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ENGLISH SUMMARY 

Bakery products made from wheat flour are popular food products all over the world. 

Lantmännen Unibake Denmark manufactures bakery products, such as bread and 

Danish pastry. While many production processes are automated in the industrial 

manufacturing of bakery products, product development and adjustments of the 

production processes are to some extent characterised by a craft approach. Much 

research has been conducted within cereal science, but this knowledge has so far to 

not been fully utilised in the baking industry. There is an increasing demand in the 

market today for more product varieties, which entail smaller batch sizes, shorter 

product life cycles and shorter time to market. Before high-variety production of 

Danish pastry can be obtained with sufficient efficiency, the present manufacturing 

system faces various challenges, which must be handled. The business strategy mass 

customisation addresses how manufacturing of individualised products at low cost 

can be obtained. It was found that to adopt mass customisation in the Danish pastry 

manufacturing, multiple challenges had to be addresses, including a requirement of 

more knowledge of the relations between the raw materials, the production processes 

and the final product, as well as more measurements of relevant dough properties, data 

collection and data analysis must be conducted in industry.  

The viscoelastic properties of wheat dough are determining for the processability and 

the resulting product quality. Dough analysis was performed using the alveograph 

method, in which biaxial extensional properties are measured by inflating a dough 

bubble. For every analysis, ten parameters are extracted from the resultant pressure-

time curve or derivatives of it. The linear correlation coefficients between the ten 

parameters were determined. Four parameters were almost perfectly correlated (r ≥ 

0.97) with other parameters, and they therefore did not provide much additional 

information. Less strong correlations could also be observed between other 

parameters, which might be explained by interlinks between them.  

The alveograph method is normally used for flour analysis, and a protocol for 

alveograph analysis of full formula dough was therefore developed. The analysed full 

formula dough was either made by adding the ingredients to the alveograph mixer or 

taken as dough samples from the industrial production. The dough temperature was 

lowered compared to the standard protocol to limit the yeast activity. It was observed 

that the mixing time had a larger effect on the parameter values for the full formula 

dough analysed by the adjusted protocol compared to flour-water dough analysed by 

the standard protocol. One general mixing time could therefore not be found for full 

formula dough but must instead be determined for each dough type. The effects of 

different flour qualities for the properties of different dough types, including simple 

flour-water dough as well as two doughs with all ingredients for bread and Danish 

pastry, were also assessed by the adjusted alveograph protocol. Rankings and 

significant differences of the parameters between the flour types were different for the 
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three dough types, indicating that the effects of the ingredients are dependent on the 

flour properties. A range of dough samples from the industrial Danish pastry 

production were also analysed by the adjusted alveograph protocol. It was found that 

the protocol could differentiate between doughs with differences in the dough recipe, 

while other variables, such as addition of pastry trimmings, could not be detected. 

Other analysis methods might therefore be needed to evaluate the effects of these 

variables.  

The adjusted alveograph protocol can be used to analyse full formula dough. This 

exemplifies that established analysis methods can be adapted for analysis of industrial 

process variables. This will be an important step towards a more knowledge-based 

and data-driven development in the industrial manufacturing of bakery products, 

which is a prerequisite for an efficient high-variety production.  
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DANSK RESUME 

Bagværk lavet af hvedemel er populære fødevarer i hele verden. Lantmännen Unibake 

Danmark fremstiller forskelligt bagværk, bl.a. brød og wienerbrød. Mange 

produktionsprocesser er automatiserede ved den industrielle fremstilling af bagværk, 

mens produktudvikling og justeringer af produktionsprocesserne er i nogen grad 

præget af en håndværkstilgang. Der er lavet meget forskning i cerealier, men denne 

viden er endnu ikke blevet udnyttet til fulde i bageindustrien. I dag er der en stigende 

efterspørgsel efter flere produktvarianter, hvilket indebærer mindre batch-størrelser, 

kortere produktlivscyklusser og kortere time to market. Før wienerbrød kan 

produceres i mange varianter med tilstrækkelig effektivitet industrielt, må en række 

udfordringer i det nuværende produktionssystem først håndteres. 

Forretningsstrategien mass customisation adresserer, hvordan fremstilling af 

individualiserede produkter med lave produktionsomkostninger kan opnås. Det blev 

fundet, at for at gå over til mass customisation i den industrielle fremstilling af 

wienerbrød er det nødvendigt, at der opnås større viden om relationerne mellem 

råvarer, produktionsprocesser og det færdige produkt, samt at der udføres flere 

målinger af relevante dejegenskaber, dataopsamling og dataanalyse i industrien.  

Hvededejs viskoelastiske egenskaber er afgørende for dejens bearbejdelighed og 

kvaliteten af produktet. Alveografmetoden blev anvendt til at analysere dej, hvorved 

de biaksiale ekstensionale egenskaber blev målt ved at blæse en boble af dej. For hver 

analyse udtrækkes ti parametre fra den fremkomne tryk-tid-kurve eller afledte af 

denne kurve. Den lineære korrelationskoefficient mellem de ti parametre blev fundet. 

Fire af parametrene var næsten perfekt korrelerede (r ≥ 0.97) med andre parametre, 

og disse indeholdt derfor ikke meget yderligere information. Mindre stærke 

korrelationer blev også observeret mellem nogle af de andre parametre, hvilket kan 

skyldes deres indbyrdes afhængighed.  

Alveografmetoden anvendes normalt til melanalyser, og der blev derfor udviklet en 

protokol for alveografanalyse af deje med alle ingredienser som eksempelvis brøddej 

eller wienerbrødsdej indeholder. Den analyserede dej var enten lavet ved at tilsætte 

alle ingredienserne til alveografmixeren eller taget som dejprøver fra den industrielle 

produktion. Dejtemperaturen blev sænket ift. standardprotokollen for at mindske 

gæraktiviteten. Det blev observeret, at æltetiden havde en større effekt på 

parameterværdierne for dejene, hvor alle ingredienser var tilsat, analyseret med den 

tilpassede protokol sammenlignet med mel-vand-dej analyseret med 

standardprotokollen. En generel æltetid kunne derfor ikke fastsættes for dejene med 

alle ingredienser, men måtte i stedet bestemmes for hver dejtype. Effekten af 

forskellige melkvaliteter for egenskaberne af forskellige dejtyper, inklusiv simpel 

mel-vand-dej og to deje med alle ingredienser til henholdsvis brød og wienerbrød, 

blev også undersøgt ved brug af alveografanalyse. Rangering og signifikante forskelle 

af parametrene mellem meltyperne varierede mellem de tre dejtyper, hvilket 
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indikerede, at effekten af ingredienserne til dels var afhængige af melegenskaberne. 

En række dejprøver fra den industrielle wienerbrødsproduktion blev også analyseret 

med den tilpassede alveografprotokol. Det blev observeret, at protokollen kunne 

differentiere mellem deje med mindre forskelle i opskriften, men andre variable f.eks. 

tilsætning af kantdej ikke kunne detekteres, og andre analysemetoder kan derfor være 

nødvendige for at undersøge effekten af disse variable.  

Den tilpassede alveografprotokol kan bruges til at analysere deje med alle de 

ingredienser, som forskellige typer af bagværk normalvis indeholder. Dette 

eksemplificerer, at etablerede analysemetoder kan tilpasses til at analysere industrielle 

procesvariable. Dette vil være et vigtigt skridt i retning af en mere vidensbaseret og 

datadrevet udvikling i den industrielle fremstilling af bagværk, hvilket er en 

forudsætning for en effektiv produktion af mange varianter. 
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CHAPTER 1. INTRODUCTION 

Bakery products, such as bread, cakes, pastries and biscuits, are popular food products 

and can be found in many variants worldwide (W. P. Edwards, 2007). Especially 

bread is very widespread and produced in countless varieties over the world. Bread 

has been known for several thousand years and is considered to be one of the oldest 

processed food (Cauvain, 2015; Goesaert et al., 2005). Because of their widespread 

consumption, the market for bakery products is relatively large. Bakery products are 

often made from wheat flour, although other cereals may also be used. Wheat has 

unique properties, as it can be used to form a viscoelastic dough with gas-holding 

capacity resulting in a relatively stable porous bread after baking (Goesaert et al., 

2005). 

Bakery products can be made at home, at small craft bakeries and at industrial plant 

bakeries. Lantmännen Unibake is one of Europe’s largest bakery groups producing 

bread, cakes and pastry at 36 bakeries in 16 countries and supplying to more than 60 

international markets (Lantmännen Unibake, 2019). This includes Denmark, where 

Lantmännen Unibake has several bakeries. Many of the bakeries are characterised by 

high-volume manufacturing of bakery products. This has for some of the bakeries 

resulted in a manufacturing system with long changeover times between different 

products, long ramp-up times as well as large waste of materials (Bech, Brunoe, 

Nielsen, et al., 2019). The market today demands larger product variety and 

individualised products (Koren, 2010; Y. Wang et al., 2017). In the bakery industry, 

this has resulted in higher introduction rates of new products and ingredients, smaller 

batch sizes and shorter product life cycles (Bech, Brunoe, Nielsen, et al., 2019). 

Several aspects of the manufacturing must be improved to achieve a production 

system suited for production of high-variety manufacturing (Bech, Brunoe, Nielsen, 

et al., 2019). Some of the aspects, which require further research and development, 

are control and optimisation of raw materials and production processes (Bech, Brunoe, 

Nielsen, et al., 2019; Li Vigni et al., 2009; Ulrici et al., 2008).  

Bakery products cover a wide range of different product categories. Many of the 

bakery products share some of the same ingredients, including wheat flour and water, 

and the production of them is usually based on the same overall production steps, such 

as mixing, shaping and baking. However, large differences in dough composition and 

production processes are often found between different product categories, including 

number and type of ingredients, composition of dough, method for formation of 

dough, additional processing steps, fermentation conditions and baking conditions 

(W. P. Edwards, 2007). This entails that different mechanisms are in play dependent 

on dough constituents and variation in production processes.  

The starting point for this industrial Ph.D. study has been the Danish pastry production 

at the Lantmännen Unibake bakery in Hatting, which is located near Horsens, 
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Denmark. This product category was chosen as Danish pastry has large potentials in 

relation to high-variety manufacturing. However, challenges with process stability of 

the dough were observed in the Danish pastry production, and this was presumed to 

be influenced by the raw material properties and the production process conditions. 

The focus on this project was therefore the dough and characterisation of it.  

1.1. OBJECTIVES  

The overall purpose of this Ph.D. study is to contribute to a better process 

understanding in the industrial production of Danish pastry and to assess the effects 

caused by changes in ingredients and production processes.  

The objectives of this project are summarised in the following. 

• Elucidating the handling of variables in Danish pastry production and the 

challenges in relation to adopting mass customisation. 

• Identification of key challenges for obtaining robust production processes. 

• Selection and establishment of methods for analysis of full formula dough. 

• Assessment of the effect of ingredients and production process variables on 

dough properties. 

• Identification of the potentials for implementation of knowledge-based 

decision-making in the industrial bakery production. 

1.2. THESIS CONTENT  

This thesis consists of an extended summary and six scientific papers. The extended 

summary presents some of the main findings from the papers. Four of these are journal 

papers, and two are conference proceeding papers. They are either published, accepted 

for publication, submitted to international peer-reviewed journals or in preparation, as 

indicated. The papers are listed below and cited by their roman numerals throughout 

the thesis.  

I. S. Bech, A.-S. S. Joedal, T. D. Brunoe and K. Nielsen (2018). Mass 

Customization in Food Industries: Case and Literature Study, in: S. 

Hankammer, K. Nielsen, F. Piller, G. Schuh and N. Wang (Eds.), 

Customization 4.0 - Proceedings of the 9th World Mass Customization 

& Personalization Conference (MCPC 2017). Springer, pp. 519-529.  

II. A.-S. S. Jødal and K. L. Larsen. Interpreting the alveogram: 

Investigation of the relationships between the alveograph parameters, 

Scientific Reports (submitted). 

III. A.-S. S. Jødal and K. L. Larsen. Alveograph characterisation of 

industrial samples of Danish pastry dough, Cereal Chemistry 

(submitted). 
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IV. A.-S. S. Jødal, B. P. M. Jespersen and K. L. Larsen. Comparison of flour 

and full formula dough properties for different flour qualities, in 

manuscript. 

V. A.-S. S. Jødal, T. P. Czaja, F. W. J. van der Berg, B. P. M. Jespersen and 

K. L. Larsen. The effect of α-, β- and γ-cyclodextrin on wheat dough 

and bread properties, in manuscript. 

VI. A.-S. S. Jødal, T. D. Brunoe and K. Nielsen. Impact of Dough Property 

Characterization on Industrial Bread Production, 10th World Mass 

Customization & Personalization Conference (MCPC 2021) (accepted 

for publication). 
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CHAPTER 2. BACKGROUND  

Wheat bread is a common food product worldwide, and the process of making a bread 

is known to many people. Wheat bread is often made from a basis set of ingredients 

consisting of wheat flour, water, leaving agent such as yeast and sodium chloride, but 

many other ingredients can also be added (Cauvain, 2015). The breadmaking process 

can be divided into a number of steps, as a minimum including mixing, shaping, 

fermentation and baking. Additional processing steps may be applied, and many 

different methods may be used in the different steps (Cauvain, 2015). After baking, 

the bread is often stored, and over time staling occurs (Fadda et al., 2014). The time 

scales for the different steps are very diverse. The mixing time is often within the 

range of minutes, as a suitable dough normally can be obtained in less than 20 minutes 

(W. P. Edwards, 2007). The shaping may be composed of several procedures e.g. 

sheeting, dividing, rounding and moulding, and it is most often also performed in the 

range of minutes (Spies, 1990). Fermentation time on the other hand ranges from less 

than an hour to days, dependent on the leaving agent and the temperature (Cauvain, 

2009). The baking time ranges from a few minutes to a few hours, dependent on the 

temperature and type of bread (W. P. Edwards, 2007). After baking, the bread can be 

stored for several days. In each of these steps, several chemical, biochemical and 

physical transformations take place (Ooms & Delcour, 2019). The constituents of the 

flour interact with the other ingredients, as well as the activity of the yeast influences 

the dough (Ooms & Delcour, 2019). Also the input of mechanical energy to the dough 

from mixing and shaping affects the dough on an molecular level, as do temperature 

changes in all steps (Goesaert et al., 2005). Continuous changes in molecular 

structures at different rates and kinetics take place, and neither dough nor bread is 

therefore ever in equilibrium. The properties of dough and bread are consequently 

highly time-dependent (Goesaert et al., 2005).  

Danish pastry is composed of more ingredients than bread, and especially the large 

amount of fat is different from bread. The production of Danish pastry consists of 

many of the same steps as used for breadmaking, but the lamination process in which 

the layered structure of dough and fat is formed is only applied in pastry (Ooms et al., 

2016). Despites some differences between bread and Danish pastry, wheat flour is one 

of the main ingredients in both bakery products, and many of the transformations of 

the wheat flour constituents in the different processing steps are similar. 

2.1. WHEAT FLOUR CONSTITUENTS AND THEIR 
FUNCTIONALITY IN DOUGH AND BREAD  

Wheat is the most important cereal in breadmaking worldwide, due to its ability to 

form a dough when mixed with water with unique viscoelastic properties and gas-

holding capacity (Goesaert et al., 2005). Wheat flour consists of multiple constituents, 
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including starch (approximately 70-75 %), water (approximately 14 %), protein 

(approximately 10-12 %), non-starch polysaccharides, especially arabinoxylans 

(approximately 2-3 %) and lipids (approximately 2 %) (Goesaert et al., 2005). All 

flour constituents are known to affect the different steps of breadmaking, but 

especially starch and proteins are important. Addition of other ingredients and 

additives can affect the functionality of the flour constituents as well.  

The protein fraction of wheat has been divided into gluten and non-gluten proteins, 

based on functionality and solubility (Wieser, 2007). The nongluten proteins have no 

or only minor functionality in breadmaking. They constitute between 15 and 20 % of 

total wheat proteins by weight and are found mainly in the outer layers of the wheat 

kernel, which is often not used for flour (Goesaert et al., 2005). The gluten proteins 

are the major storage proteins in wheat and constitute between 80 and 85 % of the 

wheat proteins (Goesaert et al., 2005). The gluten proteins play a major role in 

breadmaking, and both the quantity and composition of these are determining for the 

dough properties and the breadmaking performance (Barak et al., 2013). The gluten 

proteins are considered to be defining for the flour quality and strength, which are 

usually assessed based on the rheological properties of a simple flour-water dough 

(Goesaert et al., 2005). The gluten proteins can be divided into monomeric gliadins 

and polymeric glutenins, which consist of glutenin subunits linked together by 

intermolecular disulphide bonds (Wieser, 2007). The glutenins and the gliadins are 

able to form a gluten network, which is determining for the viscoelastic properties of 

dough (Wieser, 2007). Glutenins are often assumed to provide strength (resistance to 

deformation) and elasticity, as they form a continuous network, while gliadins are 

accountable for viscosity and plasticity, as they are thought to act as plasticisers of the 

glutenin polymers (Wieser, 2007).  

The main constituent in wheat flour is starch. Starch is glucose polymers, which can 

be separated into two fractions, amylose and amylopectin. Amylose consists of about 

500 to 6000 glucose residues bound together mainly by α-(1,4) linkages with very few 

branches linked through α-(1,6) linkages, and it is therefore essentially a linear 

polymer (Goesaert et al., 2005). Amylopectin is on the other hand highly branched 

and much larger, as it consists of about 3∙105 to 3∙106 glucose units (Goesaert et al., 

2005). The starch in wheat is organised in granules of different size consisting of 

altering amorphous and semi-crystalline shells (Goesaert et al., 2005). The starch 

granules may be damaged during milling, which changes the properties of the starch 

considerably. Damaged starch granules can absorb approximately three times more 

water than intact starch granules, as well as the damaged starch is susceptible to 

enzymic hydrolysis, which the intact starch granules are more resistant to (Cauvain, 

2015).  

In dough mixing, input of mechanical energy transforms flour, water and the other 

ingredients into a coherent dough through multiple processes. In the beginning of 

mixing, the flour constituents are hydrated by absorption of water (Gras et al., 2000). 
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The water is thought to facilitate the unfolding and interaction between the proteins, 

eventually allowing the gluten proteins to form a continuous cohesive viscoelastic 

network (Belton, 2005). This process is also facilitated by the input of mechanical 

energy through deformation (Belton, 2005). It is generally accepted that the gluten 

network is formed during mixing by continuous depolymerization and polymerization 

reactions. Both covalent and non-covalent interactions are considered to be important 

for the formation of the gluten network. Disulphide bonds between cysteine residues 

on the glutenin subunits have gained a lot of attention, and the formation of disulphide 

(SS) bonds by oxidation of free thiol (SH) groups on cysteine as well as SH-SS 

exchange reactions are presumed to be essential in the formation of a three-

dimensional network (Dong & Hoseney, 1995; Wieser, 2007). Non-covalent 

interactions, including hydrogen bonds, hydrophobic interactions and ionic bonds, are 

also generally accepted to be important for the gluten network structure and thereby 

the properties of the dough (Ooms & Delcour, 2019; Quayson et al., 2016; Wieser, 

2007). Although the non-covalent interactions are much weaker than the covalent 

bonds, their high number makes their contribution substantial. Different models for 

explaining the link between the gluten network structure and its properties have been 

made. Singh & MacRitchie (2001) have proposed to apply the theories from polymer 

science to dough. The gluten proteins are in this model considered to be polymers of 

different molecular size, which are entangled at a number of entanglement points 

(Singh & MacRitchie, 2001). Stretching of coiled chains, slippage at the entanglement 

points and breakage of chain take place during deformation and thereby determine the 

viscoelastic properties of the dough (Singh & MacRitchie, 2001). Belton (1999) 

proposed a loop and train model, in which hydrogen bonds are considered to be very 

important. In this model, the high molecular weight glutenin polymers (formed by the 

glutenin subunits) are divided into train regions, which are often associated with β-

sheets, and loop regions, which are presumed to be hydrated, mobile strands. When 

the dough is deformed, the loops will be deformed at first, and then the trains will be 

pulled apart (Belton, 1999). Other models for the gluten behaviour have also be 

proposed (Li Vigni et al., 2013).  

If the mixing continues beyond the gluten network development, it is generally 

accepted that the network is partly destroyed, as the proteins disaggregate and 

depolymerise due to the continuing mechanical stress (Schiedt et al., 2013). The 

process will also result in release of free water, as the water binding capacity of the 

proteins is decreased. The starch granules in the flour are agglomerated initially, but 

they become uniformly distributed in the gluten network during mixing 

(Peighambardoust et al., 2006). Furthermore, air bubbles are incorporated in the 

dough during mixing (Kokawa et al., 2012). On a microscopic level, the dough hence 

consists of a continuous protein network with starch granules and air bubbles 

embedded (Peighambardoust et al., 2006).  

The mixing process is often studied by monitoring the dough resistance during mixing 

(Cauvain, 2015). During mixing, the resistance increases until it reaches a maximum 
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after which it decreases. The maximum is referred to as optimal dough development, 

while before the optimum the dough is characterised as undermixed or 

underdeveloped, and after the optimum as overmixed or overdeveloped (Goesaert et 

al., 2005). These changes in dough consistency are thought to be mainly related to 

changes in the gluten protein network (Gras et al., 2000). The amount of energy 

required to develop the dough to optimal development is dependent on multiple 

factors, including the mixing speed and the design of the mixer (Chin & Campbell, 

2005a), the characteristics of the flour (Chin & Campbell, 2005b), the water content 

of the dough (Belton, 2005) and the type and the quantity of other ingredients 

(Calderón-Domínguez et al., 2005).  

During fermentation, the leaving agent, which is most often yeast, but may also 

contain other microorganisms such as lactic acid bacteria, increases the dough volume 

by gas production (Cauvain, 2015). Enzymes from e.g. flour and yeast degrade some 

of the accessible starch to sugars, and these are consumed by the yeast, which in return 

releases CO2, ethanol and other metabolites (Struyf et al., 2017). The gluten network 

ensures retention of the gas produced by the yeast, as well as other changes in the 

gluten network may also take place (Goesaert et al., 2005). The size of the gas cells 

grows during fermentation, while the number of gas cells are not increased. This is 

because CO2 produced by the yeast is not able to form new gas cells, as the pressure 

required for a single molecule of CO2 to create a new gas bubble is infinitive for a 

system, where the interfacial tension is constant (Ooms et al., 2016). The gas cells in 

the dough originate instead from incorporation of air during mixing and processing. 

As the gas cells continues to increase, the cell walls between neighbour gas cells may 

rupture, and the gas cells coalesce to form a single, larger gas cell (van Vliet et al., 

1992). 

During baking, a range of different processes occur, which transforms the foam 

structure in the dough to a sponge structure in bakery products. The foam structure is 

essential for the volume increment during baking, called oven spring. The dough 

expands due to thermal gas expansion, release of solubilised CO2 and yeast activity, 

and this takes place as long as the gas cells in the foam structure are intact (Cauvain, 

2015). At some point during baking, some of the membranes between the gas cells 

rupture, as the starch gelatinises, and as the proteins are subjected to several changes 

including thermal denaturation, resulting in a sponge structure with a continuous gas 

phase (Cauvain, 2015). Starch gelatinisation is an important process during baking. 

Starch granules absorb some water at room temperature causing swelling of the 

granules, but this swelling is reversible (Goesaert et al., 2005). If the starch granules 

are heated to temperatures above the gelatinisation temperature in the presence of 

sufficient water, the starch granules gelatinise (Goesaert et al., 2005). Starch 

gelatinisation is a series of changes taking place over a broad temperature range 

leading to irreversible destruction of molecular order. These changes include melting 

of amylopectin crystals, dissociation of the amylopectin double helices, amylose 

leaching from the starch granules, as well as swelling and distortion of the starch 
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granules (Goesaert et al., 2005). The leached starch forms a continuous network by 

entanglement of the polymers (Goesaert, Slade, et al., 2009). The gelatinisation 

temperature is affected by the water content and the presence of other ingredients (A. 

Salvador et al., 2006; Schirmer et al., 2014). In general, dough does not contain 

enough water to fully gelatinise the starch, and the structure of the starch granules is 

therefore partially retained (Cauvain, 2015). The gluten network is also subject to 

changes during baking, making the network more rigid (Scanlon & Zghal, 2001). The 

proteins denature upon heating causing various changes in protein network. These 

changes are considered to include interchanges in disulphide bonds and sulfhydryl 

groups, formation of new disulphide bonds and changes in the hydrophobicity of the 

protein surfaces causing aggregation (Goesaert, Slade, et al., 2009; Weegels et al., 

1994). This result in a permanent and thermoset gluten network.  

During storage, bread and similar products stale. Staling is defined as loss of freshness 

and consumer acceptance (with exception of microbial spoilage) (Gray & Bemiller, 

2003). Staling is primarily an organoleptic assessment of bread freshness and is 

therefore multifaceted, but change in crumb firmness is often used as a measure for it 

(Gray & Bemiller, 2003). Staling is a complex phenomenon, and the molecular 

mechanisms are not fully understood. It is generally agreed that it is related to changes 

in several bread constituents (Goesaert et al., 2005). The most important factors seem 

to be starch transformations, starch-gluten interactions and water migration (Fadda et 

al., 2014). The main starch transformation during storage is amylopectin 

retrogradation. Amylopectin retrogradation is a process, in which the gelatinised 

starch molecules, especially the outer branches of amylopectin, re-associate to double 

helical structures, after which crystalline regions are formed (Cauvain, 2015). Water 

is incorporated in the crystalline starch, and the water distribution is therefore also 

affected (Gray & Bemiller, 2003). The water bound in the crystalline starch can no 

longer plasticise the different amorphous networks, including the thermoset gluten 

and the amorphous amylopectin, and this lack of plasticity further increases crumb 

firmness (Goesaert, Slade, et al., 2009). Amylopectin retrogradation is strongly 

presumed to be part of the staling mechanism, as well as other processes have been 

shown to be involved (Gray & Bemiller, 2003). Contrary to amylopectin, amylose is 

not presumed to be involved in staling during storage (Gray & Bemiller, 2003). 

Amylose retrogrades rapidly upon cooling after baking and forms a continuous 

network, which has been shown to be essential for the crumb structure (Goesaert et 

al., 2005). Amylose chains form double helices and crystallise, as well as amylose 

may form single helical complexes with lipids (Conde‐Petit & Escher, 1995). Starch-

gluten interactions are also important for staling, as more hydrogen bonds between 

gluten and starch are formed during storage, possibly due to redistribution of the 

water, which increases the crumb firmness and thereby staling (Every et al., 1998; 

Goesaert, Slade, et al., 2009). Beside the redistribution of water among the flour 

constituents described above, other redistributions of water also occur. In freshly 

baked bread, the moisture content is higher in the bread crumb than in the crust. 

During storage, water migrates from crumb to crust to reduce this difference, causing 
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a more rigid crumb and a reduced crust crispness (Gray & Bemiller, 2003). Water 

may also evaporate from the bakery product, further accelerating staling (Gray & 

Bemiller, 2003).  

2.2. PROCESSES IN DANISH PASTRY PRODUCTION  

Danish pastry is made from fermented laminated dough, which consists of altering 

layers of predough and bakery fat (Cauvain, 2015; Ooms et al., 2016). The dough can 

be used for multiple types of Danish pastry with different shapes and fillings (Cauvain, 

2015). Danish pastry is characterised by a flaky texture when baked.  

Danish pastry predough consists of wheat flour, water, yeast, sugar and salt, but can 

also contain bakery fat (typically margarine, butter or shortening), eggs and milk 

powder, as well as different improvers and other additives (Cauvain, 2015; Ooms et 

al., 2016). The fat may therefore both be present as in-dough fat and as roll-in fat from 

the lamination.  

The flour used for pastry is determining for the final product, as it is generally 

accepted that strong flour results in a higher pastry lift than weak flour 

(Wickramarachchi et al., 2015). Flour tolerant to overmixing is assumed to be 

advantageous for pastry production, as the dough is processed in multiple steps (Ooms 

et al., 2016). The rheological properties of the gluten proteins are in general accepted 

to be more important than the flour protein content (Cauvain, 2015; Wickramarachchi 

et al., 2015). Hay (1993) found that for puff pastry, the pastry height and volume were 

positively correlated with mixing and extensional properties of the flour as well as 

flour protein content. He stated that the flour should have a high extensibility to avoid 

rupturing of the predough layers (Hay, 1993). Sliwinski et al. (2004b) stated that flour 

for puff pastry should have a high strain hardening coefficient and a low strain rate-

dependency of stress, as this promotes the formation of thin dough films. Sliwinski et 

al. (2004b) did not find that puff pastry volume was significantly correlated with 

neither flour protein content nor failure strain, which is a measure of extensibility, but 

they stated that the flour should contain a high content of glutenin. The importance of 

glutenin is in agreement with the results from Hay (1993). Addition of flour improving 

agents, which are considered to strengthen the gluten network by increasing the 

formation of disulphide bonds, has also been shown to increase the pastry lift for 

yeasted pastry (Ooms et al., 2018).  

The in-dough fat is often added to the predough in the form of pastry trimmings or 

scrap dough, which are e.g. dough edges cut off after lamination before the shaping 

of the individual products (Cauvain, 2015). The roll-in fat in the pastry trimmings 

from one production run can therefore serve as the in-dough fat in the next, while for 

the first production runs, at which no pastry trimmings are available, the fat must be 

added directly to the ingredients before mixing of the predough (Ooms et al., 2016). 

The pastry trimmings are often added directly to the mixer together with the other 
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ingredients. It is important to be aware of age, temperature and amount used of the 

pastry trimmings to avoid unwanted product variability (Levine, 2007).  

The predough is made by mixing the ingredients, typically using straight dough 

method, in which all the ingredients are mixed in a single step (Cauvain, 2015). The 

mixing speed, the mixing time and the degree of the dough development at the end of 

mixing are all dependent on the product and the nature of the production line at the 

bakery. In general, but pastry doughs are underdeveloped at the end of mixing, as 

further dough development occurs during lamination (Ooms et al., 2016; Renzetti et 

al., 2015). Often, the dough is therefore only mixed until it is homogenous (Ooms et 

al., 2016). It is generally agreed that the dough should be optimally developed after 

the final laminating step in order to avoid breakdown of the gluten network, and the 

mechanical energy input from mixing and sheeting should therefore not exceed the 

optimal level (Ooms & Delcour, 2019). However, there seems to be a lack of data on 

to what degree the predough should be undermixed after mixing to obtain an optimally 

developed gluten network after laminating (Ooms et al., 2016). This is further 

complicated by the lamination with fat, as the fat layers also affect the dough 

properties and development (Renzetti et al., 2015). The predough is typically 

relatively cold, as the roll-in fat requires a relative low processing temperature, and 

predough and roll-in fat must therefore have similar temperature (Cauvain, 2015). 

This can be obtained by e.g. cooling of ingredients, using ice-water and/or by a gas 

cooling system, which injects e.g. CO2 during predough mixing (Ooms et al., 2016).  

Prior to lamination, fat is folded into the predough. Different methods can be used for 

this, dependent on whether it is done manually or industrially. The purpose is to obtain 

one fat layer between two predough layers (typically), which is often obtained 

industrially by extrusion of respectively predough and fat (Cauvain, 2015). The ratio 

between predough and fat in Danish pastry dough is dependent on the product type 

and can vary from 12.5 to 60 % (w/w) fat relative to predough, dependent on how lean 

or rich the product should be (Baardseth et al., 1995; Cauvain, 2015). The amount of 

fat is often associated with texture, e.g. firmness, sponginess and crispness, as well as 

colour of the final Danish pastry product (Baardseth et al., 1995). The predough and 

the fat should have comparable plasticity to obtain proper development of the layers 

(Bousquières, Deligny, Challois, et al., 2014; Ooms et al., 2016). If the fat is too firm 

and brittle or the predough is too soft, the fat may break through the predough layers 

and form irregular or discontinuous fat layer, resulting in uneven or poor pastry lift 

(McGill, 1975). Vice versa, if the fat is too soft or the predough is too stiff, the fat 

may not withstand the mechanical stress during sheeting and can therefore break down 

and migrate out in the predough. This result in coalescence of the layers and poor 

volume increase during baking (McGill, 1975). The plasticity of fat is mainly 

dependent on its crystal form and the solid fat content (Pareyt et al., 2011).  

A dough with altering and discrete layers of predough and fat is produced by 

lamination. In the process of lamination, the dough is in turn folded (to obtain a 
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specific number of fat layers) and sheeted (to reduce the dough thickness). The process 

of folding and sheeting is repeated a suitable number of times. Danish pastry dough 

and similar yeasted pastry doughs are typically folded to obtain 16-50 (theoretical) fat 

layers, while puff pastry, which does not contain yeast, typically has 130-250 

(theoretical) fat layers (Cauvain, 2015; Ooms et al., 2016). The number of fat layers 

are determining for the product volume and height, as well as the crumb structure. In 

general, increasing number of fat layers result in increasing pastry height, until a point 

after which the pastry height starts to decrease (Bousquières, Deligny, Challois, et al., 

2014; Deligny & Lucas, 2015; McGill, 1975). Few fat layers might occasionally result 

in large product height, but it is often related to an irregular crumb structure (Cauvain, 

2015; Deligny & Lucas, 2015). On the other hand, too many fat layers are associated 

with fragmentation of the fat layers (Bousquières, Deligny, Challois, et al., 2014), 

which in the final product result in a bread-like crumb and a loss of flakiness (Cauvain, 

2015; Deligny & Lucas, 2015). The structure with altering layers of predough and fat 

entails that the gluten network is not continuous in three dimensions across the entire 

dough as would be the case for bread. Instead the laminated dough is considered to 

contain thin layers of separate gluten network within each predough layer between the 

fat layers (Baardseth et al., 1995). It has been shown that the fat layer thickness varies 

within laminated Danish pastry dough, but strengthening of the gluten network results 

in more constant fat layer thickness (Bousquières, Deligny, Riaublanc, et al., 2014; 

Ooms et al., 2017). Furthermore, the fat layers do not remain intact during lamination, 

as interconnections between the predough layers are created (Bousquières, Deligny, 

Riaublanc, et al., 2014; Ooms et al., 2017).  

After each lamination step, elastic recoil of the dough sheets might be observed 

(Bousquières, Deligny, Riaublanc, et al., 2014; Ooms et al., 2017). Elastic recoil is 

the recovery of dough thickness after sheeting, which causes the dough to be thicker 

than the gap between the rollers (Deligny & Lucas, 2015). Elastic recoil is especially 

observed in the direction of the last sheeting, as the gluten network is aligned with the 

sheeting direction, resulting in inbuilt stress that leads to shrinkage during relaxation 

(Ooms et al., 2017). Elastic recoil in Danish pastry dough has also been shown to 

affect the continuity of the fat layers and result in curling of them, again especially in 

the last sheeting direction (Bousquières, Deligny, Riaublanc, et al., 2014). Relaxing 

time between the folding steps can be used to reduce the shrinkage caused by elastic 

recoil, as the gluten network is in a stressed state after each lamination step which 

relaxes with time (Sliwinski et al., 2004b). The dough properties are dependent on 

whether the dough is stressed or relaxed, as e.g. the dough strength in deformation 

decreases during relaxation (Ooms et al., 2017).  

After lamination, the dough is usually sheeted, cut and shaped into individual 

products, as well as different fillings, such as custard or jam, and toppings, such as 

nuts or nib sugar, can be added. The individual products are subsequently fermented, 

at which gas production by the yeast increases the volume of the dough (Deligny & 

Lucas, 2015). Fermentation is normally conducted at temperatures lower than those 
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usually used for bread in order to avoid melting of the roll-in fat and to preserve the 

fat layers (Cauvain, 2015). During fermentation, yeast produces CO2 and other 

metabolites, of which the CO2 is primarily accountable for the volume expansion 

(Meerts, Vaes, et al., 2018). The produced CO2 is assumed to be first distributed to 

the aqueous phase of the dough, and when this phase is saturated, further CO2 diffuses 

to the pre-existing gas cells and enlarge them (Ooms et al., 2016). The gas cells in 

predough originate from air entrapped during predough mixing as well as during the 

folding operations. Gas cells can also be observed in the fat layers, which may 

originate from the original block of fat, the extrusion step or the predough-fat interface 

(T. Lucas et al., 2018). Deligny et al. (2017) found that most of the volume increase 

in Danish pastry during fermentation could be assigned to air bubbles in the predough 

layers, in which the bubbles are small and quite round. Less than 10 % of the overall 

inflation during fermentation was caused by the air bubbles in the fat layers, in which 

the bubbles were quite large and eye-shaped (Deligny et al., 2017). Yeast is presumed 

to cause rupture of the fat layers by production of CO2 during fermentation, which is 

why yeasted pastry is made with fewer fat layers than puff pastry (Cauvain, 2015; 

Deligny & Lucas, 2015). 

After fermentation, the Danish pastry products can be frozen, if they are intended to 

be sold as bake-off. The advantage of prefermented bake-off is that they can be taken 

from the freezer and put directly in the oven for baking (Cauvain, 2015).  

The Danish pastry products can be baked after fermentation or freezing. For pastry, it 

is generally accepted that during baking water vapour is trapped in the layered 

structure and creates the volume increase, which is often referred to as pastry lift. It is 

presumed that the fat layers act as barriers against diffusion of water vapour from the 

predough, forcing the predough layers to expand due to the pressure underneath 

(McGill, 1975). It is generally accepted that the barrier property is dependent on the 

continuity of the fat layers after the last sheeting step (McGill, 1975). However, recent 

studies have challenged this statement and found that at least for yeasted pastry, more 

factors are decisive for the pastry lift (Bousquières, Deligny, Challois, et al., 2014; 

Deligny et al., 2017; Ooms et al., 2018). In Danish pastry, yeast activity during the 

early baking phase, release of CO2 solubilised in the aqueous phase and thermal gas 

expansion in the gas bubbles have been shown to contribute to the volume increase 

during baking (the same mechanisms as in bread baking) (Ooms et al., 2018). 

Accordingly, the contribution from the entrapment of water vapour to the pastry lift, 

which is presumed to be the main mechanism in puff pastry, is thus smaller for Danish 

pastry (Ooms et al., 2018). Bousquières, Deligny, Challois, et al. (2014) found that 

the number of discontinuities in the fat layers resulting in interconnections between 

the predough layers increase with increasing number of layers, while the length of the 

discontinuities was independent on the number of fat layers. However, at the same 

time, the pastry lift increased, which contradicts the assumption that discontinuities in 

the fat layers are the reason for the decreasing pastry lift. Deligny et al. (2017) and T. 

Lucas et al. (2018) suggest that the size of the fat fragments is more important for the 
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pastry lift than discontinuities in the fat layers. Ooms et al. (2018) further found that 

it is important with some interconnections between the predough layers, as the 

predough layers may otherwise slide apart during baking. Eye-shaped bubbles, which 

are characteristic for pastry products, primarily arise from expansion of the gas cells 

in fat fragments of a sufficient size during fermentation and especially baking 

(Deligny et al., 2017; T. Lucas et al., 2018). Dough with few fat layers contain more 

large fat fragments with air bubbles, and during baking these bubbles often collapse 

and release the air to the surroundings (T. Lucas et al., 2018). Doughs with many fat 

layers contain primarily small fat fragments originating from extensive fragmentation 

of the fat layers. A small fat fragment only rarely contain an air bubble, and if it does, 

the resulting bubble in the final product tends to be more round, like the bubbles 

observed in the predough parts, and not eye-shaped (T. Lucas et al., 2018).  

The volume increase due to oven rise is much larger for pastry compared to bread, 

and the dough layers of pastry are therefore also stretched more extensively compared 

to bread dough (Deligny & Lucas, 2015; McGill, 1975). It is assumed that the heat-

induced changes of the gluten occur in a similar way in bread and pastry. However, 

the fat in pastry melts during baking, and the melted fat may be absorbed by the dough, 

which may interfere with the polymerisation of gluten (Ooms et al., 2016). Another 

important mechanism during baking is gelatinisation of starch. Danish pastry contains 

less water and contain additional ingredients compared to bread, which are expected 

to limit the gelatinisation of starch and thereby increase the gelatinisation temperature 

and possibly result in a higher retention of granule integrity (Ooms et al., 2016; 

Schirmer et al., 2014).  

An example of the steps in an industrial Danish pastry production can be seen in the 

flowchart in Figure 2-1. The products from this production system are sold as bake-

off, which means that the product is prefermented, frozen dough. The baking of the 

products is performed by the customers.  
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Figure 2-1: An example of the steps in the industrial production of Danish pastry bake-off 
products. The mixing, lamination and make-up parts are indicated by orange, green and purple 
background colour, respectively. The predough ingredients include flour, water, egg, sugar, 
yeast and improvers. In the first trimming of dough edges, the cut-off does not contain 
margarine, and it is therefore returned to the extruder. In the subsequent two trimmings of 
edges, the predough has been laminated with margarine, and the cut-off is therefore used in the 
mixing of the predough to provide in-dough fat. Different configurations can be found in the 
make-up part dependent on the type and shape of product.  

In general, the production can be divided in different parts, consisting of mixing, 

lamination, make-up, fermentation, freezing and packaging. Several parts of the 

productions can be further divided into processes and unit operations, as seen in Figure 
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2-1. In the mixing part, the ingredients for the predough are dispensed in a mixing 

bowl. Pastry trimmings are used to supply the in-dough fat. In the beginning of the 

production, at which no pastry trimmings are available, margarine is added to the other 

predough ingredients. The predough is mixed, and CO2 is injected to the mixing bowl 

during mixing to lower the predough temperature. In the lamination part, the predough 

is first extruded, and margarine is extruded on top of just under half of the predough 

sheet, after which the other half of the predough sheet is folded on top of the margarine 

layer to obtain one layer of fat between two layers of predough. The dough is in turns 

folded and sheeted. In each folding step, four or six fat layers are made to obtain a 

total of typically 24 (theoretical) fat layers. The total number of fat layers are 

dependent on the type of product. After the final folding, the dough is rested, before 

it is sheeted multiple times to reduce the thickness of the dough sheet. In the make-up 

part, the dough is in general cut and shaped into individual products as well as fillings 

and toppings can be applied. Different configurations are used dependent on type and 

shape of the product. A range of different shapes can be made, including plait, swirl, 

crown, coronet, fan, birkes and bun as well as bar and tart, and some of them can be 

made in different sizes. The filling can be jam, custard or something else, allowing a 

range of different flavours as e.g. different fruits can be used for the jam. Two fillings 

can also be added in the same product. Different types of topping can also be used. 

After the make-up part, the products are fermented, frozen and packed. The predough 

mixing and the preparation of some of the fillings are made as batch production, while 

the remaining part of the production is continuous.  

The final product is dependent on several variables, including dough recipe, margarine 

content, number of fat layers, shaping of the product, and application of filling and 

topping. The quality of the final product is highly dependent on the first part of the 

process, in which the laminated structure of the dough is made, while much of the 

variety is obtained in the last part of the process.  

All steps are primarily performed by machines, and only minor procedures are 

conducted by hand, such as moving the mixing bowl and refilling of dusting flour, 

margarine, fillings and toppings. However, the operators at the production line are 

important for the manufacturing process.  

2.3. HANDLING OF VARIABLES AT INDUSTRIAL BAKERIES  

The production of bakery products at an industrial level today is to some extent 

characterised by a craft approach. The development of new products is usually based 

on a trial and error approach, relying on the know-how and craftmanship of 

experienced bakers (Kristiawan et al., 2017). The bakery products are manufactured 

in an industrial setting where most processes are automated, however, the machine 

settings are determined by trial and error, and adjustments are made manually (Bech, 

Brunoe, Nielsen, et al., 2019; Li Vigni et al., 2009). Compared to the craft baker, the 

baker in an industrial bakery is in less contact with the dough, making it more difficult 
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to regularly assess the dough at the different processing stages (Cauvain, 2015). 

However, the control of the dough during production is still relying on the baker in 

the industrial bakeries, as at least in some companies only a limited number of 

machine settings are regulated automatically based on measurements (Bech, Brunoe, 

& Nielsen, 2019). At the same time, the dough is exposed to more stress and 

mechanical impacts in the industrial bakeries compared to in the craft bakeries, and 

this entails higher requirements to the functionality of the dough in the industrial 

production (Cauvain, 2015; Kvistgaard et al., 1993). There are many reasons why the 

adjustments of this process have not been automated to a higher extent. This includes 

a high number of adjustable variables, the variability in the properties of the 

ingredients, especially wheat flour, and a lack of suitable analysis methods for on-line 

or at-line monitoring (Li Vigni et al., 2009, 2013; Ulrici et al., 2008).  

The mills and the ingredient suppliers are often looked to for knowledge and problem 

solving, as much of the knowledge about the ingredients and their effects on the 

process are found there today (Cauvain, 2015). The mills conduct a range of different 

analyses on the flour to assess the quality, but the bakeries are not able to fully apply 

these results in the production (Li Vigni et al., 2013). An increasing number of 

additives are used in dough to improve different properties of the dough and the final 

product, but the complex nature of additives result in much of the knowledge about 

the additive functionality is located at the ingredient suppliers and not at the bakeries 

(Cauvain, 2015; Kvistgaard et al., 1993). The ingredient supplier may only have 

studied the ingredient in a limited number of applications and is therefore not able to 

foresee the effects in all relevant cases, as well as interaction effects may be difficult 

to predict (Sharp, 2001). The bakeries have made various requirements to the 

ingredient properties based on experience and possibly unsystematic testing (Li Vigni 

et al., 2010, 2013). These requirements are typically established to decrease the 

variability of the dough between different batches, increase the process stability and 

keep the product quality as constant as possible (Li Vigni et al., 2010, 2013).  

All these factors entail various challenges at industrial bakery productions. The craft-

approach in the development of new products causes a long time to market, defined 

as the duration needed from initial idea to delivery of the first product to a customer. 

The knowledge of the effects and the interaction between the ingredient variability, 

the conditions of the surrounding environment, the production processes and the final 

product is insufficient and often based on experience (Kristiawan et al., 2017). No 

systematic, preventive adjustments based on changes in e.g. ingredient properties or 

environment conditions are made before the start of the production. Instead the 

production processes are continually adjusted by the operators according to manual 

assessment of the dough (Bech, Brunoe, & Nielsen, 2019; Bech, Brunoe, Nielsen, et 

al., 2019). The combination of insufficient and experience-based knowledge on the 

effects of the adjustable variables entails that many unsystematic adjustments are 

made, especially in the beginning of the production. This result in long ramp-up time, 
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as the efficiency is lowered, and large amounts of waste of materials, as products of 

insufficient quality are discarded. 

2.4. FLOUR CHARACTERISATION METHODS 

While quantitative measurements of dough properties are rarely performed in the 

bakeries, multiple analysis methods for flour characterisation are available and 

industrially applied (e.g. at the mills). It is generally accepted that flour is one of the 

most important ingredients for bread quality, as the flour is highly determining for the 

properties of the dough and final product, and quantitative analyses are therefore 

widely applied for benchmarking of flour. The flour analysis methods can be divided 

into chemical and physical methods. The chemical methods are related to fundamental 

chemical properties of the flour, such as protein, ash or water content (Cauvain, 2015). 

The physical methods are rarely related to fundamental measurements, but are often 

descriptive empirical measurements of the behaviour of dough (Cauvain, 2015).  

There is a long history of empirical measurements within the cereal industry, as the 

empirical methods often attempt to imitate breadmaking processes, such as mixing or 

bubble growth (Dobraszczyk & Morgenstern, 2003). These methods are performed 

on a dough, but as the methods are used as standards in assessment of flour properties, 

the doughs often consist of only flour, water and possibly sodium chloride. The 

physical analysis methods attempt to assess different properties of the flour, including 

the water absorption capacity of the flour (amount of water added to the flour to obtain 

a dough which reaches a specific resistance during mixing), gelatinisation of starch 

during heating of flour-water-suspension, as well as deformation properties of dough 

with either variable or fixed water content (Huen et al., 2018b). Thus, these methods 

often attempt to assess the rheological properties of dough. The empirical 

measurements have multiple advantages, as they are often easy to perform, they 

provide information for different processes, and many of these methods are 

industrially used as standards (Dobraszczyk & Morgenstern, 2003). Some of the most 

used empirical standard methods are farinograph and mixograph, which both assess 

the mixing properties of dough, as well as extensograph and alveograph, which assess 

the uniaxial and biaxial extensional dough properties, respectively. It is impossible to 

compare the results from the different empirical tests, as the sample geometry differs 

and is not well-defined, and the rate and the extent of deformation as well as the stress 

are variable, uncontrolled and complex (Stojceska & Butler, 2012). Additionally, the 

standard dough composition often differs among the methods (Cauvain, 2015). For 

instance, in the farinograph method the analysed dough consists of flour and a variable 

amount of water as standard, while in the standard alveograph method a dough 

consisting of flour, sodium chloride and a fixed amount of water is applied (Cauvain, 

2015). The complete range of data obtained from the various tests are often reduced 

to a single or few parameters, leading to an inherent loss of information. The 

deformation conditions might also be inappropriate to mimic the practical processing 

situations. The rate of extension during fermentation and oven rise has been calculated 
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to be between 5∙10-4 and 5∙10-3 s-1, while the maximum rate of extension for 

extensograph and alveograph analyses are two or more orders of magnitude greater 

(Bloksma, 1990). Furthermore, results from different methods for assessing the 

mixing properties of flour can be inherently difficult to compare, as the properties of 

the dough are dependent on different geometries of the analysis instrument 

(Ktenioudaki et al., 2010; Wesley et al., 1998), as well as the mixing speed and work 

input (Chin & Campbell, 2005a, 2005b).  

Dough can also be characterised using fundamental rheological methods 

(Dobraszczyk & Morgenstern, 2003; Song & Zheng, 2007). The fundamental 

rheological tests used for dough are typically either dynamic oscillation (I. Lucas et 

al., 2019; Meerts, Vaes, et al., 2018; van Bockstaele et al., 2008), creep and stress 

relaxation (de la Horra et al., 2015; Hernández-Estrada et al., 2014; F. C. Wang & 

Sun, 2002) or large deformation extension (Kokelaar et al., 1996; McCann et al., 2016; 

Sliwinski et al., 2004a). With these methods, the deformation or strain is controlled 

and quantifiable, and the resultant force or stress is measured. They thus measure a 

well-defined property independently of the sample geometry, and the results are 

consequently easier to compare. However, these methods also have their 

disadvantages, as it is often more difficult to perform the fundamental tests, and the 

results are harder to interpret and relate to the breadmaking process (Dobraszczyk, 

2004b). These measurements are therefore often not applied industrially 

(Dobraszczyk, 2004b).  

A wide range of different analysis methods are available, but many of them are aimed 

at flour characterisation and are therefore not used for characterisation of the full 

formula dough at the bakeries. Although flour is one of the most important ingredients 

for the properties of the final product, the relations between the results from the flour 

analysis methods and the bread quality are still not fully understood (Li Vigni et al., 

2009; Spies, 1990). Many of the analysis methods mimic breadmaking steps, but they 

may not be suitable for prediction of the behaviour in the industrial production 

(Ktenioudaki et al., 2011; Li Vigni et al., 2009; Stojceska & Butler, 2012). 

2.5. MASS CUSTOMISATION AND THE BAKERY INDUSTRY  

There is an increasing demand for product variety and more individualised products 

today (Koren, 2010; Y. Wang et al., 2017). In manufacturing, this is entailed by 

smaller batch sizes, shorter product life cycles and shorter time to market, which often 

pose several challenges for traditional dedicated manufacturing systems (H. A. 

ElMaraghy & Wiendahl, 2009). The demand for higher product variety can to some 

extent be addressed by the business strategy mass customisation, which aims at 

offering customers individualized products at near mass production costs (Pine, 

1993). The concept does therefore call for manufacturing systems that can satisfy 

personalised requirements, while at the same time having efficiencies comparable to 

mass production. Several approaches can be used in the manufacturing systems, as it 
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needs to be flexible and agile for high-variety production (Boland, 2006; F. Salvador 

et al., 2009). F. Salvador et al. (2009) states that mass customisation is not a state that 

can be reached, but rather the transition towards this goal, and every company must 

find their own way. Nevertheless, to achieve mass customisation three fundamental 

capabilities are essential, which are solution space development, robust process design 

and choice navigation (F. Salvador et al., 2009). Solution space development is the 

identification of those product attributes the customers want the most to diverge, after 

which the business can define which variants they offer and which they do not (F. 

Salvador et al., 2009). Robust process design involves reusing or recombining existing 

organizational and value-chain resources, and this capability is therefore vital in order 

to deliver customized solutions with efficiency close to mass production (F. Salvador 

et al., 2009). Choice navigation is supporting the customers to identify their solution 

and at the same time minimise the complexity and the burden of choice (F. Salvador 

et al., 2009).  

Mass customisation is largely adopted for discrete, durable goods, but it can also be 

applied in the food industry (Boland, 2006; F. Salvador et al., 2009). Within food, 

both sensory performance, such as shape, colour and taste, and functional 

performance, such as nutritional requirements, can be customised (Boland, 2006). 

Customisation is most widespread in the fast food industry of products like burgers, 

pizzas and sandwiches, as the individual components can be combined according to 

the customer’s preference in the shop (Boland, 2006). Furthermore, multiple 

configurators for customisation of other food products can be found on the internet as 

shown by Kolb et al. (2014). However, many of the companies customise only the 

packaging, and some companies represent craft production rather than mass 

customisation (Kolb et al., 2014). Food manufacturing processes are characterised by 

challenges that are not in the same way experienced in the production of durable 

goods, as covered by McIntosh et al. (2010). This includes e.g. chemical changes and 

decay of ingredients and products, production methods and design of product as well 

as cleaning and distribution requirements (McIntosh et al., 2010). Nevertheless, there 

is a large potential for adopting mass customisation in the food industry (Bech, 

Brunoe, Nielsen, et al., 2019; McIntosh et al., 2010). This would also be a major 

competitive parameter, especially if competing companies do not possess these 

competences (McIntosh et al., 2010).  

In paper I, the challenges in adopting mass customisation for each of the three 

fundamental capabilities were uncovered for the Danish pastry production in Hatting. 

A short recap of the findings in paper I is given here. We found that for solution space 

development, the product development was unsystematic and based on know-how and 

craftsmanship, and the customer preferences were not collected systematically or 

directly. No guideline nor formal strategy for the development of new products was 

therefore available, which is important for defining a solution space for the product 

category. For the robust process design, the company had insufficient knowledge of 

the ingredient and process properties and their effect on the final product. The 
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production processes were controlled empirically by trained employees, and there was 

no or very limited digitalized interconnection between the different machines. No 

quantitative measurements of the dough functionality were made during production. 

The missing or tacit knowledge of ingredients and production processes as well as the 

many manual configurations made it difficult to achieve a more robust and flexible 

production, which is necessary for adopting mass customisation. The choice 

navigation was based on conversation with the customer, who could pick products 

from a catalogue, but also propose new variants. The time to market for new products 

was unknown. As the choice navigation was primarily based on know-how, 

improvements could therefore also be made for this capability. Several challenges 

were identified for the company, which should be assessed before mass customisation 

can be effectively adopted. Many of the challenges were related to the capability of 

robust process design, and the challenges in the production process must be handled 

before adopting mass customisation.  

2.6. CHALLENGES IN DEVELOPMENT OF ROBUST 
PROCESSES IN INDUSTRIAL BAKERIES 

Much research has been conducted within the cereal science over the years, and the 

sum of knowledge is constantly increasing. Cereal science is complex with many 

variables and processes, and many of these are therefore still not fully understood 

(Cauvain, 2015). Much of the research has been made on breadmaking, but progress 

has also been made in the understanding of Danish pasty in the recent years 

(Bousquières, Deligny, Riaublanc, et al., 2014; Deligny et al., 2017; Ooms et al., 

2018).  

Despite this, the industrial production of Danish pastry products is to some extent still 

characterised by a craft approach (Bech, Brunoe, & Nielsen, 2019; Bech, Brunoe, 

Nielsen, et al., 2019; Kristiawan et al., 2017). In the previous sections, some of the 

reasons for this are covered. These include among others a lack of knowledge on raw 

materials and processes, an unsystematic approach to testing and adjustments, a high 

number of variables and a lack of industrially suitable dough analysis methods. A few 

studies with pastry in an industrial context have been made, but these focus mostly on 

varying various parameters and measuring the effect on the final product (Besseris, 

2015; Shibata et al., 2008). Other studies of pastry are often made in a laboratory 

setting (Bousquières, Deligny, Challois, et al., 2014; T. Lucas et al., 2018; Ooms et 

al., 2018). The results from these studies can be hard to transfer to an industrial 

context, as other variables such as temperature fluctuations and flour quality 

variability may have a large impact in the industrial production (Li Vigni et al., 2013). 

Furthermore, the analysis methods applied in the studies are often labour-intensive 

and require specialised knowledge and technical skills. They can therefore be hard to 

perform industrially, especially as there is only a very limited tradition within the 

bakery industry to perform analytical measurements (Cauvain, 2015; Kvistgaard et 

al., 1993). Quantitative measurements of the dough properties are however essential 
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to obtain a better control of the industrial production and thereby obtain a more robust 

and flexible manufacturing system. This would also be one of the first steps towards 

high-variety production and adopting mass customisation.  
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CHAPTER 3. ALVEOGRAPH ANALYSIS 

AND ITS PARAMETERS  

In this project, the alveograph method is applied to assess the properties of dough. 

This is performed on an apparatus called an alveograph, which is manufactured by 

Chopin Technologies (Villeneuve-la-Garenne, France). The alveograph method is an 

empirical method which assesses the deformation properties of the dough by biaxial 

extension and more specifically bubble inflation (Dobraszczyk, 2004b). This method 

was chosen as biaxial extension was considered to be relevant for Danish pastry 

dough, which experiences large biaxial deformation during lamination, fermentation 

and baking. Furthermore, it is possible to assess the mixing properties of dough on the 

alveograph apparatus by the consistograph method.  

The development of the alveograph started in the 1920s by Marcel Chopin (Chopin, 

1927), and through multiple improvements of all parts of the method over the years, 

it has been developed into its present form. In the alveograph method, the rheological 

properties of dough consisting of flour, water and sodium chloride as standard are 

assessed by measuring the pressure during inflation of a dough bubble (Dubois et al., 

2008). This bubble inflation is considered to mimic the air bubble growth in the dough 

during fermentation and in the initial stages of baking (Dubois et al., 2008). The 

alveograph method is commonly used in some parts of the world for assessment of 

flour quality and benchmarking, which is why the most common alveograph 

parameters are widely applied, and it is generally accepted how these parameters are 

interpreted (Dobraszczyk, 2004b).  

As the use of the alveograph method is widespread, the complete process from the 

flour to bubble inflation analysis has been standardised (e.g. AACC method 54-30.02) 

and is performed on the alveograph and the associated equipment (AACC, 2009a). 

An overview of the steps in the alveograph analysis can be seen in Figure 3-1. In the 

standard method, the flour is added to the mixing chamber (in the alveograph) and 

sodium chloride solution is automatically added. A fixed amount of water (corrected 

according to the water content in the flour) is used for the preparation of the dough. A 

protocol for adjusting the water addition according to the water absorption of the flour 

is also available (AACC, 2009b). The temperatures of mixing chamber, resting 

chamber, test chamber and of the water are controlled. The dough is mixed for 8 

minutes, after which five dough pieces are extruded, rolled and cut out to five similar-

shaped dough discs, which are rested. 20 minutes after the mixing stopped, the dough 

discs are clamped into the sample holder and inflated with air into dough bubbles 

using an air flow rate of 96 L/hour, one by one in the same order as they were prepared. 

The dough bubbles are inflated until rupture, and the inflation pressure is measured as 

a function of time. An average curve is made based on the five pressure curves, and 

multiple alveograph parameters are determined from this curve.  
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Figure 3-1: The steps in the alveograph method. In the first step, water and flour are mixed to 
form a dough, which is subsequently extruded, and dough pieces are cut off. The dough pieces 
are rolled out, and circular dough pieces are cut out using a cutter. The dough pieces are 
rested, after which they are clamped into the sample holder, and a dough bubble is inflated. 
Figure is based on a figure in paper VI and illustrations in Chopin Technologies (2016). 

It is also possible to assess the mixing properties of a flour on the alveograph apparatus 

by the consistograph method. In this method, the consistency of the dough is measured 

by a pressure sensor in the side of the alveograph mixing bowl (Dubois et al., 2008). 

A different mixer arm and a different geometry of the mixing bowl (compared to the 

mixing in the alveograph standard method) are used to increase the efficiency of the 

mixing (Dubois et al., 2008). This is also a standardised method (AACC, 2009b). The 

consistograph method is normally used to determine the water absorption of the flour 

to be able to adjust the water addition in the alveograph analysis and obtain a constant 

dough consistency (in contrast to the fixed water addition normally applied in 

alveograph analyses), but it can also be used to find other parameters, such as time to 

maximum consistency and tolerance (Dubois et al., 2008). In the standard method, 

flour is added to the mixing bowl, and a fixed amount of sodium chloride solution is 

added in the beginning of the mixing, after which the dough is mixed for 4 minutes. 

The maximum pressure during the mixing is used to calculate the water absorption of 

the flour. The analysis is subsequently repeated using the adjusted amount of water 

calculated from the flour water absorption and with a mixing time of 8 minutes. This 

is done to ensure that the maximum consistency of the dough is within the target range. 

  

Sample preparation 

Resting Bubble inflation 

  

  
    

  

  

  

Mixing Extrusion 
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Parameters such as stability and time to obtain maximum pressure can also be found. 

Compared to the alveograph method, the consistograph method is rarely applied. 

Instead, other analysis methods such as farinograph or mixograph are often used for 

determination of mixing properties of flour.  

The alveograph method is normally used for flour benchmarking. Multiple studies 

have therefore investigated how the results from the alveograph analysis is related to 

genetic diversity and cultivation environment (Bordes et al., 2008; Branlard et al., 

2001; N. M. Edwards, Gianibelli, et al., 2007; N. M. Edwards, Preston, et al., 2007; 

Vázquez et al., 2012; Zanetti et al., 2001), as well as other flour analyses or product 

properties (Abuhammad et al., 2012; Addo et al., 1990; Bettge et al., 1989; Cappelli 

et al., 2018; Huen et al., 2018b; Ktenioudaki et al., 2011). Multiple studies have also 

used the alveograph to assess the effects of flour treatment and addition of other 

ingredients. This includes flour treatments such as milling conditions and thereby the 

content of damaged starch (Dexter et al., 1994; Preston et al., 1987) and defatting of 

flour (Addo & Pomeranz, 1992), as well as addition of ingredients including 

emulsifiers and lipids (Addo et al., 1995; Addo & Pomeranz, 1992; Agyare et al., 

2005), reducing and oxidising agents (Bennett & Coppock, 1952), resistant starch 

(Barros et al., 2018), fibres (Mehfooz et al., 2018; J. Wang et al., 2002), gluten 

(Janssen et al., 1996; Li et al., 2013), enzymes (Li et al., 2013; Rosell et al., 2003) and 

yeast metabolites (Jayaram, Cuyvers, et al., 2014; Jayaram, Rezaei, et al., 2014). In 

most of the studies, the additives were tested one at a time. The alveograph method 

was also applied in paper V to analyse the effect of addition of α-, β- and γ-

cyclodextrin. It was found that the cyclodextrins had multiple effects on the properties 

of wheat dough, which the alveograph parameters was used to quantify.  

3.1. OVERVIEW OF ALVEOGRAPH CURVES AND PARAMETERS 

Over the years, several different parameters have been extracted from the alveograph 

pressure curve. At first, these were often based on the curve characteristic, such as 

height, length and area under the curve (Chopin, 1927; Dubois et al., 2008). Later on, 

parameters were also found from the first derivative curve (Addo et al., 1990), and the 

pressure-air curve has been recalculated into a stress-strain curve from which 

additional parameters were found (Bloksma, 1957; Dobraszczyk et al., 2003; Launay 

& Buré, 1977). In total, ten parameters are provided for each analysis in the modern 

version of the alveograph. These parameters are maximum overpressure (P), average 

abscissa to rupture (L), swelling index (G), configuration ratio (P/L), deformation 

energy (W) and elasticity index (Ie) found from the pressure curve, as well as 

minimum and maximum of first derivative (Dmin and Dmax, respectively) from the 

first derivative curve, and strain hardening index (SH) and strength coefficient (K) 

from the stress-strain curve. In Figure 3-2, an overview is given of how the different 

alveograph parameters are extracted from the different curves. The different 

parameters are shortly described here, but a longer review of them can be found in 

paper II.  
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Figure 3-2: Alveograph parameters found from the different curves. A: The pressure curve from 
which P, L, G, W and Ie are found. Other formulas for calculation of G and W exist. S is the 
area under the curve, Hmax is the maximum height of the curve, and H40 mm is the height of the 
curve at 40 mm on the L axis. B: The first derivate curve from which Dmin and Dmax are found. 
C: The stress-strain curve from which SH and K are found. The figure is from paper II. 

The pressure curve, which can be seen in Figure 3-2A, has L and H on the abscissa 

and the ordinate, respectively. They are both measured in mm, which originates from 

the design of the first versions of the alveograph, which was made approximately a 

century ago. The H axis represents the inflation pressure, and it can be recalculated 

into mm H2O by multiplying it with a factor of 1.1. This conversion is necessary due 

to the geometry of the initially used water manometer. The scale on L axis can be 

recalculated into inflation time by a conversion factor of 5.5 mm/sec. In the older 

versions of the alveograph, the pressure was recorded on chart paper, and the 

conversion factor indicates therefore the speed of the recording drum. Despite the data 

are recorded on a computer nowadays, the resultant curve is as standard still presented 

using the original units on the axes.  
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The parameter P is the maximum overpressure needed to inflate the dough bubble 

(Dubois et al., 2008). It is found by multiplying the maximum height of the alveograph 

curve with 1.1, as P is measured in mm H2O. P represents the dough tenacity, and it 

is considered to be an indicator of the dough resistance to deformation (AACC, 

2009a), but many possible interpretations of it have been made over the years (Dubois 

et al., 2008). P has been shown to be related to the water absorption of the flour, as a 

higher water absorption of a flour result in a higher P value (Cappelli et al., 2018; 

Dexter et al., 1994; Preston et al., 1987). The water absorption is influenced by 

multiple variables, including starch damage level (related to the milling process) and 

pentosan level (especially in relation to wholemeal flour), and increasing the amount 

of each of these will increase the water absorption (Cauvain, 2015). Also 

strengthening of the gluten network by e.g. ascorbic acid has been shown to increase 

P (Bennett & Coppock, 1952; Kitissou, 1995). P does not seem to be significantly 

related to the protein content of the flour (Addo et al., 1990; Bettge et al., 1989; N. M. 

Edwards, Gianibelli, et al., 2007; Khattak et al., 1974; Rasper et al., 1986).  

The parameter L is the average length of the curve from the start of inflation to the 

point where the dough bubble ruptures (Dubois et al., 2008). L is provided in mm, but 

it can be converted to time. It represents the biaxial extensibility of the dough. L is 

presumed to be related to the gluten network, as modifications of this have been shown 

to affect L (Bennett & Coppock, 1952; Janssen et al., 1996; Khattak et al., 1974; Li et 

al., 2013). Also, the water absorption of the flour influences L, as a stiffer dough is 

often less extensible (Cappelli et al., 2018; Dexter et al., 1994; Preston et al., 1987). 

L has been shown to be positively correlated with bread volume by several studies 

(Addo et al., 1990; Bettge et al., 1989; Dowell et al., 2008; N. M. Edwards, Preston, 

et al., 2007).  

The parameter G is the swelling index. It is defined as the square root of the average 

volume of air in ml used for inflating the dough until rupture (Dubois et al., 2008). G 

is therefore another measure of the biaxial extensibility. Using the assumption that the 

dough bubble volume increases uniformly with time during the inflation, G can be 

calculated from L (Dubois et al., 2008). G can be calculated using the formula in 

equation (3-1) according to Bordes et al. (2008) and Cauvain & Young (2009), while 

Chopin Technologies (2016) mentions the formula in equation (3-2.  

𝐺 = 2.226 ∙ √𝐿 (3-1)  

𝐺 = 2.22 ∙ √𝐿 (3-2) 

The further premises for the different formulas are unknown. As G is calculated from 

L, G is affected by the same variables as L.  

The parameter W is the deformation energy, as it represent the energy needed for 

inflating the dough bubble until rupture (Dubois et al., 2008). W can be used as an 

indicator of strength of the flour. W is calculated from the area under the curve, as the 
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L and H axis can be converted to represent the bubble volume (i.e., the volume change 

from zero volume) and the pressure, respectively. The work for a gas is the product 

of pressure and volume change. In a case like the present in which the pressure is not 

constant, the product is replaced by an integral corresponding to the area under the 

curve. According to Dubois et al. (2008), Cauvain & Young (2009) and Rasper et al. 

(1986), W measured in 10-4 J can be found using the formula in equation (3-3, in 

which S is the area under the curve in cm2, while Chopin Technologies (2016) 

mentions the formula in equation (3-4, in which V is the volume of air measured in 

ml.  

𝑊 = 6.54 ∙ 𝑆 (3-3) 

𝑊 = 1.32 ∙
𝑉

𝐿
∙ 𝑆 

(3-4) 

The further assumptions and intermediate calculations for the conversion of the axes 

for the two formulas are unknown. The W value is influenced by the values of P and 

L, as P and L are to some degree related to the area under the curve, from which W is 

found (Addo & Pomeranz, 1992; Bettge et al., 1989; N. M. Edwards, Gianibelli, et 

al., 2007). W is widely used industrially to assess the strength of wheat cultivars and 

flour qualities to indicate which types of bakery products they are suitable for 

(Abuhammad et al., 2012; García-Álvarez et al., 2011). W has been shown to be 

dependent on the amount and quality of gluten (N. M. Edwards, Gianibelli, et al., 

2007; Janssen et al., 1996; Vázquez et al., 2012), as well as it is related to the water 

absorption of the flour (Dexter et al., 1994; Preston et al., 1987). Multiple studies have 

observed a positive correlation between W and bread volume (Addo et al., 1990; 

Bettge et al., 1989; Dowell et al., 2008; N. M. Edwards, Preston, et al., 2007). 

The ratio P/L is called the configuration ratio. It is the ratio between the maximum 

overpressure and the average abscissa to rupture, and it thus indicates the balance 

between the tenacity and extensibility of the dough (Dubois et al., 2008). The value is 

dimensionless. P/L can be applied industrially together with W, but while the 

magnitude of W is used to assess the strength of the flour, P/L should often just be 

within a certain range (Bordes et al., 2008).  

The parameter Ie is the elasticity index. Ie is the ratio between the height of the 

alveograph curve at 40 mm on the L axis and the maximum height of the curve, and 

it is stated in percentage (Kitissou, 1995). Ie is an indicator of dough elasticity 

according to Kitissou (1995), as it is assumed that at bubble volume at 40 mm on the 

L axis, the pressure is mainly dependent on the strength of the internal bonding forces 

and to a lesser degree the dough thickness. Ie is related to the gluten network quality 

of the dough, as strengthening of the gluten network has been shown to increase Ie, 

as well as to the water absorption of the flour (Kitissou, 1995). Duyvejonck et al. 

(2012) found a positive correlation between Ie and bread volume, but in general the 

use of Ie in the literature is limited.  
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The first derivative curve, which can be seen in Figure 3-2B, is found from the 

alveograph curve. The abscissa is therefore the same L axis as for the original curve, 

while the ordinate is the slope of a tangent line to the curve for each point.  

The parameter Dmin is the minimum value on the first derivative curve, and it 

corresponds therefore to the steepest decreasing slope of the alveograph curve. The 

parameter was defined by Addo et al. (1990), however, they defined it as the negative 

of the minimum value in order to obtain a positive number. Addo et al. (1990) and 

Addo et al. (1991) found that Dmin was correlated with bread volume, but beside this 

very few studies have been published using Dmin.  

The parameter Dmax is the maximum value on the first derivative curve, and it 

represents therefore the steepest increasing slope for the increasing pressure in the 

beginning of the alveograph curve. To the best of the author’s knowledge, there is no 

mention of Dmax in the literature.  

The alveograph curve has been transformed into a stress-strain curve using various 

assumptions, as an attempt to derive fundamental rheological properties of dough 

analysed with the alveograph method. Hlynka & Barth (1955) made an early attempt 

to calculate the stress-strain curve from the alveograph curve, using the assumption 

that the dough bubble is a sphere with a uniform wall thickness over the bubble surface 

for a given bubble volume. However, visual inspection of the dough bubble during 

inflation reveal that the dough is thinner in the pole compared to the base. Bloksma 

(1957) proposed that the dough wall thickness should be calculated under the 

assumptions that the dough bubble is spherical, the dough is incompressible, and each 

dough particle is shifted normally to itself during inflation. Using these assumptions, 

the size of the dough bubble and the dough wall thickness for different positions on 

the bubble can be calculated for different times during inflation. Launay et al. (1977) 

tested the validity of Bloksma’s model and found that the model was only accurate at 

moderate volumes and flow rates, while the model was not accurate at the flow rate 

normally used in the alveograph analysis, because the height of the bubble was 

overestimated, as the bubble was oblate spheroidal instead of spherical. This was 

supported by Charalambides et al. (2002), who also found that that the thickness of 

the dough was underestimated at the pole and overestimated at the base of the bubble, 

and that the compressibility of the dough had a significant effect on the results. 

Nevertheless, Bloksma’s model is widely used for calculation of the stress-strain 

curve for the pole of the bubble from the alveograph curve using equation (3-5 to (3-9.  

𝑉 =
𝜋

6
∙ ℎ ∙ (ℎ2 + 3𝑎2) = 𝑄 ∙ 𝑡 (3-5) 

𝑅 =
𝑎2 + ℎ2

2ℎ
 

(3-6) 
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𝛥 = 𝛥0 (1 +
ℎ2

𝑎2
)

−2

 
(3-7) 

𝜀 = ln (1 +
ℎ2

𝑎2
) 

(3-8) 

𝜎 =
𝑝 ∙ 𝑅

2𝛥
=
𝑝

4
∙
(𝑎2 + ℎ2)3

ℎ ∙ 𝛥0 ∙ 𝑎
4  

(3-9) 

In the equations, V is the volume of the dough bubble, h the bubble height, a the radius 

of the original dough sample, Q the air flow rate, t the time, R the bubble radius, Δ is 

the dough thickness at the pole, Δ0 is the initial dough thickness, ε the Hencky strain, 

σ the stress, and p the overpressure in the bubble. For equation (3-5, it is assumed that 

the bubble volume increases with a constant rate. The stress and the strain for the pole 

of the dough bubble can be calculated from equation (3-8 and (3-9, respectively, as 

the variable h can be found from equation (3-5. The equations for calculation of the 

bubble radius and the dough thickness at the pole are also provided in equation (3-6 

and (3-7, respectively, as they are used in the calculation of the stress. Assuming 

constant a, Q and Δ0, it can be seen from the above equations that the calculated strain 

is only dependent on time, while the calculated stress is only dependent on time and 

pressure. However, the assumptions for the calculation have been shown not to hold 

at the conditions used in the standard alveograph analysis, which results in 

overestimation of the strain and especially the stress (Charalambides et al., 2002, 

2006; Launay et al., 1977). 

An example of the stress-strain curve can be seen in Figure 3-2C. The unit for the 

stress axis is unknown, as the curve is automatically calculated by the alveograph 

software, but no description of how it is done and which units that are applied is 

available from the manufacturer. Personal communication with Chopin Technologies 

indicates that an erroneous factor is used for the calculation of the stress in the stress-

strain curve in the alveograph software, which influences the values on the vertical 

axis, but not the shape of the curve. This will be corrected in coming versions of the 

alveograph software. A curvature on the stress-strain curve can be observed, which is 

presumed to be caused by strain hardening (Dobraszczyk & Roberts, 1994). The 

exponential equation in equation (3-10 was found to be suitable for fitting the curve 

(Dobraszczyk et al., 2003).  

𝜎 = 𝐾 ∙ exp(𝑆𝐻 ∙ 𝜀) (3-10)  

In the equation, σ is the stress, ε the Hencky strain, SH the strain hardening index and 

K the strength coefficient.  

Strain hardening is the phenomenon that the stress required to deform a material 

increases more than proportionally to the strain (at increasing strain and constant 

strain rate) (van Vliet et al., 1992). The strain hardening index can be found for 
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uniaxial or biaxial extension, but differences in the obtained indexes can be observed 

between the different extension types (Sliwinski et al., 2004b). Determination of the 

strain hardening index by different methods may also result in different values due to 

inaccurate determination of strain and stress, different and variable strain rates, as well 

as use of different equations for fitting. When comparing different strain hardening 

indexes from different studies, it is therefore important to pay attention to the methods 

used.  

In the alveograph method a constant air flow is used for the bubble inflation, which 

entails that the strain rate at the pole of the bubble decreases during inflation 

(Charalambides et al., 2002). However, the deformation properties of the dough, 

including the strain hardening index, are also dependent on the strain rate, as it is well 

known that dough exhibits strain hardening as well as strain rate hardening 

(Dobraszczyk, 2004a; Launay & Buré, 1977). For this reason, and because the 

calculated stress and strain are overestimated (Charalambides et al., 2002, 2006; 

Launay et al., 1977) resulting in a too high SH, SH found from alveograph analysis is 

only the apparent strain hardening index.  

Many of the studies which determine SH for dough by bubble inflation do not use an 

alveograph, but a D/R Dough Inflation System (Stable Micro Systems, Surrey, 

England) (Dobraszczyk, 1997). This is based on the same principle as the alveograph, 

but different analysis conditions are applied, as the bubble inflation is often performed 

using an approximate constant strain rate of 0.1 s-1 (Dobraszczyk et al., 2003). 

Furthermore, there are some differences in the sample preparation. Chin et al. (2005) 

have compared bubble inflation at (approximate) constant strain rate and constant 

flow rate, and they found that the type of deformation rate influences SH, which 

therefore entails that the results are not directly comparable.  

Strain hardening of a dough is assumed to be related to the gluten network, as polymer 

entanglement network theory can be used to explain the phenomenon by entanglement 

coupling of large glutenin molecules (Dobraszczyk & Morgenstern, 2003; Singh & 

MacRitchie, 2001). Multiple studies have also shown that SH is dependent on the 

gluten network properties (Altuna et al., 2016; Chin & Campbell, 2005b; Sroan et al., 

2009). SH have also been shown to be positively correlated with bread volume by 

several studies (Dobraszczyk et al., 2003; Dobraszczyk & Salmanowicz, 2008; Sroan 

et al., 2009). van Vliet et al. (1992) stated that locally increasing resistance to 

deformation due to strain hardening entailed that the gas cells in the dough could be 

inflated to larger volumes and with thinner cell walls before the dough ruptured, which 

eventually lead to larger bread volume.  

The parameter K is the strength coefficient. It is found from equation (3-10, in which 

K indicates the intercept with the ordinate. K estimates therefore the stress when the 

strain equals 0. As described previously, different challenges are linked to the 

calculation of strain and stress, which also affect the value of K. Different studies have 
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tried to relate K with flour quality, but the results are ambiguous (Chin et al., 2005; 

Chin & Campbell, 2005b; Tronsmo, Magnus, et al., 2003).  

3.2. COMPARISON OF PARAMETERS 

In paper II it was investigated which of the alveograph parameters that are closely 

related using correlation analysis. If the correlation coefficient between two 

parameters was close to 1, this would indicate that the parameters to a large extent 

represented the same information. Some of the findings from paper II are presented 

in this section. The data used for the correlation analysis were the parameter values 

extracted from the alveograph curves from a number of alveograph analyses. The 

results from these analyses were also used in paper III, IV and V. In these studies, 

many of the alveograph analyses were performed differently than prescribed by the 

standard method (AACC, 2009a). For some analyses, different additives, including 

cyclodextrins or all ingredients for either bread dough or Danish pastry dough was 

added, the water content of the dough was varied, different mixing times were applied, 

and/or the analyses were conducted at lower analysis temperatures than standard. 

Only three different flour qualities were analysed. These alveograph analyses were 

therefore performed differently compared to what the alveograph method is normally 

used for. Nevertheless, these data were used for the correlation analysis, as they 

covered a wide range of values for each parameter. They were therefore assessed to 

be suitable for studying the integral relationships between the parameters. Scatter 

plots between the alveograph parameters were also made, which can be seen in Figure 

3-3. Clouds or clusters can be seen between some of the parameters. Further 

investigation of the scatter plot (see supplementary materials in paper II) reveal that 

these clusters partly originate from different dough compositions (different 

ingredients added to the dough) and to a lesser extent different flour qualities.  

The correlation coefficients between the alveograph parameters can be seen in Table 

3-1. Very high correlation coefficients were observed between some of the 

parameters, including L and G (r = 0.99), P and Dmax (r = 0.98), P and K (r = 0.98), 

Dmax and K (r = 0.98), as well as Ie and SH (r = 0.97). G is calculated from L, which 

explains the very strong correlation between them. The square root of L is used for 

the calculation of G, which is why the correlation coefficient is not 1, as this is based 

on linear relationships. The very strong correlations between the parameters P, K and 

Dmax might be explained by they are all related to the dough behaviour in the 

beginning of the bubble inflation, as P is the maximum overpressure in the first part 

of the pressure curve, Dmax is the steepest slope for the increasing pressure in the 

alveograph curve, and K estimates the stress at low strain. The very high correlation 

coefficient between Ie and SH might be explained by both parameters assess curve 

shapes, as Ie and SH are extracted from the alveograph curve and the stress-strain 

curve, respectively. As the parameters G, Dmax, SH and K had very high correlation 

coefficients with other parameters, these four parameters did not provide much 

information not already provided by the remaining parameters.  
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Table 3-1: Pearson correlation coefficients between the alveograph parameters (n = 532). All 
correlations were significant with a p-value < 0.01. The table is from paper II. 

 
P L G W P/L Ie Dmin Dmax SH 

L -0.74         

G -0.74 0.99        

W 0.76 -0.25 -0.22       

P/L 0.87 -0.85 -0.88 0.39      

Ie 0.57 -0.24 -0.23 0.81 0.36     

Dmin -0.85 0.71 0.70 -0.49 -0.79 -0.11    

Dmax 0.98 -0.74 -0.73 0.78 0.83 0.59 -0.85   

SH 0.62 -0.28 -0.28 0.76 0.46 0.97 -0.17 0.61  

K 0.98 -0.76 -0.75 0.72 0.85 0.46 -0.91 0.98 0.49 

 

Remaining were the parameters P, L, W, P/L, Ie and Dmin, which represent a basic 

set of parameters for characterisation of the alveograph curve. G, Dmax, SH and K, 

which were closely correlated with P, L and Ie, could also be applied, however, the 

most used parameters for the alveograph analysis were selected here. Strong 

correlations could be found between some of the remaining parameters, some of 

which are described in the following.  

A negative, moderately strong correlation between P and L was found. Similar 

findings were reported by some studies (Bettge et al., 1989; Zanetti et al., 2001), while 

other studies did not find significant correlations between these parameters (Addo et 

al., 1990; Bordes et al., 2008; N. M. Edwards, Gianibelli, et al., 2007; García-Álvarez 

et al., 2011). The correlation might originate from only few flour qualities being 

analysed, even though these were treated in different ways. Previous studies have 

shown that when changes in dough composition resulted in a stiffer dough, which was 

seen as a higher P value, the dough was often also less extensible, observed by a 

smaller L value (Cappelli et al., 2018; Jayaram, Cuyvers, et al., 2014; Preston et al., 

1987).  
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Figure 3-3: Scatter plot matrix between the different alveograph parameters. The figure is from 
paper II. 

A positive, moderately strong correlation between P and W was also observed, which 

was also found by multiple other studies (Addo et al., 1990; Bettge et al., 1989; N. M. 

Edwards, Gianibelli, et al., 2007; García-Álvarez et al., 2011; Zanetti et al., 2001). 

This was also expected as P is calculated from the maximum height of the alveograph 

curve, which to some extent is related to the area under the curve, from which W is 

calculated. On the other hand, a weak negative correlation was observed between L 

and W, despite L represents the length of the curve and therefore is also partly related 

positively to the area under the curve and thereby W. A positive correlation between 

L and W was also found by multiple other studies (Addo et al., 1990; Bettge et al., 

1989; N. M. Edwards, Gianibelli, et al., 2007; García-Álvarez et al., 2011; Zanetti et 

al., 2001). However, in the scatter plot between L and W in Figure 3-3, several clusters 

were observed, and investigation of these together with the correlation coefficients 

between L and W for the different dough composition, revealed that a positive 
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correlation between L and W could be found for the different dough compositions. Ie 

was positively correlated with W, which was also observed or at least indicated in 

several other studies (Bordes et al., 2008; Duyvejonck et al., 2012; Huen et al., 2018b; 

Zanetti et al., 2001).  

P/L was positively correlated with P and negatively correlated with L, which was also 

expected. It is clear from the scatter plots in Figure 3-3, the correlation was not linear, 

which is because P/L is the ratio between the two parameters, and it will therefore be 

more affected by changes at high P values and low L values.  

Moderately strong correlations between Dmin and the other parameters, such as P, L 

and W, were also observed. Dmin is rarely used in the literature, but Addo et al. (1990) 

found significant, moderately strong correlations between Dmin and the other 

alveograph parameters. Compared to those results, some of the same correlations 

could be found, while other correlations were different, which might be due to Addo 

et al. (1990) compared different flour qualities, while different dough compositions 

were also compared in the study.  

All the alveograph parameters are found from curves which are only based on two 

variables, namely inflation time (or more specifically, amount of air) and pressure. 

The parameters are therefore to some degree related to each other. The characteristics 

of the alveograph curve are dependent on a number of variables, including the 

properties of the flour, the water content in the dough and whether ingredients are 

added. Changes in these variables will change the characteristics of the alveograph 

curve, which will often affect several parameters. However, it is different to what 

extent the parameters are affected by changing variables. The alveograph parameters 

are therefore to some degree interlinked, but the further details of the relationships 

between them are diffuse at best.  
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CHAPTER 4. ANALYSIS OF FULL 

FORMULA DOUGH  

Within the baking industry, it is strongly presumed that the rheology of a dough, which 

is traditionally assessed by kneading and stretching the dough by hand, is closely 

related to its baking quality (Dobraszczyk, 2004b). Empirical evidence over the years 

has strengthened this assumption (Dobraszczyk, 2004b). Rheology can be used to 

determine how the dough behaviour is affected by deformation of the dough, e.g. 

during mechanical handling, such as mixing and sheeting, and during bubble growth 

in fermentation and baking (Cauvain, 2015). Although the importance of dough 

rheology is widely accepted, measurements on the rheology of full formula dough are 

usually not applied in the industrial bakeries. Multiple reasons can be found for this 

as covered previously, but often the physical and often empirical descriptive analysis 

methods are focused on flour characterisation, as flour is assumed to be one of the 

most important ingredients, and the variability of the flour is pivotal for the product 

quality (Li Vigni et al., 2009; Spies, 1990).  

4.1. INFLUENCE OF INGREDIENTS ON BREADMAKING AND 
DOUGH PROPERTIES  

Multiple studies have investigated the correlation between flour characteristics and 

product properties, usually bread volume. Strong correlations have been observed 

between rheological properties of simple flour doughs and bread volume, as shown in 

the following examples. Bettge et al. (1989) found correlations between loaf volume 

and alveograph extensibility (L) with correlation coefficients of 0.85 and 0.90 for soft 

(n = 58) and hard (n = 15) wheat flours, respectively. Dobraszczyk & Salmanowicz 

(2008) found a correlation coefficient of 0.88 between bread volume and failure strain 

in bubble inflation (n = 31). Duyvejonck et al. (2012) found bread volume to be 

correlated with both alveograph elasticity index (Ie) and deformation energy (W) with 

correlations coefficients of 0.80 and 0.72, respectively (n = 19). Tronsmo, Færgestad, 

et al. (2003) found a correlation coefficient of 0.89 between bread volume and strain 

hardening index determined using bubble inflation for hearth breads (n = 20).  

In some of the studies reporting high correlation coefficients, prediction models were 

made for prediction of bread volume. However, the prediction value of these models 

was often limited, as the prediction interval based on the standard error typically 

covered large parts of the bread volume range (Andersson et al., 1994; Ktenioudaki et 

al., 2011; Stojceska & Butler, 2012). F. C. Wang & Sun (2002) found a correlation 

coefficient of 0.94 between creep recovery strain and loaf volume (n = 23), but when 

Stojceska & Butler (2012) calculated the 95% prediction interval for the loaf volume, 

they found the prediction interval was approximately 90 ml, while the overall 
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variation in the loaf volume in the study was approximately 200 ml. Likewise, 

Ktenioudaki et al. (2011) found a correlation coefficient of 0.8 between uniaxial 

extensibility and loaf volume (n = 9), but the 95% prediction interval for the loaf 

volume was 18 ml, while the overall variation in the loaf volume was approximately 

24 ml. This shows that strong correlations do not necessarily result in good prediction 

models and emphasises the importance of considering the standard error.  

Furthermore, some studies did not find any correlation between rheological properties 

and bread volume. Huen et al. (2018a) did not find any significant correlations 

between results from a range of physical analysis methods and specific bread volume 

(n = 37), despite the applied analysis methods had resulted in significant correlations 

with bread volume in other studies. Tronsmo, Færgestad, et al. (2003) only found a 

significant correlation coefficient to bread volume, when hearth breads were made, 

while no significant correlations to the volume of loaves made using the Chorleywood 

bread process were observed.  

The flour analyses are therefore only indicative of the breadmaking performance of a 

flour for a given set of conditions. There are various reasons for this, some of which 

also have been mentioned previously. One of these reasons is that the analyses are 

conducted at ranges of deformation and strain rate that are not representative for the 

deformation conditions of dough in the breadmaking process (Dobraszczyk & 

Morgenstern, 2003). The measured response is therefore not likely to be directly 

related to baking performance (Dobraszczyk & Morgenstern, 2003). Multiple recipes 

and procedures for breadmaking are also used in the different studies, which further 

complicates the comparisons, as different breadmaking procedures might lead to 

different results for the same flour samples as shown by Tronsmo, Færgestad, et al. 

(2003). The protein content of the flours used in the studies should also be considered, 

as e.g. flours with a protein content lower than what is normally applied for 

breadmaking will result in a smaller bread volume, and if these are included in the 

study, this will affect the regression analysis (Stojceska & Butler, 2012).  

In most studies, including those mentioned above, only the relations between the flour 

properties and the properties of the final product are investigated. The rheological 

properties of dough are often measured, but the measurement is usually performed on 

a simplified dough containing only flour, water and possibly sodium chloride. 

However, the doughs used to produce the breads for assessment of baking 

performance contain also other ingredients, e.g. yeast, fat, sugar and enzymes. In 

general, the processability or the properties of full formula dough is rarely 

investigated, including how this is related to the ingredient properties or the quality of 

the final product, despite the general assumption that the rheology of the dough is 

determining for the baking performance (Dobraszczyk, 2004b).  

The use of different ingredients in a dough for a bakery product affects the properties 

of the dough, including the rheology and the baking performance. The effects of the 
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ingredient are of course dependent on the type of ingredient and the amount of it, as 

well as which other ingredients are added. The effects of some of the various 

ingredients found in Danish pastry predough are briefly described in the following. 

Focus is on the effects on mixing and dough deformation properties, even though most 

of the ingredients also affect other properties and the quality of the final product.  

It is generally accepted that flour is one of the most vital ingredients for dough 

rheology and product properties (Spies, 1990). Flour is quantitatively the most 

important ingredient in bread, and it has been shown that the variability of the flour 

among all the ingredients is the most determining factor for the bread quality in an 

industrial production (Li Vigni et al., 2009). The properties of flour are dependent on 

both the genetics of the wheat and the growing conditions as well as the milling 

conditions and the degree of refining of the flour (Bordes et al., 2008; Cappelli et al., 

2018; Preston et al., 1987; Vázquez et al., 2012). The mixing properties of a dough 

are found by measuring the dough consistency during mixing (Goesaert et al., 2005). 

The overall shape of the mixing curve is caused by changes in the flour constituents 

during mixing, including flour hydration, gluten network development and gluten 

protein depolymerisation. Other ingredients might affect the characteristics of the 

mixing curve as indicated by e.g. maximum consistency, dough development time and 

stability. A strong flour typically results in long dough development time and stability 

(Cauvain, 2015). The maximum dough consistency during mixing of a dough 

consisting of flour and water can be used to determine the water absorption of the 

flour. The water absorption is dependent on the content of pentosans, protein, 

damaged starch and moisture in the flour (Cauvain, 2015). The flour constituent with 

largest influence of the dough rheology is generally accepted to be the gluten proteins 

(Goesaert et al., 2005). Gluten proteins can be divided into gliadin and glutenin, and 

the amount and type of gliadin and glutenin as well as the ratio between them have 

been shown to have a large influence on the dough properties. For example, a negative 

correlation has been found between the gliadin/glutenin ratio and the dough 

development time (Barak et al., 2013). Modifications of the gluten network such as 

addition of gluten as well as strengthening or weakening of the gluten network by 

addition of oxidising and reducing agents, respectively, have also been shown to affect 

the extensional properties of the dough (Bennett & Coppock, 1952; Janssen et al., 

1996; Kitissou, 1995; Li et al., 2013). Also the content of other flour constituents 

affect the dough properties, as some of these bind water, which is needed for 

development of the gluten network, and this might affect the behaviour of the gluten 

network (Cappelli et al., 2018; Preston et al., 1987).  

Water is essential for the properties of the dough, and it is one of the most determining 

ingredients for the rheology of the dough. Water hydrates the flour constituents, of 

which it is associated with especially starch, proteins and pentosans (Cauvain, 2015). 

Water molecules can therefore be found in several different states in the dough 

(Schiraldi & Fessas, 2012). The hydration of the gluten proteins is necessary for the 

formation of the gluten network, and too little water in a dough may limit the 
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development of the gluten network. Increasing water content has been shown to 

decrease the consistency of the dough (Berland & Launay, 1995; Farahnaky & Hill, 

2007; Jekle & Becker, 2011). The softening effect of the water is caused by the 

plasticizing effect of the water molecules, as water prompts the gluten polymers to 

shift from a rubbery stage to a flow stage, and at the same time, the entanglements in 

the gluten network disappear due to slippage (according to the polymer entanglement 

network theory) (Jekle & Becker, 2012). It has been found that water primarily has a 

diluting effect and does not cause major structural changes (Berland & Launay, 1995; 

Meerts et al., 2017). In alveograph analyses, increasing water addition has been shown 

to decrease the tenacity P, increase the extensibility L (followed by a decrease), 

decrease the deformation energy W and decrease the configuration ratio P/L (Cappelli 

et al., 2018; Preston et al., 1987). In uniaxial extension, increasing water addition has 

been shown to decrease the maximum resistance in extension, while the extensibility 

increases (Jekle & Becker, 2012). Furthermore, increasing water content in the dough 

has been found to increase the stickiness of the dough (Jekle & Becker, 2011, 2012).  

Bakers’ yeast (Saccharomyces cerevisiae) is widely used in bakery products, in which 

its main function is to serve as a leavening agent, while it also contributes to the 

flavour and other properties of the final product. The yeast is active in the dough, and 

the effects of yeast are therefore dependent on time. The activity of the yeast is also 

influenced by other ingredients, such as sugar and sodium chloride (Cauvain, 2015). 

The yeast releases different metabolites, including CO2, ethanol, succinic acid, acetic 

acid and glycerol, of which CO2 primary accounts for the volume expansion during 

fermentation (Meerts, Ramirez Cervera, et al., 2018). In general, CO2 in combination 

with the other yeast metabolites have been found to have a softening effect of the 

dough during fermentation (Meerts, Vaes, et al., 2018). The effects of the yeast 

metabolites have also been studied individually. Ethanol in the amounts produced by 

yeast during fermentation has been shown to lower the extensional viscosity and 

reduce failure strain, which has been proposed to be due to solubilisation of gliadins, 

which limits the number of non-covalent interactions in the gluten network (Meerts, 

Ramirez Cervera, et al., 2018). This was supported by Jayaram, Rezaei, et al. (2014), 

who observed ethanol decreased the extensibility and total force for deformation in 

extensograph and alveograph analyses. However, while the results presented by 

Meerts, Ramirez Cervera, et al. (2018) indicated that ethanol softened the dough, 

Jayaram, Rezaei, et al. (2014) found that that ethanol turned the dough stiffer, as 

addition of ethanol increased the maximum resistance to deformation of the dough. 

Ethanol did not seem to influence the mixing properties of dough (Jayaram, Rezaei, 

et al., 2014). Succinic acid did not show an effect on the measured dough properties 

at the concentrations normally produced by yeast, while use of higher concentrations 

of succinic acid were found to soften the dough, lower the extensional viscosity and 

reduce the failure strain (Meerts, Ramirez Cervera, et al., 2018). Succinic acid has 

been shown to decrease the dough development time and the stability time, as well as 

reduce the extensibility of the dough in the extensograph analysis, and also increase 

the tenacity and reduce the extensibility in the alveograph analysis (Jayaram, Cuyvers, 
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et al., 2014). However, the effect of succinic acid is highly dependent on pH and salt 

concentration, and contradictory results are therefore often found (Jayaram, Cuyvers, 

et al., 2014). Succinic acid was found to be the primary reason for the pH drop in the 

dough during fermentation (Jayaram et al., 2013). Glycerol has been shown to soften 

the dough, but not cause major structural changes (Meerts, Ramirez Cervera, et al., 

2018). Aslankoohi et al. (2015) found that glycerol increased the extensibility and 

decreased the maximum resistance to deformation, which is consistent with softening 

of the dough. In the above-mentioned studies, the effects of the yeast metabolites were 

studied by addition of the components to the dough. However, when the rheological 

properties of unfermented and fermented dough were compared, the differences were 

smaller than what might be expected (at least for the applied methods) when 

comparing them with the effects observed for addition of the individual yeast 

metabolites to the dough (Meerts, Ramirez Cervera, et al., 2018). This might be 

because the yeast metabolites are gradually produced in an already-developed gluten 

network during fermentation, and they may therefore not influence the development 

of the gluten network to the extent otherwise found (Meerts, Ramirez Cervera, et al., 

2018). Furthermore, the yeast might also during fermentation produce other 

components, which affect the dough rheology, e.g. enzymes (Meerts, Ramirez 

Cervera, et al., 2018). In addition to the above-mentioned yeast metabolites, which 

are primarily present in fermented dough, yeast also contains glutathione. Glutathione 

is released from dead yeast cells, and it is therefore also found in yeasted, unfermented 

dough (Verheyen et al., 2015). Glutathione is a reducing agent, and it is considered to 

interrupt the formation of disulphide bonds in the gluten network (Verheyen et al., 

2015). In mixing analysis, glutathione has been shown to decrease dough development 

time and stability time and increase the softening of the dough (Verheyen et al., 2015), 

as well as decrease the dough consistency (Berland & Launay, 1995). Glutathione has 

been found to decrease the resistance to deformation and increase the extensibility in 

deformation studies (Kieffer et al., 1990; Meerts, Ramirez Cervera, et al., 2018).  

Egg has a range of different functions in the dough as well as in the final product. Egg 

has been shown to increase the dough development time, as well as the dough strength 

and stability, while it decreases the water absorption (Calderón-Domínguez et al., 

2005; Indrani & Venkateswara Rao, 2007; Van Steertegem et al., 2013). Analysis of 

egg yolk and egg white separately revealed that egg white increased development 

time, strength and stability (more than whole egg), while egg yolk decreased these 

parameters (Van Steertegem et al., 2013). The effects of egg are assumed to be caused 

by interactions between egg proteins and glutenin proteins, as the negatively charged 

egg proteins (especially found in the egg white) partly shield the positively charged 

glutenin and gliadin proteins, which strengthen the interactions between the glutenin 

chains (Van Steertegem et al., 2013). Egg has also been shown in extensograph 

analysis to increase the ratio of maximum resistance to deformation and extensibility, 

which is caused by higher maximum resistance and/or lower extensibility, and to 

increase the area under the curve, indicating strengthening of the dough (Indrani & 

Venkateswara Rao, 2007).  
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Sugar is added to sweeten the bakery product as well as to function as an energy source 

for the yeast. Addition of sucrose to dough is usually associated with increased 

stickiness, lower tenacity and higher extensibility (Cauvain, 2015; A. Salvador et al., 

2006). Sucrose is considered to bind water, which reduces the availability of water for 

hydration of gluten proteins, resulting in a less consistent dough and a longer 

development time (Calderón-Domínguez et al., 2005; Meerts, Vaes, et al., 2018). 

Sucrose has been found to lower the dough consistency, but without inducing major 

structural changes, as it was shown that the effect of sucrose was due to volume 

changes of the dough (Meerts, Vaes, et al., 2018; A. Salvador et al., 2006). Sugar 

increases the activity of the yeast, however, if the concentration is too high, it will 

inhibit the yeast (Sahin et al., 2019).  

In-dough fat, such as margarine and shortening, has different effects dependent on the 

type and concentration. The fat affects a range of properties in both the dough and the 

final product (Pareyt et al., 2011). Fat is presumed to interfere with the formation of 

the gluten network (Ghotra et al., 2002). Fat has been shown to reduce the amount of 

water needed to reach a fixed dough consistency (Pareyt et al., 2011). This has been 

suggested to be due to coating of the gluten proteins and starch granules (Chin et al., 

2010). Fat exerts a plasticizing effect on the viscoelastic properties of the dough, 

possibly by reducing the concentration of entanglements and crosslinks in the gluten 

network (Fu et al., 1997; Mehta et al., 2009).  

Sodium chloride is important for the taste of the product, as well as it affects the dough 

rheology and the activity of the yeast. Sodium chloride has been shown to increase 

the dough development time, as well as the dough stability and strength (Butow et al., 

2002; Calderón-Domínguez et al., 2005; Indrani & Venkateswara Rao, 2007; Van 

Steertegem et al., 2013; Wehrle et al., 1997). Furthermore, sodium chloride decreases 

the dough consistency (Farahnaky & Hill, 2007; Wehrle et al., 1997). Salt has been 

observed to increase the resistance to deformation when the dough is extended, while 

ambiguous results were observed for extensibility (Lynch et al., 2009). It is generally 

accepted that sodium chloride electrostatically shields some of the charged amino 

acids at the surface of the gluten proteins, which then allows the proteins to interact 

more closely in hydrophobic interactions (McCann & Day, 2013). This strengthens 

the dough and decreases the hydration rate of the flour (McCann & Day, 2013). 

Furthermore, salt interacts with water, and thereby possibly reduce the hydration rate 

of the flour proteins due to competition for the water (Calderón-Domínguez et al., 

2005).  

Ascorbic acid is widely used as a flour improver, as it (or actually the oxidized form 

dehydroascorbic acid) functions as an oxidizing agent and therefore is able to modify 

the gluten network (Grosch & Wieser, 1999; I. Lucas et al., 2018). The exact 

mechanism of ascorbic acid is unclear, but it is presumed to function by oxidizing 

glutathione (Koehler, 2003). This results in stiffening and strengthening of the dough 

(Dong & Hoseney, 1995). Accordingly, addition of ascorbic acid has been shown to 
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increase the resistance to deformation and decrease the extensibility of the dough in 

uniaxial extension analysis (Kieffer et al., 1990), as well as increase the tenacity and 

decrease the extensibility as measured by alveograph analysis (Bennett & Coppock, 

1952). 

Hydrocolloids, including pectin and taragum, can also be added to bakery products. 

Hydrocolloids have various chemical structures and properties, and different effects 

of the hydrocolloids on the dough have therefore been observed, dependent on e.g. 

how and which flour constituents the hydrocolloids interact with (Rosell et al., 2007). 

Hydrocolloids affect both the dough, pasting and product properties (Bollaín & Collar, 

2004; Rosell et al., 2007).  

A range of different enzymes might also be added to the dough. Dependent on the 

type of enzyme, the enzymes affect different flour constituents and in different parts 

of the breadmaking process. One of the enzymes, which catalyses reactions with 

starch, is α-amylase. This enzyme is also one of the most frequently used enzymes in 

the baking industry (Cauvain, 2015). α-amylase is endo-acting and hydrolyses α-1,4 

linkages in starch (Cauvain, 2015; Goesaert, Slade, et al., 2009). It thereby degrades 

starch into oligosaccharides, which can be further hydrolysed by β-amylase, which is 

naturally present in the flour (Cauvain, 2015; Goesaert, Slade, et al., 2009). The 

amylase has several functions, including promotion of yeast fermentation by 

increasing the amount of fermentable sugars, increment of bread volume by reducing 

the dough viscosity during starch gelatinisation, improvement of crust colour by 

Maillard reactions promoted by the production of reducing sugars, and in some cases 

inhibition of staling by affecting the starch network (Goesaert, Leman, et al., 2009; 

Goesaert, Slade, et al., 2009). Other baking enzymes, such as xylanase, hydrolyse non-

starch polysaccharides. Xylanase hydrolyses arabinoxylans, which have a large water-

holding capacity. When parts of the arabinoxylans in the flour are degraded by 

xylanase, some of this water can be released and instead be used for hydration of the 

gluten network (Hardt et al., 2014). Addition of xylanases are associated with 

decreasing consistency of the dough (Ingelbrecht et al., 2000) and softening of the 

dough (Hardt et al., 2014). When xylanases are used in appropriate amounts, it is 

related to increased bread volume and better crumb structure (Cauvain, 2015). 

Enzymes that react with proteins are also applied in the baking industry. This includes 

transglutaminase, which strengthens the gluten network in the dough by crosslinking 

of proteins. Transglutaminase affects the rheology of the dough and can also increase 

the loaf volume and affect the crumb texture (Caballero et al., 2007), when used in 

appropriate concentrations (Joye et al., 2009). Furthermore, transglutaminase has been 

shown to increase pastry lift, possibly because the integrity of the layers is better 

preserved with the stronger gluten network (Gerrard et al., 2000).  

The effect of an ingredient is of course dependent on the type of ingredient and the 

amount of it. Furthermore, synergistic and antagonistic effects have been observed 

between different ingredients (Bollaín & Collar, 2004; Calderón-Domínguez et al., 
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2005; Rosell et al., 2007). In many studies, the effects of only one or a few ingredients 

are tested (Agyare et al., 2005; Ananingsih et al., 2013; McCann & Day, 2013; Van 

Steertegem et al., 2013). It is therefore not possible to estimate interaction effects in 

these studies. In other studies, in which several ingredients are tested, the type and 

amount of ingredients are often selected using a specific type of bakery product as a 

starting point in order to limit the number of ingredients tested (Calderón-Domínguez 

et al., 2005; Indrani & Venkateswara Rao, 2007; Perego et al., 2007). Furthermore, in 

many of the aforementioned studies only one type of flour was used, making it hard 

to estimate the effects of the ingredients on other flour qualities. 

In order to assess the effects of the flour as well as the other ingredients, analysis of 

full formula dough must be applied. Only a few studies have been published that 

analyse doughs with all ingredients for a bakery product. These studies have 

investigated different properties, including mixing properties (Alava et al., 2001; 

Calderón-Domínguez et al., 2005; Oliver & Allen, 1992; Wesley et al., 1998) and 

deformation properties (Casutt et al., 1984; de la Horra et al., 2015; Rezaei et al., 

2016; Tlapale-Valdivia et al., 2010; Vanin et al., 2018; Verheyen et al., 2014). Several 

challenges are related to analysis of yeasted dough, as the time-dependent effects of 

yeast must be considered (Rezaei et al., 2016; Verheyen et al., 2014).  

Most of the above-mentioned studies which assessed the deformation properties of 

yeasted dough applied uniaxial extension. Few studies have attempted to analyse full 

formula dough by biaxial extension using bubble inflation. Uniaxial and biaxial 

extension have however been shown to result in different rheological vales due to 

orientation of the gluten polymers (Sliwinski et al., 2004a). Bennett & Coppock 

(1956) attempted to use a modified protocol for analysis of yeasted doughs on the 

alveograph, but they found this to result in unsatisfactory results, most likely due to 

the incorporation of a 3-hour rest period. Some studies have used the D/R Dough 

Inflation System (Dobraszczyk, 1997), but no considerations regarding the time-

dependent effects of yeast were mentioned in the studies (Altuna et al., 2016; 

Ananingsih et al., 2013; Dobraszczyk, 1997). Some studies such as Dobraszczyk & 

Morgenstern (2003) state that biaxial extension by bubble inflation has several 

advantages compared to uniaxial extension, e.g. biaxial extension is thought to 

resemble the conditions experienced by the dough cell walls and is therefore assumed 

to be more relevant for assessment of breadmaking performance.  

4.2. ADJUSTED ALVEOGRAPH PROTOCOL FOR ANALYSIS OF 
DANISH PASTRY DOUGH 

Dough with all ingredients for a bakery product was analysed by biaxial extension 

using the alveograph. As the standard alveograph protocol is designed for flour 

analysis, modifications of the protocol were made before full formula dough was 

analysed. Different types of full formula were also analysed with this protocol, 

including Danish pastry predough, which in the following is referred to as Danish 



CHAPTER 4. ANALYSIS OF FULL FORMULA DOUGH 

 

53 

 

pastry dough. The new protocol for alveograph analysis of full formula dough was 

presented in paper III. This protocol was also used in paper IV and VI to analyse 

different types of full formula doughs. In paper III, the protocol was used to analyse 

dough with all ingredients for Danish pastry dough mixed in the alveograph and 

samples of Danish pastry dough from an industrial production at different mixing 

times, while flour-water dough (which is used as standard) was analysed using the 

standard protocol. Some of the findings in paper III are presented in this section. In 

paper IV, bread dough and Danish pastry dough made from three different flour 

qualities were analysed using the adjusted protocol, as well as the flours were analysed 

with the standard protocol. In paper VI, different samples of industrial Danish pastry 

dough were analysed and compared.  

The new alveograph protocol was adjusted compared to the standard protocol 

described in AACC method 54-30.02 (AACC, 2009a). These adjustments were made, 

as it was observed that if full formula Danish pastry dough was analysed using the 

standard protocol, the foam structure in the dough became too distinct. This resulted 

in irregular rupture of dough bubbles during inflation, causing large random variation 

and thereby unusable results. The distinct foam structure was assessed to be due to the 

activity of the yeast, as the yeast produces CO2, which increases the volume of the air 

bubbles in the dough (van der Sman & van der Goot, 2009). The alveograph protocol 

had to be able to analyse dough samples from an industrial production, and it was 

therefore not a possibility to leave out the yeast in the dough. Furthermore, it is well 

known that yeast has several effects on the properties of the dough, also before 

fermentation, which could not be assessed if the yeast was left out (Meerts, Ramirez 

Cervera, et al., 2018). To reduce the yeast activity to a level at which no notable effects 

of the yeast were observed during the analysis, the dough temperature in the analysis 

was therefore lowered. No procedures for inactivation of the yeast were included, and 

the yeast was therefore active during the analysis. Unwanted variability in the results 

from yeast activity was diminished by treating the samples in the same way and 

conducting the bubble inflations within a short time range after the resting step. 

Together with the reduction of the yeast activity by lowering the analysis temperature, 

this was sufficient to obtain reproducible results.  

The Danish pastry dough samples from the industrial production were collected after 

the mixing but before the lamination, and therefore before fat was folded into the 

dough. The samples were frozen after they were extracted, as they were stored and 

transported before analysis. For logistic reasons, it was not possible to analyse the 

dough samples directly after extraction. Before freezing, the samples were rolled out, 

so they all had the same thickness, to ensure similar freezing and thawing conditions 

for all the samples. The dough samples were already mixed, but they were mixed 

again in the alveograph before extrusion to homogenise the dough, remove possibly 

incorporated air bubbles and increase the dough temperature. Danish pastry dough is 

in general undermixed, in order to allow further dough development during lamination 
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and rolling processes, and it was therefore possible to further mix the dough without 

risk of extensive overmixing.  

The temperatures during the analysis was reduced to limit the activity of the yeast. 

Some of the ingredients were cooled before mixing, including the flour, which was 

stored at -18 °C (room temperature as standard), and ice-cooled water was used (20 

°C as standard). The samples from the industrial production were thawed at 5 °C 

before analysis. The temperature was also lowered in the alveograph for the different 

analysis steps, as the mixing bowl was 18 °C (24 °C as standard), the resting chamber 

18 °C (25 °C as standard) and the test chamber 15 °C (20 °C as standard). 

Temperature is important for multiple properties of the dough. The mixing properties 

of the dough are influenced by the temperature, as increasing mixing temperature has 

been shown to decrease the dough consistency, development time and stability 

(Başaran & Göçmen, 2003; Farahnaky & Hill, 2007; Rosell & Collar, 2009). The 

temperature influences also the type of protein network interactions formed during 

mixing, as Quayson et al. (2016) found that at low mixing temperature noncovalent 

interactions appear to drive protein network formation, while covalent interactions 

dominate at higher temperatures. The dough deformation properties are also 

dependent on the temperature. Increasing mixing temperature has been shown to 

decrease the maximum resistance and the area under the curve, but the results are also 

dependent on the dough development stage (Başaran & Göçmen, 2003; Calderón-

Domínguez et al., 2004).  

Mixing is an important step, and multiple processes occur during mixing, including 

development of gluten network, redistribution of starch granules and water, and 

incorporation of air (Schiedt et al., 2013). The development of the dough is therefore 

decisive for the properties of the dough. The dough development is affected by 

multiple variables, including flour properties, other ingredients and mixing conditions 

(Ooms & Delcour, 2019), as shown above. In the standard alveograph method, the 

flour and sodium chloride solution are mixed for 8 minutes, which results in a dough 

suitable for analysis. However, in the adjusted protocol, multiple variables, which are 

known to affect the dough development, are changed, e.g. temperature and addition 

of ingredients. Various mixing times were therefore applied in paper III to investigate 

the effect on the properties of dough. A few examples of the alveograph curves for 

some of the mixing times can be seen in Figure 4-1. Additional alveograph curves can 

be seen in the figures in paper III. 

When the flour-water dough was analysed using the standard analysis protocol after 

different mixing times, it was observed that the curves in general were similar. 

However, for the shortest mixing times minor differences in height and length of the 

curves were seen. The characteristics of the curves did not seem to be dependent on 

the extrusion order.  
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Figure 4-1: Examples of alveograph curves of different dough types, including flour-water 
dough, Danish pastry dough (DPD) mixed in the alveograph and two types of industrial Danish 
pastry dough measured after mixing times of 4 minutes and 8 minutes. The curve numbers 
indicate the order, in which the dough pieces were extruded, 1 being the first and 5 the last. 
Some of the curves are from figures in paper III. 

Different Danish pastry doughs were analysed using the adjusted alveograph protocol 

and different mixing times. Danish pastry dough was made by placing all the 

ingredients in the alveograph mixer, except water, which was added automatically in 

the beginning of the mixing. Two types of Danish pastry dough used for plait products 
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were also sampled from the industrial production. All three types of Danish pastry 

dough contained almost the same ingredients, while there were some differences in 

the origin as well as minor differences in the recipe, e.g. in the water content. The two 

types of industrial samples were sampled at different days, and different batches of 

the ingredients were therefore used.  

For the Danish pastry doughs, large variability could be seen between the curves for 

the shorter mixing times, but the variability decreased with longer mixing times, and 

at the longest mixing times the curves were similar. Furthermore, the height and the 

length of the curves seemed to depend on the extrusion order, as the curve was in 

general higher and shorter for the first extruded dough piece than for the last. This 

tendency was most pronounced at the shorter mixing times and for the curve height. 

The changes in height and length of the curves were presumed to be caused by the 

additional mixing the dough experienced during extrusion, as this also was consistent 

with the curves in general became lower and longer for increasing mixing times. The 

curves were similar at the longer mixing times, indicating that the dough at this 

development stage did not change that much during extrusion. In some of the curves 

for the longer mixing times, no abrupt decrease in the pressure could be observed, 

indicating that the bubble inflation was terminated before the dough bubble burst. This 

happened due to an error in the alveograph software, and it especially occurred if the 

pressure was low. The different tendencies were found at different mixing times 

dependent on the type of Danish pastry dough. In general, these tendencies occurred 

at shorter mixing times for the industrial dough samples compared to the dough mixed 

in the alveograph, which was expected as these doughs were premixed. Nevertheless, 

differences could also be observed between the two types of industrial dough samples.  

In the standard analysis, an average curve of the five curves is used for the 

determination of the alveograph parameters. For the standard analysis the curves are 

similar and close to each other, as seen for flour-water dough with a mixing time of 8 

minutes in Figure 4-1, and it is therefore acceptable to use an average curve. When 

the adjusted alveograph protocol was applied, larger variability was observed between 

the curves, and it was therefore necessary to analyse the results differently. The 

parameters were therefore determined for the individual curves, making it possible to 

calculate the mean and the standard deviation for each replicate. The values for the 

different mixing times were plotted for the parameters tenacity (P), biaxial 

extensibility (L), deformation energy (W) and elasticity index (Ie), see Figure 4-2. For 

the flour-water dough, the parameter values depended only little on the mixing time. 

On the other hand, the parameters values for the Danish pastry doughs were very 

dependent on mixing time. The values of the parameters P, W and Ie decreased with 

increasing mixing time, while L increased and subsequently decreased. However, it 

should be noted that L and W might be underestimated for the Danish pastry doughs 

at the longer mixing times due to premature stop of inflation, as L and W are found 

from the length of the curve and the area under the curve, respectively.  
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Figure 4-2: Mean and standard deviation for each replicate of the alveograph parameters 
dough tenacity (P), dough biaxial extensibility (L), deformation energy (W) and elasticity index 
(Ie) for the flour-water dough, the Danish pastry dough (DPD) mixed in the alveograph and 
the two types of industrial Danish pastry dough at different mixing times. The figure is from 
paper III. 

The standard deviations for the parameters in Figure 4-2 seemed to decrease with 

longer mixing times until a certain level. Different mixing times were needed in order 

to achieve this level, dependent on the dough type. The standard deviation represents 

the variability among the five curves and comprises therefore both the variability 

caused by the dough development during the extrusion and the random variation 

between the curves. The smaller standard deviations observed at longer mixing times 

seemed to be caused by a decrease on the variability caused by dough development 

during extrusion. The magnitude of the standard deviation might therefore indicate 

the dough development stage.  

When the alveograph results were compared to the dough consistency curves from the 

mixing, it was also observed that the large variability between the curves was related 

to the dough development. If the dough was extruded before optimal dough 

development (which is the maximum consistency during mixing), the characteristics 

of the individual alveograph curves were dependent on the extrusion order, while if 

the dough was extruded when it was optimally mixed or at a later stage, the variability 
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between the curves seemed to be due to random variation, indicating that the dough 

development during extrusion did not affect or only to a small degree affected the 

characteristics of the curves.  

When the standard deviations for the different parameters and dough types were 

compared, it was found that standard deviations in approximately the same range as 

for the standard analysis (flour-water dough mixed in 8 minutes) could be obtained 

for the Danish pastry doughs. For the Danish pastry dough mixed in the alveograph, 

this was obtained with a mixing time of 10 minutes, and for the industrial samples of 

Danish pastry doughs with a mixing time of 6 minutes.  

The development of the adjusted protocol opens for alveograph analysis of full 

formula dough. When applying the adjusted protocol, the handling of the dough must 

be considered, as the samples must be treated as similar as possible, and extensive 

yeast activity should be avoided. Furthermore, the mixing time must be taken into 

consideration. It might not be feasible to characterise the dough for a range of different 

mixing times, as this would increase the workload substantially compared to the 

standard analysis protocol. One mixing time could therefore be chosen, possibly after 

a screening of different mixing times. The mixing time is important for the obtained 

results, as the values of the alveograph parameters for the Danish pastry dough were 

more dependent on mixing time compared to flour-water dough as shown in Figure 

4-2. The mixing time should be adjusted according to the dough type, as the curve 

characteristics of undermixed dough might depend on the extrusion order, while 

extensively overmixed dough becomes sticky and difficult to handle. Dough 

consistency curves from mixing may be used as support in the selection of mixing 

time. 

Application of the adjusted alveograph protocol may include testing of different 

additives in a dough which contains all ingredients for a bakery product, and it is 

therefore also possible to observe interactions between the additives. It may also be 

used to assess the effect of different processes or evaluate the dough properties at 

different positions on a production line.  

It should be noted that the results from different dough types should not be compared 

if they are not handled in the same way and analysed using the same protocol. It is 

therefore not possible to compare the results from the different dough types described 

above, except for the two industrial dough samples, as it is not possible to know which 

variables (dough compositions, handling or analysis conditions) the differences could 

be assigned to.  

In section 3.1, it is described how the alveograph parameters are found, and what they 

are known to be related to for the standard analysis. The parameters are found in the 

same way when the adjusted alveograph protocol is applied. However, it is unknown 

whether the relations between alveograph parameters and final product properties still 
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are valid, as the relations were found for simple flour-water dough, while full formula 

doughs were analysed using the adjusted protocol.  

4.3. EFFECT OF DIFFERENT DOUGH TYPES AND FLOUR 
QUALITIES 

The adjusted alveograph protocol was used in paper IV to assess the effect of different 

flour types on the dough properties for different types of dough. Some of the findings 

in paper IV are presented in this section. The three flour types represented different 

flour qualities intended for different bakery products, as they were normally used for 

Danish pastry, buns and cake. The three flour types were analysed as flour-water 

dough using the standard alveograph protocol and as bread dough and Danish pastry 

dough using the adjusted protocol. Only one mixing time was applied for each dough 

type. The flour-water doughs were mixed for 8 minutes, as the standard protocol 

prescribes, while the bread doughs and the Danish pastry doughs were mixed for 10 

minutes, as this was found to result in a dough suitable for analysis. Furthermore, it 

was shown in paper III that when the Danish pastry dough was analysed after a mixing 

time of 10 minutes, then the standard deviations for the different alveograph 

parameters calculated from the five alveograph curves for each replicate were 

approximately in the same range as the standard deviations in the standard analysis. 

Similar results were observed for the bread doughs. Beside the alveograph analysis, 

the doughs were also analysed using consistography to obtain a mixing curve. For the 

consistograph analysis of the different dough types, the same temperature as in the 

alveograph mixing bowl for the alveograph analysis was used. Furthermore, 

additional flour analyses were made, and the breadmaking performance was assessed 

by measuring the bread volume.  

The results for the consistograph and alveograph analyses can be seen in Figure 4-3 

and Figure 4-4, respectively. The bubble inflation stopped prematurely in some of the 

alveograph analyses, as it also was observed in paper III, causing in a potential 

underestimation of L and W. This was detected for one and two flour types for bread 

dough and Danish pastry dough, respectively, and it is indicated in Figure 4-4.  
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Figure 4-3: Consistograph results from analysis of different flour types for different dough 
types. Wheat flour intended for Danish pastry (Type A), buns (Type B) and cake (Type C) were 
analysed. The flour-water dough comprised only of flour, water and sodium chloride, while the 
bread dough contained flour, water, sodium chloride and yeast, and the Danish pastry dough 
contained flour, water, egg, sugar, yeast, margarine, improver and sodium chloride. Different 
analysis temperatures were applied for the flour-water dough and the full formula doughs. 
PrMax is the maximum pressure during mixing, representing the maximum dough consistency. 
The error bars indicate the standard deviation. For each type of dough, columns with the same 
lower-case letter are not significantly different (P < 0.05). The figure is from paper IV. 

 

Figure 4-4: Alveograph results from analysis of different flour types for different dough types. 
Description of the different flour types and dough types can be seen in the caption for Figure 
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4-3. Different analysis conditions were applied for the flour-water dough and the full formula 
doughs. The results for the parameters dough tenacity (P), dough biaxial extensibility (L), 
deformation energy (W) and elasticity index (Ie) are shown. The hatched columns indicate that 
the value might be underestimated due to premature stop of inflation. The error bars indicate 
the standard deviation. For each type of dough, columns with the same lower-case letter are 
not significantly different (P < 0.05). The figure is from paper IV. 

The rankings of the flour types were compared between the different dough types, as 

the doughs were made using different compositions and analysed using different 

protocols. Due to these differences, it would not be possible to assign changes in the 

dough properties to specific variables, and therefore comparison of rankings was 

chosen instead of direct comparisons of the results from different doughs. The bread 

dough and Danish pastry dough were both analysed using the same protocol, but there 

were major differences in the dough compositions, including in the water content and 

the type of ingredients. The rankings of the flour types were for many parameters the 

same among the different types of dough, but differences could also be found. For the 

parameter P, a different rank order of the flour types could be observed when the flour-

water dough and the Danish pastry dough were compared. Also changes in whether 

or not two flour samples were significant different between the dough types could be 

observed for some of the parameters. I.e. two flour types were significant different, 

when one dough type was analysed, and not significant different for another dough 

type. This was the case for e.g. the parameter PrMax, when the results for flour-water 

dough and Danish pastry dough were compared. 

These variations in rankings and in differences being significant or not can be due to 

multiple reasons, including differences in the analysis conditions and the dough 

compositions. Differences could also be observed between bread dough and Danish 

pastry dough, which were analysed using the same protocol, indicating that variations 

in analysis conditions were not the sole reason for differences in the results. The dough 

properties are dependent on both the properties of the flour and the other ingredients 

as shown in section 4.1, but the effect of both flour quality and other ingredients are 

rarely studied at the same time. The results in Figure 4-3 and Figure 4-4 indicate that 

the effects of addition of ingredients are dependent on the flour type. To assess the 

effects of and interactions between the flour and the other ingredients in ratios 

representative for bakery products, analysis of full formula dough can therefore be 

applied.  

In paper IV, fixed water addition and mixing time were applied regardless of the flour 

water absorption and the dough development time. However, these parameters would 

normally be adapted in bread production according to the properties of flour and the 

type of dough. The results from paper III underlined also that the mixing time 

influenced the alveograph parameters for the Danish pastry dough, while the mixing 

time in the standard analysis of flour-water dough seemed to have a smaller effect. 

Future work might therefore investigate how the results are affected, when the water 

addition and the mixing time are adjusted.  
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When the results from the consistograph and alveograph analysis were compared with 

the bread volumes from the different flour types, no unambiguous relations between 

the analysis results and the bread volume were found. This was possibly caused by 

too few flour types were analysed. Future work could further investigate the 

relationships between the properties of the full formula dough and the final product, 

as strong correlations between alveograph parameters and bread volume found for the 

standard analysis do not necessarily apply when full formula dough is analysed.  

4.4. APPLICATION OF THE ADJUSTED ALVEOGRAPH 
PROTOCOL FOR CHARACTERICATION OF INDUSTRIAL 
DOUGHS 

The adjusted alveograph protocol was used to analyse different types of full formula 

dough. This included doughs made by mixing the ingredients in the alveograph, as 

well as frozen dough samples from an industrial Danish pastry production. In addition 

to the analysis results of dough samples from paper III presented above, other 

industrial Danish pastry dough samples were also analysed. Some of these results can 

be seen in paper VI and are presented in the following.  

The adjusted alveograph protocol was used to compare dough samples with different 

dough recipes, and differences in the resultant parameters could be revealed. Industrial 

dough samples with and without pastry trimmings added to the ingredients before 

mixing were also analysed. Pastry trimmings are not available at the beginning of the 

production, and margarine is therefore added to the dough instead. It was not possible 

to measure any difference between the samples by the adjusted alveograph protocol, 

despite the operators at the production line stating that it was possible to feel a 

difference. There might be multiple reasons for that, e.g. adjustments of the dough 

recipe regularly were made in the industrial production dependent on whether the 

dough contained pastry trimmings or not to counteract the different behaviour of the 

doughs later in the process. The sample preparation with freezing and thawing of the 

dough might also have led to differences in the dough properties that could not be 

measured.  

It was also attempted to assess the dough properties at different positions on the 

industrial Danish pastry production line using the adjusted alveograph protocol. The 

dough was laminated without margarine, as the additional mixing in the alveograph 

before extrusion and bubble inflation would destroy the layered structure, and the 

addition of margarine would change the properties of the dough. Assessment of dough 

development at different positions was achieved but did not lead to any useful 

conclusions, as the implementation of margarine in the lamination turned out to be 

more important for the development of the dough than initially assumed. At the same 

time, our measurements indicated that the application of dusting flour decreased the 

water content of the dough, which affected the dough consistency. The adjusted 

alveograph protocol makes it possible to assess some effect of different recipes in the 
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industrial production, while further improvements are needed in order to analyse other 

process variables.  

The adjusted alveograph protocol is able to analyse the deformation properties of 

unfermented full formula dough. The dough can either be made by addition of all 

ingredients to the alveograph mixing chamber or be sampled from e.g. an industrial 

production. Analysis of full formula dough by the adjusted alveograph protocol makes 

it possible to assess the effects of the ingredients. Although analysis of full formula 

dough would be assumed to be more closely related to the final product compared to 

the standard analysis, the dough is analysed shortly after mixing with this protocol. 

The effect of other breadmaking processes, such as shaping, fermentation and baking, 

are therefore not assessed, even though they are also important for the properties of 

the final product. The dough is mixed in the alveograph, but this mixing might not be 

representative for the conditions at the large scale production, as a range of different 

variables in relation to mixing affect the dough (Cauvain, 2015). These variables 

include the type of mixer, the mixing speed, the work input, the mixing temperature 

and the incorporation of air (Chin & Campbell, 2005b; Ktenioudaki et al., 2010; 

Quayson et al., 2016). The effect of some ingredients on the dough may only be 

observed at a later stage in the process, if they require time or heat before they become 

effective. Even though many variables in relation to the properties of the final product 

are not evaluated with the adjusted alveograph protocol, it can be used to assess the 

influence of more variables than the standard method, as analysis of full formula 

dough would be assumed to be more closely related to the final product compared 

with analysis of simple flour-water dough. 
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CHAPTER 5. POTENTIALS OF 

KNOWLEDGE-BASED AND DATA-

DRIVEN DEVELOPMENT IN THE 

BAKING INDUSTRY 

In paper VI, the potentials of using the adjusted alveograph analysis protocol and other 

dough characterisation methods in the industrial bakery production were assessed. 

The assessment involved the aspects of manufacturing high-variety products and 

adopting mass customisation, especially related to the fundamental capability robust 

process design. Some of the findings of paper VI are presented in this chapter. It was 

found that in order to obtain a manufacturing system for high-variety production, the 

current product development and production system in the Danish pastry production 

in Lantmännen Unibake Denmark were not suitable. Today, they are to some extent 

based on trial and error, tacit knowledge and experience, resulting in long time to 

market, changeover times and ramp-up times. This makes reducing batch size due to 

increasing variety unfavourable. Instead, more knowledge on the relations between 

the properties of ingredients, processes and products as well as industrial applicable 

dough characterisation methods are needed. Analysis of full formula, yeasted dough 

in the bakery industry is therefore one of the first steps in order to obtain a more robust 

and flexible manufacturing system.  

To obtain the desired product quality and to reduce waste of materials and time, two 

topics are relevant in the industrial bakery production. More knowledge must be 

acquired of how raw materials, surrounding conditions, production processes and final 

products are related to each other, including how variability should be handled to 

obtain products with the desired quality (Ulrici et al., 2008). Furthermore, deviations 

from the production specifications must be detected as early in the process as possible 

in order to respond to the deviations (Ulrici et al., 2008). Analysis of full formula 

dough can be relevant in relation to both topics, as this can be used to test the effect 

of different variables and thereby obtain a higher level of understanding of the process, 

as well as it can be used for controlling the dough during production.  

The mechanisms of the bakery production processes as well as the relations between 

the variables in ingredients, production processes and products are to some extent 

already known. In general, flour is considered to be the most important ingredient, but 

the product quality can in most cases not be predicted from the flour properties alone 

(Huen et al., 2018a; Ktenioudaki et al., 2011; Stojceska & Butler, 2012). Other 

ingredients and the interactions between them are also determining for the dough 

properties (Calderón-Domínguez et al., 2005; Meerts, Ramirez Cervera, et al., 2018; 
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Pareyt et al., 2011; Rosell et al., 2007; A. Salvador et al., 2006), as well as the flour 

quality result in different the dough properties dependent on the addition of other 

ingredients, as shown in in paper IV. Dough processing and especially mixing 

influence also the properties of the dough and final product, and several mixing 

variables, such as mixer design, mixing speed, energy input and temperature, are 

determining (Cauvain, 2015; Ktenioudaki et al., 2010; Wesley et al., 1998). Likewise, 

variables in fermentation and baking such as temperature and humidity are also 

essential for the properties of the final product (Cauvain, 2015). 

In the bakery industry, many variables such as ingredient requirements and production 

processes are standardised. Despite standardisation of ingredient requirements, Li 

Vigni et al. (2009) found for an industrial bun production that the flour variability had 

significant impact on the product quality, while the variability of other main 

ingredients did not have a significant effect. The variability of ingredients besides 

flour may nevertheless be significant in the production of other bakery products. 

Multiple process variables are related to the product properties, and the variability of 

the process may therefore also significantly affect the product quality. Many process 

variables are adjusted by the operators during production based on their manual 

assessment of the dough. This is partly due to the limited range of analysis methods 

appropriate for industrial dough monitoring (Dobraszczyk & Morgenstern, 2003; 

Ulrici et al., 2008). Several of the most applied analysis methods used in relation to 

the cereal industry are aimed at flour characterisation, and they do therefore not assess 

the effect of the other ingredients nor the process variables and have thus limited value 

in the bakeries (Cauvain, 2015). Furthermore, most of the analysis methods are time-

consuming and must be conducted by trained operators (Cauvain & Young, 2009), 

which reduces the possibility of early detection of deviations from the production 

specifications.  

To obtain a manufacturing system for high-variety production, improvements must be 

made both in the understanding of the effects of different variables and in dough 

analysis methods. More knowledge of the relations and interactions between the 

ingredients, process and product must be obtained in order to establish a model that 

can predict the behaviour in the different processing steps. Optimally, it would be 

possible to predict the properties of the dough and the final product based on analysis 

of suitable ingredient properties and the surrounding environment together with the 

settings of the production processes and possibly control measurements of the dough 

during production using online data collection. However, more research is needed 

before this is possible. More focus on the dough behaviour and processability is also 

necessary, as this is often assessed manually in the industry, and measurements of 

dough behaviour are essential for early detection of deviations. Furthermore, 

collection of more relevant data in the industry is vital both in the product 

development and in the production system, before efficient high-variety production 

can be obtained. This includes analysis methods as well as collection and analysis of 

data. In product development, analysis methods can be used to obtain objective 
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measures of the effect of e.g. different ingredients. This can also be used to study the 

relations between the different processes and variables as well as to generate 

knowledge for the prediction model. In the production systems, data monitoring can 

be used for process control to detect deviations from the production specifications. 

This might also be used for automatic adjustments of the process variables, if the 

response for different deviations is defined.  

Depending on the purpose, different analysis methods will be relevant. Both chemical 

and physical properties of the dough can be analysed, and both empirical and 

fundamental methods are available. In order to generate new knowledge and study 

relationships, it can be reasonable to use certain analysis methods, even if they require 

long analysis time and manual handling. These methods may however not be suitable 

for process control in the production system. Furthermore, different methods are 

necessary to study different processes and variables. For instance, the adjusted 

alveograph protocol can be used to assess the effect of different ingredients and 

possibly processing steps on the extensional properties of unfermented dough, as 

shown in paper III, IV and VI. The adjusted alveograph can therefore be used for 

characterisation of yeasted dough before fermentation. Other measurement methods 

are relevant to study other variables and parts of the process, such as fermentation and 

baking.  

For the purpose of process control in the production system, on-line or at-line 

measurements are usually more suitable than the abovementioned methods. Different 

methods may be relevant for different parts of the manufacturing system. Today, the 

most common collection of data in the breadmaking production is the dough divider, 

which controls the weight of the dough due to legal requirements (Cauvain, 2015). 

Image analysis can be used for quality control to evaluate e.g. the dimensions and the 

colour of the final product, and multiple commercial systems for this exist today 

(Cauvain, 2015; Li Vigni et al., 2009, 2013). Other process data, such as ingredient 

records, deliberate changes to the recipe or the process settings, and measurements of 

dough temperature, are available in many manufacturing systems and can also be 

logged (Cauvain, 2015). These data can be used to obtain a better understanding of 

the production system, but the data must be recorded and analysed to provide value 

(Bech, Brunoe, & Nielsen, 2019). The mixing process represents a large potential for 

process control, as some commercial mixers can record the mixing curves (Cauvain, 

2015). These mixing curves are however rarely analysed, despite the importance of 

the mixing for the dough properties (Cauvain, 2015). Mixing is usually conducted for 

a fixed time or energy, but further analysis of mixing curves may e.g. be used to mix 

the dough to optimal dough development (Cauvain, 2015). Attempts have also been 

made to measure roll forces and dough sheet thickness in relation to sheeting in order 

to assess the dough rheology and quality, but this seems only to have been tested in 

laboratory-scale (Chakrabarti-Bell et al., 2010, 2017; Salimi Khorshidi et al., 2018). 

Near infrared spectroscopy (NIR) sensors have also shown promising results for 

process control in the bakery industry, as near infrared spectroscopy has been used in 
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relation to flour (Li Vigni et al., 2009), mixing (Alava et al., 2001; Kaddour & Cuq, 

2011; Wesley et al., 1998), fermentation (Ulrici et al., 2008) and baking 

(Thorvaldsson & Skjoldebrand, 1998). NIR sensors can be used to monitor physical 

and chemical changes of the dough that occur during the production processes, as the 

recorded absorbances in the spectrum are directly related to dough components, such 

as water, proteins and starch (Alava et al., 2001; Kaddour & Cuq, 2011). The 

measurements are non-invasive and can be performed at-line or on-line (Kaddour & 

Cuq, 2011; Ulrici et al., 2008). However, complex chemometric analysis is required 

before the results can be interpreted. NIR sensors might therefore be used for process 

control, but determination of the underlying reasons for the changes in the spectrums 

might be difficult (Alava et al., 2001; Li Vigni et al., 2009; Ulrici et al., 2008). Other 

examples of process control measurement methods for dough can also be found, e.g. 

ultrasound (Ross et al., 2004; Salazar et al., 2002) and the puff device (Morren et al., 

2015).  

Several different measurement methods are thus available and can be used for 

different purposes and in different parts of the manufacturing system. To obtain a 

better predictability and to respond to the challenges that increased variety entail in 

the production, it is essential to implement such measurement methods and to obtain 

a larger knowledge of the process. This will also contribute to decision-making based 

on knowledge and quantitative measurements, rather than personal assessments alone.  
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CHAPTER 6. CONCLUSION 

The focus of this thesis has been on process understanding and assessment of the effect 

of variables in an industrial production of Danish pastry. The approaches for handling 

industrial process variables were therefore elucidated, and the challenges in obtaining 

robust production processes in relation to adopting mass customisation were 

identified. In order to analyse full formula dough, an adjusted protocol for alveograph 

analysis was made. This adjusted protocol was used to study the effect of ingredients 

on the dough properties, as well as it was attempted to assess the effect of process 

variables by the adjusted protocol. The potentials of implementation of knowledge-

based and data-driven decision-making in the bakery industry were also addressed.  

In the industrial bakery production, as exemplified by the manufacturing of Danish 

pastry at Lantmännen Unibake Denmark, the product development and adjustments 

of the production processes were to some extent characterised by a craft approach, 

and tacit knowledge and experience were used to handle process variables. This 

caused various challenges that are incompatible with high-variety manufacturing and 

adopting mass customisation. It was found that in order to overcome these challenges, 

the production system must be more robust. Cereal science is complex and involves 

many variables, and not all effects of dough constituents and processes are fully 

understood. However, the knowledge is constantly increasing, and a fair 

understanding of many of the variables has been achieved today. This knowledge has 

not been fully utilised in the baking industry due to multiple reasons, including the 

available analysis methods may not be suitable for use in the industrial production. 

Quantitative measurements of dough at the industrial production are necessary in 

order to obtain more robust production processes.  

The alveograph method was used to measure biaxial extensional properties of dough. 

Linear correlation coefficients between the ten alveograph parameters, which are 

found from the bubble inflation curve or derivatives of it for every analysis, revealed 

that the parameters G, Dmax, SH and K were almost perfectly correlated with other 

parameters (r ≥ 0.97). These four parameters contained thus very little information 

not already covered by the other parameters. The remaining parameters P, L, W, P/L, 

Ie and Dmin represent a basic set of parameters for characterisation of various parts 

of the alveograph curve. Less strong correlations could also be found between some 

of these, possibly reflecting that they were extracted from the same set of data and 

therefore to some extent interlinked.  

An alveograph protocol for analysis of full formula dough was made in order to 

analyse full formula dough, including dough samples from the industrial production. 

Compared to the standard protocol, the analysis temperature was reduced, the mixing 

time had to be determined depending on the dough type, and the parameters were 

found from the individual pressure curves and not the average curve. A protocol for 



WHEAT DOUGH CHARACTERISATION AT INDUSTRIAL BAKERIES 

70
 

 

sampling and handling of industrial dough samples was also made to ensure uniform 

treatment of the samples. The dough temperature was reduced by multiple actions 

during the analysis in order to limit the activity of the yeast, as extensive yeast activity 

caused irregular bubble ruptures. The dough development was affected by the 

additional ingredients and the temperature changes, and the mixing time had thus to 

be determined for each dough type. The effect of mixing time was underlined by the 

parameter values were considerably more dependent on the mixing time for full 

formula Danish pastry dough compared to the flour-water dough. It was also observed 

that the characteristics of the alveograph curves were dependent on the extrusion order 

for short mixing times of full formula dough, as the curves became lower and longer 

the later the dough piece was extruded. The average curve should consequently not be 

used for determination of the alveograph parameters, and the parameters were 

therefore extracted from the curves for each dough piece. The standard deviation of 

the alveograph parameters extracted from the individual curves could be used to 

indicate the degree of systematic change in the curve characteristics, and this was 

found to be related to the dough development. Standard deviation of the alveograph 

parameters for the full formula doughs in the same range as found for the standard 

flour analysis protocol could be obtained after a mixing time of 6-10 minutes 

depending on the dough type.  

The effects of different flour qualities on the properties of flour-water dough and two 

full formula doughs were assessed by the adjusted alveograph protocol. The rankings 

and the significant differences of the parameters between the flour types were different 

for the different dough types. This indicated that effects of the ingredients on the 

dough properties were dependent on the flour qualities. Analysis of flour-water dough 

is therefore not enough to predict the behaviour of the full formula dough, although it 

might give indications of it.  

Multiple Danish pastry dough samples from the industrial production were also 

analysed using the adjusted alveograph protocol. It was found that the protocol could 

differentiate between doughs with different dough recipe, while the effects of other 

variables, such as addition of pastry trimmings to the dough, could not be detected. It 

was also attempted to assess the dough development at different stages of the 

industrial production, however without success. The adjusted alveograph protocol 

might therefore be used to assess the effect of some variables in the industrial 

production, while other analysis methods must be used for other variables.  

With the adjusted alveograph protocol, the biaxial extensional properties of full 

formula, unfermented dough can be measured, and it can therefore be used for dough 

samples from an industrial production. In order to analyse full formula dough by the 

adjusted protocol, it is important that the samples are treated as similarly as possible, 

extensive yeast activity is avoided, and the mixing time is determined for each dough 

type. This protocol can thereby assess a range of variables in the industrial production 

of bakery products, which are normally not measured. Not all variables can be 
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analysed by this protocol, for which reason other analysis methods are necessary to 

study the dough at other processing stages. 

In order to obtain more robust production processes, analysis of dough in the industrial 

production is essential to obtain more knowledge on the relations between ingredients, 

processes and products. This is required to obtain a higher degree of predictability and 

to handle variability to maintain the desired product quality. Better and earlier 

detection of deviations from the production specifications is also necessary to be able 

to respond quickly to the deviations. The use of analysis methods is therefore relevant 

both in product development and for process control in the production system. 

Different methods will be relevant dependent on the purpose. The data from the 

measurements must be collected and analysed to contribute to more knowledge-based 

and data-driven decision-making to supplement and qualify personal opinions and 

experience in the industry. This would be an important step towards being able to 

respond to the increasing demand for high-variety production.  
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