

Aalborg Universitet

Abstract Dependency Graphs for Model Verification

Enevoldsen, Søren

DOI (link to publication from Publisher):
10.54337/aau510736584

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Enevoldsen, S. (2022). Abstract Dependency Graphs for Model Verification. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau510736584

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024

https://doi.org/10.54337/aau510736584
https://vbn.aau.dk/en/publications/75c0e5cd-cb0e-460c-9821-844b4b2a9d29
https://doi.org/10.54337/aau510736584

Sø
r

en
 en

evo
ld

Sen
A

b
Str

A
c

t d
epen

d
en

c
y G

r
A

ph
S fo

r
 M

o
d

el ver
ific

Atio
n

AbStrAct dependency
GrAphS for Model

verificAtion

by
Søren enevoldSen

Dissertation submitteD 2022

Abstract Dependency
Graphs for Model

Verification

Ph.D. Dissertation
Søren Enevoldsen

Dissertation submitted: August 2022

PhD supervisor: Professor Kim Guldstrand Larsen
 Aalborg University, Denmark

Assistant PhD supervisors: Professor Jiri Srba
 Aalborg University, Denmark

 Associate Professor Arne Skou
 Aalborg University, Denmark

PhD committee: Associate Professor Álvaro Torralba (chairman)
 Aalborg University, Denmark

 Professor Jaco van de Pol
 Aarhus University, Denmark

 Senior Researcher Radu Mateescu
 Inria Grenoble Rhône-Alpes, France

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-849-6

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Søren Enevoldsen

Printed in Denmark by Stibo Complete, 2022

Abstract

Computational systems are ubiquitous nowadays and it is necessary that they
operate as intended. Model verification is one technique to formally verify
that our design satisfies the properties required of the system. One of the
challenges of model verification is that the complexity of the systems mod-
elled is subject to state-space explosion, rendering the system too large to
represent in memory. On-the-fly techniques construct only the state space
needed for verification and can therefore sometimes avoid using excessive
memory. This thesis focuses on extensions and improvements to the on-the-
fly algorithms for the dependency graph framework.

We demonstrate, by developing a distributed algorithm, that despite the
problem of computing the minimum fixed-point assignment on a depen-
dency graph being P-complete, we can still achieve substantial speed up
compared to the original Liu & Smolka fixed point algorithm. The addition
of ‘certain-zero’ allows pruning of further computation improving termina-
tion speed and memory usage, increasing the number of problems that are
solvable. The model checker TAPAAL uses the resulting algorithm and has
won gold medals in the CTL model checking category of the annual Model
Checking Contest in the years 2018–2022.

The abstract dependency graph framework encompasses many of the sep-
arate extensions developed to the original dependency graph framework.
We demonstrate the applicability of the framework by encoding CTL model
checking of Petri nets and weighted Kripke structures, as well as bisimulation
of CCS processes, and simulation of task graphs. The most complex encoding
demonstrated in practice is to solve probabilistic weighted ATL on stochastic
turn-based games. Comparing against other tools, the abstract dependency
graph framework is shown to use only slightly more memory and time; and
in some cases the on-the-fly approach enables our algorithm to terminate
with the result much sooner.

On a case study we propose a probabilistic FlexOffer, affording more en-
ergy flexibility, compared to normal FlexOffers. We demonstrate using UP-
PAAL Stratego, that not only can we synthesize a controller, but we can also
quantify the chance of success for any given schedule.

iii

Resumé

Computersystemer er allestedsnærværende i dag, og det er nødvendigt, at
de fungerer som beregnet. Modelverifikation er en teknik til formelt at kon-
trollere, at vores design opfylder de krævede egenskaber i systemet. En
af udfordringerne ved modelverifikation er, at kompleksiteten af de mod-
ellerede systemer er udsat for eksplosion i tilstandsrum, hvilket gør systemet
for stort til at repræsentere i hukommelsen. On-the-fly teknikker konstruerer
kun det tilstandsrum der er nødvendigt til verifikation, og kan derfor un-
dertiden undgå at bruge for stor hukommelse. Denne afhandling fokuserer
på udvidelser og forbedringer af on-the-fly algoritmer til dependency graf
frameworket.

Vi demonstrerer ved at udvikle en distribueret algoritme, at på trods af at
beregningen af minimums-fikspunktet af en dependency grafer er P-komplet,
kan vi stadig opnå betydelig hastighedsforbedring i forhold til den origi-
nale Liu & Smolka fikspunktsalgoritme. Tilføjelsen af ‘certain-zero’ muliggør
beskæring af yderligere beregning, hvilket forbedrer afslutningshastigheden
og hukommelsesforbruget, og således øger antallet af problemer der kan
løses. TAPAAL bruger den resulterende algoritme og har vundet guldmedal-
jer i CTL-modelkontrolkategorien i den årlige Model Checking Contest i
årene 2018–2022.

Det abstrakte dependency graf framework omfatter mange af de sepa-
rate udvidelser, der er udviklet af det oprindelige dependency graf frame-
work. Vi demonstrerer anvendeligheden af frameworket ved at indkode
CTL-modelkontrol af Petri-net og vægtede Kripke-strukturer samt bisimu-
lering af CCS-processer og simulering af task graphs. Den mest komplekse
enkodning, der demonstreres i praksis, er at løse probabilistisk vægtet ATL
på stokastiske turbaserede spil. Sammenlignet med andre værktøjer er det
vist, at den abstrakte dependency graf framework kun bruger marginalt mere
hukommelse og tid; og i nogle tilfælde gør on-the-fly tilgangen vores algo-
ritme i stand til at afslutte med resultatet meget hurtigere.

I et casestudie foreslår vi probabilistisk FlexOffer, der giver mere energi-
fleksibilitet sammenlignet med normale FlexOffers. Vi demonstrerer ved
hjælp af UPPAAL Stratego, at vi ikke kun kan syntetisere en controller, men

v

vi kan også kvantificere chancen for succes for en given tidsplan.

Acknowledgement

I am extremely grateful for the guidance and support offered by my supervi-
sors, Jiří Srba, Kim Guldstrand Larsen and Arne Skou.

I would also like to thank my colleagues at the department for our won-
derful interactions and willingness to always offer their time to answer my
questions.

vii

Contents

Abstract iii

Resumé v

I Introduction 1
1 Model Verification . 3

1.1 Challenges . 5
1.2 Approach of This Thesis 7

2 Dependency Graphs . 8
2.1 On-the-Fly Verification . 10

3 Encoding of Problems into DGs 14
3.1 Encoding of Strong Bisimulation 14
3.2 Encoding of CTL Model Checking 15

4 Contributions of the Thesis . 17
4.1 Paper A: Distributed Computation of Fixed Points on

Dependency Graphs . 19
4.2 Paper B: A Distributed Fixed-Point Algorithm for Ex-

tended Dependency Graphs 21
4.3 Paper C: Extended Abstract Dependency Graphs 24
4.4 Paper D: Verification of Multiplayer Stochastic Games

via Abstract Dependency Graphs 30
4.5 Paper E: Energy Consumption Forecast of Photo-Voltaic

Comfort Cooling using UPPAAL Stratego 34
5 Conclusion . 39
References . 41

II Papers 49

A Distributed Computation of Fixed Points on Dependency Graphs 51

ix

Contents

B A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm 69

C Extended Abstract Dependency Graphs 103

D Verification of Multiplayer Stochastic Games via Abstract Depen-
dency Graphs 135

E Energy Consumption Forecast of Photo-Voltaic Comfort Cooling us-
ing UPPAAL Stratego 159

x

Part I

Introduction

1

1. Model Verification

Computational systems are ubiquitous nowadays. Their scale varies from
simple toggle-buttons to various embedded systems and network routers up
to complex multi-purpose computers. Some of the systems exist not as phys-
ical manifestations—though their real-world applicability may depend upon
them—but are complex computational systems regardless, like network pro-
tocols or file systems.

It is desired that these systems satisfy some key properties related to their
use. A user-facing system should always be able to respond and avoid a
deadlock, which the user observes as the system being non-responsive or
‘freezing’, otherwise the user experience is impaired. For other applications,
such as safety critical applications, the requirements are more strict and there
is a need for guarantees about system behaviour in all situations or configu-
rations the system may encounter. In addition to correctness, some systems
have further constraints on the quantitative aspects of the properties the sys-
tem needs to satisfy. One such constraint might be time for real-time systems:
the brakes of a car should always react within a certain time after being ac-
tivated. Other systems involve various quantities of interest, e.g. for battery
powered systems the energy usage of various components of the systems
can be of crucial interest, and a desired objective may be to never run out
of power. Sometimes the actions the system can perform are not guaranteed
to have the desired outcome, so we have to deal with uncertainty. In fact, it
is often the case that we know our system can be affected by things outside
of our control. One approach to ensure that our system exhibits certain be-
havior is using testing [54]. However, for complex systems it is infeasible to
exhaustively demonstrate the correct behaviour in all possible settings and
inputs to the system by testing. Such guarantees are instead classically pro-
vided by a different approach that involves creating a formal model that can
be reasoned about and hence used to formally verify the model properties.

1 Model Verification

To validate that the studied system satisfies the desired properties, we need a
model of the system amenable to analysis. The model of our system should
incorporate the aspects we view as crucial. At the same time, our choice of
model should also eliminate aspects which we deem irrelevant for the pur-
pose of verifying whether our properties are satisfied by the system. The
friction properties of a brake are obviously important, but not necessarily
from the perspective of the software control system. Once such a model is
obtained, then using formal methods such as model checking [18] and equiv-
alence checking [21], it is possible to rigorously reason about the behaviour
of the model.

The state-transition model is a general model that captures the fact that

3

G1

R1 R′1
wait

to
gre

en

to
greento

re
d

(a) Traffic light LTS

G2

R2 R′2
wait

to
re

d
to

gre
en

to
greento

re
d

(b) A variant of traffic light LTS

Fig. 1: Traffic light LTS variants

systems based on digital logic can be seen as transitioning from one state
to another. A state can be seen as the digital representation of the memory
of the system. A key aspect is what part of the model we consider as visi-
ble/observable with respect to these properties. If, from our model, we can tell
which state the system is currently in, we have a state-based perspective. Al-
ternatively, we may consider the transitions the system takes, in which case
we have a action-based perspective. This general model has innumerable
variants extending the system with probabilities, quantities, time, or other
aspects. Note, that when discussing the dynamic nature of a state-transition
model, we often refer to it as a process.

As an example of modeling a simple traffic light with only green and red
lights, we focus on two variants of transition systems, LTS (labelled transition
systems), and KS (Kripke structure), (see [18] for an introduction). In labelled
transition systems, a process changes its (unobservable) internal states by
performing visible actions. Kripke structures on the other hand allow to
observe the validity of a number of atomic predicates revealing some (partial)
information about the current state of a given process, whereas the state
changes are not labelled by any visible actions.

In Figure 1a an LTS modelling a simple traffic light is given. Although
the states are named for convenience, they are considered opaque. Instead,
this formalism uses the action-based perspective where the actions of the
transitions are considered visible. For example from R1 there is a transition
to R′1 labelled with a ‘wait’ action that allows to extend the duration of the
red color, after which only the action ‘to green’ is available. A slight variant
of the LTS is given in Figure 1b where from G2 it is possible to enter directly
the state R′2 by performing the ‘to red’ action. We can now ask the (equivalence
checking) question whether the two systems are equivalent up to some given
notion of behavioural equivalence [62], e.g. bisimilarity [57], which is not the
case in our example.

The simple traffic light can also be modelled as a Kripke structure that
is depicted in Figure 2. Here the transitions are not labelled by any actions
while the states are labelled with the propositions ‘red’ and ‘green’ that indi-

4

1. Model Verification

G{green}

R{red} R′ {red}

Fig. 2: Kripke structure of traffic light

cate the status of the light in that state. We note that the states R and R′ are
indistinguishable as they are labelled by the same proposition ‘red’. We can
now ask the (model checking) question whether the initial state R satisfies the
property that on any execution the proposition ‘green’ will eventually hold
and until this happens the light is in ‘red’. This can be e.g. expressed by
the CTL property ‘A red U green’ and it indeed holds for R in the depicted
Kripke structure.

Other Models and Extensions

Both Kripke structures and labelled transition systems provide versatile for-
malisms for modeling systems suitable for automatic verification tools. They
are not always the most designer friendly formalisms to use directly. Vari-
ous extensions to Kripke structures and LTS exist, and there are also other
formalisms that enable more complex models not described by states and
transitions among them, though sometimes the behavior of these high-level
models is then defined in terms of a corresponding state-transition system.

We mention just a few of the extensions to KS and LTS. A WTS [32]
(Weighted Transition System) adds weights to the transitions. These might
represent that some transitions are more costly than others. Likewise, a
WKS [36] (Weighted Kripke Structure) also adds weights to transitions, but
the transitions remain unnamed. Instead of extending with weights, time la-
belled transition systems [3] extend transitions with time. Markov chains [18]
have states where the next state is uncertain due to probabilities. Adding
rewards, syntactically equivalent to weights, results in the MDP [10, 18]
(Markov Decision Process).

1.1 Challenges

The models just described are suitable for describing systems in an abstract
manner and reasoning about them. A problem inherent to the complexity of
verification is that the models can grow large. Adding just a 32-bit integer to
a model potentially increases the state space by a factor of 232. A common
modelling approach designs a system composed from multiple components
where each of the components can execute in parallel. While the state space

5

of each component is small enough to be amenable for mechanical verifica-
tion, the composition of the components may cause the composed state-space
to explode as well. The phenomenon of the state space growing too large to
fit into memory is referred to as the state-space explosion problem and it is one
of the major obstacles for automatic verification.

The problem is not always apparent. For the actual purpose of modelling,
low-level models like LTS are quite verbose. Instead modelling is done us-
ing high-level models with more succinct syntax whose semantics are still
defined by low-level models such as LTS. The problem is that the resulting
low-level model can easily become huge. Examples of such high-level mod-
els are Petri nets [58] and Timed Automata [2], or a composition of multiple
communicating models [18].

In Petri nets [58] there are places that each may have certain number of
tokens. Between various places are Petri-net transitions linked to input and
output places with arcs, with each arc describing a number of tokens. The
Petri net model induces a state-transition system where a state is a represen-
tation of the token count in all the places, called a marking. The transitions
between markings are induced then by Petri net transitions, which consume
tokens in the input places and add them to the output places, resulting in a
different marking.

A timed automaton [2] consists of locations and named actions over the
transitions which are augmented with continuous time, represented by reset-
able clocks, where the transition may optionally be restricted to certain clock
values. Although the automaton can only be in one location at a time, be-
cause of the continuous nature of the clocks, there can be infinitely (in fact
uncountably) many unique states of the system.

Smaller models can also be composed into a larger one [18]. A network
of communicating automata consists of multiple transition systems that can
communicate with each other in a controlled manner. When composing indi-
vidual transition systems one distinguishes between observable and internal
(unobservable) actions. In the composed transition system, each individual
component-system may transition using internal actions freely, while observ-
able actions may require synchronization with another component-system.
Another example of a composed system is that of a network of timed au-
tomata [52]. Even with the synchronization requirements limiting certain
transitions, the individual systems can often transition internally among a
number of states proportional to its own size, thus the size of a composed
model is on the order of the product of the component models. The result
is that making even a small change in the model may cause a state-space
explosion rendering the resulting model too large for automatic verification.

6

1. Model Verification

1.2 Approach of This Thesis

The problem of state-space explosion may be mitigated by the verification
technique used. Some verification algorithms require that the entire reach-
able state-space is constructed before verification, while other algorithms,
referred to as ‘on-the-fly’ algorithms [18], construct only the necessary state
space while deciding the verification problem. By potentially avoiding the
construction of the entire state space, the benefit of on-the-fly algorithms is
that they may decide verification problems whose state space does not fit into
memory all at once, or is even infinite.

To compute the result of the verification problem, we exploit a structure
known as a dependency graph [53]. Succinctly put, a dependency graph
is a directed graph where each edge, referred to as a hyperedge, may have
multiple target nodes. The idea is that each hyperedge from a source node
represents a possible set of dependencies that can be used to satisfy the source
node. The verification problem is then reduced to subproblems represented
by the structure of the dependency graph.

We now describe the general approach considered in this thesis to solve
verification problems.

1. Translate the verification problem for a given model into a dependency
graph. Both the dependency graph and the transition system of the
input model, if possible, are constructed on-the-fly starting with a root
node.

2. Each node in the dependency graph is associated with a value and all
the values for the nodes comprise an assignment. The structure of the
dependency graph, the domain of values, and a function for updating
the values, thus modifying the assignment, are carefully decided such
that there exists a minimum or maximum fixed point over the assign-
ment.

3. The minimum/maximum fixed point assignment value of each node
determines the status of a sub-problem, with the value of the root node
determining the result of the original verification problem. An algo-
rithm computes the fixed point over the assignment so it can decide the
result of the verification problem.

This thesis concerns itself with on-the-fly algorithms for computing the fixed
points of dependency graphs and variants of dependency graphs. Depen-
dency graphs, and the encoding of problems to dependency graphs, and
algorithms to compute the fixed point will be described in the following sec-
tions. Finally, we describe our contributions where we show how to compute
the fixed point in parallel and more efficiently, and our generalization of the
dependency graph framework to handle more verification problems.

7

2 Dependency Graphs

The dependency graph framework was introduced in 1998 by Liu and
Smolka [53]. Similar to Boolean equation systems, dependency graphs serve
as a universal tool for the representation of various model checking and
equivalence checking problems. The approach discussed here involves trans-
lating the verification problem into a dependency graph. For each node in
the dependency graph we have a value representing a part of the computa-
tion for solving the verification problem. All the nodes values combined is
called the assignment. The computation that updates the assignment induces
a fixed point over the assignment and the value of a minimum (or maximum)
fixed-point value for a node ultimately determines the verification result.

Dependency graphs are a variant of directed graphs where each edge,
also called a hyperedge, may have multiple target nodes [53]. The intuition is
that a property of a given node in a dependency graph depends simultane-
ously on all the properties of the target nodes for a given hyperedge, while
different outgoing hyperedges provide alternatives for deriving the desirable
properties. Formally, a dependency graph (DG) is a pair G = (V, E) where V is
a set of nodes and E ⊆ V× 2V is the set of hyperedges. Figure 3a graphically
depicts the following dependency graph:

G = (V, E)

V = {v1, v2, v3, v4, v5, v6, v7}
E = {(v1, {v2}), (v1, {v3, v4}), (v3, ∅), (v4, {v5, v6}),
= (v4, {v7}), (v5, {v6}), (v6, {v4, v5})}, (v7, {v4}).

For example the root node v1 has two hyperedges: the first hyperedge has
the target node v2 and the second hyperedge has two targets v3 and v4. The
node v2 has no outgoing hyperedges, while the node v3 has a single outgoing
hyperedge with no targets (shown by the empty set).

As shown in Figure 3b it is possible to interpret the dependencies among
the nodes in dependency graph as a system of Boolean equations, using the
general formula

v =
∨

(v,T)∈E

∧

u∈T
u

where by definition the conjunction of zero terms is true, and the disjunction
of zero terms is false. We denote false by ff (or 0), and true by tt (or 1).

We can now ask the question whether there is an assignment of Boolean
values to all nodes in the graph such that all constructed Boolean equations
simultaneously hold. Formally, an assignment is a function A : V → {0, 1}
and an assignment A is a solution if it satisfies the equality:

A(v) =
∨

(v,T)∈E

∧

u∈T
A(u) .

8

2. Dependency Graphs

v1

v2 v3 v4 v5 v6

v7

∅
(a) Dependency graph

v1 = v2 ∨ (v3 ∧ v4)

v2 = ff

v3 = tt

v4 = (v5 ∧ v6) ∨ v7

v5 = v6

v6 = v4 ∧ v5

v7 = v4

(b) Corresponding equation system

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = tt

v6 = tt

v7 = tt

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = ff

v6 = ff

v7 = tt

v1 = ff

v2 = ff

v3 = tt

v4 = ff

v5 = ff

v6 = ff

v7 = ff

(c) Possible solutions

Iteration v1 v2 v3 v4 v5 v6 v7

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 0

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 3: Example of dependency graph

In our case, there are three solutions as listed in Figure 3c. The existence of
several such possible assignments that solve the equations is caused by cyclic
dependencies in the graph as e.g. v5 depends on v6 and at the same time v6
also depends of v5.

However, if we let the set of all possible assignments be A and define
A1 ≤ A2 if and only if A1(v) ≤ A2(v) for all v ∈ V where A1, A2 ∈ A, then
we can observe that (A,≤) is a complete lattice [7, 26].

There is a standard procedure how to compute the unique mini-
mum/maximum solution. For example for the minimum solution we can
define a function F : A → A that transforms an assignment as follows:

9

Input: A dependency graph G = (V, E).
Output: Minimum fixed point Amin.

1 A := A0

2 repeat
3 A′ := A
4 forall v ∈ V do
5 A(v) :=

∨
(v,T)∈E

∧
u∈T A′(u)

6

7 until A = A′

8 return A
Algorithm 1: Global algorithm for minimum fixed point Amin

F(A)(v) =
∨

(v,T)∈E

∧

u∈T
A(u) .

Clearly, the function F is monotonic and an assignment A is a solution to a
given dependency graph if and only if A is a fixed point of A, i.e. F(A) = A.
From the Knaster-Tarski fixed-point theorem [61] we get that the monotonic
function F on the complete lattice (A,≤) has a unique minimum fixed point
(solution).

By repeatedly applying F to the initial assignment A0 where A0(v) = 0
for all nodes v, we can iteratively find a minimum fixed point as formulated
in the following theorem.

Theorem 1. Let Amin denote the unique minimum fixed point of F. If there is an
integer i such that Fi(A0) = Fi+1(A0) then Fi(A0) = Amin.

Clearly Fi(A0) is a fixed point as F(Fi(A0)) = Fi(A0) by the assumption
of the theorem. We notice that A0 ≤ Amin and because F is monotonic and
Amin is a fixed point, we also know that Fj(A0) ≤ Fj(Amin) = Amin for
an arbitrary j. Then in particular Fi(A0) ≤ Amin and because Amin is the
minimum fixed point and Fi(A0) is a fixed point, necessarily Fi(A0) = Amin.

For any finite dependency graph, the iterative computation of Amin as
summarized in Algorithm 1, also referred to as the global algorithm, is guar-
anteed to terminate after finitely many iterations and return the minimum
fixed-point assignment as shown in Figure 3d. Dually, the iterative algorithm
can be used to compute maximum fixed points on finite dependency graphs.

2.1 On-the-Fly Verification

In Algorithm 1, we have already seen a method for computing iteratively the
minimum fixed point Amin for all nodes in the dependency graph. The chal-

10

2. Dependency Graphs

Input: A dependency graph G = (V, E) and a node v0 ∈ V.
Output: Amin(v0)

1 forall v ∈ V do
2 A(v) := ?
3 A(v0) := 0
4 D(v0) := ∅
5 W := {(v0, T) | (v0, T) ∈ E}
6 while W 6= ∅ do
7 e := (v, T) ∈W
8 W := W \ {e}
9 if A(v′) = 1 for all v′ ∈ T then

10 if A(v) 6= 1 then
11 A(v) := 1
12 W := W ∪ D(v)
13 else if ∃v′ ∈ T such that A(v′) = 0 then
14 D(v′) := D(v′) ∪ {e}
15 else if ∃v′ ∈ T such that A(v′) = ? then
16 A(v′) := 0
17 D(v′) := {e}
18 W := W ∪ {(v′, U) | (v′, U) ∈ E}
19 return A(v0)

Algorithm 2: Liu and Smolka’s local algorithm computing Amin(v0)

lenge is how to decide the equivalence and model checking problems even
for systems described in high level formalism such as automata networks or
Petri nets. These formalisms allow for a compact representation of the system
behaviour, meaning that even though their configurations and transitions can
still be given as a labelled transition system or a Kripke structure, the size of
these can be exponential in the size of the input formalism. The resulting
phenomena is the state-space explosion problem already mentioned, and it
makes (in many cases) the full enumeration of the state-space infeasible for
practical applications.

In order to deal with state-space explosion, on-the-fly verification algo-
rithms are preferable as they construct the reachable state-space step by step
and hence avoid the (expensive) a priory enumeration of all system config-
urations. In case a conclusive answer about the system behaviour can be
drawn by exploring only a part of the state-space, this may grant a consider-
able speed up in the verification time.

More concretely when verifying using dependency graphs, we are often
only interested in Amin(v0) for a given node v0, and do not necessarily have
to explore the whole dependency graph. This is shown in Figure 4, where

11

v0

v1 v2

. . .∅

Fig. 4: Value of Amin(v2) is unnecessary for concluding that Amin(v0) = 1

we can see that Amin(v1) = 1 due to the outgoing hyperedge from v1 with
empty set of targets, and this value can propagate directly to the node v0 and
we can therefore also conclude that Amin(v0) = 1; all this without the need
to explore the (possibly large or even infinite) subtree with the root v2. This
idea is formalized in Liu and Smolka’s local algorithm [53] that computes the
value of Amin(v0) for a given node v0 in an on-the-fly manner.

Algorithm 2 shows the pseudocode of the local algorithm. The algorithm
maintains the waiting set W of hyperedges to be explored (initially all outgo-
ing hyperedges from the root node v0) as well as the list of dependencies D
for every node v, such that D(v) contains the list of all hyperedges that should
be reinserted into the waiting set in case the value of the node v changes from
0 to 1. Due to a small technical omission, the original algorithm of Liu and
Smolka did not guarantee termination even for finite dependency graph. This
is fixed in Algorithm 2 by inserting the if-test at line 10 that makes sure that
we do not reinsert the dependencies D(v) of a node v to W in the case that
the value of v is already known to be 1.

In Figure 5b we see the computation of the local algorithm on the depen-
dency graph from Figure 5a. Under the assumption that the algorithm makes
optimal choices when picking among hyperedges from the waiting list (third
column in the table), we can see that only a subset of nodes is ever visited
and the value of Amin(v1) can be determined by exploring only the middle
subtree of v1 because once in the 6th iteration the value A(v1) is improved
from 0 to 1, we terminate early and announce the answer.

The idea of local or on-the-fly model checking was discovered simultane-
ously and independently by various people in the end of the 80s all engaged
in making model checking and equivalence checking tools for various process
algebras, e.g. the Concurrency Workbench CWB [20]. Due to its high expres-
sive power—as demonstrated in [22, 59]—particular focus was on truly local
model-checking algorithms for the modal mu-calculus [46]. Several discus-
sions and exchanges of ideas between Henrik Reif Andersen, Kim G. Larsen,
Colin Stirling and Glynn Winskel lead to the first local model-checking meth-
ods [6, 14, 48, 49, 60, 63]. Besides the CWB these were implemented in the
model checking tools TAV [13, 33] for CCS and EPSILON [17] for timed CCS.

Simultaneously, in France a tool named VESAR [1] was developed that

12

2. Dependency Graphs

v1

v2

v3 v4

v5

v6 v7

v8

v9 v10 v11

∅

e1 e2 e3

e4 e5

e6 e7

e8

e9 e10
e11

(a) Example of a dependency graph

Iter W e ∈W A(v1) A(v2...4) A(v5) A(v6) A(v7) A(v8...11)

0 {e1, e2, e3} 0 ? ? ? ? ?
1 {e1, e2, e3} e2 0 ? 0 ? ? ?
2 {e1, e3, e6} e6 0 ? 0 ? 0 ?
3 {e1, e3, e11} e11 0 ? 0 0 0 ?
4 {e1, e3, e10} e10 0 ? 0 1 0 ?
5 {e1, e3, e11} e11 0 ? 0 1 1 ?
6 {e1, e3, e6} e6 0 ? 1 1 1 ?
7 {e1, e2, e3} e2 1 ? 1 1 1 ?

(b) Execution of local algorithm for computing Amin(v1)

Fig. 5: Demonstration of local algorithm for minimum fixed-point computation

combined the model checking idea (from the Sifakis team in Grenoble) and
the simulation world (from Roland Groz at CNET Lannion and Claude Jard
in Rennes, who were checking properties on-the-fly using observers). The
VESAR tool was developed by a French company named Verilog and its
technology was later reused for another tool named Object-Geode from the
same company, which was heavily sold in the telecom sector [1].

As an alternative to encoding into the modal mu-calculus, it was realized
that an even simpler formalism—Boolean equation systems (BES)—can pro-
vide a universal framework for recasting all model checking and equivalence
checking problems. Whereas [50] introduces BES and first local algorithms,
the work in [5] provides the first optimal (linear-time) local algorithm. Later
extensions and adaptions of BES were implemented in the tools CADP [56]
and muCRL [34].

13

3 Encoding of Problems into DGs

We shall now see how equivalence and model checking problems can be
encoded into the question of finding a minimum fixed-point assignment on
dependency graphs. Typically, the nodes in the dependency graph encode the
configurations of the problem in question and the hyperedges create logical
connections between the subproblems. We provide two examples showing
how to encode strong bisimulation checking and CTL model checking into
dependency graphs.

3.1 Encoding of Strong Bisimulation

Recall that two states s and t in a given LTS are strongly bisimilar [57], written
s ∼ t, if there is a binary relation R over the states such that (s, t) ∈ R and

• whenever s α−→ s′ then there is t α−→ t′ such that (s′, t′) ∈ R, and

• whenever t α−→ t′ then there is s α−→ s′ such that (s′, t′) ∈ R.

We encode the question whether s0 ∼ t0 for given two states s0 and t0 into
a dependency graph where the nodes (configurations) are pairs of states of
the form (s, t) and the hyperedges represent all possible ‘attacks’ on the claim
that s and t are bisimilar. For example, if one of the two states can perform
an action that is not enabled in the other state, we introduce a hyperedge
with the empty set of target nodes, meaning that the minimum fixed-point
assignment of the node (s, t) gets the value 1 representing the fact that s 6∼ t.
In general the aim is to construct the DG in such a way that for any node (s, t)
we have Amin((s, t)) = 0 if and only if s ∼ t. The construction, as mentioned
e.g. in [26], is given in Figure 6a. The rule says that if s can take an α-
action to s′, then the configuration (s, t) should have a hyperedge containing
all target configurations (s′, t′) where t′ are all possible α-successors of t.
Symmetrically for the outgoing transitions for t that should be matched by
transitions from s.

Let us consider again the transition systems from Figure 6. The depen-
dency graph to decide whether R1 is bisimilar with R2 is given in Figure 6d
where we note that the configuration (R1, R′2) has a hyperedge with no tar-
get nodes. This is because R1 can perform the ‘wait’ action that R′2 cannot
match. If we now compute Amin, for example using the global algorithm in
Figure 6e, we notice that Amin((R1, R′2)) = 1 which means that R1 and R′2 are
not bisimilar.

14

3. Encoding of Problems into DGs

s, t

s′, t′1 . . . s′, t′m s′1, t′ . . . s′n, t′

for all s α−→ s′ for all t α−→ t′

{t′1, . . . , t′m} = {t′ | t α−→ t′} {s′1, . . . , s′n} = {s′ | s α−→ s′}
(a) Encoding rule for strong bisimulation checking

G1

R1 R′1
wait

to
gre

en

to
greento

re
d

(b) Traffic light LTS

G2

R2 R′2
wait

to
re

d
to

gre
en

to
greento

re
d

(c) A variant of traffic light LTS

R1, R2

R′1, R′2 G1, G2

R1, R′2

∅

wait

to green

to green

to red

to red

to red to red

to green wait

(d) Dependency graph with root (R1, R2) for bisimulation checking

Iteration A(R1, R2) A(R′1, R′2) A(G1, G2) A(R1, R′2)

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 1 1 1 1

(e) Iterative minimum fixed-point computation by using the global algorithm

Fig. 6: Bisimulation Checking of LTS

3.2 Encoding of CTL Model Checking

We shall now provide an example of encoding a model checking problem
into dependency graphs. In particular, we demonstrate the encoding for CTL
logic as described e.g. in [25]. We want to check whether a state s of a given
LTS satisfies the CTL formula ϕ. We let the nodes of the dependency graph be
of the form (s, ϕ) and these nodes are decomposed into a number of subgoals
depending of the structure of the formula ϕ. The encoding ensures that
Amin((s, ϕ)) = 1 if and only if s |= ϕ for any node (s, ϕ) in the dependency
graph [24]. Figure 7 shows the rules for constructing such a dependency
graph.

Returning to our example from Figure 8, we see in Figure 8b the

15

s, ϕ1 ∧ ϕ2

s, ϕ1 s, ϕ2

s, ϕ1 ∨ ϕ2

s, ϕ1 s, ϕ2

s, EXϕ

s1, ϕ sn, ϕ· · ·

s, Eϕ1Uϕ2

s1, Eϕ1Uϕ2s, ϕ1 · · ·

s, ϕ2

sn, Eϕ1Uϕ2

s, Aϕ1Uϕ2

s1, Aϕ1Uϕ2s, ϕ1

s, ϕ2

· · · sn, Aϕ1Uϕ2

Fig. 7: Encoding to determine whether s |= ϕ where {s1, . . . , sn} = {s′ | s→ s′}

constructed dependency graph for the model checking question R |=
A red U green. The fixed-point computation using the global algorithm is
given in Figure 8c and because Amin(v1) = 1, we can conclude that the state R
indeed satisfies the CTL formula A red U green. For simplicity, the encoding
as shown in Figure 7 does not include negation, but the construction can be
extended to support negation [24].

16

4. Contributions of the Thesis

G{green}

R{red} R′ {red}

(a) Traffic light Kripke structure

R, A red U green

v1

R, green

v2

R, red

v3

R′, A red U green

v4

G, A red U green

v7

R′, green

v5

R′, red

v6

G, green

v8

G, red

v9

∅

∅ ∅
(b) Dependency graph with root v1 encoding R |= A red U green

Iteration A(v1) A(v2) A(v3) A(v4) A(v5) A(v6) A(v7) A(v8) A(v9)

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0
2 0 0 1 0 0 1 1 1 0
3 0 0 1 1 0 1 1 1 0
4 1 0 1 1 0 1 1 1 0
5 1 0 1 1 0 1 1 1 0

(c) Iterative minimum fixed-point computation using the global algorithm

Fig. 8: Kripke structure of traffic light

4 Contributions of the Thesis

After the survey in Section 2 and Section 3, we can now expand on how
our work builds upon that, and demonstrate that we can improve efficiency,
spread the computation across multiple machines to handle larger problems,
and generalize the approach to make it applicable to even more verification
problems.

The following conference and journal publications are part of this thesis.

Paper A Distributed Computation of Fixed Points on Dependency Graphs.
A. Dalsgaard, S. Enevoldsen, K. Larsen, and J. Srba. Proceedings of
Symposium on Dependable Software Engineering: Theories, Tools and
Applications (SETTA’16). Lecture Notes in Computer Science, vol. 9984,
pp. 197–212, Springer, 2016.

Paper B A Distributed Fixed-Point Algorithm for Extended Dependency

17

Graphs. A. Dalsgaard, S. Enevoldsen, P. Fogh, L. Jensen, P. Jensen,
T. Jepsen, I. Kaufmann, K. Larsen, S. Nielsen, M. Olesen, S. Pastva,
and J. Srba. Fundamenta Informaticae. vol. 161, no. 4, pp. 351-381,
IOS Press, 2018.

This journal paper is an extension of the following conference paper.

Extended Dependency Graphs and Efficient Distributed Fixed-Point
Computation. A. Dalsgaard, S. Enevoldsen, P. Fogh, L. Jensen,
T. Jepsen, I. Kaufmann, K. Larsen, S. Nielsen, M. Olesen, S. Pastva,
and J. Srba. Proceedings of International Conference on Application
and Theory of Petri Nets and Concurrency (Petri Nets 2017). Lecture
Notes in Computer Science, vol. 10258, pp. 139–158, Springer, 2017.

The conference paper won the best-paper award at Petri Nets’17.

Paper C Extended Abstract Dependency Graphs. S. Enevoldsen, K. Larsen, and
J. Srba. International Journal on Software Tools for Technology Transfer.
vol. 24, pp. 49-65, Springer, 2021.

The journal paper is an extension of the following conference paper.

Abstract Dependency Graphs and Their Application to Model Check-
ing. S. Enevoldsen, K. Larsen, and J. Srba. Proceedings of the 25th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’19), Lecture Notes in Computer Sci-
ence, vol. 11427, pp. 316-333, Springer, 2019.

The conference paper won the EASST (European Association of Software Sci-
ence and Technology) best paper award at ETAPS’19.

Paper D Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs. S. Enevoldsen, M. Jensen, K. Larsen, A. Mariegaard, and
J. Srba. Proceedings of Logic-Based Program Synthesis and Transfor-
mation (LOPSTR 2020), Lecture Notes in Computer Science, vol. 12561,
pp. 249–268, Springer, 2020.

Paper E Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego. M. Agesen, S. Enevoldsen, T. Guilly, A. Mariegaard,
P. Olsen, A. Skou. Models, Algorithms, Logics and Tools. Lecture Notes
in Computer Science, vol. 10460, pp. 603–622, Springer, 2017.

The author of this thesis is also the co-author of a published overview
paper (Paper P) and a subsequent journal version (Paper Q).

Paper P Model Verification Through Dependency Graphs. S. Enevoldsen,
K. Larsen, and J. Srba. Proceedings of Model Checking Software.
SPIN 2019. Lecture Notes in Computer Science, vol. 11636, pp. 1–19,
Springer, 2019.

18

4. Contributions of the Thesis

Paper Q Dependency Graphs With Applications to Verification. S. Enevoldsen,
K. Larsen, A. Mariegaard, and J. Srba. International Journal on Software
Tools for Technology Transfer, vol. 22, no. 5, pp. 635-654, Springer, 2020.

Section 1–3 and Sections 4.1-4.5 are to a large degree based on paper Q.
We now give a summary of each paper included in this thesis and detail
our novel contributions. The full versions of Paper A to Paper E are in the
appendix.

4.1 Paper A: Distributed Computation of Fixed Points on De-
pendency Graphs

Earlier it was mentioned how the state-space explosion problem can lead to
huge state spaces. Even with on-the-fly algorithms the partial state space
necessary for verification may still be too large to fit into the memory of
the machine and the verification problem cannot be solved by mechanical
verification. While it may be possible to modify the model for a smaller
state space while ensuring the verification result is not affected, one cannot
rely on such methods all the time. Instead one may leverage the memory
and computational power of multiple machines to solve verification problems
with larger state-space and also to solve them faster.

Contribution 1. We design a distributed fixed-point algorithm for computing the
minimum fixed-point value on a dependency graph. The added memory and process-
ing power of multiple machines speeds up the computation and can handle larger
problem instances.

In Paper A we describe a distributed fixed-point algorithm for depen-
dency graphs that distributes the workload over several machines. Each
worker owns part of the dependency graph that is constructed on-the-fly
from the encoding of the verification problem and runs its own fixed-point
computation with its own waiting list and other data structures. The as-
signment is split among the workers with each worker having only partial
knowledge of the assignment and only guaranteed up-to-date knowledge on
the assignment value of owned nodes. In order to compute the assignment
value of a node, a worker needs to know the assignment value of perhaps
unowned nodes. All workers communicate directly with each other using
message passing, and there are two kinds of messages a worker can send to
another. A worker can request the assignment value of a node owned by the
receiver, and a worker can send the assignment value of a node to another
worker. Each worker has its own waiting list and message queue and in each
iteration of its main loop it either processes a hyperedge from the waiting
list or a message from its message queue. While the algorithm is logically

19

distributed, each physical machine may have multiple workers taking part in
the computation.

The core of the distributed algorithm follows the structure of Algorithm 2
with each worker running its own instance. The waiting list of each worker
contains only hyperedges whose source node is owned by the worker. The
major difference for a worker is in how computation is distributed, and in
each iteration of the main loop a worker picks either a hyperedge or a mes-
sage to process.

• If a worker needs the assignment value of an unowned node, instead
of adding its hyperedges to its own waiting list, it sends a message
requesting the assignment value to the owning worker.

• On receipt of a message requesting the assignment value, the receiving
worker responds immediately with a message that the value is 1 if this
is the case. Otherwise, it internally registers the sender’s interest in the
assignment value in case the node is later updated. If the node has not
been expanded before, its hyperedges are added to the waiting list.

While the main loop either picks a hyperedge or a message, a hyperedge
is never sent to another worker. An earlier attempt on the algorithm used a
more granular splitting by partitioning the hyperedges instead of the nodes,
but the result was worse performing [64] with increased communication giv-
ing more overhead and slowdown.

We proved the algorithm correct with respect to soundness, completeness
and termination.

Contribution 2. We implemented our distributed version of the fixed-point algo-
rithm of Liu and Smolka’s dependency graph framework. Our implementation in
C++ is instantiated to encodings for weak and strong bisimulation and simulation
for CCS processes and its running time improves as more cores are used.

The distributed algorithm was implemented in C++ using MPI. A com-
plication arises from the fact that sending of messages are not instantaneous:
all the waiting lists and message queues may be empty; however, a mes-
sage may be in transit that will enable further computation. In order to
ensure proper termination detection we implemented Safra’s termination de-
tection [30]. Our implementation was experientially verified with instances
of weak simulation and bisimulation of CCS processes with up to 256 work-
ers. The results show an initial linear speedup until tapering off with 6 times
speedup with 8 workers towards 25 times speedup with 64 workers. This
is satisfactory performance as the verification problems are P-complete and
hence believed hard to parallelize. Since the distributed algorithm computes
on dependency graphs, it does not need to be rewritten for other verification
problems that can be encoded into finding the fixed point on a dependency
graph.

20

4. Contributions of the Thesis

v0

v1 v2

. . .∅
(a) Value of Amin(v2) is unnecessary for conclud-
ing that Amin(v0) = 1

1

0

?
(b) Liu&Smolka value ordering

v0

v1 v2

. . .
(c) Value of Amin(v2) is unnecessary for conclud-
ing that Amin(v0) = 0

1 0

?

⊥
(d) Certain-zero value ordering

Fig. 9: Certain-zero optimization

4.2 Paper B: A Distributed Fixed-Point Algorithm for Ex-
tended Dependency Graphs

The aim in this work is to improve the on-the-fly performance of the local Liu
and Smolka algorithm, as well as the distributed algorithm from Paper A. Re-
call that the local algorithm begins with all nodes being assigned the symbol ?
(representing a previously unexplored node) such that whenever a new node
is discovered during the forward search, it gets the value 0 and this value
may be possibly increased to 1. Hence the assignment values grow as shown
in Figure 9b. As soon as the root receives the value 1, the local algorithm
can terminate. If the root never receives the value 1, we need to explore the
whole graph and wait until the waiting set is empty before we can terminate
and return the value 0. Hence during the computation, the value 0 of a node
is ‘uncertain’ as it can be possibly increased to 1 in the future.

Consider the dependency graph in Figure 9c. In order to compute
Amin(v0), the local algorithm computes first the minimum fixed-point assign-
ment both for v1 and v2 before it can terminate with the answer that the final
value for the root is 0. However, we can actually conclude that Amin(v1) = 0
as the final value of the node v1 is clearly 0 and hence v0 can never be up-
graded to 1, irrelevant of the value of Amin(v2).

Contribution 3. We improve the algorithm of Liu and Smolka by introducing the
certain-zero value enabling the algorithm to terminate earlier.

In Paper B we extend the possible values of nodes with the notation of
certain-zero (see Figure 9d for the value ordering), i.e. once the assignment of

21

a node becomes 0, its value can never be improved anymore to 1. The certain
zero value can be back-propagated and once the root receives the certain-zero
value, the algorithm can terminate early and hence speed up the computation
of the fixed-point value for the root. The efficiency of the certain-zero opti-
mization is demonstrated for example on the implementation of dependency
graphs for CTL model checking of Petri nets [25] and for other verification
problems in the more general setting of abstract dependency graphs [31].

Contribution 4. The certain-zero algorithm is implemented in the CTL model
checking tool TAPAAL. Following the implementation, TAPAAL won gold medals
for CTL model checking in the 2018–2022 editions of the Model Checking Contest.

The CTL model checking engine of the award-winning tool TAPAAL [27]
applies dependency graphs with certain-zero optimization [40–44]. Other
Petri net game engines employ dependency graphs as well. In [38] synthesis
for safety games for timed-arc Petri net games is introduced, demonstrat-
ing (and exploiting) equivalence between continuous-time and discrete-time
setting. Finally, in [12] partial order reduction for synthesis of reachability
games on Petri nets is obtained based on the dependency graph framework.

In order to demonstrate the basic idea of CTL model checking for Petri
nets via dependency graphs (including the certain-zero optimization), we
consider the simple Petri net in Figure 10a. A marking of the Petri net is
written as a triple (x1, x2, x3) where xi denotes the number of tokens in the
place pi. For example, by firing the transition t1 from the initial marking
(1, 0, 0), we reach the marking (0, 1, 1) where a token is removed from each
pre-place of t1 (i.e. the place p1 in our case) and a new token is created in each
post-place of t1 (i.e. in the places p2 and p3 in our case). Clearly, by firing re-
peatedly the transitions t1 and t3, we can see that the number of tokens in the
place p2 grows beyond any bound, meaning that the Petri net is unbounded.
We now ask the question whether the initial marking (1, 0, 0) satisfies the
CTL formula A (p1 = 1) U (p2 = 2), stating that on any computation start-
ing in the initial marking, we eventually reach a marking with 2 tokens in
the place p2 and before this happens, the place p1 must always contain one
token. The formula is not satisfied in our example and we can demonstrate
this by building a dependency graph as described by the rules in Figure 7,
using the NOR from Figure 9d so that the local algorithm can propagate the
certain-zero value from children to the parent. Even though the constructed
dependency graph given in Figure 10b is infinite, depending on the search
strategy (e.g. BFS) it is possible that the local algorithm terminates with a
negative answer. A search using the local algorithm, called from the root
node v1, may start by exploring the node v2 and marking it as a certain-zero
because it has no outgoing transitions—the marking (1, 0, 0) clearly does not
satisfy the atomic proposition p2 = 2. Assume that the next explored node is
v4 from which we visit v5 and mark it as a certain-zero. Next, suppose that

22

4. Contributions of the Thesis

p1

p2

p3

t1 t2

t3

(a) A Petri net where (1, 0, 0) 6|= ϕ

(1, 0, 0), ϕ

v1

(1, 0, 0), p2 = 2

v2

(1, 0, 0), p1 = 1

v3

(0, 1, 1), ϕ

v4

∅ (0, 1, 1), p2 = 2

v5

(0, 1, 1), p1 = 1

v6

(1, 1, 0), ϕ

v7

. . .
(b) Corresponding dependency graph

Fig. 10: Petri net model checking example for ϕ ≡ A (p1 = 1) U (p2 = 2)

we visit the node v6 that is as well marked as a certain zero. The certain-zero
value is now back-propagated to v4, without the need to explore the nodes
v7 and v3 (that are in conjunction with a certain-zero node). As both v2 and
v4 now have a certain-zero value, we can (again without the need to explore
the node v3) back-propagate this value to the root node v1 and the algorithm
can terminate early while announcing that the formula ϕ does not hold in
the initial marking. This can be achieved, without ever exploring the node v7
and its (infinitely many) successors, meaning that the certain-zero algorithm
terminates on our example, even though the classical local and global algo-
rithms by Liu and Smolka keep exploring the whole (infinite) dependency
graph, irrelevant of the chosen search strategy.

23

A limitation of the work in Paper A and the original algorithm by Liu and
Smolka [53] is the inability to handle negation. Negation breaks the mono-
tonicity necessary for the existence of a unique minimum or maximum fixed
point, and precluded its applicability to certain problems like CTL model
checking that is not negation-free.

Contribution 5. We extend dependency graphs with negation edges. The intro-
duction of negation edges enable the algorithm to solve problems including negation
such as CTL model checking.

We suggest to add negation edges that induce subgraphs of the dependency
graph of min/max components with acyclic dependencies. The addition of
negation edges permits nested alternation of fixed points allowing for nega-
tion. Monotonicity is ensured by the algorithm evaluating the subgraphs,
as needed, from smallest to largest and only propagating values across the
negation edge when the target value cannot cause any future evaluation to
break monotonicity.

The introduction of certain-zero and negation edges complicates a dis-
tributed implementation of the algorithm. Certain-zero affords more oppor-
tunities for early termination; however, the introduction of negation edges
restrains the evaluation order of the nodes in the induced subgraphs. Lean-
ing on Paper A, we derive a new distributed algorithm that incorporates both
improvements.

Contribution 6. The extensions of both certain-zero and the negation edges are in-
corporated under an improved distributed algorithm with proved correctness and
termination.

Experiments on 784 cases from the Model Checking Contest [45] show that
adding certain-zero to the local Liu and Smolka algorithm increased the
solved cases from 475 to 565 cases. Using 4 cores and certain-zero increased
the number of solved cases to 619. Finally, using 32 cores further increased
the number of solved cases to 670.

4.3 Paper C: Extended Abstract Dependency Graphs

Dependency graphs have recently been extended in several directions in or-
der to reason about more complex problems. Extended dependency graphs
(EDG), introduced in [25], add a new type of edge to dependency graphs
to handle negation. Another extension with weights, called symbolic depen-
dency graphs (SDG) [37], extends the value annotation of nodes from the 0-1
domain into the set of natural numbers together with a new type of so-called
cover-edges. Recently, an extension presented in [19] considers as the value-
assignment domain the set of piece-wise constant functions in order to be
able to encode weighted PCTL [35] model checking. Because the constructed

24

4. Contributions of the Thesis

CCS, ≈ CTL, |= WCTL, |= . . .

Encoding1 Encoding2 Encoding3 . . .

DG EDG SDG . . .

Algorithm1 Algorithm2 Algorithm3 . . .

Amin Amin Amin . . .
(a) Single-purpose algorithms for minimum fixed-point computation

CCS, ≈ CTL |= WCTL |= . . .

Encoding1 Encoding2 Encoding3 . . .

ADG

Algorithm

Amin

(b) Abstract Dependency Graph (ADG) solution

Fig. 11: Model verification without and with abstract dependency graphs

dependency graphs in these extensions are different for each problem that
we consider, we need to implement single-purpose algorithms to compute
the fixed points on such extended dependency graphs, as depicted in Fig-
ure 11a.

Contribution 7. We design abstract dependency graphs to unify multiple exten-
sions to dependency graphs into one framework requiring only one fixed-point al-
gorithm, eliminating the need for different algorithms for each dependency graph
encoding. We prove the correctness of the fixed point algorithm by showing the com-
pleteness, soundness, and termination proofs.

In Paper C we describe abstract dependency graphs (ADG) that permit a
more general, user-defined domain for the node assignments together with
user-defined functions for evaluating the fixed-point assignments. As a re-
sult, a number of verification problems can be now encoded as ADG and a
single (optimized) algorithm can be used for computing the minimum fixed
point as depicted in Figure 11b.

In ADG the values of node assignments have to form a Noetherian Order-
ing Relation with least element (NOR), which is a triple D = (D,v,⊥) where

25

(D,v) is a partial order, ⊥ ∈ D is its least element, and v satisfies the as-
cending chain condition: for any infinite chain d1 v d2 v d3 v . . . there is an
integer k such that dk = dk+j for all j > 0. For algorithmic purposes, we
assume that such a domain together with the ordering relation is effective
(computable).

Instead of hyperedges, each node in an ADG has an ordered sequence of
target nodes together with a monotonic function f : Dn → D of the same
arity as the number of its target nodes. The function is used to evaluate the
values of the node during an iterative, local fixed-point computation.

An assignment A : V → D is now a function that to each node assigns a
value from the domain D and we define a function F as

F(A)(v) = E(v)(A(v1), A(v2), . . . , A(vn))

where E(v) stands for the monotonic function assigned to node v and
v1, v2, . . . vn are all (ordered) target nodes of v.

The presence of the least element ⊥ ∈ D means that the assignment A⊥
where A⊥(v) = ⊥ for all v ∈ V is the least of all assignments (when or-
dered component-wise). Moreover, the requirement that (D,v,⊥) satisfies
the ascending chain condition ensures that assignments cannot increase in-
definitely and guarantees that we eventually reach the minimum fixed-point
assignment, Amin, as formulated in the next theorem.

Theorem 2. There exists a number i such that Fi(A⊥) = Fi+1(A⊥) = Amin.

Remark. The ascending chain condition in the definition of NOR is only a sufficient
condition for the validity of Theorem 2. There are partial orders that do not satisfy
the ascending chain condition but where the fixed-point iteration still terminates on
the concrete applications.

An example of ADG over the NOR D = ({0, 1}, {(0, 1)}, 0) that repre-
sents the classical Liu and Smolka dependency graph framework is shown in
Figure 12a. Here 0 (interpreted as false) is below the value 1 (interpreted as
true) and the monotonic functions for nodes are displayed as node annota-
tions. In Figure 12b we demonstrate the fixed-point iterations computing the
minimum fixed-point assignment.

A more interesting instance of ADG with an infinite value domain is given
in Figure 12c. The ADG encodes an example of a symbolic dependency
graph (SDG) from [37] (with the added node E). The nodes are assigned
nonnegative integer values (note that we use the ordering relation in the
reverse order here) with the initial value being ∞ and the ‘best’ value (the
one that cannot be improved anymore) being 0. The fixed-point computation
is shown in Figure 12d.

Contribution 8. We provide an C++ library of the algorithm with multiple instan-
tiations of abstract dependency graphs:

26

4. Contributions of the Thesis

A

B ∨ (C ∧ D)

B

1

C

1

D

E ∧ F

E1 F

E ∧ D
(a) Abstract dependency graph over NOR
({0, 1},≤, 0)

A B C D E F
A⊥ 0 0 0 0 0 0
F(A⊥) 0 1 1 0 1 0
F2(A⊥) 1 1 1 0 1 0
F3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation of Figure 12a

A 0 if B ≤ 5 else ∞

B max{C, D + 3}C

min{D, E}

D 0E3

(c) Abstract dependency graph over NOR
(N∪ {∞},≥, ∞)

A B C D E
A⊥ ∞ ∞ ∞ ∞ ∞
F(A⊥) ∞ ∞ ∞ 0 3
F2(A⊥) ∞ ∞ 0 0 3
F3(A⊥) ∞ 3 0 0 3
F4(A⊥) 0 3 0 0 3

(d) Fixed-point computation of Figure 12c

Fig. 12: Abstract dependency graphs

• weak bisimulation checking of CCS processes,

• weak simulation of task graphs,

• CTL model checking on Petri nets, and

• CTL model checking on weighted Kripke structures.

In Paper C we devise an efficient local (on-the-fly) algorithm for ADGs
and provide a publicly available implementation in a form of C++ library.
The experimental results confirm that the general algorithm on ADGs is com-
petitive with the single-purpose optimized algorithms for the particular in-
stances of the framework.

The original contribution had the limitation that each node can only be
labelled by a monotonic function. This prevents some verification problems
to be modelled, namely negation.

Contribution 9. We extend the ADG framework to permit labelling of the nodes
with nonmonotonic functions and provide its efficient implementation.

This extension further broadens the applicability to more kinds of verifi-
cation problems such as the full CTL model checking. We implement CTL

27

s1

{a}

s2s3

{b}

2

1

3

(a) WKS with two atomic propositions a and
b

s1, EF≤5 b

v1

s1, EF≤? b

v2

s1, b

v3

s3, EF≤? b

v4

s2, EF≤? b

v5

s3, b

v6

s2, b

v7

∅

5

3

2

1

(b) Dependency graph encoding for s1 |= EF≤5 b

v1 v2 v3 v4 v5 v6 v7

A⊥ ∞ ∞ ∞ ∞ ∞ ∞ ∞
F(A⊥) ∞ ∞ ∞ ∞ ∞ 0 ∞
F2(A⊥) ∞ ∞ ∞ 0 ∞ 0 ∞
F3(A⊥) ∞ 3 ∞ 0 ∞ 0 ∞
F4(A⊥) 0 3 ∞ 0 4 0 ∞
F5(A⊥) 0 3 ∞ 0 4 0 ∞

(c) Fixed point computation of Figure 13b

Fig. 13: Model checking WCTL on Kripke structure.

model checking with negation in our library using this nonmonotonic exten-
sion and compare the performance against TAPAAL (gold medal winner in
CTL model checking at the Model Checking Contest, years 2018–2022). The
ability to handle negation increases the number of suitable CTL model check-
ing cases from MCC from 267 to 12272. Slightly above half of the cases were
solved by our implementation or TAPAAL within our allocated time and
memory limits and both tools have instances they solved exclusively. The
median cases are comparable with our implementation being only 7% slower
and using only around 11% more memory. Considering that TAPAAL is us-
ing an optimized single purpose implementation compared to our general
framework this is good result.

We demonstrate the applicability of ADGs for Weighted CTL model
checking. In [36, 37] ADGs—called symbolic DGs at the time of writing of the
papers—are used for efficient on-the-fly model checking for WKS (weighted
Kripke structures) with respect to weighted extensions of CTL. The resulting
on-the-fly algorithm is implemented in the on-line tool WKTool.

Figure 13a shows an example of a WKS with two atomic propositions a

28

4. Contributions of the Thesis

and b. For model checking WCTL with upper bounds on the cost, the model
checking problem is encoded into a symbolic dependency graph, where the
nodes in the DG are pairs of the form (s, ϕ) where s is a state of the weighted
Kripke structure and ϕ is a WCTL formula. For the assignment we use the
NOR D = (N ∪ {∞},≥, ∞). The assignment value for a node (s, ϕ) is then
an upper bound on the cost for which the state s is known to satisfy ϕ, with
a value of ∞ implying it is not known yet whether the state s satisfies ϕ. The
DG is constructed from the WCTL formula in a syntax-driven way, similarly
as for unweighted CTL.

The DG contains weighted hyperedges where each hyperedge (v, T) ∈ H
contains multiple target pairs (w, v′) ∈ T where w ∈ N ∪ {∞} is a cost and
v′ the target node. The naive non-symbolic approach uses an encoding based
only on these hyperedges and creates a dependency graph where nodes con-
tain the same formula but with different cost values, resulting in an explosion
in the number of nodes. However, by noticing that e.g. s1 |= EF≤2 ϕ implies
s1 |= EF≤3 ϕ, we can improve the encoding (as explained in [36]) by intro-
ducing the so-called cover-edges. A cover-edge is a triple (v, k, v′) ∈ C where v
is the source node and v′ is the target node, while k is a nonnegative integer
representing the cover condition. The introduction of cover-edges reduces the
size of the DG substantially and its use is demonstrated in Figure 13b that
shows the dependency graph constructed for the model checking problem
s1 |= EF≤5 b. The dashed edge indicates the cover-edge.

The value for a node is computed by the following monotonic function
where A is the current assignment:

F(A)(v) =

0 if ∃(v, k, v′) ∈ C s.t. A(v′) ≤ k < ∞

or A(v′) < k = ∞

min
(v,T)∈H

(max{w + A(v′) | (w, v′) ∈ T})

otherwise .

The function F(A)(v) computes the lowest upper-bound cost. For a hy-
peredge the intuition is that it propagates a cost that is the most expensive
way to get to any of its targets. Each hyperedge represents a possibility
to satisfy the formula in a different way, so we take the minimum over all
hyperedges outgoing from a given node. For example the cost to satisfy
(s1, EF≤? b) is the lowest of the cost to satisfy either (s1, b), (s3, EF≤? b) plus 3,
or (s2, EF≤? b) plus 2. A formula with a conjunction may induce a node in the
DG that has a hyperedge with multiple targets. For cover-edges with weight
k the intuition is that if the cost-free formula can be satisfied with cost k′ such
that k′ ≤ k then the cost-bounded formula is also satisfied. After constructing
the DG, the model checking problem s |= ϕ is then equivalent to checking

29

whether Amin((s, ϕ)) = 0. Table 13c shows the global fixed-point computa-
tion of the DG. This demonstrates an instantiation of the ADG framework to
a more advanced domain, and in our comparisons with WKTool we are up
to an order of magnitude faster.

4.4 Paper D: Verification of Multiplayer Stochastic Games via
Abstract Dependency Graphs

In this paper we focus on model checking of turn-based stochastic games.
Our game has multiple players and each state is owned by a specific player.
At each turn, the owning player of the current state may select an action.
The game features quantitative aspects in that the chosen action is associated
with a probability distribution on transitions and each transition has a cost
vector. The cost vector represents the weights in multiple dimensions for
the transition. We extend the strategies to coalitions of players. Given a
strategy for each coalition, we can resolve nondeterminism to induce a MRM
(Markov Reward Model) with impulse rewards [23]. For verification, we limit
ourselves to games where for all loops the accumulated cost is of strictly
positive magnitude.

To reason about the game models we use extended probabilistic ATL with
weights (PWATL), which is based on of ATL [4] (Alternating-time temporal
logic). The path formulae are upper-bounded multi-cost operators, φ U≤k φ,
(the bound, k, relates to the weight vectors in the game). Probabilistic reason-
ing is afforded by state formula 〈〈C〉〉≥λ(ϕ) which a model satisfies only if
coalition of players C has probability greater than (or equal to) λ of satisfying
path formula ϕ. Negation is only permitted on the atomic propositions since
this work precedes the extension in Paper C to handle negation.

To answer the model checking problem, we reduce the problem to finding
fixed point on abstract dependency graphs.

Contribution 10. We present a reduction for the problem of model checking PWATL
on turn-based stochastic multiplayer games to computing fixed points on abstract
dependency graphs.

The encoding to ADG enables the use of the already designed algorithm from
Paper C to compute the fixed point.

To simplify this exposition, we restrict the example and encoding to
(multi) weighted PCTL (PCWTL) on MRMs which does not have players.
The turn-based stochastic game and PWATL subsumes MRMs and PWCTL
respectively. Paper D contains the full details for the game and PWATL.

For model checking Markov Reward Models (MRMs) with respect to
PWCTL, the work in [19, 55] provides an on-the-fly algorithm using depen-
dency graphs. An example of an MRM is depicted in Figure 14a. Notice that
each transition is equipped with a (strictly positive) natural number (single

30

4. Contributions of the Thesis

s {a}

s1 {b}

3, 1
2

5, 1
2

1, 1

(a) Simple MRM

s,P≥ 5
8
(a U≤13 b)v1

s, a U≤? bv2

s, a
v4

∅

s, b

v3

Σ1

v5

s1, a U≤? b v6

s1, a
v8

s1, b

v7

∅

Σ2

v9

13,≥, 5
8

5, 1
2

3, 1
2

1, 1

(b) Dependency graph encoding for s |= P≥ 5
8
(a U≤13 b)

v1 v2 v3 v4 v5 v6 v7 v8 v9

A⊥ p0 p0 p0 p0 p0 p0 p0 p0 p0
F(A⊥) p0 p0 p0 p1 p0 p0 p1 p0 p0
F2(A⊥) p0 p0 p0 p1 p0 p1 p1 p0 p0
F3(A⊥) p0 p0 p0 p1 {(3, 1

2)} p1 p1 p0 {(1, 1)}
F4(A⊥) p0 {(3, 1

2)} p0 p1 {(3, 1
2)} p1 p1 p0 {(1, 1)}

F5(A⊥) p0 {(3, 1
2)} p0 p1 {(3, 1

2), (8, 3
4)} p1 p1 p0 {(1, 1)}

F6(A⊥) p0 {(3, 1
2), (8, 3

4)} p0 p1 {(3, 1
2), (8, 3

4)} p1 p1 p0 {(1, 1)}
F7(A⊥) p1 {(3, 1

2), (8, 3
4)} p0 p1 {(3, 1

2), (8, 3
4)} p1 p1 p0 {(1, 1)}

(c) Fixed-point computation of Figure 14b

Fig. 14: Probabilistic model checking, from [19]

element cost vector) and a probability. As for classical Markov chains, for
each state of the model, the sum of all probabilities on outgoing transitions
must be 1. As a specification language, PWCTL extends PCTL with upper
bounds on all path formulae, while requiring lower bounds on the probabilis-
tic modality. In general, both MRM weights and PWCTL upper bounds are
natural-valued vectors, but for simplicity, we focus here on the case where
all weights are (strictly positive) scalars. Informally, the PWCTL formula
ϕ ≡ P≥ 5

8
(ψ) with ψ ≡ a U≤13 b is satisfied by a state s if the probability of

picking a path from s that satisfies path-formula ψ, is greater than or equal
to 5

8 . Paths that satisfy ψ are paths that satisfy the CTL path-formula a U b
in the classical sense, and at the same do not accumulate weight beyond the
cost-bound 13. As the weights are assumed strictly positive, these paths are
necessarily finite. One can verify that ϕ is satisfied by state s of the MRM in
Figure 14a.

The ADG encoding of the problem s |= ϕ is depicted in Figure 14b. Each
node is assigned a value, being a function of type p : R≥0 → [0, 1], ordered by
the point-wise ordering on functions, denoted here by ≤. We will by P denote

31

P

c

1

0

(a) p1

P

c

1

1/2

0 3

(b) p∗ = shift(p1, 3, 1
2)

P

c

1

1/4

0 8

(c) shift(p∗ , 5, 1
2)

P

c

1

1/2
3/4

0 3 8

(d) shift(p∗ , 5, 1
2) + shift(p1, 3, 1

2)

Fig. 15: Node values and shift operations

the set of all such functions. Thus, the least element is the function p0 ∈ P,
given for all c ∈ R≥0 by p0(c) = 0. Similarly, p1 is the greatest element
with p1(c) = 1 for all c ∈ R≥0. Hence, a candidate ordering for an ADG is
D = (P,≤, p0). Note that the ordering does not satisfy the ascending chain
condition and is therefore not a NOR. Hence, we cannot apply Theorem 2
directly to argue for termination. However, as pointing out in Remark 1,
the ascending chain condition is a sufficient but not necessary condition for
termination. In this case, it is proven in [19, 55] that termination is ensured
by the assumption that all weights are strictly positive, in combination with
cost-bounds being upper bounds.

For the fixed-point computations, the most important operation on node
value is calculating weighted sums. As the node values are functions, sum-
mation is well-defined. The weighted sum can then be computed by consid-
ering a sum of “shifted” node values. Informally, shift : P×R≥0 × [0, 1] → P
is a function that “shifts” an existing node value by a given weight and prob-
ability. Formally, for any p ∈ P, c, c∗ ∈ R≥0 and λ ∈ [0, 1], shift(p, c, λ)(c∗) is
defined as

shift(p, c, λ)(c∗) =

{
p(c∗ − c) · λ if c ≤ c∗

0 otherwise
.

As an example, consider the plots in Figure 15. Figure 15b depicts the shifting
of constant function p1 by the weight 3 and probability 1

2 . As can be seen, this
introduces a “step” at 3 with a “height” of 1

2 . As Figure 15c shows, further
shifting moves the step to the right and reduces the height by multiplying the
old height with the given probability. Finally, Figure 15d shows the resulting
sum. In general, shifting by a weight c and probability λ moves all the steps
of the function to the right by c and the height of each step is reduced by
multiplying the existing height by λ. In fact, during the fixed-point computa-
tion, any node value will be a piecewise constant function with finitely many
pieces, also known as a step function.

Generally, nodes of the dependency graphs are of the form (s, ϕ) where s
is an MRM state and ϕ a PWCTL formula. These are referred to as concrete
nodes. As the model-checking approach is symbolic, another set of symbolic

32

4. Contributions of the Thesis

nodes are introduced. These nodes are generally of the form (s, ψ?) where ψ?
is a PWCTL path-formula where the cost-bound is omitted. Nodes v2 and v6
are typical examples of symbolic nodes, where ? indicates the missing cost-
bound. Nodes v5 and v9 are also symbolic nodes, introduced to compute the
weighted sum (Σ) of a number of node values.

For all concrete nodes, the value assigned is Boolean in the sense that
the function is either p1 or p0, interpreted as true and false, respectively.
For symbolic nodes of type (s, ϕ1U? ϕ2), assigning a function p to the node
indicates that for some cost-bound c, measuring paths from s that satisfy the
concrete path-formulae ϕ1 U≤c ϕ2, yields a probability at least p(c).

For the ADG monotonic functions, we consider the same interpretation
of unlabeled hyper-edges as for the ADG encoding of the original Liu and
Smolka dependency graphs in Section 2, lifted to (constant) functions. The
labelled edges indicate two different kinds of edge functions. The hyper-
edges labelled by a pair of weights and probabilities are used to calculate a
weighted sum as in Figure 15 and the dashed edges are used to perform a
simple threshold check on the probability that a formula holds at a given cost-
bound. As an example, consider Table 14c, where each row is an iteration of
the fixed-point operator. Concrete nontrivial values are written as pairs of
weights and probabilities e.g {(3, 1

2), (8, 3
4)} is the assignment p s.t p(c) = 0

for c < 3, p(c) = 1
2 for 3 ≤ c < 8 and p(c) = 3

4 for c ≥ 8. Note that this is the
node value depicted in Figure 15d. All nodes with no outgoing edges have
value p0 and nodes with a single edge pointing to ∅ have value p1.

The monotonic function applied at node v5 is defined as

F(A)(v5) = shift(A(v2), 5, 1
2) + shift(A(v6), 3, 1

2) .

As a concrete example, consider F3(A⊥)(v5). The value is then given by

F3(A⊥)(v5) = shift(F2(A⊥)(v2), 5, 1
2)

+ shift(F3(A⊥)(v6), 3, 1
2)

= shift(F3(A⊥)(v6), 3, 1
2) + p0

= {(3, 1
2)} .

Note that this is the function depicted in Figure 15b. Similarly, F5(A⊥)(v5) is
the function depicted in Figure 15d.

The function applied at v1 is defined as

F(A)(v1) =

{
p1 if A(v2)(13) ≥ 5

8

p0 otherwise
.

After 7 iterations, the root node v1 is assigned its fixed-point assignment p1
(true) and the algorithm terminates and we can conclude s |= P≤ 5

8
(a U≤13 b),

witnessed by F7(A⊥)(v2)(13) = 3
4 ≥ 5

8 .

33

With the full reduction from turn-based stochastic games with PWATL to
ADGs in Paper D, we can compute the fixed point using the ADG framework.

Contribution 11. We provide a C++ implementation for model checking PWATL
on turn-based stochastic multiplayer games by reduction to ADGs.

Instead of the overhead of representing step-functions, our implementation
performs better using more explicit construction and simpler representation.
Thus the reduction, in Paper D, rather than constructing symbolic configu-
rations with step-functions to represent the probability of a state satisfying a
formula, constructs concrete configurations (with fixed weight bound) where
the assignment values to a configuration (s, φ) are either from the interval
[0, 1] indicating that s has at least that chance of satisfying ψ, or the certain-
zero value 0̃.

Our implementation significantly outperforms the single-purpose algo-
rithm for PWCTL model checking on MRMs written in Python [19]. We also
evaluate our performance against PRISM-games [47] in several modified case
studies. The modifications are necessary because unlike PRISM-games, our
implementation does not support expected rewards, whereas PRISM-games
does not directly support multidimensional costs.

Contribution 12. The performance of our implementation is comparable to that of
PRISM-games with significant improvement on about 20% of cases due to early
termination.

4.5 Paper E: Energy Consumption Forecast of Photo-Voltaic
Comfort Cooling using UPPAAL Stratego

In this paper we devise a controller for flexible energy consumption under
uncertainty. The case study setting is a real-world office building with solar
panels, heat pump, and an ice bank feeding the building’s cooling system.
As the heat pump operates, ice builds up in the ice bank and it is used for
cooling the building. The solar panels offer an uncertain amount of energy
for the heat pump, and if insufficient any additional energy has to come from
the energy grid. If the ice bank is near empty, we are forced to turn on the
heat pump. While the ultimate goal is to ensure adequate cooling of the
building, we have some flexibility in when and how much energy to acquire
from the grid. That flexibility is captured in a FlexOffer [11].

The concept of a FlexOffer is that a energy consuming (or producing)
resource may have the flexibility in how much energy it consumes (produces)
in a given time interval. Resources may also have the possibility to shift
their energy consumption earlier or later. A FlexOffer captures both this time
flexibility, and the lower and upper bounds on the energy consumed in future
time intervals. It also includes a default schedule of its resource consumption

34

4. Contributions of the Thesis

to be used if the FlexOffer is not accepted and a schedule provided to the
resource.

Certain production and consumption sources are inherently uncertain,
like solar cells, or occupancy of an office building. A limitation of FlexOffers
is its rigid upper and lower bounds that results in conservative estimates.

Contribution 13. We propose probabilistic FlexOffers where the bounds are prob-
ability distributions. Based on the desired confidence, the flexibility interval is in-
creased or reduced.

The increased flexibility enables larger shifting of energy loads and ability to
lower penalties for resources unable to follow the schedule.

To model the problem we use branch of the world-leading tool UP-
PAAL [52] for modelling and solving verification problems on timed au-
tomata. The branch used is UPPAAL Stratego [29], which itself uses func-
tionality of UPPAAL Tiga [9]. UPPAAL Tiga is a branch of UPPAAL [52] for
synthesizing reachability strategies for timed games [8]. It has been applied
to a number of industrial cases including synthesis of climate control for pig-
stables [28] as well as optimal control of operation of industrial hydraulic
pumps [16]. Moreover, UPPAAL Tiga is the main component of the new
branch UPPAAL Stratego [29], here used to provide most permissive safety
controllers used to shield subsequent (reinforcement) learning towards near-
optimal controllers, subject to safety guarantees. Recent applications include
safe and optimal controllers for automatic cruising of cars [51] and maneu-
vering of trains in railway stations [39].

We model the case study setting in UPPAAL Stratego and then synthesize
strategies that minimize and maximize the energy usage for a time horizon.
From the strategies, we run simulations to determine the expected minimum
and maximum energy requirements and also the probability distributions for
the bounds for a probabilistic FlexOffer.

Contribution 14. Our approach allows not only finding the lower and upper bound
on consumption and the corresponding schedules, but also the probability distribu-
tions at the bounds. Furthermore we quantify the probability of being able to follow
any given schedule.

We conduct experiments with varying degree of irradiation from the sun
and amount of ice in the ice bank. The experiments yield the expected re-
sults. With the ice bank full and on days with plenty of sun irradiation there
is excess energy available. If the ice bank is empty, there is a need to buy en-
ergy with the amount depending on the irradiation. The greatest flexibility
is when the ice bank is partially full. For our simulations, compared to Flex-
Offers, we notice that probabilistic FlexOffers provides 9.4% more flexibility.

In [15] the zone-based on-the-fly reachability algorithm for timed au-
tomata implemented in UPPAAL was extended with the synthesis of reach-

35

x ≤ 2

A

x ≤ 2

B

x ≤ 2

C

x ≤ 2

D

x ≤ 2

E

x ≤ 2

F

x > 1

x ≤ 1
a

x < 1

y

x < 1
z

x = 2
b

c

x ≤ 1

d

(a) A timed game G

(A, x ≤ 2)
v0

(B, x ≤ 2)
v1

(C, x ≤ 2)
v2

(D, x ≤ 2)
v3

(E, x ≤ 2)
v4

(F, x ≤ 2)
v5

(b) ADG for the timed game G

v0 v1 v2 v3 v4 v5

A⊥ ∅ ∅ ∅ ∅ ∅ ∅
F(A⊥) ∅ ∅ ∅ ∅ ∅ x ≤ 2
F2(A⊥) ∅ 1 ≤ x ≤ 2 ∅ ∅ ∅ x ≤ 2
F3(A⊥) ∅ 1 ≤ x ≤ 2 ∅ x ≤ 2 ∅ x ≤ 2
F4(A⊥) ∅ 1 ≤ x ≤ 2 x ≤ 2 x ≤ 2 ∅ x ≤ 2
F5(A⊥) x ≤ 1 x ≤ 2 x ≤ 2 x ≤ 2 ∅ x ≤ 2
F6(A⊥) x ≤ 1 x ≤ 2 x ≤ 2 x ≤ 2 ∅ x ≤ 2

(c) Fixed point computation of Figure 16b

Fig. 16: Timed game strategy synthesis

ability strategies for timed games [8]. The resulting on-the-fly algorithm—
now implemented in UPPAAL Tiga—can be considered the first instance of
an ADG approach with an efficient symbolic extension of the on-the-fly algo-
rithm of Liu and Smolka Algorithm 2.

In order to understand this application of ADG, consider the timed game
G in Figure 16a with six locations A, B, C, D, E and F, a single clock x, and
discrete actions a, b, c, d, y, z. As in timed automata [3], locations and edges
are decorated by (simple) clock constraints, limiting delays in locations (in-
variants) and activation of edges (guards). Also clocks may be reset during

36

4. Contributions of the Thesis

the activation of an edge. The behaviour of a timed game are so-called runs
being maximal and alternating sequences of delays and discrete actions be-
tween states. States are pairs (`, ω), where ` is a location and ω is a clock
valuation assigning nonnegative real values to clocks. In the timed game G
of Figure 16a, the following is an example run:

ρ = (A, x = 0) 0.5−→ y−→ (C, x = 0.5)
0−→ c−→ (D, x = 0.5)
0.5−→ d−→ (B, x = 1)
1−→ b−→ (F, x = 2) .

Assuming that the location F is our goal location, the run ρ is in fact a winning
run. Now, G constitutes a timed game, where the actions (and underlying
edges1) are either controllable (the actions a, b, c, d as indicated by the full
edges) or uncontrollable (the actions y, z as indicated by the dashed edges).
In fact, the runs of the game will be the outcomes of a game between two
players, where the moves of the so-called defending player is governed by a
strategy and the environmental/uncontrollable transitions may overrule the
strategy in case they are enabled at earlier time point than the strategy move.
More formally, a strategy is a partial function σ that, given a state (`, ω),
suggests a delay/controllable-action pair (d, α). The following is a possible
strategy for our timed game G:

σ((A, x = v)) = (0, a) when v ≤ 1

σ((B, x = v)) = (2− v, b)

σ((C, x = v)) = (0, c) when v ≤ 1

σ((D, x = v)) = (1− v, d) when v ≤ 1 .

Now the run ρ above is actually a possible outcome of the above strategy
σ in the sense that all delay-action pairs involving a controllable action are
consistent with σ. We say that a strategy is winning if all its possible outcomes
are winning runs (in the sense that they reach a goal location). It may be
checked that the strategy σ is indeed winning for G.

In [15], ADG are used to compute the set of states of a timed game for
which there exist a winning strategy. The nodes of the ADG are symbolic
states of the form (`, Z), where ` is a location and Z is a zone over the set of
clocks C2. The domain D of the NOR consists of all subsets W described as

1For simplicity assume that each edge has a unique action.
2A zone Z over C is a subset of the set of clock-valuations C → R≥0 described by finite con-

junctions of bounds on individual clocks and bounds on clock-differences. Taking the maximum
constant appearing in the timed game into account there are only finitely many such reachable
zones.

37

I

`

I1

`1

Ik

`k

Ik+n

`k+n

Ik+1

`k+1

· · · · · ·

g1

α1

r1

gk

αk

rk

gk+1

αk+1

rk+1

gk+n

αk+n

rk+n

(a) Timed game fragment

(`, Z)
v

(`1, Z1)

v1

(`k, Zk)

vk

(`k+n, Zk+n)

vk+n

(`k+1, Zk+1)

vk+1

· · · · · ·

(b) ADG fragment

Fig. 17: Timed game ADG encoding

a finite union of sub-zones and the ordering relation v is the zone inclusion.
Informally, the (increasing) set W associated as the assignment value for a
node (`, Z) must satisfy that W v Z and contains the information about the
concrete states for which a winning strategy is guaranteed to exist (while Z
describes all clock valuations under which the location ` is reachable).

Consider the timed game fragment in Figure 17a. For any zone Z ⊆ I,
Figure 17b provides a corresponding fragment of the ADG. Here Zi ⊆ Ii is
the zone defined by3

ω ∈ Zi iff ∃ω′ ∈ Z. ∃d. ω′ |= gi ∧ω = ω′[ri] + d .

Now assume that A : V → D assigns an element of the NOR to any node.
The updated value for node v in the assignment A is the following set of
clock valuations F(A)(v):

3Notation: for ω a clock valuation and d ∈ R≥0, ω + d is the clock valuation λx.(ω(x) + d).
Similarly, for r ⊆ C, ω[r] is the clock valuation λx.(if x ∈ r then 0 else ω(x)).

38

5. Conclusion

ω ∈ F(A)(v) iff

∃d.∃j ≤ n.(
ω + d |= gk+j ∧ (ω + d)[rj] ∈ A(vk+j)

∧
∀d′ ≤ d.∀i ≤ k.

ω + d′ |= gi ⇒ (ω + d′)[ri] ∈ A(vi)
)

.

Informally ω ∈ F(A)(v) if after some delay one of the controllable edges is
enabled and leads to a winning state according to A, and during this delay
any enabled uncontrollable must also lead to a winning state according to
A. Such sets of valuations can be effectively represented as finite unions of
zones.

The result of iterating the above fixed-point operator F on the ADG in
Figure 16b obtained from the timed game G of Figure 16a is illustrated in
Figure 16c. After 6 iterations, the root node v0 is assigned its fixed-point
assignment x ≤ 1 from which it follows that the initial state (A, x = 0) is a
winning state, i.e. there is a strategy ensuring that all runs from (A, x = 0)
eventually reach the location F.

5 Conclusion

Starting from the traditional Liu & Smolka’s fixed point framework adapted
to solve verification problems, we devise a distributed implementation to bet-
ter exploit modern hardware. The results show that even though the problem
is P-complete, and thus considered hard to parallelize, there are substantial
speed gains to be obtained by using a parallel algorithm and the distributed
nature of the algorithm permits more memory enabling verification of larger
problem instances.

The original framework is limited in its applicability because the compu-
tation of the fixed points happens monotonically. This prevents verification of
certain problems like CTL with negation. We describe EDG (extended depen-
dency graphs) that permit negation-edges that delays computing the assign-
ment value of the source node while the final value of the destination node is
uncertain. This enables the encoding of negation without breaking the neces-
sary monotonicity needed for the fixed point computation. Intuitively, when
computing the fixed point, for configurations (representing sub-problems) an
assignment of the value ‘1’ is final, where-as ‘0’ represents uncertainty. We
extend the possible values with certain-zero denoting that we know for sure
its value will never change to ‘1’, enabling us to sometimes avoid computa-
tion and on-the-fly generation of part of the EDG. These improvements are

39

implemented in a new distributed algorithm that is used in TAPAAL which
then won gold medals for CTL model checking in the Model Checking Con-
test for the years 2018-2022 [40–44].

While an intention of the fixed point framework is that different veri-
fication problems can be encoded into dependency graphs and the results
to the problems resolved by finding the fixed point, the traditional frame-
work is either not expressive enough for certain problems or the encoding is
impractical. Multiple separate extensions have been made to solve specific
problems, in addition to EDG for CTL with negation we developed, there
is also weighted CTL on Kripke structures and probabilistic weighted CTL
on Markov reward models to list some. We develop the ADG (abstract de-
pendency graphs) framework that can encapsulate all of these encodings by
permitting arbitrary, even nonmonotonic, functions on the nodes of the ADG.
Our more general framework comes very close in performance to the single-
purpose algorithms; and comparing CTL model checking against TAPAAL,
our framework is only 7% slower and uses 11% more memory. For a more
advanced instantiation of our framework, we apply it to model check proba-
bilistic ATL extended with multidimensional weights on turn-based stochas-
tic games. We compare multiple cases studies against PRISM-games and
demonstrate that the performance is comparable, though in several cases our
implementation finishes faster due to early termination. We can list all of our
implemented instantiations:

• weak bisimulation of CCS processes,

• weak simulation of task graph problems,

• CTL model checking of Petri nets,

• CTL model checking of weighted Kripke structures and

• probabilistic ATL with multidimensional weights on turn-based
stochastic games (which subsumes probabilistic weighted CTL on
Markov reward models).

Using UPPAAL Stratego we showed the advantage of our proposed prob-
abilistic FlexOffers demonstrated on a case study of cooling an office build-
ing. By synthesizing strategies that minimize and maximize energy con-
sumption under various settings, we can derive not only the schedule for
a controller, but also reason about the probability of being able to follow a
given schedule yielding more flexibility compared to the conservative non-
probabilistic FlexOffers. While the reachability algorithm in UPPAAL, and
the extension for synthesis in UPPAAL Tiga (used by UPPAAL Stratego), pre-
dates abstract dependency graphs, we demonstrated how ADGs can encode
the problem.

40

References

The ADG framework encompass many encodings to dependency graphs
but the current algorithm for ADG is neither parallel nor distributed. For fu-
ture work, designing a distributed algorithm may enable the same speedup
and problem sizes as the distributed algorithm for EDGs. A key challenge
here is to retain parallelism speedup when many nodes in the ADG are la-
belled with nonmonotonic functions that restrict the evaluation order of the
graph. It would be of interest to further validate the applicability of the
framework by even more instantiations of verification problems. One factor
that affects early termination is the order in which the graph is traversed. It
may be worthwhile to investigate whether certain search strategies, possibly
using heuristics, improve on the cases with early termination.

References

[1] B. Algayres, V. Coelho, L. Doldi, H. Garavel, Y. Lejeune, and C. Rodríguez,
“VESAR: A pragmatic approach to formal specification and verification,”
Computer Networks and ISDN Systems, vol. 25, no. 7, pp. 779–790, 1993. [Online].
Available: https://doi.org/10.1016/0169-7552(93)90048-9

[2] R. Alur and D. L. Dill, “Automata for modeling real-time systems,” in
Proceedings of the Seventeenth International Colloquium on Automata, Languages and
Programming. Berlin, Heidelberg: Springer-Verlag, 1990, pp. 322–335. [Online].
Available: http://dl.acm.org/citation.cfm?id=90397.90438

[3] ——, “A theory of timed automata,” Theor. Comput. Sci., vol. 126, no. 2, pp. 183–
235, 1994. [Online]. Available: https://doi.org/10.1016/0304-3975(94)90010-8

[4] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal
logic,” J. ACM, vol. 49, no. 5, p. 672–713, Sep. 2002. [Online]. Available:
https://doi.org/10.1145/585265.585270

[5] H. R. Andersen, “Model checking and boolean graphs,” in ESOP ’92,
4th European Symposium on Programming, Rennes, France, February 26-28,
1992, Proceedings, ser. Lecture Notes in Computer Science, B. Krieg-
Brückner, Ed., vol. 582. Springer, 1992, pp. 1–19. [Online]. Available:
https://doi.org/10.1007/3-540-55253-7_1

[6] H. R. Andersen and G. Winskel, “Compositional checking of satisfaction,”
in Computer Aided Verification, 3rd International Workshop, CAV ’91, Aalborg,
Denmark, July, 1-4, 1991, Proceedings, ser. Lecture Notes in Computer Science,
K. G. Larsen and A. Skou, Eds., vol. 575. Springer, 1991, pp. 24–36. [Online].
Available: https://doi.org/10.1007/3-540-55179-4_4

[7] J. Andersen, N. Andersen, S. Enevoldsen, M. Hansen, K. Larsen, S. Olesen,
J. Srba, and J. Wortmann, “CAAL: Concurrency workbench, Aalborg edition,”
in Proceedings of the 12th International Colloquium on Theoretical Aspec ts of Comput-
ing (ICTAC’15), ser. LNCS, vol. 9399. Springer, 2015, pp. 573–582.

[8] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for
discrete and timed systems,” in Hybrid Systems II, Proceedings of the Third

41

https://doi.org/10.1016/0169-7552(93)90048-9
http://dl.acm.org/citation.cfm?id=90397.90438
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/3-540-55253-7_1
https://doi.org/10.1007/3-540-55179-4_4

References

International Workshop on Hybrid Systems, Ithaca, NY, USA, October 1994, ser.
Lecture Notes in Computer Science, P. J. Antsaklis, W. Kohn, A. Nerode,
and S. Sastry, Eds., vol. 999. Springer, 1994, pp. 1–20. [Online]. Available:
https://doi.org/10.1007/3-540-60472-3_1

[9] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “Uppaal-tiga: Time for playing games!” in Computer Aided
Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7,
2007, Proceedings, ser. Lecture Notes in Computer Science, W. Damm and
H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 121–125. [Online]. Available:
https://doi.org/10.1007/978-3-540-73368-3_14

[10] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J., vol. 6, pp.
679–684, 1957.

[11] M. Boehm, L. Dannecker, A. Doms, E. Dovgan, B. Filipič, U. Fischer, W. Lehner,
T. B. Pedersen, Y. Pitarch, L. Šikšnys, and T. Tušar, “Data management in the
MIRABEL smart grid system,” in Proceedings of the 2012 Joint EDBT/ICDT Work-
shops, ser. EDBT-ICDT ’12. New York, NY, USA: ACM, 2012, pp. 95–102.

[12] F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba, “Partial Order
Reduction for Reachability Games,” in CONCUR’19, 2019, to appear.

[13] A. Børjesson, K. G. Larsen, and A. Skou, “Generality in design and compositional
verification using TAV,” in Formal Description Techniques, V, Proceedings of the IFIP
TC6/WG6.1 Fifth International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols, FORTE ’92, Perros-Guirec, France,
13-16 October 1992, ser. IFIP Transactions, M. Diaz and R. Groz, Eds., vol. C-10.
North-Holland, 1992, pp. 449–464.

[14] J. C. Bradfield and C. Stirling, “Local model checking for infinite state spaces,”
Theor. Comput. Sci., vol. 96, no. 1, pp. 157–174, 1992. [Online]. Available:
https://doi.org/10.1016/0304-3975(92)90183-G

[15] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient on-the-fly
algorithms for the analysis of timed games,” in CONCUR 2005 – Concurrency
Theory, M. Abadi and L. de Alfaro, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 66–80.

[16] F. Cassez, J. J. Jessen, K. G. Larsen, J. Raskin, and P. Reynier, “Automatic
synthesis of robust and optimal controllers - an industrial case study,” in Hybrid
Systems: Computation and Control, 12th International Conference, HSCC 2009,
San Francisco, CA, USA, April 13-15, 2009. Proceedings, ser. Lecture Notes in
Computer Science, R. Majumdar and P. Tabuada, Eds., vol. 5469. Springer, 2009,
pp. 90–104. [Online]. Available: https://doi.org/10.1007/978-3-642-00602-9_7

[17] K. Cerans, J. C. Godskesen, and K. G. Larsen, “Timed modal specification -
theory and tools,” in Computer Aided Verification, 5th International Conference,
CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, ser. Lecture Notes in
Computer Science, C. Courcoubetis, Ed., vol. 697. Springer, 1993, pp. 253–267.
[Online]. Available: https://doi.org/10.1007/3-540-56922-7_21

[18] E. M. Clarke, T. A. Henzinger, and H. Veith, Introduction to Model Checking.
Cham: Springer International Publishing, 2018, pp. 1–26. [Online]. Available:
https://doi.org/10.1007/978-3-319-10575-8_1

42

https://doi.org/10.1007/3-540-60472-3_1
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1016/0304-3975(92)90183-G
https://doi.org/10.1007/978-3-642-00602-9_7
https://doi.org/10.1007/3-540-56922-7_21
https://doi.org/10.1007/978-3-319-10575-8_1

References

[19] M. Claus Jensen, A. Mariegaard, and K. Guldstrand Larsen, “Symbolic model
checking of weighted PCTL using dependency graphs,” in NASA Formal Methods,
J. M. Badger and K. Y. Rozier, Eds. Cham: Springer International Publishing,
2019, pp. 298–315.

[20] R. Cleaveland, J. Parrow, and B. Steffen, “The concurrency workbench,” in
Automatic Verification Methods for Finite State Systems, International Workshop,
Grenoble, France, June 12-14, 1989, Proceedings, ser. Lecture Notes in Computer
Science, J. Sifakis, Ed., vol. 407. Springer, 1989, pp. 24–37. [Online]. Available:
https://doi.org/10.1007/3-540-52148-8_3

[21] R. Cleaveland and O. Sokolsky, “Chapter 6 - equivalence and preorder
checking for finite-state systems,” in Handbook of Process Algebra, J. Bergstra,
A. Ponse, and S. Smolka, Eds. Amsterdam: Elsevier Science, 2001, pp.
391–424. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780444828309500242

[22] R. Cleaveland and B. Steffen, “Computing behavioural relations, logically,”
in Automata, Languages and Programming, 18th International Colloquium,
ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, ser. Lecture Notes
in Computer Science, J. L. Albert, B. Monien, and M. Rodríguez-
Artalejo, Eds., vol. 510. Springer, 1991, pp. 127–138. [Online]. Available:
https://doi.org/10.1007/3-540-54233-7_129

[23] L. Cloth, J. . Katoen, M. Khattri, and R. Pulungan, “Model checking markov
reward models with impulse rewards,” in 2005 International Conference on De-
pendable Systems and Networks (DSN’05), 2005, pp. 722–731.

[24] A. Dalsgaard, S. Enevoldsen, P. Fogh, L. Jensen, P. Jensen, T. Jepsen,
I. Kaufmann, K. Larsen, S. Nielsen, M. Olesen, S. Pastva, and J. Srba, “A
distributed fixed-point algorithm for extended dependency graphs,” Fundamenta
Informaticae, vol. 161, no. 4, pp. 351 – 381, 2018. [Online]. Available:
https://content.iospress.com/articles/fundamenta-informaticae/fi1707

[25] A. Dalsgaard, S. Enevoldsen, P. Fogh, L. Jensen, T. Jepsen, I. Kaufmann,
K. Larsen, S. Nielsen, M. Olesen, S. Pastva, and J. Srba, “Extended dependency
graphs and efficient distributed fixed-point computation,” in Proceedings of the
38th International Conference on Application and Theory of Petri Nets and Concurrency
(Petri Nets’17), ser. LNCS, vol. 10258. Springer-Verlag, 2017, pp. 139–158.

[26] A. Dalsgaard, S. Enevoldsen, K. Larsen, and J. Srba, “Distributed computation of
fixed points on dependency graphs,” in Proceedings of Symposium on Dependable
Software Engineering: Theories, Tools and Applications (SETTA’16), ser. LNCS, vol.
9984. Springer, 2016, pp. 197–212.

[27] A. David, L. Jacobsen, M. Jacobsen, K. Jørgensen, M. Møller, and J. Srba,
“TAPAAL 2.0: Integrated development environment for timed-arc Petri nets,”
in Proceedings of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’12), ser. LNCS, vol. 7214. Springer-
Verlag, 2012, pp. 492–497.

[28] A. David, J. D. Grunnet, J. J. Jessen, K. G. Larsen, and J. I. Rasmussen,
“Application of model-checking technology to controller synthesis,” in Formal

43

https://doi.org/10.1007/3-540-52148-8_3
https://www.sciencedirect.com/science/article/pii/B9780444828309500242
https://www.sciencedirect.com/science/article/pii/B9780444828309500242
https://doi.org/10.1007/3-540-54233-7_129
https://content.iospress.com/articles/fundamenta-informaticae/fi1707

References

Methods for Components and Objects - 9th International Symposium, FMCO 2010,
Graz, Austria, November 29 - December 1, 2010. Revised Papers, ser. Lecture
Notes in Computer Science, B. K. Aichernig, F. S. de Boer, and M. M.
Bonsangue, Eds., vol. 6957. Springer, 2010, pp. 336–351. [Online]. Available:
https://doi.org/10.1007/978-3-642-25271-6_18

[29] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist,
“Uppaal stratego,” in Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, ser. Lecture Notes in Computer Science, C. Baier
and C. Tinelli, Eds., vol. 9035. Springer, 2015, pp. 206–211. [Online]. Available:
https://doi.org/10.1007/978-3-662-46681-0_16

[30] E. W. Dijkstra, “Shmuel Safra’s version of termination detection,” EWD
Manuscript 998, 1987.

[31] S. Enevoldsen, K. Guldstrand Larsen, and J. Srba, “Abstract dependency graphs
and their application to model checking,” in Tools and Algorithms for the Con-
struction and Analysis of Systems, T. Vojnar and L. Zhang, Eds. Cham: Springer
International Publishing, 2019, pp. 316–333.

[32] U. Fahrenberg, K. Larsen, and C. Thrane, “Quantitative analysis of weighted
transition systems,” Journal of Logical and Algebraic Methods in Programming,
vol. 79, no. 7, pp. 689–703, oct 2010.

[33] J. Godskesen, K. Larsen, and M. Zeeberg, “Tav (tools for automatic verification)
– user manual,” Aalborg University, Tech. Rep., 1989.

[34] J. F. Groote and T. A. C. Willemse, “Parameterised boolean equation
systems (extended abstract),” in CONCUR 2004 - Concurrency Theory,
15th International Conference, London, UK, August 31 - September 3, 2004,
Proceedings, ser. Lecture Notes in Computer Science, P. Gardner and
N. Yoshida, Eds., vol. 3170. Springer, 2004, pp. 308–324. [Online]. Available:
https://doi.org/10.1007/978-3-540-28644-8_20

[35] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,”
Formal Asp. Comput., vol. 6, no. 5, pp. 512–535, 1994. [Online]. Available:
https://doi.org/10.1007/BF01211866

[36] J. Jensen, K. Larsen, J. Srba, and L. Oestergaard, “Efficient model checking of
weighted CTL with upper-bound constraints,” International Journal on Software
Tools for Technology Transfer (STTT), vol. 18, no. 4, pp. 409–426, 2016.

[37] J. F. Jensen, K. G. Larsen, J. Srba, and L. K. Oestergaard, “Local model check-
ing of weighted ctl with upper-bound constraints,” in Model Checking Software,
E. Bartocci and C. R. Ramakrishnan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 178–195.

[38] P. G. Jensen, K. G. Larsen, and J. Srba, “Discrete and continuous strategies
for timed-arc petri net games,” International Journal on Software Tools for
Technology Transfer, vol. 20, no. 5, pp. 529–546, Oct 2018. [Online]. Available:
https://doi.org/10.1007/s10009-017-0473-2

44

https://doi.org/10.1007/978-3-642-25271-6_18
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-540-28644-8_20
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/s10009-017-0473-2

References

[39] S. L. Karra, K. G. Larsen, F. Lorber, and J. Srba, “Safe and time-optimal
control for railway games,” in Reliability, Safety, and Security of Railway
Systems. Modelling, Analysis, Verification, and Certification - Third International
Conference, RSSRail 2019, Lille, France, June 4-6, 2019, Proceedings, ser.
Lecture Notes in Computer Science, S. C. Dutilleul, T. Lecomte, and A. B.
Romanovsky, Eds., vol. 11495. Springer, 2019, pp. 106–122. [Online]. Available:
https://doi.org/10.1007/978-3-030-18744-6_7

[40] F. Kordon, P. Bouvier, H. Garavel, L. M. Hillah, F. Hulin-Hubard, N. Amat.,
E. Amparore, B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, , S. Dal Zilio,
P. Jensen, C. He, D. Le Botlan, S. Li, , J. Srba, Y. Thierry-Mieg, A. Walner, and
K. Wolf, “Complete Results for the 2021 Edition of the Model Checking Contest,”
http://mcc.lip6.fr/2021/results.php, June 2021.

[41] F. Kordon, P. Bouvier, H. Garavel, F. Hulin-Hubard, N. Amat., E. Amparore,
B. Berthomieu, D. Donatelli, S. Dal Zilio, P. Jensen, L. Jezequel, C. He, S. Li,
E. Paviot-Adet, J. Srba, and Y. Thierry-Mieg, “Complete Results for the 2022
Edition of the Model Checking Contest,” http://mcc.lip6.fr/2022/results.php,
June 2022.

[42] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, E. Amparore, M. Bec-
cuti, B. Berthomieu, G. Ciardo, S. Dal Zilio, T. Liebke, S. Li, J. Meijer,
A. Miner, J. Srba, Y. Thierry-Mieg, J. van de Pol, T. van Dirk, and K. Wolf,
“Complete Results for the 2019 Edition of the Model Checking Contest,”
http://mcc.lip6.fr/2019/results.php, April 2019.

[43] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, E. Amparore, M. Bec-
cuti, B. Berthomieu, G. Ciardo, S. Dal Zilio, T. Liebke, A. Linard, J. Mei-
jer, A. Miner, J. Srba, Y. Thierry-Mieg, J. van de Pol, and K. Wolf,
“Complete Results for the 2018 Edition of the Model Checking Contest,”
http://mcc.lip6.fr/2018/results.php, June 2018.

[44] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, E. Amparore,
B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, G. Ciardo, S. Dal Zilio,
P. Jensen, C. He, D. Le Botlan, S. Li, A. Miner, J. Srba, and . Thierry-
Mieg, “Complete Results for the 2020 Edition of the Model Checking Contest,”
http://mcc.lip6.fr/2020/results.php, June 2020.

[45] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, G. Chiardo,
A. Hamez, L. Jezequel, A. Miner, J. Meijer, E. Paviot-Adet, D. Racordon,
C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-Mieg, G. Tri.nh, and K. Wolf,
“Complete Results for the 2016 Edition of the Model Checking Contest,”
http://mcc.lip6.fr/2016/results.php, June 2016.

[46] D. Kozen, “Results on the propositional µ-calculus,” in Automata, Languages
and Programming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982,
Proceedings, ser. Lecture Notes in Computer Science, M. Nielsen and E. M.
Schmidt, Eds., vol. 140. Springer, 1982, pp. 348–359. [Online]. Available:
https://doi.org/10.1007/BFb0012782

[47] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos, “PRISM-games 3.0:
Stochastic game verification with concurrency, equilibria and time,” in Proc. 32nd

45

https://doi.org/10.1007/978-3-030-18744-6_7
https://doi.org/10.1007/BFb0012782

References

International Conference on Computer Aided Verification (CAV’20), ser. LNCS, vol.
12225. Springer, 2020, pp. 475–487.

[48] K. G. Larsen, “Proof system for hennessy-milner logic with recursion,” in CAAP
’88, 13th Colloquium on Trees in Algebra and Programming, Nancy, France, March
21-24, 1988, Proceedings, ser. Lecture Notes in Computer Science, M. Dauchet
and M. Nivat, Eds., vol. 299. Springer, 1988, pp. 215–230. [Online]. Available:
https://doi.org/10.1007/BFb0026106

[49] ——, “Proof systems for satisfiability in hennessy-milner logic with recursion,”
Theor. Comput. Sci., vol. 72, no. 2&3, pp. 265–288, 1990. [Online]. Available:
https://doi.org/10.1016/0304-3975(90)90038-J

[50] ——, “Efficient local correctness checking,” in Computer Aided Verification, Fourth
International Workshop, CAV ’92, Montreal, Canada, June 29 - July 1, 1992,
Proceedings, ser. Lecture Notes in Computer Science, G. von Bochmann and
D. K. Probst, Eds., vol. 663. Springer, 1992, pp. 30–43. [Online]. Available:
https://doi.org/10.1007/3-540-56496-9_4

[51] K. G. Larsen, M. Mikucionis, and J. H. Taankvist, “Safe and optimal adaptive
cruise control,” in Correct System Design - Symposium in Honor of Ernst-Rüdiger
Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany, September 8-9,
2015. Proceedings, ser. Lecture Notes in Computer Science, R. Meyer, A. Platzer,
and H. Wehrheim, Eds., vol. 9360. Springer, 2015, pp. 260–277. [Online].
Available: https://doi.org/10.1007/978-3-319-23506-6_17

[52] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
STTT, vol. 1, no. 1-2, pp. 134–152, 1997. [Online]. Available: https:
//doi.org/10.1007/s100090050010

[53] X. Liu and S. A. Smolka, “Simple linear-time algorithms for minimal fixed
points (extended abstract),” in Proceedings of ICALP’98, ser. LNCS, vol.
1443. London, UK, UK: Springer-Verlag, 1998, pp. 53–66. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646252.686017

[54] P. Machado, A. Vincenzi, and J. C. Maldonado, Testing Techniques in
Software Engineering, Second Pernambuco Summer School on Software Engineering,
PSSE 2007, Recife, Brazil, December 3-7, 2007, Revised Lectures, P. Borba,
A. Cavalcanti, A. Sampaio, and J. Woodcook, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 01 2010. [Online]. Available: https://doi.org/10.
1007/978-3-642-14335-9_1

[55] A. Mariegaard and K. Guldstrand Larsen, “Symbolic dependency graphs for
PCTL>≤ model-checking,” in Formal Modeling and Analysis of Timed Systems, 08
2017, pp. 153–169.

[56] R. Mateescu, “Efficient diagnostic generation for boolean equation systems,”
in Tools and Algorithms for Construction and Analysis of Systems, 6th International
Conference, TACAS 2000, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April
2, 2000, Proceedings, ser. Lecture Notes in Computer Science, S. Graf and M. I.
Schwartzbach, Eds., vol. 1785. Springer, 2000, pp. 251–265. [Online]. Available:
https://doi.org/10.1007/3-540-46419-0_18

46

https://doi.org/10.1007/BFb0026106
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1007/3-540-56496-9_4
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
http://dl.acm.org/citation.cfm?id=646252.686017
https://doi.org/10.1007/978-3-642-14335-9_1
https://doi.org/10.1007/978-3-642-14335-9_1
https://doi.org/10.1007/3-540-46419-0_18

References

[57] R. Milner, “A calculus of communicating systems,” LNCS, vol. 92, 1980.

[58] C. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Darmstadt, 1962.
[Online]. Available: https://edoc.sub.uni-hamburg.de/informatik/volltexte/
2011/160/

[59] B. Steffen, “Characteristic formulae,” in Automata, Languages and Programming,
16th International Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings,
ser. Lecture Notes in Computer Science, G. Ausiello, M. Dezani-Ciancaglini, and
S. R. D. Rocca, Eds., vol. 372. Springer, 1989, pp. 723–732. [Online]. Available:
https://doi.org/10.1007/BFb0035794

[60] C. Stirling and D. Walker, “Local model checking in the modal mu-calculus,”
Theor. Comput. Sci., vol. 89, no. 1, pp. 161–177, 1991. [Online]. Available:
https://doi.org/10.1016/0304-3975(90)90110-4

[61] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific J.
Math, vol. 5, no. 2, 1955.

[62] R. J. van Glabbeek, The linear time - branching time spectrum, ser.
LNCS. Springer, 1990, vol. 458, pp. 278–297. [Online]. Available: http:
//dx.doi.org/10.1007/BFb0039066

[63] G. Winskel, “A note on model checking the modal nu-calculus,” Theor.
Comput. Sci., vol. 83, no. 1, pp. 157–167, 1991. [Online]. Available:
https://doi.org/10.1016/0304-3975(91)90043-2

[64] J. K. Wortmann, S. R. Olesen, and S. Enevoldsen, “CAAL 2.0: Recursive HML,
Distinguishing Formulae, Equivalence Collapses and Parallel Fixed-Point
Computations,” https://projekter.aau.dk/projekter/da/studentthesis/caal-
20(632452cd-ca11-44f3-9d67-0f3cf83ba0b1).html, June 2015.

47

https://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://doi.org/10.1007/BFb0035794
https://doi.org/10.1016/0304-3975(90)90110-4
http://dx.doi.org/10.1007/BFb0039066
http://dx.doi.org/10.1007/BFb0039066
https://doi.org/10.1016/0304-3975(91)90043-2

References

48

Part II

Papers

49

Paper A

Distributed Computation of Fixed Points on
Dependency Graphs

51

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

52

Distributed Computation of Fixed Points on
Dependency Graphs

Andreas Engelbredt Dalsgaard, Søren Enevoldsen,
Kim Guldstrand Larsen, and Jiří Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark.

{andrease,senevoldsen,kgl,srba}@cs.aau.dk

Abstract. Dependency graph is an abstract mathematical structure
for representing complex causal dependencies among its vertices. Sev-
eral equivalence and model checking questions, boolean equation sys-
tems and other problems can be reduced to fixed-point computations on
dependency graphs. We develop a novel distributed algorithm for com-
puting such fixed points, prove its correctness and provide an efficient,
open-source implementation of the algorithm. The algorithm works in
an on-the-fly manner, eliminating the need to generate a priori the en-
tire dependency graph. We evaluate the applicability of our approach
by a number of experiments that verify weak simulation/bisimulation
equivalences between CCS processes and we compare the performance
with the well-known CWB tool. Even though the fixed-point compu-
tation, being a P-complete problem, is difficult to parallelize in theory,
we achieve significant speed-ups in the performance as demonstrated
on a Linux cluster with several hundreds of cores.

1 Introduction

Formal verification techniques are increasingly applied in industrial develop-
ment of software and hardware systems, both to ensure safe and reliable be-
haviour of the final system, and to reduce cost and time by finding bugs at
early development stages. In particular industrial take-up has been boosted by
the maturing of computer aided verification, where development of a variety of
techniques helps in applying verification to critical parts of systems. Heuristics
for SAT solving, abstraction, decomposition, symbolic execution, partial order
reduction, and other techniques are used to speed up the verification of systems
with various characteristics. Still, the problem of automatic verification is hard,
and some difficult cases occur frequently in practical experience. For this rea-
son, we aim in this paper at exploiting the computational power of parallel and
distributed machine architectures to further enlarge the scope of automated
verification.

Automated verification methods contain a large variety of model-checking
and equivalence/preorder-checking algorithms. In the former, a system model

53

is (dis-)proved correct with respect to a logical property expressed in a suitable
temporal logic. In the latter, the system model is compared with an abstract
model of the system with respect to a suitable behavioural equivalence or pre-
order, e.g. trace-equivalence, weak or strong bisimulation equivalence. Aiming
at providing parallel and distributed support to (essentially) all of these prob-
lems, we design a distributed algorithm based on the notion of dependency
graphs [1,2]. In particular, dependency graphs have proven a useful and univer-
sal formalism for representing several verification problems, offering efficient
analysis through linear-time (local and global) algorithms [2] for fixed-point
computation of the corresponding dependency graph. The challenge we under-
take here is to provide a distributed algorithm for this fixed-point computa-
tion. The fact that dependency graphs allow for representation of bisimulation
equivalences between system models suggests that we should not expect our
distributed algorithm to exhibit linear speed-up in all cases as bisimulation
equivalence is known to be P-complete [3]. Our experiments though still doc-
ument significant speed-ups that together with the on-the-fly nature of our
algorithm (where we possibly avoid the construction of the entire dependency
graph in situations where it is not necessary) allow us to outperform the tool
CWB [4] for equivalence/model checking of processes described in the CCS
process algebra [5].

Related Work. Most closely related to our work are those of [6,7,8] offering par-
allel algorithms for model-checking systems with respect to the alternation-free
modal µ-calculus. The approach in [6] is based on games and tree decomposition
but the tool prototype mentioned in the paper is not available anymore. The
work in [8] reduces µ-calculus formulae into alternation free Boolean equation
systems. Finally [7] uses a global symbolic BDD-based distributed algorithm for
modal µ-calculus but does not mention any implementation. We share the on-
the-fly technique with some of these works but our framework is more universal
in the sense that we deal with the general dependency graphs where the prob-
lems above are reducible to. There also exist several mature tools with modern
designs like FDR3 [9], CADP [10], SPIN [11] and mCRL2 [12], some of them of-
fering also distributed and/or on-the-fly algorithms. The input language of the
tools is however often strictly defined and extensions to these languages as well
as the range of verification methods require nontrivial changes in the imple-
mentation. The advantage of our approach is that we first reduce a wide range
of problems into dependency graphs and then use our optimized distributed
implementation on these generic graphs. Finally, we have recently introduced
CAAL [13] as a tool for teaching CCS and verification techniques. The tool
CAAL, running in a browser and implemented in TypeScript (a typed superset
of JavaScript), is also based on dependency graphs but offers only the sequen-
tial version of the local algorithm by Liu and Smolka [2]. Here we provide an
optimized C++ implementation of the distributed algorithm thus laying the
foundation for offering CAAL verification tasks as a cloud service.

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

54

s1

s2

s3 s4

a

b c

t1

t2 t3

t4 t5

a a

b c

τ

(a) Labelled transition system

s1, t1

s2, t2 s2, t3

s3, t4 s4, t5 ∅

(b) Corresponding DG

Fig. 1: Dependency graph for weak bisimulation

2 Definitions

A labelled transition system (LTS) is a triple (S,A,→) where S is a set of
states, A is a set of actions that includes the silent action τ , and→⊆ S×A×S
is the transition relation. Instead of (s, a, t) ∈→ we write s a−→ t. We also write
s
a
=⇒ t if either a = τ and s τ−→∗ t, or if a 6= τ and s τ−→∗ s′ a−→ t′

τ−→∗ t for some
s′, t′ ∈ S.

A binary relation R ⊆ S × S over the set of states of an LTS is weak
simulation if whenever (s, t) ∈ R and s a−→ s′ for some a ∈ A then also t a

=⇒ t′

such that (s′, t′) ∈ R. If both R and R−1 = {(t, s) | (s, t) ∈ R} are weak
simulations then R is a weak bisimulation.

We say that s is weakly simulated by t and write s � t (resp. s and t are
weakly bisimilar and write s ≈ t) if there is a weak simulation (resp. weak
bisimulation) relation R such that (s, t) ∈ R.

Consider the LTS in Figure 1a (even though it consists of two disconnected
parts, it can still be considered as a single LTS). It is easy to see that s1
weakly simulates t1 and vice versa. For example the weak simulation relation
R = {(s1, t1), (s2, t2), (s3, t4), (s4, t5)} shows that s1 is weakly simulated by t1.
However, s1 and t1 are not weakly bisimilar. Indeed, if s1 and t1 were weakly
bisimilar, the transition t1

a−→ t3 can only be matched by s1
a−→ s2 but s2 has a

transition under the label b whereas t3 does not offer such a transition.

2.1 Dependency Graphs

A dependency graph [2] is a general structure that expresses dependencies
among the vertices of the graph and by this allows us to solve a large variety
of complex computational problems by means of fixed-point computations.

Definition 1 (Dependency Graph).
A dependency graph is a pair (V,E) where V is a set of vertices and E ⊆ V ×2V
is a set of hyperedges. For a hyperedge (v, T) ∈ E, the vertex v ∈ V is called
the source vertex and T ⊆ V is the target set.

55

a b c∅

Fig. 2: Dependency graph G = ({a, b, c}, {(a, ∅), (b, {a, b}), (c, {b}), (c, {a})})

Let G = (V,E) be a fixed dependency graph. An assignment on G is a
function A : V → {0, 1}. Let A be the set of all assignments on G. A fixed-point
assignment is an assignment A that for all (v, T) ∈ E satisfies the following
condition: if A(v′) = 1 for all v′ ∈ T then A(v) = 1.

Figure 2 shows an example of a dependency graph. The hyperedge (a, ∅)
with the empty target set is depicted by the arrow from a to the symbol ∅. The
figure also denotes a particular assignment A such that vertices with a single
circle have the value 0 and vertices with a double circle have the value 1, in
order words A(a) = A(c) = 1 and A(b) = 0. It can be easily verified that the
assignment A is a fixed-point assignment.

We are interested in the minimum fixed-point assignment. Let A1, A2 ∈ A
be assignments. We write A1 v A2 if A1(v) ≤ A2(v) for all v ∈ V , where we
assume that 0 ≤ 1. Clearly (A,v) is a complete lattice. Let us also define a
function F : A → A such that F (A)(v) = 1 if there is a hyperedge (v, T) ∈ E
such that A(v′) = 1 for all v′ ∈ T , otherwise F (A)(v) = A(v). Observe that an
assignment A is a fixed-point assignment iff F (A) = A, and that the function
F is monotonic w.r.t. v. By Knaster-Tarski theorem [14] there exists a unique
minimum fixed-point assignment, denoted by Amin. The assignment Amin on
a finite dependency graph can be computed by a repeated application of the
function F on the assignment A0 where A0(v) = 0 for all v ∈ V , and we are
guaranteed that there is a number m such that Fm(A0) = Fm+1(A0) = Amin.

Consider again our example from Figure 2 and assume that each assignment
A is represented by the vector (A(a), A(b), A(c)). We can see that A0 = (0, 0, 0),
F (A0) = (1, 0, 0) and F 2(A0) = (1, 0, 1) = F 3(A0). Hence the depicted assign-
ment (1, 0, 1) is the minimum fixed-point assignment.

2.2 Applications of Dependency Graphs

Many verification problems can be encoded as fixed-point computations on
dependency graphs. We shall demonstrate this on the cases of weak sim-
ulation and bisimulation, however other equivalences and preorders from
the linear/branching-time spectrum [15] can also be encoded as dependency
graphs [16] as well as model checking problems e.g. for the CTL logic [17], reach-
ability problems for timed games [18] and the general framework of Boolean
equation systems [2], just to mention a few applications of dependency graphs.

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

56

s, t

s′, t′1 s′, t′n s′1, t
′ s′n, t

′.

for all s a−→ s′ for all t a−→ t′

{t′1, . . . , t′n} = {t′ | t a
=⇒ t′} {s′1, . . . , s′n} = {s′ | s a

=⇒ s′}

Fig. 3: Bisimulation reduction to dependency graph

Let T = (S,A,→) be an LTS. We define a dependency graph G≈(T) =
(V,E) such that V = {(s, t) | s, t ∈ S} and the hyperedges are given by

E = {
(
(s, t), {(s′, t′) | t a

=⇒ t′}
)
| s a−→ s′}∪{

(
(s, t), {(s′, t′) | s a

=⇒ s′}
)
| t a−→ t′} .

The general construction is depicted in Figure 3 and its application to the
LTS from Figure 1a, listing only the pairs of states reachable from (s1, t1), is
shown in Figure 1b. Observe that the size of the produced dependecy graph is
polynomial with respect to the size of the input LTS.

Proposition 1. Let T = (S,A,→) be an LTS and s, t ∈ S. We have s ≈ t if
and only if Amin((s, t)) = 0 in the dependency graph G≈(T).

Proof (Sketch). “⇒”: Let R be a weak bisimulation such that (s, t) ∈ R. The
assignment A defined as A((s′, t′)) = 0 iff (s′, t′) ∈ R can be shown to be
a fixed-point assignment. Then clearly Amin v A and because A((s, t)) = 0
then also Amin((s, t,)) = 0. “⇐”: Let Amin((s, t)) = 0. We construct a binary
relation R = {(s′, t′) | Amin((s′, t′)) = 0}. Surely (s, t) ∈ R and we invite the
reader to verify that R is a weak bisimulation. ut

In our example in Figure 1b we can see that Amin((s1, t1)) = 1 and hence
s1 6≈ t1. The construction of the dependency graph for weak bisimulation can
be adapted to work also for the weak simulation preorder by removing the
hyperedges that originate by transitions performed by the right hand-side pro-
cess.

We know that computing Amin for a given dependency graph can be done
in linear time [19]. By the facts that deciding bisimulation on finite LTS is P-
hard [3] and the polynomial time reduction described above, we can conclude
that determining the value of a vertex in the minimum fixed-point assignment
of a given dependency graph is a P-complete problem.

Proposition 2. The problem whether Amin(v) = 1 for a given dependency
graph and a given vertex v is P-complete.

57

3 Distributed Fixed-Point Algorithm

We shall now describe our distributed algorithm for computing minimum fixed-
points on dependency graphs. Let G = (V,E) be a dependency graph. For the
purpose of the on-the-fly computation, we represent G by the function

Successors(v) = {(v, T) | (v, T) ∈ E}

that returns for each vertex v ∈ V the set of outgoing hyperedges from v.
We assume a fixed number of n workers. Let i, 1 ≤ i ≤ n, denote a worker

with id i. Each worker i uses the following local data structures.

– A local assignment function Ai : V ⇀ {0, 1}, which is a partial function
mapping each vertex to the values undefined , 0 or 1.

– A local dependency function Di : V → 2E returning the current set of
dependent edges for each vertex.

– A local waiting setW i ⊆ E containing edges that are waiting for processing.
– A local request function Ri : V → 2{1,...,n} where the worker i remembers

who requested the value for a given vertex.
– A local input message set M i ⊆ {“value of v needed by worker j” | v ∈
V, 1 ≤ j ≤ n} ∪ {“v has value 1” | v ∈ V }. For syntactic convenience, we
assume that a worker i can add a message m to M j of another worker j
simply by executing the assignment M j ← M j ∪ {m}.

We moreover assume some standard function TerminationDetection,
computed distributively, that returns true if there are no messages in transit and
all waiting sets of all workers are empty, in other words if

⋃
1≤i≤nM

i ∪W i = ∅.
Finally, we assume a global partitioning function δ : V → {1, . . . , n} that
partitions vertices to workers.

The distributed algorithm for computing the minimal fixed-point assign-
ment for a given vertex vs is presented in Algorithm 1. First, all n workers are
initialized and the worker that owns the vertex vs updates its local assignment
to 0 and adds the successor edges to its local waiting set. Then the workers
start processing the edges on the waiting sets and the messages in their in-
put message sets until they terminate either by one worker announcing that
Amin(vs) = 1 at line 18 or all waiting edges and messages have been processed
and then the workers together claim that Amin(vs) = 0 at line 13.

Lemma 1 (Termination). Algorithm 1 terminates.

Proof. First observe that for each vertex v and each local assignment Ai the
value of Ai(v) is first undefined. Then when v is discovered either as a target
vertex of some hyperedge on the waiting set (line 22) or when the value of v gets
requested by another worker (line 35), the value Ai(v) changes to 0. Finally
the value of Ai(v) can be upgraded to the value 1 either by the presence of
a hyperedge where all target vertices already have the value 1 (line 17) or by
receiving a message from another worker (line 31). The point is that for every

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

58

Algorithm 1: Distributed Algorithm for Worker i, 1 ≤ i ≤ n
Input: A dependency graph G = (V,E) represented by the function

Successors, a vertex vs ∈ V and a vertex partitioning function
δ : V → {1, . . . , n} where n is the number of workers.

Output: The minimum fixed-point assignment Amin(vs) for the vertex vs.

1 Ai(v) ← undefined for all v ∈ V . implemented via hashing
2 W i ← ∅; Di ← ∅; M i ← ∅; Ri ← ∅
3 if δ(vs) = i then . initialize the computation
4 Ai(vs) ← 0; W i ← Successors(vs)
5 repeat
6 while W i 6= ∅ or M i 6= ∅ do
7 Let x ∈W i ∪M i . process message or hyperedge
8 if x ∈W i then
9 W i ← W i \ {x}; ProcessHyperedge(x)

10 else
11 M i ← M i \ {x}; ProcessMessage(x)
12 until TerminationDetection
13 output “Amin(vs) = 0”

14 Procedure ProcessHyperedge((v, T)) is
15 if Ai(v) 6= 1 then
16 if ∀v′ ∈ T : Ai(v′) = 1 then
17 Ai(v) ← 1
18 if v = vs then output “Amin(vs) = 1” ; terminate all workers
19 for all j ∈ Ri(v) do M j ← M j ∪ {“v has value 1”}
20 Ri(v) ← ∅ ; W i ← W i ∪Di(v)

21 else if ∃v′ ∈ T : Ai(v′) is undefined then
22 Ai(v′) ← 0 ; Di(v′) ← Di(v′) ∪ {(v, T)}
23 if δ(v′) = i then . is value of v′ my responsibility?
24 W i ← W i ∪ Successors(v′)
25 else . send request for value of v′

26 Mδ(v′) ← Mδ(v′) ∪ {“value of v′ needed by worker i”}
27 else if ∃v′ ∈ T : Ai(v′) = 0 then
28 Di(v′) ← Di(v′) ∪ {(v, T)}

29 Procedure ProcessMessage(m) is
30 if m = “v has value 1” and Ai(v) 6= 1 then
31 Ai(v) ← 1

32 W i ← W i ∪Di(v)

33 else if m = “value of v needed by worker j” then
34 if Ai(v) is undefined then
35 Ai(v) ← 0

36 W i ← W i ∪ Successors(v)
37 if Ai(v) = 1 then
38 M j ← M j ∪ {“v has value 1”} . we already know it is 1
39 else
40 Ri(v) ← Ri(v) ∪ {j} . remember that j needs value of v

59

v, each of the assignments Ai(v) ← 0 and Ai(v) ← 1 is executed at most
once during any execution of the algorithm. This can be easily noticed by the
inspection of the conditions on the if-commands guarding these assignments.

Next we notice that new hyperedges are added to the waiting set W i only
when an assignment of some vertex v gets upgraded from undefined to 0, or from
0 to 1. As argued above, this can happen only finitely many times, hence only
finitely many hyperedges can be added to each W i. Similarly, new messages
to the message sets can be added only at lines 19, 26 and 38. At line 19 a
finite number of messages of the form “v has value 1” is added only when a
value of Ai(v) was upgraded to 1. This can happen only finitely many times.
At line 26 the message “value of v′ needed by worker i” is added only when
a value of a vertex was upgraded from undefined to 0, hence this can happen
only finitely many times. Finally, at line 38 a message is added only when we
received the message “value of v needed by worker i” but this message was
sent only finitely many times. All together, only finitely many elements can be
added to the waiting and message sets and as the main while-loop repeatedly
removes elements from those sets, eventually they must become empty and the
algorithm terminates at line 13 (unless it terminated earlier at line 18). ut

We can now observe that if a vertex is assigned the value 1 for any worker,
then the value of the vertex in the minimal fixed-point assignment is also 1.

Lemma 2 (Soundness). At any moment of the execution of Algorithm 1
and for all i, 1 ≤ i ≤ n, and all v ∈ V it holds that

a) if Ai(v) = 1 then Amin(v) = 1, and
b) if “v has value 1” ∈M i then Amin(v) = 1.

Proof. The invariant holds initially as Ai(v) is undefined for all i and all v and
all input message sets are empty.

Let us assume that both condition a) and b) hold and that we assign the
value 1 to Ai(v) for some worker i and a vertex v. This can only happen at
lines 17 and 31. In the first assignment at line 17 we know that there is a
hyperedge (v, T) such that all vertices v′ ∈ T satisfy that Ai(v′) = 1. However,
this by our invariant part a) implies that Amin(v′) = 1 and then necessarily also
Amin(v) = 1 by the definition of fixed-point assignment. Hence the invariant for
the case a) is preserved. Similarly, if Ai(v) gets the value 1 at line 31, this can
only happen if “v has value 1” ∈ M i and by the invariant part b) this implies
that Amin(v) = 1 and hence the invariant for the condition a) is established .

Similarly, let us assume that conditions a) and b) hold and that a message
“v has value 1” gets inserted into M j by some worker i. This can only happen
at lines 19 and 38. In both situations it is guaranteed that Ai(v) = 1 and hence
by the invariant part a) we know that Amin(v) = 1, implying that adding these
messages to M j is safe. ut

The next lemma establishes an important invariant of the algorithm.

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

60

Lemma 3. For any vertex v ∈ V , whenever during the execution of Algo-
rithm 1 the worker δ(v) is at line 6 then the following invariant holds: either

a) Aδ(v)(v) = 1, or
b) Aδ(v)(v) is undefined, or
c) Aδ(v)(v) = 0 and for all (v, T) ∈ E either

i) (v, T) ∈W δ(v), or
ii) there is v′ ∈ T such that Aδ(v)(v′) = 0, and (v, T) ∈ Dδ(v)(v′).

Proof. Initially, the invariant is satisfied as Aδ(v)(v) is undefined and the in-
variant, more specifically the subcase i), clearly holds also when v = vs and the
worker δ(vs) performed the assignments at line 4.

Assume now that the invariant holds. Clearly, if it is by case a) where
Aδ(v)(v) = 1 then the value of v will remain 1 until the end of the execution.

If the invariant holds by case b) then it is possible that the value of Aδ(v)(v)
changes from undefined to 0. This can happen either at lines 22 or 35. If the
assignment took place at line 22 (note that here v = v′) then clearly line 24 will
be executed too and all successor edges of v will be inserted into the waiting set
and hence the invariant subcase i) will hold once the execution of the procedure
is finished. Similarly, if the assignment took place at line 35 then all successors
of v are at the next line 36 immediately added to the waiting set, hence again
satisfying the invariant subcase i).

Consider now the case c). The invariant can be challenged by either re-
moving the hyperedge (v, T) from W δ(v) hence invalidating the subcase i) or
by upgrading the value of the vertex v′ in case ii) such that Aδ(v)(v′) = 1. In
the first case where the subcase i) gets invalidated we can notice that this can
happen only at line 9 after which the removed hyperedge (v, T) is processed.
There are two possible scenarios now. Either all vertices from T have the value
1 and then the value of Aδ(v)(v) also gets upgraded to 1 at line 17 hence satis-
fying the invariant a), or there is a vertex v′ ∈ T such that Aδ(v)(v′) = 0 and
then the hyperedge (v, T) is added at line 28 to the dependency set Dδ(v)(v′)
satisfying the subcase (ii) of the invariant. In the second subcase, we assume
that the vertex v′ satisfying the subcase ii) gets upgraded to the value 1. This
can happen at line 17 or line 31. In both cases the dependency set Dδ(v)(v′)
(that by our invariant assumption contains the hyperedge (v, T)) is added to
the waiting set (lines 20 and 32) implying that the invariant subpart i) holds.

ut

The following lemmas shows that after the termination, the value 0 for a
vertex v in a local assignment of some worker implies the same value also in
the assignment of the worker that owns the vertex v. This is an important fact
for showing completeness of our algorithm.

Lemma 4. Once all workers in Algorithm 1 terminate at line 13 then for all
vertices v ∈ V and all workers i holds that if Ai(v) = 0 then Aδ(v)(v) = 0.

61

Proof. Observe that the assignment of 0 to Ai(v) where i 6= δ(v) can happen
only at line 22 (the assignment at line 35 is performed only if i = δ(v) as
the message “value of v is needed by worker i” is sent only to the owner of
the vertex v). After the assignment at line 22 done by worker i, the message
requesting the value of the vertex is sent to its owner at line 26. Clearly, before
the workers terminate, this message must be read by the owner and the value
of the vertex is either set to 0 at line 35, or if the value is already known to be
1 the worker i is informed about this via the message “v has value 1” at line 38
and this message will be necessarily read by the worker i before the termination
and the value Ai(v) will be updated to 1. Otherwise we remember the worker’s
id requesting the assignment value at line 40. Should the owner upgrade the
value of v to 1 at some moment, all workers that requested its value will be
informed about this by a message sent at line 19 and before the termination
these workers must read these messages and update the local values for v to 1.
It is hence impossible for the algorithm to terminate while the owner of v set
its value to 1 and some other worker still has only the value 0 for the vertex v.

ut

Lemma 5 (Completeness). If all workers in Algorithm 1 terminate at
line 13 then for all vertices v ∈ V the fact Aδ(v)(v) = 0 implies that
Amin(v) = 0.

Proof. Note that after the termination we have W i =M i = ∅ for all i. Assume
now that Aδ(v)(v) = 0. Then by Lemma 3 and the fact that W δ(v) = ∅ we can
conclude that for all (v, T) ∈ E there exists v′ ∈ T such that Aδ(v)(v′) = 0. By
Lemma 4 this means that also Aδ(v

′)(v′) = 0. Let us now define an assignment
A such that A(v) = Aδ(v)(v). By the arguments above, A is a fixed-point
assignment. As Amin is the minimum fixed-point assignment, we have Amin v
A and because A(v) = 0 we can conclude that Amin(v) = 0. ut

Theorem 1 (Correctness). Algorithm 1 terminates and outputs either

– “Amin(vs) = 1” implying that Amin(vs) = 1, or
– “Amin(vs) = 0” implying that Amin(vs) = 0.

Proof. Termination is proved in Lemma 1. The algorithm can terminate either
at line 18 provided that Ai(vs) = 1 but then by Lemma 2 clearly Amin(vs) = 1.
Otherwise the algorithm terminates when all workers reach line 13. This can
only happen when Aδ(vs)(vs) = 0 and by Lemma 5 we get Amin(vs) = 0. ut

Note that the algorithm is proved correct without imposing any specific
order by which messages and hyperedges are selected from the sets W i andM i

or what target vertices are selected in the expressions like ∃v′ ∈ T . In the next
section we discuss some of the choices we have made in our implementation.

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

62

4 Implementation and Evaluation

The distributed algorithm described in the previous section is implemented as
an MPI-program in C++, enabling the workers to cooperate not only on a
single machine but also across multiple machines. The MPI-program requires
a successor generator to explore the dependency graph, a partitioning function
and a (de)serialisation function for the vertices (we use LZ4 compression on
the generated hyperedges before they leave the successor generator). For our
experiments, these functions were implemented for the case of weak bisimula-
tion/simulation on CCS processes but they can be easily replaced with other
custom implementations to support other equivalence and model checking prob-
lems, without the need of modifying the distributed engine itself.

In our implementation we use hash tables to store the assignments (Ai) and
the dependent edges (Di). The algorithm does not constrain specific structures
onW i orM i. For the waiting list (W i) two deques are used, one for the forward
propagation (outgoing hyperedges of newly discovered vertexes) and one for the
backwards propagation (hyperedges that were inserted due to dependencies).
Then the graph can be explored depth-first, or breadth-first, or a probabilistic
combination of those, independently for both the forward and backwards prop-
agation. Our experiments showed that it is preferable to prioritize processing
of messages rather than hyperedges to free up buffers used by the senders. The
distributed termination detection is determined using [20].

The implementation is open-source and available at http://code.
launchpad.net/pardg/ in the branch dfpdg-paper that includes also all ex-
perimental data. The distributed engine is currently being integrated within
the CAAL [13] user interface.

4.1 Evaluation

We evaluate the performance of our implementation on the traditional leader
election protocol [21] where we scale the number of processes and on the al-
ternating bit protocol (ABP) [22] where we scale the size of communication
buffers. We ask the question whether the specification and implementation
(both described as CCS processes) are weakly bisimilar. For both cases we
consider a variant where the weak bisimulation holds and where it does not
hold (by injecting an error). Finally, we also ask about the schedulability of
180 different task graphs from the well known benchmark database [23] on two
processors within a given deadline. Whenever applicable, the performance is
compared with the tool Concurrency WorkBench (CWB) [4] version 7.1 using
1 core (there is no parallel/distributed version of CWB). CWB implements the
best performing global algorithms for bisimulation checking on CCS processes.

All experiments are performed on a Linux cluster, composed of compute
nodes with 1 TB of DDR3 1600mhz memory, four AMD Opteron 6376 pro-
cessors (in total 64 cores@2,3Ghz with speedstep disabled) and interconnected
using Intel True Scale InfiniBand (40 Gb/s) for low latency communication.

63

Leader election where implementation and specification are weakly bisimilar
9 processes 10 processes 11 processes 12 processes

cores time RSD µs/tv time RSD µs/tv time RSD µs/tv time RSD µs/tv
CWB 8.21 0.2 N/A 328 0.5 N/A - - N/A - - N/A

1 187 0.6 6399 1957 1.0 17921 - - - - - -
2 102 0.7 482 1020 0.6 9338 - - - - - -
4 55.7 1.0 907 553 1.1 5065 - - - - - -
8 38.6 31.0 322 304 6.3 2783 2885.7 1.1 7013 - - -

16 28.5 17.6 975 208 5.9 1903 2098.6 1.1 5100 - - -
32 16.8 14.3 574 120 6.9 1099 1172.6 0.5 2850 - - -
64 9.7 3.0 332 81 3.5 738 723.9 1.7 1759 - - -
128 7.0 1.7 241 53 6.3 489 407.4 2.9 990 3464 1.3 2221
256 5.8 1.9 200 38 2.8 345 276.8 1.4 673 2115 1.0 1356
Leader election where implementation and specification are not weakly bisimilar

8 processes 9 processes 10 processes 11 processes
CWB 4.1 0.4 N/A 33.7 1.3 N/A 3765.0 0.9 N/A - - N/A

1 1.5 5.5 349.8 13.1 7.9 521.6 122.3 7.0 736.0 1110 0.1 920
2 1.1 12.7 258.2 5.0 10.0 908.6 7.8 39.8 178011 236 58.8 959
4 2.1 79.1 157.1 8.5 24.8 74.5 303.4 47.7 97.4 2148 * 82
8 4.5 46.0 25.9 37.6 151.9 37.0 516.6 164.1 52.7 2764 8.2 104

16 3.6 97.1 21.1 31.8 103.2 55.1 83.3 31.7 69.7 1078 7.5 342
32 1.7 30.9 4.7 10.7 67.7 19.0 49.4 12.7 28.5 1072 15.4 107
64 0.9 2.2 3.6 5.2 5.8 7.9 75.0 5.0 9.9 1231 26.1 19
128 0.8 13.0 3.5 6.4 10.3 2.7 28.5 13.0 8.3 812 32.7 7
256 1.2 13.4 9.4 5.6 6.7 1.5 22.6 6.9 1.5 243 23.8 6

Table 1: Time is reported in seconds, RSD is the relative sample standard
deviation in percentage and µs/tv is the time spend per vertex in micro seconds.
The star in RSD column means that only one run finished within the given
timeout.

All nodes run an identical image of Ubuntu 14.04 and MPICH 3.2 was used for
MPI communication. We use the depth first search order for the forward search
strategy and the breadth first search order for the backwards search strategy.

The results for the leader election and ABP are presented in Tables 1 and 2,
respectively. For each entry in the tables, four runs were performed and the
mean run time and the relative sample standard deviation are reported. We
also report on how many microseconds were used (in parallel) per explored
vertex of the dependency graph. This measure gives an idea of the speedup
achieved when more cores are available. We note that for small instances this
time can be very high due to the initialization of the distributed algorithm and
memory allocations for dynamic data structures.

We observe that in the positive cases where the entire dependency graph
must be explored, we achieve (with 256 cores) speedups 32 and 52 for leader
election with 9 and 10 processes, respectively. For ABP with buffer sizes 3 and

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

64

ABP where implementation and specification are weakly bisimilar
buffer size 3 buffer size 4 buffer size 5

cores time RSD µs/tv time RSD µs/tv time RSD µs/tv
CWB 9.7 0.6 N/A 1610.3 1.3 N/A - - N/A

1 81.3 0.5 113.6 2409.5 0.3 161.4 - - -
2 42.0 0.7 58.7 1268.5 3.8 85.0 - - -
4 22.4 2.1 31.3 650.3 1.2 43.6 - - -
8 13.8 11.6 19.3 332.0 1.9 22.2 - - -
16 10.2 13.6 14.3 239.1 6.2 16.0 - - -
32 5.9 14.4 8.2 127.0 3.9 8.5 3314.7 1.0 10.8
64 3.4 1.2 4.7 78.8 2.5 5.3 1970.5 0.4 6.4

128 2.1 3.7 3.0 42.4 0.8 2.8 1020.3 1.2 3.3
256 1.8 23.1 2.5 24.7 2.7 1.7 551.2 0.6 1.8

ABP where implementation and specification are not weakly bisimilar
buffer size 4 buffer size 5 buffer size 6

CWB 8.3 0.9 N/A 170.2 0.5 N/A - - N/A
1 5.0 0.4 15365.9 3.4 0.3 109113 4.1 0.4 584643
2 15.0 1.2 56.9 1.3 14.8 179286 4.1 2.8 590714
4 7.8 4.4 37.8 168.3 0.5 95.9 3125.1 0.8 202.2
8 6.4 25.6 65.0 98.1 17.0 297.3 1602.2 1.0 669.4
16 4.4 20.0 45.5 66.1 13.2 108.7 1128.2 1.1 15391.5
32 2.2 3.5 694.9 35.8 1.6 1792.8 649.6 9.9 7481.1
64 1.3 7.3 367.4 21.8 1.5 1006.6 370.9 0.4 3869.9

128 0.8 3.7 289.2 14.4 1.4 755.7 197.5 1.2 2482.5
256 0.5 3.9 127.6 7.9 2.1 436.1 107.7 1.1 1305.1

Table 2: Time is reported in seconds, RSD is the relative sample standard
deviation in percentage and µs/tv is the time spend per vertex in micro seconds.

4 the speedups are 102 and 98, respectively. However we do see a relative high
standard deviation for 8-32 cores if the run time is short. This is because the
scheduler is not configured to ensure locality among NUMA nodes. Compared
to the performance of CWB, we observe that on the smallest instances we need
up to 64 cores in leader election and 16 cores in ABP to match the run time of
CWB. However, on the next instance the run time of CWB is matched already
by 8 and 2 cores, respectively. This demonstrates that the performance of our
distributed algorithm considerably improves with the increasing problem size.

In the negative cases, it is often enough to explore only a smaller portion
of the dependency graph in order to provide a conclusive answer and here the
on-the-fly nature of our distributed algorithm shows a real advantage compared
to the global algorithms implemented in CWB. For on-the-fly exploration the
search order is very important and we can note that increasing the number of
cores does not necessarily imply that we can compute the fixed-point value for
the root faster. Even though the algorithm scales still very well and with more
cores explores a substantially larger part of the dependency graph, it may (by

65

Weak Simulation Preorder on Task Graphs
Total Positive Negative

cores solved AAT solved AAT solved AAT
1 35 19660 16 7818 19 11841
2 39 10278 18 4085 21 6192
4 43 5301 21 2095 22 3205
8 49 2996 26 1201 23 1794

16 51 2240 28 858 23 1381
32 57 1271 33 493 24 777
64 61 798 34 310 27 487

Table 3: Number of solved task graphs within 1 hour for all, positive and
negative instances. The accumulated average time (AAT) is projected on 9
task graphs that 1 core is able to solve between 20 minutes and 1 hour.

the combined search strategy of the workers) explore large parts of the graph
that are not needed for finding the answer. For example in leader election for
10 processes, two cores produced a very successful search strategy that needed
only 7.8 seconds to find the answer, however, increasing the number of cores
led the search in a wrong direction.

Finally, results for checking the simulation preorder on the task graph
benchmark can be seen in Table 3. As this is a large number of experiments
requiring nontrivial time to run, we tested the scaling only up to 64 cores. We
queried whether all the tasks in the task graph (or rather their initial pre-
fixes) can be completed within 25 time units. Out of the 180 task graphs, 61
of them are solvable in one hour (and 34 of them are schedulable while 27 are
not schedulable). As CWB does not support simulation preorder, the weaker
trace inclusion property is used but CWB cannot solve any of the task graphs
within one hour. We achieve an average 25 times speedup using 64 cores, both
for the positive and negative cases, showing a very satisfactory performance on
this large collection of experiments.

5 Conclusion

We presented a distributed algorithm for computing fixed points on depen-
dency graphs and showed on weak bisimulation/simulation checking between
CCS processes that, even though the problem is in general P-hard, we can in
many cases obtain reasonable speed-ups as we increase the number of cores.
Our algorithm works on-the-fly and hence for the cases where only a small
portion of the dependency graphs needs to be explored to provide the answer,
we perform significantly better than the global algorithms implemented in the
CWB tool. Compared to CWB we also scale better with the increasing instance
sizes, even for the cases where the whole dependency graph must be explored.
The advantage of our approach based on dependency graphs is that we pro-
vide a general distributed algorithm and its efficient implementation that can

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

66

be directly applied also to other problems like e.g. model checking—most im-
portantly without the need of designing and coding specific single-purpose dis-
tributed algorithms for the different applications. In our future work we plan
to look into finding better parallel search strategies that will allow for early
termination in the cases where the fixed-point value of the root is 1 and also
terminating the parallel search of the graph once we know that the exploration
is not needed any more.

Acknowledgments The present work was supported by the Danish e-
Infrastructure Cooperation by co-funding acquisitions of the MCC Linux clus-
ter at Aalborg University and received funding from the Sino-Danish Basic
Research Center IDEA4CPS funded by the Danish National Research Founda-
tion and the National Science Foundation, China, the Innovation Fund Den-
mark center DiCyPS, as well as the ERC Advanced Grant LASSO. The fourth
author is partially affiliated with FI MU in Brno.

References

1. Xinxin Liu, C. R. Ramakrishnan, and Scott A. Smolka. Fully local and efficient
evaluation of alternating fixed points. In Proceedings of TACAS’98, volume 1384
of LNCS, pages 5–19. Springer, 1998.

2. X. Liu and S.A. Smolka. Simple linear-time algorithms for minimal fixed points.
In ICALP’98, volume 1443 of LNCS, pages 53–66. Springer, 1998.

3. José L. Balcázar, Joaquim Gabarró, and Miklos Santha. Deciding bisimilarity is
p-complete. Formal Asp. Comput., 4(6A):638–648, 1992.

4. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of concurrent systems. ACM Trans.
Program. Lang. Syst., 15(1):36–72, 1993.

5. R. Milner. A calculus of communicating systems. LNCS, 92, 1980.
6. Benedikt Bollig, Martin Leucker, and Michael Weber. Proceedings of SPIN’02,

chapter Local Parallel Model Checking for the Alternation-Free µ-Calculus, pages
128–147. Springer, 2002.

7. Orna Grumberg, Tamir Heyman, and Assaf Schuster. Distributed symbolic model
checking for µ-calculus. Formal Methods in System Design, 26(2):197–219, 2005.

8. Christophe Joubert and Radu Mateescu. Distributed on-the-fly model checking
and test case generation. In Antti Valmari, editor, Proceedings of SPIN’06, volume
3925 of LNCS, pages 126–145. Springer, 2006.

9. T. Gibson-Robinson, Ph. Armstrong, A. Boulgakov, and A.W. Roscoe. FDR3—A
modern refinement checker for CSP. In TACAS’14, volume 8413 of LNCS, pages
187–201. Springer, 2014.

10. H. Garavel, F. Lang, R. Mateescu, and W.Serwe. CADP 2011: A toolbox for
the construction and analysis of distributed processes. International Journal on
Software Tools for Technology Transfer, 15(2):89–107, 2013.

11. Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

12. J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communicating Sys-
tems. The MIT Press, 2014.

67

13. J.R. Andersen, N. Andersen, S. Enevoldsen, M.M. Hansen, K.G. Larsen, S.R.
Olesen, J. Srba, and J.K. Wortmann. CAAL: Concurrency workbench, Aalborg
edition. In Proceedings of the 12th International Colloquium on Theoretical Aspec
ts of Computing (ICTAC’15), volume 9399 of LNCS, pages 573–582. Springer,
2015.

14. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
J. Math, 5(2), 1955.

15. R. J. van Glabbeek. The linear time - branching time spectrum, volume 458 of
LNCS, pages 278–297. Springer, 1990.

16. J.R. Andersen, M.M. Hansen, and N. Andersen. CAAL 2.0: Equivalences, pre-
orders and games for CCS and TCCS. Master’s thesis, Aalborg University, 2015.

17. J.F. Jensen, K.G. Larsen, J. Srba, and L.K. Oestergaard. Local model checking of
weighted CTL with upper-bound constraints. In Proceedings of SPIN’13, volume
7976 of LNCS, pages 178–195. Springer-Verlag, 2013.

18. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In Proceed-
ings of CONCUR’05, volume 3653, pages 66–80. Springer, 2005.

19. Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed
points (extended abstract). In Proceedings of ICALP’98, volume 1443 of LNCS,
pages 53–66, London, UK, UK, 1998. Springer-Verlag.

20. E. W. Dijkstra. Shmuel Safra’s version of termination detection. EWD
Manuscript 998, 1987.

21. Ernest Chang and Rosemary Roberts. An improved algorithm for decentral-
ized extrema-finding in circular configurations of processes. Commun. ACM,
22(5):281–283, May 1979.

22. K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-
duplex transmission over half-duplex links. Commun. ACM, 12(5):260–261, 1969.

23. Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task
graph scheduling algorithms. J. Parallel Distrib. Comput., 59(3):381–422, 1999.

Paper A. Distributed Computation of Fixed Points on Dependency Graphs

68

Paper B

A Distributed Fixed-Point Algorithm for Extended
Dependency Graphs Algorithm

69

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

70

A Distributed Fixed-Point Algorithm for
Extended Dependency Graphs?

Andreas E. Dalsgaard1, Søren Enevoldsen1, Peter Fogh1, Lasse S. Jensen1,
Tobias S. Jepsen1, Isabella Kaufmann1, Kim G. Larsen1, Søren M. Nielsen1,

Mads Chr. Olesen1, Samuel Pastva2, and Jiří Srba1

1 Department of Computer Science, Aalborg University, Aalborg East, Denmark
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. Equivalence and model checking problems can be encoded
into computing fixed points on dependency graphs. Dependency graphs
represent causal dependencies among the nodes of the graph by means
of hyper-edges. We suggest to extend the model of dependency graphs
with so-called negation edges in order to increase their applicability.
The graphs (as well as the verification problems) suffer from the state
space explosion problem. To combat this issue, we design an on-the-
fly algorithm for efficiently computing fixed points on extended depen-
dency graphs. Our algorithm supplements previous approaches with the
possibility to back-propagate, in certain scenarios, the domain value 0,
in addition to the standard back-propagation of the value 1. Finally,
we design a distributed version of the algorithm, implement it in out
open-source tool TAPAAL, and demonstrate the efficiency of our gen-
eral approach on the benchmark of Petri net models and CTL queries
from the annual Model Checking Contest.

1 Introduction

Model checking [2], a widely used verification technique for exhaustive state
space search, may be both time and memory consuming as a result of the
state space explosion problem. As a consequence, interesting real-life models
can often be too large to be verified. Numerous approaches have been pro-
posed to address this problem, including symbolic model checking and various
abstraction techniques [3]. An alternative approach is to distribute the compu-
tation across multiple cores/machines, thus expanding the amount of available
resources. Tools such as LTSmin [4] and DIVINE [5] have recently been ex-
ploring this possibility, without the need of being committed to a fixed model
description language.

It has also been observed that model checking is closely related to the prob-
lem of evaluating fixed points [6,7,8,9], as these are suitable for expressing sys-
tem properties described in the logics like Computation Tree Logic (CTL) [10]

? An extended version of [1].

71

or the modal µ-calculus [11]. This has been formally captured by the notion
of dependency graphs of Liu and Smolka [6]. A dependency graph, consisting
of a finite set of nodes and hyper-edges with multiple target nodes, is an ab-
stract framework for efficient minimum fixed-point computation over the node
assignments that assign to each node the value 0 or 1. It has a variety of usages,
including model checking [7,8,9] and equivalence checking [12]. Apart from for-
mal verification, dependency graphs are also used to solve games based e.g. on
timed game automata [13] or to encode Boolean equation systems [14].

Liu and Smolka proved in [6] that dependency graphs can be used to com-
pute fixed points of Boolean graphs and to solve in linear time the P-complete
problem HORNSAT [15]. They offered both a global and local algorithm for
computing the minimum fixed-point value. The global algorithm computes the
minimum fixed-point value for all nodes in the graph, though, we are often only
interested in the values for some specific nodes. The advantage of the local al-
gorithm is that it needs to compute the values only for a subset of the nodes
in order to conclude about the assignment value for a given node of the graph.
In practise, the local algorithm is superior to the global one [7] and to further
boost its performance, we recently suggested a distributed implementation of
the local algorithm with preliminary experimental results [12] conducted for
weak bisimulation and simulation checking of CCS processes.

Our contributions. Neither the original paper by Liu and Smolka [6] nor the
recent distributed implementation [12] handle the problem of negation in de-
pendency graphs as this can break the monotonicity in the iterative evaluation
of the fixed points. In our work, we extend dependency graphs with so-called
negation edges, define a sufficient condition for the existence of unique fixed
points and design an efficient algorithm for their computation, hence allowing
us to encode richer properties rather than just plain equivalence checking or
negation-free model checking. As we aim for a competitive implementation and
applicability in various verification tools, it is necessary to offer the user not
only the binary answer (whether a property holds or not or whether two sys-
tems are equivalent or not) but also the evidence for why this is the case. This
can be conveniently done by the use of two-player games between Attacker and
Defender. In our approach, it is possible for the user to play the role of Defender
while the Attacker (played by the tool) can convince the user why a property
does not hold. We formally define games played on the extended dependency
graphs and prove a correspondence between the winner of the game and the
fixed-point value of a node in a dependency graph.

In order to maximize the computation performance, we introduce a novel
concept of certain zero value that can be back-propagated along hyper-edges
and negation edges in order to ensure early termination of the fixed-point al-
gorithm. This technique can often result in considerable improvements in the
verification time and has not been, to the best of our knowledge, exploited
in earlier work. To further enhance the performance, we present a distributed
algorithm for a fixed-point computation and prove its correctness. Last but

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

72

not least, we implement the distributed algorithm in an extensible open source
framework and we demonstrate the applicability of the framework on CTL
model checking of Petri nets. In order to do so, we integrate the framework
into the tool TAPAAL [16,17] and run a series of experiments on the Petri
net models and queries from the Model Checking Contest (MCC) 2016 [18].
A single-core prototype of the tool implementing the negation edges and cer-
tain zero back-propagation also participated in the 2017 competition and was
awarded a silver medal in the category of CTL verification with 23940 points
for CTL cardinality queries, while the tool LoLa [19] took the gold medal with
28652 points in this subcategory (which includes colored net models that our
tool does not support yet). As documented by the experiments in this paper,
our 4-core distributed algorithm outperforms the optimized sequential algo-
rithm and hence it will challenge LoLa’s first place in the next year competition
(also given that Lola employs stubborn set reduction technique that is not yet
supported by our current implementation).

Related Work. Related algorithms for explicit distributed CTL model checking
include the assumption based method [20] and a map-reduce based method [21].
Opposed to our algorithm, which computes a local result, these algorithms often
focus on computing the global result. The local and global algorithms by Liu
and Smolka [6] were also extended to weighted Kripke structures for weighted
CTL model checking via symbolic dependency graphs [7], however, without any
parallel or distributed implementation.

LTSmin [4] is a language independent model checker which provides a large
amount of parallel and symbolic algorithms. To the best of our knowledge,
LTSmin uses a symbolic algorithm based on binary decision diagrams for CTL
model checking and even our sequential algorithm outperformed LTSmin at
MCC’16 [18] and MCC’17 [22] (in e.g. 2017 CTL cardinality category LTSmin
scored 8389 points compared to 23940 points achieved by our tool). Marcie [23]
is another Petri net model checking tool that performs symbolic analysis using
interval decision diagrams whereas our approach is based on explicit analysis
using extended dependency graphs. Marcie was a previous winner of the CTL
category at MCC’15 [24], however, in 2016 it finished on a third place and
in 2017 on the fourth place with almost the same number of points as ITS-
tools [25] that were third in 2017.

Other related work includes [26,27,28] designing parallel and/or distributed
algorithms for model-checking of the alternation-free modal µ-calculus. As in
our approach, they often employ the on-the-fly technique but our framework is
more general as it relies on dependency graphs to which the various verification
problems can be reduced. The notion of support sets as an evidence for the
validity of CTL formulae has been introduced in [29] and it is close to a (relevant
part of) assignment on a dependency graph, however, the game characterization
of support sets was not further developed, as stated in [29]. In our work, we
provide a natural game-theoretic characterization of an assignment on general

73

dependency graphs and such a characterization can be used to provide an
evidence about the fixed-point value of a node in a dependency graph.

Finally, there are several mature tools like FDR3 [30], CADP [31], SPIN [32]
and mCRL2 [33], some of them implementing distributed and on-the-fly algo-
rithms. The specification language of these is however often fixed and extensions
of such a language requires nontrivial implementation effort. Our approach re-
lies on reducing a variety of verification problems into extended dependency
graphs and then on employing our optimized and efficient distributed imple-
mentation, as e.g. demonstrated on CTL model checking of Petri nets presented
in this paper or on bisimulation checking of CCS processes [12].

2 Extended Dependency Graphs and Games

We shall now define the notion of extended dependency graphs, adding a new
feature of negation edges to the original definition by Liu and Smolka [6].

Definition 1. An Extended Dependency Graph (EDG) is a tuple G = (V,E,N)
where V is a finite set of configurations, E ⊆ V ×P(V) is a finite set of hyper-
edges, and N ⊆ V × V is a finite set of negation edges.

For a hyper-edge e = (v, T) ∈ E we call v the source configuration and
T ⊆ V is the set of target configurations. We write v → u if there is a (v, T) ∈ E
such that u ∈ T and v 99K u if (v, u) ∈ N . Furthermore, we write v u if
v → u or v 99K u. The successor function succ : V → (E ∪ N) returns the
set of outgoing edges from v, i.e. succ(v) = {(v, T) ∈ E} ∪ {(v, u) ∈ N}. An
example of an EDG is given in Figure 1(a) with the configurations named a
to f , hyper-edges denoted by solid arrows with multiple targets, and dashed
negation edges. Note that the configuration f in the example has one hyper-
edge with the empty set of target configurations, denoted by ∅.

In what follows, we consider only EDGs without cycles containing negation
edges.

Definition 2. An EDG G = (V,E,N) is negation safe if there are no v, v′ ∈ V
s.t. v 99K v′ and v′ ∗ v.

After the restriction to negation safe EDG, we can now define the negation
distance function dist : V → N0 that returns the maximum number of negation
edges throughout all paths starting in a configuration v and is inductively
defined as dist(v) = max({dist(v′′) + 1 | v′, v′′ ∈ V and v →∗ v′ 99K v′′})
where by convention max(∅) = 0. Note that dist(v) is always finite because
every path can visit each negation edge at most once. We then define dist(G)
of an EDG G as dist(G) = maxv∈V (dist(v)) and for an edge e ∈ E ∪N where
v is its source configuration, we write dist(e) = dist(v).

A component Ci of G, where i ∈ N0, is a subgraph induced on G by the set
of configurations Vi = {v ∈ V | dist(v) ≤ i}. We write Vi, Ei and Ni to denote
the set of configurations, hyperedges and negation edges of each respective

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

74

a

b d

c

e

f

∅
(a) An EDG with dist(G) = 2 and V0 = {b, c, f}, V1 = {d, e} ∪ V0, V2 = {a} ∪ V1

b c f

A0 0 0 0
F0(A0) 0 0 1
F0(F0(A0)) 0 0 1
(b) AC0

min Computation

b c d e f

A0 0 0 0 0 0
F1(A0) 0 0 1 0 1
F1(F1(A0)) 0 0 1 1 1
F1(F1(F1(A0))) 0 0 1 1 1
(c) AC1

min Computation

a b c d e f

A0 0 0 0 0 0 0
F2(A0) 0 0 0 1 1 1
F2(F2(A0)) 0 0 0 1 1 1
(d) AC2

min Computation

Fig. 1: An EDG and iterative calculation of its minimum fixed-point assignment

component. Note that by definition, C0 does not contain any negation edges.
Also observe that G = Cdist(G) and that for all k, ` ∈ N0, if k < ` then Ck is
a subgraph of C`. The EDG G in our example from Figure 1(a) contains three
nonempty components and has dist(G) = 2.

An assignment A of an EDG G = (V,E,N) is a function A : V → {0, 1}
that assigns the value 0 (interpreted as false) or the value 1 (interpreted as
true) to each configuration of G. A zero assignment A0 is such that A0(v) = 0
for all v ∈ V . We also assume a component wise ordering v of assignments such
that A1 v A2 whenever A1(v) ≤ A2(v) for all v ∈ V . The set of all assignments
of G is denoted by AG and clearly (AG,v) is a complete lattice.

We are now ready to define the minimum fixed-points assignment of an EDG
G (assuming that a conjunction over the empty set is true, while a disjunction
over the empty set is false).

Definition 3. The minimum fixed-point assignment of an EDG G, denoted by
AGmin = A

Cdist(G)

min is defined inductively on the components C0, C1, . . . , Cdist(G)

of G. For all i, s.t. 0 ≤ i ≤ dist(G), we define ACi
min to be the minimum

fixed-point assignment of the function Fi : ACi → ACi where

Fi(A)(v) = A(v) ∨
[∨

(v,T)∈Ei

∧

u∈T
A(u)

]
∨
[∨

(v,u)∈Ni

¬ACi−1

min (u)

]
. (1)

Note that when computing the minimum fixed-point assignment AC0
min for the

base component C0, we know that N0 = ∅ and hence the third disjunct in the
function F0 always evaluates to false. In the inductive steps, the assignment

75

A
Ci−1

min is then well defined for the use in the function Fi. It is also easy to observe
that each function Fi is monotonic (by a simple induction on i) and hence by
Knaster-Tarski, the unique minimum fixed-point always exists for each i.

In Figure 1 we show the iterative computation of AC0
min, A

C1
min and AC2

min,
starting from the zero assignment A0. We iteratively upgrade the assignment
of a configuration v from the value 0 to 1 whenever there is a hyper-edge (v, T)
such that all target configurations u ∈ T already have the value 1 or whenever
there is a negation edge v 99K u such that the minimum fixed-point assignment
of u (computed earlier) is 0. Once the application of the function Fi stabilizes,
we have reached the minimum fixed-point assignment for the component Ci.

Remark 1. The algorithm for computing ACi
min described above, also called the

global algorithm, relies on the fact that the complete minimum fixed-point as-
signment of smaller components Cj where j < i must be available before we can
proceed with the computation on the component Ci. As we show later on, it is
not always necessary to know the whole ACi−1

min in order to compute ACi
min(v) for

a specific configuration v and such a computation can be done in an on-the-fly
manner, using the so-called local algorithm.

2.1 Game Characterization

In order to offer a more intuitive understanding of the minimum fixed-point
computation on an extended dependency graph G, and to provide a convincing
argumentation why the minimum fixed-point value in a given configuration v is
0 or 1 (for the use in our tool), we define a two player game between the players
Defender and Attacker. The positions of the game are of the form (v, r) where
v ∈ V is a configuration and r ∈ {0, 1} is a claim about the minimum fixed-
point value in v, postulating that AGmin(v) = r. The game is played in rounds
and Defender defends the current claim while Attacker does the opposite.

Rules of the Game: In each round starting from the current position (v, r), the
players determine the new position for the next round as follows:
– If r = 1 then Defender chooses an edge e ∈ succ(v). If no such edge exists

then Defender loses, otherwise
• if e = (v, u) ∈ N then (u, 0) becomes the new current position, and
• if e = (v, T) ∈ E then Attacker chooses the next position (u, 1) where
u ∈ T , unless T = ∅ which means that Attacker loses.

– If r = 0 then Attacker chooses an edge e ∈ succ(v). If no such edge exists
then Attacker loses, otherwise
• if e = (v, u) ∈ N then (u, 1) becomes the new current position, and
• if e = (v, T) ∈ E then Defender chooses the next position (u, 0) where
u ∈ T , unless T = ∅ which means that Defender loses.

A play is a sequence of positions formed according the rules of the game. Any
finite play is lost either by Defender or Attacker as defined above. If a play is
infinite, we observe that the claim r can be switched only finitely many times

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

76

(since the graph is negation safe). Therefore there is only one claim r that is
repeated infinitely often in such a play. If r = 1 is the infinitely repeated claim
then Defender loses, otherwise (r = 0) Attacker loses.

The game starting from the position (v, r) is winning for Defender if she has
a universal winning strategy from (v, r). Similarly, the position is winning for
Attacker if he has a universal winning strategy from (v, r). Clearly, the game is
determined such that only one of the players has a universal winning strategy
and from the symmetry of the game rules, we can also notice that Defender is
the winner from (v, r) if and only if Attacker is the winner from (v, 1− r).

Theorem 1. Let G be a negation safe EDG, v ∈ V be a configuration and
r ∈ {0, 1} be a claim. Then AGmin(v) = r if and only if Defender is the winner
of the game starting from the position (v, r).

Proof. (⇒) Let us first define that a configuration v is of level i if v belongs to
the component Ci but not to any component Cj where 0 ≤ j < i. By induction
on the level of a configuration v, we show that (i) if AGmin(v) = 0 then Defender
has a winning strategy from (v, 0), and (ii) if AGmin(v) = 1 then Defender has
a winning strategy from (v, 1).

Let us consider the base case where v is of level 0.
– For the case (i), let us assume that AGmin(v) = 0 and consider any play

starting from (v, 0). Either Attacker has no outgoing edge v and Defender
wins, or for every outgoing hyper-edge (v, T) (notice that there are no
negation edges for configurations at level 0) there must be at least one
u ∈ T such that AGmin(u) = 0, otherwise AGmin would not be a fixed-point
assignment. Defender will choose such u and the play continues from (u, 0).
Eventually, either a loop is formed, and the infinite game is winning for
Defender as the claim 0 appears infinitely often, or there is no outgoing
edge for the attacker to choose, in which case Defender also wins.

– For the case (ii), let us assume that AGmin(v) = 1. There must have been
a reason why the value of v has been raised from 0 to 1 and the reason
is that either v has an outgoing hyper-edge with the empty target set, or
there is an outgoing hyper-edge from v such that every node from the target
set has the value 1 in the minimum fixed-point assignment. As before, no
negation edges can be reached from the component C0. This means that
for the distance function d inductively defined as
• d(v) = 0 if there is a hyper-edge (v, ∅) ∈ E, otherwise
• d(v) = 1 +min(v,T)∈E maxu∈T d(u),

we have that d(v) is finite for every v where AGmin(v) = 1. Defender’s strat-
egy from the position (v, 1) is then to pick from the outgoing hyper-edges
(at least one must exist) one that reduces the distance. The distance to
the configuration that has a hyper-edge with the empty target set then
decreases by at least one (irrelevant of Attacker’s choice) and eventually
Defender picks such a hyper-edge and Attacker loses the play. Hence De-
fender has a winning strategy in this case as well.

77

Let us now consider the inductive case where we have a configuration v of level
i > 0. Both in the case (i) and (ii) we can now also encounter negation edges.
– For the case (i), Defender still selects configurations from the target set

that have the minimum fixed-point value 0, identically with the base case.
The only change can be that Attacker can from a configuration v such that
Amin(v) = 0 select also a negation edge (v, u) ∈ N where Amin(u) = 1.
As the level of u is lower than the level of v, we can use the induction
hypothesis to conclude that Defender has a winning strategy from (u, 1).

– For the case (ii), we change the definition of the distance function d such
that in the base case d(v) is zero also if there is a negation-edge (v, u) ∈ N
such that Amin(u) = 0. If the game position becomes such a configuration
v, with a negation edge (v, u), then Defender will select that edge and
the play continues from (u, 0) that is by induction hypothesis winning for
Defender.
Hence the direction from left to right is established.

(⇐) We prove the other direction by contraposition. Assume that AGmin(v) 6= r
and we want to argue that Defender does not have a universal winning strategy
from (v, r) (which by determinacy of the game means that Attacker has a
universal winning strategy from (v, r)). However, the fact that AGmin(v) 6= r
implies that AGmin(v) = 1−r and Defender has a winning strategy from (v, 1−r)
as proved above. By the symmetry of the game, this means that Attacker has
a winning strategy from (v, r).

Let us now argue that Defender wins from the position (a, 0) in the EDG
G from Figure 1(a). First, Attacker picks either (i) the hyper-edge (a, {b, d})
or (ii) the negation edge (a, e). In case (i), Defender answers by selecting the
configuration b and the game continues from (b, 0). Now Attacker can only pick
the hyper-edge (b, {c}) and Defender is forced to select the configuration c,
ending in the position (c, 0) and from here the only continuation of the game
brings us again to the position (b, 0). As the play now repeats forever with
the claim 0 appearing infinitely often, Defender wins this play. In case (ii)
where Attacker selects the negation edge, we continue from the position (e, 1).
Defender is forced to select the only available hyper-edge (e, {d, f}), on which
Attacker can answer by selecting the new position (d, 1) or (f, 1). The first
choice is not good for Attacker, as Defender will answer by taking the negation
edge (d, c) and ending in the position (c, 0) from which we already know that
Defender wins. The position (f, 1) is not good for Attacker either as Defender
can now select the hyper-edge (f, ∅) and Attacker loses as he gets stuck. Hence
Defender has a universal winning strategy from (a, 0) and by Theorem 1 we
get that AGmin(a) = 0.

2.2 Encoding of CTL Model Checking of Petri Nets into EDG

We shall now give an example of how CTL model checking of Petri nets can be
encoded into computing fixed-points on EDGs. Let us first recall the Petri net

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

78

model. Let N0 denote the set of natural numbers including zero and N∞ the
set of natural numbers including infinity.

A Petri net is a 4-tuple N = (P, T, F, I) where P is a finite set of places,
T is a finite set of transitions such that P ∩ T = ∅ and P ∪ T 6= ∅, F :
(P ×T ∪T ×P)→ N0 is the flow function and I : P ×T → N∞ is the inhibitor
function. A marking on N is a function M : P → N0 assigning a number
of tokens to each place. The set of all markings on N is denoted M(N). A
transition t is enabled in a marking M if M(p) ≥ F ((p, t)) and M(p) < I(p, t)
for all p ∈ P . If t is enabled in M , it can fire and produce a marking M ′,
written M t−→M ′, such that M ′(p) =M(p)−F ((p, t))+F ((t, p)) for all p ∈ P .
We write M →M ′ if there is t ∈ T such that M t−→M ′.

A path in N , starting in a marking M , is a finite or infinite sequence of
markings and transition firings, written as

M ≡M0 →M1 →M2 → . . .

A path is maximal if it is either infinite or ends in a marking Mi such that
Mi 6→; also called a deadlock. The set of all maximal paths for a Petri net N
from the marking M is denoted by Πmax(M).

p0

p1
t0

t1

Fig. 2: A Petri net illustrating tokens, places and transitions.

An example of a Petri net is illustrated in Figure 2. The circles represent
places, the rectangles are transitions and arcs that have weight at least one are
represented by arrows (in our example all arcs have weight one that we omit
this annotation on the arrows). A marking can then be represented as a vector
(n0, n1) where n0 denotes the number of tokens in p0 and n1 the number of
tokens in p1, respectively. A possible path from the initial marking is (1, 0) is
e.g. (1, 0) → (1, 0) → (1, 0) → This repeated sequence of markings and
firings of the transition t0 forms an infinite maximal path. Another (finite)
maximal path is e.g. (1, 0)→ (1, 0)→ (1, 0)→ (0, 1).

In CTL, properties are expressed using a combination of logical and tem-
poral operators over a set of basic propositions. In our case the proposi-
tions express properties of a concrete marking M and include the proposition

79

is_fireable(Y) for a set of transitions Y that is true iff at least one of the
transitions from Y is enabled in the marking M , and arithmetical expressions
and predicates over the basic construct token_count(X) where X is a subset
of places such that token_count(X) returns the total number of tokens in
the places from the set X in the markingM . The CTL logic is motivated by the
requirements of the MCC’16 and MCC’17 competition [18,22] and the syntax
of CTL formula ϕ is

ϕ ::= true | false | is_fireable(Y) | ψ1 ./ ψ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
EG ϕ | AG ϕ | EF ϕ | AF ϕ | EX ϕ | AX ϕ | Eϕ1Uϕ2 | Aϕ1Uϕ2

ψ ::= ψ1 ⊕ ψ2 | c | token_count(X)

where ./ ∈ {<,≤,=,≥, >}, X ⊆ P , Y ⊆ T , c ∈ N0 and ⊕ ∈ {+,−, ·}. The
semantics of a CTL formula ϕ over a given marking M of the Petri net N
is defined in Table 1, using the function evalM that is given in Table 2. The
remaining operators are defined as abbreviations in Table 3.

M |= true
M |= ¬ϕ iff M 6|= ϕ
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= EX ϕ iff there exists M ′ ∈M(N) where M →M ′ and M ′ |= ϕ
M |= Eϕ1Uϕ2 iff there exists (M ≡M0 →M1 →M2 → . . .) ∈ Πmax(M)

s.t. there is i ∈ N0 where Mi |= ϕ2 and
for all j ∈ N0 s.t. 0 ≤ j < i holds Mj |= ϕ1

M |= Aϕ1Uϕ2 iff for all (M ≡M0 →M1 →M2 → . . .) ∈ Πmax(M)
there is i ∈ N0 where Mi |= ϕ2 and
for all j ∈ N0 s.t. 0 ≤ j < i holds Mj |= ϕ1

M |= is_fireable(Y) iff there exists t ∈ Y and M ′ s.t. M t−→M ′

M |= ψ1 ./ ψ2 iff evalM (ψ1) ./ evalM (ψ2)

Table 1: CTL Semantics

evalM (c) = c
evalM (token_count(X)) =

∑
p∈XM(p)

evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2)

Table 2: evalM semantics

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

80

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)
AX ϕ ≡ ¬EX ¬ϕ
EF ϕ ≡ E true Uϕ
AF ϕ ≡ A true Uϕ
EG ϕ ≡ ¬AF ¬ϕ
AG ϕ ≡ ¬EF ¬ϕ
false ≡ ¬true

Table 3: Standard abbreviations

〈M, true〉

∅
(a) True

iff evalM (ψ1) ./ evalM (ψ2)〈M,ψ1 ./ ψ2〉

∅
(b) Token count

iff M
t−→M ′ for some M ′ and some t ∈ Y〈M, is_fireable(Y)〉

∅
(c) Is fireable

Fig. 3: Atomic rules

We now reduce the problem of CTL model checking over Petri nets to calcu-
lating the minimum fixed-point assignment of an EDG. We construct an EDG
with the configurations of the form 〈M,ϕ〉 where M is a marking and ϕ a CTL
formula. If ϕ is an atomic proposition then there is a hyper-edge from 〈M,ϕ〉
with the empty target set iff M |= ϕ, otherwise there is no hyper-edge con-
nected to the configuration. This construction is shown in Figure 3. In Figure 4
we present the rules for the minimal set of operators from Table 1. Finally in
Figure 5 we also show a direct encoding for some of the derived CTL opera-
tors. These are included in order to limit the amount of configurations required
to calculate the minimum fixed-point assignment of the extended dependency
graph and hence to improve the efficiency of the algorithm. Observe that the
reduction produces a negation safe EDG. An example of such a reduction is
shown in Figure 6.

We can now state the correctness result for the reduction.

Theorem 2 (Encoding Correctness). Let N = (P, T, I, F) be a Petri net,
M a marking on N and ϕ a CTL-formula. Let G be the extended dependency
constructed according to the rules if Figures 3, 4 and 5 with the root 〈M,ϕ〉.
Then M |= ϕ iff AGmin(〈M,ϕ〉) = 1.

81

〈M,ϕ1 ∧ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

(a) Conjunction

〈M,¬ϕ〉

〈M,ϕ〉

(b) Nega-
tion

〈M,EXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

(c) Existential next

〈M,Eϕ1Uϕ2〉

〈M1, Eϕ1Uϕ2〉〈M,ϕ1〉〈M,ϕ2〉 〈Mn, Eϕ1Uϕ2〉. . .

(d) Existential until

〈M,Aϕ1Uϕ2〉

〈M1, Aϕ1Uϕ2〉〈M,ϕ1〉〈M,ϕ2〉 〈Mn, Aϕ1Uϕ2〉. . .

(e) Universal until

Fig. 4: Minimum set of operators where we let {M1, ...,Mn} = {M ′ |M →M ′}

Proof. The proof is by a mathematical induction on the level of a configuration
〈M,ϕ〉 in the extended dependency graph (recall that a configuration is of level
i if it belongs to the component Ci of the graph but not to any component Cj
where j < i). After this induction, we employ a nested structural induction on
the formula ϕ.
– Let ϕ = true, ϕ = ψ1 ./ ψ2 or ϕ = is_fireable(Y). Then it is straightfor-

ward to see that Amin(〈M,ϕ〉) = 1 if and only if there is a hyper-edge with
the empty target set, which is the case (according to the rules in Figure 3)
if and only if M |= ϕ.

– Let ϕ = ϕ1 ∧ ϕ2. Then M |= ϕ1 ∧ ϕ2 if and only if M |= ϕ1 and M |= ϕ2

which is by the structural induction hypothesis the case if and only if
Amin(〈M,ϕ1〉) = Amin(〈M,ϕ2〉) = 1. By Figure 4(a) there is an edge
(〈M,ϕ1∧ϕ2〉, {〈M,ϕ1〉, 〈M,ϕ2〉}) and this is the only hyper-edge connected
to the configuration 〈M,ϕ1∧ϕ2〉. This implies that Amin(〈M,ϕ1∧ϕ2〉) = 1
if and only if M |= ϕ1 ∧ ϕ2.

– Let ϕ = ϕ1 ∨ ϕ2. This case is analogous to the case of conjunction.
– Let ϕ = EXϕ1. Notice that M |= EXϕ1 if and only if there is M ′

such that M → M ′ and M ′ |= ϕ1. By the induction hypothesis
Amin(〈M ′, ϕ1〉) = 1 if and only ifM ′ |= ϕ1. By Figure 4(c) there is an edge
(〈M,EXϕ1〉, {〈M ′, ϕ1〉}) for all successors M ′ of M and in order to prop-

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

82

〈M,ϕ1 ∨ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

(a) Disjunction

〈M,AXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

(b) Universal next

〈M,EFϕ〉

〈M1,EFϕ〉〈M,ϕ〉 〈Mn,EFϕ〉. . .

(c) Existential finally

〈M,AFϕ〉

〈M1,AFϕ〉〈M,ϕ〉 〈Mn,AFϕ〉. . .

(d) Universal finally

Fig. 5: Derived operator set where we let {M1, ...,Mn} = {M ′ |M →M ′}

agate the value 1 to the root, at least one of the child configurations must
have the value 1. Hence Amin(〈M,EXϕ1〉) = 1 if and only if M |= EXϕ1.

– Let ϕ = AXϕ1. This case is analogous to the case of EX.
– Let ϕ = EFϕ1. First we prove the direction from left to right. By definition

we have M |= EFϕ1 iff there is a computation M = M0 → M1 → M2 →
...Mj such that Mj |= ϕ1. By mathematical induction on j we show that
Amin(〈M,EFϕ1〉) = 1. If j = 0 then M |= ϕ1, which by the structural
induction hypothesis means that Amin(〈M,ϕ1〉) = 1 and this value by
the left-most hyper-edge in Figure 5(c) propagates to the configuration
〈M,EFϕ1〉. Let j > 0. Then by the mathematical induction hypothesis,
we have that Amin(〈M1, EFϕ1〉) = 1 and due to the corresponding hyper-
edge in Figure 5(c) the value 1 propagates also to 〈M,EFϕ1〉).
Next we argue for the direction from right to left. Let us assume that
Amin(〈M,EFϕ1〉) = 1. Then at least one of the children of 〈M,EFϕ1〉
in Figure 5(c) must have the value 1, otherwise Amin is not the min-
imum fixed-point assignment. If Amin(〈M,ϕ1〉) = 1 then by the struc-
tural induction hypothesis M |= ϕ1 and hence also M |= EFϕ1. If this
is not the case then there is a marking M ′ such that M → M ′ and
Amin(〈M ′, EFϕ1〉) = 1. We select such a marking M ′ that minimizes the
number of steps needed to reach a configuration of the form 〈M ′′, ϕ1〉 such
that Amin(〈M ′′, ϕ1〉) = 1. This configuration must exist due to the as-

83

p

p3 p1

p2

(a) Petri net

ϕ = E(¬AF¬(p1 ≤ 2)) U (p2 = 2)

(b) CTL query

〈M,ϕ〉 1

c0

〈(1, 0, 0, 2), p2 = 2〉
0

c1
〈(1, 0, 0, 2),¬AF¬(p1 ≤ 2)〉

1

c2
〈(1, 1, 1, 1), ϕ〉

1

c3

〈(1, 0, 0, 2), AF¬(p1 ≤ 2)〉
0

c4
〈(1, 1, 1, 1), p2 = 2〉

0

c5
〈(1, 1, 1, 1),¬AF¬(p1 ≤ 2)〉

1

c6
〈(1, 2, 2, 0), ϕ〉

1

c7

〈(1, 0, 0, 2),¬(p1 ≤ 2)〉
0

c8
〈(1, 1, 1, 1), AF¬(p1 ≤ 2)〉

0

c9
〈(1, 2, 2, 0), p2 = 2〉

1

c10

〈(1, 0, 0, 2), p1 ≤ 2〉
1

c11
〈(1, 1, 1, 1),¬(p1 ≤ 2)〉

0

c12
〈(1, 2, 2, 0), AF¬(p1 ≤ 2)〉

0

c13

〈(1, 1, 1, 1), p1 ≤ 2〉
1

c14
〈(1, 2, 2, 0),¬(p1 ≤ 2)〉

0

c15

〈(1, 2, 2, 0), p1 ≤ 2〉
1

c16

∅

∅

∅

∅

(c) Extended Dependency Graph, M = (1, 0, 0, 2) and
ϕ = E(¬AF¬(p1 ≤ 2))U(p2 = 2).

Fig. 6: The EDG in (c) is constructed from the Petri net in (a) and the CTL
query in (b). Each configuration is superscripted with its minimum fixed-
point assignment, and subscripted with its identifier, e.g. the initial config-
uration is identified by c0. For readability, we abbreviate expressions like
token_count({p1}) ≤ 2 with p1 ≤ 2.

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

84

sumption that Amin(〈M,EFϕ1〉) = 1. The argument then follows by the
mathematical induction on the number of steps needed to reach such a
configuration.

– Let ϕ = AFϕ1, ϕ = Eϕ1Uϕ2, or ϕ = Aϕ1Uϕ2. These cases are analogous
to the EF case by following the same proof strategies.

– Let ϕ = ¬ϕ1. In the construction of the dependency graph, the only outgo-
ing edge from 〈M,¬ϕ1〉 is the negation edge to the configuration 〈M,ϕ1〉
where we by the mathematical induction hypothesis on the level of the con-
figuration 〈M,ϕ1〉 know that Amin(〈M,ϕ1〉) = 1 if and only if M |= ϕ1.
By the definition of Amin this implies that Amin(〈M,¬ϕ1〉) = 1 if and only
if M |= ¬ϕ1 as required.

Remark 2. The reader probably noticed that if the Petri net is unbounded (has
infinitely many reachable markings), we are actually producing an infinite EDG.
Indeed, CTL model checking for unbounded Petri nets is undecidable [34], so we
cannot hope for a general algorithmic solution. However, due to the employment
of our local algorithm with certain zero propagation, we are sometimes able to
obtain a conclusive answer by exploring only a finite part of the (on-the-fly)
constructed extended dependency graph.

3 Algorithms for Fixed-Point Computation on EDG

We shall now discuss the differences of our new distributed algorithm for fixed-
point computation of EDG compared to the previous approaches, followed by
the description of our algorithm.

Figure 7 shows the partial ordering of the assignment values used by the
algorithms. The orderings in the figure show how the configuration values are
upgraded during the execution of the algorithms. The global algorithm, de-
scribed in Section 2, only uses the assignment values 0 and 1 as shown in
Figure 7(a). Initially, the whole graph is constructed and all configurations are
assigned the value 0. Then it iterates, starting from the component C0, over
all hyper-edges and upgrades the source configuration values to 1 whenever all
target configurations are already assigned the value 1. This repeats until no
further upgrades are possible and then it uses the negation edges to propagate
the values to the higher components until the minimum fixed-point assignment
of a given configuration is set to 1 (in which case an early termination is possi-
ble) or until the whole process terminates and we can claim that the minimum
fixed-point assignment of the given configuration is 0.

The key insight for the local algorithm, as suggested by Liu and Smolka [6]
for dependency graphs without negation edges, is that if we are only interested
in AGmin(v) for a given configuration v, we do not have to necessarily enumerate
the whole graph and compute the value for all configurations in G in order to
establish that AGmin(v) = 1. The local algorithm introduces the value ⊥ for not
yet explored configurations as shown in Figure 7(b) and performs a forward
search in the dependency graph with backward propagation of the value 1.

85

1

0

(a)

1

0

⊥
(b)

10

?

⊥
(c)

a

b c

d

. . .
.

.

(d)

Fig. 7: Comparison of Different Algorithms for Fixed-Point Computation

This significantly improves the performance of the global algorithm in case the
configuration v gets the value 1. In the case where AGmin(v) = 0, the local
algorithm must search the whole graph before terminating and announcing the
final answer.

Our improvement to the local algorithm is twofold: the handling of negation
edges in an on-the-fly manner and the introduction of a new value ?, taking
over the previous role of 0, as shown in Figure 7(c). Here ⊥ means that a
configuration has not been discovered yet, ? that the final minimum fixed-point
assignment has not been determined yet, and 0 and 1 mean the final values in
the minimum fixed-point assignment. Hence as soon as the given configuration
gets the value 0 or 1, we can early terminate and announce the answer. The
previous approaches did not allow early termination for the value 0, but as
Figure 7(d) shows, it can save lots of work. Since d has no outgoing hyper-
edges, it can get assigned the value 0 (called certain zero) and because the
single target configuration of the hyper-edge (b, {d}) is 0, the value 0 can back-
propagate to b (we do this by removing hyper-edges that contain at least one
target configuration with the value 0 and once a configuration has no outgoing
hyper-edges, it will get assigned the certain zero value 0). Now the hyper-
edge (a, {b, c}) can also be removed and as a no longer has any hyper-edges,
we can conclude that AGmin(a) = 0 without having to explore the potentially
large subgraph rooted at c as it would be necessary in the previous algorithms.
We moreover have to deal with negation edges where we allow early back-
propagation of the certain 0 and certain 1 values, essentially performing an on-
the-fly search for the existence of Defender’s winning strategy. In what follows,
we shall present the formal details of our algorithm, including its distributed
implementation.

3.1 Distributed Algorithm for Minimum Fixed-Point Computation

We assume n workers running Algorithm 1 in parallel. Each worker has a unique
identifier i ∈ {1, ..., n} and can communicate with any other worker using order
preserving, reliable channels. If not stated otherwise, i refers to the identifier
of the local worker and j refers to an identifier of some remote worker.

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

86

Global Data Structures. Initially, each worker has access to the means of gener-
ating a given EDG G = (V,E,N) via the function succ, an initial configuration
v0 ∈ V , and a partition function δ : V → {1, . . . , n} that splits the configu-
rations among the workers. We say that worker i owns a configuration v if
δ(v) = i.

Local Data Structures. Each worker has the following local data structures:
– W i

E ⊆ E is the waiting list of hyper-edges,
– W i

N ⊆ N is the waiting list of negation edges,
– Di : V → P(E ∪N) is the dependency set for each configuration,
– succi : V → P(E ∪ N) is the local successor relation such that initially
succi(v) = succ(v) if δ(v) = i and otherwise succi(v) = ∅,

– Ai : V → {⊥, ?, 0, 1} is the assignment function (implemented via hashing),
initially returning ⊥ for all configurations,

– Ci : V → P({1, . . . , n}) is the set of interested workers who requested the
value of a given configuration,

– M i
R ⊆ V × {1, . . . , n} is the (unordered) message queue for requests (v, j),

where j is the identifier of the worker requesting the assigned value (i.e. 0
or 1) of a configuration v belonging to the partition of worker i, and

– M i
A ⊆ V × {0, 1} is the (unordered) message queue for answers (v, a),

where a is the assigned value of configuration v which has been previously
requested by worker i.

For syntactical convenience, we assume that we can add messages to M i
R and

M i
A directly from other workers.

Global waiting lists. When we need to reference the global state in the compu-
tation of the parallel algorithm, we can use the following abbreviations.
– The global waiting list of hyper-edges WE =

⋃n
i=1W

i
E .

– The global waiting list of negation edges WN =
⋃n
i=1W

i
N .

– The global request message queue MR =
⋃n
i=1M

i
R.

– The global answer message queue MA =
⋃n
i=1M

i
A.

Idle Worker. We say that a worker i is idle if it is executing the loop at
line 3 through 10 in Algorithm 1, but it is not currently executing any of the
processing functions on lines 6, 7, 8 or 9, and W i

E ∪M i
R ∪M i

A = ∅.

Pick Task. Algorithm 1 uses at line 5 the function Pick-
Task(W i

E ,W
i
N ,M

i
R,M

i
A) that nondeterministically returns:

– a hyper-edge from W i
E , or

– a message from M i
R or M i

A, or
– a negation edge (v, u) from W i

N provided that Ai(u) ∈ {0, 1,⊥}, or
– a negation edge (v, u) from W i

N if all workers are idle and v has a minimal
distance in all waiting lists and message queues (i.e. for all (v′, x) ∈ (WE ∪
WN ∪MA ∪MR) it holds that dist(v) ≤ dist(v′)).

87

Algorithm 1 Distributed Certain Zero Algorithm for a Worker i
Require: Worker id i, an EDG G = (V,E,N) and an initial configuration v0 ∈ V .
Ensure: The minimum fixed-point assignment AGmin(v0)
1: function DistributedCertainZero(G, v0)
2: if δ(v0) = i then Explore(v0) . Algorithm 2
3: repeat
4: if W i

E ∪W i
N ∪M i

R ∪M i
A 6= ∅ then

5: task ← PickTask(W i
E ,W

i
N ,M

i
R,M

i
A)

6: if task ∈W i
E then ProcessHyperEdge(task) . Algorithm 2

7: else if task ∈W i
N then ProcessNegationEdge(task) .

Algorithm 2
8: else if task ∈M i

R then ProcessRequest(task) . Algorithm 2
9: else if task ∈M i

A then ProcessAnswer(task) . Algorithm 2
10: until TerminationDetection
11: if Ai(v0) = ? ∨Ai(v0) = 0 then return 0
12: else return 1

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

88

Algorithm 2 Functions for Worker i Called from Algorithm 1
1: function ProcessHyperEdge(e = (v, T)) . e ∈ E
2: W i

E ←W i
E \ {e}

3: if ∀u ∈ T : Ai(u) = 1 then FinalAssign(v, 1) . Edge propagates 1
4: else if ∃u ∈ T where Ai(u) = 0 then DeleteEdge(e)
5: else if X ⊆ T s.t. X 6= ∅ and ∀u ∈ X : Ai(u) = ? ∨Ai(u) = ⊥ then
6: for u ∈ X do
7: Di(u)← Di(u) ∪ {e}
8: if Ai(u) = ⊥ then Explore(u)

1: function ProcessNegationEdge(e = (v, u)) . e ∈ N
2: W i

N ←W i
N \ {e}

3: if Ai(u) = ? ∨Ai(u) = 0 then FinalAssign(v, 1) . Assign negated value
4: else if Ai(u) = 1 then DeleteEdge(e)
5: else if Ai(u) =⊥ then
6: Di(u)← Di(u) ∪ {e}; W i

N ←W i
N ∪ {e}; Explore(u)

1: function ProcessRequest(m = (v, j)) . request from worker j
2: if Ai(v) = 1 ∨Ai(v) = 0 then . Value of v is already known
3: M j

A ←M j
A ∪ {(v,Ai(v))} ; M i

R ←M i
R \ {m}

4: else . Value of v is not computed yet
5: Ci(v)← Ci(v) ∪ {j} . Remember that worker j is interested in v
6: M i

R ←M i
R \ {m}

7: if Ai(v) = ⊥ then Explore(v)

1: function ProcessAnswer(m = (v, a)) . a ∈ {0, 1} and m ∈M i
A

2: M i
A ←M i

A \ {m}
3: FinalAssign(v, a) . Assign the received answer to v

1: function Explore(v) . v ∈ V
2: Ai(v)← ?
3: if δ(v) = i then . Does worker i own v?
4: if succi(v) = ∅ then FinalAssign(v, 0) . It is safe to propagate 0
5: W i

E ←W i
E ∪ (succi(v) ∩ E); W i

N ←W i
N ∪ (succi(v) ∩N)

6: else
7: M

δ(v)
R ←M

δ(v)
R ∪ {(v, i)} . If not, request the value from the owner of v

1: function DeleteEdge(e = (v, T) or e = (v, u)) . e ∈ (E ∪N)
2: succi(v)← succi(v) \ {e}
3: if succi(v) = ∅ then FinalAssign(v, 0) . It is safe to propagate 0
4: if e ∈ E then
5: W i

E ←W i
E \ {e}

6: for all u ∈ T do Di(u)← Di(u) \ {e}
7: if e ∈ N then
8: W i

N ←W i
N \ {e}; Di(u)← Di(u) \ {e}

1: function FinalAssign(v, a) . a ∈ {0, 1} and v ∈ V
2: if v = v0 then return a and terminate all workers; . Early termination
3: Ai(v)← a
4: for all j ∈ Ci(v) do M j

A ←M j
A ∪ {(v, a)} . Notify all interested workers

5: W i
E ←W i

E ∪ {Di(v) ∩ E}; W i
N ←W i

N ∪ {Di(v) ∩N}

89

If none of the above is satisfied, the worker waits until either a message is
received or a negation edge becomes safe to pick. Notice that in this case, W i

E

will remain empty until a message or negation edge is processed. Even though
PickTask depends on the global state of the computation to decide whether
a negation edge is safe to pick, the rest of the conditions can be determined
based on the data that is available locally to each worker. Therefore it is not
necessary to synchronise across all workers every time a task should be picked,
it is only required if the worker wants to pick a negation edge (v, u) where
Ai(u) =?.

Termination of the Algorithm. We utilize a standard TerminationDetec-
tion function computed distributively that returns true if and only if all mes-
sage queues are empty, all waiting lists are empty (i.e.WE∪WN∪MR∪MA = ∅)
and all workers are idle. Notice that once the initial configuration v0 is assigned
the final value 0 or 1, the algorithm can terminate early.

We shall now focus on the correctness of the algorithm. By a simple code
analysis, we can observe the following lemma.

Lemma 1. During the execution of Algorithm 1, the value of Ai(v) for any
worker i and any configuration v will never decrease (with respect to the order-
ing from Figure 7(c)).

Proof. First let us observe that the algorithm never assigns ⊥ to any configura-
tion, hence the only possible way to decrease the assignment value is to assign
? to a configuration which is already assigned 1 or 0. The only place where this
can happen is line 2 of the Explore function as the function FinalAssign
is always called with only 1 or 0 as an input parameter. However, thanks to
the conditions on line 8 of ProcessHyperEdge, line 5 of ProcessNega-
tionEdge and line 7 of ProcessRequest, the Explore function is only
called if the previous assignment value is ⊥. Hence we can never decrease the
assignment value of a configuration in any of the local assignments.

Based on this lemma we can now argue about the termination of the algo-
rithm.

Lemma 2. Algorithm 1 terminates.

Proof. To show that the algorithm terminates, we have to argue that eventually
all waiting lists become empty and all workers go to idle (unless early termina-
tion kicks in before this). By guaranteeing this, the TerminationDetection
condition will be satisfied and the algorithm terminates.

First, let us observe that if the waiting lists of a worker are empty, the worker
will eventually become idle. That is because none of the functions called from
the repeat-until loop contain any loops or recursive calls. Also note that in such
case, the worker will stay idle until a message is received. In each iteration,
an edge is inserted into a waiting list only if the assignment value of some
configuration increases. By Lemma 1, the assignment value can never decrease,

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

90

and since the assignment value can only increase finitely many times, eventually
no edges will be inserted into the waiting lists. The same argument applies to
request messages as a request can only be sent if an assignment value of a
configuration increases from ⊥ to ?. The only exception to the considerations
above are the answer messages. An answer message can be sent either as a
result of an assignment value increase (line 4 of the FinalAssign), which only
happens finitely many times. However, it can be also sent as a direct response to
a request message (line 3 of the ProcessRequest). As we have already shown,
each computation can produce only finitely many requests and since each such
request can produce at most one answer, the number of answer messages will
also be finite.

Finally, we note that as soon as all the messages and hyper-edges are pro-
cessed by all workers, at least one negation edge becomes safe to pick. Hence if
no new messages are sent or edges being inserted into the waiting lists, eventu-
ally a negation edge is picked (at most once). Therefore all waiting lists become
eventually empty and as a result all workers go idle, satisfying the Termina-
tionDetection condition.

The main correctness argument is contained in the following loop invariants.

Lemma 3 (Loop Invariants). For any worker i, the repeat-until loop in Al-
gorithm 1 satisfies the following invariants.

1. For all v ∈ V , if Ai(v) = 1 then AGmin(v) = 1.
2. For all v ∈ V , if Ai(v) = 0 then AGmin(v) = 0.
3. For all v ∈ V , if Ai(v) = ? and i = δ(v) then for all e ∈ succi(v) it holds

that e ∈W i
E ∪W i

N or e ∈ Di(u) for some u ∈ V where Ai(u) = ?.
4. For all v ∈ V , if Ai(v) = ? and i 6= δ(v) then one of the following must

hold:
– (v, i) ∈Mδ(v)

R ,
– i ∈ Cδ(v)(v) and Aδ(v)(v) = ?, or
– (v, a) ∈M i

A and Aδ(v)(v) = a for some a ∈ {0, 1}.
5. If there is a negation edge e = (v, u) ∈ W i

N s.t. Ai(u) = ? and all workers
are idle and v is minimal in all waiting lists and message queues (i.e. for
all (v′, x) ∈ (WE ∪WN ∪MA ∪MR) it holds that dist(v) ≤ dist(v′)), then
AGmin(u) = 0.

Proof. First we prove Invariants 1 and 2. The only place where the algorithm
assigns value 1 or 0 to a configuration is in FinalAssign. Therefore we need
to analyse the conditions under which FinalAssign is called. FinalAssign
with value 1 or 0 can be called under these circumstances:
– Line 3 of ProcessHyperEdge or line 3 of ProcessNegationEdge

where the target is assigned 0. If all targets of a hyper-edge are assigned 1 or
the target of a negation edge is assigned 0, it is by the invariant assumption
safe to assign 1 also to the source configuration.

91

– Line 3 of ProcessNegationEdge where the target is assigned ? or 0.
The case where the target is 0 is clear thanks to Invariant 2. If the target is
assigned ?, this can only happen if the edge was picked based on the fourth
condition of PickTask. Therefore the conditions of Invariant 5 apply and
it is safe to assign 1 to the source configuration.

– Line 3 of ProcessAnswer. An answer message (a, i) is only sent if
Aδ(v)(v) = a and this value is the minimum fixed-point value by Invari-
ants 1 and 2. Therefore it is also safe to assign the same value to Ai(v) in
worker i.

– Line 4 of Explore or line 3 of DeleteEdge. If a configuration has no
remaining successors that can propagate the value 1, then it is safe to assign
0 to it.

Hence we proved the validity of Invariants 1 and 2.
We shall now focus on Invariant 3. When the value of the assignment is

increased from ⊥ to ? (line 2 of Explore) for a configuration v owned by
worker i, all successor edges are pushed into the waiting lists, thus preserving
the invariant. By exploring the functions ProcessHyperEdge and Process-
NegationEdge, we observe the following fact. When an edge is picked from
the waiting list, one of the following occurs: the source v is assigned a final
value, the edge is deleted, or the edge is inserted into the dependency set of
some target configuration that is assigned ?. If the target is assigned ⊥, we
call the Explore function that is going to increase it to ?. Finally, when a
configuration is assigned 0 or 1, the dependency set is pushed into the waiting
lists, therefore the invariant is still preserved.

Let us now discuss Invariant 4. When the value of the assignment is in-
creased from ⊥ to ? for a configuration v not owned by worker i, the worker
sends a request message to the owner (line 7 of Explore), thus the invariant
is preserved. As soon as the owner of the configuration receives a request, one
of two things happen. If the value of the configuration is already 0 or 1 then
the owner sends an answer message to worker i (line 3 of ProcessRequest).
Alternatively, if the value of the configuration is ⊥ or ? then i is inserted into
the interested set (line 5 of ProcessRequest) and the value of the configura-
tion is increased from ⊥ to ? if necessary. Afterwards, when a configuration is
assigned 0 or 1, all workers in the interested set are notified via an answer mes-
sage (line 4 of FinalAssign). Finally, when the answer message is processed
by worker i, the configuration is assigned 0 or 1, and the invariant trivially
holds too.

We finish by proving Invariant 5. When the conditions of the invariant are
satisfied, there are no tasks in any of the waiting and message lists (on any of
the workers) that concern the component where the target of the negation edge
is located. Since all workers are currently idle, it is also guaranteed that no such
task is currently being processed (the opposite would mean that the assignment
values in the component can still change as a result of the processing). Therefore
it is safe to assume that AGmin(u) = 0 as the value of u can never increase to 1,
and the invariant holds.

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

92

Now we can state two technical lemmas.

Lemma 4. Upon termination of Algorithm 1 at line 11 or line 12, for every
negation edge e = (v, u) ∈ N it holds that either Aδ(v)(v) ∈ {1,⊥} or the
negation edge is deleted from succδ(v).

Proof. First, observe that if a negation edge is processed more than once for
worker δ(v), it is either deleted or the source configuration is assigned 1. Hence
the target configuration is guaranteed not to be ⊥. When a negation edge is
processed, one of the following will happen:
– the edge is deleted,
– the source configuration is assigned 1, or
– the value of the target configuration is ⊥. In this case, the edge is re-inserted

into the waiting list and will be processed at least twice.
If a negation edge is processed at least once, the condition is satisfied. Observe
that if the edge is picked for the first time, and the value of the target con-
figuration is ?, then by Invariant 5, the source configuration can be assigned
1.

Lemma 5. Upon termination of Algorithm 1 at line 11 or line 12, for every
i ∈ {1, ..., n} and for every v ∈ V it holds that either Ai(v) = ⊥ or Ai(v) =
Aδ(v)(v).

Proof. Consider a worker i and a configuration v. If δ(v) = i, the condition
holds trivially. If δ(v) 6= i and Ai(v) = ?, then by Lemma 3 Condition 4
also Aδ(v)(v) = ? (since no messages are in transit, because the algorithm has
terminated).

If δ(v) 6= i and Ai(v) = a ∈ {0, 1}, it means that worker i at some point
received an answer message (v, a). That is because the only place where Fi-
nalAssign is called with a configuration that the worker does not own is in
ProcessAnswer (and a worker never sends messages to itself). Also, an an-
swer message (v, a) is only sent if the worker who owns v has already assigned
it a final value a. Therefore if a worker receives an answer message (v, a) then
it is guaranteed that Aδ(v)(v) = a.

We finish this section with the correctness theorem.

Theorem 3. Algorithm 1 terminates and upon termination it holds, for all i,
1 ≤ i ≤ n, that
– if Ai(v0) = 1 then AGmin(v0) = 1 and
– if Ai(v0) ∈ {?, 0} then AGmin(v0) = 0.

Proof. By Lemma 2 we know that Algorithm 1 terminates. For a fixed worker
i, by Lemma 3, it certainly holds that if Ai(v) = 1 or Ai(v) = 0 then AGmin(v) =
Ai(v). To show that if Ai(v) = ? then AGmin(v) = 0, we first construct a global
assignment B such that

B(v) =

{
0 if there is i ∈ {1, . . . , n} such that Ai(v) = ? or Ai(v) = 0

1 otherwise.
(2)

93

Next we show that B is a fixed-point assignment of G. For a contradiction, let
us assume B is not a fixed-point assignment. This can happen in two cases:
– There is a hyper-edge e = (v, T) such that B(v) = 0 and B(u) = 1 for all
u ∈ T . If Ai(v) = 0 for some i, it is a direct contradiction with Lemma 3
Condition 2. Otherwise for some i it must hold that Ai(v) = ?. By Lemma 5,
we get that Ai(v) = Aδ(v)(v) = ?. Therefore according to Lemma 3 Condi-
tion 3, there exists a configuration u such that Aδ(v)(u) = ? and e is in the
dependency set of u. However, Aδ(v)(u) = ? implies that there exists u ∈ T
such that B(u) = 0.

– There is a negation edge e = (v, u) such that B(v) = 0, and AGmin(u) = 0
and e is not deleted. If Ai(v) = 0 for some i, it is again a contradiction with
Lemma 3 Condition 2. Otherwise for some i it must hold that Ai(v) = ?.
Then by Lemma 5 we get that Ai(v) = Aδ(v)(v) = ?, which is a contradic-
tion with Lemma 4.

Because B is a fixed-point assignment and AGmin is the minimum fixed-point
assignment, we get AGmin v B. Therefore if Ai(v) = ? then by the definition of B
we have that B(v) = 0 and by AGmin(v) ≤ B(v) this implies that AGmin(v) = 0.

As a direct consequence of Theorem 3 we get the following corollary.

Corollary 1. Algorithm 1 terminates and returns AGmin(v0).

4 Implementation and Experiments

The single-core local algorithm (local) and its extension with certain zero propa-
gation (czero), together with the distributed versions of czero with non-shared
memory and using MPI running on 4 cores (dist-4), 16 cores (dist-16) and
32 cores (dist-32) have been implemented in an open-source framework writ-
ten in C++. The implementation is available at http://code.launchpad.net/
~tapaal-dist-ctl/verifypn/paper-dist and contains also all experimen-
tal data. The engine is now fully integrated in the latest release of the tool
TAPAAL (http:www.tapaal.net), including a GUI support for creating CTL
queries.

The general tool architecture is shown in Fig. 8. It was instantiated for CTL
model checking of Petri nets by providing C++ code for the initial configura-
tion of the EDG and the successor generator (that for a given configuration
outputs all outgoing hyper-edges and negation edges). Optionally, one can also
customize the search strategy and communication among workers, or choose
from the predefined ones. In our experiments, we use DFS strategy for both
the forward and backward propagation (note that even if each worker in the
distributed version runs DFS strategy, depending on the actual order of the re-
quest arrivals, this may result in pseudo DFS strategies). The framework also
includes a console implementation of the game—the integration into the GUI
of the tool TAPAAL is currently under development.

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

94

U
s
e
r
D
e
f
i
n
e
d

E
x
te
n
d
e
d
D
e
p
e
n
d
e
n
c
y
G
ra

p
h

-
su
cc
es
so
r

-
in
it
ia
lC
on
f
ig
u
ra
ti
on

S
e
a
rc
h
S
tr
a
te
g
y

-
em

p
ty

-
p
u
sh
E
d
g
e

-
p
u
sh
D
ep
en
d
en
cy

-
p
ic
k
T
a
sk

C
o
m
m
u
n
ic
a
to

r
-
ra
n
k

-
si
z
e

-
se
n
d
M
es
sa
g
e

-
se
n
d
T
ok
en

-
re
cM

es
sa
g
e

-
re
cT
ok
en

-
co
m
p
u
te
M
a
x

S
e
ri
a
li
z
e
r

-
se
ri
a
li
z
e

-
d
es
er
ia
li
z
e

P
a
rt
it
io
n
F
u
n
c
ti
o
n

-
ow
n
er
I
d

I
n
t
e
r
f
a
c
e

E
xt
en

d
ed

D
ep
en

-
d
en

cy
G
ra
p
h

U
se
r

S
ea
rc
h
S
tr
a
te
gy

D
F
S

B
F
S

U
se
r

C
o
m
m
u
n
ic
a
to
r

M
P
I
C
om

m
u
n
ic
at
or

U
se
r

S
er
ia
li
ze
r

U
se
r

P
a
rt
it
io
n
F
u
n
ct
io
n

U
se
r

E
n
g
i
n
e

S
eq
u
en

ti
a
l
A
lg
o
ri
th
m

C
Z
er
o

L
o
ca
l

P
a
ra
ll
el

A
lg
o
ri
th
m

D
is
t

D
is
tH

a
lt

G
a
m
e

D
ec
o
ra
te
d
E
xt
en

d
ed

D
ep
en

d
en

cy
G
ra
p
h

U
s
e
r
I
n
t
e
r
a
c
t
i
o
n

P
la
ye
r

C
on

so
le

C
o
m
p
u
te
r

G
a
m
e
p
ro

to
c
o
l

-
p
la
y
g
a
m
e

-
p
ri
n
t
g
a
m
e
su
m
m
a
ry

-
m
in
im
u
m
f
ix
ed

p
oi
n
t
of

v 0
-
E
D
G
st
a
ti
st
ic
s

-
v
er
if
ic
a
ti
on

ti
m
e

Fig. 8: Tool framework architecture

95

Algorithm Answers Answers (improved)
Liu and Smolka Local, 1 core (local) 475 555
Certain Zero Local, 1 core (czero) 565 652

Distributed Certain Zero Local, 4 cores (dist-4) 619 674
Distributed Certain Zero Local, 16 cores (dist-16) 654 703
Distributed Certain Zero Local, 32 cores (dist-32) 670 706

Table 4: Answered queries within 1 hour (out of 784 executions)

To compare the algorithms, we ran experiments on CTL queries interpreted
on the Petri nets from MCC’16 [18] on machines with four AMD Opteron
6376 processors, each processor having 16 cores. A 15 GB memory limit per
core was enforced for all verification runs. We considered all 322 known Petri
net models from the competition, each of them coming with 16 different CTL
cardinality queries. As many of these models are either trivial to solve or none
of the algorithms are able to provide any answer, we first selected an interesting
subset of the models where the slowest algorithm used at least 30 seconds on
one of the first three queries and at the same time the fastest algorithm solved
all three queries within 30 minutes. This left us with 49 models on which we
run all 16 CTL queries (in total 784 executions) with the time limit of 1 hour.

Table 4 shows in the row marked as Answers how many queries were an-
swered by the algorithms and documents that our certain zero algorithm solved
90 more queries than the one by Liu and Smolka. Running the distributed algo-
rithm on 4 cores further solved 54 more queries and the utilization of 32 cores
allowed us to solve additional 51 queries. This is despite the fact that we are
solving a P-hard problem [15] and such problems are in general believed not to
have efficient parallel algorithms.

In Table 5 we zoom in on a few selected models that demonstrate different
aspects of the distribution. We report the running times (rounded up to the
nearest higher second) for all 16 queries of each model. A dash means run-
ning out of resources (time or memory). We can observe a significant positive
effect of the certain zero propagation on several queries like A.6, B.7, C.8,
D.8 and E.16 and in general a satisfactory performance of this technique. The
clear trend with multi-core algorithms is that there is usually a considerable
speedup when moving from 1 to 4 cores and a generally nice scaling when we
employ all 32 cores. Here we can often notice reasonable speedups compared to
1 core certain zero algorithm (A.9, B.1, B.2, B.3, B.12, C.9), sometimes even
superlinear speedups like in D.5. On the other hand, occasionally using more
cores can actually slowdown the computation like in B.9, E.5 or even E.12
where the distributed algorithms did not find the answer at all. These sporadic
anomalies can be explained by the pseudo DFS strategy of the distributed al-
gorithm, which means that the answer is either discovered immediately like in
D.5 or the workers explore significantly more configurations in a portion of the
dependency graph where the answer cannot be concluded from. Nevertheless,

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

96

Query Number
Alg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

local 160 447 – 158 234 250 199 1 228 343 229 241 233 1 223 1
czero 157 453 226 154 229 1 1 1 221 100 227 238 232 1 226 1
dist-4 82 224 129 86 158 1 1 1 85 1 116 154 133 1 137 1
dist-16 35 95 1 32 78 1 1 1 24 1 50 59 70 1 45 1
dist-32 21 67 1 20 45 1 1 1 11 1 33 36 46 1 33 1

B

local 465 444 453 16 1 1 401 1 1030 1 877 490 3 458 459 1
czero 452 468 464 16 1 1 1 1 522 1 1 477 3 1 2 1
dist-4 119 118 125 6 1 1 1 1 180 1 1 144 3 1 1 1
dist-16 40 38 40 2 1 1 1 1 290 1 1 45 1 1 1 1
dist-32 23 22 23 1 1 1 1 1 1270 1 1 28 1 1 1 1

C

local 343 1 183 85 1 1 4 180 – 1 25 1 165 1 173 172
czero 175 1 172 70 1 1 3 1 333 1 23 1 178 1 1 1
dist-4 60 1 63 42 3 1 2 1 87 1 12 1 58 1 1 1
dist-16 22 2 21 18 5 2 1 1 33 1 20 1 20 1 1 1
dist-32 20 2 15 18 2 3 1 1 21 1 11 1 13 1 1 1

D

local 263 446 243 236 219 23 204 356 235 164 1 231 279 1 1 13
czero 1 187 6 228 215 21 188 1 220 1 1 229 257 1 1 11
dist-4 1 130 6 130 1 12 103 1 122 1 1 124 189 1 1 7
dist-16 1 61 3 53 1 5 41 1 46 1 1 75 79 1 1 3
dist-32 1 45 2 35 1 3 27 1 38 1 1 41 61 1 1 2

E

local 95 137 140 136 139 135 130 139 139 144 148 1 1 138 132 134
czero 96 143 134 134 137 143 129 134 139 146 141 1 1 137 138 1
dist-4 33 53 58 53 147 52 50 57 59 65 79 – 1 52 61 1
dist-16 15 24 23 21 407 25 28 22 26 27 27 – 1 20 21 11
dist-32 30 14 15 14 1225 15 20 16 17 18 19 – 1 16 16 9

Table 5: Verification time in seconds for selected models A: BridgeAndVehicles-
PT-V20P20N10, B: Peterson-PT-3, C: ParamProductionCell-PT-4, D:
BridgeAndVehicles-PT-V20P10N10, and E: SharedMemory-PT-000010.

these unexpected results are rather rare and the general performance of the
distributed algorithms, summarized in Table 4, is compelling.

Based on our experience in MCC’16 and MCC’17, we decided to reimple-
ment our distributed engine in order to speed up its performance. This resulted
in an improved verification engine with the following main new features.
– We perform some basic query rewriting optimizations (while preserving

logical equivalence) so that negations are pushed as far as possible down in
the parse tree. This reduces the number of negation edges in the case when
some negations can be pushed all the way down to the atomic propositions.

– We implemented a more efficient memory representation of the queries and
added query compilation that compiles atomic expressions into a byte-code
format that is then evaluated by a our new virtual machine for the atomic
expressions.

– We use our newly developed data structure PTrie [35] for fast and memory
efficient storing of the state space.

– We switched from using MPI to our custom-made, light-weight implemen-
tation (still relying on message-passing) and optimize the message-passing
to avoid sending duplicate messages.

– We employ a new partitioning algorithm for distributing the work among
n workers where we perform hashing on 2n + 2 places that are uniformly
picked from a given marking.

– We optimize the way to handle negation edges in the situations where the
values can be propagated locally without the need to synchronize with other

97

workers and we try to delay synchronization among workers via sending
tokens as much as possible as this is an expensive operation.

As a result, the engine performance substantially improved already for the
single-core cases, as demonstrated in the column Anwers (improved) in Ta-
ble 4, where both the local algorithm as well as our certain zero algorithm
solve significantly more queries. In fact, our improved single-core performance
for the certain zero now almost matches the number of answers that were pre-
viously achieved with 16 cores. On the other hand, the improved sequential
engine became so efficient that it now also solves some of the instances that the
improved distributed versions are not able to solve (due to the different search
strategy and message-passing communication overhead). In other words, the
anomalies mentioned earlier became more frequent but at the same time there
were several models where the distribution of work made substantial (even
super-linear) improvements. Hence we decided to utilize the cores in the re-
sults reported in Table 4 for the improved implementation in such a way that
e.g. for the 16 cores algorithm, we run in parallel the 1 core algorithm, 2 core
algorithm, 4 core algorithm and 8 core algorithm (utilizing only 15 cores in
fact) and terminate as soon as the first algorithm provides the answer. The
advantage of using more cores is then clear from the table, even though the
absolute numbers are smaller than previously. This is likely the indication of
the fact that the remaining queries in the database of the selected models are so
difficult that one cannot expect to achieve more answers only by the exploration
of the state space.

Finally, we also compare the performance of our verification engine with
LoLa, the winner in the CTL category both at MCC’16 [18] and MCC’17 [22].
We run LoLa on all 784 executions (as summarized for our engines in Table 4)
with the same 1 hour timeout and 15 GB memory limit. LoLa provided a con-
clusive answer in 673 cases and given that it is a sequential tool, it won in the
comparison with our sequential czero implementation that solved 565 queries
(resp. 652 in the improved version). The reason is that about one third of all
the 784 queries are actually equivalent to either true or false and hence they
can be answered without any state space exploration by a query rewriting tech-
nique implemented in LoLa [19]. This query simplification technique in LoLa
cannot be turned off, so in order to compete with the tool, we implemented a
similar query reduction algorithm on top of our improved engine. We are now
able to answer 721 queries with our certain zero sequential engine, which is
considerably more than 673 answers of LoLa. We have to remark though that
LoLa developers recently added a new stubborn set reduction for CTL model
checking. This engine competed against our sequential engine in MCC’17 [22].
Over all queries in the CTL category (disregarding the colored net instances
that TAPAAL does not support), we solved 17036 queries compared to 17396
queries solved by LoLa. Our MCC’17 competition engine did not yet include
the byte-code interpretation of atomic expressions and some other minor im-
provements. Hence the performance of our current sequential algorithm is now
essentially comparable with LoLa. The main advantage of our approach is that

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

98

we also provide a distributed implementation that already with 4 cores out-
performs our single-core implementation, so we hope to challenge LoLa’s first
place in the next year competition (where each tool is allowed to use 4 cores).

5 Conclusion

We extended the formalism of dependency graphs by Liu and Smolka [6] with
the notion of negation edges in order to capture nested minimum fixed-point
assignments within the same graph. On the extended dependency graphs, we
designed an efficient local algorithm that allows us to back-propagate also cer-
tain zero values—both along the normal hyper-edges as well as the negation
edges and hence considerably speed up the computation. To further increase
the performance and applicability of our approach, we suggested to distribute
the local algorithm, proved the correctness of the pseudo-code and provided
an efficient, open-source implementation. Now the user can take a verification
problem, reduce it to an extended dependency graph and get an efficient dis-
tributed verification engine for free. This is a significant advantage compared
to a number of other tools that design a specific distributed algorithm for a
fixed modeling language and a fixed property language.

We demonstrated the general applicability of our tool on an example of CTL
model checking of Petri nets and evaluated the performance on the benchmark
of models from the Model Checking Contest 2016. The results confirm signif-
icant improvements over the local algorithm by Liu and Smolka achieved by
the certain zero propagation and the distribution of the work among several
workers. Already the performance of our sequential algorithm with certain zero
propagation is comparable with the world leading tool LoLa for CTL model
checking of Petri nets. While LoLa implements only a sequential algorithm, we
also provide a generic and efficient distribution of the work among a scalable
number of workers.

It was observed that for certain models, the search with a large number
of workers can be occasionally directed into a portion of the graph where no
conclusive answer can be drawn, implying that sometimes just a few workers
find the answer faster. With our recent optimized implementation of the single-
core algorithm, this issue becomes even more visible on certain models. We can
overcome this drawback by a pragmatic decision to run in parallel the single-
core algorithm together with the distributed algorithm in order to get the
benefits of both, given that we are allowed to use a multicore architecture.

Acknowledgments. We would like to thank to Frederik Boenneland, Jakob
Dyhr, Mads Johannsen and Torsten Liebke for their help with running LoLa
experiments. The work was funded by Sino-Danish Basic Research Center
IDEA4CPS, Innovation Fund Denmark center DiCyPS and ERC Advanced
Grant LASSO. The last author is partially affiliated with FI MU in Brno.

99

References

1. A.E. Dalsgaard, S. Enevoldsen, P. Fogh, L.S. Jensen, T.S. Jepsen, I. Kaufmann,
K.G. Larsen, S.M. Nielsen, M.Chr. Olesen, S. Pastva, and J. Srba. Extended
dependency graphs and efficient distributed fixed-point computation. In Pro-
ceedings of the 38th International Conference on Application and Theory of Petri
Nets and Concurrency (Petri Nets’17), volume 10258 of LNCS, pages 139–158.
Springer-Verlag, 2017.

2. Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking:
algorithmic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

3. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Informatics: 10 Years Back, 10 Years Ahead, volume 2000 of LNCS, chapter
Progress on the State Explosion Problem in Model Checking, pages 176–194.
Springer, Berlin, Heidelberg, 2001.

4. Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and
Tom van Dijk. Ltsmin: High-performance language-independent model checking.
In TACAS 2015, volume 9035 of LNCS, pages 692–707. Springer, 2015.

5. Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Milan Lenčo,
Petr Ročkai, Vladimír Štill, and Jiří Weiser. DiVinE 3.0 – An Explicit-State
Model Checker for Multithreaded C & C++ Programs. In Computer Aided Ver-
ification (CAV 2013), volume 8044 of LNCS, pages 863–868. Springer, 2013.

6. Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed
points. In ICALP’98, volume 1443 of LNCS, pages 53–66. Springer, 1998.

7. J.F. Jensen, K.G. Larsen, J. Srba, and L.K. Oestergaard. Efficient model checking
of weighted CTL with upper-bound constraints. STTT, 18(4):409–426, 2016.

8. Jeroen Johan Anna Keiren. Advanced Reduction Techniques for Model Checking.
PhD thesis, Eindhoven University of Technology, 2013.

9. Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, Julian Trier Ringsmose,
Kim Guldstrand Larsen, and Radu Mardare. Parametric Verification of Weighted
Systems. In Étienne André and Goran Frehse, editors, SynCoP’15, volume 44
of OASIcs, pages 77–90, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

10. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52–71, London, UK, 1982. Springer.

11. Dexter Kozen. Results on the propositional µ-calculus. In ICALP 9, volume 140
of LNCS, pages 348–359, Berlin, Heidelberg, 1982. Springer.

12. A.E. Dalsgaard, S. Enevoldsen, K.G. Larsen, and J. Srba. Distributed computa-
tion of fixed points on dependency graphs. In SETTA’16, volume 9984 of LNCS,
pages 197–212. Springer, 2016.

13. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR
05, volume 3653 of LNCS, pages 66–80. Springer, 2005.

14. Misa Keinänen. Techniques for solving boolean equation systems. Research Re-
port A105, Helsinki University of Technology, Laboratory for Theoretical Com-
puter Science, Espoo, Finland, November 2006. Doctoral dissertation.

15. Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. Limits to parallel
computation: P-completeness theory, volume 200. Oxford University Press, Inc.,
New York, NY, USA, 1995.

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

100

16. A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and J. Srba.
Tapaal 2.0: Integrated development environment for timed-arc petri nets. In
TACAS’12, volume 7214 of LNCS, pages 492–497. Springer, 2012.

17. J.F. Jensen, T. Nielsen, L.K. Oestergaard, and J. Srba. Tapaal and reachability
analysis of p/t nets. LNCS Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC), 9930:307–318, 2016.

18. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, G. Chiardo, A. Hamez,
L. Jezequel, A. Miner, J. Meijer, E. Paviot-Adet, D. Racordon, C. Rodriguez,
C. Rohr, J. Srba, Y. Thierry-Mieg, G. Tri.nh, and K. Wolf. Complete Results for
the 2016 Edition of the Model Checking Contest, June 2016.

19. Karsten Wolf. Running LoLA 2.0 in a Model Checking Competition, volume 9930
of LNCS, pages 274–285. Springer, 2016.

20. Lubos Brim, Jitka Crhova, and Karen Yorav. Using assumptions to distribute
CTL model checking. ENTCS, 68(4):559–574, 2002.

21. Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. Distributed
ctl model checking in the cloud. arXiv preprint arXiv:1310.6670, 2013.

22. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, B. Berthomieu, G. Cia-
rdo, M. Colange, S. Dal Zilio, E. Amparore, M. Beccuti, T. Liebke, J. Mei-
jer, A. Miner, C. Rohr, J. Srba, Y. Thierry-Mieg, J. van de Pol, and
K. Wolf. Complete Results for the 2017 Edition of the Model Checking Con-
test. http://mcc.lip6.fr/2017/results.php, June 2017.

23. Monika Heiner, Christian Rohr, and Martin Schwarick. Marcie–model checking
and reachability analysis done efficiently. In PN’13, volume 7927 of LNCS, pages
389–399. Springer, 2013.

24. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti,
A. Hamez, E. Lopez-Bobeda, L. Jezequel, J. Meijer, E. Paviot-Adet, C. Rodriguez,
C. Rohr, J. Srba, Y. Thierry-Mieg, and K. Wolf. Complete Results for the 2015
Edition of the Model Checking Contest, 2015.

25. Yann Thierry-Mieg. Symbolic model-checking using its-tools. In Proceedings of
TACAS’15, volume 9035 of LNCS, pages 231–237. Springer, 2015.

26. Benedikt Bollig, Martin Leucker, and Michael Weber. SPIN’02, volume 2318
of LNCS, chapter Local Parallel Model Checking for the Alternation-Free µ-
Calculus, pages 128–147. Springer, 2002.

27. Orna Grumberg, Tamir Heyman, and Assaf Schuster. Distributed symbolic model
checking for µ-calculus. Formal Methods in System Design, 26(2):197–219, 2005.

28. Christophe Joubert and Radu Mateescu. Distributed on-the-fly model checking
and test case generation. In SPIN’06, volume 3925 of LNCS, pages 126–145.
Springer, 2006.

29. Li Tan and Rance Cleaveland. Evidence-based model checking. In International
Conference on Computer Aided Verification (CAV’02), volume 2404 of LNCS,
pages 455–470. Springer, 2002.

30. T. Gibson-Robinson, Ph. Armstrong, A. Boulgakov, and A.W. Roscoe. FDR3—A
modern refinement checker for CSP. In TACAS’14, volume 8413 of LNCS, pages
187–201. Springer, 2014.

31. H. Garavel, F. Lang, R. Mateescu, and W.Serwe. CADP 2011: A toolbox for the
construction and analysis of distributed processes. STTT, 15(2):89–107, 2013.

32. Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

33. J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communicating Sys-
tems. The MIT Press, 2014.

101

34. Javier Esparza. Decidability of model checking for infinite-state concurrent sys-
tems. Acta Informatica, 34(2):85–107, 1997.

35. P.G. Jensen, K.G. Larsen, and J. Srba. PTrie: Data structure for compressing and
storing sets via prefix sharing. In Proceedings of the 14th International Colloquium
on Theoretical Aspects of Computing (ICTAC’17), volume 10580 of LNCS, pages
248–265. Springer, 2017.

Paper B. A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
Algorithm

102

Paper C

Extended Abstract Dependency Graphs

103

Paper C. Extended Abstract Dependency Graphs

104

Extended Abstract Dependency Graphs

Søren Enevoldsen, Kim Guldstrand Larsen, and Jiří Srba

Department of Computer Science
Aalborg University

Selma Lagerlofs Vej 300, 9220 Aalborg East, Denmark

Abstract. Dependency graphs, invented by Liu and Smolka in 1998,
are oriented graphs with hyperedges that represent dependencies among
the values of the vertices. Numerous model checking problems are re-
ducible to a computation of the minimum fixed-point vertex assign-
ment. Recent works successfully extended the assignments in depen-
dency graphs from the Boolean domain into more general domains in
order to speed up the fixed-point computation or to apply the formalism
to a more general setting of e.g. weighted logics. All these extensions
require separate correctness proofs of the fixed-point algorithm as well
as a one-purpose implementation. We suggest the notion of extended
abstract dependency graphs where the vertex assignment is defined over
an abstract algebraic structure of Noetherian partial orders with the
least element, and where we allow both monotonic and nonmonotonic
functions. We show that existing approaches are concrete instances of
our general framework and provide an open-source C++ library that
implements the abstract algorithm. We demonstrate that the perfor-
mance of our generic implementation is comparable to, and sometimes
even outperforms, dedicated special-purpose algorithms presented in
the literature.

1 Introduction

Dependency Graphs (DG) [21] have demonstrated a wide applicability with re-
spect to verification and synthesis of reactive systems, e.g. checking behavioural
equivalences between systems [7], model checking systems with respect to tem-
poral logical properties [12,15,4], as well as synthesizing missing components of
systems [19]. The DG approach offers a general and often performance-optimal
way to solve these problems. Most recently, the DG approach to CTL model
checking of Petri nets [6], implemented in the model checker TAPAAL [8], won
the gold medal at the annual Model Checking Contests 2018 and 2019 [17,16].

A DG consists of a finite set of vertices and a finite set of hyperedges that
connect a vertex to a number of child vertices. The computation problem is to
find a point-wise minimal assignment of Boolean values 0 and 1 to the vertices
such that the assignment is stable: whenever there is a hyperedge where all
children have the value 1 then also the parent of the hyperedge has the value
1. The main contribution of Liu and Smolka [21] is a linear-time, on-the-fly
algorithm to find such a minimum stable assignment.

105

Recent works (for a survey consult [10]) successfully extend the DG ap-
proach from the Boolean domain to more general domains, including synthesis
for timed systems [3], model checking for weighted systems [12] as well as prob-
abilistic systems [23]. However, each of these extensions have required separate
correctness arguments as well as ad-hoc specialized implementations that are
to a large extent similar to other implementations of dependency graphs (as
they are all based on the general principle of computing fixed points by local
exploration). The contribution of our paper is a notion of Abstract Dependency
Graph (ADG) where the values of vertices come from an abstract domain given
as an Noetherian partial order (with least element). As we demonstrate, this
notion of ADG covers many existing extensions of DG as concrete instances.
We also suggest an extension of ADG, called extended ADG, that permits non-
monotonic functions. Finally, we implement our abstract algorithms in C++
and make them available as an open-source library. We run a number of exper-
iments to justify that our generic approach does not sacrifice any significant
performance and sometimes even outperforms existing implementations.

Related Work. The aim of Liu and Smolka [21] was to find a unifying formalism
allowing for a local (on-the-fly) fixed-point algorithm running in linear time.
In our work, we generalize their formalism from the simple Boolean domain
to general Noetherian partial orders over potentially infinite domains. This
requires a non-trivial extension to their algorithm and the insight of how to
(in the general setting) optimize the performance, as well as new proofs of the
more general loop invariants and correctness arguments.

Recent extensions of the DG framework with certain-zero [6], integer [12]
and even probabilistic [23] domains generalized Liu and Smolka’s approach and
become concrete instances of our abstract dependency graphs. The formalism
of Boolean Equation Systems (BES) provides a similar and independently de-
veloped framework [18,1,22,24] pre-dating that of DG. However, BES may be
encoded as DG [21] and hence they also become an instance of our abstract
dependency graphs.

This journal article is an extension of our conference paper [9] with full
proofs and it further broadens the framework with nonmonotonic functions,
allowing us to include a new set of experiments for CTL model checking (with
CTL formulae that contain negation).

2 Preliminaries

A set D together with a binary relation v⊆ D×D that is reflexive (x v x for
any x ∈ D), transitive (for any x, y, z ∈ D, if x v y and y v x then also x v z)
and anti-symmetric (for any x, y ∈ D, if x v y and y v x then x = y) is called a
partial order and denoted as a pair (D,v). We write x @ y if x v y and x 6= y.
A function f : D → D′ from a partial order (D,v) to a partial order (D′,v′)
is monotonic if whenever x v y for x, y ∈ D then also f(x) v′ f(y). We shall
now define a particular partial order that will be used throughout this paper.

Paper C. Extended Abstract Dependency Graphs

106

Definition 1 (NOR). Noetherian Ordering Relation with least element
(NOR) is a triple D = (D,v,⊥) where (D,v) is a partial order, ⊥ ∈ D
is its least element such that for all d ∈ D we have ⊥ v d, and v satisfies the
ascending chain condition: for any infinite chain d1 v d2 v d3 v . . . there is an
integer k such that dk = dk+j for all j > 0.

We can notice that any finite partial order with a least element is a NOR;
however, there are also such relations with infinitely many elements in the
domain as shown by the following example.

Example 1. Consider the partial order D = (N0 ∪ {∞},≥,∞) over the set of
natural numbers extended with ∞ and the natural larger-than-or-equal com-
parison on integers. As the relation is reversed, this implies that ∞ is the least
element of the domain. We observe that D is NOR. Consider any infinite se-
quence d1 ≥ d2 ≥ d3 Then either di = ∞ for all i, or there exists i such
that di ∈ N0, and the sequence must in both cases eventually stabilize, i.e.
there is a number k such that dk = dk+j for all j > 0.

New NORs can be constructed by using the Cartesian product. Let Di =
(Di,vi,⊥i) for all i, 1 ≤ i ≤ n, be NORs. We define Dn = (Dn,vn,⊥n) such
that Dn = D1×D2×· · ·×Dn and where (d1, . . . , dn) vn (d′1, . . . , d

′
n) if di vi d

′
i

for all i, 1 ≤ i ≤ k, and where ⊥n = (⊥1, . . . ,⊥n).

Proposition 1. Let Di be a NOR for all i, 1 ≤ i ≤ n. Then Dn = (Dn,vn

,⊥n) is also a NOR.

Proof. From the definition of Dn and vn above, it can be shown that (Dn,vn)
is a partial order with ⊥n being its least element. We need to show that it also
satisfies the ascending chain condition. For the sake of contradiction, assume
thatDn violates the ascending chain condition, implying that there is an infinite
sequence d1 @ d2 @ d3 @ . . . in Dn that does not stabilize. However, as there
are only finitely many components in the Cartesian product, there must be at
least one such component i that violates the condition by containing an infinite
strictly increasing chain of elements. This contradicts our assumption that Di

is NOR. ut

In the rest of this paper, we consider only NORs (D,v,⊥) that are effec-
tively computable, meaning that the elements of D can be represented by finite
strings, and that given the finite representations of two elements x and y from
D, there is an algorithm that decides whether x v y. Similarly, we consider
only functions f : D → D′ from an effectively computable NOR (D,v,⊥)
to an effectively computable NOR (D′,v′,⊥′) that are effectively computable,
meaning that there is an algorithm that for a given finite representation of an
element x ∈ D terminates and returns the finite representation of the element
f(x) ∈ D′. Let F(D, n), where D = (D,v,⊥) is an effectively computable NOR
and n is a natural number, stand for the collection of all effectively computable
functions f : Dn → D of arity n and let F(D) = ⋃n≥0 F(D, n) be a collection

107

A

B ∨ (C ∧D)

B

1

C

1

D

E ∧ F

E1 F E ∧D

(a) Abstract dependency graph

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F 2(A⊥) 1 1 1 0 1 0
F 3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation

Fig. 1: Abstract dependency graph over NOR ({0, 1},≤, 0)

of all such functions. Let FM (D) be the subset of all monotonic functions in
F(D).

For a set X, let X∗ be the set of all finite strings over X. For a string
w ∈ X∗ we let |w| denote the length of w and for every i, 1 ≤ i ≤ |w|, we let
wi stand for the i’th symbol in w.

3 Abstract Dependency Graphs

We are now ready to define the notion of an abstract dependency graph that
depends on the use of monotonic functions (in Section 6 we shall extend the
method also for nonmonotonic functions).

Definition 2 (Abstract Dependency Graph). An abstract dependency
graph (ADG) is a tuple G = (V,E,D, E) where

– V is a finite set of vertices,
– E : V → V ∗ is an edge function from vertices to sequences of vertices such

that E(v)i 6= E(v)j for every v ∈ V and every 1 ≤ i < j ≤ |E(v)|, i.e.
the co-domain of E contains only strings over V where no symbol appears
more than once,

– D is an effectively computable NOR, and
– E is a labelling function E : V → FM (D) such that E(v) ∈ FM (D, |E(v)|)

for each v ∈ V , i.e. each edge E(v) is labelled by an effectively computable
monotonic function f of arity that corresponds to the length of the string
E(v).

Example 2. An example of an ADG over the NOR
D = ({0, 1}, {(0, 0), (0, 1), (1, 1)}, 0) is shown in Figure 1a. Here 0 (interpreted
as false) is below the value 1 (interpreted as true) and the monotonic functions
for vertices are displayed as vertex annotations. For example E(A) = B ·C ·D
and E(A) is a ternary function such that E(A)(x, y, z) = x ∨ (y ∧ z), and
E(B) = ε (empty sequence of vertices) such that E(B) = 1 is a constant

Paper C. Extended Abstract Dependency Graphs

108

labelling function. All functions used in our example are monotonic and effec-
tively computable.

Let us now assume a fixed ADG G = (V,E,D, E) over an effectively com-
putable NOR D = (D,v,⊥). We first define an assignment of an ADG.

Definition 3 (Assignment). An assignment on G is a function A : V → D.

The set of all assignments is denoted by A. For A,A′ ∈ A we define A ≤ A′
iff A(v) v A′(v) for all v ∈ V . We also define the bottom assignment A⊥(v) = ⊥
for all v ∈ V that is the least element in the partial order (A,≤). The following
proposition is easy to verify.

Proposition 2. The triple (A,≤, A⊥) is a NOR.

Proof. For all v ∈ V it is the case that A(v) is a NOR. By definition of A⊥ and
≤ over A we get from Proposition 1 that (A,≤, A⊥) is also a NOR. ut

Finally, we define the minimum fixed-point assignment Amin for a given
ADG G = (V,E,D, E) as the minimum fixed point of the function F : A → A
given by:

F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vk))
where E(v) = v1v2 . . . vk.

In the rest of this section, we shall argue that Amin of the function F
exists by following the standard reasoning about fixed points of monotonic
functions [25].

Lemma 1. The function F is monotonic.

Proof. For a contradiction suppose there exists some A1 ≤ A2 such that
F (A1) 6� F (A2). This means that F (A1)(v) 6v F (A2)(v) for some v while
at the same time A1(v) v A2(v). Since F (A)(v) = E(v)(A(v1), . . . , A(vk))
where v1 · · · vk = E(v) this implies that E(v)(A1(v1), . . . , A1(vk)) 6v
E(v)(A2(v1), . . . , A2(vk)). However, we assume that A1 ≤ A2 and this con-
tradicts that E(v) is monotonic. ut

Let us define the notation of multiple applications of the function F by
F 0(A) = A and F i(A) = F (F i−1(A)) for i > 0.

Lemma 2. For all i ≥ 0 the assignment F i(A⊥) is effectively computable,
F i(A⊥) ≤ F j(A⊥) for all i ≤ j, and there exists a number k such that
F k(A⊥) = F k+j(A⊥) for all j > 0.

Proof. The computability follows from the fact that the function E(v) is com-
putable for all v ∈ V and that V is finite, hence F i(A⊥) is also computable. For
the other two claims, we prove first by induction on i that F i(A⊥) ≤ F i+1(A⊥)
for all i ≥ 0 from which our claim follows by the transitivity of the relation ≤.
If i = 0 then A⊥ = F 0(A⊥) ≤ F 1(A⊥) holds since A⊥ is the least element in A.

109

Let i > 0 and assume that F i−1(A⊥) ≤ F i(A⊥). Since by Lemma 1 the function
F is monotonic, we get F (F i−1(A⊥)) ≤ F (F i(A⊥)) which is by definition equiv-
alent to F i(A⊥) ≤ F i+1(A⊥). Finally, because (A,≤, A⊥) is by Proposition 2
a NOR, we have that for the infinite chain F 0(A⊥) ≤ F 1(A⊥) ≤ F 2(A⊥) ≤ · · ·
there must exist an integer k such that F k(A⊥) = F k+j(A⊥) for all j > 0. ut

We can now state the main observation of this section.

Theorem 1. There exists a number k such that F j(A⊥) = Amin for all j ≥ k.

Proof. From Lemma 2 we are guaranteed that there is k such that F k(A⊥) =
F (F k(A⊥)), implying that F k(A⊥) is a fixed point. We need to show that
F k(A⊥) is the minimum fixed point. Let Aother be another fixed point of F .
Because A⊥ ≤ Aother and from Lemma 2 and the fact that F is monotonic
by Lemma 1, we get that for each i also F i(A⊥) ≤ F i(Aother) = Aother. Then
F k(A⊥) ≤ Aother implies that F k(A⊥) is the minimum fixed point Amin , hence
proving the claim of the theorem. ut

Example 3. The computation of the minimum fixed point for our running ex-
ample from Figure 1a is given in Figure 1b. We can see that starting from the
assignment where all nodes take the least element value 0, in the first iteration
all constant functions increase the value of the corresponding vertices to 1 and
in the second iteration the value 1 propagates from the vertex B to A, because
the function B ∨ (C ∧D) that is assigned to the vertex A evaluates to true due
to the fact that F (A⊥)(B) = 1. On the other hand, the values of the vertices D
and F keep the assignment 0 due to the cyclic dependencies between the two
vertices. As F 2(A⊥) = F 3(A⊥), we know that we found the minimum fixed
point.

As many natural verification problems can be encoded as a computation
of the minimum fixed point on an ADG, the result in Theorem 1 provides an
algorithmic way to compute such a fixed point and hence solve the encoded
problem. The disadvantage of this global algorithm is that it requires that the
whole dependency graph is generated before the computation can be carried out
and this approach is often inefficient in practice [12]. In the following section,
we provide a local, on-the-fly algorithm for computing the minimum fixed-point
assignment of a specific vertex, without the need to always explore the whole
abstract dependency graph.

4 On-the-Fly Algorithm for ADGs

The idea behind the algorithm is to progressively explore the vertices of the
graph, starting from a given root vertex for which we want to find its value in the
minimum fixed-point assignment. To search the graph, we use a waiting set that
contains configurations (vertices) whose assignment has the potential of being
improved (increased) by applying the function E . By repeated applications of

Paper C. Extended Abstract Dependency Graphs

110

E on the vertices of the graph in some order maintained by the algorithm, the
minimum fixed-point assignment for the root vertex can be identified without
necessarily exploring the whole dependency graph.

To improve the performance of the algorithm, we make use of an optional
user-provided function Ignore(A, v) that computes, given a current assign-
ment A and a vertex v of the graph, the set of vertices on an edge E(v) whose
current and any potential future value no longer effect the value of Amin(v).
Hence, whenever a vertex v′ is in the set Ignore(A, v), there is no reason to
explore the subgraph rooted at v′ for the purpose of computing Amin(v) since
an improved assignment value of v′ cannot influence the assignment of v. The
soundness property of the ignore function is formalized in the following defi-
nition. As before, we assume a fixed ADG G = (V,E,D, E) over an effectively
computable NOR D = (D,v,⊥).

Definition 4 (Sound Ignore Function). A function Ignore : A×V → 2V

is sound if for any two assignments A,A′ ∈ A where A ≤ A′ and every i such
that E(v)i ∈ Ignore(A, v) holds that

E(v)(A′(v1), A′(v2), . . . ,A(vi), . . . , A′(vk−1), A′(vk))
=

E(v)(A′(v1), A′(v2), . . . ,A′(vi), . . . , A′(vk−1), A′(vk))

where k = |E(v)|.

From now on, we shall consider only sound and effectively computable ignore
functions. Furthermore, and without loss of generality, we only consider Ignore
functions that satisfy Ignore(A, v) ⊆ Ignore(A′, v) whenever A ≤ A′ because
if a vertex can be ignored at the assignment A then it can be ignored also at
any greater assignment A′.

Note that there is always a trivially sound Ignore function that returns
for every assignment and every vertex the empty set. A more interesting and
universally sound ignore function may be defined by

Ignore(A, v) =
{
{E(v)i | 1 ≤ i ≤ |E(v)|} if d v A(v) for all d ∈ D
∅ otherwise

that returns the set of all vertices on an edge E(v) once A(v) reached its
maximal possible value. This will avoid the exploration of the children of the
vertex v once the value of v in the current assignment cannot be improved any
more. Already this can have a significant impact on the improved performance
of the algorithm; however, for concrete instances of our general framework, the
user can provide more precise and case-specific ignore functions in order to tune
the performance of the fixed-point algorithm, as shown by the next example.

111

Example 4. Consider the ADG from Figure 1a in an assignment where the value
of B is already known to be 1. As the vertex A has the labelling function B∨(C∧
D), we can see that the assignment of A will get the value 1, irrespective of what
are the assignments for the vertices C and D. Hence, in this assignment, we
can move the vertices C and D to the ignore set of A and avoid the exploration
of the subgraphs rooted by C and D.

The following lemma formalizes the fact that once the ignore function of
a vertex contains all its children and the vertex value has been updated by
evaluating the associated monotonic function, then its current assignment value
is equal to the vertex value in the minimum fixed-point assignment.

Lemma 3. Let A be an assignment such that A ≤ Amin . If vi ∈ Ignore(A, v)
for all i, 1 ≤ i ≤ k, where E(v) = v1 · · · vk and A(v) = E(v)(A(v1), . . . , A(vk))
then A(v) = Amin(v).

Proof. Since we have vi ∈ Ignore(A, v) for all i, 1 ≤ i ≤ k, and at
the same time A(v) = E(v)(A(v1), . . . , A(vk)) where E(v) = v1 · · · vk, we
get from Definition 4 that for every A′ ∈ A where A ≤ A′ necessarily
A(v) = E(v)(A(v1), . . . , A(vk)) = E(v)(A′(v1), . . . , A′(vk)). This implies that
F (A)(v) = A(v) and because A ≤ Amin we get that A(v) = Amin(v). ut

In Algorithm 1 we now present our local (on-the-fly) minimum fixed-point
computation. The algorithm uses the following internal data structures:

– A is the currently computed assignment that is initialized to A⊥,
– W is the waiting set of pending vertices to be explored,
– Passed is the set of explored vertices, and
– Dep : V → 2V is a dependency function that for each vertex v returns a

set of vertices that should be reevaluated whenever the assignment value
of v improves.

The algorithm starts by inserting the root vertex v0 into the waiting set. In
each iteration of the while-loop it removes a vertex v from the waiting set
and performs a check whether there is some other vertex that depends on the
value of v. If this is not the case, we are not going to explore the vertex v and
recursively propagate this information to the children of v. After this, we try
to improve the current assignment of A(v) and if this succeeds, we update the
waiting set by adding all vertices that depend on the value of v to W , and
we test if the algorithm can terminate early (should the root vertex v0 get its
final value). Otherwise, if the vertex v has not been explored yet, we add all
its children to the waiting set and update the dependencies.

The call to UpdateDependents at line 5 is an optimization and it can be
disregarded without affecting correctness. For a vertex v, in UpdateDepen-
dents all parent vertices who now ignore v (wrt. to A) are removed from the
dependencies of v. If the dependency set of v becomes empty then the impli-
cation is that any future value of v no longer has any effect on the value of

Paper C. Extended Abstract Dependency Graphs

112

Input: An effectively computable ADG G = (V,E,D, E) and v0 ∈ V .
Output: Amin(v0)

1 A := A⊥ ; Dep(v) := ∅ for all v
2 W := {v0} ; Passed := ∅
3 while W 6= ∅ do
4 let v ∈W ; W :=W \ {v}
5 UpdateDependents (v)
6 if v = v0 or Dep(v) 6= ∅ then
7 let v1v2 · · · vk = E(v)
8 d := E(v)(A(v1), . . . , A(vk))
9 if A(v) @ d then

10 W :=W ∪ {u ∈ Dep(v) | v /∈ Ignore(A, u)}
11 A(v) := d
12 if v = v0 and {v1, . . . , vk} ⊆ Ignore(A, v0) then
13 "break out of the while loop”
14 if v /∈ Passed then
15 Passed := Passed ∪ {v}
16 for all vi ∈ {v1, . . . , vk} \ Ignore(A, v) do
17 Dep(vi) := Dep(vi) ∪ {v}
18 W :=W ∪ {vi}
19 return A(v0)
20 Procedure UpdateDependents(v):
21 C := {u ∈ Dep(v) | v ∈ Ignore(A, u)}
22 Dep(v) := Dep(v) \ C
23 if Dep(v) = ∅ and C 6= ∅ then
24 Passed := Passed \ {v}
25 UpdateDependentsRec (v)
26 Procedure UpdateDependentsRec(v):
27 for v′ ∈ E(v) do
28 C := Dep(v′) ∩ {v}
29 Dep(v′) := Dep(v′) \ {v}
30 if Dep(v′) = ∅ and C 6= ∅ then
31 UpdateDependentsRec (v′)
32 Passed := Passed \ {v′}

Algorithm 1: Minimum fixed-point computation

the parents. The call to UpdateDependentsRec then removes v from the
dependency set of its children, and if the children’s dependency sets become
empty then it recursively performs the check again.

We shall now state the termination and correctness of our algorithm based
on the following lemmas.

Lemma 4. Let A be the assignment at any given point in the execution of
Algorithm 1, and A′ the assignment at any later point. Then A ≤ A′.
Proof. Let A be the assignment in Algorithm 1 at some point in the execution.
The assignment is only modified at line 11 by setting the value to d for a vertex

113

v. If this happens, then from line 9 we have that A(v) @ d implying that the
assignment increased, and the lemma follows from the transitivity of v. ut

Lemma 5 (Termination). Algorithm 1 terminates.

Proof. In each iteration a vertex is removed from the waiting set W . Since the
dependency graph is finite it has only finitely many vertices and a vertex is only
added to W at line 10 or line 18. We argue that either line is only executed a
finite number of times.

The NORD has no infinite sequence wrt.@ because it satisfies the ascending
chain condition, so line 10 can only run a finite number of times since it is
guarded by line 9. Line 18 only runs if previously in the iteration we had
v /∈ Passed, which is the case for all vertices initially. Then line 15 has also
run and added v to Passed. For line 18 to run again, v must first be removed
from Passed which can only happen at line 24 and line 32. We argue that both
lines only run a finite number of times.

Suppose line 24 executes. Then Dep(v) became empty for some vertex v
because v ∈ Ignore(A, u) at line 21. Then for all future assignments A′ ≥ A
we still have that v ∈ Ignore(A′, u) and since Dep(v) is only enlarged at
line 17 when v is not ignored, this can at most happen |V | times wrt. to v.

Line 32 can only run if UpdateDependentsRec was called at line 25 when
there was some call to UpdateDependents earlier in the iteration. But this
implies line 24 also ran which it only does at most once per iteration and a
limited number of times in total as shown previously.

Since both line 10 and line 18 can only happen a finite number of times
and in each iteration we remove a vertex from W , we can conclude that the
algorithm terminates. ut

Lemma 6 (Soundness). Algorithm 1 at all times satisfies A ≤ Amin .

Proof. The property initially holds after initializing A into A⊥. Assume that
A ≤ Amin holds before the execution of the while-loop and we show that this
property is preserved also after the body of the while-loop is executed. The
only place where A is increased is at line 11, which only happens if A(v) @
E(v)(A(v1), . . . , A(vk)) for the vertex v that was just removed from the waiting
set. By definition of F , and the fact that F is monotonic (Lemma 1), we get
E(v)(A(v1), . . . , A(vk)) v F (Amin)(v) = Amin(v). This implies that the update
to A(v) at line 11 maintains the invariant. ut

Lemma 7 (While-Loop Invariant). At the beginning of each iteration of
the loop at line 3 of Algorithm 1, for any vertex v ∈ V holds that either:

1. A(v) = Amin(v), or
2. v ∈W , or
3. v 6= v0 and Dep(v) = ∅, or
4. A(v) = E(v)(A(v1), . . . , A(vk)) where v1 · · · vk = E(v) and for all i, 1 ≤

i ≤ k, whenever vi /∈ Ignore(A, v) then also v ∈ Dep(vi).

Paper C. Extended Abstract Dependency Graphs

114

Proof. Initially, the invariant holds just after the initialization as v0 ∈W which
implies condition (2) for the root v0, and for any other vertex v where v 6= v0
condition (3) holds because Dep(v) = ∅. We shall now prove that if the loop
invariant holds before the execution of the body of the while-loop then it will
hold also at the end of the execution of the body. We perform a case analysis,
depending on which of the four conditions holds for a given vertex v before the
beginning of the execution of the while-loop body.

1. Assume that v ∈ V satisfies condition (1). The only place where A(v)
is changed is at line 11, provided that v was picked from W at line 4
and A(v) @ d. However, the assignment A(v) := d can never be executed
because in the beginning of the loop execution we assumed that A(v) =
Amin(v) and by Lemma 6 we know that A(v) v Amin(v) at any time of the
algorithm execution. Hence the vertex v satisfies condition (1) also at the
end of the execution of the while-loop.

2. Assume that v ∈ V satisfies condition (2), meaning that v ∈ W . This can
only be violated if v gets removed from W at line 4.
– Once we get to line 6, the body of the while-loop can immediately

finish should the test at line 6 fail, meaning that v 6= v0 and Dep(v) = ∅.
However, then the vertex v satisfies condition (3) and the loop invariant
is restored.

– If the test succeeds, the control flow proceeds to evaluate the body of
the if-statement. If A(v) @ d at line 9 evaluates to true and d = Amin(v)
then the loop invariant is restored as the vertex v now satisfies condition
(1).

– Otherwise, we consider the situation d 6= Amin(v) implying that A(v) @
Amin(v) due to Lemma 6. By the assignment at line 11 we satisfy
the first part of condition (4). For the second part of condition (4),
we observe that by Lemma 3 there must exist i, 1 ≤ i ≤ k, where
v1v2 · · · vk = E(v) such that vi /∈ Ignore(A, v), which implies that
the if-test at line 12 fails and we proceed to test if v /∈ Passed. If
v /∈ Passed is true then line 17 ensures that also the second part of
condition (4) holds and this restores the loop-invariant. If v ∈ Passed
then v has already been added to Dep(vi) for all relevant i at line 17
in an earlier iteration of the while-loop and the subtraction of v from
the dependency set Dep(vi) at line 22 is not applicable as C may not
contain v due to the fact that vi 6∈ Ignore(A, v). From this also follows
that the recursive procedure UpdateDependentsRec is never called
with the vertex v as an argument and hence neither line 29 can remove
v from Dep(vi). As a result, the second part of condition (4) holds also
in this case and the while-loop invariant is established.

3. Assume that v ∈ V satisfies condition (3). Condition (3) can be violated
only at line 17 by adding a vertex to Dep(v), however, then v is at line 18
added to the set W and this establishes the while-loop invariant by satis-
fying condition (2).

115

4. Assume that v ∈ V satisfies condition (4) and none of the other three
conditions. Let condition (4) get violated during the execution of the body,
meaning that either (i) A(v) @ E(v)(A(v1), . . . , A(vk)) or (ii) there is some
vi /∈ Ignore(A, v) such that v 6∈ Dep(vi).
– Case (i) can only happen if some vertex vi that is a child of v is taken

from the waiting set at line 4 and the value of A(vi) improves by the
assignment at line 11. However, at the previous line 10 the vertex v
was immediately added to the set W and hence condition (2) of the
invariant is restored.

– For case (ii) we observe that v may be removed from Dep(vi) at line 22
during the call to UpdateDependents(vi), however, as condition (4)
only considers those vi where vi /∈ Ignore(A, v), clearly v cannot be
in the set C that is subtracted from Dep(vi) at line 22. Hence in this
case condition (4) continues to hold. The second place where v may
be removed from Dep(vi) is at line 29. The only way to reach this
statement is if Dep(v) = ∅, at line 22, or an earlier call to UpdateDe-
pendentsRec which can happen only if Dep(v) = ∅ at line 30. As in
both cases Dep(v) = ∅, we conclude that now condition (3) holds for v
and the loop invariant is established also in this case. ut

We can now conclude with the correctness theorem.

Theorem 2. Algorithm 1 terminates and returns the value Amin(v0).

Proof. Termination is proved in Lemma 5. From Lemma 6 we know that
A ≤ Amin . If Algorithm 1 terminates early at line 13, we know that A(v0) =
Amin(v0) due to Lemma 3. Assume that Algorithm 1 terminates at line 19.
This line is reachable only if the waiting set W is empty and hence condition
(2) of Lemma 7 cannot not hold for any v ∈ V . Suppose that condition (1)
of Lemma 7 holds for v0, then this case is trivial as condition (1) implies that
A(v0) = Amin(v0). If neither condition (1) nor (2) hold for v0 then condition
(4) must hold as v0 never satisfies condition (3). We finish the proof by arguing
that A is a fixed-point assignment for all the explored vertices of the graph, i.e.
F (A)(v) = A(v) for every vertex v such that Dep(v) 6= ∅, which includes also all
children of the vertex v0 that do not belong to the set Ignore(A, v0). As Amin

is the minimum fixed-point assignment, this will imply that Amin(v) v A(v)
which together with A ≤ Amin gives us A(v) = Amin(v). Let v be a vertex such
that Dep(v) 6= ∅. We need to argue that A(v) = E(v)(A(v1), . . . , A(vk)). The
vertex v must satisfy condition (1) or condition (4) of Lemma 7 as the other
two options are not possible due to our assumptions W = ∅ and Dep(v) 6= ∅.
If v satisfies condition (1), meaning that A(v) = Amin(v), then the claim holds
due the fact that A(v) cannot be increased anymore by applying the function
E(v) because by Lemma 6 we know that A ≤ Amin . Otherwise v must satisfy
condition (4) which directly implies our claim. ut

Paper C. Extended Abstract Dependency Graphs

116

5 Applications of Abstract Dependency Graphs

We shall now describe applications of our general framework to previously
studied instances of dependency graphs in order to demonstrate the direct
applicability of our framework. Together with an efficient implementation of the
algorithm, this provides a solution to many verification problems studied in the
literature. We start with the classical notion of dependency graphs suggested
by Liu and Smolka.

5.1 Liu and Smolka Dependency Graphs

In the dependency graph framework introduced by Liu and Smolka [20], a
dependency graph is represented as G = (V,H) where V is a finite set of
vertices and H ⊆ V × 2V is the set of hyperedges. An assignment is a function
A : V → {0, 1}. A given assignment is a fixed-point assignment if (A)(v) =
max(v,T)∈H minv′∈T A(v′) for all v ∈ V . In other words, A is a fixed-point
assignment if for every hyperedge (v, T) where T ⊆ V holds that if A(v′) = 1
for every v′ ∈ T then also A(v) = 1. Liu and Smolka suggest both a global and
a local algorithm [20] to compute the minimum fixed-point assignment for a
given dependency graph.

We shall now argue how to instantiate abstract dependency graphs for the
Liu and Smolka’s framework. Let (V,H) be a fixed dependency graph. We
consider a NOR D = ({0, 1},≤, 0) where 0 < 1 and construct an abstract
dependency graph G′ = (V,E,D, E). Here E : V → V ∗ is defined

E(v) = v1 · · · vk s.t. {v1, . . . , vk} =
⋃

(v,T)∈H
T

such that E(v) contains (in some fixed order) all vertices that appear on at
least one hyperedge rooted with v. The labelling function E is now defined as
expected

E(v)(d1, . . . , dk) = max
(v,T)∈H

min
vi∈T

di

mimicking the computation in dependency graphs. For the efficiency of fixed-
point computation in abstract dependency graphs it is important to provide an
Ignore function that includes as many vertices as possible. We shall use the
following one

Ignore(A, v) =

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∃(v, T) ∈ H.∀u ∈ T.A(u) = 1

∅ otherwise

meaning that once there is a hyperedge with all the target vertices with value
1 (that propagates the value 1 to the root of the hyperedge), then the vertices

117

of all other hyperedges can be ignored. This ignore function is, as we observed
when running experiments, more efficient than this simpler one

Ignore(A, v) =

{E(v)i | 1 ≤ i ≤ |E(v)|}
if A(v) = 1

∅ otherwise

because it avoids the exploration of vertices that can be ignored before the root
v is picked from the waiting set. Our encoding hence provides a generic and
efficient way to model and solve problems described by Boolean equations [2]
and dependency graphs [20].

5.2 Certain-Zero Dependency Graphs

Liu and Smolka’s on-the-fly algorithm for dependency graphs significantly ben-
efits from the fact that if there is a hyperedge with all target vertices having
the value 1 then this hyperedge can propagate this value to the source of the
hyperedge without the need to explore the remaining hyperedges. Moreover,
the algorithm can terminate early should the root vertex v0 get the value 1. On
the other hand, if the final value of the root is 0 then the whole graph has to be
explored and no early termination is possible. Recently, it has been noticed [5]
that the speed of fixed-point computation by Liu and Smolka’s algorithm can
been considerably improved by considering also certain-zero value in the as-
signment that can, in certain situations, propagate from children vertices to
their parents and once it reaches the root vertex, the algorithm can terminate
early.

We shall demonstrate that this extension can be directly implemented in
our generic framework, requiring only a minor modification of the abstract
dependency graph. Let G = (V,H) be a given dependency graph. We consider
now a NOR D = ({⊥, 0, 1},v,⊥) where ⊥ @ 0 and ⊥ @ 1 but 0 and 1, the
‘certain’ values, are incomparable. We use the labelling function

E(v)(d1, . . . , dk) =

1 if ∃(v, T) ∈ H.∀vi ∈ T.di = 1

0 if ∀(v, T) ∈ H.∃vi ∈ T.di = 0

⊥ otherwise

so that it rephrases the method described in [5]. In order to achieve a compet-
itive performance, we use the following ignore function.

Paper C. Extended Abstract Dependency Graphs

118

Ignore(A, v) =

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∃(v, T) ∈ H.∀u ∈ T.A(u) = 1

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∀(v, T) ∈ H.∃u ∈ T.A(u) = 0

∅ otherwise

Our experiments presented in Section 7 show a clear advantage of the
certain-zero algorithm over the classical one, as also demonstrated in [5].

5.3 Weighted Symbolic Dependency Graphs

In this section we show an application that instead of a finite NOR considers
an ordering with infinitely many elements. This allows us to encode e.g. the
model checking problem for weighted CTL logic as demonstrated in [11,12].
The main difference, compared to the dependency graphs in Section 5.1, is the
addition of cover-edges and hyperedges with weight.

A weighted symbolic dependency graph, as introduced in [11], is a triple
G = (V,H,C), where V is a finite set of vertices, H ⊆ V × 2(N

0×V) is a finite
set of hyperedges and C ⊆ V × N0 × V a finite set of cover-edges. We assume
the natural ordering relation > on natural numbers such that ∞ > n for any
n ∈ N0. An assignment A : V → N0 ∪ {∞} is a mapping from configurations
to values. A fixed-point assignment is an assignment A such that

A(v) =

0 if ∃(v, w, u) ∈ C s.t. A(u) ≤ w
min

(v,T)∈H

(
max{A(u) + w | (w, u) ∈ T}

)
else

where we assume thatmax ∅ = 0 andmin ∅ =∞. As before, we are interested in
computing the value Amin(v0) for a given vertex v0 where Amin is the minimum
fixed-point assignment.

In order to instantiate weighted symbolic dependency graphs in our frame-
work, we use the NOR D = (N0 ∪ {∞},≥,∞) as introduced in Exam-
ple 1 and define an abstract dependency graph G′ = (V,E,D, E). We let
E : V → V ∗ be defined as E(v) = v1 · · · vmc1 · · · cn where {v1, . . . , vm} =⋃

(v,T)∈H
⋃

(w,vi)∈T {vi} is the set (in some fixed order) of all vertices that are
used in hyperedges and {c1, . . . , cn} =

⋃
(v,w,u)∈C{u} is the set (in some fixed

order) of all vertices connected to cover-edges. Finally, we define the labelling
function E as

E(v)(d1, . . . , dm, e1, . . . , en) =

119

0 if ∃(v, w, ci) ∈ C. w ≥ ei
min

(v,T)∈H
max

(w,vi)∈T
w + di otherwise.

In our experiments, we consider the following ignore function.

Ignore(A, v) =

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∃(v, w, u) ∈ C. A(u) ≤ w

{E(v)i | 1 ≤ i ≤ |E(v)|, A(E(v)i) = 0}
otherwise

This shows that also the formalism of weighted symbolic dependency graphs
can be modelled in our framework and the experimental evaluation in Section 7
documents that it outperforms the existing implementation.

6 Addition of Nonmonotonic Functions

The restriction that E(v) must be monotonic may limit the usability of the
framework for certain applications, for instance, to support model checking
of logics with negation. In Figure 2 we have an ADG with E(X) being the
exclusive-or of the assignment to Y and Z. Figure 2b shows the resulting eval-
uation of E(X) with increasing assignments. The introduction of nonmonotonic
functions invalidates Theorem 1 and Theorem 2.

X

E(X) = Y XORZ

Y Z

(a) Abstract dependency graph
with XOR

A(Y) A(Z) E(X)(A)

0 0 0
1 0 1
1 1 0

(b) Assignment evaluation

Fig. 2: ADG with nonmonotonic function

To permit arbitrary functions, we apply a similar strategy as that used to
support negation for CTL with EDG in [5], but adapt it for our more general
framework. We define extended abstract dependency graphs where vertices are
no longer restricted to only being labelled with monotonic functions (E(v) ∈
FM), but rather any function (E(v) ∈ F).

Let G = (V,E,D, E) be an ADG. We write v → u if u = E(v)i for some
1 ≤ i ≤ |E(v)| and write →+ for the transitive closure of →. We also write
v ⇒A v′ if v → v′ and v′ /∈ Ignore(A, v), and ⇒+

A for the transitive closure.

Paper C. Extended Abstract Dependency Graphs

120

Definition 5 (Extended Abstract Dependency Graph). An extended
abstract dependency graph (EADG) is a tuple G = (V,E,D, E) where V , E,
D are defined as for ADGs in Definition 2, with the following changes to E:

– vertices can be labelled by any effectively computable function E : V → F(D)
(not restricted to monotonic functions), and

– no vertex labelled with a nonmonotonic function (E(v) /∈ FM) may be in a
cycle i.e. for every v where E(v) /∈ FM we have v 6→+ v.

Now the example in Figure 2 can be considered as EADG. Because of the
restriction that there may not be any cycles involving vertices labelled with
nonmonotonic functions, for any path there is a maximal number of such ver-
tices, and we can define the distance of a vertex as follows:

dist(v) = max{m | v = v0 → v1 → v2 → . . . ,

m = |{vi | E(vi) /∈ FM and i ≥ 0}|}.

Since there are no cycles involving vertices v where E(v) /∈ FM , dist is
well defined and induces subgraph components Ci of G where Vi = {v ∈ V |
dist(v) ≤ i} and i ∈ N0. We note that component C0 is never empty and
contains only vertices labelled with monotonic functions. Figure 3 shows an
EADG with multiple components, C0, C1 and C2. The vertices with double
borders are labelled with nonmonotonic functions.

C0

C1

C2

Fig. 3: EADG with three components

We then define F0(A)(v) = E(v)(A(v1), . . . , A(vk)) for all v ∈ V0 and where
E(v) = v1v2 . . . vk. This definition is identical to F defined earlier and thus
Theorem 1 also applies to F0. We denote the minimal fixed point of F0 as
AC0

min .

121

For each component Ci where i > 0, we define Fi : A → A such that

Fi(A)(v) =

E(v)(A(v1), A(v2), . . . , A(vk))
if E(v) ∈ FM

E(v)(ACi−1

min (v1), A
Ci−1

min (v2), . . . , A
Ci−1

min (vk))
if E(v) /∈ FM

where E(v) = v1v2 . . . vk, and ACi
min is the fixed point of Fi. The value of ACi

min is
defined inductively in terms of ACi−1

min except for AC0
min whose fixed point can be

calculated on its own. For EADG G let distmax = maxv∈V dist(v). We define
Amin(v) = A

Cdistmax
min (v).

The following Lemma 8, Lemma 9 and Theorem 3 restate for Fi what
Lemma 1, Lemma 2 and Theorem 1, respectively, claimed for F . Their proofs
are straightforward generalizations by induction on i.

Lemma 8. The function Fi is monotonic for all indices i ≥ 0.

Lemma 9. For all i, j ≥ 0 the assignment F j
i (A⊥) is effectively computable,

F j
i (A⊥) ≤ F k

i (A⊥) for all j ≤ k, and there exists a number m such that
Fm
i (A⊥) = Fm+j

i (A⊥) for all j > 0.

Theorem 3. For all i there exists a number k such that F j
i (A⊥) = ACi

min for
all j ≥ k and all i ≥ 0.

In Algorithm 2 we can now give a modified fixed-point algorithm that per-
mits nonmonotonic functions. The under-dotted lines mark the changes com-
pared to Algorithm 1. It is crucial that vertices labelled by nonmonotonic func-
tions are not evaluated unless the values of the relevant children are final, i.e.
for all children u /∈ Ignore(A, v) in E(v) we must have A(u) = Amin(u). Only
then is it guaranteed that A(v) v Fi(A)(v) for such vertices. To ensure that
vertices are only evaluated when it is safe, we make use of a special predicate
pickable defined below.

Definition 6. Given an assignment A, a vertex v ∈ W is pickable in Algo-
rithm 2 if either

A. E(v) ∈ FM , or
B. E(v) /∈ FM and v /∈ Passed, or
C. E(v) /∈ FM and for all u where v ⇒+

A u
(a) u /∈W , and
(b) E(u)(A(E(u)1), . . . , A(E(u)k)) = A(u).

Lemma 10. In Algorithm 2, if W is not empty then there exists v ∈ W such
that v is pickable.

Paper C. Extended Abstract Dependency Graphs

122

Input: An effectively computable ADG G = (V,E,D, E) and v0 ∈ V .
Output: Amin(v0)

1 A := A⊥ ; Dep(v) := ∅ for all v
2 W := {v0} ; Passed := ∅
3 while W 6= ∅ do
4 let v ∈W where v is pickable
5 if v /∈ Passed and E(v) /∈ FM then
6 goto line 18
7 W :=W \ {v}
8 UpdateDependents (v)
9 if v = v0 or Dep(v) 6= ∅ then

10 let v1v2 · · · vk = E(v)
11 d := E(v2)(A(v1), . . . , A(vk))
12 if A(v) @ d then
13 W :=W ∪ {u ∈ Dep(v) | v /∈ Ignore(A, u)}
14 A(v) := d
15 if v = v0 and {v1, . . . , vk} ⊆ Ignore(A, v0) then
16 "break out of the while loop”
17 if v /∈ Passed then
18 Passed := Passed ∪ {v}
19 for all vi ∈ {v1, . . . , vk} \ Ignore(A, v) do
20 Dep(vi) := Dep(vi) ∪ {v}
21 W :=W ∪ {vi}
22 return A(v0)
23 Procedure UpdateDependents(v):
24 C := {u ∈ Dep(v) | v ∈ Ignore(A, u)}
25 Dep(v) := Dep(v) \ C
26 if Dep(v) = ∅ and C 6= ∅ then
27 Passed := Passed \ {v}
28 UpdateDependentsRec (v)
29 Procedure UpdateDependentsRec(v):
30 for v′ ∈ E(v) do
31 C := Dep(v′) ∩ {v}
32 Dep(v′) := Dep(v′) \ {v}
33 if Dep(v′) = ∅ and C 6= ∅ then
34 UpdateDependentsRec (v′)
35 Passed := Passed \ {v′}
Algorithm 2: Minimum fixed-point computation on an EADG. The
underlined fragments are the additions made to Algorithm 1.

Proof. If there exists some v ∈ W such that E(v) ∈ FM then v is pickable.
Otherwise assume that for all v ∈ W we have that E(v) /∈ FM . For a contra-
diction, assume that there is no pickable vertex v ∈W . This means that for all
v ∈W :

1. v ∈ Passed, and

123

2. there exists u where v ⇒+
A u such that either

(a) u ∈W , or
(b) E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u).

Let v be any vertex in W with minimal dist . Since v has minimal dist then
for all u where v ⇒+

A u and E(u) /∈ FM we have u /∈ W . Since v ∈ Passed
we must have added all u′ where v ⇒+

A u′ to W at some point (and they were
later removed from W). Assume now that there is some u where v ⇒+

A u that
E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u).

– Let E(u) ∈ FM . Then E(u) was evaluated at least once, and if A(u′) for
some child u⇒A u′ increased then u was added to W such that later E(u)
may be reevaluated. Since no such u is (any longer) in W , this reevaluation
must have happened and we cannot have E(u)(A(E(u)1), . . . , A(E(u)k)) 6=
A(u).

– Let E(u) /∈ FM . Since u is no longer in W it must have been
picked from W implying that it was pickable (u satisfied pickable con-
dition C) and then evaluated for A(u). This evaluation contradicts that
E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u). ut

Lemma 11. Let A be the assignment at any given point in the execution of
Algorithm 2, and A′ the assignment at any later point. Then A ≤ A′.
Proof. Identical to proof for Lemma 4. ut
Lemma 12 (Termination). Algorithm 2 terminates.

Proof. The proof argument is the same as in Lemma 5. However, it is no longer
the case that in each iteration a vertex is removed fromW because of the added
condition and goto starting at line 5 and 6.

Vertices can only be added to W at line 13 and line 21. For line 13 to be
evaluated, we must have that the assignment increases (in order to enter the
body of the if-statement in line 12) which can only happen a finite number of
times. Line 21 only runs if v /∈ Passed, in which case v is added to Passed
and, by same argument as in Lemma 5, a vertex can only be removed from
Passed a finite number of times. In the iterations where v is not removed from
W because of the goto at line 6, the vertex v is still added to Passed. Since v
can only be removed from Passed a finite number of times, eventually v will
picked in some iteration where v ∈ Passed and removed from W .

Since there is only a finite number of additions to W and finite number of
iterations where no vertex is removed from W , eventually W becomes empty
and the algorithm terminates, if not earlier due to line 16. ut
Lemma 13. In Algorithm 2, if E(v) /∈ FM , and v ∈ Passed and v is pickable,
then A(u) = Amin(u) for all u such that v ⇒+

A u.

Proof. Assume for some pickable vertex v that E(v) /∈ FM and v ∈ Passed.
We prove that A(u) = Amin(u) for all v ⇒+

A u by induction on dist(u). Note
that there are no v ∈ V with E(v) /∈ FM such that dist(v) = 0.

Paper C. Extended Abstract Dependency Graphs

124

– Assume dist(u) = 0. From Condition C(b) in the definition of pickable we
know that E(u)(A(E(u)1), . . . , A(E(u)k)) = A(u). Then by definition of F0

we have reached a fixed point w.r.t. u. Since, initially A = A⊥, it must be
the minimum fixed point.

– Assume dist(u) = m > 1.
• Let E(u) /∈ FM . Then all for all u ⇒+

A u′ we have dist(u′) < m
and by I.H. we get A(u′) = Amin(u

′). For u to no longer be on
the waiting set it must have satisfied pickable condition C and been
picked earlier (condition B keeps it in W). During the iteration it
was picked from W , we must have evaluated Amin(u) = Fm(A)(u) =
E(u)(Amin(u1), Amin(u2), . . . , Amin(uk)) where E(u) = u1u2 . . . uk and
assigned the value to A(u).

• Let E(u) ∈ FM . From Condition C(b) in the definition of pickable we
have that E(u)(A(E(u)1), . . . , A(E(u)k)) = A(u) = Fm(A)(u). Then by
definition of Fm we have reached a fixed point w.r.t. u. Since, initially
A = A⊥, it must be the minimum fixed point.

ut

Lemma 14 (Soundness). Algorithm 2 at all times satisfies A ≤ Amin .

Proof. Initially we have A = A⊥ ≤ Amin . Assume that A ≤ Amin . The
only place where A is increased is at line 14, which only happens if A(v) @
E(v)(A(v1), . . . , A(vk)), where E(v) = v1v2 . . . vk, for the vertex v that was just
removed from the waiting set.

– Assume the vertex v picked was monotonic (E(v) ∈ FM). By defi-
nition of F , and the fact that F is monotonic (Lemma 8), we get
E(v)(A(v1), . . . , A(vk)) v F (Amin)(v) = Amin(v). This implies that the
update to A(v) at line 14 maintains the invariant.

– Assume the vertex v picked was nonmonotonic (E(v) /∈ FM). In order for
line 14 to run, we must have v ∈ Passed. Then by Lemma 13, for all
u where v ⇒+

A u we have A(u) = Amin(u). Then for all v → u either
u ∈ Ignore(A, v) or A(u) = Amin(u) and from the definition of Ignore
we then get that E(v)(A(v1), . . . , A(vk)) = Amin(v).

ut

Lemma 15 (While-Loop Invariant). At the beginning of each iteration of
the loop at line 3 of Algorithm 2, for any vertex v ∈ V it holds that either:

1. A(v) = Amin(v), or
2. v ∈W , or
3. v 6= v0 and Dep(v) = ∅, or
4. E(v) ∈ FM and A(v) = E(v)(A(v1), . . . , A(vk)) where v1 · · · vk = E(v) and

for all i, 1 ≤ i ≤ k, whenever vi /∈ Ignore(A, v) then also v ∈ Dep(vi).

Proof. The proof is identical to that for Lemma 7 in the case where a vertex
is labelled with monotonic functions. Here we concern only the cases needed

125

for nonmonotonic vertices (E(v) /∈ FM). We first show that the invariant holds
before the first iteration, and then prove for each case that the invariant is
maintained.

Initially Dep(v) = ∅ for all v except v0 for which we have v0 ∈ W . Let
now assume that the invariant holds before the execution of the body of the
while-loop. Let v ∈ V such that E(v) /∈ FM . There are now four cases.
1. Let A(v) = Amin(v). If A(v) is modified then we must have A(v) @ d.

However, from Lemma 14 we always have that A ≤ Amin implying
A(v) ≤ Amin(v) and since A(v) is never decreased, we also have that
A(v) = Amin(v) after the iteration.

2. Let v ∈ W . Now suppose v is removed from W . This can only happen if
v ∈ Passed due to line 7. From Lemma 13 we have that A(u) = Amin(u)
for all u such that v ⇒+

A u. Then the evaluation of E(v) and following
assignment sets A(v) = Amin(v).

3. Let Dep(v) = ∅. It can only be violated at line 20 but then the case v ∈W
is established.

4. Our assumption here is that E(v) ∈ FM , so this case does not apply. ut
Theorem 4. Algorithm 2 terminates and returns the value Amin(v0).

Proof. The proof argument is the same as in Theorem 2, but with Lemma 6
replaced by Lemma 14, and Lemma 7 replaced by Lemma 15. ut

Implementability of Pickable. The definition of pickable given in Defini-
tion 6 is impractical to implement since it requires examing all descendants of
a vertex and hence breaks the possibility for on-the-fly search. For implemen-
tation purposes, we instead treat W as a last-in-first-out stack where pushing
a vertex that is already in W does nothing (hence W still behaves as a set).
First, it effectively enforces a depth-first-like search. Secondly, after removing
any vertex v where E(v) /∈ FM from W , because there are no cycles among
vertices labelled with non-monotonic functions, we know that there are no de-
scendants u where v →+ u in W . We show that for a non-empty stack the top
element is always pickable.

Lemma 16. If W is non-empty then the vertex on top of the stack W is
pickable.

Proof. Let v be the top-most vertex on the stack W . We prove the lemma by
induction on dist(v).
– Assume dist(v) = 0. Then E(v) ∈ FM and pickable condition A is true.
– Assume dist(v) = m > 0. If E(v) ∈ FM then pickable condition A is true.

Otherwise we must have E(v) /∈ FM . If v /∈ Passed then pickable condition
B is true. If v ∈ Passed then we must have added all u where v ⇒A u
to stack W and we have dist(u) < m. Then by the I.H. for each such
u it must have been pickable when it was last on top of the stack using
either pickable condition A or C (since B keeps it in W) and evaluated to
A(u) = E(u)(A(E(u)1), . . . , A(E(u)k)). Then v satisfies pickable condition
C. ut

Paper C. Extended Abstract Dependency Graphs

126

struct Value {
bool operator ==(const Value &);
bool operator !=(const Value &);
bool operator <(const Value &);

};

struct VertexRef {
bool operator ==(const VertexRef &);
bool operator <(const VertexRef &);
bool isMonotone ();

};

struct ADG {
using Value = Value;
using VertexRef = VertexRef;
using EdgeTuple = vector <VertexRef >;
static Value BOTTOM;
VertexRef initialVertex ();
EdgeTuple getEdge(VertexRef& v);
using VRA =

typename algorithm:VertexRefAssignment <ADG >;
Value compute(const VRA*, const VRA**, size_t n);
void updateIgnored(const VRA*, const VRA**,

size_t n, vector <bool >& ignore);
bool ignoreSingle(const VRA* v, const VRA* u);

};

Fig. 4: The C++ interface

7 Implementation and Experimental Evaluation

We implemented the fixed-point algorithm for EADG in C++ and the signature
of the user-provided interface is given in Figure 4. The structure ADG is the main
interface the algorithm uses. It assumes the definition of the type Value that
represents the NOR, and the type VertexRef that represents a light-weight
reference to a vertex and the bottom element. The type aliased as VRA contains
both a Value and a VertexRef and represents the assignment of a vertex. The
user must also provide the implementation of the functions: initialVertex
that returns the root vertex v0, getEdge that returns ordered successors for a
given vertex, compute that computes E(v) for a given assignment of v and its
successors, and updateIgnored that receives the assignment of a vertex and
its successors and sets the ignore flags.

We instantiate this interface to three different applications as discussed
in Section 5. The source code of the algorithm and its instantiations is available
at https://launchpad.net/adg-tool/.

We shall now present a number of experiments showing that our generic
implementation of abstract dependency graph algorithm is competitive with
single-purpose implementations mentioned in the literature. The first two ex-
periments (bisimulation checking for CCS processes and CTL model checking
of Petri nets) were run on a Linux cluster with AMD Opteron 6376 proces-
sors running Ubuntu 14.04. We marked an experiment as OOT if it ran for

127

more than one hour and OOM if it used more than 16GB of RAM. The
final experiment for WCTL model checking required to be executed on a
personal computer as the tool we compare to is written in JavaScript, so
each problem instance was run on a Lenovo ThinkPad T450s laptop with
an Intel Core i7-5600U CPU @ 2.60GHz and 12 GB of memory. The repro-
ducibility package for the experiments discussed in this paper is available at
https://doi.org/10.5281/zenodo.3691837.

Size Time [s] Memory [MB]
DG ADG Speedup DG ADG Reduction

Lossy Alternating Bit Protocol – Bisimilar
3 83.03 78.08 +6% 71 58 +22%
4 2489.08 2375.10 +5% 995 810 +23%

Lossy Alternating Bit Protocol — Nonbisimilar
4 6.04 5.07 +19% 25 18 +39%
5 4.10 5.08 −19% 69 61 +13%
6 9.04 6.06 +49% 251 244 +3%

Ring Based Leader-Election — Bisimilar
8 21.09 18.06 +17% 31 23 +35%
9 190.01 186.05 +2% 79 71 +11%

10 2002.05 1978.04 +1% 298 233 +28%

Ring Based Leader-Election — Nonbisimilar
8 4.09 2.01 +103% 59 52 +13%
9 16.02 15.07 +6% 185 174 +6%

10 125.06 126.01 −1% 647 638 +1%

Fig. 5: Weak bisimulation checking comparison

7.1 Bisimulation Checking for CCS Processes

In our first experiment, we encode using ADG a number of weak bisimulation
checking problems for the process algebra CCS. The encoding was described
in [7] where the authors use classical Liu and Smolka’s dependency graphs to
solve the problems and they also provide a C++ implementation (referred to
as DG in the tables). We compare the verification time needed to answer both
positive and negative instances of the test cases described in [7].

Figure 5 shows the results where DG refers to the implementation from [7]
and ADG is our implementation using abstract dependency graphs. It displays
the verification time in seconds and peak memory consumptions in MB for
both implementations as well as the relative improvement in percents. We can
see that the performance of both algorithms is comparable, slightly in favour
of our algorithm, sometimes showing up to 103% speedup like in the case of
nonbisimilar processes in leader election of size 8. For nonbisimilar processes

Paper C. Extended Abstract Dependency Graphs

128

modelling alternating bit protocol of size 5 we observe a 19% slowdown caused
by the different search strategies so that the counter-example to bisimilarity
is found faster by the implementation from [7]. Memory-wise, the experiments
are in favour of our implementation.

We further evaluated the performance for weak simulation checking on task
graph scheduling problems. We verified 180 task graphs from the Standard
Task Graph Set as used in [7] where we check for the possibility to complete all
tasks within a fixed deadline. Both DG and ADG solved 35 task graphs using
the classical Liu Smolka approach. However, once we allow for the certain-zero
optimization in our approach (requiring to change only a few lines of code
in the user-defined functions), we can solve 107 of the task graph scheduling
problems.

Name Speedup Memory reduction
VerifyPN ADG Speedup VerifyPN ADG Reduction

VerifyPN/ADG Best 2
Angiogenesis-PT-20:02 OOM 0.01 +∞ OOM 6 +∞
AutoFlight-PT-02b:04 OOM 0.01 +∞ OOM 6 +∞

VerifyPN/ADG Middle 11
CloudReconf-PT-301:16 637.67 684.23 −7% 5610 8361 −33%
NeoElection-PT-3:15 37.26 40.01 −7% 479 773 −38%
Referendum-PT-0500:15 12.77 13.72 −7% 151 263 −43%
BrAnVeh-PT-V80P50N20:08 1.47 1.58 −7% 43 62 −31%
ASLink-PT-04a:15 105.66 113.61 −7% 1109 1580 −30%
NeoElection-PT-3:14 38.09 40.96 −7% 479 773 −38%
PolyORB-PT-S04J04T06:08 55.63 59.85 −7% 912 1419 −36%
Referendum-PT-0200:06 0.39 0.42 −7% 20 25 −20%
Angiogenesis-PT-05:08 0.13 0.14 −7% 12 16 −25%
DES-PT-02a:06 0.13 0.14 −7% 9 11 −18%
Diffusion2D-PT-D30N150:05 1.04 1.12 −7% 35 53 −34%

VerifyPN/ADG Worst 2
TriangularGrid-PT-3026:09 0.01 OOM −∞ 6 OOM −∞
TriangularGrid-PT-3026:11 0.01 OOM −∞ 6 OOM −∞

Fig. 6: Time and peak memory comparison for CTL model checking (in seconds)

7.2 CTL Model Checking of Petri Nets

In this experiment, we compare the performance of the tool TAPAAL [8] and
its engine VerifyPN [13], version 2.1.0, on the Petri net models and CTL queries
from the 2018 Model Checking Contest [17]. The database consists of 767 mod-
els and we run all ‘CTLCardinality’ queries of which there are 16 for each

129

model. This resulted in 12272 model checking instances1. Because the CTL
queries allow for negation, we employ here our extension with nonmonotonic
functions.

The results comparing the speed of model checking are shown in Figure 6.
The model checking executions are ordered by the ratio of the verification time
of VerifyPN vs. ADG and include 7555 model checking instances where at least
one of the tools provided an answer (except for two inconsistent cases that were
removed). In the result table we show the best two instances for our tool, the
middle eleven instances and the worst two instances. The memory requirements
for these executions are included as well. The results significantly vary on some
instances as both algorithms are on-the-fly with early termination and certain-
zero detection and depending on the search strategy the verification times can
be largely different. Nevertheless, we can observe that on the average (middle)
experiments our generic approach is only 7% slower than the one-purpose and
highly optimized model checking engine VerifyPN. The median peak memory
shows that we are using on average 12% more memory (we are not presenting
the memory table as all 11 middle cases VerifyPN used 7MB and we used 8MB).

Out of the 12272 model checking executions, VerifyPN solves 7318 instances
including 1351 exclusive answers that our implementation ADG does not solve.
ADG solves 6186 instances including 219 exclusive answers that VerifyPN does
not solve. We analyzed the 1351 executions that we do not solve and except
for 39 executions, they all run out of memory. This shows that on these mem-
ory demanding instances, VerifyPN allows for a more efficient storage of the
state-space. We believe that this is due to the use of the waiting set where we
store directly vertices (allowing for a fast access to their assignment), compared
to storing references to hyperedges in the VerifyPN implementation (saving
the memory). In both proposed algorithms, the call to UpdateDependents
(line 8 in Algorithm 2) is an optional optimization; however, without it ADG
only solves 4150 of the instances compared to 6186 answers in case that the
optimization is employed.

In conclusion, the CTL experiments demonstrate that the performance of
the award-winning tool TAPAAL and its engine VerifyPN are comparable on
the median cases to our generic model checking approach, showing only a 7%
slowdown in the running time and 12% higher memory requirement. Compared
to the results in conference version of this paper [9], this is the case also for
CTL queries with negation that required our novel extension of ADG with
nonmonotonic functions.

7.3 Weighted CTL Model Checking

Our last experiment compares the performance on the model checking of
weighted CTL against weighted Kripke structures as used in the WKTool [12].
1 During the experiments we turned off the query preprocessing using linear pro-
gramming as it solves a large number of queries by applying logical equivalences
instead of performing the state-space search that we are interested in.

Paper C. Extended Abstract Dependency Graphs

130

Instance Time [s] Satisfied?
WKTool ADG Speedup

Alternating Bit Protocol: EF [≤ Y] delivered = X

B=5 X=7 Y=35 7.10 0.83 +755% yes
B=5 X=8 Y=40 4.17 1.05 +297% yes
B=6 X=5 Y=30 7.58 1.44 +426% yes
Alternating Bit Protocol: EF (send0 && deliver1) ‖ (send1 && deliver0)

B=5, M=7 7.09 1.39 +410% no
B=5, M=8 4.64 1.60 +190% no
B=6, M=5 7.75 2.37 +227% no

Leader Election: EF leader > 1

N=10 5.88 1.98 +197% no
N=11 25.19 9.35 +169% no
N=12 117.00 41.57 +181% no

Leader Election: EF [≤ X] leader

N=11 X=11 24.36 2.47 +886% yes
N=12 X=12 101.22 11.02 +819% yes
N=11 X=10 25.42 9.00 +182% no

Task Graphs: EF [≤ 10] done = 9

T=0 26.20 22.17 +18% no
T=1 6.13 5.04 +22% no
T=2 200.69 50.78 +295% no

Fig. 7: Speed comparison for WCTL (B–buffer size, M–number of messages,
N–number of processes, T–task graph)

We implemented the weighted symbolic dependency graphs in our generic in-
terface and run the experiments on the benchmark from [12]. This includes
experiments for leader election and alternating bit protocol as well as task
graph scheduling problems for two processors. The systems are described in a
weighted extension of CCS where the weight is associated to sending messages
in the first two protocols and it represents passing of time in the scheduling
problem. The measurements are presented in Figure 7 and each result is the
median over 3 runs. The results demonstrate in some cases speedups of almost
9 times with over half the cases being more than 2 times faster. We remark
that because WKTool is written in JavaScript, it was impossible to gather its
peak memory consumption.

8 Conclusion

We defined a formal framework for minimum fixed-point computation on de-
pendency graphs over an abstract domain of Noetherian orderings with the least
element, and extended this approach so that it can deal also with nonmono-
tonic functions. Our framework generalizes a number of variants of dependency
graphs recently published in the literature. We suggested an efficient, on-the-

131

fly algorithm for computing the minimum fixed-point assignment, including
performance optimization features, and we proved its correctness.

On a number of examples, we demonstrated the applicability of our frame-
work, showing that its performance is matching those of specialized algo-
rithms already published in the literature. Last but not least, we provided
an open source C++ library that allows the user to specify only a few domain-
specific functions in order to employ the generic algorithm described in this
paper. Experimential results show that we are competitive with e.g. the tool
TAPAAL, winner of the 2018 and 2019 Model Checking Contest in the CTL
category [17,16], showing similar time and memory performance on the median
instances of the model checking problem.

In the future work, we shall apply our approach to other application do-
mains (in particular probabilistic model checking), develop and test generic
heuristic search strategies as well as provide a parallel/distributed implemen-
tation of our general algorithm (that is already available for some of its concrete
instances [14,6]) in order to further enhance the applicability of the framework.

Acknowledgments. The work was funded by Innovation Fund Denmark center
DiCyPS, ERC Advanced Grant LASSO and DFF project QASNET.

References

1. Andersen, H.R.: Model checking and boolean graphs. In: B. Krieg-Brückner
(ed.) ESOP ’92, 4th European Symposium on Programming, Rennes, France,
February 26-28, 1992, Proceedings, Lecture Notes in Computer Science, vol. 582,
pp. 1–19. Springer (1992). https://doi.org/10.1007/3-540-55253-7_1. URL
https://doi.org/10.1007/3-540-55253-7_1

2. Andersen, H.R.: Model checking and Boolean graphs. Theoretical Com-
puter Science 126(1), 3 – 30 (1994). https://doi.org/https://doi.org/10.
1016/0304-3975(94)90266-6. URL http://www.sciencedirect.com/science/
article/pii/0304397594902666

3. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly al-
gorithms for the analysis of timed games. In: Proceedings of CONCUR’05, LNCS,
vol. 3653, pp. 66–80. Springer (2005). https://doi.org/10.1007/11539452_9

4. Christoffersen, P., Hansen, M., Mariegaard, A., Ringsmose, J.T., Larsen, K.G.,
Mardare, R.: Parametric Verification of Weighted Systems. In: É. André,
G. Frehse (eds.) SynCoP’15, OASIcs, vol. 44, pp. 77–90. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015)

5. Dalsgaard, A., Enevoldsen, S., Fogh, P., Jensen, L., Jensen, P., Jepsen, T.,
Kaufmann, I., Larsen, K., Nielsen, S., Olesen, M., Pastva, S., Srba, J.: A
distributed fixed-point algorithm for extended dependency graphs. Funda-
menta Informaticae 161(4), 351 – 381 (2018). https://doi.org/https://doi.
org/10.3233/FI-2018-1707. URL https://content.iospress.com/articles/
fundamenta-informaticae/fi1707

6. Dalsgaard, A., Enevoldsen, S., Fogh, P., Jensen, L., Jepsen, T., Kaufmann, I.,
Larsen, K., Nielsen, S., Olesen, M., Pastva, S., Srba, J.: Extended dependency
graphs and efficient distributed fixed-point computation. In: Proceedings of the

Paper C. Extended Abstract Dependency Graphs

132

38th International Conference on Application and Theory of Petri Nets and Con-
currency (Petri Nets’17), LNCS, vol. 10258, pp. 139–158. Springer-Verlag (2017)

7. Dalsgaard, A., Enevoldsen, S., Larsen, K., Srba, J.: Distributed computation
of fixed points on dependency graphs. In: Proceedings of Symposium on De-
pendable Software Engineering: Theories, Tools and Applications (SETTA’16),
LNCS, vol. 9984, pp. 197–212. Springer (2016). https://doi.org/10.1007/
978-3-319-47677-3_13

8. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K., Møller, M., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Proceedings of the 18th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’12), LNCS, vol. 7214, pp.
492–497. Springer-Verlag (2012)

9. Enevoldsen, S., Larsen, K., Srba, J.: Abstract dependency graphs and their ap-
plication to model checking. In: Proceedings of the 25th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’19), LNCS, vol. 11427, pp. 316–333. Springer-Verlag (2019). https:
//doi.org/10.1007/978-3-030-17462-0_18

10. Enevoldsen, S., Larsen, K., Srba, J.: Model verification through dependency
graphs. In: Proceedings of the 26th International SPIN Symposium on Model
Checking of Software (SPIN’19), LNCS, vol. 11636, pp. 1–19. Springer-Verlag
(2019). https://doi.org/10.1007/978-3-030-30923-7_1

11. Jensen, J., Larsen, K., Srba, J., Oestergaard, L.: Local model checking of
weighted CTL with upper-bound constraints. In: Proceedings of SPIN’13, LNCS,
vol. 7976, pp. 178–195. Springer-Verlag (2013). https://doi.org/10.1007/
978-3-642-39176-7_12

12. Jensen, J., Larsen, K., Srba, J., Oestergaard, L.: Efficient model checking of
weighted CTL with upper-bound constraints. International Journal on Software
Tools for Technology Transfer (STTT) 18(4), 409–426 (2016). https://doi.org/
10.1007/s10009-014-0359-5

13. Jensen, J., Nielsen, T., Oestergaard, L., Srba, J.: TAPAAL and reachability
analysis of P/T nets. LNCS Transactions on Petri Nets and Other Models
of Concurrency (ToPNoC) 9930, 307–318 (2016). https://doi.org/10.1007/
978-3-662-53401-4_16

14. Joubert, C., Mateescu, R.: Distributed local resolution of boolean equation sys-
tems. In: 13th Euromicro Workshop on Parallel, Distributed and Network-Based
Processing (PDP 2005), 6-11 February 2005, Lugano, Switzerland, pp. 264–
271. IEEE Computer Society (2005). https://doi.org/10.1109/EMPDP.2005.19.
URL https://doi.org/10.1109/EMPDP.2005.19

15. Keiren, J.J.A.: Advanced reduction techniques for model checking. Ph.D. thesis,
Eindhoven University of Technology (2013)

16. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amparore, E., Bec-
cuti, M., Berthomieu, B., Ciardo, G., Dal Zilio, S., Liebke, T., Li, S., Meijer,
J., Miner, A., Srba, J., Thierry-Mieg, Y., van de Pol, J., van Dirk, T., Wolf,
K.: Complete Results for the 2019 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2019/results.php (2019)

17. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amparore, E., Bec-
cuti, M., Berthomieu, B., Ciardo, G., Dal Zilio, S., Liebke, T., Linard, A.,
Meijer, J., Miner, A., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf,
K.: Complete Results for the 2018 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2018/results.php (2018)

133

18. Larsen, K.G.: Efficient local correctness checking. In: G. von Bochmann, D.K.
Probst (eds.) Computer Aided Verification, Fourth International Workshop, CAV
’92, Montreal, Canada, June 29 - July 1, 1992, Proceedings, Lecture Notes in
Computer Science, vol. 663, pp. 30–43. Springer (1992). https://doi.org/10.
1007/3-540-56496-9_4. URL https://doi.org/10.1007/3-540-56496-9_4

19. Larsen, K.G., Liu, X.: Equation solving using modal transition systems. In:
Proceedings of the Fifth Annual Symposium on Logic in Computer Science
(LICS ’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990, pp. 108–117. IEEE
Computer Society (1990). https://doi.org/10.1109/LICS.1990.113738. URL
https://doi.org/10.1109/LICS.1990.113738

20. Liu, X., Ramakrishnan, C.R., Smolka, S.A.: Fully local and efficient evaluation
of alternating fixed points. In: Proceedings of TACAS’98, LNCS, vol. 1384, pp.
5–19. Springer (1998). https://doi.org/10.1007/BFb0054161

21. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points
(extended abstract). In: Proceedings of ICALP’98, LNCS, vol. 1443, pp. 53–66.
Springer-Verlag, London, UK, UK (1998). URL http://dl.acm.org/citation.
cfm?id=646252.686017

22. Mader, A.: Modal µ-calculus, model checking and gauß elimination. In:
E. Brinksma, R. Cleaveland, K.G. Larsen, T. Margaria, B. Steffen (eds.) Tools and
Algorithms for Construction and Analysis of Systems, First International Work-
shop, TACAS ’95, Aarhus, Denmark, May 19-20, 1995, Proceedings, Lecture Notes
in Computer Science, vol. 1019, pp. 72–88. Springer (1995). https://doi.org/
10.1007/3-540-60630-0_4. URL https://doi.org/10.1007/3-540-60630-0_4

23. Mariegaard, A., Larsen, K.G.: Symbolic dependency graphs for PCTL model-
checking. In: A. Abate, G. Geeraerts (eds.) Formal Modeling and Analysis
of Timed Systems - 15th International Conference, FORMATS 2017, Berlin,
Germany, September 5-7, 2017, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 10419, pp. 153–169. Springer (2017). https://doi.org/10.1007/
978-3-319-65765-3_9. URL https://doi.org/10.1007/978-3-319-65765-3_9

24. Mateescu, R.: Efficient diagnostic generation for boolean equation systems. In:
S. Graf, M.I. Schwartzbach (eds.) Tools and Algorithms for Construction and
Analysis of Systems, 6th International Conference, TACAS 2000, Held as Part of
the European Joint Conferences on the Theory and Practice of Software, ETAPS
2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings, Lecture Notes in
Computer Science, vol. 1785, pp. 251–265. Springer (2000). https://doi.org/10.
1007/3-540-46419-0_18. URL https://doi.org/10.1007/3-540-46419-0_18

25. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math 5(2) (1955)

Paper C. Extended Abstract Dependency Graphs

134

Paper D

Verification of Multiplayer Stochastic Games via
Abstract Dependency Graphs

135

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

136

Verification of Multiplayer Stochastic Games
via Abstract Dependency Graphs

Søren Enevoldsen, Mathias Claus Jensen, Kim Guldstrand Larsen, Anders
Mariegaard*, and Jǐŕı Srba

Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark
{senevoldsen,mcje,kgl,am,srba}@cs.aau.dk

Abstract. We design and implement an efficient model checking algo-
rithm for alternating-time temporal logic (ATL) on turn-based multi-
player stochastic games with weighted transitions. This logic allows us
to query about the existence of multiplayer strategies that aim to maxi-
mize the probability of game runs satisfying resource-bounded next and
until logical operators, while requiring that the accumulated weight
along the successful runs does not exceed a given upper bound. Our
method relies on a recently introduced formalism of abstract depen-
dency graphs (ADG) and we provide an efficient reduction of our model
checking problem to finding the minimum fixed-point assignment on an
ADG over the domain of unit intervals extended with certain-zero op-
timization. As the fixed-point computation on ADGs is performed in
an on-the-fly manner without the need of a priori generating the whole
graph, we achieve a performance that is comparable with state-of-the-
art model checker PRISM-games for finding the exact solutions and
sometimes an order of magnitude faster for queries that ask about ap-
proximate probability bounds. We document this on a series of scalable
experiments from the PRISM-games benchmark that we annotate with
weight information.

1 Introduction

Advances in model checking over the last decades allow us to verify larger sys-
tems using less resources. More recently, addition of quantitative aspects to
model checking techniques became an important research topic. In order to
model real-world applications, modelling formalisms must reflect both prob-
abilistic choices [5] that model the uncertainties in system behaviour and at
the same time be able to reason about quantitative aspects such as cost [22].
Moreover, in order to take into account the unpredictable environment, we
need to verify that the desirable properties hold for all possible environmental
behaviours. These aspects are usually modelled as games—in our case multi-
player games [39] where the players form coalitions in order to enforce a given
property.

137

In order to reason about the probabilistic, cost and game aspects, we study
the model of turn-based multiplayer stochastic games [40] where transitions
contain multidimensional cost (weight) vectors, representing different cost quan-
tities. Multidimensional verification is necessary in applications where the sys-
tem must respect bounds on several dependent quantities simultaneously (see
e.g [26,12,27]), such as consumption of energy and the discrete progression of
time. We assume that any play of a game eventually accumulates some weight,
which is natural for many models that include quantities such as time and
energy, as executing an infinite number of actions without progressing time
or consuming energy, is in many cases unrealistic. Our model can be seen as
a weight extension of PRISM-games [32], where we consider properties formu-
lated in an extension of alternating-time temporal logic (ATL) [1] that contains
operators that specify existence of strategies for player coalitions ensuring cost-
and probability bounded next or until properties. Hence we can ask questions
like ”is the probability that player 1 and 3 can form a coalition such that they
enforce that a certain state is reachable within a total cost of c1 time units and
c2 units of energy, greater than 0.8”? . We can thus reason about strategies
that enforce strict bounds on multiple accumulating quantities simultaneously.
This has many practical applications for systems that e.g have to complete a
number of tasks within a given time-limit, but must at the same time also stay
within an energy budget, no matter how the environment behaves.

Our verification approach is based on a novel reduction to the problem of
finding fixed points on abstract dependency graphs (ADG) [25,23], a recently
introduced formalism that extends classical dependency graphs by Liu and
Smolka [35]. Dependency graphs allow us to assign Boolean values to nodes in
the graph, whereas ADGs assign to nodes values from a more abstract domain.
In our case, we use the domain of the unit interval, representing probabili-
ties, extended with a special value called ”certain-zero” [20] that allows for
an early termination of the on-the-fly computation of the fixed point on the
ADG. We formally prove the correctness of our encoding and provide an effi-
cient implementation that allows us to take as input the models described in
PRISM-games and perform model checking in an on-the-fly manner. On three
different PRISM-games case studies (annotated with the cost information),
we demonstrate that our implementation is performance-wise comparable to
the state-of-the-art model checker PRISM-games on queries that include exact
probability bounds. However, once we lower the probability threshold from the
exact probability bound, our on-the-fly algorithm demonstrates the potential
of significantly outperforming PRISM-games.

Related Work Since the introduction of stochastic games in the seminal work
by Shapley [39], a number of variations and extensions of the classical for-
malism have been studied by the verification community. From a theoretical
perspective, Condon [18,19] studies the complexity and algorithms for (simple)
stochastic two-player games where the objective is to determine the winning
probability for a given player. More recently, [4,10] consider controller synthe-

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

138

sis for turn-based stochastic two-player games with PCTL winning objectives.
Compared to our work, these papers consider controller synthesis instead of
model-checking, and do not consider quantitative games and offer no imple-
mentation.

For quantitative verification of turn-based stochastic multiplayer games, [13]
presents the logic rPATL (Probabilistic Alternating-Time Temporal Logic with
Rewards) that naturally extends the logic Probabilistic Alternating-Time Tem-
poral Logic [16] (PATL) with reward-operators. PATL is itself a probabilistic
extension of ATL. A similar logic is introduced in [36], interpreted on con-
current games. The logic rPATL allows one to state that a coalition of play-
ers has a strategy such that either the probability of an event happening or
an expected reward measure, is within a given threshold. Verifying rPATL
properties on stochastic multiplayer games has been implemented in PRISM-
games [32]. PRISM-games supports analysis of various types of games, verifi-
cation of multi-objective properties [14] and has been applied to several case-
studies (see e.g [15,13]). Compared to our approach, PRISM-games does not
directly support multidimensional reward-bounded properties and the current
implementation offers no on-the-fly verification techniques that we demonstrate
can yield a considerable speedup. Recently, a number of papers [6,38,28] have
improved value iteration, the underlying technique of PRISM-GAMES, to deal
with inaccuracies in the computed results stemming from certain termination
criteria based on lower bound approximations. The approach has been applied
to simple stochastic games [31,3] but has yet to be incorporated into PRISM-
GAMES. Although our approach also computes lower bounds, we prove that we
always terminate and compute the exact answer, relying on the fact that any
formula is weight-constrained and any path of any game eventually accumulates
weight. Another approach to computing measures on probabilistic models with
multi-dimensional rewards and non-determinism (MDPs) is presented in [27].
A performance comparison is left for the future work.

Lastly, our work is a continuation of the work done in [30], where a special-
purpose algorithm is developed for PCTL model-checking on models with mul-
tidimensional weights.We lift the approach to games by showing how to for-
mally treat the game features in ADGs and we consider a new set of domain
values that treat the probabilities symbolically while the weights are encoded
explicitly; our novel encoding outperforms the pure symbolic implementation
provided in [30] by an order of magnitude. Finally, our approach is more generic
as it relies on the notion of ADGs and variations of the logic and/or the model
can often be dealt with by minor modifications of the ADG construction, with-
out the need of changing the underlying fixed-point algorithm. A related ab-
stract approach is presented in [7,8], for solving systems of fixed-point equations
over (continuous) lattices via a game-theoretic approach. An example applica-
tion is (lattice-valued) µ-calculus model-checking [8] that deals with systems of
fixed-point equations over infinite lattices (e.g the reals), which in turn can be
applied to model-checking probabilistic CTL or probabilistic µ-calculi.

139

m1

{a}
m3

{b}

m2{a}

α

3, 1
2

5, 1
2

β

3, 9
10

3, 1
10

α, 1, 1

β, 1, 1

α, 1, 1

(a) Turn-based stochastic game

m1

{a}
m3

{b}

m2{a} 3, 1
2

5, 1
21, 1

1, 1

(b) Markov reward model

Fig. 1: Two simple models

2 Turn-Based Stochastic Games

Before introducing turn-based stochastic games, we present some preliminaries.
For any set X, Xn is the set of all n-dimensional vectors with elements from
X and xn denotes the n-dimensional vector where x ∈ X is at all coordinates.
Thus, Nn is the set of all n-dimensional vectors of natural numbers and 0n is the
0-vector. We assume a fixed dimensionality n > 0 and any vector is written in
boldface e.g. x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors. For any such two
vectors, we let x ≥ y if and only if xi ≥ yi for all 1 ≤ i ≤ n. For any countable
non-empty set X, we let D(X) = {µ : X → [0, 1] |∑x∈X µ(x) = 1} denote the
set of probability distribution on X. For any distribution µ ∈ D(X), the support
of µ is defined as support(µ) = {x ∈ X | µ(x) > 0}. By Dfin(X) ⊆ D(X) we
denote the set of all distributions on X with finite support. For any two sets
X and Y we denote by f : X ⇀ Y that f is a partial function from domain
dom(f) = X to range ran(f) = Y . For a set X, let X∗ be the set of all finite
strings over X and for any string w = a1a2a3 · · · an ∈ X∗, let |w| = n denote
the length of w and for all 1 ≤ i ≤ |w|, let w[i] = ai be the i’th symbol of w.
The empty string is denoted by ε.

2.1 Definition of Stochastic Games

We now present turn-based stochastic multiplayer games [39], where the states
are partitioned into a number of sets, each set owned by a player of the game.
The game begins in a state owned by one of the players and proceeds in turns,
by letting the owner of the current state play one of the available actions after
which the game then transitions to the next state by a probabilistic choice. Each
such transition has an associated cost vector, that can naturally be interpreted
as the cost of the transition. Hence, given a strategy for each player in the game,
any non-determinism is resolved and the induced model is what is known as a
Markov reward model with impulse rewards [2,17]. It is a folklore result that
deterministic strategies are sufficient (see e.g. [37]). We assume a fixed finite
set of atomic propositions AP.

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

140

Definition 1. A Markov reward model (MRM) is a tuple M = (M,→, `)
where M is a finite set of states, → : M → Dfin(Nn × M) is the transition
function and ` : M → 2AP is the labelling function.

For any state m ∈ M , the probability of transitioning to another state m′

with cost w is given by →(m)(w,m′). A w-successor of a state m is any state
m′ such that →(m)(w,m′) > 0. A path is an infinite sequence of transitions
π = (m1,w1,m2), (m2,w2,m3) · · · where si+1 is a wi-successor of si for all
i ≥ 1. We let Paths(m) denote the set of all paths starting in m and for any
path π ∈ Paths(m) we let π[i] denote the i’th state of π and by πn denote the

finite prefix of π ending in state π[n]. We let W(π)(j) =
∑j−1
i=1 wi denote the

accumulated cost up until the state π[j]. Finally, we let Paths(M) be the set of
all paths of M . An example of an MRM can be seen in Figure 1b.

In order to measure events of any MRM M = (M,→, `), we introduce
the classical cylinder set construction from [5, Chapter 10]. For any finite se-
quence w = (m1,w1,m2), (m2,w2,m3) · · · (mn−1,wn−1,mn), the cylinder set
of w, C(w) is the set of all paths having w as a prefix, i.e., C(w) = {π ∈
Paths(M) | πn = w} and the measure associated to the cylinder of w is given

by PM (C(w)) =
∏n−1
i=1 →(mi)(wi,mi+1). We can now define the probability

space (Mω, Σ,PM) where Σ is the smallest σ-algebra that contains the cylin-
der sets of all finite alternating sequences of states and costs.

We now lift MRMs to stochastic games. Let Act be a fixed finite set of
actions.

Definition 2. A turn-based stochastic multiplayer game is a structure G =
(Π,M, {Mi}i∈Π ,→, `) where Π is a finite set of players, M is a finite set of
state, {Mi}i∈Π is a partition of M such that for any i ∈ Π, Mi is a finite
set of states controlled by player i, → : M × Act ⇀ Dfin(Nn ×M) is the finite
(partial) transition function and ` : S → 2AP is a labelling function.

For any state m ∈ M we let Act(m) = {α ∈ Act | (m,α) ∈ dom(→)}
denote the set of enabled actions in state m and assume any game to be
non-blocking by requiring all states to have at least one enabled action, i.e
Act(m) 6= ∅. An α-successor of a state m is any state m′ such that the prob-
ability of transitioning from m by playing the α action is strictly positive
for some cost vector w ∈ Nn, i.e →(m,α)(w,m′) > 0. We let succ(m)α be
the set of all α-successors of m. A path is an infinite sequence of transitions
π = (m1, α1,w1,m2), (m2, α2,w2,m3), . . . where mi+1 is an αi-successor of
mi with cost vector wi for all i ≥ 1. For any action α ∈ Act(m) we let
k = min{w | →(m,α)(w,m′) > 0} be the smallest possible transition cost
when playing action α in m and say that α is k′-enabled in m whenever k′ ≥ k
with Actk′(m) ⊆ Act(m) being the set of all k′-enabled actions in m. Thus, the
set Actk′(m) contains the actions available to the player owning state m, if only
transitions with a cost at most k′ are permitted. We extend the path notation
introduced for MRMs by letting Paths∗i be the set of all finite paths that end
in a state owned by player i ∈ Π and for any such finite path π ∈ Paths∗i , the
last state is given by last(π).

141

Remark 1. Notice that if |Π| = 1, the resulting model is a Markov decision
process (MDP) [37] with impulse rewards and if furthermore |Act| = 1, the
model is an MRM. Hence, turn-based stochastic multiplayer games subsume
both MDPs and MRMs.

In the rest of the paper, we restrict the class of games, by assuming that the
accumulated cost of any loop of any game is of strictly positive magnitude.
Formally, for any state m ∈ M , it is the case that for all paths π ∈ Paths(m)
such that π[j] = m for some j ∈ N (a loop), we have that W(π)(j) 6= 0n.

Example 1. Figure 1a depicts a simple turn-based stochastic game G with two
players Π = { , }. The states depicted as circles, m1 and m3 belong to
player while the state m3 belongs to player . The transition function is
depicted by edges labelled by a given enabled action, followed by the cost of the
transition and probabilities to successor states. The labelling of each state is
given next to the state. In case the probability distribution assigns probability
1 to a single state, there is no branching and we simply label the edge with the
action, probability 1 and the associated weight.

Starting from the state m1, player is in control and may choose either of
the actions β and α. For β, there is a small probability, 1

10 , of transitioning to
state m3 whereas for action α, the game transitions to m2 with probability 1

2 .
In m2, player may choose to let the game stay in state m2 by the self-loop,
or decide to transition to m3.

If the two players are considered opponents and the goal of player is to
maximize the probability of reaching a state labelled b (m3) within a given
bound on the accumulated cost of reaching b, the only safe option is to always
choose the action β in state m1 as player can force the game to stay in state
m2 if it is ever reached. On the other hand, if the two players work together,
player always plays the action β in m2 to ensure that state m3 is reached.

2.2 Strategies

As indicated by Example 1, any game unfolds by applying concrete strategies for
each player, specifying which action to play in a given state. We now formally
define strategies by first fixing a game G = (Π,M, {Mi}i∈Π ,→, `). Given a
player, i ∈ Π, a (history-dependent deterministic) strategy for player i in G is
a function σ : Paths∗i → Act, that associates an action with each finite path
ending in a state owned by player i. Thus, a strategy prescribes which action
a player should play in a given state, given the full history of the game. For a
strategy to be sound, only actions enabled in the given state must be played.
Formally, a strategy σ for player i is sound if for any finite path π ∈ Paths∗i
with last(π) = mi ∈ Mi, it holds that σ(π) ∈ Act(mi). We let Si denote the
set of all sound strategies for player i in G.

Remark 2. If σ(π1) = σ(π2) for all π1, π2 ∈ Paths∗i with last(π1) = last(π2),
we say that σ is a memoryless strategy for player i, as the action prescribed
depends only on the last state of the game.

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

142

Strategies naturally extend to sets of players by considering what is commonly
known as a coalition of players. A coalition strategy for any coalition C ⊆ Π in
G, is a set of sound strategies, {σi}i∈C , such that σi ∈ Si for all i ∈ C. We let
SC denote the set of all coalition strategies for the coalition C, use σC to range
over elements of SC and let C = Π \C be the coalition containing the players
in the complement of C. Given a state m ∈M , coalition strategies σC and σC ,
a unique MRM is induced from G by resolving the non-deterministic choices
as prescribed by σC and σC . We let PσC ,σCG denote the probability measure on
the induced MRM.

Example 2. Consider again the game from Figure 1a and the memoryless strate-
gies σα and σβ , respectively defined for any π ∈ Paths∗ and π ∈ Paths∗ as

σα(π) = α and σβ (π) = β. The induced MRM is the one depicted in Fig-
ure 1b.

3 Probabilistic Weighted ATL

As a specification language, we employ an extension of Alternating-time Tem-
poral Logic (ATL [1]) to reason about whether or not a given coalition of
players can together enforce the game to enjoy a given property, regardless of
the strategy of the remaining players of the game. Hence, a witness of satis-
faction is a coalition-strategy. Our logic is syntactically similar to probabilistic
resource-bounded ATL proposed by Nguyen and Rakib [36], but interpreted on
turn-based games instead of concurrent games. It is also similar to rPATL [13]
employed by PRISM-games, except that we do no support expected reward
measures but we allow instead for multi-cost bounded path formulae. We re-
strict negation to atomic propositions and therefore include conjunction and
disjunction explicitly.

Definition 3 (Syntax). The set of PWATL formulae is given by the gram-
mar:

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | 〈〈C〉〉.λ[ψ] (State Formulae)

ψ ::= X≤k φ | φ U≤k φ (Path Formulae)

where a ∈ AP, C ⊆ Π, λ ∈ [0, 1], k ∈ Nn and . = {>,≥}.

The set of PWATL state-formulae is denoted by LATL. A formula 〈〈C〉〉.λ[ψ] ∈
LATL is satisfied by a state m ∈ M of a game G = (Π,M, {Mi}i∈Π ,→, `), if
there exists a coalition strategy σC for the players in C ⊆ Π such that, no
matter which coalition strategy σC is assigned to the remaining players in C,
measuring paths that satisfy ψ in the MRM induces from G by σC and σC ,
yields a probability p such that p . λ.

143

Definition 4 (Semantics). For a game G = (Π,M, {Mi}i∈Π ,→, `), state
m ∈M , and path π ∈ Paths, PWATL satisfiability is defined inductively:

G,m |= a iff a ∈ `(m)

G,m |= ¬a iff a /∈ `(m)

G,m |= φ1 ∧ φ2 iff G,m |= φ1 and G,m |= φ2

G,m |= φ1 ∨ φ2 iff G,m |= φ1 or G,m |= φ2

G,m |= 〈〈C〉〉.λ[ψ] iff ∃σC ∈ SC .∀σC ∈ SC .

PσC ,σCG ({π ∈ Paths(m) | G, π |= ψ}) . λ
G, π |= φ1U≤kφ2 iff ∃j ∈ N.G, π[j] |= φ2,W(π)(j) ≤ k

and G, π[i] |= φ1 for all i < j

G, π |= X≤kφ iff G, π[2] |= φ and W(π)(1) ≤ k

Example 3. Consider once again the game in Figure 1a and the formula φ =
〈〈C〉〉> 1

2
[aU≤8b] with C = { , } By the memoryless strategies from Exam-

ple 2,

PσC ,∅G ({π ∈ Paths(m1) | G, π |= aU≤8b}) =
1

2

where σC = {σα, σβ}. This is easily verified by inspecting the induced MRM
in Figure 1b. Hence, the two memoryless strategies do not prove G,m1 |= φ.

To construct a strategy for G,m1 |= φ, we modify the player strategy.
Instead of always playing action α, the action will depend on the accumulated
cost of the game history: for any finite path π ∈ Paths∗ of length at least j,

σ∗(π) =

{
β if W(π)(j) ≤ 4

α otherwise
.

4 Model Checking Through Dependency Graphs

In this section we demonstrate how the PWATL model-checking problem for
turn-based stochastic multiplayer games can be reduced to computing fixed
points on so-called abstract dependency graphs [25]. For a model-checking prob-
lem G,m |= φ, the corresponding abstract dependency graph represents the
decomposition of the problem into sub-problems (dependencies) given by the
inductive definition of PWATL semantics.

4.1 Abstract Dependency Graphs

An abstract dependency graph [25] is a (directed) graph consisting of a col-
lection of vertices V , together with a function that to each v ∈ V assigns a
set of vertices being the dependencies of v and a function for computing the
value of v, given the value of all its dependencies. The vertex values are drawn

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

144

from a triple D = (D,v,⊥) where (D,v) is a partial order, ⊥ ∈ D the least
element of D and v must satisfy the ascending chain condition: for any infinite
chain d1 v d2 v d3 . . . of elements di ∈ D, there exists an integer k such that
dk = dk+j for all j > 0. This kind of ordering is referred to in [25] as a Noethe-
rian ordering relation with least element (NOR). For any NOR we assume the
elements are finitely representable, meaning that elements can be represented
by finite strings.

For the computation of the value of each vertex we consider the application
of monotone functions to the values of all its dependencies. Formally, for any
n ∈ N, F(D, n) on a NOR (D,v,⊥) is the set of all monotone functions f :
Dn → D of arity n, where f is monotone if di v d′i for all i, 1 ≤ i ≤ n,
implies f(d1, . . . , dn) v f(d′1, . . . , d

′
n) for any d1, . . . , dn, d

′
1, . . . d

′
n ∈ D, and we

let F(D) =
⋃
n≥0 F(D, n) be the collection of all such functions. We assume

all functions f ∈ F(D, n) for any n ∈ N to be effectively computable, meaning
that for any f ∈ F(D, n) and d1, . . . , dn ∈ D, there exists an algorithm that
terminates and computes the finite representation of f(d1, . . . , dn) ∈ D.

We are now ready to define abstract dependency graphs.

Definition 5 (Abstract Dependency Graph [25]). An abstract depen-
dency graph (ADG) is a tuple G = (V,E,D, E) where

– V is a finite set of vertices,
– E : V → V ∗ is an edge function from vertices to sequences of vertices such

that E(v)[i] 6= E(v)[j] for every v ∈ V and every 1 ≤ i < j ≤ |E(v)|, i.e.
the co-domain of E contains only strings over V where no symbol appears
more than once,

– D is NOR with finitely representable elements, and
– E is a labelling function E : V → F(D) such that E(v) ∈ F(D, |E(v)|)

for each v ∈ V , i.e. each edge E(v) is labelled by an effectively computable
monotone function f of arity that corresponds to the length of E(v).

In the following, we assume a fixed ADG G = (V,E,D, E). For each vertex
v ∈ V , E(v) is a string containing all the vertices that represent dependencies
of v and E(v) is the function computing the value of v given the values of all
the dependencies of v in E(v). An assignment is then a function A : V → D,
mapping each vertex to an element of the NOR D = (D,v,⊥). We let A denote
the set of all assignments and lift the ordering from D to assignments: for any
two assignments A1, A2 ∈ A, A1 v A2 iff ∀v ∈ V.A1(v) v A2(v). It follows
that (A,v) is a NOR, with minimum element A⊥ defined for any v ∈ V as
A⊥(v) = ⊥. We define the minimum fixed-point assignment Amin for G as
the minimum fixed point of the function F : A → A, defined for any v ∈ V
as F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vk)) where E(v) = v1v2 · · · vk. As each
E(v) is monotone, it follows that F is a monotone function. In [25] it is proven,
by applying standard reasoning for fixed points of monotonic functions [41],
that Amin exists and is computable by repeated application of F on A⊥. We
end this section by presenting the result of [25]. For any A ∈ Ak let F i(A) be

145

m1, φ
8v1

m1, φ
8
?

v2

m1, bv8

m1, av5Σαm1, φ
3
?

v11 ··
·

Σβ m1, φ
5
?

v12··
·

∅
m2, φ

5
?
v3 m3, φ

5
?

v4m2, bv9 m3, b

v7

∅

m2, av6

∅

Σα

m2, φ
4
?

v13

··
·

Σβ m3, av10

m3, φ
4
?

v14

Σα

··
·

1
2
, >

5, 1
2

3, 1
2

3, 9
10

3, 1
10

1, 1
1, 1 1, 1

(a) ADG encoding of G,m1 |= φ for G from Figure 1a and φ = 〈〈 , 〉〉> 1
2
[aU≤8b]

v1 v2 v3 v4 v5 · · · v7 v8 · · · v10 Amin(v11···12) Amin(v13···14)

A′ 0 0 0 0 0 0 1
10

1

F (A′) 0 9
100

1 1 1 0̃ 1
10

1

F 2(A′) 0 11
20

1 1 1 0̃ 1
10

1

F 3(A′) 1 11
20

1 1 1 0̃ 1
10

1

(b) Fixed point computation of ADG in Figure 2a

Fig. 2: Abstract dependency graph encoding example

the i’th repeated application of F on A, defined for i = 0 as F i(A) = A and
F i(A) = F (F i−1(A)) for i > 0.

Theorem 1 ([25]). There exists j ∈ N such that F k(A⊥) = Amin for all
k ≥ j.

4.2 The Reduction

We fix a game G = (Π,M, {Mi}i∈Π ,→, `) for the remainder of this section
and present the encoding of the problem G,m |= φ for some state m ∈M and
PWATL formula φ ∈ LATL by reduction to computing the minimal fixed point
of a suitable abstract dependency graph G = (V,E,D, E). In general, vertices
of the graph are pairs (m,φ) where m is a state of G and φ ∈ LATL is a state-
formula. These are referred to as concrete vertices. As our approach is symbolic,
we introduce another type of vertex. For this, we let L?

ATL = {〈〈C〉〉.?[φ1U≤kφ2] |
k ∈ Nn, φ1, φ2 ∈ LATL} ∪ {〈〈C〉〉.?[X≤kφ] | k ∈ Nn, φ ∈ LATL} be the set of all
symbolic state-formulae. The symbolic vertices are then on the form (m,φ?),
where φ? ∈ L?

ATL. We proceed by defining the domain D.

0

10̃

Fig. 3: Ordering v

The domain D During the fixed point computation, the
value of any node is, in general, a number that represents
a lower bound on the probability of satisfaction. However,
as we employ the certain-zero optimization of [20], we use
also a special value 0̃, indicating that the value is 0 and can
never change. Hence, 0 is a lower bound whereas 0̃ is an

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

146

upper bound on the probability of satisfaction. We define the ordering depicted
in Figure 3, where the dotted line represents all numbers between 0 and 1, and
where 0 v 0̃ and p1 v p2 if p1 ≤ p2 and p1, p2 ∈ [0, 1]. Hence, the certain zero
value 0̃ and the strictly positive probabilities in (0, 1] are incomparable. Thus,
the domain is given by D = ([0, 1]∪{0̃},v, 0). For any concrete vertices (m,φ),
the value assigned is either 0, 1 or 0̃. If the value becomes 1, m satisfies φ, thus
whenever the root is assigned 1, the algorithm can safely terminate. However, if
the value is 0, the current belief is that m does not satisfy φ and the algorithm
cannot terminate as the value is a lower bound that may change. Once the
value becomes 0̃, it is certain that m does not satisfy φ and the algorithm
can terminate. For symbolic vertices (m, 〈〈C〉〉.?ψ), assigning a probability p to
the vertex indicates the existance of a strategy for the coalition C, such that
measuring paths from m satisfying ψ, yields a probability at least p, no matter
the strategy for the remaining players in C. Hence, G,m |= 〈〈C〉〉.pψ.

Anticipating the definition of the vertex labelling function, we define the
operations min,max,+ and · on elements from the domain D. If the operands
are regular probabilities in [0, 1], the operations are defined in the natural way.
Otherwise, for the certain zero value 0̃ and for any probability p ∈ [0, 1] we let
min{0̃, p} = 0̃, max{0̃, p} = p, 0̃ + p = p and 0̃ · p = 0̃. Hence, 0̃ behaves like 0
when used in operations with regular probabilities. If both operands are 0̃ we
let min{0̃, 0̃} = 0̃, max{0̃, 0̃} = 0̃, 0̃ + 0̃ = 0̃ and 0̃ · 0̃ = 0̃.

Graph construction We define the set of vertices V and for each v ∈ V ,
the edge function E(v) and labelling function E(v). The root of the graph is
(m,φ) ∈ V and the rest of the graph is constructed by induction on φ.

For any vertex on the form v = (m∗, φ∗), where φ∗ ∈ LATL, the following
rules define the edge function E(v) and labelling function E(v).

[φ∗ = a]: The formula has no dependencies and can be verified directly by
inspecting the labelling of the state. Hence, E(v) = ε and if a ∈ `(m∗) then
E(v) = 1, otherwise E(v) = 0̃.

[φ∗ = ¬a]: We let E(v) = ε, E(v) = 1 if a /∈ `(m∗) and E(v) = 0̃ otherwise.
[φ∗ = φ1 ∨ φ2]: We let the vertices (m∗, φ1), (m∗, φ2) ∈ V be the dependencies

of v, hence E(v) = (m∗, φ1)(m∗, φ2). As each successor receives a Boolean
value, disjunction is naturally defined as the maximum of the values of the
two successor vertices and we let E(v)(p1, p2) = max{p1, p2}.

[φ∗ = φ1 ∧ φ2]: Similar to disjunction we let (m∗, φ1), (m∗, φ2) ∈ V be the de-
pendencies of v, i.e, E(v) = (m∗, φ1)(m∗, φ2) and E(v)(p1, p2) = min{p1, p2}.

[φ∗ = 〈〈C〉〉.λ(φ1U≤kφ2)]: The only dependency of v is the symbolic vertex
v′ = (m∗, 〈〈C〉〉.?[φ1U≤kφ2]) ∈ V , i.e. E(v) = v′. As the value of v′ is the
probability p of satisfying the inner path formula, the value of v is 1 if and
only if p . λ:

E(v)(p) =

1 if p . λ

0̃ if p = 0̃ ∧ (λ > 0 ∨ . =>)

0 otherwise

147

[φ∗ = 〈〈C〉〉.λ(X≤kφ)]: We let the symbolic vertex v′ = (m∗, 〈〈C〉〉.?(X≤kφ)) ∈
V be the dependency of v, i.e. E(v) = v′. The labelling of v is given by:

E(v)(p) =

1 if p . λ

0̃ if p = 0̃ ∧ (λ > 0 ∨ . =>)

0 otherwise

For any vertex v = (m∗, φ?) with φ? ∈ L?
ATL, the edge function E(v) and

labelling function E(v) are given by the following rules:

[φ? = 〈〈C〉〉.?(φ1U≤kφ2)]: To satisfy the inner path formula φ1U≤kφ2 for any
path starting in m∗, either φ2 must be satisfied by m∗ or φ1 must be
satisfied by m∗. Hence, we let v1 = (m∗, φ1), v2 = (m∗, φ2) with v1, v2 ∈
V be the two immediate dependencies of v. In case φ2 is not satisfied
by m∗ but φ1 is, the satisfaction of the inner path formula is due to the
successors of m∗. Hence, any successor of m∗ is also a dependency, if the
cost of transitioning to the successor is within the formula bound k. We
let Actk(m∗) = {α1, . . . , αn} be the k-enabled actions in m∗ and for any
αk ∈ Actk(m∗) let succ(m∗)αk = {mαk

1 , . . . ,mαk
jαk
} be the set of all αk-

successors of m∗ where, for all 1 ≤ i ≤ jαk , wαk
i ≤ k is the cost and pαki is

the probability of transitioning to mαk
i , respectively.

For each mαk
i we let vαki = (mαk

i , 〈〈C〉〉.?(φ1U≤k−wαki φ2)) ∈ V be a depen-

dency of m∗. Hence, the edge function of v is given as

E(v) = v1v2v
α1
1 · · · vα1

jα1
· · · vαn1 · · · vαnjαn .

For defining the labelling E(v)(q1, q2, q
α1
1 , . . . , qα1

jα1
, . . . , qαn1 , . . . , qαnjαn), we let

qαkΣ =
∑jαk
i=1 p

αk
i ·qαki be the weighted sum of successor values for any action

αk ∈ Actk(m∗). The exact labelling function of m∗ depends on whether m∗
is owned by a player in the coalition or not.
If m∗ ∈Mi for some player i ∈ C we let

E(v)(q1, q2, q
α1
1 , . . . , qα1

jα1
, . . . , qαn1 , . . . , qαnjαn) =

max {q2,min{q1, qα1

Σ }, . . . ,min{q1, qαnΣ }} .

Otherwise, if m∗ /∈Mi for all players i ∈ C we let

E(v)(q1, q2, q
α1
1 , . . . , qα1

jα1
, . . . , qαn1 , . . . , qαnjαn) =

max {q2,min {q1, qα1

Σ , . . . , qαnΣ }} .

[φ? = 〈〈C〉〉.?(X≤kφ)]: Let Actk(m∗) = {α1, . . . , αn} be the set of k-enabled ac-
tions in m∗ and for any αk ∈ Actk(m∗) let succ(m∗)αk = {mαk

1 , . . . ,mαk
jαk
}

be the set of all αk-successors of m∗ where, for all 1 ≤ i ≤ jαk , wαk
i ≤ k is

the cost and pαki is the probability of transitioning to mαk
i , respectively.

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

148

For each mαk
i we let vαki = (mαk

i , φ) ∈ V be a dependency of m∗. Hence,
the edge function of v is given as E(v) = vα1

1 · · · vα1
jα1
· · · vαn1 · · · vαnjαn . For

defining the labelling E(v)(qα1
1 , . . . , qα1

jα1
, . . . , qαn1 , . . . , qαnjαn), we let qγΣ =

∑jαk
i=1 p

αk
i · qαki be the weighted sum of successor values for any action

αk ∈ Actk(m∗). The exact labelling function of m∗ depends on whether
m∗ is owned by a player in the coalition or not.
If m∗ ∈Mi for some player i ∈ C we let

E(v)(qα1
1 , . . . , qα1

jα1
, . . . , qαn1 , . . . , qαnjαn) = max{qα1

Σ , . . . , qαnΣ } .

Otherwise, if m∗ /∈Mi for all players i ∈ C we let

E(v)(qα1
1 , . . . , qα1

jα1
, . . . , qαn1 , . . . , qαnjαn) = min{qα1

Σ , . . . , qαnΣ } .

Monotonicity of the constructed labelling function E follows from the fact that
the functions max, min, sum and product are monotonic functions. By applying
the above definitions repeatedly from the root (m,φ), we obtain an abstract
dependency graph encoding of the problem G,m |= φ.

Example 4. Consider again the stochastic game depicted in Figure 1a. For any
k ∈ N we let φk = 〈〈 , 〉〉> 1

2
[aU≤kb] and φk? = 〈〈 , 〉〉>?[aU≤kb]. We now

encode the model-checking problem G,m1 |= φ8 into an abstract dependency
graph G = (V,E,D, E). A part of the resulting graph is visualised in Figure 2a.
Edges connecting the vertices correspond to the specific monotone functions
given by our encoding. The greyed out shapes are not vertices but part of the
monotonic function for a symbolic node, responsible for computing a weighted
sum of successor values, qγΣ , as prescribed by the encoding. We let E(vi) = ε

for 5 ≤ i ≤ 10, E(vi) = 0̃ for 8 ≤ i ≤ 10 and E(vi) = 1 for 5 ≤ i ≤ 7. This
is visualised by vertices having either no outgoing edge or an edge pointing to
the empty set. In general, separate unlabelled edges encode a maximum, while
a minimum is computed over each unlabelled edge. For vertex v2, the edge
function is given by E(v2) = v3v4v5v8v11v12 and the function computed at v2
is thus

E(v2)(q3, q4, q5, q8, q11, q12) = max
{
q8,min{q5, qαΣ},min{q5, qβΣ}

}

where qαΣ = 1
2 · q11 + 1

2 · q3 and qβΣ = 1
10 · q4 + 9

10 · q12. The dashed edge encodes

E(v1)(q2) =

1 if q2 >
1
2

0̃ if q2 = 0̃

0 otherwise

.

Theorem 2 (Correctness). Let G = (Π,M, {Mi}i∈Π ,→, `) be a game, m ∈
M a state and φ ∈ LATL a property. For the abstract dependency graph rooted
by (m,φ) it holds that G,m |= φ iff Amin((m,φ)) = 1.

149

As our domain D does not satisfy the ascending chain condition, we cannot
reuse the termination argument from [25]. We instead prove the termination
by relying on our assumption that all loops are of strictly positive magnitude.

Theorem 3 (Termination). There is k ∈ N s.t. F j(A⊥) = Amin for all
j ≥ k.

Example 5. Consider the abstract dependency graph in Figure 2a. For ver-
tices v11, . . . , v14, the minimal fixed point assignment is given by Amin(v11) =
Amin(v12) = 1

10 and Amin(v13) = Amin(v14) = 1. Assuming that these as-
signments have been pre-computed, we now repeatedly apply the fixed point
operator to compute the minimal fixed point assignment to the remaining ver-
tices. Hence, we start from an assignment A′ such that A′(vi) = Amin(vi) for
11 ≤ i ≤ 14 and A′(vi) = A⊥(vi) otherwise. The result can be seen in Figure 2b
After 3 iterations, the fixed point has been computed with a value of 1 assigned
to v1, hence by Theorem 2 we can conclude G,m1 |= 〈〈 , 〉〉> 1

2
[aU≤8b].

5 Implementation and Experimental Evaluation

We evaluate our implementation on three different PRISM-games case studies.
In robot coordination [34] problem two robots must reach a goal by traversing
a square grid without crashing into each other; a 3-dimensional weight encodes
the energy consumption of both robots and the time elapsed. In collective deci-
sion making for sensor networks [13] 4 sensors must agree on 3 preferable sites;
a 2-dimensional weight encodes total energy consumption and time elapsed. In
task-graph-scheduling [9,33], a set of tasks must be scheduled on two proces-
sors; a 3-dimensional weight encodes energy consumption for each processor
and time elapsed. We also compare with a Python implementation for PCTL
model-checking from [30] on the PRISM case study synchronous leader election
[29].

A package to reproduce our results can be found at http://people.cs.

aau.dk/~am/LOPSTR2020/. Our open-source implementation is written in C++
without platform specific code. To obviate the need to create our own parser
for PRISM models, we modify the export functionality in PRISM-games to
construct an explicit transition system that becomes an input to implemen-
tation. Furthermore, as PRISM-games do not directly support verification of
multidimensional cost-bounded properties, we cannot rely on built-in reward
structures and instead introduce variables to capture the accumulated cost.
For each model-checking question, we bound the variables by a precision de-
rived from the property, effectively creating a bounded unfolding of the original
model, sufficient for verifying the query in question. As the model is bounded by
the query precision, it is sufficient to verify in PRISM-games the corresponding
unbounded query to solve the original model-checking problem.

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

150

experiment prism above prism
above exact prism

exact below10 prism
below10 below20 prism

below20

R-1-20-5 5.96 3.10 1.92 2.27 2.63 2.21 2.69 2.18 2.73
R-1-20-6 9.54 5.73 1.66 4.39 2.17 4.44 2.15 4.38 2.18
R-1-30-5 14.74 10.50 1.40 10.32 1.43 7.69 1.92 7.87 1.87
R-1-30-6 45.99 25.93 1.77 23.23 1.98 20.71 2.22 20.59 2.23
R-2-20-5 6.38 4.00 1.59 2.84 2.25 2.86 2.23 2.88 2.22
R-2-20-6 9.08 7.67 1.18 5.78 1.57 5.94 1.53 5.87 1.55
R-2-30-5 12.76 11.55 1.10 11.55 1.10 8.75 1.46 9.11 1.40
R-2-30-6 38.11 32.02 1.19 25.56 1.49 25.61 1.49 25.44 1.50

Average 17.82 12.56 1.48 10.74 1.83 9.78 1.96 9.79 1.96

S-1-10 1.03 0.17 6.11 0.11 9.06 0.12 8.54 0.10 10.34
S-1-20 3.32 2.14 1.55 2.07 1.60 0.95 3.48 0.91 3.64
S-2-10 1.00 0.19 5.21 0.10 9.66 0.11 9.15 0.11 9.27
S-2-20 3.74 2.47 1.51 2.37 1.57 1.03 3.62 1.08 3.45
S-3-10 0.98 0.18 5.55 0.11 8.70 0.11 9.19 0.10 9.57
S-3-20 3.95 2.59 1.52 2.30 1.72 1.29 3.05 1.07 3.69
S-4-10 1.22 0.20 6.11 0.10 11.73 0.12 10.16 0.11 11.23
S-4-20 4.84 2.49 1.94 2.47 1.96 2.31 2.10 1.11 4.36

Average 2.51 1.30 3.69 1.20 5.75 0.76 6.16 0.57 6.94

T-29-1697 50.30 55.54 0.91 56.27 0.89 55.75 0.90 53.73 0.94
T-18-1115 73.83 60.40 1.22 64.39 1.15 59.37 1.24 61.59 1.20
T-28-1803 34.43 40.21 0.86 38.53 0.89 36.94 0.93 34.84 0.99
T-29-1871 38.18 45.06 0.85 45.55 0.84 41.84 0.91 39.69 0.96
T-27-1907 38.32 20.17 1.90 17.44 2.20 17.33 2.21 17.89 2.14
T-20-1209 30.21 23.60 1.28 23.81 1.27 22.36 1.35 20.49 1.47
T-23-1565 37.27 28.34 1.32 30.49 1.22 26.96 1.38 26.96 1.38
T-16-828 20.92 27.90 0.75 26.92 0.78 26.33 0.79 25.16 0.83

Average 40.43 37.65 1.14 37.93 1.16 35.86 1.21 35.04 1.24

Fig. 4: R-A-B-C is a 2-robot model with A collaborating robots,
cost-bound of B on a grid of size C with queries of the type
〈〈r1, . . . , rA〉〉.λ(¬crash U≤(B,B,B) goal1). S-X-Y is a sensor model with 4
sensors with X collaborating sensors with a cost-bound of Y and the query
〈〈s1, . . . , sX〉〉.λ(true U≤(Y,Y) decision made). T-Q-R is task graph problem
and checks whether all tasks can be completed within at most Q time using R
energy by the query 〈〈sched〉〉.λ(true U≤(Q,R) tasks complete).

5.1 Results

Experiments are run on a Ubuntu 14.04 cluster with AMD Opteron 6376 pro-
cessors. Each experiment has a maximum time-out of two hours and 14GB of
virtual memory. Figure 4 displays the experimental data for the PRISM-games
comparison. The verified formulae are of the form 〈〈C〉〉.λ(ψ) and specified in
the caption of the table—the weight dimension being 3 for the robot experi-
ment and 2 for the remaining two. The column labelled with ‘prism’ shows the
time (in seconds) it took PRISM-games to verify a query (as PRISM-games
computes the exact solution, the times do not vary for the different variants
of the formula). The columns for ‘above’ (λ = p + 0.000001), ‘exact’ (λ = p),
‘below10’ (λ = p− p

10) and ‘below20’ (λ = p− p
5) describe the different instan-

tiations of λ used in the queries, where p is the exact probability computed by
PRISM-games. Hence, it is always the case that a formula is satisfied for ‘exact’,

151

experiment tool above python
adg exact python

adg below10 python
adg below20 python

adg

L-4-4-10
python 0.45

11.25
0.48

12.00
0.42

10.50
0.36

12.00
adg 0.04 0.04 0.04 0.03

L-5-4-12 python 3.67
14.12

2.97
11.88

3.14
12.56

2.71
16.94

adg 0.26 0.25 0.25 0.16

L-4-6-10 python 3.8
15.83

3.64
15.83

3.16
21.07

3.24
21.60

adg 0.24 0.23 0.15 0.15

L-6-4-14 python 36.99
25.69

38.32
27.57

35.99
25.89

28.29
31.79

adg 1.44 1.39 1.39 0.89

L-5-6-12 python 88.52
42.56

91.2
45.37

86.31
63.93

85.57
62.92

adg 2.08 2.01 1.35 1.36

Average python 26.69
21.89

27.32
22.53

25.80
26.79

24.03
29.05

adg 0.81 0.78 0.64 0.52

Fig. 5: L-N-K-W is a leader election model with N processes, K choices and
queries of the form P.λ(true U≤(W,2W,3W) elected). Additionally, python de-
notes the implementation from [30] and adg denotes our implementation.

‘below10’, ‘below20’ and never for ‘above’. The remaining columns, e.g. prism
above ,

show the speedup-ratio. As both tools rely on the explicit engine of PRISM-
games for model construction, we report only the time spent on verification, as
the model construction time is identical for both tools.

The experiments show that for formulae that query the exact or slightly
above probability, our on-the-fly approach achieves verification times compa-
rable or better than those of PRISM-games. Our approach takes slightly more
time to derive that a formula does not hold, which is expected for an on-the-fly
method. Our running times in general improve as we allow for more slack in
the λ bound. The robot experiment achieves on average about twice as fast
verification for the ‘below10’ and ‘below20’ queries. In the sensor experiment,
the certain-zero approach in combination with on-the-fly verification achieves
for the ‘below20’ on average seven times faster verification, sometimes showing
an order of magnitude improvement. Regarding the memory consumption, our
method uses on average 3.4 times less memory on the robot experiment, 11.0
times less memory on the sensor experiment and 1.5 times less memory on task
graphs.

The efficiency of our approach comes from i) early termination including
the certain-zero optimization and ii) the local (on-the-fly) construction and
exploration of the ADG. In contrast to PRISM-GAMES, we do not calculate
the entire fixed point but only what is necessary to answer the model-checking
question. Experiments show that we are on average 30%, 50%, and 15% (resp.)
times faster for the robot, sensor, and task graph cases (resp.) when terminating
early as opposed to computing the entire fixed point.

Figure 5 displays the experimental data for the comparison with the Python
PCTL model checker from [30], for the synchronous leader election case-study
where the weight dimension is 3. Each row in Figure 5 describes a leader election
instance, run using both the Python implementation (python) and our C++
implementation (adg). The columns labelled python

adg show the speedup relative

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

152

to the previous column (i.e. the column to left). The C++ implementation is an
order of magnitude faster than the Python implementation and tends toward
two orders of magnitude as the size of the model increases.

6 Conclusion

We presented an on-the-fly technique for answering whether a turn-based sto-
chastic multiplayer game with weighted transitions satisfies a given alternating-
time temporal logic formula with upper-bounds on the accumulated weight in
the temporal operators and lower-bounds on the probabilities that a certain
path formula is satisfied. Our approach reduces the problem to the computation
of minimum fixed point on a recently introduced notion of abstract dependency
graphs, using a novel reduction relying on a special abstract domain that in-
cludes the certain-zero optimization. We formally prove the correctness of our
reduction and provide an efficient C++ implementation. On a series of exper-
iments, we compare the performance of our approach with PRISM-games and
show in several instances the advantage of using on-the-fly algorithm compared
to the traditional value-iteration method. Our current implementation does not
explicitly output winning strategies, however, this information can be recov-
ered from the fixed point computed on the constructed ADG. Other interesting
applications of the framework include verifying logics involving both minimal
and maximal fixed points, such as the modal µ-calculus [24], efficient analysis
of various process algebra such as CCS with quantities (generalizing [21]) and
symbolic analysis of timed systems (see e.g [11]).

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270, https://
doi.org/10.1145/585265.585270

2. Andova, S., Hermanns, H., Katoen, J.: Discrete-time rewards model-checked. In:
Formal Modeling and Analysis of Timed Systems: First International Workshop,
FORMATS 2003, Marseille, France, September 6-7, 2003. Revised Papers. pp. 88–
104 (2003). https://doi.org/10.1007/978-3-540-40903-8 8, http://dx.doi.org/

10.1007/978-3-540-40903-8_8

3. Ashok, P., Chatterjee, K., Kret́ınský, J., Weininger, M., Winkler, T.: Approximat-
ing values of generalized-reachability stochastic games. In: LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany,
July 8-11, 2020. pp. 102–115 (2020). https://doi.org/10.1145/3373718.3394761,
https://doi.org/10.1145/3373718.3394761

4. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthe-
sis for probabilistic systems. In: Exploring New Frontiers of Theoretical Infor-
matics, IFIP 18th World Computer Congress, TC1 3rd International Confer-
ence on Theoretical Computer Science (TCS2004), 22-27 August 2004, Toulouse,
France. pp. 493–506 (2004). https://doi.org/10.1007/1-4020-8141-3 38, https:

//doi.org/10.1007/1-4020-8141-3_38

153

5. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
6. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the

reliability of your model checker: Interval iteration for markov decision pro-
cesses. In: Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. pp. 160–
180 (2017). https://doi.org/10.1007/978-3-319-63387-9 8, https://doi.org/10.
1007/978-3-319-63387-9_8

7. Baldan, P., König, B., Mika-Michalski, C., Padoan, T.: Fixpoint games on
continuous lattices. Proc. ACM Program. Lang. 3(POPL), 26:1–26:29 (2019).
https://doi.org/10.1145/3290339, https://doi.org/10.1145/3290339

8. Baldan, P., König, B., Padoan, T., Mika-Michalski, C.: Fixpoint games on con-
tinuous lattices. CoRR abs/1810.11404 (2018), http://arxiv.org/abs/1810.
11404

9. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analy-
sis of real-time systems using priced timed automata. Commun. ACM 54(9),
78–87 (2011). https://doi.org/10.1145/1995376.1995396, https://doi.org/10.

1145/1995376.1995396

10. Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Stochastic games with branching-
time winning objectives. In: 21th IEEE Symposium on Logic in Computer Sci-
ence (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. pp. 349–
358 (2006). https://doi.org/10.1109/LICS.2006.48, https://doi.org/10.1109/

LICS.2006.48

11. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: CONCUR 2005 - Concurrency Theory,
16th International Conference, CONCUR 2005, San Francisco, CA, USA, August
23-26, 2005, Proceedings. pp. 66–80 (2005). https://doi.org/10.1007/11539452 9,
http://dx.doi.org/10.1007/11539452_9

12. Chatterjee, K., Randour, M., Raskin, J.: Strategy synthesis for multi-
dimensional quantitative objectives. Acta Informatica 51(3-4), 129–163
(2014). https://doi.org/10.1007/s00236-013-0182-6, https://doi.org/10.1007/
s00236-013-0182-6

13. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic
verification of competitive stochastic systems. Formal Methods Syst. Des. 43(1),
61–92 (2013). https://doi.org/10.1007/s10703-013-0183-7, https://doi.org/10.
1007/s10703-013-0183-7

14. Chen, T., Forejt, V., Kwiatkowska, M.Z., Simaitis, A., Wiltsche, C.:
On stochastic games with multiple objectives. In: Mathematical Founda-
tions of Computer Science 2013 - 38th International Symposium, MFCS
2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings. pp. 266–
277 (2013). https://doi.org/10.1007/978-3-642-40313-2 25, https://doi.org/

10.1007/978-3-642-40313-2_25

15. Chen, T., Kwiatkowska, M.Z., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: An application to autonomous urban driving. In:
Quantitative Evaluation of Systems - 10th International Conference, QEST
2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings. pp. 322–
337 (2013). https://doi.org/10.1007/978-3-642-40196-1 28, https://doi.org/

10.1007/978-3-642-40196-1_28

16. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking
algorithm. In: Fourth International Conference on Fuzzy Systems and Knowledge

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

154

Discovery, FSKD 2007, 24-27 August 2007, Haikou, Hainan, China, Proceedings,
Volume 2. pp. 35–39 (2007). https://doi.org/10.1109/FSKD.2007.458, https://
doi.org/10.1109/FSKD.2007.458

17. Cloth, L., Katoen, J., Khattri, M., Pulungan, R.: Model checking Markov reward
models with impulse rewards. In: 2005 International Conference on Dependable
Systems and Networks (DSN 2005), 28 June - 1 July 2005, Yokohama, Japan,
Proceedings. pp. 722–731 (2005). https://doi.org/10.1109/DSN.2005.64, https:
//doi.org/10.1109/DSN.2005.64

18. Condon, A.: On algorithms for simple stochastic games. In: Advances
In Computational Complexity Theory, Proceedings of a DIMACS
Workshop, New Jersey, USA, December 3-7, 1990. pp. 51–71 (1990).
https://doi.org/10.1090/dimacs/013/04, https://doi.org/10.1090/dimacs/

013/04

19. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–
224 (1992). https://doi.org/10.1016/0890-5401(92)90048-K, https://doi.org/

10.1016/0890-5401(92)90048-K

20. Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jensen, P.G., Jepsen,
T.S., Kaufmann, I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., Pastva, S., Srba,
J.: A distributed fixed-point algorithm for extended dependency graphs. Fundam.
Inform. 161(4), 351–381 (2018). https://doi.org/10.3233/FI-2018-1707, https:

//doi.org/10.3233/FI-2018-1707

21. Dalsgaard, A.E., Enevoldsen, S., Larsen, K.G., Srba, J.: Distributed compu-
tation of fixed points on dependency graphs. In: Dependable Software Engi-
neering: Theories, Tools, and Applications - Second International Symposium,
SETTA 2016, Beijing, China, November 9-11, 2016, Proceedings. pp. 197–212
(2016). https://doi.org/10.1007/978-3-319-47677-3 13, http://dx.doi.org/10.

1007/978-3-319-47677-3_13

22. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer
(2009)

23. Enevoldsen, S., Larsen, K.G., Mariegaard, A., Srba, J.: Dependency graphs with
applications to verification. International Journal on Software Tools for Tech-
nology Transfer (STTT) pp. 1–22 (2020). https://doi.org/10.1007/s10009-020-
00578-9, https://doi.org/10.1007/s10009-020-00578-9

24. Enevoldsen, S., Larsen, K.G., Srba, J.: Extended abstract dependency graphs,
manuscript Under Submission

25. Enevoldsen, S., Larsen, K.G., Srba, J.: Abstract dependency graphs and their
application to model checking. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 25th International Conference, TACAS 2019,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceed-
ings, Part I. pp. 316–333 (2019). https://doi.org/10.1007/978-3-030-17462-0 18,
https://doi.org/10.1007/978-3-030-17462-0_18

26. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Proceedings of the 8th International Colloquium on Theoretical
Aspects of Computing (ICTAC’11). LNCS, vol. 6916, pp. 95–115. Springer-Verlag
(2011)

27. Hartmanns, A., Junges, S., Katoen, J., Quatmann, T.: Multi-cost bounded
reachability in MDP. In: Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held as

155

Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
II. pp. 320–339 (2018). https://doi.org/10.1007/978-3-319-89963-3 19, https:

//doi.org/10.1007/978-3-319-89963-3_19
28. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Com-

puter Aided Verification - 32nd International Conference, CAV 2020, Los
Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. pp. 488–
511 (2020). https://doi.org/10.1007/978-3-030-53291-8 26, https://doi.org/

10.1007/978-3-030-53291-8_26
29. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Com-

put. 88(1), 60–87 (1990). https://doi.org/10.1016/0890-5401(90)90004-2, https:
//doi.org/10.1016/0890-5401(90)90004-2

30. Jensen, M.C., Mariegaard, A., Larsen, K.G.: Symbolic model checking of weighted
PCTL using dependency graphs. In: NASA Formal Methods - 11th Interna-
tional Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceed-
ings. pp. 298–315 (2019). https://doi.org/10.1007/978-3-030-20652-9 20, https:
//doi.org/10.1007/978-3-030-20652-9_20

31. Kelmendi, E., Krämer, J., Kret́ınský, J., Weininger, M.: Value iteration for sim-
ple stochastic games: Stopping criterion and learning algorithm. In: Computer
Aided Verification - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceed-
ings, Part I. pp. 623–642 (2018). https://doi.org/10.1007/978-3-319-96145-3 36,
https://doi.org/10.1007/978-3-319-96145-3_36

32. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0:
Stochastic game verification with concurrency, equilibria and time. In: Proc.
32nd International Conference on Computer Aided Verification (CAV’20). LNCS,
Springer (2020)

33. Kwiatkowska, M., Norman, G., Parker, D.: Verification and control of turn-
based probabilistic real-time games. In: The Art of Modelling Computational
Systems: A Journey from Logic and Concurrency to Security and Privacy -
Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birth-
day. pp. 379–396 (2019). https://doi.org/10.1007/978-3-030-31175-9 22, https:
//doi.org/10.1007/978-3-030-31175-9_22

34. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based proba-
bilistic model checking for concurrent stochastic games. In: Formal Methods -
The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal, October
7-11, 2019, Proceedings. pp. 298–315 (2019). https://doi.org/10.1007/978-3-030-
30942-8 19, https://doi.org/10.1007/978-3-030-30942-8_19

35. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points
(extended abstract). In: Automata, Languages and Programming, 25th Interna-
tional Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings.
pp. 53–66 (1998). https://doi.org/10.1007/BFb0055040, http://dx.doi.org/10.
1007/BFb0055040

36. Nguyen, H.N., Rakib, A.: A probabilistic logic for resource-bounded multi-agent
systems. In: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. pp.
521–527 (2019). https://doi.org/10.24963/ijcai.2019/74, https://doi.org/10.

24963/ijcai.2019/74
37. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. Wiley Series in Probability and Statistics, Wi-

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

156

ley (1994). https://doi.org/10.1002/9780470316887, https://doi.org/10.1002/
9780470316887

38. Quatmann, T., Katoen, J.: Sound value iteration. In: Computer Aided Verifi-
cation - 30th International Conference, CAV 2018, Held as Part of the Fed-
erated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceed-
ings, Part I. pp. 643–661 (2018). https://doi.org/10.1007/978-3-319-96145-3 37,
https://doi.org/10.1007/978-3-319-96145-3_37

39. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences
39(10), 1095–1100 (1953). https://doi.org/10.1073/pnas.39.10.1095, https://

www.pnas.org/content/39/10/1095

40. Svorenová, M., Kwiatkowska, M.: Quantitative verification and strat-
egy synthesis for stochastic games. Eur. J. Control 30, 15–30 (2016).
https://doi.org/10.1016/j.ejcon.2016.04.009, https://doi.org/10.1016/j.

ejcon.2016.04.009

41. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific journal of Mathematics 5(2), 285–309 (1955).
https://doi.org/10.2140/pjm.1955.5.285

157

Paper D. Verification of Multiplayer Stochastic Games via Abstract Dependency
Graphs

158

Paper E

Energy Consumption Forecast of Photo-Voltaic
Comfort Cooling using UPPAAL Stratego

159

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

160

Energy Consumption Forecast of Photo-Voltaic
Comfort Cooling using UPPAAL Stratego

Mads Kronborg Agesen, Søren Enevoldsen, Thibaut Le Guilly,
Anders Mariegaard, Petur Olsen, Arne Skou

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark
{kronborg,senevoldsen,thibaut,am,petur,ask}@cs.aau.dk

Abstract. To balance the fluctuations of renewable energies, greater
flexibility on the consumption side is required. Moreover, solutions are
required to handle the uncertainty related to both production and con-
sumption. In this paper, we propose a probabilistic extension to Flex-
Offers to capture both the interval in which a given energy resource can
be operated and the uncertainty that surrounds it. Probabilistic Flex-
Offers serve as a support for a method to forecast energy production
and consumption of stochastic hybrid systems. We then show how to
generate a consumption strategy to match a given consumption assign-
ment within a given flexibility interval. The method is illustrated on a
building equipped with solar cells, a heat pump and an ice bank used
to feed the air conditioning system.

1 Introduction

The use of renewable energies is an essential component to reduce the carbon
footprint and moving our modern society towards more sustainability. A major
inconvenience of renewables, such as solar cells or wind turbines, is that their
production cannot be controlled. Therefore, forecasts on the production from
renewable sources are often provided with some uncertainty. This is in par-
ticular problematic during peak consumption times, where the high demand
for energy might not be matched by production from renewables. In practice,
conventional production methods using fossil energies are used to palliate the
potential mismatch. At the opposite, there may sometimes be excess of produc-
tion during off-peak hours, for example during nighttime. A solution is thus to
shift part of the consumption loads from the peak hours to the off-peak hours.
If this is not possible for all loads, it is possible for some of them. Examples
include Heating Ventilation and Air Conditioning Systems (HVAC), charging
of electric vehicles and some industrial processes. In order to make use of these
flexible loads, it is necessary to encode their energy profile to facilitate their
manipulation. The European project MIRABEL1 proposed such a representa-
tion, called FlexOffers [4]. A limitation of FlexOffers is that they do not provide

1 www.mirabel-project.eu

161

information about the uncertainty of the flexibility interval. This means that
either the estimation of flexibility has to be very conservative, ensuring that any
consumption trajectory within the flexible interval can be followed, or errors
must be tolerated when a resource is unable to follow an assigned trajectory.
An alternative, proposed in this paper, is to quantify the uncertainty on the
flexibility using probability distributions on the bounds of a FlexOffer slice.
The notion of FlexOffer and its proposed extension to Probabilistic FlexOffers
are detailed in Section 2.

Having a satisfactory representation of flexible loads with quantifiable un-
certainty, the next step is to be able to estimate both the flexibility interval
and the uncertainty on its bounds for a given system. The difficulty is that
the dynamics of flexible systems such as those previously mentioned tend to be
non-linear. Moreover, taking into account their stochasticity as well as potential
environmental or user constraints, render the problem particularly challenging.
In this paper, we propose to take advantage of the recent advances in controller
synthesis and statistical model checking as a way to forecast flexibility with ex-
plicit uncertainty. The approach is described in Section 3. To illustrate it, we
describe its application on a concrete use case, with an office building equipped
with solar panels, a heat pump and an ice bank used to feed the HVAC system.
The details of this use case and the application of the proposed approach are
presented in Section 4. Section 5 discusses related work and Section 6 concludes
the paper and gives directions for future work.

2 FlexOffers and Probabilistic FlexOffers

This section introduces first the context of FlexOffers in the virtual market of
energy, then the basic notion of FlexOffers and its extension to probabilistic
FlexOffer.

2.1 Virtual Market of Energy

The Virtual Market of Energy (VME) is a market for trading flexibility in en-
ergy consumption (when we mention energy consumption we mean consump-
tion and/or production, where production is represented as negative consump-
tion). The VME does not trade in energy, only in promises of flexibility in
energy consumption. Energy is still bought from the normal channels.

The flexibility expressed in a FlexOffer is intended to be sold on the market
to the highest bidder. The sellers on the market are entities flexible about
its consumption of energy (referred to as a flexible resource). The buyers are
Balance Responsible Parties (BRP) or Distribution System Operators (DSO)
among others (hereafter named buyers). The buyers do forecasts on the load
on the grid. If the forecasts show potential issues, such as a grid overload, the
buyers can buy flexibility on the VME to move consumption away from the
grid overload.

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

162

Given a FlexOffer, the buyers can buy an amount of flexibility. This amount
is called the schedule, and represents a request for the resource to consume
(or produce) a given amount of energy within the flexible interval. In case
a FlexOffer is sold but the resource does not follow the assigned schedule, a
penalty must be paid.

The benefit of FlexOffers is that loads can be shifted out of potential grid
overloads by the market buyers while normally also providing economic com-
pensation to the flexible resource provider. The cost is used by the buyer to
evaluate how much they are willing to pay. Once a schedule is assigned, the
buyer will compensate the flexible resource for the amount of energy that has
been shifted.

The process for the flexible resource is to first do local energy planning,
resulting in an optimal profile for energy consumption. This profile is called
the default schedule, and will be used if the FlexOffer is not sold. Second, the
flexible resource calculates how much it can deviate from the optimal schedule,
and what costs it will incur. This deviation represents the flexibility of the
resource. If buyers on the VME are willing to pay more for the flexibility than
the cost of deviating from the optimal schedule, then it is beneficial for the
flexible resource to follow a suboptimal schedule and be compensated.

2.2 FlexOffer

The notion of FlexOffer was introduced in the MIRABEL project [4]. It is
currently used in the Arrowhead2 and TotalFlex3 projects [8]. The benefits of
flexible loads have also been quantified in previous research [14]. Note that
other models for representing energy flexibility exist, as for example the notion
of control space proposed in the Energy Flexibility Platform and Interface
(EFPi) from the PowerMatcher4 suite [15].

An example of a FlexOffer is shown in Figure 1. It is composed of a number
of slices, each slice corresponding to a time interval (here one hour). A FlexOffer
encodes two types of flexibility. The first one is time flexibility, illustrated by the
possibility to move the block of slices within a given timed interval. The second
type of flexibility is energy flexibility, and is the one of interest in the context
of this paper. The lower area of a slice represents the non-flexible energy load
of a flexible resource. The upper area represents the energy interval in which it
can operate while delivering correct service. The upper and lower bound on the
upper green area represents the maximum and minimum amount of energy the
resource can consume, respectively. As illustrated by the second slice, the energy
amounts can be negative for entities producing energy. Each FlexOffer contains
a default schedule. This schedule represents the optimal energy consumption
for the resource. Along with the default schedule can be assigned some pricing
information, detailing the cost of deviating from the default schedule.

2 www.arrowhead.eu
3 www.totalflex.dk
4 https://flexiblepower.github.io/

163

6 8 10 12 14 16 18

−2

0

2

4

6

8

Start

Time

Latest

End

Earliest

Start

Time

Flexibility

Time

Flexibility

Time

E
n

er
g
y

Minimum Consumption

Flexible Consumption

Schedule

Fig. 1. Example of a FlexOffer.

2.3 Probabilistic FlexOffer

A limitation of the FlexOffer model is that it does not capture uncertainties
about the bounds of the flexible interval. However, there are many cases where
it is difficult to provide strong guarantees about these bounds. Solar cells or
wind turbines are good examples on the production side, while an office build-
ing could deviate from its expected consumption pattern based on unexpected
variations of its occupancy. Dealing with such uncertainties necessitates either
making conservative estimates, reducing the likelihood of prediction errors, or
tolerating a certain number of them. On the other hand, making probabili-
ties explicit can provide valuable information on the likelihood of prediction
errors, enabling to increase or reduce the flexibility interval based on desired
confidence. Figure 2 shows an example of the representation of a slice of a
probabilistic FlexOffer. The minimum and maximum bounds of the slice are
expressed by probability distributions, normal distributions in this example.

Let the minimum/maximum consumption distributions be referred to as
min and max, respectively. Then, for each energy input x, the schedule success
function succ is given by

succ(x) = minCDF(x)− maxCDF(x)

where CDF refers to the associated cumulative distribution function5. The
function describes the probability that the system is able to follow a given

5 Note that the Y-axis on Figure 2 only shows relative values. The scale should not
be compared between the success function and the distribution functions.

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

164

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Energy

P
ro

b
a
b

il
it

y

Minimum Consumption Density Distribution

Maximum Consumption Density Distribution

Schedule Success Function

Fig. 2. Example of a slice of a Probabilistic FlexOffer.

-2.15 0.15 5.35 8.65

0.95

0.05

5% interval

95% interval

Energy

P
ro

b
a
b

il
it

y

Schedule Success Function

Fig. 3. 95% and 5% succes intervals for the schedule success function.

schedule. At the mean of the minimum consumption density function (x = −1),
the probability that the actual minimum consumption is greater than −1 is
exactly 50%. Thus, there is a 50% probability that a schedule assigning a

165

consumption of −1 cannot be executed properly by the system i.e. the rate of
success is 50%, as witnessed by the graph of succ. Similarly, there is a 50%
probability that a schedule of x = 7 can be followed. Conservative schedules in
the interval [2, 3] would have a rate of success of approximately 100%, as it is
almost certain that the system is able to operate within this energy interval.
Figure 3 depicts the 95% and 5% success intervals. These represent energy
intervals [0.15, 5.35] and [−2.15, 8.65] in which there is at least 95% (resp. 5%)
probability of being able to follow the schedule.

If the buyer assigns a schedule with low probability, then lower penalty
is incurred for not following the schedule. This can be used by the buyer to
evaluate if they are willing to take a risk, if a grid overload is severe enough.
In the example in Figure 2 a conservative down-scaling of consumption, with
high probability of success, might be to assign a schedule of 0. If the overload
is severe enough, a schedule of -1 or even -2 might be better. It is unlikely that
the schedule will be followed entirely, but it might give better performance for
the grid.

In this way, probabilistic FlexOffers can offer more options for shifting en-
ergy loads for the buyers, as well as higher compensations and lower penalties
for the flexible resources.

3 Probabilistic Flexibility Forecasting and Schedule
Assignment

To make use of probabilistic FlexOffers, a convenient way of generating them is
necessary. Current approaches for generation of FlexOffers, such as described
in [12], use model based prediction technique. An issue however is that popular
models such as available in Simulink do not enable the explicit specification
of stochastic parameters. In this paper, we propose an approach based on the
recent advances in synthesis and optimization of strategies for stochastic hybrid
games [5], available in the Uppaal-stratego6 tool [6]. The different steps of
the approach are described in this section.

3.1 Modeling

The objective of the modeling step is to obtain a realistic representation of the
system for which to generate probabilistic FlexOffers. The modeling formalism
employed is Stochastic Hybrid Game [10], defined as follows:

Definition 1 (Stochastic Hybrid Game). A stochastic hybrid game G is a
tuple (C,U , X,F , δ) where:

1. C is a controller with a finite set of (controllable) modes C,
2. U is the environment with a set of (uncontrollable) modes U,

6 Available at www.uppaal.org

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

166

3. X = {x1, · · · , xn} is a finite set of continuous (real-valued) variables,
4. for each c ∈ C and u ∈ U, Fc,u : R>0 × RX → RX is the flow function

that describes the evolution of the continuous variables over time in the
combined mode (c, u), and

5. δ is a family of density functions, δγ : R≥0×U → R≥0, where γ = (c, u, v) ∈
C × U × RX . More precisely, δγ(τ, u′) is the density that U in the global
configuration γ = (c, u, v) will change to the uncontrollable mode u′ after a
delay of τ .

The controller encodes different configurations of components of the under-
lying system such as the state of a heater, AC system or heat pump and is one
of the players of the game. The opponent player is the environment, encoded as
a set of uncontrollable modes. These can represent inhabitants of the building,
the temperature, humidity, sun iraddiance or other completely uncontrollable
aspects. The continuous variables model the system parameters of interest,
such as temperature or energy. The dynamics of the continuous variables as
flow functions may be described by ordinary differential equations (ODEs) for
each combined mode of the system. Finally, the density functions enable spec-
ifying a distribution that describes the change of uncontrollable modes over
time. These probabilities can be determined based on historical information
or external information such as weather forecast. The proper modeling of the
system can be determined using simulations to compare the results with ac-
tual system behavior. We assume that the controller C can only change mode
periodically, with time period P .

3.2 Estimating Probabilistic Bounds

Having a satisfactory model of the system, the next step is to use it to generate
a probabilistic FlexOffer for a given time horizon H. It is assumed that the
model includes two continuous variables kWh and time representing the total
energy balance of the system and the global time respectively. The optimization
capabilities of Uppaal-stratego are then used to generate two (memoryless)
strategies σHmin and σHmax , that minimize (resp. maximize) the expected value
of kWh for the horizon H. In this setting, a strategy for a controller C is a
function σ : C → C from the set of global configurations C = C × U × RX to
a new control mode. For a given configuration γ = (c, u, v) , σ(γ) thus gives
the controllable mode to be used in the next period. A run according to the
strategy σ is then a sequence of configurations (γi) and delays (τi), γ1τ1γ2τ2 . . .
such that each τi respects the period and each γi respects the decision made by
the controller in a given configuration (see [10] for details). Under a strategy
σ, the game G becomes a stochastic process G � σ, implying the existence of a
(unique) well-defined probability measure on sets of runs. Given a time horizon

H ∈ N and a random variable D, EG,γσ,H(D) ∈ R≥0 is the expected value of D
with respect to random runs of G � σ of length H, starting in configuration γ.

For generation of flex-offers, the random variable is the energy consumption
kWh. Thus, σHmin = arg minσ E

G,γ
σ,H(kWh) and σHmax = arg maxσ E

G,γ
σ,H(kWh).

167

Assuming the existence of a reasonable Uppaal-stratego encoding of the
game G, the computation of the two strategies is done by the execution of the
following two queries 7:

strategy minkWh = minE (kWh) [<=H]: <> time == H

strategy maxkWh = maxE (kWh) [<=H]: <> time == H

Under these two strategies, the expected value of the minimum and maximum
energy balance for a given number of runs N are obtained using the following
queries8:

E[<=H;N] (min:kWh) under minkWh

E[<=H;N] (max:kWh) under maxkWh

The resulting probability distributions constitute the bounds of a proba-
bilistic FlexOffer slice of duration H.

3.3 Scheduling

Once a schedule is assigned to a FlexOffer, the associated system is required
to follow it as closely as possible. A schedule corresponds to an amount of
energy schEnd to be consumed (or produced if negative) within the horizon H.
The optimization method used to generate the bounds of a FlexOffer slice can
also be applied to generate a strategy that leads the system to approach an
assigned consumption amount. To do so, a variable sch = (schEnd/H)∗ time is
defined. This variable represents the ideal consumption pattern to be followed
by the system to fulfill the assigned schedule. The error error is then defined
as error = (kWh − sch)2, representing the (squared) distance between the
expected and actual consumption. In this way, the accumulated error function
is monotone w.r.t. time and outliers are punished harder. The objective is then
to minimize the error to obtain a strategy σsch

H that matches the expected
consumption pattern as closely as possible. The following query is used to
obtain this strategy:

strategy schedule = minE (error) [<=H]: <> time == H

Assigning a schedule within the probabilistic bound of a FlexOffer can lead
to uncertainties about whether the system can follow it. To quantify this un-
certainty, a first possibility is to compute it from the probability distribution
of the FlexOffer. Another possibility is to estimate, under the strategy σsch

H ,
the probability of the consumption falling outside a given interval around the
assigned schedule. This is done using the following query:

Pr[<=H] (<> (kWh < schEnd - delta || kWh > schEnd + delta)) under schedule

7 Syntax for Uppaal-stratego commands can be seen in [6]
8 Note that in the case that the evolution of energy is not monotonous, modeling

tricks are required, that will be described in Section 4

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

168

Heat
Pump

Ice
Storage HVAC

Control

Weather Forecast

Solar Panels

Inverter
Remote Control

Via Internet

Fig. 4. System component overview.

where delta corresponds to an acceptable error value.
A buyer on the flexibility market can use this approach to assign a schedule

to a FlexOffer, generate a strategy for satisfying it, and then check that the
probability of the system deviating from it is within an acceptable range. In
case the uncertainty is too high, a different schedule can be assigned.

4 Use Case

To illustrate the proposed methodology, we apply it on a concrete use case.
The case concerns comfort cooling for a bank building located in the northern
part of Denmark. With a facade composed mainly of glass, the large office space
tends to become hot during the summer. To improve the comfort, an innovative
cooling system was installed, using solar panels to utilize energy generated from
the sun. An overview of the system is shown in Figure 4.

The system is based around thermal energy storage in the form of an ice
bank. The ice bank is a large tank of water with coils running through it. As
the liquid inside the coils is cooled down, the water in the tank freezes. During
a sunny day, the energy generated by the solar panels is used to power a grid-
coupled heat pump for heat exchange between the ice bank and the outside
environment. During this process, the ice bank is being “charged” i.e. ice is
forming. Finally, a heat exchanger provides an interface between the ice bank
and a ventilation system, allowing the ventilation system to “discharge” the ice
bank while providing cooling to the building. The ventilation system is config-
ured with a set point Tset and automatically turns on if the room temperature,
Tr, exceeds the desired set point, Tset , by a specified allowed margin of devi-
ation, T∆; Tr > Tset + T∆. Cooling is turned off when the temperate is T∆
degrees below Tset ; Tr < Tset − T∆. Furthermore, if the level of the ice bank

169

falls below a lower limit, the system is hardwired to automatically turn on the
heat pump at the maximum setting to quickly “re-charge” the ice bank. In this
case, the energy generated from the solar panels may be insufficient, implying
a purchase of energy from the grid. Note that, although the ventilation system
cannot directly be controlled, the output is completely determined for any time
point by Tr, Tset and T∆.

The control unit computes input settings to the heat pump in order to
indirectly adjust the level of the ice bank according to the desired objective. As
indicated in Figure 4, the concrete strategy is influenced by a weather forecast.
The default schedule is given by a control strategy that computes heat pump
input settings to maximize the use of produced energy from the solar panels.
Thus, under the default schedule the goal is to keep the energy balance at zero.

One way of generating a FlexOffer for this use case would be to simply use
the lowest possible heat pump setting (off) for the minimum consumption and
the maximum possible setting for the upper bound on the flexible interval. This
approach has several drawbacks. If the heat pump is always off, the ice bank
level might violate the lower bound and therefore automatically turn on the
heat pump, for some time, with the maximum input setting. If this happens
when the sun is not shining, a purchase of energy from the grid is the only
option. In addition, this approach is only viable in the simple case where no
pricing information is available. If pricing information is available, the controller
should not only optimize for energy consumption, but also take into account
the different pricing structures for buying/selling energy from/to the grid.

4.1 Stochastic Hybrid Game Encoding

To encode the system as a stochastic hybrid game, we identify variables describ-
ing the important characteristics of the system as well as the (un)controllable
modes. As the building is mainly a large open office space, we model it as a
single room. We thus consider the stochastic hybrid game G = (C,U , X,F , δ)
where controller C has a finite set of controllable modes S corresponding to
input settings to the heat pump. The environment U has modes I, encoding all
possible values of the irradiance from the sun, hence I = R. We assume 0 ∈ S
to be the lowest setting (turn off) and 100 ∈ S the highest setting available to
the controller.

In addition to kWh and time, the variables included in X are:

– HP : heat exchange between HP and ice bank (charge)

– HVAC : heat exchange between HVAC and ice bank (discharge)

– Tr: temperature of the room.

– IB : level of the ice bank.

– Tenv : outside temperature.

– Irr : irradiance from the sun.

– IrrStd : standard deviation for Irr .

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

170

For a given global configuration γ = (s, i, v) ∈ S × I × RX with v(Irr) =
iγ , v(IrrStd) = IrrStdγ we assume that U , given density function δγ , can switch
among modes according to the normal distribution N (iγ , IrrStdγ) at every
period P . Thus, each period defines an uncontrollable update to the irradiance
forecast, according to a specific normal distribution.

For any controllable mode s ∈ S, uncontrollable mode i ∈ I, variable x ∈ X
and time-delay τ we define the flow function Fs,i(τ, x). Concrete values for
constants mentioned can be found in Appendix A.

The flow function Fs,i(τ,HP) computes the output of the heat pump after
a delay of τ :

Fs,i(τ,HP) =

0 if Fs,i(τ, IB) ≥ IB full

(As · 100 +Bs) · COPs if Fs,i(τ, IB) ≤ IBempty

(As · s+Bs) · COPs o.w

where IB full , IBempty are the bounds on the level of the ice bank, indicating
if the ice bank is full or empty. If the ice bank is full, the chosen setting is
disregarded and the output of the heat pump is set to 0. If it is empty, the
current system automatically turns on the heat pump with the highest setting
(100). Otherwise, the chosen setting, s, is applied. The first term of the prod-
uct converts the setting s to power consumption of the heat pump, which is
multiplied by the coefficient of performance (COP) of the heat pump at the
given setting, s.

Flow function Fs,i(τ,HVAC) is given by

Fs,i(τ,HVAC) =

0 if Fs,i(τ, Tr) < Tset − T∆
(Fs,i(τ, Tr)− THVAC) ·HHVAC if Fs,i(τ, Tr) > Tset + T∆
HVAC o.w

where Tset is the set temperature, T∆ the allowed temperature deviation,
THVAC the temperature of the cooling air and HHVAC the heat exchange coef-
ficient.

The flow function Fs,i(τ, Tr) computes the room temperature T ′r after τ
time units have passed. It is given by the solution to the following differential
equation, where the initial condition is the current temperature Tr:

d

dt
Tr(t) = D · ((HVAC (t) + i ·Aeff + Pfree)− (Tr(t)− Tenv (t) ·Henv)) .

Pfree denotes “free” heat produced by people, electronics, lighting etc. in the
room and Aeff is the effective area of the windows through which the sun
irradiance heats up the room. Henv is the heat exchange coefficient for the walls
of the building and the environment. Finally HVAC (t), Tr(t) and Tenv (t) are
values for the HVAC cooling power, room temperature and outside temperature
at time t, respectively. Hence, the temperature depends on whether or not the
ventilation system is turned on or off, the irradiance from the sun heating up
the building, free heat and the heat exchange with the environment.

171

Finally the flow function Fs,i(τ, IB) for the ice bank level is given by the
solution to the following equation:

d

dt
IB(t) = HP(t) + HVAC (t).

The initial condition is given by the current ice bank level IB . This gives a
perfect linear model of the ice bank with no heat exchange between the ice
bank and the surrounding air. This is not expected to be a correct model,
but seems to give reasonable results on short timescales. It is planned to do
regression learning on measured data to get a better representation of the actual
behavior of the ice bank.

Note that, in addition to the infinite number of uncontrollable modes, the
flow functions are recursively defined. Although this may be problematic when
seeking an analytical solution, simulation is possible as long as each successor
state is well defined. To this end, we impose an ordering on the computation
of the recursively defined flow functions. This ordering is the same as the one
used above in the list of variables in X: HP ,HVAC , Tr, IB .

4.2 Experimental results

The stochastic hybrid game described in the previous section was implemented
in Uppaal-stratego. Concrete details of the model can be found in Appendix
B.

The experiments are made by varying the values of some of the variables
in the model. Then a FlexOffer can be generated based on the values. The
variables are:

– Level of the ice bank.
– A forecast of the irradiance.
– A standard deviation of the irradiance forecast.

The experiments are separated into three sections. First experiments are
made at different levels of the ice bank and different forecast scenarios to see
how the ice bank performs, and what types of FlexOffers we can expect. Second
we show how the standard deviation can be used to make probabilistic Flex-
Offers and how schedules can be assigned. And finally we discuss the benefits
from probabilistic FlexOffers.

Generating FlexOffers FlexOffers can be generated with Uppaal-stratego
using the queries from Section 3.3. Due to technicalities in Uppaal-stratego,
the queries are slightly different than previously shown.

E[<=H;N] (min:final_kWh) under minkWh

E[<=H;N] (min:final_kWh) under maxkWh

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

172

Here final_kWh is a new variable which is set to a high number at the beginning
and updated to be equal to kWh after H time units. This is because this type of
query returns the minimum value along the trace, but we need the final value
at the end of the trace. Running this for different scenarios, we get an idea of
the FlexOffers that can be generated.

For the experiments, the ice bank level is varied in three levels: Empty, Mid
and Full, with values 0, 25, 55, respectively. The forecast is varied with High,
Average, and None (values 600, 200, 0). The standard deviation is set to be 10%
of the current forecast. Currently uncertainty is not available from irradiance
forecast services, but it is expected to be available in the near future[9].

Table 1 shows results for 9 scenarios with varying amount of solar radiation
and varying levels in the ice bank. Each result is an average of 10 runs, where
each run took an average of 200 milliseconds on a standard modern laptop. The
scenarios are run with time horizon H = 15 (fifteen minutes). For each scenario,
the maximum is shown in the top row and the minimum in the bottom row. Six
of the scenarios are visualized in Figure 5. These will be explain left-to-right,
top-to-bottom.

First, we have a full ice bank and high irradiance, giving a lot of produced
energy. We can see on the FlexOffer that both maximum and minimum are
below zero. This means we have excess production we are unable to store in
the ice bank, and are forced to sell some to the grid. Second, we have medium
level in the bank and high irradiance. This scenario gives us high flexibility.
We can choose to buy extra energy from the grid or we can choose to sell
production to the grid. Third, we have an empty ice bank and no irradiance.
Here we are unable to sell much to the grid, since we need it to charge the ice
bank. However, we are able to buy extra energy to charge the bank faster.

For the bottom row in Figure 5, we can see in all cases that we are unable
to sell energy since we have no production. First we have almost no flexibility
at all, since we cannot buy more energy for a full bank (the little we can buy
is the amount used to cool the building). Second, we have flexibility in buying
and, finally, we are forced to buy some energy in case the bank is empty. Here
we still have flexibility in how much we want to buy.

Full Mid Empty

High irradiance Max N (−0.97, 0.03) N (1.37, 0.03) N (1.47, 0.03)

Min N (−1.17, 0.03) N (−1.17, 0.03) N (−0.98, 0.03)

Average irradiance Max N (−0.18, 0.01) N (2.26, 0.01) N (2.24, 0.01)

Min N (−0.39, 0.01) N (−0.26, 0.01) N (−0.16, 0.01)

No irradiance Max N (0.23, 0.00) N (2.50, 0.00) N (2.64, 0.00)

Min N (0.04, 0.00) N (0.06, 0.00) N (0.28, 0.00)

Table 1. FlexOffers generated for different scenarios.

173

Ice Level
Full Mid Empty

Ir
ra

di
an

ce

High

No

Fig. 5. FlexOffers generated for different scenarios.

Probabilistic FlexOffers and Schedules The probabilities in the results
come from the uncertainty on the irradiance forecast. Currently uncertainty
is only added for the irradiance forecast, but it could also be added for the
outside temperature or the amount of cooling required by the building. Since
the only uncertainty in the model is sampled according to a normal distribution,
the output from Uppaal-stratego will also follow a normal distribution.
When we query Uppaal-stratego for the minimum and maximum values,
we are given the mean value. The standard deviation can be calculated from
the frequency histogram from Uppaal-stratego. Figure 6 show an example
histogram generated for the case with high irradiance and mid ice bank level.

Probabilistic FlexOffers can be generated using the standard deviation to-
gether with the minimum and maximum. Schedules can now be assigned ac-
cording to this FlexOffer using the query:

strategy schedule = minE (error) [<=H]: <> time == H

This creates a strategy, which minimizes the error between the schedule and
the actual energy used.

The probability of being able to follow a schedule is given by the normal
distributions formed by using the minimum and maximum values as mean and
their respective standard deviations. A strategy for following the schedule can
be generated using Uppaal-stratego. The probability of being able to follow

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

174

Energy

C
o
u
n
t

Fig. 6. Histogram showing estimated minimum consumption, with high irradiance
and mid ice level.

a schedule can be estimated by trying to assign schedules in incremental steps
using the query:

Pr[<=H] (<> (kWh < schEnd - delta || kWh > schEnd + delta)) under schedule

We set delta = 0.1. Here schEnd is the assigned schedule. By varying this in
incremental steps from below the mean to above the mean, we can estimate
the probability of following different schedules.

Figure 7 shows this estimate for an example minimum value of -1.18 and
standard deviation of 0.03. The blue circles are values estimated in steps of
0.01, while the red line is the cumulative distribution function. Each blue circle
shows an average of 10 runs, each run an average of took 150 milliseconds.
Since the delta is 0.1 all estimates from Uppaal-stratego are left-shifted by
0.1, due to overestimation. The dashed yellow line shows the CDF shifted by
0.1. The estimates from Uppaal-stratego follow the CDF quite closely. The
reason for the deviation from the CDF is that the models are made to only
allow 10 different speed settings on the heat pump, while the actual heat pump
supports 100 speed steps. This is done to reduce the state space such that
strategies and estimates can be generated faster.

Discussion The amount of flexibility offered by a FlexOffer depends on the
desired accuracy. For a normal FlexOffer we can simply subtract the minimum
from the maximum to get the available flexibility. For probabilistic FlexOf-
fers we need to take the desired certainty and the standard deviations into
account. If we want a certainty of 95% the flexibility is decreased at both ends.

175

-1.4 -1.35 -1.3 -1.25 -1.2 -1.15 -1.1 -1.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated from Uppaal
CDF(-1.18, 0.03)
CDF(-1.28, 0.03)

Fig. 7. Probability of being able to follow an assigned schedule.

Conversely, if we want 5% the flexibility interval is expanded. For the shown
FlexOffer the difference in flexibility offered when requiring a 95% certainty of
being able to follow the schedule versus requiring 5% is about 0.1974kWh or
197.4Wh. This might not seem like much, but there are a few circumstances to
consider. First, this is a simulation done over a fifteen minute interval, for one
hour this would average almost 0.8kWh.

Second, the simulations are made with the standard deviation of the irra-
diance forecast set to 10% of the mean. Extrapolating from the graphs in [9]
a deviation of 30% might be more realistic. When running a simulation of 24
hours using a measured irradiance from an average Danish summer day as
forecast with 30% deviation, we get a FlexOffer with min: N (−16.41, 0.30) and
max: N (5.55, 0.30). If we only include schedules with at least 95% probability,
this gives a flexibility of 20.97kWh. If we include the schedules with at least
5% probability, this increases to 22.95kWh. This is an increase of about 9.4%
in flexibility.

Third, the model used currently is very deterministic in the sense that not
many stochastic elements are included. Only the forecast on the solar irradiance
is stochastic. If we include stochastic information on other elements in the
model we could increase the potential flexibility. This could for instance be
uncertainty on the outside temperature or the amount of free heat generated
by people and electronics in the building.

Finally, these FlexOffers are intended to be used together with an aggre-
gator [8], which collects a large amount of FlexOffers from several flexible re-

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

176

sources. When joining all these, the difference will likely become significant
from the buyers perspective.

5 Related Work

The methodology presented in this paper is inspired by several applications of
control synthesis and optimization such as presented in [6] and [11]. In partic-
ular, the application of these techniques to synthesize a floor heating controller
in [10] has provided good basis for developing and optimizing the model as
well as performing the synthesis and optimization. Here however, the objective
differs in that the synthesis aims at obtaining the energy bounds in which a
system can be operated, not only in optimizing the consumption. The experi-
mental setting described is also similar to the one employed in [1]. An addition
to the setting is the inclusion into the flexibility energy framework supported
by the Arrowhead framework described in [12, 8].

The use case used to illustrate the proposed methodology was previously
presented in [2]. The main difference is that the control strategy aimed at
maximizing the use of the solar energy while here the objective is to obtain the
control interval in which the system can be operated. The model of the system
used is derived from the one that was previously presented, with the addition
of stochasticity on the irradiance forecast.

The idea of using stochastics in the modelling of flexible loads is not new:
In [3] uncertainty about flexible loads is modelled via a single global probability
on deviating from expectations. This is used to calculate an overall probability
of overload. In [13] more refined stochastic models of households are defined and
used to calculate an overall stochastic model of the their aggregated consump-
tion profile. In [7] parameters for price-response stochastic household models
are updated and broadcast on a daily basis in order to balance the flexible
loads. Our work on probabilistic FlexOffers extends this work by allowing stor-
age, consumption and generation in a single model, and also by allowing model
and parameter updates on a frequent basis.

6 Conclusion and Future Work

In this work, we have proposed a probabilistic extension of FlexOffers to model
the uncertainty of behaviour caused by an environment consisting of human
activities as well as weather conditions like e.g. sun radiation. Also, we have
demonstrated how to generate probabilistic FlexOffers from a stochastic model
of an office building containing both consumption, storage and generation de-
vices using the Uppaal-stratego tool. Simulations done on the case study
show that probabilistic FlexOffers can increase the flexibility available to the
market by about 9.4%.

As next steps, we plan work in two directions: First, we will experiment
on how probabilistic FlexOffers interact with the aggregators and markets as

177

developed in other projects [8, 4]. Here it will be interesting to observe how
the more optimistic constraints affect the schedules received from the market.
Secondly, we will investigate how generated FlexOffers can be exploited to
optimize the electricity costs by combining them with information on the spot
price market.

References

1. Agesen, M.K., Larsen, K.G., Mikučionis, M., Muñiz, M., Olsen, P., Pedersen, T.,
Srba, J., Skou, A.: Toolchain for user-centered intelligent floor heating control.
In: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the
IEEE. pp. 5296–5301. IEEE (2016)

2. Agesen, M., Skou, A., Pedersen, K.: Preliminary Report: Controller Prototyping
and Validation for Photo-Voltaic Comfort Cooling (2016)

3. Bai, J., Gooi, H., Xia, L., Strbac, G., Venkatesh, B.: A probabilistic reserve market
incorporating interruptible load. IEEE Transactions on Power Systems 21(3),
1079–1087 (2006)

4. Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipič, B., Fischer, U., Lehner,
W., Pedersen, T.B., Pitarch, Y., Šikšnys, L., Tušar, T.: Data management in the
MIRABEL smart grid system. In: Proceedings of the 2012 Joint EDBT/ICDT
Workshops. pp. 95–102. EDBT-ICDT ’12, ACM, New York, NY, USA (2012)

5. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost! In: Cassez, F., Raskin, J.F.
(eds.) Automated Technology for Verification and Analysis: 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7. pp. 129–145.
Springer International Publishing, Cham (2014)

6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems: 21st International Conference, TACAS 2015, Lon-
don, UK, April 11-18. pp. 206–211. Springer Berlin Heidelberg (2015)

7. Dorini, G., Pinson, P., Madsen, H.: Chance-constrained optimization of demand
response to price signals. IEEE Transactions on Smart Grid 4(4), 2072–2080
(2013)

8. Ferreira, L.L., Siksnys, L., Pedersen, P., Stluka, P., Chrysoulas, C., le Guilly, T.,
Albano, M., Skou, A., Teixeira, C., Pedersen, T.: Arrowhead compliant virtual
market of energy. In: Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA). pp. 1–8 (Sept 2014)

9. Kreutzkamp, P., Gammoh, O., De Brabandere, K., Rekinger, M.: Pv forecasting
confidence intervals for reserve planning and system operation. In: Proceedings
of the 28th European Photovoltaic Solar Energy Conference and Exhibition. pp.
4527 – 4534. EU PVSEC (2013), DOI: 10.4229/28thEUPVSEC2013-6CO.14.6

10. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online
and compositional learning of controllers with application to floor heating. In:
Chechik, M., Raskin, J.F. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems: 22nd International Conference, TACAS 2016, Eindhoven,
The Netherlands, April 2-8. pp. 244–259. Springer Berlin Heidelberg (2016)

11. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design:

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

178

Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birth-
day, Oldenburg, Germany, September 8-9. pp. 260–277. Springer International
Publishing (2015)

12. Le Guilly, T., Siksnys, L., Stluka, P., Pedersen, T.B., Olsen, P., Pedersen, P.D.,
Skou, A., Ferreira, L.L., Albano, M.: An energy flexibility framework on the inter-
net of things. In: The Success of European Projects using New Information and
Communication Technologies. pp. 17–37 (2015), DOI: 10.5220/0006163400170037

13. Molina-Garcia, A., Kessler, M., Fuentes, J.A., Gomez-Lazaro, E.: Probabilistic
characterization of thermostatically controlled loads to model the impact of de-
mand response programs. IEEE Transactions on power systems 26(1), 241–251
(2011)

14. Neupane, B., Pedersen, T.B., Thiesson, B.: Evaluating the value of flexibility in
energy regulation markets. In: Proceedings of the 2015 ACM Sixth International
Conference on Future Energy Systems. pp. 131–140. e-Energy ’15, ACM, New
York, NY, USA (2015), https://doi.org/10.1145/2768510.2768540

15. Bram van der Waaij, Wilco Wijbrandi, M.K.: White paper energy flexibility plat-
form and interface (ef-pi). Tech. rep., TNO (June 2015)

179

A Thermodynamics

Constants from Section 4.

As =

{
80 if s ≤ 25
(s− 25) · 120 o.w

Bs =

{
0 · s if s ≤ 25
2000 o.w

COPs =

{
0.16 · s if s ≤ 25
4 o.w

HHVAC = Ṁair · Cair

THVAC = 18°C

D =
1

Mair · Cair

Aeff =
6m2

10

Henv =
1

0.0093
IB full = 55

IBempty = 0

where

– Ṁair = 1Kg
s is the HVAC air flow rate.

– Cair = 1005.4 J
Kg·K is the specific heat capacity of air.

– Mair = 7113.5Kg is the mass of air in the building.
– Mice = 1500Kg is the total mass of ice within ice bank.
– Cice = 2108 j

Kg·K is the specific heat capacity of ice.

B Model specifics

Figure 8 depicts the Uppaal-stratego model used for on-line controller syn-
thesis. It consists of two location Choose speed and Wait. The solid edge from
Choose speed to Wait encodes a non-deterministic choice between the available
heat pump settings i.e. the controllable modes in the stochastic hybrid game.
When the next controllable mode is set, update irr() computes the next un-
controllable mode, i.e. the irradiance forecast. apply flow() then updates each
variable according to the flow functions of the corresponding stochastic hybrid
game, as seen in Listing 1.1. To this end, numeric integration using the Euler
method is implemented in each update X() function call, for numSteps number
of steps. Finally, update kWh() updates the energy consumption/production
for this period. Invariant x ≤ 1 in the Wait location and guard x == 1 on
the clock x together encode the period. The dotted edge encodes a reset to a
new period and is considered uncontrollable by Uppaal-stratego for control
strategy synthesis.

Paper E. Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using
UPPAAL Stratego

180

Fig. 8. Uppaal-stratego model for on-line controller synthesis.

Listing 1.1. Function to update variables according to flow functions.�
void apply flow() {

// Manuel integration for numSteps steps
int j ;
for (j = 0; j < numSteps; j++) {

update heatpump();
update cooler();
update temperature();
update icebank();
update kWh();

}
}�

181

Sø
r

en
 en

evo
ld

Sen
A

b
Str

A
c

t d
epen

d
en

c
y G

r
A

ph
S fo

r
 M

o
d

el ver
ific

Atio
n

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-849-6

	Kolofon_SE.pdf
	_PHD_SE_FOR_OPPONENTS.pdf
	Omslag_SE.pdf
	PHD_SE_TRYK.pdf
	Kolofon_SE.pdf
	submission.pdf
	Front page
	Abstract
	Resumé
	Contents
	I Introduction
	1 Model Verification
	1.1 Challenges
	1.2 Approach of This Thesis

	2 Dependency Graphs
	2.1 On-the-Fly Verification

	3 Encoding of Problems into DGs
	3.1 Encoding of Strong Bisimulation
	3.2 Encoding of CTL Model Checking

	4 Contributions of the Thesis
	4.1 Paper A: Distributed Computation of Fixed Points on Dependency Graphs
	4.2 Paper B: A Distributed Fixed-Point Algorithm for Extended Dependency Graphs
	4.3 Paper C: Extended Abstract Dependency Graphs
	4.4 Paper D: Verification of Multiplayer Stochastic Games via Abstract Dependency Graphs
	4.5 Paper E: Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using UPPAAL Stratego

	5 Conclusion
	References

	II Papers
	A Distributed Computation of Fixed Points on Dependency Graphs
	B A Distributed Fixed-Point Algorithm for Extended Dependency Graphs Algorithm
	C Extended Abstract Dependency Graphs
	D Verification of Multiplayer Stochastic Games via Abstract Dependency Graphs
	E Energy Consumption Forecast of Photo-Voltaic Comfort Cooling using UPPAAL Stratego

	Omslag_SE
	Blank Page

	Blank Page

