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Abstract

Humans are capable of producing a large number of facial expressions (FE)
by the activation of facial muscles. Facial expression recognition (FER) is ac-
tive research area where human emotions are determined by the classification
of facial muscle movements. Automatic recognition of facial emotions is of
prime importance for wide range of applications such as bio-metric security
and surveillance, human-machine or human-robot interaction, identification
of pain, depression and neurological disorders. This dissertation investigates
the methods for facial expression analysis of people suffering from traumatic
brain injury (TBI) and develops the system based on artificial emotional in-
telligence (AEI) for practical applications.

This dissertation focuses on the extraction of emotional signals from the
patients suffering with TBI using computer vision techniques and the use
of a social robot "Pepper robot" to assist in the rehabilitation. The work is
organized into three themes: first, multimodal data collection from patients
suffering from brain injury; second, extraction and recognition of facial emo-
tions. Finally, the dissertation illustrates how extracted emotional signals can
be applied in the effective human-robot interaction with the purpose of reha-
bilitation and social interaction.

Emotional signal extraction from the patients with brain injury is com-
plex procedure due to unique and diverse psychological, physiological, and
behavioral issues such as non-cooperation, face and body muscle paralysis,
upper or lower limb disabilities, cognitive, motor, and hearing capabilities in-
hibition. It is necessary to interpret subtle changes in the emotional signals of
people with brain injury for successful communication and implementation
of affect-based strategies.

For data collection from subjects with brain injury, three different camera
sensors, RGB, thermal, and depth, are used. New methods are introduced
to gather good quality data for facial emotional recognition (FER). The the-
sis also presents a face quality assessment method to ensure a high-quality
database in the face-log system.

In Facial Emotional Recognition, this dissertation has three main contri-
butions: (i) development of state-of-the-art deep learning architecture for the
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Abstract

extraction and analysis of emotional signals exploiting visual and temporal
networks, (ii) exploration of different techniques for fusing facial features
from various visual modalities to improve predictive knowledge for the fi-
nal model, and (iii) implementation of deep transfer learning techniques to
overcome the challenges associated with database acquired from the subjects.

Within the human-robot interaction, the Pepper robot has been intro-
duced, equipped with a deep-trained model for emotion recognition. The
study emphasizes the real therapeutic value for stroke rehabilitation sup-
ported with tools to provide assessment and feedback in the neuro centers.

This dissertation includes peer-reviewed four conference publications, one
book chapter and a journal publication. In the dissemination activities, a
peer-reviewed conference paper has been presented targeted towards the de-
sign of customized tools for people with disabilities to enhance their commu-
nication for facilitating cognitive and physically impaired people.
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Resumé

Mennesker er i stand til at producere et stort antal ansigtsudtryk (FE) ved
at bruge deres ansigtsmuskler. Genkendelse af ansigtsudtryk (FER) er et
aktivt forskningsområde, hvor menneskelige følelser bestemmes ved at klas-
sificere ansigtsmuskelbevægelser. Automatisk genkendelse af ansigtsudtryk
er af stor betydning for en lang række applikationer såsom biometrisk sikker-
hed og overvågning, interaktion mellem menneske-maskine eller menneske-
robot, identifikation af smerte, depression og neurologiske lidelser. Denne
afhandling undersøger metoder som bruges til at analysere ansigtsudtryk af
mennesker der lider af traumatisk hjerneskade (TBI) og udvikler et praktisk
anvendeligt system baseret på kunstig følelsesmæssig intelligens (AEI).

Denne afhandling fokuserer på at analysere ansigtsudtryk fra patienter
der lider af TBI ved hjælp af ”Computer Vision” samt ved at bruge en social
robot "Pepper-robot" til at hjælpe med rehabilitering. Arbejdet er organiseret
i tre temaer: først, multi-modal dataindsamling fra patienter, der lider af hjer-
neskade; dernæst, genkendelse af ansigtsfølelser. Til sidst illustrerer afhan-
dlingen, hvordan følelsesmæssige signaler som ansigtsudtryk kan anvendes
i en effektiv menneske-robot-interaktion med formål om rehabilitering og
social interaktion.

Genkendelse af ansigtsudtryk hos patienter med hjerneskade er en kom-
pleks proces på grund af unikke og forskelligartede psykologiske, fysiol-
ogiske og adfærdsmæssige problemer såsom manglende samarbejde, lam-
melse af ansigts- og kropsmuskler, bevægelsesbesvær af øvre eller nedre lem-
mer, samt hæmmet hørelse eller reducerede kognitive og motoriske evner.
Det er nødvendigt at fortolke subtile ændringer i de følelsesmæssige sig-
naler fra mennesker med hjerneskade for vellykket kommunikation og im-
plementering af affektbaserede strategier.

Til dataindsamling fra personer med hjerneskade anvendes tre forskel-
lige kamerasensorer; RGB, termisk og dybde. Nye metoder introduceres til
at indsamle data af god kvalitet til genkendelse af følelsesmæssige udtryk
i ansigtet (FER). Afhandlingen præsenterer også en ansigtskvalitetsvurder-
ingsmetode for at sikre en database af høj kvalitet i log-systemet af ansigter.

I FER har denne afhandling tre hovedbidrag: (i) udvikling af ”Deep
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Resumé

Learning”-baserede modeller til ansigtsgenkendelse baseret på visuel og tid-
safhængige data, (ii) udforskning af forskellige metoder til at kombinere an-
sigtsinformation ved brug af forskellige visuelle modaliteter med formålet
at forbedre den beregnede forudsigelse i den endelige model, og (iii) imple-
mentering af ”Deep Transfer Learning” for at overvinde de udfordringer, der
er forbundet med den indsamlede database. Inden for menneske-robot in-
teraktion anvendes en ”Pepper-robot” udstyret med et neural netværk til an-
sigtsgenkendelse. Undersøgelsen understreger den reelle terapeutiske værdi
for rehabilitering af slagtilfælde understøttet med værktøjer til at give vur-
dering og feedback i neurocentrene.

Denne afhandling inkluderer peer-reviewed fire konferencepublikationer,
et bogkapitel og en tidsskriftpublikation. I formidlingsaktiviteterne er der
præsenteret et fagfællebedømt konferenceoplæg, der er målrettet mod design
af tilpassede værktøjer til handicappede for at forbedre deres kommunikation
til at lette kognitive og fysisk handicappede.

Det sidste emne præsenterer en fagfællebedømt videnskabelig artikel, og
er målrettet mod at designe og tilpasse værktøjer som kan forbedre kommu-
nikation for kognitive og fysisk handicappede.
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Preface
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Chapter 1

Introduction

Neurological disorders affect millions of people and contribute to worldwide death
and disability. In particular, Traumatic Brain Injury (TBI) is one of the most common
severe brain disorders and influences approximately 69 million people worldwide
each year [5]. TBI is referred as an injury to the brain due to external sources and in-
dividuals sustaining a traumatic brain injury exhibit cognitive, motor, and behavioral
challenges [39]. These imprecise functioning of the brain is not caused by neuro-
degenerative or congenital/neuro-developmental conditions which means they were
healthy before the stroke. TBI ranges from mild to moderate to severe, categorized by
alteration of mental states, loss of consciousness, memory loss or lack of loco-motor
coordination [15]. TBI severity is determined by the Glasgow Comma Scale (CGS)
by measuring response to stimuli through eye opening, communication and motor
activity [40]. Each year 5.48 million people suffer from the severe TBI that results
in long-term disability [5]. TBI impose economic strain on the individual and com-
munity and can demonstrate devastating influence to ability of the affected persons
to return to their families and perform social and occupational responsibilities [39].
Therefore, the neurological centers or the care units take care of these patients, where
clinicians spend much time and resources rehabilitating them. However, apathy and
decreased self-awareness are familiar characteristics associated with post traumatic
brain injury, and have significantly negative influence on the process of rehabilitation.
The study presents the technological aid in facilitating the staff members in retraining
the residents by the Pepper robot’s intervention and assessing the facial emotions.

TBI impacts negatively on the social, physical, and physiological interactions of
the patients [37]. Therefore, social signal extraction from the residents with brain
injury is extremely challenging. They have "restricted or limited muscle movements, with
reduced facial expressions and non-cooperative behavior, impaired reasoning, and inappropriate
responses" [17] with severe challenges regarding social communication and daily life
activities. Almost 6 million individuals require extensive rehabilitation initiatives for
their recovery, and several care attendants to look after them [39]. The primary issue
in our studies is social signal extraction from people with brain injury for meaningful
interaction and communication. The precision, speed, and accuracy of such social
signals contribute vitally to the proper understanding of mental conditions and social
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communication. This is not an easy task for care personnel and requires extended
interactions with and intimate knowledge of the individuals. In addition, it is also a
challenge to provide a technical solution.

This project presents the solution in two phases. The first phase is about the
extraction of emotional or social signals from neurological impaired residents using
computer vision techniques. The second phase integrates the emotion extraction sys-
tem through the social robot for rehabilitation activities and monitors and assesses
the emotions and retrained activities.

1 Emotion Recognition

Human emotions plays a vital role in human-human and human-machine interaction.
Emotions represent the instantaneous mental states which vary according to human
behavior and communication. Researchers are putting great emphasis on automatic
recognition of human emotions as it is one of the essential parameter for natural
human-machine interaction. In case of human-machine interaction, interaction would
be impaired if machines are not able to recognize or understand the human emotions.
This also applies to human-human interaction if other communication partners fail to
understand these body expressions.

"Human recognize and demonstrate emotions through multi-modalities such as through
facial expressions [2, 26, 27, 32, 35], body movements [4, 10, 31], speech recognition [2, 27,
35, 41] and physiological signals [1, 24, 28, 33, 38]" [21]. Facial expressions are primary
sources of communication "for human emotions, as approximately 55 percent of human
communication happens through facial expressions [6, 34]" [17]. Facial expressions exhibit
the clues of mindset, intention and mood [6–8]. In addition, when there is a mis-
match between facial expressions and other conversation medium, researchers weigh
facial expressions more than other non-verbal communication channels in decoding
emotions [3, 9]. Therefore, fast and accurate extraction of facial expressions can be
beneficial in understanding social signals. Extraction of facial expressions and their
interpretation in social signals is particularly challenging for patients with TBI. This
is because facial shape and structure of muscles of these patients are different from
healthy people, and therefore existing technologies, like those in [25, 30, 36] for ex-
traction of facial expression from healthy people are challenged when applied to these
patient [11–13, 23, 29]. This difference makes developing a system that works for each
patient even more challenging.

Besides facial expressions, some other signals (including physiological, psycholog-
ical, or physio-psychological signals), like a heartbeat, respiratory, fatigue, pain, and
stress, can also be extracted from facial images and videos [1, 11–14, 24, 28, 33, 38].
These signals, similar to facial expressions, have a direct relationship with our daily
activities and mood. However, repeatedly existing technologies for extracting these
signals from facial images are not only targeting healthy people but are also limited
to the lab environment [11–14, 23, 25, 29, 30, 36]. Therefore, the direct application of
the existing technologies to TBI patients is not possible. Furthermore, to use these
techniques properly for communication with patients, we need a reliable real-time
system to extract these signals.
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2 Human-Robot Interaction

Along with a robust facial expression system, a robotic framework can constitute a
crucial set of assistive technology that facilitates and triggers/stimulates information
for staff members and patients with brain injuries. Although the robotic interaction
depends upon the facial expression evaluation, the understanding of the context is
significant. The thesis investigates the video data collection, training a deep learning
architecture, and interpreting social signals for the robotic interaction with people
with TBI in the neurocenter.

The Ph.D. thesis aims to develop a precise and efficient system for the extraction
of facial expressions, physiological and psychological signals, and interpreting them
as social signals in the context of robotic interaction.
In human-robot interaction, the recognition of facial expressions is vital. New HRI
systems apply various decision-making algorithms for the facial-emotion-perception
unit, employing both static and temporal emotion states of the user. Computer vision
is a powerful tool for real-time extraction of emotional signals; therefore, we have
used the vision sensors to diagnose and monitor residents of a neurocenter. Thus,
we aim to embed our system to extract facial, physiological, and psychological sig-
nals in a robot that can communicate with the residents. Therefore, this project is
significant from a scientific point of view as it is the combination of numerous investi-
gation grounds like computer vision, robotics and kinematics, machine learning, deep
learning, psychology, and physiology. Finally, the Ph.D. study results include the de-
velopment of a decision-based system using images and videos in real-time that can
interpret the extracted signals for the understanding of the patient. The application in
a rehabilitation context is exemplified by integrating it into a socially assistive robotic
system and a pipeline of image and video analysis.

This research study is an essential step towards developing computer vision tech-
niques for monitoring and diagnosing patients with brain injury by analyzing facial
emotions. This exploration presents important auxiliary unbiased data to evaluate
brain injury. The computer-aided system will empower us to determine consistent re-
habilitation features that might help reduce the burden on the clinical staff members.
The robotic system aids the clinical staff in decision making and saves time in provid-
ing clinical assessment. The robotic framework also contributes to the motivation of
the residents for retraining activities and enhancing social communication.

3 Research Aims

Emotion recognition through facial expressions depends upon the facial muscle move-
ment. However, patients suffering from brain injury exhibit varied muscle movements
considering the impact of a neurological disorder such as paralysis, Bell’s Palsy, ataxia,
aphasia, and sensory-motor impairments. In this thesis, the focus is to address the
challenges for facial expression recognition, for the emotional understanding of pa-
tients with neurological disorders and development of an affective-autonomous sys-
tem for monitoring and assessing the patients. and facilitating the clinicians to en-
hance therapeutic human-robot interaction. This thesis focus on the vision-based
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Fig. 1.1: Overview of articles in this thesis exploring emotion recognition and human-robot
interaction. A box corresponds to a paper and a letter to the corresponding position in the
appendix.

techniques, considering the non-intrusive visual sensors in a realistic environment.
Emotion analysis of patients acquiring brain injury involves the static and dynamic
characteristics captured through multi-modal visual sensors in a specialized neuro-
care center registered during physical, cognitive, and social rehabilitation activities.
In the context mentioned above, the dissertation focuses on five main objectives:

1) Data Acquisition: Identifying methods to acquire high quality data from the res-
idents of the neurocenter to recognize emotional and physiological signals during
activities of daily living (ADL). Studying the collected data with an expert skilled
in communicating with these residents to annotate the above-collected video data
with social signals (ground truth).

2) Social Signal Extraction: Depending on the number of different social signals
identified in the above-captured data (with the help of the skilled communication
expert), developing new and/or adapting of existing computer vision methods
for real-time measurement of facial expression, physiological and psychological
parameters for the individuals suffering from brain injury.

3) Face Quality Assessment: Studying the importance of different imaging condi-
tions on the performance of the different developed algorithms. These paradigms
could be, for example, facial pose, lightning environment/conditions, presence of
facial elements on the face, and others. We aim to provide a high quality of the
data to optimize the performance and lower the computation cost.

4) Facial Expression Recognition System: Having developed the systems mentioned
in 3 for the signals identified in 2, develop a decision-based system that can in-
terpret the collected signals to understand the mental states and behavior of the
residents.

5) Robotic Application of Facial Expression Recognition: Embedding the developed
systems in the robotics context and testing them in the field to analyze the gestures
and reactions of residents before, during, and after the rehabilitation activities.
Facilitate the staff members to make an informed decision based on monitoring
and assessment by the socially-aware robotic-interaction systems.
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In addition to the aforementioned five major challenges, this dissertation also
presents the development of supporting tool for neurological impaired persons to
have a better communication. Besides the facilitation, the study demonstrate the ways
to deal with data scarcity using transfer learning techniques.

3.1 Thesis Contributions
In this dissertation a number of original contributions are made in the fields of com-
puter vision and social robotics. The contributions are presented in Part II and Part
III of the thesis.

Part II- Emotion Recognition of Traumatic Brain-Injured Patients
In the context of emotion recognition of people suffering from TBI, this thesis pro-
poses the following main contributions: i) a new database for facial emotion recogni-
tion in three different modalities RGB (visible), thermal and Depth; ii) Extraction of
social signals with the help of experts and care-providers in three specified scenarios
such as physiotherapy, cognitive training and social rehabilitation; iii) High quality
data acquisition by removing artifacts due to illumination, head and pose variation;
iv) implementation of deep neural networks to extract facial features for facial ex-
pression analysis and their classification in to various emotional cues exploiting both
spatial and temporal characteristics. A summary of the contributions are described as
follows:

1. Traumatic Brain-Injured Patients Facial Database A new facial database has
been presented, called TBI-database, including data from 11 subjects, captured
with three different sensors. This database is collected in more than 30 sessions
in collaborating neurocenters with each subject performing cognitive, physio
and social communication activities. This database could not be published due
to privacy issues of the patients, but this database has contributed in all publi-
cations made by the author.

2. Facial Expression Recognition Based on a VGG + LSTM
A facial expression recognition solution based on the linear combination of
VGG + Long Short Term Memory (LSTM), has been presented, exploiting the
spatio-temporal information in a facial image of people suffering from TBI.
This idea uses deep CNN representation to take advantage of complementary
information of facial features identification, followed by the expression recogni-
tion. The VGG-Face descriptor, trained over 2.6 million face images, is built on
VGG-16 network discarding the last fully connected layer in the architecture, to
acquire 4096 feature vectors. This research work contributed to the following
publication [18].

• Ilyas, C. M. A., Haque, M. A., Rehm, M., Nasrollahi, K., & Moeslund, T. B.
(2018,January). Facial Expression Recognition for Traumatic Brain Injured
Patients. In VISI-GRAPP (4: VISAPP) (pp. 522-530).

3. Facial Emotional Recognition Based on a VGG + LSTM with Multimodal Fu-
sion
A facial expression recognition solution based on the linear combination of
VGG + Long Short Term Memory (LSTM), has been presented, exploiting the
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spatio-temporal information in the visible and thermal facial images of peo-
ple suffering from TBI. The two different methods to fuse features are used
to exploit the CNN - LSTM representations. On contrary to short-term 6 ba-
sic expressions, cognitive states and moods are interpreted, thus offering more
socially-specific cues. This research work lead to the following publications
[16, 19]

• Ilyas, C. M. A., Nasrollahi, K., Rehm, M., & Moeslund, T. B. (2018, Octo-
ber).Rehabilitation of traumatic brain injured patients: Patient mood anal-
ysis from multimodal video. In 2018 25th IEEE International Conference
on Image Processing (ICIP) (pp. 2291-2295).

• Ilyas, C. M. A., Haque, M. A., Rehm, M., Nasrollahi, K., & Moeslund, T.
B. (2018, January). Effective Facial Expression Recognition Through Mul-
timodal Imaging for Traumatic Brain Injured Patient’s Rehabilitation. In
International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics (pp. 369-389).

4. Emotional Recognition Based on a VGG + LSTM through Facial Expressions
and Upper Body Movements
This work proposes a new solution for emotion recognition through the combi-
nation of facial features and upper body features, computed in frame based and
sequence based manner with different fusion techniques. The performance of
proposed combined-features solution competes with state-of-the-art methods.
This research work lead to the following publications [20]

• Ilyas, C. M. A., Nunes, R., Nasrollahi, K., Rehm, M., & Moeslund, T.
B. (2020, December). Deep Emotion Recognition through Upper Body
Movements and Facial Expression. In 16th International Conference on
Computer Vision Theory and Application (p. 229).

Part III- Human Robot Interaction for Social Rehabilitation of Traumatic Brain
Injured Patients
In the context of human robot interaction and social rehabilitation of people suffering
with TBI, this thesis proposes two main contributions: i) Implementation of deep-
trained model in the Pepper robot application for the emotion recognition of people
suffering with TBI; ii) Use of Deep Transfer Learning (TL) techniques to build the emo-
tion recognition model for social robot interaction and rehabilitation; iii) Intervention
of Pepper robot with aim to enhance social interaction and rehabilitation process. A
summary of these contributions are presented as following

1. Pepper Robot Intervention for Facial Emotion Recognition

To better understand the technological capabilities of the Pepper robot in the
area of emotion recognition of the people suffering from TBI, this work pro-
poses a comparative analysis of the deep-trained system for TBI database with
built-in system of the Pepper robot to extract facial features and classify emo-
tions and gesture synthesis accordingly. This research work lead to the publi-
cation of the following publication [22].
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• Ilyas, C. M. A., Schmuck, V., Haque, M. A., Nasrollahi, K., Rehm, M.,
& Moeslund, T. B. (2019, October). Teaching Pepper Robot to Recog-
nize Emotions ofTraumatic Brain Injured Patients Using Deep Neural Net-
works. In 2019 28th IEEE In-ternational Conference on Robot and Human
Interactive Communication (RO-MAN)(pp. 1-7).

2. Transfer Learning Techniques for Facial Emotion Recognition and Pepper
Robot Gestures Synthesis for Rehabilitation Purposes

Following the proposed solution in 1. a comprehensive investigation on eight
public datasets, recorded in-the-lab setting and in-the-wild settings, is made
and applied the deep transfer learning techniques to fine-tune the TBI datasets
for emotional recognition. Following the pilot studies, a Wizard-of-Oz (WoZ)
functionality is introduced to facilitate the care-providers to achieve the reha-
bilitation targets with intellectual cognitive decision based on contextual infor-
mation. This research work lead to the publication of the paper E.

• Ilyas, C. M. A., Rehm, M., Nasrollahi, K.,Yeganeh Madadi, Moeslund, T.
B. & Vahid Seydi. Deep Transfer Learning in Human-Robot Interaction
for Cognitive and Physical Rehabilitation Purposes. In journal of Pattern
Analysis and Applications (PAA) with special issue on Computer Vision
and Machine Learning for Healthcare Applications (PAA 2021).

4 Thesis Structure

This chapter featuring a brief description of the context, motivation, research aims and
contributions, followed by an appendix of three parts, each comprising a collection of
papers within a specific field.

Part II presents the work conducted in the thesis on Emotion Recognition. As
demonstrated in Figure 1.1, this involves four papers on multi-modal emotion analysis
of neurological impaired people and one paper on transfer learning techniques for
facial expression recognition.
Part III involves the research on human-robot interaction, compromising two research
articles. Part IV presents the dissemination activities, more explicitly developing a
user-centred communication pad for the rehabilitation of the physical and cognitive
impaired people, published in 8th EAI International Conference: ArtsIT, Interactivity
& Game Creation; and identifying effective data collection techniques for robotics to
identify the facial expressions of neurological impaired people, an abstract published
in 7th Aalborg U Robotics Workshop.
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Chapter 2

Emotion Recognition of
Traumatic Brain-Injured
Patients

1 Background

Social signal extraction from TBI patients is very challenging in health industries,
which requires long lasting work of resources, machines and products. It also plays
a vital role in communication and interaction enhancement, as brain disease results
in restricted or limited muscle movements so people suffering from TBI face serious
difficulty at social communication and activities of daily livings (ADL). There are
almost 6 million individuals suffering from TBI [1] [13], who require large number of
care attendants to look after them. In modern era, the rehabilitation and training of
people suffering from brain injuries, is focused through the development of unique,
customized and adjustable robotic systems [19, 42, 47, 56]. The main aim is to aid
people with disabilities in the activities of daily living (ADL) and enhancing social
interaction, resulting in better quality of life. Moreover, these robotic system can
lessen the burden of specialized care homes or neuro-center as the number of people
with disabilities is increasing day by day. "According to the International Brain Injury
Association (IBIA), only in America approximately one million people suffer from traumatic
brain injury (TBI) annually, whereas the same number of people suffer from TBI in all over
Europe [1]. The American Center for Disease Control and Prevention estimates more than
3.7 million people are living with long term disability after TBI [13]." [31] Furthermore,
the average age has been expanded to 75 - 85 years in most developed countries
particularly in Europe, thus the average percentage of elderly people with special
needs has been significantly increased. It is believed that in 2050, Europe’s population
will consist of 60 plus aged people up to 40% of its total population [51]. According
to the United States Census bureau, over 65 years aged people make up 14.9% of USA
population that is equal to 47.8 million people in year 2015 and this population of
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elderly people is projected to double in 2060 with approximately 98.2 million, with
19.7 million will be over 85 years of age [2]. This will eventually lead to more care
homes, neuro-centers and more staff to look after elderly people. Therefore, there
is an increased demand of special robots that perform tasks like carer, companion,
health monitor, educator, trainer and so on.

The real challenge is how we can place robots in real time applications with spe-
cial target groups like people with acquired brain injuries who are already suffering
from cognitive, functional, sensory, psychological, intellectual and behavioral impair-
ments. They can have agitation, confusion, loud verbalization as well as physical
aggression [39]. In addition to that, for patients suffering from TBI, robots must be
customized according to the nature of the disability, as some individuals suffer with
paralysis, speech inhibition, reduced expressions, limited hand-eye coordination and
etc. The main idea is designing autonomous or semi autonomous robots that aid
in training cognitive and physical skills with minimal human supervision. In our
thesis we have investigated a frame work for a robotic application that accurately
identifies the facial expressions and their interpretations as social signals to be used
in human-robot interaction scenarios. The first step in this process is database acqui-
sition, essential for developing deep learning system to identify facial expressions.

2 Data Acquisition System

For the purpose of well-being of neurologically impaired people through emotional
signals, we need to acquire the relevant data. Amygdala, one of the region of the brain
generates emotional signals and their corresponding reactions in a number of ways
such as: heart rate, blood pressure, skin conductance, pupil-dilation, brain activity
and facial expressions [3, 8, 46].
Facial expression is one of the most effective way to understand emotions and non-
verbal communications [15–17]. Therefore, to estimate the emotional cues with un-
obtrusive sensors, we decided to collect the facial data in three different modalities
such as RGB, thermal and depth. Data is acquired with Microsoft Kinect (visible and
depth imagery), Axis Q1922 (thermal imagery) and Axis RGB-Q16 (visible) sensors.
The following sections will discuss the characteristics of the sensors used to acquire
data and data acquisition platform.

2.1 Microsoft Kinect for Windows V2
Microsoft Kinect 2 for windows is a second-generation camera released by Microsoft
in 2014. It contains an RGB camera, an infrared laser emitter, an infrared camera, and
a multi-array microphone. According to the technical specifications, Kinect V2 has
70 ◦and 60 ◦horizontal and vertical Field of View (FOV) as compared to 57 ◦and 43
◦horizontal and vertical FOV respectively for Kinect V1. Additional specifications of
Kinect V2 are presented in the Table 2.1.

Microsoft Kinect 2 for windows SDK has a capability to identify speech, track
skeleton, and many methods for obtaining color and depth information. However, we
require only raw color and depth data in this context.
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Table 2.1: Micrsoft kinect V2 technical specifications [48]

Features Values

Visible Resolution 1920 x 1080 px
Frame Rate 30 FPS

Horizontal FOV 84.1◦

Vertical FOV 53.8◦

Depth Resolution 512 x 424 px
Frame Rate 30 FPS

Horizontal FOV 70.6◦

Vertical FOV 60◦

Camera Range 0.5 - 4.5m
Standard USB 3.0

2.2 Axis Q1922-E Thermal Camera
The Axis Q1922-E is a thermal camera with infrared range 8-14µ m, able to visualize
the objects with temperature ranges from -20 to 100◦. The camera utilizes an uncooled
micro bolometer to acquire the radiations [5]. Technical specification of Axis Q1922 is
presented in the Table 2.2.

Table 2.2: Axis Q1922-E Thermal Camera technical specifications. *Frame rate is applicable to
selected countries such EU, UK and USA. Adopted from [7] and [5]

Features Values

Resolution 640 x 480 px
Frame Rate 30 FPS *

Spectral Range 8 - 14 µm
Lens 19mm

2.3 Axis RGB-Q16
The Axis Q1615 camera delivers high quality images with unique "Lightfinder tech-
nology" that enables to visualize the objects even in the low light conditions. It posses
Electronic motion stabilization that increases the video quality when the camera sen-
sor experience vibration. Technical specification of Axis Q1615 is presented in the
Table 2.3.

2.4 Logitech C920
We have used a HD webcam camera Logitech C920 that is equipped with automatic
light correction that fine-tune lighting conditions to provide bright and contrasting
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Table 2.3: Axis Q1615 Camera technical specifications. [6]

Features Values

Resolution 1920 x 1080 px
Frame Rate 25/30 FPS

Field of View 90◦x 40◦

Lens 2.8-8 mm

images in less illumination conditions. Technical specification of Logitech C920 is
presented in the Table 2.4

Table 2.4: Logitech C920 technical specifications. [43]

Features Values

Resolution 1920 x 1080 px
Frame Rate 30 FPS

Focus Autofocus
Standard USB 2.0

2.5 Sensor Registration
For the multimodal analysis, it is essential to register the various sensors accurately.
Thermal and visual modalities can be fused by pixel-level, feature-level and decision-
level fusions. Researchers [7, 37, 65] have studied the methods for registration of
modalities based on 3D scene information, registration methods, fusion methods and
necessary assumptions for sensor registration. Following [37], we have used calibrated
chess-board blob-homography technique. This approach assumes that foreground ob-
jects in a thermal image are hotter than background objects, eliminating the pixel-wise
correspondence of all objects in the picture [7]. According to [37], blob homography
performs accurately in a range from 95-99% in image rectification systems. For the
accurate pixel level registration, following the notion of [7], we have used the depth
information provided by Microsoft Kinect camera. However, to ensure that objects in
both modalities moves synchronously, we have timely synchronized the both modali-
ties.

2.6 Data Fusion
After the sensor registration and images alignment, we tried to fuse the image modal-
ities in the various combinations such as early ( feature-level) fusion, late (decision-
level) fusion like [62] and bilinear pooling (point-wise multiplication a type of feature-
level fusion). Early fusion use the features correlations from time-synchronous modal-
ities and late fusion can used for asynchronous multimodal data thus providing flex-
ibility to train on larger amount of available datasets. In our research dissertation we
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Fig. 2.1: Hardware platform with Axis-RGB, Logitech C920, Axis Q1922-E and Microsoft Kinect
V2 for the data collection

have performed early fusion by concatenating the feature vectors from both modali-
ties and applied 10-folds cross validations to evaluate various subsets of features. In
late fusion, the outcome of multiple classifiers or regressors are combined to make a
final estimation by using maximum of posterior probabilities incorporating Sum and
Product rule [12, 23].

3 Data Collection

Data collection took place during different rehabilitation activities and depending on
the subject’s challenges. We have collected data from eleven subjects suffering from
TBI, detailed nature of their disability is described in table E.1 [29, 31, 33]. Subjects suf-
fering with TBI have mild to severe stroke, followed with paralysis, speech inhibition
and emotional instability. Based upon their health conditions and neuro-psychological
test results, psychologists and neuro-rehabilitation experts devised strategies for re-
covery [9] [59]. Furthermore, the subjects under observations face difficulty to express
their feeling and emotions, and most often have behavioral challenges such as mood
swings, low concentration and sometimes verbal or physical aggression [29, 31, 33].
All previous mentioned factors contribute to the complexity in facial data collection.
Challenges associated with data collection and adopted strategies to acquire good
quality of data have been briefly discussed in our research articles [29, 31, 33]. How-
ever, in this chapter, we will discuss in detail.

First of all, for the uniformity of data collection, we have selected three scenar-
ios where subjects perform activities for recovery in social communication; Cognitive
rehabilitation activities, and physiotherapy sessions. However, it is observed that
in above-mentioned activities, data for facial analysis can not be collected with pre-
defined strategies and there is a need of adjustment to cater the needs of data driven
facial analysis systems. Therefore, considering the visual system we modified the
rehabilitation strategies. Details of standard rehabilitation strategy and modified pro-
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cedures have presented below.

3.1 Cognitive Rehabilitation Strategy
Cognitive activities aim to train the mental functionalities and evaluate the patient’s
ability to understand and interpret the information. For the optimal training, it is
essential to have stable emotional conditions of the subjects under observation, oth-
erwise rehabilitation process could be lengthy and miss the targets. Therefore, care
providers follow " a set of protocols comprised of repetitive activities with gradual increase in
difficulty levels like Mini-Mental State Exam (MMSE)1 and Montreal Cognitive Assessment
(MoCA)2, to assess attention, memory [54], visuo-spatial perception [44], language and com-
munication, function execution and learning ability of the patient [59]" [32]. Care-providers
complete the required tasks by number of ways, for instance, use of memory devices
or memory logs, clocks or calendars illustration, alarms or reminders, book-reading
and listening and design concept mapping. However, all these tasks are tailored to
the baseline level of the subject’s understanding with gradual increase in difficulty.
Unfortunately, aforementioned techniques does not support data driven autonomous
systems to access the cognitive performance due to variable facial pose, gestures, and
less attention during the execution of the tasks. In order to address the challenges, we
modified these methods by switching to digital interface devices like tablets with we-
bcam enabled to capture the frontal faces. subjects are then asked to watch a favourite
movie clip and then talk about that character, listen and sign lyrics of songs, match-
ing pictures activities, and playing games in order to achieve Error Less (EL) learning.
Considering sad and depressed emotions associated with TBI patients for the most
of the time, games are designed with more incentives and winning probabilities to
generate happy emotions, motivations and increased attention. After approval from
the care-providers these modified strategies were implemented on 11 subjects that
resulted in memory enrichment and enhanced attention, core ingredient for effective
cognitive training. Details have been presented in the paper E.

3.2 Physical Rehabilitation Strategy
Physical morbidity is caused by TBI when sensory motor skills are impaired. Re-
duced muscle coordination, upper limb, lower limb, or full body paralysis may all
result from a stroke, depending on the severity. Functional therapeutic techniques are
proposed on a case-by-case basis, considering factors such as age, gender, ethnicity,
disability level, and post-concussion symptoms [27]. Furthermore, while develop-
ing and executing aerobic, musculoskeletal and neuromuscular exercises; subject’s
stability, coordination and neuromuscular functionalities estimation are considered.
Physiotherapists do pre-set operations such as aerobic exercise, treadmill, walk or
gentle running independently or with a trainer, swimming, bicycling, bench presses,
squats, and other exercises for recovery objectives [27]. However, in all these activities,
facial data that is essential for data driven assessment systems, is rarely available due

1https://www.sundhed.dk/sundhedsfaglig/
laegehaandbogen/undersoegelser-og-proever/skemaer/geriatri/mms-mini-mental-status/

2https://www.mocatest.org/
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to excessive face and body movements. Therefore, with aim of maximum facial data
collection, we modified the physical activities depending upon the disability nature of
the patients. For instance, subjects with upper body paralysis are devised to ride sta-
tionary bicycle to record facial expressions while placing a camera parallel to the face.
Similarly, patients who are suffering with lower limb paralysis and bounded to the
wheel chair, physical activity is designed to move wheel chair back and forth within
three meters for multiple sessions. Moreover, some of the subjects moved their arms
and hands to certain limits while playing console games or card games. Similarly,
staff members and physiotherapist also designed special activities like blowing air in
the bottle, use of hand-press, organizing plates on the table and other related activities
with aim to capture more useful data and increase the interests of the participants.

3.3 Social Rehabilitation Strategy
People suffering with neurological disorders experience challenges in social commu-
nication social interaction, and social integration. Therefore, care providers adopt
unique and customized strategies based on the individual mental functional capabili-
ties and behavioral disorders. Conventional methods such as reading books or storey
telling, sharing personal experiences or daily routines could not produce effective re-
sults at the neuro-center due to lack of interest, concentration and poor story telling
skills. The aforementioned strategies were adopted to more interesting and engaging
activities such playing cards games and video-console games according to the inter-
est of the participating groups. It is observed that all the participants enjoyed and
exhibited more interest in the modified activities and games. Some of the games such
as Medal of Honor Airborne (MOHA)3, Need for Speed4, where coordination and
group understanding is required, participants struggle to get good score, but resulted
in more communication and social interaction. Details of these modified approaches
and game designs have been presented in the appendix E.

4 TBI-Database

In the following section, we will provide an overview of the database collected from
the people suffering from TBI. Data is collected in multiple phases during 91 sessions,
as illustrated in table E.1 with RGB, thermal and depth sensors. We have recorded
1723 video events, each of maximum 5 seconds in length, resulting in approximately
250,000 image frames. However, it is observed that data collected with modified
strategies was less erroneous when applied pre-processing techniques to log on to the
face log system. Face Quality Assessment (FQA) is applied to the entire database to
ensure high quality of data is fed into the deep neural networks.

Face Quality Assessment Method
To ensure high quality of the data to avoid computational cost of the erroneous data,
we have employed the Face Quality Assessment (FQA) method [24, 29–31, 34]. FQA

3https://www.ea.com/games/medal-of-honor
4https://www.ea.com/games/need-for-speed
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checks the low quality of images due to large pose variation, occlusion, intensity,
sharpness and insufficient resolution and discards the images by comparing it with
reference image before logging into facial log system. Details of FQA method has
been presented in the [31].

Table 2.5: Subjects in database along with challenges due to TBI, number of sessions and activi-
ties [E]

Subjects
No. of

Sessions
Activities Challenges Prominent

FeaturesCognitive Physio Social Body Paralysis Speech Inhibition Facial Paralysis

A 12 4 4 4 Complete Yes Partial High Anger
B 10 4 3 3 Left Side No No High Arousal

C 10 4 3 3 Lower Body No No
Excessive Head

Movement

D 9 3 3 3 Partial No Partial
Emotionally

Unstable

E 9 2 4 3 No Yes Partial
Emotionally

Unstable
F 7 2 3 2 Partial No No High Arousal

G 6 2 2 2 Lower Body No No
Excessive Upper
Body Movement

H 7 2 3 2 No No Partial Low Arousal
I 6 2 2 2 Yes Yes Partial Low Arousal

J 8 2 3 3 No No No
Verbal and Physical

Aggression
K 7 3 3 1 Partial Yes No Emotionally Unstable

5 Deep Learning based Emotion Recognition: State-
of-the-Art

Emotions play a critical role in human communication, social interaction, cogni-
tive judgement and human robot interaction. Human emotions can be described
through the facial muscle movements (Facial Expressions), Electroencephalography
(EEG), Electrocardiography (ECG), Magnetic resonance imaging (MRI) and skin con-
ductance [8]. The simplest and the most wide spread method to identify emotions
is through recognition of 6 basic facial expressions (Anger, Disgust, Fear, Happy, Sad
and Surprise) proposed by Ekman et al [15] plus neutral expression, also called the
discrete emotions. Facial emotional expressions can also be dimensionally catego-
rized in terms of valence (measure of pleasantness) and arousal (measure of activa-
tion) [10, 22]. The combination of seven different expressions can be presented in
valence-arousal space as illustrated in the figure 2.2. According to Mehrabian [45],
more than 55% of human communication is performed through facial expressions.
Automatic recognition of facial expressions plays a vital role in various applications
in the fields of biometrics, forensics, health care, medical diagnosis, monitoring and
surveillance [15, 28, 30, 40, 41]. Since past couple of decades, researchers have exerted
a great effort to develop methods and systems for robust and accurate identification
of emotions that go beyond the Ekman’s basic facial expressions. Facial expressions
present information to be interpreted as mood, cognitive states and emotional states.
Therefore, the expressions are vital tools in the development of human-computer and
human-robot interaction systems.
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Fig. 2.2: Distribution of Ekman [15] emotions in valence-arousal space. Image is adopted from
[10] and [22]

The current facial emotion recognition (FER) systems can be distinguished on the
basis of facial feature extraction and classification techniques. Facial features can be
extracted by using geometrical features, apparent features or hybrid (both geometric
and apparent) features [30, 35, 50, 57]. "Geometry based feature extraction methods use
geometric shape and position of the facial parts like lips, nose, eyebrows and mouth, with tem-
poral information such as the movement of facial features points from the previous frame to
the current frame [21, 25]" [30]. One of the advantages of using geometrical features
is its tolerance against illumination variation and non-frontal head pose handling by
measuring fiducial points from frontal images [4, 52]. Texture information of facial
images is used in appearance based methods, whereas in hybrid methods, both geo-
metric and apparent features are represented [52].

FER systems can also be categorized on the basis of features classification meth-
ods. For instance [21] have classified the facial features with the help of Support
Vectors Machines (SVM), [60, 66] used Local Binary Patterns (LBP). Linear Discrimi-
nant Analysis (LDA) and Hidden Markov Models (HMM) are used in [61], Wavelet
approaches in [49, 52, 63], Non-Negative Matrix Factorization (NMF) and Discrimi-
nant NMF in [14, 53]. Similarly some researchers have employed the combination of
various methods to extract and classify facial features such as in [38], features are se-
lected by the AdaBoost Algorithm and classified by Gabor filters. Researchers in [20]
have extracted temporal facial information and categorized into emotions by combin-
ing AdaBoost and SVM classifier.

Systems build on Deep Learning (DL) approaches, that is based on Deep Con-
volutional Neural Networks (DCNN) have produced more accurate, fast and robust
results, for facial features extraction and classification as compared to classical ap-
proaches [11, 18, 58, 64]. [36] have employed the Deep Belief Neural Networks for ex-
ploring facial expression and pain analysis. Similarly, [26] and [55] have determined
facial expressions and pain assessment by linear combination of CNN and Long Short
Term Memory Networks (LSTM) by incorporating spatio-temporal information and
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achieved the state-of-the-art performances. [11] have improved this method by using
super-resolved facial frames to train the CNN-LSTM network.

In our literature review, two main aims are acquired: identifying the transition
and gap in the research area of emotion recognition from hand-crafted features meth-
ods to machine learning driven algorithms and recognising the assessment studies
across facial expressions variations. According to the literature review conducted, we
have also identified that most of the studies are performed on the healthy subjects
databases with lesser or no facial artifacts in different environmental conditions. This
research aims to identify the emotions of people suffering from TBI with extended
physiological and physical challenges like facial and body paralysis. These emotions
are inferred from various computer vision applications that understand the facial ex-
pressions, cognitive states such as interested or bored and mood analysis.
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Chapter 3

Human Robot Interaction

1 Introduction

In recent years, due to the advancements in automation, robotics and artificial in-
telligence (AI), robots have exhibited a huge potential to support and assist humans
in range of contexts such as homes [5, 15], workplaces [12, 36], education institu-
tions [27], healthcare environment [4, 25, 38] and many more. The robotic technology
has impacted humans positively in every sector of the life. In this dissertation, we offer
an introduction of a assistive robot to support the healthcare workers, staff members,
nurses, caregivers, trainers and therapists in a Danish neurocenter who are working
with people suffering from neurological disorders. This study aims to "investigate the
technological innovations to assist residents and staff members with fulfillment of rehabili-
tation activities - including enhancing individual self-control and improvement of quality of
life [18, 19, 32]" [22].

2 Collaboration Partners

Aalborg University works closely with other institutions, industries and healthcare
units to mitigate the challenges of deploying and appropriating interactive technol-
ogy. Since 2015, AAU has worked closely together with staff and residesnts at Senhjer-
neskadecenter Fredrikshavn and Neurocenter Østerskoven in Hobro on co-designing
and developing assisitive robot technology. Both of these centers are providing care
and assistance to people who have acquired brain injuries. Due to the stroke, either
naturally or by accident, results in impairments which leads to failure to perform
activities of daily living (ADL). Depending upon the severity of the stroke, some of
these residents have acquired life-long disability (in terms of cognitive, physical and
communication), therefore, staff members or care givers have to look after them 24/7
and retrain them with set of skills necessary to perform ADL by repetitive execution
of the tasks [22].

The Danish neurocenters focus on the people suffering from neurological disor-
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ders to provide assistance to physical, social-communication and mental disabilities
by following the set of protocols. For instance, neurocenters develops and adopts cog-
nitive activities with an aim to "improve the ability of residents to understand and interpret
information to perform specific functions mentally" [20] by assessing the mental stability
and repetitive execution of tasks with gradual increase in difficulty. Similarly, physi-
cal retraining is planned by assessing the physical morbidity of the subjects and then
perform cardiovascular, muscular-skeletal and vestibular activities. Furthermore, de-
veloping and executing social reintegration strategies are quite complex and depends
upon the individual and group level cognitive progression, mental health and behav-
ioral challenges. An additional goal is enhancing the quality of life of the residents
by incorporating technology. However, providing care, conducting rehabilitation ac-
tivities and assisting in ADL is time, labor (therapists or caregivers), and resource
expensive work. Therefore, the neurocenters face challenges to maintain the high
quality of services, and the staff members experience stress to achieve the rehabilita-
tion targets efficiently. These challenges provided the context to investigate the use of
robotics devices equipped with AI systems as a support tool in rehabilitation settings.

3 Robotics in Healthcare - Socially Assistive Robots
(SARs)

Researchers have conducted extensive investigation towards developing robotics for
healthcare and discussed methods to use commercially available robots in the health-
care field. Kyrarini [26] have broadly categorized robots in the following five ways:
care robots, hospital robots, assistive robots, rehabilitation robots and walking assis-
tant robots. According to Wynsbeghe [39], a robot can be named only by the way
it is used in the field, regardless of its hardware specification and capabilities. For
instance, a robot providing support and assistance in patient care can be termed as
a Care Robot [26]. Similarly, Socially Assistive Robots (SAR) collaborate with doc-
tors, physicians or physiotherapists and "provide assistance and improvement in a wide
range of medical applications such as robot-assisted therapies [13, 28], complex-surgical op-
erations [10, 11], or for social engagement with people with special needs like children with
autism spectrum disorder (ASD) [1, 8, 9, 33]" [23]. SARs contribute to assisting the pa-
tients physically, cognitively and socially. However, they lack the ability to interact
close to human-like, recognize human emotions [30], and perform high degree au-
tonomous tasks [7]. Thus, more intelligent systems and software are required to be
developed to communicate and interact naturally.

Due to the fast growth of COVID-19 pandemic, many healthcare organizations
aim to adopt health care practices with minimal human contact and physical dis-
tances. Many studies point to the employment of SAR in this COVID-19 outbreak for
two primary tasks: i) patient monitoring and ii) utilising teleoperation to link clini-
cians with the patients (who are at high risk of infection transmission) [3, 7, 16]. "Many
researchers focus on the various techniques for the rehabilitation of physical and cognitive im-
paired people, e.g. [34] establish a virtual reality exposure therapy (VRET) for managing stress
reactions. Similarly, [2, 24] develop a BCI system for the extraction of psychological signals
of mentally impaired people using electroencephalography (EEG)" [20] and improved the
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Fig. 3.1: Pepper and Nao from Softbank Robotics

quality of life by transmitting these signals to aiding and virtual and augmented re-
ality (VAR) devices. However, one of the limitations of the BCI systems is mounting
of the sensors on the head to receive brain signals and transmit to the linked-aiding
devices, which restricts natural movement of the subjects under observation [20].

Pepper [31] and Nao [37] from Softbank Robotics as seen in Figure 3.1 are high
performance humanoid socially assistive robots (SAR) for research and education
purposes with the ability to equip with machine learning or deep trained models
to identify human emotions, generate body gestures and contribute in wide range of
rehabilitation applications. The Pepper robot is a humanoid robot with four-wheeled
base (instead of legs) on which sonar, laser and bumper sensors are mounted. "There
is a 10.1-inch touch display on its torso, and it has a total of twenty Degrees of Freedom
(DOF), including six DOF for each hand, two each for the head and hips, one in the knees,
and three in the base. The head hosts two RGB cameras, a depth camera, a microphone,
and a tactile sensor to perceive the world, and two speakers where the ears would be on a
human" [26]. In contrast, NAO 6 th generation robot is much smaller 22.8 inches
humanoid robot with twenty-five DOF, eleven in the legs and fourteen in the upper
body, without any display on its torso. Nao posses two RGB cameras, nine touch
sensors, four microphones, two infra red emitters and receivers and eight pressure
sensors. Both the robots operate on NAOqi operating system, with software Devel-
opment Kit (SDK) and graphical programming suite (Choreographe) that provides
adaptability to be used in diverse applications such as for interactive, educational,
navigation, localization and rehabilitative purposes, providing an easy platform for
Human Robot Interaction (HRI) [6, 14, 22, 29]. Many researchers have deployed the
pepper robot successfully to teach children [37], as a companion for aging people [40]
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and as a coach to guide older people with mental disorders through rehabilitation
activities [35]. In our studies we have used the Pepper robot for monitoring device,
motivational tool and to provide information to staff members in the neuroceters [20].

4 Pepper Robot Deployment in the Neurocenter -
A Pilot Study

"A typical robot for health monitoring and improvement needs to receive audio, video or prox-
imity information from its sensors. This information is then processed based on the algorithm
that interpret the information into meaningful signals. This is followed with robot action or
response for the desired task [33]" [23]. The goal of placing a robot in a neurocenter is
to aid the people suffering from neurological disorders presents additional challenges
such as non-cooperative behavior, unstable mental conditions, lack of emotional ex-
pressions, impaired cognitive and physical activities [18, 20, 21]. SARs are heavily
dependent on the audio, video and proximity sensor information for natural interac-
tion. However, residents often have speech inhibitions and physical morbidity thus
limiting the performance of these SARs. To deal with these challenges, we have devel-
oped a system using deep learning architecture trained on TBI datasets (in three spec-
ified scenarios such as cognitive, physical and social communication) for the vision
system of the pepper robot. The primary roles for the Pepper intervention are mon-
itoring psychological, physiological signals and promoting social interaction during
the therapy sessions. In addition, providing feedback and information to the trainers
or staff members to adopt their strategies according to the mood and performance of
the subjects.

4.1 Pepper Robot Architecture
Figure 3.2 illustrates the Pepper platform for the field study. The system is built of
three main units:
i) Sensory unit , that contains (RGB and depth) visual sensors, (microphones) audio
sensors and (laser, sonar and bumper) proximity sensors. This unit acquires and
processes visual psychological data and sends it to the deep trained model for emotion
and mood classification.
ii) Social signal synthesis unit, that generates the robot gestures and actions based
upon the classified emotions and cognitive states. This module enables the robot to
perform pre-defined robotic actions based upon the classified emotional signals.
iii) Robot graphical user display (speech, visual and gesture output/actions) unit.
The display on the Pepper robot’s torso and microphones on head and the Pepper’s
robot upper body, provide visual, audio and gestural information and feedback to the
staff members and subjects under therapy.

4.2 Pepper robot Feedback
The feedback provided by the Pepper robot includes verbal and non-verbal gestures.
The feedback categories presented are: i) Monitoring feedback that provides the pool

29



4. Pepper Robot Deployment in the Neurocenter - A Pilot Study

Fig. 3.2: Pepper robot emotion analysis application platform with adaptation of interaction be-
havior of the Pepper robot for effective rehabilitation strategies

of expression over the entire session and the performance information to the thera-
pist. ii) Emotional and mood study feedback, where the display is used to illustrate
the subjects emotional expression and mood through emojis. This feedback is also
conveyed through verbal phrases to indicate the mood of the subjects under the ther-
apy sessions. iii) Motivational feedback encourages the patients to conduct more
physical activity repetitions.

i) Pepper robot as Monitoring Device
During the field study, Pepper served as a monitoring device for the resident’s emo-
tional states in relation to the performance during the rehabilitation activities. This
intervention showed a decline in performance when more negative emotional feed-
back is provided. The Pepper robot monitoring feedback assists staff members and
therapists in identifying the emotional states before, during and after the therapy ses-
sions and provides flexibility for adopting the rehabilitation strategies accordingly.
Our studies supported the findings of [17], that "to achieve the best results, it is es-
sential to determine the emotional states of the patients prior to conducting an rehabilitation
exercise" [20]. This could greatly impact in achieving desired rehabilitation goals effi-
ciently and could save therapist time and energy.
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Fig. 3.3: Pepper robot displays emotional and cognitive states feedback

ii) Pepper robot as an Information Tool for Therapists
The pepper robot displays emotional and cognitive states feedback through the verbal
and non-verbal gestures as illustrated in Figure 3.3. The verbal gestures are a fixed
set of phrases for example "Great, you look happy, I am happy too, yahoo yahoo yahoo";
"Why do you look so surprised, did i miss something"; "You look angry, please calm down"
; "Don’t be sad, I can cheer you up"; "You are quite neutral" . The non-verbal feedback
involves the display of emotions-related emojis on the display of the Pepper robot.
The robot is placed in front of the subjects and therapists so that they can visualise
this information and adjust accordingly if necessary.

iii) Pepper robot as Motivational Tool
Motivational feedback encourages the patients to conduct more physical activity rep-
etitions. The verbal motivational feedback consists of a set of phrases for example
"Wow, You are doing great!"; "I am so glad you have completed your session"; Give your
best buddy"; "Great! you are improving fast". It is observed that with the motivational
feedback, subjects performed better during the physiotherapy sessions.

In our field study as demonstrated in Figure 3.4 we observed that Pepper au-
dio, visual and gesture feedback impacted positively on the physical rehabilitation
but negatively on the cognitive activity. This is due to the fact that Pepper failed to
differentiate their focused-emotional reactions from confused or negative emotional
expressions [20]. On the other hand, the robot’s feedback during cognitive tasks was
called distracting by the participants under observation. To counter this problem we
have offered Wizard-of-Oz (WoZ) functionality " to equip the Pepper robot with intellec-
tual cognitive abilities in decision making as well as in creating good relationships with its
human user" [20]. The WoZ feature could aid the therapists and trainers to meet the
desired targets during cognitive rehabilitation task and in developing a reliable rela-
tionship between robot and human user. However, due to COVID-19 pandemic, we
could not conduct the second field study and WoZ feature could not be tested in the
neurocenter environment with patients suffering from TBI.

5 Discussion and Conclusion

The study presents the assessment of the Pepper robot intervention for neurorehabili-
tation. Five patients were evaluated for fifteen sessions performing physical, cognitive
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Fig. 3.4: Pepper robot performing field study during physical and cognitive rehabilitation ses-
sions in the neurocenter

and social rehabilitation strategies. The patients performance is compared with con-
ventional and robot-assisted therapy sessions. Overall, the findings of the social robot
assisted therapy indicated the positive impact on patients performance and social en-
gagement. The technology also aided the staff members to view the objective recovery
and to view the real time monitoring of the emotional states off the patients.

Regarding the acceptability, most of the patients demonstrated openness towards
robotic solutions and recognized the beneficial partnership in aiding rehabilitation
methods for patients and clinicians. However, the reliability of the system perfor-
mance is crucial in seamlessly incorporation of robotic platforms in the healthcare
environment.
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Chapter 4

Conclusion and Future
Research

This thesis contributes to the development of the methods and models to improve the
emotion recognition system for people with neurological impairments, specifically
with traumatic brain injury (TBI). In this dissertation, four main contributions have
been made towards building robust and high-performance emotion recognition sys-
tem using: i) newly developed multimodal database of people suffering with TBI, ii)
developing and optimizing deep learning architecture based on CNN and LSTM and
deep transfer learning for facial features training to enhance the performance of facial
emotion classification, iii) fusing RGB and thermal modalities to maximize the emo-
tion and mood classification, iv) robotic application of emotion recognition system
to facilitate staff members and people suffering with TBI for cognitive and physical
rehabilitation purposes in the neurocenters.
Four main studies are performed to address the aforementioned challenges and im-
prove the emotion classification for the people suffering from the brain injury. The
first study involves a comprehensive database establishment from the residents of
neurocenters suffering from TBI in three different scenarios that are physical, cog-
nitive, and social rehabilitation scenarios. This study evaluates the facial features
variations due to paralysis, physical and cognitive inhibition in the above-mentioned
scenarios in a natural and unconstrained environment. This study also includes var-
ious pre-processing techniques like face-frontalisation, data augmentation and face
quality assessment methods to ensure good quality of data to be processed in the
next phases.
The second study presents a deep learning architecture with a linear combination of
CNN and LSTM to use spatial and temporal information to identify emotions and
cognitive states. This system is trained on TBI dataset and also tested on public
datasets like CK+. This study signifies the importance of TBI-database for the im-
provement of emotion recognition system for people suffering from TBI. This study
also explores the use of transfer learning techniques to take advantage of feature
learning from larger identity data and fine-tuning to TBI-database.
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The third study elucidates the fusion of RGB and thermal facial images. The proposed
framework is based on CNN-LSTM network for the fusion of spatio-temporal compo-
nents of RGB and thermal signals in two different approaches: early fusion and late
fusion. The study evaluates and compares the performance of the two multimodal
fusion models on TBI dataset. In this study, facial and body gestures are also fused.
The study explores and evaluates the performance of early, late, and compact bilinear
pooling fusion [6] to enhance the emotion recognition accuracy on FABO datasets.
The fourth study presents the robotic application of emotion recognition to monitor
the emotions of people suffering from TBI and to facilitates the staff members for
effective rehabilitation purposes. This study explores the intervention of the Pepper
robot in the neurocenter to interact with staff members and residents with TBI and
evaluates the robotic gesture synthesis on the basis of emotional cues.

This chapter offers an overarching conclusion by presenting the summary of achieve-
ments from the above-mentioned four studies and introducing the scope of robotic
application of emotion recognition for future studies. Furthermore, a discussion on
the limitation and strengths of the research is outlined, as well as further research and
speculations regarding the status of robotic therapeutic rehabilitation is offered.

1 Summary of Achievements

1.1 Facial Dataset of people suffering from TBI
Since there is no public dataset of facial features of people suffering from neurological
disorders, classifying emotions through faces of healthy people that are mostly avail-
able as public facial datasets can lead to inaccurate emotion recognition. People who
acquired a brain damage exhibit abnormal facial expressions due to impaired move-
ments of facial muscles. Therefore, for accurate facial emotion recognition of people
with traumatic brain injury, it is essential to collect the database of such subjects who
have suffered brain injury. In this dissertation, a new facial database has been offered,
called TBI-database, including data from 11 subjects, captured with three different
sensors, RGB, thermal and Depth. This database is collected in more than 30 sessions
in collaborating neurocenters with each subject performing cognitive, physio and so-
cial communication activities. This study comprehensively viewed the various data
collection strategies in the natural environment and discussed how to overcome the
limitations associated with people with brain injury. We proposed various framework
along with physiotherapists, psychologists and staff members within the set of possi-
ble solutions to improve the facial data provided with a given measure of quality to
propose an optimal solution. The results confirmed that the proposed framework ef-
fectively improves the quality of data to identify the emotion through facial features.
Details of this database has been presented in the Chapter 2, and relevant articles [1–4]
This database could not be published due to privacy issues of the subjects, but this
database has contributed in all publications made by the author.
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1.2 Deep Learning architecture of CNN and LSTM to im-
prove the Emotion Classification

It is challenging to select an appropriate classifier to effectively recognize emotions
in a natural and unconstrained environment. This is due to the fact that facial ex-
pression is characterized by subtle variations and movements of facial muscles. In
fact, emotional cues comprise of time-series variations in facial features within short
periods. To exploit the latent temporal information within facial data and to recog-
nize the emotional signals that are produced in a short period of time, it is essential
to employ a classifier that deals with temporal information [7]. Therefore, we have
used a framework based on the linear combination of Convolutional Neural Network
(CNN) and Long Short Term Memory (LSTM) to use the spatial and temporal infor-
mation in the facial images of people suffering from TBI. In addition, we have used
the VGG-Face descriptor that is trained over 2.6 million face images, built on VGG-16
network, and discarded the last fully connected layer in the architecture. The results
showed that incorporation of spatial and temporal information improved the emotion
classification even in challenging scenarios.
Although the performance of CNN + LSTM is promising, we have used the transfer
learning techniques to benefit from the vastly available facial datasets to overcome the
identity limitations of TBI-dataset. We have used eight databases, four recorded in the
lab condition and, other four captured in an uncontrolled environment. The results
of this study exhibited that the average accuracy of the algorithm is significantly im-
proved with single-source to single-target transfer learning, meeting the goal of the
study. Although this framework is computationally expensive, transfer learning is
applied offline, and only the fine-tuned model will be used for real-time applications.

1.3 Multimodal Fusion
This study focused on the fusion of the vision and thermal facial images of people
suffering from TBI. One of the methods to fuse modalities is to concatenate features
from each modality to build one feature vector. However, this approach fails to in-
corporate non-linear correlation across each modality, which is essential for accurate
emotional recognition across various modalities. In this study, to benefit from the
non-linear correlation within and across various modalities, a linear combination of
CNN and LSTM is applied in two ways; early fusion and late fusion. On the contrary,
to short-term six basic expressions, cognitive states and moods are interpreted, thus
offering more socially specific cues. Finding from this study showed that fusion of
modalities contributed in performance efficacy, with better emotion classification re-
sults with late fusion technique. In addition, we have fused facial features and, upper
body features, computed in the frame based and sequence -based manner with bi-
linear pooling fusion on the FABO dataset that involves element-wise multiplication
of input features. We have scaled the combined features into a matrix to reduce the
dimensions. Although this method is computationally expensive, but improve the
accuracy of emotion classification with temporal information.
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1.4 Human Robot Interaction for Social Rehabilitation of Pa-
tients suffering from Traumatic Brain Injury

In this context, the study contributed in two ways; first through the implementation
of deep-trained model in the Pepper robot application for the emotion recognition of
people suffering from TBI; and secondly through the intervention of the Pepper robot
and gesture synthesis with the aim to enhance social interaction and rehabilitation
process. In the first part, the findings of the study showed that deep-trained model
on TBI datasets is essential to deal with the emotional and cognitive states recognition
of people with brain injury. We compared our results to healthy datasets like CK+
and also evaluated the Pepper-robot emotion recognition model to the TBI datasets.
The study showed that to read the subtle emotional changes of the people with in-
jury, it is essential to have a dedicated emotional classifier that could differentiate with
challenging emotional states as compared to healthy people. Similarly, our study also
supports the implementation of TBI-trained emotional classifier in the Pepper robot
rather than using its built-in model. The details of this study have been presented in
the [4, 5].

With regards to the Pepper robot gesture synthesis in response to emotion recog-
nition, we conducted the field study and analyzed the results in the following ways:

Pepper Robot as Monitoring Agent
We have conducted the field study in the Danish Neurocenter, where people who have
acquired the brain injury are cared for and trained with the activities of daily living
(ADL) with the help of staff members, trainers, and physiotherapists. We have intro-
duced the Pepper robot equipped with a customized emotional recognition model to
assist the rehabilitation process in three specified scenarios that are cognitive, physi-
cal and social rehabilitation. The study provided evidence that intervention of Pepper
robot in the Neurocenter to interact with the people with brain injury could be used
as a monitoring agent. In our field study data, it is observed that subjects under
the rehabilitation process exhibited more mistakes when they are not happy or in a
negative mood. Therefore, subjects failed to reach the rehabilitation targets in such
emotional conditions. Findings from the study supported that "it is essential to deter-
mine the emotional states of the patients prior to conducting any rehabilitation exercise " [4].
" For this purpose, the Pepper robot intervention facilitated the staff members and therapists
to determine the emotional states before, during and after the rehabilitation tasks" and adapt
their strategies to meet the goals effectively [4].

To deal with the negative emotions, Pepper robot interacted with subjects by au-
dio, video and gestures synthesis according to the emotional cues. Results from this
study showed positive impact on the physical rehabilitation of the subjects. How-
ever, this Pepper intervention impacted negatively on cognitive rehabilitation, that
was countered by introduction of Wizard-of-Oz (WoZ) functionality.

Pepper Robot as Feedback Agent
In the field study, the Pepper robot recorded the data of the subjects and evaluated
the emotions over entire therapy sessions. This provided with the pool of expressions
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evaluation against the execution of physical and cognitive tasks. It is observed that
during the physiotherapy sessions the Pepper acted as "motivator" for the subjects
that resulted in encouragement to perform more repetition of physical tasks. How-
ever, for the staff members or trainers, the Pepper acted as "Feedback Agent" that
is exhibited through the Pepper audio, video and gesture output and recorded data
evaluations to the tasks performance. This study analyzed the emotion expressions
and tasks executions with information about the subject-activity-engagement and at-
tention time-span. This feedback aided the therapists and trainers to reflect at their
strategies and adopt according to performance of the subjects maintaining the interest
of the subjects under observation.

2 Limitations and Future Research

The overarching aim of this thesis was to conduct and improve the emotion-based
investigation for the people suffering from neurological disorders using multitude
technology and framework. Several algorithms including novel and extensions of ex-
isting framework were proposed; including a deep learning architecture based on the
combination of CNN and LSTM network to explore the spatio-temporal features of
facial datasets to built a robust and reliable emotion classification model. In addition,
the Pepper robot integrated with emotion classification model have been introduced
to facilitate the process of rehabilitation in the neurocenters. While the findings of this
research is encouraging and state-of-the-art results have been published, a number of
limitations should be acknowledged.

Although new database with facial features of neurological impaired people has
been established as discussed in Chapter 2, it suffers from limited identity data. This
database is comprised of eleven subjects, therefore, for future work it is invaluable
to increasing number of subjects and train models on larger datasets to improve the
classification performance accordingly.

In our second study, we discussed the extraction of the visual features by learn-
ing on the large TBI/database through use of CNN and determined the relationship
between the transformation of facial expressions in image sequences with the use of
LSTM network. In addition, the performance of the emotion recognition system is
improved by the use of transfer learning techniques. However, training a network
through CNN-LSTM is difficult and computationally expensive. For real-time imple-
mentation tensor flow light could be used. Moreover, for effective transfer learning,
it is required to have specific labelled dataset for every task. For future research,
further investigation on domain adaptation techniques suitable for CNN-LSTM is
recommended.

We have combined the visible and thermal features for emotion recognition and
it resulted in higher performance. However, it will interesting to investigate the in-
corporation of depth and audio features towards the improvement in the emotion
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recognition.

In our final study, we have offered the Pepper robot intervention to monitor the
emotions of the people suffering from the brain injury in the neurocenter for rehabil-
itation and assistive purposes. In this field study, we have the following findings:

• Pepper robot intervention resulted in the increased number of repetition of
physiotherapy activity. However, it will be interesting to determine the same
pattern in long-term studies.

• A big challenge in robot assisted rehabilitation is the lack of adherence to the
recommended therapy treatments due to decreased compliance and improved
treatment outcome. In future research, motivation towards robotic therapy
could be enhanced by the installation of more engaging interface with the rel-
evant synthesis of gestures through the body, voice and display of the Pepper
robot.

• Although the Pepper robot intervention in the neurocenter produced encour-
aging results, it is not a part of standard care in the most facilities due to high
installation cost. Substantial efforts are being made to develop and implement
the low-cost visual-robotic-tools to mitigate the challenging therapy process.

• Due to the COVID-19 pandemic we could not perform the second field study
with the Pepper robot. A further investigation is required to analyse the short-
term and long-term robotic interaction with the people suffering from the brain
injury and outcome of this interaction in relation to desired goals.
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1. Introduction

Abstract

In this paper, we investigate the issues associated with facial expression recognition of Trau-
matic Brain Insured (TBI) patients in a realistic scenario. These patients have restricted or
limited muscle movements with reduced facial expressions along with non-cooperative behav-
ior, impaired reasoning and inappropriate responses. All these factors make automatic under-
standing of their expressions more complex. While the existing facial expression recognition
systems showed high accuracy by taking data from healthy subjects, their performance is yet
to be proved for real TBI patient data by considering the aforementioned challenges. To deal
with this, we devised scenarios for data collection from the real TBI patients, collected data
which is very challenging to process, devised effective way of data preprocessing so that good
quality faces can be extracted from the patients facial video for expression analysis, and finally,
employed a state-of-the-art deep learning framework to exploit spatio-temporal information of
facial video frames in expression analysis. The experimental results confirms the difficulty
in processing real TBI patients data, while showing that better face quality ensures better
performance in this case.

1 Introduction

Facial expression is one of the main sources of communication for human emotions
as approximately 55 percent of human communication is happened through facial
expressions [1]. Computer vision techniques have been developed to extract facial
features and use them for different purposes [2] [3], for example for assessing, mental
states [4] [5], health indicators [6], and various physiological parameters like heart-
beat rate, fatigue, blood pressure and respiratory rate [7]. Among these, automatic
detection of facial expression is subject of high importance due to its applications in
many fields such as in biometrics, forensics, medical diagnosis, monitoring, defence
and surveillance [8] [2] [9] [4] [5] [6] [10] [11]. Therefore, researchers are putting great
emphasis on development of accurate and robust Facial Expression Recognition (FER)
systems. A vast body of literature has been produced on this topic in the past decade.

The existing FER systems can be broadly categorized according to their feature
extraction methods [12] and the used classification techniques. Most widely used
methods for facial feature extraction are: geometric features based methods, appear-
ance based methods and hybrid ones [13] [14]. Geometry based feature extraction
methods use geometric shape and position of the facial parts like lips, nose, eyebrows
and mouth, with temporal information such as the movement of facial features points
from the previous frame to the current frame [15] [16]. Geometric features are resistant
to illumination variation so non-frontal head postures can be handled by processing
the figure to frontal head pose to extract the features by measuring distance of fiducial
points [17] [18]. Appearance based methods were employed by researchers by using
texture information of facial images [19] [20]. In hybrid feature extraction methods
both geometric as well as appearance based approaches are deployed for facial image
representation [17].

FER systems can be further divided on the basis of classification approaches of
extracted facial features. For example, Ghimire et al., 2016 proposed an approach in
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which both appearance and geometric features are used for facial expression recogni-
tion and Support vector Machine (SVM) for classification [21]. Researchers in [22] [23]
have used Local Binary Pattern (LBP), Histogram of Oriented Gradient (HoG) in [21],
Linear Discriminant Analysis (LDA) in [24] [22] [23], wavelets based approaches
in [25] [26] [17], Non-Negative Matrix Factorization (NMF) and Discriminant NMF
in [27] [28]. Lajevardi and Hussain proposed an investigative analysis on feature
extraction and selection models for automatic FER system based on AdaBoost algo-
rithm followed by Gabor filters, log Gabor filters, LBP and higher-order local au-
tocorrelation (HLAC), which is then further modified by applying HLAC-like fea-
tures (HLACLF) [29]. Similarly [15] proposed a temporal based FER by tracking
the facial feature points and classifying them using multi-class AdaBost and SVM.
In [17], geometric distance specific fiducial points are determined for FER. Researchers
in [25] [6] [13] [30] used SVM for accurate classification; whereas authors in [24] used
the Hidden Markov Models. SVM shows better results when facial expressions are
recognized from single frame, but in case of sequence of images HMM produce bet-
ter results. It is not the set rule as some authors have used combination of different
techniques and produced results comparable to state of the art methods.

In recent years more and more researchers have moved towards deep learning
techniques for fast, accurate and robust FER. Authors in [31] [32] [33] applied Deep
Convolution Neural Network (DCNN) for classification of features into expressions
and achieved appreciable results. Yoshihara et al. proposed a feature point detection
method for qualitative analysis of facial paralysis using DCNN [34]. For initial feature
point detection, Active Appearance Model (AAM) is used as an input to DCNN for
fine tuning. Deep Belief Network (DBN) is another widely used method for robust
FER. Kharghanian et al. [35] used DBN for pain assessment from facial expressions,
where features were extracted with the help of Convolution Deep Belief Networks
(CDBN) to identify the pain. Like [36], it is tested on the publicly available UNBC
McMaster Shoulder Pain database with 95 percentage accuracy. However, these ex-
isting methods of FER from healthy people, as used in [22] [13] [35], are not suitable
when applied to real patients in a real scenario.

Recently [37] proposed a pain assessment system with FER, where CNN is used
to learn facial features from VGG-Faces, then linked to Long Short-Term Memory
(LSTM) to take advantage of temporal relations between video frames. This method
was further improved by [32] by feeding super-resolved facial frames to the CNN+LSTM
architecture. These systems of [37] and [32] work well for extraction of facial expres-
sion and its interpretation in form of social signals for healthy people. However, the
performance of those systems are yet to be tested on datasets collected on the real
patients’ scenarios like Traumatic Brain Injured (TBI) patients in a care giving cen-
ter. This mainly because these patients behavior might be very non-cooperative and
non-compliance, and they can have agitation, confusion, loud verbalization, physi-
cal aggression, dis-inhibition, impaired reasoning, poor concentration, judgment and
mental inflexibility [38]. Brain injured patients may also have reduced expressions
such as smiling, laughing, crying, anger or sadness or their responses may be in-
appropriate. On the contrary, some TBI patients also exhibit extreme responses like
sudden tears, anger outbursts or laughter. It’s all due to loss of ability to control
over emotions to some extents. These raise the questions whether the state of the art
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FER systems, like [37] and [32], will be reliable when working with these patients
data. The main issue is that these system require facial images that are good qual-
ity and well-posed towards the camera. However, due to the mentioned issues the
TBI patients can not always face the camera and their facial images are not of good
quality with certainty due to for example rapid changes in head pose. To deal with
these difficulties, we equip the state of the art FER system of [37] with a Face Quality
Assessment (FQA) system that discards most of the faces that are not useful for the
FER system and feeds the FER system only with faces that are of better quality com-
pared to the other facial images. We have tested the proposed system on real data of
TBI patients which has been collected in a Neurocenter in which these patients are
taken care of. To the best of our knowledge, no one has done any previous work on
TBI patients to understand their facial expressions using computer vision techniques.
Therefore this work presents a novel experience in this regard and opens up notion
for enhancing social communication between patients and care givers.

The rest of this paper is organized as follows. Section 4 describes the proposed
methodology for facial feature extraction and recognition of expressions. Section 5
presents the results obtained from the experiments. Finally, Section 7 concludes the
paper.

2 The Proposed Method

This section describes the architecture of the proposed method for FER analysis in
a real patient scenario. The block diagram of the proposed method is illustrated in
Figure C.1. Following [37], in the first step, the face is detected from a input video.
In order to reduce erroneous detection of face we employ a face alignment approach
by detecting facial landmarks. The detected landmarks are tracked and faces are
cropped according to the landmark positions. In the next step face quality is assessed
by following [39] and only good quality faces are stored in face log. Faces are then fed
to a CNN. This network was pre-trained with VGG-16 faces as used by [32] and [37].
These steps of the system are further explained in the following subsections.

2.1 Data Acquisition and Preprocessing
The subjects are filmed by a Axis RGB-Q16 camera with resolution of 1280 x 960 to
160 x 90 pixels at 30fps (frames per second). Then, these images are fed to a facial
image acquisition system which consists of three steps: face detection, face quality
assessment and face logging. The first step is face detection from the video frames
for which we used a well-know method, called VJ (Viola and Jones) face detector
[40]. Due to its speed and moderately high accuracy by using Haar-like features we
selected this method. This method constructs a classifier with the help of learning
algorithm based on AdaBoost which effectively classify the images on the basis of
few critical features from large set and discard background regions by cascading.
However, it is prone to erroneous detection when face is in low quality in terms of
occlusion or pose variation. On the other hand, while most FER databases have near-
frontal head poses of good quality images with very less occlusions (no spectacles,
hand gestures covering the mouth, etc.), in our case subjects are TBI patients and
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Fig. A.1: Block diagram of Facial Expression Recognition System based on CNN+LSTM model
to exploit spatio-temporal information

they are not cooperative enough to ensure good facial data capturing. So there is
high possibility of non-frontal view and continuous pose variations, resulting in low
quality of images and consequently large amount of miss detected faces as shown
in Figure A.2. Moreover, due to inability to recognize and appropriately respond to
non-verbal cues TBI patients have feeble response [41]. This in turns increases the
complexity of data collection. Thus, instead of detecting face in every single frames
of a video, we employ a face alignment method on a properly detected face frame in
the video and then track the facial landmarks in the subsequent frames. This reduces
the possibility of erroneous detection by VJ in subsequent video frames, as the face is
tracked instead of detected again and again in the video sequence.

Face alignment is a process of localization of inner facial structures such as apex
of the nose or curve of the eye by using some predefined landmarks that help in bet-
ter enrolment of the face. Such land-marking also helps in the speedy extraction of
geometric structures as well as additional strong local characteristics. Due to advance-
ment in technology, regression based facial land-marking methods have contributed
towards the automatic face alignment. One of the most effective approach is the Su-
pervised Decent Method (SDM) [42]. In SDM, 49 facial landmarks are applied around
eyes corners, nose line, lips and eye borrows. In addition, SDM uses small optical
flow vectors and pixel by pixel neighbourhood measure by avoiding window based
point tracing. This provides high computational efficiency, and more stable and pre-
cise tracking for long time period of visual frames as demonstrated by [39]. Thus, we
employ the SDM based face alignment in the proposed method of FER. The steps of
face alignment in a video is shown in Figure A.3. The face is first detected in a video
frame by an off-the-shelf face detector (VJ in this case) and then the facial landmarks
are identified in that frame. Instead of detecting face in the subsequent video frames,
those landmarks are tracked in the subsequent frames. The performance of following
the SDM-based approach over mere VJ will be evaluated in the experimental result
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section. By using the landmarks, we find the face boundary and then crop the faces.
The faces are then forwarded to the next step.

Fig. A.2: Miss detection of faces by VJ face detector due to occlusion or high pose variation

Fig. A.3: Facial landmark identification and tracking in Supervised Descent Method (SDM)

2.2 Face Quality Assessment
System performance for FER is highly dependent on the quality of facial images. In
practice for the TBI patient dataset, there is high possibility of non-frontal view of
face and continuous pose variations, resulting in low quality of images, even though
those faces are tracked by the SDM. Figure A.4 show the case of occluded face (which
of course means low quality) for a video sequence where average pixel intensities
are varying due to the presence and absence of occlusion over time. To avoid such
problems, we employ a FQA technique on the faces cropped after SDM. This is ac-
complished by measuring some face quality matrices like image resolution, sharpness,
and face rotation as shown in [43]. Before logging facial frames into final face log for
FER, low quality face frames are identified by setting first frame as a reference frame
and comparing similarity in the rest of the frames in a particular event of video as
follow in [44]. Similarity of frames is calculated by the following equation:
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SClr =
∑M

m=1 ∑N
n=1(Amn − A)(Bmn − B)√

∑M
m=1 ∑N

n=1(Amn − A)2 ∑M
m ∑N

n (Bmn − B)2

(1)

In the above equation A and B are the reference faces whereas A and B are average
pixels levels of the current frame. M and N are number of rows and columns in an
image matrix. The degree of dissimilarity calculated from the above equation forms
the basis for face quality score. The more the dissimilarity the more the possibility of
a low quality face.

Fig. A.4: Depiction of varying pixels intensities due to the presence and absence of occlusion
over time. a) shows the example face frames and b) show the variation in pixel intensities over
time

2.3 Face logging
In this step, the faces obtained after SDM tracking are considered along with their
associated quality score. If the score is lower than a predefined threshold we simply
discard that before logging. Once the quality of face is ensured, images are cropped
to a common input size of neural network (224x224 pixels in our experiment) and
these are ready to feed to the deep learning architecture.
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2.4 The CNN+LSTM based Deep Learning Architecture for
FER

Convolutional neural networks are specialized set of neuron networks having multi-
ple layers of input and output that utilizes the local features in image to obtain the
visual information. CNN has multiple layers for convolution and padding. A typ-
ical 2-Dimensional (2D) CNN takes 2D images as input and considers each image
as a n × n matrix. Generally, parameters of the CNN are randomly initialized and
learned by performing gradient descend using a back propagation algorithm. It uses
a convolution operator in order to implement a filter vector. The output of the first
convolution will be a new image, which will be passed through another convolution
by a new filter. This procedure will continue until the most suitable feature vector
elements {V1, V2, ..., Vn} are found. Convolutional layers are normally alternated with
another type of layer, called Pooling layer, which function is to reduce the size of the
input in order to reduce the spatial dimensions and gaining computational perfor-
mances and translation invariance [45]. CNN performed remarkably well in facial
recognition [46] as well as automatic facial detection [31]. In order to take advantage
of its good results for FER we have applied this method on TBI patients data to extract
facial features relevant to FER.

In general, CNN deals with images that are isolated. However, in our case we
have used the sequences of images in a timely manner and thus, having the notion of
using temporal information as well. So to exploit the temporal information associated
with facial expression in video, we have used an implementation of Recurrent Neu-
ral Network (RNN), that is capable of absorbing the sequential information, called
LSTM model from [37]. The LSTM states are controlled by three gates associated with
forget ( f ), input (i), and output (o) states. These gates control the flow of informa-
tion through the model by using point-wise multiplications and sigmoid functions σ,
which bound the information flow between zero and one by the followings:

i(t) = σ(W(x→i)x(t) + W(h→i)h(t− 1) + b(1→i)) (A.1)

f (t) = σ(W(x→ f )x(t) + W(h→ f )h(t− 1) + b(1→ f )) (A.2)

z(t) = tanh(W(x→c)x(t)) + W(h→c)h(t− 1) + b(1→c)) (A.3)

c(t) = f (t)c(t− 1) + i(t)z(t), (A.4)

o(t) = σ(W(x→o)x(t) + W(h→o)h(t− 1) + b(1→o)) (A.5)

h(t) = o(t)tanh(c(t)), (A.6)

where z(t) is the input to the cell at time t, c is the cell, and h is the output. W(x→y)
are the weights from x to y.

In this paper, we use a combination of CNN and LSTM where CNN extract facial
features from the faces logged from the TBI patients video and LSTM find temporal
correlation based on those features in temporal setting. A schematic diagram of the
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CNN+LSTM is shown in the right hand side of the Figure C.1 and more details can be
found in [37]. We used a off-the-shelf fine-tuned version of the VGG-16 CNN model
[47] pre-trained with faces for spatial feature extraction. We obtained the features
of the fc7 layer of the CNN (VGG-16) and then use them as input to a the LSTM
to exhibit hybrid deep learning performance by CNN+LSTM. The implementation of
the CNN+LSTM is available online through [37].

3 Experimental Results

In this section, we first describe the database captured and used during our investi-
gation. We then demonstrate and commented on the results.

3.1 The Database
In order to have experiments for FER on TBI patients data, we require a database.
However, to the best of our knowledge, there is no publicly available facial video
database from real TBI patients. In establishment of a database, first task was iden-
tification of data collection methods. Most of TBI patients have varying ability to
identify and respond to non-verbal expression of emotions [41]. After visiting dif-
ferent neurocenters and care-homes where TBI patients are provided rehabilitation
facilities around Denmark, and consulting with experts and care-givers who are in
direct contact with TBI patients, we have finalized three uniform scenarios for data
collection from all the patients under observation. The uniformity in data collection is
maintained to have reliable data for future use. Those scenarios are: a) cognitive reha-
bilitation therapy, b) physiotherapy, and c) social communication with other residents
of the neurocenter. In cognitive therapy, a TBI patient plays a game or mind quiz in
order to judge how much thinking or cognitive ability a particular subject posses. On
the basis of this activity further data elicitation process is organized. In the second
activity of physiotherapy, subjects stress level of fatigue is determined. The last activ-
ity, where TBI patients have to interact with other patients and care-givers, provides
insight about patient ability to give and perceive communication signals.

On contrary to normal people, TBI patients have intolerance, rapid mood swings
accompanied by anger or tear bursts, low concentration and impaired facial emo-
tion recognition. Considering these challenges, collection of data, particularly facial
videos, is not a trivial task as most of patients do not keep their face positions still.
Even if they do so, it is still not easy to understand their emotions for some other
problems. Mostly they have sad or depressed emotions after post traumatic life. How-
ever, experts who are dealing with TBI patients over certain period of time are able
to annotate the patients emotional status as neutral or normal expression. Another
problem is: they get agitated very quickly and so it was big task to involve them in the
aforementioned three activities. For this purpose, to have clear and precise emotion
recognition, we devised a game in such a way that we intentionally let the patients
to win to see their happy expressions. Similarly to have their head posed in front of
camera, a tablet displaying emotional scenes, is placed just parallel to camera record-
ing their facial expressions. Similar adjustments are made in other activities during
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recording. One interesting observation is that all the TBI patients have taken deep
interest in mind game, and movie or picture illustration regardless of their disability
nature. This allows us to collect more neutral, happy and angry expressions. How-
ever, we could not collect much expressions of sadness, surprised and fatigue due to
non-cooperation, traumatic disabilities and other social and technical issues.

We collected data in multiple phases in a number of sessions. In total we got 539
video sequences (one sequence means one expression event) with variable lengths
(1-5 seconds). However, we observe that the data is highly imbalanced as out of 539
events 463 are of neutral expression. In other words, out of approximately 20,000
frames, almost 14000 represents neutral expressions. Among others, 108 events (app.
3300 frames) of happy, 72 events (app. 2200 frames) of angry and very few are other
expressions. On other hand, most of them have too much head motions, so making
the data even more challenging for further processing.

3.2 Performance Evaluation
In this section, we first demonstrate the impact of employing a SDM-based face aligner
and tracker over VJ face detector. Table A.1 shows the amount of erroneous face
detection in the video frames. From the results, we observe that FQA removed 2429
erroneous faces out of 27689 while using VJ. It means that 8.67 percentage of the
detection were not correct by VJ. On other hand, when FQA technique is employed
on faces detected by SDM, 4.46 percentage of the facial frames were not detected
correctly as FQA discarded 1128 frames out of 25289 frames. Comparing both results,
SDM-based detection by using alignment and tracking provided better accuracy in
finding the right faces.

Table A.1: The performance of SDM-based face alignment and tracking to extract faces from the
video frames in comparison to basic VJ face detector.

Number of Frames VJ SDM

Total no. of frames 27689 25289
Training frames 22082 20403
Testing frames 5607 4886
Total mis-detection 2429 1128
Percentage Error 8.67 % 4.46 %

Table B.3 shows the accuracy of FER in terms of AUC for two scenarios while the
number of epochs in the LSTM was varying in yielding the results. The epochs of
CNN-LSTM system is gradually increased by step of 5, from 5 to 50 keeping other
parameters such as RHO, recurrent depth, and drop-out probability constant. From
the results we observe that the accuracy of VJ-based CNN-LSTM system is increased
with gradual increase in epochs up to 25 epochs. It reached up to level of 76.94 percent
at the 25th epoch. At 30th epoch, its value was dropped down to 67.31 percent, but
strangely jumped to 75.26 percent in a higher values of epochs.
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Table B.4 show the effect of chaning RHO value for three scenarios. From the
results we observe that the SDM-based approach reached maximum AUC value of
75.26 percent. RHO value is gradually changed at step of 2, from 1 to 11, means
giving more temporal information for FER, while keeping the epochs constant. AUC
values showed the VJ-based approach exhibits slightly higher accuracy by increasing
temporal information. In contrast, SDM-based approach got the accuracy above 70
percent in all steps with maximum value of 73.38 percent and minimum value of
70.17 percent. Similar uphill trends is observed up to RHO 5 and then a slight decline
is observed.

It is clearly evident from the experiment results for TBI patients data, despite of
the challenging datasets accuracy of system is increased to certain extent.

Table A.2: AUC results for FER of TBI patients data with gradual increase in epoch values.

Area Under Curve (AUC)

Epocs Value Viola Jones SDM

10 66.37 69.49
15 69.55 72.03
20 75.42 63.21
25 76.94 72.96
30 67.31 75.26
35 75.76 72.35
40 63.03 73.38
45 67.08 71.81
50 68.63 74.85

Table A.3: AUC results for FER of TBI patients data with gradual increase in RHO values.

RHO Values
Area Under Curve (AUC)

Full Frames Viola Jones SDM

1 51.43 61.18 70.17
3 54.26 62.08 72.09
5 53.21 63.03 73.38
7 59.27 63.57 72.27
9 57.12 64.5 72.83
11 59.17 63.29 71.09
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4 Conclusion

In this paper, we pointed out the rationale about investigating facial expression ana-
lyzing system by using data obtained from real TBI patients. The study reveals the
challenges associated with real-world scenarios including patients, instead of healthy
volunteers used in the previous works. We captured data from TBI patients in a neu-
rocenter, extracted faces from the video frames by employing different methods to
find out the effective one. We then fed the cropped faces into a CNN+LSTM based
deep learning framework to exploit both spatio-temporal information to detect the
patients mental status in terms of facial expressions. The results were demonstrated
with different spatio-temporal parameters of the system. The result showed that the
facial information obtained from patient is varying in such a way that it is hard to
predict the expression with high accuracy. Moreover, we observed strong effect of
employing an effective face detection method with face quality assessment for FER.
However, as a note for future work, further processing such as face frontalization,
larger dataset for training and subject specific knowledge base incorporation might
be useful in improving the performance.
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1. Introduction

Abstract

This article presents the issues related to applying computer vision techniques to identify facial
expressions and recognize the mood of Traumatic Brain Injured (TBI) patients in real life sce-
narios. Many TBI patients face serious problems in communication and activities of daily liv-
ing. These are due to restricted movement of muscles or paralysis with lesser facial expression
along with non-cooperative behaviour, and inappropriate reasoning and reactions. All these
aforementioned attributes contribute towards the complexity of the system for the automatic
understanding of their emotional expressions. Existing systems for facial expression recogni-
tion are highly accurate when tested on healthy people in controlled conditions. However, their
performance is not yet verified on the TBI patients in the real environment. In order to test
this, we devised a special arrangement to collect data from these patients. Unlike the controlled
environment, it was very challenging because these patients have large pose variations, poor
attention and concentration with impulsive behaviours. In order to acquire high-quality facial
images from videos for facial expression analysis, effective techniques of data preprocessing are
applied. The extracted images are then fed to a deep learning architecture based on Convolu-
tion Neural Network (CNN) and Long Short-Term Memory (LSTM) network to exploit the
spatiotemporal information with 3D face frontalization. RGB and thermal imaging modali-
ties are used and the experimental results show that better quality of facial images and larger
database enhance the system performance in facial expressions and mood recognition of TBI
patients under natural challenging conditions. The proposed approach hopefully facilitates the
physiotherapists, trainers and caregivers to deploy fast rehabilitation activities by knowing the
positive mood of the patients.

1 Introduction

Traumatic Brain Injury (TBI) lead to life-long harm to physical, cognitive, emotional
and behavioral abilities depending upon the area of the brain damage. For exam-
ple if frontal lobe is damaged, person lacks skills of planning, organizing, emotional
and behavioral control, aggression, problem solving, attention, social skills, flexible
thinking, consciousness and hand-eye coordination [1]. Similarly if temporal lobe is
impaired, it can lead to complications in memory, recognition of faces, emotions elic-
itation, sequencing and speaking abilities. Moreover, occipital lobe is controlling the
visual functions and parietal lobe is responsible for perception, spatial consciousness,
objects manipulations and spelling [2]. Rehabilitation after brain injury is complex,
long and expensive process, that can vary greatly depending upon the intensity of
the injury and some times can result in permanent disabilities [3]. In America almost
one million people suffer from brain injury and almost same number of people suffer
in Europe each year, with approximately 4 million people are living globally having
long-term disability after TBI [4] [5].

Researchers are putting high emphasis on fast and efficient rehabilitation to lessen
the suffering and low quality life of TBI patients. Physiotherapists, trainers and
caregiver face severe complications in performing rehabilitation tasks as these pa-
tients have limited ability to perceive social signals associated with sudden changes

63



1. Introduction

in behavior including aggression, negative emotions, reduced motor and reasoning
skills [6] [7] [8]. Experts, psychologists, trainers and researchers strongly believe that
rehabilitation process can be made fast by accurately assessing the emotions of these
patients [7] [9]. Researchers are enforcing computer vision (CV) techniques for auto-
matic assessment of mental states [10] [11], monitoring elderly people [12] and mea-
suring various physiological parameters like heartbeat rate, fatigue, blood pressure
and respiratory rate [13], in a contactless manner by analyzing facial features [14] [6].
Therefore, researchers are focusing with greater intensity in the development of ac-
curate, reliable and robust facial expression recognition (FER) system. Automatic
detection and identification of facial features by utilizing CV techniques are cost and
time effective with 24/7 monitoring facility and lesser human assessment errors. Due
to this, it has wide range of applications in various fields like monitoring, medical
examination, forensics, biometric, defense and surveillance [6].

Most of the current computer vision techniques for Facial Expression Recogni-
tion (FER) are working effectively and robustly only on the healthy people in con-
trolled environment. But when these systems are applied on TBI patients in real
environment, we have to face unique challenges incurred from data collection, pre-
and post-processing, expression recognition and environmental conditions. However,
to the best of our knowledge there is neither research on data collection techniques
from TBI patients nor public database from real patients for facial expression analy-
sis. Thus, we created a database of TBI patients as in [6] and identified that emotional
states of TBI patients are quite different from the healthy people with large imbalance
of six common expressions along with higher negative emotional states.

The methods proposed by [15] and [16] perform exceptionally well for FER, and
its modeling and structuring as social signals for healthy people in controlled envi-
ronment. However, these systems demonstrated challenges and complications when
applied in real environment on real Traumatic Brain Injured (TBI) patients residing at
specialized centers like neuro-centers or care-homes [6]. These challenges are associ-
ated with non-cooperative and non-compliance patient’s behavior, along with varied
level of aggression both verbal and physical, agitation, anxiety, disorientation, dis-
inhibition, improper reasoning, lack of concentration, judgment and mental inflexi-
bility [17]. In addition to that, brain injured patients also suffer with limited facial
expressions such as smile, laugh, cry, anger or sadness or they may exhibit dispro-
portionate responses. On the other hand, some TBI patients also displays intense
responses like abrupt tears, laughter or anger outbursts. This is due to inability to
control emotions due to injury. We tested state of the art FER systems, like [15]
and [16], on real data of TBI patients in challenging scenarios with variable environ-
mental conditions and figured out there is need of reliable system for FER with high
quality facial images that are collected when patients are well-posed towards the cam-
era [6]. Nevertheless, due to the above mentioned reasons, TBI patients do not pose
toward camera thus illustrating very large pose variation with poor quality of facial
frames. In [6], we employed Face Quality Assessment (FQA) method prior to deep
architecture, to remove low quality and unwanted facial images. We also performed
3D face frontalization to acquire more frontal faces. We also developed unique data
collection techniques in uniform scenarios to get reliable data from TBI patients in
Neuro-centers. Exploiting facial expressions from TBI patients using computer vision
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techniques is not much explored field, with no database of these patients. To the
best of our knowledge, we are the pioneer in developing database of these patients to
understand their facial expressions and analyzing mood for rehabilitation purposes.

This article aims to provide the solution for TBI individuals by developing new
tool and extended database for determining and monitoring facial expressions.It also
presents unique experience in enhancing communication with patients and care givers,
as well as extraction of physiological and psychological signals and interpreting them
as social signals. In this article, we compare the results for six expressions as well as
classify the facial characteristics into positive and negative states [14]. Experts and
psychologists have annotated our collected data and featured negative expressions as
fear, disgust, anger, sad, stress and fatigue. Some patients exhibits unique expres-
sions like lip trembling, teeth grinding and frequent eye blinking, which have also
characterized as negative expression by the experts [18]. On the contrary, positive
expressions have featured as laugh, smile, surprise and few other unique neutral ex-
pressions. It is seen that in case of TBI patients, negative expressions are much more
abundant then positive expressions during the data collection sessions. With the help
of experts, trainers, physiologists, psychologists and caregivers, we determined three
uniform scenarios for reliable data collection of TBI patients. Details are explained
in section 3.1. We have employed a linear cascading of a Convolutional Neural Net-
work (CNN) and a Long Short Term Memory (LSTM) network [16], with Face Quality
Assessment (FQA) and 3D face frontalization on the facial images obtained through
RGB and thermal sensors with early and feature level late fusion techniques. Un-
like [15, 16], Our approach addressed additional challenges of non-frontal faces, less
cooperative and aggressive subjects, high occlusion, low quality of images that re-
quired a lot of preprocessing before feeding into system and varied expressions from
normal/healthy people. We have also extended the database with more subjects and
more effective pre-processing techniques like faster facial landmark detector with D-
LIB and 3D-face frontalization than our previous methods in [6, 14]. Experimental
results acquired by utilizing deep learning architecture, demonstrated that RGB and
thermal modalities in different fusion states assist each other on classifying patients
mental states accurately.

The rest of the paper is organized as follows. Next section will describe the
related work on FER systems. Section 3.1 describes the creation of the new ex-
tended database including camera specifications, data collection arrangements and
pre-processing techniques. Section 4 provides the methodology proposed for fa-
cial feature extraction and expression recognition. Section 5 demonstrates the results
achieved from experimentation. Finally, Section 7 concludes the paper.

2 Related Work

Prevailing FER systems can be distinguished generally on the basis of the techniques
used for facial features extraction and classification methods [19]. Facial feature ex-
traction methods can be based on: geometric features, appearance based methods and
hybrid ones [20, 21].

• Geometric feature extraction methods make use of geometric shape and posi-
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tion of facial components like nose, cheeks, eyebrows, lips, mouth, chin, re-
lated to time sequenced information of movement of these salient features. Fa-
cial characters movement is analyzed from the previous frame to the current
frame [22, 23]. Geometric features are immune to lightning condition fluctu-
ation, that gives flexibility to deal with non-frontal head positions by altering
the figure to frontal head pose to extract the features by measuring distance of
fixed reference points [24, 25]. Researchers applied effective shape models by
using 58 facial landmarks like Pantic et. al. [20].

• Facial feature extraction methods based on appearance utilize the characteristics
of a surface of face like skin texture, wrinkles, bulges and furrows. It is not
resistant to illumination variation [26, 27].

• Facial feature extraction methods that make use of both geometric features as
well as characteristics of surfaces fall in the category of hybrid methods [24].
Hybrid techniques have produced the best results in the development of auto-
matic FER systems.

We can further distinguish the facial expression recognition (FER) systems on the
basis of the classification approaches. Since last decade more and more efforts are
converged towards deep learning approaches due to fast computational powers and
state of art performances. As mentioned in [14] deep learning architecture involving
Convolutional Neural Networks (CNN) outperformed traditional methods and pro-
vided state of art results for face recognition [28–30], facial expressions recognition
[15, 16, 31–37] and emotional states identification [38–41]. These newer approaches
like CNN learn the features from the image data for aforementioned computer vi-
sion problems, unlike traditional machine learning approaches those use handcrafted
features. Handcrafted features such as Local Binary Pattern (LBP), Support vectors,
SIFT, Histogram of Oriented Gradient (HoG), Linear Discriminant Analysis (LDA),
Non-Negative Matrix Factorization (NMF) and Discriminant NMF and Local Quan-
tized Pattern (LPQ) applied in [42–49]. Although their computational costs are low,
CNN-based deep neural networks surpassed them in accuracy. This is because hand-
crafted features are accompanied with unintended features that have no or less impact
on classification. Similarly as these features made by human experts, so not all pos-
sible cases are included for features classification. Due to modern advancement in
computation devices and invention of many-core GPUs, more and more research is
focused around CNNs that has illustrated remarkable success for classification chal-
lenges [16, 50–53]. The major advantage of deep learning methods over common
machine learning models is the simultaneous performance of feature extraction and
classification. Moreover, deep learning methods apply iterative approach for feature
extraction and optimize error by back propagation, thus resulting in those important
features that human experts can miss while handcrafting features. CNNs are very
good at feature learning through training datasets.

Authors in [31], applied deep CNN with Support Vector Machines (SVM) and
won first prize in 2013-FER competition. Liu [33] accomplished three tasks- feature
learning, feature selection and classification in a consolidated manner and outper-
formed other methods in extracting extremely complex features from facial images
through Boosted Deep Belief Networks (BDBN). The problem of linear feature selec-
tions in previous method is addressed by [36] through DBN models. In 2015, Yu
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and Zang [34] demonstrated their work for Emotion recognition in Wild challenge
for FER based on static images. They have employed multiple deep CNN where
each network is randomly initialized thus reduced likelihood and hinge loss, result-
ing in significantly exceeding the challenge standard criteria. In year 2016, Yoshihara
et al. proposed a feature point detection method for qualitative analysis of facial
paralysis using DCNN [52]. For initial feature point detection, Active Appearance
Model (AAM) is used as an input to DCNN for fine tuning. Kharghanian et al. [53]
used DBN for pain assessment from facial expressions, where features were extracted
with the help of Convolution Deep Belief Networks (CDBN) to identify the pain.
They have further explored Deep Belief Network (DBN) for robust FER. Rodriguez
et. al. [15], in 2017 exploited the temporal information by linking Long Short Term
Memory (LSTM) with CNN fine tuned with features from VGG-Faces. Their method
was boosted by [16] through involvement of deep CNN for fast features extraction
and categorization into facial appearances and reinforcing the CNN+LSTM system
with super-resolved facial images.

3 THE PROPOSED METHOD

This section describes the main steps of the proposed methods for FER analysis of TBI
patients in real challenging scenarios. The block diagram of the proposed method
is illustrated in Figure B.1. First step is face detection from input video streams
like [15], followed by face alignment by landmark identification to reduce erroneous
face detection. These detected landmarks are tracked and then faces are cropped
according to the landmark positions. In the next step face quality is assessed by
following [54] and only good quality faces are stored in face log. Faces are then fed
to a CNN. This network was pre-trained with VGG-16 faces as used by [16] and [15].
These steps of the system are further explained in the following subsections.

Fig. B.1: Deep learning architecture based upon CNN+LSTM with pre-processing algorithm for
Facial Expression Recognition (FER).
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3.1 Creating TBI Patient Database
TBI patients have mild to severe injury, accompanied with paralysis, coordination and
speech inhibition, and higher level of emotional instability. For facial expression anal-
ysis, data is collected from patients who lived in neuro-center for at least 10 weeks
prior to commence the data collection so that trainers or care givers can understand
their different mental states. This helped in accurate annotation of the data. Phys-
iotherapist, trainers and caregivers devised the rehabilitation strategies by accessing
their health indicators, and neuro-psychological and cognitive test results [55]. Data
is collected from 9 TBI patients in three pre-defined rehabilitation scenarios in two
imaging modalities: RGB and Thermal. These special scenarios are selected with the
help of experts, trainers, physiotherapist and care givers by considering the reliability
of data as well as disability of patients due nature of injury as described in TableB.1.
These scenarios are: 1) Cognitive Rehabilitation, 2) Physical Rehabilitation, and 3)
Social Rehabilitation. These are described below.

Cognitive Rehabilitation Scenario

In this scenario, data is collected while patient is performing activities to train the
patient’s ability to understand particular information and perform function accord-
ingly. Experts perform set of repetitive activities with gradual increase in complexity
to asses the memory, attention, visual perception, communication, problem solving
and learning skills [56, 57]. In neuro centers, aforementioned task is accomplished
by use of calenders, memory devices, drawing clocks, playing quizzes and games,
reading or listening books or music, watching movies or other visual aids. Subjects
are also given specific tasks like placing room keys at fixed places, telling their daily
routine and activities, setting deadlines or time slots for their favourite tasks. These
activities are tailored to patients requirements as it is observed while performing
aforementioned tasks patients have large pose variations, attention inhibition, less
frontal facial pose, emotional instability and aggravated aggression. Different strate-
gies are adopted to enrich the attention and memory of the patient, particularly it is
make sure when any subject tells his story or daily routine his or her face must face
the camera by placing a mirror just behind the camera and asked them to visualize
themselves. Moreover quiz questions, time clocks, calenders, movies and etc. are
displayed over tablet placed next to camera, ensuring more frontal images.

Physical Rehabilitation Scenario

In this mode of data collection, patients are performing activities of physical rehabil-
itation to assess the functionality of sensory motor neurons. Depending upon the
nature of the stroke, muscle movements are reduced or ceased. Physiotherapists
conducts cardiovascular, skeletal-muscular and vestigial activities to assess the ac-
tivity tolerance, muscle-action coordination and postural control. These activities are
performed through mild walk or running, cycling, push-ups, arms raise, hands or
neck moves and other similar activities depending upon a particular subject disabil-
ity. These physical exercises are modified to have better and reliable facial and upper
body data. It is observed that when subjects walk, cycle, or perform similar physical
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Table B.1: Database Of TBI patients with Activity Participation

Subjects
Number

of Sessions
Activities Participated

Cognitive Social Comm Physiotherapy

Subject A 7 Y Y Y
Subject B 5 Y Y Y
Subject C 5 Y Y Y
Subject D 7 Y X Y
Subject E 3 Y X X
Subject F 4 Y Y Y
Subject G 3 X Y Y
Subject H 6 Y Y Y
Subject H 5 Y X Y

activity, pose varied largely resulting in very less usable data. To avoid such problems,
patients are asked to cycle over stationary bike while keeping their upper body still
as much as possible and visualize themselves in specific camera-mirror arrangement
as described in previous rehabilitation scenario. Similarly hand pressers, leg raises,
walking and other tasks are performed.

Social Rehabilitation Scenario

TBI individuals face severe complexity in social integration due to behavioral and
cognitive malfunctions. In this scenario, data is collected while TBI patients are either
eating, playing music or discussing or sharing stories, and playing cards or console
games in a group of at least 4 or more people. Social communication and integration
strategies are also modified according to need of the patients and to have good quality
of data. Best results were obtained, when subjects were playing games with the help of
consoles and cameras are adjusted next to monitor or screens. It is observed that clear
variations in expressions are recorded with changes in the game situations such as
happy faces are captured when subjects were winning, sad expression while losing,
tense look in difficult situation, even angry looks were observed when cheats are
applied in the game.

3.2 Data Acquisition and Preprocessing
Ilyas et.al. [6] established the TBI database with only RGB images where TBI subjects
are filmed by Axis RGB-Q16 camera with the resolution of 1280 x 960 to 160 x 90 pix-
els at 30fps (frames per second) in aforementioned specialized scenarios with tailored
techniques. Along with RGB, in this work we have obtained the thermal images with
Axis Thermal-Q1922 camera having 10 mm of focal length. After collecting the raw
data from both modalities, time synchronization is achieved by the time stamps in the
RGB frames captured with variable frame rate. Furthermore, 8-point homography
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estimation is employed for approximate image registration by determining homogra-
phy matrices from RGB to thermal by [58]. These collected images are passed to facial
image acquisition system with the following steps.

Face Detection and Tracking

In [6], face detection is performed by Viola Jones (VJ) algorithm. VJ uses Haar like
features and employs a classifier based on AdaBoost algorithm to detect the face and
discard background. However, due to large pose variation and non cooperative be-
haviour of TBI patients, VJ detector misses many faces in the video frames when
subject has even small non-frontal pose. To address this issue, we have employed
deep face detection [59] that gives the more flexibility to detect face even with large
pose variation. Deep face detector able to detect face with minimum confidence of
74.24% even when subject has more than 90 degrees of non frontal pose and challeng-
ing illumination conditions. After deep-face detection we employed facial landmarks
identification and tracking. We have also employed a face alignment method called
Supervised Decent Method (SDM) [60] that tracks the facial landmarks in subsequent
frames to capture maximum facial images. SDM helped in better enrolment of the
face and fast extraction of geometric structures. This also reduces the miss-detection.
In SDM, 49 facial landmarks at the apex of nose, curve of eyes, eye borrows, lips and
corner of the face are applied. SDM utilizes the optical flow vectors and pixel by pixel
neighbourhood measurement which are resulting in high computational efficiency
and precise tracking for longer time by avoiding window based point tracing [54].
After aligning the face, the face boundary is determined by landmarks, followed by
face cropping. Another advantage of facial landmarks tracking is the reduction of
possible erroneous detection by avoiding face detection in each of the video frames.

Face Quality Assessment and Face Logging

Face quality assessment is performed before lodging the facial frames into face log
system as it is seen that even capturing the facial images followed by face tracking,
there is still presence of unwanted features in the cropped facial images such as hands
or hairs over the face or downward faces. As the performance of the system is greatly
dependant upon the quality of facial data so these unwanted and erroneous images
must be removed. In our case, data is collected from TBI patients who have non
cooperative behaviour with continuous head or face movement, and most of the time
these movements are combined with hand motion in front of face or camera. Figure
B.2 is demonstrating such cases of occluded faces resulting low quality of cropped
facial image. In order to avoid such complications, we have devised a filter that
discard the faces of low quality on the basis of pixel intensities, image resolution,
sharpness and face rotation as shown in [6]. Low quality facial frames are identified
by setting first frame as a standard reference frame and discarding rest of the frames
who are not 80% or more similar with the first frame in a particular event of video [61].
Similarity of frames is calculated by the following equation:

SRBG =
∑M

m=1 ∑N
n=1(Amn − A)(Bmn − B)√

∑M
m=1 ∑N

n=1(Amn − A)2 ∑M
m ∑N

n (Bmn − B)2
× 100% (B.1)
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Fig. B.2: Face Quality Assessment overview: (a) Input Image with and without occlusion (b)
Varying image pixel intensities due to presence and absence of obstruction in front of the facial
image thus aiding in identifying low quality of images to be discarded [6]

In the above equation A and B are the reference faces whereas A and B are average
pixels levels of the current frame. M and N are number of rows and columns in an
image matrix. The degree of dissimilarity calculated from the above equation forms
the basis for face quality score. The more the dissimilarity the more the possibility
of a low quality face. During face logging, when the low quality facial frame in RGB
is discarded based on the filter, it’s corresponding thermal image is also removed
to maintain the synchronization in both modalities. Images are cropped to specific
neutral network input size (224x224 pixels in our experiment) after ensuring the best
quality of faces.

Face Frontalization

FER is dependant upon the pose of the subject and frontalization can boost the per-
formance of the system many folds. Frontalization is the process of manufacturing
frontal facing visual frames showing up in single unconstrained photos [62]. In case
of TBI patients with continues and large pose variation, this method has increased
the FER accuracy to considerable extent. We have employed the simpler approach
of using single, unmodified 3D face, termed as reference face for all the images un-
der observation to produce frontalized sights like [62]. This resulted in better image
alignment providing accurate comparison of local facial features of different facial
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Fig. B.3: Face frontalization process: (a) Query Image, (b) Facial features detection by SDM,
(c) Reference face image, (d) Soft symmetry and facial appearance estimation by corresponding
symmetric image locations to have frontalized image.

images. Facial features are detected by SDM [60], where pose is estimated by specify-
ing a reference projection matrix CM consist of intrinsic AM and extrinsic [RM tM]
matrices.

CM = AM ∗ [RM tM] (B.2)

The extrinsic matrix comprises of rotational matrix RM and translation vector tM].
Frontal pose is synthesized by taking the transpose of feature points in query image
and projecting it on the reference image using geometry of 3D model as seen in figure
B.3.As out of plane head rotation leads to less visibility of facial features, this results
in occlusion. This is reduced by employing soft symmetry by taking approximation
of 3D reference image and single view query image to estimate the visibility in sec-
ond image. This may result in replication of occlusion as appearances from one side
are transferred to another side of the face. In order to avoid this we take the advan-
tage of facial features of aligned images that appear at the same face image locations
regardless of the actual shape of the query image.

3.3 Linear Cascading of CNN and LSTM as Deep Learning
Architecture for FER

The frontalized facial images obtained by face logging are fed into deep learning ar-
chitecture composed of CNN and LSTM. CNNs are specialized set of artificial neuron
networks with learnable weights and biases. These have multiple input and output
layers to analyze the visual information by creating features maps of the image. A
schematic diagram demonstrating vital steps in convolutional neural network is rep-
resented in the figure B.4. A typical 2-Dimensional (2D) CNN takes 2D images as
input and considers each image as a n x n matrix. Generally, parameters of the CNN
are randomly initialized and learned by performing gradient descend using a back
propagation algorithm. It uses a convolution operator in order to implement a filter
vector. The output of the first convolution will be a new image, which will be passed
through another convolution by a new filter. This procedure will continue until the
most suitable feature vector elements {V1, V2, ..., Vn} are found. Convolutional layers
are normally alternated with another type of layer, called Pooling layer, which func-
tion is to reduce the size of the input in order to reduce the spatial dimensions and
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gaining computational performances and translation invariant [63]. CNN performed
remarkably well in facial recognition [64] as well as automatic facial detection [50]. In
order to take advantage of its good results for FER we have applied this method on
TBI patients data to extract facial features relevant to FER.

Fig. B.4: Convolution Neural Network (CNN) working paradigm with input, convolution, pool-
ing layers and feature vectors. Adopted from [65]

In general, like any other neural network, CNN deals with images that are iso-
lated. However, in our case we are dealing with the events in a video that happened
in time sequential approach so providing the notion of using temporal information.
In order to utilize the temporal information associated with facial expression in video,
we have used a special kind of Recurrent Neural Network (RNN) that is capable of ab-
sorbing the sequential information as well as learning long-term dependencies, called
LSTM model from [15]. The LSTM states are controlled by three gates associated with
forget ( f ), input (i), and output (o) states. These gates control the flow of informa-
tion through the model by using point-wise multiplications and sigmoid functions σ,
which bound the information flow between zero and one by the following steps.

In the first step, the forget ( f ) gate controls the information that is passed through
the LSTM cell. It perceive information at h(t− 1) and x(t) and produce output num-
bers between 0 and 1, zero to forget and 1 to keep the information in the cell state
C(t− 1) as seen in Figure B.5a).

f (t) = σ(W(x→ f )x(t) + W(h→ f )h(t− 1) + b(1→ f )) (B.3)

In the next step, input gate i with sigmoid σ layer identifies which values will be
updated and with tanh layers creates the vector to update the state from C(t -1) to
C(t).

i(t) = σ(W(x→i)x(t) + W(h→i)h(t− 1) + b(1→i)) (B.4)

C̃(t) = tanh(W(x→c)x(t)) + W(h→c)h(t− 1) + b(1→c)) (B.5)

C(t) = f (t) ∗ C(t− 1) + i(t)C̃(t), (B.6)

In the last step, output is decided on the basis of the state of the cell but with
filtered version. It is done by first running sigmoid σ layer that decides which infor-
mation of the cell will go to the output then tanh evaluates the values between (-1 and
1) and multiply it with output of the input igate as demonstrated in the Figure B.5d).
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o(t) = σ(W(x→o)x(t) + W(h→o)h(t− 1) + b(1→o)) (B.7)

h(t) = o(t)tanh(C(t)), (B.8)

where C(t) is the input to the cell at time t, C is the cell, and h is the output. W(x→y)
are the weights from x to y.

Fig. B.5: Depiction of Steps LSTM system with forget, input and output states.

In this paper, linear architecture of CNN and LSTM have been employed, to extract
the facial features with the help of CNN from the input faces of TBI patients and then
feed to LSTM to exploit the temporal relation on the basis of extracted features in
timely manner. For feature extraction we have fine tuned the CNN with off the shelf
pre-trained VGG-16CNN model [66]. Features are obtained as fc7 layer of CNN with
VGG-16 model that is feed into LSTM model to analyze the performance of combined
CNN + LSTM deep neural architecture. Figure C.1 is exhibiting the main steps of this
neural network along with pre-processing techniques.

3.4 Fusion of RGB and Thermal Modalities
We have employed two fusion approaches in order to analyze the performance of both
RGB and thermal modalities for FER as we did it in [14]. These techniques are: a)
Early fusion approach and b) Feature level late fusion approach. In the early fusion,
both RGB and thermal modalities are combined into single array for feature extrac-
tion through CNN. In the feature level fusion technique, feature vectors obtained
separately from RGB and thermal data with the help of CNN and then combined as
a single input to LSTM model for classification. Block diagrams of both of the fusion
approaches are demonstrated in Figure B.6.

4 EXPERIMENTAL RESULTS

In this section, we will discuss the database structure and its utilization in our exper-
iments. We then demonstrate the performance of the proposed system.
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Fig. B.6: Early and Feature Level Fusion schemes for RGB and thermal modalities. Adopted
from C.2 [67]

4.1 The Database Structure
TBI patients database is established for FER as described in section 3.1. We have
collected data from 9 TBI patients in multiple phases in 45 sessions with the help
of experts, trainers and physiotherapists in specialized scenarios. We collected the
data from OSterskoven Neurocneter Hobro and SCN Frederikshavn, Denamrk. It is
noteworthy that all the patients did not participate in all the activities due to nature
of disability. We analyzed 6 basic emotional expression of the participated TBI pa-
tients, which are happy, sad, anger, fatigue, surprise and neutral. Data collection
scenario are adjusted to get more frontal images with clearer expressions. A tablet
displaying emotional scenes is placed just parallel to camera while recording their
facial expressions. One interesting observation is that all the TBI patients have taken
deep interest in mind game, and movie or picture illustration regardless of their dis-
ability nature. This allows us to collect more neutral, happy and angry expressions.
However, we could not collect much expressions of sadness, surprised and fatigue
due to non-cooperation, traumatic disabilities and other social and technical issues.
Another complication is associated with large pose variation due extensive head mo-
tions of few TBI patients. We got 935 video events, each of maximum 5 seconds of
duration comprising almost 140,000 frames. However, as data were highly imbalance
with most of the events are captured with neutral expressions so we have applied
data augmentation techniques to avoid over fitting.
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4.2 Performance Evaluation
Table B.2 demonstrates the performance comparison of VJ face detector vs deep face
detector. From the results it is clearly evident that deep face detector [59] is much
better than VJ. This is because VJ is unable to detect faces when there is large pose
variations, whereas deep face detector [59] has successfully identified the face that
is 90 out of plane with 74.24% confidence. Also, VJ produce false detection of facial
images due to change in illumination condition. On the other deep face detector out
performed the VJ in challenging conditions with accuracy and speed. Last but not
least, when face quality assessment is applied on database of VJ it produced 14,875
false frames detection that account error percentage of 12.56%. On the contrary when
FQA is applied over deep face detector database, it detected 4,169 erroneous frames.
That accumulates only 2.97% false frames as seen in Table B.2. These erroneous frames
in both cases are either due to false detection or obstruction in front of the face result-
ing in lower quality of the facial images.

Table B.2: The performance comparison of Viola Jones face detector Vs Deep face detector.

Viola Jones Deep Face

Total no. of Frames 118502 140250
Training frames 94800 112200
Testing Frames 23700 28005
Miss-Detection 14875 4169

Miss Detection Percentage 12.56% 2.97%
Frames Missed 21748 0

We have employed a number of techniques to evaluate the performance of the
system, such as by illustrating FER accuracy by Area Under Curve (AUC) and by
displaying confusion matrix for both early and feature level fusion. Table B.3 depicts
the FER accuracy by measuring AUC. In this scenario number of epochs of CNN-
LSTM system is gradually increased by the steps of 5, from 5 to 50 keeping other
parameters such as RHO, recurrent depth, and drop-out probability constant. From
the results we observe that the accuracies of RGB database are increased with gradual
increase in epochs up to 25 epochs. It reached up to level of 83.25% at the 25th epoch.
On the other hand, with fusion of RGB and thermal at early stage, AUC is gradually
increased to 83.54% untill 25th epochs and then decreased with further increase in
epochs to 50th level. It is also observed that with thermal data only, FER accuracy is
also gradually increased from 68.951 to maximum value of 73.04% at the 25th epoch.
It is also noted that all the databases such RGB with non-frontalization, frontalization,
thermal and fused datasets exhibited optimal performance at the 25-30 epochs.

In contrast to Table B.3, we have gradually changed the RHO values, while keep-
ing the other parameters such as epochs, recurrent depth and drop-out probability
constant as seen in Table B.4. It is observed that the RGB non- frontalized dataset
reached maximum the accuracy of 79.04% when RHO value is 7. RHO value is grad-
ually changed at steps of 2, from 1 to 13, means giving more temporal information
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Table B.3: AUC results for FER of TBI patients data with gradual increase in epochs

AUC

Epochs RGB RGB Thermal Early Fusion
Non-Frontalized Frontalized RGB+T

10 74.91 75.55 68.95 75.01
15 75.40 78.87 69.51 78.42
20 78.01 80.25 71.68 79.85
25 79.36 83.26 73.04 83.54
30 77.85 82.97 72.16 82.45
35 76.29 80.56 70.21 81.03
40 75.06 78.17 68.55 79.49
45 72.63 76.81 67.86 78.03
50 72.31 74.86 67.52 76.46

for FER. AUC values showed the RGB frontalized dataset exhibited slightly higher
accuracy of 83.75% at the same 7th RHO. In contrast, thermal data got the accuracy
above 70% in all steps with maximum value of 75.02% at 5th RHO and minimum
value of 71.19%. Maximum AUC is observed with RGB+T early fusion data base with
maximum value of 80.44% when RHO value is increased to 7. It is clearly evident
from the experiment results for TBI patients data, despite of the challenging data set
accuracy of system is increased to certain extent as compared to [6].

Table B.5 and TableB.6 illustrated the confusion matrix obtained by the early fea-
ture level fusion of the RGB and Thermal modalities respectively. Early fusion of both
modalities has demonstrated the maximum accuracy of 88% for neutral expressions,
along with 85% for angry, 82% for happy and 78% for sad emotions. However, 67%
accuracy is for fatigue feelings due to the less training data for this expressions. Fea-
ture level fusion showed better results for neutral 89%, happy 85% and for fatigue
71% accuracy in TableB.6 as compared to early fusion. Both early and feature level
fusion exhibited accuracy 71% for surprised feelings.

5 Conclusion

In this paper, we investigated the performance of FER for real TBI patients in uncon-
trolled natural challenging conditions. The study depicts the complexities that are
associated with TBI patient data collection for database establishment due to varying
illumination and changing pose conditions. Data is captured from TBI patients resid-
ing in neurocenters in real scenarios to have reliable data. We proposed an effective
approach for FER for these subjects. Facial images are extracted from the video frames
by employing different methods followed by various pre-processing techniques en-
suring high quality of images that are fed into a CNN+LSTM based deep learning
architecture to exploit both spatio-temporal information to detect the patients mental
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5. Conclusion

Table B.4: AUC results for FER of TBI patients data with gradual increase in RHO

AUC

RHO RGB RGB Thermal Early Fusion
Non-Frontalized Frontalized RGB+T

1 75.46 77.59 73.55 72.42
3 76.51 79.08 73.83 75.73
5 78.49 83.75 75.02 78.67
7 79.04 83.41 74.89 80.45
9 78.42 81.46 74.16 79.03

11 77.11 79.27 73.68 78.33
13 74.22 78.07 72.10 76.70

Table B.5: FER confusion matrix for early fusion of RGB and thermal modalities

Neutral Happy Angry Sad Fatigued Surprised

Neutral 0.88 0.03 0.02 0.04 0.02 0.01
Happy 0.04 0.82 0.02 0.03 0.02 0.07
Angry 0.02 0.02 0.85 0.05 0.06 0.02

Sad 0.06 0.01 0.04 0.78 0.11 0.01
Fatigued 0.07 0.01 0.05 0.2 0.67 0.09

Surprised 0.02 0.08 0.1 0.02 0.06 0.71

Table B.6: FER confusion matrix for feature level fusion of RGB and thermal modalities

Neutral Happy Angry Sad Fatigued Surprised

Neutral 0.89 0.02 0.03 0.05 0.01 0.01
Happy 0.03 0.85 0.02 0.03 0.02 0.04
Angry 0.02 0.02 0.82 0.05 0.06 0.02

Sad 0.05 0.01 0.04 0.81 0.11 0.01
Fatigued 0.06 0.01 0.05 0.3 0.71 0.02

Surprised 0.05 0.04 0.1 0.02 0.06 0.71
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status in terms of facial expressions. The results are demonstrated for 6 basic facial
expressions classification by using multimodal data in both early and feature level
fusion. The results showed clear improvement over our previous approach in [14].
We observed that deep face detector has enhanced the detection rate of facial images
even in poor lightening and extensive non-frontal images. However, for future work,
TBI patients upper body movements, larger dataset for training and subject specific
knowledge base incorporation can be explored for mood and emotion recognition to
better facilitate rehabilitation procedure.
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1. Introduction

Abstract

Rehabilitation after traumatic brain injury (TBI) is very critical as it is largely unpredictable
depending upon the nature of the injury. Rehabilitation process and recovery time also varies,
as it takes months and years, depending upon the assessment of treatment, mental and phys-
ical conditions and strategies. Due to non-cooperative behaviour of patients, and increase in
negative emotional expressions it is very beneficial to evaluate these expressions in a contact-
less way, and perform a rehabilitation physiotherapy, cognitive or other behavioral activities
when the patient is in a positive mood. In this paper we have analyzed the methods for facial
features extraction for TBI patients to determine optimal time to have aforementioned rehabil-
itation process on the basis of positive and negative facial expressions. We have employed a
deep learning architecture based on convolutional neural network and long short term memory
on RGB and thermal data that were collected in challenging scenarios from real patients. It
automatically identifies the patient’s facial expressions, and inform experts or trainers that "it
is the time" to start rehabilitation session.

1 Introduction

Traumatic brain injury (TBI) causes life-long damage to cognitive, physical, behavioural
and social functions. It may take up to 5 years or more for recovery after TBI [1]. Ac-
cording to International Brain Injury Association (IBIA), annually one million people
suffer from traumatic brain injury (TBI) only in America whereas same number of
people suffer with TBI in Europe [2]. American Center for Disease Control and Pre-
vention estimates more than 3.7 million people are living with long term disability
after TBI. During rehabilitation period, patient has to live in a specialized care center
called neuro-center or care home where the main focus is on the retraining of activ-
ities of daily life, cognitive, social and physical exercises through a set of protocols.
Recovery targets are based on determination of combination of cognitive, behavioral
and physical shortfalls. It is seen that rehabilitation activities are performed daily on
set time table of neuro-center, regardless of mental conditions of subject. This leads
to more time expensive training with less result oriented outcome.

There is high urgency of fast and accurate rehabilitation process so the TBI pa-
tients have to spend less time in care centers or have to suffer less with limited in-
dependence and low quality of life. Caregivers, trainers or experts dealing with TBI
patients face severe difficulty in performing rehabilitation activities as the patients
have limited or reduced ability to perceive social and interaction signals [3]. In ad-
dition to that there is relative increase in negative emotions like depression, anger,
anxiety, sadness, verbal or physical aggression and lack of social communication af-
ter TBI [4] [5]. Extra consideration and care need to be made while interacting with
these patients. Experts and trainers believe that with assessment of impact of injury
to positive and negative emotions, caregivers can provide more accurate and faster
rehabilitation services [6]. Goal and activity setting, for brain injury rehabilitation
by involving patients emotional states, increase the chances of faster recovery with
broader aspects [5]. It will provide flexibility to staff to work around with many more
patients at the same neuro-center in less time.
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1. Introduction

Experts are putting emphasis on implementing Computer Vision (CV) techniques
in health care sector as population is growing, so as the number of brain injured pa-
tients. Therefore, automatic diagnosis of mental and physical health states through
unobtrusive computer vision techniques by using facial features has rapidly increased
since past decades [7] [8] [9]. The fundamental approach for utilizing these CV tech-
niques is to diminish the errors by human assessment. Furthermore, these approaches
are cost effective as compared to medical examination by physicians or doctors, and
can provide continues monitoring of the patients.

Existing CV techniques for facial expression recognition (FER) systems are mostly
designed and implemented for healthy people. However, TBI patients’ emotional
states are quite different from healthy people as they have high degree of imbalance
of six common emotional expressions accompanied by reduced muscle movement or
paralysis. The database established for TBI patients for FER described in our previous
paper [4], shows that it is very difficult to have all six expressions. Therefore, in this
paper we suggest to classify the facial features into two emotional states either pos-
itive and negative. If patients are found to be in a positive mood, the caregivers are
alarmed to start the rehabilitation. Furthermore, we do bimodal analysis of facial im-
ages in both the color RGB and thermal modalities. To do this, we have expanded our
previous database of [4] by including more TBI patients. Experts and psychologists
have been asked to help us annotating the collected data. They characterized posi-
tive expression as smile, laugh, surprise and few unique neutral expressions, while
fear, disgust, anger, sad, stress and fatigue are categorized as negative expressions,
sometimes additionally associated with lips trembling, teeth grinding and frequent
eye blinking [10]. In case of TBI patients, negative expressions are more frequent as
compared to positive ones. Our obtained experimental results using deep learning
techniques show that the two employed modalities can complement each other on
classifying patients status to positive or negative.

In terms of methodology, contributions by are probably most close to our method
but these systems work well for healthy people in controlled environment. Moreover
these systems have luxury of data sets where subjects were cooperative with no or
less pose variation, minimum occlusions and high quality images unlike with TBI
patients. As described in our previous paper [4], our database in [4] was established
with Face Quality Assessment (FQA) but with only contained RGB images. In the
current paper, we have improved the database with both RGB and thermal images
with additional subjects and more pre-processing techniques like face frontalisation.
We have verified the proposed system with real data of TBI patients collected in real
environment at neuro-center where these TBI individuals are looked after 24/7.

The rest of this paper is organized as follows: The related work on FER are re-
viewed in the next section. Section 3 describes the new database including data col-
lection and pre-processing techniques. Section 4 describes the proposed methodology
for facial feature extraction and expression recognition. Section 5 presents the results
obtained from the experiments. Finally, Section 7 concludes the paper.
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2 Related Work

Current FER system can be categorized on the basis of methods used for feature
extraction and classification. Our main focus is on the methods involving Convolution
Neural Networks (CNN) or other deep learning approaches as they provide state of
the art results for, e.g., face recognition [11] [12] [13], facial expressions recognition
[14] [15] [16] [17] [18] [19] [20] [21] [22] and emotional states identification [23] [24] [25]
[26]. Handcrafted features such as Local Binary Pattern (LBP), SIFT, Local Quantized
Pattern (LPQ) and Histogram of Oriented Gradients (HOG) applied in [27] [28] [29]
[30] [31] are outperformed by CNN based deep neural networks despite their low
computational cost.

In [14], Tang proposed deep CNN along with Support Vector Machines (SVM)
and achieved state of the arts results for FER with 1st prize in FER-2013 competi-
tion. In 2014, Liu [16] performed three functions- feature learning, feature selection
and classification in unified manner through Boosted Deep Belief Networks (BDBN).
This method worked exceptionally well even for extremely complicated features from
facial image. [19] used DBN models to overcome the limitations of linear feature se-
lections. Yu and Zang [17] in 2015, presented their work for Emotion recognition in
Wild challenge for image based static FER. They have applied multiple deep CNN
with random initialization of each network and minimized likelihood and hinge loss.
Their results surpassed the challenge baseline significantly. In year 2017, [22] exer-
cised CNN to learn features from VGG-Faces and integrated with Long Short Term
Memory (LSTM) to gain the temporal information. This approach was further im-
proved by [21] who applied deep CNN for features classification into expressions and
feed the system with super-resolved facial images.

3 TBI Patient Database for FER

3.1 Data Acquisition
To analyze facial expressions, data is collected in three pre-specified scenarios from
seven TBI patients in two modalities: RGB and Thermal. Pre-specified scenarios in
data collection are maintained to have reliable data for further use. Those scenarios
are: 1) cognitive activity 2) physiotherapy and 3) social communication. These scenar-
ios are selected after consulting many experts and care givers, who are working on
rehabilitation of TBI individuals in Denmark. On contrary to healthy people, as men-
tioned in [4], data acquisition task is quite complicated due to extreme behavioural
responses, verbalization, physical aggression, impaired reasoning, reduced cognitive
skills along with frequent pose variations.

Ilyas et al. [4], collected RGB database by Axis RGB-Q16 camera with resolution
of 1280 x 960 to 160 x 90 pixels at 30fps (frames per second) and applied pre process-
ing techniques of face detection, FQA, (Supervised Decent Method) SDM for land-
mark detection and tracking before logging into a face log. We have operated with
a Logitech camera as well to record the starting and ending time stamp of particu-
lar expressions. Along with RGB, we have gathered thermal images of TBI subjects
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with Axis Thermal-Q1922 camera with focal lens of 10 mm. RGB cameras are prone
to difficulties in challenging conditions like shadows or when subject are obscured
with complex background. Thermal cameras, on the other hand, can provide addi-
tion information of a scene. Thermal and RGB imagery are synchronized with the
help of time stamps and annotation are made in sequence of facial expressions. Both
RGB and thermal images are collected with same 30 fps. Furthermore, homography
estimation is employed for image registration by determining homography matrices
from RGB to thermal by [32].

Table C.1: Database Of TBI patients with Activity Participation

Subjects
Number

of Sessions
Activities Participated

Cognitive Social Comm Physiotherapy

Subject A 7 Y Y Y
Subject B 5 Y Y Y
Subject C 5 Y Y Y
Subject D 7 Y X Y
Subject E 3 Y X X
Subject F 4 Y Y Y
Subject G 3 X Y Y

Fig. C.1: CNN+LSTM based deep learning architecture for both modalities to exploit spatio-
temporal information for FER.

3.2 Database Structure
Data is collected from seven TBI patients in 34 sessions on the above mentioned three
pre-specified scenarios. Few subjects did not take part in all activities, details are de-
scribed in Table C.1. Two categories of expressions are recorded: Positive Expression
(PE) and Negative Expressions (NE). PEs are smile, laugh, surprise and few unique
neutral expressions, while NEs are fear, disgust, anger, sad, stress and fatigue. We
have got 861 video events, each of maximum 5 seconds in length.
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4 The Proposed Methodology

This section presents the architecture of the intended approach for FER analysis of real
TBI patient in realistic environment. We have employed the same method as followed
in [4] but employed new pre-processing technique of face frontalization because of
large pose variation. We tested the deep learning method of [4] on both modalities,
with early and late fusions. Facial expressions are recognized by employing CNN (to
use spatial features) and linking with LSTM to utilize spatio-temporal attributes of
RGB, thermal and fused RGB-thermal modalities. The block diagram of the proposed
method is illustrated in Figure C.1. The steps of the proposed system are further
explained in the following subsections.

4.1 Pre-Processing
Firstly, the face is detected, and facial landmarks are identified and tracked using [33]
from a synchronized input video. TBI patients have large pose variations so to avoid
loss of information, the posed faces are rotated using a frontalization algorithm. For
face frontalization, landmarks are calculated with arbitrary facial positions and by
finding inverse of the transpose matrix, the face is frontalized. In next step, face crop-
ping is done in RGB modality, and associated faces in thermal modality is cropped by
applying a homography. Homography is a special technique that allows geometric
transformation of fixed points from one plane to another. In this case, RGB and ther-
mal planes are homo-graphed with subject face. To remove erroneous detection and
ensuring high quality of images, face quality assessment is applied before feeding the
faces into the CNN pipeline.

4.2 CNN + LSTM Architecture
After the pre-processing of the data, it is fed to 2D-CNN for training purpose for
mood recognition based on PE and NE. This network is fine tuned by VGG-16 face
model [34] for spatial feature extraction. CNN parameters are initialized randomly
and through back propagation using gradient descent its weights are adjusted. Ther-
mal data is also fine tuned with pre-trained VGG-16 face (RGB) model. CNN deals
with frames in isolated manner. For capitalizing on relation with time, special Re-
current Neural Network (RNN) called LSTM is employed. LSTM is gate controlled
network with input (i), output(o) and forget ( f ) gates. LSTM gates holds the input
information as long as its forget gate is not triggered to acquire the temporal infor-
mation between frames for said purposes. These gates control the flow of instructions
by point wise multiplication and sigmoid functions σ, which bound the information
flow between zero and one by the followings:

i(t) = σ(W(x→i)x(t) + W(h→i)h(t− 1) + b(1→i)) (C.1)

f (t) = σ(W(x→ f )x(t) + W(h→ f )h(t− 1) + b(1→ f )) (C.2)
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In these equations, W are weights associated with activated neurons for particular
input i. Where as σ squashes the value of activation between the range of 0 and 1

z(t) = tanh(W(x→c)x(t)) + W(h→c)h(t− 1) + b(1→c)) (C.3)

c(t) = f (t)c(t− 1) + i(t)z(t), (C.4)

o(t) = σ(W(x→o)x(t) + W(h→o)h(t− 1) + b(1→o)) (C.5)

h(t) = o(t)tanh(c(t)), (C.6)

where z(t) is the input to the cell at time t, c is the cell, and h is the output. W(x→y)
are the weights from x to y. In the classification, LSTM finally provides a decision
score for the expression recognition.

Fig. C.2: Block diagram of early and Feature Level Fusion of modalities for FER.

4.3 Fusion Scheme
In order to analyze the ability of both modalities in FER applications, two approaches
were employed: 1) data level fusion (early) 2) feature level Fusion. In the first ap-
proach both modalities are combined into data array for feature learning through
CNN. In the second method, both RGB and thermal imagery features are fed sepa-
rately into deep learning system for feature learning and combined together as input
for second classifier (LSTM) for final output. Block diagram of both modalities can be
seen in Figure C.2.
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Table C.2: Confusion matrix by feature level fusion of modalities for 6 basic FER.

Neutral Happy Angry Sad Fatigued Surprised

Neutral 0.77 0.03 0.02 0.07 0.07 0.01
Happy 0.04 0.71 0.02 0.03 0.05 0.16
Angry 0.04 0.02 0.81 0.09 0.03 0.02

Sad 0.07 0.01 0.05 0.76 0.13 0.01
Fatigued 0.09 0.01 0.09 0.1 0.55 0.11
Surprised 0.07 0.14 0.1 0.02 0.06 0.56

5 Experimental Results

We demonstrate the results in the following contexts:
a) Classification of six basic expression groups in both early and feature level

fusion scenarios to evaluate the performance of CNN+LSTM based FER
b) PE and NE classifications before and after face frontalization on all individual

modalities and fusions.
First we produced results of positive and negative mood identification (based on

PE and NE) without employing face frontalization (FF) and then with face frontaliza-
tion. It is seen in table 4 column 1-4, after FF recognition accuracy is increased to 86.93
percentage from 79.34. In second case, we trained our system for thermal data, true
positive and true negative are 69 and 65 percentage with high miss classification rate
of 23.74 percentage. Overall recognition accuracy is achieved up to 74.45 percentage.
In next stage we combined both RGB with FF to thermal data in early fusion scheme
and obtained accuracy of 84.39 percentage for mood recognition. We also employed
early and feature level fusion to analyze the results for 6 common facial expressions
in Table B.5 and Table C.2. In both cases, fatigue and surprise have less recognition
accuracy due to less available data. If we compare table 4 with table B.5 and C.2, we
can see that accuracy of system is increased for positive and negative expressions as
compared to all 6 expressions. In the next stage we employed the [22] system on our
database 4. It is observed that its accuracy is 87.97 percentage much lesser than [22]
97.2 percentage, when he implemented on CK+ database. In last stage, we employed
the feature level fusion and achieved 89.74 percentage of accuracy. By feature level
fusion, despite computational expensive surpassed other state of art methods for pos-
itive and negative expression recognition. That shows that our system is producing
competitive results with challenging data sets.

6 Conclusions

Mood recognition is important task for rehabilitation and care centers. In this work
we have faced the challenge of mood recognition of TBI patients rather than facial
expression recognition for healthy people. In case of TBI individuals, extraction of
all expression is very complicated and its dependant to patient disability and FER
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Table C.3: Recognition accuracy of proposed method in different contexts

Confusion Matrix %
RGB Non-Frontal RGB Frontal Thermal Early Fusion [22] Feature Level Fusion

PE NE PE NE PE NE PE NE PE NE PE NE

Positive Expression (PE) 0.75 0.17 0.86 0.15 0.69 0.25 0.84 0.14 0.79 0.12 0.86 0.11

Negative Expression (NE) 0.21 0.71 0.11 0.87 0.21 0.65 0.16 0.79 0.1 0.82 0.09 0.89

Recognition Accuracy (%) 79.34 86.93 74.45 84.39 87.97 89.74

Table C.4: Confusion matrix by early fusion of modalities for 6 basic FER

Neutral Happy Angry Sad Fatigued Surprised

Neutral 0.77 0.03 0.02 0.07 0.07 0.01
Happy 0.04 0.71 0.02 0.03 0.05 0.16
Angry 0.04 0.02 0.81 0.09 0.03 0.02

Sad 0.07 0.01 0.05 0.76 0.13 0.01
Fatigued 0.09 0.01 0.09 0.1 0.55 0.11
Surprised 0.07 0.14 0.1 0.02 0.06 0.56



References

did not provide good results [4]. However, we recognized the mood of patients with
accuracy of 86.93 percentage that is very close to [22] system when implemented
on TBI patient database. So this system can help physiotherapist and trainers in fast
rehabilitation process after recognizing the positive mood of the patient. Furthermore,
we applied early and feature level fusion to enhance the recognition rate of the system.
Our system results can be improved further by employing 3D face frontalization.
Even though the results are encouraging, efforts are still in progress to provide the
robust solutions to deal with real time and environment challenges like real time
computation or patient positioning.
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1. Introduction

Abstract

Despite recent significant advancements in the field of human emotion recognition, apply-
ing upper body movements along with facial expressions present severe challenges in the field
of human-robot interaction. This article presents a model that learns emotions through up-
per body movements and corresponds with facial expressions. Once this correspondence is
mapped, tasks such as emotion and gesture recognition can easily be identified using facial
features and movement vectors. Our method uses a deep convolution neural network trained
on benchmark datasets exhibiting various emotions and corresponding body movements. Fea-
tures obtained through facial movements and body motion are fused to get emotion recognition
performance. We have implemented various fusion methodologies to integrate multimodal fea-
tures for non-verbal emotion identification. Our system achieves 76.8% accuracy of emotion
recognition through upper body movements only, surpassing 73.1% on the FABO dataset.
In addition, employing multimodal compact bilinear pooling with temporal information sur-
passed the state-of-the-art method with an accuracy of 94.41% on the FABO dataset. This
system can lead to better human-machine interaction by enabling robots to recognize emotions
and body actions and react according to their emotions, thus enriching the user experience.

1 Introduction

Human emotions play a vital role in human-human and human-machine interaction.
Emotions represent the instantaneous mental states, which varies according to human
behavior and communication. Researchers are emphasizing automatic recognition of
human emotions as it is one of the essential parameters for natural human-machine
interaction.

In human-machine interaction, the interaction would be impaired if machines
cannot recognize or understand human emotions. Similar applies to human-human
interaction if the other party fails to understand these body expressions.

If machines can react to our moods, that would enable smart homes or centers
to adjust lighting, music, and temperature accordingly. It would also help medical
doctors and physiologists automatically identify the symptoms of hypertension, de-
pression, and other behavioral disorders, enabling them to have early preparations for
such conditions. This skill can enable sociable robotics to assist people in simple tasks
such as delivering meals or vacuuming the house. Humanoid robots that provide
services to people, the human-robot interaction would greatly improve if these robots
could adjust their reactions to the current emotional state of a person [1–4]. Gener-
ally, it would enable machines to respond, not limited to direct commands but with
the ability to adjust their reactions to have natural and human-like, human-machine
interaction. However, these interactions are minimal and could be improved if the
robot had more knowledge about the person they need to interact with [5].

Human recognize and demonstrate emotions through multi-modalities such as
through facial expressions [6–9], body movements [6, 7, 10, 11], speech recognition [12]
and physiological signals [13–17]. Existing methods for identifying these body expres-
sions are heavily relying on audio-visual cues [12] and wearable sensors such as ECG
monitors [13–17]. Audio-visual fusion have achieved remarkable results with accu-

101



1. Introduction

Fig. D.1: Bimodal Emotion Classification Model through Facial Expressions and Upper Body
Movements.

racy of approximately 99% [18]. However, these approaches have their limitations as
audio-visual sensors cannot extract inner affection [17, 19]. For instance, a person can
be happy or sad without smiling and crying and vise versa. In addition, people vary
greatly in the expression of their emotions. Detection of signals through physiological
sensors correlate heartbeat, blood pressure, and others signals with happiness, anger,
surprise, and others. This approach is more suitable for identifying inner feelings as
it provides information about heart rhythm interaction with the brain system. How-
ever, the wearable body sensors cause inconvenience, so it is not suitable for emotion
detection in everyday practices.

Research has also shown that body language comprises a significant amount of
the affective information [10, 11]. According to Mehrabian [20], only 7% of human
communication is conveyed through words, 38% through vocal tone, and 55% through
non-verbal elements such as facial expression, body language, and gestures. Body
posture, gestures, eye movement, hand and head movement, touch, or even personal
space represent the body language [20]. Many studies have proved theoretically and
empirically the benefit of incorporating various modalities in the perception of human
emotions compared to using a single method [17, 21]. Complex human emotions
can be fully-implied by integrating significant features from multiple modalities (e.g.,
facial features and body gestures).

In our research article, we have tried to explore the effectiveness of facial expres-
sions and body gestures to recognize emotions. For this purpose, we have followed
two approaches; in the first technique, Convolutional Neural Networks (CNNs) clas-
sify emotions without considering temporal features. In this system, single images
are used, thus classifying each frame in videos in real-time. In the second approach,
following [7, 22], we have used the temporal information to classify the emotions,
but a contrast to [7, 22] full images are fed to the Long Short Term Memory (LSTM)
network to exploit the temporal information. Besides, this article will explore various
fusion techniques like product fusion method (PFM), average fusion method (AFM),
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and Multimodal Compact Bilinear Pooling (MCB) [23] fusion and discuss their perfor-
mances. Even though deep learning approaches show improved accuracy compared
to conventional approaches, they are still more computationally demanding. Hence,
this work will explore a solution with less computational requirements.

The paper organization is as follows: The following section 2 will discuss the
related research. Section 3 presents the proposed model, illustrating how it deals
with a frame-based and sequence-based recognition of the emotions with different
fusion techniques. This section also discusses the evaluation of the parameters to
decrease the computation power. Section 4 describes the experimental results and
compares them with state-of-the-art methods. The conclusion and discussion of the
experimental results with future work are presented in section 5.

2 Related Research

Emotion recognition through non-verbal modalities like facial expressions and body
gestures is viewed as one of the most effective cues [19]. Therefore, many researchers
have explored the fusion of visual-modalities for improved affect understanding [13,
17, 24–27]. They illustrate that facial expressions and body gestures augment each
other in understanding emotional states in activities of daily living (ADL) and social
robot interactions. Researchers [28] and [26] have analyzed the facial features with
body gestures, particularly upper limbs and head movements, for emotion recogni-
tion. Former has utilized Former has utilized facial action units (AU) and performed
classification with Bayes Net with early and late fusion whereas later has employed
Spatio-temporal features classification with SVM along with Canonical Correlation
Analysis (CCA) at the decision level facial action units (AU) and performed classifi-
cation with Bayes Net with early and late fusion whereas later has employed Spatio-
temporal features classification with SVM along with Canonical Correlation Analysis
(CCA) at the decision level. In recent years, researchers have focused on deep learning
approaches to solve this issue, which has achieved the best recognition rates.

Gunes and Piccardi [29] presents the performance of facial expressions, body
movements, and their fused representation for automatic recognition of emotions.
They extract the facial and bodily features separately and compare their performance
accuracy. For facial expressions, they localize face and track landmarks and then ex-
tract features. Similarly, for body motion analysis, they track hand, shoulder, and
head movements and then extract a series of features with different features represen-
tation techniques. Both facial and bodily features are classified with Support Vector
Machines (SVM) and Random Forests. In the last step, features are fused to rec-
ognize emotions. Studies exhibit better performance of system with feature fusion
techniques [25] [29].

"Recent work of [7] and [22] used Convolutional Neural Networks (CNN) to recognize
emotion from both face and body movements [4]. Both studies incorporated temporal features
into their classification, which forces them to analyze an entire video before it can be classified"
[4].
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2.1 Facial Expression Recognition
Facial expressions are one of the vital source to know about mood and feelings
in an interpersonal communication. Therefore, researchers focus to analyze facial
expressions through traditional machine leaning and advanced deep learning algo-
rithms. [30] used a deep learning approach to merge CNNs with RNNs and evaluate
how each portion of the neural network contributed to the overall success of the emo-
tion recognition system. For training, two different architectures were used, the first
with a single CNN frame and the second with a combination of CNN and RNN.
Although CNN learns valuable features from the video data from the single frame
regression, it disregards temporal information. This knowledge can be implemented
through the use of RNN. "Results determined that the CNN+RNN model translates to more
accurate predictions" [4].

2.2 Emotion Recognition through Body Movements
"Upper body movement, such as hand and head movement, conveys vital information related
to emotional states. For instance, when a person displays a neutral emotion, they generally
do not move their arms; however, when they are happy or sad, the body tends to be extended,
and the hands move upwards closer to the head" [4, 18]. However, this information is
subjective, dependant upon the personal attitude to the circumstances and cultural
bias.Research presented by [31] suggest real-time emotion recognition through body
movements and gestures. "The features are extracted from 3D motion clips containing full-
body movements, recorded using two systems: a professional optical motion capture system
and Microsoft Kinect. The body joints are tracked, and feature vectors of the movements are
extracted and used for classification using a linear SVM classifier. The emotions tested were
the six standard emotions. Human validation demonstrated that three emotions were easily
recognized from body movements (happiness, sadness, and anger), while the others (surprise,
disgust, and fear) were confused with each other. Because of that, a sub-problem with only four
emotions (happiness, sadness, anger, and fear) was formulated. The approach showed better
results when only classifying four out of the six emotions" [4].

" [32] took a different approach, which analyzed affective behavior solely based on upper-
body movements. A range of twelve different emotions was classified according to their va-
lence and arousal. Features were extracted from two videos, one that displayed a frontal view
of the subjects and another that displayed a lateral view. The trajectories of the head and
hands were tracked, and low-level physical measures, i.e., position, speed, acceleration, were
extracted. Higher-level expressive and dynamic features include smoothness and continuity
of movement, spatial symmetry of the hands, gesture duration were then computed, forming
a 25-features vector" [4]. PCA was later applied to reduce the dimensionality of the
data. Furthermore, clustering was used to classify the data into four clusters accord-
ing to the categorical variables, i.e., valence (positive, negative) and arousal (high,
low). "The framework was tested on the GEMEP (GEneva Multimodal Emotion Portrayals)
dataset [33]. The results demonstrate that gestures can be effectively used to detect human
emotional expression" [4].

Research proposed by [7] model these upper body movements for emotional clas-
sification by using FABO [24] dataset. They present the motion by an additional layer
on the network that tracks the frame-wise difference in each sequence. This repre-
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sentation involves the structure and information of the gesture/motion with the aid
of weighted shadows. Another study by the same authors [34] extracts spatial and
temporal features of gesture sequences through Deep Neural Networks (DNN) to
generate a motion representation. " Moreover, a Multichannel Convolutional Neural Net-
work (MCCNN) is used to learn and extract features from the previously generated motion
representation and uses such features to classify different gestures" [4].

We have trained our system with full frames of the FABO dataset with facial
and body gestures features to capture the gesture information. The networks extract
the spatial and temporal information using CNN and LSTM and finally classify the
emotions.

2.3 Bi-modal Emotion Recognition
Fusion of multiple modalities can achieve better recognition performance than single
modality. Nevertheless, a good fusion strategy must be applied; otherwise, the fusion
of modalities can hurt the accuracy of the recognition system.

"Gunes and Piccardi studied this case precisely and conducted experiments where only
single modalities were tested (facial expression or body gestures) and where both modalities
were fused to formulate a detection [24, 28]. The results revealed that the bimodal approach
had better performance" [4].

The bi-modal approach is also considered by [7] to recognize emotions by taking
into account facial expression and body movements. "They used neural networks on
their solution and achieved much higher average accuracies on fusing both modalities than
testing each modality separately, going from 57.84± 7.7% on body motion and 72.70± 3.1%
on facial expression, to 91.30± 2.7% average accuracy on bimodal emotion recognition" [4].

The research proposed by [6] fused the audio-visual, face, and body modalities
using the compact bilinear pooling (MCB) method and demonstrated the state-of-
the-art results. In this article, besides general feature-level fusion techniques such as
average fusion, product fusion, we have also explored the bilinear pooling technique
for face and body fusion.

Fig. D.2: Selection of the facial region on a frame from the FABO dataset and scaling into 48*48
to form image database.
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3 Proposed System

Our model is comprised of Convolution Neural Networks (CNNs) to extract facial fea-
tures and bodily features, with linear addition of Long Short Term Memory (LSTM)
model to use the sequential information. Each modality (face or body) is trained
with CNN in frame-based and sequence-wise to generate the emotional states. It is
challenging to determine the multimodal fusion efficiency for emotion recognition
accuracy, so we have proposed three different fusion techniques to identify the best
approach. The network structure remains the same for all considered fusion modali-
ties. Overview of the system is illustrated in Fig D.1

3.1 Convolutional Neural Network
Convolutional Neural Network (CNN) performs remarkably good at acquiring spa-
tial information. Each CNN layer operates twofold; filtering through the convolution
layer and max-pooling to avoid losing useful information. Generally, CNNs are com-
posed of convolutional layers, and fully connected layers extract features. Most of the
parameters are also present in the fully connected layers responsible for most of the
computation power. For instance, fully connected layers of VGG16 contains 90% of all
the parameters. The VGG16 is a deep convolutional network with up to sixteen layers
(thirteen convolutional layers and three fully connected layers). Inception V3 reduces
the parameters by the introduction of global average pooling [35]. Similarly, Xcep-
tion [36] takes advantage of the use of residual modules and depth-wise separable
convolutions.

To lessen the computation cost, we have implemented CNN architecture as pro-
posed by [37]. "It is a simple architecture that achieves almost state-of-the-art performance
classifying emotions" [4]. The architecture classifies emotions based on facial expres-
sions and faces according to gender. On the contrary to [37], only relying on the FER-
2013 dataset, we use the FABO dataset for training purposes. Besides, our CNN archi-
tecture contains four residual deep separable convolutional layers, where batch nor-
malization and ReLU activation function accompany each convolutional layer. "Batch
normalization normalizes the activation of the previous layer at each batch" [4]. Residual
modules modify the desired mapping between two subsequent layers by connecting
the output of previous layers to the output of new layers [4]." Depth-wise separable con-
volutions reduce further the number of needed parameters. They are composed of depth-wise
convolutions and point-wise convolutions " [4]. Instead of the fully connected layers, this
architecture uses Global Average Pooling that reduces each feature map to a scalar by
calculating the average of all the elements in the feature map. The last convolution
layer has the same number of feature maps as the number of classes. In the end, a
softmax activation function is applied to produce a prediction. [4]

3.2 Long Short Term Memory Networks (LSTMs)
LSTMs are a recurrent neural network that processes and absorb sequential informa-
tion. According to [38]:
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"The LSTM states are controlled by three gates associated with forget (f), input
(i), and output (o) states. These gates control the flow of information through the
model by using point-wise multiplications and sigmoid functions σ, which bound the
information flow between zero and one."

To take advantage of spatial and temporal information, we have linearly combined
the CNN and LSTM model, where CNN extracts the features and then sequentially
feeds into the LSTM network. Such a combination works well in the case of video
data, as exhibited by [23, 39].

3.3 Fusion Methods
"One of the issues in multimodal emotion recognition is deciding when to combine the infor-
mation. There are a few different techniques to fuse the emotion recognition results of different
modalities with certain advantages and disadvantages. Some of the most explored techniques
are early (feature-level) fusion and late (decision-level) fusion". Recent studies explore an-
other feature-based fusion method called bilinear pooling fusion.

Feature-level fusion "Feature-level fusion combines the data from both modalities before
classification. A single classifier is used containing features from both modalities" [4]. One of
the biggest drawbacks of feature-level fusion is high-dimensional feature production
resulting in more parameters and more computation power consumption. To reduce
the dimensions, we have applied the compact bilinear pooling (MCB) as proposed
by [40]. Bilinear pooling multiplies two vectors that produce tons of parameters, and
it is costly. However, compact bilinear pooling reduces the dimensions with the same
information level but with very few parameters.

Compact Bilinear pooling fusion [40] proposes a compact bilinear pooling tech-
nique for fine-grained visual recognition. In this technique, outer product ⊗ is calcu-
lated by element wise multiplication of two input feature vectors f1 ∈ Vn1 and f2 ∈
Vn2 and scaling it into a matrix [ ] to reduce dimensions. For instance y = X [ f1 ⊗ f2],
where X is a learned model, ⊗ denotes the outer product and [ ] represents lineariz-
ing the matrix in a vector. This technique has produced better results for multimodal
emotion recognition task as mentioned by [6], who fused audio-visual, face and body
features to recognize emotions by considering co-relation among them.

Decision-level fusion Decision level fusion does not produce high-dimensional
features as each modality is trained and classified separately to fuse recognition accu-
racy at the end. However, this method fails to understand the correlation between
input modalities. This co-relation is more important and meaningful in human-
machine interactions where body movements and facial expressions complement each
other [7].
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4 Experimental Results

In this section, we first describe the databases involved and their training protocols.
Then we demonstrate the results.

4.1 Benchmark Datasets
We have used the bi-modal face and body FABO dataset and the FER-2013 dataset for
the emotion recognition task. Details of the datasets are mentioned as follows:

FABO-Dataset The bi-modal face and body data set is presented by [24]. Two
cameras acquire the database for monitoring face and body movements, that captures
the facial data and upper body movements separately. The videos provide annotations
on the stages of the affective states, therefore splitting the demonstration of each
emotion into neutral, onset, apex, and offset phases. Annotation is performed for
16 subjects out of the 23 subjects for emotional classification. The face and body
posture tend to shift in the onset process, and these changes reach a steady level at
the apex phase. Finally, expressions and movements exhibit relaxation at the offset
stage. However, these phase annotations are only done for twelve of the subjects.

Frames in the apex phase are considered for CNN training since they are the
ones that reflect the emotions best. Two apex phases are assessed from the annotated
videos. The dataset contains 1410 images for anger, 458 for disgust, 343 for fear, 613
for happiness, 570 for sadness, and 588 for a surprise, split into test and training.
"The neutral emotion is the exception, the images for this emotion were obtained from the
neutral phase from each video, amounting to 786 images. The selected images display the
upper body of the subjects; therefore, a facial recognition algorithm was applied to extract
only the facial region within the image" [4]. The method used was a DNN face detector
module included in OpenCV 3.6 . The selected frames were grayscaled and resized
to the FER-2013 dataset size, which is 48*48 pixels as demonstrated in the figure D.2

FER-2013 Dataset The FER-2013 database consists of approximately 36,000 im-
ages, labeled with seven emotion classes (six Ekman emotional states plus neutral
expression). FER-2013 is one of the biggest databases for FER in-the-wild environ-
ment but with a low image resolution of 48 * 48 pixels leading to problems for facial
landmark detectors. "The dataset contains 35887 annotated images, with 4953 anger im-
ages, 547 disgust, 5121 fear, 8989 happiness, 6077 sadness, 4002 surprise, and 6198 neutral
images. Some samples of the images are shown in Fig. D.3" [4].

Experiments are performed to detect emotions from face and and upper body
separately and fused accuracy is also calculated. Details are provided in the section
3.3.

4.2 Network Training
The CNN architecture is trained with benchmark datasets FER-2013 and FABO datasets
to extract the facial and body features and evaluate the effectiveness of each modality.
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Face-CNN Model: (For Facial Emotional Recognition) Only facial features
are trained to the network to evaluate facial expressions. To recognize emotions, first
face is localized, tracked, and then face cropping is applied according to the network
input parameters. CNN is trained with the FER-2013 dataset, with data augmentation
techniques applied to train with more diverse data. It also helps to prevent overfitting
and to generalize the model.

Early stopping is used to avoid overfitting. It stops the training process of the
model when the error on the validation set gets higher than before. "The learning rate
is reduced when validation loss has stopped improving" [4].

"The CNN was trained using Adam optimizer. This optimization algorithm is an exten-
sion of the stochastic gradient descent. It has some benefits compared to other algorithms, such
as less memory requirement, computationally efficient, and it is well suited for problems with
extensive data and parameters [41]" [4]. The trained model that we called the face-CNN
model achieved 65% accuracy in the validation set. To recognize the emotions from
upper body movements, we have trained the CNN model with body features of the
FABO dataset.

Body-CNN Model: (For Upper Body Emotion Recognition) Only the FABO
dataset is used to train the body-CNN model. This dataset is already described in
Section 4.1. However, to train this model, full image frames of the FABO dataset with
facial and body gestures information are used, as illustrated in Fig. D.2.

CNN-body architecture is the same as CNN-face, but the images are descaled
from their original 1024x768 dimensions to 128x96 and grayscaled to ease and fasten
the training process. The pixel values were normalized to a range between -1 and
1. Data augmentation strategies are also applied to increase the number of training
samples. Furthermore, the data was split into train and validation data with an 80/20
ratio. The model achieved a 96% accuracy in the validation set.

4.3 Bi-modal Emotion Recognition
As mentioned in section 2, the fusion of different modalities is capable of achieving
more significant results than single modalities for emotion recognition. To identify
which fusion technique works best in our task, we have applied MCB fusion at the

Fig. D.3: FER-2013 sample images for facial emotion recognition.
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Table D.1: Results of different evaluation metrics for each frame-based emotion recognition
method.

Evaluation
Matrix

Facial
Expressions

Upper Body
Movement

Bimodal
Average
Fusion

Bimodal
Product
Fusion

Bimodal
Bilinear
Pooling

Precision 77.2 % 72.8 % 81.7 % 82.6 % 83.7 %

Recall 73.0 % 72.7 % 80.4 % 80.9 % 81.5 %

F1-Score 72.8 % 71.5 % 80.3 % 80.9 % 82.5 %

Accuracy 77.7 % 76.8 % 85.7 % 86.6 % 87.2 %

feature-level, whereas product and average fusion strategies are applied at the deci-
sion level.

4.4 CNN Architecture
For our experimentation, we have used the same architecture as proposed by [37], as
described in detail in section 3.1. However, our implementation varies with [37] as we
have used different datasets for training with the addition of the LSTM model to ex-
ploit the temporal information. We aim to reduce the number of CNN parameters and
computational costs and achieve better generalization. The network is composed of 4
convolutional layers and ReLu and batch normalization at each layer. As mentioned
in section 3.1 instead of fully connected layers, global average pooling is applied.
However, in the case of a temporal database LSTM model is installed, followed by the
softmax.

4.5 Performance Analysis

Frame-based Emotion Recognition

The performance of each modality is tested with our trained network for emotion
recognition. Various classification models with different evaluation metrics analyze
which modality has better performed. We have analyzed the system performance
with precision, recall, accuracy, and F1-score metrics, as illustrated in Table D.1.
Moreover, bi-modal fusion with different fusion methods is applied to identify the
performance of fusion strategies.

Facial Expression Analysis The normalized confusion matrix in Fig. D.4 shows
the percentage of image samples that are of a specific emotion (true label) and that
are classified as corresponding to a specific emotion (predicted label). The confusion
matrix shows the best classification results corresponding to the anger and neutral
emotions with 94% and 90%, respectively. The worst classification result corresponds
to the surprise emotion that is often mistaken with fear; however, fear rarely is mis-
classified as a surprise.
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Upper Body Movement Analysis Fig. D.5 displays the normalized confusion
matrix for the upper body movements emotion recognition. This confusion matrix
shows the true positive rate; hence, the percentage of samples from each dataset that
are classified correctly.

From Fig. D.5 it is possible to observe that, once again, the best recognition results
are attributed to anger and neutral emotions. "Comparatively to the facial expression
recognition, in this recognition modality, the surprise emotion has a much better recognition
rate and is less often mistaken by fear. Also, the sadness emotion is quite often misclassified as
a surprise" [4].

Bi-modal Analysis Two different decision-level fusion methods are tested, an av-
erage method and the product-method. "In the average method, the average is calculated
between both modalities and for each of the emotions. In the product method, the product of
the probabilities of each modality is calculated for each of the emotions [4].

Finally, the combination of both modalities produces the results in Fig. D.6 using
the average fusion method, and Fig. D.7 using the product fusion method.

Fig. D.4: Normalized confusion matrix for facial expression recognition.

Sequence-based Emotion Recognition

To train the system with spatial and temporal information of the FABO dataset, we
have to use the face-CNN model pre-trained on the FER-2013 dataset. As the FABO
dataset posses video data with emotional annotation for 16 subjects out of 23. Each
video displays the same emotion from two to four times, so we have divided each
video into neutral, onset, apex, and offset maximum phase length of five seconds.
We trained this network with these video data and obtained the features, as we have
used the full frames of the FABO dataset containing facial and gesture features. These
features are feed into LSTM in a timely manner to evaluate the sequential information
for emotional classification. Details of recognition accuracy is presented in the Fig.
D.8.
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Fig. D.5: Normalized confusion matrix for upper body movements emotion recognition.

Fig. D.6: Normalized confusion matrix for bimodal emotion recognition using the average fusion
method.

Facial Expression Analysis Our network achieved an average accuracy of 93.213
% when it is trained to 80 epochs. It is observed that system performance reached its
maximum accuracy when epochs range from 40 to 50; after that system, performance
did not fluctuate considerably.

Upper Body Movement Analysis It is observed that temporal information con-
tributed to accuracy efficiency when the network is trained with full FABO dataset
frames. Our network achieved an accuracy of up to 79.27 % for emotional recognition
through upper body movement analysis.

Bi-modal Analysis When the network is trained with combined facial and upper
body features, our system has surpassed the state-of-art accuracy to 94.418 %. In this
experiment, network parameters are less than the state-of-art method [6], and it is
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Fig. D.7: Normalized confusion matrix for bimodal emotion recognition using the product fusion
method.

robust to work in real-time scenarios.

4.6 Parameters Evaluation
Our network contains four deep-separable convolutional neural layers with ReLu and
batch normalization function. We have used global average pooling and softmax
for emotion classification that contribute to approximately 600,000 parameters. We
trained this network with the FER-2013 database that provides an accuracy of 65% on
the validation set. However, usage off the shelf CNN network that is 70 times more
parametric heavy and provides 71.3% accuracy on the FER-2013 dataset. In contrast,
when we have employed this network to recognize emotions from face and body,
it surprised the state-of-art method when we have a bi-modal model with temporal
information. Additionally, this model also showed improved accuracy in using a
single modality such as the upper body movements. We acquired an accuracy of
76.8 % and 79.27 % with spatial and temporal information, respectively. Application
of compact bilinear pooling (MCB) contributed to dimensionality reduction without
compromising on the performance.

5 Discussion and Conclusion

The major problem in developing a human-machine affective system is the integration
of multimodal sensory information. In this research article, we have explored the
spatial-temporal technique for emotion analysis of visual modalities. We have also
studied different fusion techniques with lesser computation cost. We have developed
a robust architecture to identify emotions from the face and upper body movements
to use in real-time human-machine interaction systems.

It is illustrated through the confusion matrices that the bimodal approach shows
better results than the monomodal approaches, regardless of the fusion method. In
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Table D.2: Performance analysis of our system with CNN and (CNN + LSTM) models and their
comparison with state-of-art methods. We have performed 3-fold cross validation after splitting
data into 80/20 protocols

Method /
Modality

Facial
Expressions

Upper Body
Movement

Bimodal
Fusion

[29] 35.2 % 73.1 % 82.7 %

[25] 66.5 % 66.7 % 75.0 %

[7] 72.7 57.8 91.3

[42] 87.3 74.8 93.65

Our Frame based Model 77.7 76.8 87.2

Our sequence Based Model 90.42 79.27 94.41

Fig. D.8: Performance of the combined CNN + LSTM neural network model on test data of
FABO dataset.

this case, the best recognition rates correspond to both fusion methods for anger, hap-
piness, and neutral emotions. The worst recognition rate is attributed to the sadness
emotion that is often misclassified as a surprise emotion.

All the evaluation metrics being considered to have greater values with this ap-
proach. Accuracy shows a significant improvement from 77, 7% and 76, 8% on the
facial and upper body movements emotion recognition, respectively, to 85, 7% and
86, 6% on the fusion of both modalities.

Furthermore, the product fusion method shows slightly better results on all the
evaluation metrics than the average fusion method. However, the MCB method sur-
passed decision level recognition accuracy. It shows that inter modalities relationship
towards emotion identification is an essential factor to consider. We have demon-
strated that spatial-temporal information is better classified for anger, happy and
neutral emotions for further analysis. With upper body movement alone, state of
the art methods found it challenging to classify the emotions accurately. However,
our system has performed better with the rest of the methods, as illustrated in Table
D.2.
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6 Conclusions

The major problem in developing a human-machine affective system is the integration
of multimodal sensory information. In this research article, we have explored the
spatial-temporal technique for emotion analysis of visual modalities. We have also
studied different fusion techniques with lesser computation cost. We have developed
a robust architecture to identify emotions from the face and upper body movements
to use in real-time human-machine interaction systems.

It is illustrated through the confusion matrices that the bimodal approach shows
better results than the monomodal approaches, regardless of the fusion method. In
this case, the best recognition rates correspond to both fusion methods for anger, hap-
piness, and neutral emotions. The worst recognition rate is attributed to the sadness
emotion that is often misclassified as a surprise emotion.

All the evaluation metrics being considered to have greater values with this ap-
proach. Accuracy shows a significant improvement from 77, 7% and 76, 8% on the
facial and upper body movements emotion recognition, respectively, to 85, 7% and
86, 6% on the fusion of both modalities.

Furthermore, the product fusion method shows slightly better results on all the
evaluation metrics than the average fusion method. However, the MCB method sur-
passed decision level recognition accuracy. It shows that inter modalities relationship
towards emotion identification is an essential factor to consider. We have demon-
strated that spatial-temporal information is better classified for anger, happy and
neutral emotions for further analysis. With upper body movement alone, state of
the art methods found it challenging to classify the emotions accurately. However,
our system has performed better with the rest of the methods, as illustrated in Table
D.2
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1. Introduction

Abstract

This paper presents the extraction of the emotional signals from traumatic brain-injured (TBI)
patients through the analysis of facial features and implementation of the effective emotion-
recognition model through the Pepper robot to assist in the rehabilitation process. The iden-
tification of emotional cues from TBI patients is very challenging due to unique and diverse
psychological, physiological, and behavioral challenges such as non-cooperation, facial/body
paralysis, upper or lower limb impairments, cognitive, motor, and hearing skills inhibition. It
is essential to read subtle changes in the emotional cues of TBI patients for effective communi-
cation and the development of affect-based systems. To analyze the variations of the emotional
signal in TBI patients, a new database is collected in a natural and unconstrained environment
from eleven residents of a neurological center in three different modalities, RGB, Thermal and
Depth in three specified scenarios performing physical, cognitive and social communication re-
habilitation activities. Due to the lack of labeled data, a deep transfer learning method is applied
to efficiently classify emotions. The emotion classification model is tested through closed-field
study and installment of a Pepper robot equipped with the trained model. Our deep trained
and fine-tuned emotional recognition model composed of CNN-LSTM has improved the per-
formance by 1.47% on MMI, and 4.96% on FER2013 validation data set. In addition, use of
temporal information and transfer learning techniques to overcome TBI-data limitations has
increased the performance efficacy on challenging dataset of neurologically impaired people.

Findings that emerged from the study illustrate the noticeable effectiveness of SoftBank’s
Pepper robot equipped with deep trained emotion recognition model in developing rehabilita-
tion strategies by monitoring the TBI patient’s emotions. This research article presents the
technical solution for real therapeutic robot interaction to rehabilitate patients with standard
monitoring, assessment, and feedback in the neuro centers.

1 Introduction

It is challenging for people with traumatic brain injury (TBI) to communicate and
socialize due to motor, hearing, and speech inhibitions. For rehabilitation and training
purposes, TBI-patients are often treated in specialized neuro centers. Since 2015, our
researchers have been working with a national neuro center with a focus on providing
technical systems enhancing capability for the residents and to provide assistance
and facilitation to staff members [1–3]. The majority of the residents at the neuro
center possess unique and highly diverse nature of impaired cognitive and behavioral
abilities (for instance, apraxia and aphasia). As some of these residents are unable to
recover from their life-altering impairments fully, the center provides full-time care
and aid in organizing and supporting activities of daily living (ADL). Providing such
facilities is resource, labor, and expertise expensive. It also produces extra strain
on the staff members to maintain the same level and standard of services to these
residents. One technical means of lifting this burden is intelligent augmented and
assistive technologies (AAT) that can be of help to maintain the quality of services and
to facilitate staff members in developing and implementing rehabilitation strategies.

Researchers focus on providing assistance in naturals environments through am-
bient assisted living (AAL). AAL contributes in wide utility space such as from pa-
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tients to social services, health workers to smart homes and multi-agent systems with
the aim to present a solution for independent living in the user’s preferred living
environment [4]. AAL aims to provide better quality of life for both elderly people
and their care-workers. Recent advances such as the adoption of Internet-of-Things
(IoT), cloud computing (CC), virtual and augmented reality (VAR), ambient intelli-
gence (AmI) and neurorobotics have tackled the AAL solutions. According to [5], IoT
technologies in the AAL domain are capable of catering to challenges related to ADL,
elderly-care, social dis-cohesion, personalized medication, physical activities, health
tracking and various other applications. In addition, brain computer interface (BCI)
systems contribute to improve the quality of life of elderly people by receiving and
transmitting brain signals to external aids and VAR devices [6]. However, the major
limitation of employing BCI systems involves wearable sensors mounted on the head
to communicate signals to the linked devices, which restricts natural movement of the
subjects under observation.

In the AAL domain, researchers have developed specialized AAT systems tailor-
made for completion and facilitation of specific tasks such as robots for surgical-
operations [7, 8], healthcare robots for monitoring elderly people [9], social assistive
robots for social engagement e.g. for children with Autism Spectrum Disorders (ASD)
[10–12], or human-computer interfaces for assistance in daily tasks [9]. The AAT
systems, specifically developed for elderly care or disabled people, employ different
input signals to process information like audio, video, proximity, touch, and their
combination is based upon the system application and environment. Over the past
few decades, researchers are exerting special efforts to develop such systems with
more human-like characteristics like social assistive robots (SAR), to assist in ADL.
SARs can be integrated with emotional signal recognition and synthesis for natural
and human-like interaction.

There are various ways to extract emotional signals, as one of the regions of the
brain stem cell (amygdala) is mainly responsible for generating actions related to
emotional arousal [13]. We can identify the activation of signals through this brain
region by reactions visible through external and internal body stimuli. For instance,
the amygdala regulates the release of hormones in the bloodstream, controls the heart
rate, blood pressure, skin conductance, as well as changes in facial expressions [14].
In a nutshell, we can determine these emotional cues by dilation of eye-pupil, electron
flow on the skin (skin conductance), brain activity (Electroencephalography (EEG)),
Magnetic resonance imaging (MRI), heart rate (Electrocardiography (ECG)), and facial
expression recognition (FER) [15] as demonstrated in Fig.E.1. Many researchers focus
on the various techniques for the rehabilitation of physical and cognitive impaired
people, e.g. [16] establish a virtual reality exposure therapy (VRET) for managing
stress reactions. Similarly, [17] develop a BCI system for the extraction of psycho-
logical signals of mentally impaired people using electroencephalography (EEG). For
developing an affect-based system for use in rehabilitation settings, the real challenge
thus lies in the acquisition of emotional signals from people suffering from neurolog-
ical disorders like patients with acquired brain injury.

Considering the challenges associated with this user group such as limited muscle
movement or paralysis, non-cooperative behavior, inappropriate responses, impaired
reasoning, involuntary head, and upper body movements, mental inflexibility with
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Fig. E.1: Emotional signal identification through various parameters; Collection of data through
multi-modal channels to analyze facial expressions

non-compliance, agitation, loud verbalization and sometimes physical aggression, we
decided to collect emotional signals in an unobtrusive manner through facial expres-
sion analysis [2, 3, 18]. Other methods to identify emotional signals have certain
limitations like the installment of sensors on the body e.g., for identifying emotions
through skin conductance, ECG, MRI, and EEG. Pupil dilation measurements involve
an eye-tracking camera that must be placed close to the face without any occlusion,
which is not possible due to limitations related to the physiology of the residents.

Therefore, considering the challenges mentioned above and complexities asso-
ciated with TBI patients and aiming at capturing data in the natural environment,
we extracted emotional signals through facial expressions relying on Ekman’s defini-
tion of basic emotions. Ekman et al. described six basic expressions (anger, disgust,
fear, happiness, sadness, and surprise) as universal basic emotional cues among hu-
mans [19]. Details of the data acquisition system in the specified scenarios, modified
strategies for improved data quality and pre-processing techniques are mentioned in
section 3.

The automatic recognition of facial expressions and interpretation as emotional
cues can be utilized in a broad spectrum of socially and emotionally sensitive systems
such as robots and virtual humans that engage with people in real-world contexts
naturally. Since real-world frameworks encompass uncontrolled settings, where busi-
nesses operate in continuous altering circumstances such as occlusions, noise, illu-
mination variations, diverging facial postures, and unwanted head and body move-
ments. Therefore, systems that execute automatic analysis of human emotions must
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be robust to visual-data acquisition conditions, varying contexts, and the time of re-
sponse.

In the past few decades, the performance of automatic-facial expression recog-
nition (A-FER) systems was limited to controlled conditions and posed expressions.
These systems were exploiting facial information that is captured in lab environment
with majority of induced expressions such as Cohn-Kanade database [20], Cohn-
Kanade extended database [21], MMI database [22], JAFFE database [23], DISFA
database [24], and DISFA extended database [25]. Therefore, less prone to environ-
mental challenges like illumination and occlusion, pose variation, and spontaneous
expressions. Recently researchers are exerting extra effort to develop systems that
could perform A-FER in natural circumstances. For this purposes, scientists have col-
lected database in-the-wild such as AFEW [26], SFEW [27], FER2013 [28], ExpW [29],
and BU-3DFE and BU-4DFE databases [30, 31]. In addition, emotion recognition
challenges are carried out to address the challenges in real-world scenarios. How-
ever, researchers have illustrated that facial expression (FE) in naturalistic interaction
thoroughly vary from the induced or posed ones [18, 32–34]. Additionally, facial
expressions of the TBI patients have additional artifacts such as facial paralysis, non-
cooperation during data acquisitions, and large pose variation [3]. Therefore, these
databases have the following limitations:

• The databases collected under controlled environmental conditions, with proper
illumination and cooperative subject, contain frontal postures in the majority of
images or minimal pose variation. However, acquiring data from real-life pa-
tients, suffering from brain injuries, is remarkably complex as patients are not
cooperative, and it is quite difficult to have frontal postures. Moreover, facial
databases captured in-the-wild have diverse features as compared to database
captured in the lab environment. Therefore, FER systems trained under "con-
trolled conditions" do not perform well in real-world applications. So it is
essential to build a database of TBI patients in natural and unconstrained cir-
cumstances.

• Facial expressions of TBI patients significantly vary as compared to healthy peo-
ple due to prolonged disabilities, paralysis, and continued state of depression.
Researches have associated the dominance of negative expressions with this
user group [35]. Furthermore, existing FER databases have induced expression,
that is different from natural expressions produced involuntary [18, 32–34].

• Some of the TBI patients have additional complexities due to facial paralysis,
so their expressions are quite hard to extract. In addition, some of the facial-
symmetry and facial bones of the TBI patients are misaligned due to the stroke.
Images with such features are not available in current databases.

• Facial expressions of healthy people are easily distinguishable such as happi-
ness, sadness, anger, fear, surprise, disgust, and neutral. TBI patients do not
have clear six expressions, but we find a prominence of only two to three ex-
pressions, usually the negative ones. It is essential for deploying affect-based in-
telligent interactive systems with these users that systems are trained on a spe-
cially dedicated database, developed in real environmental conditions with all
the complexities associated due to the brain injury and real-world challenges.

125



1. Introduction

In this paper, we aim to address the limitations mentioned above by the develop-
ment of a TBI patient database under natural, unconstrained, and uncontrolled con-
ditions. This multimodal visual database is collected with RGB, thermal, and depth
sensors in the specific scenarios to ensure uniformity and reliability in data collec-
tion. Database annotation is performed by the neuro center staff members, experts,
caregivers, physiotherapists, and doctors, who worked with a particular resident for
more than six months. It contains a range of expressions from the residents perform-
ing daily activities like physiotherapy, cognitive rehabilitation activities, and social
communication. We have collected 1723 videos in 91 sessions, illustrating emotional
reactions of 11 subjects in three modalities: RGB, Thermal, and Depth.

Table E.1: Subjects in database along with challenges due to TBI, number of sessions and activi-
ties

Subjects
No. of

Sessions
Activities Challenges Prominent

FeaturesCognitive Physio Social Body Paralysis Speech Inhibition Facial Paralysis

A 12 4 4 4 Complete Yes Partial High Anger
B 10 4 3 3 Left Side No No High Arousal

C 10 4 3 3 Lower Body No No
Excessive Head

Movement

D 9 3 3 3 Partial No Partial
Emotionally

Unstable

E 9 2 4 3 No Yes Partial
Emotionally

Unstable
F 7 2 3 2 Partial No No High Arousal

G 6 2 2 2 Lower Body No No
Excessive Upper
Body Movement

H 7 2 3 2 No No Partial Low Arousal
I 6 2 2 2 Yes Yes Partial Low Arousal

J 8 2 3 3 No No No
Verbal and Physical

Aggression
K 7 3 3 1 Partial Yes No Emotionally Unstable

There exists a vast range of emotional and facial expression recognition databases.
However, they have limitations, mostly because data is acquired in controlled lab
environments. Additionally, all of the existing databases are of healthy people with
quite clear expressions that are remarkably different from brain-injured residents of
the neuro center, who do not show the same variation in the six basic expressions.
To reach more realistic and exact results, we developed the TBI patient database. As
we know, learning deep NNs needs massive labeled training data. So we applied a
deep transfer learning model to utilize related data from other databases to help the
training the model.

The main contributions of the paper are as follows:

• This research article focuses on the extraction of psychological signals of neuro-
logically impaired people using transfer learning (TL) techniques that assist the
care-workers to monitor and assess the rehabilitation process with increased
emotional efficacy.

• The research article contributes to designing a specialized framework for col-
lecting consistent and reliable data from neurologically impaired people for
social, physical, and cognitive well-being.

• We employed a deep architecture of CNN and CNN plus RNN to develop a
FER model. This FER model is tested on CK+, MMI, JAFFE, FER-2013, AFEW,
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SFEW2.0, DISFA, and ExpW databases and competes with the state-of-the-art
methods and outperforms some of them.

• It is demonstrated that the deep trained FER model is capable of recognizing
emotions of people with facial paralysis in a natural environment, producing
state-of-the-art performances.

• Integrating the FER model with the Softbank Pepper robot to recognize emo-
tions helps the staff members and care workers to understand the emotional
conditions of the residents better and adopt the rehabilitation and interaction
strategies in real-time.

• Our findings indicate that the robot intervention with the residents of the neu-
rocenter enhanced the productivity of physiotherapy and social interaction.

The rest of the paper is organized as follows. Section 2 provides an overview of
existing databases and related research in the field of Facial Expression Recognition
(FER) with the focus on natural data collection environment. Section 3 explains the
process of data collection of brain-injured patients in various scenarios. Section 4
presents the methodologies implemented in our approach. Section 5 describes the
experimental studies and result evaluation. Section 6 illustrates the contribution to-
wards rehabilitation strategies. Section 7 concludes the paper.

2 Related work

2.1 Current Databases
Existing databases of facial expression recognition such as Cohn-Kanade (CK, CK+)
[20, 21], MMI [22], CE [36], JAFFE [23], and BU-4DFE [30, 31] are developed in lab and
controlled conditions where subjects displayed distinctive facial expressions. These
databases have high-quality based posed-expressions. However, non-posed and spon-
taneous expressions acquired in uncontrolled or in-the-wild environments are quite
different from posed expressions. It is essential to identify non-posed expressions in
a natural or uncontrolled environment for automatic affective computing. Thus, re-
searchers focused towards data acquisition in-the-wild or uncontrolled settings such
as AFEW and SFEW datasets [27], used in series of EmotiW challenges1, or FER-
2013 [28], DISFA [24], DISFA+ [25]. These databases encompass multimodal effects
such as voice, biological parameters, and sequences of frames. However, due to the
number of subjects, pose variation, and environmental settings, the range of diver-
sification of these databases is minimal. We briefly describe the databases that are
captured in-the-wild as well as in controlled settings, used for emotion recognition,
and will discuss their limits leading to the creation of the TBI database.

CK+ Database The Extended Cohn-Kanade (CK+) database [21], is one of the
most extensively used databases for FER systems. It is established in the lab or con-
trolled settings, with 593 image sequences of 123 subjects, of which only 327 are an-
notated with seven emotion labels (six basic emotions and contempt). The database

1https://sites.google.com/site/emotiwchallenge/
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Table E.2: An overview of the facial expression databases

Databases
No. of
Sub.

Samples Env.
Nature
(Posed /

Spontaneous)

Expressions
Information

Availability

CK+ [21] 123
593 Image
Sequences

Controlled
(Lab)

Posed &
Spontaneous

6 Basic expressions
(with contempt)

plus Neutral
http://www.consortium.ri.cmu.edu/ckagree/

JAFFE [23] 10 213 Images
Controlled

(Lab)
Posed

6 Basic expressions
plus Neutral

https://zenodo.org/jaffe

MMI [22] 25
740 Images
2,900 videos

Controlled
(Lab)

Posed
6 Basic expressions

plus Neutral
https://mmifacedb.eu/

DISFA [24] 27 89,000 Images
Controlled

(Lab)
Spontaneous

AU-FACS
( 6 Basic expressions

plus Neutral
(by EMFACS system))

http://mohammadmahoor.com/disfa

FER2013 [28] N/A 35,887 Images
Web

(In-the-wild)
Posed &

Spontaneous
6 Basic expressions

plus Neutral
https://www.kaggle.com/fer2013

AFEW [26] 330 1,809 Videos
Movies

(In-the-wild)
Posed &

Spontaneous
6 Basic expressions

plus Neutral
https://sites.google.com/view/emotiw2018/home

SFEW2.0 [37] N/A 1,766 Images
Movies

(In-the-wild)
Posed &

Spontaneous
6 Basic expressions

plus Neutral
https://cs.anu.edu.au/few/AFEW.html

ExpW [29] N/A 91,793 Images
Web

(In-the-wild)
Posed &

Spontaneous
6 Basic expressions

plus Neutral
http://mmlab.ie.cuhk.edu.hk/projects/socialrelation/index.html

consists of 69% females and 31% males with an age range from 18 to 50 years. The
dataset contains posed and non-posed facial expressions at a maximum intensity level.

MMI Database The MMI database [22] is captured in the laboratory or controlled
settings with 326 image sequences of 32 subjects. Two hundred thirteen image se-
quences are labeled with six basic expressions with onset-apex-offset states.

JAFFE The Japanese Female Facial Expressions (JAFFE) [23] database is captured
in controlled conditions. It consists of 213 image samples of 10 female subjects. Each
subject has 3-4 facial images with each of six basic expressions and one image with a
neutral expression.

DISFA Denver Intensity of Spontaneous Facial Actions (DISFA) database [24] con-
sists of 27 subjects captured with spontaneous expressions. It is coded with Action
Units (AUs) ranges from 0 to 5 with zero corresponds to the absence of any activation
of muscles, while five belongs to maximum intensities. We have employed the EM-
FACS conversion system [38] to convert AU FACS codes to emotional expressions that
presented approximately 89000 images with a majority having neutral expressions.

EmotiW-AFEW-2018 Acted Facial Expressions in the Wild (AFEW) [27] and its
subset Static Facial Expressions in the Wild (SFEW) [37] have been used as a bench-
mark dataset for annual emotion recognition in the wild challenge (EmotiW) chal-
lenge. AFEW is a multimodal-temporal database containing facial expressions from
movies and reality TV shows that are close to real-world scenarios. AFEW consists
of 330 subjects with an age range from one to seventy-seven years (1-77 yrs). The
annotation of this database is according to six basic expressions (anger, disgust, fear,
happiness, sadness, and surprise) and a Neutral expression. The AFEW 7.0 dataset
used in EmotiW 2017 consists of subject independent data partitions with training
(773 samples), validation (383 samples) and test sets (653 samples).

SFEW Static Facial Expressions in the Wild (SFEW) [37] is developed by extract-
ing few images from AFEW with varied head poses, close to real-life illumination
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Table E.3: Number of data images for each expression for the databases

Database CK+ JAFFE MMI DISFA AFEW2018 FER2013 SFEW ExpW

Image Size
640*490
720*480

256*256 720*576 768*1024 N/A 48 * 48 720*576 N/A

F-Exps Training Val Training Val Training Val Training Val

Anger 90 30 1959 436 118 59 4953 958 178 77 1272 318
Contempt 36 0 0 0 0 0 0 0 0 0 0 0

Disgust 0 29 1517 5326 72 39 547 111 66 23 1250 312
Fear 50 32 1313 4073 76 44 5121 1024 98 47 329 82

Happy 138 31 2785 28404 142 63 8989 1774 198 73 10576 2644
Neutral 324 30 3034 48582 129 61 6198 1233 150 86 8309 2077

Sad 56 31 2169 1024 104 59 6077 1247 172 73 2494 623
Surprise 166 30 1746 1365 70 46 4002 831 96 57 2471 617

Total 860 213 14523 89210 711 371 35887 7178 958 436 26701 6673

conditions, age-range, and distinctive facial expressions. The SEFW 2.0 is used in the
EmotiW 2015 challenge and its most commonly used in general. The dataset is di-
vided into three partitions: Training set (958 image samples), validation set (436 image
samples), and test set (372 image samples). Each image sample is assigned with one of
seven basic expressions, i.e., anger, disgust, fear, happy, neutral, sadness, and surprise.

FER-2013 The FER-2013 database [28] consists of approximately 36,000 images,
labeled with seven emotion classes (six Ekman emotional states plus neutral expres-
sion). The database is established by using Google image search combined with
phrases for gender, age, ethnicity, and 184 emotion-related keywords. FER-2013 is
one of the biggest databases for FER in-the-wild environment but with a low image
resolution of 48 * 48 pixels leading to problems for facial landmark detectors.

EXPW The Expression in-the-wild (ExpW) database [29] is comprised of approxi-
mately 90,000 facial images downloaded from the web. Each of the images is manually
assigned to one of the seven primary expressions.

Nonetheless, all the databases, as mentioned earlier, consist of images of healthy
people without any facial paralysis, cognitive or physiological impairments. Hence,
there is a need for the development of systems dedicated to cognitive and physical
impaired persons like TBI patients, based on natural, spontaneous, unposed, and
uninduced facial expressions. To address these demands, we developed a database of
TBI residents in natural and uncontrolled settings, details provided in section 3.

2.2 Current Architectures for Affect Recognition
Automatic affective computing is a well-established research area, and there are a
wide variety of algorithms and databases to develop automated affect recognition
mechanisms. We would like to briefly discuss state-of-the-art methods for emotion-
related search on the databases explained in section 2.1. Emotion recognition systems
can be distinguished by the methods employed for feature extraction and feature
classification. Most of the advanced FER systems are exploiting the techniques of
Convolutional Neural Networks (CNN) for facial feature extraction and classification,
as they provide state-of-art results for facial expression recognition [39–41], pain iden-
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Fig. E.2: Sample database images captured in controlled conditions for facial expressions:
Databases (Rows Top to Bottom) CK+ , JAFFE, MMI and DISFA+ ; Emotion categories; (from
left to right) Neutral, Happy, Sad, Fear, Surprise, Angry & Disgust (For CK+ contempt)

tification [41] and interpretation as emotional states [42, 43]. Conventional algorithms
for affect recognition use handcrafted features such as pixel intensities [44], Gabor fil-
ters [45], Local Binary Patterns (LBP) [46, 47], Local Quantized Pattern (LQP) [48] and
Histogram of Orientated Gradients (HoG) [49]. Handcrafted features are accompa-
nied by unintended features that have no or less impact on classification. In the case
of handcrafted features, not all possible cases can be included for features selection
and classification, so its performance is compromised.

The significant advantage of deep learning methods over conventional machine
learning models is the simultaneous performance of feature extraction and classifica-
tion. Moreover, deep learning methods apply iterative approaches for feature extrac-
tion and optimize error by back propagation, thus resulting in those critical features
that human experts can miss while handcrafting the features. Recently used deep
learning algorithms for FE and emotional analysis has demonstrated a remarkable
ability to learn features and achieved state-of-the-art results in a range of learning
tasks like cross-database evaluation where handcrafted features exhibit low perfor-
mances due to lack of generalization to new scenarios. Moreover, deep neural net-
works perform remarkably well for subject independent estimation schemes of emo-
tional expression recognition. This interdependence contributes to the formulation of
this paper, as the stability and reliability of the deep learning systems could perfectly
align with the procedures required for clarifying complexity in emotion analysis in
natural and unconstrained environments, mainly dealing with brain-injured patients.

Deep neural networks, notably CNNs, are well-established approaches for re-
searchers in the field of deep-vision for FER. In the FER-2013 challenge, [70] achieved
the 1st prize by exploiting deep neural networks in two stages: use of CNN trained in
a supervised way at a first stage and a second stage applying Support Vector Machines
(SVM) on the output of the trained CNN. Kahou et al. [71] winner of the EmotiW-2013
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Table E.4: Summary of Architectures and Methods for Affect Recognition.

Method Database Architecture

Mohammadi et al. [44] CK+, MMI
Sparse representation classification,
PCA based dictionary building

Shan et al. [47] MMI, JAFFE Boosted Local Binary Pattern (B-LBP) + SVM
Zhao and Zhang [46] CK, JAFFE Kernel Discriminant isometric mapping (KDIsomap)
Liu et al. [50] EmotiW-2014 (AFEW) Multiple Riemannian kernels + SVM
Liu et al. [39] CK+, JAFFE Boosted Deep Belief Networks (BDBN)

Yao et al. [51]
EmotiW-2015
(Audio-Video)
SFEW, AFEW

Emotional expression relation and facial muscle Activation
Unit (AU) with RBF kernel

Kaya et al. [52]
EmotiW-2015
(Audio-Video)
AFEW, AFEW

Partial Least Squares Regression (PLS) and Kernel Extreme
Learning Machines (ELM) with multi-level weighted fusion

Ng et al. [53] EmotiW-2015
Transfer learning for deep CNN, Pre-trained on the
ImageNet dataset; cascading fine-tuning

Yao et al. [54] Emotiw-2016
HoloNet, CNN with Concatenated Rectified Linear Unit
(CReLU)

Rodriguez et al. [55] CK+ VGG-16 + LSTM

Yan et al. [56]
AFEW6.0, CHEAVD
(Audio-video)

Multi-cue fusion; Cascaded CNN and Bi-directional-RNN
CNN + SVM

Liu et al. [57] CK+, MMI, SFEW CNN with Loss layers
Li et al. [58] CK+, SFEW, Deep Locality-Preserving CNN (DLP-CNN)
Zhang et al. [29] CK+, SFEW, FER-2013 CNN with Multi-task network (MN)

Kim et al. [59] FER-2013
Discriminative deep CNN (DCNNs); alignment-mapping
networks (AMNs); CNN with Network Ensemble

Meng et al. [60] CK+, MMI, SFEW CNN with MN; Identity-aware CNN (IACNN)
Yu and Zhang [61] SFEW CNN with Network Ensemble
Zhao et al. [62] CK+ Expression intensity-invariant Network (EIN)

Yu et al. [63] CK+
Expression intensity-invariant Network (EIN)
+ Multi-Task-CNN (MN)

Kim et al. [64] CK+, MMI
Expression intensity-invariant Network (EIN) with data
augmentation, illumination normalization and
face frontalization

Zhang et al. [65] CK+, MMI, Network ensemble with cascaded CNN and SDM
Kuo et al. [66] CK+ Applied FA network and Intraface
Sun et al. [67] MMI NE with GoogLeNet and SDM

Otberdout et al. [68] AFEW
Deep CNN + Symmetric Positive Definite
(SPD) matrices

Fan et al. [69] AFEW CNN with VGG-LSTM and fusion techs
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Fig. E.3: Sample database images captured in uncontrolled conditions for facial expressions:
Databases (Rows Top to Bottom) FER2013, AFEW , SFEW, ExpW ; Emotion categories; (from left
to right) Neutral, Happy, Sad, Fear, Surprise, Angry & Disgust

challenge, used the CNN and deep belief network (DBN) composed of two-stacked
layers of Restricted Boltzmann Machines (RBMs). The first layer of RBM comprised
Gaussian RBM with noisy ReLU, and the second layer Gaussian-Bernoulli RBM. This
method worked well and managed to get the at-the-time state-of-the-art performance
but at higher computation cost for larger datasets. In 2014, [39] incorporated three
tasks of feature learning, feature selection, and classification in a unified manner by
employing Boosted Deep Belief Networks (BDBN) and managed to achieve remark-
able results in challenging conditions. The winner of the EmotiW-2014 challenge [50]
combined multiple kernels on Riemannian manifolds for emotion classification by
the measurement of corresponding similarities and distances. Researchers in [50] em-
ployed SVM, logistic regression, and least-squares models for emotion classification
and applied decision level fusion. However, along with high computation cost for fea-
ture extraction, this method produced lower accuracy when exposed to challenging
emotional categories.

Kulkarni et al. [72] demonstrated the good results to determine whether 6-class
expressions are genuine or these facial movements are fake. He addresses the prob-
lem by projecting facial features in deeply learnt space. However, 12 class and the
binary emotion pair classification problem still remains a challenge. This is because
the distinguishing factors between the unfelt and genuine expressions occur in a very
short part of the whole emotion and are a challenge to model. Guo et al. [73] pre-
sented dataset with 50 classes of compound emotions for affective computing and ge-
ometrically represented the landmark displacement to recognize emotions. However,
it is challenging to determine dominant or complementary emotions. Yao et al. [51]
explored the significance of the suppressed relationship between evolving characteris-
tics derived from facial muscle motions. The particular relations and patterns between
emotional expression and facial muscle Activation Unit (AU) are extracted and called
it AU-Aware facial features. This method leads them to surpass the EmotiW-2015
challenge without using additional data. [52] applied two least-squares regressions,
specifically Partial Least Square (PLS) and Kernel Extreme Learning Machines (ELM)
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with multi-level weighted fusion for emotional classification. one of the drawbacks
of applying multi-level fusion with different input modalities audio or video could
result in performance downgrading. [53] applied transfer learning techniques on a
small dataset for static facial expression recognition in the wild, by pre-training their
network on ImageNet dataset followed by fine-tuning to target dataset and achieved
comparable results.

In the year 2016, [54] applied a deep but computational efficient CNN with Con-
catenated Rectified Linear Unit (CReLU) and inception- residual structural for emo-
tional recognition under unconstrained environment. In the year 2017, [55] exercised
CNN to learn features from VGG-Faces and integrated with Long Short Term Mem-
ory (LSTM) to gain the temporal information. This approach was further improved
by [41], who applied deep CNN for features classification into expressions and fed
the system with super-resolved facial images. [56] employed the cascaded CNN and
RNN, where images are first fed into CNN for facial features extraction followed by
bidirectional RNN to learn the changes. One of the common aspects in the work of
the [41, 53–55] the use of extensive annotated data of healthy people, captured in con-
trolled and uncontrolled environmental conditions. Transfer learning can be applied
to overcome the challenges of training CNNs that require large annotated training
datasets of diverse expressions. Transfer learning overcomes the limited data problem
by transferring image features learned with CNNs on large datasets to other visual
recognition tasks on targeted, limited training data samples [74]. In the case of TBI
database, transfer learning is applied to learn features from large-scale public datasets
captured in varied environmental conditions and distinct scenarios, with the presence
of all expression states, to serve as a better weight initialization by fine-tuning.

As the work in [53, 55, 56, 74], exhibited state-of-the-art results for emotional
challenges, but healthy subjects. Therefore, we investigated a similar approach for
the TBI dataset. We employed CNN pre-trained to VGG-16 to learn the features from
eight public databases and then by applying transfer learning approaches, fined-tuned
to TBI dataset to overcome the identity and unbalanced emotional-data limitations.

3 Traumatic Brain Injured People Database (TBI-
Database)

3.1 Data Acquisition
Data collected at a neuro center that offers 24/7 rehabilitative care for their residents
with brain injury. The goal was to record visual data from the residents in natural
scenarios to extract emotional information. Due to the nature of their impairments,
it is very complex to collect data for all expressions of anger, sadness, happiness,
surprise, and disgust. Moreover, residents have diverse cognitive, physical, and in-
teractive skills. Sometimes the residents demonstrate physical and verbal aggression
along with inappropriate responses. Most of the computer vision techniques for FER
are dependent on data quality and environmental conditions like occlusion, lighting,
and face pose and alignment. Considering these conditions, we collected the data
in three different scenarios with the help of experts, trainers, and caregivers to have
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reliable and the best possible quality of the data in unconstrained scenarios. These
situations are a) cognitive rehabilitation strategies, b) physical rehabilitation strate-
gies, and c) social interaction aiding strategies. Generally, a caregiver follows a set of
protocols [75] for the rehabilitation tasks.

In order to deploy automated affect-based systems based on facial expressions, it
is necessary to set up a signal perceiving sensors-system, in our design RGB, thermal,
and depth sensors. However, there is no extensive research explaining data collection
methods for the FE of people that have suffered from TBI residents.

The studies in [22, 76] explained database creation and organization of healthy
and cooperative subjects with spontaneous and induced expressions in a controlled
lab environment or in-the-wild settings or through online websites. However, in the
case of our residents, there is no database, or database development protocols, so we
relied on data acquisition with rehabilitation protocols and then modified them after
analyzing them carefully. We set up the data acquisition system with RGB, thermal,
and depth cameras, placed at 1.5 meters distance from the residents while performing
their rehabilitation and social activities. Experts prescribe playing games as a therapy
is the most effective way to aid brain injury recovery [77–79]. Researchers recommend
five games for brain injury recovery: Card games, Sudoku, Lumosity, TherAppy, and
Tetris [80]. We modified these games, including other rehabilitation activities to obtain
optimal data for the training of a deep learning-based system; details are provided in
the later sections 3.1-3.1

Data collection approaches are distinguished by the rehabilitation activities and
the disability of the resident. We collected data from eleven residents. The precise
nature of their disability is described in table E.1. Due to severe and diverse con-
ditions of these residents with emotional instability, experts plan strategies for their
recovery based on their health conditions and neuropsychological test results [75, 81].
Furthermore, these residents have impaired facial and emotional expressions, accom-
panied by frequent mood swings, low concentration, and significant pose variations
in regards to the capture of facial images.

It is also challenging to extract all six basic expressions, so to have useful facial
video data, we altered the standard rehabilitation activities to gather more diverse
information.

Cognitive Rehabilitation Strategy

The basic aim of this activity is to improve the ability of residents to understand and
interpret information to perform specific functions mentally. Emotional stability is a
key factor in this training; otherwise, residents will not be able to participate and get
the advantage of these exercises. For this purpose, caregivers follow a set of protocols
like Mini-Mental State Exam (MMSE)2 and Montreal Cognitive Assessment (MoCA)3

comprised of repetitive activities with gradual increase in difficulty level, to assess the
attention, memory [82], visuospatial perception [83], language and communication,
function execution and learning ability of brain-injured residents [81]. These tasks

2https://www.sundhed.dk/sundhedsfaglig/
laegehaandbogen/undersoegelser-og-proever/skemaer/geriatri/mms-mini-mental-status/

3https://www.mocatest.org/
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are mostly accomplished through the use of calendars, drawing clocks, memory log
or memory devices, alarms or reminders, reading or listening to books, and playing
games. The majority of these activities were performed on the paper placed on a table.
During these activities, we encountered a couple of problems that resulted in poor
data quality: a) subjects mostly looked downwards, b) frequent pose changes, and c)
less attention. Hence, these rehabilitation tasks were tailored to the requirements of
the residents in the following ways:

• Residents performed the tasks on a PC tablet, as mentioned earlier, that was
placed in parallel to the cameras, which resulted in more frontal facial images
and increased attention.

• A favorite movie clip or cartoon character of a resident was displayed on the
screen, and then residents were asked about the character or the story. This
activity was repeated, and the cognitive assessment was monitored accordingly.

• Error-less (EL) learning was performed by instructing residents to sing lyrics of
songs, match pictures, stack Lego bricks, and play computer games, which are
of the subjects’ interest.

• Sudoku is an organizational game with numbers, colors or alphabets, normally
played on paper. Residents played this game electronically on the tablets placed
at a predefined location and orientation, resulting in frontal facial images. Most
of the residents found the game apparatus comfortable, and there was a wide
range of games from easy to hard difficulty providing the opportunity for train-
ers to monitor the learning skills of the resident at each level.

• Older residents preferred card games rather than playing digitally. Therefore,
card games like Memory, Solitaire, Go-fish, and war were played with them.
These games proved to be beneficial in recovery as they involve strategy and
thought processes with smaller challenges [80]. Regularly playing these games
boosted memory skills as well as mathematical understanding, depending on
the game. Cognitive skills assessors confirmed this result.

• We have introduced another application based game ‘Lumosity’ for improved
memory, problem-solving, and to speed-up processing. This app presents the
range of brain training games based on the input information to improve learn-
ing skills. Residents showed a positive response to this app.

• Residents suffering from speech problems were asked to play TherAppy, an
application based game developed by Tactus Therapy Solutions, created for
residents’ language skills recovery. This game comprises of four modules for
Comprehension, Naming, Reading, and Writing [84]. Residents were asked to
recall the name of a picture, complete a phrase, or spell a word after listening
to a short sound clip. Hints were available by clicking a button if a resident was
struggling.

• Most of the residents exhibit negative expressions like sadness, depression,
anger, or aggression more frequently. In order to have other expressions like
surprise, happiness, or joy, various games were created in such a way that
intentionally lead to winning for the residents that resulted in more positive
expressions.

Attention and memory enhancement are core elements in mental training. All
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these modified strategies were implemented on eleven residents, generated less erro-
neous database, and the residents exhibited more expressions and learning as com-
pared to the custom exercises for cognitive skills recovery. Cognitive skills were
evaluated by meeting goals and levels of mental-games applications. Performance
evaluation is discussed in detail in section 5

Physical Rehabilitation Strategy

TBI causes physical morbidity due to damage to the sensory-motor system. Depend-
ing on the nature of the damage, it can cause reduced muscle movement and paraly-
sis to the upper limb, lower limb, or complete body. Physical rehabilitation methods
are planned case to case while considering age, gender, disability type, and post-
concussion symptoms [85]. Additionally, assessment of activity tolerance, balance,
coordination, and postural control estimation are taken into account while conduct-
ing cardiovascular, muscular-skeletal, and vestibular activities. Physiotherapists con-
duct these activities through preset operations like cardio exercises, using a treadmill,
walking or mild running independently or with a trainer, cycling, push-ups, squats,
and other related exercises after assessing the abilities of residents [85]. During all
these activities, facial data is hardly available due to the excessive movement of the
body or face. Therefore, to acquire the maximum facial data, we asked residents who
do not have or have partial paralysis to perform physical exercises:

• Residents ride a stationary bicycle to have a static upper body as much as pos-
sible while looking at a tablet placed parallel to cameras. During the exercise,
expressions were recorded.

• For residents who use wheelchairs, the tasks were designed accordingly, so
they moved their chair forward and backward within three meters for multiple
sessions.

• Activities such as hand press-ups, arm raises, and cup pick-up and placing
were performed.

• Console video games were also introduced, which aided the movement of the
resident arms and hands to a certain extent while playing. These games exhib-
ited more explicit expressions and hand-eye coordination.

• Card games also helped with training dexterity and gross motor skills.

These activities resulted in useful data while enhancing the interest of residents
throughout the therapy sessions.

Social Rehabilitation Strategy

Social rehabilitation is quite a complex and long-term challenge due to cognitive and
behavioral disorders. Social reintegration strategies are based on individual cognitive
progress, mental health, and behavioral distortions. In a standard scenario at the
neuro center, the residents sit around a table over a cup of tea and share their daily
activities. Often, residents do not take an interest, and trainers have to intervene by
asking questions. Another observed problem is that residents with speech inhibition
communicate through writing letters on tablets, which slows down communication
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and reduces interest. To overcome these challenges, we introduced the following
activities:

• Firstly, we shared storybooks with the residents and asked them to read aloud
to other residents of the neuro-center. Most of the participants did not take
an interest in listening to the story due to poor storytelling skills and limited
concentration.

• Secondly, we played card games with residents resulting in better interaction
with the other participants as compared to the storytelling activity.

• Thirdly, we utilized PS4 console games. Every participant showed interest in-
dividually or as part of a team. Most of the participants enjoyed Medal of
Honor Airborne (MOHA)4, Need for Speed5 and similar games. When playing
MOHA in two teams, participants of each team worked closely with each other,
enhancing mutual interaction. They also expressed their emotions better at the
different stages of the games.

These activities also helped in physiotherapy. However, it is still challenging to
get all the emotional states due to non-cooperation, traumatic disabilities, and other
social and technical issues; therefore, we have further classified the expressions into
positive and negative expressions [3].

Data collected in multiple phases throughout 91 sessions, as presented in table E.1
with RGB, thermal, and depth sensors. In total, we collected 1723 video events, each
of a maximum of 5 seconds in length.

3.2 Data Annotation
Furthermore, for accurate annotations, only those experts or trainers were consulted
who worked with these residents for more than three months and have at least ten
months of experience dealing with residents that suffered from brain injury. Experts
annotated the videos manually and then later verified when image sequences are
split into various categories. Various pre-processing steps are applied to develop a
high-quality facial database; details are provided in section 4.

4 Methodology

In this section, we describe the three main steps for the automatic recognition of facial
expressions (FE), i.e., pre-processing, facial feature learning, and facial features classi-
fication. The algorithms explored and state-of-the-art implementations for processes,
as mentioned earlier, are presented below:

4.1 Pre-processing
Pre-processing is a vital step to avoid unwanted features for facial expression recog-
nition, such as illumination variations, background clutter, and different head poses.

4https://www.ea.com/games/medal-of-honor
5https://www.ea.com/games/need-for-speed

137



4. Methodology

Fig. E.4: Transfer Learning Model Architecture

Therefore, to ensure the learning of only essential features, we applied the following
pre-processing algorithms before exposure to neural networks training for the forma-
tion of a high-quality facial data log.

Face-alignment

The first step for FER tasks is face detection to remove background and non-relevant
features. Viola-Jones (VJ) [86] is a classical method, widely used for face detection
that is robust and accurate for frontal faces. However, the algorithm exhibits lower
performance in natural and in-the-wild environments, where faces are not always
frontal, producing false detection. To achieve higher quality data, we have used the
dlib-CNN-face detector [87], that has surpassed VJ for face detection, under uncon-
strained and natural environmental conditions with significant pose variations [88]. In
addition, for further face alignment, we have estimated the facial landmarks through
a cascaded regression method, i.e., Supervised Descent Method (SDM), which tracks
49 facial points and reduces the variations and in-plane rotation.

Illumination and Pose Normalization

Deep neural networks are sensitive to illumination and contrast, which can lead to
significant intra-class variations even when the images of the same person displaying
the same expressions have different contrast and illumination. We have employed
histogram equalization combined with illumination normalization, as this method
has produced state-of-the-art results in the literature of FER [89]. Another challenge,
associated with unconstrained and natural settings, are facial images with large pose
variations. We have employed the pose normalization technique that produces frontal
views, where landmarks are calculated with arbitrary facial positions, and by finding
the inverse of the transpose matrix, the face is frontalized [90].
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Fig. E.5: LSTM architecture with memory unit

4.2 Deep Learning Architecture for Feature Learning and Trans-
fer Learning (Convolutional Neural Network)

Our work is focused on the emotion cues from images and sequences of images.
Convolutional layers are richly embedded with spatial information. We have used the
features from convolution layers instead of fully connected layers and transferred to
the target database for fine-tuning. To take advantage of temporal information, we
have utilized the Long Short Term Memory (LSTM) network to consider the sequences
of CNN actuations explicitly. CNNs like VGG-16 and AlexNet, which are pre-trained
on ImageNet, can be used as a feature extractor.

Spatial Feature Extraction
In order to make full use of static databases, we have used VGG-16 architecture for
dimensional feature extractions. The VGG-16 is the deep convolutional network with
up to sixteen layers (thirteen convolutional layers and three fully connected layers).
This network takes an input image size of 224 * 224 pixels, with a convolutional
kernel size of 3 * 3 and max-pooling with 2 * 2 windows. We used the pre-trained
VGG-Face [91] architecture to initialize the network parameters that are trained on
a massive facial dataset of 2.6 million images. We assume that databases that are
captured in controlled and uncontrolled environmental conditions with posed as well
as spontaneous expression are involved, and we use the transfer learning strategy to
transfer the "information" learned by the VGG-model to our new target dataset of
neurocenter residents suffering from brain injuries for emotional cues identification.
Transfer learning can be used to avoid overfitting in the training of our network, con-
sidering the TBI database is too limited in terms of identities of subject to train a
generalized network.
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The LSTM for Temporal Information Extraction
In general, CNNs deal with images that are isolated. However, in our case, we have
used sequences of images as well, thus preserving the temporal information. LSTM
models are capable of absorbing this dynamic sequential information. The LSTM
modules can determine long-range temporal correlations from the input sequences
by using memory cells, which can hold and release information.
As illustrated in figure E.5, the LSTM states are controlled by three gates associated
with forget ( f ), input (i), and output (o) states. These gates regulate the flow of infor-
mation through the model by using point-wise multiplications and sigmoid functions
σ, which bind the information flow between zero and one by the set of mathematical
equations as explained in [2, 3]. The datasets used to train the CNN were chosen from
the benchmark datasets publicly available or made available to the research commu-
nity, and they are described in section 2.1.

Fig. E.6: Databases explored for Transfer learning

4.3 Transfer Learning Mechanism
In the current research project, we have to deal with limited labeled and identity data
from people that suffered a traumatic brain injury. However, learning processes in
deep neural networks need lots of labeled training data. Gathering training data and
labeling it is very difficult and time-consuming work. So, for gaining more accurate
results, we make use of new techniques such as transfer learning.
Transfer learning is a powerful technique which adapts knowledge from some related
auxiliary well-labeled source domains. Considering the benefit of transfer learning,
we can use labeled data that was gathered with healthy subjects to optimize target

140



5. Experimental Results

data. In general, transfer learning methods categorize into two groups: domain-
invariant feature learning and classifier adaptation. In this paper, we applied an
in-depth transfer learning approach to unify the knowledge transfer and deep feature
learning.

Since the input of our architecture are image frames and image sequences, so we
had implemented the learning of features in two ways; firstly by the use of only static
images and transferring the knowledge to the TBI datasets; secondly exploiting the
dynamic features of video data, as the variations between image sequences encode
additional advantageous information for the classification of emotional signals.

Similar to the work in [53, 55, 56], we employed the VGG-16 model to initialize
the network parameters and learn the features from eight public databases. Since the
bottom layers of CNNs learn more generic features and top layers acquire more so-
phisticated and data specific information [92], so we reserved only the convolutional
and max-pooling layers and discarded the pre-trained last three fully-connected lay-
ers. We removed fully-connected layers as they do not hold spatial information, which
is essential for the capture of motion signals in the subsequent LSTM model. There-
fore, the last pooling layers of the CNN framework is linked directly to the LSTM to
investigate the temporal characteristics across coherent images.

5 Experimental Results

In this section, we evaluate the performance of our proposed model in two ways:
First, by the domain transfer learning of static as well as dynamic databases to our
target TBI database. Second, by evaluating the emotional cues learned and transferred
from controlled and uncontrolled environmental conditions to the TBI datasets. A
static dataset refers to the image frames, whereas dynamic relates to the sequences of
images or video sequences.

5.1 Experimental Results Evaluation for Static Datasets
The facial images are resized to 224 * 244 pixels according to the network-input pa-
rameter. Peak expression frame is used for training of the network for CK+, MMI,
DISFA+ datasets. JAFFE, FER2013, SFEW, ExpW have mostly one to four images
per expression. Video datasets are first converted into 30 frames per second by an
open-source video converter, and then the peak expression image is selected. Data
is distributed 80% for training and 20% for testing purposes. The network is trained
with a learning rate of 0.0001, and batch normalization is applied to normalize the
input layer.

Figures E.7 illustrates the performance of our models trained on eight different
datasets. We can identify that recognition performance of contempt is not good as
compared to other expressions through the confusion matrix in Fig. E.7(a). Besides,
we can determine that fear and disgust emotion expressions are less accurate, as
demonstrated by the confusion matrix in Fig.E.7(c). However confusion matrix of
datasets captured in controlled environment Fig.E.7 (a)(b)(c)(d) have much higher
performance than of in-the-wild setting databases as evident in the Fig.E.7(e)(f)(g)(h)
for emotional categories. The overall accuracies of our proposed network are com-
pared with other state-of-the-art methods, as seen in table E.5, and it is observed that
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our model has performed competitively well.

Table E.5: Performance evaluation of our (VGG-FineTuned) model for emotional categories for
static datasets with other results in the literature in terms of average accuracy.

Group Method
Training
Parameters

Accuracy (%)

CK+
Liu et al. [57] 8 folds 97.1
Zhang et al. [29] 10 folds 98.9

Our 10 folds 98.6 ±0.59

JAFFE
Liu et al. [39] LOSO 91.8
Our 10 folds 89.46 ±1.75

MMI
Liu et al. [57] 10 folds 78.53
Li et al. [58] 5 folds 78.46
Our 10 folds 79.06 ±0.88

DISFA+ Our 5 folds 77.15 ±4.92

FER 2013

Zhang et al. [29] Training 28,709
Validation 3,589
Test 3,589

Test 75.1
Tang et al. [70] Test 71.2
Kim et al. [59] Test 73.73

Our
Training 35887
Validation 7178

Val 78.19 ±2.47

SFEW

Li et al. [58]
Training 958 ,
Validation 436 ,
Test 372

Val 54.19 (47.97)

Meng et al. [60]
Val 50.98 (42.57)
Test: 54.30 (44.77)

Yu et al. [61]
Val 55.96 (47.31)
Test 61.29 (51.27)

Our Val 55.75 ±2.74

5.2 Dynamic Database
The temporal information exploration is analyzed on four publicly available datasets,
namely CK+, MMI, DISFA+, and AFEW. The performance of fine-tuned VGG-face
model is compared with state-of-the-art methods in Table E.6. It is clearly observed
that in the case of the DISFA+ dataset, our network has produced better results. Simi-
larly, our network has surpassed the state-of-the-art methods in case of AFEW dataset,
when tested on the validation set. For CK+ and MMI datasets, our fine-tuned model
produced decent and competitive results. The confusion matrices to represent the
accuracies of seven emotional categories are illustrated in the Fig. E.8. Fig. E.9 repre-
sents the performance of our architecture employed to static and dynamic datasets. It
is evident that temporal information has increased the performance of the network.
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Table E.6: Performance evaluation of our (VGG-finetuned) model for emotional categories for
Dynamic datasets with other results in the literature in terms of average accuracy.

Group Method
Training
Parameters

Accuracy (%)

CK+
Zhao et al. [62]

Training: 7 to last frame
Test: last frame; 10 folds

99.3

Yu et al. [63]
Training: 7 to last frames
Test: peak expression;
10 folds

99.6

Kim et al. [64]
All frames used in
training and testing;
10 folds

97.93

Zhang et al. [65]
All frames used in
training and testing;
10 folds

98.50

Kuo et al. [66]
9 frames for training
and testing; 10 folds

98.47

Our 10 folds 98.92 ±0.32

MMI
Kim et al. [64] LOSO 81.53

Zhnag et al. [65]
All frames for training
and testing; 10 folds

81.18

Sun et al. [67] 10 folds 91.46
Our 10 folds 85.89 ±1.52

DISFA+

Zhang et al. [65]
All frames for training
and testing; 10 folds

93%

Our 10 folds 94.09 ±0.77

AFEW

Otberdout et al. [68]
Training 773,
Validation 373,
Test 593 videos

Val 46.32
Test 49.59

fan et al. [69] 45.43 on Val
Fan et al. [69] 59.02 on Test
Our Val 50.17 ±1.68
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5. Experimental Results

Fig. E.7: Performance visualization of the models trained on eight source databases using image
frames.
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Fig. E.8: Performance visualization of models trained on four source databases using sequences
of images.

5.3 Contribution in Emotion Recognition
In the second stage, the target ’TBI datasets’ are fine-tuned with pre-trained and tuned
VGG-face model with the above/mentioned publicaly available datasets, in both
static and dynamic formats. Despite the challenges of less-expressing and limited-
identity datasets, fine-tuned model exhibited the comparable results. In our experi-
mentation, we executed single-source-single-target transfer learning, that is individual
source dataset features are transferred to TBI dataset and then emotions are classified.
Our network learned the facial features related to the specific emotional category of
healthy people and explored those characteristics into facial features of TBI-datasets.

5.4 Evaluation Metric
We evaluated the performance of our framework using evaluation matrices to fully
understand the model efficacy. Confusion matrices, precision, recall, Area under
curve (AUC), and the average accuracy present the performance of our model to
recognize subtle emotional changes. We calculated multi-class confusion matrices for
both static and dynamic datasets as well as before and after fine tuning to the target
datasets as shown in Fig. E.7, Fig. E.8, Fig. E.12, and Fig E.11.

To understand the strength of each dataset for a particular expression category, we
employed precision and recall matrices as illustrated in Table E.7 and Table E.8. Re-
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5. Experimental Results

sults demonstrate that dataset captured in the wild such as AFEW, SFEW, and ExpW
have lesser accuracy for disgust, fear and surprise expressions. However, FER2013
performed quite well for the same expressions. We identified that mis-classification
of these emotions could be due to a lower number of such expressions in the datasets
under analysis. A trend of increase in accuracy for each emotional class is witnessed
with an increase in number of frames. Overall, the precision-recall matrices work in
relationship; precision indicate the ability of model to determine only relevant data
points whereas recalls verify that determined data points are actually relevant.

As given in the equations, we determined accuracy, precision and recall:

Accuracy =
TP + TF

TP + TF + FP + FN
(E.1)

Precision =
TP

TP + FP
(E.2)

Recall =
TP

TP + FN
(E.3)

where TP, TN, FP, and FN are the overall true positive, true negative, false positive,
and false negative of all the classes in the confusion matrix. In other words, the overall
accuracy was the sum of off-diagonal elements divided by all the elements in the
multi-class confusion matrix. Table E.5 demonstrates the performance of our model
on static source datasets. It is evident that our model has performed better with
accuracy of 79.06% and 78.19%, surpassing 78.53% and 73.73% on MMI and FER2013-
validation dataset respectively. On the rest of datasets, our model competed state-of-
art-methods while measuring frame-based accuracies. On contrast, our model with
sequential information has fared well surpassing recognition accuracies by 94.09%
and 50.17% on the DISFA and the AFEW datasets respectively as presented in Table
E.6. We have used average accuracy metric due to imbalanced emotional data as
mentioned in Table E.2. For additional performance measure, statistical significance
of emotional recognition is verified by t-test conducted on all datasets.

Fig. E.9 provides the illustration of overall performance of the network exploiting
the static as well as temporal information from the various source datasets. It also
demonstrates the performance of the network on the target TBI challenging dataset
after fine-tuning with source datasets. It is evident from the results that use of tempo-
ral information have enhanced the accuracy as it is evidenced through AUC metrics
in Fig. E.10, where static and temporal information are considered in the model train-
ing. In addition, fine-tuning with various source datasets exhibited that performance
is dependent on two factors; One is more training data facilitates better in transfer of
features and secondly, features related to negative emotions are learnt better from the
datasets captured in controlled settings. It is seen from the confusion matrices in Fig.
E.11 and Fig. E.12, that accuracy of emotional expressions of anger, contempt/disgust
and fear is better when fine-tuned with CK+, MMI, and DISFA+ as compared to
AFEW.
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6. Insights on Emotion Recognition in the Rehabilitation of TBI Patients

Fig. E.9: Source vs Traget datasets accuracy comparison: Illustration provides the performance
of the network when static and temporal information from both source and target datasets is
utilized. For CK+, MMI, DISFA+ and AFEW datasets we have used both static and dynamic
information, whereas for SFEW, JAFFE, FER2013 and ExpW static information is explored.

Table E.7: Precision matrix for each expression class for source datasets

Precision

Expressions CK+ JAFFE MMI DISFA AFEW FER2013 SFEW ExpW

Anger 96.67 90.01 78.87 69.72 77.55 79.31 77.78 74.49
Contempt 88.89 - - - - - - -

Disgust - 82.76 67.56 64.814 18.5 68.68 29.59 66.03
Fear 96 93.75 66.79 72.91 16.32 61.45 24.51 33.67

Happy 98.56 96.77 83.95 81.03 83.83 92.89 88.64 83
Neutral 98.76 90 85.13 83.54 83.67 73.77 82.89 81.25

Sad 94.64 93.55 77.82 73.63 48.45 64.57 57.60 71.38
Surprise 96.75 93.32 77.42 71.42 20.40 87.60 32.85 70.47

6 Insights on Emotion Recognition in the Rehabil-
itation of TBI Patients

The rehabilitation phase usually requires four steps [93]. First, the impairment type
and its severity must be tested. Second, the therapist set rehabilitation goals. Third,
the rehabilitation intervention takes place. Finally, following the intervention, the
patient has to be re-evaluated, allowing to adjust the objectives. Robots have the po-
tential to assist and promote rehabilitation procedures. They can be used to measure
performance prior, during and after an intervention as well as systematically and
continuously suggest treatment strategies based on this input and the severity of the
disability. The intervention of the Pepper robot integrated with customized emotion
recognition module assisted the rehabilitation process for the TBI patients in the four
phases, as mentioned earlier. In our field study, first, we studied the impairment
severity of each patient, and pre-set targets were defined and tested during and after
the intervention of the pepper robot. In our case, we distribute the pepper robot as-
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Table E.8: Recall matrix for each expression class for source datasets

Recall

Expressions CK+ JAFFE MMI DISFA AFEW FER2013 SFEW ExpW

Anger 94.56 93.10 75.95 71.53 50.67 66.95 57.48 62.39
Contempt 86.48 - - - - - - -

Disgust - 82.66 63.86 66.96 66.67 90.66 70.31 82.5
Fear 94.56 88.91 61.24 5574 64.21 7.64 61.53 84.22

Happy 97.84 93.75 85.76 92.23 70.33 83.63 72.13 79.04
Neutral 98.43 93.01 90.98 95.68 37.61 65.17 43.38 55.03

Sad 96.36 91.31 79.92 23.32 44.34 70.01 50.96 60
Surprise 98.77 93.33 75.98 17.74 48.75 82.07 59.25 79.57

sistance in two categories; robot as a monitoring agent and as a Feedback agent for
both patients and therapists.

6.1 Pepper robot as a Monitoring Agent
The intervention with the Pepper robot has been designed to in relation to the three
scenarios used during the data collection: cognitive, physical and social interaction
rehabilitation. The first phase involves the determination of the impairment level for
each scenario. It is determined with the set the of protocols and disability condition
as mentioned in the table E.1. In our pilot study we determine the emotional ex-
pressions before, during and after each rehabilitation strategy. Before the deployment
of the pepper interventions, the data collected was extremely beneficial for the clini-
cian and therapist to evaluate how cognitive learning, physical movement and social
interaction patterns can be affected with changes in the expressions. For example,
in cognitive rehabilitation tasks, subjects tend to make mistakes when there are more
negative emotional expressions. Therefore, in such a case, the performance of the sub-
ject declines. Similarly, patients are hesitant to involve or sometimes resist to indulge
in physiotherapy tasks when they are tired or exhibit negative emotions. In such a
scenario, the therapist failed to achieve targets, set for the rehabilitation exercise. In
case of social interaction activity it is observed that passive stimulus is required to
enhance social interaction, where subjects hardly communicate with other subjects or
passively communicate with therapists.

Monitoring Negative Emotional Reactions

Research conducted in [2] illustrates that to achieve the best results, it is essential to
determine the emotional states of the patients prior to conducting an rehabilitation
exercise. This would have a large impact on an effective rehabilitation as therapists
could save time and effort and eventually adapt rehabilitation strategies based on the
emotional conditions of the patients. For this purpose, the Pepper robot intervention
facilitates the staff members and therapists to determine the emotional states before,
during and after the rehabilitation tasks. In addition, Pepper generates reactions
according to an individual patient’s emotional state to assist in achieving the targets
set for the rehabilitation exercise.
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Fig. E.10: ROC curves for emotion recognition through frame-based and sequence of images
based information.

Handling Negative Reactions

In our pilot study, Pepper uses audio, visual and gesture output to handle negative
emotional reactions generated by the patients during rehabilitation tasks. The robotic
intervention impacted positively on physical rehabilitation but negatively on cognitive
activity. In case of physical rehabilitation, patients were motivated to execute more
repetitions of tasks. However, patients find the Pepper robot intervention distracting
during the cognitive tasks. This is due to the fact that during cognitive activity, Pep-
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Fig. E.11: Performance visualization of models fine-tuned to the target TBI database exploiting
temporal information from the image sequences.

per identified their focused-emotional reactions as negative expressions and reacted
accordingly. We implemented a Wizard-of-Oz (WoZ) functionality to recognise behav-
ioral traits in humans to equip the Pepper robot with intellectual cognitive abilities in
decision making as well as in creating good relationships with its human user. The
WoZ feature aids the therapists to achieve the rehabilitation targets during cognitive
task execution and also supports building a reliable relationship between robot and
human user.

Performance Monitoring

Pepper records each rehabilitation session and generates a pool of expressions over
time as illustrated in the Fig. E.13. The pool of expressions determines the accuracy
over the rate of change of expressions from positive to negative and vice versa. In
our pilot study, we analyzed subjects exhibit positive expressions while accurately
execution of the physical and cognitive tasks. In case of cognitive assessment, pool
of expressions are also compared with the results of Android application "Luminos-
ity" that keeps the track of accuracy over the entire session as well as for repetitive
tasks for each individual subject. These results also confirmed the exhibition of posi-
tive expressions with accuracy of tasks accomplished. During physiotherapy, Pepper
acted as a "motivator" that resulted in more repetitions of physical activity during a
session for the majority of the patients. The number of robotic reactions in response
to positive emotional expressions is directly proportional to the the number of repeti-
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tions executed in a given session. For instance, in our case study when pepper robot
is placed with the subject, number of reps for physiotherapy were increased signif-
icantly so the Pepper reactions to acknowledge the effort and motivate the subject.
Fig. E.14 illustrates the Pepper robot interaction with a subject while executing the
physiotherapy activity.

6.2 Pepper robot as a Feedback agent
Conventional evaluations involve one-on-one consultations with a therapist. Employ-
ing Pepper supports this approach with an objective evaluation of motor and cog-
nitive functions utilizing data obtained during rehabilitation sessions, thus, allowing
for accurate, effective, and automated evaluation of motor and cognitive abilities inde-
pendent of human biases. In addition, audio, visual and gesture output of the Pepper
robot during the activity, can provide information about patient-activity-engagement
and attention time-span. Attention span of TBI patients is generally low, however,
with robotic intervention this issue can be minimized using emotional expression
information, where a therapist need to modify the activity to maintain the interest
of the subject. This feedback with robotic output and pool of expressions enable the
therapists to modify the treatment according to patient involvement and performance.

6.3 Challenges and Limitation
We will discuss challenges and limitation related to emotion analysis system and
robotic platform and rehabilitation strategies involved as follows.

Comparing the facial expression recognition accuracy with others work is quite
challenging as different researchers adopt different databases with varying pre-processing
techniques and training techniques. Despite we do performance comparisons with
methods explored and average accuracy achieved. we need to consider the balanced
and imbalanced data within expression categories for metrics evaluation. Table E.7
and Table E.8 presents the performance variance of network with varying data classes.
Therefore, it is necessary to apply relevant evaluation matrices for system perfor-
mance analysis.

Although the treatment for rehabilitation through robotic interventions have been
proven to be beneficial, in most facilities they are not yet part of standard care. This
is mainly due to the fact that most studies have been carried out with non-mass-
developed robotic devices, even though commercially produced social rehabilitation
robots are becoming popular, but their costing rise significantly. Along with the need
to include more people with clinical rehabilitation substantial attempts are now being
made to create and implement low-cost tools that mitigate direct therapist oversight.
In the neuro centers, a big obstacle for introducing robot-assisted therapy is that the
patient must be able to adhere with the recommended procedure. The patient adher-
ence to recommended treatments in therapy is correlated with both decreased com-
pliance and improved treatment outcome. However, lack of desire to do the workouts
is one of the key reasons for the inability to adhere. Introduction of more engaging
interface such as utilization of the Pepper robot display, synchronized with robotic
gestures and audio framework could contribute towards persistent motivation. In ad-
dition, where patients impairments are severe, the system can respond by allowing
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the therapist taking control over the robotic intervention to modify the treatment.

7 Conclusion

In this work we have contributed in two phases, first towards the development of emo-
tion recognition algorithm for TBI patients and second the deployment of the robotic
framework for rehabilitation of the TBI patients through the implementation emo-
tion recognition model. For emotion recognition, we have introduced a deep learning
framework that is trained to learn the facial features from the datasets acquired in con-
trolled and uncontrolled environment to address two major issues in automatic facial
expression recognition. The first problem that we address in this work is non uniform
display of human facial expressions. For instance, in case of TBI patients where facial
expressions are variant due to artifacts caused by impairment severity. Employing
CNN and CNN-LSTM algorithm we transferred static and dynamic facial character-
istics related to each expressions to TBI patients database having limited identities.
one one hand, our methods have achieved the state-of-the-art performances on spe-
cific datasets in both frame-based (static) and sequence of frames based (dynamic)
emotional recognition. Our model has improved the accuracy on various datasets,for
instance 78.53% to 79.06% on MMI and 73.73% to 78.19% on FER2013 database in
static analysis. Similarly, use of temporal information had enabled the network to
exhibit state-of-art performance on DISFA and the AFEW with 94.09% and 50.17%
accuracy results respectively as presented in Table E.6.

On the other hand, our experimental studies reveal that certain facial expres-
sions like anger, fear contempt/disgust, sad and surprise are learnt better from the
databases that posses features with frontal faces such as CK+, MMI and JAFFE.
Whereas facial features related to neutral, happy expressions have exhibited constant
learning pattern in both controlled and in-the-wild environmental conditions. How-
ever, large databases in-the-wild like FER2013 and ExpW have produced better results
than smaller databases. In addition, posed facial expressions in lab or controlled envi-
ronment, are impure and inconsistent that cause significant degrading in performance
of facial expression algorithms in the real world settings. In this work, we train our
CNN-LSTM model to transfer facial features in-the-wild settings to the TBI database
having pure expressions that were carefully annotated by the experts and clinical staff
members, increasing the FER accuracy on the TBI images. Our experimental findings
indicate that the proposed FER algorithm achieves equal or even better performance
than state-of-the-art methods.

The second major contribution is the use of robotic technology to transform the
recovery from a one-on-one comprehensive care of human beings in specialized insti-
tutions to a technologically-driven, centrally monitored and controlled environment.
Provided the elevated costs associated with long-term recovery and the challenge in
maintaining adequate duration and severity of impairment treatment rehabilitation
programs, cost-effective deployment of robotic rehabilitation is firmly supported. Im-
plementing emotion understanding through the Pepper robot empowers clinicians
to deliver more productive recovery interventions and enable patients to access care
more efficiently.
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Fig. E.12: Performance visualization of models fine-tuned to the target TBI database using image
frames.
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Fig. E.13: Visualization of pool of expression in timely order. Video sample of maximum 10
second is taken from AFEW dataset and every 25th frame per second is displayed

Fig. E.14: Visualization of the Pepper robot interaction with the subjects during physical reha-
bilitation activity. Identities are not covered due to privacy issues.
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1. INTRODUCTION

Abstract

Social signal extraction from the facial analysis is a popular research area in human-robot
interaction. However, recognition of emotional signals from Traumatic Brain Injured (TBI)
patients with the help of robots and non-intrusive sensors is yet to be explored. Existing
robots have limited abilities to automatically identify human emotions and respond accord-
ingly. Their interaction with TBI patients could be even more challenging and complex due to
unique, unusual and diverse ways of expressing their emotions. To tackle the disparity in a TBI
patient’s Facial Expressions (FEs), a specialized deep-trained model for automatic detection of
TBI patients’ emotions and FE (TBI-FER model) is designed, for robot-assisted rehabilitation
activities. In addition, the Pepper robot’s built-in model for FE is investigated on TBI patients
as well as on healthy people. Variance in their emotional expressions is determined by com-
parative studies. It is observed that the customized trained system is highly essential for the
deployment of Pepper robot as a Socially Assistive Robot (SAR).

1 INTRODUCTION

Researchers have conducted extensive investigation into human-focused robotic tech-
nologies, designed to achieve real time and close to human-like human-robot inter-
actions [1]. However, existing robotic technologies that facilitate robots in human
emotions recognition have limitations [1] and require more intelligent platforms and
software to communicate and respond naturally with people [2]. Recently robots
have been developed to collaborate with doctors, physicians or physiotherapists. In
the health care sector these robots are tailored-made, particularly Socially Assistive
Robots (SAR), to provide assistance and improvement in a wide range of medical ap-
plications such as robot-assisted therapies [3, 4], complex-surgical operations [5, 6], or
for social engagement with people with special needs like children with autism spec-
trum disorder (ASD) [7–10]. Machine learning, especially deep learning, approaches
have enabled these robots to automatically identify and react intelligently to subject
emotional states. These smart machines require techniques that can accurately and
robustly recognize human emotional clues from uncontrolled and natural environ-
mental conditions [11].

A typical robot for health monitoring and improvement needs to receive audio,
video or proximity information from its sensors. This information is then processed
based on the algorithm that interpret the information into meaningful signals. This is
followed with robot action or response for the desired task [7]. In some cases, therapist
or ’an agent behind the curtain’ controls the robots due to lack of automatic percep-
tion of signals and spontaneous response to the emotional cues, consequently making
less autonomous human-robot interaction. There is a need of autonomous and data-
driven machines that can determine patient behavior and react accordingly [12]. Fur-
thermore, these systems are heavily relying on both audio and video sensors input for
making stronger relation. However, robots placement to aid TBI patients in a home
or in a specialized neuro-center, face certain additional obstacles that are necessary
to be considered. These include the patients’ non-cooperative behavior, inappropri-
ate responses and inability to express their emotions. This is due to the nature of
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the condition like stroke or accident, resulting in damaged sensory motor control
and reasoning skills, along with restricted muscle movements due to paralysis [?, 13].
However, these challenges can be different from patient-to-patient, depending on the
nature and severity of the injury, producing speech inhibition, partial or complete
paralysis, involuntary body movements, abrupt emotional changes, aggression, lack
of consciousness or attention and varied emotion elicitation [14]. Therefore, we aim
to exploit only visual signals for system generalization for TBI patient’s emotional
analysis through facial expressions.

Fig. F.1: Block Diagram of Deep Trained TBI-FER Model and Pepper’s Built-in Facial Expression
Recognition for Emotion Classification. Black-arrow represents FER through built-in Pepper
robot whereas red-arrows represents deployment of TBI-FER modal

Current Facial Expression Recognition (FER) systems are largely based on Con-
volutional Neural Networks (CNN) for feature extraction and classification as they
provide state-of-art results for face recognition [15, 16], facial expression recogni-
tion [17–20] and emotional states identification [21, 22]. Their results are highly accu-
rate on healthy people and in controlled conditions. However, this high accuracy is
still yet to be achieved with challenging environmental conditions such as large pose
variation, low illumination, and on data sets of people with limited expressions like
TBI patients. In addition to that, remarkable achievements has witnessed in machines
analysis of human emotions, but there are still noticeable challenges that are needed
to be addressed in order to involve robots into daily interfaces like social, physical
or cognitive activities in real-world scenarios. Some of the major challenges are as
follows:

• The wide range of datasets available for FER are collected in laboratory and
controlled conditions with little or no pose variations, frontal views, without
occlusion, stable illumination and with cooperative subjects. Undoubtedly, such
luxuries are not present in real-world applications. Systems trained on such
data do not perform well in real-time with real subjects.

• Currently available datasets have FE of healthy people who are mostly cooper-
ative and sometimes produce induced-expressions as compared to TBI patients
who have impaired skills, and quite varied and limited expressions due to fa-
cial paralysis [?, 13]. Additionally, induced FEs that are produced consciously
largely alter from natural involuntary emotions.

166



2. Related work

• Most of existing intelligent systems are trained on databases where expressions
are clear with little variance on the vast majority of all 6 basic expressions such
as happiness, sadness, fear, angry, surprise and disgust. However, in case of
TBI patients classification of 6 basic expressions (7 including neutral) is quite
complex as TBI patient’s expressions are not easily distinguishable except for
one or two and all expressions are not very common. Hence, SARs trained on
these databases needed to be customized as these special subjects behave and
respond differently than healthy people.

In this research article, we intend to address the aforementioned complexities and lim-
itations in TBI-human-robot interaction by the utilization of a TBI-patient database,
which is a collection of multimodal data annotated by TBI-patient’s care givers, ex-
perts, physiotherapists and doctors. This database is a collection of TBI facial im-
ages for spontaneous expression analysis, captured in an entirely unconstrained, real-
world environment. It contains the events of natural interactions of subjects of diverse
background and age groups in three scenarios of cognitive, social and physical reha-
bilitation activities. We used this database to develop a deep trained model (TBI-FER
Model), composed of Convolutional Neural Network and Long Short Term Memory
Networks (CNN-LSTM) to exploit the spatio-temporal information of the TBI subjects.
This TBI-FER Model is dedicated for FER of TBI patients that can be integrated with
SAR robot, like the Pepper robot for effective human-robot-engagement-research. We
performed the classification of 6 basic expressions through the TBI-FER model val-
idated on the TBI patient database as well as the Extended Cohn-Kanade (CK+)
(healthy people) database [23]. We also present the hypothesis that our proposed
model will outperform the pepper robot built in model. Furthermore, the Pepper
robot built-in FER model is employed on both healthy and TBI patient databases and
a FE variance analysis is made.

The rest of this article is structured as follows. Section 2 presents the related
work including social robots and facial expression recognition. Section 3 describes the
methodology for the TBI-FER model training with CNN-LSTM and FE identification
through the Pepper robot, and Section 4 describes the experiment and its results.
Finally, Section 5 presents the discussion and concludes the paper.

2 Related work

2.1 Social Assistive Robots
In recent years, there has been a growing interest in providing assistance and services
to people for physical or cognitive rehabilitation, social interactions and many other
health care applications with the help of special robots, categorized as social assistive
robots (SAR) [24]. SAR are extensively purposed for monitoring and assisting elderly
people in activities of daily life (ADL) in smart homes. Paro, a pet robot resembling a
baby seal, has shown positive results for pet therapy by reducing stress in residents in
care centers [25]. This also resulted in increased social interaction between residents.
Similarly, Roball, a mobile SAR with an IR sensor for touch detection, improved the
social interactive behaviour among kids suffering from Autism Spectrum Disorders
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(ASDs). Roball has encouraged the kids to play with trainers, therapists, and fam-
ily members [26]. AIBO (Artificial Intelligence roBOt), an autonomous entertainment
robot, was proved effective in enhancing social interaction as well as in aiding mental
therapy [27]. AIBO uses touch, audio, vision and thermal sensors to perceive infor-
mation. A personal assistant robot, Philips iCat, used as a companion, motivator and
educator, performed roles of engaging, fostering and instructing [28]. iCat uses vocal
emotional expression as well as facial emotional expressions. Another type of robot
architecture that integrates the domains of robotics, medicine, psychology, social, cog-
nitive as well as interactive fields is HealthBot [29]. This robot was designed to help
the elderly, monitoring their health status and detecting falls. In addition, there is an
extensive research on assistive and interactive robotics focusing on the rehabilitation
of the elderly and people who suffered stroke [30, 31]. The mentioned companion
robots aid in ADL [32] and engaging socially for the purpose of assistance and recov-
ery to improve life quality [29, 33, 34] in the field as well as in lab. Sophia, one of
the most advanced humanoid social robot can display expressions similar to humans
to build trust and aid humans towards a better life and design smarter homes [35].
She has the ability to process visual, emotional and conversational data. Sophia incor-
porates Gardner’s multiple intelligences [36] into her cognitive architecture. Sophia
has also been used as a meditation consultant, giving step by step instructions to help
people feel better in lab environment but Sophia has not been placed in field with real
subjects. Additionally, these robots utilize different perceived signals such as voice,
touch, gestures, signals through IR, RGB, thermal and depth cameras, subject motion
tracking, force sensors, and many other indicators to perform their tasks.
Mabu, the intelligent and socially interactive personal health care companion, looks
after the patients at home, and mainly reminds them about their medication [37].
Mabu emotionally engages with patients, and evolves its relationship over time by tai-
loring its conversation by adopting behavior psychology using Artificial Intelligence
(AI) algorithms [38]. It also focuses on keeping the patients healthy by constantly
monitoring their health and sending encrypted data to a personal doctor if required.
Moreover, it actively involves its patients in therapies as prescribed by the doctors.
One of the major features of Mabu is active involvement in its speech with patients
and the ability to augment its psychological and physiological models to generate
new conversational models with the aim of long-term health care [37, 38].
SoftBank robotics have developed NAO [39] and Pepper [40], which are high per-
formance humanoid robots for research and education purposes with the ability to
process a wide range of expressions and gesture information. Pepper is equipped
with several sensors, but most importantly two 2D and one 3D cameras, which can
easily be accessed by its SDKs. Due to its cameras and sensors the Pepper robot can
recognize, track and turn while following faces. It also has a preset FER algorithm.
The comparison of the discussed robot’s input modalities and re-learning capabilities
is presented in Table F.1 whereas their illustration is presented in Figure F.2.
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Sophia Mabu Pepper NAO iCat HealthBot
(top) PARO

(bottom) AIBO
Fig. F.2: Famous SAR robots

Table F.1: Robots’ Input Modalities And Re-Learning Capability

Robot
Audio
Input

Video
Input

Tactile
Input

Adaptive
Re-learning

Sophia [35] Yes Yes No Yes
Mabu [37] Yes Yes Via tablet Yes

Pepper [40] Yes Yes Yes
Not by
default

NAO [39] Yes Yes Yes No
iCAT [28] Yes Yes No No

HealthBot [29] Yes No Via tablet No
PARO [25] Yes Via light sensor Yes No
AIBO [27] Yes Yes Yes No

2.2 Deep Learning Approaches for Facial Expression Recog-
nition

In the aforementioned robots, different sensors have been integrated to achieve effi-
cient human-robot interaction but in our case we would like to rely only on visual
information so that the robot can communicate and recognize the emotions of TBI
patients effectively, regardless of their speech and locomotion disabilities. It is ob-
served that human emotions are mostly recognized by facial expressions [41, 42]. In
order to identify emotions accurately, face and Facial Expression Recognition (FER)
approaches have been evolved from holistic, local-feature-based like Gabor or Lo-
cal Binary Pattern (LBP), learning-based-local descriptors (shallow methods) to deep
learning (DL) methods [43]. Traditional methods failed to address certain challenges
when researchers moved towards automated and unconstrained FER in challenging
conditions. In 1990’s, the holistic approaches dominated the FR community with
certain low-dimensional representations inferences like linear subspace, sparse repre-
sentation and manifold approaches [44, 45]. However, these holistic methods failed
when exposed to uncontrolled facial changes, different from prior assumptions. This
lead to rise of local features based facial recognition methods involving Local Bi-
nary pattern (LBP) [46], Gabor [47], SIFT, HOG and other high-level dimensional
representations [48]. Unfortunately, these handcrafted features could not address the
unique characteristics and denseness of facial features. Following these limitations,
researchers introduced the learning-based-local descriptors for better distinctiveness
and compactness. This produced FE accuracy of approximately 95% [42] but this is
achieved under controlled conditions with frontal views and high resolution images.
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Fig. F.3: Pepper robotic administration for Facial Expression Analysis

However, these shallow methods do not handle well non-linear changes in facial ap-
pearance. In real time scenarios, shallow methods have improved the accuracy on
challenging unconstrained Labeled Faces in the Wild (LFW) dataset [49] to about
95% [50] in 2010. Alex Net won the Image-Net competition [51], through deep learn-
ing methods, such as convolution neural networks (CNNs) with a substantial mar-
gins. Similarly, in 2014, DeepFace approached close to human performance (97.53%)
on LFW dataset benchmark [49], and acquired state-of-arts performance (97.35%) [17].
All of these experimental evaluations are based on subjects without any expression
impairments like TBI patients. Ilyas et al in [52] have exercised the CNN-LSTM ar-
chitecture to exploit the spatio-temporal information for features classification and
mood analysis of TBI patients and achieved an accuracy of 87.97% on challenging TBI
database. We have employed the same linear combination of CNN-LSTM architecture
to train the TBI database and compared with Pepper robot built-in FER model to have
FER performance analysis.

3 Methodology

3.1 Database Development and Training
The main aim of this study is to perform facial expression (FE) and mood recogni-
tion of TBI patients in order to enhance the social interaction and assist trainers and
physiotherapists with the help of robots. First we accumulated a database in three
uniform scenarios namely cognitive, physio and social rehabilitation activities, ensur-
ing the reliability of the database as explained in detail in [13, 52]. This database
is comprised of 924 videos taken about 11 participants, each being a maximum of
5 second in length, recorded with an Axis RGB and a Logitech RGB camera during
multiple sessions at 30fps, resulting in approximately 140,000 captured frames.

For database training, first various pre-processing techniques like face detection,
landmarks detection and tracking by Supervised Decent Method (SDM) followed by
Face Quality Assessment (FQA), were applied to guarantee high quality images in
Face-Log system. In the next step, this high quality image database is passed through
a linear architecture of CNN and LSTM, to extract the facial features with the help of
CNN from the input faces of TBI patients and then feed to LSTM to exploit the tempo-
ral relation on the basis of extracted features in timely manner. For feature extraction
we have fine tuned the CNN with off the shelf pre-trained VGG-16CNN model [53].
Features are obtained as fc7 layer of CNN with VGG-16 model that is feed into LSTM
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model to analyze the performance of combined CNN + LSTM deep neural architec-
ture, resulting in TBI patients’ FER model (TBI-FER). For performance evaluation the
TBI-FER model is validated on the CK+ database. The general schematic of the robotic
architecture executed for FER analysis is demonstrated in Figure F.1.

In order to analyze the FER through Pepper robot, the solution required two
distinct operations. Firstly, the NaoQi Python SDK is used to retrieve video from
the 2D camera of the pepper robot with frame rate of 30FPS and the resolution to
320x240px. Secondly, subject ID file is created and participants were then asked to sit
in front of the robot and make different facial expressions related to the 6 emotions.
Figure F.3 is illustrating the procedure of emotion elicitation through Pepper robot.

4 Experimental Results

In order to present the results, first we explain the experimental setup. In terms of
experiments, we evaluate both FER models namely TBI-FER and Pepper-FER models
on TBI and CK+ databases for emotion recognition as seen in Figure F.4.

4.1 Experimental Setup
The robot was set up to perform FER with its built-in detection algorithm in order to
later annotate the recorded one minute videos and to serve as a base for comparing the
built-in method (Pepper-FER) to our proposed model. This model is also validated on
both TBI and CK+ databases. Pepper utilizes that trained model for live classification
on the robot. In order to compare with the TBI-FER model, a connection is established
with robot similar to video recording and images are retrieved. The images were
passed onto the loaded classification model, and the classified emotion was returned
as a string. The information was used to be pushed to the robot through another
initialized service converting text to speech (TTS). As a result, the robot was capable
of reporting the participants’ emotions through TTS with our proposed FER model.

Fig. F.4: Evaluation of FER Models on TBI and CK+ Database
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Table F.2: Confusion Matrix of 6 Basic Expressions through TBI-FER model on TBI Patient’s
Database

Neutral Happy Angry Sad Fatigued Surprised

Neutral 88 3 2 14 2 1

Happy 4 82 2 3 2 7

Angry 2 2 85 5 6 1

Sad 12 1 4 78 11 1

Fatigued 7 1 5 2 67 9

Surprised 2 21 3 2 6 71

4.2 TBI-FER Model Analysis
In this section, we discuss the training of our system on the TBI patient database
and its validation of the results for 6 basic expressions. It is evident that the neutral
expression has the highest, 88% accuracy, as shown in Table F.2. This is due to the fact
that neutral is the most common expression in TBI database. Although, in most cases
TBI neutral expression is most likely recognized as sad for healthy people. Fatigued
or stress expression exhibits the lowest accuracy in the validation of this FER model.
This is due to the unbalanced data set, which is a result of the difficulty of acquiring
this type of data because of stressed or non-cooperative participants. On the other
hand, when this TBI-FER model is employed on the CK+ database for identification
of expressions, it is shown that the CK+ database results are much better compared
to the TBI patient one due to the reason that latter database is mainly of high quality
images with frontal faces. Comparatively, in case of the TBI patients, there is challenge
of working with non-frontal faces. FE of neutral, angry, sad, happy, surprise and
fatigue are identified accurately up to 91%, 88%, 87%, 85%, 84% and 82% respectively
as illustrated in Table F.5.

Fig. F.5: Comparison of FER Modals on TBI Patients and Healthy Subjects
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Fig. F.6: Box plot of the FER accuracy score. On the x-axis 1.0 is TBI-FER model on the TBI
database, 2.0 is Pepper-FER model on the TBI database, 3.0 is TBI-FER model on the CK+
database, 4.0 is Pepper-FER model on the CK+ database

4.3 Pepper built-in FER Model Analysis
For the classification of emotions through Pepper, its built-in FER model is imple-
mented on both TBI patient and healthy people database. It is observed that Pepper
identified the surprise emotion from TBI patients with an accuracy of 42% as opposed
to 71% for CK+ database as demonstrated in Table F.3 and F.4 respectively. This can
be due to the varied and limited surprise elicitation from TBI patients due to stroke
impact. Furthermore, Pepper identifies neutral expressions of TBI patients with only
42% accuracy with sad and neutral expression overlapping, proving that TBI patients’
neutral expressions are more likely recognized as sad ones. Experts have annotated
the patients’ expressions as neutral since their ability to display emotional signals is
disturbed due to injury, and during post stroke rehabilitation they exhibit depression
and negative emotions more often than positive ones [13, 52]. It is also observed that
the Pepper robot failed to identify fatigue expressions due to technical limitations.

In order to determine which FER model is significantly more accurate, we have
conducted a student’s t-test on the TBI-FER model and the Pepper built-in model,
where variance is approximated for each of the model. For t-test each of the model has
to follow the normal distribution and this validated by Q-Q plots and K-S normality
tests. We conducted t-tests on two separate databases for each of the FER model. As
seen in Figure F.5, for TBI database, the t-value comes out 2.54 with a p-value 0.023.
Thus, the null hypothesis can be rejected and we can conclude that the TBI-FER model
is significantly more accurate. By studying the box plot in Figure F.6, it can be seen
that TBI-FER score is greater than Pepper-FER score, it can be concluded that TBI-FER
model has higher accuracy than the Pepper-FER model on the TBI-database. Similarly,
when examining the CK+ database for FER models accuracy, the t-value comes out
3.17 with the p-value 0.003. Thus, we can conclude that the TBI-FER model is also
significantly more accurate than the Pepper FER model for healthy subjects. It is also
clearly evident in the box plot in Figure F.6, the TBI-FER model has higher score than
Pepper-FER model on CK+ database.
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Table F.3: Confusion Matrix of Facial Expression Recognition through Pepper-Robot Built-in
Model on TBI Patients

Neutral Happy Angry Sad Fatigued Surprised

Neutral 42 0 12 18 x 1

Happy 1 67 2 0 x 5

Angry 12 5 73 9 x 2

Sad 17 1 12 76 x 2

Fatigued* x x x x x 0

Surprised 2 2 3 2 x 42
* The Pepper robot lacks ability to identify fatigue expressions.

Table F.4: Confusion Matrix of Facial Expression Recognition through Pepper-Robot Built-in
Model on Healthy People

Neutral Happy Angry Sad Fatigued Surprised

Neutral 59 1 5 7 x 1

Happy 14 74 2 2 x 23

Angry 11 3 78 4 x 2

Sad 17 1 9 81 x 3

Fatigued* x x x x x 0

Surprised 2 15 7 2 x 71
* The Pepper robot lacks ability to detect fatigue expressions.

5 Conclusion and Discussion

In the general context of FER and social interaction of TBI patients, this paper has pre-
sented a robotic framework to identify the FE and emotional signals of TBI patients
specifically by introduction of customized deep trained model to meet the require-
ments of a specialized scenario. To do so, two FER-models, customized TBI-FER
model and Pepper-FER model are compared, and their performance is analyzed. For
this purpose, TBI patients database was collected in three uniform scenarios, than
deep trained model composed of linear combination of CNNs and LSTM is devel-

Table F.5: Confusion Matrix of 6 Basic Expressions through TBI-FER Model on CK+ Database

Neutral Happy Angry Sad Fatigued Surprised

Neutral 91 2 3 5 1 1

Happy 3 85 2 3 2 4

Angry 2 2 88 5 6 2

Sad 5 1 4 87 12 2

Fatigued 5 1 5 3 82 2

Surprised 5 4 1 2 6 84
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oped to identify the FE and mood of TBI patients. This model is compared with
the Pepper robot built-in FER model and FER accuracy is determined using objec-
tive assessment methods. Objective evaluation method is used by analyzing facial
expressions on test subjects. The results demonstrated that TBI-FER model has sig-
nificantly higher performance as compared to the Pepper-FER model, on both TBI
database and CK+ database (healthy subjects). Furthermore, individual expressions
are more pronounced by TBI-FER model, this cross validates the previous results. So
in order to place the Pepper robot with TBI patients, it is essential to use customized
trained model for more meaningful interaction. Facial expression recognition has
proved to be a vital tool to evaluate the mood of subjects in non-obtrusive manner for
enhancing social interaction. Therefore, the Pepper robot can use these self-trained
models, in our case a TBI-FER model. This can lead to behavioral adaptation of the
robot in accordance with patient mood, similar to the implementations of Mabu and
Sophia [35, 37] but with less cost and computational power.
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feedback from a socially assistive robot on self-efficacy in post-stroke rehabilita-
tion,” in IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, pp.
764–769.

[34] J. Fan, D. Bian, Z. Zheng, L. Beuscher, P. A. Newhouse, L. C. Mion, and N. Sarkar,
“A robotic coach architecture for elder care (rocare) based on multi-user engage-
ment models,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 25, no. 8, pp. 1153–1163, 2017.

[35] B. Goertzel, J. Mossbridge, E. Monroe, D. Hanson, and G. Yu, “Humanoid robots
as agents of human consciousness expansion,” arXiv preprint arXiv:1709.07791,
2017.

[36] L. Helding, “Howard gardner’s theory of multiple intelligences,” Journal of
Singing, vol. 66, no. 2, p. 193, 2009.

[37] M. J. Johnson, M. A. Johnson, J. S. Sefcik, P. Z. Cacchione, C. Mucchiani, T. Lau,
and M. Yim, “Task and design requirements for an affordable mobile service
robot for elder care in an all-inclusive care for elders assisted-living setting,”
International Journal of Social Robotics, pp. 1–20, 2017.

[38] C. Datta, “Programming behaviour of personal service robots with application
to healthcare,” Ph.D. dissertation, ResearchSpace@ Auckland, 2014.

[39] A. Pandey and R. Gelin, “A mass-produced sociable humanoid robot: pepper:
the first machine of its kind,” IEEE Robotics & Automation Magazine, no. 99, pp.
1–1, 2018.

[40] F. Tanaka, K. Isshiki, F. Takahashi, M. Uekusa, R. Sei, and K. Hayashi, “Pep-
per learns together with children: Development of an educational application,”
in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).
IEEE, 2015, pp. 270–275.

[41] Y. Wu, H. Liu, and H. Zha, “Modeling facial expression space for recognition,”
in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2005, pp. 1968–1973.

178



References

[42] S. Z. Li and A. K. Jain, Handbook of Face Recognition, second edition ed. Springer
London Dordrecht Heidelberg New York: Springer, 2011.

[43] M. Wang and W. Deng, “Deep face recognition: A survey,” arXiv preprint
arXiv:1804.06655, 2018.

[44] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, no. 7, pp. 711–720, 1997.

[45] W. Deng, J. Hu, J. Guo, H. Zhang, and C. Zhang, “Comments on" globally max-
imizing, locally minimizing: Unsupervised discriminant projection with appli-
cation to face and palm biometrics",” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 8, pp. 1503–1504, 2008.

[46] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary
patterns: Application to face recognition,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, no. 12, pp. 2037–2041, 2006.

[47] C. Liu and H. Wechsler, “Gabor feature based classification using the enhanced
fisher linear discriminant model for face recognition,” IEEE Transactions on Image
processing, vol. 11, no. 4, pp. 467–476, 2002.

[48] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, “Local gabor binary pattern
histogram sequence (lgbphs): a novel non-statistical model for face representa-
tion and recognition,” in Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, vol. 1. IEEE, 2005, pp. 786–791.

[49] L. J. Karam and T. Zhu, “Quality labeled faces in the wild (qlfw): a database
for studying face recognition in real-world environments,” in Human Vision and
Electronic Imaging XX, vol. 9394. International Society for Optics and Photonics,
2015, p. 93940B.

[50] D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality: High-
dimensional feature and its efficient compression for face verification,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 3025–3032.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[52] C. M. A. Ilyas, M. A. Haque, M. Rehm, K. Nasrollahi, and T. B. Moeslund, “Facial
expression recognition for traumatic brain injured patients,” in International Con-
ference on Computer Vision Theory and Applications. SCITEPRESS Digital Library,
2018, pp. 522–530.

[53] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in British
Machine Vision Conference, 2015.

179



Part IV

Dissemination Activities

180



Paper G

Developing a user-centred
Communication Pad for
Cognitive and Physical
Impaired People

Chaudhary Muhammad Aqdus Ilyas, Kasper Rodil and
Matthias Rehm

The paper has been published in the
Proceedings of 8th EAI International Conference: ArtsIT, Interactivity Game

Creation, Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, (LNICST, volume 328),

doi:10.1007/978-3-030-53294-99
2019.

181



c© 2019 Springer
The layout has been revised.



1. Project Introduction

Abstract

It is always challenging for people with disabilities, particularly having speech inhibition to
communicate. In this research article, we explored the case study of the resident at the neuro-
logical centre, having a complication in conveying messages due to physical and speech paral-
ysis. For making effective communication, we have developed a user-centred communication
pad where the resident needs to swipe a finger on the pad with printed alphabets and digits (we
called it communication pad). A camera placed over the communication pad detects the finger
movement of the resident and extract the message to display on the computer screen or the
tablet. Our tracking method is robust and can track the fingers even in varying illumination
conditions. This paper also covers the main steps of design methods with various design pro-
totypes and its user feedback. Result analysis of different design modules and user experience
evaluation shows that our designed system has provided independence and convenience to the
resident in conveying a message successfully.

1 Project Introduction

Since 2015 we have been working with a national neurological centre (hereafter neuro
centre) with a focus on co-designing various technical systems enhancing capabil-
ity for the individual residents. As these residents are unable to recover from their
life-altering impairments fully, the centre provides full-time care to them and aid in
organizing and supporting activities of daily living (ADL). The project collaboration
aim is to investigate where technological innovation can assist residents and staff
members with fulfillment of rehabilitation activities - including enhancing individual
self-control and improvement of quality of life [1–3].

One of the overall design (and research) challenges is the unique (and highly di-
verse) nature of the cognitive abilities of residents (for instance, apraxia and aphasia).
Due to the severe and diverse conditions, the residents require assistance even for
small chores. To list a couple of examples, some of the residents are fully paralyzed
and bound to wheelchairs or beds, some residents have lost all speaking ability, and
some have minimal short-term memory or attention spans (in some cases less than
two minutes). All residents embody a combination of these impairments, but the com-
mon characteristic is that they all became impaired late in life. These conditions reflect
a significant alteration of the functionality of the individual - in many cases leading
to depression and general loss of life quality perceptible as a decrease of "self-control,
self-worth, privacy and independence" [3].

While the primary task of the neuro centre is to provide round the clock care-
giving, it also encourages technical solutions addressing the needs of these residents
for specific task assistance as these residents are heavily relying on staff support even
for personal and private matters. It is important to stress that it is not only a budgetary
manoeuvre, but there is a grounded wish for the residents to have as much self-control
as possible. Thus a major research strand orbits; how to enable designing for diversity
with an inclusive design approach - such as Participatory Design.

Some companies who are working with the neuro centre furnish technical sup-
port related to rehabilitation activities but with little to no consideration of personal
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challenges and abilities. Most of their products are designed for rehabilitation pur-
poses only with highly generic solutions, thus making them of little to no use for
these residents. Each resident has a unique and individual challenge, for instance,
one resident has a problem with remembering, he frequently forgets forcing staff to
remind him time and time again about even very basic tasks. This cycle of reminding
and forgetting often leads to frustration on both parts.

We have been part of a variety of different projects at the neuro centre over the
years and after a series of consultation meetings (demonstration of prototypes, group
talks, socialization) with staff members and residents, there was consensus to focus a
project on making customized, and human-centred functional social robots to enhance
independence and quality of life. The project demonstrates a well-meant objective of
empowering the residents to respond to their everyday challenges and give a voice
to those who are neglected or technically limited to be part of otherwise off-access
traditional system development.

Thus the inclusion into design is cardinal and a priority that the residents provide
input during design sessions and contribute to the aesthetic and functional properties
of the systems. This deliberate inclusion has so far provided the residents with a vis-
ible sense of ownership. As an example, in some situations, the residents suggested
making the design to closely reflect the portrayal of their favourite movie character
or other more personal traits. What was initially the project, became an umbrella for
several individual projects. Albeit being very different in function and aesthetic, they
all followed the same development model rooted in problem-oriented development.
The first phase was best characterized as an ethnographic approach into the life world
of the resident and the particularities of their situations requesting a technical solu-
tion. Following this phase resembled a typical collaborative sketching/illustration on
paper phase whereby ideas were externalized (for instance by using cardboard). The
last phases involved prototyping with 3D printers, assembly using electronics and al-
ways with several sessions together with the resident. These social robots were from
the beginning customized for and with a specific user - one system for one resident.

1.1 Case Study
People with motor, speech and hearing inhibitions face severe difficulties in conveying
their messages traditionally (for instance using sign language). In many cases, they
are dependent on Augmentative and Alternative Communication (AAC) technologies
so there is always a need of a specific communication system, for instance, one that
can track hand or finger gestures. Thus, such a camera vision system able to transcribe
finger or hand movement or sign language into text or speech would, conceptually,
be useful for productive interaction (reliable and fast).

In this case study, the resident is suffering from speech inhibition and paralysis
and is used to communicate with staff through an analog communication tool, a big-
sized letter-board, with digits and numbers printed as illustrated in the Fig G.2. First
of all, the board with printed numbers is quite big, making it unfit to use it in all
situations. For instance, if a resident require assistance while travelling or even social
communication outside the resident’s apartment, he is not able to use this tool as it is
often only available in his apartment. The actual one-to-one communication requires
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staff members to point on various letters to overtime construct words and sentences
and vice versa. Pointing out the letters on the board is very tedious for the resident
as well as for the staff member, and most of the time, it leads to confusion. Therefore,
residents and staff members have to repeat the process many times over to exchange
even basic information.

In addition, this process is exposing the privacy of the resident to the staff mem-
bers. The resident is like the other residents staying at the neuro centre permanently
and can not communicate freely with visiting friends or family members without the
presence of staff. Most visible is the problem when the resident exchanges text mes-
sages with family and friends. The staff member will have to (besides decoding the
intended message on the board) type the message on the resident’s mobile phone and
afterwards return to read it out loud. In some cases and because of this troublesome
process, the resident is hesitant to communicate with ex-situ family members.
We decided to address the challenges both at the vector of the physical system design
side and at the vector relating to the convenience and privacy issues for the resident.
Having these factors in mind, we devised a proof of concept vision-based system
called "visual communication pad" (Vis-Com pad). The Vis-Com pad concept was
scoped around making a vision-based real-time text recognition system that automat-
ically detects the finger movement over the pillow-board (letter-board) to infer the text
message that can be displayed to a screen or sent to the receiver through a communi-
cation device; such as a mobile phone. At the end the Vis-Com pad has enabled the
resident to convey a message without the intervention of staff. Section 3 provides the
details of system designing and implementation. Before addressing the design and
implementation of the system, we will address the technical landscape on which the
system rests.

2 System related literature

Most of the camera-based systems, which use a hand as the basis for non-verbal com-
munication, conform to a sequence of steps: detection and segmentation; tracking
and feature extraction; and finally classification. The first step is detection and seg-
mentation of hand or fingers in the field of view (FoV) of the camera. In the next
step, the detected hand is tracked, and visual features are extracted. In the last step,
spatiotemporal data that is extracted in the previous step are grouped and assigned
specific labels.
The primary aim of vision-based hand gesture recognition systems is the clarification
of the semantics of hand movement, posture attribution or bodily expression cues [4].
These signals play an integral part in the understanding of the message. It is also nec-
essary to process this information in real-time and to enable the system to respond
accordingly. We can distinguish the gesture recognition systems based upon the in-
put data type such as RGB, thermal or depth; methods used to process the input
information (employment of various segmentation, feature representation and classi-
fication approaches) like geometric, graphical or machine learning or deep learning
approaches; and application of system with static or kinetic background [4–6].

In order to identify hand gestures and finger movement, various sensors can be
employed like Microsoft Kinect camera, IR sensor or RGB sensor. Modern technolo-
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Fig. G.1: System Flow Process for Visual Communication Pad

gies for hand gestures are incorporated with information of depth and distances cap-
tured by a 3D camera. The Microsoft Kinect camera can provide depth information
at low cost and is a central part of hand gesture recognition systems. Raheja et al. [7]
used Kinect camera for gesture recognition in a contact-less manner and tracked fin-
gertips and demonstrated 99% accuracy with extended fingers. Depth based systems
have achieved the accuracy of 99.07% whereas RGB-based systems are accurate up
to 99.54% and combined modalities have demonstrated the 99.54% of accuracy [8].
This suggests that RGB based systems are good enough for hand gesture recognition
systems as there is not a significant difference in accuracy between RGB and depth
systems.

Vision based systems make use of various body features for hand and finger recog-
nition. Some researchers have applied graphical models for visual object recognition
and tracking, graphical models with depth information and exploiting the bag of 3D
points method [6] [9] [10]. Some researchers have exploited skin texture and color
information to detect hand or fingers [11], hand shape [12] [13], pixel values [14],
3D hand models [14] [12] [15], and utilization of hand motion knowledge through
boosted histograms [16]. Muhammad et al. proposed a hand gesture system which
detects the hand and identifies its center and thus the hand movement is tracked with
the position of the hand [17].

Each technique has its embedded advantages and disadvantages and selecting
the most appropriate one can not be done without contextual understanding. As
we will demonstrate, not all decisions are guided by technical performance but is
instead a combination of various factors. After all, the system is not intended as a
pure technical construction for a lab experiment, but intended to function in a ’wild’
setting intertwined with both social relationships, contextual factors (such as lighting
conditions) and individual technical abilities.

3 Implementation of the Vis-Com pad system

The formulation of the Vis-Com pad system was informed as a combination of tech-
nical possibilities, and from the field informed contextual factors and human factors
(such as lighting and the complex set of abilities of the resident).

Modern vision systems are incorporated with RGB and depth sensors, but we
chose only RGB sensors due to the following reasons. First, there is not too much
difference in the accuracy of two sensors for hand gesture and finger identification,
as mentioned by [8]. Secondly, the use of the Microsoft Kinect camera was imposing
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Alphabets on White board Pillow Board

Fig. G.2: Design progress from white board to Pillow board

bulkiness to the system. In short, we chose the RGB sensor by keeping the device
employment precision, reliability, weight and size, and suitability for the resident use.
In terms of software development, We have employed geometrical descriptors to seg-
ment out hand features as the hand is the closest object to the camera. Threshold and
region-growing techniques are used to identify hand features as in [11] [13]. In the
next phase, we applied the contour, and convex hull techniques to detect the shape
and boundary of hand and fingers as illustrated in the Fig G.3. We also applied the
thinning algorithm to detect the fingertips. We did not apply hand silhouettes as
shape descriptors as it is erroneous when fingers are folded [13] [12]. Our method
is relatively close to [17] with fixed coordinate values of the letter board, where fin-
ger movement is tracked. For construction of sentences, the finger position over the
communication pad is identified, tracked, and labels are assigned based on the spa-
tiotemporal data.

The first step towards the development of Vis-Com Pad is the reduction of the
big-sized board to 42-by-30 cm board fixed on top of a pillow as seen in the figure
G.2. This "pillow-board" is used to train the resident to move fingers over different
letters/numbers, and staff members infer the message and write on a whiteboard or
speak verbally to confirm intended meaning. This process helped in two ways; firstly,
it involved some physical movement of the hand, considered as physiotherapy for
the disabled resident at a basic level. Secondly, it provided the resident with added
freedom and motoric ease.

We decided to automate this finger tracking and text recognition process by the
installation of the camera at the top of pillow-pad despite the proximity of the camera
and letter board. This camera installation caused additional computer vision chal-
lenges such as illumination issues, false detection, and occlusion problems that are
discussed in detail in section4. Additionally, subjects with paralysis may have issues
with placing or pointing fingers at one alphabet/digit at a time. On the other hand,
installation of the camera with pillow-pad-arm created issues of inconvenient use due
to size and weight of pillow-pad and pillow-arm. While designing the pillow-pad, we
considered the size of alphabets or digits should be big enough so that the staff mem-
ber can see it from a far distance. It was designed for the resident training through a
staff member. However, in the final prototype, it was not required when text recog-
nition is carried out by the camera. After careful observation and user’s input, we
decided to make an A4-size letter board with only 29 letters and 0-9 digits printed on
one side of it and the other side with an additional few emojis.

We also decided to install a ring of light around the camera to counter the light-
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Background substraction Hand detection on Letter board Hand segmentation

Fig. G.3: Hand Detection and Segmentation process: Central figure illustrates the identification
of hand over the letter board; left figure illustrates the background substraction along with con-
tour (green line) and covexhull (red line) application; Left figure is demonstrates the application
of thresholding on detected hand

ening issues. This light-ring can change its intensity if required, or the resident wants
to communicate at any time relying less on the room light. Furthermore, in the fi-
nal phase, this letter board is printed over plastic due to lightweight and preventing
it from potential damages due to exposed use. To make this portable, we used a
Raspberry Pi connected with a camera for tracking finger movements. The tracked
information is sent wirelessly to screen or monitor to display the text. This system
provides the facility to edit word or sentence before finalizing it or sending it to the
intended user to ensure preciseness of the text. Technical details of finger tracking
and text recognition system are presented below.

1. Hand Detection and Segmentation The first step is the detection of hand and
its separation from the background, in our case, it is a letter board. As our
background is static, background subtraction is applied to segment out a hand.
We applied thresholding to segment the hand from the background, assigning
a particular threshold value to the hand region, as illustrated in Fig G.3.
For the segmentation, we assume that the subject uses only one hand at a time,
and it occupies a significant portion in the Field of View (FoV) of the camera.
Furthermore, the hand is closer to the camera, and there is no occlusion between
camera and letter board besides the hand. There is a small distance between
the communication pad and its camera-arm that is approximately 36cm.

2. Hand Tracking At this stage, hand motion is tracked over the letter board.
Contour and convex hull techniques are applied to draw contour lines around
the hand blob and then convex hull around the contour of the hand like an
envelope. When a subject moves his hand over the letter board, corresponding
segmented hand regions are identified in previous and current frames.

3. Hand Feature Extraction and Finger Identification The position and orienta-
tion of the hand are determined after the identification of hand regions. As the
letter board has printed letters and numbers with a specific orientation, thus
hand orientation should be parallel to letter board orientation. However, deal-
ing with paralyzed persons, it is difficult for them to keep their hands in an
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Fig. G.4: Identification of a pointing finger by measuring the maximum distance from center of
the palm to the fingers

Fig. G.5: Letter recognition process with letter board thresholding and fingertip allocation over
letter board to identify the letter.

upright position. The hand position was determined by three directions; up,
left and right. The finger is then identified and tracked, and we used fingertip
of the subject as the input pointer just like a mouse pointer. For the precise
allocation of the finger over letter board, counter tracing algorithm is utilized
that detects all the fingertips. The pointing finger and fingertip are determined
in two steps. In the first step, the centre of the palm is identified with finger
directions. In the next step, the maximum distance from the palm-centre to the
fingertip is calculated to identify the pointing finger, as illustrated in figure G.4.

4. Text Recognition Text recognition is done in two parts. In the first phase, the
letter board is processed with thresholding to identify individual letters and
numbers. As their positions are fixed, so their coordinates are stored. In the
second step, the fingertip of the pointing finger is located over the letter board
coordinates to identify the text.

In the neuro centre, we tried to implement this Vis-Com pad system by utilization
of the mentioned computer vision techniques and modified the design parameters.
As this project is implemented in a real setting, many challenges have been faced, and
various prototypes were tested and designed iteratively.
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4 Loops of evaluating the Vis-Com pad

In order to evaluate the system, the basis consisted of three questions all typical res-
onating conversation. In each prototype evaluation, these three questions were asked
in Danish "Hvad hedder du (What is your name)?" "Hvor gammel er du (How old are
you)?" "Hvad kan du lide at spille (What do you like to play)?" Previously, staff mem-
bers used to point out letters on the board to construct a sentence and then sought
confirmation by the resident, who would nod in agreement or disagreement. The staff
members knew the resident name, age and sports-liking so they can quickly infer and
write it down for the resident. However, in other real-life scenarios, this approach,
as already mentioned, is time-consuming and prone to errors. Therefore, in Vis-com
system, instead of a staff member, the camera tracked the hand and finger positions
of the resident and registered the alphabets or letter to formulate the sentence for the
intended message. We recorded the video of the whole process accounting for the
accuracy of letter registration, time of completion, and the number of repetitions to
execute the task. Details of each prototype development and evaluation outcomes are
presented in the following section.

4.1 Prototype-I: Short description and findings
In the prototype, Vis-Com pad has a wooden arm with 36cm in height and an ad-
justable camera holder. This camera holder allows the camera to stay at the center of
the letter board that is made up of cardboard with a printed sheet of letters and num-
bers on it. Vis-Com Pad can be placed on the top of the pillow and can be used by the
resident in sitting and lying positions. The whole setup was small and portable. The
camera is connected to a Raspberry Pi that is fixed at the base. Text can be displayed
to the monitor or tablet screen through wireless communication. When we conducted
the evaluation, we encounter the following challenges that lead to the development
and implementation of the second prototype.

• The Vis-Com Pad is very sensitive to illumination conditions, so with natural
light and room light results have variations and miss detection.

• Lighting positions cause the shadow on letter board, which in turn lead to the
false convex hull. It is observed that this problem can be avoided if a focused
light is installed over the letter pad.

• Resident hand orientation is different than healthy people hand. Therefore, the
fingertip location has erroneous results.

• The letter board and the camera arm produces reflections, one contributing
reason in false letter detection in the text recognition process.

• Wooden arm with camera holder was a bit bulky, creating some imbalance
when placed on the pillow.

4.2 Prototype-II: Short description and findings
We overcame these identified challenges by the introduction of following changes in
the physical design and computer vision techniques of the second prototype.
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Illumination Issue Hand orientation Issue Shadow Issue

Fig. G.6: Prototype challenges at various stages of testing procedures due to illumination, hand
orientation and faulty convex hull formations

• We introduced a light ring made of LEDs to avoid illumination variation like
[18], who introduced the external light source while collecting data for hand
gestures. In our system, the camera sensor is surrounded by a light ring so that
light falls equally on all parts of the letter board. This light-ring installation
minimized the false detection and faulty convex hull formation.

• To reduce reflection from the letter pad, we painted the letter pad and camera
arm with black color. The letter board remains in white with black printing.
This lead to the additional problem of thresholding as letter pad and letters are
now of the same color.

• We decreased the length of camera-arm from 36cm to 30cm to reduce the field
of view of the camera so that it captures only coordinates of letters and numbers
instead of borders. This reduction in size solved the problem of thresholding.

• Due to the unique hand orientation of the resident, we introduced the new
method to locate the pointing finger by measuring the maximum distance from
the centre of the palm to the direction of the fingers as illustrated in the Fig G.4.
In addition to that, we introduce the determination of hand orientation from
three sides, namely, left, right, and bottom. This 3-sides checking ensures the
right direction of pointing fingers.

• The letter pad and camera arm was bulky. Therefore, it is suggested to change
the wooden arm with a light-weight aluminum rod.

• The letter board is made up of cardboard and is not durable. When the resident
moves his finger over the letter board, it bends. Thus produces a change in
coordinates of letters, resulting in false text recognition.

4.3 Prototype-III: Short description and findings
In the final version of the Vis-Com pad system, we made following design and tech-
nical improvements. This system addresses the challenges raised in previous testing
procedures.

• Camera arm is replaced with the black-painted aluminum rod to reduce the
weight issues of the system.

• Camera arm length is further reduced to 29cm with a fixed camera position,
so that camera field of view (FoV) remains inside the border of letter board
coordinate system as illustrated in the figure G.7.
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Visual-Communication Pad Raspberry Pi LED light ring with controller

Fig. G.7: Visual-Communication Pad with Raspberry Pi, LED ring and intensity controller

• The light intensity of the LED ring is made adjustable through an RF wireless
controller. This light intensity controller provides the resident to use Vis-Cam
system without depending upon room light during night time. LED ring con-
troller works on day and night mode only to avoid any false text recognition
due to illumination variation.

• The letter board of Vis-Com pad is made with dense and light-weight plastic
fiber to avoid the bending problem. Plastic fiberboard is more durable and
elastic resistant as compared to cardboard.

We analyzed Vis-Com system performance in terms of accuracy of writing script,
time and convenience with the analog communication tool at each prototype devel-
opment as illustrated in Table G.1. In the first iteration or prototype-I evaluation,
due to illumination, design and practical implementation issues, the camera did not
extract any useful text information. In this test, the staff member inferred the informa-
tion from the finger movement over the letter board. In the second prototype testing,
some of the letters are printed correctly, but could not construct meaningful sentences.
In this stage, staff member intervention helped in retrieving the information from the
resident. In the third iteration, after addressing the illumination, speed and design
issues, Vis-Com system accurately tracked the finger movement over the letter board
and constructed the sentences. The resident was able to write the intended sentence
precisely with a display on the screen.

The analog system complexity increases with increase in the length of sentence
words or characters, due to repetition and re-writing both by the resident and the staff
members. A sentence with five-words or twenty-eight characters consumed 59 sec-
onds and 47 seconds with analog and Vis-com system respectively, as demonstrated
in Table G.1. The analog system is proved slow and more tedious as compared to
Vis-Com system. Also, the resident valued the Vis-Com system a more convenient
and efficient tool to communicate. We have analyzed the ease-of-use of the system
with scale 1- to -10, with score ten at the most convenient and scored 1 with the most
challenging level. Resident rated our system a more user-friendly with a rate of 8.0
as compared to the conventional approach (where the user needs to iterate multiple
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Table G.1: Vis-Com system performance evaluation with the analog communication system in
the neuro centre

Qustions

Q1

Hvad hedder du
(What’s your name?)

Q2

Hvor gammel er du
(How old are you?)

Q3

Hvad kan du lide at spille
(What do you like to play?)

Answers
Jeg er John
(I am Jhon)

Jeg er 30 år gammel
(I am 30 years old)

Jeg vil gerne spille fodbold
(I would like to play football)

No of Words 3 5 5
No of Characters 11 19 28

Writing Time
(Seconds)

Analog
System

32 48 59

Vis-Com
System

14 31 47

Convenience
Scale

Analog
System

6 5 4

Vis-Com
System

8.5 8.5 8.0

Writing
Accuracy

Prototype-I Nill Nill Nill
Prototype-II 60% 55% 52%
Prototype-III 100% 99% 97%

times before the correct extraction of the required information). Writing accuracy is
measured by the number of the letters or characters falsely identified by the Vis-com
system or the resident has to repeat himself for the same task. It is observed that
prototype-I failed badly and prototype-II performed with an average 55% of accuracy
due to illumination, design and resident physiology constraints. However, prototype-
III showed the accuracy rate of 98% without any input from the staff member. Thus,
the Vis-Com system has minimized the staff member role, as there is no need for a
staff member to track the finger movement and identify the letters and then construct
a sentence. Naturally, the premise is now only laid for more comprehensive studies
on the general usability of the system over longer time.

5 Discussion and Conclusion

In this paper, we have presented our findings of developing a user-centered com-
munication pad. In this case, the user is a cognitive impaired person facing severe
challenges in communication due to physical and speech paralysis. To assist the resi-
dent and staff member, we devised a computer vision-based hand interactive system
to seek enhancing the privacy of the resident in personal communicative matters.
In these types of projects, and as illustrated in the evaluation section, design chal-
lenges are easily very diverse and complex due to being rooted in contextual-, technological-
and human factors. The system is now ready for more long-term studies as well as
investigating how it is possible to derive design guidelines from the many findings
during the work on this case study and how these can be applied in new contexts.
As the evaluation section demonstrate there are many unforeseen challenges arising
from the field. While this is not uncommon in many disciplines it has been visible all
along. One example, is that several of the prototypes were well-considered in their
technical problem solving. While the hand and finger segmentation was performing
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well it did not account for the resident’s have a slightly different physiology than
expected. Only by confronting the system in the real setting was this possible to fix.
And this different phsysiology is highly individually shaped. There are many cases
like this, which states two things about this type of work: a: one can not extract
all valuable knowledge from the field ahead of development; and, b: a prototype is
another constructed reality, which carries its own embedded agendas and must be
confronted in situ. Here it stands in a philosophical contrast between Technological
Determinism; of what can be constructed to function in ideal cases and that of So-
cial Constructivism, where technology is only meaningful when the user’s situation
is aligned with implementation. The study thus also illustrates one of the caveats
with this type of work - scalability. Custom-fitting technical solutions to individuals
is of course a lengthy process. One, arguable, strength is that these types of systems
and underlying methodology reflect problem-oriented development, which actually
respects the individuality in design and does not assume the user from a generalized
(and in some cases steretypic) viewpoint.

In conclusion, we have successfully reduced the size of the communication system
and made it portable to be used in almost all scenarios thinkable for the resident (not
all other thinkable scenarios). Besides this, the automation of the inferring message
system provided convenience to the resident and reduced the staff members involve-
ment, but at the expense of relying on proper light settings as well as accurate hand
position for tracking the hand movement over the letter board. However, text recog-
nized is slow due to design constraints such as the slow movement of the resident
hand but still faster than analog communication tools used by staff members at the
neuro centre.
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