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Abstract

“Doverey, no Proverey – Trust, but Verify.”
- Ronald Reagan

In this decade, the Internet of Things (IoT) has penetrated many aspects of the physical
world to realize different applications. Through IoT networks, the applications can collect, ex-
change, generate, analyze, and aggregate a vast amount of security-critical and privacy-sensitive
data. The data collected from IoT devices can have significant economic value for stakehold-
ers. However, the way the data from the standard IoT system is gathered and collected raises
concerns about data integrity, trust, security, transparency, and public availability. On the one
hand, in IoT deployments, the measured data is stored in a centralized manner or spread across
different parties. These data can be both public and private, which makes it difficult to validate
their origin and consistency. Besides, querying and performing operations on the data becomes
a challenge due to the incompatibility between different application programming interfaces
(APIs). Moreover, given the potential value of IoT data, mechanisms must be designed for a re-
liable and trustworthy data exchange among participants, which are not necessarily trustworthy.
Therefore, there is a need for a scalable, distributed, and trusted system for monitoring and ex-
changing IoT data. Another related recent development is the emergence of Distributed Ledger
Technology (DLT). A distributed ledger is a key enabler of trusted and reliable distributed IoT
systems, since a DLT supports immutable and transparent information sharing among the in-
volved parties that are not necessarily trusted.

The objective of this research is to utilize DLTs towards designing innovative decentralized
solutions for wireless IoT networks, which can guarantee trust, transparency, and privacy of
IoT data collection, storage, and trading. In addition, trusted cooperative frameworks are in-
troduced to allow IoT data to be monitored, accounted, and traded among involved participants
in order to maximize the utility of IoT data. The proposed innovative solutions include: i) A
collaborative framework to design scalable, trusted, and cost-efficient IoT monitoring systems;
ii) A framework to evaluate data trading protocols in distributed marketplaces based on commu-
nication and computation overhead; iii) The definition and evaluation of two novel use cases,
namely, CO2 emission trading and shared manufacturing using the developed design and eval-
uation frameworks. The results highlight the relevance of these use cases and outline steps for
future implementations.
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Resumé

“Doverey, no Proverey – Trust, but Verify.”
- Ronald Reagan

I dette arti har Internet of Things (IoT) traengt ind i mange aspekter af den fysiske verden
for at realisere forskellige anvendelser. Gennem IoT-netvaerk kan applikationerne indsamle,
udveksle, generere, analysere og samle en enorm maengde sikkerhedskritiske og privatlivets
folsomme data. Beholdende De data, der er indsamlet fra IoT -enheder, kan have en betydelig
okonomisk vaerdi for interessenter. Den made, dataene fra standard IoT -systemet indsamles
og indsamler, rejser imidlertid bekymring for dataintegritet, tillid, sikkerhed, gennemsigtighed
og offentlig tilgaengelighed. Beholdende Pa den ene side, i IoT-implementeringer, er de malte
data enten centraliseret eller spredt over forskellige heterogene parter. Disse data kan vaere
bade offentlige og private, hvilket gor det vanskeligt at validere deres oprindelse og konsistens.
Desuden bliver foresporgsel og udforelse af operationer pa dataene en udfordring pa grund af
inkompatibiliteten mellem forskellige applikationsprogrammeringsgraenseflader (API’er). Pa
den anden side, i betragtning af den potentielle vaerdi af IoT -data, skal mekanismer vaere de-
signet til en palidelig og palidelig dataudveksling blandt deltagere, som ikke nodvendigvis er
palidelige. Derfor er der behov for et skalerbart, distribueret og betroet system til overvagn-
ing og udveksling af IoT -data. En anden relateret nyere udvikling er fremkomsten af dis-
tribueret hovedboksteknologi (DLT). En distirbuted hovedbok er en nogleaktivering af betroede
og palidelige distribuerede IoT -systemer, da en DLT understotter uforanderlig og gennemsigtig
informationsdeling blandt de involverede parter, der ikke nodvendigvis er tillid til.

Formalet med denne forskning er at anvende DLT’er til at designe innovative decentrale
losninger til tradlose IoT -netvaerk, som kan garantere tillid, gennemsigtighed og privatlivets
fred for IoT -dataindsamling, opbevaring og handel. Derudover introduceres betroede kooper-
ative rammer for at tillade, at IoT -data overvages, regnskabes og handles blandt involverede
deltagere i raekkefolge maksimerer anvendeligheden af IoT data. De foreslaede innovative
losninger inkluderer: Beholdende i) en samarbejdsramme for at designe skalerbare, palidelige
og omkostningseffektive IoT-overvagningssystemer; Beholdende ii) en ramme til evaluering af
datahandelsprotokoller pa distribuerede markedspladser baseret pa kommunikations- og bereg-
ningsomkostninger; Beholdende iii) Definitionen og evalueringen af to nye brugssager, nemlig
CO2 emissionshandel og delt fremstilling ved hjaelp af de udviklede design og evalueringsram-
mer. Resultaterne fremhaever relevansen af disse brugssager og skitserer trin for fremtidige
implementeringer.
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Introduction

1 Introduction

1.1 Overview
Recent development in the Information and Communication Technology (ICT) has leveraged
the evolution of traditional computer-based systems towards smart infrastructures [1]. During
this evolution, the emergence of the Internet of Things (IoT) has played a vital role of connecting
together various areas e.g, Artificial Intelligent (AI), Big Data, and communication to achieve
technological advancements for multiple benefits. The applications of the IoT are spread across
a wide diversity of industrial applications such as smart agriculture, healthcare, and industrial
manufacturing [2]. IoT has deeply changed the traditional ways of conducting several human
activities through extensively networked automation, system monitoring, and control. However,
the widespread application of IoT raised numerous challenges including resource-constrained
IoT devices, security, privacy, vulnerabilities, energy sustainability, and heterogeneity of IoT
networks [3]. In addition, sharing IoT data in the wireless IoT environment is usually considered
unsafe and vulnerable to cyber-threats.

The revolution of Distributed Ledger Technologies (DLTs) has brought new promising so-
lutions to address the aforementioned drawbacks of state-of-the-art IoT technologies. DLT is
a database managed by multiple participants across the network [4]. Blockchain is one type
of distributed ledger which allows recording, synchronizing, and sharing of formatted transac-
tions in their electronic ledgers instead of keeping data centralized in a conventional database.
Besides, there are other types of DLTs such as Directed Acyclic Graph (DAG) [5], and Hash-
graph [6]. In the scope of this research, we focus on the Blockchain type which is essentially
a distributed ledger spreading over the whole distributed network. The data from clients are
formatted in Blockchain-type transactions and grouped in blocks. These blocks have certain
storage capacities and, when filled, are closed and linked to the previously filled block, form-
ing a chain of data known as the Blockchain1. All new information that follows that freshly
added block is compiled into a newly formed block that will then also be added to the chain
once filled [7]. Instead of recording the data centralized as a standard database, Blockchain
with its distributed consensus mechanism allows the system to achieve a common agreement
among involved participants across the network. Outside of its role in financial transactions,
DLTs are seen as a key enabler for trusted and reliable distributed monitoring systems. The

1The terms DLT and Blockchain will be used interchangeably throughout this article, Blockchains are a type of
DLT, where chains of blocks are made up of digital pieces of information called transactions and every node maintains
a copy of the ledger

1



2 List of Tables

authentication process for DLTs relies on consensus among multiple nodes in the network [8].
In Blockchain-enabled IoT networks [9], transactions can include sensing data, or monitoring
control messages, and these are recorded and synchronized in a distributed manner among all
the participants of the system. Blockchain enables a decentralized validation of the transac-
tions, avoiding the storage and processing bottlenecks of centralized systems [10]. In addition,
Blockchain-based transactions are recorded immutably in the distributed ledger since every node
in the network has a copy of transactions and is synchronized together. Finally, the clients can
easily query information of transactions from the distributed ledger, e.g, data source, times-
tamp [11], etc. Therefore, Blockchain is considered a transparency system and can be applied
in various domains to guarantee the trust of information for participants. With these natural fea-
tures, Blockchain is an essential complement to the IoT with the enhancements of trust, security,
privacy, and heterogeneity [8].

1.2 Problem Statement
Integrating Blockchain with IoT systems faces several challenges, including scalability, inter-
operability, resource-constrained IoT devices, data privacy, and so on. Among these aspects,
the scalability of storage resources is one of the most important to address, as the size of a
typical DLT/Blockchain is usually very large and impossible to implement on resource-limited
devices [12], for example, the current size of Bitcoin Blockchain is 324 gigabytes [13], size of
Ethereum Blockchain is 991.56 GB [14]. It means that there is a need for an enormous amount
of data synchronized among nodes.

These issues have been investigated and three categories of solutions for the communication
between the Blockchain and IoT nodes have been defined [15]. In type I, the IoT devices act as
Blockchain full nodes which can host the whole distributed ledger and also do mining tasks as
usual. All the information e.g, blocks, and data are synchronized among Blockchain full nodes.
Type I is mostly impossible in real-life implementation because of tiny IoT devices. In type II,
IoT devices work as light clients which function as wallets but do not store the entire distributed
ledger. These light clients must connect to Blockchain full nodes to broadcast their transactions
to the network [16]. Only a part of blocks, e.g, block headers, is exchanged between light clients
and full nodes. In type III, the IoT devices transfer data to a proxy which is responsible for
formatting transactions, signing, and forwarding transactions to Blockchain full nodes. There is
a trade-off while choosing the communication protocol for specific applications depending on
the device capacities. These three communication protocols generally cover the communication
between IoT devices and Blockchain in a wireless environment. But in massive IoT scenarios,
there is an open challenge for an efficient communication architecture to combine Blockchain
with IoT. Additionally, most IoT devices are miniature and very limited when it comes to the
computing resources necessary for secure capabilities. It is difficult to know who owns or
possesses them, if they have been hacked, and if they are acting in undesired ways. This makes
IoT devices not very trustworthy.

Besides, the exploitation of IoT data usage also needs to be addressed. IoT data is an im-
portant asset in the digital economy and is driving the rise of data markets. Meanwhile, data
markets promote data trading efficiently and improve the utilization of data. Conventional trad-
ing systems (e.g. Paypal) feature a single point of failure, the lack of trust, transparency, and
incentive for data trading, which is preventing the availability of digital information from data
providers to customers [17]. On the other hand, Distributed ledger technologies (DLTs) and
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Blockchains support immutable and transparent information sharing among involved untrusted
parties [7]. In addition, DLTs allow the storage of all transactions into immutable records and
every record is distributed across many participants. Thus, security in DLTs comes from the
decentralized operation, but also from the use of strong public-key cryptography and crypto-
graphic hashes. The benefits of the integration of DLTs into IoT data trading systems include:
i) guarantee of immutability and transparency for environmental sensing data, ii) removal of
the need for third parties, iii) development of a transparent system for heterogeneous IoT data
trading networks to prevent tampering and injection of fake data from the stakeholders [8].

Finally, the potential and applications of DLTs in wireless IoT environment are very limited
due to lack of adoption, and high cost. There is a need for realistic use cases which are rather
than track-and-trace applications.

1.3 Research Objectives and Contributions
The goal of this research is to design disruptive innovations in terms of data monitoring, data
trading, and use cases for the DLT-based IoT networks.

Objective 1: Building a scalable Blockchain-based framework which can reduce the traffic
and execution cost of main chain for massive IoT Networks.

Solutions and results. In this research, we introduce a new lightweight distributed ledger mech-
anism called wiBlock. This scheme aims to solve the scalability problems and execution cost of
Blockchain in a massive IoT environment by defining the new concepts of global transactions
and local transactions. The wiBlock addresses scalability, trust and implementation cost issues
of implementing Blockchain in IoT by: i) enabling the use of DLTs for recording IoT data,
ii) limiting the number of transactions that must be processed at the main distributed ledger
(or called main chain), and iii) eliminating the need for complex computations and supporting
sleep-awake mechanisms at the IoT devices, respectively. The key innovation of wiBlock is a
witness system that can process transactions locally and communicate directly with the main
ledger. The local transactions can be used internally in Blockchain-based IoT networks and
record transactions locally in witness, and global transactions can be used in heterogeneous net-
works and recorded in the main chain. Therefore, the witness system reduces the number of
transactions that need to be processed by the main chain. The results show that our proposed
scheme improves the scalability of integrated blockchain and IoT monitoring systems by pro-
cessing a fraction of the transactions, inversely proportional to the number of witnesses, locally.
Hence, reducing the number of global transactions processed in the main chain. The detail of
this research is presented in paper A [9].

In addition, we aim to investigate the feasible of integration of Blockchain in large-scale
monitoring networks. In this research, we choose Narrowband Internet of Things (NB-IoT) [18]
as connectivity method over LoRaWAN [19], and Sigfox [20]. Specifically, we first present
a Blockchain-powered IoT framework for environmental monitoring systems that address the
problem of trust and privacy. Second, we evaluate the proposed framework via extensive ex-
periments, in which the NB-IoT monitoring system and a suitable DLT platform are integrated.
Third, realizing the lack of studies on communication aspects of current Blockchain-enabled
IoT systems, we analyze and evaluate the interaction between Blockchain and the NB-IoT mon-
itoring systems in terms of overall throughput, E2E latency, and communication overhead via
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two case studies. Regarding previous studies [21], to our best knowledge, these studies mainly
focus on specific applications of Blockchain-enabled IoT, and how to integrate Blockchain with
IoT. In our studies, communication aspects between Blockchain nodes and IoT devices are in-
vestigated. We studied the flexible of NB-IoT uplink and downlink traffic is suitable solution to
integrate with Blockchain synchronization protocols. We successfully built a proof-of-concept
for the integration of Hyperledger Fabric with NB-IoT to monitor the CO2 level in the air. The
detail of the system design and proof are shown in paper B [8].

Objective 2: Building an IoT data marketplace for trading in wireless IoT environment
which focuses on the communication efficiency among stakeholders and provides data
privacy and data valuation capabilities.

Solutions and results. Based on the research in objective 1, we realized that the IoT data col-
lected from sensors could be recorded to the distributed ledger for analyzing and accounting
purposes. The clients can query the recorded data in the distributed ledger based on defined Ap-
plication Programming interfaces (APIs) and transaction ID. However, the IoT data is valuable
and can be exchanged between different stakeholders. In this research, we designed an IoT data
marketplace based on the autonomous execution of the smart contract on top of DLT infrastruc-
ture which allows customers or IoT devices can buy or sell the IoT data via Smart Contracts.
Specifically, we first present a solution for a systematic DLT-based IoT data trading toward
a city-level network using NB-IoT connectivity. Then, we introduced the concepts of three
trading protocols based on the interaction between buyers, sellers, and smart contracts. These
protocols are General Trading (GT) Protocol , Buying on Demand (BoD) protocol, and Selling
on Demand (SOD) protocol. Each trading protocol can be implemented and used depending on
the specific scenarios. For example, GT could be used as the standard trading scheme on data
marketplace, and trading platform, while BoD and SoD are implemented based on the demands
from either buyers or sellers. Via this research, we provide a benchmark for IoT data trading
protocols based on smart contracts, which not only analyzes the communication aspects among
participants, but also the insightful terminology of an IoT data marketplace. The detail of the
design and results are presented in the paper C [22].

However, a significant problem with most the data marketplaces is data privacy issue [23].
Trading IoT data over a wireless IoT network means that the data is exchanged between involved
buyers and sellers. Therefore, the IoT data is vulnerable for attacks and hijacks. To address this
issue, we leverage Federated Learning into data marketplace. The emergence of Federated
Learning (FL), which acts as a special machine learning technique for privacy-preserving, of-
fers to contextualize data in IoT networks. With FL, instead of sharing IoT data over wireless
networks, the local trained ML is exchanged among participants. In specific, we introduce a
DLT-based model trading system which enables a secured and trusted marketplace to collabo-
ratively train ML models as well as guarantees fair incentives for every participant and privacy
of data. Based on the quality of the uploaded models, which is quantified by using a distributed
Data Shapley Value (DSV), the participants can get the incentive based on the updated models,
for example, as tokens or fiats. Note that based on our proposed system, the parties do not need
to share their local data, but only provide customized models or query interfaces to the market-
place. Consequently, the proposed system allows multiple participants to jointly train the ML
models in the marketplace based on their own training data. Buyers who need to train their
ML model will pay the market for the improvement of their model, and sellers who sell their
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contribution to train the ML models will get paid by the market via smart contracts. We design
a communication architecture for trading ML model over Wireless IoT network, and propose
an incentive mechanism for evaluating the valuation of IoT data based on new concept of Dis-
tributed Shapley Value. The detail of the design ML marketplace and results are demonstrated
in paper D [24].

Objective 3: Designing novel use cases and applications based on proposed framework
named: i) CO2 emission trading, and ii) manufacturing sharing which towards to address
sustainability issue.

Solutions and results. Motivated by the designed framework, we investigated two realistic use
cases namely CO2 Emission trading and manufacturing sharing in Industrial. In the first use
case, we first tackle the challenges of the current European Emission Trading (EU-ETS) system
by proposing a distributed emissions allowance trading system called Blockchain-based Emis-
sion Trading System (B-ETS). The system creates an account for the emissions generated from
each vehicle and allows exchanges among vehicles in a trusted manner based on Blockchain and
Smart Contracts. In B-ETS, each vehicle acts as a light client in the global Blockchain network
and manages its own Emission Allowance Balance (EAB) which is reset at the beginning of
each day. The EAB data is recorded transparently and immutably in the distributed ledger. It
should be noted that we use one day as our unit of time without loss of generality. Any other
unit (a week, a month) could be used if that seemed more suitable. Then, we introduce an
economic incentive-based mechanism that attracts drivers to change their driving behavior in
order to reduce emissions. Each vehicle’s generated emissions are calculated and the data are
recorded immutably in the distributed ledger. If the emission level is higher than the defined
threshold, the EAB will be reduced. If the EAB goes to zero, the driver needs to buy credits
in the form of EAB from others. The detail of system design and analysis are described in the
paper E [25].

Second, we designed a proof-of-concept for a shared manufacturing application. Specifi-
cally, the framework allows users to rent robots and machines from plant companies via smart
contracts and make the payments on the top of trusted DLT infrastructure. The contribution
of this research are presented as follow. We first analyze deeply different 5 DLT platforms
named Ethereum, IoTA, Hyperledger Fabric, Quorum, and Solana in various aspects e.g, la-
tency, communication and computation overhead, and their capabilities when used in industrial
manufacturing environments. Then, we proposed an industrial ystem design for DLT-based IIoT
manufacturing systems that can integrate and adapt multiple features and components for facil-
ities sharing services, and evaluation of communication and computation overhead of different
DLTs in resource-constrained IoT networks. This benchmark of different DLTs for manufac-
turing scenarios will help interested parties to understand the trade-offs in DLT-based systems.
The proof-of-concept system is demonstrated at Siemens AG. The detail is presented in paper
F.

2 Background and State-of-the-art
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Fig. 1: Blockchain-enabled smart contract architecture.

2.1 Distributed Ledger Technologies over Wireless IoT
In recent years, DLT has been the focus of large research efforts spanning several applica-
tion domains. Starting with the adoption of Bitcoin and Blockchain, DLT has received a lot
of attention in the realm of IoT, as the technology promises to help address some of the IoT
heterogeneity, security and scalability challenges [26]. For instance, in IoT deployments, the
recorded data are either centralized or spread out across different heterogeneous parties. These
data can be both public or private, which makes it difficult to validate their origin and consis-
tency. In addition, querying and performing operations on the data becomes a challenge due
to the incompatibility between different Application Programming Interfaces (APIs). For ex-
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ample, Non-Governmental Organizations (NGOs), Public and Private sectors, and industrial
companies may use different data types and databases, which leads to difficulties when sharing
the data [27].

A DLT system offers a tamper-proof ledger that is distributed on a collection of communi-
cating nodes, all sharing the same initial block of information, the genesis block [28]. In order
to publish data to the ledger, a node includes data formatted in transactions in a block with
a pointer to its previous block, which creates a chain of blocks, the so called Blockchain. A
block generated by a node usually needs to solve a mathematical crypto-puzzle and gives the
solution as a proof of its workload to get a reward [29]. This process is called mining. The
difficulty of the crypto-puzzle is adjusted based on the total computational power or mining
power of the network. Each correctly behaving miner needs to adhere to the same protocol for
creating and also validating new blocks. After successfully mining a block, a miner broadcasts
it for validation. Each transaction recorded in distributed ledger is essentially immutable since
each DLT node in the network keeps all the committed transactions in the ledger. In addition,
cryptography mechanisms e.g, hash functions, asymmetric encryption algorithms, and digital
signature, guarantee the integrity of data blocks in the DLTs. Therefore, the DLTs can ensure
non-repudiation of transactions. Moreover, each transaction is historically timestamped and
identified, so that it is traceable to every user. The overall system architecture of Blockchain
is shown in Fig. 1. With the aforementioned characteristics, the advantages of the integration
of DLTs into wireless IoT networks consist of: i) guarantee of immutability and transparency
for recorded IoT data; ii) removal of the need for third parties; iii) development of a transparent
system for heterogeneous IoT networks to prevent tampering and injection of fake data from the
stakeholders. Specifically, in healthcare systems, DLTs can potentially address the challenges of
privacy-preserving and security of sensitive healthcare records. For instance, the authors in [30]
demonstrated that applying DLTs can protect healthcare records which are stored in distributed
cloud servers. Besides, the medical sensors can automatically gather healthcare data and trans-
mit to the ledger via smart contract executions, which supports the instant access and security
of patient monitoring [31].

2.2 Smart Contract
The term "Smart Contract" was originally invented to refer to the automation of legal contracts
by Nick Szabo [32]. The advent of DLT has recently brought much interest on smart contracts
and its applications. Recently, smart contract [33] is referred as a distributed app that lives
in the DLTs. This app is, in essence, a programming language class with fields and methods,
and they are executed in a transparent manner on all nodes participating in a Blockchain [34].
Smart contracts are the main DLT-powered mechanism that is likely to gain a wide acceptance
in IoT, where they can encode transaction logic and policies, which includes the requirements
and obligations of parties requesting access, the IoT resource/service provider, as well as data
trading over wireless IoT networks [35].

DLTs can be categorized into 2 types namely permissioned and permissionless. The permis-
sionless DLT platforms allow any user to join the network while permissioned DLT platforms
allow only permitted users to join [21]. Different DLT platforms provide different support for
smart contracts. For instance, some DLTs, e.g, Bitcoin, may only allow users to use a simple
scripting language to develop smart contracts with simple logic, while others, e.g, Ethereum and
Hyperledger fabric support much more advanced programming languages for writing smart con-
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tracts. The codes of Ethereum smart contract are written in a stack-based byte-code language
and executed in a virtual machine called Ethereum Virtual Machine (EVM) [33]. Ethereum
Smart Contract is currently the most popular platform for developing distributed application
running on top of Blockchain.

Smart Contracts have been applied in various IoT areas such as healthcare [30, 31], supply
chain [36], smart manufacturing [37], and vehicular networks [38]. For instance, in the smart
manufacturing area, the work described in [37] investigates DLT-based security and trust mecha-
nisms and elaborates a particular application of DLTs for quality assurance, which is one of the
strategic priorities of smart manufacturing. Data generated in a smart manufacturing process
can be leveraged to retrieve material provenance, facilitate equipment management, increase
transaction efficiency, and create a flexible pricing mechanism. In this research, we exploit the
capabilities of smart contract to enable an distributed shared manufacturing application to allow
people to rent facilities and make micro-payments based on completed tasks.

One of the challenges of implementing DLT-based smart contracts in IoT and edge com-
puting is the limited computation and communication capabilities of some of the nodes. In this
regard, the authors in [35, 39] worked on the communication aspects of integrating DLTs with
IoT systems. The authors studied the trade-off between the wireless communication and the
trustworthiness with two wireless technologies, LoRa and NB-IoT. The authors in [12] intro-
duced a system called TinyEVM to generate and execute off-chain smart contracts based on
sensor data in low-level devices to perform micro-payments and address device constraints.

2.3 Federated Learning
Implementing intelligent IoT systems with distributed Machine Learning (ML)/Artificial Intel-
ligence (AI) over wireless networks (e.g., NB-IoT) needs to consider the impact of the commu-
nication network (latency and reliability under communication overhead and channel dynamics)
and on-device constraints (access to data, energy, memory, compute, and privacy, etc.). Obtain-
ing high-quality trained models without sharing raw data is of utmost importance, and redounds
to the trustworthiness of the system. In this view, Federated Learning (FL) has received a
groundswell interest in both academia and industry, whose underlying principle is to train a ML
model by exchanging model parameters (e.g., Neural Network (NN) weights and/or gradients)
among edge devices under the orchestration of a federation server and without revealing raw
data [40]. Therein, devices periodically upload their model parameters after their local train-
ing to a parameter server, which in return does model averaging and broadcasting the resultant
global model to all devices.

FL has been proposed by Google for its predictive keyboards [41] and later on adopted in
different use cases in the areas of intelligent transportation, healthcare and industrial automa-
tion, and many others [42, 43]. While FL is designed for training over homogeneous agents with
a common objective, recent studies have extended the focus towards personalization (i.e., multi-
task learning) [44], training over dynamic topologies [45] and robustness guarantees [46, 47]. In
terms of improving data privacy against malicious attackers, various privacy-preserving meth-
ods including injecting fine-tuned noise into model parameters via a differential privacy mecha-
nism [48–51] and mixing model parameters over the air via analog transmissions [52, 53] have
been recently investigated.
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3 Dissertation Organization
The rest of this thesis is organized as follows:

Paper A details our witness-based solution for scalable Blockchain-based IoT networks.
We introduce a lightweight distributed ledger scheme to integrate Proof-of-Work blockchain
into IoT. In our scheme, we classify transactions into two types: 1) global transactions, which
must be processed by global blockchain nodes and 2) local transactions, which can be processed
locally by entities called witnesses. Performance evaluation demonstrates that our proposed
scheme improves the scalability of integrated blockchain and IoT monitoring systems by pro-
cessing a fraction of the transactions, inversely proportional to the number of witnesses, locally.
Hence, reducing the number of global transactions.

Paper B presents we present a blockchain-powered IoT framework for environmental moni-
toring systems that addresses the problem of trust and privacy. Second, we evaluate the proposed
framework via extensive experiments, in which the NB-IoT monitoring system and a suitable
DLT platform are integrated. Third, realizing the lack of studies on communication aspects
of current blockchain-enabled IoT systems, we analyze and evaluate the interaction between
blockchain and the NB-IoT monitoring systems in terms of overall throughput, E2E latency,
and communication overhead via two case studies. Regarding previous studies [21], to the best
of our knowledge, these studies mainly focus on specific applications of blockchain-enabled
IoT and how to integrate blockchain with IoT. In our studies, communication aspects between
blockchain nodes and IoT devices are investigated.

Paper C describes a solution for a systematic DLT-based IoT data smart trading toward city-
level networks using NB-IoT connectivity. Next, we propose three IoT data trading protocols
namely GT, BoD, and SoD. The cost model of each trading protocol is derived and analyzed
along with NB-IoT connectivity. Both resources consumed by executing DLT/smart contracts
and NB-IoT devices are investigated. Finally, the analysis and the associated experimental
results provide a benchmark for data trading protocols in wide-area IoT networks.

Paper D shows a new ecosystem of ML model trading over a trusted Blockchain-based
network is proposed. The buyer can acquire the model of interest from the ML market, and
interested sellers spend local computations on their data to enhance that model’s quality. In
doing so, the proportional relation between the local data and the quality of trained models is
considered, and the valuations of seller’s data in training the models are estimated through the
distributed Data Shapley Value (DSV). At the same time, the trustworthiness of the entire trad-
ing process is provided by the distributed Ledger Technology (DLT). Extensive experimental
evaluation of the proposed approach shows a competitive run-time performance, with a 15%
drop in the cost of execution, and fairness in terms of incentives for the participants.

Paper E summarizes provides a state-of-the-art overview of these technologies and illus-
trates their functionality and performance, with special attention to the tradeoff among re-
sources, latency, privacy and energy consumption. Finally, the paper provides a vision for
integrating these enabling technologies in energy-efficient iIoTe and a roadmap to address the
open research challenges

Paper F propose a new distributed Blockchain-based emissions allowance trading system
called B-ETS. This system enables transparent and trustworthy data exchange as well as trad-
ing of allowances among vehicles, relying on vehicle-to-vehicle communication. In addition,
we introduce an economic incentive-based mechanism that appeals to individual drivers and
leads them to modify their driving behavior in order to reduce emissions. The efficiency of
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the proposed system is studied through extensive simulations, showing how increased vehicle
connectivity can lead to a reduction of the emissions generated from those vehicles. We demon-
strate that our method can be used for full life-cycle monitoring and fuel economy reporting.
This leads us to conjecture that the proposed system could lead to important behavioral changes
among the drivers

Paper G presents potential DLT technologies for an efficient and intelligent integration of
DLT-based solutions in manufacturing environments. We propose a general framework to adapt
DLT in manufacturing, then we introduce the use case of shared manufacturing, which we
utilize to study the communication and computation efficiency of selected DLTs in resource-
constrained wireless IoT networks.

4 Discussion and Future Work
This section discusses the main contributions of this dissertation and introduces future research
directions that are worth investigating and can leverage the frameworks proposed in this re-
search.

4.1 Discussion
Although the convergence of DLTs and wireless IoT has the potential to revolutionize several
industrial sectors, there are many challenges to be addressed before the potential of DLTs in this
context can be fully unleashed. During this research, we investigate the main challenges for the
integration of DLT and IoT technologies, and propose potential solutions that cover the design
of a scalable DLT-based IoT system to reduce the execution cost of the distributed ledger and
the design of data marketplaces for trading IoT data as well as ML models.

Engineering Design of DLT-based Wireless IoT

In order to design efficient DLT-based IoT systems, in the scope of this research, we discuss
three important factors: i) scalability, ii) choosing an appropriate DLT platform, and iii) com-
munication architecture.

Scalability. The scalability problem of current DLTs limits the wide usage in large-scale
networks. The scalability issue addressed in paper A can be analyzed in the aspects of through-
put, latency, and communication. First, Bitcoin [7], and Ethereum [33] is considered as the
most popular payment application based on Blockchain, however, the throughput of Bitcoin is
restricted to approximately 7 transaction per second (tps), and 25 tps. Meanwhile, in an IoT net-
work, there could be an enormous number of devices that generate millions of requests per day.
These DLTs can not handle the high number of requests from IoT clients. The throughput of
DLT platforms is dependent on block interval time and the number of transactions in each block.
There are currently various solutions to address the scalability issue of DLTs such as increasing
block size, reducing transaction size, sharding [54], and off-chain transactions [55]. Compared
to these solutions, wiBlock solved the problem by clarifying transaction types namely global
transactions and local transactions. The advantages of wiBlock are that i) it can be deployed
and integrated with any DLT-based systems to reduce the number of transactions exponentially
processed in the main chain, and ii) wiBlock also addresses the heterogeneity issue of the IoT.
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However, the downside is that i) wiBlock is designed based on PoW Blockchains, which con-
sume energy for mining tasks, ii) the clarification of DLT transactions is still simple with global
and local transactions, and the number of transactions processed at global transaction is in-
creased with the number of witnesses. The chosen number of witness nodes is not taken into
account in various aspects. We observe that there is no one-fit-all solution to address the scala-
bility issue so that wiBlock can be integrated with other solutions e.g, off-chain transactions and
sharding to enhance the performance.

Which DLT should be chosen for your application? Depending on the type of IoT ap-
plication, we can choose an appropriate DLT platform to fit with the target system. This step
can help to reduce the difficulty in the practical implementation of the systems and enhance the
performance of the overall systems. In paper B and paper F, we discussed the pros and cons
of different DLTs, e.g, Bitcoin, Ethereum, Solana [56], IOTA [57], Hyperledger Fabric [58],
and Quorum [59]. PoW Blockchains could not be used for IoT applications because of their
low speed, and consumption of more energy than other types of consensus algorithms [60]. In
paper B, the results show a significant contribution in building a DLT-based large-scale NB-
IoT. One of the findings is that the flexibility in the uplink and downlink of NB-IoT could be
a key factor to implement DLTs in LPWAN networks. In the scope of this research, we chose
Hyperledger Fabric to build a proof-of-concept solution, and it is a private DLT designed for
the purposes of monitoring and accounting emission data.

Communication Architecture. Communication architecture is one of the important factors
that needs to be taken into account. In DLT-based IoT networks, lightweight designs [61] [62]
for Blockchain clients are used widely in various applications e.g smart homes, and industrial
manufacturing, to implement Blockchain in current standard IoT systems. Since IoT devices
have different installed operating systems and configurations, it is difficult to establish a single
architecture that can be universally applied. IoT devices with limited memory and computa-
tional resources pose an even greater concern as they often lack the resources to host a com-
munication protocol. In this thesis, we have introduced various communication architectures
for different applications, e.g, data trading paper C, ML trading in paper D, emission trad-
ing in paper E, and manufacturing sharing in paper F. Each communication architecture has
different requirements on device capacities, latency, and throughput depending on the specific
application.

Blockchain is not only about storing data, it is about trusted sharing.

Blockchain is usually known as a distributed database where data can be recorded transparently
and immutably. Blockchain guarantees the trust of the data origin and source of the data [63]. In
a standard IoT system, it is hard to allow resource-constrained devices to make payments due to
lack of security and payment channels for tiny amounts. In paper E, we have built an IoT data
market with a benchmark based on Blockchain. The proposed marketplace has the advantages
of: i) providing a benchmark with 3 different IoT data trading protocols for different scenarios
and ii) allowing IoT devices to trade data together via smart contracts running on top of DLT
infrastructure. This work opens an interesting possibility of trading IoT data over wireless IoT
networks.

However, the IoT data marketplace has a significant challenge with the valuation of IoT
data. During the trade one can only guarantee data provenance, but there is no estimate of
the the value or quality of the IoT data. We have leverage Federated Learning to deep dive



12 List of Tables

into the data and use local weight updates to exchange information, while respecting privacy
constraints. Our proposed scheme in paper F introduced with the distributed Shapley Value
concept can address the aforementioned issue. Therefore, we argue that Blockchain can be
used for trading and sharing data over wireless IoT networks and is suitable to apply to many
applications, such as CO2 emission trading.

The Issue of Sustainability

There is an argument that Blockchain is a source of emission because of its mining tasks. How-
ever, from our point of view, we exploit Blockchain as a trusted infrastructure for monitoring
CO2 emission level of a specific part of a large-scale area covered by NB-IoT, presented in
paper B, and for trading CO2 emission allowance among vehicles in paper E. Besides the
power-hungry blockchains, such as PoW Bitcoin, and Ethereum [64], there are hundreds of
DLT platforms [65] currently on the market with various consensus strategies that do not im-
pose mining tasks. Depending on the specific application, an appropriate DLT platform can be
chosen for deployment. For demonstration, we have introduced a use case of industrial man-
ufacturing sharing where robots and machines on the field can be rented from customers via
predefined smart contracts. The results regarding communication and computation overhead
are our analysis of the performance of different DLT platforms. Furthermore, we have also in-
vestigated the problem of CO2 generated from the process. This research could be a benchmark
for choosing and implementing a DLT in industrial IoT applications.

4.2 Future Work
As discussed in the section above, our proposals for integration of DLTs in wireless IoT for
monitoring, accounting, and trading have advantages and disadvantages.

First, the wiBlock system has the potential to improve with the detailed analysis of a number
of witnesses in the system and the type of DLT transactions. DLT transactions can be clas-
sified in terms of specific functions, type of data, etc. In addition, integrating wiBlock with
other schemes, e.g, off-chain transactions, could significantly reduce the number of transactions
processed by the main chain. The off-chain transactions are processed offline among involved
participants, and the nodes just upload the final report to the main chain.

Second, the IoT data marketplace based on DLTs with Federated Learning brings a promis-
ing solution for trading IoT data. We plan to investigate the communication efficiency of the
data market over multiple wireless interfaces, e.g, LoraWAN, NB-IoT, Sigfox, Wifi, and Zig-
bee. Each communication interface has different requirements and protocols for communica-
tion. This has a direct impact on the Blockchain synchronization protocols, block time, and
overall system. The distributed Shapley Value proposed in the paper D raises the issue of the
training time that is required to carry out valuation of the data. In a big data market, the time
required for training and for synchronize blocks in the DLT network is an important contributor
to the overall latency.

Finally, the new applications of Blockchain and smart contracts may give rise to new com-
munication challenges for the Blockchain-based IoT networks and these challenges need to be
addressed under the constraints put forward by the requirement for sustainable operation.
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Abstract
Distributed Ledger Technologies (DLTs) are playing a major role in building security and trust
in Internet of Things (IoT) systems. However, IoT deployments with a large number of de-
vices, such as in environment monitoring applications, generate and send massive amounts of
data. This would generate vast number of transactions that must be processed within the dis-
tributed ledger. In this work, we first demonstrate that the Proof of Work (PoW) blockchain
fails to scale in a sizable IoT connectivity infrastructure. To solve this problem, we present
a lightweight distributed ledger scheme to integrate PoW blockchain into IoT. In our scheme,
we classify transactions into two types: 1) global transactions, which must be processed by
global blockchain nodes and 2) local transactions, which can be processed locally by entities
called witnesses. Performance evaluation demonstrates that our proposed scheme improves the
scalability of integrated blockchain and IoT monitoring systems by processing a fraction of the
transactions, inversely proportional to the number of witnesses, locally. Hence, reducing the
number of global transactions.

1 Introduction
Distributed Ledger Technologies (DLTs) provide high levels of security, accountability, tractabil-
ity, and privacy to the transmitted data [1]. This is achieved by enabling key functionalities,
such as transparency, distributed operation, and immutability [2]. The benefits of DLTs are par-
ticularly appealing for Internet of Things (IoT) applications, where large amounts of data are
generated and the devices can only implement weak security mechanisms [3].

The trust provided by DLTs is greatly valuable in IoT monitoring applications with a large
number of devices. As an example, consider an urban IoT application that monitors the air qual-
ity and gas emissions. The data generated by this application is critical, so it must be protected,
tractable, immutable, and transparent. Nevertheless, in a traditional monitoring system, the
inter-organization sharing the data may be untrusted, complex, unreliable, and non-transparent.
Besides, the current IoT-based monitoring systems are centralized, which leads to a single point
of failure, where data can be lost or modified [4].

The problems described above may be solved by integrating Blockchain into IoT applica-
tions. However, Blockchain architectures were not designed to handle a large number of trans-
actions, which would be generated by naively integrating Blockchain into IoT. Specifically,
IoT deployments usually present a star topology, in which the devices communicate directly
to the base stations (BS), which then redirects the gathered data to the destination [5] (e.g.,
from Narrowband IoT (NB-IoT) or LoRa deployments to a cloud server), as shown in the left
part of Fig. A.1. In the most Blockchain and IoT integration, this same architecture would be
used, and the BS would be in charge of communicating with the Blockchain [6]. Thus, every
packet generated by the IoT devices would represent a transaction, which can easily overload
the Blockchain.

Three main challenges must be overcome to achieve an efficient integration of Blockchain
into IoT. First, DLTs use diverse resource-intensive gating functions, for example, Proof-of-
Work (PoW) and Proof-of-Stake (PoS), while IoT devices are resource-constrained. As a con-
sequence, the processing time of these functions in IoT devices would be restrictive. Second,
the widely-used Blockchain arrangement cannot handle the massive transactions generated by
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Fig. A.1: Overview of our Blockchain-enabled IoT system wiBlock. The IoT nodes generate and send the transactions
to the base stations, which in turn send them to the witnesses. These decide which transactions must be sent to the GB
and process the rest.

IoT devices. For example, Bitcoin network produces 1 MB blocks, roughly once every 10 min-
utes, with an average size of transaction around 500 bytes, which give 7 transactions per second
(tps). In comparison, Visa system performs 2000 tps on average, and an average daily peak
of 4000 tps, with a maximum capacity of 56000 tps. Third, the power saving mechanisms of
the IoT devices can cause problems during knowledge dissemination and synchronization. For
instance, an update may be severely delayed or even fail to arrive if a device is in sleep mode.

In this paper, we present a witness-based Blockchain system called wiBlock, especially de-
signed to integrate Blockchain into resource-constrained IoT applications. It is aimed to solve
three of the main problems of traditional IoT monitoring systems, namely trust, scalability, and
cost. This is achieved by: 1) enabling the use of DLTs to store IoT data, 2) limiting the number
of transactions that must be processed at the Global Blockchain (GB), and 3) eliminating the
need for complex computations and supporting sleep-awake mechanisms at the IoT devices,
respectively.

The architecture of wiBlock is illustrated in Fig. A.1, where the IoT devices interact exclu-
sively with the witness system, which then may process the transactions locally or communicate
directly with the GB. The transactions that must be processed by the GB are called global trans-
actions, whereas the transactions that can be verified locally at the witness system are called lo-
cal transactions. In order to see the need for this differentiation, consider a pollution monitoring
system, in which a number of sensors in a given local area are associated to the same witness.
Then a local transaction can be used to send local sensing data from a device associated with
the same witness. For instance, the alarm sensor periodically requests gas sensor which collects
the concentration of pollutants e.g., SO2, CO2, NO to detect the abnormal condition in air. In
order to see the need for a global transaction, note that sensors may wish to store their sensing
data to external storage system e.g, IPFS [7] or control a thermostat sensor, which is located in
a different area and associated with a different witness to adapt temperature. In this case there is
a need to communicate via different heterogeneous networks and record the transaction results
to the GB via global transactions. Thus, the witness system reduces the number of transactions
that need to be processed by the GB and the latency of transaction verification. Furthermore,
wiBlock allows each IoT device to communicate with several witnesses. This avoids having a
single point of failure (i.e., bridge) between the IoT device and the GB, which in turn greatly
increases the reliability of the IoT application. For example, Blockchain witness models have
been found to be beneficial for Cloud Service Level Agreement [8].
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The contributions of this work are as follows:

1. We investigate the possibilities of naively integrating Blockchain directly into resource-
constrained IoT systems. We identify some of the major problems that arise in this setup,
which illustrate that Blockchain technology is not directly applicable to massive IoT.

2. We propose a new IoT-friendly distributed ledger system named wiBlock. It aims to solve
the scalability issues of Blockchain in massive IoT environment by defining two types of
transactions: global and local.

3. We thoroughly compare the performance wiBlock with that of a naive Blockchain and
IoT integrated architecture. Our results show that our proposed system enhances the
scalability of the GB network.

The remainder of this paper is organized as follows. In Section 2, we present the system
model, followed by the design of our novel wiBlock system in Section 3. We present the analysis
and performance evaluation of wiBlock in Section 4 and Section 5, respectively. Finally, we
conclude the paper in Section 6.

2 System model
We consider an IoT application with k devices. These are deployed uniformly at random in a
squared area of interest A ∈ R2. The IoT devices generate transactions with the data collected
from the environment according to a Poisson process with rate λ.

In the most simple Blockchain and IoT integrated architecture, the transactions are sent to
the BS, which then redirects them to the GB. In wiBlock, the transactions are sent to the witness
system instead. This is a set of v witnesses, which have the capacity to verify transactions locally
and to communicate with the GB. The time needed for a witness to perform these operations
determine its capacity and depend on numerous factors. However, it is out of the scope of this
paper to derive their precise values. Transactions are grouped into blocks of size b. Therefore,
a new block is created when b new transactions are received at a server.

Witnesses may be either physical or logical entities, hence, their organization is flexible. For
simplicity, throughout this paper we assume one witness is deployed at each BS and use these
terms interchangeably. The BSs are distributed randomly within A. We denote the set of IoT
devices and witnesses as D = {1, 2, . . . , k} andW = {1, 2, . . . , v}, respectively.

The IoT devices and witnesses communicate through wireless links under a standard path
loss model and large-scale (slow) fading. Thus, a transaction is transmitted successfully from
IoT device i to a witness w ∈ W with probability ps(i, w). The IoT device i selects the witness
w according to a predefined strategy. If the transmission fails, i attempts the transmission to
a different witness. This process is repeated until the transaction is confirmed or until a given
number of attempts is reached without success.

We consider a simple shadowing propagation model for the communication between IoT
devices and witnesses where, for a given transmission power Pt and carrier frequency f , the
received power at a distance d is

Pr(d) = 10 log10

(
PtGtGr c

2

(4πf)2dβ

)
+N(0, σdB) dB (A.1)
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where Gt and Gr are the transmitter and receiver antenna gains, respectively, c = 3 · 108 m/s
is the speed of light, N(0, σdB) is a zero-mean Gaussian random variable (RV) with standard
deviation σdB dB, and β is the path loss exponent.

From there, the outage probability at a given distance and receiver sensitivity γ is

pout(d) = 1−Q
(

1
σdB

10 log10

(
γ(4πf)2dβ

PtGtGrc2

))
(A.2)

and ps(i, w) = 1− pout(d(i, w)). Throughout this paper, we assume that the wireless resources
are sufficient to support the communication between the IoT devices and the witness system and
do not go into the details of the access protocols. Therefore, collisions caused by simultaneous
transmissions from the IoT devices to a witness w can be avoided or resolved if the links toward
w are not in outage. Finally, no errors occur in the communication between the witness system
and the GB.

3 WiBlock Design
This section presents the detailed description of wiBlock architectural elements and operation.

3.1 Witness-based Blockchain System
As illustrated in Fig. A.1, the witness-based Blockchain System consists of three main compo-
nents: the GB, the witness system, and the physical IoT devices. The first action performed
by the IoT devices after deployment is authentication. For this, each device i ∈ D performs
a key exchange procedure with a witness w ∈ W to gain the necessary permissions and build
secure channels to perform transactions. After authentication, the tuple (i, w) is added by w to
the shared registry of the witness system R. For this, w shares the authentication information
of i (i.e., credentials) with the rest of the witnesses. By keeping a shared registry, device i can
communicate with any witness, even though is registered with w. After authentication, IoT
devices collect the data and sign it by using a SecretKey skey(i) that is unique for each i as
Sign(data, skey(i), timestamp τ ). Next, the transaction is created and transmitted to a witness
w. Note that this latter witness may be different to the one which i is registered with. Local
transactions, denoted as Ll, are exchanged exclusively between w and all the IoT devices regis-
tered with it {i ∈ D : (i, w) ∈ R}, for which the managers implement a consensus procedure,
as shown in Fig. A.2. On the other hand, Global transactions, denoted as LG, must be sent from
a witness w to the GB when (i, w) /∈ R. These two types of transactions are further described
in the following.

Local Transactions

These transactions are transmitted from IoT device i to the witness w, whose key manage-
ment component confirms that (i, w) ∈ R. Then, this same component checks whether the
PublicKey pkey(i) of i has been associated with any block in the local ledger. If pkey(i) has
not been associated with any block, the witnessw generates a new block for the given i. Then,w
arranges the transactions in order, updates the local ledger, and a notification feedback message
is transmitted to the devices.
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Fig. A.2: Transaction flow in wiBlock, from generation to confirmation.

Global Transactions

These transactions are transmitted from IoT device i to the witness w, whose key management
component confirms that (i, w) /∈ R. Then, this same component will clarify which witness
i is registered with. If ∃w′ ∈ W s.t. (i, w′) ∈ R, the transaction is forwarded to the GB. In
case the GB has a block associated with given device i, the transaction will be validated based
on the corresponding signature Sign(data, skey(i), timestamp τ ) and, if the signature is valid,
the transaction is appended to the block and transmitted back to the witness w′. Note that this
type of transactions will be frequently generated when the IoT devices are mobile. For example,
cargo, supply chain, and car subsystem monitoring.

3.2 Witness Selection
Numerous witness selection strategies can be implemented at the IoT devices and each one
may offer different benefits. However, the focus of the present work is to evaluate the benefits
of the witness-based architecture, rather than to identify an optimal witness selection strategy.
Therefore, we consider the following a heuristic witness selection strategies and evaluate the
performance of the witness system. As illustrated in Fig. A.3, IoT devices select one of the v
available witnesses with probability 1/v and transmit the transaction. Then, if the link between
IoT device i and witness w is not in outage, the transaction is confirmed. Otherwise, i selects
a new witness uniformly at random fromW \ w and transmits the transaction. This process is
repeated until the transaction is confirmed or until a given number of attempts l ≤ v is reached
without success. This is the simplest strategy and assumes the IoT devices have no information
about the state of the wireless channel toward each witness separately.

4 Analysis
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Fig. A.3: In wiBlock, each IoT device has a list of eligible witnesses. Transactions generated by the IoT devices are
sent to a witness in this list, according to the witness selection strategy.

4.1 Queuing model of the witness system
We consider a queuing model for witness-based Blockchain network as described in Fig. A.4.
The witnesses and Blockchain are modelled as queuing nodes to capture the number of transac-
tions that must be i) processed locally by witnesses and ii) forwarded to the GB to be processed.
We assume that transactions are generated by the IoT devices following a Poisson process.
Hence, we denote λ(i) as the transaction generation rate at IoT device i.

Let p(i, w) be the probability that i chooses witness w and ps(i, w) be the probability that
the link between i and w is not in outage. Building on this, the average transaction arrival rate
at the witness w is

λw =
k∑
i=1

p(i, w)ps(i, w)λ(i). (A.3)

Hence, the transaction arrival rate of different witnesses depends on the density and location of
the deployed IoT devices and witnesses, but also on the witness selection criteria.

The probability p(i, w) depends on the witness selection strategy. For the strategy 1, ran-
dom selection, let A(w, u) be the matrix of permutations of u elements taken from {1 −
ps(i, w′)}w′∈W\w with (v−1)Pu rows and u columns. The element in row x and column y ≤ u
of A(w, u) is denoted axy(w, u). From there, we can calculate p(i, w) as:

p(i, w) = 1
v

+ 1
v!

l−1∑
u=1

(v − u− 1)!
(v−1)Pu∑
x=1

u∏
y=1

axy(w, u) (A.4)

As mentioned above, generated transactions are either global LG or local Ll. We define p
as the probability that a transaction sent to a witness is Global. Hence, 1 − p is the probability
that a transaction is local. Please observe that the value of p only depends on the number of
witnesses v and is p := Pr [(i, w) /∈ R] = (v − 1)/v.

The transaction processing time is assumed to follow an exponential distribution with ser-
vice rates µ1 and µ2 for global and local transactions, respectively, and transactions are served
according to a first-come first-served (FCFS) policy. Building on this, we model the operation
of each witness as an M/H2/1 queue, which means that transactions arrive at the witness w at a
rate λw and the service time is represented by a two-phase hyper-exponential distribution. With
probability p, the first transaction in the queue receives service at rate µ1, while with probabil-
ity 1 − p, it receives service rate at rate µ2. That is, the type of transaction is defined at the
beginning of service.

The state of each witness is represented by a pair (m,n), in which m is the total number
of transactions in the witness and n ∈ {1, 2} is the current service phase, which depends on
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Fig. A.4: Witness-based Blockchain queuing model described in Section 4.

the type of transaction being served. The stationary distribution of this queue in the witness w
can be obtained by Neuts’ Matrix Geometric Method [9]. We denote the stationary probability
vector as:

τ (w) =
[
τ

(w)
0 , τ

(w)
1 , τ

(w)
2 , . . . , τ

(w)
k , . . .

]
, (A.5)

where τ (w)
m is the steady-state probability of m transactions in the witness w. Alternatively, the

mean service rate is

µ =
(
p

µ1
+ 1− p

µ2

)−1
, (A.6)

and the offered load tow is ρw = λw/µ. From there, the we calculate the variance of the service
time

σ2
w = 2

(
p

µ2
1

+ 1− p
µ2

2

)
− 1
µ2 (A.7)

and the coefficient of variation C2
w = µ2σ2

w. Then, the average number of transactions in the
queue of w is

L(w) =
∞∑
m=0

mτ (j)
m = ρw +

(
1 + C2

w

2

)
ρ2
w

1− ρw
. (A.8)

Then, the number of local transactions and Global transactions handled by w are, respectively,

Lg(w) = pL(w) (A.9)

and
Ll(w) = (1− p)L(w) = L(w)− Lg(w). (A.10)



28 Paper A.

Table A.1: Parameter settings for the performance evaluation.

Parameter Symbol Value

Area of deployment A 100× 100 m2

Number of IoT devices k 500
Number of witnesses v {2, 3, ..., 10}
Carrier frequency f 914 MHz
Transmission power Pt 0.28183815 W
Antenna gains Gt, Gr 1
Receiver sensitivity γ 3.652 · 10−10 W
Standard deviation of shadow fading σdB 6 dB
Path loss exponent β 3
Block size b 1000 transactions

4.2 Global Blockchain (GB) System

We model the GB as a modified M/GB/1 queue as in [10]. Let Lg and Tg be the RVs that
define the number of transactions in the Blockchain queue and the confirmation time. We are
interested in finding their mean values. For this, we define b to be the maximum number of
transactions in a block (i.e., the maximum block size). Hence, transactions are grouped into
blocks and a new block is created when there are b transactions in the Blockchain server.

Given that p is the probability that a transaction sent to a witness is processed at the GB, the
transaction arrival rate at the GB from the v witnesses in the IoT deployment is

λB =
v∑

w=1
λwp. (A.11)

We denote U as of the block generation time (i.e., the time it takes to generate a block) at
the GB. Then, we define U to be the continuous RV of the processing (i.e., service) time of
a block at the GB. Hence, the system is stable and a limiting probability exists if and only if
λBE[U ] < b. The cumulative distribution function (CDF) and the probability density function
(pdf) of U are denoted G(x) and g(x), respectively. We use these to calculate the hazard rate of
U as

θ(x) = g(x)
1−G(x) . (A.12)

Next, we define Lsg(t) as the number of transactions in server at time t, Lqg(t) as the num-
ber of transaction in the queue at time t, and X(t) as the elapsed service time of the current
transaction at t. From [11], we define

Pm,n(x, t)dx = Pr
[
Lsg(t) = m,Lqg(t) = n, x < X(t) ≤ x+ dx] (A.13)

to be the joint probability that, at time t ≥ 0, there arem ∈ {0, 1, 2, ..., b} and n ∈ {0, 1, 2, ..., x}
transactions in server and queue, respectively, and the elapsed service time lies between x
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Fig. A.5: Maximum transaction generation rate per IoT device λ∗ for traditional Blockchain IoT and wiBlock with
random witness selection.

and x + dx. Next, we denote Pm,n(x) = limt−→∞ Pm,n(x, t) and consider the two follow-
ing cases. In the first one we have d

dxPm,n(x) = − [λB + θ(x)]Pm,n(x) + λBPm,n−1(x),
for 0 ≤ m ≤ b and n ≥ 1, which shows that the number of transactions in the server and

the queue does not change during a small interval. In the second one we have d
dxPm,0(x) =

− [λB + θ(x)]Pm,0(x), for 0 ≤ m ≤ b, which occurs when a transaction arrives at the sys-
tem with 0 transactions in the queue. For the purposes of our study, it is sufficient to calculate
the mean confirmation time as

E[Tg] =
[
λ2
BE[U2]−b(b−1)−2

(
b− λBE[U2]

)
+
b−1∑
n=0

αn

(
λBE[U2](b−n)+2bE[U ](b−n)

+ E[U ]
(
b2 − b− n2 + n

))] 1
2λB(b− λBE[U ]) , (A.14)

where αn =
∑b
m=0

∞∫
0
Pm,n(x)θ(x)dx. The interested reader is referred to [10] for the fully

detailed Blockchain queuing model.

5 Performance Evaluation
In this section, we use the queuing models described in Section 4 to evaluate the performance
of wiBlock in terms of scalability. For this, we obtain the maximum transaction generation rate,
along with the mean confirmation time and ledger size for both, the local and global Blockchain.
We use the performance of a naive Blockchain and IoT integrated architecture, where the IoT
devices communicate directly to the GB, as a benchmark. The mean results regarding the con-
nectivity of the IoT devices with the witness system are obtained by a large number of Monte
Carlo simulations and then used as an input to the queuing models.

In our analysis, each device generates transactions at a rate λ(i) = λ for all i ∈ D. The
block generation time U is exponentially distributed with parameter µB = 1.8 · 10−3 blocks
per second. So we have g(x) = µB exp(−µBx), E [U ] = 1/µB , and E

[
U2] = 1/µ2

B .
Furthermore, we define the default block size to be b = 1000 transactions. The rest of relevant
parameters are listed in Table A.1; these values are used unless otherwise stated.
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For the selected parameter settings, the GB system is stable when λ∗B = b/E [U ] = 1.8.
Building on this, from (A.11) we have that λ < b/(kE [U ]) = 1.8/k must hold for the GB
to be stable in a traditional Blockchain architecture with k identical IoT devices. Conversely,
for wiBlock with random witness selection, we have that only a fraction p = (v − 1)/v of the
transactions must be sent to the GB. Hence, assuming no wireless channel errors occur and all
the generated transactions are sent to a witness (i.e.,

∑v
w=1 λw = kλ), the maximum load per

IoT device that wiBlock can handle is

λ <
bv

kE [U ] (v − 1) = 1.8v
k(v − 1) = λ∗(v), (A.15)

as shown in Fig. A.5 for v = {2, 4, 8}.
Hence, from the GB perspective, wiBlock allows to deploy 1/p = v/(v−1) times more IoT

devices than the naively integrated approach, as illustrated by Fig. A.6. Note that the greatest
gains in the scalability are obtained when v is small, however, other factors such as the area
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coverage and processing capacity of the witness system must be taken onto account to select
adequate values of v.

Next, we evaluate the mean transaction confirmation time at the GB E [Tg]. Note that, in
case a single witness is deployed in the system, all the transactions generated by the IoT devices
will be considered as local transactions and processed locally. This can overload the witness,
depending on its capabilities. In particular, the witness is stable if and only if the load offered to
the witness is λ1 < µ2. Furthermore, deploying a single witness does not provide the necessary
wireless coverage. That is, the more witnesses are deployed, the higher the probability of being
able to communicate to, at least, one of them. Hence, we consider the cases where at least two
witnesses are deployed, as shown in Fig. A.7a for v = {2, 3, 4}.

As Fig. A.7a shows, the witness system reduces the number of transactions sent to the
GB and, as a consequence, greatly reduces the transaction confirmation time. Besides, the
ledger size is considerably reduced, depending on the number of witnesses. This can be seen
in Fig. A.7b for v = 2, where the ledger size of the GB is half of that with the traditional
Blockchain and IoT integration, and the local ledger size at each witness is 1/v2 = 1/4 of it.

6 Conclusion
In this paper, we presented and evaluated the performance of a novel witness-based Blockchain
system for IoT applications. As a starting point, we described the benefits of integrating
Blockchain into IoT and the main challenges that must be overcome to achieve this integration.
Building on these, we designed wiBlock, an IoT-friendly distributed system that incorporates
a witness system to address scalability issues of Blockchain. The scalability gains provided
by wiBlock are achieved by processing some of the transactions generated by the IoT devices
locally, at the witness system. Our results show that the witness system greatly reduces the
number of transactions transmitted to the Blockchain network and the transaction confirmation
time. Future work includes the design of witness selection algorithms and implement wiBlock
in real testbed to further exploit the benefits provided by the witness system.
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Abstract
The data collected from Internet of Things (IoT) devices on various emissions or pollution, can
have a significant economic value for the stakeholders. This makes it prone to abuse or tamper-
ing and brings forward the need to integrate IoT with a Distributed Ledger Technology (DLT)
to collect, store, and protect the IoT data. However, DLT brings an additional overhead to the
frugal IoT connectivity and symmetrizes the IoT traffic, thus changing the usual assumption that
IoT is uplink-oriented. We have implemented a platform that integrates DLTs with a monitor-
ing system based on narrowband IoT (NB-IoT). We evaluate the performance and discuss the
tradeoffs in two use cases: data authorization and real-time monitoring.

1 Introduction
An important element in the process of combating climate change and protecting public health
is the reliable and trustworthy measurement of various emissions and air pollutants. Prime ex-
amples include CO2 and NOx, for which monitoring systems based on Internet of Things (IoT)
technology have been reported in [1]. The emission information is critical and can have a sig-
nificant economic value, such that the stakeholders have incentives to manipulate the data. The
way this information from IoT-based monitoring systems is stored and collected raises concerns
about data integrity, trust, security, transparency, and public availability. For instance, in IoT de-
ployments, the measured data are either centralized or spread out across different heterogeneous
parties. These data can be both public or private, which makes it difficult to validate their origin
and consistency. Besides, querying and performing operations on the data becomes a challenge
due to the incompatibility between different application programming interfaces (APIs). For
instance, Non-Governmental Organizations (NGOs), Public and Private sectors, and industrial
companies may use different data types and databases, which leads to difficulties when sharing
the data.

Data authorization represents another critical component in many monitoring applications,
in which the validity of the received information is critical. To this end, IoT monitoring systems
often rely on an intermediary entity to validate the device signatures, e.g., a certificate authority
(CA) server, which suffers from the issue of a single point of failure. As a result, the data
from authenticated devices are vulnerable to tampering using, for example, man-in-the-middle
attacks against the CA server.

Distributed ledger technologies (DLTs) are positioned as a key enabler for trusted and reli-
able distributed monitoring systems, since these support the immutable and transparent infor-
mation sharing among involved untrusted parties [2]. In DLTs, the authentication process relies
on consensus among multiple nodes in the network. While the terms DLT and Blockchain will
be used interchangeably throughout this paper, Blockchains are a type of DLT, where chains of
blocks are made up of digital pieces of information called transactions and every node maintains
a copy of the ledger. Therefore, in a Blockchain-enabled IoT network, transactions contain, for
example, environmental sensing data, or monitoring control messages, and these are recorded
and synchronized in a distributed manner in all the participants of the system. These partici-
pants are called miners or peers and, in some specific DLTs, users are charged a transaction fee
to perform (crypto) transactions. In addition, DLTs allow the storage of all transaction into im-
mutable records and every record distributed across many participants. Thus, security in DLTs
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comes from the distributed characteristic, but also the use of strong public-key cryptography
and strong cryptographic hashes.

The benefits of the integration of DLTs into IoT monitoring systems include: i) guarantee of
immutability and transparency for environmental sensing data; ii) removal of the need for third
parties; iii) development of a transparent system for heterogeneous IoT monitoring networks to
prevent tampering and injection of fake data from the stakeholders.

In this article, we describe and analyze the tradeoffs of the integration of DLTs into the
narrowband Internet of Things (NB-IoT), which currently is the leading cellular IoT technol-
ogy [3]. NB-IoT is one of the most efficient low-power wide-area network (LPWAN) tech-
nologies in terms of coverage, battery life-time, and support for massive machine-to-machine
communications (i.e., scalability) [4]. A feature that makes NB-IoT more suitable than other
technologies to support DLT traffic is its high downlink and uplink capacity when compared to
other LPWANs such as LoRaWAN or Sigfox [5]. For instance, the suitability of LoRaWAN to
support DLT traffic is mainly limited by its modest data rates and its 1 percent duty cycling (i.e.,
nodes must be idle 99 percent of the time) [2]. Conversely, NB-IoT has been designed with
adaptable data rates and high flexibility, bringing significant advantages to sensing and mon-
itoring networks. For instance, NB-IoT can be configured to use a wide range of sub-carrier
spacing settings, which allows the protocol to be tailored for the specific deployment scenario
and data rates can be increased 12 times by allocating multiple sub-carriers to the devices. NB-
IoT provides extended coverage low-power devices with battery life-time up to 15 years [3].
Besides, NB-IoT is optimized for regular and small data transmissions, so it is well suited for
monitoring devices acting as air quality, gas, and water meters [6].

We aim for a full integration where the NB-IoT devices generate transactions and receive
the corresponding confirmations, but do not act as Blockchain nodes. Such integration is analo-
gous to the P2 protocol described by Danzi et. al [7], which provides end-to-end (E2E) security
and trust without increasing the storage and computation load of IoT devices. On the downside,
such integration raises the following questions: i) how does Blockchain consensus and synchro-
nization affect the NB-IoT connectivity in terms of uplink and downlink traffic and end-to-end
(E2E) latency? and ii) which trade-offs arise from integrating DLTs into NB-IoT monitoring
systems? For instance, the traffic patterns generated by DLTs are different to traditional IoT
traffic, where the ratio of uplink (UL) to downlink (DL) data is oftentimes small. That is, most
of the data is usually transmitted from the NB-IoT devices to the network to be stored and pro-
cessed. Instead, the need to maintain a ledger for all the participants increases the amount of
data transmitted from the base station (i.e., DL).

To answer these above questions, we first describe in detail the essential elements of an inte-
grated Blockchain and NB-IoT system that addresses the problem of trust and privacy (Section
2.1). Then, we discuss and analyze the relevant characteristics of popular DLTs platforms such
as Bitcoin, Ethereum, Hyperledger Fabric, and IoTA, and select the most promising to inte-
grate into IoT environment monitoring systems. Additionally, we provide an overview of the
operation of NB-IoT. Finally, we investigate the suitability of NB-IoT to connect the physical
monitoring system with the Blockchain in two specific use cases, namely data authorization and
real-time (i.e., timely) monitoring of gas emissions (Section 3). In particular, we analyze and
evaluate the effect of Blockchain in NB-IoT monitoring systems in terms of traffic balance (DL
to UL), communication overhead, and E2E latency, measured as the transaction confirmation
time.

Our results, obtained from extensive experiments, show that the mining and consensus
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mechanisms allow Blockchain nodes to reach a secure and tamper-resistant consensus in col-
lected sensing data. On the downside, we observed an increase in the amount of DL data and
E2E latency, in the order of a few seconds, when compared to traditional NB-IoT packet trans-
missions.

Despite these minor drawbacks, we consider that Blockchain and NB-IoT can have a sym-
biotic relationship to provide data integrity, trust, security, transparency, and public availability
for a wide range of monitoring systems with a minimal impact on energy-efficiency.

In particular, the contributions of this work are threefold. First, we present a Blockchain-
powered IoT framework for environmental monitoring systems that addresses the problem of
trust and privacy. Second, we evaluate the proposed framework via extensive experiments, in
which the NB-IoT monitoring system and a suitable DLT platform are integrated. Third, real-
izing the lack of studies on communication aspects of current Blockchain-enabled IoT systems,
we analyze and evaluate the interaction between Blockchain and the NB-IoT monitoring sys-
tems in terms of overall throughput, E2E latency, and communication overhead via two case
studies. Regarding previous studies [8], to our best knowledge, these studies mainly focus on
specific-applications of Blockchain-enabled IoT, and how to integrate Blockchain with IoT. In
our studies, communication aspects between Blockchain nodes and IoT devices are investigated.

2 Blockchain-powered IoT monitoring systems
In this section, we describe the essential architectural elements for integration of Blockchain
into NB-IoT monitoring systems, evaluate the numerous DLT alternatives, and give a brief
overview of the operation of NB-IoT.

2.1 Essential architectural elements
The overall integrated system consists of 4 key components: DLT network, physical sensors,
edge network, and external resources, as illustrated in Fig. B.1. These components are described
in following.

DLT Network: This component includes all modules to build various features of Blockchain
technologies such as consensus, smart contract, data authorization, identity management, and
peer-to-peer (P2P) communication. These components must ensure that every change to the
ledger is reflected in all copies in seconds or minutes and provide mechanisms for the secure
storage of the data generated by IoT devices and parameter configurations. There are numerous
DLTs with different characteristics that may be beneficial for different target applications. The
DLT nodes can be located everywhere and connected with NB-IoT base stations via the Internet.

Physical Sensors: The set of resource-limited devices which have the responsibility of col-
lecting environmental data such as temperature, humidity, gas emissions and air quality levels.
The collected data are transmitted to edge nodes or base stations, which can be static, such as
access points, gateways, or mobile terminals, such as drones and mobile devices.

Edge Network: Even though DLT-based solutions offer significant countermeasures to se-
cure data from tampering and support the distributed nature of the IoT, the massive amount of
generated data from sensors and the high energy consumption required to verify transactions
make these procedures unsuitable to execute directly on resource-limited IoT devices. Instead,
edge servers with high computation resources can be used to handle real-time applications and
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Fig. B.1: General DLT-enabled NB-IoT pollution monitoring architecture

to further increase the degree of privacy (e.g., through cloud computing) [9]. The edge network
is a potential entity to cooperate with the Blockchain network in computationally heavy tasks
and return the estimation results (e.g., from solving proof-of-work (PoW) puzzles, hashing or
algorithm encryption) to the Blockchain network for verification.

External Services: IoT physical devices are resource-constrained with limited storage
space and low computation capacity. Hence, external infrastructure may be incorporated to
provide external services such as storage and computing. For example, the Interplanetary File
System (IPFS) is a distributed file storage system that can store data generated from IoT net-
works and return a hash to the ledger based on the content of the data. Since the ledger cannot
handle and store the massive amount of environmental data collected by the sensors, the services
provided by the IPFS are a vital component.

2.2 Suitability of different DLTs for IoT monitoring
Although a large number of Blockchain DLTs are available, the most prominent platforms in-
clude Bitcoin, Ethereum, IOTA, and Hyperledger Fabric. In the following, we compare these
DLTs in five different aspects: scalability, latency, throughput, security, and the level of smart
contract functionalities.

Scalability, latency, and throughput are deeply related and of vital importance for IoT ap-
plications. For instance, the large number of sensors in smart cities may generate millions of
transactions per day. This requires high efficiency of the consensus mechanism, including the
way in which transactions are processed by the peers, known as endorsing peers in Hyperledger
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Fig. B.2: Performance of four different DLTs in five essential aspects for IoT monitoring systems dealing with sensitive
information.

Fabric and full nodes (peers) in Bitcoin and Ethereum. Regarding latency, the transaction con-
firmation time must be sufficiently short to avoid queueing in the Blockchain and to ensure
consistency in the ledgers. Bitcoin and Ethereum confirmation times per transaction are around
10 minutes and 25 seconds, respectively. These latencies might not be suitable for real-time IoT
monitoring, while the confirmation time of Fabric and IOTA is much lower [10]. Note that the
transaction confirmation time is only part of end-to-end latency, as it does not account for the
communication latency at the radio access network.

The charge of fees to process the transactions, commonly known as gas is yet another factor
to take into account to select the appropriate DLT. These may greatly increase the operational
costs of the network, which negatively impacts the throughput of the DLT. On the one hand,
transaction fees pose a problem in massive IoT scenarios if the generation of a large number of
transactions is essential. On the other hand, these fees may contribute to minimize the amount of
redundant transactions generated by the sensors, which in turn offloads the Blockchain. Among
the considered DLTs, Ethereum requires fee and gas for each transaction whereas Hyperledger
Fabric and IOTA provide free solutions to exchange transactions.

It is clear that IoT applications will involve many stakeholders with different roles, function-
alities, and information with access rules, identities and security factors. An important factor
to provide security is the support for permissioned and permissionless (i.e., hybrid) solutions to
validate participating nodes. Both Ethereum and Hyperledger Fabric support public and private
solutions, while Bitcoin and IOTA only provide public ones. Although IoT networks, such as
smart cities, may have a large number of stakeholders willing to contribute to the security of a
permissionless Blockchain network, permissioned networks could also be beneficial. For exam-
ple, in smart homes where the homeowner wants to validate the transactions via home miners
or validators [11]. Regarding security, public networks may be more secure than private ones if
these are able to provide transparency and distributed storage. For instance, in a permissionless
Blockchain, the data is encrypted and stored in all the devices, which makes it definitely trans-
parent. Besides, the more users a permisionless Blockchain has, the more secure it is. However,
permissionless Blockchains are not ideal for enterprise use, where companies deal with highly
sensitive data and cannot allow anyone join their network. A permissioned Blockchain can be
altered by its owners, making it more vulnerable to hacking [12]. In addition, permissioned
Blockchains provide very low or no fee for validation and a faster consensus process.
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Finally, smart contracts act as autonomous entities on the ledger that deterministically exe-
cute logic expressed as functions of the data that are written on the ledger. Therefore, smart
contracts can be established to have automatic reactions from the DLT network to specific
events. For example, in case of carbon emissions, smart contracts can be used for real-time
policy enforcement upon changes in the emission patterns. The smart contract feature currently
is supported by Ethereum and Hyperledger Fabric (Chaincode). An IOTA smart contract type
called Quobic is still in progress. Besides, only Hyperledger Fabric supports data confidentially
via in-band encryption and guarantees the privacy of data by creating private channels. Hyper-
ledger Fabric provides a solution with various features such as identity management, transaction
integrity and authorization with a trusted CA. These features are vital in a trusted IoT system.
The comparison of the DLTs mentioned above in these areas illustrated in Fig. B.2, where
each aspect has been given an abstract score based on the previous discussion. Note that the
smart contract aspect is a functionality rather than a strict performance indicator and can only
be scored qualitatively. This makes it different to the rest of the aspects reflected in Fig. B.2,
hence, it is shown in a gray background.

Based on these scores, we decided to implement Hyperledger Fabric as DLT platform for
our experiments on IoT monitoring.

2.3 DLT traffic over NB-IoT
In the following, we provide a brief description on the operation of NB-IoT devices, hereafter
referred to as user equipments (UEs), in monitoring applications. NB-IoT UEs have only two
modes of operation, namely radio-resource control (RRC) idle and RRC connected. In the
former, the UEs can only receive the system information from the BS and, only in the latter,
data can be transmitted. UEs are in idle mode before initial access to the network, but may also
enter this mode during power saving or after an explicit disconnection request. To transition
from idle to connected mode, the UEs (clients) must first acquire the basic system information
and synchronization as illustrated in the upper part of Fig. B.3. For this, the UE receives the
master information block (MIB-NB) and the system information blocks 1 (SIB1-NB) and 2
(SIB2-NB). These are transmitted periodically through the downlink shared channel (DL-SCH)
and carry the basic cell configuration, timing, and access parameters [13]. In addition, SIB1-NB
carries the scheduling information for the rest of the SIBs.

After the system information has been acquired, the UEs must perform the RA procedure
to transition to RRC connected mode [14]. The RA procedure is a four-message handshake,
initiated by the UEs by transmitting a single-tone frequency-hopping pattern, called preamble,
through the NB Physical Random Access Channel (NPRACH). In most cases, the RA procedure
is contention-based, hence, the preamble is chosen randomly from a predefined pool of up to 48
orthogonal sub-carrier frequencies.

After completing the RA procedure, and if the control-plane (CP) cellular IoT (CIoT) is
used, UEs may piggyback short UL data packets along with the RRC Connection Setup Com-
plete message. Otherwise, the non-access stratum (NAS) setup must be completed before
eNB allocates resources for uplink transmission through the NB Physical UL Shared Channel
(NPUSCH) and data can be transmitted. The resource unit (RU) is the basic unit for resource al-
location in the NPUSCH and comprises a set of sub-frames in the time domain and sub-carriers
in the frequency domain. The downlink (DL) data is transmitted through the NB physical DL
shared channel (PDSCH).
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In a traditional NB-IoT monitoring system, the UL data generated by the UEs is transmit-
ted though the NPUSCH and routed towards a data center or cloud server to be stored and
processed. At this point, the monitoring system has no control on the collected data, so modifi-
cation, corruption, and losses may occur. Conversely, in our Blockchain-enabled NB-IoT setup,
the uplink data generated by the UEs is transmitted to a randomly chosen group of endorsing
peers of Hyperledger Fabric as transaction proposals. Then, each of the peers signs the transac-
tion using Elliptic Curve Digital Signature Algorithm (ECDSA) and adds the signature before
returning the signed message back to the UEs.

The peers that provide an endorsement of the proposed ledger send an update to the appli-
cation, but do not immediately apply the proposed update to their copy of the ledger. Instead, a
response is sent back to the UEs to confirm that the transaction proposal is correct, has not been
previously submitted to ledger, and has a valid signature. Therefore, the security increases with
the number of endorsing peers. In addition, smart contracts can be executed to update or query
the ledger. A simple example of a smart contract in air pollution monitoring systems would
be to set the system to calculate average values of the collected data and to generate an alarm
message whenever these exceed a predefined threshold.

Then, the UEs broadcast the confirmed transaction proposals along with the response (con-
firmation) to the ordering service. The received transactions are ordered chronologically to
create blocks. These blocks of transactions are delivered to all the peers for validation. The
peers append the block to the ledger, and the valid transactions are committed to the current
state database. Finally, a confirmation message is emitted and transmitted back to the UEs to
notify that the submitted transaction has been immutably published to the ledger. In our previ-
ous work [2], we have shown that two-way wireless communication is required to enable high
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Fig. B.4: Blockchain-enabled NB-IoT implementation and setup.

decentralization. In communication aspects, we studied and analyzed DLT traffic in both uplink
and downlink over IoT networks. The confirmation serves as proof that a transaction executed
and recorded in distributed ledger. This confirmation helps to check for errors or strange occur-
rences, for example, in retail industry, the confirmation support to detect the number of items
re-bought, etc. Then, it is fed into the overall retail system, inventory system, and more are
updated. Furthermore, if the sensors do not receive confirmation from the distributed ledger, the
next action depends on specific applications and configuration.

3 Case Studies
In this section, we evaluate the performance of an integrated Blockchain and IoT monitoring
system with Hyperledger Fabric and NB-IoT under two use cases. The first one focuses on
the data authentication aspect provided by Blockchain. We then extend the use case to include
smart contracts to processes the sensor measurements. Our experimental setup is based on Hy-
perledger Fabric v1.4, NB-IoT development kits Sara EVK N211, and one NB-IoT Amarisoft
eNB station, and is illustrated in Fig. B.4.

3.1 Use case 1: Data Authorization
The focus of this use case is to evaluate the communication overhead of data authentication in
our setup. Our setup includes a single UE with a single sensor that follows the procedure de-
scribed in Section 2.3; illustrated in Fig. B.3. The metric we use to evaluate the communication
efficiency is the average UL to DL data traffic ratio, where only data packets are considered.

The size of the payload in the transmitted packets plays a vital role in the performance of
DLT-based NB-IoT systems. Therefore, we varied the UL payload size from 50 B to 200 B and
set the UE to generate a total of 1000 transactions (i.e., UL data packets). The DL payload size
is set to 31 B, so the UL payload size is at least 1.61 times the DL payload size, and the block
size is configured to 30 transactions per block. We ran our experiments with different number of
endorsing peers in the DLT network E to observe the communication overhead of an increase
in security, which, naturally, increases with E.

Our results are presented in Fig. B.5, where it can be seen that, naturally, the average UL
to DL traffic ratio increases with the UL payload size. However, this increase is more rapid
with traditional NB-IoT than with Blockchain and the average UL to DL traffic ratio decreases
as E increases. For instance, with an UL payload size of 50 B, and E = 2, the DL traffic is
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almost twice as high as the UL traffic. The reason for this is that, certainly, the average traffic
increases with the number of endorsing peers E, but the increase in DL traffic is much greater
than the increase in UL traffic. Hence, these results highlight the fact that the use of DLTs
heavily increases the traffic load in the DL channels of IoT networks, namely, in the PDSCH of
NB-IoT.

3.2 Use case 2: Real-time Monitoring of Air Pollution
We now study the specific use case of a real-time CO2 emission monitoring system that includes
smart contracts in the DLT. The environment data is collected by S8 Miniature 10000 ppm
CO2 sensors in the UEs; a simple smart contract is defined to compute the average CO2 level
and trigger updates to the ledgers when these levels are abnormally high. Note that high indoor
CO2 levels are greatly correlated to human metabolic activity and can cause headaches or make
the population to function at lower activity levels. Nevertheless, the CO2 emissions generated
by working equipment (e.g., computers, machines, etc.), also have an impact on total amount of
CO2 emissions. Our experiments on CO2 and NOx data were conducted using the same methods
to collect and process the data. Hence, the type of sensor does not affect the generated traffic
and system process.

The focus in this use case is to evaluate the E2E latency, defined as the time elapsed from the
generation of a transaction at the IoT device until its verification. This includes the latency at
the NB-IoT radio link and at the DLT, which comprises the execution time of the smart contract
and transaction verification. Therefore, the E2E latency of smart contract execution depends
on the numerous parameters such as block size and transaction generation rate. Among these,
we evaluate the impact of the block size on E2E latency. Our results indicate that integrating
DLTs into NB-IoT monitoring applications symmetrizes the data traffic by slightly increasing
the amount of data transmitted in the downlink. However, by adequately choosing the DLT
and its parameters, the impact of DLT traffic on the battery lifetime of NB-IoT nodes may
be relatively low when compared to that of the traffic pattern of the monitoring application
and of the implemented power saving techniques. Hence, our results can be combined with
detailed energy consumption models that include the different possible states and power saving
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Fig. B.6: E2E latency of our Blockchain-enabled NB-IoT monitoring system.

techniques of NB-IoT nodes (e.g., [15]) to estimate their battery lifetime.
In these experiments, we configured two UEs, with one CO2 sensor each, to gather data and

upload to the ledger once every 10 s. Our results are shown in Fig. B.6, where various block
sizes b, from 10 to 100 transactions per block, were considered; the E2E latency for traditional
NB-IoT packets is included as a reference.

As expected, Fig. B.6 shows that an increase in block size comes with a slight increase
in E2E latency. However, this increase is minor, even when compared to conventional NB-IoT
packets, and may be suitable for most IoT monitoring applications. Specifically, the E2E latency
is doubled from an average 0.832 s for conventional NB-IoT to 1.63 s for DLT-based NB-IoT
with block size b = 100 transactions per block. Naturally, smaller block sizes lead to a smaller
E2E latency, which is comparable to that of conventional NB-IoT, especially for b = 10. The
reason is that the block creation time in Hyperledger Fabric increases with the increase of the
block size. On the other hand, it is advisable to use small block sizes in monitoring applications
where even conventional NB-IoT is close to the upper limit of the acceptable E2E latency of the
system.

4 Conclusion
Monitoring of emissions based with IoT devices requires sets high demands for data reliability
and trustworthiness. A promising approach in that direction is integration of a Blockchain into
the IoT system. We have implemented Blockchain into an environmental monitoring system
based on NB-IoT, analyzed the tradeoffs and evaluated the performance. Our results show that
the integration of Blockchain increases the load in the downlink (DL) channel of NB-IoT, un-
like the plain variant of NB-IoT that does not use Blockchain. Furthermore, both the level of
security and the DL traffic load increase with the number of endorsing peers in Hyperledger.
Besides, the E2E latency of the monitoring system increases slightly with the block size. This
behavior was expected, but our results show that the increase in E2E latency is small even when
compared to conventional NB-IoT. Therefore, integrated Blockchain and NB-IoT monitoring
systems provide valuable benefits to a wide range of environmental applications and, in par-
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Abstract
Mobile devices with embedded sensors for data collection and environmental sensing create a
basis for a cost-effective approach for data trading. For example, these data can be related
to pollution and gas emissions, which can be used to check the compliance with national and
international regulations. The current approach for IoT data trading relies on a centralized
third-party entity to negotiate between data consumers and data providers, which is inefficient
and insecure on a large scale. In comparison, a decentralized approach based on distributed
ledger technologies (DLT) enables data trading while ensuring trust, security, and privacy.
However, due to the lack of understanding of the communication efficiency between sellers
and buyers, there is still a significant gap in benchmarking the data trading protocols in IoT
environments. Motivated by this knowledge gap, we introduce a model for DLT-based IoT
data trading over the Narrowband Internet of Things (NB-IoT) system, intended to support
massive environmental sensing. We characterize the communication efficiency of three basic
DLT-based IoT data trading protocols via NB- IoT connectivity in terms of latency and energy
consumption. The model and analyses of these protocols provide a benchmark for IoT data
trading applications.

1 Introduction
In 2025, the volume of sensing data generated by personal IoT devices is expected to reach 79.4
ZB globally [1]. Many attempts have been made to improve and adapt business workflows to
exploit the availability of IoT data [2, 3]; among these, IoT data trading is the most popular
approach. Various services for trading of IoT data are emerging, connecting various devices
and distributed IoT data sources, thereby facilitating data providers to exchange their data [4].

Interesting use cases for data trading include public transport systems, for example, the bus
network in Aalborg, Denmark. In these systems, the density of personal travel card swipes at
specific bus stations could be useful information, not only to the administration of transport
systems, but also to the local taxi companies. The taxi companies benefit from the data of
anomalous passenger traffic patterns for the purposes of improving ride-sharing and private
services [5]. Also, analyzed traffic data of passengers can be collected via IoT infrastructure
and recommendation services to taxi companies can be sold. Besides, drivers can exchange
information about the traffic status of a particular street with others to avoid traffic jams or to
exchange green house gas emission information with manufacturers. Hence, IoT data can be
considered as a tradable digital asset.

Traditional trading systems (e.g. Paypal) feature a single point of failure, the lack of trust,
transparency, and incentive for data trading, which is preventing the availability of digital infor-
mation from data providers to customers. On the other hand, Distributed ledger technologies
(DLTs) and Blockchains1 support immutable and transparent information sharing among in-
volved untrusted parties [6]. Outside of its role in financial transactions, DLTs are seen as a
key enabler for trusted and reliable distributed monitoring systems. The authentication process
for DLTs relies on consensus among multiple nodes in the network [7]. In Blockchain-enabled

1The terms DLT and Blockchain will be used interchangeably throughout this paper, Blockchains are a type of DLT,
where chains of blocks are made up of digital pieces of information called transactions and every node maintains a copy
of the ledger
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IoT networks [8], transactions can include sensing data, or monitoring control messages, and
these are recorded and synchronized in a distributed manner in all the participants of the system.
These participants are called miners or peers and, in some specific DLTs, users are charged a
transaction fee to deploy and execute transactions.

In addition, DLTs allow the storage of all transactions into immutable records and every
record is distributed across many participants. Thus, security in DLTs comes from the decen-
tralized operation, but also from the use of strong public-key cryptography and cryptographic
hashes. The benefits of the integration of DLTs into IoT data trading systems include: i) guar-
antee of immutability and transparency for environmental sensing data, ii) removal of the need
for third parties, iii) development of a transparent system for heterogeneous IoT data trading
networks to prevent tampering and injection of fake data from the stakeholders [9].

With the spread of ubiquitous marketplaces, it became relevant to explore the use of IoT
data trading in marketplace environments. For instance, in [10], Gupta et al. introduced the ar-
chitecture for a dynamic decentralized marketplace for trading IoT data. The approach involves
a 3-tier design: 1) provider, 2) broker and 3) consumer. The use of DLTs in their work is pri-
marily to manage the terms of agreement between involved parties. Additionally, a reputation
system is used in the design to penalize the participants and reduce their rating. Bajoudah et
al. present a marketplace model and architecture for the trading of IoT streaming data in [11].
Within their work, periodic checkpoints during data exchange are introduced to limit fraudu-
lent activity on either side. In [12], Missier et al. propose another marketplace, where streams
of IoT data are the main assets traded utilizing Oracles for the off-chain queries. Xiong et
al. [13] present a trading mode based on smart contracts. It incorporates machine learning to
guarantee fairness of data exchange and utilizes arbitration institution to deal with the dispute
over the data availability in the data trading. However, the arbitration institution in the trad-
ing mode is a trusted entity of trading parties. Dai et al. [14] introduced a secure data trading
ecosystem based on Blockchain by combining the Intel Software Guard Extensions (SGX).
The proposed ecosystem securely processes the data, but, the data source and analysis results
highly depend on a trusted SGX-based execution environment. In [15], the authors proposed
a decentralized Blockchain-based platform for data storage and trading in a wireless powered
IoT crowd-sensing system. The data from RF-energy beacons are transmitted to the ledger for
decentralized services, which supports the analytical condition for valuable results about the
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equilibrium strategies in the distributed systems.
The related work indicates a knowledge gap in terms of: 1) a benchmark for IoT data trading,

and 2) analysis of the cost of IoT data trading in terms of communication, specifically in city-
level networks. The efficiency of a Blockchain-based data trading protocol is a major concern
for data traders. Future markets will be highly dynamic and low latency trading is critical to
maximize the efficiency of the marketplace. However, currently there is a lack of a general
framework that provides a guideline for the use of trading protocols based on a set of neutral
and commonly accepted rules. A proper benchmark helps the interested parties to understand
the tradeoffs in Blockchain-based systems and the associated performance indicators.

In this paper, first, we design a DLT-based trading system for exchanging IoT data. We
have chosen the NB-IoT standard [16] as the underlying connectivity solution, as it is seen by
the mobile operators as a major candidate to dominate wide-range connectivity for future smart
cities. Unlike many other IoT technologies, NB-IoT is able to offer symmetric uplink/downlink
throughput, which is an essential feature from the viewpoint of a DLT [7, 17]. The proposed
trading system includes the following IoT data trading protocols; General Trading (GT), Buying
on Demand (BoD), and Selling on Demand (SoD). Here, we use the term “on demand” from the
perspective of the smart contracts that implement the transactions between buyers and sellers.
Each trading protocol is customized for different scenarios. GT could be considered as the usual
trading protocol in the data marketplace, while the BoD and SoD are protocols used to support
particular demands from either sellers or buyers.

The analysis and simulation results show that the GT protocol has outstanding performance
in terms of latency and energy consumption; however, it requires mechanisms to guarantee
the continuous availability of data. On the contrary, the BoD protocol can be implemented
in Vehicle-to-Infrastructure (V2I) networks, where vehicles can trade their emission informa-
tion with manufactures. Finally, the SoD protocol is particularly useful when customers are
interested in collecting specific data, which, however, may not be immediately available on the
market. This protocol can also be deployed in Vehicle-to-Vehicle (V2V) networks where the
drivers want to buy traffic jam information of a specific street from other vehicles on the road.
Clearly, SoD protocols, on their own, would face situations in which the data is no longer avail-
able for customers after the initial advertising phase. In practice, the three trading protocols
present interesting synergies and can be implemented together in a single system, which will
select the best one based on the actual situation.

The contributions of this paper can be stated as follows. First, we present a solution for a
systematic DLT-based IoT data smart trading towards city-level networks using NB-IoT con-
nectivity. Next, we propose three IoT data trading protocols namely General Trading (GT),
Buying on Demand (BoD), and Selling on Demand (SoD). The cost model of each trading pro-
tocol is derived and analyzed along with NB-IoT connectivity. Both resources consumed by
executing DLT/smart contracts and NB-IoT devices are investigated. Finally, the analysis and
the associated experimental results provide a benchmark for data trading protocols in wide-area
IoT networks.

The remainder of this paper is organized as follows. In the next section, we outline the
general architecture of DLT-based trading system and introduce three IoT data trading proto-
cols. Then, we present the system model, including the physical deployment of the devices. In
Section III and IV, we model and analyze the performance of Blockchain-enabled IoT network
in terms of latency and energy. Then, we evaluate and prove the derived model and design in
Section V. Finally, we conclude the paper in Section VI.
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Table C.1: Nomenclature

Parameters Descriptions Values

General
N Total number of NB-IoT devices 10000
M Number of DLT miners ≤ 20
S Set of Data Providers (Sellers) |S| ≤ 104

B Set of Data Consumers (Buyers) |B| ≤ 104

D Data to buy or sell –
T = {Ti} Set of trades –
λu Uplink request arrival rate Eq.3
λd Downlink request arrival rate Eq.3
Gt, Gr Transmitter and receiver antenna gains 1
β Path loss exponential {2.4, 2.7, 3.0, 3.3}
γ Receiver sensitivity 3.6 ∗ 10−10

λc Computing speed of a miner 0.3
λ0 Scaling factor 0.05
Pc Power of miner 6
τ The unit length 10 ms
d The average time interval between two NPDCCH [0.05 : 0.2]
Ru,Rd Uplink and Downlink transmission rate -
ETi Energy required to complete a trade Ti Eq. 7
Eu Uplink energy consumption Eq. 7
Ed Downlink energy consumption Eq. 7
EDLT Blockchain energy consumption Eq. 6
Esync Energy required for synchronization -
Eurr Uplink: Energy for resource reservation Eq.11
Eurr Uplink: Resource reservation energy Eq.11
Edsync Downlink: Energy for synchronization 0.33
Edrr Downlink: Resource reservation energy Eq.11
Edrx Downlink: receive energy Eq.17
Pl, PI Listening Power 0.1 W
PI Idle Power 0.2 W
Pt Transmission Power 0.2 W
Pc Power consumption in electronic circuits 0.01 W
LW Average computation latency of a miner Eq.19
LDLT Total DLT latency Eq.
LtM DLT average transmission latency Eq.18
Lsync Synchronization Latency 0.33s
Nrmax Maximum number of attempts 10
Prr Probability of resource reservation Eq.8
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2 DLT-enabled IoT Data Trading Architecture and Protocols
This section presents the general system model of DLT-based IoT data trading as well as the data
trading system with the three protocols tailored to different scenarios. Table C.1 summarizes the
used notation.

2.1 DLT-enabled Data Trading via NB-IoT
The general architecture of DLT-based IoT data trading includes three main components: data
providers (sellers S), data consumers (buyers B) and a distributed ledger, shown in Fig. C.1.
Each seller or buyer can own one or more devices in the network. Here we assume that buyers
and sellers act as digital wallets in a distributed network. During a trade denoted by Ti, the
seller Si ∈ S and buyer Bi ∈ B communicate using the wide-area NB-IoT links. The trading
procedure occurs to complete a deal between Si and Bi, exchanging data Di ∈ D and payment
Pi. First, Bi completes the payment Pi to Si in reference to the requested data, Di, and Si
deliversDi to Bi immediately. The general procedure from Fig.C.1 can be described as follows:

Buyer Bi
Subscribes to the IoT data in distributed ledger generated and published by Si, and Bi makes a
data request, bi regarding its preferred data, Di. The bi will be transmitted to Si and recorded
in the ledger via transaction Ti,add for negotiation based on factors such as amount of data,
quality of data, price, discount, etc. After choosing Di from the list, Bi generates a transaction
Ti,commit which executes payment from Bi’s wallet. Once Bi receives the Di via Ti,settle, it
will generate a confirmation back to ledger.

Seller Si
Has two main roles; to collect data from the environment (e.g., environmental sensing data,
geographical data or data from surveillance systems) and to act as a hub gathering data from
neighboring devices to sell on the market. Si aims to earn the payment Pi from Bi by delivering
Di to Bi. After publishing a hashed version of its data and prices to the market via Ti,add, Si
waits for buying requests. Based on the predefined rules in the smart contract system, upon
receiving a request from Bi and the appearance of Ti,commit, generated by Bi, the seller Si can
receive the payment Pi. Finally, it confirms to the ledger that the trade Ti is complete.

Distributed Ledger

The DLT manages a distributed ledger to record all data trading history which is grouped into
blocks and linked together chronologically. The deployed smart contracts autonomously control
the order and automate payments from parties without the need of human interaction. The
smart contracts guarantee trust, transparency and speed of exchanging information. These can
be deployed based on the negotiation between data providers and customers via Ti,deploy. Any
change in smart contracts (e.g. change of price, amount of data, or discount) can be performed
via Ti,update.

In order to minimize the cost of storage, the sensing data could be hashed and recorded at
more powerful DLT nodes, and only the hash of data is recorded to ledger. Then, a message
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Fig. C.2: Three IoT data trading protocols: (a) General Trading protocol (GT), (b) Buying on Demand (BoD), and (c)
Selling on Demand (SoD).

is sent back to confirm that the data has been added to the ledger. After both Si and Bi are
satisfied with the terms of the contract, Ti,settle is executed to get the payment Pi from Bi to
transfer to Si’s wallet, while the data Di is transmitted to the storage address of Bi. We assume
that the data services, (e.g., data storage, trading and task dispatching) are implemented on top
of a permissionless Blockchain. The sensing data are formatted into normal transactions of
fixed size. To enhance efficiency, only the digest of each transaction is stored on the chain,
and the content of the transactions are stored by each consensus node off-chain or at the IPFS
(InterPlanetary File System) storage.

2.2 IoT Data Trading Protocols

General Trading (GT)

The GT protocol procedure is shown in Fig. C.2a. In a trade Ti, the buyer Bi sends a buying
request ri to market via transaction Ti,add to express its need in specific dataDi. After collecting
sensing data, the data producer and seller Si, begins publishing its data information Di, to the
market. The smart contracts receive the requests from both customers B and producers S and
then map the buying requests and selling requests to satisfy both parties based on their expected
data and price. The buyer Bi commits to the request with a fund transfer via Ti,commit. After
the smart contract receives the payment from Bi, it executes Ti,settle to transfer requested Di to
Bi and Pi to Si. Finally, both Bi and Si confirm to the ledger that they have received Pi and
Di, respectively.

A marketplace exchange of streaming IoT data, with a massive amount of data, requests,
and a large number of parties, is an appropriate use case for the GT protocol. The environ-
mental sensing data such as accurate real-time measurement data for control and alarm systems
are exchanged between interested customers. More specifically, this protocol is used for the
aforementioned use case due to its wide range of data continuously being pushed to the market.
The open advertisement style of the GT protocol is appealing to potential buyers, encouraging
the safe buying and selling of IoT data in a decentralized IoT data marketplace.
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Buying on Demand (BoD)

BoD protocol describes a process where the producer Si publishes data Di to the market for
selling via si request. The smart contract will broadcast information of received data from
buying offer boi to other parties. For example, in a buying offer, Bi would ask whether others
are interested in buyingDi. If Bi is interested inDi, it will accept the offer by generating Ti,add,
and commit by Ti,commit when the payment requests from smart contract is received. Then, the
deal is settled as GT protocol via Ti,settle. The process of BoD protocol is described in Fig.
C.2b.

Vehicle-to-Industry (V2I) emission trading, with a frequent exchange of data between vehi-
cles and the vehicle industry, is an appropriate use case for the BoD protocol. In this scenario,
the vehicles on the network act as the sellers of their emissions data, e.g., CO2, NOx, while
manufacturers (vehicle industry), GoV e.g air quality management department, and data an-
alytic organizations act as the buyers for maintaining accurate, secure tamper-proof vehicular
emissions data. In V2I, the data being exchanged are used for the purpose of creating a trusted
life-cycle emission or fuel economy monitoring.

Selling on Demand (SoD)

The SoD protocol is described in Fig. C.2c. In this case, the smart contract receives the buying
requests bi from a customer Bi, but there is no available appropriate data on the ledger to satisfy
the requirements from Bi. Hence, the smart contract sends an ask-for-data request aDi to
producers to ask whether they can provide the required data Di. The providers Si after a while
can gather data from the environment or from other sources then answer to the market by si
including Di information as well as price Pi. Then, the smart contract asks Bi for fund transfer
with an amount of Pi. The Bi make payment via Ti,commit. Then Ti,settle are executed to
complete the deal between Bi and Si. Finally, the confirmations are sent to the ledger from both
parties.

This SoD protocol is beneficial, for example, when a party needs a type of data that is not
available on the market and there is the need to trade in real time. In the scope of this study,
we assume that, when a provider receives ask-for-data from a smart contract, it can provide the
required data to the market. In real-life scenarios, some of the requests from customers cannot
be satisfied immediately, so these requests are queued in the systems until the data is available.
A Vehicle-to-Vehicle (V2V) use case is appropriate for this protocol where vehicles can pur-
chase traffic information for a specific street which drivers expect to use in the near future. The
vehicles that have the requested information can be traded with the buyers on the road. Finally,
similar to V2I, V2V involves the continuous wireless exchange of IoT data collected from vehi-
cle sensors. The V2V use case contributes in generating a life-cycle emissions or fuel economy
monitoring system amongst vehicles. This form of communication helps to manage the safety
of the road, as well as increase vehicle awareness.

2.3 Communication System Model
We consider an NB-IoT cell with eNB located in its center, including N devices uniformly
distributed within the area. A data provider or consumer can consist of a single or multiple
NB-IoT devices. For simplicity, we assume that each buyer or seller owns a single NB-IoT
device to exchange assets and all devices belong to the normal coverage class. The DLT nodes
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Fig. C.3: Delivery probability versus distance for a standard deviation σdB = 6 dBs.

are NB-IoT devices that have more computational power than seller/buyer nodes. In our model,
involved sellers and buyers use NB-IoT as wireless network interfaces. In reality, the involved
parties can use various wireless interfaces or networks for trading purposes but, our general
model and analysis can be applied in these cases because of its modular and versatile design
satisfies a broad range of interfaces and networks.

Our propagation model takes into account shadowing, but not small-scale fading; which
is a sufficient first approximation as detailed physical layer modeling is not the focus of the
work. Hence, for a given transmission power Pt and carrier frequency f , the received power at
a distance d between the base station BS and sensor i is:

Pr(d) = 10 log10

[
PtGtGr c

2

(4πf)2dβ

]
+N(0, σdB) dB (C.1)

where Gt and Gr are the transmitter and receiver antenna gains, respectively, c = 3 · 108 m/s is
the speed of light, N(0, σdB) is a zero-mean Gaussian RV with standard deviation σdB dB, and
β is the path loss exponent. From there, the outage probability at a given distance and receiver
sensitivity γ = 3.65 · 10−10 W is:

pout = 1−Q
[

1
σdB

10 log10

(
γ(4πf)2dβ

PtGtGrc2

)]
(C.2)

Fig. C.3 demonstrates the delivery probability pd = 1 − pout at varying distances, for four
different β path loss exponent values, a standard deviation of σdB = 6 dBs. In this work, we
choose β = 2.7 for urban area. We are aware that the model lacks a mobility aspect, however
for this initial work, we have decided to use a simple model as previously described.

The arrival rate of uplink including selling and buying requests, respectively, to the system
are: λs = |S|Tpspd and λb = |B|Tpbpd in which T is number of communication sessions that
an IoT device performs daily; ps and pb are probability a device request a selling service and a
buying service, respectively. When an NB-IoT sensor device attempts to join the network, it first
listens for the cell information, e.g, NPSS and NSSS messages to synchronize with the eNB.
NB-IoT UEs have only two modes of operation, namely radio-resource control (RRC) idle and
RRC connected [18]. In the former, the UEs can only receive the system information from the
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BS and, only in the latter, data can be transmitted. UEs are in idle mode before initial access to
the network, but may also enter this mode during power saving or after an explicit disconnection
request. To transition from idle to connected mode, the UEs (clients) must first acquire the basic
system information and synchronization as illustrated in the upper part of Fig. C.4. For this,
the UE receives the master information block (MIB-NB) and the system information blocks 1
(SIB1-NB) and 2 (SIB2-NB). These are transmitted periodically through the downlink shared
channel (DL-SCH) and carry the basic cell configuration, timing, and access parameters [19].
In addition, SIB1-NB carries the scheduling information for the rest of the SIBs.

After the system information has been acquired, the UEs must perform the RA procedure to
transition to RRC connected mode. The RA procedure is a four-message handshake, initiated
by the UEs by transmitting a single-tone frequency-hopping pattern, called preamble, through
the NB Physical Random Access Channel (NPRACH). In most cases, the RA procedure is
contention-based, hence, the preamble is chosen randomly from a predefined pool of up to 48
orthogonal sub-carrier frequencies. Consequently, the main reasons for an access failure are the
lack of power in the transmission and simultaneous transmissions of the same preamble, which
leads to collisions.

After completing the RA procedure, and if the control-plane (CP) cellular IoT (CIoT) is
used, UEs may piggyback short UL data packets along with the RRC Connection Setup Com-
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plete message. Otherwise, the non-access stratum (NAS) setup must be completed before
eNB allocates resources for uplink transmission through the NB Physical UL Shared Channel
(NPUSCH) and data can be transmitted. The resource unit (RU) is the basic unit for resource al-
location in the NPUSCH and comprises a set of sub-frames in the time domain and sub-carriers
in the frequency domain. The downlink (DL) data is transmitted through the NB physical DL
shared channel (PDSCH). Data is exchanged based on the three defined trading protocols, GT,
BoD and SoD. Fig. C.4 shows the physical operations of GT protocol as an example. BoD
and SoD could be considered as extensions of the GT protocol, those protocols are especially
beneficial when the data is not available in the market.

2.4 Performance metrics
Latency and the time required to complete a trade is one of the most important concerns of
involved users. Latency directly influences the amount of time it takes for a trader to interact
with the data market, the timely reception of relevant market information and the ability to act
upon its receipt. The spread of the automatized data trading amplifies the impact of latency in
terms of its competitive advantage. On top of this, IoT environments should be characterized
with high energy efficiency. All these factors have motivated this investigation on the total E2E
latency and energy consumption to complete a trade Ti.

Latency

The latency to complete a trade Ti between seller and buyer are formulated as:

LTi = LUD + LDLT , (C.3)

where LUD is the transmission latency between Si and Bi which act as light nodes and full DLT
nodes; While, LDLT represents the DLT mining and synchronization latency. In detail, LUD =
Lu + Ld, where Lu, Ld are NB-IoT uplink and downlink latency, respectively; LDLT = Lv +
LDLTsync, where Lv is block verification time at DLT nodes, and LDLTsync is synchronization
time between DLT nodes via NB-IoT connectivity.

Total energy consumption

Similarly, the energy consumption model of a trade includes the energy consumption for uplink
Eu, downlink Ed transmission between NB-IoT sensors with DLT full nodes, among DLT full
nodes, and the energy consumed in verification process known as mining in DLT nodes EDLT .

ETi = EUD + EDLT (C.4)

where EUD and EDLT are energy consumed by communication between sellers/buyers and
DLT nodes and the energy performed among full DLT nodes, respectively. The transmission
power and latency depend significantly on the physical deployment, such that we analyze both
analyze the resource consumed in physical communication and the application layer. In next
parts, we formulate the latency and energy consumption of each process.
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3 Transmission Latency and Energy Consumption Models
As described in the previous section, the total E2E latency includes two parts, the latency of
transmissions of uplink and downlink between buyers/sellers and DLT nodes, where latency
occurs in the DLT verification process. For the first part, we define an adapted queuing model
for DLT-based NB-IoT, based on the queuing model of the NB-IoT access network [20], the
uplink and downlink radio resources are modeled as two servers which visit and serve their
traffic queues in both directions.

End-to-End latency

The E2E latency of NB-IoT uplink and downlink can be formulated as:

LUeD = Lu + Ld = Lusync + Lurr + Lutx + Ldsync + Ldrr + Ldrx (C.5)

where Lusync, L
u
rr, L

u
tx, Ldsynch,Ldrr, L

d
rx are energy consumption of synchronization, resource

reservation, and data transmission of uplink and downlink, respectively. Lusync has been defined
in [19] with the values of 0.33s. Lrr is given as:

Lrr =
Nrmax∑
l=1

(1− Prr)l−1Prrl(Lra + Lrar) (C.6)

in which Nrmax is the maximum number of attempts, Prr is the probability of successful re-
source reservation in an attempt, Lra = 0.5t + τ , is the expected latency in sending an RA
control message, τ is the unit length and equal to the NPRACH period for the coverage class
1 which is varied from 40 ms to 2.56 s [19], and Lrar = 0.5d + 0.5Qfu + u, is the expected
latency in receiving the RAR message, where Q are requests waiting to be served.

In the following, we provide a simple technique based on drift approximation [21] to cal-
culate Prr recursively. Therefore, we treat the mean of the random variables involved in the
process as constants. Besides, we assume that sufficient resources are available in the PDCCH
so that failures only occur due to collisions in the PRACH or to link outages.

Let λa = λu + λd be the arrival rate of access requests per PRACH period and λa(l) be the
mean number of devices participating in the contention with their l-th attempt. Note that in a
steady state λa(l) remains constant for all PRACH periods. Next, let λatot =

∑Nrmax
l=1 λa(l) and

that the collision probability in the PRACH can be calculated using the drift approximation for
a given value of λatot and for a given number of available preambles K as:

Pcollision(λatot) = 1−
(

1− 1
K

)λatot−1
≈ 1− e−

λa
tot
K . (C.7)

From there, we approximate the probability of resource reservation as a function of λatot as

Prr(λatot) ≈ pd e−
λa
tot
K . This allows us to define λatot as:

λatot = λa + (1− Prr(λatot))
Nrmax∑
l=2

λa(l) (C.8)
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since λa(l) = (1− Prr(λatot))λa(l − 1) for l ≥ 2 and λa(1) = λa. Finally, from the initial
conditions λa(l) = 0 for l ≥ 2, the values of λa(l) and λatot can be calculated recursively by:
1) applying (C.8); 2) calculating Prr(λatot) for the new value of λatot; and 3) updating the values
of λa(l). This process is repeated until the values of the variables converge to a constant value.
The final value of Prr(λatot) is simply denoted as Prr and used throughout the rest of the paper.

Assuming that the transmission time for the uplink transactions follows a general distribu-
tion with the first two moments l1, l2, then first two moments of the distribution of the packet
transmission time are s1 = (f1l1) / (Rw), and s2 = (f1l2) /

(
R2w2). Applying the results

from [22], considering Ltx as a function of scheduling of NPUSCH, we have:

Ltx = fλus1s2

2s1(1− fGs1) + fλus2
1

2(1− fλus1) + l1
Ruw

(C.9)

whereRu is the average uplink transmission rate, λu = λs + λb, and f(λs + λb)s1 is the mean
batch-size. The latency of data reception is defined as:

Lrx = 0.5Fh1t
−1

h1(1− Fht−1) + Fh1

1− Fht−1 + m2

Rdy
(C.10)

in which, h1 = fm1(Rdy)−1, h2 = fh2
2m2((Rd)2y2)−1 are two moments of distribution

of the packet transmission time, assuming that Assuming that packet length follows a general
distribution with moments m1, m2, F = fλdt,Rd is downlink data transmission rate.

Energy consumption

The energy consumption of the protocol 1 are formulated as below:

EUD = Eu + Ed =Eusync + Eurr + Eutx + Eus + Edsync + Edrr + Edrx + Eds (C.11)

In whichEusync,E
u
rr,E

u
rr,E

d
sync,E

d
rr,E

d
rx are energy consumption of synchronization, resource

reservation, and data transmission of uplink and downlink, respectively. We have:

Esync = Pl · Lsync (C.12)
Erar = Pl · Lrar (C.13)

Err =
Nmax∑
l=1

(1− Prr)l−1 · Prr · (Era + Erar) (C.14)

Era = (Lra − τ) · PI + τ · (Pc + PePt) (C.15)

Etx = (Ltx −
la
Ruw

) · PI + (Pc + PePt)
la
Ruw

(C.16)

Erx = (Lrx −
m1

Rdy
) · PI + Pl

m1

Rdy
(C.17)

in which, Pe, PI , Pc, Pl, and Pt are the power amplifier efficiency, idle power consumption,
circuit power consumption of transmission, listening power consumption, and transmit power
consumption, respectively.
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Fig. C.5: DLT performance in latency and energy consumption

4 Resource consumption model of DLT verification process

4.1 System Model
Consider a DLT network that includesM miners. These miners start their Proof-of-work (PoW)
computation at the same time and keep executing the PoW process until one of the miners
completes the computational task by finding the desired hash value [6]. When a miner exe-
cutes the computational task for the POW of current block, the time period required to com-
plete this PoW can be formulated as an exponential random variable W whose distribution is
fW (w) = λce

−λcw, in which λc = λ0Pc represents the computing speed of a miner, Pc is
power consumption for computation of a miner, and λ0 is a constant scaling factor. Once a
miner completes its PoW, it will broadcast messages to other miners, so that other miners can
stop their PoW and synchronize the new block.

LtM = LnewB + LgetB + LtransB (C.18)

In (18), LnewB , LgetB , and LtransB , are latencies of sending hash of new mined block, re-
questing new block from neighboring nodes, and new block transmission, respectively. LnewB
and LtransB are computed using uplink transmission, while LgetB is computed based on down-
link transmission as described in previous section.

For the PoW computation, a miner i∗, first finds out the desired PoW hash value, i∗ =
mini∈M wi. The fastest PoW computation among miners is Wi∗, the complementary cumula-
tive probability distribution ofWi∗ could be computed as Pr(Wi∗ > x) = Pr(mini∈M (Wi) >
x) =

∏H
i=1 Pr(Wi > x) = (1− Pr(W < x))M . Hence, the average computational latency of

miner i∗ is described as:

LWi∗ =
∫ ∞

0
(1− Pr(W ≤ x))Mx =

∫ ∞
0

e−λcMxx = 1
λcM

(C.19)

The total latency required from DLT verification process is LDLT = Ltm + LWi∗ . The
average energy consumption of DLT to finish a single PoW round is:

EDLT = PcLWi∗ + PtLtm (C.20)
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Table C.2: Comparison in Smart Contract Execution Cost

Protocols Operations Ether·10−4 Gas Cost Approx. USD

GT Deploy SC ≈1.2 1132443 0.2862

BoD Deploy SC ≈1.3 1268369 0.2879

SoD Deploy SC ≈1.4 1582349 0.3783

* 1 Ether = 109 Gwei; 1 USD = 4,182,471.9949 Gwei

The performance of DLT system is shown in Fig. C.5. The figure demonstrates that the energy
consumed and latency by DLT nodes are reduced with the number of miners. Contrarily, as the
number of miners increase, this leads to a higher probability that miners verify transactions, and
the mining speeds increase as well.

4.2 Analysis of data trading protocols
In this section, the E2E latency and energy consumption of three protocols are formulated and
compared approximately. The resource consumed by each data trading protocol is separated
into two parts, namely, 1) the connectivity between Si and Bi acting as light nodes in DLT
network with full nodes, and 2) the communication among DLT full nodes.

The E2E latency of trade Ti using GT protocol including the transmission latency between
Bi, Si and DLT verification nodes is described as below:

LP1
Ti = LP1

UD + LP1
DLT = Lu,P1 + Ld,P1 + LP1

DLT (C.21)

EP1
Ti = EP1

UD + EP1
DLT = Eu,P1 + Ed,P1 + EP1

DLT (C.22)

Assuming thatLu,P1
sync = Ld,P1

sync = 0.33 s, Lu,P1
rr andLd,P1

rr are computed as (7), Lu,P1
tx andLd,P1

rx

are calculated based on (8) and (9) with the defined packet length of uplink and downlink.
Then, the battery lifetime of an NB-IoT device can be computed as below:

BTL = E0
[
Tpu(Eu) + TpdEd

]−1
, (C.23)

where E0 is the energy storage on the device battery. Similarly, the performance of BoD proto-
col and SoD protocol can be formulated as GT protocol.

5 Performance Evaluation
In this section, we will introduce the settings in terms of simulations and experiments. Then, we
analyze the performance of proposed trading protocols in terms of latency and battery lifetime.

5.1 Experiment Settings
In this section, we evaluate the derived data trading model, compare and analyze the designed
trading protocols. In order to evaluate the derived model and compare the three proposed proto-
cols, we setup a network with N = 10000 NB-IoT devices, where devices randomly play roles
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Fig. C.6: Impact of number of DLT miners to latency of trading strategies.

as sellers or buyers. We validate the results via Monte Carlo Simulations, where we run 1000
realizations for each trading protocol and experiment. The buyer nodes and seller nodes gener-
ate requests following a Poisson distribution process with rates of λb and λs, respectively. The
number of buying and selling Ti requests per day varied from 1 to 20, Ti = [1, 20]. Additionally,
the number of buyer and seller nodes varied and remained less than N . The transmission power
in the experiments are denoted as Pt = 0.2W, E0 = 1000. The number of DLT miners are up
to 20 miners at maximum, M = [1, 20].

5.2 Cost of Smart Contracts

The proof of concept for the three proposed trading protocols are deployed in Ganache2 Ethereum
network to evaluate the complexity and the cost of execution of different trading strategies. The
smart contracts are implemented and deployed using Remix IDE3. In the Ethereum platform,
any operation or transaction execution that changes the Blockchain or its state requires that the
involved parties pay a fee called gas. The gas terminology in Ethereum charges the execu-
tion of every operation to guarantee that smart contracts running in Ethereum Virtual Machine
(EVM) [23] will be eventually terminated. These costs are calculated by using the amount of
gas executed and the unit of gas price. The gas required during any activity reflects the com-
putational complexity or size of the smart contracts, while the gas prices are determined by the
Ethereum miners in the network. Each operation or execution on the EVM charges a certain
amount of gas and not all transactions are created cost equally. In this work, we used Gwei4 to
evaluate the cost of different operations in the trading process.

Table C.2 shows the cost of the three protocol deployment and transaction costs to complete
a deal between a seller and a buyer. We observe that the approximate cost in USD for GT is
the cheapest in comparison to BoD and SoD protocols. The cost of smart contract execution is
generally expensive, therefore, it is preferred to use the GT protocol. In an environment with
a massive number of involved parties and transactions (e.g, marketplace), the transactions are

2https://www.trufflesuite.com/ganache
3https://remix.ethereum.org/
4https://www.cryps.info/
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executed autonomously to reduce costs using the available resources. While, BoD and SoD are
preferred when the users have requests with specific resources.

5.3 Latency to complete a deal

Impact of number of Miners

Fig. C.6 shows the latency of three trading protocols. Both the analysis and the simulation
results show that the SoD protocol has higher latency to complete a deal between Si and Bi
because of extra steps. Note that the comparison is evaluated approximately because the laten-
cies depend on various factors such as the number of DLT miners, the length of blocks, and
level of difficulty. The verification latency of DLT miners is measured based on the Ganache
Ethereum network. In GT protocol, the smart contracts map selling requests ri with available
Di stored in the ledger and make a deal between Si and Bi immediately, so that it guarantees
efficient trading in the market. The average latency to complete a deal of GT protocol is around
4.5 seconds including latency of NB-IoT and DLT procedures. The BoD and SoD latencies are
higher because of extra procedures necessary to gather required information between customers
and producers. We observe that GT could be used in terms of applications which require low
latency. The downside of GT protocol is that the data requests must always be available to
settle the trade, so that it is matched with applications (e.g smart metering) where the type of
information is fixed.

Seller and Buyer Ratio

The impact of ratio between the number of sellers and buyers are demonstrated in Fig. C.7.
The figure also shows a comparison between trading protocols under varying NB-IoT uplink
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transmission rate, Ru = {5, 10, 15} Kbps and fixed downlink data rate at Rd = 15 Kbps. The
results show that i) the increase in the number of buyers requires more delay to complete a trade,
and ii) in contracts, increasing data rates help to provide a faster service.

5.4 Battery lifetime of NB-IoT devices
In general, the power consumption of battery lifetime during a reporting period depends on
length of data transmitting, bandwidth, MCL, latency, and RF module. Hence, the power con-
sumption of one trading protocol will be higher or lower than the other depending on the values
of these parameters. The battery lifetime capabilities of NB-IoT devices among three trading
protocols are compared and demonstrated in Fig. C.8. The number of uplink requests are varied
from 1 to 20 requests per day. We observe that the number of requests per day significantly
impacts to the battery lifetime of NB-IoT devices. In fact, the battery lifetime of around 10
years can be achieved with one report per day, however, for more frequent transmissions (e.g.
8 requests per day) the battery lifetime is reduced to around 1 year. Specifically, the GT trad-
ing protocol achieves over 11 years for 1 report per day, while BoD and SoD achieve around
10 years and 9 years, respectively. The fact is that applications such as smart metering, smart
parking using NB-IoT connectivity do not require frequent updates from sensors. In terms of in-
creasing number of requests daily up to 5, the battery lifetime is reduced significantly to around
2 years. Because for each buying or selling request, the NB-IoT devices start running protocol
with multiple operation until the trade is settled.

6 Conclusion
In this paper, we proposed the first benchmarking framework for evaluating data trading pro-
tocols. The framework includes a model and analysis of systematic DLT-based IoT data smart
trading protocols in massive NB-IoT deployments. We have proposed and analyzed three IoT
data trading protocols named General Trading, Buying on Demand, and Selling on Demand.
Considered collectively, these protocols cover a wide range of interesting scenarios, such as
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carbon emission trading or monitoring of vehicle emissions. We have conducted a comprehen-
sive analysis of these protocols in terms of communication and evaluated end-to-end latency,
battery lifetime, and resource consumption. In terms of performance, each protocol is tailored
to a different scenario. We conclude that the GT protocol should be used as primary protocol in
a data marketplace where massive amounts of data are available. Additionally, the BoD and SoD
protocols can be interchangeably used when there are particular demands from either buyers or
sellers.

To the best of our knowledge, this is the first work of its kind, providing a general benchmark
framework for data trading protocols in IoT environments. In the next iteration of this work,
we will first consider more elaborate utility models for the parties involved in trading. Second,
we will evaluate the performance of trading schemes in diverse network interfaces and real-life
networks.
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Abstract
As Machine Learning (ML) models are becoming increasingly complex, one of the central chal-
lenges is their deployment at scale, such that companies and organizations can create value
through Artificial Intelligence (AI). An emerging paradigm in ML is a federated approach where
the learning model is delivered to a group of heterogeneous agents partially, allowing agents
to train the model locally with their own data. However, the problem of valuation of models,
as well the questions of incentives for collaborative training and trading of data/models, have
received a limited treatment in the literature. In this paper, a new ecosystem of ML model trad-
ing over a trusted Blockchain-based network is proposed. The buyer can acquire the model of
interest from the ML market, and interested sellers spend local computations on their data to
enhance that model’s quality. In order to factor in the individual contribution of the local data
to the training of the model, we introduce the modified distributed Data Shapley Value (DSV),
namely Approximate Federated Shapley Value (AFS). At the same time, the trustworthiness of
the entire trading process is provided by the Distributed Ledger Technology (DLT). Extensive
experimental evaluation of the proposed approach shows a competitive run-time performance,
with a 15% drop in the cost of execution, and fairness in terms of incentives for the participants.

1 Introduction

1.1 Context, motivation and challenges
Personal IoT devices keep generating an enormous amount of sensing data that is expected to
reach 79.4 Zettabytes (ZB) globally in 2025 [1]. Several attempts to enhance and adapt busi-
ness workflows have been made towards exploiting the provision of IoT data [2, 3]. In this
regard, training machine learning models and data sharing are two popular uses of IoT data.
Furthermore, emerging diverse platforms for accessing and sharing IoT data connects various
distributed IoT devices/data sources, thereby facilitating suppliers to exchange their data [4].
For example, in IoT systems for air quality monitoring and emission control, Air Quality Index
(AQI) is a quantity defined to estimate the degree of severity for air pollution and CO2 emission
levels. AQI quantifies the concentration of various particles in the air, such as PM2.5 or PM5.0,
using state-of-the-art sensor devices [5]. There are two most popular measurement methods for
AQI: i) sensing-based [6], and ii) vision-based [7]. In the sensing-based method, the IoT sensor
devices are delivered around the area interest, e.g., city, urban, to collect the quality of the air
and emission levels. These measurements are then forwarded to the central server for further
analysis and calculation of AQI. In the vision-based method, the devices with an embedded
camera, such as a camera station in the road, or individual mobile phones, can take photos of a
specific area and send them to the server. The server then applies advanced image processing
techniques on these images to derive the analysis report of air quality. However, both methods
have problems due to (i) high energy consumption for collecting data and transmission, (ii) re-
quirement for a large dataset for a high quality AQI estimation, (iii) the server acting as a single
point of failure, and (iv) data privacy concerns under General Protection Regulation (GDPR).
Several recent works have addressed issues related to (i) using efficient resource management
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Fig. D.1: A motivation example: IoT devices contribute to train an ML model for the buyer to predict CO2 emission
levels and get incentives from their contributions.

techniques and (ii) with dense sensory networks [8]. However, the primary concerns about (iii)
and (iv) remain a single point of failure network topology and data privacy protection. They are
yet to be addressed in an efficient manner.

In addition, the regulations such as EU’s GDPR, California’s Consumer Privacy Act (CCPA),
and China’s Cyber Security Law (CSL) [9] limits the reckless use/collection of personal infor-
mation and fosters data privacy. Hence, a feasible joint solution to address challenges raised in
(iii) and (iv) is imperative for optimized operation of the market for data exchange.

In this regard, more recently, Federated Learning (FL) has been considered a key solution
to address the privacy issue in training learning models [10]. FL is a distributed model training
paradigm that aims to solve the challenges of data governance and privacy by training algo-
rithms collaboratively rather than transferring the data itself.

For example, in a typical FL setting, at first, as shown in Fig. D.1, the IoT devices collect
the pollution and CO2 emission levels and store them in their local database. Consider an in-
terested organization or individual, termed a buyer, willing to train an ML model to predict a
specific area’s emission level. However, they do not possess sufficiently large datasets about
sensing information or image data. In such a scenario, they can send their initial model to a
model marketplace to find appropriate parties interested in contributing to the model training
process. Then, the IoT devices, termed sellers, can download the initial model and train it using
their local data. After that, the IoT devices can share the updated model weights to the market-
place, where there is an aggregator to aggregate submitted local models to build global models.
Based on the aggregated global models, the model buyer can use the global model to predict
the emission levels with acceptable precision. In this manner, using the FL approach, we can
address the problem of data privacy where data is locally trained without the need to transmit
to a central server. However, from a systems perspective, a shared IT environment, such as an
aggregator in the marketplace, may become a single point of failure in terms of data integrity,
trust, security, and transparency [11]. A conventional data market is often deployed as a cen-
tralized service platform that gathers and sells raw or processed data from data owners (e.g.,
the trained learning models) to the consumers [12] [13]. This leads to two important concerns.
First, this strategy exposes the platform as a single point of security risk; the malfunctioning
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platform servers has serious security concerns including data leakage, inaccurate calculations
results, and manipulation of data price. Second, collaboration for model training raises ques-
tions in terms of how to motivate participants to participate in such an ML training endeavor.
The incentive for each IoT client based on their contribution should be fair and transparent.
These features are not present in a standard FL setup, as in many applications there is no clear
and natural incentive mechanism for involved participants to provide quality information. This
calls for a carefully designed mechanisms to reward parties economically and thus incentivize
participation [14, 15]. For example, a fixed price per data point could motivate participants to
collect massive amounts of low quality or fake data if there is no intermediary process to check
quality of training data. Besides, another reason that may disincentives parties from sharing
data could stem from privacy and integrity concerns regarding the use of participant’s data once
it is shared. For instance, the sellers can re-use the data which has already been sold.

The aforementioned challenges can be effectively handled by a Distributed Ledger Tech-
nologies (DLTs).1 DLTs and Blockchains enable untrusted parties to share information in an
immutable and transparent manner [16]. Outside of its key role in financial transactions, the ap-
plications of DLTs can be seen as a key enabler for trusted and reliable distributed IoT systems,
e.g., a distributed IoT data marketplace. For instance, in a Blockchain-enabled IoT data market-
place [17], Blockchain transactions include IoT sensing data, or system control messages, and
these are recorded and synchronized in a distributed manner in all the involved participants of
the network [18]. Furthermore, DLTs enable the preservation of all transactions in immutable
records, with each record being spread across several participants. Thus, the decentralized na-
ture of DLTs ensures security, as does the use of robust public-key encryption and cryptographic
hashes. The advantages of incorporating DLTs into trading ML models in IoT systems include:
i) ensuring immutability and transparency for historical ML model trading records, ii) eliminat-
ing the need for third parties, and iii) developing a transparent system for AI model trading in
heterogeneous networks to prevent tampering and injection of fake data from the stakeholders,
according to [19, 20]. With the wide spread of ubiquitous marketplaces recently, it became
relevant to investigate the use of ML model trading in marketplace environments.

With the aforementioned motivation, we propose a Blockchain-based model trading system
which enables a secured and trusted marketplace to collaboratively train ML models as well
as guarantees fair incentives for every participants and privacy of data. Based on the quality
of the uploaded models, which is quantified by using a distributed Data Shapley Value (DSV),
the participants2 can get the incentive based on the updated models, for example, as tokens or
fiats. Note that based on our proposed system, the parties do not need to share their local data,
but only provide customized models or query interface to the marketplace. Consequently, the
proposed system allows multiple participants to jointly train the ML models on the marketplace
based on their own training data. Buyers who need to train their ML model will pay to the
market for the improvement of their model, and sellers who sell their contribution to train the
ML models will get paid by the market via smart contracts.

The main features of the proposed model trading are:

1. Trusted and transparent transactions: The DLT is considered a trusted, tamper-proof,
and transparent system in which the participants can check and follow the progress of a

1In this work, the terms Blockchain and DLT are used interchangeably. Blockchains are a type of DLT, where nodes
maintain a copy of the ledger having embedded chains of blocks. These blocks are basically composed of digital pieces
of information, particularly defined as transactions.

2The terms “participants",“clients" and “agents" in this work are used to refer to “IoT devices".
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training task. Based on that, the model is exchanged and traded securely and transpar-
ently.

2. Valuation of Data: The local models contributed by the trainers (service sellers) are
collected and evaluated via Shapley Value (SV) extension to approximately estimate the
quality of the models.

3. Fair Payment: The participants receive their reward, which is proportional to the useful-
ness of their data in improving the models. The distributed incentive mechanism for FL
based on SV measures participants’ contributions in the marketplace.

1.2 Contributions and Paper Organization
In this paper, we develop a marketplace for trading ML model where we leverage the attributes
of Blockchain network and unleash a tamper-proof, fair sharing of offered incentives between
the participants, particularly, based on the marginal contribution of their data for improving the
trained model. In the following, we summarized the major contributions of this work.

• ML Model Marketplace: We develop a Blockchain-based model trading system that
allows participants to purchase learning models and sell contributions in training them.
The system records the trading details in a tamper-proof distributed ledger, similar to
[17]. However, differently from [17], where only the system-level parameters concerning
computation and communication efficiency for IoT data trading are analyzed, here we
design mechanisms to factor in the individual contribution of data and the corresponding
incentive design to realize an ML model marketplace.

• Federated Data Shapley Value (SV): We propose the use of data SV to estimate the
valuation of participants’ data for the developed system and evaluate their contribution
to the model during local training. We show that the standard SV value is inefficient
for distributed ML, and hence, design and deploy an extension of standard SV, namely
Approximate Federated Shapley Value (AFS), for our platform. The method is robust and
allows plugging any developed mapping functions related to the device’s local data into
the proposed distributed Shapley mechanism for value quantification. As a result, one can
design a contribution-based, efficient incentive mechanism to stimulate model trading.

• Fair Incentive Design: We design a fair incentive mechanism that ensures the amount
of tokens gets distributed amongst the participants as per their contribution in improv-
ing the model performance. In doing so, we have conducted extensive simulations and
experiments, demonstrating that the proposed approach shows a competitive run-time
performance, with a 15% drop in the cost of execution and fairness in terms of incentives
for the participants.

The rest of the article is organized as follows. Section II, presents the concepts of DLTs,
FL, as well as definition of data valuation schemes used in this paper. This is followed by
description of the system model of the marketplace for ML model trading and explain in detail
how the system works. In Section III, the value of ML models is calculated using the AFS.
Section IV contains description of the testbed and experimental results. Section V discusses
related works and finally, Section VI concludes the paper.
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Fig. D.2: Standard FL mechanism. It raises problems on "single point of failure" and transparency of client’s contribu-
tions.

2 Preliminaries

2.1 Standard FL
FL is a distributed machine learning setting in which numerous entities (clients) cooperate on
training a learning model without disclosing their available raw data [10]. Instead, clients dis-
tributively perform computations on their data and transfer obtained local learning parameters
updates to the server for aggregation process. The aggregated model, i.e., the global model,
is broadcast back to the clients for the next round of local computations resulting in the local
learning parameters. The interaction between the server and clients to solve the learning prob-
lem continues until an acceptable level of model accuracy is achieved [21]. In this manner, FL
offers (i) privacy-preserving benefits in the model training approach by not requiring clients to
share their local data to the server, and consequently, (ii) lower communication overhead by
offering distributed model training paradigm and exchange of model parameters only. Therein,
FL enables training ML models at edge networks

Fundamentally, there exists two main actors in the FL system: (i) the data owners, often
termed as participants, and (ii) the model owner, which is the FL server. Consider a set of N
data owners, defined as N = {1, 2, . . . , N}, where each of them has a private dataset Di∈N of
size Di. In Table D.1, we provide the summary of key notations used in this paper. Each data
owner i trains a local modelMi using its dataset Di and sends only the obtained local model
parameters to the FL server. Then, the FL server aggregates all the collected local models
to build a global model, MG =

∑
i∈NMi. This is where, in principle, the FL approach
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Table D.1: Summary of key notations.

Notation Meaning

MIi DLT miner i
N Set of N participants (clients)
Di Private local dataset of user i ∈ N
Di Size of local dataset of user i
Mi Local model of user i
MG Global model aggregated at DLTs
M0

G Initial global model at DLTs
L(·) Loss function
∇L(·) Gradient of the loss function
η Learning rate
Si Model trainer (or Seller) i
Bi Model owner (or Buyer) i
Pd Deposit from buyer
B Training batch size
A Training algorithm
U(·) Utility function
φi Valuation of data contributor i
E Number of local epochs for model training
T Number of training interactions
Ti A trade deal between Si and Bi
M̃ Approximated model

differs from the traditional centralized training where D = ∪i∈NDi is used to train a model
MT , i.e., data first gets aggregated centrally before the actual model training happens. In Fig.
D.2, we show a standard architecture and an overview mechanism of the FL training process.
We assume that the data owners are honest, i.e., actual private data will be used for the local
training, and correspondingly, the FL server will receive accurate local models from the data
owners. Following to which, the workflow of standard FL can be described as below.

First, considering the target application, the server decides the training task and defines the
corresponding data requirements. Furthermore, the server also specifies the hyper-parameters
of the global model and the training process, e.g., the learning rate η. The server then broadcasts
the initialized global modelM0

G and the learning task to a subset of selected participants. Next,
based on the global model Mt

G, where t denotes the current global iteration index, i.e., the
communication rounds between the participants and the server, each participant uses its local
data to update their model parametersMt

i. In doing so, during iteration t, the participant i ∈ N
aims at finding the optimal parametersMt

i that minimize the local loss problemL(Mt
i), defined

as the finite-sum of empirical risk functions as [10, 22]:

Mt
i = arg min

Mt
i

L(Mt
i). (D.1)

Each participant can solve (D.1) using well-known stochastic gradient descent (SGD) algorithm;
we formally call this procedure that solves (D.1) as local iteration. Note that the FL process
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Algorithm 1: Federated Averaging (FedAvg) Algorithm
Input: Local mini-batch size B, number of participants per interaction m, number of

global interactions T , number of local epochs E, and learning rate η.
Output: Global ModelMG.

1 Initialize:M0
G.

2 for each interaction t = {0, 1, 2, 3, . . . , T − 1} do
3 St ← (random set of m clients);
4 for each participant i ∈ St in parallel do
5 Mt+1

i ← LocalTraining(i,Mt
G);

6 Mt+1
G = 1∑

i∈N
Di

∑N
i=1DiMt+1

i ;

7 LocalTraining(i,M): Split local dataset Di to mini-batches of size B in the set B.
8 for local epoch e = {1, 2, 3, . . . , E} do
9 for each b ∈ B do

10 Mt
i ←Mt

i − η∇L(M; b);

11 ReturnMt
i to the server.

can train different ML models that essentially use the SGD method such as Support Vector
Machines (SVMs), neural networks, and linear regression. Next, the obtained local model
parameters from participants are sent back to the server, where they are aggregated to get the
global model parametersMt+1

G . Eventually, the global model is then broadcast back to the data
owners for the next round of local iteration, and the iterative process is continued. In doing so,
the server minimizes the global loss function L(Mt

G) as the following approximation in the
distributed setting of FL:

L
(
Mt

G

)
= 1
N

∑N

i=1
L
(
Mt

i

)
. (4)

However, a single server dependency in the traditional FL framework makes the system
vulnerable to threats, such as when the server behaves maliciously. Therefore, integrating FL
with DLTs should be a promising approach to address limitations [23].

2.2 Distributed Ledger as a Service for FL
DLT is a peer-to-peer distributed ledger that records transactions in a network in a transpar-
ent and immutable manner. Besides, smart contract, which is considered as a key innovation
in DLT/Blockchain area, provide programmability contracts to the DLTs, in the sense that the
defined agreements in contracts are executed autonomously. With the mentioned nature ad-
vantages of DLTs and smart contract, the FL framework running on the top of DLT should be
completely distributed and avoid the single point of failure issue.

In the DLT-based FL, we assume each client device is always connected to one of the DLT
miners and, if the physical connection with the current DLT miner becomes unavailable, then
the device will be automatically associated with another DLT miner. In each miner-device pair,
the DLT miner works as the leader of the associated IoT devices, and they are responsible for
uploading and downloading data or training models. During the training process, the IoT device
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Fig. D.3: The accuracy of Standard FL and DLT-based FL.

downloads the latest global model recorded in the ledger and trains for the updated version of
the local model using their private local data. After completing the local training, the device
uploads the local model to the paired DLT miner and the global aggregation process starts.
In the training time, all involved IoT devices are allow to download the latest information of
associated DLT miners to receive the evaluation of the IoT devices and global model updates.
Finally, each IoT device publishes its local training model and enters to a new round of local
iteration using the newest version of the obtained global model. In this manner, the iterative ML
model training process is operated until the global model has achieved a satisfactory accuracy
or convergence.

Each miner has its verifier and block to ensure that the real models and the contributions
of devices are updated. Each block contains a head and body parts. The blockhead contains a
pointer to the next block, and the body part contains a set of validated transaction information.
The local models are formed in transaction format and in order to make the solution scalable,
the local models are recorded in IFPS storage, such that just a hash version of the models is
recorded in the distributed ledger. The basic comparison between standard FL and DLT-based
FL is presented in Fig.D.3. The accuracy is similar in both standard FL and DLT-based FL, but
the time required for convergence of DLT-based FL is higher than standard FL because of extra
verification and consensus in the system.

2.3 Data valuation using Shapley Value
Game theory is an economic tool best-suited to analyze a system where two or more participants
get involved in to achieve a desired payoff. The Shapley Value (SV) is a solution concept of
fairly distributing the incentive and payoff for the involved parties in coalition [24]. In this
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regard, the SV applies mainly in scenarios where the contributions of each involved participant
are unequal, but all the participants work in cooperation with each other to achieve the payoff.
The SV of user i is defined as the average marginal contribution of i to all possible subsets of
D = {D1,D2, . . . ,DN} formed by other users as

φi(N,U) = 1
N !

∑
S⊆N\{i}

U(S ∪ {i})− U(S)(
N−1
|S|
) , (D.2)

where the functionU(·) gives the value for any subset of those users, e.g., let S be a subset ofN ,
then U(S) gives the value of that subset. This captures the average value of the contributions
of user i for subsets of all coalition of users. Intuitively, assume that the user’s data is to be
collected in a random order, and that every user i receives its marginal contribution for the
collected data. If we average these contributions over all the possible orders of N users, we
obtain φi(N,U). The importance of the SV is that it is the unique value division scheme that
satisfies the following desirable properties described as follows.

• Symmetry: For all S ⊆ N \ {i, j}, if user i and j are interchangeable, and U(S ∪ {i}) =
U(S ∪ {j}), then, φi = φj . Thus, the users i and j contribute the same amount to every
coalition of the other agents. Besides, the symmetry axiom states that such agents should
receive the same payments.

• Dummy User: User i is considered as dummy user if the amount that i contributes to
coalition is exactly the amount that i is able to achieve alone, i.e., ∀S, i /∈ S, U(S ∪
{i}) − U(S) = U({i}). According to the dummy user axiom, dummy users should be
compensated exactly for the amount they achieve on their own. Users that make zero
marginal contributions to all subsets of the data set, on the other hand, earn no compen-
sation, for example, φi = 0 if U(S ∪ {i}) = 0,∀S ⊆ N \ {i}.

• Additivity: For any twoU1 andU2, we have for any user i, φi(N,U1+U2) = φi(N,U1)+
φi(N,U2), where the game (N,U1 +U2) is defined by (U1 +U2)(S) = U1(S) +U2(S)
for every coalition S.

Based on these background knowledge, we designed a distributed marketplace for trading
ML models based on Blockchain and incentive mechanism in IoT environment.

3 Related Works
In this section, we first present the current works on asset trading based on Blockchain and data
valuation.

Blockchain-based asset trading. With the spread of ubiquitous marketplaces, it became
relevant to explore the application of IoT data trading in marketplace environments. For in-
stance, the authors in [25] considered a dynamic decentralized marketplace and introduced the
architecture for trading IoT data accordingly. The approach involves a 3-tier method is used: 1)
data provider, 2) broker and 3) data consumer. The primary purpose of DLTs in their function
is to manage the conditions of agreements between the parties involved. In addition, the design
has a reputation system that penalizes members and lowers their rating. The authors in [26]
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invested the optimization problem of revenue maximization with envy-free guarantee. The au-
thors studied two scenarios including unit demand consumers and single minded consumers,
and showed the optimization problem is APX-hard for both scenarios, which can be efficiently
addressed by a logarithmic approximation. The authors in [27] took into account the trading of
IoT streaming data with the presented marketplace model, where fraudulent activity during data
exchange is limited. To do so, the authors introduced periodic checkpoints during data trading.
In [28], the authors proposed another marketplace which flows of IoT data are the main digi-
tal assets exchanged utilizing Oracles for the off-chain queries.The authors in [29] presented a
trading mode based on smart contracts. In particular, the authors employ arbitration that handles
disputes during the data trading, particularly, over the data availability, and incorporates AI/ML
to ensure fairness during data exchange.

Data Valuation. Evaluating the value of data has been received significant attention from
both academia and industrial areas. Several works studied data valuation strategies and their
applications. In this regard, the authors in [30] defined the data valuation in several categories,
such as: (i) query-based pricing, where prices are attached to user-initiated queries [21], [31],
[32], (ii) data attribute-based pricing, where the price model considers data attributes, such as
the age of data and its credibility, using the mechanism of public price registries [33], and
(iii) auction-based pricing, where the price is dynamically set following auction mechanisms
[34, 35]. In [36],multiple approximation strategies for optimizing the computation complex
of SV for training data are introduced. Besides, the authors proposed an soltiion to compute
exact SC in specific scenario, e.g nearest neighbor classifiers. Besides, the SV also is applied
in various ML application, for example, to measure the importance of model features [37, 38].
In specific, the authors addressed the problem when the same data points get the same values,
and relationship between data distributions and SV function. In addition, the authors proposed
an idea of distributional SV occurs resemblance to the Aumann-SV [39]. In practical manner,
the authors in [40] proved that the performance of model training can be improved by removing
the data with low SV value. In contrast, the performance will be decreased if we deleting the
training data with high SV values.

4 System Design and Analysis

4.1 System Components
The general architecture of DLT-based model trading includes three main components: set
of model owners or buyers B, model trainers or sellers S, and a distributed ledger, shown in
Fig. D.4. We assume that each seller or buyer owns one device in the network. Within a deal (a
trade) by Ti, the seller Si ∈ S and buyer Bi ∈ B communicate using wireless links. The ML
model trading procedure occurs to complete a trade between Si and Bi by exchanging model
Mi and payment Pi. First and foremost, Bi completes the deposit Pd to Si via smart contracts
in reference to the requested training model, Mi. After the sellers complete the requests of
the buyers, in terms of accuracy, convergence time, etc, the smart contracts are autonomous
executed to pay for the effort of sellers using the amount of deposit Pd from buyers. Following
Fig. D.4, the general procedure of interaction between a single buyer Bi and a single seller Si
can be described as follows:
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Model Owner i (as buyer Bi)

Bi could be an individual or organization who needs model training. Bi sends a request bi
including task type, budget, deposit, amount of data, quality of data, price, discount, etc, to the
marketplace via smart contracts. bi will be transmitted to selected Si and recorded in the ledger
via transaction Ti,add. After receiving the trained and aggregated models from Si and market-
place which fulfills requirements regarding to, e.g., accuracy, the Bi generates a transaction
Ti,commit which executes payment from Bi’s wallet to smart contract, forwards the payment to
sellers, and generates a acknowledgment message back to the distributed ledger.

Model Trainer (as seller Si)

The model trainers play two main roles in the system: i) collects sensing data from the environ-
ment (e.g., data from surveillance systems, environmental sensing data, and geographical data),
or acts as a data hub gathering data from nearby physical devices; ii) subscribes the model train-
ing requests from the buyers, and train the models downloaded from the marketplace with the
local data. Seller Si earns the payment Pi from Bi after successful delivery ofMi to Bi. After
the trained models achieve a certain accuracy based on the predefined agreements in the smart
contract system, upon the appearance of Ti,commit generated by Bi, the seller Si can receive the
payment, e.g., via tokens, Pi, which is in fact the deposited amount Pd by the buyer Bi, from
the marketplace via smart contract. Finally, it confirms to the distributed ledger that the deal Ti
is completed via an acknowledgment message.

Distributed Ledgers

The Blockchain maintains a distributed ledger that stores the history of all traded models in the
form of blocks, which are connected in a chronological order. On top of that, the smart contracts
are deployed to autonomously control the order and execute payments, e.g,. large payment
or micro-payments from involved participants without the need of human intervention. In a
distributed manner, the smart contracts ensure transparency, trust and automotive of exchanging
data among parties. These features can be deployed based on the negotiation between model
owners and customers via Ti,deploy. Furthermore, any change in smart contracts, for example,
the amount of data or the model price, or updates in the discount offers, can be made via Ti,update.

In a trading system, there are an enormous amount of data exchanged among parties. Thus,
increasing the number of transactions leads to slower transaction processing time and, conse-
quently, the system’s overall speed. This is reasonable as every Blockchain node needs to store
and execute a computational task to validate every single transaction. Therefore, to minimize
the cost of storage and execution, the trading system should record only the important data,
such as payment history, aggregated global models, which could be hashed and recorded at the
distributed ledger. Meanwhile, the raw data can be recorded in the distributed off-line storage
component. In detail, after both model sellers Si and model owners Bi have fulfilled require-
ments defined by smart contracts, the Ti,settle is autonomously executed to query the payment
Pi from Bi. Then, the payment Pi is transferred to Si’s private wallet, while the aggregated
modelMi is delivered to the storage address of Bi. In the scope of this study, we assume that
the data services (e.g., data storage, trading and task dispatching) are implemented on top of a
permissionless Ethereum Blockchain [41]. In this work, the control data and ML models are
formatted into normal Ethereum transactions. Furthermore, in order to improve efficiency, only
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Fig. D.4: DLT-based ML Model Trading Framework Architecture. DLT-based marketplace with autonomous Smart
Contract execution provide a trusted, transparent and immutable platform for trading ML models.

the digest of each transaction is recorded in the distribute on-chain ledger, and the raw data is
stored off-chain by using IPFS (InterPlanetary File System).

4.2 Communication Workflow
In the DLT-based FL model trading network, we revisit the notation used to denote data owners
and define the set of participants as N = {1, 2, 3, . . . , N}. The miner MIi of DLT network is
associated randomly with the IoT device. For simplicity, we consider the case which one miner
is assigned to each physical IoT device. Each IoT device has to determine its own learning
task-related dataset size and upload it to the ledger system to receive a reward. A distributed
SV incorporates the quality of local data3 to determine the corresponding quality of the local
model. We realize that, in some cases, e.g., in healthcare, it would be better to extract features
and measuring the quality based on real quality and not quantity, but it is out of scope of this
research. In addition, in resource-constraint IoT environments, to reduce latency and optimize
energy consumption, each device’s local controller performs local optimizations to establish the
best scheduling policy for device resources, such as CPU cycles scheduling.

The workflow of the system is described as below.
Step 1 (Model Initialization): The buyer Bi initiates a modelMi which needs to be trained

and publishes to the DLT-based marketplace. The initial model is formed in the DLT transaction
format Tpublish.

3The quality of data signifies the size of dataset used in model training, similar to [36]. In this study, we do not
consider feature attributes of data to quantify its quality.
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Step 2 (Publish initialized model to the ledger): Then, the transaction Tpublish including
initialized modelMi is verified and recorded to the distributed ledger. At the same time, there
might be many available models on the marketplace.

Step 3 (Model Seller download train-required models): The potential seller Si can see the
list of available models on the marketplace and choose to download a copy of one or multiple
models of interest to train with its local data of Si.

Step 4 (Local Model Training): After downloading the models from the distributed ledger,
the sellers train the model based on their local data. The device, i.e., the seller Si, has its own
local dataset Di. Local model training aims to minimize the loss function f(Mi,Di), where
Mi is the local model of device di and Di is its local dataset.

Step 5 (Local trained model is updated to the ledger): Next, the device Si is randomly
associated with the miner MIi to which it uploads the trained local model to the distributed
ledger via smart contract. The smart contract has functions to record the updated local models
from clients via DLT interface, e.g., Web3.

Step 6 (Cross-verification of the local models): After receiving the local model published
by IoT device in the format of transactions, the DLT miner MIi put the local model in newly
generated blocks and broadcasts the model to other DLT miners in the network. Next, until
other DLT miners receive the broadcasted blocks, including the local models of clients, they
will verify the accuracy of local models and put the models to the new generated blocks. During
this process, all the aggregated models are broadcasted to the all DLT miners in the system, and
DLT miners will compare the consistency and accuracy among aggregated models. To that
end, the most one will be chosen as the correct global model. Then, DLTs miners record the
correct global model and the contribution of the IoT devices into the distributed ledger via smart
contracts features. Otherwise, the rest of global models are considered as faulty updates.

Step 7 (The generation and propagation of blocks): In order to generate a new block in the
distributed ledger, DLT miners need to compute a block hash for mining and solve a crypto-
graphic puzzle based on SHA-256, which is a one-way hash function. As defined in popular
Proof-of-Work (PoW) Blockchain, e.g., Bitcoin, Ethereum, DLT miners perform a PoW algo-
rithm until it finds a desired nonce value or receives a new generated block from other DLT
miners [42]. There is a case, however, that the MIi ∈ MI acts as the DLT miner that finds
the needed nonce value at the earliest, and its candidate block is generated as a new block and
propagated to the other DLT miners in the network. Meanwhile, the chain can be engaged in
forked problem in which multiple DLT miners find out a nonce value at the same moment. To
address this issue, we use an ACK message that allows DLT miners to transmit only when each
DLT miner gets the new block, which determines whether there is a fork on the main chain.
Then, the DLT miner MI0, which creates that newly generated block, will wait for a waiting
time defined by the block ACK. Otherwise, if a fork is generated again, the process back to to
previous phase to resolve the issue.

Step 8 (Settlement): After the model accuracy achieves a particular value in the smart con-
tract, the smart contract settles the deal between buyer and sellers. The finalized model is
updated to the buyer and the incentive is funded to the sellers.

Step 9 (Incentive to Sellers): Based on the contribution of each seller, the smart contract
computes their contribution and transfer to sellers appropriate funds. The smart contract pro-
vides a mechanism of transparent and immutable recording and accounting contribution logs on
the distributed ledger. Based on the contribution history from ledger, the clients can receive the
incentives and rewards in tokens via off-chain payment channels.
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Algorithm 2: AFS Algorithm
Input: Local minibatch size B, T is number of global interactions, number of local

epochs E, and learning rate η.
Output:MT , and φ1, φ2, . . . , φn.

1 Initialize:M0,M̃0
S , where S ⊆ N = {1, 2, 3 . . . , n}.

2 for each round t = {0, 1, 2, . . . , T} do
3 TransmitMt to i ∈ S clients;
4 Mt

i ←ModelUpdate(i,Mt);
5 δt+1

i ←Mt
i −Mt , ∀i ∈ N ;

6 Mt+1 ←Mt +
∑n
i=1

Di∑n

i=1
Di
· δt+1
i ;

7 for each subset S ⊆ N do
8 M̃t+1

S ← M̃t
S +

∑
i∈S

Di∑
i∈S

Di
· δt+1
i ;

9 Initialize: m = 0.
10 while Convergence criteria not meet do
11 m = m+ 1;
12 πm: random permutation of clients with data samples to collaboratively trainMT ;
13 vm0 ← U(M̃0

∅);
14 for n ∈ {1, 2, . . . , |S|} do
15 if |U(MS)− vmn−1| < PT then
16 vmn = vmn−1;
17 else
18 S ← {πm[1], πm[2], . . . , πm[n]};MT

S ←
∑
i∈S

Di∑
i∈S

Di
· M̃T

i ;

vmn ← U(MT
S );

19 φπm[n] ← m−1
m φπm−1[n] + 1

m (vmn − vmn−1);

20 ReturnMT , and φ1, φ2, . . . , φn.
21 ModelUpdate(i,M): Split local dataset Di to mini-batches of size B in the set B.
22 for local epoch e = {1, 2, 3, . . . , E} do
23 for each b ∈ B do
24 Mt

i ←Mt
i − η∇L(M; b);

25 ReturnMt
i to ledger.

Step 10 (Record receipt to the Ledger): All bills and receipts are recorded immutably in the
distributed ledger, which allows participants to check and control their deal. Besides, we also
implemented the off-chain storage solution named IPFS to store hashes of data locations on the
ledger instead of raw data files. The hashes can be used to query the exact file or models through
the DLT systems.
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4.3 Distributed Shapley Value (DSV) Calculation
The Standard Federated Shapley Value (SFSV) [43] calculates the SV of data contributors based
on (D.2). In our setting, the utility in (D.2) takes into account the value brought by a subset of
data contributors S in improving the performance of the trained global model after trading their
local modelsMS , defined hereafter as U(MS). Then, SFSV trains federated models based on
the different subsets S of contributors, and these models are evaluated on the standard test set.
However, computing the SV directly according to SFSV is time-consuming because models on
all the combinations of data sets need to be trained and evaluated. By default, the SV computes
the average contribution of a data source to every possible subset of other data sources. So
that, evaluating the SV incurs significant communication and computation cost when the data is
decentralized [44]. Consequently, for data SV in the FL environment, the methods in [36, 43]
to calculate SV introduce extra training rounds on combinations of datasets from different data
providers. Furthermore, the cost for extra rounds for training models could be expensive when
the data volume is large. Therefore, there is a need for new strategies to evaluate the data value
in FL.

The main idea to that end is to exploit the gradients information during the training process
of the global model M to approximately reconstruct the local models trained with different
combinations of the client’s datasets. Thereby, our approach (as described in Algorithm 2)
eliminates the burden for the local models to be frequently re-trained to evaluate clients’ con-
tributions. In fact, the SV does not consider the order of data sources. However, in FL, it is of
significant importance to take into account the order of data used for the model training so as
to ensure a fair convergence. Furthermore, the updates of model are enforced to diminish over
time by using, for example, a decaying learning rate [45]. Hence, the sources used towards the
end of the learning process could be less influential than those used earlier. Therefore, to ac-
commodate these attributes of learning properties in the decentralized model training paradigm
of FL, we need to define new and efficient ways to compute SV. In this regard, based on the
neutrality of FL, the SV for FL (FSV) could be computed in two different strategies. The first
method (called Single-Cal) reconstructs models by updating the initial global modelM in FL
with the gradients in different rounds and calculates the FSV by the performance of these re-
constructed models. For example, if we want to reconstruct the model ofM(i,j) trained on the
datasets of Di and Dj of corresponding users, use the gradients information from sellers i and
j in each round to update the initial global modelM generated by the buyer. Then, the contri-
bution is calculated using (D.2). The second method (called Multi-Cal) calculates FSV in each
training round by updating the global modelM from the previous training round with the value
of gradients in the current training round. Next, the FSVs are aggregated from multiple rounds
to get the final result. Therefore, there is no extra training process needed; these methods are
considered efficient. The main difference between these two strategies is that the first method
approximates models through complete global iterations and only evaluates them to find SV
afterwards. The second one approximates and evaluates models for every global iteration and
calculates the marginal contribution for each global iteration. So that makes the second method
more computationally expensive than the first one. To address this issue, we propose a new al-
gorithm AFS based on the first approach with the use of Truncated Monte-Carlo (TMC) [36] in
Algorithm 2. In principle, AFS is an engineered derivative of the TMC algorithm to characterize
clients’ contributions with their available data samples in the collaborative training framework.
In doing so, AFS evaluates the marginal contribution of each client instead of a subset of training
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data points, unlike the TMC method; thus, allowing clients to engage in the ML model trading
with the offered incentive signals based on their data contributions.

Specifically, the first part of the algorithm shows the operation of the distributed ledger,
lines 1–8 and lines 10–19. In line 1, the global modelM0 and reconstructed models based on
different chosen subsets S ⊆ N = {1, 2, . . . , N} are initialized. Next, the distributed ledgers
broadcast the global modelMt to n selected clients in each global training round t in line 3, and
then receive the updatesMt

i from these clients in line 4 and the gradients of clients δti ,∀i ∈ S
for model aggregation are computed. After that, the global model is updated in line 6 as

Mt+1 ←Mt +
n∑
i=1

Di∑n
i=1Di

· δt+1
i . (D.3)

Next, instead of updating all the local models Mt
i,∀i ∈ S in every global interactions t =

{0, 1, . . . , T}, we can update only n models M̃t
i and compute MT

S directly as a weighted
average at the end, as M̃t+1

i ← M̃t
i + Di∑n

i=1
Di
δt+1
i .

We observe that evaluation of a model incurs a considerable cost in terms of time, especially
if the test set is large. And with the basic idea of a single-round algorithm, we must reconstruct
and evaluate 2n models. Hence, we applied the method of TMC to decrease the computation
cost and developed a tailored variant of TMC, i.e., the AFS algorithm, to address this issue.
The details of the adapted TMC method is as follows. First, we sample a random permutation
of clients πm with their data samples used to train the global model [43]. After that, we scan
from the first clients to the last client and calculate the marginal contribution of every new
client’s data in the training process. By repeating this process over multiple permutations, the
approximation of SV is the average of all the calculated marginal contributions. The while loop
is run until certain convergence criteria are met. In this work, we stop the loop when the average
percentage change after a TMC iteration m is less than a certain performance threshold (PT).
For example, PT can be varied from 1%-2% from U(MS) .

In line 21, the trained federated model MT and the SVs are finally obtained. The local
training part for the clients (lines 22–25) show how the clients use private data to train the model
received from the distributed ledger. The clients use the classical gradient descent algorithm and
report their updated local modelsMi|i={1,2,3,...,n} to the distributed ledger.

4.4 Performance bound on AFS algorithm
An analytical bound on the AFS algorithm can be derived by taking the properties of TMC sam-
pling approach into account [36]. We consider AFS estimates the contribution of the individual
client in the federated setting for a supervised learning task with probability at least (1−α) that
our estimator error is ε. Then, we are interested in evaluating the general performance bound
on AFS such that

Pr(|φF − φS | ≥ ε) ≤ α, (D.4)

where φS =< φS1 , φ
S
2 , . . . , φ

S
n > is the vector of Shapley contributions generated by the stan-

dard SV and φF =< φF1 , φ
F
2 , . . . , φ

F
n > is the approximation FSV using the proposed AFS

method. Assume that we know the data distribution of clients to evaluate its marginal contri-
bution. Then, the sampling |S| made during the evaluation process reflects the bound on the
obtained approximation of AFS. Without loss of generality, we assume it is possible to quantify
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Fig. D.5: Performance analysis of AFS algorithm.

the range v of the client’s data marginal contribution in improving the global model. Then, we
have the following Lemma 1.

Lemma 1. Considering the TMC sampling approach [36] for evaluating the Shapley value,
we have a minimum permutation |S| for a known range of the client’s marginal contribution

v defining an upper bound of O
(

v
|S|

)
on AFS such that α ≥ 2 exp

(
−2|S|ε2

v2

)
satisfies for

0 < ε, α ≤ 1.

Proof. The proof can be derived using Hoeffding theorem [46] for a known range of marginal
contribution of clients. In practice, the distributed ledger can reuse the average of marginal
contributions of clients, with known range v, to derive a sampling permutation |S|. Then,

we have Pr
(∑

i∈S⊆N (φi − E(φi)) ≥ ∆
)
≤ 2 exp

(
−2|S|∆2

v2

)
. Taking the average of

marginal contributions on the left-hand side of the inequality, and combining it with (D.4),

we get Pr(|φF − φS | ≥ ε) ≤ 2 exp
(
−2|S|ε2

v2

)
. This concludes the proof.

In Fig. D.5, we show the results on performance analysis of AFS algorithm. We observed
variability in the minimum permutation |S| required to ensure a defined deviation between the
average value of contributions across clients, as measured using AFS, and the standard SV. For
tighter bounds, the number of required permutations is large. This is intuitive, as the distributed
ledger expects a larger sampling value |S| to define better confidence bound on the performance
that minimizes the approximation error using AFS.

5 Performance Evaluation

5.1 Experimental Settings
To demonstrate the applicability of our proposed system, we implement a proof-of-concept
for the trading model in an IoT network. In this section, we introduce enabling technologies
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Fig. D.6: Blockchain-enabled model trading testbed. The testbed includes DLT Ethereum network running over
Ganache, IPFS storage to address scalability issue, monitor dashboard and 5 IoT raspberry devices standing for mar-
ketplace participants as well as DLT clients.

involved with the prototype.

Distributed Ledger

In this study, we implement Ethereum platform for the experimental. Ethereum4 is a distributed
public blockchain network that focuses on running programming code of any decentralized ap-
plication. Specifically, Ethereum is a platform for sharing information across the globe that
cannot be manipulated or changed. Ethereum has its own cryptocurrency, called Ether (ETH),
and its own programming language, called Solidity. The decentralized applications on the net-
work is called Ðapps. Practically, Ethereum provides a convenient platform for development
and smart contracts system to integrate with FL. We run Ethereum network via Ganache5 which
is a personal blockchain for rapid Ethereum distributed application development.

Datasets

In the scope of this study, we conducted the experiments on the MNIST data set [47]. The
dataset contains around 60,000 training images and over 10,000 testing images. Each client
holds a part of dataset locally depending on the scenarios.

IoT Devices and Workstation

We use Raspberry Pi 3 with the following configurations: Pytorch, OS Raspbian GNU/Linux
10, and Python version 3.7. We note that CUDA is not available for the model. The workstation
has the system configurations as CPU i7-7700HQ, GPU GTX, Pytorch, OS Linux Ubuntu 20.04

4https://ethereum.org/
5https://www.trufflesuite.com/ganache
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, Python version 3.7.8 using Anaconda, and the CUDA version 11. These IoT devices are
connected via WiFi access point.

Evaluation Metrics.

We consider several performance metrics for comparison.

• Cost of Smart Contract: We study the fees made by users to compensate for the com-
puting energy required to process and validate transactions on the Ethereum.

• Incentive per worker: The amount of tokens delivered to sellers based on their contri-
butions of training the model.

• Maximum Different: The performance score function U(·) is chosen to be the accuracy
function. The SVs are then calculated according to the different schemes. For comparison
of the accuracy of the SV, all SVs calculated are first standardized by scaling them by a
common factor such that

∑n
i=1 φi = 1.

This is appropriate because profit distribution will likely be based on the percentage con-
tribution. Then, the maximum different Dmax measures the maximum difference that a data
provider should be allocated by the definition and by approximated calculation. The calculation
is shown as below:

Dmax = max
i∈{1,...,n}

|φFi − φSi |. (D.5)

Scenarios

• (S1). In Scenario 1, the compared algorithms have same distribution with same dataset
size, i.e., each client dataset Di,∀i ∈ N has the same amount of training image samples.

• (S2). In Scenario 2, we introduce the case with same distribution but different dataset
size. The training set is divided randomly into 5 parts with the same ratio of data size.

• (S3). In Scenario 3, we use different distribution with same dataset size. Each client’s
dataset Di,∀i ∈ {1, 2, 3, 4, 5} has the same size, but the training images are not equally
divided for each digit.

• (S4). In Scenario 4, we consider the case having an added noise feature with same dataset.
First, we split the training set in a similar manner as (S1). Afterwards, we generate
Gaussian noise for the dataset. This is done by adjusting the standard deviation of the
normal distribution.

5.2 Results

Smart Contract Execution Cost

In this part, the proof-of-concept of proposed model trading platform is deployed in a private
Ethereum Blockchain called Ganache6. In distributed application Dapps, the smart contract

6https://www.trufflesuite.com/ganache
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Table D.2: Execution cost of smart contracts

Smart Contracts From Gas Ether USD

Contract Registry 0x283D382F 1459430 15.9·10−5 0.0723
AddWorker 0x283D382F 452467 45.2·10−5 0.0692
AddWorker 0x283D382F 452545 45.2·10−5 0.0692
AddWorker 0x283D382F 452436 45.2·10−5 0.0692
AddWorker 0x283D382F 452545 45.2·10−5 0.0692
AddWorker 0x283D382F 452436 45.2·10−5 0.0692
ModelTransmission 0x5846F427 19374 19.3·10−5 0.1621
ModelTransmission 0x9dD8Fd06 243482 24.3·10−5 0.0902
ModelTransmission 0x98HF8F94 228779 22.3·10−5 0.1121
ModelTransmission 0x8H9FH780 253924 25.3·10−5 0.0951
ModelTransmission 0x0932FD99 263924 19.3·10−5 0.0571
ModelTraining 0x5846F427 223924 22.3·10−5 0.1021
ModelTraining 0x9DD8Fd06 253924 25.3·10−5 0.0951
ModelTraining 0x98HF8F94 193924 19.3·10−5 0.0571
ModelTraining 0x8H9FH780 253924 25.3·10−5 0.0951
ModelTraining 0x0932FD99 253924 19.3·10−5 0.0571
ModelAggregation 0x5846F427 324942 32.4·10−5 0.0766
ModelAggregation 0x9dD8Fd06 283445 22.4·10−5 0.0408
ModelAggregation 0x98HF8F94 214939 21.4·10−5 0.0709
ModelAggregation 0x8H9FH780 253924 25.3·10−5 0.0951
ModelAggregation 0x0932FD99 193924 19.3·10−5 0.0571
Settlement 0x283D382F 212559 21.3·10−5 0.0712
PayChannelExecute 0x283D382F 212538 21.2·10−5 0.0702

* 1 Ether = 109 Gwei; 1 USD = 246,940.5627 Gwei

plays as key role in controlling and autonomously executing pre-defined agreements between
the participants. We implemented and tested smart contracts using Remix IDE7. In Ethereum
network, there is a fee called gas, needed to pay for any operation or transaction execution
that changes the DLT states, which guarantees that smart contracts running in Ethereum Virtual
Machine (EVM) [41] will be terminated eventually. In the scope of this research, we used
Gwei8 to evaluate the cost of different operations, for example, AddWorker, ModelTransmisson,
ModelTraining, or Settlement in the model trading process. The result is demonstrated in Table
D.2.

Incentive per client

In Fig. D.8, we show the comparison of received incentives by each training client based on
their contribution to the global model training. The incentive is equivalent to tokens clients
receive. As expected, in Fig. D.8a, where the MNIST dataset is divided equally with a ratio
of 2:2:2:2:2 for five involved clients, the amount of tokens they receive are almost similar as

7https://remix.ethereum.org/
8https://www.cryps.info/
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Fig. D.7: Shapley Value of each seller for different methods, namely Exact, Single-Cal, Multi-Cal, and AFS in four
scenarios. The application of SV in FL is not efficient due to increasing of communication in distributed systems in
comparison with centralized one, and the unbalance of data source distribution.
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(a) Received incentive per client with the dataset distribution
ratio 2:2:2:2:2.
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(b) Received incentive per client with the dataset distribution
ratio 3:3:2:1:1.

Fig. D.8: Incentive of clients received in tokens for their contribution efforts.

expected. In Fig. D.8b, we show the comparison of the received percentage of tokens that
clients can achieve with the dataset ratio of 3:3:2:1:1. We observe that client 1 and client 2 has
the same amount of dataset, so they receive the same amount of tokens for their contribution,
similar to the case for clients 4 and 5. Note that the sellers can train the models with poor quality,
which, in fact, reduces the stability and performance of the global models. In this regard, there
exist several mechanisms to handle such dishonest reporting of parameters in the FL setting,
such as [13, 29, 48]. Similar to this, the DLT keeps track of the contribution of devices and
the gradient information and the size of data samples to regularly infer (check) the relationship
between the expected model quality, reported data samples, and the obtained SV as Fig. D.7;
hence, dealing untruthful reporting. However, the detailed study of this mechanism is out of
scope for this work. In Fig. 8, the AFS shows a better performance while other methods turns
out quite random SVs, especially in scenario 2 and 4 where the size of dataset is random and
noise added.

Execution time and maximum different comparison

In Fig. D.9, we show the time performance of exact FL, Single-Cal, Multi-Cal, and AFS proto-
col. The Multi-Cal algorithm is more computational expensive than the Single-Cal algorithm.
The standard exact method is the slowest one because the standard SV is naturally not compati-
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(a) Runtime comparison of strategies.
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Fig. D.9: Comparison of execution time andDmax between algorithms, Exact, Single-Cal, Multi-Cal, and AFS, in four
different scenarios. AFS is outperform compared with standard Exact, and approximately faster 15% compared with
Multi-Cal and Single-Cal for measuring contribution of participants.

ble with the FL. In the Scenario 1, each worker has same quality and quantity of dataset, so that
we expect each worker has same contribution and receive equally the amount of incentive. The
results show that the Single-Cal and AFS algorithm have higher efficiency in execution time.
The exact method is around 5 times slower than the rest of methods because of frequent model
retrain process. Meanwhile, the Dmax of methods are relatively low, around 0.05. Similar in
Scenario 2 with the same size of dataset and different distribution, AFS and Single-Cal have
better performance in running time and the accuracy. In Scenario 3, we observe the Single-Cal
method performs better in the setting with same data size but different distributions, and further,
it also requires fewer permutation coverage as compared to Multi-Cal, and nominally higher
than the AFS. However, in Scenario 4 with more noisy data, the Multi-Cal shows better results,
≈ 10% in run-time but and ≈ 15% in terms of maximum different value.

6 Conclusion
In this paper, we proposed a DLT-based marketplace for trading ML models, which helps com-
panies and organizations train their learning models in a scalable and efficient manner. An
incentive mechanism exists to stimulate participants in joining and training the learning models
on the marketplace, which pays participants based on their contributions to train the model. To
that end, an extended Data Shapley Value (DSV) for the federated environment is proposed to
measure each participant’s contribution in the model training process. Finally, with extensive
experimental evaluations with Ethereum Blockchain to build a marketplace for model trading
using smart contracts and IoT devices acting as participants, we demonstrated the design and
performance of the proposed ecosystem.
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Abstract
Urban areas are negatively impacted by Carbon Dioxide (CO2) and Nitrogen Oxide (NOx)
emissions. In order to achieve a cost-effective reduction of greenhouse gas emissions and to
combat climate change, the European Union (EU) introduced an Emissions Trading System
(ETS) where organizations can buy or receive emission allowances as needed. The current ETS
is a centralized one, consisting of a set of complex rules. It is currently administered at the
organizational level and is used for fixed-point sources of pollution such as factories, power
plants, and refineries. However, the current ETS cannot efficiently cope with vehicle mobility,
even though vehicles are one of the primary sources of CO2 and NOx emissions. In this study, we
propose a new distributed Blockchain-based emissions allowance trading system called B-ETS.
This system enables transparent and trustworthy data exchange as well as trading of allowances
among vehicles, relying on vehicle-to-vehicle communication. In addition, we introduce an eco-
nomic incentive-based mechanism that appeals to individual drivers and leads them to modify
their driving behavior in order to reduce emissions. The efficiency of the proposed system is
studied through extensive simulations, showing how increased vehicle connectivity can lead to
reduction of the emissions generated from those vehicles. We demonstrate that our method can
be used for full life-cycle monitoring and fuel economy reporting. This leads us to conjecture
that the proposed system could lead to important behavioural changes among the drivers.

1 Introduction
Typical passenger vehicles emit about 4.6 metric tons of carbon dioxide CO2 per year. The
European Union’s Emission Trading System (EU-ETS) is the world’s first major carbon trading
market with the main goal to combat climate change and reduce Greenhouse Gas (GHG) emis-
sions in a cost effective way. The EU-ETS works on a Cap-and-Trade (CAP) principle which
allows companies that generate point source emissions to receive or buy emission allowances,
which can be traded as needed [1]. The process of our B-ETS CAP program is described in
Figure E.1, where it is seen that it is based on a complex centralized method of trading among
the organizations involved. The first step in CAP is to make a centralized decision (by a regu-
latory agency or some other collective entity) on the aggregate quantity of emissions allowed.
Allowances are then written in accordance with this quantity, after which they are distributed
among the sources responsible for the emissions.

Since 2018, the EU-ETS began penalizing vehicle manufacturers for exceeding the targets
for fleet-wide emissions for new vehicles sold in any given year. The manufacturers are required
to pay an excess emissions premium for each newly registered car. A penalty of e95 must be
paid for each gram per km above the target [1] and the target of CO2 for the 2020-2021 period
is set to 95 grams per km. In this work, we address the need for a new trusted and distributed
system which can audit emissions at the vehicle-level.

The emerging Distributed Ledger Technologies (DLTs) brought a new era of distributed
peer-to-peer applications and guarantees trust among involved parties. The terms DLT and
Blockchain will be used interchangeably throughout this paper, Blockchains are a type of DLTs,
where chains of blocks are made up of digital pieces of information called transactions and ev-
ery node maintains a copy of the ledger. In DLTs, the authentication process relies on consensus
among multiple nodes in the network [2]. Each record has a timestamp and cryptographic sig-
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nature; the system is secure and maintains a transaction ledger that is immutable and traceable.
Ultimately, the goal of applying Blockchain technology to the transportation industry is to pro-
vide a fully distributed ETS system that can encourage direct communication between producers
and consumers. A primary reason to embrace new DLTs is to bypass the administrative pitfalls
that have plagued current emissions monitoring systems. Security is another aspect that moti-
vates this approach. For instance, data pollution attacks are incredibly dangerous, these attacks
typically occur in centralized systems and involve an adversary trying to modify the content of
the packets and then forward the corrupted messages to neighboring nodes. The integration of
Blockchain in individual carbon trading will accelerate the involvement of the public in carbon
trading and sensitize society to individual level carbon footprints.

Current V2V approaches have limitations such as: the need for trusted third-party entities,
security hardware, higher communication and storage overhead, high implementation costs, and
issues related to the confidentiality of data. Studies [3], [4], [5] have strictly considered Vehicle-
to-Infrastructure (V2I) approaches incorporating additional resources such as On-board Units
(OBUs) and Roadside Units (RSUs). Eckert et al. develop a carbon Blockchain framework for
Smart Mobility Data-Market as a trading system for CO2 in the form of carbon tokens in [6].
The evaluation is done on the user and vehicular levels. Pan et al. outlined some advantages of
the use of Blockchain in ETS namely safety and reliability, efficiency, convenience, openness
and inclusiveness [7]. That work was not concerned with V2V networks or mobile carbon
emissions trading, but it did introduce the concept of personal carbon emissions trading which
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could be applied in vehicular networks.
In this study, we first tackle the challenges of the current EU-ETS system by proposing a

distributed emissions allowance trading system called B-ETS. The system creates an account
for the emissions generated from each vehicle and allows exchanges among vehicles in a trusted
manner based on Blockchain and Smart Contracts. In B-ETS, each vehicle acts as a light client
in the global Blockchain network and manages its own Emission Allowance Balance (EAB)
which is reset at the beginning of each day. The EAB data is recorded transparently and im-
mutably in the distributed ledger. It should be noted that we use one day as our unit of time
without loss of generality. Any other unit (a week, a month) could be used if that seemed more
suitable.

Then, we introduce an economic incentive-based mechanism which attracts drivers to change
their driving behavior in order to reduce emissions. Each vehicle’s generated emissions are cal-
culated and the data are recorded immutably in the distributed ledger. If the emission level is
higher than the defined threshold, the EAB will be reduced. If the EAB goes to zero, the driver
needs to buy credits in the form of EAB from others.

The proposed V2V-based allowance trading system would not replace the in-service fleet-
wide monitoring required by the EU-ETS plan. Rather, it would complement that plan by
making it the responsibility of drivers to meet personal emissions targets. That is, without
individualized feedback, drivers cannot measure the environmental impacts of their actions.
Furthermore, without incentives, they might not be willing to contribute to environmental sus-
tainability.

Given the proposed B-ETS system, vehicles participating in the program will be influenced
by the economic incentive. Drivers are more prone to behave better when their EAB and driving
privileges are at stake. If drivers contribute to lower emissions (i.e., demonstrate healthy driving
habits), their EAB will increase or remain positive. Essentially, drivers want to avoid having
to purchase credits from others or having a negative EAB balance as this could lead to driving
restrictions.

Our mechanism can be compared to the traffic point penalty system in the U.S., Canada and
other countries. As punishment for committing traffic violations, the drivers risk the suspension
or revocation of their license based on a point-record mechanism in place. As a result, the De-
partment of Motor Vehicles (DMV) can revoke the driver’s license of that person and they are
not allowed to drive any motor vehicle. In order to mitigate the social cost of license suspen-
sions, point-removal systems exist for most point-record drivers licenses [8]. In contrast, our
system proposes a daily (or weekly or other period as appropriate) record of associated driving
behaviors with vehicle emissions data and individual accounts.

The execution of the smart contract guarantees trust among vehicles and driving habits, (e.g,
avoid idling, speeding, etc) and CO2 levels. Vehicles in the system are alerted via rules defined
in the smart contract to reduce emissions [9] [3].

Our solution to reducing vehicle CO2 emissions involves the use of DLT-enabled emissions
monitoring, which could be applicable to any market worldwide. In this work, we focus on the
EU, but, our method can comply with regulations in China and could be implemented in the US
to measure life-cycle Corporate Average Fuel Efficiency (CAFE) standards.

The contributions of this study are described as follows:

• First, we propose a distributed Blockchain-based emission trading system named B-ETS
that will meet the requirements of the EU-ETS plan for reducing vehicular emissions.
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Table E.1: Nomenclature

Symbols Descriptions

T Considered system period [hours]
V Set of vehicles
i Vehicle i ∈ V
Ts CO2 sampling period
εi(t) Average CO2 emissions per km for vehicle i at time t
Bi(t) Emission allowance balance of vehicle i at time t ∈ [0, T )
pi(t) Penalty/tax for vehicle i at time t
si(t) Incentive (subsidy) for vehicle i at time t
Ltotal Total allowed latency
Ltrans Communication latency
Lcomp Blockchain verification latency
R Communication data rate [packets/s]
vi(t) Speed of vehicle i at time t [km/h]
SB Blockchain block size in bits
vij(t) Relative speed between i and j at time t
rij Communication Range between i and j
ei,j(t) Allowances sold by j to i at time t
T Maximum allowed CO2 emissions generated by vehicles per km.

B-ETS overcomes the disadvantages of current centralized ETS systems and provides a
trustworthy approach for exchanging data in vehicle-to-vehicle networks.

• Second, we introduce an economic incentive-based system which motivates drivers to
reduce fuel consumption and pollution. Based on the autonomous execution of smart
contracts, the incentive mechanism is guaranteed to work in a trusted and distributed
manner.

• Third, realizing the lack of communication and computation analysis in Blockchain-
enabled vehicle networks, we present a theoretical model to derive the communication
efficiency of the proposed system B-ETS.

The remainder of this paper is organized as follows. In the next section, we present the system
model and analysis. In section III, the performance evaluation is outlined including our results.
Finally, in section IV, we provide our conclusion and plan future work.

2 System Model and Analysis

2.1 Blockchain as a Ledger for VANET
The system operates within periods of duration T . In this section, we describe the two major
system components: the vehicles and the distributed ledger, followed by the selected model for
CO2 emissions. Table E.1 presents the nomenclature used throughout the paper.
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Vehicles

Let V be the set of vehicles in the system. An On-Board-Unit (OBU) is installed in each vehicle
i ∈ V in the Blockchain-based VANET. The OBU performs light tasks, including collection and
transmission data to other vehicles according to the IEEE 802.11p communication standard, and
provides support to passengers and drivers.

Within each system period of duration T , the CO2 emission monitoring system takes sam-
ples of the average CO2 emissions per km in each vehicle i and updates the ledger. The CO2
is sampled at fixed intervals of duration Ts < T hours. The sample taken by vehicle i at time
t ∈ {0, Ts, 2Ts, . . . , T} hours is denoted as εi(t) and consists of the taken measurement, the
vehicle ID i, and a timestamp, generated as a function of t. The amount of CO2 generated at the
vehicles is reset to zero at the beginning of each period of duration T , hence, εi(0) = 0.

Distributed Ledger

The distributed ledger records the data exchange history grouped into blocks and linked together
chronologically. To minimize the cost of storage, the sensing data could be hashed and stored
at more powerful nodes, and only the hash of data is recorded to the blockchain. Next, a
confirmation message is sent back to confirm that the data has been added to the ledger as
presented in Figure E.4. We assume that the data services (e.g., data storage, trading and task
dispatching) are implemented on top of a permissionless Blockchain [10].

In a permissionless blockchain, any peer can join and leave the network at any time as a
reader or writer. Permissionless Blockchains are open and decentralized with no central au-
thority. Bitcoin and Ethereum are instances of permissionless Blockchains. In contrast, in
permissioned Blockchains a central authority decides and attributes the right to individual peers
to participate in the write or read operations of the blockchain. Examples of these include
Hyperledger Fabric and R3 Corda [11].

The sensing data are formatted into transactions of fixed size. To enhance efficiency, only
the digest of each transaction is stored on the chain, and the content of the transactions are stored
by each consensus node off-chain or at the IPFS storage.
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Emissions Model

The amount of CO2 generated from vehicles depends on various factors such as: national aver-
age age distributions, vehicle activity speeds, operating modes, vehicle-miles traveled, starts and
idling, temperatures, maintenance, anti-tampering programs, and average gasoline fuel proper-
ties in that calendar year [12]. The calculation of emissions in our simulations are based on the
Handbook Emission Factors for Road Transport V3.1 (HBEFA), the model was implemented
by extracting the data from HBEFA and fitting them to a continuous function obtained by sim-
plifying the function of the power the vehicle engine must produce to overcome the driving
resistance force [13].

2.2 Emission Allowances Trading

Traditional Cap-and-Trade

Traditionally, cap-and-trade commonly refers to governmental regulations and programs in
place to limit the levels of CO2 emissions as a result of industry activity. As briefly mentioned,
the EU-ETS works on a cap and trade principle, where the cap is a dynamic limitation, set on
the total amount of GHG emitted by installations covered by the system. Within the system,
companies receive or buy emission allowances which can be traded. Although, vehicular emis-
sions were not initially considered, in 2006, researchers at MIT joint program on the science
and policy of global change introduced the implementation of a cap-and-trade policy for vehi-
cles. Their central conclusion indicated that there are important efficiency gains to be realized
by including transport emissions under the CAP and by integrating pre-existing programs, such
as CAFE, and cap-and-trade systems [14].

B-ETS Framework

Our B-ETS framework considers an economy where vehicles produce goods over a system
period [0, T ] hours. Therefore, each vehicle i acts as a wallet in the Blockchain network and its
EAB at time t is denoted as Bi(t) ∈ R. In the system, the updates to the EAB are triggered by
the sampling of the CO2 emissions of the vehicles, hence, the system operates at specific times
t ∈ {0, Ts, 2Ts, . . . }. At the beginning of each period of duration T , the EAB of each vehicle i
is reset to a pre-defined value Bi(0). So, the EAB cannot be accumulated between subsequent
periods. However, if i were to hold on to this initial allowance endowment until the end of the
period, it would be able to offset the system’s cap by up to Bi(0) units of emissions credits.
This is the cap aspect in our B-ETS scheme.

The EAB pertains to an individual account in which the allowances are used and exchanged
amongst vehicles for environmental sustainability. In order to offset penalties, the vehicles with
low balances may engage in buying allowances from vehicles that expect to meet demand with
fewer emissions than their own cap. This is our trade aspect of B-ETS framework.

Remark 1: A CAP program is only feasible in scenarios where the vehicles have a positive
allowance balance at the beginning of the periods. Hence, the following inequality must hold:

Bi(0) > 0 for all i ∈ V. (E.1)

The maximum allowed CO2 emissions generated by vehicles per km is denoted as T (which
is defined as a rule in smart contract). If εi(t) > T , then our initial smart contract is executed to
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generate an alert to i to reduce vehicle speed as a direct solution to reduce amount of generated
CO2, and the fine pi(t) will be deducted from its EAB. In contrast, the subsidy si(t) will be
endowed to i for maintaining the CO2 emissions below T .

The values of pi(t) and si(t) are considered as taxes and subsidies for vehicle i that depend
on their behavior. The incentive may help encourage the driver to control their driving behavior
to avoid generating CO2 higher than the allowed standard. The driver needs to choose between
receiving an incentive by reducing amount of emissions or being fined due to overloaded gen-
erated emissions. The penalties and subsidies are computed based on the theoretical model
presented in [16] which depends on various vehicular factors.

In order to increase the subsidies and reduce the penalties, the drivers can follow strategies
defined in smart contracts. For example, Figure E.3 shows that CO2 is a function of average
speed. First, we observe that very low average speeds generally represent stop and start driv-
ing periods, and vehicles traveling in short distances, in these cases, the emission rates are quite
high. In this period, the smart contract defines rules to increase traffic speeds and reduce conges-
tion by, for instance avoiding high traffic roads to reduce emissions. Second, when the speed of
the vehicle is too high, it demands high engine loads which require more fuel, leading to higher
CO2 emission rates. The techniques to manage high speeds are implemented in the contracts
which recommends the drivers to simply reduce their speeds. Consequently, moderate speeds of
around 40 to 60 mph are ideal speeds which reduce emissions and will give the drivers incentive
to improve their balances.

In addition, the EAB can be traded among vehicles based on predefined smart contracts.
Whenever Bi(t) < 0, there will be a red alert issued to i for having a negative-balance. This
alert is in the form of penalties, or restricted road access to zero-balance vehicles. In this cases,
the vehicles can either wait until the next period for their EAB of to be reset or buy the EAB
from other vehicles. We consider the case of vehicles exchanging EAB on-road via execution
of smart contract and distributed ledger. For this, let ei,j(t) be the amount of allowances sold
by vehicle j from vehicle i at time t. These operations are recorded in the distributed ledger.

Remark 2: The vehicle j cannot sell more allowances eij(t) than it actually owns. In other
words, i cannot buy more than is actually available. Hence,

ei,j(t) ≤ Bj(t), for all j ∈ V, t ∈ [0, T ) (E.2)

Operation

The operation of the vehicle’s emission allowance trading is performed in the following steps:
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Step 1. Publishing Data. Each vehicle i ∈ V computes its own average generated CO2 emis-
sions, namely, εi(t) as shown in Figure E.2 for t ∈ {0, Ts, 2Ts, . . . , T}. These values are
published to light ledger version of each vehicle and synchronized with the full ledger stored in
DLT full nodes.
Step 2. Emission Control. The generated CO2 emissions data is recorded in the ledger, and
the smart contract with the predefined rules is executed. These rules are characterized by two
categories namely maximum CO2 emissions and actions: warnings, alerts and reminders. The
published CO2 data is formatted and arranged into blocks to be verified through a consensus
process. If εi(t) > T , the smart contract issues an alert message to i to control its driving
behavior and pi(t) is deducted from Bi(t) via smart contract. Hence, the ledger is updated with
the value Bi(t)← Bi(t− Ts)− pi(t). In contrast, if j has maintained a safe speed and emitted
reasonable amounts of CO2, it received an incentive sj(t) to its balance. Hence, the ledger is
updated with Bj(t)← Bj(t− Ts) + sj(t).
Step 3. Emission Allowance Trading. After receiving a confirmation with the required action
from the smart contract, if Bi(t) < 0, then i needs to re-charge its EAB by buying emission
allowances from other vehicles. For example, i makes an agreement with j to buy an amount of
emission allowances ei,j(t). Then, i sends the buying request for the amount ei,j(t) to execute
a smart contract. Next, j updates the smart contract with a selling request and ei,j(t).
Step 4. Settlement. Finally, the EAB of each vehicle is updated and settled as Bi(t) ←
Bi(t) + ei,j(t) and Bj(t)← Bj(t)− ei,j(t).

In this paper, we focus on the efficiency of V2V communication between vehicles for ex-
changing data and trading EAB. We study these in terms of end-to-end latency which includes
the transmission latency among vehicles and computation latency of Blockchain validation pro-
cesses.
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Fig. E.5: Upper bound of total latency Ltotal for communication between vehicles.

2.3 Joint Communication and Computation Model
In this section, we define the total available time for communication between two vehicles and
the impact of the Blockchain computation latency.

Let (xi(t), yi(t)) denote the position of vehicle i at time t. If communication is initiated
at time t, the time in which two vehicles, namely i and j, are available for communication is
defined by 1) their communication range rij 2) their positions (xi(t), yi(t)) and (xj(t), yj(t)),
3) their relative speed, given by vector vij(t) = vi(t) − vj(t) km/h. Clearly, to initiate com-
munication at time t, the distance between the vehicles must be

di,j(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2 ≤ rij . (E.3)

Then, the total time for V2V communication between vehicles i and j at time t is given as

Ltotal(t) = max
`∈R
{` | di,j(`) ≤ rij} − t. (E.4)

It is immediate to see that Ltotal →∞ when ‖vij(t′)‖ → 0 for all t′ ∈ [t, `]. This implies that
whenever both vehicles move in the same direction and with near equal speed, they will have
a long time Ltotal to communicate and exchange messages. Furthermore, it can be seen that,
the upper bound for Ltotal seconds for the case where the relative speed vij(t′) km/h remains
constant for all t′ ∈ [t, `] is

L′total ≤
rij

1.8‖vij(t)‖
(E.5)

Figure E.5 illustrates the upper bound for Ltotal with several values of ‖vij(t)‖.
The time needed to complete a trade between two vehicles i and j in B-ETS can be divided

into two parts. First, the communication between vehicles, simply denoted as Ltrans, and,
second, the time needed for the verification process in the distributed ledger, denoted as Lcomp.
Hence, a trade is completed successfully if and only if

Ltotal ≥ Ltrans + Lcomp. (E.6)

From there, we define the probability of successful data trading as

Psuccess = Pr (Lcomp + Ltrans ≤ Ltotal) (E.7)
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The latency for the communication between vehicles i and j, denoted simply as Ltrans, is
a function of the amount of data that must be exchanged and the effective data rate selected for
communication R in packets per second. The data that must be exchanges is defined by the
block size of the Blockchain, denoted as SB . On the other hand, the effective data rate R is
determined by the implemented protocol, the wireless conditions (e.g., fading, noise, interfer-
ence, and number of active devices), and the modulation and coding scheme; where the latter
determines the instantaneous data rate. The implemented protocol for communication is the
IEEE 802.11p standard and the wireless environment are given in Section 3. Nevertheless, we
can approximate the latency for communication by assuming that the effective data rate remains
constant throughout the trade as

Ltrans ≈
SB
R
. (E.8)

The formulations to calculate Lcomp are presented in the following.

Blockchain computation latency

We consider a Blockchain-based VANET network that includes a subset of vehicles M ⊆ V
that work as miners. These miners start their Proof-of-work (PoW) mechanism computation
at the same time and keep executing the PoW process until one of the miners completes the
computational task by finding the desired hash value [17]. When a miner i executes the compu-
tational task for the POW of current block, the time period required to complete this PoW can be
formulated as an exponential random variable Wi whose distribution is fW (w, i) = λce

−λcw,
in which λc = λ0Pc presents for the computing speed of a miner, Pc is power consumption
for computation of a miner, and λ0 is a constant scaling factor. Once a miner completes its
PoW, it will broadcast messages to other miners, so that other miners can stop their PoW and
synchronize the new block.

For the PoW computation, we are interested in finding the time in which the first miner
i∗, among all the M = |M| miners, finds out the desired hash value. This is the time for the
fastest PoW computation among miners and denoted by the random variable Wi∗. By assuming
{Wi} are i.i.d. random variables, we can calculate the complementary cumulative probability
distribution of Wi∗ as

Pr(Wi∗ > w) = Pr
(

min
i∈M

(Wi) > w

)
=
∏
i∈M

Pr(Wi > w)

= (1− Pr(Wi < w))M , s.t. i ∈M. (E.9)

Hence, Lcomp is the average computational latency of the fastest miner i∗, calculated as

Lcomp =
∫ ∞

0
(1− Pr(Wi ≤ w))Mw =

∫ ∞
0

e−λcMww (E.10)

Now we can calculate the communication latency as Ltrans + Lcomp.
Note that it can occur that the communication delay exceeds the available communication

time Ltotal. In such a case, a proposed transactions with potentially valid PoW solution must
be abandoned. Hence, finding a valid puzzle solution does not guarantee that the proposed
transactions will be finally accepted by the network because of the propagation delay. In such
cases, a Blockchain fork can only be adopted as the canonical Blockchain state when it is first
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Table E.2: Smart Contract execution cost

Smart Contracts Gas Ether USD

UserAuthority 159430 15.9·10−5 0.0723
RecordData 152443 15.2·10−5 0.0692
AlertControl 213924 21.3·10−5 0.0971
Incentive 224934 22.4·10−5 0.1021
RecordData 276394 27.6·10−5 0.1254
EABTransfer 246374 24.6·10−5 0.1118

* 1 Ether = 109 Gwei; 1 USD = 4,182,471.9949 Gwei

disseminated across the network. In scope of this research, to simplify, we do not address the
problem of fork, please refer to [18] for more detail.

3 Performance Evaluation
In this section, we analyze the performance of our proposed B-ETS system.

In order to emulate a realistic vehicle network as presented in Figure E.2, a combination
of micro simulators, network libraries and open-source vehicular network simulators is em-
ployed. Specifically, SUMO [13], OMNET++ which runs in parallel via a proxy TCP connec-
tion, and Veins. The IEEE 802.11p standard is used for communication between vehicles and
a simple path loss model is selected. In each simulation, 120 vehicles are generated and lo-
cated randomly. The CO2 emissions are calculated reading the Traffic Control Interface (TraCI)
commands from SUMO. Ethereum is deployed as a ledger in the experiments by using local
Ganache platform.

The computational efforts to execute smart contracts in Blockchain are measured in units of
gas. The currency for Ethereum is Ether (ETH). In our simulations, the transaction costs and
execution costs are converted to ETH and USD, see Table E.2. The ETH gas station was used to
estimate the costs, the price is generated using a static average of 20 Gwei, where one Ether is
equivalent to 109 Wei. The transaction costs are the costs associated with sending the contract
codes to the Ethereum blockchain, dependent on the size of the contract.

The amount of CO2 generated from vehicles is dependent upon various factors such as:
speed, age of vehicles, etc. We ran two separate experiments to compare the amount of emis-
sions generated between a standard CAP system and a Blockchain-based system when the driv-
ing behavior is controlled. Figure E.6 illustrates the generated CO2 and NOx, along with the
V2V communication latency for the standard and the DLT-based trading. In the DLT-based
trading, vehicles follow defined rules such as dropping their speed in the smart contract. In
Figure E.6 we observe that the amount of CO2 and NOx generated from DLT-based system is
lower than conventional system. These results prove that our system has the ability to reduce
the overall CO2 emitted from vehicles on the network.

In B-ETS, the transactions exchanged between vehicles are encrypted, and verified before
attached in the distributed ledger. Therefore, the trusted recording and trading data is guaranteed
in comparison with standard system. However, because of extra verification steps in Blockchain,
the time to complete a transaction between vehicles is higher. This is a trade-off between trust
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Fig. E.6: Performance Evaluation. (a) and (b): The CO2 and NOx emission generated in standard and DLT based
systems; (c) Communication latency between standard and Blockchain-based system.

and latency in Blockchain-based systems.

4 Conclusion
In this paper, we first proposed a Blockchain-based Emission Trading System, called B-ETS,
to support the accounting and monitoring of emissions in vehicular networks. B-ETS provides
a trustworthy and transparency for accounting the emissions generated from vehicles. The ve-
hicles can exchange their emission allowances through autonomous smart contracts in a trusted
manner. We introduce an economic incentive scheme based on smart contracts to encourage
drivers to behave in environmentally friendly ways.

This work provides a mechanism for policy makers, vehicle manufacturers and the EU-ETS
to enforce the carbon emissions regulations in a more efficient, secure manner as well as to
perform full life-cycle analysis of vehicles. Using the proposed method could result in vehicle
manufacturer savings, ensuring that they are not subject to excess emissions fees at the end of
the year through the continuous monitoring and reporting of CO2.

The next stage of this work involves further analysis of the current system in two ways.
First, we will include the analysis of more pollutants such as Particulate Matter (PMx), Carbon
Monoxide (CO), Sulfur Dioxide (SO2) into B-ETS. Then, we will address the limitations of this
work by diversifying the vehicles on the network, thereby incorporating other types of vehicles
(other than passenger vehicles), such as: buses, vans and trucks.
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Abstract
In recent years, industrial manufacturing has undergone massive technological changes that
embrace digitalization and automation towards the vision of intelligent manufacturing plants.
With the aim of maximizing efficiency and profitability in production, an important goal is to en-
able flexible manufacturing, both, for the customer (desiring more individualized products) and
for the manufacturer (to adjust to market demands). Manufacturing-as-a-service can support
this through manufacturing plants that are used by different tenants who utilize the machines in
the plant, which are offered by different providers. To enable such pay-per-use business mod-
els, Distributed Ledger Technology (DLT) is a viable option to establish decentralized trust and
traceability. Thus, in this paper, we study potential DLT technologies for an efficient and intelli-
gent integration of DLT-based solutions in manufacturing environments. We propose a general
framework to adapt DLT in manufacturing, then we introduce the use case of shared manu-
facturing, which we utilize to study the communication and computation efficiency of selected
DLTs in resource-constrained wireless IoT networks.

1 Introduction
Industrial Internet of Things (IIoT) is a recent concept that gained traction with the emergence
of the wireless 5G technology and it is already exhibiting a great impact within the manu-
facturing domain [1]. The general trend is to embrace digitalization and automation towards
manufacturing plants that act as cyber-physical systems. This results in an increasing number
of smart devices with sensors and actuators that are being integrated in industrial automation
processes. In parallel, local edge computing infrastructures are being built up in manufacturing
plants, which provide resources for advanced computing and henceforth the basis for next gen-
eration IIoT applications [2]. The key economic driver behind this technological evolution is the
increase in the production flexibility. This allows for smaller lot sizes and more individualized
products for customers. These trends are supported by business models, such as manufacturing-
as-a-service, where manufacturing facilities are utilized more flexibly by numerous tenants who
utilize the machines in the plant, which are offered by different providers. These economic
forces drive manufacturing plants towards an increase in technological complexity and require
improvements in system reliability, intelligence, and trustworthiness during operation [3]. Es-
pecially the opening of the manufacturing plant’s ecosystem to a diverse set of involved parties
poses many challenges for manufacturing enterprises to satisfy the trust requirements of multi-
partner collaboration [4].

Distributed Ledger Technology (DLT) can be used to address those trust and privacy chal-
lenges in the manufacturing environment of the future, e.g., to transparently store machinery’s
usage data as a basis for pay-per-use business models on the manufacturing shop floor. A DLT
is a distributed ledger of transactions—rather than being kept in a single, centralized location,
the information is held by all the nodes of a network [5]. In general, all these network nodes
have copies of the same ledger. This removes the need for a third-party to assure that rules are
being implemented correctly, instead, this is implicitly done through a decentralized system.
Although the most widely known instance of DLT is blockchain, and, specifically, bitcoin, the
transactions on a DLT do not have to be financial. In essence, a transaction simply represents a
change in state for whichever data point the DLT’s stakeholders want to track. DLTs are driven
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by consensus: when a node or a DLT-client initiates a transaction, its details are broadcast to
the entire network, checked by other nodes and accepted if there is consensus. DLT-clients are
considered as lightweight devices which have limited resources and just initiate transactions,
as well as transmit transactions to DLT-managers to validate. Once a transaction has been val-
idated, it is bundled with other transactions into a block of data. Each block is secured via a
cryptographic algorithm. This results in a unique signature for each block known as a hash.
These blocks are then ordered sequentially into a chain of blocks, with each block also contain-
ing the previous block’s hash [6]. This makes it extremely difficult to tamper with a block, as
altering a single piece of data would result in a different hash value, making it evident to the
DLT’s users and causing the transaction to be rejected.

In short, DLTs allow the storage of transactions in immutable records and every record is
distributed across many nodes. Thus, security in DLTs comes from the decentralized operation,
but also from the use of strong public-key cryptography and cryptographic hashes. The key
benefits of the integration of DLTs into manufacturing systems are: i) auditable and guaranteed
immutability and transparency for stored data (e.g., machine usage data, sensing data about
machine conditions, or logs about user/technician engagements), ii) no need for a third party
to assure the rules between the different parties in the manufacturing ecosystem are met, iii)
enabling high security and privacy of information in manufacturing networks, which is urgently
needed as more than 25% of cyber attacks will involve IoT [7].

To showcase these benefits and to have a realistic use case as an example for our studies, we
implement in this work the DLT-based application of shared manufacturing, which relates to the
economic driver of ’flexible production’. Specifically, a robot arm, as part of a production cell
with multiple machines, is offered by a provider, who allows different tenants of the plant the
usage of the robot arm, while expecting a usage fee. In this application, the DLT is required to
capture the usage times of the robot arm through the various tenants, which is then the basis for a
correct billing and payment for usage time. Some parts of this process can be done automatically
with smart contracts. These involve two entities turning a business contract into code that
recognizes actions on the DLT. For example, a smart contract might recognize that a rental
of a machine from “provider A” to “customer B” on a certain date for a specific time period
should be for a specific price [8]. This simplifies processes that take significant time to check.
This structure gives DLT participants confidence in their transaction without the need to trust
each other. Nor do they need to agree on a trusted third party to make sure they’re both following
the rules. Because the ledger of transactions is consensus-based and distributed, records stored
in it cannot be erased or changed.

To be able to implement the above described application and reap the described benefits,
the system designs of current manufacturing plants need to be adjusted to be able to accom-
modate the operation of a DLT and overcome certain limitations: First, today’s computation
infrastructures of industrial manufacturing plants are typically designed as centralized systems,
where cloud services perform data aggregation and analysis [9]. While the manufacturing in-
frastructure comprises a multitude of IoT devices and sensors that collect data and have only
little computing power, the gathering and processing of data in a centralized cloud service may
lead to network overload and single points of failure [10]. To setup a DLT network in such an
environment, a sufficient amount of local computing capacity [11] needs to be available and,
potentially, edge computing facilities can be integrated in the computation infrastructure. Fur-
thermore, industrial communication systems have been traditionally designed for reliable oper-
ation in a noisy factory environment, employing mainly wired and proprietary communication
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technologies to connect sensors, actuators, and controllers. Nevertheless, with the emergence
of IIoT, future factories will increasingly rely on diverse communication technologies, includ-
ing wireless standards, to ensure reliability, interoperability, and remote operation and control
of production processes through the Internet. These wireless links are potentially less reliable
and are more constrained, which needs to be considered, when operating a DLT network. From
these limitations regarding the system infrastructure, we derive the key research question of this
work: "What is the computation and communication overhead that results from the operation
of a DLT network in a manufacturing environment?" The answer to this question will be crit-
ical to understand for future research on applications of DLT in manufacturing, as well as for
practitioners who want to deploy a DLT network in a manufacturing plant.

The use of DLT in manufacturing has received attention from both academia and indus-
try because of its promise for easing supply chain and manufacturing operation management
problems due to its advantages in transparency, traceability, and security. In industry, Bosch
increasingly connects their products to the IIoT in order to directly participate in the digital
economy. The goal is to build an Economy of Things, which will be based on DLT [12]. An-
other example is a concrete solution by Siemens, which enables their Mindsphere IIoT platform
to track products of the food and beverage industry transparently throughout their entire life
cycle based on DLT [13]. MindSphere exploits all useful information before forwarding only a
crucial subset to the distributed ledger. The DLT then makes sure the collected data is safe and
transparently accessible to everyone who is part of the ecosystem. In academia, Li et al. [14] in-
troduced a distributed P2P system that improves the security and scalability of the cloud-based
manufacturing platform based on DLT. Danzi et al. [15] analyze the communication aspects in
terms of delay and overhead between IoT devices and Blockchain network. The authors demon-
strate that, if the statistics of account updates and the channel state are known, the lightweight
IoT clients can construct a list of events of interest that provides a predictable average communi-
cation cost. In addition, a survey [16] about performance of different Blockchains is conducted,
but the work mainly focuses on theoretical aspects, and lacks a detailed analysis in specific
application areas such as manufacturing. Fu et al. [17] presented an innovative environmen-
tally sustainable DLT-energized strategy for the fashion apparel manufacturing industry. Yu et
al. [18] proposed a DLT-based service composition architecture for manufacturing. In general,
the public DLT-based applications are characterized by the distinctive metric of computational
trust.

In order to be able to answer our research question, we extend state-of-the-art through the
following research contributions:

• General analysis of different DLTs and their capabilities when used in industrial manu-
facturing environments;

• System design for DLT-based IIoT manufacturing systems that can integrate and adapt
multiple features and components;

• Evaluation of communication and computation overhead of different DLTs in resource-
constrained IoT networks. This benchmark of different DLTs for manufacturing scenarios
will help interested parties to understand the trade-offs in DLT-based systems.

The remainder of this paper is organized as follows. In the next section, we present the
results of this study. First, we present a general analysis of five different DLT platforms. Second,
we introduce a system design for using DLT in industrial manufacturing. Third, we implement
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Table F.1: Comparison of different enterprise DLT platforms

Hyper.
Fabric [19]

Quorum [20] Ethereum
[21]

IOTA [22] Solana [23]

DLT type Private Private Public / Pri-
vate

Public / Pri-
vate

Public / Pri-
vate

Goals Open DLT
framework

Open, based
on Ethereum

Broad
ecosystem

Lightweight High scala-
bility

Application Enterprise
DLT

Enterprise
DLT

DApps IoT DApps

Governance Linux
Foundation

ConsenSys Ethereum
Foundation

IOTA Foun-
dation

Solana

Currency N/A N/A Ether (ETH) MIOTA SOL

Consensus Pluggable Voting Proto-
col

PoW Tangle PoH

Smart Con-
tract

nodejs, go,
java

Solidity Java or
Kotlin

Solidity Rust

Throughput ∼2000 tps ∼100 tps ∼100 tps 1000∼1500
tps

∼1400 tps

Latency ∼250 ms ∼414 ms ∼2150 ms ∼ 258 ms ∼ 500 ms

the shared manufacturing use case and perform a performance evaluation of the five different
DLTs. Finally, we discuss our findings and indicate avenues for future research.

2 Results
In this section, we first study five different DLT platforms, then we propose a general framework
to integrate DLT in manufacturing. Finally, we implement the use case of shared manufacturing
and conduct the evaluation.

2.1 Analysis of DLTs for Industrial Manufacturing
Although a large number of DLTs are available, within the scope of whic work we have selected
five representative DLT platforms that are either already used or appear as most promising for
manufacturing environments: Hyperledger Fabric, Ethereum, Quorum, Solana, and IOTA. The
overview comparison of these DLTs is shown in Table F.1.

Each DLT can be categorized as public, private, or hybrid, where the latter one can support
features of both public and private ones. DLTs allow any user to pseudo-anonymously join the
DLT network and do not restrict the rights of the nodes on the network. We are investigating
in this paper the public DLTs Ethereum [21], IOTA [22], and Solana [23]. However, for the
implementation of our use case within a manufacturing plant such public DLTs are used in a
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private deployment by installing local networks. In contrast, private (or permissioned) DLTs
restrict access to their network to certain nodes and may also restrict the rights of nodes on the
network. In this paper, we are investigating the private DLT platforms Hyperledger Fabric [19]
and Quorum [20]. The identities of the users of a private DLT are known to the other users
of that private DLT. In a Hybrid DLT, every transaction can happen quickly in its own private
chain and commits to the public chain only happen as and when necessary, e.g., when public
verification is required. This provides the immutable trust from the public Blockchain as well
as the scaling from private DLTs. Layer 2 solutions and side-chains [24] are variations of this
concept.

Besides their type, the five DLTs have different goals and applications in focus. Hyper-
ledger Fabric and Quorum are both aiming to offer a open foundation for new components to
build a broad ecosystem that supports enterprises with various functionalities to deploy their
own private DLT. Ethereum has a large community of developers and already an established
ecosystem that focuses on decentralized applications (DApps), e.g., for decentralized finance.
Solana follows a similar application focus, while aiming for higher scalability than Ethereum.
IOTA’s focus is on IoT applications and therefore aims to support DLT participants with a small
footprint.

IIoT applications in the manufacturing environment will involve many stakeholders with
different roles, functionalities, and information with access rules, identities and security factors.
An important factor to provide security is the support to validate transactions generated by
participating nodes. While Hyperledger Fabric and Quorum are solely for the private setups,
Ethereum, IOTA and Solana are designed for public networks, but can also be configured for
private purposes. In terms of security, public networks can show certain advantages over private
ones, especially if they are able to provide transparency and distributed storage. For example,
in a public DLT, the data is encrypted and stored in all the devices, which makes it transparent.
Besides, the more users a public/permissionless DLT has, the more secure it is. However,
for enterprise use (i.e., also for typical manufacturing scenarios) public DLTs are not ideal
as companies deal with highly sensitive data and cannot allow anyone to join their network.
Also, private DLTs provide very low or no fees for validation and a faster consensus process.
However, a private DLT can be altered by its owners, making it more vulnerable to hacking [25].
Besides, only Hyperledger Fabric supports by default data confidentially via in-band encryption
and guarantees the privacy of data by creating private channels (e.g., to setup for departments
within an organization). Therefore, Hyperledger Fabric allows for authorization with trusted
Certificate Authority per channel. These features are vital in a trusted IoT system for enterprises.

Each DLT platform deploys a different consensus mechanism. Ethereum uses the Proof-of-
Work (PoW) consensus that requires involved parties of a network to expend effort solving a
mathematical puzzle to prevent anybody from gaming the system. PoW consensus consumes
significant computing and energy resources, which is not suitable for resource-limited systems.
Quorum, as an enterprise version of Ethereum, uses a voting-based consensus protocol. This
consensus protocol achieves consensus on transactions and key network decisions by counting
the number of votes cast by nodes on the networks and not consuming more energy for ver-
ification as compared to PoW. IOTA uses “little” PoW for preventing spamming attacks. In
Ethereum, doing PoW is to receive the power to define the truth, the node with more power can
solve the PoW faster and consume more energy. Meanwhile, IOTA use PoW with lower diffi-
culty to prevent spamming and to allow transactions to be attached in the Tangle. Hyeperledger
Fabric modularized the consensus part among distributed peers in an ordering service [19],
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so that this platform allows users to choose their preferred algorithm, e.g., CFT (crash fault-
tolerant) or BFT (byzantine fault-tolerant) ordering. Finally, Solana introduces a new consensus
algorithm called Proof-of-History which allows timestamp field to be built into the blockchain
itself instead of using values of timestamps as PoW DLTs.

Table F.1 specifies the smart contract programming language supported by the DLT. Smart
contracts act as autonomous entities on the ledger that deterministically execute logic expressed
as functions of the data that are written on the ledger. Therefore, smart contracts can be estab-
lished to have automatic reactions from the DLT network to specific events. For example, in the
use case of shared manufacturing, smart contracts can be used for restricting, tracking and pay-
ment for the usage of the rented machinery. The smart contract feature is currently supported
by Ethereum, Solana and Hyperledger Fabric (called ’Chaincode’). In IOTA, a smart contract
is called Quobic and its development is still in progress.

Furthermore, Table F.1 states the performance characteristics of the DLTs. These values
have been acquired both through our own experiments and the data available in the literature.
These measures are of vital importance for IoT applications, particularly in manufacturing,
where a large number of sensors may generate millions of data points per day. This requires high
efficiency of the consensus mechanism, including the way in which transactions are processed
by the peers, known as endorsing peers in Hyperledger Fabric, validators in Solana, and full
nodes (peers) in Ethereum. Specifically, we have Solana, with 600 nodes and around 1000
validators. Currently Solana is hosting around 340 apps [26]. Meanwhile, Ethereum has over
3000 Dapps running on its network. Regarding latency, the transaction confirmation time must
be sufficiently short to avoid queuing in the DLT and to ensure consistency in the ledgers. The
confirmation time of an Ethereum transaction in a public network is around 25 seconds in public
networks. This value indicates that consensus over public networks may not be suitable for real-
time IoT applications. However, other DLT platforms can achieve much lower confirmation
times [27]. Note that in Table F.1 the transaction confirmation time is included in the end-to-
end latency, which however does not account for the communication latency at the radio access
network.

Another important performance feature of the DLTs is related to the CPU usage and re-
sulting energy consumption. The idea that DLT technologies and crypto-assets consume an
excessive amount of electricity has been at the heart of recent discussions around this technol-
ogy. The energy consumption of a DLT protocol should not be equated with its environmental
footprint. Indeed, many use cases related to DLT technologies and crypto-assets may even
contribute to improving the environmental footprint, in particular by using the surplus of de-
carbonised energy in certain geographical areas where the need for electricity is lower than the
level of production [28]. In the scope of this work, we study the carbon footprint of the different
selected DLT platforms within the local testbed of the shared manufacturing use case.

The charge of fees to process the transactions, commonly known as gas is yet another factor
to take into account to select the appropriate DLT. These may greatly increase the operational
costs of the network, which negatively impacts the throughput of the DLT. On the one hand,
transaction fees pose a problem in massive IIoT scenarios if the generation of a large number of
transactions is essential. On the other hand, these fees may contribute to minimizing the amount
of redundant transactions generated by the sensors, which in turn offloads the DLT. In industrial
manufacturing domain, the required fee for generating transactions within a company or among
some cooperative organizational setup may not be suitable. In addition, businesses have always
required a reasonable degree of privacy as well as control over their networks, so that publishing
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the data on a Blockchain is not reasonable and potentially unsafe. Therefore, we consider only
private Blockchains for the enterprise scenario.

2.2 System Design for using DLT in Industrial Manufacturing
The proposed system design is described in Figure F.1. It comprises four key parts as described
below.

DLT System: This component includes all modules to build various features of DLT tech-
nologies such as consensus, smart contract, data authorization, identity management, and peer-
to-peer (P2P) communication. These components must ensure that every change to the ledger
is reflected in all copies in seconds or minutes and provide mechanisms for the secure storage
of the data generated by IoT devices and parameter configurations. There are numerous DLTs
with different characteristics that may be beneficial for different target applications. The DLT
nodes can be located everywhere and connected with base stations via the Internet.

Physical Machines: This component consists of physical robots, machines, and IoT sensor
devices which collect the data and publish to the distributed ledger for accounting or analyzing
purposes.

Plant Edge System: Even though DLT-based solutions offer significant countermeasures
to secure data from tampering and support the distributed nature of the IoT, the massive amount
of generated data from sensors and the high energy consumption required to verify transactions
make these procedures unsuitable to execute directly on resource-limited IoT devices. Instead,
edge servers with high computation resources can be used to handle real-time applications and to
further increase the degree of privacy (e.g., through cloud computing) [29]. The edge network is
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a potential entity to cooperate with the DLT network in computationally heavy tasks and return
the estimation results (e.g., from solving proof-of-work (PoW) puzzles, hashing or algorithm
encryption) to the DLT network for verification.

External Services: The devices of the manufacturing environment are typically resource-
constrained with limited storage space and low computation capacity. Hence, external infras-
tructure which operates on the edge may be incorporated to provide external services, such as
storage and computing. For example, the Interplanetary File System (IPFS) is a distributed file
storage system that can store data generated from IoT networks and return a hash to the ledger
based on the content of the data. Since the ledger cannot handle and store the massive amount
of manufacturing data collected by the sensors, machines, and robots, the service provided by
the IPFS is a vital component. In addition, a Digital Identity Management (DID) could be added
to support managing identity of participant devices in a distributed manner.

2.3 Performance Evaluation of DLTs in a Shared Manufacturing Use Case
In this section, we analyze the application of the Shared Manufacturing use case and study
its performance. The application uses DLT to automate the management of rentals of indus-
trial robots, where the manufacturing plant operators and their customers can make agreements
without third parties and the associated delay.

Along with data sharing [31] and vehicle sharing [32], the machine sharing concept in in-
dustry manufacturing has been recently identified as a key innovation for implementing the next
industrial evolutionary step [18]. Open and shared manufacturing factories are composed of a
number of industrial robots and other production machines that can be rented by customers. The
advantage over traditional manufacturing plants is that such plants can have a higher workload
and less idle periods, which in turn can make the production cheaper. Therefore, production
tasks need to be efficiently allocated on the available machine resources under consideration of
system performance.

Our shared manufacturing application scenario is described in Figure F.2a. As an initial step
(1), the plant operator of a factory publishes the list of machine resources which are available
for rent. Thereby, each machine has a unique ID and described capabilities to perform specific
jobs. A manufacturing marketplace running on a DLT-based network can be implemented in
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Table F.2: Testbed Settings

DLT-manger 1 DLT-manager 2 DLT-Client 1 DLT-client 2

Devices Siemens Mi-
crobox

Laptop Rapsberry Pi 3+ Raspberry Pi 3+

RAM 4GB 8 GB 1 GB 1GB

Connectivity Ethernet Ethernet Wifi Ethernet

Capacity Intel(R) Core
i7-351UE CPU
@ 1.70GHz x4
GHz

Intel(R)
Core(TM)
i7-8550U CPU
@ 1.80GHz 1.9
GHz

Quad Core 64
bit ARM cortex
at 1.2 GHz

Quad Core 64
bit ARM cortex
at 1.2 GHz

such an environment to offer access to those machine descriptions. In the DLT-based manufac-
turing network, smart contracts are running to receive requests from customers rent machines
(step 2) and match them to resources offered by the plant operator (step 3). In addition, the
rules and agreements, e.g., about the rent period, specific tasks, or payment methods between
plant operator and customers are pre-defined in the smart contracts and executed autonomously.
The customers can check the list of available machines published by the plant operator, and if
the customers have a relevant job coming up, they can request the suitable machines via smart
contracts. This is the first difference between the DLT-based and non-DLT shared manufactur-
ing system. In a non-DLT based system [33], a plant operator and customers could not work
directly by exchanging messages without the guarantee about the trust of contracts as well as
payment. This guarantee requires a third-party to complete the deal. After DLT-based smart
contracts executed and mapped the requests from plant operator and customers, the plant oper-
ator account will unlock automatically the available machines (step 4) and assign the control of
the machines to customers. Then, the customers can start control and program the machines for
their jobs (step 5), which are then executing these jobs (step 6). Compared to standard shared
manufacturing, the second innovation in DLT-based systems is that we implemented a layer 2
payment channel [34] between the plant operator and customer for micro-payments (step 7).

To study the communication and computation overhead resulting from DLT in manufactur-
ing systems, we have implemented the above described shared manufacturing application in a
private setup as shown in Figure F.2b. The setup involves the DLT components DLT-manager 1
and 2 and DLT-clients. The DLT-manager has a high computation capacity and enough storage
for a full ledger with all the information and data. The DLT-clients are lightweight and are lim-
ited in terms of computation and resources. The DLT-clients can query and access the data from
the ledger without downloading the full chain of blocks. The DLT-managers are implemented
in two different equipments: as a Siemens Microbox [30] and a Macbook Pro. The DLT-clients
are implemented in Raspberry Pi 3+. The specifications of these devices are found in Table
F.2. DLT-manager-1 and DLT-manager-2 are connected via Ethernet, and communicate with
DLT-clients via local WiFi. The communication method can be extended to other long-range
communication or global internet depending on specific scenarios. The distributed ledger is
deployed in the DLT Managers. We have implemented five types of DLTs, namely Ethereum,
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(a) Energy Consumption of DLT-managers running full DLT features in separated scenarios.
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Fig. F.3: Computation overhead of each network component of the 5 studied DLTs namely Ethereum, Hyperledger
Fabric, IoTA, Quorum, and Solana.

Quorum, IOTA, Hyperledger Fabric, and Solana.
During our evaluation, the DLT-client sends 10 transactions per second to the ledger, which

is hosted by the DLT-manager-1 and -2. By recording the CPU usage percentage of the DLT-
specifc processes, we have observed the computation overhead in each case of the 5 selected
DLT platforms. Looking at the DLT Managers, we have found Ethereum as an outlier, as it
requires by far the most computation time of around 85% of CPU as shown in Figure F.3a due
to the usage of the Proof of Work (PoW) for the consensus and verification process. The non-
PoW DLTs, Solana, Hyperledger Fabric and Quorum, require in our private network setting
only around 1-3% CPU usage in both DLT Manager 1 and DLT Manager 2. Similarly, the
IOTA platform uses PoW only rarely in order to prevent spam attacks, so the CPU usage of the
DLT Managers is relatively low, similar to Hyperledger Fabric and Quorum. On the DLT Client
component, the CPU usage is primarily the generation and transmission of transactions, so that
these DLTs require around 5-10% CPU usage of the Raspberry Pi.

Figure F.4a and F.4b show the communication overhead of the five different DLTs in our
shared manufacturing setup. The Hyperledger Fabric produces more network traffic than the
others on the DLT Managers. The reason is that the network architecture of Hyperledger Fabric
is optimized for an enterprise environment with high security requirements, where the raw data
need to be formatted for signed transaction proposals, then going through the complex endorse-
ment and validation process, before attachment to the Blockchain. This process introduces more
communication overhead. IOTA produces the lowest traffic on the DLT Managers thanks to the
design based on the Tangle [22]. Specifically, the interconnected Tangle infrastructure does not
require total verification across the whole ledger. Instead, all parties are verifying simultane-
ously and, as a result, the energy and time required to complete transactions are shortened. In
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Fig. F.4: Communication Overhead comparison of the 5 studied DLTs namely Ethereum, Hyperledger Fabric, IoTA,
Quorum, and Solana.

addition, Tangle’s verification process purports to ensure that there are no duplicate transactions
that would lead to double-spending. On the DLT-clients, the communication overhead is mainly
coming from publishing the collected data via formatted transactions to DLT managers. In spe-
cific, a single transaction in IOTA consists of 2673 trytes which is equivalent to 1589 bytes, if
encoded, a Ethereum transaction includes around 109 bytes of header, and no limited metadata
, Hyperledger Fabric transaction sizes depends on the type of transactions, for example, 3.06
kB for spend and 4.33 kB for mint [19]. The overhead of a Solana transaction includes 64 bytes
signature and maximum 1232 bytes for given metadata.

Based on the CPU usage and the utilized computing hardware, we determined the energy
consumption of the five selected DLT platforms and computed carbon footprint. We assume that
electricity for running the computational operations is consumed and produced in Germany. As
a measure of carbon intensity of the German energy mix, calculated in a life cycle perspective,
we used data from the life cycle database ecoinvent v.3 cutoff system model [35]. In particular,
the dataset Market for electricity, low voltage, DE was chosen, which represents an average
low-voltage energy mix for Germany. We obtained the life cycle impact of producing 1 kWh
electricity according to this version of the database via the software SimaPro and using the
default IPCC Global Warming Potential (GWP) method with a time horizon of 100 years [36].
This resulted in a value of global warming impact of 0.540 kg CO2-eq / kWh that represents
the impact of all greenhouse gases emitted in the electricity production process and upstream
activities in a life cycle perspective. This value was further used to calculate the total carbon
footprint of the computation based on its energy requirements. The results are shown in Table
F.3. We observe that the annual CO2 generated through PoW consensus is significantly higher
than that of non-PoW Blockchains. The private Ethereum DLT produced around 26692 ·10−6

kg CO2-eq/hour, which is equivalent to the average of 4.3 charged smartphones [37]. This
compares to around 203 ·10−6 kgCO2-eq/hour, 211 kgCO2-eq/hour, and 198 kg CO2-eq/hour
from Hyperledger Fabric, Quorum, and IOTA, and Solana respectively. Note that all results are
extrapolated to the utilization of our private DLT setup for the shared manufacturing application
over an operation day.



126 Paper F.

Table F.3: Carbon FootPrint of private DLT testbed with 5 DLTs calculuated in Germany market running per hour

Platform Power
of Ma-
chine
(kW)

Energy
con-
sumed
on Av-
erage
(kWh)

Avg. CPU
Usage for
Blockchain
Opera-
tion (%)

Energy
Con-
sumed for
Blockchain
operation
(kWh)

Greenhouse
gas
(GHG)
emission
in DE
(kg CO2-
eq/kWh)**

GHG
emis-
sion per
blockchain
opera-
tion (kg
CO2-eq)

Hyper.Fabric 0.06 0.06 0.625% 375 ·10−6 0.540 203 ·10−6

Ethereum 0.06 0.06 82.35% 49392
·10−6

0.540 26682
·10−6

Quorum 0.06 0.06 0.65% 390 ·10−6 0.540 211 ·10−6

IOTA 0.06 0.06 0.61% 366 ·10−6 0.540 198 ·10−6

Solana 0.06 0.06 0.61% 366 ·10−6 0.540 198 ·10−6

3 Discussion
We have seen that deploying a DLT in an industrial manufacturing environment allows to realize
novel business cases. Choosing the right DLT platform for industrial use cases, such as the one
we elaborated above, is challenging, as their are many options available. Therefore, we have
conducted here an evaluation of five of the most popular and promising DLT platforms and
proposed how to integrate those into a physical manufacturing system.

A clear observation is that Ethereum is an outlier in terms of CPU usage, due to its PoW con-
sensus algorithm, which of course also results in high energy consumption. Therefore, we can
conclude that Ethereum and other PoW DLTs should, in general, not be used in the envisioned
manufacturing environments. In order to still be able to use many of Ethereum development
tools, a plant operator can use Quorum, which is an enterprise version of Ethereum. Both Quo-
rum and Hyperledger Fabric show a similar performance in our local evaluation regarding CPU
usage. However, Hyperledger Fabric introduces higher communication overhead as compared
to Quorum. Therefore, in an environment with communication restrictions, the operator could
opt for Quorum out of these two by simply looking at slight performance advantages. IOTA,
which is specifically designed for IoT networks, requires the lowest CPU and communication
overhead and can hence be favoured by an operator that has strong requirements in this regards.
However, IOTA’s smart contract mechanism is still under development and also the tooling sup-
port is not as strong. Finally, Solana is a public Blockchain network with a focus on achieving
high scalability. In our local network, Solana performed similarly to Quorum in terms of com-
munication overhead as well as CPU usage.

The results measured from our local experiments can be considered as a benchmark re-
garding sustainability aspects in specific shared manufacturing use cases. In the scope of this
research, we evaluated the greenhouse gas emission per Blockchain operation based on energy
consumed by Blockchain activities. For example, IOTA foundation provided an energy bench-
mark for the IOTA network, which shows results that are similar to our experimental results [38].
In terms of Hyperledger Fabric, we have used Hyperledger Caliper for the benchmark evalua-
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tion [39]. Referring to prior research [40], the energy consumed by beyond-PoW blockchains,
such as Polkadot [41], Cardano [42], or Hedera Hashgraph [43], is within a range that is similar
to the energy consumed in our experimental setup.

Looking towards the future, we see many benefits for the use of DLT in manufacturing,
enabling a broad range of use cases and business models. The vision at the horizon is a truly
collaborative industrial IoT in which things (such as machines in a manufacturing plant) ubiq-
uitously and automatically interact without intervention of humans. This is fuelled by the ca-
pability to autonomously make (micro-)payments. This would empower devices, e.g., to rent
cloud server capacity for additional computational capacity when required, to pay directly to
other devices for access to the Internet, or automatically pay for electricity consumed. The
current payment systems are not well suited for massive-scale micro-transactions due to high
transaction costs and limited capacity. This calls for a vision of payments between things, which
will be small per transaction, but autonomous and running efficiently at a massive scale.
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