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Summary

This thesis consists of an introduction and five research papers on cross-
commodity modeling in energy markets. Since all papers have a connection
to European electricity markets, special attention is paid to these markets in
the introductory part of the thesis.

In Papers A, B, and C we consider the mitigation of volumetric risk in-
troduced by the increased wind power production in Europe. In Paper A we
propose a seasonal copula mixture for the joint modeling of the clean spark
spread and the underlying of the exchange-traded wind power futures. As-
suming that the clean spark spread represents the profitability of a gas-fired
power plant, the proposed model facilitates through Monte Carlo simulations
the assessment of wind power futures as hedging instrument for conventional
power producers, here represented by a gas-fired power plant.

The point of view is shifted in Paper B, where we take the view of 31
different wind power producers located in Germany. We propose ARMA-
GARCH copula models for the joint behaviour of each pair of site-specific
wind index and the underlying index of the exchange-traded wind power
futures. Monte Carlo simulations from the model allow us to derive hedging
strategies and to quantify the differences in hedging effectiveness of wind
power futures for the considered wind power producers.

In Paper C we propose two continuous-time multivariate models for the
joint behaviour of wind indexes based on Lévy processes. In addition, we
put forward the suggestion of tailor-made wind power futures to facilitate a
perfect hedge of the volumetric risk faced by wind power producers. Using
both models, we analyze the tailor-made wind power futures for the selling
and buying side, and discuss the similarities and differences between the
models.

Papers D and E are concerned with the implication of the price formation
in European day-ahead electricity markets, where market coupling is present.
In Paper D we propose a continuous-time model for the joint behaviour of
day-ahead electricity prices in two coupled interconnected markets. Estima-
tion procedures, based on filtering techniques, are proposed, and closed-form
formulas for forwards and transmission rights implied by the model are pre-
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Summary

sented.
In Paper E we consider the model proposed in Paper D in more detail with

regard to trading transmission rights. Key features of the model are discussed
in this context. In the empirical part of the paper we asses the model pricing
and hedging wise in relation to transmission rights. For comparison reasons,
we compare the model to the Margrabe formula throughout Paper E due to
its well-known properties.
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Resumé

Denne afhandling indeholder en introduktion og fem forskningsartikler om-
kring krydsmodellering af råvarer i energimarkeder. Vi har særligt fokus på
europæiske elektricitetsmarkeder i introduktionen af denne afhandling, da
alle artikler har en forbindelse til disse markeder.

I Artikler A, B og C betragter vi håndteringen af volumenrisiko, som følge
af introduktionen af den øgede elektricitet produceret af vindmøller i Europa.
I Artikel A foreslår vi en sæson copula mixtur for den simultane modeller-
ing af clean spark spread og det underliggende til de børshandlede wind
power futures. Vi antager, at clean spark spread repræsenterer rentabiliteten
af et gaskraftværk. Den foreslåede model faciliterer dermed, gennem Monte
Carlo simulationer, vurderingen af den risikominimerende effekt af wind
power futures for konventionelle elektricitetsproducenter repræsenteret ved
et gaskraftværk.

I Artikel B skifter vi synspunkt til vindmøller lokaliseret i Tyskland. Vi
foreslår ARMA-GARCH copula modeller for den simultane opførsel af hvert
par af vindmølle indeks og det underliggende indeks af de børshandlede
wind power futures. Ved hjælp af Monte Carlo simulationer fra modellerne
udleder vi risikoafdækkende strategier og kvantificerer forskellene i risiko-
minimeringen som følge af wind power futures for de betragtede vindmøller.

I Artikel C foreslår vi to kontinuerttids multivariat modeller for den si-
multane opførsel af vindindeksene baseret på Lévy processer. Yderligere
foreslår vi skræddersyede wind power futures for at imødekomme en perfekt
risikominimering af den volumenrisiko som vindmølleejere skal håndtere.
Begge modeller bliver brugt til at analysere de skræddersyede wind power
futures kontrakter fra både et køber- og sælgerperspektiv, og ligheder og
forskelle på de to modeller bliver diskuteret.

Artikler D og E omhandler implikationen af prisformationen i europæiske
day-ahead elektricitetsmarkeder, hvor markedskoblingen er til stede. I artikel
D foreslår vi en kontinuerttids model for den simultane opførsel af day-ahead
elektricitetspriser i to sammenkoblede markeder. Vi foreslår estimationspro-
cedurer baseret på filtreringsteknikker, og formler for terminskontrakter og
transmissionsrettigheder på lukket-form.
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Resumé

I Artikel E betragter vi modellen foreslået i Artikel D med et mere de-
taljeret fokus på handlen med transmissionsrettigheder. Hovedkarakteristika
af modellen er diskuteret i denne kontekst. I den empiriske del af artiklen
vurderer vi modellens evne til at prisfastsætte og risikohåndtere transmis-
sionsrettigheder. Margrabe formlen er brugt gennem hele artikel E som sam-
menligningsgrundlag grundet dens velkendte egenskaber.
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Background

The overall theme of this thesis is cross-commodity modeling limited to en-
ergy markets. Cross-commodity modeling refers here to the joint modeling
of different commodities such as natural gas and electricity, but also the joint
modeling of the same commodity in different areas such as wind power pro-
duction at distinct geographical locations. This introduction serves to de-
scribe how both variations of cross-commodity modeling is touched upon in
the included research papers. Since all papers are linked to European elec-
tricity markets, we introduce the papers in the context of these markets.

Markets for Electricity in Europe

The liberalization of energy markets globally has resulted in severe changes
in the whole energy sector. From a European perspective, the change from
monopolized to liberalized electricity markets was the consequence of the in-
troduction of a single European market in the beginning of the 1990s. One
intention of the European Union was to provide free movement of goods
and services, though differences in electricity prices could potentially incen-
tivize companies to relocate based on the electricity costs associated with each
member state (Heddenhausen (2007)). The plan of a single pan-European
wholesale electricity market was thus initiated.

A common target model for the member states of the European Union was
finalized in 2009, including a specification of the types of electricity markets
needed to foster the integration of electricity markets (see Danish Energy
Agency (2018)):

• A central element in this target model is the so-called day-ahead mar-
ket, where market participants can trade electricity for each hour of the
following day. Buyers and sellers of day-ahead electricity have to sub-
mit their orders for all hours of the following day before 12:00 CET. For
each hour, a uniform pricing method is applied resulting in one price
where the supply and demand curves intersect. Buyers willing to pay
at least this intersection price will get their bid fulfilled, while sellers
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willing to sell electricity to at most this intersection price will get their
offer fulfilled.

• To allow market participants to hedge their exposure to the day-ahead
prices, forward markets are also part of the target model, with the day-
ahead price being the underlying of the corresponding forward con-
tract. Compared to traditional financial markets, a forward contract in
electricity markets is characterized by a delivery period instead of a sin-
gle delivery point in time. Opposite the day-ahead market, buyers and
sellers are matched continuously until delivery of the forward contract.

• To allow market participants to hedge their exposure to physical con-
gestion constraints in interconnected markets, markets for long-term
transmission rights (also referred to as cross-border capacities) are also
part of the target model. Different ways of introducing such instrument
has been applied.

– A physical transmission right (PTR) gives the owner the right to
transfer an amount of electricity for a pre-specified period of time
from one market area to another market area1. To use this right,
the owner must daily notify whether she will use the right or not
for the following day (this is also termed nomination of the trans-
mission right). In Europe, most PTRs are sold under the "use-
it-or-sell-it" (UIOSI) principle. Given a PTR entitling the right to
transfer electricity from market A to market B, the UIOSI principle
implies that the owner of the PTR not nominating the PTR for a
given day, will be compensated with the day-ahead price in market
A subtracted from the day-ahead price in market B, if the spread
is positive. As with the forward contract, a transmission right is
characterized by a delivery period; e.g. a day, a week, etc.

– A financial transmission right (FTR) is in Europe typically defined
as a basket of European spread options where the underlying is
the day-ahead price spread between interconnected markets. Thus,
the compensation of an FTR is equivalent to the compensation of
the PTR under the UIOSI principle, if the owner of the PTR do not
nominate it.

A uniform pricing method is applied in both cases.
1Each member state in the European Union usually constitute a market area with a common

electricity price for the corresponding delivery period; e.g., the day-ahead price is valid for each
member state. However, there are exceptions, where the member state is divided in more than
one market area, such as Denmark.
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The Role of Renewable Electricity Production

Electricity produced from renewables has increased tremendously through
recent years. In the European Union the total installed capacity of wind and
solar increased from 12.9 GW in 2000 to 218.2 GW in 2014, which should be
compared to a total installed capacity of the 28 member states of 628 GW in
2000 and 977 GW in 2014 (the Commission Expert Group (2017)).

This increase in renewables has lead to decreases in wholesale electricity
prices all over Europe. According to European Commission (2016), electric-
ity prices fell by almost 70% from 2008 to 2016. The price formation of the
day-ahead market, introduced in the previous section, is illustrated in Fig. 1,
where the demand is assumed inelastic. The renewable power production re-
places the costlier conventional power producers and shifts the supply curve
to the right and thereby lowers the day-ahead price.

Quantity

P
ric

e

Shift of the supply curve
due to increased renewable
power production

Supply
Shifted supply
Demand

Fig. 1: Illustration of the price formation of day-ahead markets in Europe, and the impact of
renewable power production.

On the other hand, the intermittent nature of renewables demands a back-
bone of programmable electricity sources that can deliver electricity when e.g.
the wind does not blow or the sun does not shine. Referring to Fig. 1, a left
shift instead of the shown right shift of the supply curve would increase the
day-ahead price. To put it another way, a high amount of electricity produced
by renewables puts a downward pressure on the day-ahead prices, while a
low amount puts an upward pressure on the day-ahead prices. The uncer-
tainty of the amount of produced electricity from renewables, also known as
volumetric risk, translates through the day-ahead price formation to volatility
in the day-ahead price. The increased integration of renewables does there-
fore not only impact the renewables themselves, but all market participants.

In Europe, Germany has the highest installed wind power capacity, reach-
ing 59 GW in 2018 (Wind Europe (2019)). Incentivized by this high amount
of wind power capacity, the so-called wind power futures contracts were in-
troduced in Germany on both NASDAQ in 2015 and the European Energy
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Exchange in 2016. The purpose of the wind power futures is to facilitate the
hedging of the volumetric risk implied by the wind power production; hence,
the underlying of the wind power futures is an index describing the overall
utilization of the German wind power capacity. Loosely speaking, conven-
tional power producers and wind power producers represent the different
sides of the wind power futures market. Conventional power producers are
concerned with high-wind scenarios, cf. Fig. 1, whereas wind power produc-
ers are harmed by low-wind scenarios.

In Paper A, co-authored with Anca Pircalabu and Esben Høg, we assess
the hedging benefits of wind power futures for conventional power produc-
ers represented by a gas-fired power plant located in Germany. Based on
copula theory, we propose a seasonal copula mixture for the dependence
structure between the clean spark spread and the underlying wind index
of the wind power futures. With regard to the marginal distributions, we
employ ARMA-GARCH models. Monte Carlo simulations from the model
allow us to quantify the hedging effectiveness of wind power futures for gas-
fired power plants, and the implication of asymmetry, tail dependence, and
seasonality in the dependence structure.

The geographical location of the conventional power producer is of less
importance when assessing the hedging benefits of wind power futures, since
the cost of the fuel used to generate electricity is not dependent on the specific
location within Germany. On the contrary, if we consider the other side of the
wind power futures market represented by wind power producers, the wind
used to generate electricity is very dependent on the specific location. Since
the underlying of the exchange-traded wind power futures contract repre-
sents the overall utilization of the German wind power capacity, the hedging
benefits for wind power producers at different geographical locations might
differ significantly. We consider in Paper B, co-authored with Anca Pircalabu,
the spatial hedging benefits of wind power futures for wind power produc-
ers located at 31 different sites in Germany. For each wind power producer,
we propose an ARMA-GARCH copula model for the joint behaviour of the
site-specific capacity utilization and the underlying index of the wind power
futures. As in Paper A, we use Monte Carlo simulations from the 31 dif-
ferent models to assess the hedging benefits and the implication of the risk
premium in the wind power futures market.

The non-perfect hedge implied by the exchange-traded wind power fu-
tures contract for wind power producers lead us in Paper C, co-authored
with Fred Espen Benth and Victor Rohde, to propose tailor-made wind power
futures for wind power producers. The underlying of each tailor-made wind
power futures contract is the utilization of the capacity of each wind power
producer, thus implying a perfect hedge of the volumetric risk. From a mod-
eling perspective, we propose two continuous-time models based on Lévy
processes for the simultaneous modeling of several wind indexes; that is, the
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simultaneous modeling of the utilization of wind power capacity at different
sites. Compared to Papers A and B, relying on this continuous-time frame-
work limits in general the flexibility of the model and its ability to capture
e.g. asymmetry or tail dependence in the dependence structure. On the other
hand, this framework allows us to perform calculations more efficiently from
a computational point of view compared to the Monte Carlo simulations in
Papers A and B. Using our two multivariate models, we investigate the use-
fulness of tailor-made wind power futures for both the selling and buying
side. More specifically, we consider the situation of an energy management
company acting as counterparty for three wind power producers geographi-
cally located at different sites in Germany.

The Role of Interconnectedness

The development of the interconnectedness between member states was and
is a cornerstone in achieving one pan-European electricity market. According
to the European Union directive 2009/72/EC,

"A secure supply of electricity is of vital importance for the development of European
society, the implementation of a sustainable climate change policy, and the fostering
of competitiveness within the internal market. To that end, cross-border interconnec-
tions should be further developed in order to secure the supply of all energy sources
at the most competitive prices to consumers and industry within the Community."

From a physical point of view, this corresponds to expanding the cables that
allow the transferring of electricity between member states thorugh intercon-
nectors. The so-called electricity interconnection target, formulated by the
Barcelona European Council (2002), implies that for each member state the
maximum possible export of electricity through interconnectors to surround-
ing member states should at least be 10% of the installed power production
of that particular member state by 2020. While some member states have met
this requirement, the drastic change in the energy production mix towards
more volatile and non-programmable energy sources such as wind and solar
indicates that more interconnector capacity might be necessary to benefit the
most from such energy sources, as pointed out by the Commission Expert
Group (2017).

Nonetheless, without proper coordination between member states and a
joint plan for the use of the interconnectors, increased interconnectedness
is futile. Historically, explicit auctions for PTRs have been applied to allow
third parties access to the interconnectors (see Füss et al. (2015) for more
information). Here explicit refers to the fact that the allocation of the right
to transfer electricity for a certain cross-border happens independently of
the trading of electricity. Market participants that have required PTRs have
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to schedule the flows of electricity themselves, before actually knowing the
day-ahead prices. As a result, sub-optimal flows of electricity occur. To
exemplify, according to Danish Energy Agency (2018), the "interconnectors
were only optimally utilised in 30 pct. of the time, and that the electricity even
flowed in the “wrong” direction in 24 pct. of the time" for the electricity flowing
between West Denmark and Germany.

Implicit allocation of day-ahead transmission rights is a way of mitigat-
ing this. The Price Coupling of Regions (PCR) is a project of eight power
exchanges2 with the main goal of allocating day-ahead transmission rights
implicitly in the European day-ahead electricity markets. One single algo-
rithm, known as Euphemia (Pan-European Hybrid Electricity Market Inte-
gration Algorithm), takes bids and offers for delivery of day-ahead electricity
at all member exchanges as input, as well as the physical restrictions of the
electricity transmission grid.3 Based on an objective of optimizing the overall
social welfare, Euphemia then calculates optimal flows of electricity between
the market areas and the corresponding day-ahead prices. In this way, mar-
ket areas are coupled, which is why this implicit allocation also goes under
the name market coupling. The Euphemia algorithm has been applied since
February 2014, where it gradually replaced its predecessors that only took
into account individual parts of the PCR area. For more information on the
Euphemia algorithm, the reader is referred to NEMO Committee (2019).

As a consequence of the market coupling, there is no need for market
participants to schedule day-ahead PTRs and potentially flowing electricity
inefficiently. Regarding the nomination of long-term PTRs, if they are sold
under the UIOSI principle, the incentive to nominate them is rather low. As
reported in ENTSOE (2012), the combination of long-term PTRs with UIOSI
principle and the market coupling implies that the amount of time that long-
term PTRs are nominated has decreased significantly. Hence, from a financial
point of view, there is no difference between an FTR and a PTR under UIOSI
principle in a market coupled environment.

The shift in the price formation in coupled interconnected markets has in-
troduced significant changes on day-ahead electricity prices and derivatives
such as transmission rights. Most prominent is the presence of exact price
convergence between day-ahead prices; i.e., due to the market coupling, iden-
tical prices are observed in interconnected markets. In Paper D, co-authored
with Fred Espen Benth, we propose a continuous-time model for day-ahead
electricity prices in two interconnected markets that takes the market cou-
pling into account. Specifically, we assume that the observed day-ahead

2"EPEX SPOT, GME, HEnEx, Nord Pool, OMIE, OPCOM, OTE and TGE covering the electricity
markets in Austria, Belgium, Czech Republic, Croatia, Denmark, Estonia, Finland, France, Germany,
Hungary, Italy, Ireland, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden and UK", according to NEMO Committee (2019).

3The transmission system operator (TSO) of each market area provides this information.
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prices are driven by Ornstein-Uhlenbeck processes representing the partly
latent domestic day-ahead prices, and a latent process dictating whether the
observed day-ahead prices in the two market areas are equal or not. Due to
the latent nature of the model, we rely on filtering techniques to estimate the
model. The proposed estimation procedure is divided into a Kalman filtering
part and a particle filtering part. Lastly, we discuss in a theoretical setting the
pricing of forwards and long-term transmission rights implied by the model.

An empirical investigation of the proposed model in Paper D is the theme
of Paper E, co-authored with Jesper Jung. Here we consider the trading of
long-term FTRs (or PTRs under UIOSI principle) in interconnected coupled
electricity markets. The model is assessed in a pricing and hedging context.
In both cases, we consider auction prices for 22 monthly4 transmission rights
spanning the period from August 2017 to May 2019 for each considered cross-
border connection. As hedging instruments, we use baseload forward con-
tracts of varying delivery periods. The spread option formula from Margrabe
(1978) is used throughout the paper as a benchmark due to its well-known
properties.

4That is, the delivery period of the transmission right is a month.
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1. Introduction

Abstract

The recently introduced German wind power futures have brought the opportunity to
address the problem of volume risk in wind power generation directly. In this paper,
we study the hedging benefits of these instruments in the context of peak gas-fired
power plants, by employing a strategy that allows trading in the day-ahead clean
spark spread and wind power futures. To facilitate hedging decisions, we propose a
seasonal copula mixture for the joint behavior of the day-ahead clean spark spread
and the daily wind index. The model describes the data surprisingly well, both in
terms of the marginals and the dependence structure, while being straightforward
and easy to implement. Based on Monte Carlo simulations from the proposed model,
the results indicate that significant benefits can be achieved by using wind power
futures. Moreover, a comparison study shows that accounting for asymmetry, tail
dependence, and seasonality in the dependence structure is especially important in
the context of risk management.

1 Introduction

The sudden change in German energy policy that followed the Fukushima
nuclear accident marked a new era for the German power market. Since the
nuclear shutdown and the shift to renewables, Germany has experienced an
impressive growth in both wind and solar power, and has reached a level
that far exceeds the Kyōto climate obligations. This change has undoubtedly
brought benefits on several fronts, however, the non-programmable nature of
wind and solar electricity production has resulted in a large share of weather-
dependent supply of electricity. From a financial point of view, the cash-
flows from such non-programmable power plants can be incredibly volatile,
not only due to price uncertainty, but also due to the uncertainty associated
with the volume produced. While renewable generators are clearly affected
by the uncertain volume, they are not the only ones; by market design and
economics principle, the presence of renewables in the bid stack will always
force conventional generators to produce less. In Germany, where the share
of renewable energy is especially high, the conventional producers’ competi-
tiveness on e.g. the spot and forward markets has deteriorated, which has in
turn invoked the need for far more intricate operation patterns and strategies.

In light of the advancements concerning renewables in Germany and the
challenges imposed by volume risks for many different market players, the
European Energy Exchange (EEX) recently introduced a financial instrument
to mitigate the volume uncertainty associated with wind power generation.
This instrument is referred to as a wind power futures, and its underlying is
the German wind index. Representative agents for the sell and buy sides
of wind power futures are the wind electricity producers and the conven-
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tional electricity producers, respectively. On one hand, low wind scenarios
are unfavorable for wind electricity producers, since they have a lowering ef-
fect on cash-flows; on the other hand, conventional generators are exposed to
high wind scenarios, since a large share of wind power in the electrical grid
displaces the costlier sources.

In this paper, we study the risk-reducing benefits of wind power futures in
the context of conventional generators that operate in the day-ahead market
whenever profitable. As a representative agent for the conventional gener-
ator, we consider the case of a peak gas-fired power plant whose profit per
unit of electricity produced is measured in terms of the day-ahead clean spark
spread. Since the dependence between the day-ahead clean spark spread and
the wind index is essential for assessing the benefits of wind power futures,
the contribution of this paper is twofold.

First, we propose a seasonal copula mixture to model the joint behavior
of the day-ahead clean spark spread and the daily wind index. The model
is fitted to four years of German data, and captures the marginal behavior of
the individual variables and also the seasonality in the dependence between
the variables very well. Second, we employ the proposed seasonal copula
mixture to facilitate hedging decisions and showcase the effectiveness of wind
power futures. To highlight the benefits of the seasonal copula mixture, we
perform a study where the proposed model is compared against alternative
models.

Owing to the recent introduction of the German wind power futures, the
related literature is very scarce. The first related study is that of Gersema
and Wozabal (2017), where the authors focus mainly on the pricing of wind
power futures and explaining risk premia, for which an equilibrium pricing
model is proposed. Also concentrating on the pricing aspect is the work
of Benth and Pircalabu (2018), who apply a no-arbitrage approach to the
pricing of wind power futures, and obtain results concerning the sign of
risk premia that support the conclusions drawn in Gersema and Wozabal
(2017). In contrast to the two existing studies, which focus mainly on pricing
and less on hedging and risk management, we take a simplistic approach
to pricing but study in detail aspects related to the risk-reducing ability of
wind power futures. Nevertheless, we acknowledge that some of the results
in Gersema and Wozabal (2017) and Benth and Pircalabu (2018) are very
relevant in the context of the present study, and they shall thus be included
in our discussion.

Turning to applications of copulas in energy markets, we mention that
these models have gained substantial interest over the past years and have
become a popular tool to model the non-linear dependence between differ-
ent commodities. Some examples concerning applications of bivariate copu-
las are Börger et al. (2009), Benth and Kettler (2011), Grothe and Schneiders
(2011), Avdulaj and Barunikl (2015), and Elberg and Hagspiel (2015). For ap-

16



2. Background and Data

plications beyond bivariate copulas, we mention the study of Pircalabu and
Jung (2017), and that of Aepli et al. (2017). The present paper contributes
to this stream of literature in terms of the application, which to the best of
our knowledge has not yet been considered, and also in terms of modeling
approach, by proposing an extension that deals with seasonality in the de-
pendence structure.

The remaining of this paper is structured as follows: In Section 2, we in-
troduce the data and elaborate on the construction of the variables. In Section
3, we describe the modeling framework and report estimation results. Sec-
tion 4 introduces the seasonal copula mixture model and provides evidence
for its quality of fit. In Section 5, we employ the proposed model to study
the benefits of wind power futures, and perform various comparison studies.
Section 6 concludes.

2 Background and Data

To investigate the benefits of wind power futures for a gas-fired power plant
(GFPP), two data components are of interest in the analysis performed in this
paper: The day-ahead clean spark spread and the daily wind index. In this
section, we address each of these in turn, commenting on their construction.

2.1 Clean Spark Spread

As an indicator for the profit per unit of electricity generated by a GFPP,
we consider the day-ahead clean spark spread (CSS). This measure depends
on electricity, gas, and emission prices, and also on the heat rate and the
emission factor. The heat rate represents the required number of natural
gas MWhs to produce one MWh electricity, i.e., the efficiency at which the
GFPP transforms gas to electricity. Further, the emission factor represents the
number of tons of CO2 emitted by producing one MWh electricity.

With GFPPs being mainly peak-operated power plants—that is, power
plants dispatching during the peak hours between 8 AM to 8 PM on week-
days and non-holidays—we consider the peak electricity price. Specifically,
let SE

t denote the day-ahead peak load electricity price, SG
t the day-ahead gas

price, and SC
t the day-ahead emission price, with the subscript t indicating

time measured in days. Further, let h be the heat rate and e the emission
factor. We define the day-ahead CSS on day t as

CSSt = SE
t − hSG

t − eSC
t , (A.1)

where SE
t and SG

t are measured in EUR/MWh, and SC
t is measured in

EUR/tCO2.
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Data Preparation for the Clean Spark Spread

To construct a time series for the day-ahead CSS, we consider the following
time series:

• SE
t : The German electricity price, which is computed as the average of

all hourly electricity prices between 8 AM to 8 PM on weekdays and
non-holidays. The source of this data is EEX.

• SG
t : The day-ahead gas price for NetConnect Germany (NCG), which

corresponds to the closing price. The source of this data is EEX.

• SC
t : The EU Allowance unit of one tonne of CO2 (EUA) phase 3 daily

futures price. This data is collected from the Intercontinental Exchange,
and represents the closing price. For more information regarding the
EU emissions trading system, we refer the interested reader to Euro-
pean Commission (2017).

All time series above span 1030 observations in the period from 3 January
2013 to 30 December 2016, and cover weekdays that are non-holidays. To
provide a sense of the data, we plot in Fig. A.1 the time series corresponding
to each of the three data sources described above. Moreover, we plot the CSS
obtained by applying Eq. (A.1), and using the values for h and e reported in
Table A.1. These numbers are based on ICIS (2016), and shall be used in the
remaining of this paper unless explicitly stated otherwise.

Heat rate h Emission factor e

2.035 0.375

Table A.1: Heat rate (MWhs natural gas per MWh electricity) and emission factor (tCO2 per
MWh electricity) based on ICIS (2016). The chosen heat rate corresponds to an efficiency of
49.13%.

2.2 Wind Index

Since the German wind power futures (WPF) were introduced only recently,
we find it relevant to provide a brief description of these products and to
clarify their payoff structure. WPF contracts are written on the average wind
index in Germany, and can be traded at the European Energy Exchange (EEX)
and Nasdaq OMX. In this paper, we shall restrict our attention to the WPF
traded at EEX.

The German wind index is obtained as the ratio between the total wind
power generation and the total available installed wind power capacity.
Hence, the index is bounded between zero and one, and provides a mea-
sure of the German wind utilization. Currently, delivery periods for WPF
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Fig. A.1: Historical evolution of the daily day-ahead CSS (peak load), the German day-ahead
electricity price (peak load), the NCG day-ahead gas closing price, and the EUA day-ahead
closing price, from 3 January 2013 to 30 December 2016. The applied heat rate and emission
factor to construct the day-ahead CSS are given in Table A.1.
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correspond to weeks, months, quarters and years, and only trading the base
load profile is possible. Compared to the definition of the day-ahead CSS
data in Eq. (A.1), there is clearly a mismatch between delivery periods, with
wind power futures hedging all hours of every day, and gas turbines gen-
erating output during peak hours. However, this reflects the present market
conditions, where the volume risk of a GFPP can only be imperfectly hedged.
Assuming a delivery period [T1, T2] consisting of H hours, the payoff corre-
sponding to a long position in one WPF contract is given by

RWPF = H

 1
T2 − T1 + 1

T2

∑
t=T1

Wt︸ ︷︷ ︸
=W̄

−Wt0

X, (A.2)

where Wt ∈ [0, 1] is the daily wind index, W̄ ∈ [0, 1] is the realized average
wind index over the delivery period, and Wt0 ∈ [0, 1] can be thought of as the
“futures price”, i.e., the index set at t0 when entering the contract. Further,
X is a pre-specified constant tick size which is used to convert the index
differences into monetary measures. According to EEX, X = 100 EUR. We
see from Eq. (A.2) that a short position in WPF will generate a profit in low-
wind scenarios, making it a useful hedging instrument for the wind power
producer. Conversely, a long position will generate a profit in the high-wind
scenarios, to which the GFPPs are exposed.

Data Preparation for the Wind Index

The index that a WPF contract is settled against is externally provided by
EuroWind. Since trading in WPF started only recently, the amount of data
available on the spot wind index provided by EuroWind is limited. To obtain
a longer time series, we consider instead a proxy wind index constructed
using the wind power production in Germany on a daily basis, and monthly
recordings of the German installed wind power capacity, which are updated
at the start of each month. The wind power production data is collected from
the four different transmission system operators in Germany, and the source
of the installed capacity data is PointConnect.

Specifically, the daily German wind index is constructed as

Wt = Daily wind index =
Daily wind power generation (MWh)

Ht · Installed capacity (MW)
,

where Ht denotes the number of hours in day t, and the installed capacity on
a daily basis is obtained by linear interpolation. In order to unify the length
of the day-ahead CSS and the wind index, we omit weekends and holidays
for the wind index data. Hence, the constructed index spans the period from
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3. Model Construction and Fit

3 January 2013 to 30 December 2016, a total of 1030 observations, and is
plotted in Fig. A.2(a).

To provide some evidence for how the constructed wind index matches
the true settlement data, we plot in Fig. A.2(b) our proxy together with the
one year of actual data from EuroWind that we have available. The time
series plot reveals an acceptable resemblance, and to provide a quantitative
indication, we compute the mean absolute error to 0.020.
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Fig. A.2: Historical evolution of the German wind index (Wt) on a daily basis from 3 January
2013 to 30 December 2016, and a comparison of Wt with the actual wind index provided by
EuroWind for the year 2016.

3 Model Construction and Fit

To model the joint behavior of the day-ahead CSS and the daily wind in-
dex (henceforth referred to as simply CSS and wind index, respectively), we
consider copula models. Restricting our presentation to the two-dimensional
case, a copula is the joint distribution of the random variables U1 and U2,
where each variable is marginally uniformly distributed as Unif(0,1). Since
our data exhibits seasonality and autocorrelation, we wish to filter out these
effects before applying the copula. Therefore, we are here considering the
conditional copula.

Let F(·|Ft−1) denote the conditional joint distribution function of the ran-
dom vector Y t = (Y1t, Y2t), and let F1(·|Ft−1) and F2(·|Ft−1) denote the con-
ditional continuous marginal distribution functions of Y1t and Y2t, respec-
tively. Then, according to Sklar’s theorem [Sklar (1959)] for conditional dis-
tributions, there exists a unique copula C such that F can be decomposed
as

F(y1t, y2t|Ft−1) = C(F1(y1t|Ft−1), F2(y2t|Ft−1)|Ft−1). (A.3)
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The converse also holds, meaning that given two univariate distributions
F1, F2 and a copula C, F as defined in Eq. (A.3) is the joint distribution with
margins F1, F2. Thus, Sklar’s theorem not only provides a way of decomposing
a joint distribution function, but also a way of composing it given marginal
distributions and a copula, both of which are very useful in practical applica-
tions. For the proof of Sklar’s theorem for conditional distributions, we refer
to Patton (2006(a)).

Recalling the probability integral transform, we note that Uit :=
Fi(Yit|Ft−1) ∼ Unif(0, 1), for i = 1, 2. Differentiating both sides of Eq. (A.3)
with respect to (y1t, y2t) thus yields

f (y1t, y2t|Ft−1) = c (u1t, u1t|Ft−1) · f1(y1t|Ft−1) · f2(y2t|Ft−1), (A.4)

where f denotes the joint density function, c is the copula density, and f1, f2
denote marginal density functions.

In our context, copula models are advantageous for various reasons: First,
being able to capture dependence beyond the linear correlation can be of
utmost importance when illustrating the hedging benefits of WPF, and this
can be achieved with copulas. Second, we can separate the treatment of the
dependence structure from that of the marginal behavior of the individual
variables (cf. Eq. (A.4)), since the dependence structure is fully contained in
the copula. Third, selecting one type of marginal distribution for the first
variable does not restrict our choice of marginal distribution for the second
variable.

Turning to the estimation of the model parameters, we let T denote the
sample size, θc the copula parameters, and θ1 and θ2 the parameters of the
marginal models. From Eq. (A.4) it follows that the log-likelihood function is

logL =
T

∑
t=1

log c (u1t, u1t|Ft−1, θc) +
T

∑
t=1

log f1(y1t|Ft−1, θ1)

+
T

∑
t=1

log f2(y2t|Ft−1, θ2).

Here, we consider multi-stage maximum likelihood (MSML) estimation. This
provides a far less complicated estimation procedure relative to one-stage
MLE. Moreover, the studies of Joe (2005) and Patton (2006(b)) suggest that
the efficiency loss is not substantial.

In the following two sections, we present in detail the marginal models
and the constant copulas considered in this paper, and provide empirical
evidence for the fit of these models to our data.
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3.1 Marginal Models

Since both the CSS and the wind index exhibit seasonality, we start the
marginal treatment of the individual variables by applying suitable seasonal
functions to remove the deterministic seasonal component.

For the CSS, we consider the seasonal function

ft = a1 + b1t + c1 sin (2πt/K) + c2 cos (2πt/K) ,

where a1 is a constant, b1 is the trend coefficient, and c1 and c2 are coefficients
for the annual cycle. We have on average approximately K = 258 observations
per year.

Not surprisingly, the seasonality function for the CSS resembles a season-
ality function that would typically be considered for the day-ahead electricity
price (see e.g. Haldrup and Nielsen (2006), Benth and Šaltytė Benth (2011),
and Härdle and López Cabrera (2012)). This resemblance is caused by the
magnitude of the electricity price compared to the gas and emission price, cf.
Fig. A.1, causing the former to have the dominant effect. Aside from elec-
tricity prices usually exhibiting a yearly seasonality, a strong within-week
seasonality is also often observed. However, with the exclusion of weekends
from our data, adding a term that addresses the weekly seasonality (e.g. day-
of-week dummies) is unnecessary. Furthermore, adding more trigonometric
terms (based on the periodogram) does not improve the fit of the seasonal
function substantially.

Turning to the wind index, recall that this series is bounded between 0
and 1, cf. Fig. A.2. Following Pircalabu and Jung (2017), we apply the logit-
transform to the wind index1, and consider the following seasonal function
for the logit wind index (LWI):

ft = a1 + c1 sin (2πt/K) + c2 cos (2πt/K) ,

which is motivated by the prominent annual cycles we observe in the sam-
ple autocorrelation of the LWI. Also here, different meaningful extensions of
the seasonal function were experimented with, without yielding a significant
improvement.

The seasonality functions are fitted to the data by ordinary least squares,
and Table A.2 summarizes the results obtained for the CSS and the LWI.

Next, we apply ARMA-GARCH filters to the deseasonalized data. Given

1The logit function is given by logit(x) = log(x)− log(1− x).
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â1 b̂1 ĉ1 ĉ2

CSS -10.131 0.014 -3.611 2.990
(0.579) (0.001) (0.411) (0.404)

LWI -1.828 - 0.066 0.472
(0.030) - (0.042) (0.043)

Table A.2: OLS estimates for parameters of the seasonal functions for the CSS and the LWI.
Standard errors are reported in parenthesis, and are based on a naive OLS calculation.

a time series of data yt, an ARMA(p,q)–GARCH(h,k) model is defined by

yt =
p

∑
i=1

φiyt−i +
q

∑
j=1

θjεt−j + εt,

εt = σtηt,

σ2
t = ω +

h

∑
i=1

αiε
2
t−i +

k

∑
j=1

β jσ
2
t−j,

where ηt ∼ iid N(0, 1). It was Engle (1982) who introduced the ARCH model,
and later Bollerslev (1986) who extended the variance equation to include
lagged values of σ2

t . For a review of ARMA and GARCH models, see for
example Shumway and Stoffer (2007). In the following, we denote by ηCSS

t
and ηLWI

t the standardized residuals resulting from applying the ARMA–
GARCH models to the CSS and the LWI, respectively.

Model selection is based on the Bayesian Information Criterion (BIC), and
we consider ARMA(p, q)–GARCH(h, k) models for all possible combinations
of p, q, h and k, for p = 0, . . . , 7, q = 0, . . . , 7, h = 0, 1, 2, and k = 0, 1, 2. The
optimal order of the models and the corresponding estimated parameters are
reported in Table A.3.

Considering the goodness-of-fit of the normal distribution, we find a sat-
isfactory fit in the case of η̂LWI

t , cf. Figs. A.3(e) and A.3(f). This is however not
the case for η̂CSS

t . Consequently, we relax the normality assumption for the
CSS, and consider instead the normal-inverse Gaussian (NIG) distribution.
The probability density function of the NIG distribution is given by

g(x|α, β, µ, δ) =
αδG1

(
α
√

δ2 + (x− µ)2
)

π
√

δ2 + (x− µ)2
eδ
√

α2−β2+β(x−µ),

where

G1(x) =
1
2

∫ ∞

0
e−

1
2 x(t+t−1)dt

is the modified Bessel function of third kind and index 1. The NIG distri-
bution is a popular choice in the financial literature (for some examples, see
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CSS LWI

Model ARMA(2,1) – GARCH(1,1) ARMA(1,1)

Conditional mean
AR1 φ̂1 1.313 (0.077) 0.360 (0.055)
AR2 φ̂2 -0.360 (0.058) -
MA1 θ̂1 -0.818 (0.064) 0.208 (0.055)
Variance σ̂2 - 0.677 (0.030)

Conditional variance
Constant ω̂ 3.611 (0.636) -
ARCH α̂1 0.110 (0.022) -
GARCH β̂1 0.827 (0.027) -

Table A.3: Type and order of marginal models, parameter estimates and corresponding standard
errors in parenthesis.

Barndorff-Nielsen (1997a), Rydberg (1997), Barndorff-Nielsen (1997b), and
Jensen and Lunde (2001)), and is also often able to provide a good descrip-
tion of commodity data, see e.g. Benth and Šaltytė Benth (2004) and Benth
and Kettler (2011). The NIG distribution is fitted to the residuals from the
ARMA(2,1)–GARCH(1,1) model cf. Table A.3 by maximum likelihood, and
the parameter estimates are reported in Table A.4. As it appears from the
histogram and quantile plots displayed in Figs. A.3(a) and A.3(b), the NIG
distribution provides a satisfactory fit to the CSS data.

α̂ β̂ µ̂ δ̂

1.584 (0.307) -0.189 (0.144) 0.189 (0.126) 1.534 (0.281)

Table A.4: Maximum likelihood estimates obtained by fitting the NIG distribution to η̂CSS
t .

Corresponding standard errors are given in parenthesis.

To provide further evidence for the appropriateness of the chosen
marginal distributions, we perform the Kolmogorov-Smirnov (K-S) and the
Cramer-von Mises (CvM) goodness-of-fit tests. To obtain critical values for
the tests, we employ the simulation-based method described in detail in Pat-
ton (2013). In the CSS case we obtain p-values of 0.627 and 0.785 for the K-S
and CvM test, respectively, and can thus not reject the null that the NIG dis-
tribution is well-specified. This is also the conclusion in the LWI case, where
we test the goodness-of-fit of the normal distribution. Here, the resulting
p-values are 0.746 and 0.915 for the K-S and CvM test, respectively.

Aside from providing evidence for the goodness-of-fit of the marginal dis-
tributions, the sample autocorrelations provided in Fig. A.3 suggest that no
considerable serial dependence is left in the conditional mean and variance,
for either variable. Having verified that the models proposed here are suit-
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Fig. A.3: Diagnostics for the standardized residuals η̂CSS
t (first row) and η̂LWI

t (second row).

able for describing the marginal behavior of the CSS and the LWI, we proceed
in the next section to the modeling of the dependence structure.

3.2 Constant Copula Models

Let FNIG and FN denote the cumulative distribution functions for the NIG
and standard normal distribution, respectively. To obtain the approximately
uniforms that are the input variables to the copula function, we apply the
probability integral transform, i.e.,

ûCSS
t = FNIG(η̂CSS

t |Ft−1, α̂, β̂, µ̂, δ̂),

ûLWI
t = FN(η̂LWI

t |Ft−1),

for t = 1, . . . , T. In Fig. A.4 we plot the resulting probability integral trans-
forms against each other, revealing that the variables are negatively related.
This finding is not surprising considering the negative dependence between
electricity prices and the wind index. A high wind penetration in the electric-
ity grid puts a downward pressure on day-ahead electricity prices owing to
the process of day-ahead price formation, which prioritizes cheap electricity
producers. With everything else being equal, this lowering effect on the elec-
tricity price is then reflected in the CSS, which is also lowered, cf. Eq. (A.1).
Similar arguments apply to the case of a low wind scenario, where electricity
prices are typically pushed upwards.

The dependence structure seems to be slightly asymmetric, with the north
west corner of Fig. A.4 exhibiting more concentration and being sharper in

26



3. Model Construction and Fit

0 0.2 0.4 0.6 0.8 1

 Clean spark spread (û
CSS

)

0

0.2

0.4

0.6

0.8

1

W
in

d
 i
n
d
e
x
 (

û
L
W

I )

Fig. A.4: Empirical copula density.

shape compared to the south east corner. That is, there seems to be more
probability of observing the combination of extremely high wind / extremely
low CSS than the reverse. Since non-zero dependence in extreme events could
have notable implications for the benefits of WPF, being able to capture such
behavior in a model for the dependence structure must be considered. Luck-
ily in the context of copulas, such extreme events can be easily captured by
considering certain copula families that allow for non-zero tail dependence.
More specifically, the lower and upper tail dependence can be defined as

Λl = lim
q→0+

P(uCSS
t ≤ q|uLWI

t ≤ q)

Λu = lim
q→1−

P(uCSS
t > q|uLWI

t > q),

where q denotes the quantile. Clearly, since our data is characterized by neg-
ative dependence, computing Λl and Λu as defined above is not meaningful.
This can however be resolved by performing suitable rotations of the data,
which shall be discussed in more detail shortly.

To investigate which copula best describes the dependence structure illus-
trated in Fig. A.4, we consider first the following standard copulas, which are
often employed in the related literature: Gaussian, Gumbel, rotated Gumbel
(RGumbel), Clayton, rotated Clayton (RClayton), Frank, symmetrized Joe-
Clayton, and Student t.2 These copula models cover a wide range of de-
pendency structures, with some models being able to capture asymmetric
dependence, and also upper and lower tail dependence, i.e., a non-zero prob-
ability of extreme events happening simultaneously. In the interest of brevity,
we shall not go into detail with the properties of each copula model here, and
refer instead to McNeil et al. (2005), Nelsen (1999), and Patton (2006(a)) for a
comprehensive description.

2By rotated, we mean a 180 degree rotation of the data.
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To allow for further flexibility compared to the standard copulas enumer-
ated above, we also consider copula mixtures. As in e.g. Rodriguez (2007)
and Dias and Embrechts (2009), for a given t we mix copula a, having copula
density ca(·|Ft−1, θθθa), with copula b, having copula density cb(·|Ft−1, θθθb), by
using a mixing parameter 0 < λ < 1 and the following form:

cm(·|Ft−1, θθθa, θθθb, λ) = λca(·|Ft−1, θθθa) + (1− λ)cb(·|Ft−1, θθθb). (A.5)

As expected, a mixture copula inherits characteristics from its mixing compo-
nents. In the following proposition, we present an especially useful result re-
lating to the tail dependence of a mixture copula, which we shall use shortly.
Notice that we omit the conditioning to ease the notation.

Proposition 1
Let Ui ∼ Uni f (0, 1) for i = 1, 2, and let Cm denote the bivariate copula of
(U1, U2). Further assume Cm is given as the mixture

Cm(u1, u2) = λCa(u1, u2) + (1− λ)Cb(u1, u2),

where Ca and Cb are two bivariate copulas, and 0 < λ < 1. Then, the lower
tail dependence Λl and the upper tail dependence Λu for the mixture Cm are
given as

Λl = λΛl,a + (1− λ)Λl,b,

and

Λu = λΛu,a + (1− λ)Λu,b,

where Λl,a, Λl,b, Λu,a, and Λu,b are the respective tail dependence measures
for Ca and Cb.

Proof. See A.1.

Moving on to the estimation aspect, we let c(·|Ft−1, θθθ) denote the con-
ditional copula density with parameter vector θθθ ∈ Rl , where l ∈ N is the
number of parameters in the copula. For each copula model, we obtain an
estimate for θθθ by maximizing the copula log-likelihood, i.e.,

θ̂θθ = argmax
θθθ

T

∑
t=1

log c(ûCSS
t , ûLWI

t |Ft−1, θθθ). (A.6)

We note that it is only the Gaussian and Student t copulas that allow for
negative dependence. To fit the remaining copulas to our data, we perform
suitable rotations of the data. Specifically, we rotate around the LWI variable
for the case of the Gumbel, Clayton, Frank, and symmetrized Joe-Clayton
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4. Time-Varying Dependence

copulas, and consider thus the pair (ûCSS
t , 1− ûLWI

t ) as input to Eq. (A.6) for
these models. Regarding tail dependence, the rotation of data implies that
lower tail dependence for the estimated copulas corresponds to high wind
index / low CSS scenarios (north west corner of Fig. A.4), whereas upper
tail dependence for the estimated copulas corresponds to low wind index /
high CSS scenarios (south east corner of Fig. A.4). To fit the RGumbel and
the RClayton, we note that a further 180 degree rotation of the pair (ûCSS

t ,
1− ûLWI

t ) is performed.
In Table A.5, we report the estimation results for all standard copula mod-

els and three selected mixtures. Other copula mixtures aside from those
reported in Table A.5 were considered, but we found no increase in perfor-
mance. As a model selection criterion, we employ the Akaike Information
Criterion (AIC). According to the AIC, the preferred model is the mix of
Frank and RGumbel (hereafter denoted FRG copula), confirming the pres-
ence of slight asymmetry in the dependence structure illustrated in Fig. A.4.

Considering the FRG copula in more detail, its first mixing component,
the Frank copula, imposes symmetric dependence and a zero tail depen-
dence. Its second mixing component, the RGumbel, imposes an asymmetric
dependence structure, with zero upper tail dependence and lower tail depen-
dence given by

Λl,RG = 2− 21/θRG
,

where θRG is the parameter for the RGumbel copula. Recalling Prop. 1, we
thus have that the upper and lower tail dependence for the FRG copula are

Λu,FRG = 0,

Λl,FRG = (1− λ)Λl,RG. (A.7)

The fit produced by the FRG translates into a tail dependence coefficient
of approximately 0.359 when considering the north west corner of Fig. A.4,
and hence a rather high probability of extremely high wind index / low CSS
happening simultaneously. To illustrate the shape of the FRG copula and how
it deviates from the shapes of the individual copulas in the mixture, we plot
in Fig. A.5 simulations from the fitted Frank, RGumbel and FRG copulas. The
simulations reveal that while the fitted Frank copula is too symmetric and the
fitted RGumbel is too asymmetric compared to the observed dependence in
Fig. A.4, the fitted FRG mixture is able to dampen the individual effects,
hence providing a better resemblance to the observed dependence structure.

4 Time-Varying Dependence

Up until this point, we have assumed a static model for the dependence
structure, which is seldom a realistic representation. Natural follow-up ques-
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Copula model Param. (s.e.) log Lc AIC

Gaussian ρ̂ -0.636 (0.019) 266.503 -531.006

Gumbel* θ̂ 1.675 (0.049) 226.083 -450.165

RGumbel* θ̂ 1.773 (0.053) 277.829 -553.657

Clayton* θ̂ 1.233 (0.083) 245.947 -489.894

RClayton* θ̂ 0.911 (0.071) 167.862 -333.724

Frank* θ̂ 5.029 (0.247) 267.805 -533.611

Sym. Joe-Clayton* Λ̂u 0.274 (0.048) 265.777 -527.553
Λ̂l 0.539 (0.026)

Student t ρ̂ -0.646 (0.020) 274.596 -545.192
ν̂ 9.873 (15.008)

Mix of Gumbel and θ̂1 1.964 (0.500) 285.060 -564.120
RGumbel* θ̂2 1.797 (0.101)

λ̂ 0.219 (0.081)

Mix of Frank and θ̂1 4.552 (1.309) 286.419 -566.837
RGumbel* θ̂2 1.920 (0.169)

λ̂ 0.365 (0.104)

Mix of Gaussian and ρ̂ -0.494 (0.092) 285.152 -564.304
RGumbel* θ̂ 2.095 (0.234)

λ̂ 0.357 (0.130)

Table A.5: Estimation results for 11 selected copula models. The maximized value of the copula
log-likelihood is denoted log Lc. For the functional forms of the considered copulas and other
characteristics, we refer to McNeil et al. (2005), Nelsen (1999) and Patton (2006(a)). A copula
marked by an asterisk has been estimated using a suitable rotation of the data. Standard errors
are based on 999 simulations.
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Fig. A.5: T simulations from the fitted Frank, RGumbel and FRG copulas, cf. Table A.5.
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4. Time-Varying Dependence

tions are therefore related to the presence and type of time variation in the
dependence. In this section, we consider these questions in more detail.

To investigate the time-varying aspect we consider Spearman’s ρ, which
is a measure of concordance. In terms of a bivariate copula C, Spearman’s ρ
can be expressed as (see e.g. McNeil et al. (2005))

ρ = 12
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3. (A.8)

We compute Spearman’s ρ between ûCSS
t and ûLWI

t based on a rolling win-
dow of 60 days. Fig. A.6 displays the results, and reveals a strong seasonal
pattern in the dependence structure. According to Fig. A.6, the dependence
is strongest around winter and weakest around summer. A possible explana-
tion for this behaviour relates to the power generation mix in Germany and
the import/export conditions. During winter, the increased wind power pro-
duction has a direct lowering effect on the daily electricity price due to the
mechanism of day-ahead electricity price formation. As argued in Section 3.2,
this lowers the CSS. During summer, the lower wind power production does
not have the same direct effect on the daily electricity price. If that were the
case, prices should increase. The high photovoltaic production during peak
periods combined with the high likelihood of being able to import cheap
nuclear power from France prevents however prices from increasing. Conse-
quently, this weakens the dependence between the wind power production
and the CSS during the summer months.
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Fig. A.6: Spearman’s ρ between ûCSS
t and ûLWI

t based on a 60-days rolling window. The con-
fidence interval is based on 999 bootstraps. Note that the date corresponding to each estimate
refers to the last day in the 60-days period.

In light of these findings we consider next extending the static copula
mixture, such that the yearly seasonality in the dependence measured by
Spearman’s ρ in Fig. A.6 can be accounted for.
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4.1 A Seasonal Copula Mixture

Since the FRG copula is the best performing static copula cf. Table A.5, we
shall restrict our attention to this particular model in order to fix ideas. First,
let us state a general result concerning Spearman’s ρ for copula mixtures,
which is particularly useful in our modeling context. Again here, we omit
the conditioning for notational convenience.

Proposition 2
Let Ui ∼ Unif(0,1) for i = 1, 2, and let Cm denote the bivariate copula of
(U1, U2). Further, suppose Cm is given as

Cm(u1, u2) = λCa(u1, u2) + (1− λ)Cb(u1, u2)

for two copulas Ca and Cb, and mixing parameter 0 < λ < 1. Then Spear-
man’s ρ implied by Cm can be expressed as

ρm = λρa + (1− λ)ρb, (A.9)

where ρa is Spearman’s ρ corresponding to copula Ca, and ρb is Spearman’s
ρ corresponding to copula Cb.

Proof. See A.2.

It follows from Prop. 2 that Spearman’s ρ for the copula mixture is sim-
ply a linear combination of the individual Spearman’s ρ’s corresponding to
the copulas comprised in the mixture. Thus, introducing time variation in
ρa and ρb translates into time variation in ρm. Further, it is relatively easy to
compute Spearman’s ρ, even for copulas where no explicit relation between
Spearman’s ρ and the copula parameter is available. Considering the FRG
copula, the relationship between the copula parameter and Spearman’s ρ for
both the Frank and RGumbel copula is shown in Fig. A.7. By letting the su-

perscripts F and RG indicate their link to the particular copula, we note that
Spearman’s ρ is monotonically increasing as a function of the corresponding
copula parameter, θF and θRG. Therefore, specifying time variation for ρF

and/or ρRG will also uniquely determine values of θF and θRG. If we instead
were to introduce time variation directly in Spearman’s ρ for the FRG copula,
we would not be able to identify θF and θRG.

Based on the discussion above and motivated by the pronounced yearly
cycle in Fig. A.6, we propose the following extension to the static FRG model.
Specifically, we introduce a yearly cycle in Spearman’s ρ corresponding to the
RGumbel copula, i.e.,

ρRG
t = aRG + bRG sin (2πt/K) + cRG cos (2πt/K) , (A.10)
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Fig. A.7: Spearman’s ρ as a function of parameter value for both the Frank and RGumbel copula.

where aRG, bRG, and cRG are constant coefficients, and K = 258 as was the
case with the seasonal functions in Section 3.1. Regarding the Frank contri-
bution in the FRG copula, we keep the corresponding Spearman’s ρ static.
Consequently, the evolution equation for the overall Spearman’s ρ implied
by the seasonal FRG copula is

ρSFRG
t = λSFRGρF + (1− λSFRG)ρRG

t . (A.11)

Given the seasonal specification in Eqs. (A.10)-(A.11), the model is esti-
mated by maximizing the FRG copula loglikelihood. The estimation results
are given in Table A.6, revealing a clear improvement in AIC compared to the
static FRG copula.

ρ̂F âRG b̂RG ĉRG λSFRG logLc AIC

0.742 0.566 -0.132 0.208 0.316 309.894 -609.788
(0.072) (0.041) (0.040) (0.043) (0.092)

Table A.6: Maximum likelihood estimation results for the seasonal FRG copula described in
Eqs. (A.10)–(A.11). The maximized value of the copula log-likelihood is denoted log Lc. Stan-
dard errors are reported in parenthesis and are computed following the simulation-based pro-
cedure described in detail in Patton (2013), where we note that the estimation error from the
marginal models is taken into account. The seasonal FRG copula was fitted to a suitable rotation
of the data, cf. Section 3.2.

Since the FRG copula has three parameters, there are of course different
ways of incorporating yearly seasonality in the model. Some alternatives in
terms of the FRG copula are discussed in Appendix B, where we also provide
detailed estimation results to support the model specification stated above.
On a different note, we stress that selecting the static FRG copula as the op-
timal model amongst static alternatives does not guarantee that the seasonal
FRG copula will be preferred to time-varying extensions of other copula mod-
els. As a result, similar extensions as those proposed in Eqs. (A.10)–(A.11)
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were implemented for most of the copulas in Table A.5 to ensure that the
seasonal FRG is superior in terms of AIC.

To illustrate the fit of the proposed seasonal FRG model, we plot in
Fig. A.8(a) the empirical Spearman’s ρ together with ρ̂SFRG

t implied by the
seasonal FRG, using a 60-days moving window, as in Fig. A.6. As a standard
of comparison, we include the Spearman’s ρ implied by the static FRG. The
results indicate that the dependence implied by the seasonal FRG follows the
yearly cycle observed in the actual Spearman’s ρ rather well. Moreover, it
appears from Fig. A.8(a) that we would underestimate the strength of the
dependence between the CSS and the LWI during autumn and winter with
the static FRG. The reverse is observed during spring and summer, with the
strength of the dependence being overestimated by the static FRG. To provide
further support for the proposed seasonal FRG, we display in Fig. A.8(b) a
simulated path over a four-year horizon, which resembles the actual data
nicely.
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Fig. A.8: (left) Actual Spearman’s ρ and Spearman’s ρ implied by the static and seasonal FRG
copula, based on a 60-days rolling window. The date corresponding to each estimate refers to
the last day in the 60-days period. (right) A simulated path of Spearman’s ρ from the seasonal
FRG copula, aggregated using a 60-days rolling window.

To complement Fig. A.8(a), a clearer picture of the yearly shape of Spear-
man’s ρ implied by the seasonal FRG is given in Fig. A.9(a), where we illus-
trate the fit at each time point during a year (i.e., no averaging of Spearman’s
ρ is performed). Equally interesting to consider is the lower tail dependence
implied by the fitted seasonal FRG copula, which follows directly from ap-
plying Eq. (A.7). The results are plotted in Fig. A.9(b), revealing that the
lower tail dependence coefficient reaches its lowest value of approximately
0.2 during summer and its maximum value of approximately 0.50 during
winter. This entails that there is a rather large difference between the prob-
ability of observing the event of extreme high wind index / low CSS during
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winter compared to summer. In Fig. A.9(b), we again provide as benchmark
the corresponding static estimate.
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Fig. A.9: Spearman’s ρ and lower tail dependence implied by the static and seasonal FRG copulas
throughout the year. A 90% confidence interval is provided for the seasonal parts.

Dynamic Copula Models

Before proceeding to quantifying the hedging benefits of wind power futures,
we comment briefly on another class of models that have become popular in
the related literature because of their broad applicability: The Generalized
Autoregressive Score (GAS) models proposed by Creal et al. (2013). Extend-
ing the seasonal copula mixture proposed in Eqs. (A.10)–(A.11) as to allow for
one or more parameters to evolve according to the GAS equation is possible.
In the context of our study however, where we shall base hedging decisions
on simulations over a long time horizon, we argue against such extensions.
With the GAS model, we would introduce much complexity compared to the
present straightforwardness of the seasonal copula, but not add that much
value. Moreover, we stress that compared to the static dependence model,
the addition of the simple seasonal extension not only provides a significant
improvement, but is very easily interpretable, making it very appealing from
a practical perspective.

For applications such as forecasting or short-term simulation, we ac-
knowledge the added value of including a GAS dynamic to the seasonal
copula mixture. Therefore, we include in Appendix B a description of the
GAS model together with estimation results obtained by fitting two dynamic
copula models to our data.
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5 Application Results

Having established a model for the joint behavior of the CSS and the wind
index, we consider next the quantification of the benefits that WPF can offer
GFPPs. A GFPP acting in the day-ahead market can decide from day to day
whether to run or not, and thereby take advantage of the daily variation in
the CSS. By the construction of the day-ahead wholesale electricity market,
a GFPP will not run in times of a negative CSS; its profit RCSS for a period
t ∈ [T1, T2] can thus be represented as

RCSS =
T2

∑
t=T1

12 max(CSSt, 0)s, (A.12)

where s is the size of the GFPP measured in MW, and 12 is the number of
peak load hours during a day. Recalling the payoff in Eq. (A.2), taking a
position γ ∈ Z in WPF contracts yields the hedged profit of the GFPP, which
we denote by R:

R = RCSS + γRWPF. (A.13)

We note that by excluding weekends and holidays from our analysis, these
are not captured in RWPF. We argue however that this does not alter the
overall conclusions drawn below. To facilitate hedging decisions, we perform
Monte Carlo simulations from the proposed model. Specifically, the marginal
models fitted in Section 3.1 and the seasonal FRG copula fitted in Section 4.1
are employed to produce simulations of the joint behavior of the CSS and
the wind index, i.e., the pair (CSSt, Wt). The “price” Wt0 affecting RWPF in
Eq. (A.13) is computed by averaging across all Monte Carlo simulations of
Wt for the delivery [T1, T2].3 While we recognize that this pricing approach
is simplistic in that it assumes a zero market price of risk, it simplifies our
hedging exercise somewhat, since the mean of the hedged profit R will not
be affected by varying the quantity γ. Consequently, instead of the classi-
cal mean-variance objective, we can restrict ourselves to the variance mini-
mization criterion in order to determine optimal positions in WPF contracts.

3When constructing the wind index data used in this paper, we considered the historical
evolution of its two underlying data components, namely the wind power production and the
installed capacity, as discussed in Section 2. This implicitly means that we have captured 1) the
variations due to changes in wind speeds and 2) the variations caused by the increase in installed
capacity and changes in the geographical distribution of wind turbines. While the latter aspect
is important to capture in the modeling part of this paper, we argue that a different wind index
series should be used in a pricing context. This is because today’s WPF price is not affected by
the historical evolution of the installed capacity and the changes in the geographical distribution
of turbines, but by the present conditions. We argue that this issue does not affect the conclusions
drawn in this paper, but can have serious implications in other contexts. For more details, we
refer the interested reader to Benth and Pircalabu (2018).
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Hence, we consider the following objective:

min
γ∈Z

Var[R]. (A.14)

5.1 Effectiveness of Wind Power Futures

To illustrate the results obtained by applying the hedging approach described
above, we fix s = 200 MW, t0 = 30 December 2016 (the last date in our sam-
ple), and perform 20,000 Monte Carlo simulations of the pair (CSSt, Wt) one
year ahead. The resulting simulated paths are split into monthly periods, and
WPF prices corresponding to monthly deliveries are computed as explained
earlier. Then, monthly quantities for RCSS and RWPF are constructed for each
simulated path, and the minimization in Eq. (A.14) is applied to each month
in turn. The subdivision to monthly profits is motivated by the seasonal pat-
tern observed in the dependence structure cf. Fig. A.8(a), and allows us to
investigate the effect of the yearly seasonality on hedging-related aspects.

In Fig. A.10, we illustrate the simulated unhedged profit distribution RCSS

and the hedged profit distribution R obtained by solving Eq. (A.14) for the
months July and October. We observe a compression of the profit distribution
in both cases when applying the hedge, which entails that WPF have variance
reducing effects. In fact, this finding applies to all 12 months, as will be
illustrated shortly.
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Fig. A.10: Examples of profit distributions before and after hedging with WPF, based on Monte
Carlo simulations from the proposed seasonal FRG copula model.

Perhaps unsettling is the fact that losses can occur when considering the
hedged profit distribution in Fig. A.10(a), whereas the unhedged profits can-
not attain negative values by construction (see Eq. (A.12)). Nevertheless, we
find that the probability of a loss when hedging with WPF is approximately
0.4% on average. The downside of performing the hedge is therefore quite
small. In the pursuit to impair this concern even further, recall that the price
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of WPF is computed under the assumption of a zero market price of risk. In
reality, the studies of Gersema and Wozabal (2017) and Benth and Pircalabu
(2018) find evidence of a negative market price of risk in the German market
for WPF, implying that a GFPP buys WPF at a discounted price compared
to the one computed here. Accounting for this would shift the hedged profit
distributions to the right, potentially excluding losses altogether.

Next, we consider in more detail the reduction in the variance of profit
distributions attained by performing the hedge. The results are stated in
Fig. A.11 for all months of the year, and reveal considerable reductions; even
for May and June, where we observe the lowest values, the variance reduc-
tions are above 10 %. Further, notice the connection between the yearly pat-
tern of the reductions in Fig. A.11 and the implied Spearman’s ρ in Fig. A.9(a):
Not surprisingly, the stronger the dependence, the higher the variance reduc-
tion.
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Fig. A.11: Variance reduction achieved by hedging with WPF, for each month of 2017. The
results are based on Monte Carlo simulations from the proposed seasonal FRG copula model.

Also relevant to consider in this context is the impact on hedging effec-
tiveness from changing the GFPP efficiency. To assess this, we allow the
efficiency to vary from 43.13% to 55.13% with a step size of 2%, and let the
emission factor vary according to

e = 0.184h,

which is based on ICIS (2016). Fig. A.12 illustrates the variance reductions
obtained with the different efficiencies, across all months of the year. It ap-
pears that increasing the efficiency (i.e., lowering the heat rate) leads to an
increase in the variance reductions for all months. The effect seems to be
more pronounced during autumn and winter compared to spring and sum-
mer. From Eq. (A.1), it was already apparent that increasing the efficiency of
a GFPP produces a higher CSS and hence increases profitability. The findings
presented in Fig. A.12 incentivize such action even further: Aside from the
higher CSS, an increased hedging effectiveness of WPF can be achieved.
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Fig. A.12: Variance reduction implied by hedging with WPF, for GFPP efficiencies spanning from
43.13% to 55.13% with a step size of 2%.

5.2 Comparison with Alternative Models

So far in the hedging application, we have focused on the results obtained
with the preferred copula model, that is, the seasonal FRG. In this section, we
wish to highlight the benefits of this copula compared to other less optimal
alternatives. We consider the following natural progression in comparisons:

1. Frank copula versus FRG copula: In this comparison, we focus on the
effect of asymmetry and tail dependence on the benefits of WPF. These
features are captured by the FRG copula, as discussed in Section 3.2,
but not by the Frank copula, which imposes symmetry and no tail de-
pendence.

2. FRG copula versus seasonal FRG copula: Here, we concentrate on the
effect of seasonal dependence on the hedging benefits.

To perform comparisons, we keep the marginal models proposed in Sec-
tion 3.1 fixed, and repeat the simulations performed in Section 5.1 with the
Frank, FRG, and seasonal FRG copulas, instead of only the seasonal FRG. We
note that the same random seed was used to produce Monte Carlo simula-
tions from the three models. Then, we compute optimal hedge quantities γ
and associated variance reductions with each model, on a monthly basis.

The Effects of Asymmetry and Tail Dependence in the Copula

Recalling Figs. A.5(a) and A.5(c), it is apparent that by employing the FRG
copula instead of the Frank copula, we introduce a slight asymmetry and
assign more probability to the extreme events where high wind and low
CSS happen simultaneously. The resulting effects on hedging are depicted
in Fig. A.13, where we present the optimal hedge quantities and variance
reductions produced by the two copulas. Regarding the former, we notice
that the Frank copula generally suggests less WPF in the hedging portfo-
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lio. Further, the optimal hedge quantities vary across the year, which is a
consequence of the seasonality captured in the marginal models.

Turning to the variance reductions, which are depicted in Fig. A.13(b), we
observe that the values implied by the Frank copula are generally lower com-
pared to those implied by the FRG copula. This finding is expected, since
GFPPs seek to cover their exposure to high wind / low CSS scenarios. By
assigning more probability mass to precisely these events happening simul-
taneously, which is done by shifting from the Frank to the FRG copula, we
increase the benefits of WPF. At the same time, due to the asymmetric behav-
ior of the FRG copula, we are not increasing the probability of observing the
reverse combination of low wind / high CSS, and thus not counteracting the
increased benefits of WPF. Briefly put, by believing in a dependence struc-
ture described by the Frank copula compared to the FRG copula, we would
underestimate the risk-reducing power of WPF.
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Fig. A.13: Comparison of hedging results implied by the Frank and FRG copulas.

The Effects of Seasonal Time Variation in the Copula

Proceeding to the comparison of the FRG copula with its seasonal version, we
present in Fig. A.14 results that are similar to those in Fig. A.13. Regarding
the optimal hedge quantities in Fig. A.14(a), the FRG copula yields higher
values than the seasonal FRG copula during spring and summer, while the
situation reverses during autumn and winter. This alternating behavior is
connected to that of the differences in Spearman’s ρ implied by the FRG
and the seasonal FRG, cf. Fig. A.9(a). That is, the hedge quantities decrease
(increase) with a decrease (increase) in absolute values of Spearman’s ρ.

Considering Fig. A.14(b), the results reveal a fairly constant level in the
variance reduction produced by the FRG copula, compared to the variance
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reduction levels implied by the seasonal model. Hence, believing in static
dependence can lead to very misleading conclusions when managing risks.
Again in this context, we mention the link between the difference in per-
centage reductions and the difference between the Spearman’s ρ implied
by the two models (cf. Fig. A.9(a)): The difference in reductions is largest
in May/June and November/December, reflecting the fact that the depen-
dence implied by the seasonal FRG model is weakest during May/June and
strongest during November/December.
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Fig. A.14: Comparison of hedging results implied by the FRG and seasonal FRG copulas.

Having found clear evidence of seasonal dependence between the CSS
and the wind index, we conclude this section by briefly addressing the er-
ror we would get by applying a hedge based on the static FRG model in a
seasonal time-varying reality. To perform this analysis, we asses the opti-
mal hedge quantities implied by the static FRG copula in a seasonal setting
by using the simulated CSS and wind index from the seasonal model. The
variance reductions obtained with this approach are then compared with the
reductions implied by the seasonal model shown in Fig. A.14(b). The results,
presented in Fig. A.15, reveal very small errors. The smallest and largest
errors occur in February and June, respectively, which is connected to the
findings presented in Fig. A.14(a); the absolute difference in the optimal
number of WPF in the static and seasonal case generates the pattern seen in
Fig. A.15.

With the small errors in mind, the real error one commits by believing in
static dependence, is the belief in a wrong resulting variance reduction. Thus,
while the static model creates a misleading picture in a risk management
context, our results suggest that it could be employed to determine optimal
hedging quantities.
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Fig. A.15: The effects of using the “wrong” hedge quantity: Difference in variance reduction
of the profit distribution when using hedge quantities obtained from 1) the FRG, and 2) the
seasonal FRG, both evaluated using simulations from the seasonal FRG copula model.

5.3 Discussion of the Proposed Hedging Strategy

To conclude this section, we turn briefly to the standard hedging principle of-
ten employed to hedge the day-ahead CSS. Usually, conventional generators
remove their exposure to day-ahead price risk either completely or partially
by entering a short position in standard power forwards, and a long position
in fuel forwards and carbon credit forwards. In this paper, we have con-
sidered a different hedging approach with the purpose of determining the
potential of the newly introduced wind power futures, but we stress that our
strategy is not incompatible with the industry standard. In fact, our hedg-
ing portfolio consisting of wind power futures could be extended to include
the additional forwards mentioned above. However, this would require us
to switch from our bivariate modeling problem to a multivariate one, since
the joint behavior of the wind index, the day-ahead CSS, and the different
forward clean spark spreads should be considered. While this is outside the
scope of the present paper, it is nevertheless an interesting perspective that
has not been studied yet, and could possibly be approached with vine cop-
ulas. In the context of the effectiveness of the standard hedging principle
that conventional generators usually employ, we mention the study of Char-
alampous and Madlener (2016).

6 Conclusion

In this paper, we propose a joint model for the day-ahead clean spark spread
and the daily wind index that can facilitate hedging decisions for a gas-fired
power plant. The modeling procedure is based on two steps: First, the
marginal behavior of the variables is considered, where we apply seasonal
functions and ARMA–GARCH filters to remove the seasonality and the serial
dependence in the conditional mean and variance. While the usual Gaussian

42



6. Conclusion

assumption for the innovation process works in the case of the daily wind
index, the normal-inverse Gaussian distribution provides a better fit for the
day-ahead clean spark spread. Second, the standardized residuals from the
ARMA–GARCH models are connected through copulas. The data reveals a
dependence structure that is slightly asymmetric, and also varying according
to an annual cycle. To capture these empirical findings, we propose a sea-
sonal copula mixture, where the mixing components are the rotated Gumbel
and the Frank copulas.

Based on Monte Carlo simulations from the proposed model, we show
that wind power futures have considerable risk-reducing benefits in the con-
text of a gas-fired power plant operating in the day-ahead market. Further,
their hedging effectiveness increases as a function of the efficiency of the
gas-fired power plant. To highlight the importance of capturing asymmetry,
tail dependence, and seasonality in the dependence structure, we perform
comparison studies where the optimal model is compared to less optimal al-
ternatives. Accounting for asymmetry and tail dependence (as opposed to
imposing symmetry and zero tail dependence) leads to an increase in the
effectiveness of wind power futures. Moreover, we find that the conclusions
drawn with a static dependence model deviate to a large extent from those
obtained with a seasonal dependence model. With static dependence, the
variance reductions of the profit distributions attained by the hedge vary be-
tween 20% and 31%; in the seasonal case the corresponding reductions vary
between 10% and 45%.

Although we have concentrated on the German market and the case of
gas-fired power plants, the results are relevant for other markets, and are also
transferable to other conventional electricity producers. Since the amount
of electricity generated by wind turbines is expected to grow globally, the
dependence between the day-ahead clean spark spread and the daily wind
index in other market places will most likely be strengthened in the future.
Hence, it is reasonable to assume that more weather-based instruments sim-
ilar to the German wind power futures will be introduced, enabling similar
analyses to be performed on other than the German market.
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A Theoretical Results for Copula Mixtures

A.1 Proof of Proposition 1

For positive dependent variables, the upper tail dependence for copula C can
be written as (see e.g. (McNeil et al., 2005, p. 209))

Λu = lim
u↑1

Ĉ(1− u, 1− u)
1− u

= lim
u↑1

1− 2u + C(u, u)
1− u

, (A.15)

where Ĉ(u, v) := P(U > u, V > v) = C(1 − u, 1 − v) + u + v − 1 is the
survival copula. Applying Eq. (A.15) to the copula mixture, we get that the
upper tail dependence is

Λu = lim
u↑1

[
1− 2u + λCa(u, u) + (1− λ)Cb(u, u)

1− u

]

= lim
u↑1

[
1− 2u
1− u

+ λ
1− 2u + Ca(u, u)

1− u
+ (1− λ)

1− 2u + Cb(u, u)
1− u

− λ
1− 2u
1− u

− (1− λ)
1− 2u
1− u

]
=λΛu,a + (1− λ)Λu,b.

Similarly, the lower tail dependence can be written in terms of copula C
as (again for positive dependent variables)

Λl = lim
u↓0

C(u, u)
u

,

resulting in the following lower tail dependence for the copula mixture:

Λl = lim
u↓0

[
λCa(u, u) + (1− λ)Cb(u, u)

u

]
= λΛl,a + (1− λ)Λl,b.
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A.2 Proof of Proposition 2

From Eq. (A.8) we have that Spearman’s ρ implied by copula Cm is

ρm =12
∫ 1

0

∫ 1

0
Cm(u1, u2)du1du2 − 3

=12
∫ 1

0

∫ 1

0

(
λCa(u1, u2) + (1− λ)Cb(u1, u2)

)
du1du2 − 3(1− λ + λ)

=λ

(
12
∫ 1

0

∫ 1

0
Ca(u1, u2)du1du2 − 3

)
+ (1− λ)

(
12
∫ 1

0

∫ 1

0
Cb(u1, u2)du1du2 − 3

)
=λρa + (1− λ)ρb.

B Alternative Models

As mentioned in Section 4.1, there are many ways of extending the FRG cop-
ula. Here, we present some alternatives to the model proposed in Eqs. (A.10)–
(A.11), and the corresponding estimation results.

B.1 Seasonal Copula Alternatives

Instead of introducing a yearly cycle in the evolution equation for Spearman’s
ρ corresponding to the RGumbel copula cf. Eq. (A.10), one could consider
this for Frank, i.e.,

ρF
t = aF + bF sin (2πt/K) + cF cos (2πt/K) . (A.16)

Alternatively, yearly seasonality could be introduced in both Spearman’s ρ
implied by the Frank and the RGumbel copula. These alternative models
are stated in Table A.7, and corresponding estimation results are reported in
Table A.8.

The results in Table A.8 reveal that the seasonal FRG model proposed in
Section 4.1 is slightly better than Alternative 1 in terms of AIC. Considering
Alternative 2, although its AIC is slightly lower than that of the other sea-
sonal models, notice the large standard errors, which imply that the seasonal
parameters corresponding to the Frank part are not statistically significant at
a 5% level.

B.2 Dynamic Copula Alternatives

In terms of dynamic copula alternatives, we consider the Generalized Au-
toregressive Score (GAS) model proposed by Creal et al. (2013). Assuming a
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Seasonal FRG Alternative 1

ρSFRG
t = λSFRGρF + (1− λSFRG)ρRG

t ρSFRG
t = λSFRGρF

t + (1− λSFRG)ρRG

ρRG
t = aRG + bRG sin

( 2πt
K
)
+ cRG cos

( 2πt
K
)

ρF
t = aF + bF sin

( 2πt
K
)
+ cF cos

( 2πt
K
)

Alternative 2

ρSFRG
t = λSFRGρF

t + (1− λSFRG)ρRG
t

ρRG
t = aRG + bRG sin

( 2πt
K
)
+ cRG cos

( 2πt
K
)

ρF
t = aF + bF sin

( 2πt
K
)
+ cF cos

( 2πt
K
)

Table A.7: Model specifications for the seasonal FRG proposed in Section 4.1 and two seasonal
alternatives.

âF b̂F ĉF âRG b̂RG ĉRG λSFRG logLc AIC

Seasonal FRG 0.742 - - 0.566 -0.132 0.208 0.316 309.894 -609.788
(0.072) (-) (-) (0.041) (0.040) (0.043) (0.092)

Alternative 1 0.573 -0.122 0.280 0.689 - - 0.532 309.657 -609.314
(0.048) (0.048) (0.056) (0.054) (-) (-) (0.097)

Alternative 2 0.693 0.050 0.156 0.580 -0.162 0.150 0.374 312.454 -610.908
(0.080) (0.120) (0.099) (0.055) (0.081) (0.071) (0.109)

Table A.8: Maximum likelihood estimation results for the models stated in Table A.7. The
maximized value of the copula log-likelihood is denoted log Lc. Standard errors are reported in
parenthesis and are computed following the simulation-based procedure in Patton (2013).
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copula having one governing parameter which we denote by θ, the evolution
equation for the GAS(1,1) is given by

zt+1 = ω + Ψzt + ςI−1/2
t st, (A.17)

where

zt = f (θt)

st =
∂

∂θt
log c(u1,t, u2,t|θt)

It = E[s2
t ],

and ω, Ψ, and ς are constant coefficients.
Recalling Eq. (A.5) and restricting this analysis to the FRG copula, we let

the (transformed) parameter of the RGumbel copula evolve according to the
GAS(1,1) model. Specifically,

cFRG
t (·|Ft−1, θF, θRG

t , λFRG) =λFRGcF(·|Ft−1, θF)

+ (1− λFRG)cRG
t (·|Ft−1, θRG

t ),

where zt = log(θRG
t − 1) follows a GAS(1,1). Aside from this, we consider two

other alternatives which are stated in Table A.9; one where we only allow the
transformed RGumbel copula parameter to vary according to a yearly cycle,
and one where we combine the GAS dynamics with the yearly seasonality.

Alternative 3 (GAS) Alternative 4 (Season)

zt+1 = ωRG + ΨRGzt + ςRG I−1/2
t st zt+1 = ωRG + bRG sin

( 2πt
K
)
+ cRG cos

( 2πt
K
)

Alternative 5 (Season GAS)

zt+1 = ωRG + ΨRGzt + ςRG I−1/2
t st + bRG sin

( 2πt
K
)
+ cRG cos

( 2πt
K
)

Table A.9: Model specifications for three alternative models.

Parameter estimates for the models stated in Table A.9 are obtained by
maximum likelihood, and are reported in Table A.10. Comparing Alternative
3 to Alternative 4, AIC decreases quite a bit when considering a deterministic
yearly cycle instead of the GAS(1,1) specification. Further, combining the two
effects (Alternative 5) yields the lowest AIC value across all models; notice
however that two out of seven parameters are not significant at a 5% level.

Regarding Alternative 4, we stress that this model is very similar to the
seasonal FRG: in Alternative 4, we let the transformed copula parameter vary
according to a yearly cycle, whereas in the seasonal FRG, we introduce yearly
seasonality in Spearman’s ρ. Although the AIC corresponding to the former
specification is slightly lower, we find the seasonal FRG to be more appealing,
given that the yearly cycle is detected in the rolling Spearman’s ρ cf. Fig. A.6.
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θ̂F ω̂RG Ψ̂RG ς̂RG b̂RG ĉRG λ̂FRG logLc AIC

Alternative 3 (GAS) 6.132 0.001 0.993 0.092 - - 0.315 300.349 -590.697
(2.393) (0.648) (0.378) (0.314) (-) (-) (0.262)

Alternative 4 (Season) 6.605 -0.391 - - -0.451 0.758 0.312 310.376 -610.752
(1.776) (0.148) (-) (-) (0.144) (0.152) (0.090)

Alternative 5 (Season GAS) 6.725 -0.421 -0.231 0.235 -0.503 0.842 0.270 315.832 -617.663
(2.831) (0.379) (0.567) (0.107) (0.208) (0.303) (0.121)

Table A.10: Maximum likelihood estimation results for the models stated in Table A.9. The
maximized value of the copula log-likelihood is denoted log Lc. Standard errors are reported in
parenthesis and are computed following the simulation-based procedure in Patton (2013).
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1. Introduction

Abstract

The wind power futures recently introduced on the German market fill the gap of
a standardized product that addresses directly the volume risk in wind power trad-
ing. While the German wind power futures entail risk-reducing benefits for wind
power generators generally speaking, it remains unclear the extent of these benefits
across wind farms with different geographical locations. In this paper, we consider the
wind utilization at 31 different locations in Germany, and for each site, we propose
a copula model for the joint behavior of the site-specific wind index and the overall
German wind index. Our results indicate that static mixture copulas are preferred to
the stand-alone copula models usually employed in the economic literature. Further,
we find evidence of asymmetric dependence and upper tail dependence. To quantify
the benefits of wind power futures at each wind site, we perform a minimum vari-
ance hedge, and find that variance reductions can differ greatly depending on the
geographical location. Further, different comparison studies reveal that the presence
of 1) a negative risk premium in the wind power futures market and 2) upper tail
dependence weaken the benefits of wind power futures for wind power generators.

1 Introduction

Wind power generators worldwide have historically been given subsidies in
order to incentivize the development of renewable energy sources. The non-
programmable nature makes investment in wind power generation unpre-
dictable, and although subsidies simplify investment decisions, the stochastic
behavior of wind demands further risk reducing opportunities. As a result,
the so-called German wind power futures have recently been introduced on
the European Energy Exchange and Nasdaq. These instruments are written
on a wind power production index that reflects the average German utiliza-
tion, and a long (short) position gives a profit in high-wind (low-wind) sce-
narios. It follows naturally that wind power generators constitute the seller
group, as they seek to cover their exposure to the low-wind scenarios that
affect their cash-flows negatively.

In this paper, we study the hedging benefits of wind power futures for
wind turbines or wind farms with different geographical locations in Ger-
many. To facilitate optimal hedging decisions, we employ copula models to
analyze the joint behavior of the site-specific and the German wind power
production indexes. Specifically, we base our empirical analysis on data from
31 different sites in Germany, and quantify the hedging benefits of wind
power futures for each site, showcasing how these vary across locations. Fur-
ther, we comment on how the negative risk premium in the wind power fu-
tures market affects the wind power generator’s hedged profit distribution.
For the data we consider, we find significant evidence of asymmetric depen-
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dence and upper tail dependence between the site-specific and the German
wind utilization. To highlight the importance of capturing such effects, we in-
clude a comparison study where the hedging exercise is performed with the
optimal copula model and a less optimal alternative that imposes symmetry
and no tail dependence.

Owing to the recent introduction of wind power futures to the market,
the related literature is yet scarce. The first studies to consider the German
wind power futures are Gersema and Wozabal (2017) and Benth and Pircal-
abu (2017). Both papers concentrate on the pricing rather than the hedging
aspect, and agree on the presence of a negative risk premium which is ex-
plained by the fact that the wind power producer’s profit is more correlated
to the German wind utilization than the conventional generator’s profit. Con-
sidering the hedging aspect is Christensen et al. (2019), where the benefits of
wind power futures are studied in the context of conventional generators.
Due to the prioritization of the cheapest energy sources in the day-ahead
market, conventional generators are affected by the share of wind power in
the system. In high-wind scenarios, conventional generators will produce
less, and they can minimize this exposure by taking a long position in wind
power futures. While the present paper is similar to the study in Christensen
et al. (2019) in that it investigates the hedging power of wind power futures, it
differentiates itself by considering the seller rather than the buyer side. Fur-
thermore, we consider multiple potential sellers in order to emphasize the
spatial aspect, which in contrast to conventional generators is very important
to consider here.

Turning to copulas, their application in the energy markets literature
has grown tremendously over the past years, see e.g. Benth and Kettler
(2011), Grothe and Schneiders (2011), Avdulaj and Barunikl (2015), Elberg
and Hagspiel (2015), Pircalabu and Jung (2017), Aepli et al. (2017) and Liu
et al. (2017) to name a few. Closest to the present paper are the studies of
Grothe and Schneiders (2011) and Elberg and Hagspiel (2015), who also em-
ploy copulas to model the German wind power production. The study of
Grothe and Schneiders (2011) concentrates on the optimal geographical allo-
cation of wind turbines, and Elberg and Hagspiel (2015) quantify the value
of wind turbines at different locations in Germany, which requires model-
ing the dependence between the aggregated German wind power generation
and the wind power generation from each wind turbine. While our modeling
approach is very similar to that in Elberg and Hagspiel (2015), we introduce
further flexibility by considering copula mixtures.

The remaining of this paper is structured as follows: Section 2 presents the
data and introduces the wind power futures. In Section 3 we briefly describe
the modeling approach and present the estimation results. In Section 4 we
examine the spatial hedging effectiveness of wind power futures and provide
a comparison study. Section 5 concludes.
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2. Data Presentation and the Wind Power Futures

2 Data Presentation and the Wind Power Futures

The empirical study performed in this paper relies on wind index data from
31 different sites in Germany, and on the overall German wind index, which
acts as the underlying of wind power futures. In the following, we elaborate
on the data and introduce the German wind power futures.

2.1 German and Site-Specific Wind Index Data

The first data component in our analysis consists of German wind index data
provided by Narex. The index represents the aggregated utilization of wind
power plants in Germany on a daily basis, and covers the period from 1
January 2012 to 31 December 2015, that is we have a total of 1461 observa-
tions. We remark that the index is computed based on wind speed data and
a constant level of installed capacity in Germany, as to exclude effects that
originate from the historical variations in the installed capacity. Specifically,
the level is set to that of December 2015, and the German wind index data
reflects therefore the distribution of wind generation capacity at that time,
since we intend to illustrate the hedging effectiveness of wind power futures
contracts in the present conditions.

The second data component consists of wind index data at 31 specific
wind sites, again for the period 1 January 2012 to 31 December 2015. For
each site, we have access to the actual daily wind power generation data
and the installed capacity data. To construct the site-specific wind index,
we consider the following: Let Pt,i denote the day t wind power generation
measured in MWh for wind site i, and let Ci denote the installed capacity for
wind site i. The wind index Wt,i ∈ [0, 1] is then obtained as

Wt,i =
Pt,i

htCi
, (B.1)

where ht is the number of hours in a given day. We note that the number of
turbines included in each wind site and their type vary across the sites, but
not over time. Further, the condition of the wind turbines and the surround-
ing terrain vary across the sites. While we acknowledge that circumstances
other than the geographical location can have an impact on the site-specific
wind index, it is not possible to separate such effects based on the data we
have available. Therefore, whenever we refer to differences between the wind
sites which are caused by their geographical locations, we implicitly mean
other circumstances as well.

To illustrate how the 31 wind sites are spread across Germany, we plot in
Fig. B.1(a) their approximate geographical location, with corresponding site
ID number. Moreover, we report in Fig. B.1(b) the linear correlation between
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Fig. B.1: Location of wind sites with site ID, and linear correlations between German wind index
and each site wind index.

the wind index of each site and the German wind index – not surprisingly,
we generally find a very strong positive relation.

To provide the reader with more sense of the data, we present in the
upper row block of Fig. B.2 time series plots of the German wind index and
the wind indexes at sites 2 and 19. In the lower row block of Fig. B.2, we plot
the corresponding sample autocorrelation functions. The plots reveal clear
yearly cycles for the German wind index and the wind indexes at site 2 and
19.

2.2 Wind Power Futures

The German wind index displayed in Fig. B.2(a) acts as the underlying for
German wind power futures (WPF) traded on the European Energy Exchange
and Nasdaq. To clarify the WPF payoff, let us consider a contract with deliv-
ery period [T1, T2], where T1 < T2. Further, let us denote by WDE

t the realized
wind index in Germany at day t. Then, a long position in a WPF contract
yields the payoff

RWPF = H

(
1

T2 − T1 + 1

T2

∑
t=T1

WDE
t −Wt0

)
X, (B.2)

where H is the number of wind production hours (wph) in the delivery pe-
riod, Wt0 is the “market price” set at day t0 < T1, and X is the tick size set to
100 EUR at EEX. The price is quoted in EUR per wph, and a price of e.g. 30
EUR/wph translates to Wt0 = 0.30.
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Fig. B.2: Upper row block: Time series plots of the German wind index and the wind index at
sites 2 and 19. Lower row block: Sample autocorrelation of the German wind index and the
wind index at sites 2 and 19.

It follows from Eq. (B.2) that a long position in a WPF contract generates
a profit in high wind scenarios, whereas a short position generates a profit
in low wind scenarios. For a wind power generator, a short position in WPF
contracts is therefore an interesting opportunity to mitigate the volumetric
risk associated with wind power generation.

3 Modeling Procedure

To model the joint behavior of the German wind index and a site-specific
wind index, we employ ARMA–GARCH copula models; with 31 different
wind sites, we end up with 31 bivariate models. The choice of modeling
approach is motivated by the well-known flexibility of these models, and also
by the copula being an excellent tool for modeling nonlinear dependence.
Further ARMA–GARCH models have proven to perform well for univariate
wind-driven stochastic variables such as the wind index, see e.g. Tol (1997)
and Šaltytė Benth and Benth (2010). Since ARMA–GARCH copula models
are common in the financial and econometric literature, we shall not provide
a comprehensive introduction here, and refer the interested reader to e.g.
Patton (2006, 2013), Dias and Embrechts (2009), and Pircalabu et al. (2017).

In the following subsections, we consider 1) univariate ARMA–GARCH
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type models for the marginal behavior of the German wind index and all site-
specific wind indexes, and 2) bivariate copulas for the dependence between
the German wind index and each site-specific wind index. For readability,
we only report the results for four chosen sites, namely site 2, 19, 20, and 31
cf. Fig. B.1(a). The four sites are selected as to emphasize the spatial effects.

3.1 Marginal Models

As already illustrated in Fig. B.2, the wind index data is bounded between
zero and one. Since ARMA-GARCH models are not suited for modeling
this type of bounded data, we first apply the logit transform to the wind
indexes.1 Then, to capture the yearly seasonality revealed in Fig. B.2, we
employ a seasonal function of the form,

ft = a1 + c1 sin (2πt/365) + c2 cos (2πt/365) , (B.3)

which is fitted to each logit-transformed wind index. The resulting seasonal
fits are shown in Fig. B.3 for the German wind index, site 2, and site 19.
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Fig. B.3: Time series plots of the German wind index and the wind index at sites 2 and 19 with
fitted seasonal functions.

After removing the yearly seasonality from the data, we filter each
marginal series through ARMA–GARCH models. To determine the optimal
order of the models, we employ the Bayesian Information Criterion (BIC),
where we consider ARMA(p,q)–GARCH(h,k) models of order p, q = 0, .., 5
and (h, k) = {(0, 0), (0, 1), (1, 1)}. Table B.1 presents the optimal models and
corresponding parameter estimates with standard errors in parenthesis, re-
vealing that the preferred specifications vary across the chosen sites.

Considering the goodness-of-fit of the proposed models in Table B.1, let
us denote by ηDE

t the standardized residuals corresponding to the German
wind index, and ηi

t the standardized residuals corresponding to the wind
index at site i. Diagnostic plots are displayed in Fig. B.4 for the German
index, and in Fig. B.5 for four selected sites. The autocorrelation functions

1The logit transform is given by logit(x) = log(x)− log(1− x).
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3. Modeling Procedure

Logit W DE Logit WSite 2 Logit WSite 19 Logit WSite 20 Logit WSite 31

Model ARMA(1,1) ARMA(1,1)–ARCH(1) AR(1) AR(2)–ARCH(1) AR(3)–GARCH(1,1)

Conditional mean
AR1 φ̂1 0.444 (0.039) 0.349 (0.042) 0.519 (0.018) 0.615 (0.036) 0.504 (0.025)
AR2 φ̂2 - - - -0.086 (0.029) -0.053 (0.030)
AR3 φ̂3 - - - - 0.120 (0.026)
MA1 θ̂1 0.253 (0.041) 0.157 (0.047) - - -
Variance σ̂2 0.727 (0.028) - 1.284 (0.031) - -

Conditional variance
Constant ω̂ - 1.590 (0.055) - 1.131 (0.047) 0.046 (0.018)
ARCH α̂ - 0.126 (0.029) - 0.311 (0.031) 0.031 (0.008)
GARCH β̂ - - - - 0.947 (0.015)

Marginal distribution
DoF ν̂ - 6.447 (0.931) 6.734 (1.006) 6.563 (1.063) 8.111 (1.680)
Skewness λ̂ - -0.321 (0.032) -0.215 (0.033) -0.322 (0.036) -0.278 (0.033)

Table B.1: Type and order of marginal models, parameter estimates, and corresponding standard
errors in parenthesis.

for the standardized residuals and the standardized residuals squared show
almost no correlation, hence indicating appropriate model selection. Regard-
ing the distributional assumptions, the normal distribution provides a nice
fit to the standardized residuals corresponding to the German wind index,
as it appears from Figs. B.4(a) and B.4(b). For the site-specific wind indexes
however, the normal distribution is less appropriate. As a result, we relax the
normality assumption and find that a skew t distribution provides a much
better fit, as shown in Fig. B.5. Parameter estimates for the fitted skew t dis-
tributions together with standard errors are reported in the last row block of
Table B.1. Although results concerning four selected sites are displayed in
this section, we stress that very similar results are obtained for the remaining
series.
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Fig. B.4: Model check for the German wind index.
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Fig. B.5: Model check for four selected sites: 2, 19, 20, and 31.
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3.2 Copula Models

Next, we turn to dependence modeling with copulas, which are esentially
distributions with uniform margins. Let us consider the random vector
Y t = (Yt,1, Yt,2), with joint conditional distribution F(·|Ft−1). Then, accord-
ing to Sklar’s theorem [Sklar (1959)] for conditional distributions, we can
decompose F(·|Ft−1) as

F(yt,1, yt,2|Ft−1) = C(F1(yt,1|Ft−1), F2(yt,2|Ft−1)|Ft−1), (B.4)

where C denotes the copula function, F1(·|Ft−1) and F2(·|Ft−1) are the marg-
inal distribution functions of Yt,1 and Yt,2, respectively, and Ft−1 is the filtra-
tion.

Having established marginal models in the previous section, we are now
left with the construction of the copula C. To this end, we apply the proba-
bility integral transform to the standardized residuals to obtain

ûDE
t = FDE(η̂DE

t |Ft−1),

ûi
t = Fi(η̂i

t|Ft−1),

for i = 1, . . . , 31. Fi and FDE are distribution functions corresponding to each
wind site and the German wind index, respectively. Fig. B.6 presents the
estimated uniforms for the four selected sites plotted against ûDE

t , showing
variations in the strength of the dependence, which we already expected
considering the results in Fig. B.1(b). However, Fig. B.6 also indicates that
the shapes of the dependence structure could possibly differ, and thus the
preferred copula specifications might vary across the wind sites. Specifically,
notice that Figs. B.6(b) and B.6(d) exhibit a slight asymmetric behavior with
more concentration in the north east corner compared to the other corners.
This pattern is not as clear in Figs. B.6(a) and B.6(c).

The copula models we consider are the Gaussian, Gumbel, rotated Gum-
bel (RGumbel), Clayton, rotated Clayton, Frank, symmetrized Joe-Clayton,
and Student t2. These are fitted to all 31 pairs and the Akaike Information
Criterion (AIC) is used as model selection criterion. To introduce further flex-
ibility, we also consider copula mixtures as in Rodriguez (2007) and Dias and
Embrechts (2009). A copula mixture is given by

cm(·|Ft−1, θθθa, θθθb, λ) = λca(·|Ft−1, θθθa) + (1− λ)cb(·|Ft−1, θθθb), (B.5)

where ca(·|Ft−1, θθθa) is the copula density for copula a having parameter vec-
tor θθθa, and cb(·|Ft−1, θθθb) is the copula density for copula b with parameter
vector θθθb. The mixing parameter 0 < λ < 1 controls the proportion of each
copula.

2Rotation refers to a 180 degree rotation of data.
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Site ID Optimal copula Kendall’s τ Upper tail dep. Lower tail dep. K-S test CvM test

1 Mix of Gaussian and Gumbel 0.582 (0.011) 0.246 (0.060) - 0.893 0.886
2 Mix of Gumbel and RGumbel 0.606 (0.008) 0.358 (0.038) 0.328 (0.039) 0.512 0.527
3 Mix of Gaussian and Gumbel 0.534 (0.010) 0.004 (0.044) - 0.864 0.989
4 Student t 0.642 (0.010) 0.215 (0.123) 0.215 (0.123) 0.968 0.998
5 Mix of Gaussian and Gumbel 0.603 (0.009) 0.074 (0.059) - 0.809 0.812
6 Mix of Gaussian and Gumbel 0.516 (0.010) 0.189 (0.057) - 0.902 0.955
7 Mix of Gaussian and Gumbel 0.576 (0.009) 0.056 (0.050) - 0.857 0.818
8 Mix of Gaussian and Gumbel 0.609 (0.008) 0.082 (0.054) - 0.881 0.877
9 Mix of Gaussian and Gumbel 0.647 (0.008) 0.333 (0.069) - 0.783 0.793
10 Mix of Frank and Gumbel 0.453 (0.012) 0.211 (0.048) - 0.851 0.755
11 Mix of Frank and Gumbel 0.492 (0.011) 0.146 (0.047) - 0.900 0.765
12 Mix of Gaussian and Gumbel 0.659 (0.007) 0.239 (0.066) - 0.683 0.789
13 Mix of Gaussian and Gumbel 0.613 (0.009) 0.261 (0.068) - 0.590 0.642
14 Mix of Frank and Gumbel 0.554 (0.011) 0.373 (0.048) - 0.683 0.823
15 Mix of Frank and Gumbel 0.570 (0.010) 0.376 (0.046) - 0.510 0.582
16 Mix of Frank and Gumbel 0.513 (0.011) 0.494 (0.043) - 0.716 0.797
17 Mix of Frank and Gumbel 0.479 (0.012) 0.395 (0.043) - 0.358 0.533
18 Mix of Frank and Gumbel 0.570 (0.010) 0.246 (0.050) - 0.876 0.783
19 Mix of Frank and Gumbel 0.437 (0.013) 0.363 (0.045) - 0.765 0.703
20 Mix of Frank and Gumbel 0.470 (0.013) 0.190 (0.052) - 0.958 0.911
21 Mix of Gaussian and Gumbel 0.385 (0.015) 0.223 (0.058) - 0.982 0.972
22 Mix of Frank and Gumbel 0.506 (0.011) 0.302 (0.048) - 0.796 0.757
23 Mix of Frank and Gumbel 0.510 (0.013) 0.302 (0.048) - 0.742 0.864
24 Mix of Frank and Gumbel 0.416 (0.014) 0.196 (0.045) - 0.504 0.664
25 Mix of Gaussian and Gumbel 0.383 (0.014) 0.271 (0.068) - 0.800 0.880
26 Mix of Frank and Gumbel 0.437 (0.013) 0.250 (0.048) - 0.773 0.781
27 Mix of Gaussian and Gumbel 0.349 (0.013) 0.260 (0.059) - 0.763 0.769
28 Mix of Frank and Gumbel 0.390 (0.014) 0.298 (0.046) - 0.457 0.558
29 Mix of Frank and Gumbel 0.359 (0.015) 0.186 (0.046) - 0.696 0.776
30 Mix of Frank and Gumbel 0.361 (0.014) 0.282 (0.046) - 0.766 0.758
31 Gumbel 0.215 (0.015) 0.277 (0.018) - 0.756 0.778

Table B.2: Optimal copula, Kendall’s τ, upper and lower tail dependence implied by the opti-
mal copula, and p-values resulting from performing goodness-of-fit tests. Standard errors are
reported in parenthesis. The symbol “-” indicates that the tail dependence imposed by the
chosen copula is zero. Kendall’s τ for a convex combination of copula a and copula b, individ-
ually imposing a Kendall’s τ of τa and τb, respectively, is λτa + (1− λ)τb. Likewise, the upper
(lower) tail dependence is a convex combination of the individual upper (lower) tail dependence
coefficients. See Christensen et al. (2019) for more information.
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Fig. B.6: Empirical copula density plots for four selected sites, with site ID 2, 19, 20, and 31.

In addition to the already mentioned copulas, we employ the follow-
ing mixtures: Gumbel/RGumbel, Gaussian/Gumbel, Gaussian/RGumbel,
Frank/Gumbel, and Frank/RGumbel. For each site, the optimal copula
model is reported in Table B.2. Moreover, we include in Table B.2 the im-
plied Kendall’s τ, upper tail dependence, and lower tail dependence.3 The
optimal copula differs across the 31 wind sites, with Gaussian/Gumbel and
Frank/Gumbel being preferred in most cases. These copula mixtures are both
characterized by an asymmetric dependence structure and upper tail depen-
dence. According to the results in Table B.2, only two models corresponding
to northern sites imply lower tail dependence, while upper tail dependence is
a common feature across all models. The upper tail dependence corresponds
to scenarios with high German wind index and high site-specific wind index.
For the wind power generator, this feature weakens the power of WPF as
hedging instruments, which we shall elaborate in the next section.

To test whether or not the optimal copulas in Table B.2 are well-specified,
we perform the Kolmogorov-Smirnov (K-S) and the Cramer-von Mises (CvM)
goodness-of-fit tests (see Berg (2009), Genest et al. (2009) and Patton (2013)
for a detailed description). The resulting p-values are reported in the last two

3Recall that tail dependence measures the dependence in extreme events. For positively
related data, the upper tail dependence is defined as τU = limq→1− P(u1,t > q|u2,t > q), where q
denotes the quantile and the u’s represent standard uniform variables. The lower tail dependence
is defined analogously.
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columns of Table B.2 and are based on 999 simulations, indicating that the
null hypothesis of a well-specified copula cannot be rejected.

4 Application Results

In this section, the models presented in Sec. 3 are employed to asses the
hedging effectiveness of WPF for the different wind sites. As in Sec. 3, we
limit ourselves to presenting results for four chosen sites; if, at any point, we
do otherwise, this will be clear from the context. In order to perform the
hedging exercise, we assume the following: Wind power producers receive a
fixed price of 30 EUR per produced MWh regardless of geographical location,
and the installed capacity of the wind turbines at each wind site is 100 MW.
Thus, from Eq. (B.1) we get that the daily wind power generation at site i and
day t is

Pt,i = 100 ·Wt,i · ht,

and hence the wind power producer’s unhedged profit at site i, over the
period [T1, T2], is given by

RU
i = 30

T2

∑
t=T1

Pt,i. (B.6)

When hedging the volume risk associated with wind power generation using
a position γi ∈ Z in WPF – recall Eq. (B.2) – we get the following hedged
profit

RH
i = RU

i + γiRWPF. (B.7)

To determine γi, we use 20,000 Monte Carlo simulations from the proposed
models, each spanning a year from 1 January 2016. Since the end of the
in-sample data is 31 December 2015, it follows that the simulations are per-
formed out-of-sample. We shall restrict our attention to WPF with monthly
delivery, and divide therefore each simulated path into 12 parts correspond-
ing to the length of each month. This way, we are able to asses monthly
differences in the hedging effectiveness of WPF across a calender year.

Regarding pricing of WPF, i.e., estimating Wt0 in Eq. (B.2) for each month,
we note that t0 is fixed at 31 December 2015 regardless of which monthly
delivery we consider. Assuming a zero market price of risk, we obtain Wt0 as
a simple average of Monte Carlo simulations covering the specified delivery
period. We stress that this assumption implies that the expected value of the
profit distribution will not be affected by changing γi. Thus, we concentrate
on a minimum variance hedge, and determine γi for each month by

min
γi∈Z

Var[RH
i ]. (B.8)
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4.1 Hedging Effectiveness of Wind Power Futures

Using the specifications above, we estimate the unhedged profit distributions
for all sites and all months of the year. In Fig. B.7, we present the results
for January and sites 2, 19, 20, and 31. Note that we are able to compare
the profits, since the wind generation capacity is set at 100 MW for all sites.
The unhedged profit distributions have different means, with site 31 having
the lowest value. Regarding the hedged profit distributions, which are also
included in Fig. B.7, we observe that WPF are most beneficial for site 2, fol-
lowed by sites 19 and 20, which achieve similar benefits. Hedging benefits
for site 31 are lowest, since this site is least correlated to the German wind
index cf. Table B.2. Although Fig. B.7 only illustrates the case for January,
we find similar results for the remaining months. In fact, the average differ-
ence between the maximum and minimum variance reductions throughout
the year for all sites is only 2.3%, and all range between 1% and 5%.

Motivated by the earlier studies of Gersema and Wozabal (2017) and
Benth and Pircalabu (2017), who argue for the existence of a negative risk
premium in the German wind power futures market, we consider next the
effect of including such a quantity in our analysis. Cf. Eq. (B.2), a risk pre-
mium of e.g. -1 EUR/wph translates to a reduction in Wt0 of 1 %, and implies
that WPF are sold at a discount. To indicate the effect of a negative risk pre-
mium on the hedged profit distribution, we plot in Fig. B.7 the results of
assuming a risk premium of -1 EUR/wph and -2 EUR/wph. We note that
the hedge quantities remain unchanged, since hedging decisions are based
on a minimum variance hedge, thus disregarding the cost of the hedge port-
folio. In the hedging exercise considered here, this implies that a negative
risk premium shifts the hedged profit distribution to the left compared to the
case of a zero risk premium, as it appears from Fig. B.7.4

To study further the implications of a negative risk premium, we consider
the reduction in the mean of the hedged profit distribution when taking into
account a risk premium of -2 EUR/wph, as opposed to none at all. The re-
sults are plotted in Fig. B.8(a) on a monthly basis, and can be explained by
the seasonality in the marginal models in combination with a static copula.
On one hand, the seasonal behavior embedded in the site-specific wind in-
dex causes the profit corresponding to the naked position RU

i to be lowest
during summer and highest during winter. On the other hand, the optimal
hedge quantity γ∗ in WPF is highly influenced by the dependence – which
is constant throughout the year – thus translating to a fairly constant γ∗ as
illustrated in Fig. B.8(b).

4In practice, the hedger is not indifferent to the cost of the hedging portfolio. The objective in
Eq. (B.8) can easily be extended to e.g. a situation where the variance of the profit distribution
is minimized while also minimizing the cost of the hedging portfolio, based on some preference
regarding the trade-off between variance and cost reduction. This is however outside the scope
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Fig. B.7: Unhedged and hedged profit distributions for wind sites 2, 19, 20 and 31 cf. Fig. B.1(a)
for January. The results are obtained by employing the marginal models determined in Sec. 3.1
and the optimal copulas cf. Table B.2. The hedged distributions are computed with a risk
premium corresponding to 0 EUR/wph, -1 EUR/wph and -2 EUR/wph. The optimal hedge
quantities are obtained by solving Eq. (B.8), and do not vary with the risk premium.
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Fig. B.8: Percentage reduction in mean of the hedged profit distribution when including a risk
premium of -2 EUR/wph as opposed to no risk premium, and the optimal number of WPF
contracts for each month throughout the year. The results are displayed for wind sites 2, 19, 20,
and 31 cf. Fig. B.1(a).

Clearly, since wind power generators seek to cover their exposure to low
wind scenarios, they should be more inclined to use WPF as hedging instru-
ments during the summer months. According to the results in Fig. B.8(a)
however, the reduction in the mean of the hedged profit distribution is ap-
proximately double as high during summer compared to winter, which is
highly unfavorable. We stress that the results in Fig. B.8(a) only hold under
the assumption of a constant risk premium across the months of a calendar
year, which cannot be the case in practice. Nevertheless, since the empiri-
cal investigation carried out in Benth and Pircalabu (2017) does not suggest
any clear seasonal pattern in the market price of risk associated with Ger-
man WPF, we argue that our results are relevant from a practical perspective.
Furthermore, the analysis above would only be rendered superfluous in a
situation where the risk premium was shaped as to counteract the yearly
seasonality in the wind index.

On a different note, we mention in passing that the yearly seasonality
associated with wind power production is also important in the context of
liquidity in the German WPF market. According to Christensen et al. (2019),
hedging benefits for conventional power producers are highest during winter.
Hence, a large part of the buyer side is incentivized to take a position in WPF
during winter, whereas the seller side is incentivized to do so during summer.

Next, we consider the variance reduction achieved by hedging with WPF.
In Fig. B.9(a), we present the estimated average variance reductions through-
out the year. As expected, the variance reductions and geographical location
of wind turbines are related, with the reductions decreasing as we move from

of the present paper, and shall not be pursued further.
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north to south Germany. The results vary substantially across the wind sites,
with the highest numbers being above 70%, and the lowest number being
13%. Also relevant to consider in this context is the effect of variance reduc-
tion on the tails of the hedged profit distribution. Under the assumption of
a zero risk premium, we wish to quantify whether the right tail is reduced
by more than the left tail, i.e., are we reducing the probability of a very high
income by more than that of a very low income? To answer this question, we
let qH

j,i denote the jth quantile of the demeaned hedged profit distribution for
site i,

qH
j,i = F−1(RH

i −E[RH
i ], j).

Similarly, qU
j,i denotes the jth quantile of the demeaned unhedged profit dis-

tribution. The percentage change of the jth quantile from performing the
WPF hedge can then be measured by

Tl
i (j) =

qU
j,i − qH

j,i

qU
j,i

.

To measure the difference between the change in the tails, we define the
variable,

Ti(j) = |Tl
i (j)| − |Tr

i (j)|,

where

Tr
i (j) =

qH
1−j,i − qU

1−j,i

qU
1−j,i

.

The quantity Tl
i (j) defined above will be positive if we shrink the left tail (jth

quantile) when performing the WPF hedge, which is the case for all sites.
Further, Tr

i (j) will be negative if we shrink the right tail (1 − jth quantile)
when performing the WPF hedge, which is also the case for all sites. Hence,
a negative value of Ti(j) means that the right tail has shrunk more than the
left tail. We note that Ti(j) is measured in percentage points (pp). Esti-
mates for Ti(0.05) are reported in Fig. B.9(b), revealing negative values for all
sites, with -8pp being the lowest. Interestingly, the magnitude of the average
variance reduction does not seem to influence the magnitude of Ti(0.05), cf.
Figs. B.9(a) - B.9(b). For example, the lowest value of Ti(0.05) corresponds
to a variance reduction of 46%, which is significantly lower than the highest
variance reduction of 72%.

Since a zero risk premium is imposed due to the results in Fig. B.9(b),
the negative values of Ti(0.05) obtained for all sites can be explained by 1)
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the marginal specifications and 2) the presence of asymmetry and tail depen-
dence in the copula. On one hand, the marginal distributions of wind indexes
are skewed, with a heavy tail to the right. On the other hand, cf. Table B.2,
evidence for asymmetry and upper tail dependence is found for most wind
sites, entailing that site-specific wind indexes are related to the German index
in extreme high wind scenarios. Since wind power producers seek to cover
their exposure to low wind scenarios, lower tail dependence would be much
preferred to the upper tail dependence that we find in the data. It is however
difficult to separate the effects related to the margins from those related to
the dependence structure without further analysis. In the next section, we re-
turn to this issue. Lastly, we stress that the results in Fig. B.9(b) are obtained
assuming a zero risk premium. In the presence of a negative risk premium,
the negative effects illustrated in Fig. B.9(b) will clearly be magnified.
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Fig. B.9: Average variance reduction for each wind site using the optimal copula cf. Table B.2,
and the difference between the change in the tails of the profit distribution measured by Ti(0.05).
The stars indicate the location of the sites with ID 2, 19, 20, and 31.

4.2 Comparison Study

To highlight the effects of employing a copula that allows for asymmetry
and upper tail dependence, we consider in this section a comparison study.
Specifically, we rerun the computations performed in Section 4.1 with the
Frank copula, while keeping the marginal models fixed. We employ the
Frank copula as a naive alternative since Frank is represented in the opti-
mal copula mixtures in 16 out of 31 cases cf. Table B.2. In addition, the Frank
copula is symmetric and imposes zero tail dependence, whereas the optimal
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copulas are all asymmetric (except for site 4) and imply tail dependence (up-
per tail dependence for the most part). Further, by performing the K-S and
CvM goodness-of-fit tests, we cannot reject the Frank copula for any of the
31 sites at a 5% significance level. In fact, if we excluded the copula mixtures
from our analysis, Frank would become the preferred copula specification for
many wind sites based on AIC. In the absence of copula mixtures, a hedger or
risk manager could therefore easily have employed a Frank copula to model
dependence.

In Fig. B.10(a), we report the average difference in the percentage variance
reduction across the months of the year, when going from the optimal copula
cf. Table B.2 to the Frank copula. We identify increases in the average vari-
ance reduction for all sites when using the optimal copula. We complement
these findings with Fig. B.10(b), where we report the maximum monthly dif-
ference between percentage variance reduction implied by the optimal copula
and Frank. The maximum difference reaches as high as 19pp, revealing that
using a less optimal model can have a substantial impact. In a nutshell, we
would simply undermine the variance reduction strength of WPF with the
Frank copula.
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Fig. B.10: Average and maximum difference in variance reductions implied by the optimal cop-
ula cf. Table B.2 and the Frank copula (optimal minus naive). The maximum differences refer to
the largest monthly difference. The stars indicate the location of the sites with ID 2, 19, 20, and
31.

Finally, recall Fig. B.9(b), where it was difficult to separate the effects from
the marginals and the dependence structure. Performing similar calculations
as in the case of Fig. B.9(b) with the Frank copula yields the estimates of
Ti(0.05) given in Fig. B.11. Compared to Fig. B.9(b), we find that introducing

70



5. Conclusion

-1pp

-1pp

-2pp

-2pp

-2pp

-3pp

-2pp

-2pp

-1pp

-2pp

-2pp

-4pp

-2pp

-4pp

-2pp

-4pp

-1pp

-2pp

-2pp

-2pp

-2pp -2pp

-2pp

-5pp

-3pp

-2pp

-2pp

-2pp

-2pp

-5pp

-2pp

Fig. B.11: Estimates of Ti(0.05) when performing the hedge with WPF using the naive approach,
i.e, the Frank copula. The stars indicate the location of the sites with ID 2, 19, 20, and 31.

a different dependence structure accounts for approximately 2-3pp of the
difference between left and right tail percentage change. Hence, using the
Frank copula would lead to an underestimation of the difference between the
change in tails implied by hedging with WPF.

5 Conclusion

In this paper, we analyze the hedging effectiveness of wind power futures
for wind power generators with 31 different locations in Germany. We
propose ARMA–GARCH copula models for each German wind index and
site-specific wind index pair. The ARMA–GARCH type models capture the
marginal behavior of the variables rather well, and a detailed study of the
different dependence structures reveals a general tendency of asymmetric
dependence and upper tail dependence, thus justifying the use of copulas.

Based on Monte Carlo simulations from the proposed models, the benefits
of wind power futures are quantified through a minimum variance hedge,
which we apply for each wind site. The variance reductions vary from 13%
to 72%, with the lowest values corresponding to wind farms located in the
south of Germany. Motivated by earlier findings in the literature that argue
for the existence of a negative risk premium in the German wind power
futures market, we extend our analysis to include this feature. Compared
to the case of a zero risk premium, the hedged profit distribution is shifted
to the left, thus weakening the benefits of wind power futures in the context
of our paper. Considering how the wind power futures hedge affects the
tails of the profit distributions, our results indicate a higher decrease in the
upside potential compared to the decrease in the downside risk. While this is
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expected due to the presence of skewness in the unhedged profit distribution,
the asymmetric dependence plays an important role as well.

Lastly, we highlight the importance of capturing asymmetry and upper
tail dependence by performing a comparison study, where the hedging ex-
ercise is carried out assuming a naive model for the dependence structure.
With the naive specification, the variance reduction resulting from the wind
power futures hedge would be undermined. Further, approximately half of
the difference in reduction between the tails in the hedged profit distribution
is caused by the asymmetric dependence.

As a concluding remark, we shortly address the topic of time-varying de-
pendence. Fig. B.12 shows Kendall’s τ between the German wind index and
three site-specific wind indexes (site 2, 19, and 31) based on a 60-days mov-
ing window. Not surprisingly, Fig. B.12 reveals that the dependencies vary
through time; however, they do stay in a rather narrow range (this applies
for all sites). Like in Grothe and Schneiders (2011), we have neglected this
time variation by restricting our attention to constant copula models. Nev-
ertheless, extending a copula model to capture time-varying behavior can be
achieved through e.g. the GAS model proposed by Creal et al. (2013). While
such extension is interesting, analysing the impact of time-varying depen-
dencies on hedging benefits is left as future research.
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Fig. B.12: Time series plots of Kendall’s τ between three site-specific wind indexes and the
German wind index based on a 60-days moving window.
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1. Introduction

Abstract

With the introduction of the exchange-traded German wind power futures, opportu-
nities for German wind power producers to hedge their volumetric risk are present.
We propose two continuous-time multivariate models for the wind power utilization
at different wind sites, and discuss the properties and estimation procedures for the
models. Employing the models to wind index data for wind sites in Germany and the
underlying wind index of exchange-traded wind power futures contracts, the esti-
mation results of both models suggest that they capture key statistical features of the
data. We argue how these models can be used to find optimal hedging strategies using
exchange-traded wind power futures for the owner of a portfolio of so-called tailor-
made wind power futures. Both in-sample and out-of-sample hedging scenarios are
considered, and, in both cases, significant variance reductions are achieved. Addi-
tionally, the risk premium of the German wind power futures is analysed, leading to
an indication of the risk premium of tailor-made wind power futures.

1 Introduction

In the power market, producers in general face market risk in the sense of
uncertainty of the prices at which they can sell their generated power. The in-
termittent nature of renewable energy sources such as wind and photo voltaic
power production adds yet another layer of risk, known as volumetric risk
in the sense that the produced amount of electricity is uncertain due to the
dependence on weather. Globally, so-called power purchase agreements and
subsidies from governments have minimized the market risk for renewable
power producers. In contrast, the volumetric risk has only recently been ad-
dressed in Germany—and only for wind power producers (WPPs)—by the
introduction of the exchange-traded wind power futures (WPF) contracts.
The underlying of a WPF contract is an index between zero and one repre-
senting the overall utilization of the installed German wind power produc-
tion. By taking an appropriate position in WPF contracts, the lost income
of the WPPs implied by low wind scenarios is (partially) offset by the po-
sition in WPF contracts, hence minimizing the volumetric risk. Due to the
prioritization of the cheapest power producers in Germany, the opposite part
of the WPF market is typically conventional power producers (CPPs) such
as gas-fired power plants. By taking an appropriate position in exchange-
traded WPF contracts, CPPs can hedge their exposure to the cheap electricity
generated by WPPs.

The WPF market is considered in detail in Gersema & Wozabal (2017),
where the authors propose an equilibrium pricing model. They find that
the willingness to engage in the WPF market is greater for the WPPs com-
pared to CPPs. In other words, the hedging benefits of the WPF contracts are
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greater for WPPs than CPPs. This is supported by the results in Christensen
& Pircalabu (2018) who employ an ARMA-GARCH copula framework to the
joint modelling of one site-specific wind index and the underlying WPF in-
dex. In Bertsekas & Pircalabu (2018) modeling of the underlying WPF index
is considered and closed-form formulas for the WPF price and the price of
European options written on the WPF index are derived.

Continuous-time modeling using univariate Ornstein-Uhlenbeck (OU)
processes driven by non-decreasing Lévy processes, like the compound Pois-
son process with exponential jumps, have been studied extensively, and used
to model, for example, stochastic volatility of financial assets, wind, electicity
prices, and temperature (see Barndorff-Nielsen & Shephard (2001); Benth &
Benth (2007); Benth et al. (2007); Bertsekas & Pircalabu (2018)). A detailed
treatment of Lévy processes can be found in Sato (1999). The multivari-
ate modeling of more than two stochastic processes using multidimensional
non-Gaussian Lévy processes is, however, more limited. Here we mention
the work of Leoni & Schoutens (2008) and Semeraro (2008) that introduce
the multivariate construction by subordination of Brownian motions, and the
work of Ballotta & Bonfiglioli (2016) using linear transformations of Lévy
processes.

Our contribution to the literature is twofold. Firstly, we propose a joint
model for the simultaneous behaviour of wind indexes that allows for a par-
simonious representation of the correlation structure. This model can be seen
as the multivariate version of the model presented in Bertsekas & Pircalabu
(2018). As a consequence of the scarce literature on such multivariate mod-
els, we propose an alternative model for comparison reasons. Secondly, we
suggest the idea of so-called tailor-made WPF contracts to eliminate the vol-
umetric risk of WPPs completely. Employing our proposed joint model of
wind indexes, we investigate the hedging benefits of exchange-traded WPF
contracts for a owner of a portfolio of tailor-made WPF contracts, and com-
ment on the risk premium of tailor-made WPF contracts. We show that this
construction is beneficial for both parties of the tailor-made WPF contracts.

The rest of the paper is organized as follows. Sec. 2 presents the data of
wind indexes we later analyze in greater detail and also serves as motivation
for the proposed model. In Sec. 3 we present models for the joint behaviour of
wind indexes and corresponding estimation procedures. In Sec. 4 we present
the estimation results of the two models. Sec. 5 discusses the hedging of
wind power production using WPF contracts implied by the proposed mod-
els. Lastly, Sec. 6 concludes.
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2. Data Presentation

1

3

2

Fig. C.1: Locations of wind sites with site ID in Germany.

2 Data Presentation

The empirical observation period spans from 1 July 2016 to 30 June 2019,
which corresponds to 1095 daily observations for each considered wind in-
dex. The data set consists of

1. A daily wind index at three wind sites provided by Centrica Energy
Trading. The wind index at wind site i is calculated by

Qi(t)
h(t)Ci

,

where h(t) is the number of hours in day t, Qi(t) is the power produc-
tion at day t at site i, and Ci is the installed capacity at site i. Figure C.1
shows the approximate geographical locations for the three wind sites.1

2. A daily German wind index provided by Nasdaq, representing the
German utilization of wind power plants. The acronym used for it is
NAREX WIDE (NAsdaq REnewable indeX WInd DE (Germany)) and
is used as the underlying for WPF contracts traded on Nasdaq. We will
simply denote it as the German wind index in the remaining part of the
paper.

1The locations are approximate due to confidentially issues.
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The wind indexes are bounded between zero and one. Fig. C.2 shows all
four wind indexes, and the corresponding autocorrelation function for each
wind index. In all four cases, the wind index displays a pronounced yearly
cycle consistent with the observations made in Bertsekas & Pircalabu (2018)
and Christensen & Pircalabu (2018). Since the German wind index is by con-
struction made up of all wind power production in Germany, the behaviour
of the German wind index is less extreme compared to the individual wind
indexes. To concretize, a value of zero for the German wind index is not ob-
served in our observation period, whereas it is for all three wind sites. Also
the maximum attained value for each site wind index is higher than the max-
imum value of the German index; however, it does not reach one in any of
the cases.

3 Model Description

3.1 General Model Considerations

Let n denote the number of wind sites and Pi(t) the ith wind index. We
assume that the ith wind index can be described by

Pi(t) = 1− e−Si(t)Xi(t), i = 1, . . . , n, (C.1)

where Si(t) : R → R+ is a deterministic function intended to filter out po-
tential seasonal effects, and Xi(t) is a mean-reverting stochastic process sat-
isfying Xi(t) ≥ 0 for all t. The intention of X(t) = (X1(t), ..., Xn(t))> is to
capture the short-term uncertainty and the dependence between the n wind
indexes. By this specification we are ensured that Pi(t) ∈ [0, 1).

The proposed model in Eq. (C.1) distinguishes itself from the specification
in Bertsekas & Pircalabu (2018), where the natural extension of their univari-
ate setup to the present multivariate setup would be

Pi(t) = Si(t)e−Xi(t). (C.2)

with appropriate choices of Xi(t) and Si(t). We do, however, prefer Eq. (C.1)
over Eq. (C.2). Due to our specification with regard to the deterministic part
Si(t) of the model, we do not face any potential model inconsistencies as is
the case of Eq. (C.2). We refer the interested reader to Bertsekas & Pircalabu
(2018) more information and discussion. Additionally, as discussed in Sec. 2,
the wind index at a given site can attain a value of zero, whereas, on the
other hand, we have not observed full utilization of the capacity at a single
wind site. Since Bertsekas & Pircalabu (2018) consider the German wind
index separately, which is never zero or one due to the construction of it,
Eq. (C.2) is applicable without any modifications. Lastly, Eq. (C.1) implies
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Fig. C.2: All four wind indexes with corresponding empirical auto-correlation function.
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that increased values of Si(t) and Xi(t) translate to an increased value of
Pi(t), which is more intuitively appealing.

Moving on to the seasonal components of the model, we include the fol-
lowing yearly seasonality motivated by the observations made in Fig. C.2,

Si(t) = ai + bi sin(2πt/365) + ci cos(2πt/365), i = 1, . . . , n,

where ai, bi, ci ∈ R. With N being the number of observations, the coefficients
are determined by

min
ai ,bi ,ci

N

∑
t=1

[− log (1− Pi(t))− Si(t)]
2 , i = 1, . . . , n.

Having obtained the estimated seasonal functions, the observed values of
Xi(t) implied by the estimated seasonal function Ŝi(t) can then be calculated
as

Xi(t) =
− log(1− Pi(t))

Ŝi(t)
. (C.3)

We will in the following discuss two approaches for modeling Xi(t).

3.2 A Gamma Model

In this section a multivariate model for n− 1 wind indexes and the German
wind index is discussed, which we refer to as the gamma model in the sequel.
In Sec. 5.1 we will consider the case n = 4. We start by introducing the noise
process. In particular, we say a Lévy process L is a compound Poisson process
with exponential jumps and parameters α > 0 and β > 0 if

L(t) =
N(t)

∑
i=1

Ji

where (N(t))t∈R is a Poisson process with intensity α and Ji, i ∈ N, are
independent exponentially distributed random variables with parameter β.
We say a random variable has an exponential distribution with parameter β
if it has density x 7→ 1[0,∞)(x)βe−βx.

The gamma model assumes X is a multidimensional Lévy-driven
Ornstein-Uhlenbeck (OU) process,

dX(t) = −ΛX(t)dt + ΣLdL(t). (C.4)

Here, L is an n-dimensional Lévy process where the i’th entry is an indepen-
dent compound Poisson process with exponential jumps, variance equal to
one, and parameters αi and βi for i = 1, . . . , n. Furthermore, Λ is a diagonal
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matrix, diag(λ1, . . . , λn) with λi > 0 for i = 1, . . . , n. We assume ΣL is given
by

ΣL =


σ1,1 0 . . . 0 σ1,n
0 σ2,2 . . . 0 σ2,n
...

...
. . . 0

...
0 0 0 σn−1,n−1 σn−1,n
0 0 0 0 σn,n

 (C.5)

and that all entries of ΣL are non-negative. Due to the form of ΣL, each in-
dividual wind index has an idiosyncratic risk associated to it through one of
the first n− 1 compound Poisson process L1, . . . , Ln−1. Furthermore, all sites
and the German index share a systematic risk through the n’th compound
Poisson process Ln. A similar construction is also considered in Ballotta &
Bonfiglioli (2016) where a multivariate model is proposed for modeling fi-
nancial products written on more than one underlying asset.

Distribution of Pn(t) in the Gamma Model

Since Xn, the process associated with the German wind index, is an OU
process driven by one compound Poisson process with exponential jumps, it
has a gamma distribution as its stationary distribution. Thus, we conclude
the following:

Proposition 3.1. The stationary distribution of Pn(t) in the gamma model has den-
sity

fPn(t)(x) =
(− log(1− x))αn−1(1− x)βn/Sn(t)−1

Sn(t)αn
x ∈ (0, 1) (C.6)

Proof. This is a direct consequence of Xn(t) being gamma distributed with
shape αn and rate βn (see for example Barndorff-Nielsen & Shephard
(2001)).

In Figure C.3 the density of Pn is depicted for different αn and βn (with
Sn(t) = 1). We see that the densities implied by the gamma model are rather
flexible and able to cover both low and high utilization scenarios.

The processes X1, . . . , Xn−1 are sums of two independent gamma distri-
butions, and thus, there does not, in general, exist simple expressions for the
densities of the individual site index similar to the one for the German index
stated in Prop. 3.1.
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Fig. C.3: Different variations of the density in (C.6)

Covariance Between Wind Indexes in the Gamma Model

We now give (semi-)analytical expressions of the covariances implied by the
gamma model, which will be useful for fast calculation of the minimum vari-
ance hedges discussed in Section 5. The integral in Eq. (C.7) is the only
non-analytical part of the expression, but we argue in Remark A.3 that this
integral is small and can be coarsely approximated without significant effect.
We thereby maintain fast computation time.

Before we state the result, let us introduce some notation to help making
a concise statement. To this end define the n× (n + 1) matrix Σ̃L by

Σ̃L =


σ1,1 0 . . . 0 0 σ1,n
0 σ2,2 . . . 0 0 σ2,n
...

...
. . . 0 0

...
0 0 0 σn−1,n−1 0 σn−1,n
0 0 0 0 0 σn,n


where σi,j is the (i, j)’th entry of ΣL. Let σ̃i,j denote the (i, j)’th entry of Σ̃L.
Furthermore, define α̃, β̃ ∈ Rn+1 by

α̃ = (α1, . . . , αn−1, 0, αn)
> and β̃ = (β1, . . . , βn−1, 1, βn)

>,

and denote the i’th entry of α̃ and β̃ by α̃i and β̃i. We now give the expres-
sions of the covariances of the gamma model. The proof is relegated to the
Appendix.

Proposition 3.2. Consider s ≤ t and define

fi,j(u) = Si(t)σ̃i,n+1e−λi(t−s+u) + Sj(s)σ̃j,n+1e−λju, i, j = 1, . . . , n.
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Then

cov(Pi(t), Pj(s))

=

(
β̃i

β̃i + σ̃i,iSi(t)

)α̃i/λi
(

β̃n+1 + σ̃i,n+1Si(t)e−λi(t−s)

β̃n+1 + σ̃i,n+1Si(t)

)α̃n+1/λi

×
(

β̃ j

β̃ j + σ̃j,jSj(s)

)α̃j/λj
[(

1 +
fi,j(0)

β̃n+1

)α̃n+1 fi,j(0)/ f ′i,j(0)

× exp

{
α̃n+1

∫ ∞

0

d
du

(
fi,j(u)

d
du fi,j(u)

)
log
(

1 +
fi,j(u)

β̃n+1

)
du

}

−
(

β̃n+1

β̃n+1 + σ̃i,n+1S4(t)e−λi(t−s)

)α̃n+1/λi
(

β̃n+1

β̃n+1 + σ̃j,n+1Sj(s)

)α̃n+1/λj


(C.7)

for i, j = 1, . . . , n, i 6= j, and

cov(Pi(t), Pi(s))

=

(
β̃i + σ̃i,iSi(t)e−λi(t−s)

β̃i + σ̃i,iSi(t)

)α̃i/λi
(

β̃n+1 + σ̃i,n+1Si(t)e−λi(t−s)

β̃n+1 + σ̃i,n+1Si(t)

)α̃n+1/λi

×

( β̃i

β̃i +
(
Si(t)e−λi(t−s) + Si(s)

)
σ̃i,i

)α̃i/λi

×
(

β̃n+1

β̃n+1 +
(
Si(t)e−λi(t−s) + Si(s)

)
σ̃i,n+1

)α̃n+1/λi

−
(

β̃2
i(

β̃i + σ̃i,iSi(t)e−λi(t−s)
) (

β̃i + σ̃i,iSi(s)
))α̃i/λi

×
(

β̃2
n+1(

β̃n+1 + σ̃i,n+1Si(t)e−λi(t−s)
) (

β̃n+1 + σ̃i,n+1Si(s)
))α̃n+1/λi


(C.8)

for i = 1, . . . , n.

Identification of Parameters in the Gamma Model

Let Λvar be the n× n matrix given by

(Λvar)i,j =
1

λi + λj
.
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Furthermore, denote by ◦ the Hadamard product. Then the following result
will be used to estimate the parameters of the gamma model. Again, we
relegate the proof of Proposition 3.3 to the Appendix.

Proposition 3.3. The mean of X is

E[X(0)] = Λ−1ΣLβ/2 (C.9)

and the auto-covariance of X is

cov(X(0), X(t)) =
(

Λvar ◦
(

ΣLΣ>L
))

e−Λt (C.10)

for t ≥ 0.

The parameters of the gamma model will be estimated in three steps.
First, the mean-reversion matrix Λ will be fitted to the empirical auto-
correlation function based on the first 25 lags. From (C.10), it follows that
the model auto-correlation function of Xi is t 7→ e−λit. To find λ̂i, the esti-
mate of λi, we therefore minimize

25

∑
t=1

(
ρ̂i(t)− e−λ̂it

)2

such that λ̂i > 0 for i = 1, . . . , n, where ρ̂i(t) is the empirical auto-correlation
function of Xi.

Next, Σ̂L is chosen such that the model matches the empirical covariances.
In particular, we choose Σ̂L to minimize∥∥∥Σ̂X −Λvar ◦

(
Σ̂LΣ̂>L

)∥∥∥2

where Σ̂X is the sample covariance of X, ‖ · ‖ is the Frobenius norm and the
minimization is done over matrices Σ̂L with non-negative entries of the form
in (C.5).

Finally, we discuss how the parameters α and β are estimated. First, we
choose β̂ = (β̂1, . . . , β̂n) to minimize∥∥∥µ̂X −Λ−1Σ̂L β̂/2

∥∥∥2

such that β̂i > 0, where µ̂X is the empirical mean of X.
It is not too difficult to show that var(Li(1)) = 2αi/β2

i and, since the
compound Poisson processes are assumed to have unit variance, it therefore
follows that

1 = var(Li(1)) =
2αi

β2
i

Consequently, we take α̂i = β̂2
i /2.
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3.3 A Lognormal Model

In this section we present a lognormal model relying on different assump-
tions than the gamma model. We assume that G(t) := log X(t) can be mod-
elled as a multidimensional Gaussian Ornstein-Uhlenbeck process,

dG(t) = −Υ(G(t)−Θ)dt + ΣdB(t), (C.11)

where (B(t))t∈R is an n-dimensional Brownian motion, Υ ∈ Rn×n is a diago-
nal matrix, Σ ∈ Rn×n is a lower triangular matrix, and Θ ∈ Rn.

It is well-known (see e.g. Halliwell (2015)) that the stationary distribution
of G(t), when the diagonal elements of Υ all are positive, is normal with mean
Θ. The autocovariance of G(t) is given in, for example, Halliwell (2015), and
it is the same as for the gamma model found in Prop. 3.3. In particular, we
find

ΣG(t) := cov (G(0), G(t))) =
(

Υvar ◦
(

ΣΣ>
))

e−Υt, t ≥ 0. (C.12)

Here, Υvar is the n× n matrix given by

(Υvar)i,j =
1

υi + υj
,

where υi is the i’th entry of Υ, i = 1, . . . , n.
Consequently, the stationary distribution of X(t) is multivariate lognor-

mal with expected value of Xi(0) being

E[Xi(0)] = exp
(

Θi +
ΣG(0)ii

2

)
,

while the autocovariance is

cov(Xi(0), Xj(t)) = E[Xi(0)]E[Xj(0)](e
ΣG(t)ij − 1) (C.13)

for i, j = 1, . . . , n (see e.g. Halliwell (2015) for more information on the multi-
variate lognormal distribution). This implies that the autocorrelation of X(t)
is

corr(Xi(0), Xj(t)) =
exp

(
ΣG(0)ije

−tυj
)
− 1√

(eΣG(0)ii − 1)(eΣG(0)jj − 1)
, (C.14)

for i, j = 1, . . . , n.

Distribution of Pi(t) in the Lognormal Model

Having the results for X(t) from the previous section in mind, the stationary
distribution of Pi(t) follows and is given in Prop. 3.4.
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Fig. C.4: Different variations of the density in Eq. (C.16).

Proposition 3.4. The stationary distribution of Pi(t) is characterized by the density

fPi(t)(x) =
−1

(1− x) log(1− x)
√

ΣG(0)i,i
φ

 log
(
− log(1−x)

Si(t)

)
−Θi√

ΣG(0)i,i

 , (C.15)

where ΣG(0)i,i is the i’th element of the diagonal of ΣG(0), Θi is the i’th element of
Θ, and φ(·) is the density of the standard normal distribution.

To investigate the density of Pi(t) in more detail, consider for a moment a
more generic version of Eq. (C.15), given by

f (x|µ, σ) =
−1

(1− x) log(1− x)σ
φ

(
log (− log(1− x))− µ

σ

)
. (C.16)

As can be seen in Fig. C.4, showing examples of the density given different
values of µ and σ in Eq. (C.16), the distribution is rather flexible and capable
of attaining quite different forms.

Covariance Between Wind Indexes in the Lognormal Model

Deriving the covariances between wind indexes in the lognormal model is
closely related to the derivation of the Laplace transform of the lognormal
distribution. To the best of our knowledge, no closed-form has been derived
for the Laplace transform of the lognormal distribution, but there exist ap-
proximations, see e.g. Asmussen et al. (2016). With regard to this paper, we
refer the interested reader to Asmussen et al. (2016) and the references herein
for further information, and employ numerical integration by exploiting our
knowledge of the distribution of G(t) to determine the covariances between
the wind indexes.
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3. Model Description

Identification of Parameters in the Lognormal Model

To identify the parameters of the model, we employ the method of moments
as in the gamma model case. We first identify ΣG(0) by exploiting Eq. (C.13),

ΣG(0)ij = log

(
Σ̂X,ij

µ̂iµ̂j
+ 1

)
, (C.17)

with µ̂i being the empirical mean of Xi(t), and Σ̂X,ij is the (i, j)th entry of the
empirical covariance between Xi(0) and Xj(0).

Having obtained an estimate of ΣG(0) and remembering the model im-
plied autocorrelation in Eq. (C.14), we identify υi by minimizing

25

∑
t=1

ρ̂i(t)−
exp

(
Σ̂G(0)iie−tυi

)
− 1√

(eΣ̂G(0)ii − 1)(eΣ̂G(0)ii − 1)

2

,

where ρ̂i(t) is the empirical autocorrelation function of Xi(0) and Xi(t). Here,
as in the gamma model, we use the first 25 lags of the empirical auto-
covariance function to estimate λi. With Υ̂, consisting of the estimated υi
for i = 1, . . . , n in the diagonal, at hand, we identify ΣΣ> by

ΣΣ> = Σ̂G(0)� Υ̂var,

where � is the Hadamard division defined for two matrices A and B by
A� B = Aij/Bij. Lastly, we determine Θ by

Θi = log(µi)−
Σ̂G(0)ii

2
, i = 1, . . . , n. (C.18)

3.4 Comparison of the Gamma and Lognormal Model

The covariances between indexes in the gamma model can be calculated fast
using Proposition 3.2 to find the optimal hedging strategy (see Sec. 5). The
noise in the gamma model also has a compelling interpretation, where an
idiosyncratic risk is associated to each site index and a systematic risk is
associated to all site indexes and the German index. On the other hand,
the lognormal model gives rise to closed-form expressions of the densities
of all indexes as opposed to only the German index in the gamma model.
The lognormal model is simple in the sense that the underlying process is a
Gaussian driven OU process. This makes it possible to do numerical analysis
based on Gaussian theory.

Both the gamma and lognormal model have straightforward and fast es-
timation procedures, making them easy to implement. Furthermore, as we
will see in Sec. 5.1, both models capture the autocorrelation of Xi, the cross-
autocorrelations between Xi and Xj, and the stationary distribution of Xi
well.
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âi b̂i ĉi

Site 1 0.1721 -0.0491 -0.0804
Site 2 0.2848 -0.0405 -0.0956
Site 3 0.2294 -0.0322 -0.1226
German 0.2732 -0.0298 -0.1285

Table C.1: Fitted seasonal parameters for the four wind indexes.

α̂i β̂i λ̂i σ̂i,i σ̂i,4

Site 1 0.0271 0.2328 0.8977 1.0305 1.1593
Site 2 0.0538 0.3282 0.7589 0.6101 0.9792
Site 3 0.1383 0.5260 0.8513 1.1674 0.8247
German 0.8960 1.3387 0.6539 (-) 0.9781

Table C.2: Estimated parameters in the gamma model.

4 Estimation Results

In this section we summarize and discuss the estimation results. As a starting
point, we consider the fitted seasonal functions. In Table C.1 we report the
fitted parameters for all four wind indexes.

4.1 Gamma Model

Fig. C.5 shows the theoretical autocorrelation implied by the estimated
gamma model compared to the empirical autocorrelation. The fit to the em-
pirical autocorrelation is convincing, and it is worth noticing that the cross-
autocorrelations match well even though the model has only been estimated
to the marginal autocorrelation functions.

In Fig. C.6 the histogram of Xi and the model density based on a simula-
tion are shown. We see that the distribution of the data is captured well by
the model.

We report the estimated parameters in Table C.2. The parameters α4 and
β4 are considerably larger than αi and βi for i = 1, 2, 3. This implies that
the systematic risk factor L4 jumps much more frequently than Li, i = 1, 2, 3,
but that the jumps of L4 are relatively small compared to the jumps of Li,
i = 1, 2, 3. This aligns well with the intuition that the systematic risk is
associated to the wind utilization of the whole of Germany.

To further assess the model, we report in Table C.3 the mean, variance,
skewness, and kurtosis of the gamma model along with the empirical and
lognormal equivalents for the German wind index2. The gamma model cap-

2Since the same quantities for the site wind indexes are not relevant in the remaining part of
the paper, we have chosen to omit them.
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Fig. C.5: Empirical autocorrelation and theoretical autocorrelation implied by the fitted gamma
model. The (i, j)’th panel shows cor(Xi(0), Xj(t)) for t = 0, 1, . . . , 25.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) German

Fig. C.6: Histograms of Xi(t) with the fitted densities of the gamma model.
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4. Estimation Results

Mean Variance Skewness Kurtosis

Gamma 1.00 0.73 1.71 7.38
Lognormal 1.00 0.73 3.17 24.98
Empiricial 1.00 0.73 1.67 6.27

Table C.3: Mean, variance, skewness, and kurtosis of the German wind index in the gamma and
lognormal model together with the empirical values for the German wind index.

Θ̂i υ̂i

Site 1 -0.4282 0.7080
Site 2 -0.3215 0.6341
Site 3 -0.3803 0.6837
German -0.2711 0.5607

Table C.4: Estimated parameters in the lognormal model.

tures the first two moments very well as expected from the estimation proce-
dure, where we match the gamma model to the empirical mean and variance.
Further, the empirical skewness and kurtosis are also captured very well by
the gamma model.

4.2 Lognormal Model

Fig. C.7 shows the theoretical autocorrelation implied by the estimated log-
normal model compared to the empirical autocorrelation. As in the gamma
model case, the lognormal model captures the autocorrelation and cross-
autocorrelation well, in particular taking into account that only the autocor-
relation is used to estimate the parameters affecting both the autocorrelations
and the cross-autocorrelations.

Fig. C.8 shows histograms of the marginal distributions and the fitted
lognormal densities. The lognormal model provides overall a decent fit, but
seems to capture the distribution of the German wind index better than the
site indexes. The estimated Θ and Υ for the lognormal model is reported in
Table C.4 and the estimated Σ is

Σ̂ =


1.0987 0 0 0
0.6763 0.5886 0 0
0.4902 0.3505 0.8376 0
0.6381 0.2539 0.2162 0.3035

 .

Although the speed of mean reversion parameters υ̂i differ in the lognormal
model compared to the gamma model, the same pattern is observed, with
the German wind index being the most persistent.

Returning to Table C.3, the lognormal model matches the empirical mean
and variance as a results of the estimation procedure, but it does not capture
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Fig. C.7: Empirical autocorrelation and theoretical autocorrelation implied by the fitted lognor-
mal model. The (i, j)’th panel shows cor(Xi(0), Xj(t)) for t = 0, 1, . . . , 25.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) German

Fig. C.8: Histograms of Xi(t) with fitted lognormal densities.
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the higher order standardized moments. This indicates that the lognormal
model does not capture the whole distribution of the data as well as the
gamma model.

5 Hedging Wind Power Production

In the following we denote the German wind index at day t by Pn(t). An
exchange-traded WPF contract is written on the underlying daily wind index,
Pn(t). The payoff of a long position in such a contract is

H(P̄n(S, T)− Pn(t0, S, T))X, (C.19)

where H is the number of hours during the delivery period [S, T], Pn(t0, S, T)
is the WPF price agreed on at time t0 < S < T, X is a specified tick size, and

P̄n(S, T) =
1

T − S + 1

T

∑
t=S

Pn(t).

From Eq. (C.19) it is apparent that a short position results in a positive payoff
in low wind scenarios according to the short position equivalent to Eq. (C.19),

H(Pn(t0, S, T)− P̄n(S, T))X.

That is, if the realization of P̄n(S, T) is lower than Pn(t0, S, T). This is
favourable for a WPP, since this payoff will offset the loss in income from
the long position in wind power production.

To be more specific, let Ci denote the capacity of WPP i, and let Pi(t)
denote the daily wind index/utilization of WPP i such that CiPi(t) is the
actual production of power. Further assume that the WPP receives a fixed
price Qi per produced MWh. The long position in wind power production
for WPP i doing the period [S, T] is therefore

P̄i(S, T)Ci HQi, (C.20)

where

P̄i(S, T) =
1

T − S + 1

T

∑
t=S

Pi(t). (C.21)

Assume that the WPP takes a position γi ∈ Z in WPF contracts with delivery
period being [S, T]. The payoff from taking this position and the long position
in wind power production results in a portfolio with payoff

HP̄i(S, T)CiQi + γi H(P̄n(S, T)− Pn(t0, S, T))X. (C.22)
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From Eq. (C.22) it is clear that perfectly hedging the volumetric risk would
mean to choose γi such that HP̄i(S, T)CiQi = −γi HP̄n(S, T)X, resulting in
the deterministic payoff γi HPn(t0, S, T)X. However, the problem for the WPP
is that the stochastic terms P̄i(S, T) and P̄n(S, T) are not perfectly dependent,
and hence obtaining the deterministic payoff γi HPn(t0, S, T)X is not possible.
In fact, as shown in Christensen & Pircalabu (2018), it is far from optimal
using the exchange-traded WPF contracts for hedging purposes for a single
WPP, depending on the dependence structure between the site-specific wind
index and the underlying index of the WPF contract.

5.1 Perfect Hedging of Volumetric Risk Using Tailor-Made
Wind Power Futures

Tailor-made over-the-counter WPF contracts is a way of perfectly hedging
the volumetric risk. Instead of going short the exchange-traded WPF con-
tract, the WPP could instead go short an over-the-counter WPF contract with
the underlying being Pi(t) instead of Pn(t). In the following we therefore
consider the situation of an energy management company (EMC) acting as
counterparty of these tailor-made WPF contracts from n− 1 different WPPs
in Germany. Let H(P̄i(S, T)− Pi(t0, S, T))CiQi be the payoff of a long posi-
tion in a tailor-made WPF contract for WPP i. Thus, from the point of view
of the EMC, the payoff of acting as counterparty for n− 1 different WPPs and
taking a position γ ∈ Z in the exchange-traded WPF contract is

RC(γ) =
n−1

∑
i=1

H(P̄i(S, T)− Pi(t0, S, T))CiQi + γH(P̄n(S, T)− Pn(t0, S, T))X,

(C.23)

while the payoff from the point of view of the ith WPP is

RWPP,i = HP̄i(S, T)CiQi + H(Pi(t0, S, T)− P̄i(S, T))CiQi

= HPi(t0, S, T)CiQi.

We argue that this construction can be beneficial for both the individual
WPPs and the EMC: Firstly, the individual WPPs obtain a perfect hedge of
their volumetric risk, and secondly, with an appropriate number of WPPs and
distribution of the WPPs geographically, the portfolio of tailor-made WPF
contracts approximately replicates the exchange-traded WPF contract.

5.2 Minimum Variance Hedge of a Tailor-Made WPF Con-
tracts Portfolio

In this section we discuss a minimum variance hedge of a portfolio consisting
of tailor-made WPF contracts for the EMC. I.e., from Eq. (C.23) we define the
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objective to

min
γ

var(RC(γ)).

The variance is

var(RC(γ)) = var

[
n−1

∑
i=1

H

(
1

T − S + 1

T

∑
t=S

Pi(t)− Pi(t0, S, T)

)
CiQi

+ γH

(
1

T − S + 1

T

∑
t=S

Pn(t)− Pn(t0, S, T)

)
X

]

=
n−1

∑
i=1

n−1

∑
j=1

(
H

T − S + 1

)2
CiQiCjQj

T

∑
t=S

T

∑
s=S

cov(Pi(t), Pj(s))

+

(
γ

H
T − S + 1

X
)2 T

∑
t=S

T

∑
s=S

cov(Pn(t), Pn(s))

+ 2
n−1

∑
i=1

(
H

T − S + 1

)2
γXCiQi

T

∑
t=S

T

∑
s=S

cov(Pn(t), Pi(s)). (C.24)

It follows from Eq. (C.24) that the optimal position of WPF contracts is

γ = −∑n−1
i=1 CiQi ∑T

t=S ∑T
s=S cov(Pn(t), Pi(s))

X ∑T
t=S ∑T

s=S cov(Pn(t), Pn(s))
. (C.25)

Besides the fact that the dependencies between the stochastic variables impact
the size of γ, the size of each wind site measured by Ci and the price paid
for each MWh to each wind site measured by Qi both translate linearly to
the size of γ. Therefore, the larger the wind site or the higher the price paid
for each MWh, the larger γ will be in absolute terms (all other things being
equal).

In-Sample Hedging Effectiveness

In the following we consider the case of an EMC that needs to hedge its
portfolio of tailor-made WPF from one year ahead to two years ahead. The
considered wind sites are the ones depicted in Fig. B.1(a). We assume that
the contract specifications for each site is as shown in Table C.5. Further,
we assume that X = 100 EUR. The estimated parameters of the gamma and
lognormal model are the ones reported in Sec. 5.1.

In Table C.6 we present the hedging results for the gamma and log-
normal model. We include the case with all three sites and the Ger-
man WPF in the portfolio, and then three cases where we only include
one of the wind sites and the German WPF. In each case, we report the
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Site ID Capacity in MW, Ci Price in EUR/MWh, Qi

1 100 30
2 100 30
3 100 30

Table C.5: Fictional contract specifications for the sites in Fig. B.1(a).

Case Sites in portfolio γ̂ var(RC(0)) var(RC(γ̂)) Variance reduction (%)

Gamma

1 1,2,3 -63.60 8.12 · 1011 1.31 · 1011 83.83
2 1 -18.87 8.55 · 1010 2.56 · 1010 70.12
3 2 -26.79 1.55 · 1011 3.41 · 1010 77.96
4 3 -17.94 1.25 · 1011 7.07 · 1010 43.42

Lognormal

1 1,2,3 -64.00 7.06 · 1011 1.21 · 1011 82.89
2 1 -18.97 8.12 · 1010 2.98 · 1010 63.33
3 2 -25.10 1.34 · 1011 4.42 · 1010 67.04
4 3 -19.92 1.13 · 1011 5.66 · 1010 50.05

Table C.6: Optimal hedging quantity γ implied by the gamma and lognormal model for different
portfolios consisting of different wind sites, and the corresponding variance of the portfolio
excluding the exchange-traded WPF contract, and the variance of the portfolio when the optimal
hedge is employed. Additionally, we show in all cases the associated variance reduction in
percentage.

model-implied optimal position of exchange-traded WPF contracts, γ̂, and
the variance reduction (in percentage) implied by the model calculated by
[var(RC(0))− var(RC(γ̂))]/ var(RC(0)). It is apparent that the portfolio with
all three sites outperforms the three other cases, confirming the diversifica-
tion approach of the EMC discussed in Sec. 5.1.

The fact that the difference regarding γ̂ is small indicate that both models
could be used interchangeably to determine an appropriate hedge, though
the difference in variance reduction will mislead in a risk management con-
text. In other words, if the wind indexes are driven by the gamma (log-
normal) model, and one uses the lognormal (gamma) model to determine
hedges, the variance reduction implied by the used model is wrong, while
the hedging quantity is relatively close to the optimal hedge.

Comparing Eq. (C.22) to Eq. (C.23), the cases 2, 3, and 4 represent the
variance reduction implied by the model if the individual wind sites were to
hedge their power production themselves by using the exchange-traded WPF
contract. From a social welfare point of view, the sum of variances of case
2, 3, and 4 is approximately 8% larger for both models. So not only does
the model suggest that tailor-made WPF contracts constitute an obvious way
of mitigating uncertainty for wind power producers, but also as a way of

101



Paper C.

optimizing the integration of wind power penetration in the electricity grid.

Out-Of-Sample Hedging Effectiveness

In this section we consider the same portfolio of wind sites as in the previous
case study, and the specifications of the sites are therefore specified in Ta-
ble C.5. However, here we assess the model on out-of-sample observations.
We assume that an EMC has bought tailor-made WPF contracts at the three
sites for the period from 2 July 2018 to 30 June 2019, corresponding to 364
days or 52 weeks. We employ a weekly minimum variance hedging strat-
egy, meaning that the EMC has a naked position in a portfolio of tailor-made
WPF contracts for the entire period with the exception of the front week. To
concretize, the first position taken in exchange-traded WPF contracts is the
contract with a weekly delivery period from 2 July 2018 to 8 July 2018. The
position is taken based on a model that is estimated by using two years of
observations ending the last trading day before the delivery period of the
weekly exchange-traded WPF contract. With the delivery period starting the
2 July 2018, the last trading day turns out to be 29 June 2018. Then we step
one week ahead and determine the appropriate hedge for the week starting
9 July 2018 and ending 15 July 2018, but again only by employing two years
of in-sample observations to estimate the model (the estimation period again
ends on the last day where one can trade the weekly exchange-traded WPF
contract). In this way we end up with 52 hedging quantities, where each
quantity is calculated using different estimated parameters of the model due
to the moving two-year observation period.

A comment on the model specifications is in place. The stationarity of
the models in Sec. 3 might seem unreasonable in the present context, given
the short period of time between an estimation date and the corresponding
start date of delivery of the exchange-traded WPF contract. However, we also
implemented the models that take the conditional distribution into account,
resulting in similar results. For the sake of keeping the presentation as clear
as possible, we have therefore only chosen to present the stationary versions
of the models.

The resulting optimal hedge quantities are depicted in Fig. C.9, indicating
a seasonal pattern with more exchange-traded WPF contracts needed during
spring compared to autumn. Considering Eq. (C.25), this is the result of the
fact that the difference between the sum of the autocovariances of the German
wind index and the sum of the autocovariances between the German wind
index and the site indexes increases. To assess the hedging effectiveness, we
calculate the corresponding implied weekly payoff, RC(γ̂), for each weekly
hedge quantity, γ̂. Since we have a variance minimizing perspective, we force
a simplistic view on Pi(t0, S, T) for all wind indexes. Specifically, we assume
that for each i, Pi(t0, S, T) for all weeks during the out-of-sample period from
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(b) Lognormal model

Fig. C.9: Variance minimizing hedge quantitiy, γ̂, implied by (a) the gamma model and (b) the
lognormal model for the 52 weeks covering the period from 2 July 2018 to 30 June 2019.
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Fig. C.10: Histograms of (a) the payoff for EMC by not hedging the portfolio of tailor-made WPF
contracts with exchange-traded WPF contracts, and (b)-(c) using the gamma and lognormal
model to find the position in exchange-traded WPF contracts used as a hedging instrument for
the portfolio of tailor-made WPF contracts.

2 July 2018 to 30 June 2019 is the mean of Pi(t) over the first estimation period
spanning 1 July 2016 to 29 June 2018,

Fig. C.10 shows a histogram of the payoffs of the portfolio of tailor-
made WPF contracts and the exchange-traded WPF contract acting as hedg-
ing instrument. Compared to Fig. C.10(a), the variances in Fig. C.10(b) and
Fig. C.10(c) are clearly reduced. In fact, the variance reduction in percentage
of using the exchange-traded WPF contracts as hedging instrument is 93.64%
for the gamma model and 93.62% for the lognormal model.

Risk Premium of Wind Power Futures

Since tailor-made WPF contracts are, by construction, traded over-the-
counter, it is worth to discuss the risk premium of such contracts. As a refer-
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ence point, we consider the risk premium of the exchange-traded WPF con-
tracts. We define the risk premium as the model implied WPF contract price
under the physical measure subtracted from the observed exchange-traded
WPF contract price. The model implied price is defined by E[P̄n(S, T)], mean-
ing that the risk premium RP(to, S, T) is

RP(t0, S, T) = P̄n(t0, S, T)−E[P̄n(S, T)] (C.26)

on day t0 for the delivery period [S, T]. The observed quoted exchange-traded
WPF prices are obtained from NASDAQ OMX. As concluded in Sec. 5.2, the
stationarity of the models does not imply different results compared to the
conditional versions of the models for such long time periods, so to ease the
presentation, we only consider the unconditional expected value here3.

We limit ourselves to yearly and quarterly exchange-traded WPF con-
tracts for two reasons. First, it is unlikely that the tailor-made WPF con-
tracts in general will be specified for a short delivery such as a week as a
result of such non-standardized instrument. Secondly, as concluded in Bert-
sekas & Pircalabu (2018), fundamentals impact the information premium of
exchange-traded WPF contracts with a short delivery period (e.g. a week)
and a short period of time to delivery, which we would like to avoid. Thirdly,
to assess the seasonal differences we also consider quarterly contracts.

For the period from 1 July 2016 to 30 June 2019, we show E[P̄n(S, T)] and
P̄n(t0, S, T) in Fig. C.11 for the front year (that is, for a given date, the front
year denotes the next year). The quoted prices are fairly constant throughout
the entire period, which could be a consequence of illiquidity of exchange-
traded WPF contracts. The risk premium is -0.011 for the gamma model and
-0.013 for the lognormal model on average. Since we are considering a yearly
WPF contract we can ignore the seasonality and use the empirical mean to
assess the risk premium. The empirical risk premium is -0.011, agreeing with
the gamma model. This is likely a consequence of the gamma model having a
better fit to the distribution of the German wind index as discussed in Sec. 5.1
(see also Table C.3).

Fig. C.12(a) shows the model implied and quoted prices for the front quar-
ter, and Fig. C.12(b) shows the corresponding risk premium. The mean of the
risk premium in this case is -0.014 for the gamma model and -0.016 for the
lognormal model. The seasonal variation in the prices peaks for contracts
with delivery during Q4 and Q1, simply since more wind is present during
these quarters. This is also reflected in the model-implied prices. The peaks
in the risk premium are observed for contracts with delivery during Q1 and
Q2. One explanation of this could be non-aligned incentives to engage in the

3Despite the fact that RP(t0, S, T) still depends on t0 thorugh P̄n(t0, S, T), the assumption
of stationarity is to some degree confirmed by the constant pattern of P̄n(t0, S, T) observed in
Figs. C.11 and C.12(a).
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Fig. C.11: The model implied and quoted price for the front year for the period from 1 July
2016 to 30 June 2019. Notice that the date refers to the observation date; i.e., the date where the
contract is quoted.

WPF market throughout the year for the buying and selling side. Christensen
et al. (2019) shows that the hedging benefits are greater for CPPs during Q3
and Q4 compared to Q1 and Q2; hence, during Q3 and Q4, CPPs are more
interested in WPF contracts and thus willing to pay more.

A negative risk premium is in line with the findings in Bertsekas & Pir-
calabu (2018) and Gersema & Wozabal (2017). One might argue that this
is expected from a hedging benefit perspective, since the hedging benefits
in general are greater for the selling side than the buying side (see Chris-
tensen & Pircalabu (2018), Christensen et al. (2019), and Gersema & Wozabal
(2017)). Continuing this argument, the risk premium is likely to be even more
negative in the tailor-made WPF contracts market as a result of the perfect
hedge implied by the tailor-made WPF contracts for WPPs. However, from
the perspective of the individual WPP, this extra risk premium associated
with the tailor-made WPF contract compared to the exchange-traded WPF
contract has to be weighted against the deterministic payoff implied by the
tailor-made WPF contract.

6 Conclusion

In this paper, we propose and compare two multivariate continuous-time
models, the gamma and lognormal model, for the joint behaviour of wind
indexes. We discuss the properties of the models, and propose estimation
procedures. Empirically, we employ the models to a joint model for the wind
indexes at three different wind sites in Germany, and the German wind index
that represents the overall utilization of wind power production in Germany.
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Fig. C.12: (a) the model implied and quoted price for the front quarter, and (b) and the risk
premium for the front quarter. The observations period is from 1 July 2016 to 30 June 2019.
Notice that the date refers to the observation date; i.e., the date where the contract is quoted.

We find that both models are able to capture the autocorrelation structure
well. However, the gamma model captures the skewness and kurtosis of the
German wind index better than the lognormal model.

The models are applied to a variance-minimizing hedging strategy of a
portfolio consisting of long positions in so-called tailor-made wind power fu-
tures contracts at the three wind sites, and a short position in the exchange-
traded wind power futures contract. The hedging effectiveness is assessed in
an in-sample and out-of-sample context. Both models indicate that a signif-
icant variance reduction can be obtained by hedging the portfolio with the
exchange-traded wind power futures contracts in-sample as well as out-of-
sample. Further, the hedging benefits are greater for the portfolio of tailor-
made wind power futures compared to hedging each individual wind site
with exchange-traded wind power futures contracts.

The risk premium of the exchange-traded wind power futures contracts is
examined, where we find that the gamma model implies a more reliable esti-
mate of the risk premium. A negative risk premium is observed in line with
other findings in the literature for both yearly and quarterly contracts. Even
though the tailor-made wind power futures contracts give each wind power
producer a perfect volumetric hedge of her wind power production, we argue
that it is likely that the risk premium for a tailor-made wind power futures
contract is even more negative compared to the exchange-traded contract.
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A Theoretical Results for the Gamma Model

This appendix is dedicated to proving Prop. 3.2 and Proposition 3.3. We start
by proving Prop. 3.3, which the lemma below is a first step towards. We
will use some standard results about continuous-time moving averages, all
of which can be found in Rajput & Rosinski (1989).

The following Lemma is well-known, but we give a proof for the sake of
completeness.

Lemma A.1. Let t ≥ 0 and consider the two one-dimensional processes

Y1(t) =
∫ t

−∞
f1(t− u)dZ(u) and Y2(t) =

∫ t

−∞
f2(t− u)dZ(u) (C.27)

for functions f1 and f2 in L1(R) ∩ L2(R), and where Z is a one-dimensional Lévy
process with second moment. Then

E[Y1(0)] =
∫ ∞

0
f1(u)duE[Z(1)]

and

E[(Y1(0)−E[Y1(0)])(Y2(t)−E[Y2(t)])] =
∫ ∞

0
f1(u) f2(t + u)du var(Z(1)).

Proof. Let ψY1(0),Y2(t) be the cumulant generating function of (Y1(0), Y2(t))
and ψZ be the cumulant generating function of Z. Then

ψY1(0),Y2(t)(x) = log E[exp{x1Y1(0) + x2Y2(t)}]

=
∫ t

0
ψZ(x2 f2(u))du +

∫ ∞

0
ψZ(x1 f1(u) + x2 f2(t + u))du.

It follows that for n1, n2 ∈N0 with n1 + n2 ≤ 2,

dn1+n2

dxn1
1 dxn2

2
ψY1,Y2(x) =

∫ t

0
f n2
2 (u)ψ(n2)

Z (x2 f2(u))du

+
∫ ∞

0
f n1
1 (u) f n2

2 (u)ψ(n1+n2)
Z (x1 f1(u) + x2 f2(u))du.

where ψ
(n1+n2)
Z denotes the n1 + n2 times derivative of ψZ. We conclude that

E[Y1(0)] =
d

dx1
ψY1(0),Y2(t)(0) =

∫ ∞

0
f1(u)duE[Z(1)].
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Assume now, without loss of generality, E[Z(1)] = 0. Then

E[(Y1(0)−E[Y1(0)])(Y2(t)−E[Y2(t)])]

=
d2

dx1dx2
ψY1(0),Y2(t)(0)

=
∫ ∞

0
f1(u) f2(t + u)du var[Z(1)]

Proof of Prop. 3.3. Let σi,k denote the (i, k)’th entry of ΣL. Then, using Lemma
A.1,

E[Xi(t)] =
n

∑
k=1

E

[∫ t

−∞
e−λi(t−u)σi,kdLk(u)

]
=

n

∑
k=1

1
λi

σi,kβk/2

=
(

Λ−1ΣLβ/2
)

i
.

This gives (C.9). Assume now, without loss of generality, E[L(1)] = 0. Then,
using Lemma A.1 again,

E[Xi(0)Xj(t)]

= E

[(
n

∑
k=1

∫ 0

−∞
e−λi(−u)σi,kdLk(u)

)(
n

∑
k=1

∫ t

−∞
e−λj(t−u)σj,kdLk(u)

)]

=
n

∑
k=1

σi,kσj,k

∫ ∞

0
e−λj(t+u)e−λiudu

=
e−λjt

λi + λj

n

∑
k=1

σi,kσj,k

= ((Λvar ◦ ΣLΣ>L )e
−Λt)i,j

from which (C.10) follows.

We now turn to proving Prop. 3.2. Initially, we give the next result which
is a special case of (Benth & Rohde, 2019, Theorem 4.8), but again, we give a
proof for the sake of completeness.

Proposition A.2. Let L be a compound Poisson process with intensity α > 0 and
exponential jumps with parameter β > 0. Consider t ∈ R, λ, µ > 0 and x1, x2 ∈ R

with x1 + x2 < β. Furthermore, assume x1x2 ≥ 0 and x1 6= 0, and let f (t) =
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x1e−λt + x2e−µt. Then

log E

[
exp

{∫ t

−∞
f (t− u)dL(u)

}]
= α

f (0)
f ′(0)

log
(

1− f (0)
β

)
+ α

∫ ∞

0

(
f (u)
f ′(u)

)′
log
(

1− f (u)
β

)
du,

(C.28)

where ∣∣∣∣∣
(

f (u)
f ′(u)

)′∣∣∣∣∣ ≤ (λ− µ)2

2λµ
(C.29)

for all u ≥ 0.

Proof. Initially, note that f / f ′ is bounded and∣∣∣∣∣
(

f (u)
f ′(u)

)′∣∣∣∣∣ = | f ′(u)2 − f (u) f ′′(u)|
f ′(u)2

=
x1x2(λ− µ)2e−(λ+µ)u

x2
1λ2e−2λu + x2

2µ2e−2µu + 2x1x2λµe−(λ+µ)u

≤ (λ− µ)2

2λµ
.

This gives the bound on ( f / f ′)′. Additionally, we find that∣∣∣∣∣
(

f (u)
f ′(u)

)′∣∣∣∣∣ = x1x2(λ− µ)2e−(λ+µ)u

x2
1λ2e−2λu + x2

2µ2e−2µu + 2x1x2λµe−(λ+µ)u

=
x1x2(λ− µ)2

x2
1λ2e−(λ−µ)u + x2

2µ2e−(µ−λ)u + 2x1x2λµ
.

We conclude that ( f (u)/ f ′(u))′ = O(e−|λ−µ|u) as u → ∞. Thus, all integrals
below are convergent and the integration by parts is justified. Next let

ψ(u) = log E[exp(uL(1))] = α
u

β− u

be the cumulant-generating function of L(1) and let φ(u) = −α log(1− u/β)
be the cumulant-generating funciton of a gamma distribution with shape α
and rate β (see for example Bertsekas & Pircalabu (2018)). Note that ψ(u) =
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uφ′(u). Then, using integration by parts,

log E

[
exp

{∫ t

−∞
f (t− u)dL(u)

}]
=
∫ ∞

0
ψ( f (u))du

=
∫ ∞

0

f (u)
f ′(u)

(φ( f (u)))′du

= − f (0)
f ′(0)

φ( f (0))−
∫ ∞

0

(
f (u)
f ′(u)

)′
φ( f (u))du.

Remark A.3. Considering the proof of Prop. A.2 there are two approaches to calcu-
late

log E

[
exp

{∫ t

−∞
f (t− u)dL(u)

}]
. (C.30)

Either by calculating ∫ ∞

0
ψ( f (u))du (C.31)

or

− f (0)
f ′(0)

φ( f (0))−
∫ ∞

0

(
f (u)
f ′(u)

)′
φ( f (u))du. (C.32)

Here, ψ and φ are the cumulant-generating function of L(1) and of a gamma distri-
bution with shape α and rate β as defined in the proof of Prop. A.2. By (C.29), the
integral in (C.32) will be small whenever (λ− µ)2/(2λµ) is small. In the applica-
tion we consider we are concerned with the case where λ = λ̂i and µ = λ̂j for some
i, j = 1, 2, 3, 4, where λ̂i and λ̂j are given in Table C.2. We have

max
i,j

(λ̂i − λ̂j)
2

2λ̂iλ̂j
= 0.0506,

and therefore, indeed, that (λ− µ)2/(2λµ) is small in the case relevant to us. The
integral in (C.32) has φ in the kernel whereas (C.31) has ψ, making a direct compar-
ison more difficult. We do, however, have

φ(u) = αu + O(u2) and ψ(u) = αu + O(u2) as u→ 0

(by a Taylor approximation argument), indicating that φ and ψ are of comparable
size, at least for small values. Furthermore, by numerical comparison, we have found
them to be of similar size. We conclude that the kernel of (C.32) is expected to be
considerably smaller than the kernel of (C.31). We therefore prefer to do the calcula-
tion in (C.32) instead of (C.31) since we can do a much more coarse approximation
for a desired precision of a approximation of (C.30).
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Proposition A.4. Let L be a compound Poisson process with intensity α > 0 and
exponential jumps with parameter β > 0. Consider s < t, λ > 0 and x < β. Then

E

[
exp

{
x
∫ t

s
e−λ(t−u)dL(u)

}]
=

(
β− xe−λ(t−s)

β− x

)α/λ

and

E

[
exp

{
x
∫ t

−∞
e−λ(t−u)dL(u)

}]
=

(
β

β− x

)α/λ

(C.33)

Proof. Let

ψ(t) = log E[exp(tL(1))] = α
t

β− t

be the cumulant-generating function of L. Then

log E

[
exp

{∫ t

s
f (t− u)dL(u)

}]
=
∫ t−s

0
ψ(e−λu)du

=
α

λ

(
log(β− xe−λ(t−s))− log(β− x)

)
.

A similar calculation gives (C.33).

Proof of Theorem 3.2. For notional convenience, let

L̃(t) = (L1(t), . . . , Ln−1(t), 0, Ln(t))> ∈ Rn+1.

First consider (C.7) and assume i 6= j. We have

Xi(t) =
∫ t

−∞
e−λi(t−u)σ̃i,idL̃i(u) +

∫ t

s
e−λi(t−u)σ̃i,n+1dL̃n+1(u)

+
∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃n+1(u)

and

Xj(s) =
∫ s

−∞
e−λj(s−u)σ̃j,jdL̃j(u) +

∫ s

−∞
e−λj(s−u)σ̃j,n+1dL̃n+1(u).

Next, note that cov(UV, W) = cov(V, UW) = E[U] cov(V, W) for a random
variable U independent of the random variables V and W. Applying this,
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and the above, we conclude that

cov(Pi(t), Pj(s))

= cov
(

e−Si(t)Xi(t), e−Sj(s)Xj(s)
)

=E

[
exp

{
−Si(t)

∫ t

−∞
e−λi(t−u)σ̃i,idL̃i(u)

}]
×E

[
exp

{
−Si(t)

∫ t

s
e−λi(t−u)σ̃i,n+1dL̃n+1(u)

}]
×E

[
exp

{
−Sj(s)

∫ s

−∞
e−λj(t−u)σ̃j,jdL̃j(u)

}]
× cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃i(u)

}
,

exp
{
−Sj(s)

∫ s

−∞
e−λj(s−u)σj,n+1dL̃n+1(u)

})

(C.34)

Expressions of the three expectations in Eq. (C.34) are given in Prop. A.4.
Furthermore,

cov
(

exp
{
−Si(t)

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃i(u)

}
,

exp
{
−Sj(s)

∫ s

−∞
e−λj(s−u)σ̃j,n+1dL̃n+1(u)

})
=E

[
exp

{
−
∫ s

−∞
fi,j(s− u)dL̃n+1(u)

}]
−E

[
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u)σ̃i,n+1dL̃n+1(u)

}]
×E

[
exp

{
−Sj(s)

∫ s

−∞
e−λj(s−u)σ̃j,n+1dL̃n+1(u)

}]
for which expressions are given in Prop. A.2 and Prop. A.4.

Next, consider (C.8). We write

Xi(t) =
∫ t

s
e−λi(t−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
+
∫ s

−∞
e−λi(t−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
and

Xi(s) =
∫ s

−∞
e−λi(s−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)
.
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Consequently,

cov(Pi(t), Pi(s))

= cov
(

e−Si(t)Xi(t), e−Si(s)Xi(s)
)

=E

[
exp

{
−Si(t)

∫ t

s
e−λi(t−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}]
× cov

(
exp

{
−Si(t)

∫ s

−∞
e−λi(t−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}
,

exp
{
−Si(s)

∫ s

−∞
e−λi(s−u) (σ̃i,idL̃j(u) + σ̃i,n+1dL̃n+1(u)

)})
Again, expressions for the expectation in (C.34) can be found using Prop. A.4.
Finally,

cov
(

exp
{
−Si(t)

∫ s

−∞
e−λi(t−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)}
,

exp
{
−Si(s)

∫ s

−∞
e−λi(s−u) (σ̃i,idL̃i(u) + σ̃i,n+1dL̃n+1(u)

)})
=E

[
exp

{
−
∫ s

−∞
σ̃i,i

(
Si(t)e−λi(t−s) + Si(s)

)
e−λi(s−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1

(
Si(t)e−λi(t−s) + Si(s)

)
e−λi(s−u)dL̃n+1(u)

}]
−E

[
exp

{
−
∫ s

−∞
σ̃i,iSi(t)e−λi(t−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1Si(t)e−λi(t−u)dL̃n+1(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,iSi(s)e−λi(s−u)dL̃i(u)

}]
×E

[
exp

{
−
∫ s

−∞
σ̃i,n+1Si(s)e−λi(s−u)dL̃n+1(u)

}]

where expressions are given in Prop. A.4.
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1. Introduction

Abstract

The liberalization of energy markets worldwide during recent decades has introduced
severe implications on the price formation in these markets. Especially within the
European day-ahead electricity markets, increased physical connections between dif-
ferent market areas and a joint effort on optimizing the aggregate social welfare have
led to highly connected markets. Consequently, observing the exact same hourly day-
ahead prices for two or more interconnected electricity markets in Europe happens
frequently. This affects the modeling of such prices and in turn the valuation of
derivatives written on prices from such market areas. In this paper, we propose a
joint model for day-ahead electricity prices in interconnected markets composed of a
combination of transformed Ornstein-Uhlenbeck processes. We discuss the proper-
ties of the model and propose an estimation procedure based on filtering techniques.
Furthermore, the properties of the model reveal that analytical prices are attainable
for e.g. forwards and spread options.

1 Introduction

With the introduction of liberalized energy markets worldwide, increased in-
terconnectedness between different market areas has emerged. The so-called
market coupling mechanism has increased the degree of connectivity even
more in the European electricity markets. The market coupling works by
collecting bids and offers for trading electricity the following day from each
market area. Then, based on a social welfare optimization, a single algo-
rithm calculates optimal flows in the system given interconnector limitations
for each hour of the following day and the corresponding electricity prices;
hence, the name day-ahead prices (Epex Spot (2019)). Fig. D.1 illustrates this
procedure in a two-market setup. The prices labelled "Domestic price" are the
prices set if the areas were not connected and no cross-border flows of elec-
tricity were present. The difference between the domestic prices are rather
large in this case. Though, by the market coupling mechanism, the price
spread between these two areas are minimized. In the case of Fig. D.1, we
have enough interconnector capacity between the areas to eliminate the price
spread completely. We define such a zero price spread as exact price conver-
gence (EPC). The result is that cheap electricity is transferred from the low
price area to the high price area, or loosely speaking, electricity flows from
the area with a surplus of electricity to the area with a need for electricity.

As exemplified by Fig. D.1, the market coupling has severe implications
on the resulting prices in interconnected markets. Most notable is the pres-
ence of EPC that naturally has an impact on derivative prices, and in partic-
ular on transmission rights. A transmission right is basically a spread option
between two connected market areas with the underlying being the spread
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(a) High price area
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Fig. D.1: Example of market coupling in a two-market setup where exact price convergence is
reached; i.e., the price spread between the two market areas is forced to be exactly zero by the
market coupling mechanism. As a result, the domestic price in the high price area is reduced
and the domestic price in the low price area is increased.

between the market areas under consideration1. When EPC occurs, the un-
derlying spread is zero, and the transmission right becomes worthless. To
conduct sensible pricing of transmission rights (and related derivatives in in-
terconnected markets), a model capable of incorporating zero price spreads
is therefore motivated.

Day-ahead electricity price modeling in general has been examined in
numerous studies. To name a few, Lucia & Schwartz (2002), Geman & Ron-
coroni (2006), and Meyer-Brandis & Tankov (2008) all focus on modeling the
temporal dynamics of a single market. Lucia & Schwartz (2002) exemplify
their proposed model using daily average prices from the Nord Pool mar-
ket, Geman & Roncoroni (2006) use daily prices from the US, while Meyer-
Brandis & Tankov (2008) use EEX prices. Benth & Šaltytė Benth (2004) and
Benth et al. (2007) also focus on the temporal dynamics of a single market,
and additionally discuss derivative pricing. Both of them present the model
in the context of Nord Pool data, while the former also uses Brent oil data.
Regarding the spatial interdependencies between different market areas, we
mention Douglas & Popova (2011) and Abate & Haldrup (2017). Douglas
& Popova (2011) estimate a spatial error model on data from Pennsylvania-
New Jersey-Maryland Interconnection, consisting of twelve market areas at
the time of their investigation. Abate & Haldrup (2017) investigate daily av-
erages of day-ahead prices from the markets making up the Nord Pool area,
and find that the inclusion of spatial effects is as important as including tem-

1A transmission right can either be physically or financially settled, and will collapse if the
physical transmission right is sold under the "use it or sell it" condition. We refer the interested
reader to Mahringer et al. (2015) for more information.
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poral effects.
The literature concerning the joint modeling of day-ahead electricity

prices for two or more interconnected markets where market coupling is
taken into account is quite scarce. Mahringer et al. (2015) use a structural ap-
proach, where they model the supply and demand in a two-market setup that
incorporates market coupling and allows for closed-form solutions for trans-
mission rights. Pircalabu & Benth (2017) propose a reduced-form model in a
two-market setup defined in discrete time that includes the market coupling
mechanism using a regime-switching model, but no closed-form solutions
for derivative prices are given.

As Pircalabu & Benth (2017) we propose a reduced-form model for day-
ahead prices in a two-market setup that takes market coupling into account.
Compared to Pircalabu & Benth (2017), we differentiate us by formulating the
model in continuous time. Instead of an ARMA-GARCH copula formulation
combined with a discrete Markov chain, we assume that day-ahead prices
can be described by a suitable combination and transformation of Gaussian
Ornstein-Uhlenbeck processes. On one hand, this has the disadvantage that
complicated dependence structures that are easily handled by copulas can
be rather hard to incorporate in the present continuous-time formulation.
On the other hand, the continuous-time formulation makes us able to derive
closed-form solutions of forward and transmission right prices. Our contri-
bution to the literature additionally includes an estimation procedure for the
proposed model. It is based on two independent parts, namely a Kalman
filtering part and a particle filtering part.

Although we in this paper have a Eurpoean perspective, we believe that
the results are interesting in other parts of the world as well where market
area dependencies are present. As an example, Park et al. (2006) examine con-
nected electricity markets in the US, and find that day-ahead prices in such
connected market areas inherit spatial interdependencies. Also interesting is
the work in Ignatieva & Trück (2016), studying the dependence in day-ahead
prices between different market areas in the Australian electricity market. Ig-
natieva & Trück (2016) find a positive dependence between all market areas,
but the strongest dependence is observed between adjacent market areas.

The remaining part of this paper is organized as follows: Sec. 2 intro-
duces data and also serves as a motivation for the model choices made in
later sections. In Sec. 3 we introduce the proposed model and discuss its
properties. Sec. 4 concerns estimation of the model, while we in Sec. 5 ex-
emplify the model empirically through a case study of German and French
electricity prices and discuss derivative prices implied by the model. Sec. 6
concludes.
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Fig. D.2: Time spent in the EPC state in percentage for each hour from 1 July 2015 to 30 June
2018 for the following spreads: DE-FR, BE-FR, BE-NL, and DE-NL.

2 Data Presentation and Model Motivation

This section presents data from the hourly power markets under considera-
tion, and motivates the model choices made in later sections. The observa-
tions in this paper cover the three-year period from 1 July 2015 to 30 June
2018 and the market areas making up the Central Western Europe (CWE)
area; Germany, France, the Netherlands, and Belgium. The market coupling
algorithm was actually already introduced in the CWE area in November
2010; though, the underlying optimization algorithm was changed from the
so-called available transfer capacity method to the flow-based market cou-
pling method on 20 May 2015 (see Elia (2019)). In order to avoid results
affected by the old methodology, we have thus chosen to fix our start date to
1 July 2015.

To give a sense of the frequency of how often EPC happens, Table D.1
reports the observed percentage of time EPC occurred for each hour during
the mentioned three years. The EPC percentage varies quite a bit depending
on the chosen price spread and chosen hour. Fig. D.2 illustrates the data
showed in Table D.1, and shows a clear pattern throughout the day for all
spreads, with peaks around hour 5 and 18. The lowest values are reached at
hour 12 and 23. Though, the rather high percentages in general suggests that
EPC is important to consider in a modeling context in all cases.

Fig. D.3(a) illustrates the evolution of the day-ahead electricity price in
Germany and France for the hour from 21:00-22:00. In the rest of the paper,
we denote the hour spanning the period 21:00-22:00 by hour 21 and likewise
for the other hours. First of all, negative prices are observed, indicating over-
supply of electricity in the grid. Traditional financial models that only allow
non-negative prices are therefore not able to take this feature into account.
Even though it is only German prices that are negative for this particular
time series, negative values are allowed for the other CWE market areas as
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Hour DE-FR BE-FR BE-NL DE-NL

0 28 35 39 37
1 30 40 42 37
2 35 43 46 40
3 41 47 49 44
4 44 51 51 47
5 43 51 49 47
6 44 52 49 50
7 42 50 47 49
8 40 47 45 45
9 28 37 36 33

10 26 34 33 30
11 23 32 31 28
12 19 28 28 27
13 21 30 29 26
14 24 32 31 27
15 31 39 36 33
16 41 47 42 40
17 44 49 47 44
18 45 51 49 51
19 41 48 45 48
20 38 45 41 45
21 36 43 42 4
22 26 35 35 34
23 15 26 27 27

Table D.1: Observed EPC percentage for each hour for the four different cross-border connec-
tions in Central-West Europe from 1 July 2015 to 30 June 2018.

123



Paper D.

Ju
l-1

5

Ja
n-

16

Ju
l-1

6

Ja
n-

17

Ju
l-1

7

Ja
n-

18

Ju
l-1

8

Date

-50

0

50

100

E
U

R
/M

W
h

FR
DE
EPC

(a) Day-ahead prices for the entire period

Sep
-1

6

Oct-
16

Nov
-1

6

Dec
-1

6

Ja
n-

17

Feb
-1

7

Date

0

50

100

E
U

R
/M

W
h

FR
DE
EPC

(b) Sub sample of autumn/winter day-ahead
prices

M
ar

-1
7

Apr
-1

7

M
ay

-1
7

Ju
n-

17

Ju
l-1

7

Aug
-1

7

Date

0

50

100

E
U

R
/M

W
h

FR
DE
EPC

(c) Sub sample of spring/summer day-ahead
prices

Fig. D.3: (a) Day-ahead pricse for France and Germany for hour 21 from 1 July 2015 to 30 June
2018, (b) and (c) are subsamples of the data presented in Fig. D.3(a) to illustrate the differences
between these periods.

well. Secondly, it is apparent that the mean and volatility of each price series
seems to be highly seasonal. In particular, spring and summer periods result
in a more calm behaviour, and autumn and winter periods in a more volatile
behaviour, see Figs. D.3(b)–D.3(c) that exemplify the seasonal differences.

Proceeding with the seasonal behaviour, Fig. D.4 illustrates the day-ahead
price differences between three chosen price pairs. We see that EPC happens
more often during summer and spring than during autumn and winter in
the FR-DE case in Fig. D.4(a). A possible explanation for this is the fact
that the cheap nuclear power production from France during summer levels
out the differences between the French and German prices. Opposite, during
winter the demand for electricity rises in France and in turn the French power
prices rise, while the German prices do not rise similarly partly due to the
high wind power production and the lower dependency on using electricity
for heating, all in all making the gap between German and French prices
widen during autumn/winter. With a physical connection between Germany
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Fig. D.4: Day-ahead price differences for different hours and market areas.

and France being only of a certain size, and since the amount of needed
transferred electricity between Germany and France to level out prices during
autumn/winter is greater due to the larger price gap, congestion is observed
more often during autumn/winter than spring/summer. A similar behaviour
is observed in Fig. D.4(c), while the rate at which EPC occurs seems more
evenly spread out over the year in Fig. D.4(b).

To investigate EPC in more detail, we plot in Fig. D.5 the number of days
being in the EPC state for the spreads considered in Fig. D.4. The plot is
constructed by dividing the observations in overlapping sub-samples of 60
days, and then calculating the number of EPC days in each sub sample.
Fig. D.5(a) shows a rather large difference between the time spent in EPC
during spring/summer and autumn/winter, with a peak above 80% and the
lowest value being 0%. The same seasonal pattern is observed in Fig. D.5(c),
though with a lower amplitude. Opposite, the level is much more constant
in the case of Fig. D.5(b).

As is apparent from the above discussion, special features distinguish
hourly day-ahead prices from traditional financial markets. Besides the ob-
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Fig. D.5: Time spent in the EPC state in percentage for overlapping sub-samples of 60 days.
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3. Model Description

vious allowed negativity in the CWE area, seasonality in the mean level and
volatility are known features of electricity prices (see e.g. Haldrup et al.
(2010), Pircalabu & Benth (2017), and Borovkova & Schmeck (2017)), but as
discussed above time-varying seasonality in probability of being in the EPC
state is also important to take into account.

3 Model Description

Let (Ω,F , P) be a complete probability space. We propose the following
model for the day-ahead prices

S(t) = I(t)p(t), (D.1)

where S(t) ∈ RN is the vector of day-ahead prices at time t for N market
areas. The motivation for our model is to capture the price formation mecha-
nism in a reduced-form manner. The exact convergence of day-ahead prices
is represented by I(t) ∈ RN×N , which is piecewise constant resembling the
exact price convergence of prices from different market areas. An illustrative
example of the process I(t) is in the case N = 2, where one can choose the
states of I(t) as

I(1) =
[

w 1− w
w 1− w

]
and I(2) =

[
1 0
0 1

]
. (D.2)

Here w is a constant between zero and one that measures the pulling effect
of each component of S(t). In this example, state two—emphasized with
subscript (2)—corresponds to no exact price convergence and S(t) = p(t),
whereas state one corresponds to exact price convergence with the common
price being wp1(t) + (1−w)p2(t). The states of I(t) is driven by an underly-
ing process z(t), which we will discuss shortly.

The process p(t) ∈ RN represents the partly latent non-convergence price
set in each individual market area, and can thus be interpreted as the "domes-
tic" prices. It is only partly latent, since we do in fact observe it in non EPC
states. In the above example with N = 2, we observe p(t) whenever we are in
state two. Based on the rather deterministic demand for electricity (which in
turn is due to highly seasonal temperature patterns influencing the demand
to a large extent) we assume that deviations from a deterministic seasonal
function are temporary. We therefore assume that p(t) can be divided in a
deterministic part, Λ(t) ∈ RN and stochastic part q(t) ∈ RN , by

p(t) = Λ(t) + q(t). (D.3)

We assume that the stochastic part is governed by a multivariate Ornstein-
Uhlenbeck process

dq(t) = −Kq(t)dt + ΣdBp(t), (D.4)
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where K ∈ RN×N is a constant matrix with the real part of its eigenvalues
being positive, Σ ∈ RN×N , and Bp(t) is an N-dimensional Brownian mo-
tion. By this specification we allow for negative prices. While this is clearly
unsatisfactory in traditional financial markets, negative prices in electricity
markets do occur as discussed in Sec. 2.

We remark that a similar modelling idea has been proposed in a recent
paper by Hinderks et al. (2018) in a structural Heath-Jarrow-Morton approach
to electricity futures pricing. There, fixed-delivery futures price dynamics
are modelled as a product of a noise process and a conditional expectation
of a structural component. As for our model, the authors demonstrate the
analytical tractability of such an approach in derivatives pricing.

The above specification holds for all N; however, we will limit ourselves
to the case where N = 2 in the rest of the paper for two reasons. First of all,
an important feature of the model is the ability to price transmission rights.
By construction, these derivatives are essentially spread options with the un-
derlying being the spread between only two adjacent market areas. We thus
argue that the case with N > 2 is unnecessary regarding this application, but
acknowledge that it could be relevant in other contexts. Secondly, modeling
issues related to the underlying process governing I(t) arises when N > 2.
We briefly comment on this in the next sections, where we elaborate on the
components of the model in more detail.

3.1 Properties of p(t)

Let vec(·) denote the vectorization operator that stacks the columns of a ma-
trix A on top of each other; i.e., if A is an m× n matrix, then the vectorization
operator applied on A results in a column vector of size mn× 1. Let further
vec−1(·) be the operator satisfying vec−1(vec(A))=A for a square matrix A.
Notice that for non-square matrices, vec−1(·) is not uniquely defined; how-
ever, since we only deal with square matrices, we omit a further discussion
of this. Define the Kronecker sum between two square matrices A and B
by A ⊕ B = A ⊗ IB + IA ⊗ B, where ⊗ is the Kronecker product, and IB is
the identity matrix with the same size as B, and IA is defined in the same
way. We denote the filtration generated by the Brownian motion Bp(t) by

{FBp
t }t≥0. Prop. 3 states the distribution of p(t) conditional on F Bp

s .

Proposition 3
Let p(t) be defined as in Eq. (D.3), and let s < t. The distribution of p(t) is

normal conditional on F Bp
s with mean

E[p(t)|FBp
s ] = Λ(t) + e−(t−s)Kq(s) (D.5)
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and variance

Var[p(t)|FBp
s ] = vec−1

(
(K⊕ K)−1(I− e−(t−s)K⊕K)vec(ΣΣT)

)
, (D.6)

where I is the identity matrix of same size as K⊕ K.

Proof. The solution of Eq. (D.4) is seen to be

q(t) = e−(t−s)Kq(s) +
∫ t

s
e−(t−u)KΣdBp(u) (D.7)

by the multidimensional Ito formula. The normality and expected value fol-
lows. Using the Ito isometry, we get

Var[p(t)|FBp
s ] =

∫ t

s
e−(t−u)KΣΣTe−(t−u)KT

du. (D.8)

For matrices A, B, and C of appropriate sizes, two useful identities are
vec(ABC) = (CT ⊗ A)vec(B) (see e.g. Macedo & Oliveira (2013) and the
references herein for more information on this result) and eA⊕B = eA ⊗ eB.
Eq. (D.8) can then be simplified by writing the vectorized version as

vec
(

Var[p(t)|FBp
s ]
)
=

(∫ t

s
e−(t−u)(K⊕K)du

)
vec(ΣΣT)

= (K⊕ K)−1(I− e−(t−s)K⊕K)vec(ΣΣT).

Since we assume that the eigenvalues of K all have positive real parts, all
eigenvalues of K⊕K have positive real parts, see e.g. Laub (2005). Hence, the
existence of a limiting distribution of q(t) follows from Prop. 6.2 of Ichihara
& Kunita (1974). This limiting distribution is normal with mean zero and
variance

lim
t→∞

Var[q(t)|FBp
s ] = vec−1

(
(K⊕ K)−1vec(ΣΣT)

)
. (D.9)

As time approaches infinity, the expected value of p(t) will therefore coincide
with Λ(t), while the variance of p(t) coincides with the variance of q(t) given
in Eq. (D.9).

3.2 Properties of z(t)

Limiting our investigation to the case N = 2, we assume that the state of
I(t) is determined by a latent univariate stochastic process z(t). Specifically,
we assume that the EPC state occurs whenever z(t) > 0, so we in this two-
dimensional case have

I(t) =

{
I(1), if z(t) > 0
I(2), otherwise

,
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where I(1) and I(2) are given in Eq. (D.2). z(t) is defined by

z(t) = λ(t) + x(t), (D.10)

λ(t) = aλ + bλ cos
(

2πt
M

+ cλ

)
,

dx(t) = −kx(t)dt + σ(t)dBz(t), (D.11)

σ(t) = aσ + bσ cos
(

2πt
M

+ cσ

)
.

Here aλ, bλ, cλ, k, aσ, bσ, cσ, M ∈ R are constants, and Bz(t) is a univariate
Brownian motion. λ(t) is a seasonal function measuring the asymptotic mean
level of z(t), while x(t) measures the uncertainty of z(t). To allow for time-
varying uncertainty in P(z(t) > 0), which is pronounced in the empirical
investigations in Sec. 2 and especially Fig. D.5, we introduce seasonality in the
volatility parameter σ(t). We denote the filtration generated by the Brownian
motion Bz(t) by {FBz

t }t≥0, and assume independence between F Bz
t and F Bp

t .

Define Ft := F Bz
t ∨F

Bp
t . The following proposition is useful in an estimation

and simulation setting.

Proposition 4
Let z(t) be given as in Eq. (D.10), and let s < t. Then the distribution of z(t)
is normal conditional on Fs with mean

E[z(t)|Fs] = λ(t) + x(s)e−k(t−s), (D.12)

and variance

Var[z(t)|Fs] =
a2

σ

2k

(
1− e−2k(t−s)

)
+ A(s, t) + B(s, t), (D.13)

where

A(s, t) =
b2

σ

4(M2k3 + 4π2k)

[
4π2 + M2k2 + M2k2 cos

(
4πt
M

+ 2cσ

)

+ 2Mkπ sin
(

4πt
M

+ 2cσ

)
− e−2k(t−s)

(
4π2 + M2k2

+ M2k2 cos
(

4πs
M

+ 2cσ

)
+ 2Mkπ sin

(
4πs
M

+ 2cσ

))]
, (D.14)

B(s, t) =
aσbσ M

M2k2 + π2

[
π sin

(
2πt
M

+ cσ

)
+ Mk cos

(
2πt
M

+ cσ

)

− e−2k(t−s)

(
π sin

(
2πs
M

+ cσ

)
+ Mk cos

(
2πs
M

+ cσ

))]
. (D.15)
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3. Model Description

Proof. Using the Ito formula, the solution to Eq. (D.11) for s < t is

x(t) = e−k(t−s)x(s) +
∫ t

s
e−k(t−u)σ(u)dBz(u).

The normality follows from the deterministic integrand and the Brownian
motion. The expected value is trivially calculated, and the variance is ob-
tained by using the Ito isometry and straightforward calculations.

An Alternative Approach

One approach that might be obvious to use to model the underlying pro-
cess governing the state of I(t) is the continuous-time Markov chain, having
showed to be of great usefulness in various applications (see e.g. Hubbard
et al. (2008) in the context of disease progression modelling, and Inamura
(2006) in the context of credit rating modelling). As already noted, the prob-
ability of EPC can be time dependent with a seasonal pattern, see Fig. D.5,
meaning that a time-homogeneous Markov chain would fail to give a real-
istic representation of the underlying of I(t). Time-inhomogeneous Markov
chains would take care of the just-mentioned shortcoming, but, to the best of
our knowledge, limited theoretical results exist to accommodate it. Hubbard
et al. (2008) use a common time transformation to make transition rates time
dependent, which is not applicable in our setting, since we would need a non-
common time transformation to make certain states more likely than others
in certain periods and vice versa. Time-inhomogeneous Markov chains being
able to accommodate the above are therefore left as future research, which
would possibly also pave the way for the case with N > 2.

3.3 Properties of S(t)

Having established results regarding p(t) and z(t) in Sections 3.1 and 3.2,
respectively, we now turn to S(t).

Proposition 5
Let p(t) and z(t) be defined as in Sections 3.1 and 3.2, respectively. The
distribution of S(t) is then mixed normal conditional on Fs for s < t with
density

fs,t(x) =
2

∑
j=1

P(j)(s, t)
1

(2π)Nj/2|Σ(j)(s, t)|
e−

1
2 (x−µ(j)(s,t))

T
Σ(j)(s,t)−1(x−µ(j)(s,t))

with Nj ≤ N for j = {1, 2} being the rank of I(j), Φ(·) being the cumulative
distribution function for the standard normal distribution, and where

µ(j)(s, t) =I(j)E[p(t)|Fs]

Σ(j)(s, t) =I(j)Var[p(t)|Fs]IT
(j),
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and

P(1)(s, t) = 1−Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)
, P(2)(s, t) = 1−P(1)(s, t). (D.16)

Proof. The characteristic function of S(t) is

E
[
eiyTS(t)|Fs

]
=E

[
eiyT I(t)(Λ(t)+q(t))|Fs

]
=E

[
E

[
exp

(
iyT I(t)

(
Λ(t) + e−(t−s)Kq(s)

+
∫ t

s
e−(t−u)KΣdBp(u)

))
|FBz

t ∨ Fs

]
|Fs

]

=E

[
exp

(
iyT I(t)

(
Λ(t) + e−(t−s)Kq(s)

)
− 1

2
yT I(t)

∫ t

s
e−(t−u)KΣΣTe−(t−u)KT

duI(t)Ty
)
|Fs

]

=P(z(t) > 0|Fs) exp
(

iyT I(1)
(

Λ(t) + e−(t−s)Kq(s)
)

− 1
2

yT I(1)
∫ t

s
e−(t−u)KΣΣTe−(t−u)KT

duIT
(1)y

)
+ (1−P(z(t) > 0|Fs)) exp

(
iyT I(2)

(
Λ(t) + e−(t−s)Kq(s)

)
− 1

2
yT I(2)

∫ t

s
e−(t−u)KΣΣTe−(t−u)KT

duIT
(2)y

)
.

The second equality is a consequence of the law of iterated expectations. As
a result of Prop. 4, we further have that

P(z(t) > 0|Fs) = 1−Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)
, (D.17)

concluding the proof.

The construction of the model for S(t) implies that the introduced seasonal
time variation in p(t) and z(t) translates to seasonal time variation in S(t).
To briefly elaborate on this, observe that the expected value of S(t) is

E [S(t)|Fs] = E
[

I(t)E
[

p(t)|FBz
t ∨ Fs

]
|Fs

]
=
[
P(1)(s, t)I(1) + (1−P(1)(s, t))I(2)

]
E [p(t)|Fs] . (D.18)
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Since we in both P(1)(s, t) and E [p(t)|Fs] can allow seasonal time varia-
tion, the expected value of S(t) will thus be affected by these specifications.
Eq. (D.18) has a very intuitive interpretation: The expected value of day-
ahead prices is a weighting of 1) the expected value of day-ahead prices if
EPC is present, and 2) the expected domestic prices. The weights are given
by the probability of being in each state.

4 Estimation

Due to the assumed independence between FBz
t and F Bp

t , the estimation
procedure can be divided in two independent parts. Namely, estimation of
the parameters governing p(t), and estimation of the parameters governing
z(t). A common feature is the latent behaviour of the considered processes.
We therefore use filtering techniques in both cases.

Besides these two components, we also consider estimation of the weights
constituting I(t) inspired by spatial econometrics, which turns out to be esti-
mation of w in our two-market case, cf. Eq. (D.2). We consider each of them
in turn in the following sections.

4.1 Estimation of p(t)

We assume that we have an equidistant sampling between observations and
mark it by ∆. Eqs. (D.7)–(D.8) implies that the state equation of q(t) in a state
space representation is

q(t) = F(t)q(t− ∆) + η(t), (D.19)

where F(t) = e−∆K, η(t) ∼ N(0, Qt), and Qt = Var[q(t)|Ft−∆]. Given
the estimation purpose of this section, we introduce a measurement error
in Eq. (D.1) and define the measurement equation by

S(t) = I(t)p(t) + ε(t)

= I(t)(Λ(t) + q(t)) + ε(t),

where ε(t) ∼ N (0, R(t)). R(t) is

R(t) =

{
R(1), if I(t) = I(1)
R(2), if I(t) = I(2)

,

with R(1) and R(2) being constant diagonal matrices corresponding to the
EPC and non-EPC state, respectively.
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Kalman Filtering

The normality and linearity of the state space representation lead us to using
the Kalman filter in combination with maximum likelihood to estimate the
parameters of p(t). There is vast literature on the Kalman filter; see e.g.
Schwartz & Smith (2000) in the context of commodity markets.

During the predict step of the Kalman filtering procedure, the a priori
estimate of the state is

q̂(t|t− ∆) = F(t)q̂(t− ∆|t− ∆),

and the a priori estimate of covariance of this state estimate is

P̂(t|t− ∆) = F(t)P̂(t− ∆|t− ∆)F(t)T + Q(t).

We update the state estimate and the corresponding covariance by

q̂(t|t) = q̂(t|t− ∆) + H(t)(S(t)− I(t)(Λ(t) + q̂(t|t− ∆))),

and

P̂(t|t) = P̂(t|t− ∆)− H(t)I(t)P̂(t|t− ∆),

respectively, where

H(t) = P̂(t|t− ∆)I(t)T(I(t)P̂(t|t− ∆)I(t)T + R(t))−1

is the Kalman gain. Due to the assumed independence between F Bz
t and

FBp
t , we regard I(t) as given at time t in the Kalman filtering scheme.

Let T denote the number of observations, and let θΛ denote the pa-
rameters governing the deterministic function Λ(t). Having established the
Kalman filtering scheme, we maximize the log-likelihood

L(θq) =
T

∑
i=2

log f (S(i)|FBz
i ,F Bp

i−1),

with respect to θq = (θΛ, K, Σ, R(1), R(2)), and where

f (S(i)|FBz
i ,FBp

i−1) = |2πV(i)|−1/2e−
1
2 (S(i)−E(i))TV(i)−1(S(i)−E(i)),

E(i) = I(i)(Λ(i) + q̂(i|i− 1)),

and

V(i) = I(i)P̂(i|i− 1)I(i)T + R(i).
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4.2 Estimation of z(t)

Let y(t) ∈ {0, 1} denote the observed state of I(t) at time t, meaning that
y(t) is a Bernoulli process with dependent and non-identically distributed
Bernoulli trials. To see this, we assume that y(t) = 1 corresponds to EPC.
Therefore, by remembering Eq. (D.17) and Prop. 4, we get

P(y(t) = 1|Fs) = P(z(t) > 0|Fs)

= 1−Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)

= 1−Φ

−
(

λ(t) + e−k(t−s)x(s)
)

√
Var[z(t)|Fs]

 . (D.20)

Hence, due to the dependence on x(s) we have that the Bernoulli trials are
dependent and non-identically distributed.

As a result of Eq. (D.20), the conditional density of y(t) is

f (y(t)|Fs) =

1−Φ

−
(

λ(t) + e−k(t−s)x(s)
)

√
Var[z(t)|Fs]

y(t)

×Φ

−
(

λ(t) + e−k(t−s)x(s)
)

√
Var[z(t)|Fs]

1−y(t)

. (D.21)

Standard estimation methods such as maximum likelihood estimation is not
feasible, since the log-likelihood,

L(θz) =
T

∑
i=2

log

1−Φ

−
(

λ(i) + e−k∆x(i− 1)
)

√
Var[z(i)|Fi−1]

y(i)

×Φ

−
(

λ(i) + e−k∆x(i− 1)
)

√
Var[z(i)|Fi−1]

1−y(i)

,

where θz = (aλ, bλ, cλ, k, aσ, bσ, cσ) cf. Sec. 3.2, depends on the latent process
x(t). The linear Kalman filter is suitable in the estimation of p(t), but the
non-differentiable relationship between y(t) and z(t) additionally invalidates
the extended Kalman filter, and we are thus in the need for another approach.

Particle Filtering

We choose to use particle filtering to mitigate this, and specifically we have
employed the bootstrap filter. For references, the interested reader is advised
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to look at Kantas et al. (2015) in a general state-space model, whereas Pitt et al.
(2014) consider particle filtering in the context of stochastic volatility models.
As in the Kalman filter case, the bootstrap filter can be divided in two steps:
a predict and an update step2. In our context, the bootstrap procedure is as
follows:

Let again T denote the number of observations. For t = ∆, 2∆, ..., T − ∆
we do the following:

• Predict step

1. Draw n samples

x̂i(t|t− ∆) ∼ N(e−k∆ x̂i(t− ∆|t− ∆), Var[x(t)|Ft−∆]),

cf. Prop. 4.

• Update step

2. For each i ∈ {1, 2, ..., n}, calculate weights

γi(t + ∆) =

1−Φ

−
(

λ(t + ∆) + e−k∆ x̂i(t|t− ∆)
)

√
Var[z(t + ∆)|Ft]

y(t+∆)

×Φ

−
(

λ(t + ∆) + e−k∆ x̂i(t|t− ∆)
)

√
Var[z(t + ∆)|Ft]

1−y(t+∆)

,

cf. Eq. (D.21).

3. For each i ∈ {1, 2, ..., n}, calculate normalized weights,

γ̃i(t + ∆) =
γi(t + ∆)

∑M
j=1 γj(t + ∆)

.

4. For each i ∈ {1, 2, ..., n}, draw a sample x̂i(t|t) from the distribu-
tion with density

f (x) =
n

∑
j=1

γ̃j(t + ∆)δ(x− x̂j(t|t− ∆)),

where δ(·) is Dirac’s delta function.
2The bootstrap filter can also be divided in an importance and selection step, but we find it

more intuitive to divide the algorithm in a predict and update step, also making the Kalman
filter presented earlier and the bootstrap filter easily comparable.
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4. Estimation

Having obtained n values of x(t) (i.e., z(t)) for each t = 0, ∆, ..., T − ∆, we
evaluate the log-likelihood as

L(θz) =
T

∑
i=2

log

(
1
n

n

∑
j=1

1−Φ

−
(

λ(i) + e−k∆ x̂j(i− 1|i− 2)
)

√
Var[z(i)|Fi−1]

y(i)

×Φ

−
(

λ(i) + e−k∆ x̂j(i− 1|i− 2)
)

√
Var[z(i)|Fi−1]

1−y(i) )
.

As pointed out by Pitt et al. (2014), one single run of the particle filter will
therefore estimate the log-likelihood.

Due to the non-observable nature of the z(t) process and the fact that the
sign of it only matters, one has to fix the level of it in order to avoid possible
oscillating estimation issues. Hence, we fix σ(t) to oscillate around 1, by
setting aσ to

aσ =

√
2k

1− e−2k∆ .

4.3 Estimation of I(t)

Inspired by weight matrix determination in spatial econometrics (see e.g.
Abate & Haldrup (2017)), we construct I(t) using the spatial relationship
between the market areas. Although our model differs from spatial econo-
metric models in that the observed prices do not depend on lagged values
of observed prices from the market areas under consideration, but rather de-
pend on a weighting of (partly) unobservable domestic prices, the weighting
of the unobservable domestic prices are chosen in a similar way. As discussed
in Abate & Haldrup (2017), choosing the spatial weight matrix is a delicate
task, due to the selection of the factor influencing the weight matrix. Since
net export basically results in a horizontal shift in either the domestic sup-
ply or demand curve, depending on the sign of the net export cf. Fig. D.1,
the consumed electricity in each market area determines how sensitive the
resulting domestic market price is to variation in net export. Loosely speak-
ing, a large market area—based on the supplied electricity—is not as price
sensitive to net export as a smaller market area. Hence, we use the supplied
electricity in a market area as the "size" of the market area. In the two-market
case, estimation of I(t) boils down to estimating w, cf. Eq. (D.2).
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5 Application

In this section, we first exemplify the proposed model by jointly modelling
hour 21 day-ahead prices for Germany and France. Presentation of estimation
results is then followed by an analysis of derivative prices implied by the
model.

5.1 Case Study of German and French Electricity Prices

Our data set introduced in Sec. 2 contains daily observations. Hence, we
set M = 365, and the time between adjacent observations is set to 1/365.
We report estimation results for p(t) and z(t) in the following sections after
a short note on the estimation of w in I(1). As discussed in Sec. 4.3, we
use the supplied electricity to determine w. Table D.2 reports the supplied

DE FR

575,701 496,932

Table D.2: Supplied electricity given in (GWh) based on IEA (2017).

electricity for Germany and France, which results in a weight for Germany
of 575, 701/(575, 701 + 496, 932) = 0.537. The resulting two states of I(t) are
given in Eq. (D.22).

I(1) =
[

0.537 0.463
0.537 0.463

]
or I(2) =

[
1 0
0 1

]
. (D.22)

Motivated by the empirical findings in Sec. 2 and related literature on
electricity price modeling (e.g. Pircalabu & Benth (2017)), we define the sea-
sonal function Λ(t) in Eq. (D.3) as

Λ(t) = aΛ + bΛ cos
(

2πt
M

)
+ cΛ sin

(
2πt
M

)
+ dΛ IW(t),

where IW(t) is an indicator function being one if day t is either Saturday or
Sunday, and aΛ, bΛ, cΛ, dΛ ∈ R2 are constants. We further assume that Σ is
lower triangular, and that K is diagonal in Eq. (D.4). In Tables D.3-D.4 the
estimation results for θq are reported using the estimation method presented
in Sec. 4. To simplify the presentation, the estimation results are divided in
the parameters governing Λ(t) and q(t).

The estimated weekend coefficient, d̂Λ for both market areas is negative,
and thus reflects the lower electricity demand during weekends compared to
weekdays. Also notable is the estimated base level âΛ, where the German
base level is lower than the French base level. Regarding the speed of mean
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âΛ b̂Λ ĉΛ d̂Λ

DE 36.42 0.75 3.43 -4.74

FR 45.17 4.52 -7.65 -6.34

Table D.3: Estimation results for Λ(t).

K̂(1,1) K̂(2,2) Σ̂(1,1) Σ̂(2,1) Σ̂(2,2)

89.53 30.68 99.95 52.34 52.15

Table D.4: Estimation results for q(t).

reversion, the estimated German one, K̂(1,1), corresponds to a half-life of ap-
proximately 2.8 days, whereas the estimated French speed of mean reversion
corresponds to a more persistent behaviour with a half-life of approximately
8.2 days.

To investigate the estimation results in more detail, we obtain the esti-
mated p̂ process by filtering of q̂, following the Kalman scheme described in
Sec. 4. In addition, using the estimated forms of I(t) presented in Eq. (D.22),
and assuming we have knowledge of I(t) at time t as in the described Kalman
scheme, we also obtain the estimated Ŝ process. The intention of showing
the estimated Ŝ process in addition to the estimated p̂ process is twofold.
Firstly, to give a sense of the model’s ability to replicate the observed prices
in Fig. D.3(a), and secondly to give an insight in the difference between
the model implied Ŝ and p̂ processes. In Figs. D.6(a) and D.6(c) we show
the estimated p̂ process and the corresponding estimated Ŝ process for both
Germany and France, resembling the observations in Fig. D.3(a) quite well.
Figs. D.6(b) and D.6(d) illustrate the difference between the estimated Ŝ and
p̂ processes. It is apparent that the differences are more frequent during
spring/summer than autumn/winter, reflecting the fact that EPC happens
more frequently during spring/summer. Also notable is the fact that the
differences are greater during autumn/winter, so from this perspective, the
impact from EPC on a single observation is highest during autumn/winter.
Due to the parameter w affecting the weighting of the domestic day-ahead
prices (the p process), the resulting differences between the Ŝ and p̂ processes
in the two market areas differ. The pattern in Fig. D.6(b) is therefore reversed
in Fig. D.6(d), but they differ in absolute terms.

The estimated parameters for the z(t) process are reported in Table D.5.
The estimated speed of mean reversion translates to a half-life of approx-
imately 2.56 days. Fig. D.7(a) shows the estimated asymptotic probabil-
ity of observing EPC throughout the year. The yearly pattern observed in
Fig. D.5(a) is thus replicated by the model. The significant drop in probabil-
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(b) Ŝ-p̂ for Germany
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(c) Ŝ and p̂ for France
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(d) Ŝ-p̂ for France

Fig. D.6: (a) Estimated Ŝ and p̂ for Germany, (c) Ŝ-p̂ for Germany, (c) estimated Ŝ and p̂ for
France, (d) Ŝ-p̂ for France.

k̂ âλ b̂λ ĉλ b̂σ ĉσ

98.8570 -0.6146 1.3094 0.0565 -14.2477 -1.3537

Table D.5: Estimation results for z(t).

140



5. Application

ity during August/September is notable and marks the switch from summer
to autumn. The lowest probability is reached in November and is as low as
0.2%, while the highest is in July and is 82%. In a risk management or asset
valuation situation, this is quite a difference and must be taken into account.
We elaborate on this matter when covering derivative prices implied by the
model.
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Fig. D.7: (a) Estimated asymptotic probability of observing EPC throughout a year, (b) difference
between the estimated seasonality functions affecting the p process, and (c) the observed German
hour 21 day-ahead price subtracted from the French hour 21 day-ahead price. The prices used
in (c) are prices from non-EPC days, where we observe EPC the next day.

Remember that we assume independence between F Bz
t and F Bp

t , which
implies that we can divide the estimation procedure in two independent
parts. Fig. D.7(c) shows a histogram of the observed price spread between
France and Germany. To investigate the dependence between the p(t) pro-
cess and the z(t) process, we only show price spreads from non-EPC days,
which is immediately followed by days with EPC. Most occurrences are
observed just about zero, meaning that there is a tendency that EPC hap-
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Fig. D.8: (a) Simulated hour 21 day-ahead prices for Germany and France, and (b) corresponding
simulation of z process.

pens in periods with small price spreads. Though, there is no guarantee
that EPC only happens in these periods, since it reaches as high as ap-
proximately 27 EUR/MWh in absolute terms. From the perspective of the
estimated model, Fig. D.7(b) shows the difference between the asymptotic
mean levels of p(t); i.e., it shows the spread between Λ1(t) and Λ2(t), where
Λ(t) = [Λ1(t) Λ2(t)]>. Comparing the shape of Fig. D.7(b) to the shape of
Fig. D.7(a), we conclude that a high probability of EPC roughly corresponds
to a small price spread asymptotically, and vice versa. Loosely speaking,
even though we assume independence between F Bz

t and F Bp
t , the seasonal

components of the model suggest that a high probability of EPC translates to
a small spread between the components of p(t), and that a low probability of
EPC translates to a large spread between the components of p(t). Assuming
independence between F Bz

t and FBp
t thus has the advantage that we can split

up the estimation procedure in two independent parts, while still allowing
the above discussed dependency between the EPC probability and the mag-
nitude of the spread between the components of p(t). We leave it as future
work to investigate the case with dependence between F Bz

t and F Bp
t .

To further illustrate the model, we show in Fig. D.8(a) a simulated path
for both the German and French prices using the parameters reported in
Tables D.3-D.5. Again we emphasize when EPC occurs by a solid black line.
As expected from Fig. D.7(a) we observe most EPC states during summer, and
least during autumn/winter. Regarding the EPC aspect of the model, we plot
in Fig. D.8(b) the simulated z(t) process, which is, due to the construction,
positive whenever we observe EPC in Fig. D.8(a).
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5.2 Derivative Pricing

In electricity markets, the underlying cannot be stored—at least not
effectively—and the classical pricing assumptions about market complete-
ness do therefore not hold. Hence, one typically resorts to imposing a para-
metric form through a measure change, and thereby introducing the so-called
market price of risk. By using market data, it is then possible to back out the
market price of risk.

The Girsanov theorem gives the p-process under an equivalent pricing
measure Q as

p(t) = Λ(t) + e−(t−s)Kq(s) +
∫ t

s
e−(t−u)KΣϕ(u)du +

∫ t

s
e−(t−u)KΣdBQ

p (u).

(D.23)

where ϕ(t) ∈ RN is the so-called market price of risk, assumed to be
adapted to {Ft}t≥0 and satisfying certain integrability conditions (see Gir-
sanov (1960)). In addition, BQ

p (t) ∈ RN is a Brownian motion under the new
measure Q. By assuming no market price of risk concerning z(t), we thus see
that an appropriate shift in the mean level of p(t) will yield the appropriate
measure change.

In practice, one might assume that ϕ(t) is a piecewise constant determin-
istic function and match it to the observed forward prices at time s, which
we will cover in the next section. Eq. (D.23) then implies that p(t) under Q is
normally distributed with expected value

EQ[p(t)|Fs] = Λ(t) + e−(t−s)Kq(s) +
∫ t

s
e−(t−u)KΣϕ(u)du (D.24)

and variance given in Eq. (D.6). It follows from Eq. (D.24) and Prop. 5 that
S(t) under Q is characterized by the density

f Q
s,t(x) =

2

∑
i=1

P(i)(s, t)
1

(2π)Ni/2|Σ(i)(s, t)|
e−

1
2

(
x−µQ

(i)(s,t)
)T

Σ(i)(s,t)−1
(

x−µQ
(i)(s,t)

)
,

(D.25)

where

µQ
(i)(s, t) =I(i)E

Q[p(t)|Fs], (D.26)

and everything else is defined in Prop. 5.

Forwards

The liquidity of electricity markets is low compared to traditional financial
markets, with the forward market in general being the most liquid. As a
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result, derivative prices are often restricted to be consistent with the forward
market3, which is used to back out the market price of risk. Following the
lines of the discussion of market incompleteness in electricity markets, we
define the forward price at time s for a forward contract with delivery time t
as the expected value under Q of the future day-ahead price, as in e.g. Benth
& Meyer-Brandis (2009). In terms of our multivariate model, we have

F(s, t) = EQ[S(t)|Fs],

where F(s, t) ∈ RN is the forward price at time s for delivery at time t for
N different market areas. In our modeling framework, Prop. 6 states the
forward price.

Proposition 6
Let S(t) be defined under Q as in Eq. (D.25). Then the forward price at time
s for delivery at time t for two different market areas is

F(s, t) =
[
P(1)(s, t)I(1) + P(2)(s, t)I(2)

]
EQ [p(t)|Fs] . (D.27)

Proof. Follows from Eq. (D.18) and Eq. (D.25).

Eq. (D.27) implies that the spread between forward prices decreases gradu-
ally as P(1)(s, t) → 1. In the extreme case where P(1)(s, t) = 1, the model
suggest that the forward prices in the two different market areas are equal.
The model is hence in line with the expectation of a single forward price in a
situation with two perfectly coupled markets.

Transmission Rights

A transmission right is a European spread option with the underlying assets
being day-ahead prices of adjacent market areas. The pricing formula for
transmission rights given the model presented in Sec. 3 is closely related to
the work by Bachelier (1900) and is given in the next proposition.

Proposition 7
Let S(t) be defined under Q as in Eq. (D.25), g ∈ R2, and let (gTs(t)− H)+

be the payoff of a European spread option with strike H. Then

EQ[(gTS(t)− H)+|Fs] =
2

∑
i=1

P(i)(s, t)

(
a(i)(s, t)Φ

(
a(i)(s, t)
c(i)(s, t)

)

+ c(i)(s, t)φ

(
a(i)(s, t)
c(i)(s, t)

))
, (D.28)

3We assume a deterministic interest rate, and thus the term forward market does also cover
the futures market.
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where

ai(s, t) = gTµQ
(i)(s, t)− H, (D.29)

ci(s, t) =
√

gTΣ(i)(s, t)g, (D.30)

and Φ and φ is the distribution and density function of the standard normal
distribution, respectively. µQ

(i)(s, t) is given in Eq. (D.26), and Σ(i)(s, t) is given
in Prop. 5.

Proof. Define Z(t) := gTS(t)− H. Eq. (D.25) implies that Z(t) under Q is

Z(t)|Fs ∼
2

∑
i=1

P(i)(s, t)N(gTµQ
(i)(s, t)− H, gTΣ(i)(s, t)g)

Hence, by defining ai(s, t) and ci(s, t) as in Eqs. (D.29)-(D.30) and U ∼
N(0, 1), we obtain

EQ[Z(t)+|Fs] =
2

∑
i=1

P(i)(s, t)EQ[(ai(s, t) + ci(s, t)U)+|Fs]

=
2

∑
i=1

P(i)(s, t)
∫ ∞

−ai(s,t)/ci(s,t)

ai(s, t) + ci(s, t)u√
2π

e−u2/2du

=
2

∑
i=1

P(i)(s, t)
(

ai(s, t)Φ
(

ai(s, t)
ci(s, t)

)
+ ci(s, t)φ

(
ai(s, t)
ci(s, t)

))
,

where P(i)(s, t) is defined in Eq. (D.16).

To further comment on Prop. 7, we set g = [1 − 1], and H = 0, which is
also the most relevant case having the transmission rights in Europe in mind.
Consequently, we get that gTS(t) − H = 0 in the EPC case, and Eq. (D.28)
thus reduces to

EQ[(S1(t)− S2(t))+|Fs] =P(2)(s, t)

(
a(2)(s, t)Φ

(
a(2)(s, t)
c(2)(s, t)

)

+ c(2)(s, t)φ

(
a(2)(s, t)
c(2)(s, t)

))
. (D.31)

Intuitively, the transmission right value should be increasing when the prob-
ability of no convergence, P(2)(s, t), increases; this is confirmed by Eq. (D.31).
As a result, by assuming no price convergence—i.e. P(2)(s, t) = 1—one
would simply overestimate the value of the transmission right. Also, having
Fig. D.7(a) in mind and the empirical setup in Sec. 5.1, there is a significant
difference between the reduction of transmission right prices throughout the
year, simply due to the time-varying probability of EPC.
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6 Conclusion

In this paper, we propose a model for the joint behaviour of day-ahead elec-
tricity prices in a two-market setup where the market coupling mechanism is
taken into account in a continuous time manner. The model is dividable in
two parts inspired by the way the market coupling mechanism is effectuated
in Europe: The first part captures the exact price convergence, modeled by a
latent univariate Gaussian Ornstein-Uhlenbeck process. The second part can
be interpreted as capturing the domestic prices set in each individual mar-
ket area, which we model by a partly latent multivariate Gaussian Ornstein-
Uhlenbeck process.

We derive theoretical results of the model, and we discuss the estimation
of the model in detail. With regard to the latter, our estimation proposal
consists of two assumed independent parts: 1) standard Kalman filtering to
estimate the process capturing the domestic prices, and 2) particle filtering to
estimate the process capturing the exact price convergence. Both approaches
are used in combination with maximum likelihood.

The model is exemplified through a case study where we jointly model
German and French hour 21 day-ahead prices. We find a strong seasonal
behaviour in the estimated probability of observing exact price convergence.
Lastly, we discuss derivative prices implied by the model and show that the
implied forward and transmission right prices can be obtained by closed-
form formulas. The impact of the exact price convergence on forward and
transmission right prices can be directly read off from the closed-form for-
mulas. In the example with German and French hour 21 day-ahead prices,
the strong seasonality in the probability of observing exact price convergence
suggests that 1) the spread between forward prices throughout a year varies
greatly, and 2) with everything else being equal the transmission right prices
throughout a year vary greatly.

Future research includes the case where the number of market areas ex-
ceeds two. Although we have argued that such case is not relevant given the
presently traded instruments, advanced scenario analysis could be derived
from such model. Furthermore, it would be interesting to investigate how to
incorporate, and the implication of including, spikes. As an example, large
movements in opposite directions of two prices would significantly impact
the value of a transmission right. However, as a consequence of the market
coupling mechanism, such scenarios are very rare, and spikes of the same
sign are often observed in adjacent market areas. The real impact of such
spikes on e.g. derivatives could therefore be of minor importance. This is
also supported by the fact that fewer and fewer spikes are observed, which
in turn is possible due to the increased market interconnectedness that po-
tentially eliminates spikes.
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1. Introduction

Abstract

Transmission rights facilitate the handling of the risk associated by trading electricity
in adjacent market areas. With the increased interconnectedness in European elec-
tricity markets, the amount of time that one observes the special behaviour of zero
price spreads between coupled markets has increased. In this paper, we investigate
pricing and hedging of transmission rights in coupled electricity markets using the
recently proposed Conv model from Christensen & Benth (2019) and the well-known
option spread formula from Margrabe (1978) as a benchmark. We discuss the prop-
erties of the Conv model and the Margrabe formula in a transmission right context,
followed by an empirical investigation. We find that the Conv model which takes
into account the market coupling significantly outperforms the Margrabe formula in
a pricing context. In a hedging context the two models perform equally well on the
data we have used for our analysis.

1 Introduction

Interconnected electricity markets is an important cornerstone to benefit
significantly from the increasing non-programmable renewable electricity
sources such as wind and solar power production. A surplus of cheap wind
power production in one market area should in a proper interconnected mar-
ket be transferred to other market areas to the benefit of both the exporting
and importing parties. In Europe, the liberalization of electricity markets has
incentivized such actions. The overall goal from the European Commission is
a single pan-European market, where electricity can flow uncongested, ulti-
mately leading to one single European electricity price [see Füss et al. (2015)].
Historically, ex-ante auctions for daily rights to transfer electricity from one
market area to another was applied. Ex-ante refers to the fact that mar-
ket participants had to schedule the flow of electricity for their transmission
rights before actually knowing the day-ahead electricity prices. Hence, mar-
ket participants could schedule flows inefficiently, potentially moving elec-
tricity from a high price area to a low price area. Note that day-ahead prices
denote the price of electricity for each hour of the following day, settled one
day prior to delivery.

To mitigate inefficient scheduling, implicit auctions for the daily transmis-
sion rights, also known as market coupling, have been introduced in Euro-
pean electricity markets. The market coupling mechanism starts with market
participants submitting their bids and offers for electricity in the intercon-
nected market areas. One single algorithm then calculates optimal electricity
flows and the corresponding day-ahead electricity prices to optimize the over-
all social welfare. Historically, the trilateral market coupling was introduced
in 2006 where the French, Belgian, and Dutch day-ahead electricity markets
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Fig. E.1: Price spread between the Netherlands and Germany for the period from 1 January 2007
to 31 December 2018. The arrow indicates the shift to market coupling between the Netherlands
and Germany in November 2010. The zoomed graph emphasizes the radical change in the
spread between the Netherlands and Germany before and after November 2010.

were coupled. Germany joined in November 2010, and prior to May 2015,
the determination of electricity flows were determined by the so-called avail-
able transfer capacity method. In May 2015, this method was replaced by
the flow-based method. According to Amprion (2018), the advantage of the
flow-based compared to the available transfer capacity method is that it leads
in most cases to a larger flow based domain and higher welfare gains. The domain
refers to the feasible flows of electricity between the market areas. The inter-
ested reader is referred to den Bergh et al. (2015) for more information on the
switch from the available transfer capacity method to the flow-based one.

To exemplify the implication of the market coupling on day-ahead prices,
we plot in Fig. E.1 the price spread between hourly day-ahead electricity
prices for the Netherlands and Germany (German price subtracted from the
Dutch price) for the 12-years period starting from 1 January 2007 and ending
at 31 December 2018. As a first observation, one might notice that both the
frequency and magnitude of the extreme price spreads seem to fade out, in-
dicating that the increased interconnectedness also serves as a reserve against
large price spread movements. Secondly, after November 2010, where Ger-
many was included in the market coupling, the price spread often equals
exactly zero, so-called exact price convergence (EPC). Before November 2010,
the spread fluctuated around zero and did very rarely equal zero exactly.

Even though EPC happens quite often, there is still a long way to fully
uncongested flows of electricity. Fig. E.2 shows a stacked bar plot calculated
on a monthly basis for the same period as in Fig. E.1. It shows the per-
centage of time during a particular month that two or more markets couple
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Fig. E.2: Time spent in the CWE area in one of the four states 1) no coupling, 2) two markets
couple, 3) three markets couple, and 4) four markets couple. Each month during the period
from 1 January 2007 to 31 December 2018 is shown. The label referring to two markets does also
include the case where two pairwise markets couple; i.e., Germany and France couple while
Belgium and the Netherlands also couple.

in the Central-West European (CWE) price area. Until November 2010, the
French, Belgian, and Dutch day-ahead markets coupled most of the time; ei-
ther all three or just two of them. With Germany joining in November 2010,
the dynamic changed and the amount of time that all four markets coupled
seemed to replace the amount of time that the French, Belgian, and Dutch
day-ahead markets coupled previously. Most notable however is the counter-
intuitive fact that the amount of time that no markets couple increases sig-
nificantly with the implementation of the flow-based market coupling. The
increased flexibility in the flows of electricity does apparently not lead to a
higher amount of time that the markets couple. Continuing on this line of
perspective, although Fig. E.2 shows a decrease in EPC, the level of conver-
gence of the prices might be increasing; i.e., the price spreads between the
market areas could have shrunken while the EPC percentages could have
shrunken as well. Fig. E.3 shows the mean of the absolute differences be-
tween the four price pairs in the CWE area, however, it does not indicate that
this is the case. We do in fact see an increase in the minimum level of the
absolute price differences for all price pairs.

In this paper we do not investigate further the level of interconnected-
ness of electricity markets, but the naive analysis just performed is in fact in
agreement with more thorough investigations. Here we mention de Menezes
& Houllier (2016) who reject the hypothesis that EU electricity markets are in-
creasingly integrated in the day-ahead markets. Without pursuing this matter
any further we can nevertheless conclude that the special joint behaviour of
the day-ahead electricity prices in the CWE area exemplified in Fig. E.1 (and
Europe as a whole) seems to continue. Market participants trading electric-
ity in these coupled markets do therefore face the uncertainty of the price
spread, and will likely have to do it for a long time. In Europe, transmission
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Fig. E.3: Monthly mean of the absolute differences between the four price pairs corresponding
to the physical interconnectedness in the CWE area for the period from 1 January 2007 to 31
December 2018.

rights for a longer period than a day, starting from a month, is tradeable. The
underlying of such a transmission right is the day-ahead prices, thus allow-
ing market participants to hedge day-ahead price differences between market
areas. A transmission right is basically a basket of spread options between
two market areas, and can either be physically or financially settled. A phys-
ical transmission right will however be equivalent to a financial transmission
right, if the former is sold under the widely used "use-it-or-sell-it" principle
(see Alasseur & Féron (2018) for more information). We will therefore neglect
the distinction between the two and simply use the term transmission right
going forward.

The daily average of the hourly day-ahead prices is often used in mark-to-
market and risk management contexts, hence the related literature on model-
ing the average day-ahead price is extensive, see e.g. Lucia & Schwartz (2002)
and Geman & Roncoroni (2006), or more recently the work of Borovkova
& Schmeck (2017). However, the proportion of time that EPC happens is
lost when averaging the hourly prices. For the period from 1 July 2015 to
30 June 2019, the EPC percentages for the four cross-border connections in
the Central-West Europe (CWE) area are shown in Table E.1, which clearly
shows huge differences in daily and hourly EPC percentages. The literature
on modeling day-ahead prices with hourly granularity is not as comprehen-
sive as the literature on modeling the average day-ahead price. Huisman et
al. (2007) proposed a model for a single market area that takes the panel data
feature into account in the sense that all hourly day-ahead prices are set the
same time the day prior to delivery. The consideration of more than one
market in a market coupling environment is the theme of Pircalabu & Benth
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DE-FR FR-BE BE-NL NL-DE

Daily 2.19 2.67 3.15 2.94

Hourly 35.69 41.97 41.32 40.68

Table E.1: Observed EPC percentage for the period from 1 July 2015 to 30 June 2019 for four
different price pairs in the CWE area.

(2017) and Christensen & Benth (2019). In contrast to Huisman et al. (2007),
each hour is modelled individually. Obviously, handling derivatives written
on a combination of at least two different hourly day-ahead prices is not pos-
sible using Pircalabu & Benth (2017) and Christensen & Benth (2019) (e.g.
a spread option between two consecutive hours for a single market area).
Though, these models are perfectly suited for the valuation and hedging of
transmission rights, where it is possible to separate the payoff structure on
an hourly basis. While the model of Pircalabu & Benth (2017) allow for ad-
vanced dependence structures through flexible copula modeling, the model
of Christensen & Benth (2019) allows for closed-form formulas for derivatives
such as transmission rights. The mentioned articles all have a reduced-form
modeling perspective. Structural approaches, where one typically models
the offer and bid curves explicitly, have also been investigated in the litera-
ture, see Kiesel & Kustermann (2015), Mahringer et al. (2015), and Alasseur
& Féron (2018). Kiesel & Kustermann (2015) derive an analytical formula for
forward prices, while Mahringer et al. (2015) and Alasseur & Féron (2018)
additionally derive analytical formulas for transmission rights.

In this paper, we investigate the pricing of transmission rights and hedg-
ing of these in a market coupling environment. We rely on the model pro-
posed by Christensen & Benth (2019). This model will for the remaining
part of the paper be denoted by the Conv model, since it takes the EPC as-
pect into account. As a benchmark throughout the paper, we also present
results using the formula proposed by Margrabe (1978) due to its popularity
and well-known way of pricing and hedging spread options. The two mod-
els rely on different assumptions. Shortly put, the Margrabe formula relies
on the assumption that the underlying prices can be described by geomet-
ric Brownian motions, whereas the Conv model takes the market coupling
into account, but still allows closed-form formula for spread options and the
corresponding greeks.

The remaining part of this paper is organised as follows. In Sec. 2 we in-
troduce transmission rights and considerations of hedging these. In Sec. 3 we
introduce and discuss the models used to investigate the pricing and hedging
of the transmission rights, which is the theme of Sec. 4. Sec. 5 concludes.
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2 Transmission Rights

Let S(t, h) ∈ R2 denote the day-ahead electricity price at day t and hour h at
two market areas. A transmission right is essentially a basket of European
spread options, all with strike zero. Denoting the price in EUR/MWh, the
payoff of a transmission right is

1

∑T
t=1 H(t)

T

∑
t=1

H(t)

∑
h=1

(g>S(t, h))+, (E.1)

where g ∈ R2, T is the number of days of the delivery period of the
transmission right, and H(t) is the number of hours on day t. Typically,
g = [1 − 1]>. As a consequence of the payoff structure, valuing each op-
tion, (g>S(t, h))+, independently of each other is possible. To ease the pre-
sentation we denote the day-ahead electricity price by S(t) going forward,
even though we only consider hourly day-ahead prices.

Due to the limited liquidity in the electricity markets compared to tradi-
tional financial markets, one often resorts to the most liquid derivatives when
calibrating models, meaning forward contracts1 in the Europan electricity
markets. The unstorable nature of electricity implies incompleteness of elec-
tricity markets. As in e.g. Benth & Meyer-Brandis (2009), we therefore define
the forward price at time s with delivery time t as F(s, t) = EQ[S(t)|Fs]. Us-
ing parameterized models as the ones from Margrabe (1978) and Christensen
& Benth (2019), the recipe we follow in order to price a transmission right is
therefore to force the models to be consistent with the forward prices. That
is, each hourly model (24 models in total for pricing and hedging a trans-
mission right) will be calibrated to the observed forward prices. Afterwards,
the valuation of the individual spread options, (g>S(t, h))+, are added up cf.
Eq. (E.1), giving the resulting estimated transmission right price.

2.1 Hedging Transmission Rights

We limit the available hedging instruments to baseload forward contracts.
In reality, liquidity issues also plays a role in picking the hedging portfo-
lio, and since the baseload forward contracts are quite liquid compared to
other instruments in the electricity market, this is a reasonable assumption.
Thus, hedging e.g. a monthly transmission right means taking positions in
the underlying available forward contracts, which could be with a delivery
period of one day, a week, etc. Taking into account this overlapping nature of
the forward contracts and the tick size of the contracts are important when

1We assume a deterministic interest rate, hence, we do not distinguish between futures or
forward contracts. We only use the term forward contracts in the rest of the paper.
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hedging transmission rights. Mathematically, it can be described by

min
Q(1),..,Q(M)

T

∑
t=1

H(t)

∑
h=1

M

∑
i=1

I(i, t, h) (X(t, h) + Q(i))2 , Q(i) ∈ K ∀i = {1, ..., M}.

(E.2)

Here, I(i, t, h) is an indicator function being one if the delivery period of the
ith instrument overlaps in time with day t and hour h, X(t, h) is the exposure
from the transmission right on day t and hour h, and M denotes the number
of forward contracts used to hedge. K is the set of allowed quantities to trade;
e.g., contracts can only be traded in an integer amount of MWs. Lastly, Q(i)
is the traded quantity in MW of the ith instrument.

3 Model Description

In this section, we present the Margrabe formula [Margrabe (1978)] followed
by a presentation of the Conv model from Christensen & Benth (2019) in a
transmission right pricing and hedging context.

3.1 The Margrabe Formula

Denote the electricity day-ahead price for two interconnected markets by
S(t) = [S1(t) S2(t)]>. The Margrabe formula is based on the assumption
that the underlyings follow a geometric Brownian motion under a pricing
measure Q,

dSi(t) = µiSi(t)dt + σiSi(t)dWi(t), i = 1, 2,

where µ1, µ2, σ1, σ2 ∈ R, and W1(t) and W2(t) are correlated Brownian mo-
tions with correlation corr(W1(t), W2(t)) = ρ. The Margrabe formula for a
spread option with payoff Π(s, t) := EQ[(S1(t)− S2(t))+|Fs] is given by

Π(s, t) = S1(s)eµ1(t−s)Φ(d1)− S2(s)eµ2(t−s)Φ(d2), (E.3)

where

d1 =
ln
(

S1(s)
S2(s)

)
+
(

µ1 − µ2 +
σ2

2

)
(t− s)

σ
√

t− s
,

d2 = d1 − σ
√

t− s,

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2.
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It is well-known that the geometric Brownian motion implies that the forward
price is given by

Fi(s, t) = Si(s)eµi(t−s), i = 1, 2.

Hence, in order to calibrate the Margrabe formula to the forward prices, one
simply chooses µi so the model forward price matches the observed forward
price. It can easily be shown that this valuation approach is equivalent to
using the observed forward prices in a variation of Eq. (E.3); that is,

Π(s, t) = F1(s, t)Φ(dF
1 )− F2(s, t)Φ(dF

2 ), (E.4)

where

dF
1 =

ln
(

F1(s,t)
F2(s,t)

)
+ σ2

2 (t− s)

σ
√

t− s
,

dF
2 = dF

1 − σ
√

t− s.

In this way, the model will be consistent with the observed forward prices.

Hedging

The approach in Eq. (E.4) has an advantage over Eq. (E.3) in a hedging con-
text: Since we use forward contracts to hedge transmission rights, sensitiv-
ities can directly be calculated with regard to the forward prices instead of
the day-ahead prices. Let Π(s, t) denote the transmission right price at time
s for delivery at time t. The derivatives of Π(s, t) with respect to both F1(s, t)
and F2(s, t), i.e. the deltas of the transmission right, are

∆1 :=
δΠ(s, t)
δF1(s, t)

=Φ(dF
1 ),

∆2 :=
δΠ(s, t)
δF2(s, t)

=−Φ(dF
2 ).

3.2 The Conv Model

The following is a brief introduction to the Conv model. The reader is re-
ferred to Christensen & Benth (2019) for more information and for the proofs
of the presented propositions.

We assume that the day-ahead electricity prices at time t in N = 2 inter-
connected market areas can be described by

S(t) = I(t)p(t), (E.5)
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where I(t) takes two forms,

I(t) =

{
I(1), if z(t) > 0
I(2), otherwise

,

I(1) =
[

w 1− w
w 1− w

]
and I(2) =

[
1 0
0 1

]
, (E.6)

depending on a process z(t) defined by

z(t) = λ(t) + x(t),

dx(t) = −kx(t)dt + σ(t)dBz(t).

k ∈ R is a constant, and Bz(t) is a univariate Brownian motion, while λ(t)
and σ(t) are deterministic functions. I(1) represents the EPC state, and I(2)
represents the non-EPC state, where the prices in the two areas will simply
be p(t). Hence, the interpretation of p(t) is that it represents the partly latent
"domestic" day-ahead prices. In Eq. (E.6), w ∈ (0, 1) measures the pulling
effect of each market area. In other words, if EPC is observed, which market
area influences the EPC price the most.

Turning again to Eq. (E.5), p(t) is defined as

p(t) = Λ(t) + q(t), (E.7)

dq(t) = −Kq(t)dt + ΣdBp(t). (E.8)

In Eq. (E.7) and Eq. (E.8), Λ(t) is a deterministic function, and K ∈ R2×2

is a constant matrix, Σ ∈ R2×2, and Bp(t) is an N-dimensional Brownian
motion. The conditional distribution of S(t) under a pricing measure Q is
given in Prop. 8. Notice the use of the stack operator denoted by vec(·), and
the Kronecker sum between the two square matrices A and B defined by
A⊕ B = A⊗ IB + IA ⊗ B, where ⊗ is the Kronecker product. Here IB is the
identity matrix with the same size as B, and IA is the identity matrix of same
size as A.

Proposition 8
Let p(t) and z(t) be defined as above. Assume no market price of risk regard-
ing the z(t) process. The distribution of S(t) is then mixed normal conditional
on Fs for s < t under a pricing measure Q with density

f Q
s,t(x) =

2

∑
j=1

P(j)(s, t)
1

(2π)Nj/2|Σ(j)(s, t)|
e−

1
2

(
x−µQ

(j)(s,t)
)T

Σ(j)(s,t)−1
(

x−µQ
(j)(s,t)

)
,
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with Nj ≤ N for j = {1, 2} being the rank of I(j), Φ(·) being the cumulative
distribution function for the standard normal distribution, and

µQ
(j)(s, t) =I(j)E

Q [p(t)|Fs] ,

Σ(j)(s, t) =I(j)Var[p(t)|Fs]IT
(j),

and

EQ [p(t)|Fs] = Λ(t) + e−(t−s)Kq(s) +
∫ t

s
e−(t−u)KΣϕ(u)du,

Var[p(t)|Fs] = vec−1
(
(K⊕ K)−1(I− e−(t−s)K⊕K)vec(ΣΣT)

)
,

where ϕ(t) ∈ R2 is the market price of risk. Furthermore, the probabilities

P(1)(s, t) = 1−Φ

(
−E[z(t)|Fs]√
Var[z(t)|Fs]

)
, P(2)(s, t) = 1−P(1)(s, t).

As shown in Christensen & Benth (2019), Prop. 8 implies the following
two propositions.

Proposition 9
Let S(t) be defined under Q as in in Prop. 8. Then the forward price at time
s for delivery at time t for two different market areas is

F(s, t) =
[
P(1)(s, t)I(1) + P(2)(s, t)I(2)

]
EQ [p(t)|Fs] . (E.9)

Proposition 10
Let S(t) be defined under Q as in Prop. 8, g ∈ R2, and let (gTS(t))+ be the
payoff of a European spread option. Then

Π(s, t) = EQ[(gTS(t))+|Fs]

=
2

∑
i=1

P(i)(s, t)

(
a(i)(s, t)Φ

(
a(i)(s, t)
c(i)(s, t)

)
+ c(i)(s, t)φ

(
a(i)(s, t)
c(i)(s, t)

))
,

(E.10)

where

ai(s, t) = gTµQ
(i)(s, t),

ci(s, t) =
√

gTΣ(i)(s, t)g, (E.11)

and Φ and φ is the distribution and density function of the standard normal
distribution, respectively. µQ

(i)(s, t) and Σ(i)(s, t) is given in Prop. 8.
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In Eq. (E.10) the forward price is not present, but rather the "domestic" for-
ward price EQ [p(t)|Fs]. However, if P(2)(s, t) > 0, which is a reasonable
assumption having the discussion on the market coupling in Sec. 1 in mind,
we get from Eq. (E.9) that

EQ [p(t)|Fs] =
[
P(1)(s, t)I(1) + P(2)(s, t)I(2)

]−1
F(s, t).

Hence, the observed forward prices in the market can directly be converted
to the domestic forward prices, needed in Eq. (E.10). This is useful in both a
pricing and hedging setting. Going forward, we refer to EQ [p(t)|Fs] as the
domestic forward price.

One can verify that the spread between the forward prices, F1(s, t) −
F2(s, t) where F(s, t) = [F1(s, t) F2(s, t)]>, does not depend on w in I(1)
but only on the probability of EPC, meaning that the spread between the
domestic forward prices does not depend on w as well. In fact,

EQ[p1(t)− p2(t)|Fs] =
F1(s, t)− F2(s, t)

P(2)(s, t)
, (E.12)

where p(t) = [p1(t) p2(t)]>. For P(2)(s, t) = 1, the domestic forward price
spread will coincide with the observed forward price spread as expected,
while EQ[p1(t) − p2(t)|Fs] > [F1(s, t) − F2(s, t)] for P(2)(s, t) ∈ (0, 1). As
P(2)(s, t) → 0 we have that EQ[p1(t)− p2(t)|Fs] → ∞. In other words, the
smaller P(2)(s, t) is, the more sensitive the domestic forward price spread
is towards changes in the observed forward price spread. We return to the
implication of this feature on transmission rights shortly.

Lastly we note that one typically has that g = [1 − 1]> in a transmis-
sion right context (which is the case considered in the remaining part of this
paper), reducing Eq. (E.10) to

EQ[(S1(t)− S2(t))+|Fs] =P(2)(s, t)

(
a(2)(s, t)Φ

(
a(2)(s, t)
c(2)(s, t)

)

+ c(2)(s, t)φ

(
a(2)(s, t)
c(2)(s, t)

))
. (E.13)

The transmission right price in Eq. (E.13) is also independent of the choice of
w.

Hedging

In Prop. 11 we present results regarding the delta sensitivities implied by the
Conv model.
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Proposition 11
Let S(t) be defined under Q as in Prop. 8, g ∈ R2, and let (gTS(t))+ be the
payoff of a European spread option. Define

J(i)(s, t) = I(i)
[
P(1)(s, t)I(1) + P(2)(s, t)I(2)

]−1
.

Then [
∆1
∆2

]
=

∂Π(s, t)
∂F(s, t)

=
2

∑
i=1

P(i)(s, t)Φ

(
a(i)(s, t)
c(i)(s, t)

)
J(i)(s, t)>g,

where ai(s, t) and ci(s, t) are defined in Prop. 8.

Proof. Notice that

ai(s, t) = g> J(i)(s, t)F(s, t).

Hence,

∂ai(s, t)
∂F(s, t)

= J(i)(s, t)>g,

and the rest follows by straightforward calculations.

Assuming g = [1 − 1]>, the delta is simplified to

∂Π(s, t)
∂F(s, t)

= Φ

(
a(2)(s, t)
c(2)(s, t)

)
g. (E.14)

3.3 Comparison of Margrabe and Conv

In Fig. E.4(a) we consider the difference in the transmission right price for a
single hour as a function of different forward spreads. The parameters used
in Fig. E.4(a) are all taken from the estimation results reported in Sec. 4.1. The
estimated parameters for the z(t) process translate to a probability of EPC of
roughly 65% in the Conv model. The prices implied by the two models dif-
fer mostly at-the-money (ATM), with the Margrabe formula pricing highest.
The difference with regard to deep in-the-money (ITM) and deep out-of-the-
money (OTM) is opposite quite small. The interpretation is that when the
forward spread is large in absolute terms, the probability of EPC becomes
less important; the forward spread simply dictates the transmission right
price. By forcing an increase in the probability of EPC from 65% to 90%, the
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Fig. E.4: a) difference between transmission right prices for a single hour implied by the Conv
model and the Margrabe formula for a varying forward spread, b) the deltas of the long leg
implied by the Margrabe formula and Conv model. In the Conv case, we use a probability
of EPC of both 65% and 90%. The forward spread is calculated by F1 − F2, where F2 = 35
EUR/MWh and F1 varies between 20 EUR/MWh and 50 EUR/MWh. Time to delivery is 5 days.

difference of ATM transmission rights increases between the Margrabe and
Conv model.

The delta sensitivities are depicted in Fig. E.4(b), showing the deltas, de-
noted by ∆, of the long leg of a transmission right using the same model
specification as in Fig. E.4(a). To further illustrate the impact of the probabil-
ity of EPC, we again show two versions of the Conv model: A model with a
EPC probability of 65% and a model with a EPC probability forced to 90%.
Comparing the Margrabe implied delta to the Conv implied delta reveals that
the Conv model is more sensitive towards changes in the forward spread. By
increasing the probability of EPC [decreasing P(2)(s, t)], we increase a(2)(s, t)
in absolute terms in Eq. (E.14) as a consequence of Eq. (E.12), thereby lead-
ing to a more extreme value of ∆. Hence, the 90% Conv version is more
extreme compared to the 65% version in the sense that it is more sensitive
towards changes in the underlying. As the probability of EPC gets close to
one, the Conv model suggests that the transmission right price approximates
the behaviour of the positive forward spread; the delta is one if the spread
is positive, and otherwise zero. To draw a parallel to the Margrabe formula,
increasing the EPC probability in the Conv model has the same qualitative
effect on the transmission right price as decreasing the volatility, σ, in the
Margrabe formula. Obviously, the volatility and correlation of the domestic
day-ahead prices influencing c(2)(s, t) also affects the level of the extrinsic
value of the transmission right price implied by the Conv model. It can be
read directly off from Eq. (E.14) that decreasing c(2)(s, t) will increase the
sensitivity of the transmission right price towards changes in the forward
spread.
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Fig. E.5: ∆ as a function of time to delivery for a) ITM transmission rights b) OTM transmission
rights, and c) ATM transmission rights. The employed models are the Margrabe formula and
Covn model using the parameters reported in Sec. 4.1. The EPC probability in the Conv model
is approximately 65%. A Conv model with a EPC probability forced to 55% is also shown.

Fig. E.5 shows ∆ of the long leg as a function of time to delivery for
ITM, OTM, and ATM transmission rights for both the Margrabe and Conv
model. For illustrative purposes Fig. E.5 shows a Conv model with a EPC
probability of 65% and another with a EPC probability forced to 55%. If
the EPC probability decreases, then the spread between the domestic for-
ward prices will also decrease as already discussed. Hence the decrease in
∆ for ITM transmission right, and the increase in ∆ for OTM transmission
rights. For ATM transmission rights, the ∆ is constant at 0.5 in both cases.
Comparing the Conv model to the Margrabe formula, they both imply an
increase/decrease in ∆ for ITM/OTM transmission rights when the time to
delivery is decreased. Due to the assumption of mean reversion in the Conv
model of the domestic day-ahead prices, the ∆ will not increase with time to
delivery like the Margrabe formula implies.

4 Empirical Results

We consider in this section pricing and hedging of transmission rights using
the two models presented in Sec. 3. From the Joint Allocation Office2, the
results of auctions for monthly transmission rights in Europe are available
as well as the auction periods. In order not to disturb the results due to
changing market environments regarding the way the market coupling is
effectuated, such as the change from the available transfer capacity method
to the flow-based one as discussed in Sec. 1, our observation period is from
21 July 2015 to 25 April 2019. However, we require two years of day-ahead
price observations when estimating the models, so the delivery of the first
transmission right we consider starts 1 August 2017, and the delivery period
of the last transmission right starts 1 May 2019. We acknowledge that other

2See jao.eu.
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changes in the market environment may also have an impact on the market
coupling. As an example, the splitting of the German/Austrian day-ahead
auction in October 2018 could potentially also impact the market coupling
in the CWE area, even though the shift from the available transfer capacity
method to the flow-based method has a more direct effect on the market
coupling. A further analysis is outside the scope of present paper and is left
as further research.

The considered period translates to 22 transmission rights for each cross-
border connection. We consider the transmission rights DE→FR, FR→DE,
DE→NL, and NL→DE, resulting in 88 observed transmission right auctions
in total. DE→FR should be interpreted as the transmission right with a long
French leg and a short German leg; i.e., Germany to France. The day-ahead
prices can be obtained from the EPEX SPOT exchange, while the baseload
forward prices used in the hedging application can be obtained from the
European Energy Exchange.

In the following, we first consider estimation results. Secondly, we dis-
cuss the empirical pricing results of both the Margrabe formula and Conv
model, and also compare these to the traded transmission right prices. This
is followed by a discussion of the transmission right hedging ability of the
two models in a delta hedging context.

4.1 Estimation

As discussed in Sec. 1, we exploit the hourly separation of the payoff structure
of a transmission right displayed in Eq. (E.1) by modeling each hourly day-
ahead price independently of all other hourly day-ahead prices. Each hourly
model will be referred to as a submodel and it is estimated on historical day-
ahead prices for the hour in question; e.g., the submodel for hour 1 (the hour
from 00:00 to 01:00) will be estimated on historical hour 1 day-ahead prices.

In both the Margrabe and Conv case, we first employ historical day-ahead
prices to estimate the needed parameters, and then forward prices to shift
measure, as discussed in Sec. 3. We estimate the parameters for all 24 sub-
models in both cases on the last day of each auction period. This results
in 2112 = 24× 22× 2× 2 (number of hours, number of transmission right
auctions, number of cross-border connections, number of models) estimated
submodels in total. To keep the presentation as clear as possible, we there-
fore only show the estimated parameters on two years of hour 1 day-ahead
price observations ending 21 July 2017 for the joint modeling of Germany and
France. It corresponds to the last day of the auction period for the monthly
transmission right with delivery period in August 2017. We complement
these results by figures intended to give the reader an insight in the remain-
ing estimation results.
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(a) Margrabe (b) Conv

Fig. E.6: a) estimated σ̂ for the Margrabe formula, and b) the mean of the asymptotic EPC
probabilities throughout a year for the Conv model. In both cases results are shown for all hours
and all estimation periods.

Margrabe Formula

The simplicity of the Margrabe formula imposes a quick and straightforward
estimation procedure. As is well-known, see e.g. Campbell et al. (1996), one
simply estimates σi by taking the standard deviation of the log returns of the
day-ahead prices from the ith market area for the hour in question. ρ is esti-
mated by the linear correlation coefficient between the same log return time
series from the two market areas. The estimated parameters are σ̂1 = 0.74,

σ̂2 = 0.21, and ρ̂ = 0.15. Fig. E.6(a) shows σ̂ :=
√

σ̂2
1 + σ̂2

2 − 2ρ̂σ̂1σ̂2 for all
hours and all estimation periods. A general pattern through the hour dimen-
sion can be observed with the minimum values of σ̂ attained around hour
10 and 19, and peaks around hour 2, 15, and 24. There is an increasing ten-
dency along the time dimension. Since transmission right prices implied by
the Margrabe formula is increasing in σ, the Margabe formula thus implies
increasing transmission right prices. By assuming that increased price con-
vergence is equivalent to a decrease in the transmission right price, Fig. E.6(a)
is consistent with the discussion in Sec. 1 and therefore violates the target of
the European Commission of increased price convergence.

Conv Model

We refer the interested reader to Christensen & Benth (2019) for the details of
the estimation procedure for the Conv model. To estimate w in Eq. (E.6), we
use the supplied electricity of each market area. The used supplied electricity
is given in Table E.2.

The estimation procedure for the Conv model is split up in a Kalman
filtering and particle filtering part. Since the observed forward prices in the
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DE FR NL

575,701 496,932 114,201

Table E.2: Supplied electricity given in (GWh) based on IEA (2017).

market areas determine EQ [p(t)|Fs] cf. the discussion in Sec. 3, we will not
dwell with the estimation results of Λ(t), but only note that we use the same
specification as in Christensen & Benth (2019). Moving on to the parameters
affecting ci(s, t) in Eq. (E.11), we assume that Σ is lower triangular, and that
K is diagonal in Eq. (E.8). In Table E.3 the estimation results for q(t) are
reported.

K̂(1,1) K̂(2,2) Σ̂(1,1) Σ̂(2,1) Σ̂(2,2)

85.72 35.54 82.72 54.25 52.41

Table E.3: Estimation results for q(t).

Lastly we report the estimated parameters for the z(t) process in Table E.4.
Based on the discussion in Christensen & Benth (2019), we use the following
specifications of λ(t) and σ(t):

λ(t) = aλ + bλ cos
(

2πt
M

+ cλ

)
,

σ(t) = aσ + bσ cos
(

2πt
M

+ cσ

)
,

aσ =

√
2k

1− e−2k(t−s)
,

where t − s measures the time between the equidistant observations. That
is, we allow yearly seasonality in the probability of EPC and in the uncer-
tainty of it. Here aλ, bλ, cλ, k, aσ, bσ, cσ ∈ R and M = 365. To give a sense

k̂ âλ b̂λ ĉλ b̂σ ĉσ

131.51 -1.00 1.18 0.18 -19.47 -0.60

Table E.4: Estimation results for z(t).

of the estimation results for all submodels, we calculate the asymptotic EPC
probability for each day during a year implied by the corresponding sub-
model. Since we employ a different submodel for each hour, this procedure
results in 365 asymptotic EPC probabilities for each hour. Fig. E.6(b) shows
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the development of the mean of these asymptotic EPC probabilities for each
hour through time. A general observation is that the EPC probabilities for all
hours are fairly constant over time. The peaks in EPC probabilities are cen-
tred around hour 5 and hour 19, with minimums at hour 13 and hour 24. This
pattern is observed through all estimation periods. Comparing the shape of
the hour dimension of Fig. E.6(b) to Fig. E.6(a), minimums in Fig. E.6(b) are
roughly attained at maximums in Fig. E.6(a). The EPC aspect of the Conv
model is handled by the Margrabe formula by adjusting σ: A high probabil-
ity of EPC corresponds to a low value of σ, and vice versa.

We finally note that the oscillation of the EPC probability between roughly
20-50% is in line with the number reported for the DE-FR cross-border in
Table E.1 of 35.69%.

4.2 Pricing

Fig. E.7 shows the calculated transmission right prices on the last auction
date using the Margrabe formula and the Conv model. For comparison,
we also show the auctioned transmission right prices for each cross-border
connection. Firstly, the two approaches seem to replicate the traded prices
quite well, especially when valuing ITM transmission rights. On average the
monthly forward spread in Fig. E.7(a) between France and Germany (that is,
the German forward price subtracted from the French forward price) is 7.35
EUR/MWh on the auction days for the periods shown in Fig. E.7, while the
average spread between the Netherlands and Germany in Fig. E.7(c) is 5.40
EUR/MWh. Notice that these are the settlement prices provided by EEX on
auction dates. However, the OTM transmission rights (on average) illustrated
in Fig. E.7(b) and Fig. E.7(d) indicates that the Margrabe formula struggles to
replicate the market behaviour, whereas the Conv model is more in line with
the market.

Fig. E.8 shows a two-dimensional histogram of the forward spread on auc-
tion dates and the corresponding differences between the Margrabe and Conv
transmission right prices for all price spreads; i.e., the number of instances
for a particular forward price spread and the corresponding spread between
the Margrabe implied and the Conv implied transmission right price. The
difference between the Margrabe formula and Conv model fades out the
greater the forward spread is in absolute terms, confirming the conclusion
from Fig. E.4(a). Notice in particular the similarity of the shapes of Fig. E.4(a)
and Fig. E.8. In most cases, the Margrabe formula estimates the transmis-
sion right price to be higher than the corresponding Conv price; the price
difference is on average 0.53 EUR/MWh. To set it in perspective, the average
traded transmission right price is 3.68 EUR/MWh. The mean in the Margrabe
and Conv case is 4.32 EUR/MWh and 3.80 EUR/MWh, respectively.

To further elaborate on the pricing differences between the Margrabe and
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Fig. E.7: Calculated transmission rights prices on the last auction date and the corresponding
auctioned prices, (a) transmission right from DE to FR, (b) transmission right from FR to DE, (c)
transmission right from DE to NL, (d) transmission right from NL to DE.
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Fig. E.8: A two-dimensional histogram with the forward spreads on auction dates versus the
differences between the estimated transmission right prices by the Margrabe formula and the
Conv model.

Conv approach, the minimum, mean, and maximum of the difference be-
tween each model implied transmission right price and the corresponding
traded price for each price spread are given in Table E.5. In all cases does
the implied Margrabe price surpass the traded price on average, whereas
the Conv model is more consistent with the market according to the mean
values. The dispersion of the distributions measured by the average spread
between the maximum and minimum values is 3.00 and 2.65 in the Margrabe
and Conv case, respectively. Fig. E.9 shows a histogram of the differences

DE→FR FR→DE DE→NL NL→DE

Margrabe
Minimum -0.31 -0.58 -1.46 -0.16
Mean 0.38 0.69 0.70 0.79
Maximum 1.56 3.29 2.39 2.23

Conv
Minimum -0.57 -0.66 -2.67 -0.70
Mean 0.08 0.39 -0.056 0.04
Maximum 0.93 3.29 0.94 0.85

Table E.5: Minimum, mean, and maximum of the difference between the implied transmission
right price and the corresponding traded price at the four cross-borders. The numbers are
denoted in EUR/MWh and given for the two models, Margrabe and Conv.

between the prices implied by each model and the traded prices for all price
spreads. The differences in Fig. E.9(a) is more spread out than in Fig. E.9(b),
which is more centred around zero. Also, the mean of the differences in
Fig. E.9(a) is 0.64 EUR/MWh compared to 0.11 EUR/MWh in Fig. E.9(b).
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Fig. E.9: a) the difference between the transmission right price implied by the Margrabe formula
and the corresponding traded price, and b) the difference between the transmission right price
implied by the Conv model and the corresponding traded price.
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Fig. E.10: a) the difference between the traded and realized transmission right prices, and b)
the difference between the transmission right prices implied by the Margrabe formula and the
realized prices, and c) the difference between the transmission right prices implied by the Conv
model and the realized prices.

It is also interesting to consider the prices at which the transmission rights
were realized; that is, the payoff from holding the transmission right through
the corresponding delivery period. Fig. E.10 compares the realized transmis-
sion right prices to the traded, Margrabe, and Conv prices. On average, the
transmission right prices are traded at a lower price compared to the realized
values, with a mean of the difference between the traded and realized prices
being -0.23 EUR/MWh. Consequently, the difference between the Margrabe
and realized prices is also smaller than the difference between the Margrabe
and traded prices. The mean in Fig. E.10(b) is 0.41 EUR/MWh. The Conv
model is the one closest to the realized prices, with -0.12 EUR/MWh being
the average in Fig. E.10(c). Also notable is the more centred distribution
around zero in Fig. E.10(a) and Fig. E.10(c) compared to Fig. E.10(b).
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Time

Hedging period

Auction period Transmission right delivery period

Fig. E.11: Time line overview of the hedging application.

4.3 Delta Hedging

In this section we consider the hedging aspect of transmission rights trading
by employing delta hedging strategies imposed by the Margrabe formula and
Conv model. We use the estimated parameters on end auction dates through-
out each hedging period. Each hedging period is defined as the period from
the last auction date to the second-to-last date in the delivery period of the
transmission right (we cannot hedge on the last day) as schematically illus-
trated in Fig. E.11. For each transmission right, we re-evaluate our hedge
daily during the hedging period. One might notice the spread in time be-
tween the auction period and the delivery period of the transmission right
in Fig. E.11, where we also re-adjust our hedge according to the changes in
the forward prices. Forward contracts are only traded on EEX on business
days, and we therefore consider between 20-30 business days in each hedging
period. In all cases, we use the settlement price for each business day to rep-
resent the price for trading a particular forward contract on exactly that day.
We furthermore assume that the hedger has access to the daily, weekly, and
monthly baseload forward contracts on each business day quoted by EEX,
that the tick size is 1 MW, that the traded transmission right size is 10 MW,
and zero transaction costs.

The hourly delta exposure from the transmission right is calculated using
the before mentioned baseload forward contracts. In other words, a single
forward price is used for all hourly options making up the transmission right,
cf. Eq. (E.1). In case of overlapping contracts, e.g. a weekly and a monthly
forward contract, we use the price from the contract with the shortest de-
livery period due to the assumption of a more representative price for the
shorter contract. To exemplify, we show in Fig. E.12(a) the delta exposure for
the German leg of the transmission right FR→DE implied by the Margrabe
formula. The exposure is calculated on the last day of the auction period,
which is 21 July 2017. On this date, EEX quoted the monthly contract with
delivery period in August, the weekly contract with delivery period starting
7 August 2017, and lastly the weekly contract with delivery period starting
14 August 2017. As a result, the delta exposure covering these two weeks is
calculated differently with regard to the used forward prices. Hence, the shift
in the level of the exposure. Since a different model is applied for each hour
of the day, the exposure will also differ. By considering Eq. (E.2), we find
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Fig. E.12: Delta exposure of the transmission right (a) before, and (b) after delta hedging for each
hour of the delivery period of the transmission right delivering in August 2017. The exposure is
calculated on the last day of the auction period, 21 July 2017. The underlying model is Margrabe.

that the optimal hedging quantities of the three forward contracts are -5 MW
for the monthly contract, and -1 MW for both of the weekly contracts. The
exposure for each hour of the transmission right delivery period after delta
hedging with these quantities is shown in Fig. E.12(b). That is, Fig. E.12(b)
shows the hourly exposure of the portfolio consisting of the 10 MW transmis-
sion right, the -5 MW monthly forward contract, and the two -1 MW weekly
forward contracts. It is apparent that it is not possible to close down the
exposure completely in this case, partly due to the constrained tick size and
partly due to the fact that different submodels are applied to different hours.
The difference in the submodels basically boils down to different values of σ
in Eq. (E.4). Also, since the transmission right is ITM throughout the trans-
mission right delivery period, the shape of each individual hour follows the
shape of the Margrabe case in Fig. E.5(a).

The hedging results are summarized in Fig. E.13 and Table E.6. The profit

DE→FR FR→DE DE→NL NL→DE

Margrabe
Minimum -1.48 -1.08 -1.42 -0.37
Mean 0.21 0.58 1.22 0.93
Maximum 1.55 2.24 5.28 4.28

Conv
Minimum -1.25 -0.94 -1.46 -0.34
Mean 0.18 0.50 1.14 0.91
Maximum 1.55 1.60 5.62 4.91

Table E.6: Minimum, mean, and maximum of the PnL distribution implied by the delta hedg-
ing strategy of the transmission rights at the four cross-borders. The numbers are denoted in
EUR/MWh and given for the two models, Margrabe and Conv.
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Fig. E.13: Hedging results represented by the PnL given in EUR/MWh for (a) transmission rights
from DE to FR, (b) transmission rights from FR to DE, (c) transmission rights from DE to NL,
(d) transmission rights from NL to DE.

and loss (PnL) refers to the PnL generated by the portfolio of forward con-
tracts used to hedge the transmission right and the cost of buying the corre-
sponding transmission right. The delta hedging strategy implies a positive
PnL on average in both the Margrabe and Conv case. The performance of
both models is quite similar, which might be somewhat surprising. One ex-
planation might be the tick size of 1 MW that implies that the differences
between the hedges implied by the Margrabe formula and the Conv model
are minimized. As an example, the Conv equivalent hedging portfolio to the
Margrabe case shown in Fig. E.12 consists of -5 MW, -1 MW, and 0 MW for
the monthly and two weekly forward contracts, respectively; i.e., in this case
the Margrabe formula and the Conv model only differ by 1 MW on a weekly
forward contract.
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5 Conclusion

The pricing and hedging of transmission rights in coupled interconnected
electricity markets is investigated in a continuous-time setting. Two models
are employed, namely the Conv model from Christensen & Benth (2019) and
the Margrabe formula from Margrabe (1978). The Conv model takes the mar-
ket coupling into account and allows the exact price convergence observed
empirically. Opposite, the Margrabe formula acts as a benchmark due to its
well-known properties, but does not take the market coupling into account.

In a pricing context, we consider several monthly auctioned transmission
rights in the Central-West Europe area. The Conv model seems to be more
consistent with the market than the Margrabe formula. The former has a
pricing error compared to the actual traded prices of 0.11 EUR/MWh on
average, while the latter has a pricing error of 0.64 EUR/MWh. Also the
distribution of the pricing errors of the Conv model is more evenly centred
around zero compared to the Margrabe formula.

In a hedging context, a delta hedging strategy using both models is ap-
plied with baseload forward contracts of different delivery periods being the
hedging instruments. The monthly transmission rights are each hedged from
the last day of the auction period, where the position in the transmission right
is also taken, to the second-to-last day of the delivery period of the transmis-
sion right. We find that the difference between hedging results implied by
the two models is small.
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