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PREFACE  

The work that you are about to read provides a summary of the research conducted in 

the period between 2018 and 2022 at the Center for Neuroplasticity and Pain (CNAP), 

Department of Health Science and Technology, Aalborg University, Denmark. The 

project was carried out in collaboration with the Department of Physiology and 

Pharmacology at Sapienza University, Rome, Italy. The project was cofounded by the 

European Union's Horizon 2020 research and innovation programme under the Marie 

Skłodowska-Curie grant agreement No. 754465 and by the Danish National Research 

Foundation (DNRF121). 

The PhD project aims to investigate the mirror visual feedback illusion and its effects 

on pain perception. In this respect, the current PhD dissertation contributes to the 

understanding of the neurophysiological mechanism underlying the illusion and 

sensory-motor interaction to improve the knowledge about cost-effective therapies 

based on the utilization of a mirror. Three scientific papers and two conference 

abstracts resulted from the proposed PhD work. 

Within the thesis, the argument is discussed in five chapters. The first chapter 

introduces the relevant topics that led to the conceptualization of the idea behind this 

project. The second chapter treats the spatial and temporal dynamics related to the 

mirror visual feedback illusory phenomenon. Here, the results from the first two 

studies are discussed relative to the relevant literature in the field of neurophysiology. 

The third chapter concerns the effects of mirror visual feedback illusion on pain 

perception. The results are then discussed in the framework of attentional and 

nociceptive neurophysiological processes. Chapter 4 discusses the main 

methodological limitations of the studies. Finally, the thesis is concluded in Chapter 

5 with a brief overview of the clinical implication and future perspectives. 

 

 

 

 

Marco Rizzo 

Aalborg University, September 2022  
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ENGLISH SUMMARY 

Chronic pain and motor impairment are common clinical problems which harm the 

quality of life of the affected patients. In several conditions, such as phantom limb 

pain, complex regional pain syndrome, or post-stroke paralysis, the mismatch between 

motor commands and reafferent sensory feedback may lead to maladaptive 

neuroplasticity. Placing a mirror perpendicularly to the subject’s view, unilateral 

movements produce the illusion of the opposite limb moving synchronously. This 

Mirror Visual Feedback (MVF) illusion has been proposed to restore the visual 

correspondence between the motor output and sensory input and promote cortical 

reorganization. However, the cortical areas and the mechanisms related to this illusory 

phenomenon are poorly understood. 

The present PhD thesis synthesizes the results of three studies aimed at investigating 

the neurophysiological mechanisms underlying the MVF-induced illusion of finger 

movements and its effects on nociceptive processes in healthy individuals. The project 

was based on pioneering studies probing the electroencephalographic (EEG) 

oscillations of the alpha rhythm (alpha ERD/ERS) to understand the cortical 

mechanism underpinning the anticipation and experience of sensory-motor events. 

Furthermore, the interaction between sensory and motor events reduced the alpha 

ERD (less cortical activity) and the relative subjective pain perception. In line with 

this evidence, the following studies were designed. 

The first study traced the spatial distribution and temporal evolution of the EEG alpha 

ERD/ERS in response to MVF illusion. Here, unilateral triggered movements of the 

index finger were associated with a bi-hemispheric activity (alpha ERD) of the 

centroparietal and frontal sensory-motor cortical areas (MVF condition). Notably, in 

the control condition without MVF the same cortical activity was observed only on 

the hemisphere contralateral to the moving finger. The second study confirmed these 

results. Moreover, the cortical source estimation of the EEG alpha ERD/ERS unveiled 

the involvement of the premotor, prefrontal, and posterior parietal associative cortical 

areas as responsible for visuomotor transformation during MVF illusion. 

The project culminated in the third study, where the sensory-motor interaction 

between MVF-induced illusory movements and electrical stimulations was 

investigated through the estimation of the alpha ERD/ERS cortical sources. Electrical 

stimulations at individually-fixed intensity produced painful and non-painful 

sensations. Results indicated that the inhibition (reduced alpha ERD) of the midline 

limbic regions is associated with individual lower perception of the stimulation 

intensity. 

In conclusion, the MVF-induced illusion of unilateral movements may induce 

sensory-motor cortical activation as strong as the one produced by real movements. 
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Moreover, MVF illusory movements involve cortical frontoparietal and posterior 

visuomotor transformation processes. As a core result, the illusion may interfere with 

the afferent sensory stimulations reducing the activity within the midline structures of 

the limbic system. Throughout this thesis, the neurophysiological model underlying 

these illusory and interactive mechanisms will be proposed, as reflected by the 

oscillations of the EEG alpha rhythm. A better understanding of these mechanisms 

might be relevant to developing individualized therapies for those patients with 

unilateral limb impairment.
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DANSK RESUMÉ 

Kroniske smerter og motorisk svækkelse er almindelige kliniske problemer, som 

skader patienters livskvalitet. Under flere tilstande, såsom fantomsmerter, komplekst 

regionalt smertesyndrom eller lammelse efter slagtilfælde, kan misforholdet mellem 

motoriske kommandoer og afferent sensorisk feedback føre til at neuroplasticiteten 

ikke tilpasses korrekt. Ved at placere et spejl vinkelret på en forsøgspersons syn, 

frembringer ensidige bevægelser illusionen af, at den modsatte legemsdel bevæger sig 

synkront. Denne Mirror Visual Feedback (MVF) illusion er blevet foreslået for at 

genoprette den visuelle overensstemmelse mellem det motoriske output og sensoriske 

input og fremme kortikal reorganisering. Imidlertid er de kortikale områder, som 

mekanismen dette illusoriske fænomen er relaterede til, ikke ordentligt forstået. 

Denne ph.d.-afhandling syntetiserer resultaterne af tre studier, der sigter efter at 

undersøge de neurofysiologiske mekanismer, der ligger til grund for den MVF-

inducerede illusion af fingerbevægelser og dens virkninger på nociceptive processer 

hos raske individer. Projektet var baseret på banebrydende undersøgelser, der 

undersøgte de elektroencefalografiske (EEG) oscillationer af alfa-rytmen (alfa 

ERD/ERS) for at forstå den kortikale mekanisme, der understøtter forventningen om 

og oplevelsen af sansemotoriske hændelser. Ydermere viste tidligere studier at 

interaktionen mellem sensoriske og motoriske hændelser alfa ERD (mindre kortikal 

aktivitet) og den relative subjektive smerteopfattelse var reduceret. I 

overensstemmelse med denne evidens blev følgende undersøgelser designet. 

Den første undersøgelse sporede den spatielle fordeling og temporale udvikling af 

EEG-alfa ERD/ERS som følge af MVF-illusion. Her var ensidigt udløste bevægelser 

af pegefingeren forbundet med en bi-hemisfærisk aktivitet (alfa ERD) af de 

centroparietale og frontale sensorisk-motoriske kortikale områder (MVF). Navnligt i 

kontroltilstanden uden MVF blev den samme kortikale aktivitet kun observeret på 

hjernehalvdelen kontralateralt til den bevægede finger. Den anden undersøgelse 

bekræftede disse resultater. Desuden påviste den kortikale oprindelsesestimering af 

EEG-alfa ERD/ERS involvering af de præmotoriske, præfrontale og posteriore 

parietale associative kortikale områder som ansvarlige for visuomotorisk 

transformation under MVF-illusion. 

Projektet kulminerede i det tredje studie, hvor den sensorisk-motoriske interaktion 

mellem MVF-inducerede illusoriske bevægelser og elektriske stimulationer blev 

undersøgt gennem estimering af alfa ERD/ERS kortikale oprindelser. Elektriske 

stimulationer med individuelt kalibreret intensitet frembragte smertefulde og ikke-

smertefulde følelser. Resultater indikerede, at hæmning (reduceret alfa ERD) af de 

limbiske midterlinjeområder er forbundet med individuelt lavere opfattelse af 

stimuleringsintensiteten. 
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Som konklusion kan den MVF-inducerede illusion af ensidige bevægelser inducere 

sensorisk-motorisk kortikal aktivering lige så stærk som den, der frembringes af 

frivillige bevægelser. Desuden involverer MVF illusoriske bevægelser kortikale 

frontoparietale og posteriore visuomotoriske transformationsprocesser. Som et 

kerneresultat kan illusionen forstyrre afferente sansestimuleringer, hvilket reducerer 

aktiviteten i det limbiske system. I afhandlingen vil den neurofysiologiske model, der 

ligger til grund for disse illusoriske og interaktive mekanismer blive foreslået, som 

resultat af de viste oscillationer i EEG-alfa-rytmen. En bedre forståelse af disse 

mekanismer kan være relevant for at udvikle skræddersyede terapier til patienter med 

ensidig svækkelse af motorisk funktion. 
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CHAPTER 1. INTRODUCTION  

Throughout history, optical illusions have been used to correct and achieve specific 

spatial perspectives in the architecture field, for aesthetic appreciation in the art field, 

and to drive the customers’ attention in the world of advertising. Moreover, they have 

been often adopted by neuroscientists to investigate the neurobiological features of 

the visual system. Indeed, an optical illusion may be defined as a different perception 

from an event that would be typically expected based on physical or sensory 

predictions1. In other words, what we perceive is often shaped by what we expect and 

believe, and in some cases, the brain is deceived by the superimposition of the visual 

system over the other perceptive systems. Nonetheless, albeit optical illusions seem 

to fool the human brain, they might have beneficial effects for individuals 

experiencing chronic pain and motor impairment. For instance, while treating subjects 

with phantom limb pain (PLP) – a condition wherein amputees perceive persistent 

somatic feelings belonging to the missing limb – Ramachandran and Rogers-

Ramachandran2 noted that the congruent visual feedback of the missing limb obtained 

by means of a mirror alleviated the PLP-related symptoms. Since then, several studies 

applied mirror illusion in the experimental context to investigate the therapeutical 

effect of this deceptive phenomenon and enhance the knowledge of the brain's visual 

and sensory-motor system. In this regard, electroencephalography (EEG) is a 

technique that can probe the scalp's electrical activity in response to real or simulated 

movements and sensory events. 

To better understand the scientific framework and the idea behind the present 

dissertation, this introduction allows the reader to familiarize themself with the 

concepts of (i) Mirror Visual Feedback (MVF) illusion and its clinical applications, 

(ii) the EEG cortical activity related to MVF and sensory-motor events, and (iii) the 

neurophysiological model of cortical sensory-motor interaction. 

 

1.1. THEORETICAL FRAMEWORK OF MIRROR VISUAL 
FEEDBACK (MVF) 

Several conditions of the central and peripheral nervous system, such as post-stroke 

hemiparesis, complex regional pain syndrome (CRPS), or the loss of one limb due to 

an amputation, may cause chronic pain symptoms and significant reduction of the 

motor function of the affected limb, with consequent maladaptive neuroplasticity in 

the corresponding body representation over the sensory-motor cortex3–12. In those 

patients, the mismatch between motor commands and reafferent body feedback may 

also lead to “learned paralysis or nonuse” and motor deterioration13–15. 
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Intending to restore the correspondence between motor intention and visual feedback 

(efference-afference loops) in amputees with PLP, Ramachandran and Rogers-

Ramachandran introduced the mirror box therapy (MBT), a technique that induces the 

illusion of bilateral movements during actual unilateral movements, observing a 

significant reduction of painful symptoms and the related aching sensations2. 

However, the involved brain areas and the mechanisms underpinning this therapeutic 

procedure are still a matter of discussion. 

1.1.1. REHABILITATIVE UTILIZATION OF MVF 

MBT is an MVF-based technique and consists of placing a mirror in the observer’s 

body midline in order to produce the reflection of one limb (typically used for arms 

or legs) in the visual space of the opposite limb2,16. In its typical approach, the view 

of one limb moving reflected in the mirror produces the illusion of the contralateral 

limb moving synchronously2,17,18. Importantly, MVF-based therapies are believed not 

only to relieve painful symptoms but also to promote sensory-motor neuroplasticity 

and restore motor functions19–27. Two recent Cochrane Reviews based on 62 studies 

(1982 participants) compared mirror therapy with other control interventions (e.g., no-

mirror, muscular or cortical electrostimulation, traditional occupational 

physiotherapy, etc.) in post-stroke motor impaired patients, enlightening moderate 

evidence that mirror therapy has positive effects on motor functions recovery and low 

evidence of significant effects on pain symptoms relief28,29. This was true particularly 

when mirror therapy was combined with conventional therapy28,29. 

Recent developments have led to more interactive MVF-based technologies, such as 

immersive virtual reality and augmented reality, to manipulate the illusory immersion, 

enhance the range of movement, and produce unilateral movements of the affected 

limb that are impossible with the use of a simple mirror16,30–34. In this vein, studies 

applying virtual technologies to produce the illusory effect of one limb movement in 

amputees or post-stroke showed significant pain reduction as well as motor 

improvement after augmented30,35–40 or virtual41–45 reality interventions (see Dunn et 

al., 2017 for a review46). However, it must be considered that, due to their hardly 

suitable equipment, virtual MVF techniques are usually applied only in research 

settings and are scarcely adaptable to conventional home therapy47. 

1.1.2. CORTICAL BASES AND VISUO-MOTOR THEORY OF MVF 

To better understand the brain areas and mechanisms underlying the MVF illusory 

phenomenon, mirror-based techniques have been largely used in the research settings 

in neurologically healthy individuals. Functional magnetic resonance imaging (fMRI) 

studies comparing MVF hand movement conditions with control conditions without 

MVF showed significant cortical activation in the motor, premotor, supplementary 

motor, and occipital areas ipsilaterally to the actual moving hand and contralaterally 

to the mirrored image of the moving hand48–55. Using transcranial magnetic 
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stimulation (TMS), other studies found that – when coupled to the MVF procedure – 

unilateral motor tasks caused increased excitability of the primary motor cortex (M1) 

ipsilateral to the moving limb56–60. Similarly, EEG studies analyzed negative voltage 

signal deflections as a neurophysiological marker to reflect the hemispheric different 

activation during unilateral movements. These studies showed a low hemispheric 

divergence of the sensory-motor cortex (i.e., similar bi-hemispheric activity) when 

unilateral hand movements were perceived as bi-manual movements via MVF 

illusion61–64.  

Although a few studies using fMRI, TMS and EEG failed in showing a significant 

cortical activation related to MVF in healthy subjects65–69, a conspicuous amount of 

evidence demonstrated the central role of the sensory-motor cortex27,51,53,57,58,61,70–75. 

Recent EEG and fMRI studies demonstrated the involvement of fronto-parietal 

(spatial attention) and centro-parietal (motor coordination) networks in the elaboration 

of the MVF-induced illusory perception of movements53,59,73,76–78. Therefore, a 

modern theory proposes a posterior-to-central mechanism responsible for the 

transformation of visual stimuli into illusory sensory-motor experience78. 

In this light, the present work takes its position within the visuo-motor transformation 

theoretical framework of MVF illusion and aims to provide further insights regarding 

the cortical spatiotemporal features involved in this deceptive phenomenon. 

 

1.2. SENSORY-MOTOR ELECTROENCEPHALOGRAPHIC (EEG) 
ALPHA RHYTHM DE/SYNCHRONIZATION (ERD/ERS) 

Electroencephalography (EEG) is a non-invasive technique that reads the scalp 

electrical activity generated by the brain structures with a high temporal resolution 

(milliseconds) and a relatively moderate spatial resolution (centimeters). One of the 

EEG’s primary outcomes is the brainwaves at different frequencies (i.e., the number 

of times a wave repeats in one second). The typical EEG frequency rhythms and their 

relative frequency bands are classified as Delta (<4 Hz), Theta (4-8 Hz), Alpha (8-12 

Hz), Beta (12-30 Hz), and Gamma (>30 Hz)79. This section of the introduction will 

describe the role of the cortical EEG alpha rhythm oscillations in response to motor 

and somatosensory events. 

1.2.1. CENTRAL ALPHA RHYTHM 

It has been known for almost a century that certain events can modulate the ongoing 

EEG alpha activity80. In a resting state condition, the ongoing EEG activity recorded 

from healthy adults shows prominent oscillations at the alpha frequency band (about 

8-12 Hz) in the central and posterior brain regions81,82. Alpha oscillations are evident 

in the occipital areas during eyes-closed quiet wakefulness, thus reflecting an “idling” 
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state81,83,84. A distinct centro-parietal alpha rhythm, termed Rolandic mu (µ) rhythm, 

represents a sign of cortical inhibition of the somatomotor networks during physical 

and psychological relaxation and sensory deprivation† 82,83,85,86. Just as opening the 

eyes may suppress the EEG occipital alpha rhythm, sensory-motor events may 

attenuate the centro-parietal alpha oscillations, generally in favour of faster EEG 

frequencies, such as beta (12-30 Hz) or gamma (30-40/50 Hz) waves81–83,87–91. These 

event-related changes reflect the decrease or increase of the EEG power in given 

frequency bands, respectively due to the desynchronization or synchronization of the 

populations of neurons underlying a specific cortical region. It is common to address 

these EEG changes in synchrony of the alpha band as alpha event-related 

desynchronization/synchronization (ERD/ERS)81,90,92. 

1.2.2. ALPHA ERD/ERS CALCULATION 

The basic characteristic of the alpha ERD/ERS estimation is that the EEG power 

within the alpha frequency band is extrapolated as a percentage in relation to a 

reference (or baseline) period occurring a few seconds before the event of interest, in 

the same EEG recording81. A brief procedure of the alpha ERD/ERS calculation is 

hereby reported. After filtering the EEG data at the alpha frequency band, the 

following formula gives the final percentage output: 

𝐸𝑅𝐷/𝐸𝑅𝑆% =
𝐸 − 𝑅

𝑅
∗ 100 

Where the E is defined as the “event” period, whereas the R is defined as the “rest” 

or “baseline” period. The resulting negative percentage values represent a decrease in 

the alpha waves’ synchrony (i.e., event-related desynchronization or ERD) and it is 

acknowledged as an index of cortical activity, while positive percentage values 

represent an increase in the alpha synchrony (i.e., event-related synchronization or 

ERS), representing cortical inhibition81. See Figure 1 for a graphical example of how 

the baseline and the events period were calculated in this project relative to the 

experimental paradigms proposed in the current PhD project. 

1.2.3. EEG ALPHA ERD/ERS DURING SENSORY-MOTOR EVENTS 

Previous evidence established that an active interaction between the thalamic nuclei 

and the cortical circuits is the basis of the cortical alpha oscillatory mechanism93–96. 

In particular, the alpha oscillations in the centro-parietal cortex are thought to 

represent thalamo-cortical and cortico-cortical sensory-motor feedback loops 

characteristic of self-initiated movements or somatic and tactile 

 
† Since in this work several regions of interest of the brain were considered other than the 

sensory-motor area, for uniformity purposes only the nomenclature “alpha rhythm” will be used 

throughout the dissertation. 
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sensations81,86,87,91,97,98. The next section will describe the different patterns of the EEG 

alpha ERD/ERS related to the anticipation/execution of motor events and the 

expectancy/experience of somatosensory events. 

Motor Events 

Extensive research has shown that active self-paced movements of one limb are 

characterized by an anticipatory desynchronization (ERD) of the dominant alpha 

rhythm in the sensory-motor cortex contralateral to the movement or stimulation, 

starting between 1 and 2 seconds before the event81,85,86,89,99–103. Furthermore, the “pre-

movement” phase has been also related to the synchronization (ERS) of the alpha 

rhythm ipsilateral to the moving limb, supposedly as a strategy to avoid involuntary 

automatic specular movements of both limbs89,104,105. This anticipatory alpha 

ERD/ERS pattern reflects preparatory mechanisms underpinning voluntary 

movements planning mental process81,86,91,102,106 and is, in fact, absent during passive 

movements83,107–110, probably due to a lack of attention toward the sensory-motor 

processes that are necessary for the control and regulation of active voluntary 

movements111. Conversely, the literature regarding the alpha ERD/ERS patterns 

during the execution of the movement becomes less consistent. With reference to the 

moving limb, the majority of the studies observed a contralateral sensory-motor alpha 

ERD and ipsilateral sensory-motor alpha ERS in response to active 

movements81,85,102,107,109,112–115. However, a bi-hemispheric central alpha ERD has 

been observed in a few studies investigating the EEG oscillatory patterns during 

unilateral hand movements73,81. Further investigations proposed that only the high-

alpha band ERD (about 10-12 Hz) begins as contralateral to the moving limb before 

the movement and becomes bilateral during the movement execution83,107. Finally, the 

literature recognizes a high beta band rebound (beta ERS, about 17-30 Hz) occurring 

after self-paced voluntary movements in the contralateral cortex as a consequence of 

movement offset (with a latency of about 1500 ms after the movement onset)74,83,116–

120. 

Somatosensory Events 

A similar EEG alpha ERD/ERS pattern in the sensory-motor cortex has been observed 

during the expectancy and the experience of painful or non-painful tactile stimuli. 

fMRI evidence showed as the anticipation and perception of tactile stimuli evoked 

similar responses in the primary somatosensory cortex contralateral to the stimulus121 

and that this anticipatory activity may occur in the somatotopic region corresponding 

to the body area where the subject is expecting the stimulus122. Using EEG, other 

studies demonstrated as the anticipatory suppression of the high-frequency alpha band 

(10-12 Hz) over the primary sensory-motor cortex contralateral to the stimulation was 

higher in amplitude when anticipating painful rather than non-painful stimuli115,123–

125. Interestingly, in those studies, decreased anticipatory alpha ERD (less cortical 

activity) was linearly correlated to a lower individual evaluation of the perceived pain 
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intensity115,123,126. However, it has to be noted that another study with a different 

expectancy paradigm did not confirm that correlation102. Consistently, non-painful 

thermal (heat and cold) stimulations on the forearm produced an alpha suppression 

(alpha ERD) in the sensorimotor cortex contralaterally to the stimulated arm 

approximately 1 second after the temperature peak of the heat/cold stimulation and 

this suppression was also correlated with lower perceived stimulus intensity and 

shorter latency127,128. A recent review on pain-related brain rhythms, indicated as 

phasic (shorter) and tonic (longer) pain stimuli suppress the alpha rhythm in the 

sensory-motor and occipital cortical areas between 300 and 1000 milliseconds after 

the stimulus delivering129. However, the alpha ERD related to tonic pain (it can last 

several minutes) has to be considered less pain-specific, as several mental processes 

represent confounder factors in the alpha waves suppression129. Furthermore, similar 

to motor execution, after the initial alpha suppression in response to painful stimuli 

perception, alpha and beta band rebound have been observed in 

magnetoencephalography (MEG) studies over the contralateral sensory-motor centro-

parietal areas approx. 800ms after the electrical non-painful130 and painful117,131 

stimuli, whereas other MEG and EEG studies observed a beta band rebound 1500 ms 

after electrical painful stimuli132,133. 

 

1.3. SENSORY-MOTOR GATING EFFECT 

Pain is a complex multidimensional phenomenon controlled by a large variety of 

central and peripheral nervous system functions, such as attentional, cognitive, 

somatic, and motor components134–136. To better understand the afferent perceptive 

mechanisms, experimental pain has been often induced in the research context 

through experimental protocols in healthy individuals137,138. It is acknowledged that 

motor behaviors may attenuate the brain cortical responses to painful stimuli as a 

strategy for pain relief89,102,139–141. One of these strategies is represented by an intrinsic 

interaction mechanism of the brain's sensory-motor system known as the cortical 

gating effect89,142. 

The current theory recognizes two types of sensory-motor gating effects during 

voluntary movements. In the first one, the interaction between the afferent painful 

signals and afferent information from the muscles is thought to occur at the peripheral 

level. This mechanism is known as centripetal gating140,143–146. Conversely, in 

centrifugal gating, the interaction occurs at the cortical or subcortical level between 

the somatosensory painful signals and the efferent signals induced by the motor 

commands139,143–147. In the present PhD project, the EEG cortical activity will be 

related to the experience (motor execution and pain perception) and the anticipation 

(motor preparation and pain expectancy) of sensory-motor events during MVF 

illusion. Consequently, only centrifugal gating effects will be considered hereinafter. 



CHAPTER 1. INTRODUCTION 

7 

1.3.1. NEUROPHYSIOLOGICAL INVESTIGATIONS OF CORTICAL 
GATING EFFECT 

In paragraph 1.2.3, it has been described how sensory-motor events produce a 

suppression of the central alpha oscillations before and after sensory-motor events. A 

series of studies investigated the cortical sensory-motor gating through the analysis of 

the EEG central alpha ERD in response to motor preparation and execution and 

painful or non-painful tactile stimuli expectancy and experience (for a review, see 

Babiloni et al., 2014142). In the mentioned studies, somatosensory stimuli (laser or 

electrical) were delivered on the left hand, thus followed by imperative motor tasks of 

the same or opposite hand. Results demonstrated a reduced anticipatory alpha ERD in 

the primary sensory-motor cortex contralateral to the stimulated/moving hand when 

somatosensory painful stimuli and motor actions involved the same hand, as 

compared to control conditions where the interaction involved opposite hands102,148. 

Anticipatory central sensory-motor cortical responses were diminished (lower alpha 

ERD) also by the effect of distraction during cognitive tasks, with a consequent 

decrease in the subjective pain sensation144,148–151. Furthermore, when involving the 

same hand, sensorimotor processes preceding painful somatosensory stimuli were 

related to a lower perception of the pain intensity as well as to a delayed and less 

accurate performance of the motor task, as an indication of reciprocal interference 

between the motor and somatosensory cortices89. Overall, the discoveries regarding 

the interaction between somatosensory and motor events occurring either on the same 

hand or opposite hands have been interpreted as reflecting a functional facilitatory or 

inhibitory mechanism of the nociceptive and motor systems within the thalamo-

cortical and cortico-cortical loops, as indicated by the modulation of the EEG alpha 

rhythm oscillations81,88,142. Keeping in mind the cortical gating model will facilitate 

the comprehension of the research questions proposed in the present work.  

 

1.4. AIM OF THE PHD PROJECT 

In this chapter, we learned that MVF is a therapeutic tool meant for treating patients 

with chronic pain and motor impairment by restoring the sensory-motor loops via 

movement illusion. Several studies probed this cortical reorganization and the 

sensory-motor interaction by detecting the EEG alpha rhythm oscillations as an index 

of cortical activation/inhibition (alpha ERD/ERS). Given these premises, the objective 

of the present PhD work was to investigate the spatial distribution and temporal 

evolution of the EEG alpha oscillations in response to sensory-motor tasks during 

MVF illusion. The specific research questions are listed in the following section. 
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1.4.1. RESEARCH QUESTIONS 

In the light of the above-described notions, this project addressed the following 

questions: 

- Do the anticipation and experience of MVF-induced illusory movements 

produce cortical activity in the sensory-motor area ipsilaterally to the actual 

moving side and contralaterally to the mirrored side, as reflected by EEG 

alpha ERD/ERS on the scalp? 

 

- Are the cortical sources of the alpha ERD/ERS related to MVF illusion 

localized in widespread cortical areas, as indicated by the voxel-based 

analysis with high-density EEG? 

 

- Is the MVF-induced illusion of finger movements strong enough to interfere 

with afferent sensory inputs from the same finger, as resulting from the 

mitigation of the sensory-motor EEG alpha ERD? 

 

 

Three studies were designed and conducted to address these questions, resulting in 2 

peer-reviewed studies and 1 submitted study: 

- Study 1152: Rizzo, M., Petrini, L., Del Percio, C., Lopez, S., Arendt-

Nielsen, L., & Babiloni, C. (2022). Mirror visual feedback during unilateral 

finger movements is related to the desynchronization of cortical 

electroencephalographic somatomotor alpha rhythms. Psychophysiology. 

 

- Study 2: Rizzo, M., Del Percio, C., Petrini, L., Lopez, S., Arendt-Nielsen, 

L., & Babiloni, C. Cortical sources of electroencephalographic alpha 

rhythms related to the anticipation and experience of mirror visual 

feedback-induced illusion of finger movements. Psychophysiology, Under 

review. 

 

- Study 3:  Rizzo, M., Petrini, L., Del Percio, C., Lopez, S., Arendt-Nielsen, 

L., & Babiloni, C. Neurophysiological correlates of sensory-motor 

interaction during Mirror Visual Feedback: Analysis of the 

electroencephalographic alpha rhythms. NeuroImage, In preparation. 

 

In the coming chapters of the present dissertation, the spatial and temporal dynamics 

of the cortical alpha ERD/ERS during MVF movement illusion will be outlined and 

discussed. This will lead to analyzing how the MVF illusion might be utilized to 

interfere with somatosensory stimuli at the cortical level. Furthermore, a 
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neurophysiological model underpinning the MVF illusion, and based on the EEG 

alpha oscillations as a reflection of the thalamo-cortical and cortico-cortical sensory-

motor loops, will be proposed. Finally, a discussion of how these findings may have 

an impact in the clinical context will conclude the work. 

1.4.2. METHODOLOGICAL CONSIDERATIONS 

To better understand the MVF paradigm and the sensory-motor interaction model 

designed for the three studies considered in the current PhD project, an overview of 

the main method will be reported in this section. 

In all the studies, subjects were asked to perform auditory-triggered movements of the 

right index finger. In the experimental condition (MVF), the mirror was oriented to 

induce the illusion of simultaneous left index finger movements (reflecting side on 

the right). The image of the left arm and hand corresponded to the position of the 

actual left arm and hand behind the mirror. In the control conditions, subjects were 

asked to perform the same movement or bilateral movement without the MVF 

illusion. The hypothesis was that unilateral movements in the MVF condition could 

activate the primary sensory-motor cortex (alpha ERD) contralateral to the real 

movement (Figure 2, blue area) as well as the primary sensory-motor cortex 

contralateral to the MVF illusory movements (Figure 2, green area). 

In the third study, the conditions remained unchanged, but electrical stimulations were 

delivered in the left index finger after 100 ms from the auditory cue. The idea was to 

experimentally produce cortical sensory-motor interaction in the right hemisphere 

between real electrical stimuli (Figure 2, red area) and MVF-induced illusory 

movements (Figure 2, green area). 

A fixed interstimulus interval of 10 s was set between each trial for two main reasons. 

Firstly, 10 s is a sufficient period to reset the synchronization of the alpha rhythm 

oscillations102,153. Secondly, the paradigm aimed to create a sort of predictability of 

the upcoming auditory trigger cue to elicit a clear anticipatory cortical response. 

However, subjects were not informed about the fixed interval to avoid confounding 

effects of variable mental strategies during the expectation period (e.g., counting). 

In all the analyses, the alpha ERD/ERS was calculated following the procedure 

described in paragraph 1.2.2. Specifically, the 0 (zero) time was represented by the 

auditory cue triggering the movements. The rest period was defined as the period from 

5000 ms to 4000 ms before the cue; the anticipatory period was defined as the period 

of 1000 ms before the cue; finally, the execution period was defined as the period 

between 250 ms and 1250 ms after the cue. Figure 1 shows the time windows 

considered for the ERD/ERS calculation and the related left-movement onset, as 

recorded by electromyography (EMG). 
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Figure 1. The image shows the “Rest” and anticipation and execution “Event” periods 
considered for the alpha event-related de/synchronization (ERD/ERS) calculation in relation 
to the electromyographic activity recorded from the left hand. The Y-axis shows the EMG power 
(microvolt), whereas the X-axis shows the time in milliseconds (ms). In all the experiments, the 
alpha ERD/ERS is calculated in relation to the time 0 (zero), represented by the auditory cue 
triggering the movement (red line). In the third study, electrical stimuli (blue line) were 
delivered on the left hand 100 ms after the auditory cue. 

 

 

1.4.3. GRAPHICAL SUMMARY 

For the readers’ convenience, a graphical summary is represented in Figure 2 and will 

show the alleged cortical mechanism underlying the MVF-induced movement illusion 

as conceived for Studies I and II, followed by the paradigm designed to produce the 

interaction mechanism between the illusory movements and actual somatosensory 

stimuli for Study III. 
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Figure 2. The figure shows the schematic design of the Mirror Visual Feedback (MVF) models 
that are of interest to the project. The top figure represents the MVF-induced illusory 
movements conceived for Study I and II. The image reflected in the mirror of the actual right 
finger movements (blue lines) induces the illusion of the simultaneous left-finger moving (green 
lines). The cortical activity due to illusory movements is supposed to occur ipsilaterally to the 
actual movement and contralaterally to the mirrored image (i.e., in the right hemisphere). The 
bottom figure represents the sensory-motor interaction model designed for Study III. The 
cortical interaction occurs in the right hemisphere contralateral to the actual painful stimuli 
(red lines) and illusory movements in the right hemisphere (green lines). The colored areas 
cover the EEG electrodes underlying the sensory-motor cortex. 
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CHAPTER 2. NEURAL 

ELECTROPHYSIOLOGICAL 

CORRELATES OF MVF-INDUCED 

MOVEMENT ILLUSION 

In the previous chapter, it was outlined that the anticipation and the experience of 

sensory-motor events cause a modulation of the EEG alpha oscillations, as a reflection 

of cortical activity. Study I and II of the current project tested the hypothesis that such 

a neurophysiological mechanism may be involved in the perception of MVF-induced 

illusory movements. The relative findings will be addressed in the following chapter. 

In particular, the first two sections will review the current literature about the MVF 

illusion, with a special focus on the temporal and spatial characteristics in relation to 

the results obtained in Study I and II. Finally, a potential neurophysiological model 

based on the oscillatory EEG alpha rhythm underlying the MVF illusion will be 

proposed in section 2.3. This will include the preparatory and executory processes of 

illusory movements as well as the related neural correlates. 

 

2.1. TEMPORAL FEATURES: ANTICIPATION AND EXECUTION 
OF MVF ILLUSION  

Due to their high temporal resolution, electrophysiological investigations (i.e., EEG 

or MEG) are an ideal tool to draw the time-course of the cortical reactions to motor 

processes and MVF-induced illusory movements. Essential hints about real and 

illusory movements' temporal characteristics are derived from studies that analyzed 

the lateralized readiness potentials (LRPs), an electrophysiological correlate of 

premotor activation occurring in the M1 contralaterally to the moving limb even in 

absence of actual muscle contraction154–156. Two studies with healthy subjects used 

cue-triggered unilateral finger movements with and without MVF illusion to 

investigate the related LRPs63,64. Results showed LRPs with lower amplitude (i.e., 

balanced hemispherical activity) in the MVF condition as compared to the control 

condition with no illusion. Interestingly, the average latency of the LRPs was 128 ms 

from the cue for the control condition and 193 ms from the cue for the MVF condition, 

namely, before the motor response onset. This delay can be attributed to premotor 

processes that are responsible for inhibiting involuntary movements of the immobile 

hand behind the mirror104,105. Notably, an exceeded excitation was found at the 

electrode sites contralateral to the reflected hand (and ipsilateral to the real movement) 

as compared to that at the electrode sites contralateral to the actual moving hand63,64. 
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Using a similar paradigm in healthy individuals, Debnath & Franz found that the LRPs 

commenced approx. 200 ms before the EMG onset in both the conditions with and 

without mirror illusion157. In addition, the maximal statistically significant difference 

in the hemispheric asymmetry occurred within the first 100 ms from the EMG onset, 

showing a clear bilateral cortical activation during unilateral movement under the 

MVF condition157. Despite the use of a different measure of cortical activation (alpha 

ERD), the results from Study I152 and II demonstrated sensory-motor anticipatory 

activity contralateral to the mirrored hand as compared to the condition without MVF. 

Namely, MVF induces sensory-motor cortical excitation even in absence of overt 

motor response (see Figure 2 in Study I152). Furthermore, results from Study I and II 

found that the sensory-motor alpha ERD was always stronger at the central electrode 

sites contralateral to the real movement as compared to the alpha ERD contralateral 

to the MVF, in accordance with the study from Debnath & Franz157. Nonetheless, the 

opposite trend was observed when considering the frontal electrodes: the activity 

induced by the reflected movement (right frontal area) is stronger than the activity 

induced by the moving hand (left frontal area), although not at a statistically 

significant level (see Table 1 in Study I). This result may be explained by cognitive 

and attentional processes occurring selectively during the contralateral elaboration of 

the MVF illusory movement perception158,159. Additionally, results from Study I and 

II observed a significant alpha ERS (cortical inhibition) in the sensory-motor cortex 

contralaterally to the immobile hand in the anticipatory phase of the unilateral 

movement control condition without the mirror (Figure 3, or see Fig. 2, Study I; Fig. 

3, Study II), as shown by numerous previous neurophysiological studies on voluntary 

movements81,85,102,107,109,112–115. 

Cortical EEG oscillations provided relevant information on the temporal features and 

functional properties of the MVF-induced illusory effect. In a well-designed 

paradigm, Ding and colleagues160 asked healthy volunteers to perform voluntary cue-

triggered movements of one hand under MVF illusion and tap a pedal with the foot 

(same side of the actual moving hand) as soon as the MVF procedure generated the 

sensation of the embodiment of the mirrored hand (i.e., the feeling that the hand 

belonged to their body161). The average response time (pedal press) was 4.4 s after the 

beginning of the task, as reflected also by a bilateral central EEG alpha ERD (C3 and 

C4 electrodes). Interestingly, when vibrotactile stimulation was introduced to the 

muscle tendon of the moving hand to strengthen the proprioceptive feedback, the 

average response time was reduced to 3.6 s, followed by an earlier bilateral central 

alpha ERD. An EEG study by Lee and colleagues72 applied virtual reality to produce 

a delayed (2 s) MVF condition, in comparison to a real-time MVF and no-MVF. A 

bilateral alpha ERD in response to unilateral MVF movements started 0,5 s before the 

movement onset and lasted up to 1,5 s after that onset. The same temporal evolution 

has been demonstrated for the EEG central beta suppression162. These outcomes 

coincide with the temporal dynamics observed in Study I, describing an anticipatory 

suppression of the central alpha oscillation starting 1 s before the auditory cue 

triggering the movement up to more than 1 s after that cue. The short difference in the 
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anticipatory phase might be explained by the nature of the task: in contrast to triggered 

movements, self-paced movements do not set the brain in an expectancy state, 

excluding higher-order preparatory motor processes163,164. Finally, findings from 

Lee’s study showed a second alpha ERD peak corresponding to the 2 s delay in the 

MVF-delayed condition72. This striking result not only demonstrates that the EEG 

alpha ERD can detect the instantaneous MVF-related cortical changes but might also 

explain how the superimposition of the visual system (in this case, the MVF delayed 

illusion) may play a greater role than the visuo-motor matching mechanism in the 

MVF-illusory perception. 

 

Figure 3 – Across subjects mean of the alpha event-related de/synchronization (ERD/ERS) 
distribution over the scalp from Study I. The image shows the 2D maps for the three conditions: 
Unilateral noMVF (UM-), Bilateral noMVF (BM-), and Unilateral MVF (UM+). The 0 (zero) 
represents the auditory cue triggering the movement (red line). The maps (250 ms time 
windows) start from 1000 ms before the 0 (anticipatory phase) and end at 1750 ms after the 0. 
The execution phase considers the interval between +250 and +1250 after the cue. The color 
legends indicate the maximal percent values of ERD (dark red) and ERS (dark blue). 

 

2.2. CORTICAL CORRELATES OF MVF ILLUSORY MOVEMENTS 

The illusory perception of MVF movements has been often attributed to increased 

activity of the neural substrate underlying the primary motor and somatosensory 

cortices. These cortical areas – along with associative areas such as the premotor 

cortex (PMC) and supplementary motor area (SMA) – are responsible for motor 

planning, control, and execution (M1, PMC, and SMA) as well as for perception and 

processing of external sensory information (S1). Reviewing neuroimaging and 

neurostimulation studies, this section offers an overview of the brain structures 

involved in the MVF illusion. 

Transcranial magnetic stimulation (TMS), transcranial direct current stimulation, and 

continuous theta burst stimulation are brain stimulation techniques commonly used to 

test the M1 excitability in neurologically healthy individuals. Evidence agrees in 
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showing enhanced M1 excitability ipsilaterally to the moving hand when MVF 

provided the illusion of the opposite (reflected) moving hand57,58,60,66,75,165. In addition, 

the bi-hemispheric M1 excitability was similar when comparing unilateral hand tasks 

with MVF to bimanual movements (without MVF)58,66. This phenomenon was evident 

also in Study I152, where the Unilateral+MVF and Bilateral conditions were linked to 

a bi-hemispheric central alpha ERD, significantly different from the alpha ERD 

caused by the Unilateral condition without MVF. Remarkably, these observations led 

the M1 to be the target area for neurorehabilitative brain stimulation in post-stroke 

patients with motor disorders. Indeed, clinical trials showed facilitated corticospinal 

excitability with a consequent significant improvement in motor recovery when 

combining MVF training with TMS59,166 or tDCS167 over the M1, as compared to brain 

stimulation alone168. 

Due to its high spatial resolution (one millimeter), fMRI technique provided fine 

spatial details of the MVF-induced illusion and extended the focus of the investigation 

also to other brain areas. Several fMRI observations indicated a clear activity in the 

anterior intraparietal sulcus52 (hand movement control), in the M125,51 and PMC51 

ipsilateral to the moving hand and contralateral to the reflected hand when comparing 

hand motor tasks performed with and without MVF. This is in line with the 

aforementioned brain stimulation studies. However, a wider cortical substrate 

responsible for the integration of visual, motor, sensory, and proprioceptor 

information and the MVF illusion perception has been suggested169. This assumption 

is supported by evidence demonstrating that MVF illusion was linked also to the 

activation of (i) occipital cortex, which elaborates visual information52–54, (ii) 

posterior parietal cortical areas that control visuo-motor transformation25,53,170,171, and 

(iii) frontal and temporal cortical areas that play a key role in the attentional processes 

toward the mirror illusion 48,54. 

As mentioned above, EEG can be used to map the scalp distribution of the alpha and 

beta band oscillations in response to sensory-motor events. In this context, the 

majority of the EEG studies observed a clear activity in the sensory-motor area 

ipsilateral to the moving limb and contralateral to the mirror illusion72,74,160 or reduced 

asymmetry in the hemispheric activation at the central electrode sites (C3 or C4)62–

64,157,162. In a comprehensive study, Al-Wasity and colleagues investigated the 

functional cortical domains related to the comparison of bimanual or 

unimanual+MVF tasks74. Results showed that the two conditions share the same 

sensory-motor and visuo-motor functional domains, whereas cortical regions linked 

to motor planning (PMC) and awareness of action (SMA) were activated exclusively 

during the MVF procedure. However, the absence of a unilateral movement condition 

without the mirror may represent a limit in that investigation. 

Study I152 was designed to test the hypothesis that the MVF illusion of bilateral finger 

movements (during actual unilateral finger movements) was related to bilateral 

sensory-motor as well as frontal (attentional) and posterior (visual) EEG alpha ERD. 
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As a methodological step forward, a 64-channel montage was deemed suitable for a 

larger 2D topographical mapping of the scalp alpha ERD, in contrast to the above-

mentioned EEG studies. As compared to the condition without MVF, the MVF 

condition showed a stronger alpha ERD (cortical activity) in the centro-parietal cortex 

contralateral to the hand reflected in the mirror (i.e., C4, CP4, and P4 electrodes) 

during the preparatory phase of the movement. The results also demonstrated a 

widespread alpha ERD in the frontal, centro-frontal (see Study I: Fig. 2 and 3) and 

occipital regions (see Study I152: Supporting Information) in the MVF condition as 

compared to the control conditions during movement execution. In Study II, the 

cortical sources of the alpha ERD were estimated using the eLORETA freeware (see 

Method section in Study II for further details) to investigate the brain cortical 

structures (3D mapping) involved during the MVF-induced illusion maintaining high 

temporal resolution which allowed the analysis of the anticipation and execution 

stages of the movement (Figure 4). In the anticipation phase, voxel-by-voxel 

comparisons between the MVF and noMVF conditions showed a significantly 

stronger alpha ERD in the sensory-motor, lateral premotor, polar prefrontal, and 

posterior parietal areas contralateral to the hand reflected in the mirror (Study II: Fig. 

4, Table 1). The main differences during the execution phase of the movement were 

delimited within the sensory-motor, lateral premotor, and posterior parietal cortical 

areas (Study II: Fig. 5, Table 2).  

 

Figure 4 – Grand average of the cortical sources of the alpha ERD/ERS values as estimated 
by eLORETA. The image shows the 3D maps (top view) for the three conditions Unilateral 
noMVF (Uni M-), Bilateral noMVF (Bil M-), and Unilateral MVF (Uni M+). The anticipation 
(top line) and execution (bottom line) phases of the event are represented. The color legends 
indicate the maximal percent values of ERD (dark red) and ERS (dark blue). 
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2.3. NEUROPHYSIOLOGICAL OSCILLATORY MECHANISM 
UNDERPINNING THE MVF-INDUCED ILLUSORY MOVEMENTS 

The results found in Study I and II are in line with previous literature showing as the 

activation in the primary and associative sensory-motor cortical areas is associated 

with the MVF illusory experience. As a novelty, findings from Study I and II 

connected the EEG alpha oscillatory mechanism to the cortical areas activated during 

MVF-induced movement illusion. Grounded on the existing theoretical framework, 

the spatiotemporal information observed in Study I and II will be accounted for to 

propose a neurophysiological model at the basis of the MVF illusion. 

2.3.1. ANTICIPATION AND EXECUTION PHASES OF THE MVF 
ILLUSION 

As compared to unilateral right finger movements alone, the MVF condition during 

the anticipation of the event (i.e., 1000 ms before the auditory cue triggering the right 

finger movement) showed a clear alpha ERD distributed in the polar prefrontal (BAs 

10-11), lateral premotor (BA 6), inferior posterior parietal (BA 40), and primary 

sensory-motor (BAs 1-2-3, and 4) cortical areas in the hemisphere ipsilateral to the 

moving hand and contralateral to the image of the opposite hand reflected in the mirror 

(see Study I and II). Keeping the same comparison, during the movement execution 

(i.e., from 250 ms to 1250 ms after the auditory cue triggering the right finger 

movement) the alpha ERD was delimited in the lateral premotor, primary sensory-

motor, and inferior posterior parietal cortical areas in the hemisphere contralateral to 

the image of the moving hand in the mirror. The temporal evolution and the spatial 

distribution of the alpha ERD in response to MVF finger movement led to the 

formulation of the following neurophysiological model underpinning the MVF 

illusion. 

The anticipatory activation of the polar prefrontal cortex might represent a “switch-

on” mechanism of the attentional mental processes that facilitate the elaboration of 

the upcoming auditory trigger cue, the finger movement, and the observation of the 

same movement in the mirror. The prefrontal activation might also facilitate the 

illusory sensation by anticipating the activation of the neural moving-body 

representations distributed in the lateral premotor and primary somatomotor cortical 

areas contralateral to the mirrored movement118,172–174. Moreover, the prefrontal 

activation may also trigger the anticipatory activity of the inferior posterior parietal 

cortex that may concur to the pre-excitation of the mentioned neural body 

representations by its neural network underpinning the visuo-somatomotor 

transformations to be induced by the upcoming observation of the MVF16,78,175–177. 

The anticipatory activity of the posterior parietal cortex (PPC) may be also associated 

with multisensory integration of proprioceptive and visuo-motor information 

occurring during the MVF condition. This speculation relies on evidence 

demonstrating functional reciprocal connections between the PPC and premotor and 
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primary sensory-motor areas16,53,67,78,178. Finally, the anticipatory alpha ERD observed 

in the primary sensory-motor, premotor, and posterior parietal areas may be explained 

by the mitigation of interhemispheric inhibition (IHI), a mechanism occurring during 

unilateral movements179,180. In this process, the activation of the moving body 

representations localized in the M1, S1 and PPC contralateral to the moving limb does 

transcallosally inhibit the homologous representations of the passive hemisphere181–

184. In Study I and II, this cortical inhibition is represented by the alpha ERS (see 

paragraph 2.12.1) contralaterally to the immobile hand in the condition without MVF 

(see Fig. 2, Study I and Fig. 3 Study II). That inhibition might be mitigated by the 

excitatory effects exerted by the anticipatory activity impinging in the M1, S1 and 

PCC contralateral to the mirrored hand. 

During the execution phase of the movement, the activation of the dorsal-ventral 

cortical network including the PPC, lateral PMC, and sensory-motor cortical areas 

may play a key role in the experience of the MVF illusion. Specifically, the image of 

the finger moving in the mirror activates the occipital (visual representation) areas, 

the posterior parietal (visuospatial, motor, and somatosensory representation) 

associative area, the lateral premotor (visuomotor and motor representation), and the 

primary sensory-motor (motor and somatosensory representation) areas in the 

hemisphere contralateral to the MVF illusory finger movement. In this framework, 

the MVF illusion may be related to the neural representations of the spatial co-

localization of the perceived finger movement in the mirror and its immobile finger 

behind the mirror. Again, these assumptions are in line with evidence that 

demonstrated the primary role of the functional connections between the PPC and the 

sensory-motor cortex in the multisensory integration of visuomotor 

integration16,53,67,78,178. Mitigation of the IHI may occur also in this case in the primary 

sensory-motor, premotor and posterior parietal areas179,180. In this phase, the visual 

information of the mirrored finger movement would reduce the transcallosal 

inhibitory effects of the active hemisphere towards the homologous finger 

representation in the passive hemisphere179,180, making possible the MVF illusory 

experience. 

2.3.2. FROM THE ALPHA ERD/ERS TO THE 
NEUROPHYSIOLOGICAL MODEL OF THE MVF ILLUSION 

From the previous chapter we learned that the sensory-motor EEG alpha rhythms (8-

12 Hz) result from synchronized oscillatory signals conveyed within a cortical 

pyramidal, basal ganglia, and thalamic neurons loop81,84,97,185,186 and characterize an 

idling state of the sensory-motor areas81,97,185,187. Furthermore, it is acknowledged that 

EEG alpha rhythms reduce in amplitude during the anticipation and the experience of 

sensory-motor events81,86,89,102. In light of the temporal evolution and spatial 

distribution of the alpha ERD observed in Study I and II of this project and described 

above, the following assumptions can be posited. Firstly, real movements and MVF-

induced illusory movements share the same neurophysiological oscillatory 



SPATIAL DISTRIBUTION AND TEMPORAL EVOLUTION OF EEG ALPHA RHYTHMS RELATED TO SENSORY-MOTOR 
TASKS DURING MIRROR VISUAL FEEDBACK ILLUSION 

20 
 

mechanism, activating the primary and associative sensory-motor cortical areas. 

Secondly, that neurophysiological mechanism serves additionally the visuomotor 

transformation processes occurring during MVF-induced illusion of finger 

movement, as observed by the modulation of the EEG alpha oscillations in the frontal 

and posterior cortical areas. Thirdly, the anticipation and the experience of the MVF 

illusion would interrupt (ERD) the inhibitory alpha frequency synchronization in the 

hemisphere contralateral to the mirrored finger81,89,188, inducing the conscious and 

vivid MVF illusory experience. 
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CHAPTER 3. INVESTIGATING THE 

NEURAL CORRELATES OF MVF 

THROUGH SENSORY-MOTOR 

INTERACTION 

In the previous chapter, the spatial and temporal features of MVF-induced illusory 

movements have been discussed concerning the findings observed in Study I and II 

of the present project. As stated in the Introduction (paragraph 1.4), Study III aimed 

to investigate the experience of electrical stimuli perception and the interaction with 

MVF-induced illusory movements. In the following paragraphs, research on sensory-

motor interaction and MVF will be reviewed and discussed in relation to the findings 

observed in Study III. Successively, a model of the presumed analgesic mechanisms 

enacted with or without MVF will be proposed. Finally, the findings will be framed 

in the context of the attentional triple network and its role in nociceptive processes. 

 

3.1. CORTICAL INVESTIGATION OF MVF IN PATIENTS WITH 
CHRONIC PAIN 

It is well known that lesions occurring in the central and peripheral nervous systems 

and the resulting functional impairment can lead to maladaptive neuroplasticity37,189–

191. MVF-based techniques are thought to reverse the maladaptive cortical 

neuroplasticity, induce motor recovery, and improve symptoms in patients with motor 

functional deficits (e.g., hemiparesis following a stroke) or chronic pain conditions 

(e.g., PLP following amputations, CRPS, fibromyalgia)16,22,78,192,193. Despite its 

potential for cortical reorganization, MVF techniques have been poorly applied in the 

research context in relation to experimentally-induced sensory-motor interaction in 

healthy individuals. Moreover, when MVF was applied in the clinical context, the 

majority of the studies focused on the motor recovery trajectory or pain relief 

outcomes rather than the brain neural correlates. However, some clinical studies on 

stroke patients and amputees indicated the primary sensory-motor cortex (S1-M1) as 

the main area influenced by MVF-induced neuroplasticity. In two fMRI194 and EEG195 

studies, chronic stroke patients were assigned to either MVF (experimental) or 

noMVF (control) groups and underwent conventional motor therapy. Four weeks after 

the beginning of the intervention, cortical recordings were collected to probe 

differences in cortical activation in response to motor tasks performed with the 

affected hand. As compared to the control groups, the experimental groups 

(undergoing MVF training) showed a significant increase in cortical activity in the 
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M1, PMC, and SMA as well as stronger EEG alpha rhythm suppression (as a marker 

of motor recovery) contralateral to the affected limb194. In addition, the MVF group 

obtained higher scores in the functional Fugl-Meyer Assessment194 and manual 

function test195. Similarly, Foell and colleagues analyzed the fMRI outcomes before 

and after an MVF training program (4 weeks) in patients with PLP following 

unilateral arm amputation196. The significant reduction of the PLP symptoms was 

accompanied by a restricted activation of the primary somatosensory and inferior 

parietal cortical areas. The Authors attributed this cortical narrowed activity to a 

reversal of the dysfunctional cortical reorganization following the amputation196. 

However, recent research challenged the primary role of the sensory-motor cortex in 

the neuroplastic processes induced by the MVF. Neuroimaging studies, using 

fMRI197,198 and near-infrared spectrometry199, observed that a reduction of PLP 

symptoms was associated with prefrontal cortical activity in patients with lower limb 

amputation198, whereas the balanced activation of the precunei may (i) discriminate 

between MVF therapy responders and non-responders, and (ii) play a role in the motor 

cortex stimulation and reorganization through the connections between the precuneus 

and SMA199. Furthermore, the findings from Saleh and colleagues suggested that 

MVF triggers the activity of a frontoparietal action observation network that, in turn, 

modulates the activity of the M1197. 

Studying the MVF effects on sensory-motor interaction by applying experimental 

pain may be misleading. The electrical phasic stimulations used in Study III do not 

properly resemble the chronic pain symptoms associated with PLP nor simulate the 

motor impairment observed in patients with hemiparesis. However, a number of 

connections between the results of Study III and the aforementioned studies on 

patients can be made. Although the scalp distribution of the alpha ERD observed in 

Study III does not allow to make clear inferences on the cortical responses to painful 

or non-painful electrical stimuli during the MVF illusion, the cortical source analysis 

showed the role of the precuneus and parietal posterior cortical areas for the internal 

representation of observed movements (such as MVF illusory movements) and lower 

nociceptive individual perception. Moreover, the results from Study III are in line with 

those from Saleh and colleagues197, indicating the involvement of a wide fronto-

parietal visuomotor integrative network as responsible for the modulation of motor 

commands and inhibition of painful stimuli. 

The nociceptive processes, as modulated by sensory-motor interaction tasks with and 

without MVF, will be treated in detail in the next paragraphs and will conclude this 

chapter. 
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3.2. ATTENTIONAL FACTORS INVOLVED IN PAIN MODULATION 

In the course of this dissertation, we learned that pain is defined as a sensory 

unpleasant experience and can be shaped by psychological, cognitive, attentional, and 

affective factors134,135,200,201. Additionally, previous evidence showed as sensory-

motor interaction occurring in the same limb can reduce the painful experience 

through the cortical gating effect89,102,142. In Study III, that sensory-motor interaction 

was obtained by combining MVF-induced illusory movements of the left index finger 

and electrical stimuli applied to the true left index finger. As nociception processes 

present substantial inter- and intra-individual variability202, stimuli at individually 

fixed amperage produced fluctuations in the subjective perception of the stimulation 

intensity. The investigation of those fluctuations suggests that the analgesic effects 

during MVF may be served by a different neurophysiological mechanism as compared 

to the gating effect mentioned in the Introduction. Specifically, internally and 

externally oriented attention may play a key role in the nociception processes. 

3.2.1. PREFRONTAL INHIBITORY MECHANISMS 

Results from Study III indicated as reduced painful sensations are characterized by a 

clear activity in the dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus 

(IFG), anterior cingulate cortex (ACC), and inferior parietal lobule (IPL). These areas 

have been subsumed under a dorsal attentional network (IPL and IFG)203,204 and a top-

down sensory-motor inhibitory circuit (DLPFC and ACC)204–206. In particular, the IFG 

plays a  central role in maintaining sustained attention during task execution (e.g., 

finger movements in Study III) and in modulating appropriate motor actions in 

response to external sensory stimuli207–211. In this scenario, the anticipatory activation 

observed in the prefrontal and sensory-motor cortical areas during the control 

condition in Study III (see Table 1) might be a sign of prefrontal-induced movement 

planning and stimulus expectancy enacted to prepare adaptive brain responses to the 

electrical noxious stimuli. These adaptive responses are represented by the subsequent 

combined activation of the DLPFC and ACC (contralateral to the electrically 

stimulated hand), which have been proven to play an important role in pain 

suppression204,206,212–214 via the inhibition of brain structures centrally involved in 

nociception processes such as the amygdala, insula, thalamus, and hippocampus206,215–

218. In an fMRI study, Brascher and colleagues allowed the participants to manipulate 

the intensity of phasic pain (control condition), in contrast with an uncontrollable pain 

experimental condition219. Results demonstrated that the DLPFC suppressed the 

insula and thalamus in the control condition, whereas this inhibitory effect did not 

occur in the uncontrollable condition219. A suggestive comparison can be made 

between the results observed by Brascher and colleagues and the results observed in 

Study III. Since the subjects were not informed about the fixed interstimulus interval 

(10 s), their prediction of the upcoming auditory-electrical stimulus is to be considered 

nearly aleatory. As a consequence, if the prediction of the upcoming stimulus was 

wrong (i.e., unexpected stimulus), the DLPFC did not promptly induce the inhibitory 
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signals toward the nociceptive system’s structures (i.e., subjects perceived pain). On 

the contrary, a correct prediction of the upcoming stimulus permitted the proper action 

of the inhibitory signals from the DLPFC, IFG, and ACC, resulting in a reduced 

subjective experience of the electrical stimulation. 

3.2.2. CORTICAL MIDLINE STRUCTURES INVOLVED DURING 
MVF 

The literature on human nociception processes indicated the involvement of several 

brain structures in the conscious elaboration of different pain-related domains. 

Specifically, the medial prefrontal cortex as well as anterior and posterior cingulate 

(PCC and ACC) cortices have been associated with the elaboration of the affective 

component of pain220,221. Furthermore, the activity of a posterior subnetwork of the 

brain responds to the cognitive and affective processes of nociception, such as self-

awareness and expectation of pain222. This subnetwork is represented by widespread 

cortical connections among the IPL, PCC, and precuneus222. Finally, the unpleasant 

sensation induced by painful stimuli (“suffering”) is related to the activation of 

cortical midline structures (CMS)223,224. The CMS can be defined as a compound of 

brain regions considered as a single anatomical and functional domain related to the 

sense-of-self and sensory-perceptual processing223–225. In particular, the posterior part 

of the CMS (i.e., posterior cingulate cortex and precuneus) is strongly engaged in the 

representation of the self as well as the evaluation of self-relevant sensations226,227, 

whereas the ventral part (medial frontal gyrus and ACC) responds to interoceptive 

signals, such as painful stimuli224. 

During the MVF task in Study III, the subjects may “fall” into a self-oriented 

attentional state to interiorize the image of the illusory hand reflected in the mirror. 

Notably, the senses of ownership and agency related to this internal attentional state 

are induced by the activation of the ACC and IPL224,225,228. Moreover, given its dense 

connections with the structures of the limbic system (e.g., amygdala, insula, 

thalamus), the CMS might play a key role also in the interiorization of the nociceptive 

afferents signals224 coming from the stimulated hand. Therefore, the analgesic 

mechanism (i.e., reduction in the subjectively perceived intensity of the electrical 

stimulation) observed during the MVF condition in Study III might be represented by 

the inhibition of the cortical midline limbic regions. 

3.2.3. ROLE OF ATTENTIONAL TRIPLE NETWORK IN PAIN 
MODULATION 

The externally- and internally-oriented attentional mechanisms and cortical areas 

described in the previous paragraphs belong to functionally connected circuits of the 

brain. These circuits encompass (i) a frontoparietal executive control network (ECN), 

that includes the DLPFC and PPC and is responsible for goal-oriented tasks execution 

and mental representation of the “outer world” 229,230; (ii) a self-representational 
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default mode network (DMN), including the PCC, the medial prefrontal cortex, and 

the angular gyrus, normally active when the attention is self-oriented (“inner 

world”)231,232; (iii) a salience network (SN), including the dorsal ACC and the anterior 

insula, thought to act as a switch between the ECN (correlated activity) and DMN 

(anticorrelated activity)229,233. The triple network model proposes that, when engaged 

by external relevant stimuli, such as painful stimuli, the SN reduces the activity and 

connectivity within the structures of the DMN to facilitate the activity and 

connectivity amongst the structures of the ECN233. 

The triple network functioning can be linked with the findings observed in Study III. 

In the condition without the MVF illusion (traditional cortical sensory-motor gating 

effect), the attention is directed to external goal-oriented tasks, namely the movement 

of the fingers interacting with the electrical stimuli. The externally-directed attention 

involved the activation of the prefrontal and parietal cortical areas, engaged to 

suppress the afferent nociceptive information234,235. In contrast, the interiorization of 

the illusory hand occurring during the MVF condition required self-oriented attention, 

thus facilitating the internal conscious representation of the afferent sensory stimuli 

as elaborated in the PCC, angular gyrus, and medial prefrontal cortex (the core 

structures of the DMN)231,232,236. As a result, the inhibition of these cortical areas 

caused a decrease in the individual perceived intensity of the electrical stimuli, and it 

may reflect an attenuated sense-of-self and reduced interoception. The findings from 

Study III are in line with previous studies showing enhanced DMN activity in 

response to painful237 rather than non-painful stimulations238 as well as the role of the 

ECN structures in pain suppression204,213. 

 

 

As with Study I and II, the sensory-motor interaction between electrical stimuli and 

MVF-induced illusory movements investigated in Study III was related to the 

underlying neurophysiological oscillatory mechanism at the alpha frequency (alpha 

ERD/ERS), an EEG rhythm acknowledged for its role in motor and sensory-

nociceptive processes89,120,123 as well as for its functional meaning within the core 

structures of the triple network (ECN, DMN, and SN)239–241. In Study III, the alpha 

ERD in the frontoparietal cortical areas reflects the activation of the executive efferent 

motor outputs enacted to interfere with the concomitant afferent sensory inputs. 

Contrariwise, the MVF condition is reflected by strong activity (alpha ERD) within 

the cortical midline structures of the DMN, reflecting self-representational thinking 

as well as the processing of the affective component of pain. The analgesic effects 

observed in the MVF condition may be related to increased alpha band oscillations in 

the CMS135,148. 
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CHAPTER 4. LIMITATIONS 

The experimental paradigms behind the present work are not free from 

methodological limitations. Past evidence showed that the topography and functional 

meaning of the alpha oscillations are different for the low alpha band (about 8-10 Hz) 

and high alpha band (about 10-12 Hz)82,83,101. The low alpha band is more distributed 

in the parietal areas and reflects unspecific alertness and response to relevant warning 

stimuli, whereas the high alpha band is prominent in the frontoparietal regions and 

decreases during task-specific sensory processing88,115. The studies proposed in this 

dissertation failed in finding differences in the cortical distribution and functionality 

between the alpha sub-bands and only the total alpha band has been reported in the 

analysis. 

In Study III, the cortical midline structures and the triple attentional network have 

been associated with the affective and sensory components of nociception. However, 

a few issues must be considered. Firstly, although the CMS present dense connections 

with the limbic system (amygdala, thalamus, hippocampus, etc.), inferences about the 

involvement of those structures remain hypothetical, due to the intrinsic low spatial 

resolution of the EEG techniques. Secondly, effective measures of functional 

connectivity (e.g., dynamic causal modelling or Granger causality) are required for a 

proper comprehension of the attentional networks and their role in sensory-motor 

interaction. Thirdly, distinct measures of the affective (emotional) and sensory 

(discriminative) components of pain could have been ideal to correlate the alpha 

oscillations in the CMS and triple network with these two aspects of nociception. 

Another element of caution is attributable to the phasic electrical stimulations applied 

in Study III, which do not accurately reflect the various symptoms of the chronic pain 

conditions that the MVF-based therapies were proposed to treat. The reason was to 

avoid many mental processes occurring during the experience of prolonged pain 

models that can affect the alpha oscillations. However, experimental prolonged tonic 

pain might represent a better model to investigate the MVF effects on pain and its 

development into persistent states. 

Finally, the sample size was not calculated before the recruitment phase. This issue 

must be considered particularly in Study III, where a few participants did not clearly 

show the expected fluctuations in the perceived intensity of the electrical stimuli. 

Therefore, the three groups presented different sample sizes, allowing the only use of 

a mixed model statistical design. 
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CHAPTER 5. CONCLUSIONS 

The present PhD project investigated the oscillatory patterns of the EEG alpha rhythm 

(ERD/ERS) recorded from healthy individuals in relation to the MVF illusory 

technique. Results from Study I demonstrated that unilateral movements performed 

during MVF illusion are related to bilateral cortical activation in the frontal and 

centroparietal sensory-motor areas, as reflected by a clear scalp alpha ERD in those 

brain regions. The cortical source analysis of the alpha ERD disclosed the key role of 

associative prefrontal, premotor, and posterior parietal cortical areas (contralateral to 

the illusory movement) in the transformation of visual information into somatomotor 

information. In Study III, the MVF illusion was used to induce cortical interference 

with afferent painful and non-painful sensory electrical stimuli. Such an interaction 

resulted in reduced activity (less alpha ERD) in the midline cortical areas of the pain 

neural matrix in the stimuli perceived as non-painful. 

The 64-channel EEG system allowed a precise definition of the temporal evolution of 

the movement preparation and execution and stimulus expectancy and experience as 

well as the cortical correlates with a moderately high spatial resolution. The dynamic 

changes of the alpha ERD have been associated with the neurophysiological 

oscillatory mechanism underlying the MVF illusion and its interaction with sensory 

stimuli. In this regard, MVF-induced illusory movements and actual movements seem 

to share the same sensory-motor neurophysiological mechanism. Moreover, MVF 

illusion might affect nociception processes by reducing the activation in the cortical 

midline limbic regions. Further investigations on the MVF mechanism and its effects 

on nociception processes might be essential to developing cost-effective rehabilitative 

tool. 

 

5.1. CLINICAL IMPLICATIONS 

MVF-based therapies are nowadays a solid rehabilitative instrument for patients with 

diverse chronic pain conditions (e.g., PLP, CRPS, post-stroke hemiparesis or stiffness 

of one limb). Neurophysiological evidence indicated as these patients show a reduced 

alpha suppression during motor planning and execution242 as well as lower 

interhemispheric neural communication180. The visuomotor transformation processes 

induced by the MVF illusion may facilitate the cortical reorganization of the sensory-

motor cortex in the ipsilesional hemisphere243. Similarly, the fronto-parietal MVF-

induced activity can be correlated to improvements in the patients’ functions in the 

motor, sensory, and attentional domains19. Taken together, the findings observed in 

the present work not only lend support to these models but help also to understand the 

underlying thalamo-cortical mechanisms based on the EEG alpha oscillations. In this 

regard, motor re-learning positively correlated with the brain's ability to suppress the 
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alpha rhythm244–246 and with augmented transcallosal communication179,180. 

Therefore, the clinical assessment of the alpha ERD – as an index of restored motor 

information processing – may represent a neural biomarker for the constant cost-

effective monitoring of the patient's motor recovery trajectory. Other than MVF 

illusion, alpha ERD has been also associated with other mental strategies for motor 

simulation, such as action observation and motor imagery46,247–249. In this context, the 

detection of the alpha ERD is largely used for the control of prosthesis or mechanical 

devices by brain-computer interface250 and for promoting motor rehabilitation251,252 

for those patients with unilateral limb dysfunctions. 

 

5.2. FUTURE PERSPECTIVES 

The precise mechanism underlying the MVF illusion and – particularly – its effect on 

pain perception remains to be elucidated. Future research may focus on functional 

connectivity analysis to shed light on the role of the attentional triple network. 

Moreover, multimodal EEG-fMRI investigations could be performed to further 

investigate the connectivity between cortical and subcortical (e.g., amygdala, 

thalamus, hippocampus) structures of the limbic system and their alterations in the 

activity during MVF-illusory movements and painful stimulation. 

Extensive research is also needed to assess the modulatory effects of MVF illusion 

during prolonged pain models. Since neuroplasticity has been shown to occur even in 

the adult brain, motor training coupled with MVF illusion may be applied to evaluate 

the long-term brain changes, in both patients and healthy individuals. Furthermore, 

these long-term responses might be investigated during exposure to prolonged 

experimental pain. Finally, the importance of the congruent visuomotor 

correspondence in the MVF-related sensory-motor interaction could be evaluated by 

manipulating the subjects’ viewpoint or arm position. 
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Placing a mirror adequately oriented, unilateral movements produce the 
illusion of the opposite limb moving synchronously. This Mirror Visual 
Feedback (MVF) illusion has been proposed to promote neurorehabilita-
tion in patients with chronic pain conditions and motor deficits. However, 
the cortical areas and the mechanisms related to this illusory phenomenon 
are poorly understood. Through the analysis of the EEG alpha rhythms, the 
present PhD project aims to investigate the neurophysiological mechanisms 
underlying the MVF-induced illusion of finger movements and its effects on 
nociceptive processes. In the first part of the work, unilateral movements of 
the index finger during MVF were associated with a bi-hemispheric activity 
of the central sensory-motor cortical areas. Moreover, the source estimation 
of the EEG alpha oscillations unveiled the involvement of the premotor and 
posterior parietal associative cortical areas as responsible for visuomotor 
integration during MVF illusion. In the second part, sensory-motor interac-
tion between MVF-induced illusory movements and electrical stimulations 
indicated that the inhibition of the midline limbic regions is associated with 
an individually lower perception of the stimulation intensity. A better un-
derstanding of these mechanisms might be relevant to developing therapies 
for those patients with unilateral limb impairment.
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