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Abstract

This project aims to advance the state of the art within computational meth-
ods for wave-structure interaction problems. This is attempted by developing
a new method for non-linear potential flows, which is based on radial basis
function-generated finite differences (RBF-FD). The new RBF-based method is
investigated due to its high-order accuracy and mesh-free nature, which makes
it possible to discretize the governing partial differential equations on unstruc-
tured node sets that conform with the time-dependent free surface and other
moving boundaries.

Unstructured node sets and nearest neighbor stencil selections will in gen-
eral result in asymmetric stencils. These asymmetric stencils give rise to tem-
poral instabilities as the eigenvalues of the discrete gradient operator will not
be purely imaginary. This numerical issue can be remedied by adding dissipa-
tive terms to the free surface conditions. In this thesis, the dissipative terms
are based on hyperviscosity, which is a high-order Laplace operator that seeks
to stabilize the system without deteriorating the accuracy.

Hyperviscosity works by shifting the spurious eigenvalues, i.e. eigenvalues
related to highly oscillatory eigenvectors, towards the left half of the complex
plane, while leaving the physical eigenvalues intact. The amount by which the
eigenvalues are shifted depends on the scaling of the hyperviscosity operator.
This scaling parameter is in general problem dependent, but it is shown that
a heuristic scaling law can be derived based on the Nyquist frequency in com-
bination with an approximate `1 normalization of the hyperviscosity operator.

Near boundaries the heuristic scaling law may give rise to instabilities. How-
ever, these instabilities are related to irregularities in the scaling parameters
rather than the asymmetric stencils. Thus, the temporal stability can be im-
proved by smoothing out the irregularities, e.g. by applying a moving median
filter, when boundaries are intersecting the free surface. This smoothing op-
eration leaves the eigenspectrum globally intact, while shifting the eigenvalues
with large real parts even further towards the left half of the complex plane.

The proposed stabilization technique in combination with the developed
node generation and update strategy, which enables node refinements towards
the free surface and other moving boundaries, results in a stable computational
method suitable for non-linear wave-structure interaction problems. Prelimi-
nary two-dimensional test cases show promising results, which illustrate the
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potential of the proposed method and further investigations are encouraged.
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Resumé

Dette projekt sigter efter at bidrage til state of the art inden for beregningsme-
toder til bølge-struktur interaktions problemer. Dette er forsøgt opn̊aet ved
at udvikle en ny metode til ikke-lineær potential strømninger, som er baseret
p̊a radial basis function-generated finite differences (RBF-FD). Den nye RBF-
baserede metode er undersøgt grundet dens højere-ordens nøjagtighed og net-fri
natur, hvilket gør det muligt at diskretisere de styrende partielle differential-
ligninger p̊a ustrukturerede knude sæt, som former sig efter den tidsafhængige
fri overflade samt andre bevægelige rande.

Ustrukturerede knude sæt og nærmeste nabosøgninger vil generelt føre til
asymmetriske diskretiseringer. Disse asymmetriske diskretiseringer giver an-
ledning til ustabile løsninger eftersom egenværdierne af den diskrete gradient
operator ikke udelukkende er imaginære. Dette numeriske problem kan undg̊as
ved at tilføje absorberende led til randbetingelserne for den fri overflade. I
denne afhandling er de absorberende led baseret p̊a hyperviskositet, som er
en højereordens Laplace operator, som søger at stabilisere systemet uden at
forværre nøjagtigheden.

Hyperviskositet fungerer ved at forskyde ikke-fysiske egenværdier, dvs. egen-
værdier tilhørende stærkt svingende egenvektorer, mod den venstre halvdel af
det komplekse plan, hvorimod fysiske egenværdier efterlades intakte. I hvilket
omfang egenværdierne forskydes afhænger af skaleringen af hyperviskositets
operatoren. Denne skalering afhænger generelt af problemet, men det er vist,
at en heuristisk skaleringslov kan udledes ved at kombinere Nyquist frekvensen
med en approksimeret `1 normalisering af hyperviskositets operatoren.

I nærheden af rande kan den heuristiske skaleringslov give anledning til
ustabiliteter. Disse ustabiliteter er dog relateret til irregulariteter i skaler-
ingsparametrene, frem for den asymmetriske diskretisering. Stabiliteten kan
derfor forbedres ved at udjævne disse irregulariteter, fx ved at benytte et me-
dian filter, s̊afremt rande gennemskære den fri overflade. Denne udjævningsop-
eration efterlader egenspektrummet globalt intakt, medens egenværdierne med
store realdele forskydes yderligere mod den venstre halvdel af det komplekse
plan.

Den foresl̊aede stabiliseringsmetode kombineret med den udviklede knude
generings- og opdaterings strategi, som muliggør forfinelse af knuder i nærheden
af den fri overflade og andre bevægelige rande, udmønter sig i en stabil beregn-
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Resumé

ingsmetode egnet til ikke-lineære bølge-struktur interaktions problemer. Indle-
dende to-dimensionale test problemer viser lovende resultater, som illustrerer
potentialet af den foresl̊aede metode og opfordrer til yderligere undersøgelser.
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Chapter 1

Introduction
Parts of this chapter are based on the work in [A,B,C,D].

The goal of this project is to advance the state of the art within computational
methods for wave-structure interaction problems by developing a new non-
linear potential flow solver, which is high-order accurate, geometrically flexible
and robust. The work presented in this thesis constitutes the proof-of-concept
of the new solver, which is based on stabilized radial basis function-generated
finite differences.

1.1 Background and motivation

Floating offshore wind turbines, wave energy converters, floating bridges, ships
and subsea installations. Indisputably, the interaction between marine struc-
tures and ocean waves is of interest to many industries and has been a research
topic for many years. Computational methods are used extensively for an-
alyzing wave-structure interaction problems, including floating structures for
which considerable non-linear effects may arise. Before reviewing state-of-the-
art computational methods for the analysis of marine structures, some causes
of non-linear behavior related to floating structures are briefly introduced.

From a structural perspective, the mooring system may introduce signif-
icant non-linear behavior. The main objective of mooring systems is station
keeping or stabilization. Floating structures that include mooring systems are
e.g. floating offshore wind turbines, wave energy converters, floating bridges
and tunnels. In figure 1.1, a floating structure is illustrated along with its
mooring system. As the floating structure may experience displacements due
to incident waves, it will eventually pull the buoy, which will pull the mooring
lines connected to it. Thus, the motion of the floating structures will increase
or decrease the tension forces in the mooring lines, but also modify the referen-
tial configuration considerably if large motions are experienced. These motions
will thereby influence the structural stiffness and change the dynamic behavior
of the system.
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Chapter 1. Introduction

(a) (b)

Fig. 1.1: A sketch of a moored floating structure in (a) initial configuration and (b) displaced
configuration, which introduces geometrically non-linear behavior of the mooring lines [1].

Hydrodynamic loads do not only depend on the sea state conditions, but
also the instantaneous spatial position of the floating structure within the given
sea state. If the floating structure displaces considerably from its initial config-
uration, e.g. as illustrated in figure 1.2, the resulting hydrodynamic loads have
to be computed by integrating the pressure field over the instantaneous wetted
body surface. Thus, if large amplitude motion is experienced by the floating
structure, the linear assumptions become invalid and non-linear motion have
to be taken into account.

(a) (b)

Fig. 1.2: A sketch of a moored floating structure exposed to incident waves that modify the
floater orientation from (a) initial configuration to (b) displaced configuration [1].

The incident waves will influence the floating structures and the floating
structure will influence the incident waves. However, the incident waves will
only be notably affected if the size of the floating structure is comparable to
the incident wave length. If this is the case, the floating structure will diffract
the incident waves, but also radiate waves due to its motion, which can be
effectively described in a linear setting. However, as the incident wave steepness
and the floating structure motion increase, the linear assumptions break down.

In relation to viscosity, the main contribution to drag forces is flow sepa-
ration, which may introduce significant non-linear forces. However, for large
structures the drag forces may often be neglected because the fluid flow attaches
to the body surface and the forces due to flow separation can be neglected.
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1.2. Literature review

1.2 Literature review

Many computational methods have been used to establish wave-structure in-
teraction models [2]. A classification of different model fidelities are illustrated
in figure 1.3.

Fluid
Potential flow Structure

Forces

Fluid
Potential flow Structure

Motion

Forces

Fluid
Navier-Stokes Structure

Motion

Forces

Interaction

Medium fidelity

High fidelity

Low fidelity

Fig. 1.3: Classification of model fidelities for wave-structure interaction problems.

Although high fidelity models include more features of the physical problem,
it also comes at a higher computational cost as discussed in [2]. The higher cost
is not always profitable if the most important features of the physical system
can be sufficiently represented by a model with lower fidelity. In the following,
the full range of computational methods are reviewed, although the non-linear
potential flow models are the primary focus of this thesis [3]. An overview of
non-linear hydrodynamic models for wave energy converters is given in [4].

1.2.1 Low fidelity models

Marine structures that are constructed by space frames are popular because
of the load-bearing capacity to weight ratio. The slender tubular members are
very small in comparison with the incident waves and therefore the structural
members are assumed to be transparent to the incident waves. Thus, the
hydrodynamic loads can be modeled by a semi-empirical relation, such as e.g.
the Morison equation [5], which gives the approximated hydrodynamic forces
based on particle kinematics computed with an applicable wave theory [5–8].
This approach is often implemented numerically, which makes it possible to
allow for large amplitude motion of the structure and to include non-linear
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Chapter 1. Introduction

contributions to the equation of motion [1,9,10]. This approach is also suitable
for modeling the hydrodynamic loads on mooring lines [11,12].

1.2.2 Medium fidelity models

Linear potential flow - frequency domain

Large floating structures can not be considered non-transparent to the incident
waves. As the incident waves in operational conditions can be considered small
in relation to the large floaters, the free surface elevation may be linearized
about the mean water level, which leads to a single linearized free surface con-
dition. This eases the solution of the flow field as the principle of superposition
may be used in combination with potential flow theory. Hereby, the total flow
field can written as the sum of an incident, diffraction and radiation velocity po-
tential. The diffraction potential corresponds to the presence of a fixed body
in incident waves, while the radiation potential corresponds to fluid motion
due to body oscillations in still water [5–7]. In practice, the boundary element
method (BEM) is typically used to solve for the relevant coefficients (added
mass, radiation damping, hydrostatic stiffness, excitation forces) needed for
describing the floater equation of motion in frequency domain [13, 14]. How-
ever, if important non-linear effects need to be included, it is necessary to solve
the equation of motion in time domain.

Linear potential flow - time domain

The linear frequency domain approach is suitable for analysis of most oper-
ational conditions. However, linearization of external forces does not always
provide suitable approximations, e.g. if non-linear mooring effects or non-linear
viscous forces are expected. Especially for floating structures that consist of
both large and small structural surface piercing elements, it is beneficial to
combine the linear diffraction and radiation contributions with non-linear vis-
cous contributions. To combine these terms, the equation of motion is solved
in time domain, which is sometimes referred to as Cummins’ equation due to
the work in [15]. Similar to the frequency domain approach, the relevant coeffi-
cients can be computed by means of BEM codes [13,14], but now also impulse
response functions have to be computed. The resulting equations of motion
have to be solved with a time integration scheme in a method-of-lines sense.

Fully non-linear potential flow

In linear hydrodynamics, the floating structures are assumed to experience
small amplitude oscillations around their initial position, which means that
the hydrodynamic forces are evaluated with respect to the initial configura-
tion. Therefore, if the incident waves become steep or the floating structures
experience substantial motion, the linear hydrodynamic models may become
inaccurate. The model fidelity can be increased further by considering the fully

6



1.2. Literature review

non-linear potential flow problem, which means that the non-linear free sur-
face conditions are not linearized and the time-varying fluid domain has to be
modeled.

The BEM is a popular choice in linear hydrodynamics, but it has also been a
popular choice for non-linear wave propagation and wave-structure interaction
problems [16–22]. As only the boundaries are discretixed, the BEM offers the
geometric flexibility suitable for handling the moving boundaries of floating
structures. This requires the Eulerian description of the free surface conditions
to be exchanged with a semi- or fully Lagrangian frame of reference, which
results in a Mixed Eulerian-Lagrangian (MEL) formulation. For this purpose,
the BEMs fit well.

Finite differences on structured grids was originally presented in [23], where
a time-invariant computational domain was used, at the cost of a Laplace equa-
tion with time-dependent coefficients. This model was later extended in [24,25]
to include variable order finite differences with the possibility of grid stretch-
ing, e.g. for node clustering towards the free surface. Moving boundaries
are not straight-forward to handle with traditional finite differences on time-
invariant structured grids, and therefore a model based on the combination
of finite differences and a weighted least squares (WLS) immersed boundary
method was initially investigated in [26]. Further developments were presented
in [27,28], where a time-invariant computational domain was used, but instabil-
ities were noted near the intersection between the free surface and body bound-
aries. Thus, in [29] the model was extended by including a semi-Lagrangian
formulation of the intersection point between the free surface and body bound-
aries. Although the robustness may have been improved, it is currently being
investigated whether it is beneficial to leave out the time-invariant domain [30],
which was also noted in the conclusions of the work in [28].

Another method that utilizes an immersed boundary method is the har-
monic polynomial cell (HPC) method. The immersed boundary method is
used to include arbitrary body boundaries in combination with overlapping
grids [31–33].

Finite elements were used in [34–39] for wave propagation as well as wave-
structure interaction. The models consist of the coupling between rigid body
motion and a quasi arbitrary-Lagrangian-Eulerian finite element method (QALE-
FEM) for the non-linear potential flow. The mesh is generated only once and
then moved such that it conforms to the evolving boundaries, i.e. the free
surface and moving boundaries. In this way, remeshing of the whole domain is
circumvented by less costly local mesh movements at each time step.

Spectral elements have also been used to discretize the fluid domain [40–42].
In [40], temporal stability issues related to asymmetric meshes were investi-
gated. It was proposed to add a dissipative term to the vertical kinematic
free surface condition, which was scaled proportional to the mesh skewness.
It was shown to be applicable to both linear and non-linear cases, where the
Lagrangian free surface formulation was used. Instead of remeshing, the mesh
was updated at each time step by solving two Laplace equations.

7



Chapter 1. Introduction

In [42], it was proposed to use a hybrid mesh as a remedy for instabili-
ties related to the asymmetric mesh. The hybrid mesh consists of a layer of
quadrilateral elements just below the free surface, while unstructured triangles
are used in the remaining part of the domain. The free surface conditions are
based on a Lagrangian formulation, which means that the mesh points have
to be updated at each time step. This is done in a similar manner as in [36],
where only mesh points close to moving boundaries are moved.

Although mesh-free methods provide the geometric flexibility needed for
wave-structure interaction problems, not many potential flow solvers have been
based on these methods. Radial basis function-generated finite differences
(RBF-FD) [43–45], which is a mesh-free finite difference-like scheme, has only
been used in few cases. One example is the numerical wave tank presented
in [46], which utilizes the geometric flexibility of RBF-FD by solving the gov-
erning equations on a structured node set that moves proportional to the free
surface elevation. Another example is the model presented in [47], which uses
a time-invariant domain with RBF-FD discretization in the horizontal dimen-
sions and a pseudo-spectral method in the vertical direction.

1.2.3 High fidelity models

Navier-Stokes/Euler equations

In order to include viscous effects, the Navier-Stokes equations or modified ver-
sions of these, e.g. Reynolds averaged Navier-Stokes (RANS) equations, have
been used. These high fidelity models are often based on the finite volume
method and require either an interface capturing or interface tracking method
to resolve the free surface. An example of an interface capturing technique
is the volume of fluid (VOF) method [48], which is suitable for representing
multiphase flows. The air-water interface is captured by solving an additional
transport equation that defines whether the individual cells contain air, water
or a combination. An example of a model that tracks the free surface is the
one presented in [49]. The model is based on WLS, while the Euler equations
are formulated in an arbitrary-Lagrangian-Eulerian (ALE) frame of reference.
The ALE-WLS model was developed for wave-structure interaction problems
and wave-breaking events. Other models that are suitable for breaking free sur-
faces, and wave-structure interaction problems, are the ones based on smoothed
particle hydrodynamics (SPH) [50,51].

Hybrid formulations

Fully coupled fluid-structure interaction analysis based on Navier-Stokes equa-
tions is computationally expensive as noted in [52]. Thus, different domain
decomposition strategies are being investigated in order to decrease the sim-
ulation time. The idea is to decompose the fluid domain into a far-field fluid
domain and a near-field fluid domain. In the far-field the model with lowest

8



1.3. Hypothesis and objectives

fidelity is used, while the model with the highest fidelity is used in the near-
field. In [53], it was shown that significant computational speed-ups could be
achieved by conducting a two-way coupling of far-field non-linear potential flow
solver [25] and a SPH near-field solver [50]. A linear potential flow model was
coupled with a submerged RANS domain in [54], which was used to improve the
modeling of gap resonances, which may occur in moonpools or when floating
structures are positioned in close proximity. Also, the QALE-FEM potential
flow solver has been coupled with both a two-phase Navier-Stokes solver [55]
and a SPH solver [56].

1.3 Hypothesis and objectives

From the literature review, it is found that the high fidelity models are still
so computational costly that the non-linear potential flow solvers are of in-
terest for many non-linear wave-structure interaction problems. Although the
fully non-linear potential flow problem has been studied for many years, the
development of efficient, accurate and robust computational methods is still
an active research topic [2]. Lastly, it was also noticed that only a few studies
investigated the use of RBF-FD in the context of fully non-linear potential flow
problems, despite its high-order accuracy and geometric flexibility. Based on
these findings, the following hypothesis is posed:

RBF-FD will provide a suitable framework for non-linear wave-structure in-
teraction problems, due to its geometric flexibility and high-order nature, if
sufficient temporal stability can be achieved on unstructured node sets.

The main objective of the thesis is to conduct a numerical analysis to assess
whether RBF-FD is applicable to wave-structure interaction problems. The
following objectives are defined for the hypothesis to be answered:

• Develop and implement a model for fully non-linear potential flow prob-
lems in 2D, which can handle moving boundaries.

• Investigate the numerical properties of the developed model.

• Investigate if hyperviscosity can be used to improve the temporal stability
and how it affects the accuracy of the model.

• Investigate if a heuristic scaling law can be derived for the hyperviscosity
operator.

• Validate the model using relevant test cases.

9



Chapter 1. Introduction

1.4 Outline

First, the mathematical formulation used for modeling the wave-structure in-
teraction is introduced in chapter 2. The developed RBF-based method is
introduced in chapter 3, which seeks to solve the problem posed in chapter 2.
In chapter 4, the scientific contributions are described with reference to the
publications made during the project. Finally, chapter 5 states the concluding
remarks and presents suggestions for future research.

10



Chapter 2

Mathematical formulation
Parts of this chapter are based on the work in [A,B,C,D].

For irrotational flow of an incompressible and inviscid fluid, the potential flow
theory is applicable. The governing Laplace equation can be obtained from the
continuity equation such

∇2φ = 0, x ∈ Ω(t), (2.1)

where ∇ ∈ Rd is the gradient operator, φ = φ(x, t) ∈ R is the velocity potential
and x ∈ Rd is the position vector in a d-dimensional physical domain Ω = Ω(t),
as illustrated in figure 2.1.

2.1 Free surface conditions

Let Γη = Γη(t) denote the free surface, then the kinematic and dynamic free
surface boundary conditions can be expressed as

Dr

Dt
= up, x ∈ Γη(t), (2.2)

Γw

Γb

Ω

Γw

η

h

x

z

Γη

ΓB

n

Fig. 2.1: Physical domain Ω with boundary definitions in d = 2.
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Chapter 2. Mathematical formulation

Dφ

Dt
= −gη − 1

2
∇φ · ∇φ+ up · ∇φ, x ∈ Γη(t), (2.3)

where g is the gravitational acceleration, r = (xh, η) ∈ Rd is the free surface
particle position vector, xh = xh(t) ∈ Rd−1 is the horizontal position vector,
η = η(xh, t) ∈ R is the free surface elevation and up ∈ Rd is the free surface
particle velocity vector given by

up =
∇φ · nη
tw · nη

tw, (2.4)

with nη ∈ Rd being the unit vector normal to the free surface and tw ∈ Rd
a unit vector that dictates the direction of the particle motion. This formu-
lation is used due to the possibility of influencing the motion of free surface
particles, which is beneficial if surface-piercing, and possibly moving, bound-
aries are present. As described in [16], the Eulerian formulation of the particle
velocity is recovered by setting tw = k where k is a unit vector pointing in the
positive vertical direction, while the Lagrangian particle velocity formulation is
recovered by setting tw = ∇φ/ ‖∇φ‖2. The ability to blend a semi-Lagrangian
and fully Lagrangian formulation is also interesting in respect to coupling with
other methods, e.g. far-field solvers, where the free surface variables are often
kept at fixed horizontal positions.

2.2 Fixed and moving boundaries

At the seabed, Γb, and other fixed boundaries, Γw = Γw(t), the free-slip con-
dition is enforced by

n · ∇φ =
∂φ

∂n
= 0, x ∈ {Γb ∪ Γw(t)} , (2.5)

where n ∈ Rd is a unit normal vector pointing out of the fluid domain. At
moving boundaries, ΓB = ΓB(t), the free-slip condition is enforced by

∂φ

∂n
= n · uB , x ∈ ΓB(t), (2.6)

with uB = U + Ω × rB being the boundary velocity vector, assuming rigid
body motion, U ∈ Rd is the translational body velocity vector, Ω ∈ Rd is
the angular body velocity vector and rB ∈ Rd is the position vector from the
body’s center of mass to the body surface. At intersection points, the boundary
velocity is included in the particle velocity formulation in (2.4), such that

up =
(∇φ− uB) · nη

tw · nη
tw + uB , (2.7)

where tw defines the tangential direction of the boundary, which confines the
particle motion to this direction.
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2.3. Wave generation, absorption and ramping

2.3 Wave generation, absorption and ramping

Different techniques have been proposed for wave generation and absorption.
In this work, the waves are generated and absorbed by an embedded penalty
forcing technique [57], which was derived from a relaxation method in [58].
Thus, forcing terms are added to the free surface conditions, which for the
dynamic free surface condition results in

Dφ

Dt
= Nφ +

1− β
∆t

(φa − φ) , x ∈ Γη(t), (2.8)

where φa = φa(x, t) is the target value for the velocity potential, ∆t is the time
step size, Nφ represents the right-hand side (RHS) of the dynamic free surface
condition in (2.3) and β = β(x) is a relaxation function [59] expressed as

β(x) =


1− e

d3.5g −1
e−1 , x ∈ Γg = {rg < Rg}

1− ed
3.5
d −1
e−1 , x ∈ Γd = {rd < Rd}

1, otherwise,

(2.9)

where Rg is the radius of the wave generation zone Γg, Rd is the radius of
the wave absorption zone Γd, rd is the horizontal distance to the origin of
the wave absorption zone, rg is the horizontal distance to the origin of the
wave generation zone, dg = 1 − rg/Rg is the normalized distance to the wave
generation zone and dd = 1 − rd/Rd is the normalized distance to the wave
absorption zone. If simulations are initialized from still water level, the target
values of the free surface variables are ramped according to the ramp function

α(t) =

{
1
2

(
1− cos

(
π t
tr

))
, t < tr

1, otherwise,
(2.10)

with the ramping period tr. The target values of the free surface variables
are multiplied by the ramp function such that they smoothly develop into the
target sea state.

2.4 Pressure computation

The forces and moments on submerged structures can be computed by inte-
grating the pressure over the wetted body surface,

f =

∫
ΓB(t)

pn ds, (2.11)

m =

∫
ΓB(t)

p(r × n) ds. (2.12)
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Chapter 2. Mathematical formulation

The unsteady Bernoulli’s equation is used to compute the pressure,

p = −ρ
(
φt +

1

2
∇φ · ∇φ+ gz

)
, (2.13)

where φt = φt(x, t) ∈ R is the partial time derivative of the velocity poten-
tial, which can be found in various ways. Here, it is computed by solving an
additional Laplace equation, which can be derived from the acceleration po-
tential [19, 20]. The acceleration potential is derived from Euler equations by
expressing the fluid acceleration a ∈ Rd as

a =
Du

Dt
=
∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ g∇z, (2.14)

which can be rewritten by expressing the velocity as u = ∇φ, while using the
vector identity

1

2
∇(u · u) = (u · ∇)u+ u× (∇× u), (2.15)

where ∇× u = 0 due to the irrotationality assumption, such that

a = ∇Φ = ∇
(
∂φ

∂t
+

1

2
(∇φ)2

)
, (2.16)

where Φ = Φ(x, t) ∈ R is the acceleration potential. However, the velocity
potential is already known, so only the partial time derivative of the velocity
potential has to be computed. This can be computed by solving the additional
Laplace problem

∇2φt = 0, x ∈ Ω(t). (2.17)

On the free surface, the partial time derivative has to satisfy

φt = −gη − 1

2
(∇φ)2, x ∈ Γη(t), (2.18)

and at boundaries that experience pure translational motion,

∂φt
∂n

= U̇ · n− kn(∇φ−U)2 − ∂

∂n

(
1

2
(∇φ)2

)
, x ∈ ΓB(t), (2.19)

where U̇ ∈ Rd is the translational body acceleration vector and kn is the normal
curvature of the body surface, which is kn = −1/R for a circular cylinder of
radius R. For fixed boundaries the boundary condition is given as

∂φt
∂n

= − ∂

∂n

(
1

2
(∇φ)2

)
, x ∈ {Γb ∪ Γw(t)} . (2.20)

After having computed φt, the resulting forces and moments can be calculated
according to (2.11) and (2.12), where the unsteady Bernoulli’s equation has
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2.4. Pressure computation

been used to formulate the pressure. If the body motion is forced, the RHS of
(2.19) is known after the velocity potential has been computed. However, if the
pressure and the body motion are both unknown, it may be necessary to deal
with added mass instabilities, which are caused by a too weak coupling between
the body motion and the pressure. Only forced vertical motion is considered
in this work, so added mass instabilities are not encountered.
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Chapter 3

Stabilized radial basis
function-generated finite
differences
Parts of this chapter are based on the work in [A,B,C,D].

The numerical discretization is based on radial basis function-generated finite
differences (RBF-FD), which provides a geometric flexibility that allows the
nodes to follow the time dependent moving boundaries. It must be noted that
the RBF-FD is not the only mesh-free discretization method, which means that
the methodology presented here could also have been investigated with other
mesh-free schemes instead, e.g. the WLS method, although the conclusions
may differ from the ones presented in this thesis.

3.1 Radial basis function-generated finite dif-
ferences

We seek to approximate spatial differential operators by linear combinations,

Lf(x)|x=xe ≈ w · f =

n∑
i=1

wifi, (3.1)

where L is a linear spatial operator, w ∈ R1×n contains the RBF-FD weights
that approximate Lf(x) at evaluation point x = xe ∈ Rd from the function
data f ∈ Rn. To keep things simple, we restrict the focus to the polyharmonic
RBF of odd degree m ∈ 2N + 1,

ψ(r) = rm, (3.2)

where ψ(r) = ψ(‖x− xi‖2) ∈ R is a radial basis function (RBF) centered at
xi ∈ Rd in a d-dimensional space. By augmenting RBFs with multivariate
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Chapter 3. Stabilized radial basis function-generated finite differences

polynomials, p(x) ∈ R1×`, several advantages can be obtained [43–45, 60–62].
In order to compute the RBF-FD weights, we initially introduce an interpolant
as

s(x) =

n∑
i=1

κiψ(‖x− xi‖2) +
∑̀
j=1

µjpj(x) (3.3)

and require the interpolant to match the function data

s(xi) = fi, ∀i ∈ {1, 2, . . . , n} , (3.4)

with the additional matching constraints

n∑
i=1

κipj(xi) = 0, ∀j ∈ {1, 2, . . . , `} , (3.5)

where ` =
(
P+d
P

)
is the number of terms in a d-dimensional polynomial of

degree P . Enforcing the conditions in (3.4) and (3.5) yields the linear system[
A P
P T O

] [
κ
µ

]
=

[
f
0

]
, (3.6)

with A = Aij = ψ(‖xi − xj‖2) ∈ Rn×n being the RBF collocation matrix,
P = Pij = pj(xi) ∈ Rn×` is the polynomial matrix, while 0 ∈ R` andO ∈ R`×`
are zero matrices. Now, applying the linear operator L to the interpolant and
evaluating it a x = xe gives

Ls(x)|x=xe =

n∑
i=1

κiLψ(‖x− xi‖2)|x=xe +
∑̀
j=1

µjLpj(x)|x=xe , (3.7)

which in matrix-vector notation is expressed as

Ls(x) =
[
a b

] [ κ
µ

]
=
[
a b

] [ A P
P T O

]−1 [
f
0

]
, (3.8)

where a and b are defined as

a =

 Lψ (‖x− x1‖2) |x=xe
...

Lψ (‖x− xn‖2) |x=xe


T

, b =

 Lp1(x)|x=xe
...

Lp`(x)|x=xe


T

. (3.9)

Finally, it can be seen from (3.8) that the RBF-FD weights are computed by
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3.2. Node set generation and update strategy

[
w v

]
=
[
a b

] [ A P
P T O

]−1

(3.10)

which is equivalent to the solution of the linear system[
A P
P T O

] [
wT

vT

]
=

[
aT

bT

]
. (3.11)

After solving for the weights, only w ∈ Rn is used to approximate the action
of the linear operator L by the linear combination in equation (3.1). The other
weights, v, do not contribute to the approximation, see (3.8), as they will only
get multiplied by zeros.

Stencil sizes are chosen as a trade-off between accuracy, stability and com-
putational cost. In general, the strategy is to decide on a polynomial degree
P , require a stencil size n ≥ d2`e and finally determine the polyharmonic RBF
degree from

m =

{
P, if P is odd,

P ± 1, if P is even.
(3.12)

In this way, the only choice is on the augmented polynomial degree P , which
eventually dictates the convergence rate [43].

Stencils are determined by building and searching a kd-tree with the Eu-
clidean distance as distance measure. An example is illustrated in figure
3.1, where a single RBF-FD stencil is shown for a fifth degree polyharmonic
RBF supplemented with fourth degree polynomials and a relative stencil size
n/` = 2.5. Note here that the ghost nodes are included just as if they were
regular nodes. However, other studies have shown that advantages may be
achieved by using only nodes that lie on the outside of the body tangent [28].

3.2 Node set generation and update strategy

The node set generation and update strategy is inspired by the work in [43,
63], while the algorithm from [64] is used to distribute the nodes. The node
generation and update strategy is outlined below, where static and dynamic
boundary nodes refer to their variation over time:

1 Generate nodes on the boundary of the computational domain, Ω(t).

2 Generate background node set with the local node density ρΩ = ρΩ(x)
that covers Ω(t) sufficiently.

3 Remove nodes from the background node set if rdyn < ρΩ/2, where rstat

is the smallest distance to a static boundary node.

4 Perform node repelling on a subset of each of the static boundary nodes’
stencil nodes.
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Chapter 3. Stabilized radial basis function-generated finite differences

Nodes

Ghost nodes

Evaluation point

Stencil nodes

Fig. 3.1: RBF-FD stencil for a fifth degree polyharmonic RBF supplemented with fourth
degree polynomials and a relative stencil size n/` = 2.5.

5 Save the repelled version of the background node set.

6 Remove nodes from the background node set if rdyn < ρΩ/2, where rdyn

is the smallest distance to a dynamic boundary node.

7 Perform node repelling on a subset of each of the dynamic boundary
nodes’ stencil nodes.

8 Remove nodes from the background node set if they are located outside
Ω(t).

9 Repeat step 6-8 at each substep, where the saved background node set
from step 5 is re-used each time.

Boundary nodes that are within the subset of a free surface node’s stencil
are repelled only in the direction tangential to the boundary, which is similar
to the strategy in [34].

The node density function ρΩ = ρΩ(x) proposed in [A] was a natural exten-
sion of the initially proposed formulation in [B], which allows for node refine-
ments near the free surface and moving boundaries. The node density function
from [A] is formulated as

ρΩ =


ρB , rbody ≤ rlim,

ρB + (ρF − ρB)
rbody−rlim
rbl−rlim , rlim < rbody ≤ rbl,

ρF , otherwise,

(3.13)
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Fig. 3.2: Node set for a heaving rectangular box in a domain with absorption zones near
the outer boundaries. Ghost nodes are marked with (+).

where ρB is the body node density, rbody is the smallest distance to a body
boundary node, rlim is the distance at which the node density starts to change
and rbl is the distance over which the body node density ρB blends together
with the fluid node density ρF . The fluid node density is the same as the one
initially introduced in [B], which is introduced here for the sake of completeness:

ρF = ρF,min(1 + χ), (3.14)

where ρF,min = min (h/Nz) is the node density required if the vertical resolution
should be equal to Nz nodes at the most shallow region of the domain, h =
h(xh) is the still water depth and χ = χ(x) is the node distribution function

χ =

{
|z|−zlim
min(h) ρrat, |z| > zlim,

0, otherwise,
(3.15)

where zlim > 0 specifies an elevation at which the node density begins to change
and ρrat = ρF,max/ρF,min is the ratio between maximum and minimum fluid
node densities. This allows the node set to be controlled by the parameters
Nz, ρrat, zlim, ρB , rlim and rbl and a set of boundary nodes.

Ghost nodes are distributed along the Neumann boundaries with a distance
approximately equal to the local node density measure. The ghost nodes are
implemented as they improve the diagonal dominance of the Laplace problem,
which eases the implementation of an iterative solver. To illustrate the node
set generation and update strategy, besides the examples shown in [A,B,C],
an example of a node set for a heaving rectangular box in a small domain is
illustrated in figure 3.2 with close-ups shown in figure 3.3.

3.3 Time integration

The explicit fourth order Runge-Kutta method is used for evolving the free
surface variables in time. In [C], the fully Lagrangian formulations of the
free surface variables is used, i.e. tw = ∇φ/ ‖∇φ‖2, which require the free
surface variables to be re-configured over time by means of interpolation as
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Fig. 3.3: Close-ups of the heaving rectangular box illustrating the node refinements near
the moving boundaries. Ghost nodes are marked with (+), although they are difficult to see,
they are placed along the submerged part of the moving boundary.
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3.4. Hyperviscosity

the free surface nodes may get clustered too close together otherwise. The
semi-Lagrangian formulations of the free surface conditions are used in [A,B]
and the free surface particles are allowed to move in the vertical direction only,
i.e. tw = k. This is acceptable because the free surface is considered to be
intersected only by lateral boundaries. Other time integration schemes could
have been used, but it should be noted that the nature of the Runge-kutta
scheme is important if re-configuration of the free surface variables are expected
during simulation, as it only requires information of the free surface variables at
the current time step. If a multistep scheme is used, the free surface variables
have to be interpolated not only at the current time step, but also at previous
time steps, in order to be able to step forward in time. Especially, if non-lateral
boundaries are intersecting the free surface, it is expected that re-configuration
of the free surface variables will be necessary during simulation. However, the
direction vector tw can be used to control the motion of the free surface nodes,
which may postpone the need for interpolation of the free surface variables in
the vicinity of moving boundaries.

3.4 Hyperviscosity

As described in [C,B], the asymmetric stencils introduce spurious eigenvalues
that lead to temporal instabilities. Thus, the system is stabilized by adding
a dissipative term to the dynamic and the (vertical) kinematic free surface
condition. Let γ = γ(xh) denote a hyperviscosity scaling parameter with
xh ∈ Rd−1 being the horizontal position vector, then

Dη

Dt
= Nη + γHη, x ∈ Γη(t), (3.16)

Dφ

Dt
= Nφ + γHφ, x ∈ Γη(t), (3.17)

where H = ∆k
h ∈ RNη×Nη is the kth order Laplace operator in the horizontal

dimension(s) with Nη free surface nodes, while Nη ∈ RNη and Nφ ∈ RNη repre-
sent the RHSs of the (vertical) kinematic and dynamic free surface conditions
in (2.2) and (2.3), respectively.

Scaling of the hyperviscosity operator

A local formulation of the hyperviscosity scaling parameter is proposed in [B]
and is expressed as

γi = (−1)(k−1)γc ‖wi‖−1
1 , (3.18)

where γc is a control parameter, k is the order of hyperviscosity and wi ∈ R1×n

are the nonzero entries in the ith row vector of the hyperviscosity operator
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H ∈ RNη×Nη . Knowing that the spectral radius ρ(B), for any square matrix
B, can be bounded from above as

ρ(B) = |λ|max ≤ ‖B‖1 , (3.19)

with |λ|max being the maximum absolute eigenvalue of B, the `1 norm is intro-
duced for the purpose of approximately normalizing the eigenspectrum of the
hyperviscosity operator such that the spectral radius ρ(γH) ≈ O(γc). Thus,
the control parameter γc controls the order of the maximum eigenvalue of the
scaled hyperviscosity operator and thereby how much the spurious eigenvalues
are dissipated. The row wise computations in (3.18) are introduced to differen-
tiate between stencils that are located in regions with different node densities.
However, for globally quasi-uniform node sets, it holds that

‖wi‖1 ≈ ‖H‖1 , ∀i ∈ {1, 2, . . . , Nη} , (3.20)

which means that the `1 norm of the hyperviscosity operator can be used for
all stencils. Depending on the formulation of the free surface conditions, the
hyperviscosity operator may need to be re-computed at every substep. From
the investigations in [B], it seems logical to propose a heuristic scaling law
based on the formulation in equation (3.18) with a control parameter in the
range

0.5ωN ≤ γc ≤ ωN , (3.21)

where ωN =
√
gkN tanh(kh) is the Nyquist frequency as described in [B]. Al-

though the proposed scaling law may provide stable solutions for the discretiza-
tions and node sets considered in [A,B,C], it must be stressed that it can not
be guaranteed for all discretizations and node sets.

Smoothing near intersection points

It is shown in [A] that the heuristic scaling law in (3.18) may give rise to irreg-
ular scaling parameters near boundaries. These irregularities may prevent the
hyperviscosity operator from stabilizing the free surface variables sufficiently.
Thus, it is illustrated in [A] how the temporal stability may be significantly
improved by filtering out the scaling parameter irregularities that may arise
near boundaries. Different filtering or smoothing techniques could have been
used, but we settle on the moving median filter

γi = median(γi), (3.22)

where the set of scaling parameters in the stencil of the ith node is

γi =

n⋃
j=1

γi(j), (3.23)
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where n is the stencil size and γi(j) is the scaling parameter of the jth neighbor
in the stencil corresponding to the ith node. The moving median filter is fast to
apply and it applies equally well to higher dimensions. The information about
stencil neighbors from the RBF-FD weight computations can be utilized again,
so no nearest neighbor search is necessary. The moving median filter is applied
to all stencils once in [A], but in principle it may be sufficient to apply the filter
only to nodes in the vicinity of boundaries that intersect the free surface.
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Chapter 4

Scientific contributions

The main scientific contributions of this thesis are mainly constituted by com-
bining the ideas from the studies listed below:

• RBF-FD for geometric flexibility and high-order accuracy [43,44,62].

• Mathematical formulations and boundary conditions [16,25,57,59].

• Node distribution and repel algorithms [34,43,63,64].

• Stabilization techniques [40,65,66].

The scientific contributions in the papers that compose the main body of this
thesis are described in the following.

Paper D & C

The work in [D] illustrates the very first steps of the developments, which in-
cluded the implementation of RBF-FD for the solution of boundary value prob-
lems (BVPs). Based on the work from [D], the model in [C] was developed,
which immediately showed that the asymmetric stencils introduced temporal
instabilities rapidly. Thus, it was illustrated for the first time that stable two-
dimensional and periodic water wave propagation could be achieved by adding
hyperviscosity to the free surface variables. This was illustrated to be true
for different node sets and augmented polynomial degrees. Additionally, the
spatial accuracy was investigated and showed that high-order accuracy could
be achieved even without the use of ghost nodes, as expected from the litera-
ture [43]. A node generation and update strategy was also developed, which
was necessary for discretization the time-dependent fluid domain and to easily
tracking the free surface nodes. The fully Lagrangian formulation was used [C]
and required the free surface variables to be re-configured after a number of
time steps, which was managed by means of interpolation.
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Paper B

The findings from [C,D] illustrated that the non-linear potential flow solver
based on RBF-FD was possible. However, the main difficulty is to determine
a suitable scaling of the hyperviscosity operator, which is the main drawback
of using hyperviscosity stabilization, although scaling strategies have been pro-
posed in the literature [65, 66]. By conducting linear stability analyses, it was
possible derive a heuristic scaling law based that depends on node density,
water depth and RBF-FD discretization [B]. The heuristic scaling law is ex-
pected to be suitable for three-dimensional problems as well. It should also
be mentioned that the stabilization technique used here may very well be ap-
plicable to the work in [47], but also to methods that utilize structured grids,
such as [24,25]. In addition to the stabilization technique, a new node density
function was proposed and allowed for node sets to be refined in the vertical
direction. This was very useful for the test case in [B], which included variation
in the still water depth along the numerical wave tank.

Paper A

In this work, it was noted that the heuristic scaling law from [B] may give rise
to instabilities near boundaries, due to irregularities in the scaling parameters.
Thus, it was proposed to remove these by a smoothing operation, which should
be applicable in both 2- and 3D. For this purpose, a moving median filter
was applied to the spatially dependent scaling parameters. This smoothing
operation will allow the hyperviscosity operator to stabilize the system to its
full extend without introducing new temporal instabilities caused by the scaling
parameters. Furthermore, it was in [A] proposed to extend the node density
function in [B] to include refinements near the moving boundaries. This was
used for significantly decreasing the node set size for a submerged cylinder that
experience large amplitude forced motion, which was compared to analytical
solutions [A].
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Conclusions

A fully non-linear potential flow model has been developed and implemented
in two dimensions. The mathemtical model is based on a mixed-Eulerian-
Lagrangian formulation and the spatial discretization is based on radial basis
function-generated finite differences, which provides high-order accuracy and
geometric flexibility needed for non-linear wave-structure interaction problems.
Furthermore, the proposed node generation and update strategy allows to re-
fine the node sets in the vicinity of the free surface and moving boundaries,
which makes it possible to use relatively small nodes sets and thus increase the
computational efficiency.

A numerical analysis illustrated that the augmented polynomial degree of
the RBF-FD dictates the spatial accuracy, which could be expected from the
literature. However, the accuracy decreases with increasing wave steepness. An
immediate remedy is to use node sets with refinements near the free surface,
which will increase the accuracy. It was also found that temporal instabilities
may occur rapidly if no stabilization technique is used. The temporal stability
is not significantly influenced by the wave steepness, as the instabilities are
mainly caused by the asymmetric RBF-FD stencils.

As dissipative terms have been proposed for stabilization purposes previ-
ously in the literature, it was natural to test the use of hyperviscosity on the
non-linear water wave propagation problem. It was found that stable solutions
can be achieved even for wave steepness near the wave breaking limit with-
out significant influence on the model accuracy. Different from previous work
is that the dissipative term is added not only to the vertical kinematic free
surface condition, but also to the dynamic free surface condition. Similar to
previous studies, it was found that applying the Laplace operator repetitively
stabilizes the system more efficiently than if the higher-order Laplace operator
was computed directly.

As the hyperviscosity operator has to be scaled, it was investigated whether
a heuristic scaling law could be derived. This was investigated by conducting
linear stability analyses, which illustrated the possibility of scaling the hypervis-
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cosity operator by the Nyquist frequency in combination with an approximate
`1 normalization. The heuristic scaling law may require smoothing near bound-
aries, as irregularities may appear and prevent the hyperviscosity to stabilize
the system to its full extent. Different smoothing techniques have been inves-
tigated for removing the irregularities. The moving median filter was found to
perform well, while it is fast to apply in both two and three dimensions.

The developed model was tested against classical test cases, which include
wave propagation over a submerged bar, a standing wave in a bounded domain
and the forced motion of a submerged cylinder. These initial test cases illus-
trate that the stabilized radial basis function-generated finite differences per-
forms well for both non-linear wave propagation problems and wave-structure
interaction problems.

5.1 Recommendations for future research

In order to the develop the proposed method further, it is recommended that
the following topics are considered:

Complex test cases

It is normal practice to try to break the model that is being developed, in
order to understand its weakness. Thus, it is recommended that further test
cases are analyzed. Especially, test cases that include free surface intersecting
moving boundaries. In that respect, it is natural to consider adaptive node
refinements of the free surface nodes in the vicinity of the moving boundaries
that intersect the free surface.

Extension to 3D

As the developed model was implemented for two-dimensional problems only,
the computational speed was of minor importance. However, for three-dimensional
problems the computational cost is bound to become non-trivial. The three
most time-consuming tasks are: node updates, RBF-FD weight computation
and the linear system of equations related to the Laplace problems. These tasks
have to be optimized with respect to computational cost in order to make the
model feasible in three dimensions.

Coupling with other models

The developed model may serve as a near-field solver in combination with
e.g. the finite difference solver in [24, 25]. Lastly, the coupling with structural
models based on the finite element method should also be explored.
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