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Abstract

Network engineers and researchers are faced with new challenges in devel-
oping upcoming 5G networks. Beyond higher throughput in broadband ser-
vices, ultra-reliability, low latency and massively scalable architectures are
required for emerging services, e.g., Internet of Things (IoT), Industry 4.0. To
address these requirements on an increasingly wireless and mobility depen-
dent Internet infrastructure, novel paradigms for networking, e.g., network
coding (NC), are required. Network Coding (NC) revolutionizes the way
communication networks operate, due in part to its rateless property, i.e., the
ability to generate a virtually limitless stream of data, with minimal or no ac-
knowledgements/signaling needed from the receivers. This entails an added
cost of coding (processing) in end devices and intermediate network nodes.
A computational cost that has been one of the practical limitations to NC’s
widespread deployment.

Tunable Sparse Network Coding (TSNC) is a NC scheme that permits
sources to trade-off computational effort in end devices at the expense of
coded packets that become less likely to be innovative, i.e., provide new
knowledge to receivers. This thesis builds on early ideas of TSNC and de-
livers various practically relevant mechanisms for its deployment in real sys-
tems. First, this thesis presents a practical implementation of TSNC that ap-
plies a limited number of feedback packets to allow a source to monitor and
regularly tune the trade-off between computational complexity and the trans-
mission delay. This scheme is benchmarked in a variety of devices ranging
from embedded devices, smartphones and computers. The measurements
show order of magnitude performance gains of coding using TSNC com-
pared to Random Linear Network Coding (RLNC), and a 4x to 18x speed-up
using Single Instruction Multiple Data (SIMD). Second, we establish a con-
nection between TSNC and techniques like Overlapping Generations (OG) by
providing an on-the-fly coding construction of OG. More specifically, we use
feedback packets to construct the overlapping generations and sparse coding
to maintain low complexity. We show that this can be seen as a TSNC ap-
proach, where we tune the innovation probability of coded packets based on
the feedback received. This scheme is compared to three other NC schemes.

iii



Finally, this thesis presents a new paradigm in the form of a filesystem
protocol. We use NC at the filesystem level of end devices, i.e., on the top
of the network stack, to expand regular and even proprietary protocols with
the benefits from coding. This mechanism is realized into a real-life proof-of-
concept implementation based on the Filesystem in Userspace (FUSE) library
to provide multipath multi-source downloading capabilities for legacy pro-
tocols, such as the Hypertext Transfer Protocol (HTTP) and File Transfer Pro-
tocol (FTP). We show by measurements how our Network Coded Filesystem
Shim (NCFSS) provides two to five fold performance gains when multiple
server mirrors are used to download 10 MiB and 100 MiB files using regular
HTTP connections.



Resumé

Netværksingeniører og forskere står overfor nye udfordringer med at udvikle
kommende 5G netværk. Udover højere kapacitet på bredbåndsforbindelser
er ultra-pålidelighed, lave forsinkelser og meget skalerbare arkitekturer en
nødvendighed indenfor nye tjenester, f.eks., Tingenes internet, Industri 4.0.
For at adressere disse krav i en øget trådløs og mobilitets afhængig inter-
net infrastruktur er nye paradigmer indenfor netværk nødvendige, f.eks.,
netværkskodning. Netværkskodning revolutionerer måden hvorpå kommu-
nikationsnetværk opererer, dels på grund af dets evne til at generere en stort-
set ubegrænset strøm af data med minimal eller uden behov for feedback
signaler fra modtagere. Det indebærer en tilføjet omkostning til kodning
(processering) i slutenheder og mellemliggende netværksnoder. En omkost-
ning der udgør en af de praktiske begrænsninger for at udbrede netværks-
kodning.

TSNC er en kodningsteknik som tillader afsendere at reducere beregn-
ingskompleksiteten i slutenheder på bekostning af kodet pakker der er min-
dre innovative, dvs., give ny viden til modtagere. Denne afhandling bygger
på tidlige ideer fra TSNC og giver forskellige praktisk relevante mekanismer
til dets implementering i virkelige systemer. Først præsenterer denne afhan-
dling en implementation af TSNC, der benytter et begrænset antal feedback
pakker til at give afsenderen mulighed for løbende at monitorere og justere
forholdet mellem processeringskompleksitet og transmissionsforsinkelse. Denne
kodningsteknik benchmarkes i en række forskellige enheder fra inlejerede
systemer til smartphones og computere. Målingerne viser omkring ti gange
hurtigere kodningshastigheder med TSNC i forhold til RLNC, og en 4x til 18x
højere hastighed med SIMD. Derudover etablerer vi en forbindelse mellem
TSNC og teknikker såsom overlappende generationer (OG) i form af en kod-
ningskonstruktion hvor generationer konstrueres løbende. Mere specifikt
bruger vi feedback pakker til at konstruere overlappende generationer og
sparsom kodning til at vedligeholde en lav kodningskompleksitet. Vi viser at
metoden kan betragtes som TSNC, hvor vi justere innovationssandsynlighe-
den af kodet pakker baseret på modtaget feedbacks. Denne kodningsteknik
sammenlignes med tre andre kodningsteknikker.
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Til sidst introducerer vi et nyt paradigme i form af en filsystemsprotokol.
Vi implementerer netværkskodning i filsystemet på slutenheder, dvs., på top-
pen af netværksstakken, til at udvide almindelige og endda proprietære pro-
tokoller med fordelene ved kodning. Mekanismen bliver realiseret i form
af en praktisk implementering baseret på FUSE biblioteket til at give klas-
siske protokoller, såsom HTTP og FTP, mulighed for at hente en fil over flere
forbindelser og afsendere samtidig. Vi viser med målinger hvordan vores
netværkskodningslag i filsystemet giver to til fire gange hurtigere downloads
af 10 MiB og 100 MiB filer ved brug af almindelig HTTP forbindelser til at
modtage data fra flere server spejle.
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1 Introduction
Historically, Internet services have followed a centralized client-server paradigm,
but this will likely change towards a more distributed paradigm as the num-
ber of Internet connected devices continue to increase. The declining storage
prices has enabled companies to store yet more and more extensive amounts
of data, i.e., big data, that even future networks, such as 5G, will struggle
to support unless networks are utilized in smarter and more efficient man-
ners than today. For example, allowing devices to share data directly among
each other instead of relaying strictly on centralized servers to connect end-
devices. Figure 1.1 illustrates two end devices that are connected through a
remove host, indicated by the red line, to exchange information along a path
that is limited in bandwidth, latency and reliability by all the intermediate
nodes. This might be avoided by establishing a direct path, indicated by the
dashed blue line, to provide a better link between the end devices, that also
reduces the overall load on the network infrastructure.

<Network Name>

Fig. 1.1: Communication through a relay server versus peer-to-peer communication.

Communicating on more direct paths is not only beneficial in terms of
bandwidth, latency and reliability, but it also opens the possibility of uti-
lizing networks more efficiently, e.g., using multicast, broadcast and more
advanced mechanisms to transmit data, e.g., NC. Compared to traditional
communication standards, NC drastically changes the way data is dissemi-
nated on erasure channels due to its rateless property and reduced need for
acknowledgements. This comes at the inconvenience of encoding and decod-
ing data in end devices, and optionally intermediate network nodes, which
require an additional computational effort. This thesis consider means to

7



Chapter 1. Introduction

which NC can be used in resource efficient manners for practical applica-
tions, e.g., using TSNC and other sparse network codes.

Chapter 1 will provide the background and state of the art on existing NC
concepts and schemes, discuss their benefits and challenges, as well as dis-
cussing related sparse coding techniques such as fountain codes, e.g., Luby
Transform (LT) codes, Raptor codes. Chapter 2 provides a summarized de-
scription of our work beyond state of the art. Finally Chapter 3 describes
the specific contributions of the articles submitted as part of this Thesis as a
collection of papers.

1.1 Random Linear Network Coding

Network coding was proposed in 2000 by Ahlswede et al. [2]. Since then, it
has been suggested as a means to improve many aspects on the transportation
of network packets. Network codes are rateless, meaning that a source can
potentially generate an unlimited number of coded packets Ci, i ∈ [1, 2, . . .]
from a finite set of original packets

Pj, j ∈ [1, 2, . . . , n], (1.1)

called a generation. This is particularly useful on erasure channels, because
it does not matter which coded packets a sink receives as long as it collects
n linearly independent coded packets. This means that it does not matter
which coded packets are lost on the channel because the following packets
are equally likely to be innovative, i.e., provide new knowledge to a receiver.
In contrast, current networks require a sink (receiver) to collect every original
packet (arranged in the correct order) in order to recover the original data.
This ordering of the packets is performed automatically using RLNC when
coded packets are decoded.

A coded packet Ci is constructed by linearly combining the original pack-
ets as

Ci =
n⊕

j=1

vij ⊗ Pj, ∀i ∈ [1, 2, . . .), (1.2)

where vij are called the coding coefficients. For RLNC, the vij’s are chosen
uniformly at random from a Galois Field (GF) of size q, and the mathemat-
ical operations are preformed over GF arithmetics. The idea of transmitting
coded packets instead of the regular packets completely changes the con-
cept of data transmissions that has historically relied primarily on per packet
acknowledgements to initiate re-transmissions of lost packets. Coding the
packets enables a source to construct qn different coded packets from a gen-
eration, where all coded packets are likely to be innovative. This means that

8



1.1. Random Linear Network Coding

a source is encouraged to always transmit newly generated coded packets
rather than re-transmitting lost packets. Hence, eliminating the demand for
per packet acknowledgements. The work in [17] allows us to calculate the
probability that a coded packet is linearly independent after a receiver has
collected i out of n Degree of Freedom (DOF) as

P(n, i) = 1−
(

1
q

)n−i
. (1.3)

Using this innovation probability, we can estimate the number of coded
packets B that a receiver on average needs to receive to recover a generation
of n packets as

B =
n−1

∑
i=0

1
P(n, i)

. (1.4)

Calculating B for various generations sizes, reveals that the overhead due
to linearly dependent packets becomes insignificant if n and/or q are large

B ≈
{

n + 1.6 for q = 2
n for q ≥ 256

.

We will be using these two field sizes extensively throughout this thesis.
When coded packets arrive at a receiver, this receiver is capable of decod-

ing the packets on-the-fly using Gauss-Jordan elimination [11]. This process
requires a receiver to be aware of how each coded packet was constructed at
the source, i.e., which original packets made up a coded packet. There exist
two common ways to disseminate that knowledge from source to sink. Either
the coding coefficients vi =

[
vi1, vi2 , . . . , vin

]
are transmitted along the coded

packet Ci, or by the transmission of a seed associated to a pseudo-random
number generator used to generate the coding coefficients on the receiver.

Both encoding and decoding carries a certain computational effort. This
means that NC should only be applied when the benefits of coding outweigh
the additional computational effort. This effort is high for RLNC, but one
may take advantage of NC in less computationally expensive manners, e.g.,
systematic coding [14, 27] and sparser NC schemes. In the following, we will
consider some of the benefits of NC as well as means to reduce the coding
complexity.

1.1.1 Recoding

Recoding (or re-encoding) is one of the main benefits of NC. It allows inter-
mediate network nodes to take any number of packets (either coded or not)
from a generation and encode them together without having to decode them

9
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Source Forward Sink

P1

P1P2

P2P2

P2

P2
P3

P3

P3

(a) Store-and-forward

Source Recoder Sink

P1

C1P2

C2P3

C3P3

C4

(b) Store-and-recode

Fig. 1.2: Sequence diagrams of a transmission of three packets without recoding (left) and with
recoding (right) in the intermediate node on erasure channels

first [13]. The recoding process is essentially similar to the encoding process
except that recoding is usually performed over the entire content of a coded
packet, i.e., both coding coefficients and codeword. The recoding process
may be expressed as

Ri =
n⊕

j=1

wij ⊗ Cj, ∀i ∈ [1, . . .), (1.5)

where wij ∀j ∈ [1, 2, . . . , n] forms the coding vector used to construct the i-
th recoded packet Ri. Each value within the vector of coding coefficients is
chosen uniformly at random from a GF of size q.

The concept of recoding is visualized in Figure 1.2, where it is compared
to the familiar store-and-forward paradigm used in the Internet today. In
the example, a source transmits a generation of three packets to a sink over
erasure channels through an intermediate network node that either follow
the store-and-forward paradigm or the store-and-recode paradigm in the two
sequence diagrams respectively. The assumption is that acknowledgements
are received without erasures and delays from all nodes that receive regular
packets, and that only a single acknowledgement is transmitted from the sink
receiving coded packets to indicate the reception of the entire generation.

Figure 1.2 provides an idea of the store-and-recode paradigm’s superior
performance compared to store-and-forward. In fact, it has been proven that
the probability of a sink to receive a packet transmitted over a chain of re-
coding nodes on erasure channels is the erasure probability of only the worst
link

precv = 1−max{e1, e2, . . . , eJ}, (1.6)

10



1.1. Random Linear Network Coding

where e1, e2, . . . , eJ represents the erasure probabilities of each intermediate
link. Thus, far superior to the regular store-and-forward paradigm on which
the probability of receiving a packet can be calculated as

precv =
J

∏
j=1

(1− ej). (1.7)

1.1.2 Multicast Performance

Sink 1 Source Sink 2

P1 P1

P2 P2

P3 P3

P3
P3

P2

P3

(a) Uncoded
(per packet feedback)

Sink 1 Source Sink 2

C1 C1

C2 C2

C3 C3

C5
C5

C6 C6

(b) RLNC
(end feedback)

Sink 1 Source Sink 2

P1 P1

P2 P2

P3 P3

C1
C1

C2 C2

(c) Systematic RLNC
(end feedback)

Fig. 1.3: Multicast transmission of n = 3 packets. Uncoded multicast (using per packet acknowl-
edgements) compared to coded multicast (using per generation acknowledgements).

Another benefit of NC is the increased throughput in multicast scenar-
ios compared to traditional data transmissions. Transmitting packets reliably
to a large group of receivers, on a wireless erasure channel, has historically
been practically challenging, due to the extend of acknowledgements emitted
from the receivers. Tailored multicast protocols mitigates this issue in various
ways, e.g., probabilistic acknowledgements [18] and negative acknowledge-
ments [1], but it does not solve the issue that packets need to be transmitted
individually to each receiver to finalize the transmission.

Figure 1.3a provides an example of a source transmitting three packets re-
liably to two receivers over an erasure channel. Assuming reliable per packet
acknowledgements to arrive without delays allows the source to monitor the
transmission progress. After initially attempting to transmit all packets, the
source may retransmit P3 to both receivers, but it is unable to utilize the chan-
nel fully when re-transmitting P2 to Sink 1 and P3 once again to Sink 2 to
finalize the transmission. RLNC on the other hand, in Figure 1.3b, allows
the source to utilize the full capacity of the multicast channel in this example
to feed both receivers with coded packets until they obtain all three DOF. As
previously discussed, the coding process is not free in terms of computational
effort. Figure 1.3c shows a commonly used approach to save computational
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Chapter 1. Introduction

effort by first transmitting the entire generation uncoded before starting the
coding process. This is called systematic RLNC [14, 27].

1.2 Sparse Random Linear Network Coding

Sparse Random Linear Network Coding (SRLNC) is a computational inex-
pensive alternative to RLNC. It is similar to RLNC except that each coded
packet is constructed only from a subset of the regular packets in a genera-
tion. This allows an encoder to construct coded packets that are less compu-
tationally expensive to both encode and decode at the cost of reducing the
probability of packets being innovative. Thus, a sink needs to receive more
coded packets to obtain n linear independent packets compared to RLNC.
Constructing SRLNC coded packets follow the same procedure as RLNC

Ci =
n⊕

j=1

vij ⊗ Pj, vij = Zj, ∀i ∈ [1, . . .), (1.8)

but with coding coefficients sampled from a discrete distribution

Zj ∼ ρ(z) =

{
1− d for z = 0

d
q−1 for z = 1, . . . , q− 1,

that only returns a non-zero value with probability d. This means that an
encoder constructs each coded packet from k = d · n regular packets on aver-
age. In practical applications, we restrict the coding density to the following
ranges [22]

d ∈
{
(0, 0.5] for q = 2
(0, 1] for q > 2.

(1.9)

Similar to RLNC, the innovation probability depends on the number of
linearly independent packets a receiver has already accumulated and the gen-
eration size, but the coding density d is much more dominant than the GF
size q. We use the equation from [5] to calculate the innovation probability of
a sparse coded packet after a sink has recovered i out of n DOF as

P(n, i) = 1− (1− d)n−i . (1.10)

Thus, the number of packets a receiver needs to receive to recover all
regular packets may be estimates as

B =
n−1

∑
i=0

1
P(n, i)

=
n−1

∑
i=0

1
1− (1− d)n−i . (1.11)
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Fig. 1.4: SRLNC innovation probability (left) and the average received packets (right) at i DOF
using GF of size q = 2.

The innovation probability of SRLNC coded packets are highly dependent
on the coding density d. This is illustrated in Figure 1.4a for five various den-
sities and a generation size of n = 100 packets. The densities are expressed
as k-sparse where k = d · n. It can be seen how the innovation probability
decays as the receiver accumulates more DOF, and that the innovation prob-
ability is lower when d is small. These effects are also apparent if we consider
the number of packets a receiver needs, on average, to recover i DOF. This is
shown in Figure 1.4b using the same coding densities. The RLNC curves, in
the two figures, illustrate the best achievable performance of NC using q = 2,
where the optimal performance would be a fixed innovation probability of
one and hence a DOF increase by one for each received packet.

1.3 Tunable Sparse Network Coding

TSNC [6] can be considered as an extension of SRLNC. It encodes and de-
codes packets similar to SRLNC, but instead of a fixed coding density through-
out the transmission of each generation, TSNC suggests to increase the cod-
ing density d as the receiver(s) accumulates more linearly independent pack-
ets from a generation. This enables a source to reduce coding complexity in
an intelligent fashion compared to SRLNC that lose particularly many pack-
ets, due to linearly dependency, when receivers have accumulated a large
number of DOF. Figure 1.4a illustrated 1) how sparse coded packets are al-
most guaranteed to be innovative in the beginning of a transmission no mat-
ter the coding density, and 2) how the innovation probability decays slower
for denser codes compared to sparser codes when receiver(s) accumulates
more DOF.

TSNC enables a source to reduce coding complexity at only a small addi-
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Chapter 1. Introduction

tional coding delay compared to RLNC by initially transmitting very sparse
coded packets and gradually increasing the coding density as the receiver(s)
accumulate DOF. Because the coded packets are sparse, the innovation prob-
ability is similar to that of SRLNC in Equation 1.10. This means that the
average overhead g(i) of receiving a linear independent coded packet when
a receiver has accumulated i out of n DOF may be expressed as

g(i) =
1

P(n, i)
− 1 =

1

1− (1− d(i))n−i − 1. (1.12)

The mean number of packets to be received by a receiver to decode a
generation may be calculated using the same equation presented for SRLNC.
The expression may be written as n linearly independent packets plus the
accumulated overhead as

B =
n−1

∑
i=0

1
P(n, i)

= n +
n−1

∑
i=0

g(i). (1.13)

This expression simplifies how a source can control the overhead g(i), i ∈
[0, 1, . . . , n − 1] that may be constructed as a discrete function to suit any
overhead behaviour for a given application. Knowing the overhead function
g(i) allows us to calculate the i-th coding density.

d(i) = 1−
(

1− 1
1 + g(i)

) 1
n−i

. (1.14)
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Fig. 1.5: Non-overlapping generations and overlapping generations

Non-overlapping generations [4, 20] is another way to reduce the coding
complexity of NC. RLNC enables the transmission of generations in n + 1.6
coded packets in the expectation if q = 2, and near n coded packets for larger
GF sizes. Regardless of the generation size, there will always be roughly the
same number of linear dependent packets, e.g., 1.6 using q = 2. This means
that the overhead due to linearly dependent packets is less significant for
larger generations than for small generations. On the other hand, the coding
complexity is affected negatively as the generation size grows. In fact, this
is a key limitation of RLNC since Gauss-Jordan elimination requires O(n3)
GF operations to decode a generation of n packets. RLNC based protocols
are therefore forced to use either very large packets or splitting the packets
into multiple generations that can be transmitted one by one. Due to the
Maximum Transmission Unit (MTU) and other system limitations, the solu-
tion is often limited to the use of multiple generations, e.g., as illustrated in
Figure 1.5a, where the matrix elements represent the coding coefficients and
the vector elements represent the original data packets.

Splitting the packets into h generations of sizes [m1, . . . , mh] reduces the

decoding complexity to O
(

∑h
j=1 m3

j

)
GF operations at the cost of transmit-

ting more linearly dependent packets. The mean number of packets a receiver
needs to collect to decode h generations is

B =
h

∑
j=1

mj−1

∑
i=0

1
P(mj, i)

. (1.15)

This means that a receiver on average needs to collect ∑h
j=1(mj + 1.6) pack-

ets if all generations are RLNC encoded with a GF of size q = 2.
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The generations may be encoded using other schemes such as SRLNC or
TSNC. In that case, the coding complexity is reduced even more, but at a cost
of more linearly dependent packets.

This is illustrated in Figure 1.6 that shows the innovation probabilities of
coded packets as a receiver accumulates DOF. A generation of 100 original
packets are split into three non-overlapping generations that are received
sequentially either using 2-sparse or 4-sparse coded packets. As expected,
the innovation probabilities of received packets are high in the beginning of
each generation, but decays as more DOF are accumulated. We observe that
the 4-sparse coded packets are always more innovative than 2-sparse coded
packets at the expense of higher coding complexity.
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Fig. 1.6: Innovation probability of coded packets using three Non-overlapping Generations
(NOG) of sizes [40, 40, 20] when receiving a total of 100 original packets.

1.5 Overlapping Generations

The concept of overlapping generations [10, 26, 28] is usually applied in trans-
missions of large files as an alternative to non-overlapping generations. The
difference between the two are that regular packets may be included in mul-
tiple generations in overlapping generations. Thus, when a packet is fully
decoded in one of the generations, it can be eliminated from all other gener-
ations that includes it. Figure 1.5 provides an illustration of non-overlapping
and overlapping generations for a total of six packets that are split into two
generations. From the coding matrix, it can be seen that some coding coeffi-
cients are always zero. Thus, compared to a single large RLNC generation,
the packets are less computationally expensive to encode and decode when
split into multiple generations.
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Source 1 Sink Source 2

C1 CI

C2

C3
CII

C4

C5 CIII

C6

Fig. 1.7: Sequence diagram of retrieving a single data chunk from multiple sources using OG

Figure 1.7 visualizes of how overlapping generations can be beneficial
to receive the two generations in Figure 1.5b. One generation is transmitted
from each source. {P1, . . . P4} from Source 1 and {P3, . . . , P6} from Source 2.
Due to the overlap, when the sink receives the fourth DOF from Source 1, it
can decode the first generation and thus use P3 and P4 to decode the other
generation that was transmitted by the slower Source 2. Had the two gen-
erations been transmitted using non-overlapping generation, such as in Fig-
ure 1.5a, then it would be required that the sink received the entire gener-
ations from both sources. Although the generations are bigger due to over-
laps, the coding effort may turn out lower compared to NOG. This happens
because a fully decoded packet in one generation may be eliminated in all
generations that it belongs to with little effort.

1.6 Luby transform (LT) and Raptor codes

LT [15] and Raptor [25] codes make up two low complexity competitors to
NC. Both codes are rateless, thus enabling encoders to potentially produce a
limitless stream of coded packets Ci, i ∈ [1, 2, . . . ] from a finite set of original
packets Pj, j ∈ [1, 2, . . . , n].

To minimize coding complexity, both codes relies on the Belief Propaga-
tion (BP) decoder [16] to recover the original packets, i.e., a low computa-
tionally expensive alternative to Gauss-Jordan elimination, that works exclu-
sively on the binary GF, i.e., q = 2. The coding operations of BP can best
be explained using a bipartite graph, such as Figure 1.8, that depicts three
original packets (P1, P2, P3) and four coded packets (C1, . . . , C4).
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P1 P2 P3

C1 C2 C3 C4

...

...

Fig. 1.8: LT code

Each coded packet Ci is produced using three steps, 1) uniformly at ran-
dom choose a degree ω from a degree distribution, 2) select ω distinct packets
from Pj, j ∈ [1, 2, . . . , n] randomly as neighbors to Ci, and 3) construct Ci by
XORing its ω neighbors.

Decoding coded packets is performed in steps iteratively. First, coded
packets with exactly one neighbor represent exact copies of their neighbor-
ing original packet. These packets are marked as recovered. Second, the
edges from the newly recovered packets to coded packets are eliminated us-
ing bitwise XOR to decrease the degree of the affected coded packets by one.
Third, the steps are repeated until all original packets are recovered.

The fact that BP demands coded packets of degree-one to start the decod-
ing process and keep it running by eliminating edges makes it vulnerable to
the coding density. In fact, it works only on very sparse code structures and a
good performance, in terms of coding delay, is only achieved using carefully
tailored degree distributions, such as the Ideal Soliton distribution

ρ(i) =

{
1
n for i = 1

1
i (i−1) for i = 2, . . . , n.

(1.16)

The distribution has been designed such that each newly recovered packet is
eliminated from roughly R = 1 coded packet in each iteration of the decoding
process. This works great in theory, but it performs poorly in practice. Even
small fluctuations from the expected behaviour cause the decoding process
to halt due to missing degree-one packets. This problem was addressed in
the Robust Soliton distribution by altering the Ideal Soliton distribution such
that each recovered packet roughly eliminates one degree from

R = c ln
(

k
δ

)√
k

coded packets. Thus, making the decoding process less likely to halt due
to missing degree-one packets. c is a constant larger than zero and δ is the
probability of failure to recover all original packets after the reception of B
coded packets.
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1.6. Luby transform (LT) and Raptor codes

The Robust Soliton degree distribution is defined as

µ(i) =
ρ(i) + τ(i)

β
for i = 1, . . . , n, (1.17)

where β = ∑n
i=1(ρ(i) + τ(i)) and

τ(i) =





R
i n for i = 1, . . . , n

R − 1
R ln( R

δ )
n for i = n

R
0 for i = n

R + 1, . . . , n.

(1.18)
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Fig. 1.9: c = 0.2, δ = 0.05, R =

The Ideal Soliton distribution ρ(·), tau(·) and the Robust Soliton distribu-
tion µ(·) has been plotted in Figure 1.9 for an example with n = 10000 orig-
inal packets and parameters c = 0.2 and δ = 0.05. The plots show how τ(·)
significantly increase the probability of generating coded packets of degree-
one to accelerate the start of the decoding process and n/R to make denser
coded packets that are more likely to maintain the decoding process.
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Fig. 1.10: LT codes compared to RLNC in terms of coding delay and computational complexity

The number of coded packets required to recover a generation of n pack-
ets can be estimated as [19]

B = n β.

Figure 1.10a compares this coding delay to a worst case of RLNC using the
binary GF and a 95% probability of successfully decoding a generation after
receiving B coded packets [16]. Although RLNC is plotted using the binary
GF it is close to optimal in terms of coding delay, but its computational com-
plexity is significantly higher. This is illustrated in Figure 1.10b. The coding
operations of LT codes is O(n · ln(n/δ)) compared to O(n3) in RLNC.

This performance of LT codes can be improved using techniques sug-
gested in Raptor codes. Raptor codes extends the ideas of LT codes with one
or multiple layers of precodes as illustrated in Figure 1.11.

C2 C3 C4 C5

...

...

P2 P3 P4P1

Precoding:

LT coding:

C1

Fig. 1.11: Raptor codes

The delay of LT codes are conceptually caused by the same underlying
problem as NC schemes experience of various degrees, i.e., the fact that coded
packets become less innovative as receivers accumulate more DOF. The pre-
coding in Raptor codes expands the original n packets to n + r packets using
a strong code, e.g., Low-density parity-check (LDPC) [8] or Reed-Solomon
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(RS) codes. The trick is that Raptor decoders may therefore recover a gener-
ation with close to n out of n + r packets rather than receiving the exact n
original packets. The other advantage of extending the original n packets to
n + r packets is that decoding complexity of Raptor codes may be reduced
to O(n) operations. Although the decoding procedure in a Raptor code de-
pends on the precode(s), it is most common to use BP in the entire decoding
procedure to recover the original packets.

LT and Raptor codes are very attractive in many unicast and multicast
scenarios where channel erasures are present. This is due to their rateless
property, low coding delay and computational complexity. Compared to
Gauss-Jordan Elimination, BP is theoretically superior to Gauss-Jordan elim-
ination in terms of theoretical complexity, but it is vulnerable to the carefully
tailored degree distributions to work efficiently. In practical implementa-
tions, Gauss-Jordan has proved very computationally efficient [11] due to the
simple, consistent and repetitive tasks that Central Processing Unit (CPU)s
perform extremely well. BP is yet to be compared to Gauss-Jordan elimina-
tion in a real-life implementation since only highly efficient proprietary im-
plementation exists of BP. The carefully tailored degree distribution required
for BP to work is also making it nearly impossible to recode LT or Raptor
coded packet streams at intermediate nodes [24]. Thus, LT and Raptor codes
are not able to utilize the benefits of recoding.
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2 Thesis Outline
A number of papers have demonstrated benefits of applying NC in practical
applications, but we are yet to see a wide scale assimilation. The concept is
still relatively young, and it may not be common knowledge among system
developers that would need a large technical understanding of NC to use it.
Another reason that could hinder the propagation of NC may be the missing
knowledge of how it performs in everyday devices.

This thesis focuses on mapping the computational performance of com-
mon NC schemes in a variety of commercially available devices, how to re-
duce the computational effort of NC through the use of sparse code struc-
tures, such as TSNC, and how NC in general can be made easily accessible
even to people without a deep technical knowledge of NC. We first consid-
ered a simple unicast network without channel erasures between a source
and a sink to observe and understand the behaviour and coding perfor-
mance of RLNC compared to sparser code structures. This allowed us to
develop a feedback based TSNC scheme that was tested and compared to
RLNC and SRLNC. We performed measurements in eight different commer-
cially available devices, ranging from a Raspberry Pi 1 to smartphones and
regular computers, to map the coding speed and energy consumption of the
schemes running on various platforms.

Similar measurements were used to estimate the performance of a TSNC
inspired approach to OG, proposed in Paper C. We believe this scheme may
potentially be useful in multicast and multi-source applications, i.e., transmit-
ting to multiple receivers or receiving from multiple sources. Both of which
NC appears particularly interesting, due to its ability to reduce the effort and
protocol overhead required to ensure that the same packet is not transmitted
over multiple communication channels. In the multi-source case, this either
require each source to be aware of a pre-negotiated subset of data pieces to
transmit, or to continuously have the receiver(s) request data piece by piece
from the sources in a BitTorrent fashion. Our final work of this thesis present
ideas of how NC may be implemented as a filesystem shim in end devices
to allow pre- and post-coding operations before/after any Linux application
read or writes from/to its filesystem. Thus, allowing our shim to provide
coding capabilites between the application layer and the filesystem, while
applications may be completely oblivious to the coding performed before

23



Chapter 2. Thesis Outline

transmitting and after receiving the raw data.
The work will be expanded in more details in the following sections and

papers.

2.1 Feedback based Tunable Sparse Network Cod-
ing
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Fig. 2.1: Innovation probability and average received packets to obtain a given number of DOF
for a generation of 100 packets

The ideas of TSNC, proposed by Feizi et. al in [6], provide a theoretical
framework to trade-off computational complexity at the expense of additional
delay. The delay is due to linearly dependent packets, and may be based on a
desired overhead function. Papers A and B realize these ideas into a practical
C++11 implementation that uses feedbacks from the receiver(s) to deliver a
highly consistent and controlled delay performance to end devices. Upon the
accumulation of a number of pre-negotiated degrees of freedom between the
source and receiver(s), the receiver(s) transmit feedback packets to the source
to indicate the current state of its decoding process. These feedbacks enable
the source to regularly update the coding density and thereby transmit the
entire generation to the receiver(s) in roughly B ≥ n transmitted packets. We
suggested that receivers acknowledge the reception of each r(k) DOF as

r(k) =

⌊
n ·
[

2k − 1
2k

]⌋
, k ∈

[
1, 2, . . . , dlog2(n)e+ 1

]
. (2.1)

Based on this feedback scheme, Figure 2.1 illustrates the theoretical in-
novation probability of coded packets, using our TSNC scheme compared
to SRLNC and RLNC, when a source receives k = 3 acknowledgements at
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2.2. Feedback Based Overlapping Sparse Generations

r(k) = {50, 75, 100} DOF and the coding density is 2-sparse, 4-sparse and
RLNC in the three regions of a 100 packets generation. Based on the innova-
tion probabilities, we may use Equation 1.13 to calculate the average number
of coded packets a receiver needs to collect to obtain a given DOF. This is
depicted in Figure 2.1b.

2.2 Feedback Based Overlapping Sparse Genera-
tions
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Fig. 2.2: Innovation probability and average received packets to obtain a given number of DOF
when receiving 40, 40 and 20 DOF from overlapping generations of sizes [60, 60, 20]

Our TSNC scheme, described in Section 2.1, used feedbacks to monitor
and tune the coding density regularly to finish the transmission of a genera-
tion in roughly B packets. Paper C presents how these ideas may be utilized
in the context of OG. Consider the transmission of a large number of pack-
ets, n, to one or multiple receivers. If n is large, it may be an advantage
to transmit the packets over multiple generations to maintain a low coding
complexity. Our work in Paper C suggests to construct these generations
on-the-fly based on the feedback from the receiver(s). First, the source con-
structs an initial generation of the first m packets, from which it transmits
k-sparse coded packets to the receiver(s). When the receiver(s) has recovered
m− r DOF of the initial generation and the innovation probability becomes
significantly low, the receivers signal a list of seen or unseen packets to the
source. This triggers the source to construct a new generation of similar size,
that consists of the unseen packets plus a set of new packets, i.e., packets that
have not been included in a previous generation. The described process may
continue until all packets have been included in a generation and the very
last generation has been decoded. Decoded packets in one generation can be
back-substituted in all previously received generations.
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Chapter 2. Thesis Outline

Figure 2.2a presents the innovation probabilities of coded packets using
our scheme with coding densities of either 2- or 4-sparse packets to recover
i out of n DOF, and the generation sizes are [60, 60, 20] and overlaps by r =
20 packets. Using these scheme configurations, Figure 2.2b, indicates a 70-
80 percent reduction of the delay performance compared to their SRLNC
counterpart.
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Fig. 2.3: Innovation probability of OG with denser last generation, additional generation or
larger overlap

Figure 2.2a shows that coded packets from the last generation may not be
sufficiently innovative. This is due to the low coding densities. Figure 2.3
presents three ways to increase the innovation probability of our scheme
while maintaining a low overall coding density. The first option could be
to increase the coding density of the last generation. This is depicted in Fig-
ure 2.3a, where the very last generation is based on RLNC coded packets.
In a more advanced setup, the last generation could be transmitted using
TSNC or simply a GF of higher order than GF(2). Second option could be to
maintain the low 2-sparse or 4-sparse coding density in all generations, but
instead construct more generations. This is illustrated with four generations
in Figure 2.3b. A third option could be to use larger generation overlaps as
depicted in Figure 2.3c.

Although the three options presented improves the innovation probability
of the last generation, they all trade off something. The first option introduces
higher coding complexity, the second option adds additional feedbacks, and
the third option are likely to consume more memory in a practical implemen-
tation.

2.3 Network Coding Complexity

Computational complexity is usually expressed in GF operations. These es-
timates provide an overall picture of the performance that may be expected
of a particular NC scheme, but this measure is not necessarily proportional
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to the speeds obtained in a real implementation. There exists a number of
reasons that GF operations are not necessarily proportional to the computa-
tional speed in a real implementation. Our work in [22] showed that three of
the most important effects are the following

• GF operations: The GF computations varies in speed depending on the
operation and the GF size q. Especially high order fields usually relies
on table look-ups that may be implemented in various ways depending
on the system capabilities.

• CPU: The CPU frequency and capabilities varies between devices and
computers are extremely good at performing repetitive and predictable
tasks where they can utilize parallelism to perform multiple tasks con-
currently.

• Data locality: The pattern used by the CPU to read and write data
from/to memory may drastically affect the performance of an imple-
mentation. This is due to different speeds of sequential read/writes
compared to random read/writes, but also the systems ability to oper-
ate on data in higher cache levels, i.e., store data closer to the CPU.

The work in Paper A evaluates the computational speed of our feedback
based implementation of TSNC. Paper B compares the same TSNC scheme
against RLNC and SRLNC in eight different commercially available devices,
ranging from the Raspberry Pi 1 to regular computers, while the energy
consumption is measured in some of the devices to map the efficiency of
the measured NC schemes. Finally, Paper C estimates the performance of
a TSNC inspired OG scheme compared to regular SRLNC and systematic
RLNC. Due to the extremely sparse codes that may be used in TSNC, Pa-
per B also presents a minor optimization on how a source may deduce which
regular packets should form each coded packet.

From measurements, we observed performance gains in the order of mag-
nitude using TSNC and our TSNC inspired OG scheme compared to RLNC,
and 4x to 18x speed-ups using SIMD capabilities that are available in most
recently available consumer CPUs.

2.4 Network Coding in Filesystems as a solution
to multi-source transmissions

Practical implementations that are deployed beneath the application layer
are faced with tremendous challenges to become standardized and widely
accepted by the Internet community before a decade long process of updating
all network nodes on the Internet can begin. For this reason, NC has mainly
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been deployed on the application layer that does not require intermediate
network nodes to be updated. Instead, each individual application needs to
implement it, which requires a deep technical knowledge and effort to design
and use properly.

Sink

Filesystem

NCFSS: Decoder

Application layer

Network stack

Source

Filesystem

NCFSS: Encoder

Application layer

Network stack

Fig. 2.4: NCFSS in the filesystem. An application may copy data directly between filesystems
within the same machine (e.g. using Copy (cp)) or to a remote machine (e.g. using Secure Copy
(SCP) or GNU Wget (Wget)).

In Paper D, we propose to implement NC as a shim between the filesystem
and the application layer, as depicted in Figure 2.4. This allow new applica-
tions, but also existing applications that are based on legacy protocols, such
as HTTP [3, 7], FTP [23], to take advantage of NC without any alteration of
the existing code. This is possible due to standardized I/O interfaces between
user space applications and filesystems.

Our work proposes NC as a solution to multi-source transmissions and
provides a proof-of-concept implementation in C++ to demonstrate the abil-
ity and performance gains of using RLNC to download a file from multiple
server mirrors.
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Req. piece 1 Req. piece 2
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P6

(a) Without NCFSS

Source 1 Sink Source 2

Req. file Req. file

C1
CI

C2

C3 CII

C4

C5

Fin Fin

(b) With NCFSS

Fig. 2.5: Downloading a file from multiple HTTP server mirrors

Downloading files from multiple mirrors is already feasible today, e.g.,
using HTTP. The simplest approach is to split a file into equally sized pieces
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that a sink may request one by one from the server mirrors. Figure 2.5a
illustrates a sequence diagram of a sink downloading a file, that has been
split into two pieces of three packets each, such that the sink can download
one piece from each mirror. This approach does not perform well in case
transmission rates to the server mirrors differ.

RLNC eliminates the effort of coordinating which pieces to retrieve from
each server by considering a file as a single generation from which each
source may transmit a limitless stream of coded packets. This allows a sink
to collect packets from multiple sources until it has retrieved enough DOF to
fully reconstruct to original data. The approach is visualized in Figure 2.5b.
Another benefit of coding is that it inherently provides a chunked transmis-
sion that allow faster sources to transmit more packets than slower sources.
The performance of these downloading strategies are presented in Paper D.
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3 Thesis Contribution
This chapter presents the contribution of each paper included in the thesis.

3.1 Paper A

Chres W. Sørensen, Arash S. Badr, Juan A. Cabrera, Daniel E. Lucani, Janus
Heide, Frank H. P. Fitzek, “A Practical View on Tunable Sparse Network
Coding,” European Wireless (EW), 2015.

Motivation

TSNC was proposed in [6] as a means to obtain a lower computational com-
plexity than RLNC by trading off coding complexity using sparse codes at
the expense of increased coding delays. The work presented the potential
benefits of TSNC, but it did not perform a real-life implementation of the
scheme. The question is therefore if the ideas work in practice and how it
performs compared to other NC schemes.

Main Content

Paper A presents a real-life implementation of a TSNC scheme that use feed-
backs from receiver(s) to monitor the decoding process. The implementation
is made in the Kodo C++11 library [21], and the performance of the scheme is
compared against SRLNC and RLNC for various network coding parameters.
The measurements are all performed in a laptop equipped with a 2.7GHz In-
tel Core i7-3740QM CPU.

Main Results

The measurements collected from the performance comparison of the three
network coding schemes showed a performance gain of TSNC from 4x to
10x compared to RLNC. It also revealed that the estimation of the coding
density could be performed with minimal performance impact. Due to the
small performance impact and the imprecise innovation probabilities meant
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that the optimal performance of our TSNC implementation was obtain by
sending only a limited number of feedbacks.

Related Publications

We show the key enabling mechanisms for TSNC and present a new algo-
rithm to perform Gaussian elimination efficiently on very sparse codes in
Paper [5], and we expand the ideas on tuning the coding density of TSNC
gradually in Paper [9].

3.2 Paper B

Chres W. Sørensen, Achuthan Paramanathan, Juan A. Cabrera, Morten V.
Pedersen, Daniel E. Lucani, Frank H. P. Fitzek, “Leaner and Meaner: Net-
work Coding in SIMD Enabled Commercial Devices,” IEEE Wireless Com-
munications and Networking Conference (WCNC), 2016.

Motivation

Network connected devices are becoming yet more and more diversified in
terms of processing capabilities and their ability and willingness to perform
computational expensive operations. It is therefore of key interest to consider
network coding in various different everyday devices, such as embedded de-
vices, smartphones and regular computers, to get an idea of the performance
and energy consumption of NC. This may be useful in the pursuit of how
to use NC most efficiently. The performance of NC was expected to depend
not only on the coding parameters (e.g. generation size, packet sizes, field
type), but also on the devices abilities to utilize hardware capabilities, such
as SIMD. TSNC was of particular interest as it provides the additional means
to trade-off computational complexity at the expense of additional delay.

Main Content

The paper presents the performance of RLNC, SRLNC and TSNC in eight
commercially available everyday devices. These devices include Raspberry
Pi, smartphones and regular computers. The performance benefits of SIMD
and the energy consumption are quantified in some of the devices.

Main Results

The measurements showed a 4x to 18x improvement by using SIMD for en-
coding and decoding compared to not taking advantage of SIMD. It was also
shown that RLNC consumed 4x to 45x more energy per encoded bit and 2.5x
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to 15x per decoded bit compared to its sparser alternatives tested in the paper
(SRLNC and TSNC). We observed that the energy consumption varied very
little between the coding schemes, so the energy savings relied almost ex-
clusively on the encoding/decoding speed of a given coding scheme. Thus,
faster coding equals less energy per bit. The measurements were performed
within each individual devices. Hence, transmission and receiving was not
quantified and should be expected to have a larger negative impact on the
sparse schemes that are more thrown to construct linearly dependent pack-
ets.

Related Publications

In Paper [12], we evaluate the performance of TSNC, SRLNC and RLNC in
more details particularly for Raspberry Pi model 1 and Raspberry Pi model 2.

3.3 Paper C

Chres W. Sørensen, Daniel E. Lucani, Frank H. P. Fitzek, Muriel Médard,
“On-the-fly Overlapping of Sparse Generations: A Tunable Sparse Net-
work Coding Perspective,” IEEE Vehicular Technology Conference (VTC), 2014.

Motivation

TSNC has the ability to assure that coded packets stay likely to be innova-
tive to receiver(s) throughout the transmission of a generation by gradually
increasing the coding density. Increasing the coding density contributes to
more computational effort to both encode and decode coded packets. This
paper proposes an alternative TSNC-like scheme to keep coded packets likely
to be innovative while maintaining very sparse codes throughout the entire
transmission. Instead of increasing the coding density, we propose to use
feedback from the receiver(s) to eliminate already received packets from the
encoder(s) transmit buffer. This approach offers TSNC like functionalities,
but without increasing the coding complexity. In contrast to TSNC, it can
however not work without feedbacks. It is of high interest to consider both
the performance benefits of this approach and its ability to maintain the in-
novation probability of coded packets.

Main Content

The paper propose a new overlapping generations approach of TSNC and
provides an estimate of its potential performance in terms of processing
speed and innovation probabilities of coded packets. These estimates are
based on practical measurements of SRLNC encoding and decoding. The
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proposed scheme was compared to three other schemes. A single genera-
tion of SRLNC, multiple non-overlapping generations of SRLNC and a single
generation of systematic RLNC.

Main Results

The main results of the paper showed that the proposed scheme significantly
decreased the number of received packets required to decode a generation
compared to SRLNC and NOG. It was seen that our scheme was very de-
pendent on the last generation size and that larger overlaps mapped into
better delay performance. The scheme also appeared to potentially reduce
the processing effort by orders of magnitude.

3.4 Paper D

Chres W. Sørensen, Daniel E. Lucani, Muriel Médard, “On Network Coded
Filesystem Shim: Over-the-top Multipath Multi-Source Made Easy,” IEEE
International Conference on Communications (ICC), 2017.

Motivation

Incorporating network coding into applications or protocols requires lots of
effort and know-how. In fact, it may not be either possible or feasible in
some cases, e.g., when applications or protocols are proprietary. The question
is if NC can be incorporated around existing applications and/or protocol
stacks by implementing NC as a filesystem or as a shim between applications
and a regular filesystem. Thus, introducing network coding capabilities on
file transmissions while relying on existing applications to handle the actual
transmission.

Main Content

The work presents the benefits of placing a FUSE shim between applications
and a regular filesystem. This potentially enables legacy and even proprietary
applications to transmit data over multiple paths although an application
might traditionally only have been developed for single flow transmissions.
A proof-of-concept implementation is described and tested in Linux using
Copy (cp), SSH File Transfer Protocol (SFTP) and HTTP with lighttpd as
server and Wget as client.
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Main Results

The paper quantified the throughput benefits of downloading large files from
multiple HTTP server mirrors using network coding in contrast to regular
transmission strategies. It was shown that network coding could in fact be
implemented as a filesystem shim although a few caveats were introduced.
The coding significantly reduced the expected downloading time compared
to the traditional strategies when retrieving data from multiple HTTP server
mirrors.
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4 Conclusion
This thesis advocated for the use of sparse network codes as a means to bene-
fit from the simplistic way NC solves traditionally complex issues of telecom-
munication, such as multicast, multipath, multi-source and packet erasures,
at a low computational cost of coding in end devices and intermediate nodes.

Through a real-life implementation of a feedback based TSNC scheme, we
showed how even small numbers of feedback packets were enough to dras-
tically reduce the coding complexity compared to RLNC even at relatively
small additional delay performances. This applied to the complete group of
eight various devices, ranging from a Raspberry PI model 1 to smartphones
and regular computers, that we used to benchmark our implementation of
TSNC to SRLNC and RLNC in terms of processing speed, delay performance
and the energy consumption. Our measurements showed processing gains
in the order of magnitude using TSNC compared to RLNC, and an approx-
imately fixed energy consumption no matter which coding scheme the de-
vices used. Thus, leading to our conclusion that the fastest coding scheme
in terms of processing speed consumes least energy per encoded or decoded
bit. Another observation made from our measurements was that NC with
SIMD enabled provided further speed-ups of 4x to 18x in processing speed.

Our work also proposed a scheme of overlapping generations based on
the ideas of our feedback based TSNC scheme. Using practical SRLNC mea-
surements from a real-life implementation, we estimated its performance to
be potentially an order of magnitude faster than multiple non-overlapping
generations of systematic RLNC, when trading off delay performance. These
results might provide an incentive to test our scheme in a real-life implemen-
tation.

We are yet to see a widescale assimilation of NC, this could be due to 1)
the computational complexity of NC in practical implementations, and 2) the
required know-how and effort required to implement NC at the application
layer, and 3) the large effort and long term process of deploying NC in lower
network layers. We therefore proposed a radically different approach to uti-
lize NC in network communication, by implementing it at the filesystem layer
in end devices, i.e., as a filesystem or a shim between user space applications
and regular filesystems. We demonstrated how NC could be implemented as
a simple protocol, on the top of regular and even proprietary applications, to
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add multipath and multi-source capabilities to legacy HTTP communication.
The implementation was deployed in Linux using the FUSE library. From
practical tests, we observed two to five fold speed-ups when downloading
10 MiB and 100 MiB files from multiple server mirrors simultaneously, com-
pared to traditional downloading mechanisms. These ideas could potentially
form the basis for novel ways to easily extend existing protocols, e.g., with
NC, as the Internet infrastructure continues to become increasingly wireless
and distributed. This ongoing paradigm shift should lead to even more cod-
ing opportunities in future networks, and it will certainly bring a vast amount
of novel applications that could potentially benefit from NC.

This thesis advocated for the use of sparse NC schemes in particular,
which appeared very promising as a means to permit NC to run in devices
with limited computational capabilities, e.g., IoT devices, whereas RLNC may
remain the first choice in powerful devices that demands very low delay per-
formances. TSNC that we mainly addressed in this thesis, proved to be rela-
tively simple and flexible to deploy as an intermediate between very sparse
codes, i.e., LT and Raptor codes, and very dense codes, i.e., RLNC, while
potentially allowing recoding at intermediate network nodes.

In future work, TSNC could beneficially be used in multicast and multi-
source scenarios, e.g., in combination with our OG scheme from Paper C
and/or our network coded filesystem shim from Paper D. Furthermore, our
basic feedback scheme of TSNC could potentially be improved or changed
from pre-defined feedbacks towards feedbacks on demand. We imagine that
TSNC sources could include an expected DOF in its packets to allow re-
ceivers to emit feedbacks only in case their rank differs significantly from
that expected by the source. This approach may be more feasible in multicast
applications as it could reduce feedbacks significantly and ease the decision
of who and when receivers should feedback. Hence making feedback based
TSNC simpler and more likely to be used in future applications. Most proba-
bly in multicast/broadcast scenarios, e.g., on stadiums, where lots of people
are gathered to access the same data stream simultaneously.
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1. Introduction

Abstract

Tunable sparse network coding (TSNC) constitutes a promising concept for trading
off computational complexity and delay performance. This paper advocates for the
use of judicious feedback as a key not only to make TSNC practical, but also to
deliver a highly consistent and controlled delay performance to end devices. We
propose and analyze a TSNC design that can be incorporated into both unicast and
multicast data flows. An implementation of our approach is carried out in C++ and
compared to random linear network coding (RLNC) and sparse versions of RLNC
implemented in the fastest network coding library to date. Our measurements show
that the processing speed of our TSNC mechanism can be increased by four-fold
compared to an optimized RLNC implementation and with a minimal penalty on
delay performance. Finally, we show that even a limited number of feedback packets
can result in a radical improvement of the complexity-delay trade-off.

1 Introduction

Transmitting data reliably in multicast sessions over lossy networks can in-
cur in a large overhead, since each data packet lost by even one receiver may
trigger a retransmission of that packet via the multicast link or via direct uni-
cast requests of lost packets to the server. This results in additional delays,
signaling, and reduction of end-to-end throughput. Forward erasure correc-
tion mechanisms that code the original data packets are key to reduce these
effects. In particular, rateless codes, e.g., Raptor codes [1], Random Linear
Network Coding (RLNC), provide a flexible approach to seamlessly service
networks with varying number of receivers and loss conditions. The key to
their potential is that the encoding is not planned to any specific configu-
ration and could be adapted on the fly. These coded packets have a high
probability of being useful to the different receivers, so it does not matter
which packets are lost by individual receivers.
RLNC provides additional capabilities and potentially better throughput per-
formance due to its ability to recode at intermediate nodes [2, 3]. However,
its encoding and decoding operations are fairly complex when increasing
the number of original data packets, n, as it depends on Gaussian elim-
ination [4] for decoding. Other codes, such as LT codes [5] and Raptor
codes [1], lower computational complexity by mixing less original packets
in each coded packet at the cost of increased probability of receiving linearly
dependent data packets. In contrast to RLNC, they rely on belief propagation
decoding algorithms. Therefore, they need to rely on carefully designed den-
sity distributions to decide how many packets should be mixed together to
averagely decode with low delay. This poses a good end-to-end solution, but
because of the carefully designed coding structure, introduced by the density
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distribution, recoding becomes challenging [6].
The potential to trade-off complexity and delay may be beneficial to adapt
to characteristics of the end-devices and to different channel conditions ex-
perienced by the data flow. For example, it can allow us to lower energy
consumption on battery power devices. Tunable Sparse Network Coding
(TSNC) [7, 8] exploits the fact that coded packets are less likely to be depen-
dent in the beginning of a transmission [9], i.e., when the receiver has less
knowledge. As the receiver accumulates more linear combinations, it will
be more likely to receive data that it already has (linearly dependent of that
previously received). The authors of TSNC proposed to split a transmission
of a group of packets into regions, such the code can be very sparse in the
beginning, but the density is increased towards the end of the transmission.
This paper investigates the complexity and delay of a real-life implementation
of TSNC leveraging feedback to target a specific delay performance penalty
(or overhead target). This approach is particularly useful not only to manage
the dynamics of the underlying data transmission and the code structure, but
as a way to deliver very consistent performance to various applications, e.g.,
video streaming. The core idea of the approach is to target a given overhead
while at the same time reducing the computational complexity at the time of
decoding. The proposed approach is inherently adaptive and recomputes the
density after each feedback packet based on the overhead target. Our work
incorporates in the analysis and measurements the added complexity associ-
ated with estimating the density after a feedback event. Finally, we present
measurement results from an implementation was carried out in C++ based
on the Kodo network coding library [10]. Our results show that feedback
events allows for overhead targets of a few data packets to be achieved with
four fold the decoding speed while still using a standard Gaussian elimina-
tion decoder.

2 System Model

We consider a generation consisting of n original data packets, which are
transmitted on a non-erasure unicast channel from source to sink. The source
and sink initially agree on a desired number of coded packets that the source
should transmit to provide the sink with n linearly independent packets. We
refer to this number as the budget. The budget is the n linearly independent
packets plus an overhead of coded packets that are lost either due to channel
erasures or linear dependencies between coded packets. In our evaluations,
only due to dependencies since the channel is lossless. We can therefore
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describe the budget as:

B(n, d) =
n−1

∑
i=0

1
P(i, n, d)

, (A.1)

where P(i, n, d) is the probability of receiving an innovative coded packet
after receiving i linearly independent packets out of n packets given a coding
density, d. We use the upper bound for the innovation probability from Feizi
et al [8] given as:

P(i, n, d) ≥ 1− (1− d)n−i. (A.2)

The budget can be based on time constraints of the source and/or the sink,
but also processing capabilities of the sink. A budget close to n demands
the source to generate very dense packets that are unlikely to be depen-
dent, whereas a more relaxed budget results in the source generating sparser
codes. In TSNC, the idea is to adjust the coding complexity over time, start-
ing with sparse codes that becomes denser and denser towards the end of the
generation. Finally, ending up with the sink recovering the generation after
receiving the number of packets specified by the budget.

3 Proposed Approach

We propose to split the generation into a number of regions, kt, that are de-
fined by the number of linearly independent packets the sink has received.
I.e. the rank of its decoding matrix. The sink and source initially negotiate
a desired budget and the regions of the generation that is to be transmitted.
We propose that the sink transmit an acknowledgement of its rank when
ending each region. This can be beneficial for the source to deduce the re-
maining budget. We define the regions with a simple scheme where the sink
acknowledge its rank when it has accumulated the following ranks:

s(k) = n · 2k − 1
2k , k = 0, 1, 2, . . . , kt. (A.3)

Optimizing the values of s(k) shall be the goal of our future work. The
current choice is simple and provides more feedback packets towards the
end of the generation. This is key to allow for more accurate tracking of the
budget. After negotiating the regions and budget, it is time for the source
to start transmitting from the generation. But, it needs to know the coding
density before it can start generating coded packets. We find this density
using bisection to estimate a fixed density for the density region that satisfy
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Fig. A.1: Average density of coded packets received when transmitting a generation of 100
original packets in eight density regions using TSNC and the field, GF(28).

the budget for the k-th density region:

B(s(k− 1), s(k), n, d)

=
s(k)−1

∑
i=s(k−1)

1
P(i, n, d)

=
s(k)−1

∑
i=s(k−1)

1
1− (1− d)n−i

=
B
2k , for k = 1, . . . , kt − 1

(A.4)

where the budget is half of the remaining budget for all density region except
of the last region which is assigned the entire remaining budget, i.e.,

B(s(kt − 1), s(kt), n, d) =
s(kt)−1

∑
i=s(kt−1)

1
P(i, n, d)

=
s(kt)−1

∑
i=s(kt−1)

1
1− (1− d)n−i =

B
2kt−1

(A.5)

Since the coding density may be low, we propose to send an uncoded data
packet in case the encoder generates a coding vector that is all zero. This
ensure that the source will always transmit data packets that are potentially
innovative.
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Fig. A.2: Cumulative encoding and decoding time to obtain a given rank.

4 Performance Comparison

We have implemented our proposed approach of Tunable Sparse Network
Coding (TSNC) in the Kodo C++11 network coding library. This allow us
to run a series of measurements to characterize the performance of a real
life implementation of TSNC. We are particularly interested in measuring the
goodput, i.e. linearly independent bytes per second, that can be processed
by the encoder and decoder, but also to characterize how time is spend when
transmitting a generation, i.e. will the estimation of the coding density im-
pact the goodput. We measure this by transmitting generations of n original
data packets. This is done one thousand times for all samples and averaged
to reduce fluctuations. All measurements are conducted on a single com-
puter that works both as source and sink in a lossless and delay free unicast
network, to eliminate random channel behaviour such that focus can be nar-
rowed down to encoding and decoding processes only. To put our results
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into perspective, we compare the performance of TSNC against three other
schemes:

• Transmitting the data uncoded and accounting only for memory copy (Mem-
cpy). This scheme transmit all original data packets uncoded from the
source to the sink. Since one computer runs both encoder and decoder,
this is simply the same as just copying the n original data packets from
one place in memory (on the source) to another place in memory (sink).
This speed defines a lower bound of how fast we can possibly transmit
a generation.

• Random Linear Network Coding (RLNC). RLNC is the most dense code
we can produce and thus very complex. It has a minimal delay of de-
pendent coded packets. In fact, RLNC encoders produce 1.6 dependent
coded packets on average for each generation if coding is performed
in GF(2). For higher fields, such as GF(28), we can expect to generate
close to no linearly dependent packets no matter the generation size.

• Sparse Random Linear Network Coding (SparseNC). The objective of SparseNC
is to trade-off complexity using a lower coding density, at the expense
of a higher delay due to the increased probability of generating linearly
dependent packets. SparseNC, keeps the coding density fixed through-
out the transmission of an entire generation. Due to the sparse nature
of the code, data packets are more likely to be linearly dependent as the
sink accumulates more coded packets.

5 Measurements Results

In this section, we present the performance measurements of TSNC against
the other three schemes. All measurements were performed on the same
computer that was equipped with an Intel Core i7-3740QM processor run-
ning at 2.7 GHz.
Consider a source transmitting coded packets from a generation of n = 100
original data packets, each of 1500 bytes, to a sink in a lossless and delay free
unicast network. This means that packets are lost only due to linear depen-
dency and feedback information of the sinks rank is received instantly. The
only times the source receives feedback from the sink is when the sink has
accumulated enough linearly independent packets to finish a density region.
This triggers a feedback which is used by the source to recalculate a new
coding density. Figure A.1 illustrates the average coding density of coded
packets received by the sink when receiving a generation of n = 100 original
data packets using eight density steps and given three different budgets. It
can be seen how the overall coding density is reduced for higher budgets
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Fig. A.3: Encoding and decoding speed for a generation of 100 original data packets of each 1500
bytes.

and that the encoder grows the coding density in the end of the transmis-
sion to comply with the intended packet loss, due to linear dependency, in
each density region. A question one might ask is how much the estimation
of the coding density impact the performance of the source, and weather it
is worth tuning the density instead of using a fixed density as SparseNC.
Figure A.2 depicts the cumulative time of encoding (plots in the top) and
decoding (plots in the bottom) as the sink accumulate more linearly inde-
pendent packets. The plots show where time is spend when transmitting
coded packets from a generation of n = 100 original data packets using the
field GF(2) (plots on the left) and GF(28) (plots on the right). Since the
parameters of SparseNC and TSNC may vary, we run SparseNC with two
different coding densities and TSNC with two different number of density
regions and budgets. This should provide an intuition of how the schemes
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Fig. A.4: Encoding and decoding speed of generations of 100 original data packets of various
size.

are affected by those parameters. The same values will be used as far as
possible in the remaining simulations. From figure A.2, it can be seen that
RLNC is slowest since it generates the most complex codes. Memcpy on the
other hand is fastest since it only copy the original data packets in memory
from the source to the sink. SparseNC and TSNC perform somewhere in
between RLNC and Memcpy. It seem that sparser codes tends to run faster,
both on the encoder and decoder, to a certain coding density at which the
impact of dependent packets become too significant. This can be seen on
the encoding time of SparseNC, with d = 0.1, which increase almost linearly
while SparseNC, with d = 0.01, increase much faster towards the end of the
transmission. This problem is attenuated in TSNC due to the coding density
being increased for each density region. The estimation of the coding density
can barely be seen in the plots although very small steps are present in the
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Fig. A.5: Encoding and decoding speed of various sized generations with symbol of size 1500
bytes.

curves, of the encoding time, in the beginning of new density regions. Figure
A.3 depicts how changing the coding complexity impacts the goodput and
the number of coded packets required to decode a generation of n = 100
original data packets. Once again, the plots for GF(2) are on the left side and
the plots for GF(28) are on the right side. RLNC form only one point near
n + 1.6 received coded packets for GF(2) and near n received coded packets
for GF(28). The goodput is low due to the high coding complexity. SparseNC
and TSNC have the means to trade-off coding complexity at the expense of
coded packets that are more likely to be linearly dependent and hence in-
creasing the number of coded packets required to decode a generation. By
measuring SparseNC with coding densities ranging from d = 0.01 to d = 0.5
for GF(2) and to d = 1 for GF(28), we get a curve that may provide an idea
of which coding densities provide the best trade-off between received coded
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packets and goodput. It can be seen that SparseNC with a density, d = 0.01,
allows the decoder to process packets extremely fast, but it requires almost
four hundred coded packets on average to decode a generation of n = 100
original data packets. As the density grows, it can be seen that the goodput
decrease as the number of coded packets needed to decode a generation goes
towards n + 1.6 for GF(2) and n for GF(28). We plot two curves for TSNC
when varying the budget. One for TSNC with two density regions and one
with eight density regions. The budget is approximately equal to the num-
ber of received coded packets. We see that RLNC is slowest as expected
for decoding along with SparseNC when its coding density approaches the
coding density of RLNC. For the encoder, SparseNC is actually slower than
RLNC when it has the same density as RLNC. This is because the algorithm
that generates coding coefficients is slower in SparseNC and TSNC for high
densities. It is of no concern since high coding densities are rarely used in
practice for SparseNC and TSNC (See figure A.1). The performance of both
SparseNC and TSNC peak by allowing a small number of dependent pack-
ets in each generation. This is the best trade-off between coding density and
linearly dependent packets. TSNC seem to outperform SparseNC due to the
carefully selected coding density that allow the source to transmit very sparse
codes in the beginning and yet dense coded packets towards the end of the
transmission. Not surprisingly, we observe that the goodput decreases, both
on the encoder and decoder, when the sink drop too many coded packets
due to linearly dependencies.
The coded packets used so far have been of 1500 bytes, but what happens if
the packets were either smaller or bigger. Figure A.4 provides plots of the
average goodput of the schemes for various packet sizes. As in the previ-
ous plots, RLNC seem to be slowest due to the high coding complexity, and
TSNC seem to be ahead of SparseNC because of its effort to tune the coding
density. The measurements peaks just above a packet size of 104 bytes. This
is likely due to the cache sizes of the CPU that had a L1, L2, and L3 cache of
size 32KB, 256KB, and 6144KB, respectively.
A final thing one may like to change is the generation size. Figure A.5 depicts
how the goodput behaves for a variety of generation sizes. In these plots, we
introduce two new definitions. First, steps = 0 which tells the implemen-
tation of TSNC to use as many density regions possible when transmitting
a generation. Second, dep describes how many dependent packets the im-
plementation of TSNC should attempt to target. It is related to the budget
as budget = n + dep. From the plots, it becomes clear that the encoder out-
performs the speed of the decoder. This is because the encoders complex-
ity grows very little when creating coded packets consisting of only a few
original data packets. The decoder on the other hand has to eliminate all
coefficients in the coding vector using an on-the-fly Gauss-Jordan decoding
algorithm [4] no matter if the coded packet is innovative or not.
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6 Conclusions

This paper presented and characterized a practical scheme based on the con-
cept of tunable sparse network coding (TSNC). At the core of the scheme, lies
the judicious use of feedback to tailor the density of the code as the trans-
mission progresses in order to deliver a target delay performance. In fact,
we show that the complexity-delay trade-off can be significantly improved
by the use of limited number of feedback packets per generation.

We provide and implementation in C++ in the Kodo network coding li-
brary to compare the performance of our TSNC mechanism with highly op-
timized RLNC implementations. Our measurements show that a four-fold
gain in decoding processing speed is achievable while maintaining a low
added overhead of a few additional coded packets to guarantee decoding.
We also show that higher speed-ups may be possible by improving our den-
sity adaptation algorithm. Moreover, our results are based on a Gaussian
elimination decoder leaving the opportunity to further speed up decoding
by leveraging decoding algorithms specifically designed for sparse matrices,
as suggested in [8]. Our future work shall focus on designing various policies
for managing feedback in multicast flows, designing and implementing effi-
cient decoders that exploit the sparse nature of the code, and incorporating
our scheme in real multicast protocols, e.g., NORM [11].
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1. Introduction

Abstract

Although random linear network coding (RLNC) constitutes a highly efficient and
distributed approach to enhance communication networks and distributed storage, it
requires additional processing to be carried out in the network and in end devices. For
mobile devices, this processing translates into energy use that may reduce the battery
life of a device. This paper focuses not only on providing a comprehensive measure-
ment study of the energy cost of RLNC in eight different computing platforms, but
also explores novel approaches (e.g., tunable sparse network coding) and hardware
optimizations for Single Instruction Multiple Data (SIMD) available in the latest
generations of Intel and Advanced RISC Machines (ARM) processors. Our mea-
surement results show that the former provides gains of two- to six-fold from the
underlying algorithms over RLNC, while the latter provides gains for all schemes
from 2x to as high as 20x. Finally, our results show that the latest generation of
mobile processors reduce dramatically the energy per bit consumed for carrying out
network coding operations compared to previous generations, thus making network
coding a viable technology for the upcoming 5G communication systems, even with-
out dedicated hardware.

1 Introduction

In the year 2020, it is expected that the number of Internet connected de-
vices will increase to around 50 billion devices from the current 12 billion
devices in 2015, according to a Cisco estimate [1]. A majority of those devices
will connect wirelessly to the Internet, and their capabilities will be radi-
cally different, ranging from smartphones and laptops to small sensors. This
dramatic increase will put a huge strain on the current network infrastruc-
ture. Thus, investigating and developing novel ways to deploy and operate
communication networks has become critical in order to cope with the new
requirements and offered network load.

Network coding [2], has proven to achieve network capacity in various
scenarios by allowing intermediate nodes in the network to re-encode incom-
ing packets (without decoding them) [3]. Random linear network coding
(RLNC) provides a distributed way to achieve this performance by simply
combining incoming coded packets uniformly at random in a finite field [4].
Instead of transmitting original data packets one by one, network coding
encourages the source to generate and transmit linear combinations of the
original data packets instead. Thus allowing the source to create an endless
stream of coded packets, i.e. linear combinations of the original data packets,
that are linearly independent from each other with high probability (innova-
tive). This makes network coding well-suited for wireless communications
since a sink only needs to receive n linearly independent coded packets to re-
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cover n original data packets. It does not matter which specific coded packets
are lost in the channel.

A main drawback of network coding is the additional processing cost in-
troduced by encoding at the source (i.e., generating the linear combinations
of the original data packets), re-encoding at intermediate nodes, and decod-
ing the coded packets. In general, these tasks are computationally expensive,
which results in increased energy footprint for processing and may result in
a bottleneck for processing the data in specific devices. This is particularly
problematic in battery powered devices, such as smartphones or sensors, if
the gains from transmitting less packets using network coding does not out-
weigh the processing cost. Recent studies have focused on characterising the
processing speed and energy consumption of network coding in commercial
devices [5, 6]. However, these studies have focused primarily on RLNC or
simple XOR-based network coding [7, 8]. Identifying and characterizing al-
ternative mechanisms to speed up processing in commercial devices, which
results in a lower energy footprint, is critical to allow future devices and their
services to benefit from network coding’s capabilities.

This paper will investigate the performance of network coding and its
energy footprint on eight devices (five of them battery powered), using the
Kodo C++11 network coding library [9], which is to the best of our knowl-
edge currently the fastest network coding library. The study focuses on two
key speed-up approaches. First, the use of sparse network codes as a means
to reduce the number of overall computations that the system needs to per-
form compared to RLNC. Second, the use of specialized, yet widely available
hardware support in modern Intel and Advanced RISC Machines (ARM) cen-
tral processing units (CPU). This feature allows finite field operations to be
processed faster, thus benefiting all network coding schemes.

To address the first speed-up approach, we focus on two sparse schemes,
namely, sparse RLNC and tunable sparse network coding (TSNC), which can
be applied as an alternative to RLNC to reduce the work load on both the
encoder and decoder side [10–12] 1. To fully harvest the reduced work load
made possible by the use of sparse codes, it is important that the implementa-
tions of both the encoder and decoder are tailored to each scheme. Although
we rely on a highly efficient, sparse-aware Gauss-Jordan implementation [13]
for decoding, we propose various algorithms for encoding sparse data and
choosing the fastest one based on the coding density. Future work will focus
on implementing more efficient decoding algorithms, e.g., based on belief
propagation, to further improve the decoding speed [14, 15].

To address the second approach, we study RLNC’s performance on vari-
ous commercial platforms with standard operations and with built-in, hardware-

1Due to the many devices and three coding schemes that will be analyzed throughout this
paper, it is not possible to provide all plots in this paper. However, we will make them available
at arXiv in an extended version of this paper.
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optimized operations. The latter relies on hardware that supports vectoriza-
tion, known as single instruction multiple data (SIMD) [16, 17]. The most
recent versions for Intel and Advanced Micro Devices (AMD) processors is
the Advanced Vector Extensions (AVX2) and for ARM processors it is called
Neon. The vectorization capabilities are provided to developers through as-
sembly libraries that have intrinsics for higher level programming languages,
such as C++. The underlying idea behind AVX2 and Neon is essentially the
same. This optimization approach contrasts with previous work on network
coding speed up through the use of graphic cards [18, 19] in two ways. First,
the use of graphic cards limits the usefulness of the implementation to a nar-
row subset of devices (not as generic). Second, graphic cards are typically
asymmetrical in their data flow: higher speed to receive data than to return
data, which generates a bottleneck.

The rest of the paper is organised as follows. Section 2 presents the testbed
and measurement approach used to measure the energy consumption of mo-
bile devices while they perform encoding and decoding procedures. Then,
Section 3 present the three coding schemes that will be evaluated throughout
this paper. Section 4 studies how algorithms can be tailored to each indi-
vidual scheme based on the density of its coded packets as well as the basic
idea of SIMD as a means to speed-up finite field operations. Finally, mea-
surement results are presented in Section 5 and conclusions are summarized
in Section 6.

2 Measurement Setup

Battery

Phone
Agilent 66319D

-- -- -- -- V -- -- -- -- A

Computer

Fig. B.1: Testbed setup

This section will describe our setup to measure encoding and decoding
speeds of the devices listed in Table B.1. The last four devices were powered
by an Agilent 66319D, instead of their conventional power supply, to log their
energy consumption while they ran network coding simulations. The setup
is depicted in Figure B.1.

We wrote a script, that was deployed on each device, to sequentially run
a series of simulations to estimate the encoding and decoding speed of the
three coding schemes provided various configurations. The energy consump-
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Table B.1: Measured devices

Alias Device CPU
N6 Nexus 6 Quad-core 2.7 GHz Krait 450
N9 Nexus 9 Dual-core 2.3 GHz Denver
i5 Intel NUC D54250WYK Dual-core 2.6 GHz Intel core i5-4250U
i7 Dell latitude E6530 Quad-core 2.7 GHz Intel core i7-3740QM
Rasp Raspberry PI 1 model B rev 2 Single-core 700 MHz ARM1176JZF-S
Rasp v2 Raspberry PI 2 model B V1.1 Quad-core 900MHz ARM Cortex-A7 CPU
S3 Samsung S3 Quad-core 1.4 GHz Cortex-A9
S5 Samsung S5 Quad-core 2.5 GHz Krait 400

tion looked roughly as illustrated on the computer monitor in Figure B.1.
Because the coding speeds were stored in the measured device and the en-
ergy consumption was stored in a computer made it challenging to merge the
data, since time drifted differently in the device and the computer. So instead
of using timestamps to identify each simulation, we classified the electrical
current samples into two groups based on the magnitude. Idle and simula-
tion. The groups included samples in the transition phase between the two
states. Those were eliminated by assigning the samples from the first and last
few seconds of each group into a new transition group.
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Fig. B.2: Current samples for Samsung S5. X-grid marks transitions between idle and simulation
that are automatically detected by plotting scripts.

Coloring the groups confirmed that the samples had been classified cor-
rectly. This is shown in Figure B.2. The groups are colored as idle=red,
transition=green, and simulation=blue.
Finally, each simulation was enumerated to map the coding speed measure-
ments with the corresponding energy consumption. To extract the energy
consumption of network coding, we subtracted the idle energy consumption
from the energy consumption used during simulations.

3 Coding schemes

Three coding schemes will be presented in this section. RLNC, Sparse RLNC,
and TSNC.
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RLNC is known to be processing expensive, but it benefits from a minimal
delay due to linearly dependency of coded packets. In fact, the decoder needs
an average of only n + 1.6 coded packets using GF(2) and n coded packets
using GF(28) to recover n original data packets. Each coded packet, CP, is
generated using Equation B.1:

CP =
n−1

∑
i=0

ciPi =
[
c0 c1 · · · cn−1

]




P0
P1
...

Pn−1


 , (B.1)

where Pi is the i-th original data packet and ci is the i-th coding coefficient
that is assigned a randomly generated number drawn from a finite field.
Considering a finite field, GF(2), for this task means that each coefficient,
ci, is drawn uniformly from the set {0, 1}. This means that approximately
half of the original data packets will be mixed into each coded packet. It
significantly reduces the coding complexity compared to higher order finite
fields for two reasons. 1) Coded packets are only a sum of approximately half
of the original data packets, and 2) because multiplication is never performed
when using GF(2). This idea is exploited in Sparse RLNC, which works
similar to RLNC, except that its coefficients, {ci}, are generated with higher
probability to be zero such that fewer original data packets are mixed into
each coded packets. This makes the coded packets less complex to encode
and decode, but it also makes them more likely to be linearly dependent.
Thus, the receiver needs to collect more coded packets.

The last scheme is based on the idea that sparse coded packets are less
likely to be innovative as the decoder accumulates more linearly independent
packets. This is counteracted by gradually increasing the coding density over
time. We define a budget, B ≥ n, that describe how many coded packets a
decoder should collect before it can recover n original data packets. Setting B
a little larger than n allows the source to overall transmit coded packets that
are less complex to decode, well knowing that it should transmit more coded
packets to the sink. Our implementation of TSNC is based on [12]. The sink
feedback its degree of freedom (DOF), i.e. number of linearly independent
packets, when it has accumulated s(k) DOF:

s(k) = n · 2k − 1
2k , for k = 0, 1, 2, . . . , kt (B.2)

where k is the k-th feedback that is transmitted during a generation. Due
to the feedback packets, we consider the time between feedbacks as regions.
Each region in our implementation will be assigned a part of the total budget
such that a coding density can be estimated to fit the expected number of
packets that should provide s(k + 1)− s(k) linear independent coded packets
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to the sink. We assign the following budgets for each region:

Bs(k−1),s(k) =
B
2k , for k = 1, . . . , kt − 1 (B.3)

and for the very last density region:

Bs(kt−1),s(kt) =
B

2kt−1 (B.4)

4 Implementation Optimizations of Coding Schemes

A coded packet is generated in two steps in the Kodo network coding library.
1) Decide the recipe of how to construct the coded packet. That is, generat-
ing a vector of coding coefficients that defines which original data packets
are mixed into the coded packet.
2) Mix the original data packets together provided the vector of coding coef-
ficients.

4.1 Generating coding coefficients

Which algorithm is fastest to generate vectors of coding coefficients depends
on the coding density. This is illustrated by the speed of three different im-
plementations in Figure B.3, that shows the time it takes to generate a vector
of n = 128 coding coefficients in GF(2). The density specifies the probability
of each coefficient to be nonzero.
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Fig. B.3: Time to generate a coding vector of 128 coding coefficients on Intel core i7 in GF(2)

Method 1: Works only for RLNC. It considers the coding vector as a block of
memory and splits it into word sized elements that are assigned a uniform
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random number one by one. This is very efficient because the word size is
typically larger than the field size, allowing the algorithm to assign multiple
coding coefficients simultaneously.

Method 2: Can be used to generate sparse codes for Sparse RLNC or TSNC.
It loops over each coding coefficient and assigns a nonzero value with a prob-
ability specified by the density.

Method 3: Can be used to generate sparse codes for Sparse RLNC or TSNC.
It generates a binomial random number, l, between 1 to n, and assigns
nonzero uniform random values to coefficients randomly until l coefficients
are nonzero.

Figure B.3 reveals that Method 1 is most efficient. This is due to its ability
to assign multiple coefficients with each random number. This will however
not work for sparse codes, since they demand various coding densities. It
is therefore required to use one of the slower generators for that purpose.
Since the sparse schemes are typically very sparse, it is expected that Method
3 is generally faster than Method 2. The measurements of sparse codes per-
formed in this paper have therefore been generated using Method 3, which
also has the advantage of guaranteeing that all zero coding vectors are never
generated.

4.2 Mixing data packets

Provided a vector of randomly generated coding coefficients and the original
data packets, the next task is to produce the coded packet according to Equa-
tion B.1. This involves a tedious process of additions and multiplications,
that will benefit significantly from SIMD capabilities to perform a single op-
eration on multiple data elements.
We will provide a simplified example of multiplying a coding coefficient with
an original data packet with and without SIMD to illustrate the speed-up of
SIMD. Consider a data packet of M = 1600 bytes, which is slightly larger
than regular ethernet packets. Provided a finite field, GF(28), each byte of
the original data packet will be considered as an element that should be
multiplied with the coding coefficient, c. The code snippet in Algorithm 1
illustrates a non SIMD approach to do this operation. g(x) is an irreducible
polynomial.

for i← 0 to M do
cP[i] = c · P0[i] mod g(x)

end
Algorithm 1: Finite field multiplication
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The code within the loop has to be executed M = 1600 times in this ex-
ample, which is usually implemented as table lookups due to the irreducible
polynomial. Each iteration takes time, and this is only a single multiplica-
tion among many additions and multiplications to produce the final coded
packet. It is therefore crucial to use SIMD to optimize this type of repeti-
tive task. SIMD allows a single operation to be performed on multiple data
elements simultaneously in special registers. These registers takes blocks of
128 bits and 256 bits in Neon and AVX2 respectively, and allows arithmetics
on elements of 8, 16, or 32 bits to be performed simultaneously on the reg-
isters full length. For Neon with 128 bits, this means that it can perform 16
multiplications simultaneously when each element is one byte. This idea is
illustrated in Figure B.4. Since SIMD registers are 128 bits in Neon, we can
produce a vector of the coding coefficient, c, repeated 16 times that is mul-
tiplied onto 16 elements of the packet at a time. This region is marked by a
dashed rectangle. The example does not perform the operations over the ir-
reducible polynomial, but rather presented the intuition of how SIMD works
and why it is fast. [16] present how vectors can be generated and stored to
perform finite field computations using SIMD. The decoder can apply this
in the Gauss-Jordan elimination where subtraction is defined as bitwise XOR
operations in finite fields and division is defined as multiplication with the
multiplicative inverse.

c
x
P0

cP0

c
x
P1

cP1

c
x
P2

cP2

· · ·

· · ·

· · ·

c
x

P15

cP15

· · ·

· · ·

PM−1
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Fig. B.4: SIMD multiplication

5 Measurement results

This section will convey the performance measurements of encoding and de-
coding on eight devices listed in Table B.1. We considered three network
coding schemes, RLNC, Sparse RLNC, and TSNC, using a wide range of
configurations to account for most ways to setup each schemes. A testbed
was used to measure the energy consumption of the last four devices, in Ta-
ble B.1, while they encoded and decoded data. Those measurements were
used to estimate the energy consumption per coded bit. The coding perfor-
mance will be presented as goodput, i.e. linearly independent megabytes of
data per second, that can be encoded or decoded per second. Based on the
goodput and energy measurements, we derive the energy spend per encod-
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Fig. B.5: Goodput vs generation size of RLNC encoders (top) and decoders (bottom) using GF(2)
(left) and GF(28) (right) with packet sizes of 1600 bytes.
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Fig. B.6: Energy per bit vs generation size of RLNC decoders using GF(2) (left) and GF(28)
(right) with packet sizes of 1600 bytes.

ed/decoded bit by subtracting the energy consumed by a device in idle state
from the energy consumed during simulations

Figure B.5 shows the goodput performance of encoding and decoding
with RLNC in all devices, using both GF(2) (left) and GF(28) (right), with
various generation sizes and a fixed packet size of 1600 bytes. We see that
encoding and decoding becomes slower as the generation size increases, but
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Fig. B.7: Energy per bit vs symbol size of RLNC decoding using GF(2) (left) and GF(28) (right)
with a generation size of 128 data packets.
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Fig. B.8: Samsung S5: Energy per bit vs generation size of encoding (left) and decoding (right)
using GF(28) with packet size of 1600 bytes.
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Fig. B.9: Samsung S5: Energy per bit vs symbol size of encoding (left) and decoding (right)
using GF(28) with generation size of 128 data packets.

also that the devices have the same trends although there are huge gaps
in processing speeds among devices. That is due to different CPU clock
frequencies, SIMD capabilities, system buses, cache sizes, and RAM speeds.
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We notice that SIMD versus no SIMD provide gains between 4x and 18x,
and that mobile devices that utilize SIMD compare equally with Intel core i5
without SIMD.

Based on the goodput measurements, Figure B.6 shows the energy per
bit used by decoders using GF(2) (left) and GF(28) (right) for various gen-
erations sizes. The plots of encoding have been omitted since they reflected
the same trends and almost same performance. Interestingly, it appears that
Samsung S5 that had the highest goodput of the four devices is both the least
and most energy consuming device depending on whether SIMD is enabled
or not. This emphasizes the importance of utilizing the resources efficiently.
The trends of all curves are mainly dictated by the goodput measurements
since the energy consumption varies very little between simulations of differ-
ent configurations. See Figure B.2

Figure B.7 shows the energy per bit again, but this time for a fixed gen-
eration size of 128 original data packets and with various packet sizes. As
before, the plots shows measurements only for decoding using GF(2) (left)
and GF(28) (right) due to the similar trends. The goodput plots have been
left out, but should be reflected fairly well in the energy per bit plots. As in
the latest plots, we see that Samsung S5 is both the least and most energy
efficient device although it competes closely with Raspberry PI version 1 and
version 2 to be the least and most energy efficient.

Figure B.8 considers the speeds of RLNC compared to the two sparser
coding schemes in a Samsung S5. It is seen how the sparser codes benefits
from reduced complexity although it comes with a higher probability that
coded packets are linearly dependent. The packet size has been fixed to
1600 bytes, and we consider only GF(28) since the same trends are reflected
in GF(2), although there are variations in the performance using the two
fields. Again, dictated by the goodput, it is worth processing wise to transmit
sparser packets that are less likely to be innovative. RLNC is by far slowest,
and TSNC perform best due to its superior goodput achieved by tuning the
density over time.

This is also the case for a variety of different packet sizes in Figure B.9
using 128 original data packets in GF(28). Again, RLNC consumes far more
energy, and based on the plots, it consumes 4x to 45x as much energy as the
sparser codes for encoding, and 2.5x to 15x for decoding in GF(28).

6 Conclusions

This paper characterized the processing speed performance and energy foot-
print of RLNC with different coding approaches on eight commercially avail-
able devices. Our comprehensive measurement campaign showed that (i)
reducing the code’s density can reduce the energy footprint by several fold
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since sparser codes can be processed faster, and (ii) the use of generic hard-
ware optimization (SIMD) already built-in in today’s ARM and Intel pro-
cessors can deliver order of magnitude processing speed-ups and energy
per bit reductions of the same magnitude. In fact, we measured speed
ups of up to 18x on the Samsung S5 with SIMD compared to not using
SIMD. The latter is possible for any network code and is key to achieve the
high performance demands of future services, while making energy use for
encoding/decoding/re-encoding negligible compared to other processes.

Another key observation of our work is that high-end ARM processors,
e.g., in the Samsung S5, with SIMD enabled are capable of delivering similar
speeds to Intel core i5 processors without implementing SIMD. Furthermore,
the energy footprint of these new processors is lower than previous versions,
e.g., in the Samsung S3. In other words, there are already available mobile
devices with the GB/s processing capabilities, with a negligible energy foot-
print (as low as 0.2 nJ/bit).
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1. Introduction

Abstract

Traditionally, the idea of overlapping generations in network coding research has
focused on reducing the complexity of decoding large data files while maintaining
the delay performance expected of a system that combines all data packets. However,
the effort for encoding and decoding individual generations can still be quite high
compared to other sparse coding approaches. This paper focuses on an inherently
different approach that combines (i) sparsely coded generations configured on-the-fly
based on (ii) controllable and infrequent feedback that allows the system to remove
some original packets from the pool of packets to be mixed in the linear combinations.
The latter is key to maintain a high impact of the coded packets received during the
entire process while maintaining very sparsely coded generations. Interestingly, our
proposed approach naturally bridges the idea of overlapping generations with that
of tunable sparse network coding, thus providing the system with a seamless and
adaptive strategy to balance complexity and delay performance. We analyze two
families of strategies focused on these ideas. We also compare them to other standard
approaches both in terms of delay performance and complexity as well as providing
measurements in commercial devices to support our conclusions. Our results show
that a judicious choice of the overlapping of the generations provides close-to-optimal
delay performance, while reducing the decoding complexity by up to an order of
magnitude with respect to other schemes.

1 Introduction
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(b) Overlapping method with variable n

Fig. C.1: Example of proposed overlapping generation methods. (m = 11, nmax = 6, r = 4)

The transmission of large amounts of data to multiple users in wireless
networks requires mechanisms and protocols that are (i) resilient to packet
losses, (ii) able to maintain a low overhead for transmissions, and (iii) adap-
tive to the network devices’ heterogeneous capabilities and channel condi-
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tions. Fountain codes, such as LT [1] and Raptor codes [2], pose a potential
end-to-end solution to this problem. Since they exploit a belief propagation
algorithm for decoding, receivers can implement a very resource efficient
mechanism for decoding thus catering to a wide variety of devices. A key
limitation of these codes is the fact that encoders need to follow a very strict
density distribution to ensure decodability with low overhead (delay). Thus,
LT and Raptor codes are useful only for end-to-end applications, which is
inefficient in multi-hop scenarios.

Network coding provides an alternative solution by encouraging inter-
mediate nodes in the network to operate on its incoming coded packets in
order to generate new coded packets. The impact of recoding at intermediate
nodes, i.e., coding in the network, allows to achieve the multicast capacity
in lossless wireline networks and on lossy, multi-hop wireless networks. The
latter comes in part from the ability to generate redundancy that is tailored
to each wireless link, instead of generating redundancy end-to-end. Random
linear network coding (RLNC) showed that recoding can be carried out in
a distributed fashion by simply generating linear combinations of received
packets using random coefficients drawn from a finite field [3]. In contrast,
recoding capabilities in LT [1] and Raptor codes [2] at intermediate nodes has
proven difficult to achieve without modifying the underlying code structure,
e.g., [4].

A key limitation in RLNC lies in its decoding complexity, which is more
resource expensive than belief propagation. In fact, given N packets of size K
symbols in the given finite field, Gaussian elimination requires O(N3 + N2K)
operations to decode. Some approaches, such as systematic network cod-
ing [5] provide simple alternatives to reduce this complexity by sending un-
coded packets at first, followed by RLNC packets later on. However, its ap-
plicability is typically limited to a few hops, as less uncoded packets will be
received when traversing multiple, lossy links. From a practical perspective,
complexity is reduced by splitting larger files into multiple disjoint genera-
tions of packets [6]. Thus, the system retains its recoding capabilities and
maintains a complexity that is linear on the number of generations (although
with a large constant), but at the cost of increased overhead. Generations can
be transmitted sequentially or in a round-robin fashion [6] as well as by using
a random schedule [7], using more or less feedback messages and smaller or
larger storage, respectively.

The overhead introduced by splitting the file into smaller generations can
be reduced by letting the chunks overlap [8, 9]. That way, an original packet
may be contained within multiple generations. When a packet gets decoded
within one generation, it may be back substituted into any other genera-
tion that contains it. This insight has spawned a variety of approaches from
considering overlaps of generations with different sizes [10] to trade-off de-
lay/overhead and complexity, to codes that use a sparse pre-coder before
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creating generations, e.g., BATS codes [11]. Existing approaches have relied
in the use of RLNC for coding within generations and an attempt to restrict
the use of feedback in the transmission process.

This paper advocates that exploiting sparse coding within generations,
instead of RLNC, and leveraging occasional feedback is instrumental to gen-
erating overlapping generations on-the-fly and providing a low complexity,
low overhead solution. More generally, our approach allows us to trade-off
the overhead in the use of the channel with decoding complexity to allow
resource limited devices to exploit network coding. Our proposal is inspired
in part by the results of [12] in Tunable Sparse Network Coding (TSNC) and
its potential for recoding sparse codes. In fact, our proposal constitutes a
specific implementation of TSNC, where the coding density is increased by
dropping original packets that have been “seen” at the receiver as part of
the pool of packets considered to generate coded packets (using the notation
in [13]).

This paper proposes and analyzes families of on-the-fly, sparsely coded
generations and compares it to various non-overlapping and overlapping
generations approaches. We focus our evaluation on delay/overhead per-
formance as well as complexity. For the latter, we consider measurements
on commercial platforms to understand the processing time required by the
different approaches. We show that specific configurations of feedback and
sparsity in our approaches can provide a low overhead solution with several
fold to an order of magnitude gain in processing time compared to all other
approaches.

2 Model and Preliminaries

2.1 System Model

We consider the case of a sender transmitting a large group of m data packets
to a set of receivers over packet erasure channels. We order the packets with
a given index with the lowest index assigned to the first packet in the file.
The sender organizes the data packets in generations with a smaller subset
of the packets. Coded packets are generated by using linear combinations of
the packets in each generation choosing the coding coefficients in a sparse
fashion, i.e., by choosing only a limited number of non-zero coefficients.

A receiver transmits feedback packets to signal to the sender which pack-
ets have been seen up to that point, using a similar notation to [13]. A seen
packet constitutes a packet that has been included in a received linearly inde-
pendent coded packet. Each linearly independent coded packet can provide a
single and unique seen packet at the time of sending a feedback packet. Pack-
ets with lower index are prioritized to have a greater overlap across multiple
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receivers. If r packets were not seen in the previous generation, we say that
the overlap between two generations is r packets.

A signaling event, i.e., reception of feedback packets at the sender, is gen-
erated before the transmission of all packets in the generation has been com-
pleted. The signaling event triggers the creation of a new generation, which
overlaps with the previous one. The overlap is given by those packets that
were not seen by all receivers. At this point, the sender can eliminate from
its queue all packets that were seen packets by all receivers. This provides us
with a coefficient matrix of the structure illustrated in Figure C.1a. Finally,
feedback is assumed to be lossless and delay free, for simplicity.

2.2 Proposed Approaches

The use of sparse coding for the overlapping generations causes the probabil-
ity of receiving a packet that is linearly independent of previously received
packets to decrease as more coded packets of the generation are received. The
main idea of letting generations overlap is to increase the innovation prob-
ability of coded packets, i.e., the probability of coded packets to be linearly
independent, such that decoding can be performed with less received coded
packets. Thus, generating a signaling event more often, i.e., increasing the
frequency of feedback, results in a higher overlap between generations and,
more importantly, in a lower overhead overall. The latter is a consequence
of maintaining a high probability of receiving linearly independent coded
packets during the entire transmission.

We propose two methods for overlapping generations based on the above
paradigm. First, a method that defines a fixed generation size of n packets
and a target overlap size of r. The last generation size will be lower or equal
to the others in general. This method is referred to as OG in the remaining.
Figure C.1a shows an example of this method in terms of the senders coding
coefficients per sent generation. The example has m = 11 packets in total,
which are split into smaller equally sized overlapping generations of n = 6
packets plus a potentially last generation of n packets or less. The generation
overlap is r = 4 packets. Finally, the last generation will be nlast = 5 packets.

Since the last generation will be responsible for the highest overhead, i.e.,
additional received coded packets, it may be beneficial to reduce the sizes
of the last generations as illustrated in Figure C.1b. This approach will be
referred to as decreasing overlapping generations (DOG), and differs from
overlapping generations (OG) by letting the overlap size, r, decrease such
that generations may shrink in the end.
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2.3 Metrics

We will focus on two performance measures throughout this paper. First,
the number of received packets required to decode all m data packets. This
allows us to measure the overhead of the different schemes. Second, the de-
coding time required to decode the m data packets using commercial devices.

3 Analysis

This section presents an analysis for our proposed overlapping sparse gen-
eration schemes described in Section 2. We also provide a similar analysis
for comparison schemes. We will start by defining an upper bound for the
estimate of the probability of a coded packet to be innovative, i.e., linearly
independent, to a receiver that has accumulated i linearly independent pack-
ets. This probability can be calculated for a generation size of n data packets
and a density, d as

P(i, n, d) = Pinnovative(i, n, d) ≥ 1− (1− d)n−i. (C.1)

This bound was used in [14].
Using Eq. (C.1), the expected number of packets needed to be received to

increase a decoders rank by one can be calculated by 1/P(i, n, d). With that in
mind, we can derive the expected number of packets needed to be received
to decode a generation.

If we use a single generation (SG), the expected number of received coded
packets is

ESG(m, d) =
m−1

∑
i=0

1
P(i, m, d)

. (C.2)

In contrast, a non-overlapping generation scheme (NOG) consisting of k
disjoint generations, (k− 1) equally sized and one generation of the same size
or smaller. The expected received packets required to decode can therefore
be found as

ENOG(m, n, d) =

(k− 1)
n−1

∑
i=0

1
P(i, n, d)

+
nlast−1

∑
i=1

1
P(i, nlast, d)

. (C.3)

The number of generations is given by k = ceil(m/n). The last generation
size is found to be nlast = m− ((k− 1)n).

For our proposed OG scheme, if we consider Figure C.1a, we see that only
the first n− r packets of each generation, except the last one, are transmitted.
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The last generation should however be transmitted as a normal generation.
This means that the expected number of received coded packets is given by

EOG(m, n, r, d) =

(k− 1)
(n−1)−r

∑
i=0

1
P(i, n, d)

+
nlast−1

∑
i=0

1
P(i, nlast, d)

. (C.4)

The number of generations can be calculated as k = 1 + ceil((m/n)(n− r)),
and the last generation will have the size nlast = m− (k− 1)(n− r).

Four our proposed DOG scheme, there is a decreasing overlap size and
the reduction in generation sizes, which means that

EDOG(m, n, r, d) =
k−1

∑
j=0




(nj−1)−rj

∑
i=0

1
P(i, n, d)


 . (C.5)

The number of generations by k = ceil(m/(n − r)). For each generation
j = {0, 1, . . . , k− 1}, we find the j’th generation size nj = min(n, m− j(n− r)),
and the decreasing overlap rj = max(0, nj − n + r).

Finally, we consider a systematic approach with overlapping generations
(SR). In each generation, the packets are first transmitted uncoded, and then
finished using RLNC. The analysis is similar to the NOG scheme, where we
have (k − 1) equally sized generations and one generation of same size or
smaller. We complete one generation at a time, so we still sum the expected
received packets required to decode in order to find a total amount of packets
required to decode for m packets.

However, SR differs from the other methods since it does not consider a
sparsely coded set of generations. Therefore, we are dependent on which
packets are lost, and the packet erasure, e, has therefore been included into
the expression

ESR(m, n, d, e) =

(k− 1)
n

∑
l=0

(
Bi(l, n, 1− e)

(
l +

n−1

∑
i=l

1
P(i, n, drlnc)

))
+

nlast

∑
l=0

(
Bi(l, nlast, 1− e)

(
l +

nlast−1

∑
i=l

1
P(i, n, drlnc)

))
. (C.6)

where Bi(l, n, p) represents a binomial distribution, where n is the generation
size, p is the probability of successfully receiving coded packets, and l =
{0, 1, . . . , n} represents the number of uncoded packets received. We find the
number of generations, k = ceil(m/n), and the last generation size, nlast =
m− ((k− 1)n).
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Fig. C.2: Results using GF(28)/{0}.

This section will be used to present the performance of our proposed
methods, OG and DOG. The proposed methods will be compared to three
other methods for transmitting a large group of packets: (1) transmitting all
packets in a single generation using a 3-sparse density, named SG; (2) trans-
mitting packets in smaller non-overlapping generations one generation at a
time using 3-sparse, named NOG; (3) transmitting non-overlapping gener-
ations one at a time as in (2), but using systematic coding with RLNC to
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complete each individual generation that experienced packet losses. We refer
to this method as systematic RLNC (SR).

We have measured the average time spend decoding a generation until a
given rank i is obtained. These measurements were performed on a decoder
implemented in KODO [15]. Because we have the time spend to achieve
a given rank, the measurements can simply be inserted in the equations of
Section 3 to archive an estimate of the decoding time of the schemes given
that they were implemented.

More specifically, we implemented a single-hop, single receiver setup and
measured the time spend and the average number of symbols received by
the decoder at each obtained rank. This was done for a single generation
of size ranging from 1 to 1024 symbols, and a 3-sparse coding density such
that d = min

(
0.5, 3

n
)

for GF(2)/{0} and d = min
(
1, 3

n
)

for GF(28)/{0}. All
measurements have been performed with packets of size 1500 bytes in GF(2)
and GF(28), but the results will only be presented for GF(28) since both fields
show the same tendencies.

Given the measurement data, we can plot the packets required to decode
an outer-generation of various sizes for each methods using the results from
Section 3. This is illustrated in Figure C.2b, where the inner generation is
n = 128 symbols is kept constant.

Figure C.2a shows that even with a density as low as 3-sparse, we obtain
a performance that is far below SG and NOG, while performing only slightly
worse than SR, which is optimal in terms of delay performance. Furthermore,
DOG seem to perform slightly better than OG in terms of overhead, i.e.,
received coded packets.

Figure C.2b measures the decoding time of the same schemes. This time
only measures the time invested in processing and, thus, is not affected by
packet erasures on the communication channel. The packet erasures do how-
ever punish the SR method since an increased packet loss probability will
cause more systematic packets to be lost and eventually replaced by RLNC
packets. This is due to the fact that systematic packets require essentially
no processing time, while RLNC packets are very dense and thus very time
consuming to decode.

Figure C.2b shows also that SR performs better with low erasure proba-
bilities, as expected, while OG and DOG perform better in case of increased
erasures (> 5 %). We also see that a higher overlap is better in terms of
decoding time. This may however change in a final implementation due to
changes in the back-substitution and book-keeping mechanisms [16].

Figure C.2c considers the average decoding time it takes to obtain a given
rank during transmission of an outer-generation of size m = 1024 packets. It
is based on time measurements and generated using the equations presented
in previous sections. Obtaining a rank is essentially the same as receiving
an innovative packet, but does not mean that the packets can be decoded
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yet. Again, we see the same tendencies as in the previous figures. The SR
is very dependent on the erasure probability and will perform better in case
of low erasures, but even with a relative small erasure probability it will be
outperformed by OG and DOG.

Finally, Figure C.2d shows the explicit trade-off between received coded
packets as a function of decoding (processing) time, considering the effect
from the overlap size, r, and channel erasures on OG, DOG, and SR. The
performance of SG is mediocre both in overall processing and delay per-
formance, while the NOG method performance has similar performance to
our proposed OG and DOG without overlap, r = 0. Increasing the over-
lap between generations, decreases the processing time on the overlapping
methods due to less dependent packets. SR has the lowest probability of re-
ceiving dependent packets, but increasing the erasure even mildly will cause
its decoding processing time to increase dramatically by more than an or-
der of magnitude. Thus, DOG can provide close-to-optimal performance in
delay (overhead) performance while providing a significantly smaller pro-
cessing effort on the receivers. The feedback requirements for DOG and OG
are mild and comparable in many cases to those of SR, i.e., a single feedback
per generation used.

5 Conclusions

This paper advocates for an on-the-fly strategy for overlapping generations
of data packets, while maintaining a sparse coding over the packets of each
generation. More specifically, we propose two families of solutions that lever-
age a small amount of feedback to provide a controllable complexity-delay
trade-off. Inherently, this article brings together the problems of overlapping
generations and the tunable sparse network coding in a common setting.

Our comparison to alternative schemes were based on both delay/over-
head performance and processing time on commercial devices. Our results
showed that our proposed overlapping of sparse generation significantly de-
creases the number of received packets required to decode a large group of
data packets. The level of overlap between generations has an important
effect on performance, where a higher overlap maps into a better delay per-
formance. We also showed that our proposed methods are very dependent
on the last generation size, thus opening the door for future research in opti-
mizing the generation sizes of the generations along the entire transmission
process. Overall, we showed that our proposed methods can provide close-
to-optimal delay performance, while reducing the processing effort by orders
of magnitude in real systems.

Future work shall focus on more complex network settings, considering
the effect of imperfect feedback, and considering the effect of recoding coded
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packets at intermediate nodes.
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1. Introduction

Abstract

Although network coding has shown the potential to revolutionize networking and
storage, its deployment has faced a number of challenges. Usual proposals involve
two approaches. First, deploying a new protocol (e.g., Multipath Coded TCP), or
retrofitting another one (e.g., TCP/NC) to deliver benefits to any application in a
computer. However, incorporating new protocols to the Internet is a challenging
and slow process. Second, deploying coding at the application layer, which forces
each application to implement network coding. This paper proposes an alternative
approach through the use of a network coded filesystem shim (NCFSS), where coded
data is generated at the filesystem level supporting any application and any network
protocol. Our design allows multiple sources of a content to serve data without
coordination to a receiver over multiple data paths. Another interesting feature of
our approach is that it allows caches in the network to store only a fraction of a
specific content in coded form, but sharing the same object identification, i.e., it
simplifies the signaling and search of coded content. We describe the NCFSS’ design
and implementation using FUSE and carry out measurements using servers in six
countries to demonstrate gains of two to five fold in download speed.

1 Introduction

Future communication networks will face tremendous challenges to answer
to the increasing data traffic generated by end users, the novel requirements
of 5G communications that go beyond higher data rates, e.g., low latency,
mobility, ultra-reliability, and by the massive increase of network connected
devices (expected to be between 28 and 500 billion in 2020 [1, 2]). These
challenges require us to rethink the mechanisms and protocols that will en-
able emerging services and that can address some of the limitations of cur-
rent protocols, e.g., Transmission Control Protocol (TCP) was not designed to
manage mobility and is therefore challenged by handovers and suboptimal
performance due to head-of-line blocking [3], handshake delay and chan-
nel erasures. From this perspective, NC provides an interesting technology
to increase reliability and mobility support by using multiple paths and/or
multiple data sources simultaneously as well as to improve and ease the op-
eration of data caches closer to the end-devices, resulting in less latency to
the end devices.

Research and experimentation in NC has focused on two key approaches
to deliver services over the Internet: novel network coded protocols for data
transport, e.g., [4, 5] and application-layer coding of the data that uses stan-
dard protocols for communication, e.g., [6] 1. Despite these efforts and NC’s

1We do not consider the research area on wireless mesh networks, e.g., [7, 8], because the
scope is typically limited to the mesh itself and not on Internet-wide operation.
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Fig. D.1: NCFSS in the filesystem. An application may copy data directly between filesystems
within the same machine (e.g. using cp) or to a remote machine (e.g. using SCP or Wget).

inherent potential, the wide spread assimilation of NC is yet to happen at
large scale. Part of this slow assimilation is related to the two technical
approaches used so far. The former not only requires a large technical ef-
fort to design appropriate congestion and flow control, feedback manage-
ment, protocol headers, and compatibility with the User Datagram Protocol
(UDP)/TCP to ensure it can be deployed in the Internet, e.g., packets are
not dropped by firewalls. It also requires a significant effort in standardiza-
tion to be well-understood and accepted by the Internet community, which
has dedicated significant efforts in the past to deliver stable and solid TCP
improvements, e.g., increased reliability and throughput through Multipath
TCP (MPTCP) [9, 10], which are backwards compatible with previous TCP
versions, or even some recent protocols to replace TCP in specific applica-
tions, e.g., Quick UDP Internet Connections (QUIC) for web-browsing [11].
The advantage of such approach is that essentially any application would be
able to use a network coded protocol. The second approach is limited by
the fact that each application would need to be responsible for implementing
NC, which limits the assimilation of the technology.

This paper presents a NCFSS to incorporate network coding capabilities
in the filessytem (Figure D.1) to allow (i) any application to use coding (while
being oblivious to it), (ii) nodes in the network to be backwards compatible
by design, (iii) any end-device to draw data from multiple sources seamlessly,
and (iv) rely on standardized protocols, such as TCP. Conceptually, our so-
lution lies in between the previous two trends in NC practical research. Our
approach can enable new capabilities, e.g., managing content from multiple
servers/caches using multiple paths, that would be prohibitively complex
otherwise.

Our contribution lies not only in proposing this new concept, but also
in providing a proof-of-concept implementation in C++ using the FUSE [12]
library. Our shim intercepts file I/O operations between any given appli-
cation and a regular Linux filesystem and performs an on-the-fly alteration
of the files that are read/written to/from an application and the filesystem.
This paper illustrates the potential of this proof-of-concept to facilitate file
transmissions over multiple flows in a simplified coded MPTCP like fashion.
In contrast to MPTCP, our design enables each subflow to use any reliable
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transport protocol, e.g.,TCP, QUIC, Stream Control Transmission Protocol
(SCTP) [13]. In fact, the concept might be used to extend transmissions on
legacy and even proprietary applications/protocols to use multiple flows.
Using mirror servers in different countries, we carry out a real-life perfor-
mance evaluation where a device retrieves data from multiple servers. Our
measurements show that average gains of two to five fold are attained com-
pared to state-of-the-art solutions, while maintaining a smaller standard de-
viation than downloads from a single server or uncoded downloads from
multiple servers.

To the best of our knowledge, exposing a network protocol and coded
data to user space applications as a means to extend networking capabilities
has not been proposed before. Other filesystems or filesystem shims transpar-
ently read and write data from/to remote host(s) [14, 15], encrypt/decrypt
data and/or distribute data over multiple hosts for redundancy, e.g. using
NC [16, 17]. However, all of them expose data in its regular uncoded and
readable form to the user space.

The paper is organized as follows. Section II describes key functionali-
ties of FUSE and its use for developing our proof-of-concept implementation.
Section III presents the concepts of multipath multi-source downloads that
forms the basics for an underlying filesystem protocol used in our coded
filesystem shim. Section IV presents an example usecase and details of how
our coded filesystem concept may be used with FUSE in a regular directory
structure to achieve multipath multi-source capabilities. Section V describes
some caveats of the current implementation and discuss means to avoid or
circumvent them in a refined implementation. Section VI describes the mea-
surement setup and experimental results. Finally, Section VII provides the
conclusions to our work.

2 The Network Coded Filesystem Shim

To understand NCFSS, let us introduce the basics of the Linux Virtual Filesys-
tem (VFS) and FUSE.

2.1 Filesystems in Linux

A filesystem controls how data is stored and retrieved from a storage medium.
The best filesystem implementation depends on the functionalities required
as well as the usage, platform and storage medium of a system. This has
led to the development of a large number of filesystems, e.g. the Extended
Filesystem (EXT), B-tree file system (Btrfs), and Network File System (NFS)
from Figure D.2.

In Linux, filesystems are encapsulated within the VFS whose purpose is to
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Fig. D.2: The NCFSS in userspace is compatible with the Linux VFS.

work as a uniform interface between userspace applications and filesystems.
This allows applications to interact with any underlying filesystem using the
same system calls regardless of the filesystem type. Another benefit of the
uniform interface provided by the VFS is its ability to merge any number of
filesystems into a single root filesystem.

2.2 FUSE to enable NCFSS

Filesystems generally reside in kernel space to achieve the best performance,
but a filesystem may also reside in userspace. This can be achieved using
the FUSE library. FUSE adds a module in the VFS that forwards system calls
to a userspace application (in this case, NCFSS) that implements functions
to handle the calls. A userspace filesystem is commonly used to develop
filesystems that demands easy access to userspace libraries and/or Internet
access, e.g., SSH Filesystem (SSHFS), GMAIL Filesystem (GmailFS).

The majority of FUSE applications implement filesystem views. A filesys-
tem view or virtual filesystem does not store files itself but rather provides
access to files stored in another location. This could be in the same machine
or another. Our work takes advantage of this approach to implement a shim
that intercepts data between userspace applications and an existing filesys-
tem in order to encode/decode the data going through the shim (NCFSS).

Although FUSE is written in C, it has bindings to C++, Python, and other
programming languages and is supported in various Operating System (OS)
(including, Linux, Android, OS X). We developed our proof-of-concept im-
plementation in C++. FUSE is not supported in Windows, but there exists
FUSE-like alternatives that enables porting the idea without implementing a
filesystem in the Kernel.
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3 Enabling Multipath Multi-Source Downloads

The main purpose of our shim is to facilitate multipath and multi-source
download capabilities to existing filesystems. This section explains how a
sink may split a file f to retrieve it using k ≥ 2 sources simultaneously before
describing how a simple NC protocol may be implemented and used in our
shim. The file f is assumed to be fully available in all sources and we refer to
its size in bytes as fsize.

3.1 Naive Multi-Source

dfsize/ke

k
ρ1

ρ2

(a) Naive

psize

n

p1

p2

p3

p4

(b) Chunked

Fig. D.3: File abstraction for the naive and chunked downloading strategies for k = 2 sources.

This simplest way to retrieve f from k sources is to download one piece
of the file from each source. Without knowledge of the transmission rates
to/from the sources, this means that the sink must request roughly equally
sized pieces from each source. The file can therefore be considered to consists
of k pieces as illustrated in Figure D.3a. The size of the i-th piece is then

ρsize(i) =
⌊

fsize

k

⌋
+

{
1, if i ≤ fsize mod k
0, otherwise

[bytes]. (D.1)

This means that the offset of the i-th piece, relative to the first byte of f, is
given by

ρoff(i) = (i− 1)
⌈

fsize

k

⌉
for i ∈ {1, 2, . . . , k}. (D.2)

This strategy can be easily applied on legacy protocols, such as the HTTP,
but its performance is dictated by the slowest source. In fact, downloading
from only one source may be faster than downloading from multiple sources
in case just one of the sources are very slow. This problem is mitigated as the
number of sources increases or by using the next strategy.
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3.2 Chunked Multi-Source

Another strategy is to split f into even smaller pieces (also called chunks)
that the sink may request one by one from the sources (Figure D.3b). This
technique has proven to perform well in the BitTorrent network, and it is less
sensitive to sources with heterogeneous transmission rates because a sink can
retrieve more data pieces from faster sources.

The pieces can practically be of any size, but due to the signalling over-
head from requesting pieces, it cannot be too small. In BitTorrent, the rec-
ommended piece size ranges from 32 KiB to 2 MiB depending on the file
size.

The number of pieces n can be found given the file size and the desired
piece sizes as

n =

⌈
fsize

psize

⌉
. (D.3)

Thus, the size of the i-th piece is

psize(i) = min
{

psize, fsize − (i− 1)psize
}

[bytes] (D.4)

The offset of the i-th piece, relative to the start of f, is

poff(i) = (i− 1) psize for i ∈ {1, 2, . . . , n}. (D.5)

The smaller piece sizes enable a sink to fully utilize all sources while k or
more pieces are missing. From that point on, the slowest source will dictate
the remaining downloading time. In comparison with the naive strategy, this
strategy demands a bigger effort on scheduling and requesting file pieces.
Thus, resulting in additional bookkeeping and more network traffic from
signalling. Another drawback is that it is not feasible to manually request
the piece one by one. Instead, a dedicated application or script needs to be
in control of requesting, retrieving and assembling the pieces in the sink.

3.3 Network Coded Multi-Source

psize − hsize

g ≥ n

P1

P2

P3

P4
...

psize

m ≥ g

C1

C2

C3

C4

Encode

Fig. D.4: File abstraction for the network coded downloading strategies for k = 2 sources.
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RLNC provides a radically different procedure to download f from mul-
tiple sources simultaneously. As discussed, the naive strategy was inefficient
if even one source was slow while the chunked based strategy required a
larger effort from sink to schedule, request, collect and re-assemble the data
pieces received from the sources. The second approach also contributes with
additional channel overhead from signalling. In contrast, using RLNC encod-
ing and decoding at the sources and sink, respectively, enables each source
to construct and transmit an endless stream of coded fragments of the origi-
nal data pieces (Figure D.4). When received at the sink, any coded fragment
is equally likely to be innovative irrespective of which source sent it. This
means that a sink only needs to signal each source twice: once to request
coded fragments and again when it has collected enough fragments to de-
code and thereby reconstruct the original data pieces. In this context, we
define a coded fragment Ci as a linear combination of g original data pieces
Pj, j ∈ [1, 2, . . . , g], as follows

Ci =
n⊕

j=1

vij ⊗ Pj, ∀i ∈ [1, 2, . . .), (D.6)

where each vij is a random number uniformly drawn from a GF of size q. The
sink can use Gauss-Jordan elimination on-the-fly to decode and thereby re-
construct all original data piece after it has collected g linearly independent
coded fragments.

With RLNC, a sink needs to know how each coded fragment was con-
structed. There exists two common means to disseminate that knowledge.
First, transmit the coding coefficients along with the codeword. Second,
exchange the seed used to initialize the pseudo random number generator
among each source/sink pair and include an id to each codeword such that
the sink can reconstruct the coding coefficients to deduce how a coded frag-
ment was constructed. NCFSS works using both methods, but this section
will only describe the seed method due to an often smaller and simpler pro-
tocol header. The protocol is illustrated in Figure D.5. Each piece consists of
an id and the codeword.

1 C1 2 C2
. . . k Ck

Header Header Header

Piece 1 Piece 2 Piece m

Fig. D.5: NCFSS protocol

Based on the protocol, it is possible to configure the encoder to construct
coded fragments that fits within a data piece. Assuming that the id in the
header is a fixed sized integer means that the size of each codeword can be
calculated as
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Csize = Psize = psize − hsize [bytes]. (D.7)

Thus, the generation size is

g =

⌈
fsize
Psize

⌉
=

⌈
fsize

Csize

⌉
. (D.8)

The benefits of RLNC are provided at the expense of additional compu-
tational complexity related to the coding and protocol overhead. The coding
speed will not be addressed in this paper, but it should be aligned with the
results obtained in [18] depending on the devices running NCFSS.

The overhead O is caused by 1) codeword id, 2) potentially additional
bytes to zero-pad the last original data packet to fit into the generation, and
3) the possibility of receiving r ≥ 0 linearly dependent packets at the sink.
This results in an overhead that can be calculated using Equation D.9.

O =
(g + r)psize − fsize

(g + r)psize
= 1− fsize

(g + r)psize
. (D.9)

4 NCFSS by Example

Fig. D.6: Filesystem operation to manage multiple data sources using NCFSS for encoding and
decoding on the underlying filesystem

To understand the general operation of NCFSS, let us use an example
with two data sources (src1, src2) and a single receiver (dst). The goal
is for the receiver to recover a file f using the two sources simultaneously.
Consider the directory structure in Figure D.6. The top directories src1, src2
and dst each represent a regular directory. These directories could either be
within a common filessytem structure (i.e., on the same host machine) or
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part of different filesystem structures (i.e., on different host machines). In
fact, this does not matter as long as the host machines use the Linux VFS.
Adaptations for operation in other OS is possible, but will be beyond the
scope of this work. We also assume that src1/f and src2/f are regular files
that contain the exact same data and that dst/f is initially an empty or non-
existing regular file. Thus, the overall objective of our work is to enable one or
multiple applications to simultaneously copy the data in src1/f and src2/f
to dst/f.

Using the previously described network coding protocol, we use FUSE to
create NCFSS to transparently encode and decode regular data files on the
fly. NCFSS is mounted on the directories enc and dec, which enables it to
transparently observe and interpret all file I/O operations performed within
those directories. Thus, enabling applications to create, remove, read, write
and list files within enc and dst as in any other directories, but using NCFSS
to 1) interpret file content when a file is created, 2) alter the way files appear
within enc and dec, and 3) encode or decode data when it is read/written
to/from files within the shim.

NCFSS use each file within enc to define how it should generate coded
fragments from any regular data file whenever an application reads data from
it. A file that is created within enc is interpreted by NCFSS upon creation and
the virtual file needs to include a path to any regular data file that NCFSS
should generate coded fragments from whenever the virtual file is being read.
The content of the virtual file F1.json could be as illustrated in Code D.1.
The virtual file is made in JSON format due to its human readability and
ease of use, but any other desired formats could be implemented and used
instead.

1 {
2 " p i e c e _ s i z e " : 32768 ,
3 " f i e l d " : " binary8 " ,
4 " seed " : 237486 ,
5 " source " : {
6 " path " : " s r c 1/ f . t x t " ,
7 }
8 " s ink " : {
9 " path " : " dst/ f . t x t "

10 }
11 }

Code D.1: Content of F1.json

The current implementation of NCFSS immediately initialize an encoder
that generates coded fragments from src1/f when an application reads from
enc/F1.json. Another option could be to first initialize the encoder dur-
ing the first read request. The data pieces being read from enc/F1.json by
applications will adhere to the protocol defined in Figure D.5.
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Due to the rateless nature of NC, it is not known in advance how many
pieces the receiver needs to accumulate to reconstruct the regular data file.
It all depends on the coding parameters specified in F1.json. It is therefore
not possible to specify the exact number of data bytes that the sink needs to
retrieve from F1.json to fully reconstruct f. Thus, the file size of F1.json is
not fixed.

Fortunately, Linux does not require file sizes to be pre-defined. They
can be presented to applications as 0 bytes although they return data when
read. In fact, the Linux kernel uses a pseudo filesystem itself (Proc Filesystem
(procfs)) to communicate with applications in userspace. The files in procfs
typically appear to contain 0 bytes, but actually returns data. An example of
such a file is /proc/cpuinfo that on-the-fly returns a detailed information of
the system’s CPU.

There may exist applications that demand file sizes to be non-zero or
situations where it is desired to control exactly how many coded fragments
a sink receives. NCFSS is able to compute a file size of any virtual file stored
in enc and dec as

Fsize =

⌈
fsize

psize − hsize

⌉
psize + r psize = (g + r)psize [bytes], (D.10)

where fsize is the size of the original file, hsize is the size of the header in each
piece and r defines the number of redundant pieces. Thus, r = 0 means that
the virtual file size should reflect exactly g pieces, r > 0 computes the file
size to reflect g + r pieces and finally, r < 0 to reflect g− r pieces, i.e., in case
an application only desires a subset of the code fragments.

Now that NCFSS is able to generate coded fragments of any file in a
source, it is possible to use any application on the sink to retrieve the coded
fragments. Keep in mind that the sink may retrieve a regular file by copying,
e.g., f directly or coded through, e.g., F1.json. Coded data may be stored
on the sinks harddrive in its coded state, but it may also be decoded on-the-
fly using a RLNC capable application or using NCFSS mounted on dec as
illustrated in Figure D.6.

In both cases, the decoder needs to be aware of how to decode the coded
fragments. Similar to the enc directory, it is required to store F1.json also
in dec. This allows NCFSS to initialize a decoder that transparently and on-
the-fly decodes the coded fragments that are copied from src1/F1.json to
dst/F1.json. When a piece of original data is fully decoded, it is automati-
cally written to the regular file dst/f.

Because the pieces arrive coded, they are equally likely to be innovative
no matter of the arrival order. This means that an additional flow may be
constructed to facilitate multi-source downloads by creating F2.json as illus-
trated in Figure D.6. These files should contain the same coding parameters
as F1.json but with a different seed and the file path for the source. NCFSS
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will notice that it already has a virtual file dst/F1.json writing to dst/f and
thereby know to share the same decoder.

On the source, NCFSS will always create one encoder per virtual file in
enc, but regardless of the coding parameters, encoders may share the same
source file. Thus, never storing more than one copy of each regular file in
Random Access Memory (RAM). The ability to create multiple virtual files in
enc and dec not only allows a sink to receive coded fragments from multiple
sources, but it also enables both sources and the sink to transmit coded frag-
ments over multiple network interfaces and using different network stacks.

5 Caveats and workarounds

There exists a few caveats with the implementation of NCFSS that may be
addressed in future works. These caveats will be discussed in this section as
well as potential solutions and/or workarounds.

5.1 Virtual/Configuration Files

NCFSS demands a virtual file (e.g. F1.json) to be created both in the enc
and dec. That is necessary to initialize the encoder and decoder with similar
coding parameters in the source and sink, respectively. This not only appears
redundant, but it also causes problems to some applications that either ter-
minates or rename the filename when copying to a file, e.g. dst/F1.json,
that already exists.

NCFSS implements the ability to use two additional parameters in the
virtual files, e.g. F1.json, to circumvent this challenges. 1) "hidden": 1
hides the virtual file in dec from userspace applications, such that applica-
tions become unaware of its existence and therefore "overwrites" it as NCFSS
expects, and 2) "embed_config": 1 informs the source to pre-fix its virtual
file in the data stream. The latter works in most applications because they
deliver files reliable and in-order, but it is in practice not a safe workaround
since it breaks the rateless property of NC. I.e. NC does not require pieces to
arrive in order.

5.2 Terminating File Transfers

It may not be known in advance how many coded data fragments the sink
needs to receive to fully decode a regular file. One challenge is therefore
how a sink may terminate sources when a regular file has been fully decoded
within NCFSS. To our knowledge, there exists no optimal or entirely clean
way yet to do this, but we recommend that NCFSS indicate to the source(s)
that the end of the file has been reached. However, it is not possible in the
current implementation to signal the sources without two-way connections.
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A less optimal solution that our current implementation relies on is to
terminate the connections by throwing an error from the sink’s shim to the
application responsible for the file transfer. This causes the sink’s applica-
tion to terminate (often unexpectedly), but also the connection will be teared
down and hence signaled to the source. The main issue with the latter is that
there exist no correct error code for the purpose and it is also not similar how
applications react on the different error codes.

5.3 Two-way Connections

Some of previously mentioned challenges may be resolved by extending
NCFSS to support two-way communication. This may be accomplished by
1) implementing network capabilities into NCFSS, and/or 2) copying content
not only from source to sink, but also from sink to source. Using an ex-
tended protocol, this would allow NCFSS to inject control messages in both
directions.

6 Experimental Setup and Measurements

les.net
simnet.is one.com

zetup.net
rwth-aachen.de

vorboss.net

Mirrors

10-1

100

101

102

103

104

El
ap

se
d 

[s
]

4.8 209.7 5.0 2.6 19.3 2.7 0.6 10.4 0.6 2.2 10.7 2.4 3.0 10.5 3.0 1.1 9.6 1.3

1 2 4
Mirrors

2.4 45.0 2.5 2.5 7.8 1.0 2.9 4.0 0.6

Naive
Chunked
CodedFile size: 10 MiB

les.net
simnet.is one.com

zetup.net
rwth-aachen.de

vorboss.net

Mirrors

10-1

100

101

102

103

104

El
ap

se
d 

[s
]

10.9 1553.8 10.0 5.1 104.0 5.3 2.6 52.9 1.9 8.9 62.7 10.4 20.0 76.0 32.1 6.4 60.6 7.2

1 2 4
Mirrors

9.0 318.3 11.2 8.3 42.7 3.1 9.6 21.4 1.9

Naive
Chunked
CodedFile size: 100 MiB

Fig. D.7: Comparing time to download 10 MiB and 100 MiB from a single HTTP mirror (left)
and any one or multiple HTTP mirrors (right) using psize = 32 KiB and psize = 64 KiB for the
two plot respectively. The numbers in the top of the plots show the mean of each box.
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This section describes the measurement results from download tests over
HTTP using our coded filesystem proposal. We have used six servers located
in different countries in Europe and North America as HTTP servers with
content of different sizes. For the results presented in this paper, we report
the cases of 10 MiB and 100 MiB files. We carry out two types of measure-
ments. First, measurements of the download time for the file content are
performed from each server individually to understand its expected charac-
teristic. Second, we carry out measurements where data is drawn from one,
two, or four servers simultaneously using three downloading strategies. The
set of measurements are performed over all potential combinations of the to-
tal number of servers, N, used for download. Thus, when downloading from
k servers, we are considering (N

k ). For example, if N = 6 and k = 2, then we
consider the 15 options available.

Figures D.7 present the download time for 10 MiB and 100 MiB files,
when a sink downloads from each individual server in the left side plot and
from any one, two or four mirrors in the right side plot. For the chunked
and coded strategies, we used the piece sizes recommended for BitTorrent,
which are 32 KiB for 10 MiB files and 64 KiB for 100 MiB files. We also used
a 4 bytes header in each coded piece in the coded strategy as part of the
embedded file protocol. This means that the coded strategy needs to retrieve
at least 10.03 MiB and 100.06 MiB to recover the 10 MiB and 100 MiB files,
respectively. Much of this overhead is due to the unfortunate zero-padding
required to form the generation.

We observe that the naive download strategy is fastest when download-
ing from a single mirror, although closely followed by the coded strategy that
has slightly more overhead due to the embedded file protocol. The speed of
the chunked strategy is reduced considerably, as a consequence of piece re-
quests, compared to the other strategies that only transmit a single request
per source. When considering the file retrieval from multiple mirrors, it
seems that the average download speed, using the naive strategy, is about
4% slower using two mirrors rather than one in the case of 10 MiB files, but
8% faster for 100 MiB files. Downloading from four mirrors on the other
hand is about 16% slower than using only two mirrors. This is driven by the
increased chance to include a slow mirror in the tests.

This problem of managing multiple mirrors (sources) is a good motiva-
tion to use the chunked or coded strategy instead as the performance of any
individual server is less likely to drive the overall performance. Despite its
low performance overall and, particularly, when using a single mirror, the
chunked strategy is able to outperform itself using the fastest mirror by 19%
for two mirrors and 60% for four mirrors. This follows a similar trend to our
coded strategy, albeit 7 to 14 times slower than our coded strategy depending
on the number of mirrors and data size.

On the other hand, the speed of our proposed coded strategy is 2.5 (2.7)
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and 4.8 (5.0) times faster than the average speed of its fastest competing strat-
egy for 10 MiB (100 MiB) files. Another benefit of coding is that it improves
consistently when the sink retrieves coded pieces from more mirrors while
its standard deviation decreases. This is supported by the box plot of Fig-
ures D.7, which shows fewer outliers and a concentration of measurements
around the median.

Comparing the average download times of 10 MiB files against 100 MiB
files show that it on takes approximately three to four times additional time to
download 100 MiB compared to 10 MiB using the naive and coded strategies
while the chunked strategy spends approximately six times longer for the
download. This is driven by the cost for requesting content form each server
using HTTP and the server response time that is not related to the network
and download speed itself. This cost becomes more important in the overall
system effect when downloading smaller files.

7 Conclusions

This paper presented a new alternative to deploy network coding in current
and future networks that not only allows us to provide the multi-source and
multipath capabilities that are crucial for ultra-reliable, highly mobile, and
low latency data transport for emerging services. It also provides a natural
approach to access and serve coded content with minimal or no coordination
from the enabled applications. Our coded filesystem approach enables any
application, communication protocol and standard filesystem or I/O oper-
ation to be supported, thus providing a backwards compatible approach to
existing solutions and speedy deployment. Although our coded filesystem
proposal relies on coded operations, it can also be useful without coding as
a way to split and access different parts of the content without the need to
include such operation at higher layers. However, using coding significantly
reduces the cost of coordination to achieve the best performance.

Beyond advocating for a coded filesystem approach, this paper provided
a proof-of-concept implementation using FUSE to deploy our solution. Our
measurement results showed not only that coded filesystems can be deployed
to support other higher layer protocols, e.g., HTTP, Secure Shell (SSH), but
that the use of multiple sources can speed up access and download time
of data by two to five fold with respect to the expected download time of
multiple sources. Our approach also delivers a more consistent performance,
i.e., smaller variance, specially when incorporating more sources.

In the future, the use of FUSE may not be required as the implementation
could be part of the OS filesystem. This is also expected to reduce the cost
of operations currently carried out in FUSE, as the copy from Kernel space
to user space and back will be avoided. Our future work will aim to ex-
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ploit the capabilities of coded filesystems using multiple caches with partial,
coded data and demonstrating performance benefits on a number of other
protocols. Our future work will also evaluate the performance of other code
structures beyond RLNC [19] to reduce complexity at the end devices. Fi-
nally, our future work will go beyond the unidirectional flows considered in
the experiments for this paper, e.g., for HTTP file downloads, to consider
bidirectional data flows and protocols.
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