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ENGLISH SUMMARY 

Machine learning (ML) technologies have gained considerable attention for state of 

health (SOH) estimation of Lithium-ion (Li-ion) batteries due to their advantages in 

learning the behavior of non-linear systems. ML methods do not require the battery 

physical modeling processes but rather map external characteristics of the battery to 

the loss in capacity. However, from the application perspective, there are still some 

challenges that need to be addressed, including the impact of data noise and data size 

on the estimation performance, the failure of features under variable operation 

conditions, the dependency on big data, and the difficulty of implementing complex 

algorithms in low-cost microprocessors. To cope with these issues, a systematic ML-

based Li-ion battery SOH estimation framework is developed in this Ph.D. project, 

which has strong robustness to data size, data noise, and degradation conditions. 

Because batteries are complex electrochemical systems, their aging process is 

closely related to the operating conditions, and the SOH feature will be invalid under 

different conditions. Fuzzy entropy (FE) of voltage, from a short-term pulse test, is 

proposed as a novel SOH feature. FE-based method is flexible in parameter selection, 

robust to noise and test conditions, and only requires less training data. Furthermore, 

the interaction between the test conditions, entropy features, and estimation 

performance is studied. The results can be used to select the appropriate voltage 

datasets and enhance the performance of entropy-based SOH estimation. For further 

improvement of entropy-based SOH estimation, various noise suppression methods 

are used before and after feature extraction. The experiments provide evidence that 

the smoothing step is effective in improving the estimation accuracy and simulation 

speed of the ML model. 

Another solution to avoid the failure of manual-extracted features is to use neural 

networks especially deep learning methods. This method allows high-dimensional 

input and automatically-extracted features through hidden layers, but at the same time, 

this method also relies on relatively large data. Therefore, a bagging-based ensemble 

method is developed, enabling the model trained on limited data to achieve higher 

accuracy and better generalization performance. Finally, the effectiveness of the 

proposed methods in this project is verified by experiments including the cyclic aging 

test and calendar aging test under different temperature conditions. 
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DANSK RESUME 

Machine learning (ML) teknologier har i stigende grad vundet opmærksomhed når 

state of health (SOH) af litium-ion (Li-ion) batterier skal estimeres, på grund af deres 

evne til at lære adfærden af ikke-lineære systemer. ML modellerer batteriets 

nedbrydning ved at kortlægge eksterne features mod tabet i kapacitet, og dermed 

undgå hele batterimodelleringsprocessen. Set fra et anvendelsesperspektiv er der dog 

stadig visse udfordringer, der skal løses, herunder betydning af støj og datastørrelse 

på estimationsevnen, fejl i features under variable driftsbetingelser, afhængigheden af 

store mængder af data og vanskeligheder i implementering af komplekse algoritmer i 

billige mikroprocessorer. For at håndtere disse spørgsmål udvikles, i dette Ph.D. 

projekt, et systematisk ML baseret framework til estimering af SOH i Li-ion-batterier, 

som har en stærk robusthed over for datastørrelse, støj og driftsbetingelser. 

Da batterier er komplekse elektrokemiske systemer, er deres aldringsproces tæt 

forbundet med driftsbetingelserne, og features udviklet under et sæt af betingelser vil 

ikke nødvendigvis være gyldige under andre forhold. Fuzzy entropy (FE) af 

spændingen for kortvarige pulstest, foreslåes som en ny feature til prædiktion af SOH. 

FE metoden er fleksibel i valget af parametre, robust over for støj og testbetingelser 

og kræver kun små data til træning af modellen. Desuden analyseres interaktionen 

mellem testbetingelserne, entropy og præcisionen af estimationen. Resultaterne 

bruges til at vælge det korrekte spændingsinterval og forbedre nøjagtigheden af den 

entropy baserede SOH estimation. For at yderligere forbedre præcisionen af de 

entropy baserede metoder, bruges forskellige støjundertrykkelsesmetoder både før og 

efter ekstraktion af de entropy baserede features. De eksperimentelle resultater viser 

effektiviteten af udjævningstrinnet da det leder til højere præcisionen af estimation og 

hurtigere simuleringshastighed af ML modellen. 

En anden løsning til at undgå potentielle fejl som kan opstå i mere manuelt 

ekstraherede features er ved at bruge neurale netværk, mere specifikt deep learning. 

Disse metoder tillader højdimensionelle input og kan automatisk ekstrahere features 

gennem såkaldte skjulte lag, men er på samme tid ekstremt afhængig af størrelsen af 

data. Derfor foreslås en bagging baseret ensemble metode som gør det muligt træne 

modeller på begrænsede mændger af data, så de opnår høj præcision og stadig har en 

gode generaliseringsevne. Endelig verificeres effektiviteten af den foreslåede metode 

ved forskellige eksperimenter, herunder den cykliske og kalender baserede 

aldringstest under forskellige temperaturforhold. 
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CHAPTER 1. INTRODUCTION  

1.1. BACKGROUND 

Global energy systems are altering in an effort to reduce carbon emissions and 

combat climate change [1]. Fossil fuels have been gradually replaced by the rapid 

development of renewable energy such as wind energy, solar power, and hydropower, 

etc. As renewable energy continues to integrate into the grid, battery energy storage 

systems play an important role [2]. A similar change can be observed in the 

transportation sector, where electric vehicles, mostly based on batteries, are gaining 

an important market share [3, 4]. Since the 1990s, Li-ion batteries have become an 

integral part of daily routines, and currently have the highest growth rate and the share 

of the market investments [J2, 5]. Due to the high power (up to 1500 W/kg) and energy 

density (up to 250 Wh/kg), the high energy efficiency (more than 95%), and also the 

relatively long cycle life (more than 3000 cycles), Lithium-ion (Li-ion) battery is a 

significant  way to enhance the flexibility of clean energy and power EVs [J1, 6]. 

Li-ion batteries, similar to other energy storage systems, degrade with usage, 

resulting in a limited lifetime [7]. There are physical and chemical side reactions 

inside the battery that contribute to the degradation of the battery, i.e., graphite 

exfoliation, loss of electrolyte, solid electrolyte interface (SEI) layer formation, and 

continuous thickening, lithium plating, etc. [J2, 8]. Observed on a macroscopic level, 

battery aging manifests itself as the loss in capacity and power, which will seriously 

shorten the service life and decrease the efficiency of the system [9, 10]. It is therefore 

essential to determine the battery’s state of health (SOH) at any moment during its 

operation. According to the estimated SOH, the battery management system can 

control the battery to run in the best state, so as to maximize its lifetime [J1, 11]. 

State-of-the-art of SOH estimation 

SOH is a figure of merit that indicates the condition of the battery throughout its 

service life. SOH is usually expressed by two parameters, i.e., the battery capacity, 

and/or resistance (power) [J4]. Generally, battery aging data (i.e., voltage (V), current 

(I), temperature (T), and time (t),) can be measured and stored through various 

laboratory tests, as shown in Fig. 1.1 [J1]. For example, the constant current (CC) 

charging is for calculating the current capacity, the pulse current test is used to extract 

DC resistance, and the electrochemical impedance spectroscopy (EIS) test is used to 

measure the AC impedance. By utilizing the mentioned parameters, four types of SOH 

estimation methods are proposed [12-14]. Their performance comparison is 

summarized in TABLE 1.1. 
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Fig. 1.1.  Summary of existing methods for Li-ion battery SOH estimation. Source: [J1]. 

TABLE 1.1.  Comparison of SOH estimation of lithium-ion batteries using different methods. 

Method Advantages Disadvantages 

Experimental 

methods 

▪ Be suitable for investigating the aging 

mechanisms 

▪ Provide a theoretical foundation for model-

based approaches 

▪ Be less feasible in real 

applications 

Model-based 

filters 

▪ Can be applied to any form of state-space 

model 

▪ Good for Gaussian and non-Gaussian systems 

▪ Provide on-line estimation 

▪ Rely on an accurate battery 

model 

▪ High calculation complexity 

ML-based 

methods 

▪ Does not need a battery model 

▪ Be simple and feasible 

▪ Good for all linear or non-linear systems 

▪ Lack of interpretability 

▪ Sensitive to features 

▪ Complex training process 

 

To explore the aging mechanisms, experimental approaches, i.e., measuring the 

charge throughput [15-17] or analyzing the health indicators [18-20] can be applied. 

However, the viability of these approaches in real-world applications is restricted. On 

the one hand, this method relies on high-precision current sensors. On the other hand, 

Indirect analysis method

▪ Ultrasonic signal

▪ Ampere counting

▪ Sample entropy

▪ ICA, DVA method

Experimental test

▪ Cycle number counting▪ EIS test

▪ DC pulse test▪ Capacity test

▪ OCV test

lookup 

table

Feature 

input
Output

Direct measurement method

▪ Cycle number

▪ Ohmic resistance

▪ Impedance

▪ Capacity

Machine learning methods

▪ Gaussian process regression

▪ Relevant vector machine

▪ Bayesian network

Model-based adaptive filter

▪ Sliding mode observer

▪ PI observer

▪ H-infinity observer

▪ Luenberger observer

▪ KF/EKF/UKF

Data processingMeasurements

▪ Ultrasonic inspection

V, I, T, t V, I, T, t

▪ PF/UPF

▪ SVM

▪ LR

▪ K-NN

▪ EL

▪ RF

▪ ANN

From partial or full V curves

Others
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the battery must be stopped from the regular operation so that the capacity test or EIS 

test can be conducted. Furthermore, due to the limitation in real-life systems, certain 

measurements are unable to be performed. For example, DC pulses with high currents 

are not permitted by the BMS of the EV since they are considered abnormal operating 

conditions [J1]. Various model-based filters have been designed, and the SOH, as an 

internal state variable, can be estimated by establishing the state-space model. For 

example, particle filter [21], Kalman filter [22], and nonlinear predictive filter [23] 

are established based on semi-empirical models, electrochemical models, or 

equivalent-circuit models for battery SOH estimation [J1]. The model-based filters 

can capture the dynamic character of the system, but they require an accurate battery 

model. That means a cumbersome task of battery parameters identification will be 

introduced. 

Because Machine learning (ML) technologies do not rely on specific battery 

models, they possess immense potential in inferring battery SOH. According to 

laboratory data and learning and optimization theory, the mapping from features (i.e., 

health indicators containing the age-related information, such as V, I, T, and their 

statistics) to SOH (i.e., capacity, internal resistance) can be offline established. The 

general process of training an ML model for battery SOH estimation is illustrated in 

Fig. 1.2. 

 

Fig. 1.2.  Schematic diagram of ML-based SOH estimation for Li-ion batteries. Source: [J1]. 

Currently, extensive research has been carried out to apply ML technologies in 

battery SOH estimation, such as some classical ML methods including linear 

regression (LR) [24], support vector machine (SVM) [25], relevance vector machine 

[26-30], artificial neural network (ANN) [31-33], ensemble learning (EL) [34, 35], 

Gaussian process regression (GPR) [36], sparse Bayesian learning [37], etc. 

Furthermore, cloud computing provides benefits including global access, scalability, 

and increased computation power. This reduces the demands on the microprocessor 

and improves the SOH estimation accuracy as well, making the modern ML, i.e. deep 

learning (DL) with big data, a great solution for battery SOH estimation [J1, 34]. 
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Comparison of various ML-based SOH estimation methods 

The ML algorithms can be divided into the probabilistic-based methods and the 

non-probabilistic methods. The first type of ML methods, e.g., GPR and Bayesian 

networks, is useful for predicting the remaining useful lifetime of the battery over a 

long period of time, while the second type of ML method, e.g., LR, SVM, ANN, DL, 

and EL are mainly tasked for battery SOH estimation [J1]. Consequently, from the 

aspects of estimation performance (see Fig. 1.3) and publication trend (see Fig. 1.4), 

five non-probabilistic ML methods are comprehensively compared. As discussed in 

[J1], SVM has good approximation capability which is suitable for a small dataset, 

and is efficient in computing high-dimensional features. The EL algorithm 

represented by random forest has better accuracy and generalization performance, and 

can achieve more stable estimation results. The SVM and EL algorithms are identified 

to be suitable for SOH estimation and are the current research hotspots. Therefore 

they are selected as target models in this Ph.D. project. 
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Fig. 1.3.  Comparison of the five non-probabilistic ML algorithms across five metrics (i.e., 

accuracy, implementation easiness, computation complexity, dataset requirement, and dealing with 

overfitting. Source: [J1]. 
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Fig. 1.4.  The trend of publications of battery SOH estimation using non-probabilistic ML in over 
the last ten years according to the Elsevier Scopus international databases. Source: [J1]. 
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1.2. PROJECT MOTIVATION 

As aforementioned, ML represents an appealing solution for SOH estimation 

because it can extract aging information (i.e., features) from measurements and relate 

them to battery performance parameters, avoiding the complex battery modeling 

process. From the application perspective, there are nevertheless still some challenges 

that need to be addressed in ML-based battery SOH estimation, which motivated this 

Ph.D. project. The challenge mainly comes from three aspects: data collection and 

noise suppression, robust feature extraction, and algorithm optimization [J1]. 

• Many times, features are extracted from the electrochemical impedance 

spectroscopy measurements or full charging/discharging voltage curves, which 

are difficult to obtain in real-life applications because of specific requirements 

and restriction of the measurement devices [J4]. Utilizing the short-term pulse 

test, some differential features and geometric features can be extracted. However, 

these types of features face the problem of invalidation when the battery operating 

conditions change. As a consequence, robust and accurate assessment of the 

battery’s SOH remains a challenge [12, 13]. Therefore, it is essential to explore 

effective SOH features that can be conveniently obtained and are robust to aging 

conditions. 

• The measured battery data is often disturbances by a certain degree of noise from 

i.e., the inner electrochemical reactions and external environmental conditions 

[C3]. In this case, data smoothing techniques are needed to reduce the noise in 

the original data. At the same time, it is necessary to ensure that valid aging 

information contained in the data is not filtered out. 

• DL with big data provides a possible choice for accurate SOH estimation under 

different aging conditions. SOH features can be automatically extracted from 

high-dimensional data. However, they depend on the availability of big data sets, 

which increases the laboratory effort. Therefore, expanding the existing data sets 

by increasing data diversity would be a convenient and quick solution. Besides, 

as an emerging substitute of DL, the EL of simple base learners make a trade-off 

between data size and accuracy [J1]. 
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1.3. PROJECT OBJECTIVES AND LIMITATIONS 

1.3.1. PROJECT OBJECTIVES 

Based on the above consideration, the main objective of the Ph.D. project is defined: 

• Identify and optimize robust ML-based SOH estimation algorithms for Li-

ion batteries. 

In order to achieve the main objective, the following technical objectives are 

defined from three aspects, which are robust features selection, data noise 

suppression, and improved model establishing, respectively. 

• O1: Identify the suitable ML methods for battery SOH estimation by analyzing 

the capacity fade behavior and deriving the principles of different ML algorithms. 

• O2: Propose effective SOH features which can be extracted easily and are 

particularly robust to aging conditions, data noise, and data size. 

• O3: Propose a data noise suppression method to effectively reduce the influence 

of data noise on the estimation performance while not filtering out the useful 

aging information. 

• O4: Propose an improved ML-based SOH estimation model which has 

competitive performance on high-dimensional input while it relies on reduced 

training data.  

1.3.2. PROJECT LIMITATIONS 

This Ph.D. project proposes robust SOH estimation algorithms for Li-ion batteries 

based on ML methods. However, this project is also subject to several limitations: 

• Because aging data of battery packs is not available, the research on the SOH 

estimation is still at the battery cell level. The effectiveness of the proposed 

methods for the SOH estimation of battery pack level needs further 

demonstration. 

• Due to the different design of the aging experiment and the tested battery 

chemistry, other data sets maybe not be suitable for the proposed methods. 

Besides the data obtained in our laboratory, no other data sets are used for 

verification. 

• The probabilistic ML methods will be very useful for long-term battery remaining 

useful life prediction as they can provide the estimate of the uncertainty in the 

prediction as well as a clear probabilistic interpretation. In this project, non-

probabilistic algorithms are basically adopted because they are capable to solve 

the problem of SOH estimation. 
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1.4. MAIN CONTRIBUTIONS 

• MC1: An in-depth review of ML-based SOH estimation methods is provided, 

as well as a discussion of future prospects. 

The basic principles of existing non-probabilistic ML-based SOH estimation 

algorithms are rigorously derived. Then, the challenges that remain unresolved and 

the corresponding improvement methods of these ML-based methods are introduced. 

Additionally, the training modes of these methods are summarized and their 

estimation performance are fully compared. Finally, to inspire the researchers, the 

outlook of the future research focus on SOH estimation methods is given. The relevant 

contents have been published in [J1]. 

• MC2: A nonlinear regression method with two-step fitting is proposed to 

establish a long-term aging model of Li-ion battery under multiple impact 

factors. 

By conducting calendar aging tests on Li-ion batteries over a period of up to 43 

months, the long-term aging behavior, which is beyond the typical range of 20% 

capacity fade, is analyzed. A lifetime model on the basis of the nonlinear regression 

approach is established. The model can simultaneously study the effect of storage 

temperature and state of charge (SOC) level on the rate of calendar degradation. In 

addition, the proposed model reflects the piecewise variation of capacity fade, and the 

lifetime prediction results are more reliable than those from the traditional semi-

empirical model. The relevant contents have been published in [J2]. 

• MC3: A novel SOH feature based on fuzzy entropy (FE) is proposed for Li-

ion battery SOH estimation, which is not only convenient to obtain but also 

very effective. 

From the short-pulse test, the FE feature can be easily obtained which is time-saving 

and convenient for both laboratory measurements and real application. The 

experimental results proved that compared to traditional SE-based estimator, the FE-

based approach is freer in parameter selection, more robust against noise and aging 

test conditions (TCs), and requires less training data. Furthermore, three SOH 

estimation models considering the aging temperature are proposed, which verify the 

robustness of the FE feature to the aging conditions. The relevant contents have been 

published in [J4]. 

• MC4: A data sets selection method is proposed to improve ML-based battery 

SOH estimation. 

To begin with, by changing the SOC level and the current direction, six types of 

voltage data sets are collected. Then the effect of TCs on the performance of entropy-

based SOH estimation is examined. Finally, the SOH estimation results under cyclic 

aging conditions prove that extracting entropy features from the polarization zone 



ROBUST STATE OF HEALTH ESTIMATION FOR LITHIUM-ION BATTERIES USING MACHINE LEARNING 

10 

helps increase the SOH estimation accuracy. The relevant contents have been 

published in [J3]. 

• MC5: A data noise suppression method is proposed and evaluated for 

further enhancing the robustness of ML-based SOH estimation. 

Two types of data noise suppression methods, i.e., the adaptive iterative algorithms 

and the regression-based linear smoothers are evaluated and combined with the ML-

based SOH estimation model. The estimation results show that a simple data noise 

suppression step can improve not only the SOH estimation accuracy but also the 

simulation speed. The relevant contents have been published in [C3] and [C4]. 

• MC6: An EL method is proposed to reduce the dependence of ML-based 

SOH estimation method on the data size. 

A bagging-based extreme learning machine (ELM) is proposed. By resampling the 

original data to generate more subsets, it is possible to train multiple base-level ELMs 

on a limited data set. Additionally, the hyperparameters of the proposed algorithm are 

optimally selected. The experimental results demonstrate that the presented SOH 

estimation method maintains the advantages of ELM less computational complexity, 

and fast operation as well as achieve higher accuracy and generalization performance. 

The relevant contents have been published in [C5]. 

1.5. THESIS OUTLINE 

The summary of the outcomes of this Ph.D. project are documented in the form of 

article-based Ph.D. thesis, including a Report and a collection of the Selected 

Publications through the entire study. The thesis structure is shown in Fig. 1.5 to 

illustrate how to connect the content in the Report to the Selected Publications. 

The Report is organized into six chapters. Chapter 1 introduces the background and 

motivation of the Ph.D. project, after which the research objectives and limitations of 

the Ph.D. study are discussed. Then the following four chapters deal with the robust 

machine learning-based SOH estimation for Li-ion batteries from three levels, namely, 

data analysis and preprocessing, robust feature extraction, and algorithm optimization. 

Chapter 2 aims at data analysis and presents the calendar aging and cyclic aging tests 

that batteries are subjected to. Then a lifetime model is proposed to investigate the 

effect of test conditions on the long-term calendar degradation behavior. The main 

focus of Chapter 3 and Chapter 4 is the robust feature extraction for ML-based SOH 

estimation. In Chapter 3, entropy is selected as SOH feature for the following research. 

The effects of datasets selection on the performance of various entropy features are 

analyzed. FE is proposed as a novel SOH feature and its estimation performance is 

validated with experiments. Chapter 4 uses the proposed FE feature for SOH 

estimation under various temperature conditions. The performance of the feature is 

further improved by data noise suppression methods. Chapter 5 focuses on improving 

the SOH estimation performance of ML for batteries from the level of algorithm 
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optimization. The SOH estimation results of using a bagging-based ELM method is 

presented. Finally, Chapter 6 concludes the findings of this Ph.D. project and 

proposes topics for future work. 

Robust State of Health Estimation for Lithium-Ion Battery Using Machine Learning

Report
Selected 

Publications

Chapter 1. Introduction

Chapter 6. Conclusion and future work

Automaticlly

Implementation

[J1]

[J2]

[J3, J4]

[J4, C1]

[C3, C4]

[J4, C2]

[C5]

Chapter 2. Lifetime analysis and 

modeling

  Storage lifetime modeling

Chapter 3. Entropy as ML feature

  Dataset selection

  Entropy theory

  Robustness-enhanced feature

Chapter 4. ML-based SOH estimation 

using FE

  SOH estimation considering 

temperature variation

   SOH estimation with data noise 

suppression

Chapter 5. ML-based SOH estimation 

with automatic feature extraction

  Ensemble learning

[J3]

O1

O2

O2

O2

O2

O3

O4

O1

Level 1

Level 2

Level 3

Model training

ML-based SOH 
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Data preparation
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Manually

Mode 

A

Mode 

B

Training data 

size reduction

 

Fig. 1.5.  Thesis structure with related topics and research outcomes for each chapter; where “O” 

denotes objective, while “J” and “C” refer to a journal or conference publication,  respectively. 

Level 1, level 2, and level 3 represent the data level, the feature level, and the algorithm level in 
the proposed ML framework. Correspondingly, the overall performance of ML-based SOH 

estimation is improved from three aspects: data analysis and preprocessing, robust feature 

extraction, and algorithm optimization. 
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CHAPTER 2. LIFETIME ANALYSIS AND 

MODELING 

The content of this chapter is based on the results presented in [J2]. 

This chapter introduces the methods used to reach objective 1 and mainly answer 

the following questions: 

▪ What types of aging batteries usually go through? 

▪ What aging mechanism correspond to these types of aging? 

▪ What data sets are used in this project for battery SOH estimation? 

▪ How to model the capacity fade behavior of batteries? 

▪ What are the effects of different conditions on the lifetime of batteries? 

2.1. BACKGROUND 

The Li-ion battery, taking lithium iron phosphate battery (LiFePO4) as an example, 

is a type of electrochemical energy storage device with graphite as anode and LiFePO4 

as cathode material. It works based on the intercalation/deintercalation process of the 

lithium ions between the layered structure of the anode and the lattice of the cathode. 

Studies show that the loss of lithium-ion inventory (LII) and loss of anode/cathode 

active materials (LAM) constitute the main reasons for battery degradation [J2, 38, 

39]. Commonly, there are two types of battery degradation under real-life operations: 

cyclic and calendar aging. The degradation of LiFePO4 during cycling is mainly due 

to kinetic-inducted effects such as LAM, lithium plating at the anode, and reversibility 

at the cathode side [9, 11]. Conversely, there are independent degradation behaviors 

involved in the calendar aging process. Numerous parasitic reactions occur at the 

electrode-electrolyte interfaces that contribute to the degradation [J2, 11]. To 

separately study the two types of degradation, cyclic aging and the calendar aging 

tests are performed on commercial high-power, cylindrical Li-ion batteries in this 

project [40]. TABLE A.1 (see Appendix A) lists the main electrical parameters of the 

cells. The experimental setups used for the accelerated aging tests are given in 

Appendix B and the detailed testing procedure in Appendix C. The tests are conducted 

in climatic chambers under temperature control. The temperatures shown in this report 

are measured on the battery’s surface. 

2.2. ACCELERATED AGING DATA 

Typically, a battery’s SOH will be 1 at the time of manufacturing and will decrease 

with battery degradation. In this project, a battery’s SOH is calculated by dividing its 

current available capacity by its initial available capacity [J4]. Because 20% capacity 
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fade is adopted as the end-of-life (EOL) criteria of the battery, the battery SOH at the 

end of aging reaches 0.8. The results of cyclic aging are shown in Fig. 2.1. The whole 

cyclic aging test lasts for 38 weeks and the pulse tests are conducted after each week 

of aging, therefore 38 voltage series will be collected in each TC. However, six 

voltage series are missing during the experiment, and the week numbers 

corresponding to these missing data are 3, 10, 18, 32, 35, and 36. 
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Fig. 2.1.  Cyclic aging results: (a) SOH curve during the cyclic aging, (b) voltage responses during 

the CC discharging, and (c) voltage responses during the HPPC test (illustrate in the case of pulse 

charging at 80% SOC). 
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Fig. 2.2 displays the results of calendar aging test, including the measured capacity 

fade under different TCs and the voltage responses during the modified hybrid pulse 

power characterization (HPPC) tests. 
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Fig. 2.2.  Calendar aging results: (a) Capacity fade curves under different temperatures (at 50% 
SOC level), (b) Capacity fade curves under different SOC levels (at 55℃), and voltage datasets 

obtained during the HPPC tests. 
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2.3. CALENDAR LIFETIME MODELING 

Calendar aging might be the primary part of battery degradation, especially for the 

applications where the batteries have been in an idle state or the depth of discharge 

and working current rates are relatively low. Three types of aging approaches 

including the pure-lifetime model, the physics-based model, and the mathematical 

models are proposed, as summarized in TABLE 2.1. The principles of each method 

are introduced, and the performance of these aging models are compared according to 

the complexity, accuracy, and interpretability. 

TABLE 2.1.  The summary of various lifetime models. Source: [J2]. 

Method Complexity Accuracy Interpretabilitya 
Exemplary 

applications 

Pure-lifetime model 
▪ Calculate the amount of throughput in 

charge or energy. 

Low Low No [41] 

Physics-based electrochemical model 
▪ Describe the thickness and conductivity 

of the SEI mathematically. 

High High High [42] 

Physics-based empirical model 

▪ Create a time-dependent power law to 
represent the aging of the calendar. 

Medium Medium No [43]-[44] 

Physics-based semi-empirical model 

▪ Consider the Arrhenius law, the Eyring 
law, or the underlying SEI growth. 

Medium Medium Medium [45]-[47] 

Physics-based equivalent circuit model 

▪ Add the “aging-dimension” to 

equivalent circuit models. 

High Medium Medium [10] 

ML-based mathematical model 

▪ Establish mapping between battery 

state and measurements based on 
evolution rules. 

Low High No [48] 

a Interpretability refers to the representativeness of the model to the physicochemical properties. 

The aging data collected during the above experiments are used in the following 

chapters for training and verification of the ML-based SOH estimation. In this chapter, 

to understand the long-term calendar aging behavior of the batteries, a nonlinear 

regression method with two-step fitting is proposed. The aging temperature and 

storage SOC level are considered as stress factors in the model created, therefore to 

study their influence on the rate of calendar degradation. Moreover, for model 

comparison and validation, a traditional semi-empirical model is also established. 

2.3.1. TRADITIONAL SEMI-EMPIRICAL MODEL 

In the traditional semi-empirical modeling, the Arrhenius equation, as given in (2.1) 

can be used [49, 50]. Because the calendar aging is primarily associated with the 

growth of SEI layer, the capacity fade of the batteries over time can be described as 

(2.2) 



CHAPTER 2. LIFETIME ANALYSIS AND MODELING 

19 

 
1 1

ln ln + a

ref

g ref

E
k k

R T T

 −
= − 

 
 

 (2.1) 

 
_ ( ) A

fade semiC t k t=   (2.2) 

where T and Tref denote the absolute temperature and the reference temperature in 

Kelvin, respectively. k denotes the influence of temperature on calendar aging, and 

kref represents the coefficient corresponding to Tref. The activation energy of the 

chemical reaction occurring at temperature T is denoted by Ea, and Rg is the gas 

constant. A is the time index, and it is usually set to 0.5~1 according to existing 

models. For better fitting the measurements, A is selected as 0.75. Fig. 2.3 shows the 

relationship between the Arrhenius coefficient in natural logarithm form and 

temperature. Then the comparison of experimental and semi-empirical modeling 

results is shown in Fig. 2.4. However, this model fails to study the dependency of the 

battery degradation on SOC level. Hence, a nonlinear regression model with two-step 

fitting is proposed, and the main content are summarized as follows. 
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Fig. 2.3.  Arrhenius equation for describing the effect of temperature on the capacity fade (SOC 

level is set at 50%). Source: [J2]. 
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Fig. 2.4.  Semi-empirical model of capacity fade with respect to temperature and storage time (SOC 

level is fixed to 50%). Source: [J2]. 
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2.3.2. NONLINEAR REGRESSION MODEL WITH TWO-STEP FITTING 

The proposed regression method separates the dependency of capacity fade on the 

aging time and the stress factors for analysis. The modeling process consists of two 

steps: 

• Identifying the relationship ( )fadeC t  between the capacity fade and the calendar 

aging time. 

• Modeling the coefficients of ( )fadeC t  by jointly considering the aging 

temperature and storage SOC. 

To determine ( )fadeC t  in the first step of battery lifetime modeling, four types of 

functions are used, as shown in TABLE 2.2 and Fig. 2.5. The power function provides 

the best fitting results, which is consistent with the method suggested by the semi-

empirical model. For the power equation with a constant term 0.7, the small initial 

error of 0.7% can be ignored, and the function converges quickly. In addition, 

choosing a variable constant term in the power function will not bring obvious 

improvement of the accuracy, but increase the computational complexity. Therefore, 

for the above reasons, (2.3) is selected. 

 ( ) 0.7b

fadeC t a t=  +  (2.3) 

TABLE 2.2.  Comparison of different modeling results (Take the calendar aging test of Case 1 

@55°C and 50% SOC as an example). Source: [J2]. 

Fitting Function Type Number of Parameters R2 

Logarithmic function ( ) ln( )fadeC t a b t=    2 0.9748 

Polynomial function ( )fadeC t a t b=  +  2 0.9876 

Power function with a variable constant term ( ) b

fadeC t a t c=  +  3 0.9980 

Power function with a fixed constant term ( ) 0.7b

fadeC t a t=  +  2 0.9974 
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Fig. 2.5.  Different modeling results showing the relationship between the capacity fade and storage 

time. (Take the calendar aging test of Case 1 @55°C and 50% SOC as an example). Source: [J2]. 



CHAPTER 2. LIFETIME ANALYSIS AND MODELING 

21 

To study the effect of the stress factors (i.e., the storage temperature and SOC level) 

on the capacity fade in the second step, coefficients in the target model (2.3) will be 

modeled.  The nonlinear regression method can be used to optimize the coefficients, 

and its structure of the regression method is shown in Fig. D.2. The detailed flows of 

nonlinear regression are shown in Fig. D.1 (see Appendix D.1). After obtaining the 

capacity fade function, the coefficient of determination R2 is utilized to assess the 

quality of the results. R2 can be expressed in (2.4), and the closer R2 is to 1, the better 

the fit. 
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 (2.4) 

where SSres and SStot are the sum of squares of residuals and the total sum of squares, 

respectively. SSres represents the deviation between the measurements and their 

estimates, SStot represents the deviation between the measurements and their average 

values. 

In the second step of battery lifetime modeling, the dependency of the capacity fade 

on the considered stress factors is modeled in turn. By varying the storage temperature 

from 55°C to 40°C while fixing the SOC level to 50%, the capacity fade can be 

determined as a function of the storage temperature. The general model (2.3) is 

detailed to (2.5). 
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Fig. 2.6.  Nonlinear regression model of capacity fade with respect to temperature and storage time 

(SOC level is fixed at 50%). Source: [J2]. 

TABLE 2.3.  The coefficients of the nonlinear regression model that takes the storage temperature 

variation. (SOC level is fixed to 50%) into account. Source: [J2]. 

Test condition Temperature (°C) aT bT R2 

Case 1 55 °C 2.428 0.812 0.9974 

Case 2 47.5 °C 1.08 0.897 0.9943 

Case 3 40 °C 0.452 0.932 0.9862 
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Fig. 2.6 shows the fitted results for the LiFePO4 battery cells from the aging tests Case 

1, 2, and 3. For each case, the obtained coefficients are listed in TABLE 2.3. 

Consequently, the coefficient aT increases as the temperature rises indicating that 

higher storage temperature accelerates the capacity fade. With bT value of less than 1, 

the capacity fade decreases with time, which is in line with the aging characteristics 

of the battery. The aging trend described above is mainly related to the increase in SEI 

under the effect of the temperature. As discussed in [J2], LII and LAM the main cause 

for the calendar aging of the battery [39, 50]. The increasing temperature can cause 

the continuous thickening of the SEI film, thus lead to the LII. Nevertheless, the 

thickening of the SEI film will, in turn, limits side reactions in the battery, thus 

reducing the battery aging [J2]. 

By plotting parameters aT and bT on Fig. 2.7, the relationships between the 

aforementioned coefficients and temperature are determined, as given in (2.6) and 

(2.7), respectively. 

 0.1099 0.005768 T

Ta e =   (2.6) 

 13 6.6353.866 10 0.9485Tb T−= −   +  (2.7) 

Next, (2.5), (2.6), and (2.7) are combined together, and a general model is obtained, 

as given in (2.8). 

 
13 6.6350.1099 3.866 10 0.9485( , ) 0.005768 0.7T T

fadeC t T e t
− −   +=   +  (2.8) 

where t denotes the storage time, expressed in months, and T denotes the storage 

temperature, expressed in degrees Celsius. 
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(a)                                                                           (b) 

Fig. 2.7.  The relationship between the coefficients of the nonlinear regression model and the 

relevant storage temperature: (a) Exponential function of aT with respect to T, and (b) Power 

function of bT with respect to T. Source: [J2]. 

A similar procedure is performed to model the capacity fade in terms of SOC level, 

as shown in (2.9). In this step, the aging data from Case 1, 4, and 5, where the 

temperature is all at 55 °C, are considered. The measured and modelled capacity fade 
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curve under different SOC levels are shown in Fig. 2.8, and the coefficients in (2.9) 

are summarized in TABLE 2.4. 

 ( , ) 0.7SOCb

fade SOCC t SOC a t=  +  (2.9) 

As observed from Fig. 2.8, the SOC level shows piecewise impacts on the capacity. 

Before the battery cells reach 20% capacity fade, a higher SOC will cause a faster 

capacity fade. As with the influence of temperature, there is a similar explanation. The 

high SOC leads to a deepening of the lithiation of the graphite anode, as well as an 

acceleration of side reactions. In contrast, SEI film becomes stable when the capacity 

fades higher than 20%. As a result, the speed of the battery degradation under this 

condition decreases [39, 50]. Then the parameters aSOC and bSOC are plotted on Fig. 

2.9. According to and the relationships between the aforementioned coefficients and 

SOC level are as given in (2.10) and (2.11). 

 0.0169 1.087 SOC

SOCa e =   (2.10) 

 12 5.5084.853 10 0.823SOCb SOC−= −   +  (2.11) 

By combining (2.9), (2.10) and (2.11), a general model is established, as given in 

(2.12). This model describes the dependency of capacity fade in conjunction with 

storage time and SOC level at the same time. 

 
12 5.5080.0169 4.853 10 0.823( , ) 1.087 0.7SOC SOC

fadeC t SOC e t
− −   +=   +  (2.12) 

where t represents the storage time given in months, and SOC is the storage SOC level, 

given in percentage. 
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Fig. 2.8.  Nonlinear regression model of capacity fade with respect to SOC level and storage time 

(at 55 °C). Source: [J2]. 
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Fig. 2.9.  The relationship between the coefficients of the nonlinear regression model and the 

relevant storage SOC level: (a) Exponential function of aSOC with respect to SOC, and (b) Power 

function of bSOC with respect to SOC. Source: [J2]. 

TABLE 2.4.  The coefficients of the nonlinear regression model that takes the storage SOC level 

variation (at 55 °C) into account. Source: [J2]. 

Test condition SOC (%) aSOC bSOC R2 

Case 4 10% 1.387 0.823 0.9973 
Case 1 50% 2.428 0.812 0.9974 

Case 5 90% 4.999 0.541 0.9990 

As stated up to this point, the impact of the storage temperature and SOC level on 

the capacity fade are modelled separately. In order to fuse both contributions into one 

function, a scaling of the two obtained functions is used. It should be noted that the 

scaling process is considered to be accurate enough, because the possible interactions 

between two stress factors are ignored in this work. As a result, a general battery 

lifetime model is obtained, as presented in (2.13).  

 
13 6.635 12 5.5080.1099 0.0169 ( 3.866 10 4.853 10 0.9595)

( , , )

0.0025 0.7

fade

T SOC T SOC

C t T SOC

e e t
− −  −   −   +=    +

 (2.13) 

Based on the model obtained above, the calendar lifetime of the battery under 

different storage conditions can be inferred. As shown in Fig. 2.10, when not being 

used, making the batteries’ SOC level lower than 20% or higher than 80% as well as 

cooler temperatures prolong the batteries’ lifetime [J2]. Batteries stored at 10% SOC 

and 25 °C will be expected to withstand approximately 45.1 years until they reached 

the EOL threshold. However, when the storage conditions are changed to 50% SOC 

and 25 °C, the lifetime drops dramatically to 23.8 years, and to 8.7 years at 40 °C [J2]. 
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Fig. 2.10.  The prediction results of the battery lifetime under different storage conditions using 

the nonlinear regression model (when EOL criterion of 20% capacity fade is reached). Source: [J2]. 

2.3.3. COMPARISON 

Based on the above analysis, it can be found that compared to the traditional semi-

empirical model, the proposed nonlinear regression model is more able to capture the 

effects of storage time, temperature, and SOC level simultaneously. In addition, the 

proposed method, as shown in (2.13), can well model the piecewise degradation 

behavior under the influence of SOC level by introducing the variable exponent. 

However, the Arrhenius equation can only be used to investigate the influence of the 

storage temperature on the capacity fade. In other words, the traditional semi-

empirical model is unable to account for the piecewise effect of SOC on battery 

degradation.  

A quantitative analysis is also conducted to compare the prediction accuracy of the 

two lifetime models when only time and temperature dependences are considered. 

Fig. 2.11 compares two kinds of capacity fade modeling method, and in TABLE 2.5 

shows the lifetime prediction results. It is evident that the proposed model performs 

better in terms of prediction accuracy. Moreover, compared to the semi-empirical 

model, the proposed model gives underpredicted lifetime values which is good for 

predictive maintenance. Since the battery stored at 40 °C has not reached the EOL 

before stopping the entire aging test, the real lifetime values at this temperatures 

cannot be provided. 

It should be noted that the battery under the condition of 40 degrees does not finally 

reach the EOL of 20% capacity attenuation, so it cannot provide the measurement life 

at lower temperature [J2]. 
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Fig. 2.11.  Comparison of modeling results between semi-empirical model and the proposed 

nonlinear regression model (SOC level is fixed at 50% and both models only consider the 

temperature variation and time dependency). Source: [J2]. 

TABLE 2.5.  Comparison of lifetime prediction results between semi-empirical model and the 

proposed nonlinear regression model (SOC level is fixed at 50% and both models only consider 

the temperature variation and time dependency; when EOL criterion of 20% capacity fade is 

reached). Source: [J2]. 

Temperature 

(°C) 

Predicted Lifetime Using the 

Proposed Model (month) 

Predicted Lifetime Using Semi-

Empirical Model (month) 

Measured 

Lifetime (month) 

55 °C 12.5 12 13 

47.5 °C 25 27.5 26 
40 °C 53.5 64.5 / a 

25 °C 285.5 400.5 / 
a The value is not available because the test did not reach the EOL. 

2.4. SUMMARY 

This chapter analyzes the long-term degradation behavior (i.e., beyond the typical 

range of 20% capacity fade) of LiFePO4 batteries and studies the effect of aging 

conditions on the degradation behavior. It is found that the capacity fade shows a 

piecewise change with SOC variation. The traditional semi-empirical model based on 

the Arrhenius equations can only reflect the monotonic trend of capacity fade with 

temperature. A nonlinear regression lifetime model with two-step fitting is proposed 

that can simultaneously study the effect of storage temperature and SOC level on the 

rate of calendar degradation. Using the established battery degradation model, the 

calendar lifetime can be interpolated for different storage conditions. All the aging 

data introduced in this chapter will be used for ML model training and verification in 

the following chapters. 
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CHAPTER 3. ENTROPY AS FEATURE 

FOR MACHINE LEARNING SOH 

ESTIMATION 

The content of this chapter is based on the results presented in [J3] and [J4]. 

This chapter introduces the methods to reach objective 2 and mainly answer the 

following questions: 

▪ Why features extraction is needed in ML-based SOH estimation? 

▪ What features are used in ML-based SOH estimation methods? 

▪ What are the disadvantages of these existing features? 

▪ Why entropy is selected as a feature? 

▪ What’s the performance of FE as a feature for SOH estimation? 

3.1. BACKGROUND 

The training of an ML model typically involves the following steps: data 

preparation (e.g., collecting data and suppressing the noise), feature dimensionality 

reduction (i.e., manually or automatically extracting and selecting features), and 

parameter optimization of the ML model [J1]. According to the algorithms used, two 

training modes are summarized, as presented in Fig. 3.1.  

In order to simplify the computing process, the dimension of the measurements 

should be reduced first, and the features are extracted as input of the ML model. In 

order to increase the SOH estimation accuracy, the feature should include enough 

aging information, and the ease of feature extraction should be addressed in real-life 

applications [J4]. Various SOH features such as differential features, geometrical 

features, and statistical features are proposed in the existing publications. For 

example, through the differential calculation of voltage (i.e., dV/dt), current (i.e., IC 

curve) or temperature (i.e., dT/dt), some obvious SOH features such as the peak/valley 

value  can be obtained [20, 51]. Geometrical features like knee points, extremum and 

curvature of voltage curves, as well as time associated with a fixed voltage interval 

are also powerful indicators of battery aging [J1, 25, 26]. However, extracting the 

aforementioned features manually brings some problems. For instance, extensive 

laboratory testing is required to obtain certain SOH features on the one hand. Some 

features, on the other hand, are reliant upon the test conditions, and they may become 

invalid when the temperature variation is considered. For these reasons, effective and 

robust SOH features should be proposed. 
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Fig. 3.1.  Summary of ML model training modes: (a) Manual extraction and selection of SOH 

features (b) automatic extraction of SOH feature through the use of ML algorithms. 

As an important category of SOH features, statistical features, namely the sample 

entropy and its enhanced forms, are used in this project. With a short pulse test, the 

difference in battery SOH can be determined by calculating entropy, a statistic 

indicator of signal complexity. The entropy has different variants, such as 

approximate entropy (AE), sample entropy (SE), fuzzy entropy (FE), and their 

multiscale form, i.e., multiscale entropy. In order to better apply entropy as a SOH 

feature, the theory behind these features is introduced and compared. Afterward, the 

effectiveness of the entropy feature is evaluated with regard to data set selection. 

Finally, FE is proposed as a robustness-enhanced SOH feature, and its effectiveness 

is validated by comparing with SE from the perspective of theory and performance. 

3.2. ENTROPY THEORY 

To determine the probability of producing a new pattern in a signal, AE was 

proposed [52, J3]. In AE(m, r, N), m (which is a positive integer) is the dimension of 

matrices, r (which is a positive real number) indicates the tolerance for accepting these 

matrices, and N specifies the total number of data. Moreover, SE is an effective way 

of quantifying the predictability degree of the time series, as well as their complexity 

[J3, 53]. It begins with the identical first two steps as the AE algorithm [J3] but does 

not compare the same vector to itself. SE is expressed as the negative natural 

logarithm of the conditional probability (CP). FE is the negative natural logarithm of 

the CP that a dataset of length N will repeat itself for m+1 points within a boundary 

after having repeated for m points [C3, 54]. Compared to SE, the similarity degree in 

FE calculation is computed by the exponential function instead of step function. As a 

result, FE can determine the data regularity more accurately. Furthermore, it is also 
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possible to compute the multiscale entropy using the coarse-grained procedure, which 

can indicate the degree of irregularity in a complicated time series [J3, 55, 56]. Fig. 

3.2 shows the comparison of the AE, SE, FE, and multiscale entropy algorithms. The 

detailed steps of these algorithms are shown in Fig. E.1, Fig. E.2, Fig. E.3, and Fig. 

E.4, respectively (see Appendix E). The parameters m and r can be selected by 

minimizing the maximum sample entropy relative error, as presented in Fig. E.6 (see 

Appendix E.4) [J3, 57, 58]. 
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Fig. 3.2.  The flowchart of the approximate entropy algorithm (black), the sample entropy 

algorithm(blue), and the fuzzy entropy algorithm (red). Source: [J3, J4]. 
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3.3. DATASET SELECTION FOR ENTROPY CALCULATION 

As voltage response differs under different TCs, it is imperative to evaluate the 

influence of voltage datasets [J3]. As illustrated in Appendix C.1, the cyclic aging test 

data are used in this chapter to validate the effectiveness of the proposed method. In 

order to generate different voltage profiles (see Fig. 3.3) and analyze their influence 

on the performance of entropy-based SOH estimation, the HPPC test, as illustrated 

Appendix C.3, can be divided into six unidirectional pulses at three SOC levels. 
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(a)                                                                             (b) 

Fig. 3.3.  Six voltage datasets acquired through HPPC tests under (a) TC1, (b) TC2, (c) TC3, (d) 

TC4, (e) TC5, and (f) TC6. Source: [J3]. 
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The proposed dataset selection method is illustrated in Fig. 3.4. To begin, pulse 

voltage series under six TCs considering two impact factors (namely the current 

direction and SOC) are collected. Then AE and SE are chosen as SOH features, 

therefore the first-order polynomial model [53] can be established for mapping the 

features to SOH. By comparing the accuracy of the established estimators using 

different voltage datasets and different scales, the best suitable TC and scale can be 

identified, respectively. 
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Fig. 3.4.  An illustration of the proposed dataset selection strategy for entropy-based SOH 

estimation. Source: [J3]. 

3.3.1. DATASETS ANALYSIS 

The classic terminal voltage characteristic curve of the LiFePO4 battery is shown in 

Fig. 3.5. The slope of voltage under the 1C-rate constant current (CC) full charging 

test is also provided, and it is expressed as (3.1). 
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Fig. 3.5.  Terminal voltage responses and the corresponding slope curve during 1C-rate CC 

charging. Source: [J3]. 
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where Vslope1, Vslope10, and Vslope20 are the slope corresponding to intervals of 1 s, 10 s, 

and 20 s, respectively. It can be seen from the slope curve that the polarization of the 

battery cell is severe at the polarization zone for which the SOC is either over 80% or 

less than 10%, while the variations in battery voltage at mid-SOC are flat (also known 

as the flat zone) [J3, 59]. Fig. 3.3 explains the test results that the voltage responses 

under TC2 and TC5 differ more obviously than those under other TCs. 

3.3.2. ACCURACY COMPARISON 

In the project, the root-mean-squared error (RMSE), the absolute percentage error 

(APE), and the mean absolute percentage error (MAPE) are the metrics used to 

evaluate the effectiveness of the proposed method [J4], defined as follows: 
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where NT denotes the total number of validation data, ˆ
iSOH  and 

iSOH  are the 

estimated and real SOH of point i, respectively. 

The results of the feature extraction and the SOH estimation are shown in Fig. 3.6, 

Fig. 3.7, and Fig. 3.8. According to these results, AE-based and SE-based estimators 

produce the best estimation under TC5 due to polarization. Likewise, from the 

perspective of the polarization, a low SOC value (e.g., smaller than 10%) can also 

yield improved performance. However, this case, where the battery is discharged to 

such a low SOC, is not common in the real operation of the batteries, therefore it is 

excluded from the experiment. Based on the findings of the experiments, it is 

concluded that the combined impacts of SOC level and current direction are 

responsible for the estimation accuracy. Feature extraction from the polarization zone 

helps improve the estimation performance [J3]. 
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Fig. 3.6.  The first-order fitting results of the relationship between SOH and (a) AE and (b) SE. 

Source: [J3]. 
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Fig. 3.7.  SOH estimation results under six TCs using (a) AE-based algorithm and (b) SE-based 

algorithm. Source: [J3]. 
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Fig. 3.8.  The SOH estimation error using the datasets under different TCs (minus one and plus one 

denote the direction of charging and discharging, respectively): (a) AE-based method and (b) SE-

based method. Source: [J3]. 

Next, how the scale affects the estimation performance of multiscale entropy-based 

(MSE-based) method was analyzed. A voltage dataset under TC5 is selected as a case 

study, and Fig. 3.9 shows the results of MSE (the scale varies from 1 to 3.) varies with 

SOH. As seen in Fig. 3.10 and TABLE 3.1, the estimation errors at scales 2 and 3 are 

large. The results show that it is no longer suitable to use MSE feature while using 

small samples for SOH estimation. Because in such situation, enlarging the scale 

factor will further filter the useful information, and eventually lead to a decrease in 

estimation accuracy. 
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Fig. 3.9.  The obtained MSE values with various scales: (a) MSE corresponding to different cycling 

time, and (b) the first-order fitting results of the relationship between SOH and MSE. Source: [J3]. 
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Fig. 3.10.  SOH estimation results using the MSE-based algorithm. Source: [J3]. 

TABLE 3.1.  The SOH estimation error using the MSE-based algorithm with various scales. 

Source: [J3]. 

Method MAPE (%) RMSE 

Scale = 1 1.67 0.02 

Scale = 2 3.03 0.04 

Scale = 3 2.99 0.04 
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3.4. FE: ROBUSTNESS-ENHANCED SOH FEATURE 

The previous subchapter selects the voltage datasets for entropy feature extraction, 

and the purpose is to improve the effectiveness of entropy features by defining the 

voltage interval. However, SE is highly sensitive to the parameter selection and noise 

because it uses the Heaviside step function in its computation of similarity degree [J4, 

53]. To enhance the robustness of SOH estimation, FE feature is proposed and its 

performance is validated by conducting a comprehensive comparison from theoretical 

and experimental perspectives with the traditional method. The main content of [J4] 

is summarized as follows. 

3.4.1. THEORETICAL COMPARISON 

As shown in Fig. 3.2, FE has improved the SE algorithm in the two processes of 

vector generation and similarity degree calculation. On the one hand, by subtracting 

the mean value of the match templates, the shape of the vectors determines their 

similarity degree in FE. On the contrary, in SE, the similarity is calculated in absolute 

coordinates, which gives unreliable results. On the other hand, the exponential 

function is used in FE calculation as an alternative to Heaviside function used in SE. 

As shown in Fig. 3.11, FE is remarkable robust against data noise and TCs due to the 

use of fuzzy function, which greatly alleviate the sensitivity of SE to parameter 

variations. For more explanation, please refer to [J4]. The following work also 

highlights the effectiveness of FE. 
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Fig. 3.11.  The comparison of similarity calculation in SE and FE algorithms. Source: [J4]. 
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3.4.2. PERFORMANCE COMPARISON 

Using 38 weeks of cyclic aging data (as illustrated in Appendix C.1), this 

subchapter compares the performance of SE- and FE-based SOH estimation. Fig. 

2.1(a) and Fig. 2.1(c) (see Chapter 2.2) illustrate the SOH curves and the evolution of 

the voltage responses under pulse test at 80% SOC. The self-validation approach is 

used, where the aging datasets of the tested battery are divided into a training group 

(28 of 38 feature-SOH pairs) and a validation group (the other 10 of 38 data pairs). 

The SVM model is selected as the target ML model, and four factors including the 

parameter r selection, noise, training data size, and TCs are examined for their effect 

on the estimation accuracy [J4]. 

A. Effect of parameter selection on estimation accuracy 

To investigate the dependence of the estimation accuracy on the parameter r, m is 

set to 2 and N is 30. From the results (see Fig. 3.12 and Fig. 3.13) obtained by selecting 

different r, it can be seen that the variation of r has a more obvious influence on SE 

feature.  
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Fig. 3.12.  SVM training results with different parameters r used in FE and SE algorithms. Source: 

[J4]. 
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When r is set to 0.048, both methods provide good SOH estimation results with 

errors below 6%. With the decrease of r, the error of the SE method gradually 

increases and there are obvious fluctuations, until it fails when r is 0.01. On the 

contrary, FE is robust to parameter variation and can maintain a high estimation 

accuracy (i.e., lower than 4%). 
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Fig. 3.13.  SOH estimation results with different parameters r used in FE and SE algorithms: (a) 

r=0.048 and (b) r=0.024. Source: [J4]. 
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B. Effect of noise on estimation accuracy 

As a means of simulating voltage signals collected under real working conditions 

without a high-precision sensor, Gaussian noise with a signal-to-noise ratio of 50 dB 

is injected into original data. Here, m and r are set to 2 and 0.048 for both methods. 

The obtained noisy voltage, the corresponding entropy feature, and the comparison of 

the SOH estimation are shown in Fig. 3.14, Fig. 3.15, and Fig. 3.16, respectively. It 

can be observed that when the measured voltage is affected by noise pollution, FE is 

still an effective SOH feature. Conversely, the SE of the noisy data shows saltation 

and invalid for SOH estimation.  
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Fig. 3.14.  Original voltage and noisy voltage used for entropy feature extraction. Source: [J4]. 
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Fig. 3.15.  The correspondence between SOH and different entropy features: (a) FE of original 

data, (b) FE of noisy data, (c) SE of original data, and SE of noisy data. Source: [J4]. 
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Fig. 3.16.  SOH estimation results of FE-based and SE-based algorithms with Gaussian noise. 

Source: [J4]. 

C. Effect of data size on estimation accuracy 

As suggested in part A in Chapter 3.4.2, m is still set to 2 while r is set to 0.048 for 

both methods in this part. By charging the training data size from 40% (i.e., 16 of 38 

FE-SOH data pairs) to 75% (i.e., 29 of 38 FE-SOH data pairs) of the entire aging data, 

the dependency of the entropy-based SOH estimation on the training data size is 

studied. According to Fig. 3.17, FE-based method has higher estimation accuracy 

when the same amount of data is used for model training. In addition, for achieving 

the same estimation error, SE-based method requires 50% more training data than FE-

based method. For example, 24 SE-SOH training data pairs are needed for SE-based 

method to make its RMSE less than 0.03. While in the case of using FE-based method, 

16 FE-SOH training data is enough. It can be concluded that the FE-based method 

reduces the required data size effectively as compared with the traditional SE method, 

resulting in less effort for laboratory test [J4]. 
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Fig. 3.17.  SOH estimation error of FE-based and SE-based algorithms with different data size: (a) 

RMSE and (b) MAPE. Source: [J4]. 

D. Effect of SOC on estimation accuracy 

To analyze the dependency of entropy-based SOH estimation method on the test 

condition, the voltage data which is used for SE and FE feature extraction is measured 

under three different SOC levels. The extracted entropy features under different test 

conditions are illustrated in Fig. 3.18. As shown in Fig. 3.18(a), the SE values obtained 

from 50% and 80% SOC levels are invalid in estimating the battery SOH. Moreover, 

the mapping of entropy to SOH obtained under 20% SOC is not consistent with the 

phenomenon revealed by entropy theory (i.e., the more disordered the data is, the more 

entropic it is considered). Contrarily, FE feature shows strong robustness against the 

test condition (i.e., the SOC level). As shown in Fig. 3.18(b), the FE value 

corresponding to a certain SOH point keeps almost constant with the varies of SOC. 

This shows that when using the FE feature to estimate the SOH, there is no need to 

accurately estimate the SOC in advance, which is very suitable for practical 

applications. This indicates that battery SOH estimation based on FE feature does not 

require the accurate estimation of SOC in advance. As a consequence, the suggested 

FE-based approach is applicable in real-world scenarios because the battery system 

does not need to be forced to reach a specified SOC before the application of a 30-

second current pulse [J4]. 
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Fig. 3.18.  The correspondence between SOH and entropy features: (a) SE and (b) FE. (The features 

are extracted from the voltage under single pulse test at 47.5oC and different SOC levels). Source: 

[J4]. 

3.5. SUMMARY 

This chapter studies the effectiveness of entropy as a feature for ML-based SOH 

estimation. To optimize the input voltage sequence and to guide the experimental test, 

the interaction between the TCs, entropy features (i.e., AE, SE, and MSE), and 

estimation accuracy are analyzed. It can be concluded that extracting the entropy 

feature from the polarization zone yields high SOH estimation. The proposed data sets 

selection method helps improve the ML-based battery SOH estimation in real 

applications. Additionally, FE is proposed as an effective feature and combined with 

SVM for SOH estimation of batteries. It is shown theoretically and experimentally 

that the FE-based method is superior in four aspects: parameter selection freedom, 

noise robustness, data size independence, and TC independence. 
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CHAPTER 4. ML-BASED SOH 

ESTIMATION USING FE 

The content of this chapter is based on the results presented in [J3], [C3], and [C4]. 

This chapter introduces the methods to achieve objective 2 and 3, and mainly 

answer the following questions: 

▪ How robust is the FE feature to temperature variation? 

▪ What is the effect of data noise on SOH estimation using ML? 

▪ How to improve SOH estimation performance through noise suppression or 

feature smoothing? 

4.1. SOH ESTIMATION CONSIDERING TEMPERATURE 

VARIATION 

As concluded in Chapter 3, SE is unable to represent the aging information 

accurately when the different TCs (i.e., the SOC level) is considered. In real 

applications, the temperature is regarded as an important disturbance variable and its 

effect on the entropy-based SOH estimation is evaluated. As shown in Fig. 4.1, the 

temperature is added to the SVM model as an independent variable. The calendar 

aging data under various temperature settings are used for training and validation of 

the FE-based method. More details can be referred to Appendix C.2. During the 

calendar aging test, Pulse1, Pulse 2, and Pulse 3 are performed at 20% SOC, 50% 

SOC, and 80% SOC, separately. As mentioned in Chapter 3, a short-term single pulse 

test is not enough for extracting effective SE features. Therefore, before performing 

the SOH estimation that considers the temperature variation, the minimum pulse time 

for FE/SE calculation is analyzed. 
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Fig. 4.1.  Schematic diagram of the proposed FE-based SOH estimation method. 
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In Fig. 4.2, the SE and FE features of a single pulse test 80% SOC are displayed. 

These SE features do not accurately reflect the battery SOH. Meanwhile, FE is still 

an effective SOH feature, which shows a monotonous relationship with the SOH even 

in different temperatures. Certainly, it is obvious that the same result can be observed 

if a single pulse is applied at both 20% and 50% SOC. The SOH estimation results by 

using different single pulse test data and combined pulse test data are summarized in 

TABLE 4.1. It demonstrates that for SE-based method, a single pulse with 13-second 

of pulse current and 20-second rest time is too short to extract the aging information. 

However, a 33-second pulse test is sufficient for the FE-based method to provide a 

good SOH estimation (RMSE remains below 0.015).  
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Fig. 4.2.  The correspondence between SOH and entropy features: (a) SE and (b) FE. (Feature 

extraction is based on pulse voltage under 80% SOC and different temperatures). Source: [J4]. 

TABLE 4.1.  Comparison of the training RMSE when extracting FE/SE features from various 

pulse voltages. 

Feature Battery cell Pulse 1 Pulse 2 Pulse 3 Pulse 1+Pulse 2 Pulse 1+Pulse 2+Pulse 3 

FE 

C. 1@  ℃ 0.011 0.015 0.011 0.013 0.011 

C. 3@  . ℃ 0.015 0.009 0.009 0.012 0.014 

C.  @  ℃ 0.013 0.012 0.012 0.012 0.012 

SE 

C. 1@  ℃ / a / / 0.018 0.014 

C. 3@  . ℃ / / / 0.017 0.014 

C.  @  ℃ / / / 0.014 0.016 

a. The SE extracted by the data under the specific condition is invalid for SOH estimation 
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Since the objective of this project is to demonstrate the robustness of entropy 

features against temperature variation, in the subsequent comparison, SE and FE 

features are extracted from the combined pulses voltage under three SOCs. Based on 

the parameter selection method (as illustrated in Appendix E.5), m, r, N were set to 2, 

0.04, 99 for the FE algorithm and 2, 0.08, 99 for the SE algorithm [J4]. As it can be 

seen from Fig. 4.3, when the aging temperature changes from 40℃ to 55℃, the 

degrees of dispersion of the SE curve along the horizontal axis is ten times that of the 

FE curve. FE is, therefore, more robust to temperature variations than SE [J4]. 
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Fig. 4.3.  The correspondence between SOH and entropy features: (a) SE and (b) FE. (Feature 

extraction is based on combined pulse voltages under three SOCs). Source: [J4]. 

4.1.1. SINGLE-TEMPERATURE MODEL 

Fig. 4.4 and Fig. 4.5 illustrates the results of mutual validation for three single-

temperature models. Overall when the validation data and training data come from the 

same temperature condition, both SE- and FE-based methods can achieve accurate 

estimation results. The main difference lies in the estimation towards low temperature 

(i.e.,   ℃). By using FE-based method, the stability of the estimation result is 

enhanced. In another word, the FE-based method has stronger robustness against the 

temperature variation as compared to FE-based method [J4]. 
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(a)                                               (b)                                               (c) 

Fig. 4.4.  SOH estimation results of single-temperature models: (a) C.2 at   ℃, (b) C.  at   . ℃, 
and (c) C.6 at   ℃. (Each model is trained using aging data at only one temperature, and verified 

using the aging data of another battery at the same temperature). Source: [J4]. 
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Fig. 4.5.  SOH estimation errors of single-temperature models: (a) RMSE and (b) MAPE. Source: 

[J4]. 

4.1.2. FULL-TEMPERATURE MODEL 

By using the aging data at all three temperatures, a full-temperature model is 

trained, and the estimation results for each model are illustrated in Fig. 4.6 and Fig. 

4.7. It shows that the established full-temperature model based on the SE feature is 

more accurate in estimating SOH under the intermediate temperature condition. On 

the contrary, the estimation errors for the other two temperature conditions are 

relatively large, meanwhile, the estimation fluctuates significantly. However, such a 

phenomenon is alleviated by the FE-based method. On the one hand, the APE of FE-

based SOH estimation keeps less than 3% (only one estimate of C.6 at   ℃ is slightly 

larger than 3%, reaching 4%). On the other hand, there is no obvious deviation in 

RMSE and MAPE at the three temperatures. Based on the comparison results with 
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SE-based method, FE-based method shows stronger temperature and will result in 

relatively smaller estimation error regardless of the aging temperature. [J4]. 
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Fig. 4.6.  SOH estimation results of full-temperature model: (a) C.2 at   ℃, (b) C.  at   . ℃, and 

(c) C.6 at   ℃. (The model is trained using the aging data of C.1@  ℃, C.3@  . ℃, and 
C. @  ℃, and validated separately using the aging data of C.2@  ℃, C. @  . ℃, and 

C.6@  ℃). Source: [J4]. 
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(a)                                                                     (b) 

Fig. 4.7.  SOH estimation errors of full-temperature model: (a) RMSE and (b) MAPE. Source: [J4]. 

4.1.3. PARTIAL-TEMPERATURE MODEL 

The partial-temperature model is established by excluding the aging data at the 

intermediate temperature (using it as the validation data). As shown in Fig. 4.8 and 

Fig. 4.9, FE-based method provides a higher accuracy for most points, and MAPE and 

RMSE are reduced when compared to the SE-based method. This means the FE-based 

method involves a smaller amount of training data than the SE-based method [J4]. 

mailto:C.6@40℃
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Fig. 4.8.  SOH estimation results of partial-temperature model. (The model is trained using the 

aging data of C.1@  ℃ and C. @  ℃, and validated using the aging data of C. @  . ℃). 
Source: [J4]. 
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Fig. 4.9.  SOH estimation errors of partial-temperature model for C.4@  . ℃: (a) RMSE and (b) 

MAPE. Source: [J4]. 

4.2. SOH ESTIMATION USING FURTHER IMPROVED FE 

The entropy-based SOH estimation methods can be further improved by removing 

the noise from the original data and/or from the feature [60]. This Ph.D. project 

evaluated and compared two types of widely used data noise suppression methods, 

i.e., the adaptive iterative algorithm represented by empirical mode decomposition 

(EMD) and six regression-based smoothers. They are used before and after entropy 

feature extraction, respectively. 

4.2.1. NOISE SUPPRESSION BEFORE FEATURE EXTRACTION 

EMD was proposed by N.E. Huang et al. to decompose a time series into the sum 

of a finite number of intrinsic mode functions (IMF) [C3, 61]. The advantage of EMD 

technology is that it decomposes the signal from the data itself, so it can adaptively 
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separate the signal from the noise. The detailed steps of the EMD algorithm are 

illustrated in Fig. F.1 (see Appendix F.1). A battery SOH estimation method using 

EMD entropy is proposed, as illustrated in Fig. 4.10. The EMD algorithm is utilized 

to remove the noises in the original voltage data. Based on the decomposed voltage 

data, the SE feature is calculated for SOH estimation model training. Finally, SVM is 

used to obtain the optimal model by taking advantage of its ability in solving high-

dimensional nonlinear problems.  

Original voltage signal

SVM model SOH estimation

SOH data
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SE algorithm

SE

Residual 

component
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Fig. 4.10.  Schematic diagram showing the noise suppression method based on EMD. Source: [C4]. 

The cyclic aging data under dynamic operation conditions, as illustrated in 

Appendix C.1, is used for features extraction and SVM model establishing. The 

obtained SOH curves and the CC discharging voltage of the two tested batteries are 

plotted in Fig. 4.11 and Fig. 4.12, respectively. The last 360 points in the CC discharge 

curve are selected to form an original voltage signal [C3]. The residual component (as 

shown in Fig. 5.) is obtained by processing the original signal through EMD. 

Correspondingly, based on these two sets of voltage signals, the SE/EMDSE features 

are obtained. In this case study, the parameters m, r, and N of the SE algorithm are 

selected as 2, 0.048, and 360 based [C3]. 
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Fig. 4.11.  SOH curve of two batteries under cyclic aging. Source: [C4]. 
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(a)                                                                                (b) 

Fig. 4.12.  Voltage responses during the CC discharging: (a) No.1 Battery and (b) No.2 Battery. 

Source: [C4]. 
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(a)                                                                                (b) 

Fig. 4.13.  Original voltage curve and the residual component obtained by EMD: (a) No.1 Battery 

and (b) No.2 Battery. Source: [C4]. 

Fig. 4.14 shows the SVM training results of SE and EMDSE methods. The more 

linear mapping between EMDSE and SOH indicates that EMDSE-based model is 

more accurate. The results of self-validation and mutual validation are shown in Fig. 

4.15. The errors of these two methods are compared in Fig. 4.16. It can be seen that 

the EMDSE method improves the SOH estimation to a different extent for both 

validation methods. In summary, the EMD method can be applied to effectively 

reduce noise in the original voltage signal, thus improving the estimation accuracy 

[C3]. 
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Fig. 4.14.  SVM model training results using: (a) SE and (b) EMDSE feature. Source: [C3]. 
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(b) 

Fig. 4.15.  SOH estimation results using (a) self-validation and (b) mutual validation. Source: [C3]. 
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(a)                                                                                  (b) 

Fig. 4.16.  SOH estimation error using different SOH features: (a) MAPE and (b) RMSE. Source: 

[C3]. 

4.2.2. NOISE SUPPRESSION AFTER FEATURE EXTRACTION 

In addition to the adaptive iterative algorithm (such as EMD), the regression-based 

smoothers are also very effective for noise suppression [62-64]. The previous 

subchapter studies the effect of noise suppression before SOH feature extraction, 

while in this part, the extracted features are smoothed and its effectiveness on the 

improvement of the SOH estimation is evaluated. In Fig. 4.17, an overview of the 

proposed analyzing method is given. 
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Two batteries’ calendar aging data under   ℃, as illustrated in Appendix C.2, are 

used for features calculation. After the smoothing step, the SVM and GPR models are 

trained to map the smoothed feature to SOH. Finally, the effectiveness of noise 

suppression on the performance of SOH estimation is verified by experimental results. 

The SOH curve, the collected voltage data, and the extracted FE features for the tested 

two batteries are shown in Fig. 4.18. The mutual validation method is used to assess 

the model’s performance. Training and validation data are taken from the No. 1 and 

No. 2 battery separately. 
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Fig. 4.17.  Schematic diagram of the proposed feature smoothing algorithm. Source: [C4]. 
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Fig. 4.18.  Calendar aging results: (a) SOH curves at   ℃, (b) voltage responses during the HPPC 

test, and (c) the correspondence between SOH and FE. Source: [C4]. 

The SOH estimation results of the SVM model and the comparison of the 

performance in terms of MAPE, RMSE, R-squared, and simulation time are shown in 

Fig. 4.19 and Fig. 4.20. Likewise, the results of the GPR model are shown in Fig. 4.21 

and Fig. 4.22. It can be seen from the results that for no matter which ML model 

without data smoothing, the estimation results show a relatively large fluctuation. 

Especially at the fifteenth month, the outlier shows up. Besides, the estimation error 

gradually increases at the end period of degradation. However, the smoothing methods 

have different degrees of improvement for both SVM and GPR models. Among the 

six smoothing methods considered, the lowess method is the most effective for 

performance improvement. Specifically, the MAPE of SVM model is reduced by the 

smoothing method from 0.9% to around 0.6%, while the RMSE is reduced from 0.016 

to around 0.006. At the same time, the tsim for SVM model is shortened from 9.56s to 

less than 3s. It is also worth mentioning that smoothing methods improve the 

performance of GPR more significantly. 
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Fig. 4.19.  SOH estimation results using different smoothing methods (when using SVM model). 

Source: [C4]. 
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(c)                                                                      (d) 

Fig. 4.20.  Comparison of SOH estimation results using different smoothing methods (when using 

SVM model): (a) MAPE, (b) RMSE, (c) R-squared, and (d) Simulation time tsim. Source: [C4]. 
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Fig. 4.21.  SOH estimation results using different smoothing methods (when using GPR model) . 

Source: [C4]. 
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Fig. 4.22.  Comparison of SOH estimation results using different smoothing methods (when using 

GPR model): (a) MAPE, (b) RMSE, (c) R-squared, and (d) Simulation time tsim. Source: [C4]. 

4.3. SUMMARY 

In this chapter, SOH estimation using FE as a feature is presented. Three SOH 

estimation models considering the aging temperature are established, and the results 

demonstrate the robustness of the FE feature against the aging conditions. For further 

improving the estimation performance, the EMD and six regression-based noise 

suppression methods are applied to proceed with the raw data and the extracted 

feature, separately. The experimental results prove that using noise suppression in ML 

improves accuracy as well as simulation speed. 
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CHAPTER 5. ML-BASED SOH 

ESTIMATION WITH AUTOMATIC 

FEATURE EXTRACTION 

The content of this chapter is based on the results presented in [C5]. 

This chapter introduces the methods, which were used, to achieve objective 4, and 

mainly answer the following questions: 

▪ How to reduce or even avoid the manual feature extraction process? 

▪ What are the challenges of DL in battery SOH estimation? 

▪ What is the EL method? 

▪ Why use EL as an alternative to DL? 

5.1. BACKGROUND 

As introduced in Chapter 3, there are two training modes in ML. The previous 

chapters are dedicated to enhancing the robustness of features for ML methods that 

need manual feature extraction. Developing ML algorithms that can automatically 

derive SOH features is another way to avoid the failure of the feature. In other words, 

the measurement data can be used directly without dimensionality reduction. 

According to [J1], DL is a good candidate for SOH estimation since it has obvious 

advantages over other ML algorithms given a large amount of data. Using deep neural 

networks, for instance, global features can be derived from input with the help of 

multiple hidden layers. Convolutional neural networks are good at handling multi-

dimensional data due to the use of convolutional techniques; thus the automatic 

feature extraction is realized. However, DL has the drawbacks of heavy computational 

burden and dependence on large datasets. When big data is not available, the 

overfitting becomes an issue. Amongst all ML methods, EL is emerging and it 

provides an alternative to DL, offering a trade-off between data size and accuracy. 

EL refers to combing the results of multiple base learners, which is generally 

produce more accurate and robust results than a single base learner [J1]. Ensemble 

can take two forms: model- and data-level ensemble, as illustrated in Fig. 5.1. In the 

model-level ensemble, multiple different ML models are trained using the same data 

set. Based on a weighted average of base learners or through voting, the final output 

is given [66-69]. Obviously, training multiple ML models will increase the 

computational complexity. Except for model-level ensemble, a single base learning 

algorithm can also be used to set up the data-level EL method. Bagging and boosting 

can be used to resample the original data, allowing multiple homogeneous models to 

be built simultaneously [71, 72]. It should be noted that generating multiple subsets 
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only increases the diversity of the data, but does not enlarge the amount of data. 

Therefore, if complex algorithm, such as random forest, is selected as the base learner, 

overfitting will still be a problem. According to the above analysis, the data-level 

ensemble of simple base learners is a good solution. The bagging, also called bootstrap 

aggregating is selected because it can 1) avoid overfitting by reducing variance in the 

predicted outcome; 2) increase the computation slightly.  

In this chapter, the methodology of the proposed BaggELM is presented first, 

followed by the hyper-parameters optimization, performance comparison with the 

traditional method, and experimental results. The summary of this chapter is given at 

last. 

Diverse 

estimators

LR SVM ANN Other...

 
(a) 

Regression

Training

Random sampling

Training set  
(b) 

Fig. 5.1.  Schematic diagram of two ways of ensemble in ML algorithm: (a) model-level ensemble 

and data-level ensemble (b). Source: [J1, 65]. 

5.2. SOH ESTIMATION USING ENSEMBLE LEARNING 

Amongst commonly used ML algorithms, due to its computationally efficient, ELM 

is regarded as a promising method [73]. It requires only the predefinition of the 

network architecture. Compared to the algorithms whose weights are trained in an 

iterative way, the ELM method contains fewer trainable weights, resulting in low 

stability and accuracy of the ELM method. However, ELM can be improved by 

increasing the diversity of the datasets. Bagging allows the reconstruction of the 

original dataset on the basis of reducing subsets correlation [74]. Therefore, this 
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project applied bagging-based EL method to strengthen the generalization 

performance of ELM, following the structure presented in Fig. 5.2. 
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Fig. 5.2.  The training process of the proposed EL algorithm. Source: [C5]. 

5.2.1. METHODOLOGY 

In a typical feed-forward neural network, the parameters of the network will be 

optimized iteratively using for example gradient descent-based methods. The 

optimization is however a slow process, and parameters may gravitate toward the local 

optimum easily. Huang et al. [75] proposed ELM as a possible solution to this 

challenge. The detailed methodology of ELM are shown in Fig. D.6 and Fig. D.7 (see 

Appendix D.4). The output weights of ELM can be estimated through a pseudoinverse 

operation based on the randomly selected input weights and hidden biases. In contrast 

to iterative training, ELM requires much less computation and trains faster [J1].  

As illustrated in Fig. 5.3, a bagging-based ELM ensemble is developed, which 

incorporates data resampling and model ensemble. Bagging is a process of generating 

B bootstrap samples, 
N

bD , b = 1, 2, …, B based on random sampling with replacement 

over original training data, DN [J1]. As a result, B ELMs can be trained and the 

estimated value can be obtained as 

 
1

1 ˆˆ ( )
B

new b new

b

Y f
B =

=  x  (5.1) 

where xnew denotes a new observation, fb() is the bth trained ELM model, and B is the 

number of bagging. 
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Fig. 5.3.  Flowchart of the proposed BaggELM algorithm. Source: [C5]. 

5.2.2. EXPERIMENTAL TESTS 

As presented in Appendix C.1, cyclic aging data of two LiFePO4 batteries are used 

to evaluate the performance of the BaggELM method. Fig. 5.4 and Fig. 5.5 show the 

test results. It is not common for the battery to be fully charged or discharged in actual 

use, so the training data in this study are taken from the partial voltage curve. The 

details of input voltage selection are described in the following sub-chapter. Both self-

validation and mutual validation are applied to verify the proposed method. 
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Fig. 5.4.  SOH curves obtained from cyclic aging. Source: [C5]. 
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(a)                                                                                  (b) 

Fig. 5.5.  Voltage responses under CC discharging: (a) No.1 and (b) No.2 Battery. Source: [C5]. 

5.2.3. HYPERPARAMETER OPTIMIZATION 

According to the developed BaggELM method, several hyperparameters need to be 

optimized, including the length of voltage sequence (lengthV), the starting point (Vstart) 

of voltage sequence, the hidden neurons of the neural network (M), and the numbers 

of the bootstrap samples (B) [C5]. As depicted in Fig. 5.6, hyperparameter 

optimization is carried out. The input voltage was chosen from partial voltage curve 

for the following two reasons. Firstly, batteries will typically operate in a partial 

(between 10% and 90% SOC or even a narrower SOC range) rather than full SOC 

range [C5]. As a result, it’s possible that the entire voltage curve won’t be visible in 

real-world applications. Secondly, using a partial curve as input can shorten 

measurement time as well as simplify the computation.  

Collect the voltage data under CC-CV fully charging test

Limit the SOC range: SOC=[20%, 80%]
The voltage range can be determined: V=[Vmin, Vmax]

for Vstart=Vmin:Vmax

Change the lengthV and compare the SOH 
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Compare the SOH estimation error
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Fig. 5.6.  Flowchart of parameters selection. Source: [C5]. 
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Fig. 5.7 shows (a) current, (b) voltage, as well as (c) SOC curves of a fresh battery 

when it is being charged with CC-CV condition. When SOC varies from 20% to 80%, 

the corresponding voltage changes between 3.32V and 3.42V. Voltage sample points 

were taken every 2s and a set of voltage sequences was obtained to train BaggELM 

models. Fig. 5.8 shows the self-validation results observed for the No. 1 battery and 

shows how lengthV influences the accuracy of the SOH estimation. When lengthV is 

above 600, the proposed method is able to maintain a relative low error (i.e., RMSE 

and MAPE are around 0.01 and 1%, respectively). Fig. 5.9 presents the estimation 

results of lengthV from 600 to 850 for comparison to obtain the optimal value of 

lengthV [C5]. According to the results, the optimal lengthV was determined to be 750.  
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Fig. 5.7.  The CC-CV charging curves for a fresh battery. Source: [C5]. 
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(e)                                                                                      (f) 

Fig. 5.8.  Effect of the hyperparameter lengthV on the SOH estimation when Vstart is set to: (a) 3.32 

V, (b) 3.33 V, (c) 3.34 V, (d) 3.35 V, (e) 3.36 V, and (f) 3.37 V. Source: [C5]. 
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Fig. 5.9.  The combination effect of lengthV and Vstart on the SOH estimation. Source: [C5]. 
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Given a fixed lengthV of 750, Fig. 5.10 shows the SOH estimation errors when Vstart 

ranges from 3.32 to 3.36. Vstart shows an unobvious impact on the estimation 

performance as is evident from Fig. 5.10. This is because of the unique and inherent 

flat voltage characteristic of LiFePO4 batteries, in which a minor variation of Vstart will 

not cause too much change in the shape of the voltage curve [C5]. Vstart was therefore, 

set to 3.336 V at random. According to the optimization results of hyperparameters 

lengthV and Vstart, the input voltage is eventually chosen, as depicted in Fig. 5.11. 
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Fig. 5.10.  The effect of the hyperparameter Vstart (lengthV is fixed to 750) on the SOH estimation. 

Source: [C5]. 
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Fig. 5.11.  The optimized voltage sequences (the sampled time is 2s): (a) No.1 Battery and (b) No.2 

Battery. Source: [C5]. 

The other two hyperparameters M and B can be chosen by the cut-and-try method. 

For guaranteeing the global optimization of the hyperparameters, 5-fold cross-

validation is applied in ML training. With the variation of M from 1 to 500, the 

validation results can be seen in Fig. 5.12. It shows that an excessively large M will 

cause an overfitting problem and reduce the estimation accuracy. That also means 

setting M in the range of 20 to 50 is reasonable. Additionally, the results obtained 

from the empirical formula can also verify this conclusion. The empirical formula 

indicates that M can be determined by the network structure, which is expressed as  
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 M a b c= + +  (5.2) 

where a is the number of input nodes (750 in this study) and b is the number of output 

nodes (1 in this study), and c can be chosen at random between 1 ~ 13. M is in the 

range of 28 ~ 40, which is consistent with Fig. 5.12. M is set at 34 in this study.  

B was chosen in a similar manner and the validation results are shown in Fig. 5.13. 

With the increase of B, the estimation error decreases first and stabilizes after B is 

about 40. Thus, B is adjusted to 40 [C5]. So far, the hyperparameter optimization has 

been completed, and the results are summarized in TABLE 5.1. 
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Fig. 5.12.  SOH estimation error when using different hyperparameter M. Source: [C5]. 
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Fig. 5.13.  SOH estimation error when using different hyperparameter B. Source: [C5]. 

TABLE 5.1.  Summary of the optimized hyperparameters. 

lengthV Vstart M B 

750 3.336 34 40 
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5.2.4. VALIDATION RESULTS 

TABLE 5.2 and Fig. 5.14 show the validation and comparison results of both the 

traditional ELM method and the developed BaggELM method. In the case of self-

validation, as observed in Fig. 5.14(a), both methods provide similar good results. 

BaggELM has a relatively stable estimate, and the maximum APE for ELM and 

BaggELM are 2% and 1%, respectively. While in the case of mutual validation, as 

observed in Fig. 5.14(b), BaggELM offers a significant performance advantage. Since 

the No.1 and No.2 batteries exhibit inconsistency in the degradation characteristics, 

the ELM method trained on No.2 battery is unable to reveal the SOH of No.1 battery 

accurately. By contrast, BaggELM provides a good generalization performance and 

its APE remains under 2% throughout battery lifetime (estimation error only increases 

towards the final aging stage). A good feature of BaggEML is that, in addition to 

having an accurate estimation, it is also robust against the inconsistencies between 

batteries [C5]. 

TABLE 5.2.  Comparison of estimation errors. Source: [C5]. 

Method 
Self-validation Mutual validation 

RMSE MAPE RMSE MAPE 

ELM 0.0080 0.44% 0.0913 9.00% 

BaggELM 0.0048 0.26% 0.0161 0.89% 
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Fig. 5.14.  SOH estimation results: (a) self-validation method and (b) mutual validation method. 

Source: [C5]. 

5.3. SUMMARY 

This chapter studies the artificial neural networks that are capable of recognizing 

global features from the raw data and are able to cope with multi-dimensional data. 

To improve the generalization performance as well as accuracy, BaggELM method is 

proposed on limited data. Moreover, hyperparameters of the proposed method are 

optimized to guarantee the high accuracy of the estimation. Experimental results on 

two LiFePO4 batteries with different modes degradation demonstrate the 

generalization of the proposed method. Furthermore, the BaggELM method has great 

application potential. Because compared to the estimation results obtained in Chapter 

4, the proposed EL method can not only achieve the same accuracy (i.e., APE is lower 

than 2%) but also does not require manual feature definition and extraction.  
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CHAPTER 6. CONCLUSIONS AND 

FUTURE WORK 

6.1. CONCLUSIONS 

This Ph.D. project aims to identify and optimize robust ML-based SOH estimation 

algorithms for Li-ion batteries. The methods to improve the performance (i.e., the 

robustness, accuracy, and data size dependence) of ML-based SOH estimation have 

been systematically studied. The main findings of the Ph.D. thesis are summarized as 

follows: 

• Selection of ML-based SOH estimation methods. 

A comprehensive review of the applications of ML algorithms in battery SOH 

estimation is conducted. From the comparative analysis of estimation performance 

and training modes, it is founded that SVM and EL are suitable for battery SOH 

estimation. These methods are effective representative algorithms for the two training 

modes, of manual feature extraction and automatic feature extraction respectively, 

especially when the amount of data is limited. 

• A new lifetime model for calendar aging of Li-ion batteries. 

The calendar aging behavior of Li-ion batteries when their capacity fade exceeds 

20% is analyzed. Traditionally, the semi-empirical model based on the Arrhenius 

equation can only study the effect of aging temperature on the capacity fade. Besides, 

the applicable range of the study is limited to within 20% capacity fade. To mitigate 

this problem, a nonlinear regression method with two-step fitting is developed. The 

model incorporates both the influence of storage conditions as well as the piecewise 

variation in capacity fade (exceeding 20%) [J2]. 

• FE represents a robust feature for SOH estimation. 

FE-based SOH feature extracted from a short-term pulse test is proposed. It is 

proved that the FE-based method shows good performance in parameter selection, 

dependency on data size, robustness to TCs and noise. In addition, the strategy of 

dataset selection for entropy-based methods is studied and extracting entropy features 

from the polarization zone is recommended. Furthermore, multiscale entropy is not 

suitable when the voltage is short, because the information available in the voltage 

data will be filtered out in this case. 
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• Data noise suppression improves the SOH estimation accuracy. 

An adaptive iterative algorithm and six regression-based smoothers are used before 

and after entropy-feature extraction, respectively. The proposed method can 

effectively reduce the noise while maintaining the useful aging information. Results 

prove adding a simple data noise suppression step improve the SOH estimation 

accuracy as well as simulation speed. 

• ELM with bagging technology is suitable for SOH estimation when limited 

training data is available. 

An EL method is proposed, which combines ELM with bagging technology, with 

the purpose of achieving good generalization performance. The developed BaggELM 

method is demonstrated to be able to reduce the dependence of ML-based SOH 

estimation on data size. Moreover, the feature extraction process is automatic, 

convenient, and efficient for real-world scenarios. 

In light of the aforementioned findings, the following conclusions are finally drawn: 

• Battery SOH estimation can become more robust using ML. 

 

• Efficient SOH estimation can be obtained even with limited and noisy data 

by using either fuzzy entropy or ensemble learning. 

 

6.2. FUTURE WORK 

The entire work conducted in this Ph.D. project demonstrates the big potential of 

ML technologies in battery SOH estimation. As engineering applications develop, 

more advantages of using ML for SOH estimation can be explored in the future from 

the following five aspects: 

• In view of the unique and complicated aging behavior of Li-ion batteries, ML 

estimates can be enhanced by incorporating the aging mechanism and modifying 

the algorithm hyperparameters [J1]. However, the convergence of the modified 

ML model still needs to be proved theoretically. 

• The stability of the offline trained ML model for SOH estimation is still needed 

to be verified, because the training data, in the absence of big data technologies, 

are unable to include all the possible working conditions. Developing methods 

with self-learning and online updating is therefore necessary. In addition, the 

model-based adaptive filters can update the parameters, thus they can be 

combined with ML and to realize the real-time SOH estimation. 

• Considering the easiness of raw data collection and the increase in computational 

capabilities of the hardware in practical applications, we can focus on developing 



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

71 

the DL algorithm, which is a very promising method in SOH estimation. On the 

one hand, it allows high-dimensional input, that is, without any manual 

intervention. On the other hand, it provides high accuracy and good 

generalization performance especially when big data is accessible. 

• Prior to big data and cloud computing becoming mature, the EL algorithm can be 

used as an alternative to DL. It is flexible to choose some simple ML methods as 

base learners; therefore the computation complexity can be reduced. Meanwhile, 

the algorithm ensemble technology ensures the accuracy and stability of the SOH 

estimator. 

• As a result of high computing resources required, hardware implementations of 

ML in battery SOH estimation are still in their infancy. From the literature review, 

most methods estimate SOH at macro-time, rather than in real-time. The advent 

and development of GPUs have made the inference of ML algorithms 

approachable and locally available. This provides a great opportunity for the 

hardware application of ML in battery SOH estimation [J1]. 
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APPENDIX A. PARAMETERS OF THE 

TESTED BATTERIES 

TABLE A.1.  The datasheet of the tested LiFePO4 battery. 

Item Value 

Chemistry LiFePO4/C 

Type cylindrical 

Dimensions Ø 26×65 mm 

Weight 76 g 

Nominal capacity 2.5 Ah 

Nominal voltage 3.3 V 

Maximum voltage 3.6 V 

Cut-off voltage 2.0 V 

Maximum continuous charge current 10 A 

Maximum continuous discharge current 50 A 

Operating temperature −30 °C to 55 °C 

Storage temperature −40 °C to 60 °C 
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APPENDIX B. EXPERIMENTAL SETUP 

The Maccor battery test station, as shown in Fig. B.1 is used to perform cyclic aging 

test with the frequency regulation profile. The Memmert UNP 500 oven, as shown in 

Fig. B.2 is used to perform calendar aging test with five test conditions (TCs) 

consisting of SOC (i.e., 10%, 50% and 90%) and temperature (i.e., 40 °C, 47.5 °C and 

55 °C). The FuelCon battery test station, as shown in Fig. B.1 is used to perform the 

reference measurements during for both cyclic aging and calendar aging analysis. 

Forced-air cooled 
temperature chamber

Maccor

Host computer

Voltage + Voltage －

Current + Current －

Temperature Sensor

Battery

Data 
collection

Cyclic aging

(Primary frequency 
regulation profile)

 

Fig. B.1.  Experimental setup for cyclic aging test. 

Calendar aging

(Idling at different T 
and SOC condition)

Memmert

 

Fig. B.2.  Experimental setup for calendar aging test. 

 Water cooled 
temperature chamber

FuelCon

Host computer

Voltage + Voltage －

Current + Current －

Temperature Sensor

Battery

Data 
collection

Reference 
measurements

(Capacity + modified 
HPPC)

 

Fig. B.3.  Experimental setup for reference measurement during cyclic aging and calendar aging.  
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APPENDIX C. ACCELERATE AGING 

TESTS 

C.1. CYCLIC AGING TEST 

The whole cyclic aging test profile consists an aging test and the reference 

measurements, the latter of which includes periodic capacity test and hybrid pulse 

power characterization (HPPC) test, as shown in Fig. C.1. The climatic chamber is set 

to 25 °C for all the processes comprised in cyclic aging. Batteries are aged with a one-

week mission profile from the energy storage system providing primary frequency 

regulation to the grid. During this period, the battery SOC varied from 10% and 90%, 

as shown in Fig. C.2. In order to describe this mission profile in more detail, the SOC 

variation, current, and voltage response in the zoomed part are also provided. 

Cyclic aging (38 rounds)

Aging the battery

Aging Test
(Frequency regulation mission 

profile)

Capacity fade curve

Capacity Test (25 )
(1C-rate constant current 
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Feature extraction

Pulse Test (25  )
(4C-rate pulse current at 20%, 

50%, and 80% SOC)
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Fig. C.1.  Flowchart of the cyclic aging and reference tests procedure. Source: [40, J3]. 
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Fig. C.2.  SOC variation of the tested batteries when performing the aging mission profile, and the 

current and voltage responses in the zoomed part. Source: [40, J3]. 
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C.2. CALENDAR AGING TEST 

Like the cyclic aging test, the calendar test profile also consists an aging test and 

the reference measurements, as shown in Fig. C.3. The temperature is adjusted to 

different values when the aging tests are performed. And the temperature of the water-

cooled chamber is controlled at 25 °C during the reference measurements. 

Considering the storage time, SOC, and temperature as stress factors, the test matrix 

is designed on LiFePO4 batteries, as shown in Fig. C.4. Fifteen batteries are aged at 

five TCs consisting of SOC (i.e., 10%, 50% and 90%) and temperature (i.e., 40 °C, 

47.5 °C and 55 °C). The aging tests are stopped after every month for quantify the 

performance parameters of the batteries. The entire tests last for 43 months for Case 

1, Case 2, and Case 3, and 27 months for Case 4 and Case 5. 

Calendar aging

Aging the battery

Aging Test
(Idling at open circuit voltage 

conditions)

Last for one month

Capacity fade curve

Capacity Test (25  )
(1C-rate constant current 
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Feature extraction
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Fig. C.3.  Flowchart of the calendar aging and reference tests procedure. Source: [40, J2]. 
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Fig. C.4.  The test matrix of calendar aging (possible interaction between stress factors is not 

considered). Source: [40, J2]. 
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C.3. REFERENCE MEASUREMENTS 

1)  Capacity test: The capacity test is carried out under different C-rate. Batteries are 

first charged with a 1C-rate constant current (CC) until the voltage reaches 3.6 V. 

Then the voltage is kept at 3.6 V until the current equals 0.1 A where batteries are 

considered fully charged (CC-CV charging). After 15 minutes of relaxation for 

achieving electrochemical stability, the current battery capacity is measured following 

a 1C-rate constant current discharging procedure (CC discharging). After relaxing the 

battery for one hour, the capacity test is repeated with a 4C-rate current. During both 

charging and discharging, the battery data is sampled with one second. 

2) HPPC test: A modified version of HPPC test is designed, the details are presented 

in Fig. C.5 and Fig. C.6. Starting from the fully discharged state, the battery is charged 

with a constant current of 1C-rate until it reached to 20%, 50%, and 80% SOC, 

respectively. Each time the specified SOC level is reached, the pulse test profile 

composed with a consecutive current pulse of four C-rates (i.e., 4C-rate, 2C-rate, 1C-

rate, and 0.5C-rate) is performed for feature extraction. Each pulse lasts for 20s for 

both charging and discharging conditions, with 15 minutes of relaxation time in 

between. 
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Fig. C.5.  Current (a) and voltage response (b) during the reference measurements. Source: [40, 

J2]. 
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Fig. C.6.  The modified HPPC test profile used to extract SOH features of the LiFePO4 battery 

cells at 20%, 50% and 80% SOC. Source: [40, J2]. 
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APPENDIX D. SELECTED MACHINE 

LEARNING ALGORITHMS 

D.1. NONLINEAR REGRESSION 

Algorithm 1: Nonlinear regression 

Require: yi, iy , and ˆ
iy : the real, average, and the estimated capacity fade values, 

respectively 

Require: 
jw : the estimated value of jth weight 

Require: α: The learning rate 

input: A training data set of N battery capacity fade data pairs DN = {(xi, yi), i = 1, 

2, …, N}, weight w, and learning rate α 

initialization: initialize 
jw  randomly 

for i = 1, 2, …, N do 

Calculate the sum of squared errors between the model and the output 

► ( )
2

1

ˆ
N

w i i

i

E y y
=

= −  

for j = 0, 1, …, d do 

Calculate the gradient of the weight ► 0w

j

E

w


=


 

Update the parameters iteratively by the gradient descent method to 

minimize Ew until it converges to the desired local minimum 

► w

j j

j

E
w w

w



= −


 

end for  

end for 

Output: the regression function f(t, w) 

Fig. D.1.  The nonlinear regression algorithm. Source: [J2]. 
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Fig. D.2.  The illustration of nonlinear regression. Source: [J1]. 

D.2. SUPPORT VECTOR MACHINE 

 

Fig. D.3.  The illustration of support vector machine. Source: [J1]. 
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Algorithm 2: Support vector machine for regression 

Require: xi: the feature vector 

Require: yi and ˆ
iy : the real and the estimated SOH value, respectively 

Require: N: the sample number 

Require: w and b: the coefficients matrix that needs to be optimized 

Require: ψ(∙): the target mapping 

Require: d and d : the dimension of original vector space and the new feature 

space, respectively 

Require: 
i  and *

i : slack variables 

Require: C: a positive constant regulating the penalty 

Require: 
i , 

i , 
i , *

i : Lagrange multipliers 

Require: ( , )iK x x : the kernel function 

input: A training data set of N battery SOH data pairs DN = {(xi, yi), i = 1, 2, …, N}, 

training inputs x 

initialization: initialize w randomly 

Calculate the ε-insensitive loss function 

► ( )
ˆ0,

ˆ , ,  {1, 2, , }
ˆ ,  otherwise

i i

i i

i i

y y
y y i N

y y







 − 
=  

− −

 

Create the primal SVM optimization ► 

( )
*

*

,

*

*

1
min  +

2

( ) +

     . . ( ) +

, 0

d

N
i i

N
T

i i
R i

R

T

i i i

T

i i i

i i

C

y b

s t b y

 

 

  

  

 





+

 −  − 


 + − 





w

w w

w x

w x

 

Create the min-max problem by introducing Lagrange multipliers 
i , 

i , 
i , *

i  

Create the max-min problem by satisfying the Karushe-Kuhne-Tucker (KKT) 

conditions, i.e., 0L =
w

, 0b L = , 0
i
L = , 

* 0
i

L


 =  

► ( )*

=1

( )
n

i i i

i

  = −w x , ( )*

=1

0
n

i i

i

 − = , * *

i i

i i

C

C

 

 

= +


= +
 

Compute w and b from   ► 
( )*

=1

*

( ) ( )

for  examples  where 0 ,

N
T

i i i i i

i

i i

b y

i C

   

 

= − − 

 

 x x
 

Output: the regression function 
*

1

( ) ( ) ( ) ( , )
N

T T

i i i

i

f b K b  
=

=  + = −  +x w x x x  

Fig. D.4.  The support vector machine algorithm. Source: [J1]. 



ROBUST STATE OF HEALTH ESTIMATION FOR LITHIUM-ION BATTERIES USING MACHINE LEARNING 

88 

D.3. GAUSSIAN PROGRESS REGRESSION 

Algorithm 3: Gaussian progress regression 

Require: x: the input matrix 

Require: m(x) and k(x, x’): the mean and covariance functions, respectively 

Require: y and y*: the real and the estimated SOH value, respectively 

Require: Gaussian process ( ) ( ( ), ( , ))f N m x k x xx  

input: A training data set of N battery SOH data pairs DN = {(xi, yi), i = 1, 2, …, N}, 

training inputs x, m(x), k(x, x’) 

Calculate the prior distribution ► 2(0, ( , ) )fN K x x  +y I  

Calculate the hyper parameters σ and f by the maximum likelihood method 

Obtain the joint prior distribution of y and predicted value y* 

► 

2 *

* * *

( , ) ( , )
0,  

( , ) ( , )

f f

T

f f

K x x K x x
N

K x x K x x

  + 
          

*

y I

y
 

Output: the posterior distribution for the a given input  

► ( )( | , , ) ,cov( )p N=* * * *
y x y x y y  

Fig. D.5.  The Gaussian progress regression algorithm. Source: [C4]. 

 

D.4. EXTREME LEARNING MACHINE 

Algorithm 4: Extreme learning machine 

Require: X: the input matrix 

Require: Y: the output vector given input matrix X 

Require: W: the input weight matrix 

Require: W0: the bias of hidden nodes 

Require: β: the output weight vector 

Require: g(∙):the activation function 

input: N battery capacity fade data pairs DN = {(ti, yi), i = 1, 2, …, N}, weight w, and 

learning rate α 

initialization: initialize W randomly 

Calculate the hidden layer output matrix H ► ( )g=  T
H W X +b  

Calculate the Moore-Penrose inverse of H ► ( )
1

+ = T T
−

H H H H  

Output: the output weight vector ► += β H Y  

Fig. D.6.  The extreme learning machine algorithm. Source: [C5]. 
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Fig. D.7.  The structure of ELM. Source: [C5]. 
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APPENDIX E. ENTROPY ALGORITHMS 

E.1. APPROXIMATE ENTROPY ALGORITHM 

Algorithm 5: Approximate entropy 

Require: N: the total number of data 

Require: r: the tolerance for accepting matrices 

Require: m: the dimension of vectors 

input: a given series {v(1), v(2), …, v(N)} 

initialization: initialize r as a positive real number, m as a positive integer 

Loop: 

for i, j = 1, 2, …, N-m+1 do 

Generate vectors Vm(i) and Vm(j) ►
 

 

( ) ( ), ( 1), , ( 1)

( ) ( ), ( 1), , ( 1)

m

m

V i v i v i v i m

V j v j v j v j m

= + + −

= + + −
 

end for 

for i, j = 1, 2, …, N-m+1, k =  , 1,…, m-1 do 

Calculate the absolute distance between vector Vm(i) and Vm(j) 

►  max ( ) ( )m

ijd v i k v j k= + − +  

Calculate the similarity degree Dij
m 

► 
1,  

( )
0,  

ijm

ij

ij

d r
D r

d r


= 


 

Calculate Wm ► the sum of Dij
m 

end for 

for i = 1, 2, …, N-m+1, 

Calculated the conditional probability Ci
m(r) ► 

1
( ) ( )

1

m m

iC r W i
N m

=
− +

 

Calculate the probability of matching points 

► 

1

1

1
( ) log ( )

1

N m
m m

i

i

r C r
N m

− +

=

 =
− +

  

end for 

m = m + 1 and repeat loop only once 

Output: the approximate entropy (AE) of the input series 

► 
1AE( , , ) lim ( ) ( )m m

N
m r N r r+

→
 =  −   

Because the length of the data is always limited, the approximate entropy can be 

estimated by the statistic ► 1AE( , , ) ( ) ( )m mm r N r r+=  −  

Fig. E.1.  The approximate entropy algorithm. Source: [J3]. 
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E.2. SAMPLE ENTROPY ALGORITHM 

Algorithm 6: Sample entropy 

Require: N: the total number of data 

Require: r: the tolerance for accepting matrices 

Require: m: the dimension of vectors 

input: a given series {v(1), v(2),…, v(N)} 

initialization: initialize r as a positive real number, m as a positive integer 

Loop: 

for i, j = 1, 2, …, N-m+1 do 

Generate vectors Vm(i) and Vm(j) ►
 

 

( ) ( ), ( 1), , ( 1)

( ) ( ), ( 1), , ( 1)

m

m

V i v i v i v i m

V j v j v j v j m

= + + −

= + + −
 

end for 

for i, j = 1, 2, …, N-m+1, k =  , 1,…, m-1 do 

Calculate the absolute distance between vector Vm(i) and Vm(j) 

►  max ( ) ( )m

ijd v i k v j k= + − +  

Calculate the similarity degree Dij
m ► 

1,  
( )

0,  

ijm

ij

ij

d r
D r

d r


= 


 

Calculate Wm ► the sum of Dij
m 

end for 

m = m + 1 and repeat loop only once, then calculate Wm+1 

for i = 1, 2, …, N-m do 

Calculated the conditional probability Bi
m(r) and Ai

m(r) 

► 
1

( ) ( )
1

m m

iB r W i
N m

=
− −

 

► 11
( ) ( )

1

m m

iA r W i
N m

+=
− −

 

Calculate the probability of matching points Bm(r) and Am(r) 

► 
1

1
( ) ( )

N m
m m

i

i

B r B r
N m

−

=

=
−

  

► 
1

1
( ) ( )

N m
m m

i

i

A r A r
N m

−

=

=
−

  

end for 

Output: the sample entropy (SE) of the input series ► 
( )

SE( , , ) ln
( )

m

m

A r
m r N

B r

 
= −  

 
 

Fig. E.2.  The sample entropy algorithm. Source: [J3]. 
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E.3. FUZZY ENTROPY ALGORITHM 

Algorithm 7: Fuzzy entropy 

Require: N: the total number of data 

Require: r: the tolerance for accepting matrices 

Require: m: the dimension of vectors 

input: a given series {v(1), v(2),…, v(N)} 

initialization: initialize r as a positive real number, m as a positive integer 

Loop: 

for i, j = 1, 2, …, N-m+1 do 

Generate vectors Vm(i) and Vm(j) ►
 

 

( ) ( ), ( 1), , ( 1)

( ) ( ), ( 1), , ( 1)

m

m

V i v i v i v i m

V j v j v j v j m

= + + −

= + + −
 

for k = 0, 1, …, m-1 do 

Calculate the baseline of the vector Vm(i) ► 

1

0

0

1
( ) ( )

m

k

v i v i k
m

−

=

= +  

end for 

Remove the baseline from the generated vectors 

end for 

for i, j = 1, 2, …, N-m+1, k = 0, 1, …, m-1 do 

Calculate the fuzzy distance between vector Vm(i) and Vm(j) 

►  max ( ) ( )m

ijd v i k v j k= + − +  

Calculate the similarity degree Dij
m ► 2( ) exp( log(2)  ( )m m

ij ijD r d r= −   

Calculate the similarity degree Wm ► the sum of Dij
m 

end for 

m = m + 1 and repeat loop only once, then calculate Wm+1 

for i = 1, 2, …, N-m do 

Calculated the conditional probability Bi
m(r) and Ai

m(r) 

► 
1

, 1

1
( )

1

N m
m m

i ij

i j

B r d
N m

− +

=

=
− −

 , 
1

+1

, 1

1
( )

1

N m
m m

i ij

i j

A r d
N m

− +

=

=
− −

  

Calculate the probability of matching points Bm(r) and Am(r) 

► 
1

1
( ) ( )

N m
m m

i

i

B r B r
N m

−

=

=
−

 , 
1

1
( ) ( )

N m
m m

i

i

A r A r
N m

−

=

=
−

  

end for 

Output: the fuzzy entropy (FE) of the input series ► 
( )

FE( , , ) ln
( )

m

m

A r
m r N

B r

 
= −  

 
 

Fig. E.3.  The fuzzy entropy algorithm. Source: [J4]. 
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E.4. COARSE-GRAINED PROCEDURE FOR MULTISCALE 

ENTROPY CALCULATION 

Algorithm 8: Coarse-grained procedure 

Require: τ: windows of length  

Input: time series {v(1), v(2), …, v(N)}, τ 

Divide the input series into non-overlapping windows of length τ 

Calculate the average value of the data points inside each window 

Obtain the consecutive coarse-grained time series 

► 
( 1) 1

1
( ) ( ),   1 /

j

i j

y j v i j N





 = − +

=    

Output: the consecutive coarse-grained time series {y(1), y(2), …, y(N/τ)} 

Fig. E.4.  The coarse-grained procedure for multiscale entropy calculation. Source: [J3]. 

 

Fig. E.5.  Schematic diagram of the coarse-graining process. Source: [J3]. 

E.5. ENTROPY PARAMETER SELECTION METHOD 

Algorithm 9: Minimization of the maximum approximate/sample/fuzzy entropy 

relative error 

Require: CP: the conditional probability obtained during AE, SE, or FE calculation 

Require: 
CP : the standard deviation of CP 

Require: 
( )g CP : the standard approximation of g(CP), and 

( ) '( )g CP CPg CP   

initialization: g(CP)=−log(CP), g(SE)=−log(−log(CP)) 

Calculate the relative errors of the SE estimates 

► (SE) '( )
log( )

CP

g CPg SE
CP CP


  =

−
 

Calculate the relative errors of the CP estimates 

► 
( ) '( ) CP

g CP CPg CP
CP


  =  

Select r to minimize the quantity max ,
log( )

CP CP

CP CP CP

  
 
− 

 

Output: the optimal selected r 

Fig. E.6.  The entropy parameters selection method. Source: [J4]. 
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APPENDIX F. NOISE SUPPRESION 

ALGORITHMS 

F.1. EMPIRICAL MODE DECOMPOSITION 

An IMF is a function that satisfies two the following conditions: i) In the whole data 

set, the number of extrema and the number of zero crossings must either equal or differ 

at most by one; ii) At any point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero [C3].  

Algorithm 10: Empirical mode decomposition 

Require: nn: the number of iterations 

Require: cnn: the component 

Require: hnn: the residue 

Require: NEMD: the total number of IMF 

input: Original signal v(t) 

repeat  

Identify the extrema of the input. 

Find the upper and lower envelopes emax(t) and emin(t) by cubic spline 

interpolating. 

Calculate the average curve h(t) between the two envelopes ►

( ) ( ) ( )( )1

1

2
max maxh t e t e t= + . 

Extract the remainder signal ► ( ) ( ) ( )1 1c t v t h t= − . 

Until any of the following predetermined criteria are met 

► Criteria 1: the component, cnn, or the residue, hnn, becomes so small that it is 

less than the predetermined value of substantial consequence 

► Criteria 2: the residue, hnn, becomes a monotonic function from which no 

more IMF can be extracted 

During the process, h(t) is regarded as the IMF and the h(t) in the last step is kept as 

the residue 

Output: a series IMF and the residue ► 

( ) ( ) ( )

( ) ( ) ( )

2 1 2

1nn nn nn

h t h t c t

h t h t c t−

= −


 = −

, and the 

decomposed original signal is described as ( )
1

( ) ( )
EMDN

n

n

v t IMF t r t
=

= +  

Fig. F.1.  The empirical mode decomposition algorithm. Source: [C3]. 
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F.2. MOVING AVERAGE METHOD 

Algorithm 11: Moving average 

Require: 2l+1: the window width 

Require: x, y: the original data and the smoothed data, respectively 

Require: N: the length of the original series 

input: a given series x = {x1, x2, …, xN}, window length 2l+1 

for i = 1, 2, …, N do 

Determine the central point xi 

Calculate the smoothed value ► 

1

1
, 1

1
,

1

1
, others

2 1

i

k

k

N

i k

k i

i l

k

k i l

x i l
i

y x i l N
n i

x
l

=

=

+

= −


− 




= + 
− +




+







 

end for 

Output: a smoothed data series y = {y1, y2, …, yN} 

Fig. F.2.  The Moving average algorithm. Source: [C3]. 

window width=2l+1

x1 x2 xi-l xi xi+l xn

y1

yi

yn

mean{xi-l，  xi，  xi+l}

mean{ x1，  x1+l}

mean{ xn-l，  xn}

 

Fig. F.3.  Diagram of the moving average method. Source: [C4]. 

F.3. MOVING MEDIAN METHOD 

Algorithm 12: Moving median 

Require: 2l+1: the window width 

Require: x, y: the original data and the smoothed data, respectively 

Require: N: the length of the original series 

input: a given series x = {x1, x2, …, xN}, window length 2l+1 

for i = 1, 2, …, N do  

Determine the central point xi 

Calculate the smoothed value ► 

1median{ }, 1

median{ },

median{ }, others

i

i i N

i l i l

x x i l

y x x i l N

x x− +

− 


= + 
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end for 

Output: a smoothed data series y = {y1, y2, …, yN} 

Fig. F.4.  The Moving median algorithm. Source: [C3]. 

window width=2l+1

x1 x2 xi-l xi xi+l xn

y1

yi

yn

median{xi-l，  xi，  xi+l}

median{ x1，  x1+l}

median{ xn-l，  xn}

 

Fig. F.5.  Diagram of the moving median method. Source: [C4]. 

F.4. GAUSSIAN FILTER 

Algorithm 13: Gaussian filter 

Require: 2l+1: the window width 

Require: x, y: the original data and the smoothed data, respectively 

Require: N: the length of the original series 

Require: σ: the variance of the original series 

input: a given series x = {x1, x2, …, xN}, window length 2l+1, variance σ 

for i = 1, 2, …, N do  

Determine the window span [i-l, i+l], and generate the local feature series {xi-l, 

…, xi, …, xi+l} 

Calculate the Gaussian weight ωi ► 

2

2

1
exp

2 2

i

i

x


 

 
= − 

 
 

Normalize the weight of the central data xi ► i

i i l

k

k i l





+

= −

=



 

Calculate the smoothed value as the weighted sum of row data xi 

► 

i l

i k k

k i l

y x 
+

= −

=   

end for 

Output: a smoothed data series y = {y1, y2, …, yN} 

Fig. F.6.  The Gaussian filter. Source: [C3]. 
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window width=2l+1

x1 x2 xi-l xi xi+l xn

y1

yi

yn

Normalized 
weight{ ω1，  ω1+l}

Normalized weight{ωi-

l，  ωi，  ωi+l}
Normalized 

weight{ ωn-l，  ωn}

 

Fig. F.7.  Diagram of the Gaussian filter. Source: [C4]. 

F.5. SAUTZKY-GOLAY FILTER 

Algorithm 14: Sautzky-Golay filter 

Require: 2l+1: the window width 

Require: x, y: the original data and the smoothed data, respectively 

Require: N: the length of the original series 

input: a given series x = {x1, x2,…, xN}, window length 2l+1, variance σ 

for i = 1, 2, …, N do  

Determine the window span [i-l, i+l], and generate the local feature series {xi-l, 

…, xi, …, xi+l} 

Perform the quadratic polynomial fitting on the data in the span using the linear 

least squares regression 

Calculate the smoothed value yi by the regression model 

end for 

Output: a smoothed data series y = {y1, y2, …, yN} 

Fig. F.8.  The Sautzky-Golay filter. Source: [C3]. 

window width=2l+1

x1 x2 xi-l xi xi+l xn
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Fig. F.9.  Diagram of the Sautzky-Golay filter. Source: [C4]. 
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F.6. LOCALLY WEIGHTED SCATTERPLOT SMOOTHING 

Algorithm 15: Locally weighted scatterplot smoothing 

Require: 2l+1: the window width 

Require: x, y: the original data and the smoothed data, respectively 

Require: N: the length of the original series 

Require: σ: the variance of the original series 

Require: xi and xj: the central data and the its neighbor, respectively 

Require: ddj: the maximum distance between xi and xj 

input: a given series x = {x1, x2, …, xN}, window length 2l+1, variance σ 

for i = 1, 2, …, N do  

Determine the window span [i-l, i+l], and generate the local feature series {xi-l, 

…, xi, …, xi+l} 

Calculate the regression weights ωj for each data in the window span by the 

tricube weight function 

► 

3
3

1 , 1

0, 1

i j i j

j j

j

i j

j

x x x x

dd dd

x x

dd



  − − −        = 
 −
 


 

Perform the first-degree polynomial fitting on the data in the span using the 

weighted least-squares regression ► ( )
2

j j jS a bx y= + −  

Perform the quadratic polynomial fitting on the data in the span using the linear 

least squares regression 

Calculate the smoothed value yi by the weighted regression model 

end for 

Output: a smoothed data series y = {y1, y2, …, yN} 

Fig. F.10.  The locally weighted scatterplot smoothing. Source: [C3]. 
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Fig. F.11.  Diagram of locally weighted scatterplot smoothing. Source: [C4]. 
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F.7. ROBUST LOCALLY WEIGHTED SCATTERPLOT 

SMOOTHING 

Algorithm 16: Robust locally weighted scatterplot smoothing 

Require: 2l+1: the window width 

Require: x, y: the original data and the smoothed data, respectively 

Require: N: the length of the original series 

Require: σ: the variance of the original series 

Require: xi and xj: the central data and the its neighbor, respectively 

Require: s: the median of the residuals in the span [i-l, i+l] 

input: a given series x = {x1, x2, …, xN}, window length 2l+1, variance σ 

for i = 1, 2, …, N do  

Determine the window span [i-l, i+l], and generate the local feature series {xi-l, 

…, xi, …, xi+l} 

Calculate the regression weights ωj for each data in the window span by the 

‘bisquare’ function 

► 

2
2

1 , 6
6

0, 6

i j

i j

j

i j

x x
x x s

s

x x s



 −  − −   =    


− 

 

Perform the first-degree polynomial fitting on the data in the span using the 

weighted least-squares regression ► ( )
2

j j jS a bx y= + −  

Perform the quadratic polynomial fitting on the data in the span using the linear 

least squares regression 

Calculate the smoothed value yi by the weighted regression model 

end for 

Output: a smoothed data series y = {y1, y2, …, yN} 

Fig. F.12.  The robust locally weighted scatterplot smoothing. Source: [C3]. 
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Fig. F.13.  Diagram of the robust locally weighted scatterplot smoothing. Source: [C4].
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