0

0000000000 0000000001 0000000000 0

0000000000 0000000000 0000000000 0

0000000000 0000000000 0000000000 0

0000000100 0000000000 0000000000 0

0000000000 0000000100 0000000000 0
31 bits

11 bits

000 … 000 1 000 … 000 1 000 … 000 1 00

Uncompressed bitmap:

50 x 0 80 x 0 40 x 0 2 x 0

Merging consecutive homogenous groups:

2 groups 

merged

0000000000 0000000000 0000000000 0

0000000000 0000000001 0000000000 0

0000000000 0000000000 0000000000 0

0000000000 0000000000 0000000000 0

0000000100 0000000000 0000000000 0

0000000000 0000000100 0000000000 0

Encoding sparse 32 bits literal words:

1 0 1010000000 0000000000 0000000001 

1 0 0100000000 0000000000 0000000010 

0 0000000000 0000000100 0000000000 0

0 Fill word, cnt = 1, pos = 20

0 Fill word, cnt = 2, pos = 8

Literal word

Encoding 32 bits fill words:

0 Fill word, counter = 11 0 0000000000 0000000000 0000000001 

0 0000000000 0000000001 0000000000 0

1 0 0000000000 0000000000 0000000010 

0 0000000100 0000000000 0000000000 0

0 0000000000 0000000100 0000000000 0

0 Fill word, counter = 2

Literal word

Literal word

Literal word

Figure 5.1: Example of PLWAH32 Bitmap Compression

starts with an unset bit. The first and second words are fill words, their MSBs
are set.

Step 4 Literal words immediately following and “nearly identical”1 to a fill word
are identified. The positions of the heterogeneous bits are calculated and are
placed in the preceding fill word. The unused bits located between the fill word
type bit and the counter bits are used for this purpose. In our example, 25 bits
are used for the counter, and 2 bits are used for representing the word type. We
thus have 5 bits remaining, namely the 3rd to the 7th MSB. A heterogeneous bit
requires 5 bits to that ensure all the possible bit positions in a literal word can
be captured. In the example, the second and fourth words are literal words with

1The maximum number of bits differing between a literal word and a fill word to be considered as
“nearly identical” will later be defined by a threshold parameter.
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only one bit differing from their preceding fill word; they can be piggybacked.
The position of the heterogeneous bit is placed in the position list of the fill
word and the literal word is removed from the bitmap. The last word is treated
as any other word; in the example, it cannot be piggybacked into its predecessor
and is left as it is.

Now, assume an uncompressed bitmap composed of 262 bits and a 64-bit CPU
architecture. As in the previous example, the PLWAH compression steps are detailed
below and are illustrated in Figure 5.2.

Encoding 64 bits fill words
Literal word

Literal word

Literal word

0000000000010000000000000000000000000000000000000000000000000000 

1000000000000000000000000000000000000000000000000000000000000010

0000000000000000000000010000000000000000000000000000000000000000

0000000000010000000000000000000000000000000000000000000000000000

0 - Fill word, counter = 2

counter

Merging consecutive homogenous bit groups:

000000000010000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000010000000000000000000000000000000000000000

000000000010000000000000000000000000000000000000000000000000000

2 groups merged

Uncompressed bitmap organized in groups of 63 bits:

000000000010000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

000000000000000000000010000000000000000000000000000000000000000

000000000010000000000000000000000000000000000000000000000000000

63 bits

Uncompressed bitmap:

00000000001000000000 … 000000000000000100000000000000000010000 

10 x 0 200 x 0 50 x 0 4 x 0

Encoding sparse 64 bits literal words
Literal word

Literal word

0000000000010000000000000000000000000000000000000000000000000000 

1000000000000000000000000001011100000000000000000000000000000010

0000000000010000000000000000000000000000000000000000000000000000

0 - Fill word, sparse bit at position 23, counter = 2

position index

Figure 5.2: Example of PLWAH64 Bitmap Compression
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Step 1 The first four groups have a size of 63 bits. The last group is appended with
48 zeros to reach a size of 63 bits. We thus have five 63 bit long groups.

Step 2 The first group is not a candidate for a merge since it is not exclusively com-
posed of homogeneous bits. In the second and third groups, all bits are unset,
so the two groups are candidates for a merge. The fourth and fifth groups are
not homogeneous and therefore are not candidates.

Step 3 The second and third groups become a fill word. Its counter is set to two, this
corresponds to the number of merged groups and not the total number of bits.
The first, fourth and fifth word are transformed into literal words; each starts
with an unset bit. The second word is created from merged groups and thus is
stored using a fill word with its MSB set.

Step 4 Two bits are used for the representing the word type and 32 bits are used for
the counter. We thus have 30 bits remaining, namely the 3rd to the 32nd MSB.
A heterogeneous bit requires 6 bits to ensure all the possible bit positions in a
literal word can be captured. Having 30 bits available and each position taking
6 bits, we thus have 5 positions for storing a literal word in its preceding fill
word. In the example, the first word is a literal, so nothing is done. The second
and third word are a fill word followed by a literal word with only one bit
differing from the preceding fill word. The position of the heterogeneous bit is
placed in the position list of the fill word and the literal word is removed from
the bitmap. Nothing is done for the last word.

total length w bits

bitmap of w-1 bits

counter

Fill word

Literal word

position s ... position 1

bits w2log

Figure 5.3: Structure of PLWAH Literal and Fill Words

As mentioned above, the PLWAH compressed words are of two kinds: fill words
and literal words; their structures are presented in Figure 5.3. A literal word is identi-
fied by an unset MSB, followed by an uncompressed group. Fill words are identified
by a set MSB, followed by a type bit to distinguish zero fills from one fills. The
remaining bits are used for the optional storage of the list of positions of the het-
erogeneous bits in the tailing group, and for storing a counter that captures the total
number of groups that the current fill word represents.
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The position list can be empty in three cases: first, if the following word is a fill
word of a different type; second, if the following word is a literal but is not “nearly
identical” to the current fill word; and third, if the multiple fill words have to be
repeated because the counter has reached its maximum value. An “empty” element
in the position list is represented with all its value set to zero. The empty position list
is represented with all position values set to zero.

5.3 PLWAH Size Estimates

In this section, we compare the space complexity of the WAH and PLWAH compres-
sion schemes. We discuss the influence of the word length and the size of the position
list on the compression ratio for two different random distributions. We show that the
PLWAH compression ratio is asymptotically twice better than the WAH.

Letw be the number of bits in the CPU word, so thatw = 32 on a 32-bit CPU and
w = 64 on a 64-bit CPU. Given an uncompressed bitmap as input, we described in
Section 5.2 that the PLWAH compression scheme divides the uncompressed bitmap
into groups of (w − 1) bits, referred to as literal groups. For a bitmap with N
bits, there are bN/(w − 1)c such groups plus an optional incomplete word of size
Nmod(w − 1). Unset bits are appended to the incomplete word so that the bitmap
is divided into M = dN/(w − 1)e groups each containing (w − 1) bits. The total
length in bits of the uncompressed bitmap with its tailing unset bits is L = M(w−1).
A literal word is created by prepending an unset bit to a group. When all groups of a
bitmap are represented with literal words, the bitmap is said to be in its uncompressed
form.

5.3.1 Compression Upper and Lower Bounds

The maximum compression is obtained when all words are fill words. This happens
when all groups but the last are homogeneous and identical, and the last group can
be represented using the list of positions of the preceding fill word. The upper bound
is thus determined by the maximum number of groups a fill word can contain, plus
one for the last literal group. Let s be the maximum number of heterogeneous bits
a fill word can store in its list of positions. The size of the list is s log2w and the
size of the counter is w − 2 − s log2w. A single fill word can thus represent up
to
(
2w−2−s log2 w + 1

)
groups of length w − 1. A very sparse bitmap composed of

a long sequence of unset bits and ending with a set bit, 00000000...00001, is an
example of a bitmap were the maximum compression can be reached. Such bitmap
can be represented with only one fill word.

All compression schemes have an overhead when representing incompressible
bitmaps. For WAH and PLWAH, this overhead is one bit per word, so the compres-
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sion ratio is w/(w − 1). A bitmap containing no homogeneous groups will not have
any fill words and will be incompressible. The bitmap 01010101010101...0101010 is
an example of an incompressible bitmap for both the WAH and PLWAH compression
schemes.

The upper and lower bounds of the PLWAH compression ratio are respectively:
(2w−2−s log2 w + 1)(w − 1)/w and (w − 1)/w. As long as the upper bound is not
reached, the worst PLWAH compression ratio is bounded by the WAH compression
ratio. The bitmap compression ratio for particular data distributions is described in
the following sections.

5.3.2 Compression of Sparse and Uniformly Distributed Bitmaps

Uniformly distributed bitmaps can be characterized with one parameter, namely their
bit density d. The bit density is the fraction of bits that are set compared to the total
number of bits. On a uniformly distributed bitmap of density d, the probability of
having exactly k or less bits set in a sequence of w bits is given by the binomial
distribution Pu(k,w, d) = Cwk d

k(1 − d)w−k, where Cwk = w!
k!(w−k)! is the binomial

coefficient and represents the total number of combinations, that k bits can be picked
out of a set of w bits. The probability of having no bit set in a w − 1 bit long
word is Pu(0, w − 1, d) = (1 − d)w−1. The probability of having all bits set is:
Pu(w−1, w−1, d) = dw−1. The probability of having two successive w−1 bit long
words filled with unset bits is: Pu(0, 2w− 2, d) = Pu(0, w− 1, d)Pu(0, w− 1, d) =
(1 − d)2(w−1). Similarly, the probability of having two w − 1 bit long words filled
with set bits is: d2(w−1).

As shown by previous work [92], the number of wordsW in a compressed bitmap
is W = M − G, where M is the total number of groups, and G is the number of
pairs of blocks that can be collapsed. For the WAH scheme, GWAH is the number
of pairs of adjacent blocks containing only unset bits plus the number of adjacent
blocks containing only set bits. The total number of adjacent blocks is M − 1, and
the expected value of GWAH is GWAH = (M − 1)Pcol, where Pcol is the probability of
collapsing two adjacent blocks. The expected total number of words using WAH is:

WWAH = M −GWAH

= M − (M − 1)
[
Pu
(
0, 2(w − 1), d

)
+ Pu

(
2(w − 1), 2(w − 1), d

)]
= M

[
1− (1− d)2(w−1) − d2(w−1)

]
+ (1− d)2(w−1) + d2(w−1)

(5.1)

Let L be the total length in bits of the uncompressed bitmap as defined in Sec-
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tion 5.3.1. On a sparse bitmap, i.e., d → 0, by applying a binomial decomposition,
we have 1− (1− d)2(w−1) − d2(w−1) → 2(w − 1)d. Considering large values of L
(and thereby M ) and small values of d, the expected number of words can therefore
be approximated as follows:

WWAH ≈M
[
1− (1− 2(w − 1)d)

]
=

L

w − 1
2(w − 1)d = 2Ld = 2h

(5.2)

where h denotes the number of set bits. Using the definition of bit density, h = dL,
the number of words in a sparse bitmap can be expressed in terms of set bits as shown
in Equation 5.2. In such a sparse bitmap, all literal words contain only a single bit
that is set, and each literal word is separated from the next by a fill word of zeros. On
the average, two words are thus used for each bit that is set.

We now calculate the expected total number of words using the PLWAH com-
pression scheme. The probability of having 0 to s set bits in a w − 1 bit long
group is:

∑s
k=0 Pu(k,w − 1, d). The probability of having a w − 1 bit long group

with w − 1 unset bits followed by a w − 1 bit long group with 0 to s set bits is:
Pu(0, w − 1, d)

∑s
k=0 Pu(k,w − 1, d). Similarly, the probability of having a w − 1

bit long group with all its bits set followed by a group with 0 to s unset bits is:
Pu(w − 1, w − 1, d)

∑s
k=0 Pu(w − 1 − k,w − 1, d). The expected total number of

words is:

W PLWAH = M − (M − 1)
[
Pu(0, w − 1, d)

s∑
k=0

Pu(k,w − 1, d)

+ Pu(w − 1, w − 1, d)
s∑

k=0

Pu(w − 1− k,w − 1, d)
]

= M − (M − 1)
[
(1− d)w−1

s∑
k=0

Cw−1
k dk(1− d)w−1−k

+ dw−1
s∑

k=0

Cw−1
k dw−1−k(1− d)k

]
(5.3)

For small values of d and large values of M , we can use a binomial decomposition.
The expected number of words can then be approximated as follows.

W PLWAH ≈M
[
1− (1− d)2(w−1) − (w − 1)d(1− d)2w−3

]
≈M(w − 1)

[
2d− d(1− (2w − 3)d)

]
≈ Ld = h

(5.4)
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Looking at the expected number of words relative to the expected number of set
bits, we have:

WWAH

h
≈ 2 and

W PLWAH

h
≈ 1 (5.5)

The compressed size of a sparse bitmap is thus directly proportional to the num-
ber of bits set. In such a sparse bitmap, all words are fill words of unset bits with one
position set in the position list of the fill word. The compression ratio of PLWAH
is asymptotically twice the compression ratio of WAH for a uniformly distributed
bitmap as the bit density goes down to zero.

Figure 5.4 shows the expected number of words per set bit for WAH and PLWAH
depending on the bit density. The behavior of the curves for low densities is explained
by the previous approximations detailed in Equation 5.5. For higher densities, the
number of words per set bit drops linearly to the bit density: if the density is too high
to have fill words, the bitmaps are filled with literal words, they have become incom-
pressible and have reached their maximum size as explained by the lower bound of
the compression ratio established in Section 5.3.1.
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Figure 5.4: Word Count Estimates on Uniformly Distributed Bitmaps

5.3.3 Compression of Clustered Bitmaps

We now study the compression of a bitmap constructed by a random walk modeled
by the following Markov process. A bit has a probability p to be set if its preceding
bit is unset, and a probability q to be unset if its preceding bit is set. The bit density
is: d = (1 − d)p + d(1 − q) = p/(p + q). The clustered bitmap can thus be fully
described by the density d and its clustering factor f = 1/q.

Let Pc(k,w, d, f |b0) denote the probability of having k set bits in a block of w
bits when the bit preceding the block is b0, the clustering factor is f and the bit density
is d. It is straightforward to calculate Pc(0, w, d, f |0) = (1 − p)w = (1 − d/f(1 −
d))w. Thus, the probability to have two consecutive groups exclusively composed of
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set bits or unset bits is respectively d(1 − q)2(w−1)−1 and (1 − d)(1 − p)2(w−1)−1.
The expected number of compressed words in a WAH bitmap can thus be expressed
as follows.

WWAH = M −GWAH

= M − (M − 1)
[
(1− d)Pc(0, 2w − 3, d, f |0)

+ dPc(2w − 3, 2w − 3, d, f |1)
]

= M − (M − 1)

×
[
(1− d)(1− p)2w−3 + d(1− q)2w−3

]
= M

[
1− (1− d)(1− p)2w−3 − d(1− q)2w−3

]
+ (1− d)(1− p)2w−3 + d(1− q)2w−3

(5.6)

For sparse bitmaps with d << 1, an upper bound for the number of words per set
bit is to consider that almost all homogeneous groups are composed of unset bits.
Furthermore, for p = dq/(1− d) → 0 we can use a binomial decomposition; this is
always true for d << 1 as q <= 1. Therefore, for large values of M , the expected
number of compressed words is as follows.

WWAH ≈M
[
1− (1− d)

(
1− dq/(1− d)

)2w−3
]

≈M
[
1− (1− d)

(
1− (2w − 3)dq/(1− d)

)]
=

L

w − 1

[
1− 1 + d+ (2w − 3)dq

]
=

Ld

w − 1

[
1 + (2w − 3)q

]
(5.7)

For bitmaps with a moderate clustering factor, f < 5, we have WWAH ≈ 2h/f .
Similarly, the expected number of words on a PLWAH bitmap is as follows.

W PLWAH = M −GPLWAH

= M − (M − 1)

×
[
(1− d)(1− p)w−2

s∑
k=0

Pc(k,w − 1, d, f |0)

+ d(1− q)w−2
s∑

k=0

Pc(w − 1− k,w − 1, d, f |1)
]

(5.8)

Unlike when k = 0, for 1 < k < w − 1, a recursive calculation is needed to
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calculate Pc(k,w, d, f |0). Nonetheless, on a clustered bitmap, a lower bound for
Pc(k,w, d, f |0) is the probability to have k set bits forming an uninterrupted se-
quence of set bits. The probability of having a group full of unset bits followed by a
group with k set bits in sequence is: (1 − d)p(1 − q)k−1(1 − p)2w−4−k[(w − k −
1)q + (1 − p)

]
. Therefore, an upper bound for the expected number of words in an

PLWAH bitmap is to consider only uninterrupted sequences of set bits. The upper
bound for d << 1 can be expressed as follows.

dW PLWAHe
= M − (M − 1)

×
[
(1− d)(1− p)2w−3 + d(1− q)2w−3

+
s∑

k=1

(
(1− d)p(1− q)k−1(1− p)2w−4−k

×
[
(w − k − 1)q + (1− p)

])
+

s∑
k=1

(
dq(1− p)k−1(1− q)2w−4−k

×
[
(w − k − 1)p+ (1− q)

])]

(5.9)

Furthermore, we can make the same assumption used in Equation 5.7; on a sparse
bitmap with d << 1, almost all homogeneous groups are composed of unset bits.
For s = 1, the expected number of words a PLWAH bitmap can be approximated as
follows.

WPLWAH
s=1
≈ M

[
1− (1− d)(1− p)2w−3

− (1− d)p(1− p)2w−5
(
(w − 2)q + (1− p)

)]
f<5
≈ Ld(2q − q2) =

(
2− 1

f

)
h

f

(5.10)

Equation 5.10 represents the size in words of a PLWAH bitmap where the maximum
number of sparse bit positions a fill word can contain is constrained to one. The
number of sparse bits that can be “piggybacked” into a fill word depends on w and
the length of the counter as explained in Section 5.3.1.

Figure 5.5 presents the average number of compressed words per set bit required
by the WAH and PLWAH depending on the bit density for different values of the
clustering factor. As established in Equation 5.10, the number of words in a PLWAH
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Figure 5.5: Word Count Estimates on Clustered Bitmaps

bitmap decreases as q decreases, i.e., as the clustering factor increases. We also ob-
serve that PLWAH compression always requires less words per set bit than WAH
compression. In Figure 5.5(a), the ratio between the number of words in a sparse
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WAH bitmap and the corresponding PLWAH bitmap ranges from 1.32 to 1.13 for
clustering factors varying from 2 to 4. Compression using 64 bit and 128 bit long
words show identical ratios between the number of words in WAH and PLWAH
compressed bitmaps. At higher bit densities, the bitmaps become incompressible
and adopt a linear behavior. Finally, for very sparse bitmaps, the word length has
little impact on the number of WAH and PLWAH words per set bit as shown by com-
paring the graphs from Figures 5.5(a), 5.5(b), and 5.5(c). However, as the bitmaps
get denser, they become incompressible and the number of words per set bit is thus
inversely proportional to the word length.

5.3.4 The Size of the Position List in Fill Words

The size of the position list depends on the number of bits available in a fill word.
A fill word has to contain at least two bits, the remaining bits are shared between
the position list and the counter. Increasing the size of the position list causes the
total number of bits assigned to the counter to decrease. There is therefore a trade-
off between the maximum number of groups that can be represented in a fill word,
and the maximum number of heterogeneous bits in group that can be stored within
its preceding fill word. However, we show that for most database applications, a
position list does not impose practical limitations to the maximum number of indexed
elements and that increasing the size of the position list improves the compression
ratio significantly.

Each heterogeneous bit requires dlog2we bits to be stored in the position list. Let
l be the number of bits taken by the position list and r the number of bits taken by
the counter. The total number of bits in a fill word is : w = 2 + l+ r. The maximum
number of heterogeneous bits that can be stored in a fill word is: s = b l

dlog2 we
c =

b w−2−r
dlog2 we

c.
In Equation 5.3, the cumulative distribution increases for increasing s. Simi-

larly, all the terms in the
s∑

in Equation 5.9 are positive. Thus, for both uniformly
distributed and clustered bitmaps, WPLWAH decreases when increasing s. Therefore,
maximizing s minimizes WPLWAH.

Figure 5.6 shows the effect of varying s for uniformly distributed and clustered
bitmaps. There is very little benefit of increasing s on sparse uniformly distributed
bitmaps as the probability of having multiple heterogeneous bits in a single group
drops for low bit densities. However, bitmaps whose bit density is between the two
linear zones contain fill words and literal words with a few set bits. For those bitmaps,
increasing the value of s increases the probability of a fill word to be able to carry
its following literal word. Thus, as s increases, the number of words per set bit
decreases.
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On a clustered bitmap, however, increasing s increases the compression ratio, in
such a manner that for lims→w−1,WPLWAH = 0.5 ∗WWAH, i.e., all literal words with
heterogeneous bits can be stored in their preceding fill word.

The length of an uncompressed bitmap in a bitmap index corresponds to the
number of indexed elements. For s = 1, on a 32-bit CPU, PLWAH can represent
31 ∗ 225 > 1, 000, 000, 000 elements in a single fill word. For s = 5, on a 64-bit
CPU, PLWAH can represent 63 ∗ 232 > 270, 000, 000, 000 elements in a single fill
word. Almost any imaginable database application will thus only require a single fill
word to capture homogeneous bit sequences.
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Figure 5.6: Word Count Estimates on Clustered Bitmaps

5.3.5 Compression of High Cardinality Attributes

In this section, we discuss the compression of a attribute whose random value follows
a uniform distribution, and the compression of a clustered attribute whose probabil-
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ities to change from one value to another depends on a Markov process as described
in Section 5.3.3.

Let c be the cardinality of the random attribute. The attribute can thus be repre-
sented with c bitmaps. Since all the values have an equal probability of appearing,
each bitmap is uniformly distributed with bit density: d = 1/c. For indexing at-
tributes with high cardinality the total estimated size in bits of the cWAH compressed
bitmaps can be approximated as follows.

sizeWAH ≈ Lwc/(w − 1)

×
[
1− (1− 1/c)2(w−1) − 1/c2(w−1)

] (5.11)

Similarly, the total estimated size in bits of the c PLWAH compressed bitmap is ap-
proximated as follows.

sizePLWAH

≈ Lwc/(w − 1)

×
[
1−

(
1− 2(w − 1)d+ d2(w−1) − d2(w−1)

)
− (1− d)2(w−1)wd− d2(w−1)w(1− d)

] (5.12)

When c is large, (1/c)2w−2 → 0 and (1 − 1/c)2w−2 → (1 − (2w − 2)/c). The
total size of the c WAH compressed bitmaps that compose the bitmap index for a
uniformly distributed random attribute has the following asymptotic formula.

sizeWAH = 2Lw bits = 2L words (5.13)

Similarly, the total estimated size of the c PLWAH compressed bitmaps is as follows.

sizePLWAH = Lw bits = L words (5.14)

The same reasoning holds for a clustered attribute where the probabilities are al-
lowed to depend on another value. One such example is a simple uniform c-state
Markov process: from any state, the Markov process has the same transition proba-
bility q to other states, and it selects one of the c− 1 states with an equal probability.
The total expected size in bits of the WAH compressed bitmaps necessary to index a
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clustered attribute is given by rewriting Equation 5.7 as follows.

sizeWAH

≈ Lwc

w − 1

(
1− (1− 1/c)

(
1− q/c(1− 1/c)

)2w−3
)

=
Lw

w − 1

(
1 + (2w − 3)q

)
f<5
≈ 2h

f
words

(5.15)

Using Equation 5.9, the total expected size of a corresponding bitmap index com-
pressed with PLWAH is as follows.

sizePLWAH

= cM − c(M − 1)

×
[
(1− 1

c
)(1− p)2w−3 +

1
c

(1− q)2w−3

+
s∑

k=1

(
(1− 1

c
)p(1− q)k−1(1− p)2w−4−k

×
[
(w − k − 1)q + (1− p)

])
+

s∑
k=1

(q
c

(1− p)k−1(1− q)2w−4−k

×
[
(w − k − 1)p+ (1− q)

])]
s=1,f<5
≈ L(2q − q2) =

(
2− 1

f

)
hw

f
words

(5.16)

The bit density in each bitmap of a bitmap index of a uniformly distributed attribute
is inversely proportional to the attribute cardinality. Thus, for high cardinality at-
tributes, the bit density is low for each bitmap of the bitmap index. The total size
is proportional to the number of set bits. Similarly, for a high cardinality attribute
following a clustered distribution, the bitmaps of the bitmap index are sparse. The
total size is proportional to the number of set bits divided by the clustering factor,
i.e., a clustered attribute take less storage space. For example, an attribute following
a distribution with a clustering factor f = 2 takes half the storage of a uniformly
distributed bitmap when compressed with PLWAH on 64 bit long words and a po-
sition list of size 5. Additionally, equations 5.13, 5.14, 5.15, and 5.16 show that
for both WAH and PLWAH, and for all attribute distributions, the total size of the
bitmap is proportional to the size of the alignment, i.e., the CPU word length. Thus,
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for example, a bitmap index of an attribute following a uniform distribution takes the
same size when compressed under PLWAH with a word alignment of 64 bits as when
compressed with WAH with a word alignment of 32 bits.

5.4 Bitwise Operations

Logical bitwise operations are crucial operations for swiftly carrying out range queries
and queries with multiple predicates using bitmap indexes. For this reason, we next
examine the complexity of performing bitwise logical operations on PLWAH com-
pressed bitmaps. In this section, we show that the time for completing an arbitrary
logical operation between two PLWAH compressed bitmaps is proportional to the
total size of the two compressed bitmaps. When the two operands are in an un-
compressed form, the time required is thus constant. Finally, the time to perform a
logical operation between a decompressed bitmap and a PLWAH compressed one is
proportional to the size of the compressed bitmap.

5.4.1 Operations on Two Compressed Bitmaps

A bitwise operation on two compressed bitmaps is performed by sequentially scan-
ning each input bitmap, compressed word by compressed word. The complexity of
bitwise AND/OR operations are quite similar, but ANDs are somewhat faster since
the resulting bitmap has less set bits than the operands (as opposed to ORs, where
the opposite is true). Thus, for simplicity, we focus on the logical OR operation on
two compressed bitmaps (the hardest of the two). However, the methods are very
easily adapted to logical ANDs. Details on the OR implementation are found in
Algorithm 5.4. Additionally, three auxiliary procedures are shown: ReadWord, Ap-
pendFill, and AppendLit.

The ReadWord procedure (Algorithm 5.1) is called each time a compressed word
has to be decompressed. The decompression requires very few CPU cycles and has
only one branch2. If the word is a fill word, it loads the corresponding fill group,
adjusts the counter, and transforms the position list into a bitmap. Both the load of
the data corresponding to the fill word type and the transformation from a position
list to a bitmap are done by multiplication and bit shift operations and do not require
any branching. If the word is a literal word, the data is loaded by masking out the
MSB of the word.

The AppendFill procedure (Algorithm 5.2) generates a fill word corresponding to
the provided fill word type and counter. It has one conditional branch.

Finally, the AppendLit procedure (Algorithm 5.3) transforms a literal group into
a PLWAH encoded word. It has up to 4 conditional branches. It performs two inter-

2Reducing branching is important for keeping the CPU instruction cache full and for avoiding stalls.



100
Position List Word Aligned Hybrid:

Optimizing Space and Performance for Compressed Bitmaps

Algorithm 5.1 Reads a compressed word and updates the run
ReadWord ( Compressed word W )

1: if W is a fill word then
2: data← ((W >> 62)&1) ∗ all ones
3: nWords←W&counter mask
4: isF ill← true
5: isSparse← (W&position mask)! = 0
6: sparse← bitmap constructed from the position list
7: else
8: data←W&first bit unset . MSB of W is unset
9: nWords← 1

10: isF ill← false
11: isSparse← false

Algorithm 5.2 Appends a fill word to a compressed bitmap
AppendFill(bitmap C, word fill, int count)
last is the last word of the bitmap

1: if last is same type as fill and last position list is empty then
2: count is added to the counter of last
3: else
4: Append fill to bitmap

esting operations, namely the count of the number of set bits and the transformation
of a bitmap into a position list. Both operations can be efficiently performed using
the new instructions at hand on recent CPU architectures. Counting the number of
set bits can be performed directly using the population count instruction, part of the
SSE4a instruction set available, for example, on the AMD “10h” [2] and the Intel
“Core i7” [47] processor families. For older architectures, the most efficient alterna-
tive is probably to count the number of times the LSB of the bitmap can be removed
before obtaining a bitmap with all bits unset. In practice, one can limit the count to
a threshold corresponding to the maximum size that the position list can reach. Gen-
erating the list of the positions of the set bits in a bitmap is performed by locating
the position of the LSB, removing the LSB, and repeating the process until all bits
are unset. Many techniques to find the position of the LSB in a word exist in the
literature [57]. However, the bit scan forward instruction, available for 32 and 64-bit
words on modern CPU architectures, e.g., “Pentium 4”, “AMD K8”, and above, is by
far the fastest way of tackling the task.

The CCOR, procedure (Algorithm 5.4) performs a bitwise OR on two compressed
bitmaps. Its total execution time is dominated by the number of iterations through
the main loop. Each iteration through the loop either consumes a fill word or a literal
word from either one or both bitmap operands.
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Algorithm 5.3 Appends a literal word to a compressed bitmap
AppendLit(Compressed bitmap C, literal word L)
last is the last word of C

1: if L = 0 then
2: AppendFill(C, 0, 1)
3: else if last is counter and has empty position list then
4: if last is a zero fill then
5: if L is sparse then . popcount CPU instruction
6: Generate position list . bitscan CPU instruction
7: Place position list into last
8: else
9: Append L to C

10: else if L is sparse then . popcount CPU instruction
11: Generate position list . bitscan CPU instruction
12: Place position list into last
13: else
14: Append L to C

15: else
16: Append L to C

Let Wx and Wy be respectively the number of words of each operand, and let
Mx and My denote the number of words in their decompressed form, i.e., the num-
ber of groups. If each iteration consumes a word from both operands, it takes at
least min(Wx;Wy) iterations. If each iteration consumes only one word from either
operand, it may take Wx +Wy iterations. Additionally, since each iteration produces
at least one group and the result contains at most min(Mx,My) groups, the main
loop requires at most min(Mx,My) iterations3. The number of iterations through
the loop I satisfies the following conditions:

min(Wx;Wy) < I < min ((Wx +Wy),min(Mx,My)) (5.17)

When the operands are two sparse bitmaps, each word is a fill word with a non-empty
position list. In that case, each operation only consumes one word from one of the
operands. Therefore, it takesWx+Wy iterations to complete the bitwise OR, as each
loop iteration executes AppendFill and AppendLit once. Compared to a WAH bitmap
where each set bit requires on average two words, half the number of loop iterations
are thus required. In the case of WAH bitmaps, every two iterations, the AppendFill
procedure is called and followed by, in the next iteration, a call to the AppendLit
procedure. Thus, the total number of calls to the AppendFill and AppendLit proce-
dures to perform an OR operation on two PLWAH bitmaps and two WAH bitmaps
are equal.

3Our implementation allows to perform bitwise operations using bitmaps of different uncompressed
sizes. In the case of an OR, the remaining part of the longest bitmap is appended to the result.
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Algorithm 5.4 Performs a bitwise OR on 2 compressed bitmaps

CCOR(Compressed bitmap X , Compressed bitmap Y )
xrun holds the current run of X
yrun holds the current run of Y
Z is the resulting compressed bitmap

1: Allocate memory for Z
2: while xrun.it < size(X) and yrun.it < size(Y ) do
3: if xrun.nWords = 0 then Readword(X, xrun.it)

4: if yrun.nWords = 0 then Readword(Y, yrun.it)

5: if xrun.isF ill and yrun.isF ill then
6: nWords← min(xrun.nWords, yrun.nWords)
7: AppendFill(Z, xrun.data|yrun.data, nWords)
8: decrease xrun.nWords by nWords
9: decrease yrun.nWords by nWords

10: else
11: AppendLit(Z, xrun.data|yrun.data)

12: if (xrun.nWords = 0 and xrun.isSparse)
or (yrun.nWords = 0 and yrun.isSparse) then

13: if xrun.nWords = 0 and xrun.isSparse then
14: xrun.data← xrun.sparse
15: xrun.isF ill← false
16: xrun.isSparse← false
17: xrun.nWords← 1
18: if yrun.nWords = 0 and yrun.isSparse then
19: yrun.data← yrun.sparse
20: yrun.isF ill← false
21: yrun.isSparse← false
22: yrun.nWords← 1

23: if xrun.nWords > 0 and yrun.nWords > 0 then
24: AppendLit(Z, xrun.data|yrun.data)
25: Decrement xrun.nWord
26: Decrement yrun.nWord
27: if xrun.nWords = 0 and xrun.isSparse then
28: xrun.data← xrun.sparse
29: xrun.isF ill← false
30: xrun.isSparse← false
31: xrun.nWords← 1
32: else if yrun.nWords = 0 and yrun.isSparse then
33: yrun.data← yrun.sparse
34: yrun.isF ill← false
35: yrun.isSparse← false
36: yrun.nWords← 1

37: if xrun.nWords = 0 then Increment xrun.it
38: if yrun.nWords = 0 then Increment yrun.it

39: Append the remaining of the longest bitmap to Z
40: return Z
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The time complexity for performing a logical OR on two compressed bitmaps,
TCC , mainly depends on four terms: the time to perform one memory allocation
Ta, the time to perform I decompressions Td, the time to perform I AppendFill Tf ,
and the time to perform I AppendLit Tl. Let Cd, Cf , and Cl be respectively the
time to invoke each of these operations. As established in Equation 5.17, (Wx +
Wy) is an upper bound for I . In common memory management libraries, the time
for memory allocation and initialization is less than proportional to the size of the
memory allocated [39]. Let Ca be the time to allocate one word, we thus have Ta <
Ca(Wx +Wy). An upper bound for the total time complexity is as follows.

TCC = Ta + Tl + Tf + Td

< (Ca + Cl + Cf + Cd) (Wx +Wy)
(5.18)

The complexity of performing an OR operation on two compressed bitmap isO(Wx+
Wy).

5.4.2 In-place Operations

The most time expensive operations to perform a logical OR between two compressed
bitmaps are in decreasing order: the memory allocation, the addition of a literal word,
the addition of a fill word, and the decompression of a word. If an OR operation is
executed on many bitmaps, the memory management dominates the total execution
time. However, logical bitmap operations such as OR or AND are frequently used
on a large number of sparse bitmaps in order, for example, to answer range queries
or combine predicates. A common approach to reduce the memory management
cost is to use an “in-place” operator that recycles the memory allocated for one of
the operands to store the result, thus eliminating expensive memory allocation. For
example, instead of allocating memory for z, and performing z = x OR y, the “in-
place OR” does x = x OR y.

The PLWAH in-place OR takes one uncompressed and a compressed bitmap as
operand. Using an uncompressed operand ensures that there is never more input than
output words, so that no result word is overwriting a future input word. The uncom-
pressed bitmap can thus be used both as input and output. In addition to avoiding
repeated allocation of new memory for the intermediate results, it also removes the
need to compress temporary results. The time complexity is thus mainly depen-
dent on the time for initially allocating memory for the storage of the uncompressed
bitmap and to perform I decompressions. The in-place OR operation is performed by
the UCOR function whose details are supplied in Algorithm 5.5. UCOR is composed
of a main loop that iterates through each word of the compressed operand.

Let x and y be respectively the uncompressed and compressed operand bitmaps.
The number of words in x is Mx, the number of compressed words in y is Wy. Let
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Algorithm 5.5 Performs a bitwise OR on an uncompressed bitmap and a compressed
bitmap

UCOR(Uncompressed bitmap U , Compressed bitmap C)
1: for all words in C do
2: if run.data = 0 then
3: move forward of run.nWords words in U
4: else
5: while nWords do
6: nWords← nWords− 1
7: Next word in U ← |run.data . “|” is a bitwise OR
8: if run.isSparse then
9: Next word in U ← |run.sparse . “|” is a bitwise OR

I be the number of iterations in the main loop. Each iteration of the loop treats
one compressed word, therefore there are I = Wy iterations. The time to allocate
memory for storing x, Tx, is at least proportional to Mx. Thus, Ta < CaMx. Let Ci
be the time to process one iteration, the time to process the whole loop is proportional
to CiI . An upper bound for the total time spent to perform an in-place OR TUC , is
therefore:

TUC = CaMx + CiWy (5.19)

The UCOR has three conditional branches, including one conditional branch for
decompressing a word. In comparison, the in-place OR algorithm has a total of two
conditional branches per compressed word, but the number of compressed words in a
WAH bitmap is always higher than the number of words found in the corresponding
PLWAH bitmap. As explained in Section 5.3, the number of words in a PLWAH
bitmap tends to be half the number of words in a WAH bitmap. Executing the UCOR
thus represents a net performance gain for sparse bitmaps.

Equations 5.18 and 5.19 show that the fastest procedure depends on the size of the
uncompressed bitmap and the size of the compressed bitmap, i.e., the compression
ratio. Let r be the number of logical bitwise OR operations performed to answer
a range query. The total time to perform the logical OR operations on compressed
bitmaps to answer a range query is as follows.

TCC,r ≈ r (Ca + Cl + Cf + Cd) (Wx +Wy)
TUC,r ≈ CaMx + r(CiWy)

(5.20)

The in-place benefits from a lower number of iterations in its main loop. In addition,
the complexity of the main loop is significantly reduced compared to the OR opera-
tion on two compressed bitmaps. However, the in-place OR procedure suffers from a
high startup cost due to the initial memory allocation corresponding to the size of an
uncompressed bitmap.
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Since, in a bitmap index, the size of the uncompressed bitmap is proportional to
the size of the dataset, the fastest procedure to perform a range query depends on the
size of the dataset and the range of the query.

5.5 Experiments

In this section, we present the timing results from a Dell Dimension 9300 equipped
with a Intel “Core 2 6700 2.66GHz” CPU running FreeBSD 7.1 64-bit OS, which
relies on the “jemalloc” [39] memory allocation library. All the presented experi-
ments are performed within a PostgreSQL 8.3 DBMS. The implementation is in C
and runs as a loadable module for PostgreSQL, thus making the code usable by a
wide audience.

The experiments are conducted on both synthetic and real data sets. The gen-
erated data is composed of a set of (key, attribute) pairs. The attribute follows ei-
ther a uniform distribution, or a clustered distribution as presented in Section 5.3.5.
For each, a comparative study of the influence of the distribution parameters on the
size and performance of the WAH and PLWAH indexes is conducted. The present
study shows that PLWAH compression is superior to WAH compression. Further-
more, PLWAH performs “in-place OR” operations faster than WAH. For long range
queries, the speed-up raises to 20%. As the performance-wise superiority of WAH
over BBC is already shown in previous work [92], we only compare PLWAH with
WAH.

Finally, experiments are conducted on a real data set composed of 15,000,000
music segments. Each music segment is described using 15 attributes capturing the
results of music feature extraction algorithms. Each attribute has a cardinality of
100,000. The index keys are composed of the attribute identifier and the attribute
value. The index keys are in turn indexed using the B-tree index available in Post-
greSQL. The index thus has 15× 100, 000 entries and compressed bitmaps.

5.5.1 Bitmap Index Size

The sizes of the bitmap indexes for the various data distributions discussed earlier are
presented in Figures 5.7, 5.8, 5.9, and 5.10 . Figure 5.7 confirms that for uniformly
distributed high cardinality attributes, the size of PLWAH tends to be half the size
of WAH for a given word length, in accordance with the estimates in Equations 5.13
and 5.14. Hence, the curves of PLWAH64 and WAH32 overlap (the WAH32 curve is
actually hidden below the PLWAH64 curve).

The size of bitmap indexes on clustered attributes are shown for different cluster-
ing factors in Figures 5.8, 5.9, and 5.10. Again, PLWAH outperforms WAH on the
compression ratio. PLWAH64 provides significant benefits due to its longer position
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Figure 5.10: Size of Bitmap Index for a Clustered Attribute, f = 4
(Indexed Elements: 10,000,000)

list. For short position lists, a higher clustering factor decreases the probability for
PLWAH to “piggyback” the next literal word in the current fill word.

Data set PLWAH64 WAH64 PLWAH32 WAH32
Uniform 86 MB 177 MB 43 MB 86 MB
Clustered, f = 2 48 MB 88 MB 36 MB 46 MB
Clustered, f = 3 37 MB 60 MB 28 MB 33 MB
Clustered, f = 4 31 MB 47 MB 24 MB 27 MB
15 music att. 926 MB 1617 MB 565 MB 926 MB

Table 5.1: The size of the bitmap indexes
for a common attribute cardinality of 100,000

The histograms of the music data set vary greatly from value to value. As shown
in Figure 5.11(a), low values tend to be very frequent, e.g., 30% of the elements have
0 as value for the first extracted feature. For frequent values, the four compression
schemes converge; the bitmaps are too dense to be compressed and the bitmaps are
mainly composed of literal words. For less frequent values, the bitmaps can be com-
pressed. PLWAH32 tends to be half the size of WAH32, PLWAH64 half the size of
WAH64 and very similar to the size of WAH32. Figure 5.11(b) presents those re-
sults. For higher attribute values of music features, the histograms are more chaotic;
nonetheless, the ratio between the compression schemes remains as previously ob-
served. A comparison of the total index size between each compression scheme for
the reviewed data distribution is presented in Table 5.1.

Finally, evidences of the influence of the position list size are uncovered in Fig-
ures 5.13(a) and 5.13(b). For uniformly distributed attributes, the probabilities of
having multiple set bits in a single literal word are very low and the position list
tends to contain only one set bit position. The gain obtained by increasing the size
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Figure 5.11: Histogram and Bitmap Sizes of the Lowest Values of the First Music
Feature Attribute

of the position list is thus marginal. The position list size proves to have an impor-
tant impact on the compression ratio for clustered attributes. Indeed, for clustered
attributes, the probability of having more than one set bit in a literal word increases
with the clustering factor. Extending the position list allows more literal words to be
encoded within their preceding fill word.

5.5.2 Performance Study

In the following, we study the performance of the OR operator for answering range
queries. A similar study can be conducted using other bitwise operators. However,
(1) OR operations are more complicated to handle for the compression scheme as
the bitmaps become denser, which is not always the case, e.g., with the AND op-
erator; and (2) long series of OR operations are often required to perform range
queries, while the number of AND operations, for example required to treat a multi-
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Figure 5.12: Histogram and Bitmap Sizes of Selected Values of the First Music
Feature Attribute

dimensional range query, tends to be much smaller. Range queries are generated by
choosing a range of a given size randomly within the interval [0, 100, 000]. In the
experiments, range queries are on one attribute at a time, i.e., we do not consider
multi-dimensional range queries.

The performance of range queries on random intervals comprised of 10 values is
shown in Figures 5.14(a) and 5.14(b). When the attribute cardinality increases, the
compression ratio increases, and the number of words per bitmap decreases. Hence,
the CPU time required to process a constant number of bitmaps decreases.

The total CPU time of performing range queries depending on the range is pre-
sented in Figures 5.15(a) and 5.15(b) for each of the two OR procedures. The be-
havior of each curve is discussed next. In a bitmap index, each possible value of
the indexed attribute is represented with a bitmap; exactly one bit is set at any given
position across all the bitmaps. Thus, when performing an OR operation, the num-
ber of set bits in the resulting bitmap is the total number of set bits in each operand
bitmap. On a uniformly distributed attribute, the bit density per bitmap is constant
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Figure 5.13: Size Comparison between PLWAH Bitmap Indexes with Different
Position List Sizes (Indexed Elements: 10,000,000)

and since all bitmaps have the same uncompressed length, the expected number of
set bits in each bitmap h is constant. Each OR operation thus increases the number of
set bits approximately by h. After i OR operations, the result has ih set bits. There-
fore, as explained by Equations 5.13 and 5.14, on very sparse bitmaps the lengths of
the resulting WAH and PLWAH bitmaps after i OR operations are, respectively, 2ih
and ih words long. Since, on sparse PLWAH bitmaps, each loop iteration produces
one fill word with a non-empty position list, the total number of iteration to produce
the ith result is ih. Similarly, on WAH bitmaps, each loop iteration produces one
word, thus, in total, 2ih iterations are required to produce the ith result. To answer
a range query, r − 1 OR operations are performed, thus

∑r
i ih = hr(r − 1)/2 and∑r

i ih = hr(r − 1) loop iterations are run. The complexity of performing a range
query using the CCOR procedures on two compressed bitmaps is quadratic in the
range.

The CCOR procedure offers good response time for queries on short ranges as
show in Figure 5.15(a). Experiments show no significant performance drop for ranges
covering less than 20 attribute values. In fact, PLWAH32 and WAH32 performances
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are so similar that their performance curves overlap. For larger ranges, the perfor-
mance of both WAH and PLWAH drops. For those large ranges, the WAH perfor-
mance tends to be slightly better than the PLWAH due to the more complex Ap-
pendLit procedure present in PLWAH. However, these observations for larger range
queries are not relevant, as for both algorithms, the “in-place OR” procedures prove
to be much faster.

As illustrated in Figure 5.15(b), large range queries are better handled by the
UCOR procedure, whose time complexity is linear in the size of the range. However,
the UCOR procedure suffers from a high start-up cost mainly due to the initial mem-
ory allocation. For short range queries, the CCOR procedure is thus preferred. The
maximum size of the position list does not change the complexity of the decompres-
sion or the management of a sparse literal; for clarity purposes, Figure 5.15(b) only
shows PLWAH64 with a position list of size 5, and PLWAH32 with a position list
of size 1. Both the WAH and PLWAH complexities depend on the size of the com-
pressed operand bitmap. The small additional complexity of the decompression and
the accounting of sparse literal words do not handicap the performance of PLWAH.
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Figure 5.15: Performance on Uniformly Distributed Attribute (Elements:
10,000,000, Cardinality: 100,000)

On the contrary, PLWAH is more efficient for executing the UCOR procedure as only
half the number of loop iterations are required. As shown in Figure 5.15(c), the ra-
tios between the CPU time of WAH and PLWAH increase up to 20% as the range
increases. The chaotic start is due to the high influence of the initial memory allo-
cation. Better memory management, planned as future work, would further improve
the ratio.
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Figures 5.16(a) and 5.16(b) show similar results on the music data set. The note-
worthy higher starting cost of the in-place OR operator on the music data set is due to
the larger number of elements: the uncompressed bitmaps are 50% longer due to the
50% increase in the number of elements. However, the flatter slope after the startup
overhead is due to the smaller size of the compressed bitmaps; bitmaps of uniformly
distributed attributes are the hardest to compress, hence better compression ratios are
obtained on the music data. For the same reason, a flatter slope is also noticeable for
the OR on compressed bitmaps.
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Figure 5.16: Performance Comparison between the WAH and PLWAH OR
Operators on the Music Attributes

Finally, the impact of the position list size on the performance of the CCOR
operator is shown in Figure 5.17. The computation of the position list is directly
proportional to its maximum size. As the size of the position list increases, a small
overhead can be observed for long range queries. However, as explained previously,
better performance is achieved using the UCOR algorithm. Thus, the important re-
sults correspond to queries on small ranges, for which no significant overhead is
observed. The decompression time is independent of the size of the position list.
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Hence, the performance of the UCOR operation is not directly influenced by of the
size of the position list.
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In summary, the experiments conform with the analytical estimates in Equa-
tions 5.13 and 5.14; a uniformly distributed attribute indexed with PLWAH bitmaps
takes half the size it would require using WAH. Furthermore, we have measured the
performance impact of three factors, namely the attribute cardinality, the range and
the size of the position list. For long range queries PLWAH shows a significant per-
formance improvement. For short range queries, PLWAH and WAH efficiency is
equivalent.

5.6 Conclusions and Future Work

In this paper, we present Position List Word Aligned Hybrid (PLWAH), a bitmap
compression scheme that compresses sparse bitmaps better and answers queries on
long ranges faster than WAH, which was so far recognized as the most efficient
bitmap compression scheme for high cardinality attributes. The results are verified
through detailed analytical and experimental approaches. The storage gain essentially
varies depending on the following parameters: the size of the data set, the attribute
distribution, the attribute cardinality, and the word length. For uniformly distributed
high cardinality attributes, we both prove and observe that the compression ratio is
twice as good as for WAH. For real data, the size of PLWAH compressed bitmaps
varies between 57% and 61% of the size of WAH compressed bitmaps. In terms of
performance, PLWAH and WAH are comparable for short range queries. However,
for long range queries, PLWAH is up to 20% faster than WAH, depending on the data
distribution.

Future work encompasses studying the performance impact of PLWAH on com-
plementary bitmap indexing strategies, and collecting empirical storage and perfor-
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mance results from real data sets and more concrete CPU types. Promising research
directions include a dedicated primary index tool that builds aggregated bitmaps
based on query patterns and frequencies, and data distribution. The primary index
would then be able to select the most efficient aggregation path, the required bitwise
operations, and the type of bitwise algorithm to use.
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Appendix

5.A No Trailing Fill and No Active Word

In a WAH compressed bitmap index, the last word of each bitmap, referred to as its
active word, is handled separately. It is represented with a literal word and a mask
to differentiate bits that are part of the original bitmap from additional padding bits,
added to maintain the word alignment.

On a uniformly distributed and very sparse bitmap, d << 1/(w−1), the chances
to have only unset bits in the last group are high: (1 − d)w−1 ≈ 1 − (w − 1)d ≈ 1.
Thus, the total size of the WAH bitmaps in the index is: 2L + 2c. As long as c <<
N = L, the approximation in Equation 5.13 remains valid. However, for very high
cardinality attributes, where the number of elements is lower than the cardinality, the
compressed bitmap grows linearly to the attribute cardinality.

With PLWAH, the zero padding is performed before compression, the whole
bitmap is thus compressed without breaking the word alignment. This implies that
the compressed bitmap carries no information on the precise size of its original un-
compressed form. However, since all bitmaps in the index have the same size, only a
single word is required to identify the total size of the uncompressed bitmap. As the
uncompressed bitmap size is known, it no longer required to store tailing zeros in a
bitmap.

PLWAH bitmaps do not store the unset tailing bits of the bitmap, e.g., bitmaps
will never finish with a zero fill word and an empty position list. Bitmaps can thus
have different lengths, where unrepresented bits are considered to be unset. Bitwise
operators are implemented accordingly.

Allowing bitmaps to have different size has many advantages. First, the attribute
values having no corresponding elements are not stored in the index. Second, the
size of a PLWAH index is: 2L + 1. Thus, for high cardinality attributes, the size
of the bitmap is solely dependent on the number of elements, and not the attribute
cardinality, as it was the case with WAH. To illustrate this, Figure 5.18 shows the
organization of the bitmap index where the cardinality is higher than the number of
elements. The PLWAH index choses only to represent bitmaps for existing values. In
a classic bitmap index, or with WAH, all the values are represented.

Third, to add an element, only the bitmap corresponding to the value of the in-
dexed attribute needs to be modified; a set bit must is appended to the uncompressed
bitmap. In a PLWAH bitmap, this is done by generating a bitmap corresponding to
the element, i.e., a bitmap composed of a single zero fill word and a position list
of size 1, and executing an OR operation between the new bitmap and the existing
bitmap. The counter of the total number of element indexed is increased by one, we
can thus keep track of the size of the uncompressed bitmaps. The complexity of in-
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Figure 5.18: Example of a PLWAH Bitmap Index

serting an element to a PLWAH bitmap index is thus constant, where with WAH, all
bitmaps need to be updated, i.e., the time complexity is proportional to the attribute
cardinality.

5.B Memory Allocation

Memory allocation is a major bottleneck for performing fast operations on long range
queries. Long range queries are best performed using in-place bitwise operators be-
tween a uncompressed and a compressed bitmap. An uncompressed bitmap requires
a lot of memory, it is thus important to reserve all the memory necessary at once,
although avoiding to reserve too much memory. Since we keep track of the total
of elements in the index, the precise size of the uncompressed bitmap can easily be
calculated.

For operations on shorter range queries, memory is allocated for each operation.
This can be avoided by allocating memory for two bitmaps and recycling the memory
used as input by the previous operation to store the resulting bitmap of the current
operation. This is future work.

Algorithm 5.6 Recycling Memory for Bitwise Operation on Compressed Bitmaps
RecOR(integer a, integer b, List of compressed bitmap B)

1: previous← memory allocation . Initial memory allocation
2: current← memory allocation . Initial memory allocation
3: for all i in [a, b] do
4: swap(current,previous);
5: current = OR(Bi, previous);
6: return current

For operation on compressed bitmaps, an upper bound on the memory required
can be calculated for each operation. However, in order to speed-up the operations,
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the memory should be allocated at once for the complete range, i.e., for the series
of OR operations corresponding to a complete coverage of the range. However, no
upper bound can be calculated without sequentially collecting the size of bitmaps.
We implemented a dedicated bitmap memory allocation library and experimented
different heuristics in order to minimize the memory size allocated and minimize the
number of allocation required.

5.C Reading with One Branch

A key aspect of PLWAH is that it improves significantly the compression ratio with-
out adding a performance penalty. This is achieved by having a very efficient read-
ing operation, which requires the same amount of branches that the regular WAH
compression. The decompression of a word is performed with only one branching
operation. The modification of a position list to a sparse literal word is done only
with a series of bitshift operations. The details of these operation are shown in Algo-
rithm 5.7.

In fact, compared to the original WAH implementation, the number of branches
has been reduced. However, in order to keep the comparison fair, the branching
optimization were back-ported to the original WAH implementation for all the exper-
iments.

5.D Various Bitwise Operators

The various OR, AND, XOR, NOTAND operators were implemented for the bitmaps.
Furthermore, a ’generic’ function that can accommodate any bitwise operator is
coded. However, the generic bitwise function is not as efficient as dedicated oper-
ators for 2 reasons: (1) extra computation is necessary to cover all possible cases;
and (2) the bitwise operator requires a pointer to a function, thus making “inlining”
impossible and causing an significant overhead since the bitwise function call is re-
peated once or twice per iteration in the main loop.

5.E Bulk Load Insertion

Using the in-place operator, each of the c bitmap being built is kept uncompressed
in memory. For large data set or high cardinality attribute, this approach allocates
all memory available and requires memory swaps that result in serious performance
drops.

A second approach to construct the index is to read sequentially each attribute, to
generate a bitmap with its key, and to OR the newly generated bitmap with the exist-
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Algorithm 5.7 Decompressing with a Limited Number of Branches
Decompress(current run run, word word)

1: if word is counter then
. “<<” denotes a logical left bitshift

. “>>>” denotes an arithmetic right bitshift
2: run.data← (word << 1) >>> 63
3: run.nWords← word&MASK COUNTER
4: run.isF ill← 1
5: run.isSparse← (word&MASK POSITION)! = 0
6: run.sparse←Positions(word)
7: else
8: run.data← word&MASK LITERAL
9: run.nWords← 1

10: run.isF ill← 0
11: run.isSparse← 0

Position1(word i)
1: return (i >> 56)&0x003F

Position2(word i)
1: return (i >> 50)&0x003F

Position3(word i)
1: return (i >> 44)&0x003F

Position4(word i)
1: return (i >> 38)&0x003F

Position5(word i)
1: return (i >> 32)&0x003F

Positions(word i)
1: tmp← (0x0000000000000001ULL << Position1(i))
2: |(0x0000000000000001ULL << Position2(i))
3: |(0x0000000000000001ULL << Position3(i))
4: |(0x0000000000000001ULL << Position4(i))
5: |(0x0000000000000001ULL << Position5(i))
6: return tmp >> 1

ing bitmap corresponding to the value. However, this process results in unnecessary
compression and decompression.

A third and preferred approach for the initial construction of a PLWAH index on a
large dataset, is to first construct an array of all keys corresponding to each value, and
then to transform the array and to compress it at once. The array is generated using
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a custom memory pre-allocation scheme, that avoids allocation to be performed each
time a new element is inserted.

For very large data set, the second method is, however, preferred as the memory
allocation keeps in memory only 2 bitmaps at a time. The third method is, by far, the
most efficient, if all the compressed index can be stored in memory.

5.F Adaptive Counter Size

A potentially significant problem with the PLWAH compression technique for 32 bit
words occur when the number of elements significantly exceeds 109, which is not
uncommon for some types of applications. In this case, the very long runs occuring
for high cardinality attributes cannot be represented with a single fill word. Instead,
for a run with a length of 1011, a chain of approximately 100 fill words is needed.
This might be resolved by using 64 bit words, but this immediately doubles the size
of each word in the index (and thus more or less doubles the total index size, too),
in order to solve a problem that might not occur for most runs. Instead, we propose
a technique called adaptive counter size that basically uses 32 bit words, when this
is enough, and then adapts to 64 bit words when necessary, meaning that the longer
words are only used for very long runs.

This can be achieved without changing the basic encoding scheme. A very long
run will be encoded with an empty position list in the (first) 32 bit (fill) word. The
next word will then also become a fill word, and the total length of the run (using
a 50 bit counter) will be encoded in two parts: the first 25 LSBs of the length will
be put into the counter part of the first word, while the other 25 MSBs of the length
will be put into the counter part of the second word. When decoding, Algorithm 5.8
reads the first word and sets the variable isSparse (along with other variables) as
usual. However, the value of the word type and the isSparse variable are used by the
following word to detect the presence of an adaptive counter.

This works as follows. We know (due to the branch in Line 1) that the present
word is a fill word. We decode the fill word type as a temporary value. There are now
two mutually exclusive cases:
1) The current word is part of an adaptive counter, that is, the previous word was a
fill word with an empty position list and was of the same type than the current word.
2) The currentword is part not part of an adaptive counter, that is, the previous word
was a literal word, or was a fill word of a different type.
In case 1) the counter is updated, considering that it represents the 25 MSB of a 50 bit
long counter. In case 2) the counter is updated, considering that it represents the 25
LSB of a 50 bit long counter and the word fill type is update with the temporary value.
The nWords variable is then in effect updated with the value of the 50 bit counter,
but over two calls of Algorithm 5.8. The first call returns the LSBs part, while the 2nd
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Algorithm 5.8 Reads a compressed word with adaptive counter
ReadWord ( Compressed word W )

1: if W is a fill word then
2: tmpdata← ((W >> 30)&1) ∗ all ones
3: nWords← (W&counter mask) << (25 ∗ (tmpdata = data) ∗ (isSparse = false))
4: data← tmpdata
5: isF ill← true
6: isSparse← (W&position mask)
7: sparse← bitmap constructed from the position list
8: else
9: data←W&first bit unset . MSB of W is unset

10: nWords← 1
11: isF ill← false
12: isSparse← false

call returns the MSBs part. Thus, no change is required in the code calling 5.8. For
this to work properly even for the first word, isSparse must be initialized to false
and data, with a value different to the fills before the first call of Algorithm 5.8.

An alternative way of implementing adaptive counter size is to use one or more
extra bits in the “header” of the word (after the word type bit and the fill type bit) to
represent how long the counter is. This can also be used to determine whether the
position list part of the word is used for position lists or, instead, used to increase the
number of bits available for the counter. This requires a corresponding update of the
decoding logic.





Chapter 6

Using Fuzzy Lists for Playlist
Management

The increasing popularity of music recommendation systems and the recent growth
of online music communities further emphasizes the need for effective playlist man-
agement tools able to create, share, and personalize playlists. This chapter proposes
the development of generic playlists and presents a concrete scenario to illustrate
their possibilities. Additionally, to enable the development of playlist management
tools, a formal foundation is provided. Therefore, the concept of fuzzy lists is defined
and a corresponding algebra is developed. Fuzzy lists offer a solution perfectly suited
to meet the demands of playlist management.

6.1 Introduction

The proliferation of broadband Internet connections and the development of new dig-
ital music formats have led to the explosion of online music communities and music
recommendation systems. The increasing popularity of these systems has created a
strong demand for the development of playlist manipulation engines. Hence, playlist
models are highly needed. However, playlists are by nature imprecise. One song
could probably be replaced by another, while preserving the essence of the playlist.
Similarly, two songs can sometimes be permuted. The way playlists are built ex-
plains this phenomenon. For individual music lovers, the manual construction of a
playlist results in some kind of consensus between the various aspects defining the
songs [29, 66]. In large automated music recommendation systems, user collabora-
tive filtering and co-occurrence analysis approaches are commonly used to construct
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playlists [27]. While imprecise, each playlist can exactly characterize a trend, a dy-
namic, a mood. Additionally, playlists also have a subjective nature, i.e., they are
highly dependent on their audience. Listeners might have strong musical preferences
or may not have access to all the music. Therefore, playlist management tools have
to include personalization mechanisms.

The contributions of this paper are twofold. (i) A new scheme for constructing
and sharing playlists is described via a concrete scenario. The scenario illustrates
how the imprecise and subjective characteristics of playlists can be handled in order
to improve playlist management engines. (ii) Fuzzy lists, a generalization of lists and
fuzzy sets, are defined and their corresponding algebra is developed. The proposed
algebra is inspired by relational algebra in order to facilitate future implementation in
an RDBMS. Fuzzy lists offer the formal foundation for the development of playlist
management tools as the provided examples illustrate.

The remainder of this paper is organized as follows. The creation of fuzzy lists for
playlist management is motivated by a scenario presented in Section 6.2. Section 6.3
discusses the related work. Section 6.4 provides a formal definition of fuzzy lists,
their operators and functions. Concrete playlist manipulation examples are shown to
underline their utility. Finally, after evoking some implementation considerations in
Section 6.5, the conclusions and suggestions for future work are presented in Sec-
tion 6.6.

6.2 Motivation

In this section, a playlist management engine that respects both the imprecise and
subjective nature of playlists is envisioned. The users of the system want to create and
share playlists. The playlists are built by user communities in a collaborative fashion
rather than by individual users. Automated classification systems could possibly be
incorporated, as well as classical users participating in the playlist building process.
Additionally, the generated playlists are adaptable to the users’ profiles to respect
their musical taste. The setup is as follows.

The objective is to create a playlist composed of a given number of songs and a
theme. For example, 100 users are asked to build a playlist composed of ten songs,
the first 3 songs should be rock, the next 3 should sound jazzy, the following 3 ro-
mantic, and the last one should be a blues song. Furthermore, the users are asked
to provide smooth transitions between the songs, e.g., the third rock song should
sound a bit jazzy. Agreement between the different users is achieved thanks to a vot-
ing mechanism. Finally, independently from the playlist building process, registered
users have lists of songs they like and dislike.

The playlists created by the voters are merged into a single playlist, referred to
as a generic playlist. The generic playlist stores the “election score,” referred to
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as the membership degree, obtained for each song and each position. The generic
playlist can then be shared among all the registered users of the system. However,
the generic playlist cannot be used directly by the users, as for each position in the
playlist, many songs will probably coexist. Furthermore, if some songs have been
previously tagged as the user’s favorites, then they should preferably be played, or if
the user has no access to a song, an accessible song should be alternatively chosen.
The personalization mechanism selects songs from the generic playlist with respect
to the user preferences and constraints. For each possible song, a preference grade is
given; songs with a high grade should preferably be played while songs with a low
grade should be played less often. A selection score is calculated using the user’s
preference list and the generic playlist. The songs with the highest score win. Fig-
ure 6.1 illustrates the overall construction of a generic playlist and how it is derived
into a personalized playlist a latter stage.
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Figure 6.1: Generic Playlists Usage Scenario

The merging and personalization mechanisms will now be described and illus-
trated by a concrete example. The functions presented were chosen for their simplic-
ity, as the aim here is to motivate the use of generic playlists.

Table 6.1 represents the vote counts for the creation of a playlist with a length of
10 songs where the base song set is composed of 12 songs. The merging function,
denoted M , grants a low membership degree to songs that have receive only a few
votes, and a high membership degree to songs that have received many votes, at
a given position. Let the generic playlist A, shown in Table 6.2, be generated by
applying M to Table 6.1.

Assume a user u has rated his music preferences using a fuzzy song set as follows.
The user’s preference list, denoted Fu, assigns to each song in the system a preference
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song #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
s1 50 20 20 10 0 0 0 0 0 0
s2 20 50 30 0 0 0 0 0 0 0
s3 20 20 40 0 0 0 0 0 0 0
s4 10 10 10 10 0 0 0 0 0 0
s5 0 0 0 20 20 0 0 0 0 0
s6 0 0 0 60 40 0 0 0 0 0
s7 0 0 0 0 40 20 30 30 0 0
s8 0 0 0 0 0 80 20 0 0 0
s9 0 0 0 0 0 0 40 60 10 0
s10 0 0 0 0 0 0 10 10 10 70
s11 0 0 0 0 0 0 0 0 80 30
s12 0 0 0 0 0 0 0 0 0 0

Table 6.1: Users votes count

song A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

s1 0.5 0.2 0.2 0.1 0 0 0 0 0 0
s2 0.2 0.5 0.3 0 0 0 0 0 0 0
s3 0.2 0.2 0.4 0 0 0 0 0 0 0
s4 0.1 0.1 0.1 0.1 0 0 0 0 0 0
s5 0 0 0 0.2 0.2 0 0 0 0 0
s6 0 0 0 0.6 0.4 0 0 0 0 0
s7 0 0 0 0 0.4 0.2 0.3 0.3 0 0
s8 0 0 0 0 0 0.8 0.2 0 0 0
s9 0 0 0 0 0 0 0.4 0.6 0.1 0

s10 0 0 0 0 0 0 0.1 0.1 0.1 0.7
s11 0 0 0 0 0 0 0 0 0.8 0.3
s12 0 0 0 0 0 0 0 0 0 0

Table 6.2: Generic Playlist

song A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

s1 0.50 0.35 0.35 0.30 0.25 0.25 0.25 0.25 0.25 0.25
s2 0.30 0.45 0.35 0.20 0.20 0.20 0.20 0.20 0.20 0.20
s3 0.30 0.30 0.40 0.20 0.20 0.20 0.20 0.20 0.20 0.20
s4 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00
s5 0.20 0.20 0.20 0.30 0.30 0.20 0.20 0.20 0.20 0.20
s6 0.35 0.35 0.35 0.65 0.55 0.35 0.35 0.35 0.35 0.35
s7 0.30 0.30 0.30 0.30 0.50 0.40 0.45 0.45 0.30 0.30
s8 0.25 0.25 0.25 0.25 0.25 0.65 0.35 0.25 0.25 0.25
s9 0.25 0.25 0.25 0.25 0.25 0.25 0.45 0.55 0.30 0.25
s10 0.25 0.25 0.25 0.25 0.25 0.25 0.30 0.30 0.30 0.60
s11 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.65 0.40
s12 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Table 6.3: Modified generic playlist

score reflecting if the user likes, is neutral to, or dislikes the song.

Fu = {0.5/s1, 0.4/s2, 0.4/s3, 0.0/s4, 0.4/s5, 0.7/s6,
0.6/s7, 0.5/s8, 0.5/s9, 0.5/s10, 0.5/s11, 0.7/s12}
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The generalized playlist and the user’s preferences are used to construct the mod-
ified generic playlist, presented in Table 6.3. For each song at a given position in the
generic playlist, the average between the membership degree of the generic playlist
and the user’s preference score is calculated.

Finally, the personalized playlist, denoted P , is generated by selecting, for each
position, the song with the highest membership degree.

P = [s1, s2, s3, s6, s6, s8, s7, s9, s11, s10]

The personalized playlist generated is sensible: s12 that has not received any
votes is not present; s4 that has a preference score of zero, e.g., the user does not own
the song, is not present; s6 and s8 that have the highest preference score are present;
and the rest of the songs are at placed in accordance with the votes. The consecutive
repetition of song s6 could be avoided by using a slightly more sophisticated person-
alization method, e.g., by lowering the preference score of songs previously selected
at a nearby position.

The merging and personalization functions used in the previous example were
solely chosen for their simplicity. Experiments on a real system should be conducted
to obtain reasonable weight estimates for both the creation of generic playlists from
multiple sources and their personalization. However, the correct weights to be used, if
they can be estimated, are domain specific and are considered as external parameters.

Proportional positioning of the song elements, where positions are specified with
respect to the whole playlist, e.g., a song is located at 20% of the playlist length, is
commonly found in playlist management systems. Proportional positioning offers
relative comparisons that a simple index of the songs positions does not capture, e.g.,
blues songs are generally located in the second third of the playlists of given group
of users. Fuzzy lists can simply be adapted to support proportional positioning by
transforming the generic playlist to generic playlists having a common length, e.g.,
by dividing the position of each element by the total length m and multiplying it by a
reference length, say, 100. The algebra proposed in Section 6.4 supports transforma-
tions that accommodate both playlists shorter and longer than the reference length.
More generally, relative positioning of elements, where elements are positioned rel-
atively to each other, can be captured by functions such as, for example, sliding win-
dows that take into account membership degrees of songs in a given neighborhood
position in a generic playlist.

If generic playlists were modeled with ordinary lists, then the membership de-
grees would either be 0 or 1, and all songs that have received votes would have an
identical probability of being part of the playlist. Instead, if fuzzy sets were used to
model generic playlists, then the position dimension of the playlist would be lost and
all songs would have the same probability of being part of the playlist, regardless of
the position. Thus, fuzzy lists are the best choice to model playlists as they capture
the interdependency between song, position, and membership degree.
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6.3 Related Work

Recently, work on fuzzy sets was reported for modeling music similarities and user
preferences [30]. Three different storage schemes are discussed. This paper re-uses
the idea of user favorite song sets to provide playlist personalization features. Fuzzy
lists, a generalization of lists and fuzzy sets, were studied previously [88]. How-
ever, the approach described is not appropriate to represent playlists for two reasons.
First, some positions may be undefined, i.e., they have no corresponding elements
or membership degrees. Second, multiple membership degrees may be defined for a
single element at a given position. By contrast, the present paper allows an element
to have the same membership degree at different positions, e.g., songs having a zero
membership degree regardless of their position in the generic playlist.

Previous work on playlist generation dealt with algorithms to efficiently find a
playlist which fulfills given constraints [12, 3, 74]. Work on dynamic playlist gen-
eration where songs are retrieved one at a time and listeners can intervene in the
playlist creation is presented by Pampalk et al. [69]. A data and query model for
dynamic playlist generation was proposed by Jensen et al. [49]. The authors are
able to retrieve songs similar to a given seed while avoiding songs with respect to
the user preferences. However, no solution is proposed to the issues of sharing and
personalizing existing playlists. Additionally, the playlists are created in a song by
song fashion and aggregating playlists to capture mood or genre similarities is not
possible. However, some applications require functionalities, e.g., searching missing
songs in a playlist, that require capturing the essence of the playlist [45].

A traditional approach to store musical information in a database is to use clas-
sical relational models such as the one proposed by Rubenstein [79]. The model
extends the entity-relationship data model to implement the notion of hierarchical
ordering, commonly found in musical data. Wang et al. have presented a music
data model, its algebra, and query language [90]. The data model is able to structure
both the musical content and the metadata. However, all these models are limited to
individual music performances and do not cover playlists.

Finally, the most related work is probably the foundation for query optimization
on ordered sets proposed by Slivinskas et al., where a list-based relational algebra
is presented [83]. However, the framework does not cover either multiple elements
coexisting at a given position of the list, or membership degrees. Furthermore, the
framework does not address playlist management issues.

6.4 The Fuzzy List Algebra

This section provides a formal foundation for generic playlists. A definition of fuzzy
lists is first provided, followed by a description of fuzzy list operators. The opera-



6.4 The Fuzzy List Algebra 129

tors are divided in three categories. Operators similar to the list operators are first
presented, followed by unary operators, and finally by binary operators.

6.4.1 Definition

A finite fuzzy list, A, of length mA over a domain X is defined as follows.

A = {µA(x, n)/n/x | x ∈ X,n ∈ {1, . . . ,mA}, µA : X × N 7→ [0; 1]}

Here x is an element ofX , n is a non-negative integer, and µA(x, n), referred to as the
sequential membership degree of x at position n, is a real number belonging to [0; 1].
µA(x, n) = 0 when case x does not belong to A at position n, and µA(x, n) = 1
when x completely belongs toA at position n. The length of A, length(A), is defined
as mA.

6.4.2 List-like Operators

In the following, let A, A1, and A2 be three fuzzy lists defined over a domain X .

6.4.2.1 Equality

A1 and A2 are equal iff A1 and A2 have the same length and have the same member-
ship degree between identical pairs of element and position:

A1 = A2 ⇔ length(A1) = length(A2), and

∀x ∈ X,n ∈ {1, ..., length(A1)} : µA1(x, n) = µA2(x, n)

6.4.2.2 Sublist

A1 is a fuzzy sublist of A2 iff a sequence exists in A2 where all the membership
degrees of A1 are less than or equal to the membership degrees of A2:

A1 ⊆ A2 ⇔∃i ∈ N | ∀x ∈ X,∀n ∈ {1, ..., length(A1)} :
µA1(x, n+ i) ≤ µA2(x, n)

Note that the empty fuzzy list of length 1, denoted φ1, is a fuzzy sublist of all fuzzy
lists. Note also that A1 = A2 ⇔ A1 ⊆ A2 and A2 ⊆ A1. In the playlist context,
a sublist is a sequence of a playlist where the probability of a song being played
at a given position is lowered. Songs not present in a generic playlist will remain
excluded in all its sublists.
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6.4.2.3 Concatenation

The concatenation of A1 and A2 is the fuzzy list of length(A1) + length(A2) where
the fuzzy list A2 succeeds A1 as follows.

A1‖A2 = {µ‖(x, n)/n/x | ∀x ∈ X,∀n ∈ {1, ..., length(A1) + length(A2))} :

µ‖(x, n) =

{
µA1(x, n) for n ≤ length(A1),
µA2(x, n− length(A1)) for n > length(A1)

}

Note thatA1 ⊆ (A1‖A2) andA2 ⊆ (A1‖A2). The concatenation operator is inspired
by the UNION ALL operator in SQL. In the playlist context, the concatenation oper-
ator allows short playlists to be used as the building blocks of longer playlists, e.g., to
propose playlists constructed based on the succession of different generic playlists.

6.4.3 Unary Operators

The operators presented below modify the position, e.g., to reorder a generic playlist,
and the nature, e.g., to capture the likelihood of an artist to be played rather than a
song, of the elements.

6.4.3.1 Unary Reordering, Selection, and Aggregation

The unary aggregation is a generalization of the unary selection that is, in turn, a
generalization of the unary reordering. For ease of understanding, the three operators
are progressively introduced. They transform the fuzzy list based on the positions
of the elements. Each of the operators is defined by a different mapping function as
illustrated in Figure 6.2.

Figure 6.2: Examples of Position Mapping for Unary Reordering, Selection and
Aggregation Operators

Unary Reordering:
Given a bijection b : {1, . . . , length(A)} ↔ {1, . . . , length(A)}, the bijection of A
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with respect to b is defined as follows.

Ab = {µAb(x, n)/n/x | ∀x ∈ X,∀n ∈ {1, . . . , length(A)} :

µAb(x, n) = µA(x, b−1(n))}

A unary reordering of a fuzzy list is defined by a permutation, and allows the creation
of, e.g., a shuffling function that randomly reorders the playlist. The invert operator
defined as follows, is another example of unary ordering.

Invert(A) = {µInvert(x, n)/x/n | ∀x ∈ X,∀n ∈ {1, . . . , length(A)} :
µInvert(x, n) = µA(x, length(A)− n)}

Unary Selection:
Given a set A′ ⊆ {1, . . . , length(A)}, and a bijection s1 : A′ ↔ {1, . . . , size(A′)}, a
selection of A over s1 is defined as follows.

As1 = {µAs1 (x, n)/n/x | ∀x ∈ X,∀n ∈ {1, . . . , size(A′)} :

µAs1 (x, n) = µA(x, s−1
1 (n))}

A reordering is a particular case of a selection where A′ = {1, . . . , length(A)}. The
selection operator removes the elements at a given position of the fuzzy list. There-
fore, if s1 is chosen to verify a given predicate, only the elements that fulfill the
predicate will be kept. Thus in a playlist, the positions in the generic playlist where
the songs made by U2 have a high membership degree could be removed or kept.

Unary Aggregation:
Given a setA′ ⊆ {1, . . . , length(A)}, and a surjective mapping s2 : A′ 7→ {1, . . . ,max(s2)},
let Sn be the set of all fuzzy list elements {µ(x, i)/i/x} of A with n = s2(i), and
let a : 2Sn 7→ [0; 1] be a surjective mapping. The aggregation of A with a over s2 is
defined as follows.

Aas2 = {µAas2 (x, n)/n/x | ∀x ∈ X,∀n ∈ {1, . . . ,max(s2)} :

µAas2
(x, n) = a(Sn)}

A selection is a particular case of an aggregation where A′ = {1, . . . , length(A1)}
and a(Sn) = µ(x, s−1

2 (n)). Aggregations can be used to reinforce the membership
degree of certain songs at a given position in a generic playlist if similar songs also
have a high membership degree in nearby positions. Aggregations can also be used
to generate an overview over different positions in a generic playlist, e.g., an average
over a sliding window. The unary aggregation operator is similar to aggregations in
SQL.
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6.4.3.2 Projection

Let Y be a set of elements, and let y be one of its elements. Let p : X 7→ Y be
a surjection, let Sy be the set of all fuzzy list elements {µ(x, n)/n/x} of A with
x = p−1(y), and let a : 2Sy 7→ [0; 1] be a function. The projection of A with respect
to p and a is defined as follows.

Πa
p(A) = {µΠ(y, n)/n/y | ∀n ∈ {1, . . . , length(A)},∀y ∈ Y :

µΠ(y, n) = a(Sy)}

Since p is a surjection, µΠ(y, n) is defined ∀y ∈ Y . The projection operator allows
grouping elements of the fuzzy lists, e.g., it is possible to obtain an overview of the
generic playlist in terms of artists or genre categories by mapping each song to at least
one or more artists or genres. The mapping is specified by p and the new membership
degree is determined by a.

6.4.4 Binary Operators

The following operators are defined over two fuzzy lists. They allow generic playlists
to be merged, aggregated, or compared.

6.4.4.1 Binary Reordering, Selection and Aggregation

Binary operators allow merging two fuzzy lists, e.g., two playlists, into one by speci-
fying an ordering, i.e., the position of the songs, and optionally how the membership
degrees should be changed, i.e., the likelihood for a song to be selected in the playlist.
To define binary operators, three position mapping functions b, s1, and s2 are used
as illustrated in Figure 6.3. As presented earlier in the case of unary operators, the
binary reordering, selection and aggregation will be successfully introduced for clar-
ity reasons. Binary aggregations are a generalization of binary selections that are, in
turn, a generalization of binary reorderings.

Binary Reordering:
Let b : {1, . . . , length(A1)}×{1, . . . , length(A2)} ↔ {1, . . . ,max(b)} be a bijection
as, e.g., illustrated by Figure 6.3. Let ? : [0; 1]× [0; 1] 7→ [0; 1] be a binary operator.
The binary reordering between A1 and A2 with b and ? is defined as follows.

A1 ?
b
A2 = {µ?(x, n)/n/x | ∀x ∈ X1, ∀n ∈ {1, . . . ,max(b)},

∀(i, j) = b−1(n) : µ?(x, n) = µA1(x, i) ? µA2(x, j)}

Common operators are for example the product, the minimum, the maximum, and
the average. The average, e.g., of two generic playlists built by different user groups
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Figure 6.3: Examples of Position Mapping for Binary Reordering, Selection and
Aggregation operators

that were given the same constraints, can be performed as follows.

A1 AVG
b

A2 = {µAVG(x, n)/n/x | ∀x ∈ X1, ∀n ∈ {1, . . . ,max(b)},

∀(i, j) = b−1(n) : µAVG(x, n) =
µA1(x, i) + µA2(x, j)

2
}

Binary Selection:
Let A′1 ⊆ {1, . . . , length(A1)} and A′2 ⊆ {1, . . . , length(A2)} be two sets. Let
s1 : {1, . . . , size(A′1)}×{1, . . . , length(A′2)} 7→ {1, . . . ,max(s1)} be a bijection as,
e.g., illustrated in Figure 6.3, and let ? : [0; 1] × [0; 1] 7→ [0; 1] be a binary operator.
The binary selection of A1 and A2 with s1 and ? is defined as follows.

A1 ?
s1
A2 = {µ?(x, n)/n/x | ∀x ∈ X,∀n ∈ {1, . . . ,max(s1)},

∀(i, j) = s−1
1 (n) : µ?(x, n) = µA1(x, i) ? µA2(x, j)}

Binary selections over fuzzy lists are very common operations. Intersection and union
operators are particular cases where the ? operators are respectively the minimum and
the maximum, with some corresponding changes to the position mapping function s1.

The intersection of A1 and A2 is defined as a fuzzy list, where the membership
degree for any element at a particular position is its minimum value in A1 and A2.

A1 ∩A2 = {µ∩(x, n)/n/x | ∀x ∈ X,∀n ∈ {1, ...,min(length(A1), length(A2))} :
µ∩(x, n) = min(µA1(x, n), µA2(x, n))}
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Note the following properties: (A1 ∩A2) ⊆ A1, (A1 ∩A2) = (A2 ∩A1), A1 ∩φ1 =
φ1, and A1 ∩A1 = A1.

The union of A1 and A2 is defined as a fuzzy list, where the membership degree
for any element at a particular position is set to its maximum value in A1 and A2.

A1 ∪A2 = {µ∪(x, n)/n/x | ∀x ∈ X,∀n ∈ {1, ...,max(length(A1), length(A2))} :

µ∪(x, n) =


µA1(x, n) for n > length(A2)
µA2(x, n) for n > length(A1)
max(µA1(x, n), µA2(x, n)) otherwise

}

Note the following properties: A1 ⊆ (A1 ∪A2), (A1 ∪A2) = (A2 ∪A1), A1 ∪φ1 =
A1, and A1 ∪A1 = A1.

Intuitively, the intersection operator returns a generic playlist where only the
songs strongly present in both of the two provided generic playlists will be very
present in the resulting one. The intersection and the union operators are commonly
used to build new generic playlists from existing ones.

Binary Aggregation:
Let A′1 ⊆ {1, . . . , length(A1)} and A′2 ⊆ {1, . . . , length(A2)} be two sets, let
s2 : {1, . . . , length(A′1)}×{1, . . . , length(A′2)} 7→ {1, . . . ,max(s2)} be a surjective
mapping as, e.g., illustrated in Figure 6.3, and let ? : [0; 1]×[0; 1] 7→ [0; 1] be a binary
operator. Let Sn be the set of all the pairs of fuzzy lists elements (µA1(xA1 , i); i;xA1)
and (µA2(xA2 , j); j;xA2) so that s2(i, j) = n. Let a(Sn) : 2Sn 7→ [0; 1] be a func-
tion. The aggregation of A1 and A2 with a and s2 is defined as follows.

A1 a
s2
A2 = {µa

s2
(x, n)/n/x | ∀x ∈ X,∀n ∈ {1, . . . ,max(s2)} :

µa
s2

(x, n) = a(Sn)}

For example, the average of two generic playlists can be performed over two sliding
windows as illustrated by s2 in Figure 6.3. Such an average, less sensitive to small
position differences between the two generic playlists, can be defined as follows.

s2(i, j) = n | i = j, {(i− 1, j), (i, j − 1), (i, j), (i, j + 1), (i+ 1, j)} 7→ n

a(Sn) =

∑
(i,j)=s−1

2 (n) µA1(x, i) + µA2(x, j)∑
(i,j)=s−1

2 (n) 1

The binary aggregation operator is an adaptation to fuzzy lists of the join and aggre-
gation operators found in SQL.

6.4.4.2 Cartesian Product

Let A1 and A2 be two fuzzy lists defined over the two domains X1 and X2. Let
s : {1, . . . , length(A1)} × {1, . . . , length(A2)} 7→ {1, . . . ,max(s)} be a surjective
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mapping and let Sn : {((µA1 ; i;xA1); (µA2 ; j;xA2))} be the set of all the pairs of
fuzzy lists elements so that s(i, j) = n. The Cartesian product of A1 and A2 with
respect to a and s is defined as follows.

A1

a
×
s
A2 = {µ×(xA1×A2 , n)/n/xA1×A2 | ∀xA1×A2 ∈ X1 ×X2,

∀n ∈ {1, . . . ,max(s)} : µ×as (xA1×A2 , n) = a(Sn)}

Typical selection and aggregation functions for the Cartesian product are, for exam-
ple, s(i, j) = i = j and a(Sn) = µA1(xA1 , i) · µA2(xA2 , j), that computes the prob-
ability of two songs to be played at identical positions in two independent generic
playlists.

The Cartesian product operator for fuzzy lists is related to the Cartesian prod-
uct in SQL. As joins in SQL, binary aggregations are derived operators that can be
expressed using projections, selections, and Cartesian products. The concatenation
of two fuzzy lists is also a derived operation. Other derived operators inspired from
SQL such as Topk could be useful, e.g., for capturing in a generic playlist the songs
that have received the most votes. The fundamental operators of fuzzy lists are: the
unary aggregation, the projection, and the Cartesian product.

6.5 Prototyping Considerations

The fuzzy lists and the operators defined above raise many interesting implementation
issues. A first implementation option is to develop the fuzzy lists algebra with its own
storage, query planner, query executor and to create a database management system,
(DBMS), working on fuzzy lists rather than on multi-sets. While this would certainly
be a neat solution and provide the greatest efficiency, it would also require to rewrite
most parts of the DBMS, from the storage representation, to the query optimizer.

Another approach is to build an abstraction layer that reuses the relation operators
defined for multi-sets. Fuzzy lists could be represented as tables, including a position
and a membership degree for each tuple. The queries should then be mapped to clas-
sical Relational DBMS operators. The main advantage of such an approach is that
existing DBMS abstraction and features, e.g., physical storage, query planner and op-
timizer, can be reused, thus considerably reducing the implementation work. How-
ever, efficient storage representations and specific query optimizations will not be
available, therefore reducing the scalability of the system. Object Relational DMBSs
offer the possibility to specify both storage representations and query optimizations
by allowing the definition of Abstract Data Types. However, their underlying algebra
still remains confined in a relational model based on multi-sets.

As fuzzy lists are a generalization of lists that are commonly used to represent
playlists, the integration of generic playlists into existing workflows of playlist man-
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agement systems for playlist representation requires only minor adaptations such as
having only 0 or 1 as possible membership degrees. For such usage, using an abstrac-
tion layer over a classical Object Relational DBMS is certainly the best approach.
Previous work on storage representation for fuzzy song sets [30] using compressed
bitmaps is a very interesting starting point to address storage representation issues of
generic playlists and fuzzy lists.

6.6 Conclusion and Future work

Generic playlists offer a pragmatic answer to the need for playlist management tools
that has recently arisen in online music communities. Generic playlists respect both
the consensual and the subjective nature of playlists by defining for each position in
the sequence a likelihood degree for the presence of a given song. As illustrated by a
concrete scenario, generic playlists are a flexible and concrete solution for construct-
ing, sharing and personalizing playlists. This paper provides a solid foundation for
the development of generic playlists by formally defining fuzzy lists and their alge-
bra. Examples of generic playlists motivate the use of the presented fuzzy lists op-
erators. Three basic operators are proposed. Their similarity with relational algebra
operators facilitates their implementation in database systems. Future work encom-
passes research on efficient implementations of the basic operators, exploration of
new operators, and experiments on a large scale playlist management engine.
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Appendix

In this appendix, we propose an implementation for the storage and common oper-
ators of fuzzy lists. The storage implementation adapts the PLWAH compression
algorithm in order to compress fuzzy sets rather than representing them using arrays
of bitmaps. This representation facilitates the usage of mathematical operators on the
membership degrees. The fuzzy list are constructed using the new data storage for
fuzzy sets. A pseudo code of the implementation of fuzzy lists major operators and
auxiliary data structure is proposed.

6.A Fuzzy List Representation

A fuzzy list can be represented as a list of fuzzy sets defined over the same domain
of elements. It can thus be implemented as an array of fuzzy sets as depicted in
Figure 6.4.

1:

2:

3:

4:

5:

6:

Compressed fuzzy set

Fuzzy list:

Variable length

L
is
t 
le
n
g
th

position

Figure 6.4: Fuzzy List Storage Organization

Previous work has already studied various options for effectively storing fuzzy
sets. However, these storage options were studied in the context of fuzzy sets and
their operators, e.g., intersection and union. We propose the Pattern Aware Word
Aligned Run Length Encoding (PAWAH): a data compression scheme that allows
arbitrary mathematical operations on the membership degrees. PAWAH is based on
the PLWAH compression; simply put, PAWAH works on multiple bit patterns rather
than on single bits.
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0
7 bits

1 bit

Membership degree

Literal word

1 1 bit

Pattern word

Word counter

Pattern7 bits

34 bits

22 bits

Figure 6.5: Literal and Pattern Words

6.B PAWAH Compression

We proceed by describing the PAWAH words and presenting the compression on an
example.

PAWAH is composed of two types of words: fill words and literal words. As
illustrated in Figure 6.5, literal and fill words are distinguished using their most sig-
nificant bit (MSB). Literal words have their MSB unset. The remaining bits of a
literal word contain values, each represented using multiple bits, e.g., if the values
are ranging from 0 to 100, 7 bits are used to capture each value. The multibit values
are appended to each other until no new value can fit in the current literal word. When
the word length is not a multiple of the length of the value, the last bits are unused to
respect the word alignment. A new literal word is used to store the remaining multibit
values.

Fill words have their MSB set. Fill words are used to capture continuous se-
quences of words having an identical multibit values. The multibit values repeated
among the words is represented using the bits following the MSB. These bits are
referred to as the bit pattern of the fill word. The number of words that are repre-
sented by the bit patterns is captured by a counter located at the end of the word. The
remaining bits located between the fill type and the counter are used to represent a
literal word that directly follows the fill word and only differs from the fill word by
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a few multibit values. Each multibit value is represented with its relative position
within the literal word.

For example, let the following sequence of values ranging from 0 to 100 be com-
pressed using PAWAH: 50 ∗ 10, 5 ∗ 100, 2 ∗ 10. Assuming a 64 bits word alignment,
the compression is performed as follows. The compression steps are illustrated in
Figure 6.6.

1. The uncompressed sequence of values is divided into groups of equal size,
corresponding to the word length of the CPU architecture minus one. Thus,
in the example, the groups have a size of 63 bits. Since each value can be
represented with 7 bits, groups are composed of 9 values. The last group is
padded with arbitrary values to be fully filled, zeros in the example.

2. Identical adjacent groups composed of 9 identical values are merged. In the
example, the first group is a candidate for a merge, since it is exclusively com-
posed of value 0001010 and followed by 4 identical groups, thus forming a
total of 5 groups. The five groups are represented using a single group and a
counter set to 5. The sixth and seventh groups are not composed of identical
values and can therefore not be merged.

3. The groups are encoded in words. An additional bit is appended to the groups
at the position of their Most Significant Bit (MSB). Merged groups are trans-
formed into fill words. In the example, the last 34 Least Significant Bits (LSBs)
are used to represent the number of merged groups each fill word contains.
Thus, the first group becomes a fill word; its MSB is set and its counter is set
to five, which corresponds to the number of merged groups and not the total
number values. An extra unset bit is added as MSB to the groups that were
not merged. Encoded words having their MSB unset are referred to as literal
words. In our example, the second and third groups are transformed into literal
words; each starts with an unset bit.

4. Literal words immediately following a fill word and having up to two different
values from the fill word are identified. The relative positions of the differing
values are calculated and are placed in the preceding fill word. The unused
bits located between the fill word type bit and the counter bits are used for
this purpose. In our example, 34 bits are used for the counter, and 9 bits are
used for the representing the word type and the pattern. We thus have 22 bits
remaining, namely the 8th to the 30th MSB. Seven bits are requires to represent
the value. The relative position of the value of the word can be captured using
blog2 9c = 4 bits. Therefore, the value and its relative position take 11 bits,
thus allowing 2 values and relative positions pairs to be stored using the 22
available bits remaining. In the example, the second word follows a fill word
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0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 1100100 

1100100 1100100 1100100 1100100 0001010 0001010 0000000 0000000 0000000

Uncompressed sequence of values in groups of 63 bits

Merging consecutive identical groups:

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 

0001010 0001010 0001010 0001010 0001010 0001010 0001010 0001010 1100100 

1100100 1100100 1100100 1100100 0001010 0001010 0000000 0000000 0000000

x 5

Encoding groups in words

1000101000000000000000000000000000000000000000000000000000000101 

0000101000010100001010000101000010100001010000101000010101100100

0110010011001001100100110010000010100001010000000000000000000000

Piggybacking literal words

1000101011001001001000000000000000000000000000000000000000000101 

0110010011001001100100110010000010100001010000000000000000000000

Pattern

Literal word

Literal word

Counter

Position

Padding

Figure 6.6: PAWAH Compression Example

and differ from it by only one value. The value and its position are placed into
the fill word. In this way, the literal word is piggybacked by its preceding fill
word. The last word cannot be piggybacked by its predecessor and is left as it
is.

6.C PAWAH Compressed Fuzzy Set

A fuzzy set can be represented with a PAWAH compressed data: each element is
identified by a given position in the sequence and each membership degree is cap-
tured with the value. The previous example would thus represent a fuzzy set where
elements 1 to 50 have a membership degree of 10, elements 51 to 55 have a member-
ship degree of 100, and elements 56 and 57 have a membership degree of 10.

The fuzzy sets can thus be fully represented with a single PAWAH data structure.
This eases the implementation of mathematical operators on the membership degrees
as a value is represented by only one word. For example, the sum operator can be
implemented by a few simple bit manipulations as presented in Algorithm 6.1. The
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extraction of a value from a word is performed by masking the adequate bits of the
word.

Algorithm 6.1 PAWAH sum
word(word a, word b)

1: c = v1(a) + v1(b)
2: c| = v2(a) + v2(b)
3: c| = v3(a) + v3(b)
4: c| = v4(a) + v4(b)
5: c| = v5(a) + v5(b)
6: c| = v6(a) + v6(b)
7: c| = v7(a) + v7(b)
8: c| = v8(a) + v8(b)
9: c| = v9(a) + v9(b)

10: return c

Similarly, minimum and maximum functions can be performed word by word.
The implementation of operators such as intersection and union between fuzzy sets
only requires one reading of each input. Algorithm 6.2 presents the implementation
of the computation of the minimum.

Algorithm 6.2 PAWAH minimum
word(word a, word b)

1: c = min1(a, b)
2: c| = min2(a, b)
3: c| = min3(a, b)
4: c| = min4(a, b)
5: c| = min5(a, b)
6: c| = min6(a, b)
7: c| = min7(a, b)
8: c| = min8(a, b)
9: c| = min9(a, b)

10: return c

6.D Operators

In this section, we propose the implementation of three operators defined for fuzzy
lists: unary aggregation, binary aggregation, and projection. Most operators can be
defined by a combination of these three basic operators.

6.D.1 Mapping and Aggregation Structures

The mapping is defined by a list of destination positions. As illustrated in Figure 6.7,
for each destination position, the mapping structure points to the fuzzy sets defined at
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sources

fzset fzset fzset

fzset fzset fzset

fzset fzset fzset

fzset fzset fzset

fzset fzset fzset

fzset fzset fzset

fzsets from source #1 having 

an identical destination 

mapping corresponding 

to source #2 

Figure 6.7: Mapping Data Structure

the position of origin. The aggregation is performed between all the elements that are
moved to an identical position as defined by the mapping. To manipulate groups of
elements having an identical position, we rely on previously developed data structures
for manipulating fuzzy sets. Implementations details of the mapping and aggregation
structures are presented in Algorithms 6.3 and 6.4.

Algorithm 6.3 Mapping structure
struct mapping struct {

int * nr source;
source * sources;

} typedef * mapping;

struct source struct {
int source length;
fzset array * fzsets;

} typedef * source;

struct fzset array struct {
int nr fzset;
fuzzyset * fzset;

} typedef * fzset array;

6.D.2 Unary Aggregation

A unary aggregation requires a mapping definition and an aggregation function.
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Algorithm 6.4 Aggregation structure
struct aggregation struct {

agg state * state;
void *(*init)(aggregation a);
void *(* step)(fuzzyset *, agg state *);
void *(* finalize)(void *);

} typedef * aggregation;

The implementation is done in two steps. First, the elements and their corre-
sponding membership degree are moved. Second, the elements located at identical
positions are aggregated. The implementation of a moving average aggregation is
presented below. The unary aggregation is implemented as follows:

• A internal state captures all temporary information that is needed between each
iteration. For a moving average, we are storing the list of all the elements and
their corresponding membership values. This list is represented using a fuzzy
set. Additionally, since we are performing an average, the internal state has to
keep a counter of the number of aggregated positions.

• An initialization function defines the initial state. In this case, we define a
empty fuzzy set with a counter set to zero.

• A step function performs one iteration of the aggregation. The aggregation is
done between the elements located at the same position. In our example, we
calculate the new mean and increment the counter of the number of position
merged.

• A finalization function transforms the last internal state into the final fuzzy set
for a given position. In our example, we remove the counter of iterations from
the state.

Algorithm 6.5 presents the pseudo C code of the implementation of the generic
unary aggregation. The aggregation structure is a generic container for all aggrega-
tion functions. In order to perform the average presented in the example, step has to
point to the average function. The + and / operators on fuzzy sets are assumed to be
defined to respectively sum and divide the membership degree of each element of the
fuzzy set.

6.D.3 Projection

The projection operator is similar to the unary aggregation but is operating on the ele-
ments rather than on the position. The projection operator is defined with a projection
mapping that transforms new elements from a set of old elements. The membership
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Algorithm 6.5 Unary aggregation
// x: input fuzzy list
// z: output fuzzy list
void unary(mapping m, aggregation a, fuzzylist x, fuzzylist z)
// i: destination of the position mapping
// m[i]: set of fuzzy sets moved to position i

1: for (int i = 0; i < size(m); i + +) do
2: a→ state = (a→ init)(a); // mem alloc
3: for all fset in m[i] do
4: a→ state = (a→ step)(fset, a→ state);

5: z[i] = (a→ finalize)(a→ state);

void average(fuzzyset fzset, agg state ∗a)
1: a→ counter++;
2: a→ fzset = a→ fzset + (fzset− a→ fzset)/a→ counter;

degrees of the old elements are aggregated to generate the new element member-
ship degree. The new membership degree can be generated by multiple membership
degrees corresponding to the input elements.

Algorithm 6.6 Projection
void project(projection p, aggregation a, fuzzylist x, fuzzylist z)
// for each fuzzy set of the fuzzy list

1: for all pos in x do
2: fzset = getfzset(x, pos);
3: for all el in proj do
4: tmp: new temporary fuzzy set
5: for all oldel of proj[el] do
6: oldmu = getmu(fzset, oldel)
7: newmu = (p− > step)(oldmu);

8: addfzelem(tmp, el, newmu)

9: z[pos] = tmp;

6.D.4 Binary Aggregation

Binary aggregation deals with repositioning fuzzy sets. The mapping is defined for
each destination as a list of source position and source fuzzy list. The fuzzy sets are
aggregated with respect to their position.



Algorithm 6.7 Binary aggregation
struct aggregation struct {

void * state;
void *(*init)(aggregation a);
void *(* step)(fuzzyset *, agg *);
void *(* finalize)(void *);

} typedef aggregation;

// x: input fuzzy list
// y: input fuzzy list
// z: output fuzzy list
void binary(mapping m, aggregation a, fuzzylist x, fuzzylist y, fuzzylist z)
// i: destination of the position mapping
// m[i]: set of fuzzy sets from x and y moved to position i

1: for (int i = 0; i < size(m); i + +) do
2: a→ state = (a→ init)(a); // mem alloc
3: for all fsetx and fsety in m[i] do
4: a→ state = (a→ step)(fsetx, a→ state);
5: a→ state = (a→ step)(fsety, a→ state);

6: z[i] = (a→ finalize)(a→ state);

void average(fuzzyset fzset, agg state ∗a)
1: a→ counter++;
2: a→ fzset = a→ fzset + (fzset− a→ fzset)/a→ counter;





Chapter 7

Conclusions and Future Work

7.1 Conclusions

The growth of digital music collections and the tremendous gain in popularity of mu-
sic applications have issued new challenges to music data management systems. This
thesis reports on the design of a Music Warehouse (MW), a dedicated data warehouse
optimized for the management of music content. It presents concepts to facilitate the
representation and manipulation of music information. Additionally, it provides ef-
fective music data management tools designed to support modern music applications,
such as online music recommendation systems and music information retrieval sys-
tems.

The thesis follows the elaboration of a Music Warehouse. It comprises four major
interdependent layers. First, an exploratory phase defines a Music Warehouse, iden-
tifies challenges, and proposes an approach for addressing some of them. Second,
a data collection phase presents methods for gathering music features and playlists.
Third, the data organization and representation are studied for each type of the col-
lected music information. Fourth, dedicated data manipulation tools are developed.
The thesis structure is sketched in Figure 7.1. The four layers are covered by five
chapters, they are summarized below.

The thesis begins by laying the necessary foundations for the development of
MWs. Inspired by the previous successes of data warehouses in business integra-
tion issues and on-the-fly analytical demands, MWs are described as centralized data
stores, based on the data warehousing approach, that are optimized to answer the
fast-search needs of large music information retrieval systems. Chapter 2 proposes
to organize music metadata into four categories and presents a case study of musical
database management. The usage scenario, the system architecture, and the prelim-
inary research ideas described in Chapter 2 are pursued and constitute the topics of
Chapters 4 and 6. Chapter 2 is thus an essential chapter that brings to light the con-
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Figure 7.1: Thesis Structure

necting thread between MW and new concepts, such as Fuzzy Song Sets and Fuzzy
Lists. Additionally, Chapter 2 proposes ten promising research challenges for MW.
While some of these challenges remain unaddressed, the thesis identifies them in the
hope that future research in these directions will be conducted. Most of the proposed
research topics would benefit a wide range of data warehousing applications.

Next, driven by a voracious appetite for music data, the thesis addresses issues
bound to the gathering of large amounts of music features. The automatic extraction
of high-level features over a large music collection suffers from a major scalabil-
ity issues: feature extraction is a computationally expensive process. Attempts to
spread the feature extraction among a large number of publicly available computers
have failed due to the copyright restrictions, which limit the exchange of the audio
content. Chapter 3 introduces an efficient framework for extracting high-level audio
features. The distributed extraction is performed in a two-step process in order to
respect copyright. The proposed framework has successfully demonstrated its ability
to efficiently extract high-level features on a large music collection. Furthermore, the
framework proves to be efficient and flexible for performing similarity searches using
the extracted features. This is done by allowing users to constrain the search within
a range and specify a weighted combination of high-level features. To optimize the
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search, three different approaches are compared in terms of query time and storage.
The challenge lies in the ability to accommodate efficient search for both absolute
and relative types of similarity measures. Tools for manipulating relative similarity
measures and absolute similarity measures are presented in Chapters 4 and 5 respec-
tively.

Fuzzy sets prove to be well suited for addressing various problematic scenarios
commonly encountered in recommendation systems. In Chapter 4, after defining
the concept of Fuzzy Song Sets and presenting an algebra to manipulate them, we
demonstrate the usefulness of Fuzzy Song Sets and their operators to handle various
information management scenarios in the context of a music warehouse. For this pur-
pose, we create two multidimensional cubes: the Song Similarity Cube and the User
Feedback Cube. Three data storage options, arrays, tables and WAH compressed
bitmaps, are envisioned for representing Fuzzy Song Sets. The impact of these data
structures on the storage space and operator performance is then discussed. With re-
spect to storage, while arrays first show to be a very good choice from a theoretical
point of view, they suffer from a significant overhead. Estimates taking into account
DBMS overheads show that the differences between WAH bitmaps and arrays vanish
as the number of elements grows. The different data organizations in WAH bitmaps
and in arrays cause operators to behave very differently depending on the number of
elements. Arrays are very efficient when the number of elements remains limited.
However, arrays behave poorly for larger sets. Requiring a more complex manage-
ment, bitmaps suffer from a higher starting overhead, which is mostly visible when
the number of elements is low. As the number of elements grows, operations on
bitmap are faster than on arrays. In our experiment with the largest number of ele-
ments, the Union operator performs 5 times faster on WAH bitmaps than on arrays;
the speedup factor is 7 for the Top operator and 85 for the Reduce operator.

Absolute similarity measures are characterized by high dimensionality. Chapter 5
improves the performance of high-dimensionality range queries. We present Position
List Word Aligned Hybrid (PLWAH), a bitmap compression scheme that compresses
sparse bitmaps better and answers long range queries faster than WAH, which was so
far recognized as the most efficient bitmap compression scheme for high cardinality
attributes. The storage gain essentially varies with the following parameters: the size
of the data set, the attribute distribution, the attribute cardinality, and the word length.
For uniformly distributed high cardinality attributes, we both theoretically prove and
experimentally observe that the compression ratio is twice as good as for WAH. In
terms of performance, PLWAH and WAH are comparable for short range queries.
However, for long range queries, PLWAH is faster than WAH.

Generic playlists offer a pragmatic answer to the need for playlist management
tools that has arisen in online music communities. Generic playlists respect both the
consensual and the subjective nature of playlists by defining for each position in the
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sequence a likelihood degree of the presence of a given song. As illustrated by a con-
crete scenario, generic playlists are a flexible and concrete solution for constructing,
sharing and personalizing playlists. Chapter 6 provides a solid foundation for the
development of generic playlists by formally defining the concept of Fuzzy Lists and
their algebra. Examples of generic playlists motivate the use of the presented Fuzzy
Lists operators. Three basic operators are proposed. Their similarity with relational
algebra operators facilitates their implementation in database systems. Additionally,
a prototypical implementation of the Fuzzy Lists is presented. This implementa-
tion captures Fuzzy Lists as lists of fuzzy sets. Each fuzzy set is represented using
a new compression technique facilitating arithmetic on the membership degrees of
the elements. The pseudo code of some of the fundamental Fuzzy List operators is
provided.

The main contributions presented in the thesis are enumerated below.

1. We propose a scalable framework to extract music features. The framework
distributes the extraction of the music features to client nodes in order to com-
pute the similarity measures without violating copyright.

2. We propose the concept of Fuzzy Song Sets for capturing music information
and an algebra for facilitating their manipulation. Three usage scenarios and
the corresponding multidimensional cubes extended with Fuzzy Song Sets are
described to illustrate the usage of Fuzzy Song Sets in MW.

3. We implement common fuzzy set operators using WAH and array compres-
sion of Fuzzy Song Sets and prove that fuzzy sets represented with WAH com-
pressed bitmaps are the most efficient to manipulate large fuzzy sets.

4. We propose PLWAH, a new bitmap compression scheme that reduces the size
of bitmaps and improves the computation speed of bitwise operators. PLWAH
performs searches on highly multidimensional data very efficiently. PLWAH is
useful to handle the multidimensional range queries commonly used for deal-
ing with music features.

5. We define the concept of Fuzzy Lists and propose an algebra to manipulate
them. Fuzzy Lists are used to represent, manipulate, and share playlists.

6. We propose a storage representation and the corresponding implementation of
the operators of Fuzzy Lists. Fuzzy Lists are stored in a compressed format.
The new compression, referred to as PAWAH, allows performing arithmetic
operations on the membership degree directly on the compressed representa-
tion.
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The thesis presents innovative concepts and techniques to deal with large amounts
of music features. For example, new concepts, such as Fuzzy Song Sets and Fuzzy
Lists, allow organizing and manipulating music similarities and users musical pref-
erences. New techniques, such as the PLWAH and PAWAH compressions schemes,
improve the multidimensional range queries commonly used to search among mu-
sic features. They also improve Fuzzy Song Sets and Fuzzy Lists storage and the
performance of their operators. The concepts and techniques were theoretically and
experimentally studied using a large collection of music features computed thanks to
the scalable music similarity computation framework described in Chapter 3.

While the presented research was motivated by the development of an MW, some
of the contributions, e.g., PLWAH, PAWAH and Fuzzy Lists, are easily transposable
to other application domains.

7.2 Future Work

As illustrated in Figure 7.2, future work can be pursued in three directions: first, to-
wards bringing further the technical aspects of the presented concepts and methods,
second, towards facilitating the interactions between the developed tools and other
existing systems, and third, towards widening the scope of applications by generaliz-
ing the contributions to other domains.

The presented contributions would benefit from the following studies and tech-
nical improvements. The distributed framework for the extraction of music features
would gain from an automatic client update system. The system would be able to
notify the clients when new or updated extraction methods are available. The clients
would then download and use the most recent extraction algorithms. Fuzzy Song
Sets should benefit from the proposed PLWAH and PAWAH compression schemes.
Empirical studies and comparisons between PLWAH and PAWAH compressed Fuzzy
Song Sets have to be conducted. Future work also encompasses studying the perfor-
mance impact of PLWAH on complementary bitmap indexing strategies. A promis-
ing research direction consists in the development of primary index that builds aggre-
gated bitmaps based on query patterns, frequencies, and data distribution. The pri-
mary index would be able to select the most efficient aggregation path, the required
bitwise operations, and the type of bitwise algorithm to use. Finally, analytical and
empirical studies of the storage requirements and operator performances of PAWAH
compressed Fuzzy Lists are needed. Further studies would facilitate the identification
of possible weaknesses of the PAWAH compression scheme and provide insights to
effective optimizations.

A second future work direction is to facilitate the interactions with other music in-
formation retrieval platforms and to solve portability and integration issues linked to
different data representation and system architectures. The presented distributed mu-
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Figure 7.2: Future Work

sic feature extraction framework should interact with the Networked Environment for
Music Analysis (NEMA) [34]. In this perspective, work on compatibility with new
data formats, such as ACE/XML [61], should be pursued. Fuzzy sets storage rep-
resentations and operators should be used in music frameworks, in particular those
relying on fuzzy sets. Porting the PLWAH and PAWAH bitmap compression schemes
to other DBMSs would widen the audience and facilitate the integration to other sys-
tems. Similarly, there is the need to adapt the compression scheme to different CPU
architectures. For example, PLWAH words have a short counter on 32 bit long CPU
architecture. This could become problematic on extremely sparse bitmaps where
runs become very long. The adaptive counter is a promising approach that requires
an experimental evaluation. Furthermore, the PLWAH compression scheme could
take advantage of multi-core CPUs. Various techniques of parallelization should be
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studied. In particular, the partitioning of the data index is an interesting direction that
eliminates the need for critical sections and limits the maximum run-length. It thus
constitutes a potential alternative to the issue of too short counters in the case of very
long runs.

The contributions could be generalized in order to bring benefits to other do-
mains. Such generalization includes comparing the extraction framework of music
features with other generic frameworks such as BOINC [5]. A conceptual compar-
ison with the Map-Reduce programming model [28] would also be beneficial, in
particular on the issue of assigning priorities to certain tasks of the distributed com-
putation. Fuzzy Sets and Fuzzy Lists representations can be used in other domains;
studies of the impact of their respective data representations should be conducted
in other domains than multimedia. The concept of aggregation between Fuzzy Lists
needs to be further developed in order to build fuzzy lists hierarchies. PLWAH can be
applied directly as a replacement to existing bitmap compression techniques. How-
ever, further analytical studies of the PLWAH compression scheme on different data
distribution need to be conducted in order to demonstrate the effectiveness of PLWAH
in different domains. Similarly, PLWAH would benefit from additional comparisons
with other bitmap compression algorithms.

In summary, the contributions presented in this thesis constitute a solid foun-
dation for developing an MW. The concepts are flexible enough to support a wide
spectrum of music applications. The techniques are efficient enough to address scal-
ability issues related to large music collections and high numbers of requests. While
the contributions are significant and the MW has already demonstrated its robustness,
many future improvements remain desirable. Three main future work directions are
identified: improvement of the presented concepts and techniques; compatibility with
other MIR tools and systems; and generalization and application of the contributions
to new domains.
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Summary in Danish

En ualmindelig vækst i mængden af digitalt musik kræver nye systemer og algorit-
mer til at organisere og søge i musik databaser. En lang række nye forskningsområder
inden for sådanne musik databaser har gennem de seneste år set dagens lys. Denne
afhandling fokuserer på de datatekniske problemstillinger, der vedrrer systemer til
automatisk musik anbefalinger. Afhandling foreslår værktjer til udregning, repræsen-
tation, manipulation, og søgning i musik lighedsmålinger.

Afhandlingen starter med at definere et brugsscenario, et Musik Warehouse kon-
cept, en systemarkitektur, og et overblik over forskningsmæssige problemstillinger.

Afhandlingen fortsætter med at præsentere et framework som gør det muligt at
udtrække musikegenskaber uden at krænke ophavsrettighederne for de involverede
kunstnere. Frameworket bliver brugt til at skabe et datasæt af musik lighedsmåleinger.
En række metoder bliver præsenteret, som forbedre lighedssøgningerne ved brug af
vægtede-kombinationer over det indsamlede data.

For ligheden mellem par af musikstykker defineres Fuzzy Song Sets. Lagring og
implementering af fundamentale operatorer studeres for forskellige interne repræsen-
tationer. Studierne viser, at komprimerede bitmaps med en udvidet version af Word
Aligned Hybryd algorithmen som intern repræsentation giver de bedste resultater.

Efterfølgende præsenteres de udfordringer, som findes i forhold til søgninger i
et metrisk musik lighedsrum. Komprimerede bitmaps foreslås til multidimensionelle
interval forespørgsler, og en ny bitmap komprimeringsalgoritme, Position List Word
Aligned Hybrid (PLWAH), præsenteres. PLWAH giver forbedrede resultater i forhold
til eksisterende komprimeringsalgoritmer, både i forhold til komprimeringsraten og i
forhold til effektiviteten af operatorer.

Til sidst defineres Fuzzy Lists, som er matematiske objekter, der gør det muligt
at repræsentere og manipulere afspilningslister. For at holde Fuzzy Lists konkrete,
bliver operatorer defineret og illustreret igennem eksempler i konteksten af en af-
spilningsliste applikation. Der gives desuden en implementeringmentering af de fun-
damentale operatorer.

Som omsummering, ophandler denne afhandling altså de udfordringer, der findes
i forhold til lagring og behandling af musik lighed. For hver udfordring gives konkrete
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løsninger, der giver forbedringer over de eksisterende tilgængelige løsninger i både
den akademiske og industrielle verden. Selvom fokus i denne afhandling er på det
musikalske domæne, er de præsenterede teknikker generelle og kan i de fleste tilfælde
finde brugbarhed inden for andre domæner, hvorved brugbarheden af de rapporterede
resultater øges.
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