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ENGLISH SUMMARY 

The ejaculatory abstinence (EA) period can greatly affect sperm quality. 

However, the optimal EA period before delivering samples for semen analysis 

or infertility treatment is still a topic of debate. Previous studies on the 

influence of different abstinence times on sperm quality have provided 

controversial results. This can be due to these studies mostly focusing on 

study populations with sub-optimal sperm quality, while assessing semen 

parameters using different and often non-standardized methods, ultimately 

resulting in a lack of overall standardization and comparability.   

This PhD project was designed to assess and compare the effects of short 

(two hours) versus long (4-7 days) ejaculatory abstinence periods on sperm 

quality parameters including sperm concentration, total sperm number in 

ejaculate, motility characteristics including kinematic parameters, 

morphology, and DNA fragmentation in normozoospermic men. Metabolomic 

profiles of the seminal plasma were also created to provide a possible insight 

into the mechanisms underlying the observed differences. 

Normozoospermic male partners of couples undergoing In-vitro Fertilization 

(IVF) or Intra Cytoplasmic Sperm Injection (ICSI) at the Dronninglund fertility 

clinic (Aalborg University Hospital, Aalborg, Denmark) were asked to deliver 

two semen samples after a long (4-7 days) followed by a short (two hours) 

ejaculatory abstinence period. Sperm concentration, total sperm number per 

ejaculate, motility group categorization and kinematic details of the samples 

were performed using the SCA® (Sperm Class Analyzer) CASA system. The 

percentage of sperm with normal morphology was analyzed following 

“Spermblue” staining using the SCA. The DNA fragmentation index (DFI) 

(percentage of sperm with fragmented DNA) was assessed using the sperm 

chromatin structure assay (SCSA) and sperm chromatin dispersion (SCD) 

tests. 

The results, demonstrated lower volume, sperm concentration and sperm 

number in total ejaculate; but, significantly increased percentages of 

progressive and rapid-velocity sperm, with a lower percentage of DNA 

fragmented sperm in samples obtained after two hours versus 4-7 days of 

abstinence. Metabolomic profiling of the samples using nuclear magnetic 

resonance spectroscopy demonstrated higher absolute amounts of pyruvate 
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and taurine per spermatozoa (metabolite concentration divided by sperm 

numbers) in ejaculates collected after the shorter abstinence time. 

The higher absolute amounts of pyruvate as one of the most significant 

sources of energy required for mitochondrial function, and taurine as a 

capacitating and motility promoting factor, in the seminal plasma after shorter 

abstinence periods could be considered as an underlying mechanism behind 

the better motility observed in the second ejaculates. A shorter exposure to 

the oxidative stress caused by a possibly harmful seminal microenvironment 

during storage of the sperm in the cauda of the epididymis and vas deferens 

prior to ejaculation could also be considered as another underlying reason for 

the lower DNA fragmentation and generally better quality of the sperm after 

shorter abstinence periods.  

Despite the lower volume, concentration and total sperm number in ejaculate 

after short abstinence, the higher percentages of spermatozoa with better 

motility and lower DNA damage increase, in theory, the possibility of selecting 

higher quality sperm for procedures not requiring many sperm (IVF, ICSI). 

Intrauterine inseminations requiring a higher number of motile spermatozoa 

may also benefit from the pooling of two consecutive ejaculates or using only 

the second ejaculate for treatment might improve fertilization rates. The lower 

levels of DNA fragmentation in the second sample could also result in reduced 

risk of miscarriage after IVF/ICSI.  

However, further validation in large prospective randomized controlled trials, 

more purposely directed at males having problems to conceive when there 

appears to be no female factors, is needed to fully verify the potential 

advantage of using a second sperm sample in improving fertilization and 

pregnancy rates in assisted reproduction. Using several “omics” approaches 

comparatively and in combination, could allow for the identification of more 

metabolites and greater insight into the underlying mechanism behind the 

differences in sperm quality following different abstinence periods.  
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DANSK RESUME 

Abstinensperioden efter ejakulation kan i høj grad påvirke sædkvaliteten. Ikke 

desto mindre diskuteres det stadigt, hvad der er den optimale 

abstinensperiode før indsamling af sædprøver til diagnostik eller 

fertilitetsbehandling. Tidligere studier af forskellige abstinensperioders 

betydning for sædkvaliteten har givet modsatrettede resultater. Dette kan 

skyldes, at de pågældende studier primært har fokuseret på populationer med 

suboptimal sædkvalitet samtidigt med at de har vurderet sædparametre ved 

hjælp af forskelligartede og ofte ikke-standardiserede metoder, som ultimativt 

resulterer i mangel på sammenlignelighed.  

Dette Ph.D. studie var planlagt med henblik på, hos mænd med normal 

sædkvalitet, at bedømme effekten af korte (2 timer) versus lange (4-7 dage) 

ejakulationsabstinensperioder på mål for sædkvalitet så som 

spermiekoncentration og – antal, motilitetskarakteristika inklusive kinematiske 

parametre, morfologi og DNA fragmentation. Der blev også undersøgt profiler 

af sædplasmametabolomet. 

Mandlige partnere med normal sædkvalitet fra par som gennemgik in-vitro-

fertilisering (IVF) eller intracytoplasmatisk spermieinjektion (ICSI) på 

Dronninglund fertilitetsklinik, Aalborg University Hospital blev anmodet om at 

aflevere to sædprøver efter lang (4-7 dage) fulgt af en kort (2 timer) 

abstinensperiode. 

Spermiekoncentration, totalt spermieantal, kategorisering iht. motilitet og 

kinematiske detaljer blev undersøg ved brug af SCA (Sperm Class Analyzer) 

CASA system. Procentdelen af spermier med normal morfologi blev 

analyseret ved SCA efter ”Spermblue” farvning. DNA fragmenterings index 

(DFI), som er procentdelen af spermier med fragmenteret DNA blev bedømt 

ved hjælp af sperm chromatin structure assay (SCSA) og sperm chromatin 

dispersion (SCD) test. 

Der blev påvist et lavere volumen, spermiekoncentration og totalt antal 

spermier, men signifikant øget frekvens af progressivt og hurtigt bevægelige 

spermier og en nedsat frekvens af DNA fragmenterede spermier i prøver 

produceret efter 2 timers versus 4-7 dages abstinens. Metabolomisk 

profilering viste højere absolutte mængder af pyruvat og taurine pr. 
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spermatozoo (metabolitkoncentration divideret med spermieantal) i ejakulater 

indsamlet efter den kortere abstinenstid. 

De højere absolutte mængder af pyruvat, som er en af de vigtigste 

energikilder for mitokondriefunktion, og taurin som en kapaciterende og 

motilitetsfremmende faktor i sædplasmaet efter korte abstinensperioder kan 

muligvis være en underliggende mekanisme for den bedre motilitet observeret 

i ejakulaterne efter kort abstinenstid. En mere kortvarig udsættelse for oxidativ 

stress forårsaget af et muligt fjendtligt miljø i epididymis og vas deferens før 

ejakulation kan være en baggrundsfaktor for den lavere DFI og generelt bedre 

sædkvalitet efter kortere abstinensperioder. 

Trods det lavere volumen, spermiekoncentration og –antal efter kort 

abstinens, øger den højere frekvens af spermier med bedre motilitet og den 

lavere DFI i teorien mulighederne for at udvælge spermatozooer af høj kvalitet 

til procedurer, som kræver få spermatozooer så som IVF og ICSI. Ved 

intrauterin insemination, som kræve ret højere antal motile spermier, er det 

også muligt at det kan være en fordel at poole to konsekutive ejakulater eller 

kun anvende det andet ejakulat for at øge fertiliseringsraterne. Den lavere DFI 

efter kort abstinens kunne i teorien nedsætte risikoen for spontanabort efter 

IVF/ICSI. 

Anvendelse af ejakulater efter kort abstinens ved iVF/ICSI elelr insemination 

skal dog valideres i store prospektive randomiserede kontrollede forsøg, som 

bør fokusere på infertile par, hvor der ikke ser ud til at være nogen risikofaktor 

hos kvinden. Anvendelse af adskillige ”omics” metoder individuelt og i 

kombination kan muligvis identificere flere betydningsfulde metabolitter og 

føre til større indsigt i mekanismerne, der ligger bag forskellene i sædkvalitet 

efter forskellige abstinensperioder    
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1. INTRODUCTION 

1.1. THE SPERM CELL 

The spermatozoon is the motile male reproductive cell, highly adapted to 

deliver the haploid male genome undamaged to the oocyte. Sperm are 

produced from the spermatogonia during the spermatogenesis process, which 

is estimated to be approximately 64 days in humans (Sadler and Langman, 

2012). This process occurs in the seminiferous tubules and produces gametes 

with a haploid number of chromosomes (Hall and Guyton, 2011; Sadler and 

Langman, 2012).  

The sperm cell can be morphologically/structurally subdivided into the head 

and flagellum (tail) sections, which are each responsible for a different 

physiological mechanism (Turner, 2003; Nieschlag et al., 2010; Sadler and 

Langman, 2012). 

The sperm head is composed of the acrosome and the nucleus. The 

acrosome holds the enzymes used to penetrate the zona pellucida, while the 

nucleus contains the male genetic material (Sadler and Langman, 2012). As 

the only type of cell designed to transfer from one individual to another, the 

packaging of the genetic material carried by the sperm has been specialized 

to protect the DNA from damage during transport and storage to the oocyte 

and to enable a complete rapid decondensation of the undamaged paternal 

genome in the ooplasm (Björndahl and Kvist, 2014). This specialized structure 

of the sperm DNA is based on the incorporation of protamines 1 and 2 that 

organizes the larger parts of the DNA in the nuclear matrix, along with some 

remaining “normal” histones in the minor DNA structures (Ward, 2010; 

Björndahl and Kvist, 2014). This alternate packaging structure allows sperm 

chromatin to be six times more condensed than the DNA in somatic cells 

(Ward and Coffey, 1991; Björndahl and Kvist, 2014). It has also been 

demonstrated that the damage caused to the DNA during the transfer of the 

sperm cannot be repaired before the DNA repair systems in the ooplasm gets 

access to the decondensed sperm DNA; Evidently, an increased number of 

DNA strand breaks in an individual sperm nucleus would result in an increased 

risk of errors in the repair process (Björndahl and Kvist, 2014). 

The acrosome is located as a cap over the anterior part of the nucleus, in the 

most proximal part of the spermatozoa and makes up approximately 40-60% 

of the sperm head. The digestive enzymes stored in the acrosome, are 



14 
 

collectively responsible for the penetration and breakdown of the zona 

pellucida during fertilization (Wein et al., 2015). 

The connecting piece connects the sperm head and tail regions and contains 

the proximal centriole, which is a constituent of the spermatozoa centrosome 

involved in the creation of mitotic spindles during the first division from the 

zygote to the two cells stage (Sathananthan et al., 1996; Chemes, 2012).  

The complex yet highly stable cytoskeletal structure of the axoneme consists 

of 2 microtubules surrounded by 9 doublets, and extends throughout the 

flagellum. The outer 9 doublets have one Inner and one outer dynein arm, 

which create the motive force of the flagellum (Turner, 2003) and are 

surrounded by a sheath of mitochondria until one-fourth of the way down to 

the flagellum.  These mitochondria provide the energy required by the 

dynein motor proteins accommodating the microscopic interactions within the 

axonemal complex located throughout the flagellum. This structure unit 

empowers  a mechanical mechanism seen as a wave spreading backwards 

along the axis of the spermatozoa providing the required force for the motility 

of the sperm (De Jonge and Barratt, 2006; Wein et al., 2015).  

 

1.2. INFERTILTY AND ASSISTED REPRODUCTIVE 
TECHNOLOGY (ART) 

Impaired fecundity and infertility have always been a health concern and are 

still considered as a significant clinical problem. Approximately 15–20% of 

couples worldwide, face the problem of infertility at some point in their life 

(Sharlip et al., 2002), 40–50% of which are due to “male factor” infertility 

(Agarwal et al., 2015) with approximately  2% of all men exhibiting sub-optimal 

sperm quality parameters (Kumar and Singh, 2015).  

Currently, advanced ART techniques such as in-vitro fertilization and 

intracytoplasmic sperm injection (ICSI) allow for even severely impaired 

sperm to result in fertilization, clinical pregnancy and even live birth (Palermo 

et al., 1993; Mansour et al., 1995; Nagy et al., 1995; Nijs et al., 1996; 

Vandervorst et al., 1997; Bungum, 2012). On the other hand, in spite of 

considerably improved live birth rates after ART in recent years, 19.9% of 

patients will still not succeed to have a child even after five cycles of ART 

(Wade et al., 2015). Recurrent miscarriage, as one of the underlying reasons 

for such failures, has been recently suggested to be linked to sperm-related 
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factors, namely sperm DNA integrity (Larsen et al., 2013).  In that regard, the 

predictive value of the unique and functional characteristics of sperm for ART 

outcome, has been suggested to have great potential in assisting decision 

making process at clinic (Yetunde and Vasiliki, 2013; Oehninger et al., 2014). 

1.3. SPERM QUALITY ASSESSMENT 

Evidently, a reliable and accurate assessment of sperm quality is a vital 

component of reproductive medicine and the first step in the diagnosis of the 

etiology of infertility in a couple; thereafter, selecting the best procedures to 

improve sperm quality (before and after ejaculation) and deciding on the 

overall treatment strategy in cases of male-factor infertility.  

A set of predetermined values and parameters are often used to classify 

spermatozoa quality. In 1980, the World Health Organization (WHO) 

published the “WHO laboratory manual for the Examination and processing of 

human semen” (World Health Organization., 2010) as the first guideline for 

the standardization of procedures and reference values used in the analysis 

of human semen. Currently, the 5th edition of this guideline titled “World Health 

Organization laboratory manual for the examination and processing of human 

semen (WHO, 2010)” is used as a generally accepted guideline to standardize 

sperm analysis by the majority of the andrology and ART laboratories 

worldwide (WHO, 2010).   

In addition to the conventional (manual) methods of sperm analysis, the 5th 

edition of the WHO guidelines also describes computer aided sperm analysis 

(CASA) as systems capable of assessing sperm concentration, motility, and 

detailed kinematics, as well as semi-automated morphology analysis. The WHO 

refers to the higher precision and quantitative data on the kinematic parameters 

of spermatozoa, as advantages of CASA over manual methods (WHO, 2010).  
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1.4. THE ASSESSMENT METHOD  

1.4.1. Conventional sperm quality assessment (Subjective) 

The results of sperm analysis (spermiogram) would normally include the 

sperm concentration, total sperm count, percentage of total motile sperm and 

sperm within different motility groups. Additionally, sperm analysis can also 

include the assessment of sperm morphology and DNA fragmentation index. 

A continuous quality assurance (QA) program monitoring the quality and 

accuracy of the data on a regular basis, is considered as the best way to 

achieve reliable and acceptable sperm analysis results (WHO, 2010). Despite 

the availability of the recommended QA programs, several studies have 

demonstrated the presence of an inter-laboratory and inter-technician 

variation in the results of the conventional (subjective) sperm analysis (Auger 

et al., 2000; Tomlinson, 2010; Rivera-Montes et al., 2013; Daoud et al., 2016).  

1.4.2. Computer aided sperm analysis (Objective) 

Until recently, difficulties in distinguishing spermatozoa from debris, by image 

processing software had made the assessment of sperm concentration and 

motility difficult and somewhat inaccurate (ESHRE, 1998) when performed by 

computer aided sperm analysis (CASA) systems. However, the newer 

generations of CASA systems have been shown to be capable of providing 

more precise and highly objective results compared with previous generations 

(Mortimer et al., 2015). 

These newer CASA systems can now provide standardization, speed, and 

precision, while reducing the potential for human error during performing of 

the tests or recording of the data at the same time. These systems also reduce 

the need for highly skilled professionals, while still providing repeatable, 

accurate and standardized results (Dearing et al., 2014; Lammers et al., 

2014). 

The “Sperm Class Analyzer (SCA®)” (Microptic S.L., Barcelona, Spain) CASA 

system has been assessed and validated as a tool for routine sperm analysis 

and promoted as providing more accurate and precise objective results with 

less analytical variance than manual methods for sperm concentration 

(Dearing et al., 2014).   
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Some studies have suggested the detailed motility and kinematic 

characteristics of sperm obtained by CASA to serve as predictive biomarkers 

of fertilization rates in-vitro and in-vivo as well as time to conception (Liu et al., 

1991; Larsen et al., 2000; Hirano et al., 2001; Shibahara et al., 2004).  

 

1.5. SEMEN QUALITY / CHARACTERISTICS 

Many factors influence the quality of semen and spermatozoa, and 

consequently the ability for natural fertilization (Wein et al., 2015). The most 

important factors that are used as potential biomarkers of the male fertility 

potential in this study are briefly explained in the subsequent subheadings: 

1.5.1. Motility 

Motility of a spermatozoa can be measured by their ability to swim through the 

seminal plasma and mucus in the female reproductive tract, to reach an 

oocyte (De Jonge and Barratt, 2006). Some of the motility characteristics 

assessed by CASA can provide a reliable estimation of the fertilizing ability of 

human sperm (Hirano et al., 2001). Several studies have concluded that 

semen with a high proportion of spermatozoa with good motility demonstrates 

a high correlation with pregnancy rates. This makes spermatozoa motility an 

important parameter in semen analysis (Shibahara et al., 2004; Freour et al., 

2009; de Araújo et al., 2013). 

CASA systems categorize the sperm into different types based on velocity and 

progression, calculated on the following kinematic details: average (WHO, 

2010) path velocity (VAP, μm/s), straight line velocity (VSL, μm/s), curvilinear 

velocity (VCL, μm/s), Linearity (LIN), amplitude of lateral head displacement 

(ALH, μm), Straightness (STR), Wobble (WOB) and beat-cross frequency 

(BCF, Hz)  defined at 50fps (WHO, 2010). Figure 1. demonstrates the 

standard terminology assessed by CASA.  
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1.5.2. Morphology 

Sperm morphology is an important parameter in the assessment of sperm 

quality (Nieschlag et al., 2010). Due to the high variation in spermatozoa 

shape and structure, the assessment of morphology is considered to be 

generally more complicated than other quality parameters (WHO, 2010). The 

definition of “normal morphology” used currently, is based on spermatozoa 

recovered from the postcoital endocervical mucus of the female reproductive 

tract (Fredricsson et al., 1977; Menkveld et al., 1990) and surface of the zona 

pellucida (Menkveld et al., 1990; Liu and Baker, 1992). 

Nevertheless, there is still no solid evidence about the possible influence of 

sperm morphology on success rates of natural or assisted reproduction, 

further emphasizing the need for more in-depth and large-scale studies 

(Kovac and Lipshultz, 2016). 

1.5.3. Sperm DNA fragmentation 

Parameters assessed by subjective or objective analysis including 

spermatozoon concentration, motility and morphology can provide a general 

assessment of sperm quality; but, no information about the integrity of the 

DNA as an important component of sperm quality evaluation.  

The absence of a DNA repair mechanism in the spermatozoa means that the 

level of negative effect caused by a damaged chromatin, would depend on the 

level of damage and the capacity of the oocyte to repair it (González-Marín et 

 

𝑆𝑇𝑅 =
𝑉𝑆𝐿

𝑉𝐴𝑃
    𝐿𝐼𝑁 =

𝑉𝑆𝐿

𝑉𝐶𝐿
     𝑊𝑂𝐵 =

𝑉𝐴𝑃

𝑉𝐶𝐿
 

Figure 1. Standard terminology for variables measured by CASA. 
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al., 2012). Studies demonstrating the negative effect of DNA breaks and 

molecular defects in the chromatin structure on fertility, led to the integrity of 

the sperm DNA gaining more attention as a predictor for male fertility 

(Evenson and Jost, 2000; Spanò et al., 2000). Damage to the sperm 

chromatin integrity may be due to errors occurred at any step during 

spermatogenesis (Erenpreiss et al., 2006) including unrepaired DNA breaks 

during the spermatogenetic remodeling and packaging of the chromatin, or 

exposure to genotoxic agents and oxidative stress (Sakkas and Alvarez, 

2010). A higher incidence of DNA fragmentation and poor motility has been 

related to the risk of male-factor associated miscarriage (Khadem et al., 2012), 

while single stranded DNA damage can be predictive of the sperm fertilization 

potential (Pregl Breznik et al., 2013). 

 

1.6. EJACULATORY ABSTINENCE PERIOD 

Regardless of the standardization, QA programs and assessment methods, 

assessment of sperm concentration and motility classes are highly influenced 

by some confounding factors such as the frequency of ejaculations before the 

collection of sperm for quality assessment (Björndahl et al., 2010). In order to 

achieve more standardized results reliable interpretation of the semen quality, 

the WHO guidelines have suggested an ejaculation abstinence period of 2–7 

days prior to sampling (WHO, 2010). The suggested abstinence period (2-7 

days) is based on results of some previous studies demonstrating that semen 

volume, sperm concentration and total sperm count are directly correlated with 

abstinence period up to 4-10 days (Macleod, 1951; Macleod and Gold, 1952; 

Gold and Macleod, 1956; Mortimer et al., 1982; Jørgensen et al., 2001, 2012), 

with the most distinct effect of the ejaculation abstinence observed in the first 

24 hours (Hornstein et al., 1992; Matilsky et al., 1993; Tur-Kaspa et al., 1994; 

Makkar et al., 2001; Levitas et al., 2005; Francavilla et al., 2007).  

Despite the established association between semen quality and ejaculation 

abstinence, it is still debatable whether the recommendation regarding 

abstinence is optimal for assisted reproductive technology procedures 

(Makkar et al., 2001; Levitas et al., 2005; Marshburn et al., 2010; Lehavi et al., 

2014). 

Several studies have reported a reduced success of fertility treatment if the 

samples used for treatment were obtained following short ejaculation 

abstinence periods (Frank et al., 1986; Levin et al., 1986; Tonguc et al., 2010).  
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On the other hand, this has been challenged by findings from studies of 

couples undergoing double intrauterine insemination (IUI) where an 

improvement in both sperm counts, motility and morphology were observed in 

ejaculates collected after a 24-hour abstinence period (Makkar et al., 2001; 

Lehavi et al., 2014). In line with this, higher pregnancy rates following IUI have 

been observed when using semen samples delivered with an abstinence 

period of less than two days, despite the lower total number of motile 

spermatozoa in these samples (Marshburn et al., 2010). 

Another study assessing sperm quality of a second sample provided only one 

hour after the first due to the poor quality of the first ejaculate for ART, also 

showed that the second sample was superior in quality to the first in 33% of 

the cases (Bar-Hava et al., 2000). This study  (Bar-Hava et al., 2000) 

concluded that a second consecutive ejaculate can yield better results in a 

significant percentage of males with poor semen quality. A more recent study 

of ejaculates from men with oligozoospermia also detected a paradoxical 

improvement of sperm motility as well as sperm concentration when 

abstinence periods were as short as 40 minutes (Bahadur et al., 2015) 

suggesting the acquiring of a second ejaculate as a possible alternate strategy 

in cases undergoing ART with poor seminal parameters (Juárez-Bengoa et 

al., 2010; Bahadur et al., 2015). 
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1.7.  NUCLEAR MAGNETIC RESONANCE (NMR) 
SPECTROSCOPY 

Assessment of the seminal plasma is not performed as part of the routine 

sperm analysis, unless there is a severe case which would necessitate the 

assessment of e.g. the concentration of zinc, citric acid, fructose, and alpha 

glucosidase. However, the composition of seminal plasma as the source of 

nutrition and protein required for the normal function of the spermatozoa may 

be considered as an important criteria in the assessment of sperm quality 

(Kovac et al., 2013). The eclectic origin of seminal plasma, from the 

bulbourethral glands (1%), Sertoli cells (2-5%), prostate (25%–30%) and 

seminal vesicles (65%–75%), has confounded and slowed the discovery of 

biomarkers in this fluid (Kovac et al., 2013).  

Genetic or environmental cues can influence the metabolome and result in 

dynamic changes. The identification of this metabolome can provide an insight 

into the normal composition and physiology of cells while improving our 

understanding of the dysfunctions associated with pathological states (Jodar 

et al., 2012; Wishart et al., 2013; Castillo et al., 2014a, 2014b).  

Several chromatographic and spectrometric methods (Dunn et al., 2005; 

Botros et al., 2008) with different limitations and advantages have been used 

to assess metabolomic profiles. Nuclear Magnetic Resonance (NMR) 

spectroscopy can be used to identify novel compounds based on their unique 

spectral patterns. The non-selective, non-destructive, non-biased and 

quantitative nature of NMR makes it a great tool for metabolomics 

assessments (Emwas et al., 2016; Ebrahimi et al., 2017). 

In spite of the prominent advances in metabolomics technology, the 

metabolomics of the human seminal plasma is understudied. In contrast to the 

over 6000 proteins identified in the human spermatozoa, (approximately 80% 

of the estimated spermatozoa proteome), only less than 100 metabolites have 

been found in the seminal plasma (Paiva et al., 2015). There is a much higher 

number of proteins compared to metabolites in the human body (Schmidt, 

2004; Kouskoumvekaki et al., 2011; Wishart et al., 2013), but the lower 

number of metabolites identified in seminal plasma and sperm can also be 

due to the ‘omics’ techniques not having been applied to their full potential in 

this field (Kovac et al., 2013; Paiva et al., 2015).  

The slightest changes in the seminal plasma, even at the molecular level, can 

affect male fertility by altering the mechanisms controlling oxidative stress 
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(Wang et al., 2009), chromatin condensation stabilization (Thacker et al., 

2011), DNA damage repair, promoting apoptosis (Zylbersztejn et al., 2013) 

and exerting pro- and  anti- inflammatory functions in addition to inflammatory 

response modulation (Juyena and Stelletta, 2012).Therefore, the 

metabolomic profiling of the seminal plasma has been considered as a fast 

and noninvasive diagnostic approach to evaluate male infertility (Hamamah et 

al., 1998; Zhang et al., 2015; Zhou et al., 2016). However,   there is no clear 

reference values for the seminal metabolites in normozoospermic cases and 

comparative analysis of seminal metabolomic profiles in male infertility have 

also received less attention to date (Zhang et al., 2015).  
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1.8. AIMS AND HYPOTHESIS: 

This PhD project was aimed to characterize the intra-individual differences in 

sperm quality in two ejaculates collected after 4-7 days (long abstinence) 

followed by two hours (short abstinence) of ejaculatory abstinence. The 

assessed quality parameters included morphology, concentration, motility and 

detailed kinematics, parameters using the SCA® CASA system. Additionally, 

sperm DNA integrity was assessed using the SCD and SCSA methods. 

Finally, nuclear magnetic resonance (NMR) spectroscopy was used to create 

metabolomic profiles of the seminal plasma in the collected samples. 

Comparative assessment of these profiles was used to gain a deeper insight 

into the underlying mechanisms behind the differences of sperm quality 

observed following different abstinence times.  

1.8.1. Aims and hypothesis of the sub-studies 

The project consisted of three components and the results are 

presented/published (Three papers) as described below: 

• Paper I:   

Assessed hypothesis: Sperm motility and kinematic parameters demonstrate 

better values in semen samples collected after long versus short abstinence. 

• Paper II:  

Assessed hypothesis: Difference in the metabolomic profiles of the seminal 

plasma can explain the differences in the sperm quality of samples collected 

after short versus long abstinence. 

• Paper III:   

Assessed hypothesis: Semen samples collected after short abstinence 

demonstrate better morphology and lower DNA fragmentation compared to 

long abstinence. 
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2. MATERIALS AND METHODS 

2.1. STUDY DESIGN  

The PhD project had a repeated-measures design, based on the assessment 

of semen samples from male partners of couples (43, 31 and 36 men for 

phase I, II and III of the study, respectively) attending for IVF/ICSI treatment 

at Dronninglund fertility clinic (Aalborg University Hospital, Aalborg, Denmark) 

between June 2014 and December 2016. The study was performed under 

approval by the scientific ethics committee of the North Jutland Region, 

Denmark (approval number N-20140023). An overview of the study design is 

shown in Figure 2, and described in detail below. 

2.1.1. Sample collection  

Semen samples used in this study were collected on the days when the 

patients were attending the hospital for the IVF or ICSI treatment. Since the 

first ejaculate was shared between this study and the fertility clinic’s needs for 

treatment purposes, only patients with a sperm concentration above 15 

million/ml in the first ejaculate were included in the study. 

The participants were asked to maintain a minimum of 96 hours of ejaculatory 

abstinence before delivering the first sample. Semen collection was performed 

according to the procedure and precautions of the WHO 5 (2010) manual.  

The samples used in this study were collected in a sterile collection cup by 

masturbation at home or in a private, quiet, adequately furnished room in the 

clinic. All samples were delivered or maintained at room temperature (<37°C) 

until reaching liquefaction. 

The required volume for treatment and clinical purposes from the first 

ejaculate was separated and transferred to the clinical lab while the remaining 

volume was transferred to the research laboratory and used for this study. In 

the research laboratory, 1ml of the sample was separated and used for the 

collection of seminal plasma to be used in phase II, while the remainder was 

used for phases I and III, as it is further explained in the following sections.  
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2.2. DESCRIPTION OF THE PARTICIPANTS 

General participant information including name, birth date, name of partner, 

birth date of partner, height, weight, age, ethnicity, working conditions, 

education, used medications, previous health problems, fertility treatments 

etc. were obtained from the hospital reports or collected by the research nurse 

at the first consultation. The participants were selected based on the below 

general and cycle-specific inclusion and exclusion criteria: 

2.2.1. Inclusion criteria: 

1. Normozoospermic male partners of couples seeking infertility 

treatment, aged between 18 and 50 years 

2. Able to understand and read Danish (to understand the basic project 

description and consent forms) 

2.2.2. General exclusion criteria: 

1. Ejaculatory disorders. 

2. Impaired semen quality attributed to known genetic causes: abnormal 

karyotype, Y-chromosome microdeletions. 

3. Impaired semen quality attributed to previous vasectomy, orchitis, 

unilateral orchiectomy, testicular cancer, other malignant diseases, 

metabolic diseases such as diabetes. 

4. Psychological illness requiring chronic pharmaceutical treatment. 

5. Cardiovascular disease. 

6. The use of the following medications within the past 3 months prior to 

inclusion: antibiotics, antifungal agents, antidepressants, and other 

psychopharmacological treatments, cimetidine, cyclosporine, 

colchicine, allopurinol, or glucocorticoids. 

7. Concurrent acute infection or inflammation. 

Participants were at a later stage of the study excluded if there was an 

indication of use of inappropriate/illicit substance, an underlying significant 

medical condition or other conditions that were not recognized at the time of 

inclusion.  
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2.3. SAMPLE-SIZE CALCULATION AND STATISTICS 

The main outcome measure used to calculate the sample-size for this study 

was the change in the “sperm DNA fragmentation (SDF) index” following 

sperm processing/selection, between the first and the second semen sample 

produced two hours after the first.  

The required number of participants was calculated based on results of the 

study by Gosalvez et al. (Gosálvez et al., 2011),  in which the SDF was 

reduced from 17.0% (SD: 7.4) to 10.8% (SD: 6.3) in repeated semen samples 

produced with 3 hours intervals. In this study sperm donors with normal semen 

quality were investigated. Some of the men eligible for this study come from 

couples with unexplained infertility and therefore the mean SDF in the first 

ejaculate was expected to be higher than 17.0% and the standard deviation 

to be higher than 7.4 (Oleszczuk et al., 2013). Assuming a mean SDF of 20% 

and a SD of 10 in the first samples and accepting a type I error of 0.05 and a 

type II error of 0.10, it can be calculated that a minimum of 30 double samples 

should be investigated to find a SDF reduction of 6% as found in the study by 

Gosalvez et al. (Gosálvez et al., 2011). We aimed to include 43 men in the 

study in order to finalize with at least 30 men to ensure we could have all 

sperm parameters measured in both samples. 
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2.4. STUDY PHASE I 

Phase I of the study was performed as described in appendix I (paper I). In 

brief, it is described here: 

2.4.1. Semen sample analysis: 

The semen volume was measured using a graduated pipette and visual 

assessment (color and viscosity) of the raw samples were recorded. The 

samples were allowed to liquefy at room temperature before they were divided 

into two parts. One part was used as raw semen and the second part was 

processed for sperm selection using routine gradient density centrifugation as 

explained below. 

2.4.2. Sperm selection using density gradient 

Semen samples from all ejaculates were processed using a discontinuous 

density gradient of silane-coated silica (Sydney IVF Sperm Gradient kit; Cook 

Medical, USA). Using a sterile 15 ml centrifuge tube (Falcon, USA), 1.5 ml of 

the ‘80%’ gradient was gently layered below 1.5 ml of the ‘40%’ gradient. The 

portion of the semen sample allocated for preparation by density gradient was 

gently layered on top of the density gradient. The tube was centrifuged at 300 

g for 20 min to separate the spermatozoa. The supernatant was removed, 

leaving the lower 0.5 ml of the gradient containing the sperm pellet. Washing 

was performed twice with 1.5 ml Sydney IVF Fertilization Medium (Cook 

Medical, USA) at 300 g. After the second wash 500 µl of Sydney IVF 

Fertilization Medium was added to the pellet and used for analysis. 

2.4.3. Concentration, Motility, and kinematic parameters: 

Subjective analysis (Makler chamber) 

All raw and density gradient processed samples were analyzed using the 

Makler chamber according to the laboratories conventional method as 

explained below: 

A volume of 10 µl of well mixed semen was placed in a Makler counting 

chamber (Sefi Medical Instruments Ltd., Haifa, Israel) and evaluated using 

20× (positive phase) magnification on a Nikon eclipse 50i (Nikon, Japan) 

microscope equipped with phase contrast optics. The number of spermatozoa 

counted in 10 random squares on the grid (of the cover glass) indicated the 

concentration in millions/ml. The percentage of motile/non-motile sperm was 
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also estimated based on the spermatozoa counted within the 10 random 

squares. Based on the assessed concentration and ejaculate volume, which 

were determined using a graduated plastic pipette following liquefaction, the 

total number of sperm in the ejaculate (total sperm count (TSC)) and total 

number of motile sperm (total motile sperm count (TMSC)) in ejaculate were 

calculated. 

Objective analysis (SCA® CASA system) 

At the same time, CASA was also used to quantitatively analyze the 

concentration and motility including the kinematic details based on the WHO 

criteria according to the below procedure: 

A “Leja chamber slide” (10 μm deep) (Leja Products B.V., Nieuw Vennep, 

Netherlands) was filled with two micro liters of the liquefied sperm suspension 

and assessed at a total magnification of 100X using a Nikon E50i microscope 

equipped with a phase contrast condenser and a Basler sca780 (Basler, 

Germany) camera connected to a computer running the Sperm Class 

Analyzer (SCA®, Ver. 5.4, Barcelona, Spain) CASA software. The motility 

module of the SCA was used to analyze the concentration and detailed 

kinematic parameters of the spermatozoa. The detailed motion parameters 

provided by the SCA were used to categorize the sperm into different velocity 

and progression groups according to the WHO (WHO, 2010) reference 

values. The different motion and velocity parameters assessed by the SCA® 

have been illustrated in Table 1. 

2.4.4. Statistical analysis 

Basic description has been presented as means (± standard deviation), and 

medians (25th and 75th percentiles). Skewed data were normalized using 

natural logarithmic transformation before using paired samples t tests to 

compare results of consecutive ejaculates from individuals. The Wilcoxon 

matched pairs test was used to compare sperm concentration, semen 

volumes, TMSC, TSC and percentage of motile sperm. The association 

between semen volume and abstinence duration was evaluated using the 

Spearman’s non-parametric correlation. Additionally, similarities in sperm 

concentrations analyzed using CASA and manual measurements were 

compared by Bland and Altman plots, subsequently validated by Passing and 

Bablok analyses. The MedCalc® statistical software (version 15.8, MedCalc 

Software, Ostend, Belgium) was used to perform the statistical analysis and 

P<0.05 was considered significant. 
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Table 1. The different motion and velocity parameters assessed by the Sperm Class Analyzer 

(SCA®) CASA system.  (Alipour et al., 2017) 

  

Parameter  Unit Description of the Parameter 

Motility % 
Percentage of sperm in different motility groups 

based on velocity and progression 

Concentration ×106/ml Number of spermatozoa per milliliter 

VCL μm/s Curvilinear velocity along actual swimming path 

VSL μm/s 
Straight-line velocity along shortest path from start 

to end-point 

VAP μm/s 
Average path velocity based on every 11th frame of 

VCL path 

LIN % 
Linearity of a curvilinear path, expressed as 

VSL/VCL 

STR % Straightness, expressed as VSL/VAP 

WOB % Wobble, expressed as VAP/VCL 

ALH Μm Amplitude of lateral head displacement 

BCF Hz 
Beat cross frequency based on VCL crossing VAP 

per second 

Hyperactivated 

sperm 
% 

150< VCL (μm/s) <500; Lin (%)<50%; ALH 

(μm)>3,5* 

* In most CASA systems, “ALH Max” is used which is approximately 2×ALH. 
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2.5. STUDY PHASE II 

Phase II of the study was performed as described in appendix II (paper II). In 

brief, it is described here: 

2.5.1. Nuclear magnetic resonance (NMR) spectroscopy  

 Approximately 1 ml of the semen sample was separated after liquefaction and 

centrifuged for 20 minutes at 3000 х g at 4°C, to separate the sperm from the 

seminal plasma. The top 500 µl of the supernatant was collected and frozen 

at -80°C until thawed for nuclear magnetic resonance (NMR) spectroscopy.  

On the day of the NMR assessment, frozen samples were allowed to thaw 

slowly on ice before being centrifuged again for 30 minutes at 12100 x g to 

remove any possibly remaining spermatozoa. The supernatant was collected 

and mixed for 10 seconds using a vortex mixer. 100 μL of the collected 

seminal fluid was then added to 420 μL D2O and 60 μL 0.5 M phosphate 

buffer in a round bottom Eppendorf tube. The phosphate buffer is composed 

of 0.31 M Na2HPO4 and 0.19 M KH2PO4, pH 7, 0.23 M TSP-d4 (sodium-3-

trimethylsilyl-[2,2,3,3-2H4]-propionate) and 20 mM NaN3. To minimize 

variations in NMR spectra, the samples were vortexed for 10 seconds and the 

pH was adjusted to 7.0±0.1 using a BRUKER BT pH titrator. D2O was added 

to reach a total sample volume of 600 μL; of which 550 μL was transferred to 

a 5 mm NMR sample tube. The samples were kept on ice throughout the 

whole process. 

A Bruker AVIII-600 NMR spectrometer (Bruker Biospin, Germany and 

Switzerland) equipped with a cryogenic CPP-TCI probe at 600.13 MHz in 

connection with the Topspin 3.2pl5 program (Bruker Biospin, Germany) was 

used to acquire the 1H NMR spectra. The experiments were conducted at 

310.1 K. CPMG (T2 relaxation-edited Carr–Purcell–Meiboom–Gill (Meiboom, 

Gill 1958)) (128 scans, 32768 complex data points, spectral width of 11.97 

ppm and acquisition time 2.28 s. A relaxation delay of 2 s was used between 

each FID. A weak continuous wave irradiation (γB1/2π = 26.6 Hz) was used 

throughout the relaxation delay, at the water frequency (presaturation). The 

total spin-echo relaxation delay was 67.4 ms consisting of repeated (τ –π–τ) 

sandwiches, where τ was a delay of 0.4 ms and π was a 180°pulse of 

approximately 22 μs. Processing of spectra was carried out in Topspin 3.5. 
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1H-13C HSQC (Heteronuclear Single Quantum Coherence) and 1H-1H 2D-

TOCSY (Total Correlation Spectroscopy) were recorded on selected samples 

for conformation of metabolites. These experiments were carried out with 

different numbers of FIDs, spectral widths, increments and mixing times to 

focus on different spectral regions. Spectra were corrected manually for the 

baseline and phase.  

Identification and quantification of metabolites were performed using the 

Chenomx NMR suite 8.1 (Chenomx, Canada). In addition to the built-in 

Chenomx library, the Human Metabolome Database (Wishart et al., 2007, 

2009, 2013) was used to search for matching compounds and to verify 

resonance assignments.  

2.5.2. Statistical analysis 

The results of the NMR-based quantified metabolites (mg/dl) are presented 

as medians (25-75 percentiles). The Shapiro–Wilk normality test was used 

and data with non-normal distributions were normalized using natural 

logarithmic, or cubic-root transformation. The metabolite concentrations and 

sperm motility results of consecutive ejaculates from individual men were 

compared using the Paired samples t test.  

The Spearman’s non-parametric correlation was used to assess the 

association between semen volume, metabolite concentrations, and sperm 

concentration in the consecutive ejaculates, and the changes of the 

mentioned values in the consecutive ejaculates (Ej.2 – Ej.1). Statistical 

analyses were performed using MedCalc® software version 15.8 (MedCalc 

Software, Belgium).  
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2.6. STUDY PHASE III 

2.6.1. Morphology 

Air-dried smears of the semen were stained using “Spermblue” (Microptic S/L, 

Barcelona, Spain) based on the manufacturer’s instructions. The stained 

samples were assessed for normal/abnormal morphology using the 

morphology module of the SCA system at 1000X magnification.   

2.6.2. DNA fragmentation (Halosperm kit) 

Directly after liquefaction, 30 μl of each semen sample was separated and 

used for the assessment of DNA fragmentation using the sperm chromatin 

dispersion test performed using the Halosperm kit (Halotech, Madrid, Spain) 

while another 300 μl was frozen and maintained at -80 °C until being assessed 

for DNA fragmentation using the sperm chromatin structure assay (SCSA). 

The sperm chromatin dispersion test (Halosperm) 

The sperm chromatin dispersion test was performed using the Halosperm kit 

(Halotech, Madrid, Spain) according to the manufacturer’s instructions. In 

brief, unfixed sperm cells were bounded within two layers of an agarose micro 

gel on a slide. The slide was then incubated in an acid unwinding solution to 

“generate restricted single-stranded DNA (ssDNA) motifs from DNA breaks” 

(Fernández et al., 2003). The membranes and proteins (protamines) 

(Fernández et al., 1998, 2000) were then removed by immersing the slides in 

a lysing solution. The slides were then fixed in 70%, 90% and 99.99% ethanol 

and kept in a dark and dry place. When all samples were collected, the slides 

were stained using the brightfield staining kit (HT-BFS, Halotech, Madrid, 

Spain). After staining, the spermatozoa with big halos presented the sperm 

with low or without fragmented DNA, whereas a small or no halo demonstrated 

those with fragmented DNA. The halo sizes and fragmentation index were 

assessed using the “SCA® DNA fragmentation” module. 

Sperm chromatin structure assay (SCSA) 

A volume of 300 μl of the raw semen obtained from the first and second 

consecutive ejaculates was frozen at -80 °C and transported to the 

Reproductive Medicine Centre Skåne University Hospital (Malmö, Sweden) 

on dry ice. The frozen aliquots were allowed to thaw slowly on ice and 

assessed for sperm DNA integrity using the sperm chromatin structure assay 

(SCSA). A FACScan flow cytometer equipped with an air-cooled argon ion 

laser (Becton Dickinson, San Jose, CA, USA) was used to performed the 



35 
 

SCSA analysis as previously described by Bungum et al. (Bungum et al., 

2004). 

Previous studies have demonstrated that freezing of sperm for later 

assessment of DNA fragmentation does not affect the SCSA parameters 

(Evenson et al., 2002).  
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3. RESULTS 

The mean (SD) and median (min-max) abstinence period before the collection 

of the first samples were 5.72 (1.16) and 6.00 days (4-7), respectively.  

 

3.1. SEMEN VOLUME, CONCENTRATION, AND TOTAL 
SPERM NUMBERS 

The descriptive statistics summary of Sperm concentration, total sperm 

number in ejaculate and total motile sperm number in ejaculate for the first 

and second samples both assessed using the Makler chamber and the SCA 

can be seen in Table 2. 

Comparison of the sperm concentrations and percentages of motility groups 

reported by the SCA and manual assessment using the Makler chamber did 

not demonstrate any systematic error (refer to Appendix I, Supplementary 

section).   

semen volume and abstinence period demonstrated a positive correlation 

(Spearman’s rho=0.81, P<0.0001) resulting in a lower (P<0.0001) volume 

after two hours (Ejaculate 2) compared to “4-7 days” (Ejaculate 1) of 

abstinence period, with median (min-max) values of 2 days (1.2-4.5) vs. 3 

days (2-6), respectively (Appendix I). 

For 33 of the 43 men (77%), the percentages of progressively motile 

spermatozoa were higher in the raw samples collected after two hours’ 

abstinence. 31 samples (72%) showed lower percentages of immotile 

spermatozoa (Table 3 and Figure 3). 

The density gradient processed semen samples also demonstrated similar 

results with significantly higher percentage of progressively motile 

spermatozoa in 30 of 43 samples and lower percentages of immotile 

spermatozoa in 38 of 43 samples following two hours of abstinence.  

The second ejaculate showed a lower average total sperm number in 

ejaculate in all the velocity, progression, and motility categories in the 

processed sample (Table 4). 
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Table 2. Sperm concentration, total sperm count and total motile sperm count 

in raw ejaculates after 4-7 days (ejaculate 1) and two hours (ejaculate 2) of 

abstinence assessed by the Makler’s chamber and Sperm Class Analyzer 

(SCA). * demonstrates significant differences. (mill: millions; mill/ml: million 

per milliliter). Reproduced with permission from  (Alipour et al., 2017). 

 

 

 

 

 

 

 Makler 
Median 

 (25 – 75 percentiles) 

SCA 
Median 

 (25 – 75 percentiles) 
P value 

Sperm concentration   

Ejaculate 1 (mill/ml) 40 (26 - 63) 41 (29 - 58) 0.40 

Ejaculate 2 (mill/ml) 36 (20 - 62) 34 (18 - 50) 0.24 

P value  0.09  0.003*   

Total sperm count      

Ejaculate 1 (mill) 124 (76 - 197) 120 (88 - 179) 0.62 

Ejaculate 2 (mill) 70 (47 - 120) 61 (38 - 99) 0.081 

P value   <0.0001*  <0.0001*   

Total motile sperm count     

Ejaculate 1 (mill) 75 (48 - 146) 88 (46 - 130) 0.08 

Ejaculate 2 (mill) 50 (32 - 86) 44 (28 – 76)   

P value  0.0038* <0.0001*  

Percentage of motile sperm    

Ejaculate 1 (%) 67 (51 - 77) 63 (49 - 79) 0.29 

Ejaculate 2 (%) 75 (51 - 85) 74 (66 - 86) 0.075 

P value  0.0136* <0.0001*   
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Table 3. Average percentage of sperm categorized by different criteria using the Sperm Class 

Analyzer (SCA) in raw and density gradient processed sperm from samples collected after 4-7 

days of sexual abstinence and a second sample after 2 hours. The spermatozoa have been 

categorized based on progression, velocity, and W.H.O 4 criteria. Reproduced with permission 

from  (Alipour et al., 2017). 

 

 
 
 
 

SPERM AVERAGE PERCENTAGES 

 Raw samples Density gradient processed sample 

  
4-7 Days  

abstinence 
2 Hours  

abstinence 
P value 

  
4-7 Days  

abstinence 
2 Hours  

abstinence 
P value 

  

W.H.O. classifications               

Type A 16 ± 11 22 ± 14 ≤0.001 41 ± 19 45 ± 15 0.13 

Type B 21 ± 9 25 ± 9 ≤0.05 12 ± 5 18 ± 7 ≤0.0001 

Type A+B (PM) 37 ± 18 47 ± 18 ≤0.001 54 ± 21 63 ± 1 ≤0.01 

Type C (NPM) 27 ± 7 26 ± 9 0.54 16 ± 6 16 ± 7 0.91 

Type D (immotile) 37 ± 17 27 ± 14 ≤0.001 30 ± 19 21 ± 12 ≤0.01 

Velocity               

Rapid 32 ± 18 42 ± 19 ≤0.001 50 ± 21 58 ± 16 ≤0.01 

Medium 22 ± 7 23 ± 10 0.72 13 ± 5 14 ± 8 0.11 

Slow 9 ± 2 8 ± 3 0.16 7 ± 3 7 ± 4 0.41 

Static 37 ± 17 27 ± 14 ≤0.001 30 ± 19 21 ± 12 ≤0.01 

Hyperactivated  
Spermatozoa 

8 ± 7 11 ± 9 ≤0.001 21 ± 13 23 ± 12 ≤0.05 

The presented data are “Mean ± SD”; 
Immotile: Non-motile sperm, NPM:  Non-progressive motile sperm; PM: Progressive-motile sperm; 
Type A, B, C and D: Sperm motility according to the WHO 1999 criteria (WHO, 1999) 
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Figure 3. Sperm categorized by the Sperm Class Analyzer (SCA)based on progression 

(immotile, non-progressive motile, progressive motile) in raw (above) and density gradient 

processed (below) samples collected after 4-7 hours (in blue) and two hours (in red) of 

abstinence time. The graphs demonstrate the sample numbers on the perimeters and the radius 

demonstrates the percentage of sperm in the respective group. Immotile and progressive motile 

groups demonstrated significant differences. Produced with permission from (Alipour et al., 

2017). 
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3.2. MOTILITY  

3.2.1. Motility according to WHO  

Categorizing of the spermatozoa into four types (A, B, C and D) based on the 

WHO4 guidelines (WHO, 1999) demonstrated significantly lower total sperm 

count for all of the sperm types (P≤0.001 for type A and P≤0.0001 for types B, 

C and D) in the second raw ejaculate compared to the first (Paper I, Table IV). 

However, a significantly higher percentage of type A and B (according to 

WHO4) and progressively motile (type A+B, according to WHO5) sperm was 

seen in samples collected after two hours of abstinence while samples 

collected after 4-7 days of abstinence had a significantly higher number of 

type D sperm (Table 3).   

Density gradient processed semen samples also demonstrated similar results 

with a significantly higher percentage of progressively motile spermatozoa and 

lower percentages of immotile spermatozoa after shorter abstinence in 30 and 

38 of 43 samples, respectively (Table 3).   

3.2.2. Motility based on velocity 

Ejaculates collected after two hours of abstinence, demonstrated higher 

percentages of spermatozoa with rapid velocity and lower percentages of 

static sperm in samples collected after two hours of ejaculation abstinence 

(Table 3).   

The density gradient processed semen samples also demonstrated a 

significantly higher percentage of rapid velocity (P<0.01) and significantly 

lower percentage of static (P<0.05) spermatozoa after short abstinence (Table 

3). All the static, slow, medium, and rapid velocity sub-groups in both raw and 

density gradient processed samples had lower total counts in samples 

collected after short versus long abstinence. 
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3.3. KINEMATIC PARAMETERS 

Raw samples demonstrated significantly (P≤0.001) higher median and 

quartiles of  VCL and VAP) (Figure 5Figure 5) and median and quartiles of 

progressive swimming path (LIN, STR and WOB) values (Figure 6) in the 

second ejaculates (after two hours of abstinence). ALH and BCF did not show 

any significant difference between first and second ejaculates (p=0.052 and 

P=0.088 respectively) (Figure 6). 

All of the average velocity parameters (VCL, VSL, VAP) (Figure 5) and derived 

kinematic parameters (LIN, STR, WOB, ALH and BCF) (Figure 6) in density 

gradient processed sperm demonstrated higher values after two hours of 

abstinence compared to samples collected after 4-7 days of abstinence when 

a 10% significance level was considered. However, this difference was only 

significant at the 5% level (P<0.05) in average VCL and average VAP.  

The median and quartiles of the detailed kinematic parameters based on the 

slow, medium and rapid velocity categorization of the sperm in raw and 

density gradient processed samples, collected after 4-7 days of sexual 

abstinence and a second sample after two hours have been illustrated in 

(Table 5).  

  



44 
 

3.4. HYPERACTIVATION 

Both the raw and the density gradient samples, showed more hyperactivated 

spermatozoa in samples obtained after two hours’ abstinence (Table 3 & 

Figure 4). The mean (±SD) percentage of hyperactivated sperm compared to 

the initial ejaculate was 11% ± 9% and 8% ± 7%for the raw samples, 

respectively. The percentage of hyperactivated spermatozoa in the density 

gradient processed samples was higher than the raw samples regardless of 

abstinence time. The percentage hyperactivated spermatozoa was lower in 

the second ejaculate compared to the first in both raw (P<0.001) and after 

density gradient selection (Table 5). 

The total count of hyperactivated spermatozoa was lower (P = 0.029) in raw 

samples of ejaculate 2; but, it showed no significant difference in the 

processed samples (P<0.05) (Table 5).  

 

 
Figure 4. Box-and-Whisker plots demonstrating the percentages of hyperactivated sperm in 

samples collected after two hours of abstinence (Ejac. 2) compared to samples collected after 

4-7 days of abstinence (Ejac. 1) in raw (left graph) and density gradient processed samples 

(right graph). Reproduced with permission from  (Alipour et al., 2017). 
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Figure 5. Three velocity kinematic parameters in raw samples collected after two hours and 4-

7 days of abstinence. Parameters include curvilinear velocity (VCL), straight line velocity 

(VSL) and average path velocity (VAP). (Graph demonstrates mean ± SD; similar letters 

demonstrate significant pairwise differences). Reproduced with permission from  (Alipour et 

al., 2017). 

 

 

 

 

 

 

 

Figure 6. Kinematic parameters following density gradient selection in samples collected after 

two hours versus long abstinence. Parameters include Linearity (Lin), Straightness (STR), 

Wobble (WOB), Amplitude of Lateral Head displacement (ALH) and beat cross frequency 

(BCF). (Graph demonstrates mean ± SD; similar letters demonstrate significant pairwise 

differences. Reproduced with permission from  (Alipour et al., 2017). 
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Table 5. Detailed kinematic parameters assessed by the sperm class analyzer (SCA) for the 

slow, medium, and rapid velocity groups in raw and density gradient processed spermatozoa 

from samples collected after 4-7 days of sexual abstinence and a second sample after 2 hours.  

Data are presented as median (25th and75th percentiles) and compared using the paired t test.  

Reproduced with permission from  (Alipour et al., 2017). 

 Raw samples Density gradient processed sample 

  
4-7 Days 

abstinence 
2 Hours 

abstinence 
P value 

4-7 Days 
abstinence 

2 Hours 
abstinence 

P 
value 

VCL (µm/sec)          

Slow 12.4 (12.3-12.5) 12.5 (12.3 - 12.6) 0.41 12.1 (11.0 - 12.4) 12.2 (10.5 - 12.5) 0.85 

Medium 23.8 (22.9 - 24.1) 23.6 (23.1 - 24.1) 0.35 22.9 (21.6 - 24.0) 22.7 (21.5 - 23.8) 0.87 

Rapid 61.1 (50.1 - 67.8) 64.5 (55.2 - 71.8) ≤0.0001 74.3 (66.5 - 80.6) 74.3 (66.2 - 81.9) 0.19 

VSL (µm/sec)      

Slow 2 (1.7 - 2.6) 2.3 (1.9 - 2.6) ≤0.05 2.7 (2.1 - 3.6) 3.3 (2 to 5.2) 0.21 

Medium 6.6 (5.3 - 7.7) 5.7 (4.8 - 6.9) ≤0.05 6.9 (5.3 - 8.6) 6.8 (5.4 - 8.8) 0.49 

Rapid 27.4 (21.7 - 31.3) 32.2 (26.6 - 40.2) ≤0.0001 45 (41.0 - 52) 44.5 (38.5 - 50.0) 0.71 

VAP (µm/sec)      

Slow 4.4 (3.9 - 5.5) 4.8 (4.1 - 5.6) 0.23 5.2 (3.9 - 6.2) 5.7 (3.8 - 7.4) 0.35 

Medium 11.6 (10.1 - 13.7) 10.7 (9.1 - 12.6) ≤0.05 11.1 (9.8 - 12.6) 11 (9.3 - 13.5) 0.47 

Rapid 35.9 (32.4 - 40.2) 41.5 (35.4 - 50.1) ≤0.05 49.2 (45.8 - 57.7) 49.3 (45.5 - 56.7) 0.57 

STR (%)       

Slow 45.9 (42.9 - 52.8) 48 (43.5 - 53.6) 0.2 53.6 (48.5 - 69.7) 62 (49.9 - 76.0) 0.09 

Medium 57.1 (51.3 - 59.7) 54.7 (51.6 - 57.3) 0.08 63 (54.5 - 70.9) 62.6 (56.8 - 68.5) 0.74 

Rapid 74.9 (67.5 - 78.8) 79 (71.7 - 83.2) ≤0.001 89.8 (87.8 - 92.5) 89.7 (84.8 - 91.3) ≤0.01 

LIN (%)       

Slow 15.9 (14 - 20.5) 18.7 (15.3 - 21.2) ≤0.05 23.3 (18.5 - 30.5) 27.8 (18.7 - 43.0) 0.18 

Medium 28.2 (22.2 - 31.7) 24.7 (20.7 - 29.4) ≤0.01 31.2 (24.7 - 37.7) 29.5 (23.6 - 36.8) 0.52 

Rapid 45.7 (40 - 50.0) 50.5 (42 - 57.2) ≤0.001 65.2 (53.7 - 72.1) 61.9 (53.8 - 69.1) 0.08 

WOB (%)      

Slow 35.4 (31.4 - 45.1) 39.3 (34.0 - 45.1) ≤0.05 43.1 (34.8 - 51.4) 46.9 (36.5 - 59.6) 0.17 

Medium 48.7 (42.6 - 57.1) 45.8 (40.4 - 52.8) ≤0.05 49.2 (43 - 55.8) 48.7 (40.0 - 56.4) 0.44 

Rapid 62.4 (56.6 - 66.3) 63 (58.2 - 70.3) ≤0.01 73 (62.1 - 77.5) 71.3 (63.8 - 76.1) 0.41 

ALH (Mm)      

Medium 1.7 (1.5 - 1.9) 1.7 (1.4 - 1.8) 0.15 1.4 (1.2 - 1.6) 1.3 (1.1 - 1.5) 0.28 

Rapid 2.7 (2.3 - 3.5) 2.9 (2.5 - 3.4) 0.17 2.7 (2.4 - 3.2) 2.8 (2.5 - 3.3) 0.32 

BCF (Hz)      

Medium 1.7 (1.3 - 2.5) 1.4 (1.1 - 2.1) 0.18 1.7 (0.9 - 2.4) 1.3 (0.9 - 2.3) 0.24 

Rapid 7 (6.5 to 8.2) 7.5 (6.4 - 8.3) 0.36 9.6 (8.8 – 10) 9.3 (8.6 - 10.3) 0.53 

Median (25th and75th percentiles); SCA ® default values were used to assess the motion parameters at 50fps.  
Curvilinear velocity (VCL, μm/s); straight line velocity (VSL, μm/s); average path velocity (VAP, μm/s); amplitude of 
lateral head displacement (ALH, μm); Linearity (LIN); Wobble (WOB); Straightness (STR); beat-cross frequency (BCF, 
Hz). 
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3.5. METABOLOMIC PROFILES 

A typical sample of the acquired NMR spectra of seminal plasma 

demonstrating the within-subject comparison from ejaculates collected short 

and long abstinence periods can be seen in Paper II, Figure 1. 

An overall number of 30 metabolites including 4 energy metabolites, 16 amino 

acids, and 10 other metabolites, were detected and quantified. The 

concentrations of the identified seminal metabolites, their absolute amounts 

(metabolite concentration X seminal volume), and absolute amounts of 

metabolites per 106 spermatozoa (absolute amounts / total sperm count) in 

samples collected after long and short ejaculatory abstinence can be seen in 

Paper II, Figure II.  

Samples delivered after shorter abstinence demonstrated a significantly? 

higher concentration of pyruvate, but a significantly? lower concentration of 

fructose, N-acetylglucosamine, choline, acetate, O-acetylcarnitine, methanol, 

uridine and sn-glycero-3-phosphocoline.  The remaining 21 metabolites 

showed no significantly different concentrations between the two ejaculates 

(Paper II, Table 2).  

The absolute amounts of all metabolites demonstrated significantly lower 

values in the second ejaculate (Paper II, Table 2). However, the absolute 

amount per 106 spermatozoa of pyruvate and taurine was significantly higher 

following the shorter abstinence (Paper II, Table 2). 

 

3.6. MORPHOLOGY 

The sperm with normal morphology demonstrated median percentages (25-

75 percentiles) of 12 (8-18) and 12 (6-18) for first and second ejaculates 

respectively; this difference was, however, not significant (P=0.72) (Paper III, 

Table 2).   
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3.7. DNA FRAGMENTATION 

The statistical analysis of sperm DNA fragmentation in ejaculates collected 

after short and long abstinence periods assessed by the sperm chromatin 

dispersion (SCD) and sperm chromatin structure assay (SCSA), can be seen 

in (Paper III, Table 1).  

The level of DNA fragmentation in ejaculates collected after a short abstinence 

period was lower than that collected after longer abstinence periods as 

assessed by both the SCD (P=0.03) and SCSA (P=0.0004) tests. 

The SCSA also demonstrated a lower percentage of sperm with “moderate 

and high fragmentation” (P=0.0006 and P=0.011, respectively) following 

shorter abstinence.  

Statistical assessments of method comparison using “Bland–Altman plots” 

and “Passing and Bablok linear regression” demonstrated a consistency of 

agreement between the SCSA and SCD tests. The results of these tests are 

presented in the supplementary section of Paper III.  
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4. DISCUSSION 

This PhD project was designed to assess and compare the effects of short 

(two hours) versus long (4-7 days) abstinence periods on sperm quality 

parameters including sperm concentration, motility including kinematic 

parameters, morphology, and DNA fragmentation. Metabolomic profiles of the 

seminal plasma were also created to provide a possible insight into some of 

potential mechanism(s) of the observed differences. 

 

4.1. SEMEN VOLUME, CONCENTRATION, AND COUNTS 

The observed lower sperm concentration and semen volume consequently 

resulted in lower sperm number in total ejaculate after shorter abstinence (two 

hours) are in agreement with previous studies on men with sperm 

concentrations both above and below 15 mill/ml (Lampe and Master, 1956; 

Baker et al., 1981; Poland et al., 1985; Frank et al., 1986; Levin et al., 1986; 

Sauer et al., 1988; Hornstein et al., 1992; Matilsky et al., 1993; Tur-Kaspa et 

al., 1994; Makkar et al., 2001; Levitas et al., 2005; Sugiyam et al., 2008). 

A recent study detected a paradox increase in sperm concentration from 10 

mill/ml in samples collected after 4 days of abstinence to 17 mill/ml in samples 

obtained after a 40 minutes abstinence period (Bahadur et al., 2015). 

However, this increase was associated with a concomitant decrease of the 

mean semen volume from 2.7 to 1.1 ml. Although sperm number in total 

ejaculate were not reported, the mentioned figures indicated limited change in 

this parameter. Our study does not provide information to explain this finding. 

However, of the spermatozoa stored in the cauda of epididymis only about 

50% are available for ejaculation (Björndahl et al., 2010). Considering this,  

the reduced sperm concentration and counts observed in consequent 

ejaculates after a short interval may be associated with the poorly 

developed capacity of the sperm reservoir in humans (Sullivan and Mieusset, 

2016). The possibly insufficient time for the transfer of spermatozoa from the 

more proximal epididymis sections to the cauda and vas deferens could be 

considered as another reason for this reduction in concentration and total 

count (Amann and Howards, 1980; Tommaso and William, 2013). 
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4.2. MOTILITY 

The total number of motile spermatozoa in ejaculate obtained after only two 

hours of abstinence was significantly reduced in the raw ejaculates. This was 

obviously caused by the reduction in the total sperm number in ejaculate that 

were not compensated by the detected increase in the percentages of motile 

spermatozoa.  

The influence of the length of ejaculatory abstinence period on sperm motility 

is still controversial. Different studies have reported diverse results including 

increased, decreased, or no change in percentage of sperm in different 

motility groups during different abstinence periods ranging from a few hours 

to 10 days (Sauer et al., 1988; Check et al., 1991; Magnus et al., 1991; 

Blackwell and Zaneveld, 1992; Pellestor et al., 1994). Some studies in men 

with a sperm concentration below 15 mill/ml have detected a higher frequency 

of motile spermatozoa in samples obtained after short abstinence periods 

(Levitas et al., 2005; Bahadur et al., 2015), while other studies did not find any 

difference (Sauer et al., 1988). One study detected an increased percentage 

of motile spermatozoa with abstinence periods approaching 10 days (Magnus 

et al., 1991). Studies in men with sperm concentrations above 15 mill/ml have 

reported significantly decreased the total number of motile sperm in ejaculate 

after 24 hours of abstinence compared with longer abstinence periods (2-4 

days) (Matilsky et al., 1993; Lehavi et al., 2014).  

To which degree the discrepancy in the published results reflect a true 

biological heterogeneity, intra-laboratory or inter-observer variations due to 

the well-known difficulties in assessment of the classical sperm motility 

parameters (Jørgensen et al., 1997; Brazil et al., 2004; Rivera-Montes et al., 

2013) cannot be answered by our results. However, we assume that our 

assessments based on the objective results obtained by the SCA are more 

precise and objective than conventional methods and previous generations of 

CASA (Dearing et al., 2014; Mortimer et al., 2015).  

  



51 
 

4.3. HYPERACTIVATION 

Hyperactivation is a part of the complex process of sperm capacitation and is 

characterized by a motility pattern involving high velocity, high amplitude and 

marked lateral displacement of the head (curvilinear velocity greater than 150 

μm/s; linearity less than 50%, and amplitude of lateral head displacement 

greater than 7 (Mortimer, 2000).  

A former study has correlated higher fertilization rates to higher percentages 

of induced and spontaneous hyperactivated spermatozoa following 

conventional IVF (Pregl Breznik et al., 2013). In this study, the ejaculates 

delivered after only two hours of abstinence, demonstrated a higher 

percentage of spontaneously hyperactivated spermatozoa. This may be 

related to the biochemical changes of the seminal plasma as a result of the 

limited time (two hours) available for the production and collection of 

secretions from the epididymis and prostatic glands for the second ejaculates 

(Elzanaty et al., 2005). Metabolomic profiles of the seminal plasma from the 

consecutive ejaculates of this study demonstrated and outlined some of these 

changes (refer to Paper II). 

The higher, but similar percentages of hyperactivated spermatozoa, in both 

ejaculates after density gradient selection, could be due to the induction of 

hyperactivation by the density gradient selection process itself. 

The hyperactivation of the spermatozoa in this study was assessed by the 

SCA, while assessing other motility parameters were performed using a 10 

µm deep Leja chamber. According to a study by Le Lannou et al. (1992), a 

chamber with a depth lower than 20 µm could constrain the development of 

the flagellar beat and alter the relative proportions of hyperactivated 

spermatozoa (Le Lannou et al., 1992).  However, percentages of 

hyperactivated sperm in the raw and density gradient processed samples of 

the first ejaculate in this study (using 10 µm deep chambers) were comparable 

to reference values and reports by previous studies, which had used 20 µm 

deep chambers (Burkman, 1984; Chan et al., 1998; Kay and Robertson, 1998; 

Keppler et al., 1999; Pregl Breznik et al., 2013). This may be explained by 

findings of some recent studies (Suarez, 2016) that sperm maintain their 

optimal movements by adapting to their physical environment (Tung et al., 

2015a). The upstream swimming of sperm emerges via an orientation 

disorder-order transition. In addition, the hydrodynamic interactions of sperm 

as a front-back asymmetric swimmer with the wall (of the chamber in this 

study) is a sufficient criterion for upstream rotation (Tung et al., 2015a).  
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A previous study demonstrated the ability of bovine sperm to quickly gain 

access and swim upstream efficiently in “microgrooves” (cross-sectional area 

of 20 × 20 μm) (Tung et al., 2015b). Considering the longer and thicker 

flagellum (Smith et al., 2009; Tung et al., 2015b) and notably larger head of 

the bovine compared to human sperm (10×5×1 μm and 4.5×2.8×1.1 μm 

respectively), it might be reasonable to assume that human sperm can 

demonstrate hyperactivation in a 10 μm chamber by rotating the flagellar beat 

direction to stay in the horizontal pane within the chamber walls.  

Assessment of sperm hyperactivation in 10 µm deep chambers may even 

result in better tracking of the detailed sperm movement using CASA by 

allowing a higher focus and visibility of the sperm during the movement; this 

assumption, however, requires further investigation.  

 

4.4. KINEMATIC PARAMETERS 

To date, “Paper I” is the first comparative report of the effect of short (two 

hours) and long (4-7 days) periods of abstinence on the motility and detailed 

kinematic parameters of normozoospermic samples (assessed by CASA). 

The data provided in this study can be used for comparison by future studies 

or as interim reference values for motility and kinematic details of 

normozoospermic samples after shorter abstinence periods.   

Sperm motility and the regulation of different behaviors in human spermatozoa 

have in general been correlated with seminal fluid concentrations of different 

compounds like zinc, fructose, prostate-specific antigen  and neutral alpha-

glucosidase (Elzanaty et al., 2005), small changes of pH, micromolar 

concentrations of Ca2+ (Peralta-Arias et al., 2015) and Ca2+ signals generated 

by CatSper and Ca2+ stores (Strünker et al., 2011; Brenker et al., 2012; 

Alasmari et al., 2013). Such biochemical changes could be an explanation for 

the differences in sperm kinematics observed in our study. 

The modifications required for the sperm to attain motility and fertilizing ability 

(Hunnicutt et al., 1997; Jones, 1998a, 1998b; Belmonte et al., 2000; Rejraji et 

al., 2006; Tulsiani, 2006; Girouard et al., 2011) including changes to flagellar 

beating (Sullivan and Mieusset, 2016) take place during the epididymal 

maturation of the sperm and are based on complex interactions between male 

gametes and epididymal secretions (Haidl et al., 1994; Turner, 1995).  
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The length of the abstinence period could affect the transfer and storage time 

of the sperm in the epididymis and indirectly influence these complex 

interactions, consequently affecting the sperm kinematics. 

The higher velocity and progression of the second ejaculate compared to the 

first might be related to the physiological and biochemical modifications of the 

spermatozoa during the transit through the epididymis as part of the 

maturation process, which do not affect the physical characteristics and 

density of the sperm.  

The higher percentage of progressive motile and rapid-velocity spermatozoa 

seen in the second ejaculates in this study also supports previous studies 

suggesting that pooling consecutive samples would increase the numbers of 

available motile sperm (Tur-Kaspa et al., 1990, 1994; Said and Reed, 2015). 

The finding could also indicate that even couples with no apparent male factor 

who are using ART may similarly benefit from providing a second ejaculate 

with an abstinence period of as short as two hours. 

 

4.5. METABOLOMIC PROFILES 

The metabolomic analysis of the seminal plasma in this study was based on 

untargeted Nuclear Magnetic Resonance Spectroscopy. 28 out of 30 identified 

metabolites, demonstrated no difference in the amounts per spermatozoa. 

However, when calculating the absolute amounts of seminal metabolites per 

spermatozoa (metabolite concentration divided by sperm count), pyruvate and 

taurine demonstrated significantly higher absolute amounts (mg) per 106 

spermatozoa. The biochemical changes in the composition of seminal plasma, 

could be the reason for the better motility parameters of spermatozoa after 

shorter versus longer abstinence periods as suggested by previous studies 

(Bahadur et al., 2015; Verze et al., 2016). Pyruvate and lactate have been 

suggested as the most significant sources of energy for the function of sperm 

mitochondria and thereby key energy sources for motility and velocity 

parameters (Darr et al., 2016). This increase in the absolute amounts of 

pyruvate and lactate may be considered as a possible explanation of the 

improved motility observed in the second ejaculates in the present study. 

Pyruvate has also been suggested to play a protective role against oxidative 

stress in somatic cells (Jagtap et al., 2003; Hinoi et al., 2006; Wang et al., 

2007), and spermatozoa in mice treated with cyclophosphamide (Bakhtiary et 

al., 2015). The higher absolute amount of pyruvate per sperm in relation to the 
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mentioned protective effects could be considered as another potential 

explanation for the improved quality of sperm in the second ejaculates in this 

study. Seminal concentrations of fructose, as another energy metabolite, have 

shown no association with progressive motility (Elzanaty, 2007) or clinical 

usefulness in the assessment of defective sperm formation (Andrade-Rocha, 

1999). 

Taurine is one of the essential amino acids; but, it does not take part as a 

building block of proteins; it is, therefore, not categorized with the other amino 

acids (Wishart et al. 2013). Humans are capable of synthesizing taurine, but 

it is primarily originated from the diet (Holmes et al., 1992). The seminal 

taurine has been shown to have an epididymal origin in animals (Holmes et 

al., 1992); but, its origin in the human semen is still not clear. Taurine has 

been demonstrated to act as a sperm motility promoting factor (Boatman et 

al., 1990; Yang et al., 2010). It is also considered as a sperm capacitating 

agent (Meizel et al., 1980; Meizel, 1985), and an antioxidative and membrane 

stabilizing factor (Alvarez and Storey, 1983; Mrsny and Meizel, 1985; Yang et 

al., 2010), which can explain the possible beneficial effect of the higher 

absolute amounts of taurine per spermatozoa in the second ejaculate. 

Proline and threonine have both been shown to negatively affect sperm 

motility in bulls (Roussel and Stallcup, 1967); but, these showed no difference 

in concentration, absolute amounts or absolute amounts per spermatozoa 

between the two ejaculates.  

Uridine has been suggested to play a supportive role for the proper function 

of sperm during and after ejaculation (Niemeyer et al., 2006). However, 

despite the enhancement of some velocity parameters in hyperactivated 

spermatozoa, addition of uridine was shown to reduce the percentage of 

motile spermatozoa (Niemeyer et al., 2006), which is in agreement with the 

better sperm motility and lower concentration of uridine in the ejaculates 

delivered after shorter abstinence in this study.  

The conversion of phosphorylcholine, catalyzed by prostatic acid 

phosphatase is considered as the source of the choline in the seminal plasma 

right after ejaculation (Mann, 1964). Even though the effect of choline 

concentrations on sperm motility parameters remain unclear; but, lack of the 

choline dehydrogenase enzyme, which is in charge of catalyzing the 

conversion of choline to betaine, leads to abnormal sperm mitochondrial 

morphology and reduced  motility (Johnson et al., 2010).  
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Total carnitine or carnitine acyltransferases have been demonstrated to have 

no effect on the respiratory capacity of sperm and thereby have no prognostic 

value (Brooks, 1979). 

The lack of studies on the role of different seminal metabolites on sperm 

quality is clear and demands further studies focusing on the effect of different 

seminal concentrations of acetate, methanol, N-Acetylglucosamine and sn-

Glycero-3-phosphocholine on sperm quality parameters. 

Methionine, histidine, cysteine and aspartic acid (aspartate) have been 

identified and reported in previous metabolomic studies of the seminal plasma 

(Lynch et al., 1994; Légaré et al., 2013) and were, therefore, expected to be 

identified in this study. Hence, the missing of these metabolites could have 

been caused by technical issues and the complexity of identifying the many 

extensively overlapping resonances in a single pulse spectra from the 

untargeted 1H-NMR (Lynch et al., 1994) of the whole seminal fluid. The 

essential amino acids originating from the diet which were not identified in this 

study could be because they may not exist in the accessory sex glands, or not 

synthesized by the accessory sex glands in the case of the non-essential 

amino acids. 

Considering the much longer period of spermatogenesis (Heller and Clermont, 

1963) than the abstinence periods assessed in this study, the difference in the 

quality of the sperm in the two ejaculates cannot be associated with 

spermatogenesis, maturation and development processes. Sperm motility is 

initiated during the transfer from the epididymal conduit through the vas 

deferens at the time of ejaculation (Gupta et al., 2014).  

It may therefore be safe to consider the differences in the composition of the 

seminal plasma following long and short abstinence as an underlying cause 

for the different sperm motility parameters observed after different abstinence 

periods. Apart from a possible change in metabolic pathways, the difference 

in the composition of the seminal plasma between the two ejaculates could be 

due to the insufficient time available for the accessory glands to secrete and 

collect the metabolites before the second ejaculation. This hypothesis, 

however, requires further investigation.  

 



56 
 

4.6. MORPHOLOGY 

Both of the ejaculates collected after short and long abstinence had a normal 

morphology above the WHO reference values (>4%) (WHO, 2010) with no 

significant difference after the different abstinence periods.  

Several previous studies have challenged the misconception that extended 

sexual abstinence periods can improve sperm morphology (Pellestor et al., 

1994; Levitas et al., 2005; Wongkularb and Sukprasert, 2013).  

A former study has suggested that regular ejaculation may result in the 

production and ejaculation of immature and possibly sub-fertile sperm 

(Gosálvez et al., 2011), while other studies (Carlsen et al., 2004) and our 

results on the percentage of sperm with normal morphology suggest that the 

length of abstinence has no significant effect on sperm morphology. The 

reason for this could be that the spermatogenesis process in humans takes 

much longer (Heller and Clermont, 1963) than the abstinence time assessed 

in this study. Therefore, it would not be possible to differentiate the 

spermatozoa in the first and second ejaculate, based on the spermatogenesis 

or early stage maturation and development process, which may be an 

explanation for the similar normal morphology rates between the two 

ejaculates. 

 

4.7. DNA FRAGMENTATION 

Both the first and second ejaculates in this study demonstrated average 

percentages of DNA fragmentation below the threshold value (<30%) 

considered essential to achieve conception (Fernández et al., 2003; Bungum 

et al., 2004), and were also very similar to the threshold values for infertility of 

18.90% for SCSA and 22.75% for the SCD suggested by a more recent study 

(Ribas-Maynou et al., 2013). This was somewhat expected as the inclusion 

criteria for the study population focused on normozoospermic males of those 

couples attending for fertility treatment, thereby suggesting a higher chance 

of female factor in the participating couples. Nonetheless, the second 

ejaculates demonstrated a significantly lower mean percentage of sperm with 

DNA fragmentation regardless of the method used (SCSA or SCD).  

In contrast to the subjective assessment of the results of the SCD test 

(presence and size of halo) in most other studies, the DNA fragmentation 
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module of the SCA CASA system was used to provide objective results for the 

SCD, which may explain the similarity of results between the SCSA and SCD 

tests seen in this study. A comprehensive study comparing several DNA 

fragmentation assessment methods demonstrated that both SCD and SCSA 

methods are suitable to discriminate between potentially infertile males 

(Ribas-Maynou et al., 2013).  

Sperm DNA damage can cause single-stranded and double-strand DNA 

breaks, as often seen in degraded sperm (García-Peiró et al., n.d.; Cooke et 

al., 2003; Ribas-Maynou et al., 2012). Adverse reproductive outcomes have 

been linked to higher levels of sperm DNA fragmentation (Sakkas and 

Alvarez, 2010; Peluso et al., 2013). The DNA fragmentation index (DFI) has 

even been suggested to hold a greater diagnostic value than the conventional 

semen analysis, and higher prognostic value for assisted reproductive 

techniques (Hull, 1992; Santiso et al., 2007; Simon et al., 2011, 2013; Cortés-

Gutiérrez et al., 2016). Higher levels of DNA fragmentation have also been 

correlated with increased complications in achieving pregnancy, recurrent 

miscarriage, and various childhood diseases (Cooke et al., 2003; Aitken et al., 

2009; Brahem et al., 2011; Zini, 2011; Absalan et al., 2012).  

Between ejaculations, the spermatozoa are stored in the cauda of the 

epididymis and vas deferens where the sperm function may be impaired in 

proportion to the storage time due to exposure to the oxidative stress possibly 

caused a harmful seminal microenvironment (Marshburn et al., 2014; Agarwal 

et al., 2016a). The higher seminal total antioxidant capacity (TAC) reported 

following shorter abstinence periods (1 vs 4 days) may be able to decrease 

the oxidative stress-induced sperm damage (Marshburn et al., 2014) resulting 

in optimal levels of DNA fragmentation (Agarwal et al., 2016b).  

The lower DNA fragmentation index following the shorter ejaculatory 

abstinence observed in this study are in line with previous studies reporting 

lower sperm DNA fragmentation (Gosálvez et al., 2011; Wongkularb and 

Sukprasert, 2013) and improved assisted reproduction outcomes when using 

spermatozoa collected after shorter abstinence periods (Jurema et al., 2005; 

Marshburn et al., 2010).  

The higher percentage of hyperactivated sperm and lower levels of DNA 

fragmentation in the ejaculates collected after shorter (two hours vs 4-7 days) 

abstinence periods in this study (Paper I) (Alipour et al., 2017) are in 

agreement with previous studies showing higher percentages of 
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hyperactivated spermatozoa with lower levels of DNA fragmentation (Torki-

Boldaji et al., 2017). 

4.7.1. SCD vs SCSA 

The availability of several different tests based on several different strategies  

has inevitably resulted in diverse reference values and interpretations of 

results (Agarwal and Allamaneni, 2005; Bungum et al., 2006; Erenpreiss et 

al., 2006; Ribas-Maynou et al., 2013). A continuing debate on the accuracy 

and sensitivity of the different DNA fragmentation tests and their clinical value 

also exists (Agarwal and Said, 2003; Agarwal and Allamaneni, 2005).  

In this study, the SCD test was performed immediately following liquefaction 

whereas an aliquot of the liquefied semen was cryopreserved at the same 

time and later used for the SCSA test. Previous studies have demonstrated 

that cryopreservation does not affect the results of the SCSA test (Evenson et 

al., 2002).  

The data from the SCD and SCSA tests have been previously shown to be 

correlated to different degrees (Evenson, 2016). Previous reports have 

validated and confirming the results of the SCD test (Velez de la Calle et al., 

2008). Nevertheless, the low number of spermatozoa (50–200 per sample) 

evaluated in the SCD assessment provides a lower statistical robustness than 

what is obtained in the SCSA which is based on the flow cytometric 

assessment of the DNA damage in 5000 spermatozoa (Evenson et al., 2005).   
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4.8.  STRENGHTS AND WEAKNESSESS 

To our knowledge, this is the first project to comparatively report the intra-

individual characteristics of sperm motility and kinematic details, morphology, 

DNA fragmentation in normozoospermic samples collected after 4-7 days 

versus two hours of abstinence. Additionally, metabolomics profiles of the 

seminal plasma of men stratified according to short or long abstinence periods 

provided an insight into the possible causes of the observed difference. 

 

4.8.1. Phase I 

The majority of previous studies had focused on the effect of different 

abstinence periods in samples with sub-optimal quality (concentration, 

morphology, DNA fragmentation, etc.). However, in this study the focus was 

placed on normozoospermic samples, which provided results allowing for 

more comprehensive interpretations and implications of a well-defined 

normozoospermic group. The results of this study also provided some 

objective interim reference values for the quality of normozoospermic sperm 

collected after short (2h) and long (4-7 days) abstinence periods. Furthermore, 

the objective assessments by the newer generation of CASA systems used in 

this study, allowed for more reliable, precise and objective assessments 

compared to the preceding generations (Mortimer et al., 2015).  

The ideal is that all semen samples are collected close to the laboratory. Some 

samples in this study were collected at home. However, care was taken to 

transfer, maintain, and analyze the collected samples from different sites in a 

consistent manner within one hour. 

 

4.8.2. Phase II 

The ongoing biochemical exchange between the spermatozoa and seminal 

plasma (after ejaculation and during liquefaction time), may also influence the 

concentration of the metabolites, further complicating the interpretation of 

NMR results (Apostoli et al., 1997). Eliminating confounding factors such as 

the elemental exchange between the spermatozoa and seminal plasma during 

liquefaction time could provide a better understanding of the metabolomic 

profiles of consecutive ejaculates.   
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4.8.3. Phase III 

In contrast to the subjective assessment of the results obtained from the SCD 

test (presence and size of halo) in most other studies, the DNA fragmentation 

module of the SCA CASA system was used to provide objective results for the 

SCD. The sperm DNA integrity of the two ejaculates was also assessed by 

both SCD and SCSA methods to provide a comparative and more reliable and 

precise results.  

Possibly due to the selected study population, the level of sperm DNA 

fragmentations of the first ejaculates observed in this study were below the 

threshold value (<30%) suggested for successful conception (Fernández et 

al., 2003; Bungum et al., 2004); however, the effect of shorter abstinence 

periods on the integrity of the sperm DNA may be more evident in samples 

with initial sub-optimal DNA fragmentation levels. 
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5. CONCLUSION 

The overall results based on normozoospermic samples, documented a lower 

volume, sperm concentration and sperm number in total ejaculate; but, 

significantly improved percentage of progressive and rapid-velocity sperm, 

and lower percentage of sperm with fragmented DNA in ejaculates obtained 

after an abstinence period of only two hours.    

In spite of the lower volume, concentration and total sperm numbers in 

ejaculate, the higher percentages of spermatozoa with better motility and 

lower DNA damage in theory may increase the possibility of selecting higher 

quality sperm for procedures not requiring a large number of sperm (IVF, 

ICSI). Intrauterine inseminations requiring a higher number of motile 

spermatozoa may also in theory benefit from the pooling of two consecutive 

ejaculates or using only the second ejaculate for treatment that might 

consequently improve fertilization rates. The lower levels of DNA 

fragmentation in the second sample could also result in improvements of 

fertility success by reducing the risk of miscarriage.  

Using a second sperm sample collected shortly after the first, has the potential 

advantage of improving the fertilization and pregnancy rates in assisted 

reproduction. However, further validation in large prospective randomized 

controlled trials, more purposely directed at males from couples having 

problems to conceive when there appears to be no female factors, is needed 

to fully verify this hypothesis. Using several “omics” approaches comparatively 

and in combination, could allow for the identification of more metabolites and 

greater insights into the underlying mechanisms of differences in sperm 

quality following different abstinence periods.  
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