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Abstract

This thesis is concerned with the valuation of contracts on financial markets,
specifically the estimation of adjustments to the risk-free price of a derivative
due to the inclusion of different types of risks. We consider volumetric risk
on power markets and credit risk for general financial contracts. We have
an applied focus such that the link from theory to application is thoroughly
described, and in Papers A and C we present results from analyses of market
data.

In Paper A, within the area of volumetric risk, we examine the correlation
structure between wind power production and electricity prices as observed
on the Danish power market. We consider different representations of con-
stant and time-varying copula models to describe this non-linear correlation
structure, and provide results from the Kolmogorov and the Cramer tests to
assess the goodness-of-fit of each model to perform model selection; in our
numerical studies a time-varying Gaussian copula provides the best fit to
data. We apply the chosen copula specification to simulate contract payoffs
for agreements that include paying a fixed price per MWh while receiving a
fluctuating wind power production; here we quantify the price adjustment of
this agreement associated with joint price and volumetric risk, and find that
an adjustment of 7% of the price of a standard forward contract provides a
fair price of the derivative.

In Paper B, we examine a change-of-measure approach to the estimation
of the credit value adjustments (CVA) for put and call options that are sen-
sitive to wrong way risk (WWR). This approach yields CVAs that depend on
a stochastic drift adjustment (the drift that controls the measure change) and
given a deterministic approximation of the drift adjustment, the CVA with
WWR is of closed form. We compare this method to the formulas specified
in the Basel III framework and conclude that Basel III provides a naive esti-
mation of the CVA and is not able to capture right way risk while WWR is
not captured desirably.

In Paper C, we examine the estimation of bilateral CVA (BCVA) using
a reduced form approach to credit risk modeling. We provide a thorough
discussion of the model calibration to quotes on credit default swaps (CDSs)
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using the technique of transforming quotes to market implied survival prob-
abilities of the reference credit and calibrating the model such that the sur-
vival probabilities suggested by the model fits those implied by the market.
We present an analysis of the market quotes and the model calibration for
six names and use the resulting parameters to estimate the market price of
risk (MPR) associated with the survival probabilities. Further, we present a
framework for numerical estimation of the BCVA on CDS contracts traded
between two entities with a third entity as the reference credit.



Resumé

Denne afhandling omhandler værdifastsættelse af kontrakter på finansielle
markeder, specifikt estimation af prisjusteringer af kontrakters risiko-frie pris
grundet forskellige risici. Vi betragter volumenrisiko på energimarkeder og
kreditrisiko for generelle finansielle instrumenter. Vi har et anvendelses-
orienteret fokus og beskriver sammenhængen mellem teori og anvendelse i
detaljer. I artikel A and C præsenterer vi resultater fra analyser på markeds-
data.

I artikel A, omhandlende volumenrisiko, undersøger vi korrelationsstruk-
turen mellem produktionen af vindenergi og elpriser på det danske elmarked.
Vi betragter forskellige repræsentationer af konstante og tidsvariate copula-
modeller til at beskrive den ikke-lineære korrelationsstruktur og viser resul-
tater fra Kolmogorovs og Cramers tests for at vurdere hvor godt hver model
passer på data. Ud fra disse tests vælger vi den model som giver det bedste
fit, hvilket er en tidsvariat gaussisk copulamodel. Vi anvender den valgte
copulaspecifikation til at simulere udbytte af kontrakter, hvor en fast pris pr.
MWh betales mens en fluktuerende vindproduktion modtages. Her kvan-
tificeres prisjusteringen til denne type kontrakt pga. risikoen forbundet med
kontraktens pris- og volumenrisiko. Vi estimerer en justering på 7% af prisen
på en standard forwardkontrakt giver kontrakten en fair pris.

I artikel B, betragter vi en målskiftetilgang til estimation af credit value
adjustments (CVA) og anvender tilgangen til put- og calloptioner under tilste-
deværelse af wrong way risk (WWR). I denne metode er CVA afhængig af
en stokastisk justering af prisprocessens drift og givet en deterministisk ap-
proksimation af denne justering, har optionernes CVA et lukket-form udtryk.
Vi sammenligner det estimerede CVA med formlerne i Basel III aftalen og
konkluderer at Basel III giver en naiv estimation af CVA, som ikke er i stand
til at tage højde for right way risk og ikke ønskeligt tager højde for WWR.

I artikel C, betragter vi bilateral CVA (BCVA) i en reduced form tilgang
til kreditrisiko. Vi giver en grundig diskussion af kalibrering af modeller til
markedsdata på credit default swaps (CDSer), hvortil vi bruger en teknik som
indvolverer transformation af markedsdata til overlevelsessandsynligheder
for det underliggende firma. Modellens parametre bestemmes så model-
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lens overlevelsessandsynligheder passer bedst muligt med disse regnet ud
fra markedsdata. Vi analyserer markedsdata for seks firmaer, og viser re-
sultater fra modelkalibreringen. Vi anvender de resulterende modeller til at
estimere market price of risk (MPR) forbundet med overlevelsessandsynlighed-
erne. Yderligere præsenteres en ramme for numerisk estimation af BCVA på
CDSer, som er handlet mellem to firmaer.
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1. Fair pricing and equivalent martingale measures

1 Fair pricing and equivalent martingale measures

We consider fair pricing as derivatives pricing under the assumption of no-
arbitrage. Due to the first fundamental theorem of asset pricing, the existance
of an equivalent martingale measure imply that the no-arbitrage condition
holds and vice versa, [1].

We consider two markets; the power market in Paper A and credit mar-
kets in Papers B and C. In both markets we assume the existance of a unique
equivalent martingale measure, denoted the Q-measure.

Under the assumption of the existance and uniqueness of the Q-measure,
the discounted value of a financial contract is a martingale process. The
current value of any contract can then be calculated by the Q-expectation of
the contract’s discounted payoff, [1].

In Paper A, we consider fair pricing of contracts that are sensitive to both
energy prices and the production of wind power. We assume that the phys-
ical measure equals the Q-measure, and therefore we directly observe the
Q-dynamics of electricity prices on the power market. We use this dynamic
to obtain fair prices of contracts dependent on the electricity prices.

In Paper B we assume price dynamics directly under the Q-measure and
do not estimate the dynamics from market data. In Paper C, we assume
that the Q-measure dynamics are observed in the credit default swap (CDS)
markets. In this case, we extract information from CDS quotes and use these
to obtain the necessary Q-dynamics.

2 Credit markets and credit risk

In order to apply fair pricing techniques in Papers B and C, development of
pricing formulas on credit markets are necessary. Therefore we devote this
section to introducing the estimation of credit risk, i.e. we focus on the risk
associated with credit events occurring.

Traditionally two frameworks for estimation of credit risk are applied [2,
3];

• The structural approach where the default of a company is based on
the relationship between debt and value of a company

• The reduced form approach: A purely statistical framework, where the
default of a company is modeled as the first jump of a stochastic jump
process

We only consider models of the reduced form type. The default intensity –
equivalent to the intensity of the stochastic jump process – is considered to
be stochastic, resulting in a Cox-process set-up suggested by [4].
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2.1 Modeling default intensities with a Cox-process

Modeling default times using a Cox-process as the intensity was introduced
in [4]. The following is a recap of the results from [4] and [2, pp. 109-117]
that we will apply in the CVA pricing frameworks.

Initially, we note that all models considered are of the class of reduced form
models, meaning that default of the counterparty is not based on corporate
finance techniques (valuations of stock, debt, etc.) as in structural models, but
is modeled completely statistically through a jump process. This process is
allowed to have stochastic intensity λi(Xi

t) instantaneously at time t, where
Xi

t is the state variable(s) driving the default intensity of firm i observed
at time t. Note that since our purpose is to use the models for derivatives
pricing, λi(Xi

t) is modeled under the pricing measure Q, which is assumed
to exist. The process λi(Xi

t) is henceforth denoted λi
t for a shorter notation.

In the Cox-process set-up, we let Ni
t be a counting process with stochastic

intensity λi
t. Conditioning on no jump occurring prior to or at time t, the

counting process Ni
s|t for s ≥ t is the number of jumps occurring between

time t and s. Since we are modeling the default of a company, we are only
interested in the first jump of the counting process, since all contracts with
the firm are terminated, and insolvency procedures begin. At the default, the
creditors of the company will retrieve a fraction on the current amount owed
to them by the defaulted company.

We now let τi be the first jump time of the Ni
s|t process for all s ≥ t given

that no jump has yet occurred at time t. τi is then defined as

τi = inf
{

s > t :
∫ s

t
λi

udu ≥ Ei
}

,

where Ei ∼ Exp(1) is assumed to be independent of the factors driving λi
s.

Note that τi depends on t, but for simplicity this is suppressed in the notation.
We define G i

s = σ{Xi
u : u ≤ s}, Hi

s = σ{1{τi≤u} : u ≤ s}, and F i
s = G i

s ∨
Hi

s; here A ∨ B for any two σ-algebras A and B represents the minimal σ-
algebra containing both A and B. Thereby Ei is independent of G i, λi

s is a G i
s

measurable process, and τi is Hi
s measurable. Now a few properties of the
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2. Credit markets and credit risk

Cox-process set-up is presented. For an arbitrary T > t it holds that

EQ
[
1{τi>T}

∣∣∣ G i
T

]
= Q

(
τi > T

∣∣∣ G i
T

)
= Q

(
inf
{

s > t :
∫ s

t
λi

udu ≥ Ei
}

> T
∣∣∣∣ G i

T

)
1
= Q

(
sup

{∫ s

t
λi

udu : s ∈ (t, T]
}

< Ei
∣∣∣∣ G i

T

)
2
= Q

(∫ T

t
λi

udu < Ei
∣∣∣∣ G i

T

)
= 1− FExp(1)

(∫ T

t
λi

udu
)

= exp
{
−
∫ T

t
λi

udu
}

. (1)

Moreover

EQ
[
1{τi≤T}

∣∣∣ G i
T

]
= Q

(
τi ≤ T

∣∣∣ G i
T

)
= 1− exp

{
−
∫ T

t
λi

udu
}

= Fτi

(
T
∣∣∣ G i

T

)
.

From the CDF of τi|G i
T in the above equation, it is seen that τi|G i

T represents
the first jump of a Poisson process with deterministic intensity

∫ T
t λi

udu.
From the CDF, the PDF of τi|G i

T , which is important in CVA pricing, is
easily obtained:

Fτi

(
s
∣∣∣ G i

T

)
= 1− exp

{
−
∫ s

t
λi

udu
}

for all s ≤ T

fτi

(
s
∣∣∣ G i

T

)
= λi

s exp
{
−
∫ s

t
λi

udu
}

for all s ≤ T. (2)

The last (but important) result we wish to present is the expected value of the
product of the indicator that default occurs before some T and a function that
itself depends on the time of default. Note that taui depends on t; however,
this is implicit in the notation. Specifically let g(s) ≥ 0 be a G i

s-measurable
function for all s ≥ t. We use that τi is defined on the interval (t, ∞) and that
the conditional probability density function of τi takes the form in (2), and

1The event

inf
{

s > t :
∫ s

t
λi

udu ≥ Ei
}

> T (∗)

implies that ∫ s

t
λi

udu < Ei
1, ∀s ∈ (t, T]. (∗∗)

Thereby the probability of the event in (∗) can be written as the probability that (∗∗) holds for
all s ∈ (t, T] or more specifically that (∗∗) holds for the supremum value of the integral with
s ∈ (t, T].

2Since λi
u > 0 for all s ∈ (t, T] the integral

∫ s
t λi

udu is monotonically increasing in s.
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we obtain the following result;

EQ
[
1{τi≤T}g(τi)

∣∣∣F i
t

]
= EQ

[
EQ
[
1{τi≤T}g(τi)

∣∣∣ G i
T ∨ F i

t

] ∣∣∣F i
t

]
= EQ

[
EQ
[
1{τi≤T}g(τi)

∣∣∣ G i
T

] ∣∣∣F i
t

]
= EQ

[∫ T

t
fτi

(
s
∣∣∣ G i

T

)
g(s)ds

∣∣∣∣F i
t

]
= EQ

[∫ T

t
λi

se−
∫ s

t λi
udug(s)ds

∣∣∣∣F i
t

]
=
∫ T

t
EQ
[
λi

se−
∫ s

t λi
udug(s)

∣∣∣F i
t

]
ds, (3)

where the last equality stems from the Fubini-Tonelli theorem due to non-
negativity of the integrand3 and that the integrand is G i

s-measurable.

2.2 Choosing recovery

Pre-crisis

Three forms of recoveries were widely used in a Unilateral Credit Value Ad-
justment (UCVA) before the ’07-’08 crisis, see [2, pp. 117-122]. A short recap
of these is as follows.

• Recovery of face value assumes that recovery is a constant fraction R ∈
[0, 1] of the notional on the derivative. This means that a reference
derivative of $1 notional will return the recovery rate R upon default
time τ, if this time is prior to the time of maturity of the contract. This
recovery is therefore completely independent of the remaining lifespan
and the present value of the contract at the time of default, which seems
quite counterintuitive. However, [2] presents this practice as the most
widely used in rating-agency studies.

• Recovery of market value assumes a constant fraction (the recovery rate)
of the market value instantaneously before the default time to be recov-
ered.

• Recovery of treasury assumes that for a corporate bond, a fraction of the
present value at the time of default of a risk-free bond with the same
time to maturity as the derivative is recovered.

3We require non-negativity of the default intensity and if the g-function is not defined to be
either non-positive or non-negative, we simply split the function into two parts, each defined
to be non-negative, and obtain the same result. Specifically we let g(s) = g+(s)− g−(s) with
g+(s) = max{g(s), 0} and g−(s) = max{−g(s), 0}.
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2. Credit markets and credit risk

Post-crisis

The jargon has changed after the financial crisis with the introduction of
the Bilateral Credit Value Adjustment (BCVA). Recent literature discusses the
closeout amount upon a default, which corresponds to the value of which a
fraction (the recovery rate) is retrieved by the surviving party if their coun-
terparty defaults during the lifespan of a derivatives contract. The closeout
amount multiplied by the recovery rate equals the total amount recovered by
the survivor and is analogue to the recovery in Sec. 2.2. The discussion now
lies in the calculation of this closeout amount. The focus in the literature is
between two frameworks for calculating the closeout amount: Risk-free close-
out and replacement closeout. The latter is also known as substitution closeout or
risky closeout.

After the introduction of BCVA, the most widely used recovery assump-
tion was that of risk-free closeout, according to [5]. This closeout resembles
the recovery of the treasury introduced in Sec 2.2, as the value of the contract
at default is determined in a completely risk-free environment (meaning both
the defaulted and surviving counterparties are seen as risk-free in the close-
out valuation). If the value of the contract is positive from the non-defaulted
counterparty’s point of view, a fraction of this value is recovered, and if the
contract has negative value, the surviving counterparty will give the absolute
contract value to the defaulted counterparty’s creditors.

In [5] the replacement closeout is introduced. Replacement closeout es-
sentially assumes that when valuing the closeout after a default event the
defaulted counterparty is seen as risk-free, whereas the surviving party is
seen as defaultable. The closeout convention is also described as valuing the
contract from the point of view of a risk-free party, taking the position of the
defaulted counterparty in the contract. The argument in replacement close-
out is that since the new (risk-free) counterparty would not neglect the risk
of the surviving party defaulting before the contract matures, this should not
be neglected when valuing the contract at closeout.

There is not complete agreement in the literature when it comes to the
choice of closeout, and e.g. [6, pp. 123–124, 278–280], [5, 7], and [8, Ch. 14]
debates this issue. In [6] it is generally recommended to use the replacement
closeout, due to negative jumps in the portfolio value if this is positive imme-
diately before counterparty default, making the losses for the surviving party
greater than one could expect from the mark-to-market up to the default, as
well as positive jumps if the portfolio value is negative, resulting in lower
recovery for the defaulting counterparty’s creditors than the mark-to-market
before the default.

In [5, 7, 8], arguments for and against both closeout types are presented
and it is pointed out that choosing the wrong closeout can lead to unexpected
valuations of contracts at default events. The key argument against the risk-
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free closeout is similar to those presented in [6], while it is also discussed that
for a corporate bond, the valuation will depend on both the borrower and the
lender’s creditworthiness if risk-free closeout is considered. This is not the
case with replacement closeout, in which case the valuation only depends
on the creditworthiness of the borrower. The replacement closeout, however,
has a disadvantage if the defaulted entity has a high systemic impact, in
which case the default may cause a positive jump in the credit spread of
the surviving party. This results in a negative jump in the price from the
surviving party’s point of view, thereby either adding to this party’s debt to
the defaulter or lowering the recovery. The worst case scenario is that the
replacement closeout can contribute to a debt/default spiral followed by the
default of a firm with high systemic impact.

Modeling recovery rates

After choosing the appropriate closeout convention, another issue regarding
the expected recovery upon default occurs. The defaulted entity’s recovery
rate is necessary to determine the amount actually retrieved by a surviving
creditor. [6, pp. 209-211] argues that the recovery rates are strongly depen-
dent on time, sector and seniority of debt, however the amount of data on
recovery rates is sparse. Many studies of CVA consider the recovery rate to
be a fixed fraction, which according to the data presented in [6] is a rather
unrealistic simplification.

[9] is an early approach to modeling default rates in a portfolio of loans,
and a one-factor model to describe default rates is presented. It is claimed
that empirical studies have shown a negative correlation between default and
recovery rates, meaning that as the probability of default rises the recovery
rate tends to lower. An explanation for this is provided by [10] that argues
that e.g. decreased consumption or investment can result in both a higher
probability of default and a decreased value of posed collateral. This can re-
sult in a lower recovery rate, or equivalently a higher loss-given-default (LGD),
which is defined as one minus.

More recently [11] present a model for the LGD, also for loan portfolios.
This model is designed to take into account the dependence of LGD on the
number of defaults in a year. The essence of the model is that given the
number of defaults the average LGD is normally distributed, and given the
default rate the number of defaults is binomially distributed with probability
parameter corresponding to the default rate. The normality of the average
LGD is assumed in order to allow this to break the lower bound of zero
and the upper bound of one that one would usually assume for the average
LGD, due to negative observations in the data considered. If one, however,
is considering data where these bounds are not exceeded, a distribution that
only allows values from zero to one is more intuitive.

8



3. Credit Value Adjustments

A model for stochastic LGDs in a structural model framework is pre-
sented in [12], however, the model may also be applied in a reduced form
framework. Here it is assumed that the LGDs are correlated and follow beta
distributions, which ensures that these are limited between zero and one.

An examination of recovery rates with a focus on structural models of
credit risk is provided in [13–15]. It is shown in [14] that when considering a
Merton type structural model of default the assumption of constant recovery
is not satisfied. This is shown by simulating from the Merton type model (in
which the recovery can be derived from other quantities in the model) and
calibrating the model to the simulated data. The models discussed in these
articles are however not applicable to a reduced form model framework since
they depend on the relationship between a company’s debt, value and the
recovery value if this company defaults.

3 Credit Value Adjustments

3.1 Valuing a zero-coupon bond with UCVA

Assume that our point of view is through an institution that wants to calcu-
late the value of a derivative. Assume further that the institution’s counter-
party in the trade can default, but the institution itself cannot.4 Henceforth
the institution will be denoted b and the counterparty c. The value of a
zero-coupon bond (ZCB) is the risk-neutral expectation of discounted future
payoffs, which for a zero coupon bond is $1 given no default and is explained
by the function Rc(τc) – called the recovery given default of the counterparty
– at the time of counterparty default, τc, given this is prior to maturity T. We
allow for the recovery function to be defined at any time s, such that Rc(s)
gives the recovery value if the counterparty default occurs at time s. Note
the recovery Rc(s) is here the entire closeout value, and is distinct from the
recovery rate at default, which is merely a fraction of the entire recovery. We
now define Gr

s = σ{Xr
u : t ≤ u ≤ s} as the sigma-algebra generated by the

factors driving the risk-free rate, and introduce the sigma-algebra containing
all information about counterparty default, default intensity and the risk-free
rate as

F c,r
s = F c

s ∨ Gr
s = Gc

s ∨Hc
s ∨ Gr

s .

By using the mean value of the indicator in Eq. (1) and the PDF of the default
time τc from Eq. (2), as well as the law of iterated expectations with

F c,r
t ⊆ G

c
T ∨Hc

t ∨ Gr
t ⊆ Gc

T ∨Hc
t ∨ Gr

T

4The more realistic assumption is that the probability of default for the institution is negligible
compared to that of the counterparty. This was usual before the financial crisis especially for
trades between a firm and a large bank, since large banks were typically considered as default
free or too-big-to-fail.
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for any T ≥ t, it is obtained that5

PUCVA
b,{c} (t, T)

= EQ
[

e−
∫ T

t rsds
(

1 · 1{τc>T}

)
+ e−

∫ τc
t rsds

(
Rc(τc) · 1{τc≤T}

) ∣∣∣∣F c,r
t

]
= EQ

[
e−
∫ T

t rsdsEQ
[
1{τc>T}

∣∣∣ Gc
T ∨Hc

t ∨ Gr
T

]
+EQ

[
e−
∫ τc

t rsdsRc(τc)1{τc≤T}

∣∣∣∣ Gc
T ∨Hc

t ∨ Gr
T

] ∣∣∣∣F c,r
t

]
= EQ

[
e−
∫ T

t (rs+λc
s)ds +

∫ T

t
e−
∫ s

t ruduRc(s)λc
se−

∫ s
t λc

ududs
∣∣∣∣F c,r

t

]
= EQ

[
e−
∫ T

t (rs+λc
s)ds

∣∣∣F c,r
t

]
+
∫ T

t
EQ
[
λc

se−
∫ s

t (ru+λc
u)duRc(s)

∣∣∣F c,r
t

]
ds. (4)

The subscript (b, {c}) indicates that we are considering the price from
the bank’s point of view and that only the counterparty c is default-risky.
Henceforth all default-risky entities will be specified in brackets.

A remark on the pricing formula (4) is appropriate. If the recovery upon
default is zero, i.e. the bond is worthless instantly upon counterparty default,
the pricing equation of the defaultable bond resembles that of a risk-free
ZCB with the discount rate being the risk-free rate plus the intensity process.
This gives a lower price of the defaultable bond than that of the risk-free
bond due to “harder” discounting. In the case of zero recovery the credit
spread on a bond issued by the company would directly correspond to the
default intensity λc

s. In the following, the situation with non-zero recovery
is considered. Note that the replacement closeout does not make sense in
this set-up, since the unilateral CVA scheme explicitly assumes the pricing
counterparty to be risk-free, and therefore the pricing is only consistent if
this is assumed in the closeout as well.

Risk-free closeout

The recovery rate at counterparty default is for notational purposes given
as the fraction (1− lc(s)) where lc(s) is the loss-given-default of the counter-
party if the counterparty defaults at time s. For completeness, lc(s) is allowed
to be a deterministic function or a stochastic variable; however, in our appli-
cations we assume this to be constant. The risk-free closeout at counterparty

5Note that all pricing equations are implicitly assuming that τc > t, i.e. the counterparty has
not defaulted at when the product is priced. Some sources of literature are pointing this out by
multiplying all equations by 1{τc>t}, such that the value of the contract jumps to zero in case of
counterparty default. We do not adopt this notation, but are instead assuming that one is only
interested in valuing a contract with counterparties that have not defaulted at the present time.

10



3. Credit Value Adjustments

default (s = τc) is thereby the fraction (1− lc(τc)) of the risk-free bond value
time τc, i.e.

Rc(τc) = EQ
[
(1− lc(τc))e−

∫ T
τc rsds

∣∣∣F c,r
τr

]
.

The pricing formula (4) then becomes

PUCVA
b,{c} (t, T) = EQ

[
e−
∫ T

t (rs+λc
s)ds

∣∣∣F c,r
t

]
+
∫ T

t
EQ
[
(1− lc(s))λc

se−
∫ T

t rudue−
∫ s

t λc
udu
∣∣∣F c,r

t

]
ds

= EQ
[
e−
∫ T

t (rs+λc
s)ds

∣∣∣F c,r
t

]
+EQ

[
e−
∫ T

t rudu
∫ T

t
λc

se−
∫ s

t λc
ududs

∣∣∣∣F c,r
t

]
−EQ

[
e−
∫ T

t rudu
∫ T

t
lc(s)λc

se−
∫ s

t λc
ududs

∣∣∣∣F c,r
t

]
The first two expectations simplify to

EQ
[

e−
∫ T

t rsds
(

e−
∫ T

t λc
sds +

∫ T

t
λc

se−
∫ s

t λc
ududs

) ∣∣∣∣F c,r
t

]
= EQ

[
e−
∫ T

t rsds
(

e−
∫ T

t λc
sds +

[
−e−

∫ s
t λc

udu
]T

s=t

) ∣∣∣∣F c,r
t

]
= EQ

[
e−
∫ T

t rsdse−
∫ t

t λc
udu
∣∣∣F c,r

t

]
= EQ

[
e−
∫ T

t rsds
∣∣∣F c,r

t

]
,

which is the price of the risk-free bond. Thereby the UCVA bond price with
risk-free closeout can be written as

PUCVA
b,{c} (t, T) = PRisk-free ZCB

b,{c} (t, T)−UCVA,

where PRisk-free ZCB
b,{c} (t, T) denotes the risk-free bond price and

UCVA = EQ
[

e−
∫ T

t rudu
∫ T

t
lc(s)λc

se−
∫ s

t λc
ududs

∣∣∣∣F c,r
t

]
is the risk compensation demanded by the bank for buying the bond issued
by the counterparty, which corresponds to the expected loss from investing
in the portfolio compared with investment in a risk-free bond.
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UCVA with constant loss-given-default

If the loss-given-default is assumed constant known upon pricing, lc(s) = Lc

for all s, the UCVA is given by

UCVA = EQ
[

e−
∫ T

t ruduLc
∫ T

t
λc

se−
∫ s

t λc
ududs

∣∣∣∣F c,r
t

]
= EQ

[
e−
∫ T

t ruduLc
(
−e−

∫ T
t λc

udu + 1
) ∣∣∣F c,r

t

]
= Lc

(
EQ
[
e−
∫ T

t rudu
∣∣∣F c,r

t

]
−EQ

[
e−
∫ T

t (ru+λc
u)du

∣∣∣F c,r
t

])
.

This is exactly the fraction lost upon default multiplied by the difference be-
tween a risk-free bond and a risky bond issued by the counterparty assuming
zero recovery.

If further the default intensity and interest rates are assumed as indepen-
dent, the price of the bond issued by the counterparty is given by

EQ
[
e−
∫ T

t rsds
∣∣∣F c,r

t

] (
1− Lc + Lc ·EQ

[
e−
∫ T

t λc
udu
∣∣∣F c,r

t

])
. (5)

Given suitable models for rs and λc
s, Eq. (5) will allow for the bond with

UCVA to be computed using standard fixed income pricing methods, by
pricing two independent bonds. Furthermore, if both models are assumed to
be affine in the state variable(s) X, such that the bond prices have closed-form
solutions, the bond price with UCVA also has a closed-form solution. This
significantly simplifies both derivatives pricing.

3.2 Valuing a general derivative with UCVA and risk-free
closeout

As before the replacement closeout is not feasible since we are under the
assumption that the institution pricing the derivative cannot default itself.
Hence we are only considering risk-free closeout. Since this framework is for
a general contract, we need to define the payoff structure of the derivative.
Therefore let Π(u, v) be all cash flows generated by the derivative from time u
to v ≥ u discounted back to time u by the risk-free rate. These cash flows do
not include the settlement upon counterparty default. Note that all cash flows
are seen from the bank’s point of view, and therefore payments by the bank
to the counterparty will have negative sign in the Π(u, v) function. E.g. for a
zero coupon bond the payoff structure is $1 discounted, if the cash flow time

span includes the maturity, and zero otherwise; Π(u, v) = 1{u≤T≤v}e
−
∫ T

u rsds.
The pricing equation will now include four terms, where one corresponds

to the counterparty surviving to maturity and the other three for the coun-
terparty defaulting before or at maturity. This can be explained by

12



3. Credit Value Adjustments

τc > T the discounted cash flows are Π(t, T).

τc ≤ T the discounted cash flows up to the default time τc is Π(t, τc). At
time τc there are two (risk-free) closeout possibilities; if the present
risk-free value of the derivative is positive, the bank has credit at the
counterparty and retrieves the counterparty’s recovery rate (1− lc(τc))
of the risk-free contract value at τc. If the risk-free value of the deriva-
tive is negative, the bank is in debt to the counterparty and will pay the
full debt value to the counterparty’s creditors.

Using the notation f+ = max( f , 0), f− = max(− f , 0), and the equalities
f = f+ − f− ⇔ f− = f+ − f for any function f , the derivative value is
calculated

PUCVA
b,{c} (t, T) = EQ

[
1{τc>T}Π(t, T) + 1{τc≤T}

{
Π(t, τc)

+ e−
∫ τc

t rsds ((1− lc(τc))Π(τc, T)+ −Π(τc, T)−
)}
| F c,r

t

]
= EQ

[
1{τc>T}Π(t, T) + 1{τc≤T}

{
Π(t, τc) + e−

∫ τc
t rsdsΠ(τc, T)

− e−
∫ τc

t rsdslc(τc)Π(τc, T)+
}
| F c,r

t

]
.

By definition

Π(t, τc) + e−
∫ τc

t rsdsΠ(τc, T) = Π(t, T),

since both represent all cash flows between t and T discounted to time t.
Thereby the first three terms in the expectation simplifies to

1{τc>T}Π(t, T) + 1{τc≤T}Π(t, T) = Π(t, T),

and hence the pricing equation is

PUCVA
b,{c} (t, T) = EQ

[
Π(t, T)− 1{τc≤T}e

−
∫ τc

t rsdslc(τc)Π(τc, T)+
∣∣∣∣F c,r

t

]
(6)

= EQ[Π(t, T)
∣∣F c,r

t ]

−
∫ T

t
EQ
[
λc

se−
∫ s

t (ru+λc
u)dulc(s)Π(s, T)+

∣∣∣F c,r
t

]
ds, (7)

where the last equality follows from Eq. (3).
It is clear that this general formula also takes the form of a risk-free price

minus an always positive UCVA adjustment, which is the risk premium re-
quired by the bank due to the default riskiness of the counterparty.
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Price using UCVA with the bank being default-risky and the counterparty
risk-free

In Sec. 3.5, when considering Bilateral CVA with replacement closeout, we
need two different UCVA prices in order to compute the contract value at
default. Specifically, we need to derive an expression for the value of the
contract from the bank’s point of view, with the bank being default-risky
and the counterparty assumed to be risk-free. In order to do this, we first
generalize the cash flow function

Definition 1 (Generalized cash flow function). Πi(u, v) denotes all cash flows
generated by the contract under consideration between time u and v, with v ≥ u,
discounted to time u by the risk-free rate. The cash flows are seen from entity i’s point
of view, meaning that a cash flow received by i has positive sign and a cash flow paid
by entity i has negative sign.

Trivially the value of a contract where c is allowed to default but b is not, as
seen from b’s point of view, is found by replacing the Π functions in (6) with
Πb. Using this pricing equation but reversing the entire situation – pricing
from c’s perspective with only b as default-risky – the pricing equation can
be found by switching all cs with bs in the pricing equation in Eq. (6). This
yields

PUCVA
c,{b} (t, T) = EQ

[
Πc(t, T)− 1{τb≤T}e−

∫ τb
t rsdslb(τb)Πc(τb, T)+

∣∣∣∣F b,r
t

]
. (8)

Assuming that the two counterparties can agree on this price, it holds that
PUCVA

b,{c} (t, T) = −PUCVA
c,{b} (t, T). This means that under the assumption that

only b is default-risky, the contract value from b’s perspective is exactly the
negative of (8). By further using the fact that only two counterparties are
present in the contract we have Πc(u, v) = −Πb(u, v), since all cash flows are
transferred either from b to c or from c to b. This gives the formula for the
value of the derivative

PUCVA
b,{b} (t, T) = EQ

[
−Πc(t, T) + 1{τb≤T}e−

∫ τb
t rsdslb(τb)Πc(τb, T)+

∣∣∣∣F b,r
t

]
= EQ

[
Πb(t, T) + 1{τb≤T}e−

∫ τb
t rsdslb(τb)Πb(τb, T)−

∣∣∣∣F b,r
t

]
, (9)

since

Πc(τb, T)+ = (−Πb(τb, T))+ = max(−Πb(τb, T), 0) = (Πb(τb, T))−.
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3. Credit Value Adjustments

3.3 Expected positive exposure and wrong way risk

Consider the pricing equation (7) and the UCVA in this equation;

UCVA =
∫ T

t
EQ
[
λc

se−
∫ s

t (ru+λc
u)dulc(s)Π(s, T)+

∣∣∣F c,r
t

]
ds.

We assume the loss-given-default is constant, L ≡ lc(s) for all s. Further,
we assume that λ is a CIR-process and that the discounting rate is zero for
simplicity. The UCVA term then simplify to

UCVA = − L
∫ T

t
EQ
[

Π(s, T)+
∂

∂s
e−
∫ s

t λc
udu
∣∣∣∣F c

t

]
ds.

We wish to express this in the form of an expected cash flow and the default
probability split into two parts while allowing for the presence of Wrong Way
Risk. The contract is sensitive to WWR if there is a negative correlation be-
tween Π and λ, implying that a high default probability tends to correspond
to a large (positive) cash flow. Using the approach described in Sec. 8 of Pa-
per C of this thesis, we can use the survival probability Q(s) ≡ Q(τc > s | F c

t )
to rewrite such an expression by

UCVA = − L
∫ T

t
EQ
[
Π(s, T)+

∣∣F c
t , τc = s

]
dQ(s),

where the τc = s is present since we do not assume deterministic survival
probabilities Q( · ), but those governed by the stochastic process.

We define the integrand as the Expected Positive Exposure (EPE), such that

EPE(s) = EQ
[
Π(s, T)+

∣∣F c
t , τc = s

]
UCVA = −L

∫ T

t
EPE(s)dQ(s).

The interpretation of this definition of the EPE is that EPE is the expected
value of the contract upon counterparty default (if positive, else zero). Note
that if WWR is not present, i.e. the correlation between the Π and λ is zero,
the condition τc = s disappears. However, for all contracts with WWR this
condition is very important, as shown i Paper B of this thesis.

3.4 Valuing a general derivative with BCVA and risk-free
closeout

Valuation with risk-free closeout is a more simple approach than valuation
with replacement closeout, and therefore this approach is presented first to
explain the general BCVA pricing framework more understandably. The
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above approach is applied with the difference that now the pricing coun-
terparty, the bank, is assumed to be default-risky. The default time of the
bank τb is modeled with a Cox-process that is allowed to be correlated with
the default time of the counterparty τc. Note that we are only concerned with
the first of the two possible defaults since the contract is terminated at this
point.6 For completeness the two counterparties are also allowed to default
simultaneously, which gives four states of termination: The contract matures
before any of the counterparties defaults, the bank defaults before contract
maturity and before the counterparty does, the counterparty defaults before
contract maturity and before the bank and finally the bank and the counter-
party defaults simultaneously prior to contract maturity. The cash flows at
each of these four states are as follows.

τb > T, τc > T :

Π(t, T)

τb ≤ T, τb < τc :

Π(t, τb) + e−
∫ τb

t rsds
(

Π(τb, T)+ −Π(τb, T)−
(

1− lb(τb)
))

= Π(t, τb) + e−
∫ τb

t rsds
(

Π(τb, T) + lb(τb)Π(τb, T)−
)

= Π(t, T) + lb(τb)e−
∫ τb

t rsdsΠ(τb, T)−

τc ≤ T, τc < τb :

Π(t, τc) + e−
∫ τc

t rsds (Π(τc, T)+ (1− lc(τc))−Π(τc, T)−
)

= Π(t, τc) + e−
∫ τc

t rsds (Π(τc, T)− lc(τc)Π(τc, T)+
)

= Π(t, T)− lc(τc)e−
∫ τc

t rsdsΠ(τc, T)+

τc = τb = τ ≤ T :

Π(t, τ) + e−
∫ τ

t rsds
(

Π(τ, T)+ (1− lc(τ))−Π(τ, T)−
(

1− lb(τ)
))

= Π(t, τ) + e−
∫ τ

t rsds
(

Π(τ, T)− lc(τ)Π(τ, T)+ + lb(τ)Π(τ, T)−
)

= Π(t, T) + e−
∫ τ

t rsds
(

lb(τ)Π(τ, T)− − lc(τ)Π(τ, T)+
)

The derivative price is then the risk-neutral expectation of the sum of these
four cash flows (multiplied by the corresponding indicator function for the
state) given Ft = F c

t ∨ F b
t ∨ Gr

t . One thing that is striking when one looks at

6As argued in [16], neglecting contract termination at first default will lead to pricing errors.
Thus this is an important issue to address when developing pricing formulas.
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3. Credit Value Adjustments

the four cash flows is that each contains the risk-free discounted cash flows
of the entire contract lifespan Π(t, T). Since the four states combined corre-
sponds to all possible scenarios, the sum of the four indicators multiplied by
Π(t, T) becomes Π(t, T) itself, since

1{τb>T,τc>T} + 1{τb≤T,τb<τc} + 1{τc≤T,τc<τb} + 1{τc=τb=τ≤T} = 1.

When writing out the other terms, it becomes obvious that the fourth state
can be incorporated in states two and three by allowing the two states to be
equal, i.e. τb ≤ τc and τc ≤ τb, respectively, in the indicators for the states.
This yields the pricing formula

PBCVA
b (t, T) = EQ[Π(t, T) | Ft]

+EQ
[
1{τb≤T,τb≤τc}lb(τb)e−

∫ τb
t rsdsΠ(τb, T)−

∣∣∣∣Ft

]
−EQ

[
1{τc≤T,τc≤τb}lc(τc)e−

∫ τc
t rsdsΠ(τc, T)+

∣∣∣∣Ft

]
. (10)

The first expectation is the risk-free value of the contract, the second is often
referred to as the Debit Value Adjustment (DVA) term and is the risk pre-
mium the counterparty requires due to the risk of the bank defaulting, while
the third is often referred to as the CVA term which is the value the bank
requires due to the default riskiness of its counterparty. Note that this equa-
tion is consistent with the UCVA pricing Eq. (6) in the sense that if we let the
bank be default free such that it holds almost surely that τb > T and τb > τc,
then the formula reduces to Eq. (6).

Eq. (10) is consistent with the general BCVA valuation formulas with risk-
free closeout presented in [17, Thm. 8.3] and [8, Eq. (12.3)] and bears resem-
blance to [6, Equation (13.1)]. However, [6] discretizes the possible default
time, and at each discrete time step tj calculates

DVA(tj) = lbEQ
[

e−
∫ tj

t rsdsΠ(tj, T)−
∣∣∣∣Ft

]
Q
(
τc > tj

∣∣Ft
)
Q
(

tj−1 < τb ≤ tj

∣∣∣Ft

)
CVA(tj) = lcEQ

[
e−
∫ tj

t rsdsΠ(tj, T)+
∣∣∣∣Ft

]
Q
(

τb > tj

∣∣∣Ft

)
Q
(
tj−1 < τc ≤ tj

∣∣Ft
)
.

This approach assumes that the discretization of default events is feasible,
that τc and τb are independent given F c

tj
and further that τc and τb are

independent of interest rates and the risk-free discounted cash flow function
Π(·, ·), i.e. there is no wrong way risk or right way risk present.

In [17] and [8] the formula appears in an equivalent representation with
(10). This formula marks the endpoint of the BCVA with risk-free closeout
for the two books (not considering collateralization, netting, FVA etc.).

17



3.5 Valuing a general derivative with BCVA and replacement
closeout

Here we apply the framework for risk-free closeout in Sec. 3.4, but with a
distinction in the closeout value of the derivative contract upon default of
τ = inf{τb, τc} given τ ≥ T. With risk-free closeout, this value is simply

EQ
[
Π(τi, T)

∣∣∣F
τi

]
. However, the situation is more complicated with replace-

ment closeout. If the first default event occurs prior to the contract maturity,
the closeout value will be a UCVA with the surviving party as the default-
risky party in the pricing set-up. Since we are still pricing from b’s perspec-
tive, the closeout prices are found by

τb ≤ T, τb ≤ τc UCVA price from b’s point of view calculated at time τb,
where only the surviving party c is default-risky. This corresponds to
Eq. (6).

τc ≤ T, τc ≤ τb UCVA price from b’s point of view calculated at time τc,
where only b itself is default-risky. This corresponds to Eq. (9).

τc = τb ≤ T Risk-free closeout applies.

Note that here we are not using the generalized cash flow function presented
in Def. 1, and it is implicitly given that Π(·, ·) is the discounted cash flows
seen from b’s perspective. The specific values generated in each state is
thereby

τb > T, τc > T : Π(t, T)

τb ≤ T, τb < τc : Π(t, τb) + e−
∫ τb

t rsds
(

PUCVA
b,{c} (τb, T) + lb(τb)

(
PUCVA

b,{c} (τb, T)
)−)

τc ≤ T, τc < τb : Π(t, τc) + e−
∫ τc

t rsds
(

PUCVA
b,{b} (τc, T)− lc(τc)

(
PUCVA

b,{b} (τc, T)
)+)

τc = τb = τ ≤ T : Π(t, T) + e−
∫ τ

t rsds
(

lb(τ)Π(τ, T)− − lc(τ)Π(τ, T)+
)

,

where the UCVA prices needed are calculated by

PUCVA
b,{c} (τb, T) = EQ

[
Π(τb, T)− 1{τc≤T}e

−
∫ τc

τb rsdslc(τc)Π(τc, T)+
∣∣∣∣F c,r

τb

]
PUCVA

b,{b} (τc, T) = EQ
[

Π(τc, T) + 1{τb≤T}e−
∫ τb

τc rsdslb(τb)Π(τb, T)−
∣∣∣∣F b,r

τc

]
The first term of states one and four along with the first two terms of states
two and three yields the value of the corresponding risk-free valuation, which
is shown in the following equation. In order to show this, we introduce the
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3. Credit Value Adjustments

first event amongst the two possible defaults and the contract maturity as
t1 = inf{τb, τc, T}.

EQ
[
1{τb>T,τc>T}Π(t, T) + 1{τc=τb=τ≤T}Π(t, T)

+ 1{τb≤T,τb<τc}

{
EQ
[

Π(t, τb) + e−
∫ τb

t rsdsΠ(τb, T)
∣∣∣∣F c,r

τb

]}
+ 1{τc≤T,τc<τb}

{
EQ
[

Π(t, τc) + e−
∫ τc

t rsdsΠ(τc, T)
∣∣∣∣F b,r

τc

]} ∣∣∣∣Ft

]
= EQ

[
EQ
[
1{τb>T,τc>T}Π(t, T) + 1{τc=τb=τ≤T}Π(t, T)

∣∣∣Ft1

]
+ 1{τb≤T,τb<τc}E

Q
[
Π(t, T)

∣∣∣F c,r
τb

]
+ 1{τc≤T,τc<τb}E

Q
[
Π(t, T)

∣∣∣F b,r
τc

] ∣∣∣∣Ft

]
7
= EQ

[ {
1{τb>T,τc>T} + 1{τb≤T,τb<τc} + 1{τc≤T,τc<τb} + 1{τc=τb=τ≤T}

}
×EQ

[
Π(t, T)

∣∣Ft1

]
| Ft

]
= EQ

[
EQ
[
Π(t, T)

∣∣Ft1

]
| Ft

]
= EQ[Π(t, T) | Ft].

This yields the price under BCVA with replacement closeout as

PBCVA
b (t, T) = EQ

[
Π(t, T)

− 1{τb<τc≤T}E
Q

[
e−
∫ τc

t rsdslc(τc)Π(τc, T)+
∣∣∣∣F c,r

τb

]
+ 1{τc<τb≤T}E

Q

[
e−
∫ τb

t rsdslb(τb)Π(τb, T)−
∣∣∣∣F b,r

τc

]
+ 1{τc=τb=τ≤T}e−

∫ τ
t rsds

(
lb(τ)Π(τ, T)− − lc(τ)Π(τ, T)+

)
+ 1{τb≤T,τb<τc}e−

∫ τb
t rsdslb(τb)

(
PUCVA

b,{c} (τb, T)
)−

− 1{τc≤T,τc<τb}e−
∫ τc

t rsdslc(τc)
(

PUCVA
b,{b} (τc, T)

)+ ∣∣∣∣Ft

]
.

7Here it is used that Ft1 ⊇ Ft and remembering that the function Π(t, T) only de-
pends on promised payments in the contract and the risk-free rate resulting in the equality

EQ
[
Π(t, T)

∣∣∣F i,r
t1

]
= EQ

[
Π(t, T)

∣∣∣Ft1

]
for i ∈ {b, c}. Given the event {τb ≤ T, τb < τc} we have

Ft1 = F
τb .

Further, since all four default events are known given Ft1 so is the corresponding indicator
functions, and so they can be moved outside the expectation.
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The second and third term has a conditional expectation on F c,r
τb and F b,r

τc

respectively. Both sigma-algebras can be generalized to the full-information
sigma-algebra F , since the stochastic variable in the first conditional expecta-
tion is independent of all information contained in F b

τb that is not contained

in F c,r
τb as well.8 A similar argument applies to the F b,r

τc conditioned term. The
reason for generalizing these sigma-algebras becomes clear in the following.

Considering the term with simultaneous default, one can realize that by
splitting this into two different terms and using the law of iterated expecta-
tions with F

τi ⊇ Ft, this can be incorporated into terms two and three of the
pricing equation, by allowing the defaults to occur simultaneously, i.e.

EQ
[
1{τc=τb=τ≤T}e−

∫ τ
t rsds

(
lb(τ)Π(τ, T)− − lc(τ)Π(τ, T)+

) ∣∣∣Ft

]
= EQ

[
1{τc=τb≤T}e−

∫ τb
t rsdslb(τb)Π(τb, T)−

− 1{τc=τb≤T}e−
∫ τc

t rsdslc(τc)Π(τc, T)+
∣∣∣∣Ft

]
= EQ

[
EQ
[
1{τc=τb≤T}e−

∫ τb
t rsdslb(τb)Π(τb, T)−

∣∣∣∣Fτb

]
−EQ

[
1{τc=τb≤T}e−

∫ τc
t rsdslc(τc)Π(τc, T)+

∣∣∣∣Fτc

] ∣∣∣∣Ft

]
= EQ

[
1{τc=τb≤T}E

Q

[
e−
∫ τb

t rsdslb(τb)Π(τb, T)−
∣∣∣∣Fτb

]
− 1{τc=τb≤T}E

Q

[
e−
∫ τc

t rsdslc(τc)Π(τc, T)+
∣∣∣∣Fτc

] ∣∣∣∣Ft

]
.

Thereby the final pricing equation is

PBCVA
b (t, T) = EQ

[
Π(t, T)

− 1{τb≤τc≤T}E
Q

[
e−
∫ τc

t rsdslc(τc)Π(τc, T)+
∣∣∣∣Fτb

]
+ 1{τc≤τb≤T}E

Q

[
e−
∫ τb

t rsdslb(τb)Π(τb, T)−
∣∣∣∣Fτc

]
+ 1{τb≤T,τb<τc}e−

∫ τb
t rsdslb(τb)

(
PUCVA

b,{c} (τb, T)
)−

− 1{τc≤T,τc<τb}e−
∫ τc

t rsdslc(τc)
(

PUCVA
b,{b} (τc, T)

)+ ∣∣∣∣Ft

]
.

8According to [18, Property 9.7 (k)]: for a stochastic variable X and two sigma-algebras G and
H with H independent of σ{σ{X},G} it holds that E[X | σ{G ,H}] = E[X | G ].
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4. Scientific contribution of this thesis

4 Scientific contribution of this thesis

We have an emphasis on empirical studies, and provide thorough discussions
on the link between theory and applications for: Constant and time-varying
copula models, valuation of CVA on contracts subject to WWR and compari-
son with formulas from the Basel III framework, reduced form model calibra-
tion to market data, estimation of market price of risk, and BCVA estimation
on CDSs.

In Papers A and C, we provide analysis using market data applied to volu-
metric risk estimation including correlation structure modeling, and reduced
form model calibration to market quotes on CDSs including a discussion of
the challenges involved, respectively.

In Paper B, we provide a discussion of the shortcomings of CVA estima-
tion suggested in Basel III in the presence of WWR and present a framework
for a closed-form approximation of the value of put and call options under
WWR.
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1. Introduction

Abstract

This paper examines the dependence between wind power production and electricity
prices and discusses its implications for the pricing and the risk distributions associ-
ated with contracts that are exposed to joint price and volumetric risk. We propose
a copula model for the joint behavior of prices and wind power production, which is
estimated to data from the Danish power market. We find that the marginal behavior
of the individual variables is best described by ARMA–GARCH models with non-
Gaussian error distributions, and the preferred copula model is a time-varying Gaus-
sian copula. As an application of our joint model, we consider the case of an energy
trading company entering into longer-term agreements with wind power producers,
where the fluctuating future wind power production is bought at a predetermined
fixed price. We find that assuming independence between prices and wind power
production leads to an underestimation of risk, as the profit distribution becomes left-
skewed when the negative dependence that we find in the data is accounted for. By
performing a simple static hedge in the forward market, we show that the risk can
be significantly reduced. Furthermore, an out-of-sample study shows that the choice
of copula influences the price of correlation risk, and that time-varying copulas are
superior to the constant ones when comparing actual profits generated with different
models.

1 Introduction

Since the European electricity market reforms in the late 1990’s, the electricity
markets have undergone considerable structural changes. Liberalization has
led to extremely volatile electricity prices, and the prioritization of renewable
energy sources in order to reduce CO2 emissions has introduced further chal-
lenges in terms of financial risk management. One particular challenge that
we study in this paper is related to the production uncertainty associated
with wind power generation. Wind power is highly non-dispatchable and
therefore fundamentally different from the more traditional thermal power
sources in the sense that the production cannot be planned and controlled to
the same extent. The dependency on weather variations (wind speed and air
density among others) makes the exact future production of a wind turbine
or wind-farm very hard to predict. Thus, in addition to facing price volatility,
wind power generators are exposed to production uncertainty, often referred
to as volumetric risk.

The joint exposure to price and volumetric risk can be further amplified by
a high penetration ratio of wind power in the grid. This is due to the mecha-
nism of day-ahead price formation, which is based on finding the equilibrium
between supply and demand bids made to the exchange, where the supply
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curve is built according to merit order stack3. Because wind power has a very
low marginal cost, a high production for a given hour will, other things being
equal, pull the market clearing price downwards. Similarly, if wind power
production is low for a given hour, demand will have to be met by either
import or turning on more costly generating plants. The latter (and possi-
bly the former) will, again other things being equal, pull the prices upward.
This leads to prices and wind power production being negatively correlated,
which depending on the strength of this correlation, enhances the joint price
and volumetric risk significantly. Empirical evidence regarding this relation
between spot electricity prices and wind power production has been demon-
strated in the literature, e.g. [1] for the Danish power market, [2] for Spain,
and [3] and [4] for Germany.

In practice, it is usually energy trading companies that act on the ex-
change on behalf of the producers. Due to increasing wind power produc-
tion in some power markets, some trading companies offer, in addition to
the management of production, a predetermined fixed price in exchange for
the fluctuating production. Companies offering such insurances against price
movements will naturally attempt to cover their exposure, and a typical so-
lution that will eliminate some of the risk is to sell energy on the forward
market corresponding to the expected wind power production. The remain-
ing exposure will inevitably cause the energy trading companies to purchase
energy on the spot market when being short, and dispose of excess energy on
the spot market when expecting less than the realized production. Further-
more, the negative relationship between prices and wind power production
adds an additional correlation risk: If being short, chances are that the miss-
ing energy will have to be bought at a higher price; similarly, if having to dis-
pose of excess electricity, chances are that this will be sold at times of a lower
price. As a result, the negative dependence between price and production
introduces a “double” risk that is not straight forward to address or diminish
without having a well-specified model for the dependence structure.

The problem of joint price and volumetric risk stems back some decades,
and was first discussed in [5] in relation to the classical farmer’s problem –
who faces both price and production uncertainty at the time of harvest. In [5],
the author considered futures as hedging instruments, and presented an ex-
plicit formula for the optimal position in futures contracts (from a minimum-
variance perspective); this formula pointed out that the correlation between
the two sources of uncertainty is an essential feature of the problem. Later,
the work of [6] included options in the hedging portfolio due to the non-
linearity of profit. More recently, energy related work on the subject became
available, and some interesting discussions on the hedging of volumetric risk

3Supply bids from different power stations are ranked according to their production costs,
and the market clearing price corresponds to the highest bid needed to match demand.
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associated with consumers’ load (demand-side risk) were presented in [7, 8]
and [9]. In [7, 8], the authors assumed bivariate lognormality for electric-
ity prices and consumers’ demand of electricity with a constant correlation,
and focused on hedging strategies that 1) maximize the expected utility of
the hedged profit and 2) maximize the expected profit subject to a Value-at-
Risk constraint. In [9], the authors propose a structural model that captures
the complex dependence structure of electricity price and load dynamics as a
base for hedging. While many of the ideas in the existing literature regarding
the hedging of volumetric risk can be used in our application, there are some
major distinctions between supply-side volumetric risk (associated with wind
power production) and demand-side volumetric risk (consumers’ load) that
pose some challenges when having to specify a joint model for day-ahead
electricity prices and wind power production.

One issue of concern when considering a joint model for electricity prices
and wind power production is that the price dynamics are very different from
the production dynamics, causing us to expect the benchmark bivariate (log)
normality assumption to be too restrictive;4 in fact, the two variables might
have univariate marginal distributions from different families, making it very
challenging to decide upon a suitable bivariate density. The assumption of
constant correlation might also prove too restrictive, and many studies have
shown evidence of time-varying dependence between economic time series,
see e.g. [10], [11], [12], [13], and [14]. Thus, before addressing issues such as
the valuation of correlation risk in the context of fixed price obligations with
fluctuating wind power production or the hedging of portfolios containing
such obligations, a large part of this paper is concerned with developing a
joint model that correctly characterizes the marginal behavior of electricity
prices and wind power production and also their dependence structure. For
this purpose, we propose the use of copula models.

Copulas are flexible tools that can be used to completely describe the
dependence structure between random variables while allowing for arbi-
trary marginal distributions. They were introduced in the literature by [15],
and have found various applications in economics and finance over the past
decades: See [16] for the use of copulas in pricing different types of bivariate
options, [17] for an application to risk management, and [18] for a thorough
review on copula-based models, including methods for estimation, inference
and model-selection. Applications of copula models in energy markets are
less common, but some examples are [19], [20], [3], and [21].

Specifically, we offer two contributions: Firstly, we propose a flexible joint
model that relaxes the assumption of bivariate normality and that accounts
for the time variation we observe in the dependence structure. Our empiri-

4Alone the fact that electricity prices can go negative rules out the lognormality assumption
in some marketplaces.
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cal study is based on data from the Danish power market; nonetheless, we
expect our results to be generally applicable in all liberalized energy markets
with a high penetration of wind power in the grid. By performing statistical
tests and Monte Carlo simulation studies, we demonstrate that our proposed
empirical model captures the joint distribution accurately, and also its time-
varying behavior.

Secondly, we provide applications of our model that are of interest to e.g.
an energy trading company managing a large share of wind turbines. We
estimate the risk distribution and the price of correlation risk associated with
a specific contract exposed to joint price and volumetric risk, i.e. a contract
implying that an energy trading company offers wind power producers an in-
surance against price movements, by purchasing their fluctuating production
at a predetermined fixed price. We show that the negative relation between
prices and wind power production plays an important role both in relation
to the pricing and the risk distribution of such contracts. We find that the
price of correlation risk amounts to a significant percentage of the price of
a regular fixed price agreement with no volumetric risk (a standard forward
contract). Also, the risk distribution becomes left-skewed under the assump-
tion of negative dependence compared to the case of independence. Lastly,
we compare the out-of-sample performance of competing models, and show
that time-varying copula models outperform the constant copula models.

This paper is organized as follows: Section 2 briefly introduces the notion
of copula and the methodology used in building a joint model for electricity
prices and wind power production. In Section 3, we apply the theory to data
from the Danish power market. In Section 4, we present a simulation study
and investigate how different wind scenarios affect the conditional distribu-
tion of spot electricity prices. Section 5 presents an application to pricing and
risk management, and in Section 6 we conclude.

2 Modeling dependence with copula models

Formally, a d-dimensional copula is a distribution function C(u1, . . . , ud) de-
fined on the unit cube [0, 1]d with uniform margins. Since our application is
a bivariate one, we shall consider the case where d = 2, however copula the-
ory holds for the general multivariate case. The central result when working
with copula models is Sklar’s theorem, which shows how to decompose a
joint distribution function into its univariate marginal distribution functions
and a copula.

In our application, we wish to condition on the information generated by
past observations of our variables, denoted by Ft−1. Thus, we shall consider
an extension to Sklar’s theorem proposed in [13], which holds for conditional
joint distributions. The theorem states that if we let F( ·Ft−1) be the bivariate
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conditional distribution function of the random vector Yt ≡ (Y1,t, Y2,t)
′, with

conditional marginal distribution functions F1( ·Ft−1) and F2( ·Ft−1), then
there exists a two dimensional conditional copula C( ·Ft−1), such that

F((y1, y2)Ft−1) = C(F1(y1Ft−1), F2(y2Ft−1)Ft−1). (A.1)

Furthermore, if the marginal distribution functions are continuous, the cop-
ula is unique. The converse also holds, such that given two conditional
marginal distributions, we can use the conditional copula to link the vari-
ables to form a conditional joint distribution with the specified margins. It is
especially this second part of the theorem that is useful here, since it allows
us to isolate the description of the dependence structure from the marginal
behavior of the individual variables.

Moreover, let us define the probability integral transform variables

Ui,t ≡ Fi(Yi,tFt−1), for i = 1, 2,

and let Ut ≡ (U1,t, U2,t)
′. Then Ui,t ∼ Unif(0, 1), and note furthermore that

the conditional copula in Eq. (A.1) is simply the conditional distribution of
UtFt−1:

UtFt−1 ∼ C( ·Ft−1).

In this paper, we consider different copulas from the elliptical and archi-
medean families, which are commonly used in the financial literature. For
a detailed treatment of these copulas and their properties, we refer to the
reference books by [22] and [23].

2.1 Marginal models

As a first step when working with copulas, we need to find proper marginal
distribution models. Here, we restrict our attention to marginal models of
the ARMA–GARCH type to model the conditional mean and the condi-
tional variance of the individual variables.5 For example, an ARMA(p, q)–
GARCH(1, 1) model for the margins can be written as

Yi,t =
p

∑
j=1

φi,jYi,t−j +
q

∑
k=1

θi,kεi,t−k + εi,t,

εi,t = σi,tηi,t,

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1,

5A variety of other parametric specifications can be considered for the conditional mean, such
as ARMAX models, long memory models, linear and nonlinear regression models, etc. The same
holds for the conditional variance where, among others, different extensions to the ARCH model
can be considered; see [24] for a long list of such models.
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for i = 1, 2, where ωi, αi, βi follow the restrictions posed in e.g. [25], and
αi + βi < 1. Furthermore,

ηi,tF
(i)
t−1 ∼ Fi(0, 1), for i = 1, 2 and all t.

For the marginal distributions we consider the case where Fi does not vary
with time and has a parametric form. Also, we relax the normality assump-
tion, allowing for more general distributions. The ARMA–GARCH models
function as filters that produce innovation processes η1,t and η2,t that are se-
rially independent; it is the conditional distributions of η1,t and η2,t that are
then coupled using the conditional copula.

One note of caution has to be made regarding the conditioning set Ft−1
emphasizing that this set is generated by (Yt−1, Yt−2, . . . ). In our specification
for the marginal models however, we do not condition on Ft−1, but only a
subset F (i)

t−1 ⊂ Ft−1. When using such models, the copula is, according
to [26], a true copula if and only if

Yi,tFt−1
d
= Yi,tF

(i)
t−1, (A.2)

for i = 1, 2 and all t. If the equality in Eq. (A.2) is not satisfied, then the joint
conditional distribution of YtFt−1 does not have the specified conditional
marginal distributions. To study if the equality in Eq. (A.2) holds, we test
for cross-equation effects by including lags of one variable in the conditional
mean equation of the other variable and vice versa, and perform a standard
Wald test for the joint significance of the added explanatory variables, as
proposed in [18].

2.2 Estimation procedure for the joint model

To estimate the joint model, we perform maximum likelihood estimation. The
joint conditional density is obtained by differentiating the joint conditional
distribution function in Eq. (A.1). Thus, the log-likelihood function takes the
form

logL =
T

∑
t=1

log f ((y1,t, y2,t)Ft−1; Θ)

=
T

∑
t=1

log f1(y1,tFt−1; Θ1) +
T

∑
t=1

log f2(y2,tFt−1; Θ2) (A.3)

+
T

∑
t=1

log c((u1,t, u2,t)Ft−1; γ),
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2. Modeling dependence with copula models

where f1 and f2 are the conditional marginal densities, c is the conditional
copula density defined as

c((u1,t, u2,t)Ft−1) =
∂2

∂u1∂u2
C((u1,t, u2,t)Ft−1),

and

ui,t = Fi(yi,tFt−1; Θi), for i = 1, 2.

In Eq. (A.3), Θ denotes the set of parameters for the entire model, and Θ1,
Θ2 and γ denote the parameters for the two marginal models and the cop-
ula, respectively, and have no common elements. For simplicity, we assume
that the copula is completely described by one single parameter γ. We per-
form multi-stage maximum likelihood estimation, where we consider the two
marginal models and the copula model separately. For details on the validity
of this procedure, consult [18].

2.3 Time-varying copula models

Since the dependency between electricity prices and wind power produc-
tion might change through time, extending copula models to allow for time-
varying dependence is relevant. Before specifying a parametric model for the
copula dependence parameter, it is useful to investigate what type of time
variation (if any) we can detect in the data. Here, we employ two tests pro-
posed in [18]: One that tests for the presence of a break in the rank correlation
by performing the classical “sup” test, and another that tests for the presence
of autocorrelation in a measure of dependence. For a comprehensive descrip-
tion of the two tests the reader is referred to [18].

The Generalized Autoregressive Score model

To model time-varying dependence, we employ the Generalized Autoregressive
Score (GAS) model of [27]. In order to ease the presentation, we consider
the case where the copula has one dependence parameter. For the GAS(1,1)
model, a possible updating equation for the transformed copula dependence
parameter gt+1 is:

gt+1 = ω + αgt + βI−
1
2

t st, (A.4)

where

gt = h(γt),

st =
∂

∂γ
log c((u1,t, u2,t); γt),

It = Et−1

[
s2

t

]
.
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In Eq. (A.4), st denotes the score of the copula log-likelihood and It is the
Fisher information. Moreover, γt denotes the time-varying copula depen-
dence parameter, which is usually constrained to lie in a particular range; see
Table A.9 in A for details regarding the range of different copula dependence
parameters. For estimation purposes, we apply a transformation h( · ) to γt,
to obtain gt which takes values on the entire real axis. We note that the up-
dating mechanism given in Eq. (A.4) is one of many possible specifications:
The GAS model can be extended to include e.g. more lags or exogenous vari-
ables. Moreover, the scaling quantity I−1/2

t is simply one convenient choice.
GAS models can be generalized to allow for asymmetries or long memory,
and to include regime-switching, however such extensions are not considered
in the present work.

The parameter estimates from the GAS model can be obtained by maxi-
mum likelihood estimation, as proposed by [27]. The only challenge can be
finding a closed-form expression for the Fisher information, and thus deriv-
ing the updating mechanism in Eq. (A.4). To overcome this issue, the Fisher
information is evaluated numerically for most copula specifications by per-
forming the following steps:

1. Given a copula specification, construct a grid of values for the depen-
dence parameter, [γ(1) < γ(2) < · · · < γ(n)].

2. For each dependence parameter in the grid,

(a) perform a large number of simulations from the chosen copula
model,

(b) evaluate the score function at each simulation,

(c) compute the Fisher information, by taking the mean over the eval-
uated scores squared.

3. Finally, use linear interpolation to get the Fisher information at inter-
mediate points.

2.4 Quantile dependence

As a preliminary study before specifying copula models, one can examine
the dependence in the data by considering quantile dependence. For the case
of negatively dependent variables, the quantile dependence is defined as:

λq =

{
P(U1,t ≤ qU2,t ≥ 1− q), 0 < q ≤ 1/2,
P(U1,t > qU2,t < 1− q), 1/2 < q < 1.

(A.5)

By computing quantile dependence coefficients at different quantiles q, we
obtain a richer description of the dependence structure. This can help nar-
row down the set of possible parametric copulas to a collection of models
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2. Modeling dependence with copula models

that are able to capture some of the characteristics we observe in the data.
To obtain standard errors for the quantile dependence coefficients, we use
boostrapping; specifically, we follow the procedure proposed in [18], which
is based on the stationary block-bootstrap of [28], where the optimal block-
length is chosen according to [29] and [30].6

2.5 Selection of copula models

To test for whether or not a copula is well specified, we perform two widely
used goodness-of-fit tests (GoF): The Kolmogorov-Smirnov (KS) and the Cra-
mer von-Mises (CvM) tests. Under the null that the conditional copula is well
specified, we should find that the empirical copula provides a good nonpara-
metric estimate of the null conditional copula. Suppose we have the random
sample {ut} = {(u1,t, u2,t)}T

t=1 from Ut. Then the test statistics can be written
as

KS(C) = max
t

∣∣C(ut; γ̂)− Ĉ(ut)
∣∣, (A.6)

CvM(C) =
T

∑
t=1

{
C(ut; γ̂)− Ĉ(ut)

}2 , (A.7)

where C(ut; γ̂) is an estimator of the null conditional copula. Moreover, Ĉ
denotes the empirical copula defined as

Ĉ(z) ≡ 1
T + 1

T

∑
t=1

1{u1,t ≤ z1, u2,t ≤ z2},

where 1 denotes the indicator function and z = (z1, z2) ∈ [0, 1]2. The KS
and CvM tests described above work solely for the testing of constant copula
models. A slight modification will however allow for the additional testing
of time-varying copulas: The KS and CvM tests based on the Rosenblatt
transform. In our case, the transformation is simply

V1,t = U1,t

V2,t = C2|1,t(U2,t|U1,t; γ̂t),

where C2|1,t denotes the conditional copula of the random variable U2,tU1,t.
Applying the Rosenblatt transform to the data will yield iid and Unif(0, 1)
variables, and hence we can compare the empirical copula of a random sam-
ple {vt} = {(v1,t, v2,t)}T

t=1 from Vt, against the independence copula, defined
as

Cindep(vt; γ̂t) ≡
2

∏
i=1

vi,t.

6The same bootstrapping procedure can be used to perform inference on other measures of
dependence, e.g. linear correlation, rank correlation.
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A simulation-based approach is used to obtain p-values for the GoF tests
described above, since the test statistics in Eqs. (A.6) and (A.7) depend on
estimated parameters. This approach is described in detail in [31], [32] and
[18], and will not be elaborated on here.

Another very important issue when dealing with copulas is choosing the
best copula model among competing models. Here, we consider pairwise
comparisons, where we follow [33] for most in-sample (IS) model compar-
isons and [34] for out-of-sample (OOS) model comparisons. The IS compar-
ison test can be performed when the models are non-nested; for the case
where the models are nested, a likelihood ratio test can usually be used. The
OOS model comparison test works for both nested and non-nested models.
Also, both tests can be applied regardless of whether the copula is constant
or time-varying.

For the IS case, the idea is to compare two models using their joint log-
likelihood, and test the null

H0 : E
[

L(1) − L(2)
]
= 0,

against

H1 : E
[

L(1) − L(2)
]
> 0 and H2 : E

[
L(1) − L(2)

]
< 0,

where the superscripts (1) and (2) denote two competing models. The case
of comparing joint log-likelihoods reduces in our case to comparing copula
log-likelihoods, c.f. Eq. (A.3), since we use the same marginal distribution
models. Hence, L(i) = log c(i)(u; γ(i)) or L(i) = log c(i)(u; γ

(i)
t ), i = 1, 2,

depending on whether the copula is constant or time-varying. [33] show that
under the null,

√
T
(

L̄(1) − L̄(2)
)

√
σ̂2

d−→ N(0, 1)

where

L̄(i) =
1
T

T

∑
t=1

log c(i)
(

ût; γ̂
(i)
t

)
, for i = 1, 2.

As an estimator for the asymptotic variance of
√

T
(

L̄(1) − L̄(2)
)

we use the
Newey-West heteroskedasticity and autocovariance consistent (HAC) estima-
tor.

For OOS comparisons, we consider a fixed estimation window, where the
model is estimated using the data from [1, T]. We then evaluate the condi-
tional predictive ability of two competing copulas on the OOS period, i.e.
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3. Empirical results

on R observations, where R = T∗ − T, T∗ > T. The test for comparing the
predictive ability of competing copula models conditional on the estimated
parameters proposed by [34] is in fact a special case of the more general
framework presented in [35]. The null hypothesis for the OOS case is the
same as for the IS case, and a test statistic based on the difference between
the sample averages of the copula log-likelihoods can again be used, and is
shown by [35] to be asymptotically N(0, 1) under the null. As an estimator
for the asymptotic variance, we use the HAC estimator.

3 Empirical results

A joint model for electricity prices and wind power production is interesting
to consider in an area with a high penetration ratio of wind power in the
grid. Here, we analyze data from Denmark, which has long been among the
top wind power producing countries. According to Energinet.dk, the Danish
Transmission System Operator, more than a third of the Danish power con-
sumption was covered by wind power in 2013, and in December that year,
57.4% of the consumption came from wind turbines. In 2014, wind turbines
produced on average what corresponds to over 39% of the Danish power con-
sumption. Also, in January 2014, 61.7% of the consumption was covered by
wind power.

Specifically, we base our analysis on data from one of the two Danish
price areas, DK1 (Western Denmark), and a sample period that spans from
01/01/2006 to 31/12/2014. The first time series, Fig. A.1(a), consists of total
daily wind power production in DK1 relative to the total installed capacity,
and is obtained by performing the normalization

Total daily wind power production (MWh)
Installed capacity (MW) · H

for each day in the sample, where H denotes the total number of hours in the
day. We note that we work in UTC time, so H = 24 always. The second time
series, Fig. A.1(b), represents the daily average of spot electricity prices.7,8

Before proceeding to the estimation of a joint model for prices and wind
power production, two comments are in order. First, since the production
series is bounded, with a lower bound at 0 and an upper bound at 1, we

7The data is publicly available on Energinet.dk and on the web page of Nord Pool’s Elspot
market, nordpoolspot.com. Elspot is a day-ahead physical delivery market for electricity currently
operating in the Nordic and Baltic region.

8We note that one observation has been truncated in the price data, corresponding to the
date 07/06/13, since this is assessed to be an outlier. On this date, the hourly price reached
Nord Pool’s cap price due to a combination of low wind, reduced import possibilities caused
by planned maintenance on transmission cables and also planned maintenance on central power
stations.

37



Paper A.

0.00

0.25

0.50

0.75

2006 2008 2010 2012 2014
Time

W
in

d 
po

w
er

 p
ro

du
ct

io
n

(a) Daily wind power production measured
relative to the total installed capacity.

0

50

100

150

2006 2008 2010 2012 2014
Time

Pr
ic

e 
(E

U
R

/M
W

h)

(b) Daily spot electricity prices

Fig. A.1: Historical daily observations for the DK1 price area in the period 01/01/2006 to
31/12/2014.

perform a logistic transformation in order to obtain data that can take values
on the entire real line. Second, we split our data into an in-sample (IS) pe-
riod spanning from 01/01/2006 to 31/12/2012, and an out-of-sample (OOS)
spanning from 01/01/2013 to 31/12/2014. Estimation of marginal models
and copulas is performed on the IS data.

3.1 Marginal specifications for spot electricity prices and wind
power production

Prior to modeling the dependence structure of electricity prices and wind
power production, we filter out the stylized facts affecting the marginal be-
havior of the individual variables. As a first step, we demean and correct
for deterministic seasonality by performing a regression on a constant and
dummy variables. Specifically, we have used the dummy variable month-of-
year to correct the (transformed) wind power production series for seasonal-
ity. For the price series both day-of-week and month-of-year dummy variables
were used as regressors. To model the conditional mean and variance of the
variables, we consider ARMA–GARCH models with different specifications
for the error distribution. We consider ARMA models up to order (7,7), and
GARCH models up to order (2,2). Based on the Bayesian Information Crite-
rion, we find that the optimal model for the wind power production series
is an ARMA(1,3)–GARCH(1,1), and use a skewed generalized error distribu-
tion for the standardized residuals. For the day-ahead electricity prices, we
find the optimal model to be an ARMA(3,1)–GARCH(1,1), and use a skewed
t distribution for the standardized residuals. Table A.1 summarizes the es-
timation results, and Fig. A.10 in B displays the autocorrelation functions,
histograms and quantile plots for the standardized residuals resulting from
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Daily wind power production Daily spot electricity prices
ARMA(1,3) – GARCH(1,1) ARMA(3,1) – GARCH(1,1)

Conditional mean

φ̂1 0.8725 (0.0510) 1.4579 (0.0065)
φ̂2 - -0.5525 (0.0176)
φ̂3 - 0.0897 (0.0261)
θ̂1 -0.3578 (0.0550) -0.8365 (0.0128)
θ̂2 -0.2733 (0.0363) -
θ̂3 -0.0610 (0.0264) -

Conditional variance
ω̂ 0.0803 (0.1269) 2.4433 (0.7388)
α̂ 0.0251 (0.0199) 0.1657 (0.0312)
β̂ 0.9022 (0.1333) 0.7832 (0.0410)

Skewed general error dist./Skewed t dist.
Shape ν̂ 2.1348 (0.0967) 4.9967 (0.4711)
Skewness ξ̂ 0.8024 (0.0269) 0.9583 (0.0222)

Goodness-of-fit tests
KS (p-val.) 0.6293 0.7097
CvM (p-val.) 0.5882 0.5996

Table A.1: The first panels display parameter estimates together with their std. errors in paren-
thesis. The last panel displays the results of GoF tests.

the fitted models. A visual inspection of Fig. A.10 shows that almost no au-
tocorrelation is left in the standardized residuals. The specified distributions
provide a reasonable fit, however we observe some deviations in the tails of
both distributions. We complement these findings with GoF tests, where we
consider the KS and CvM tests. The resulting p-values are given in Table A.1
and indicate that there is not sufficient evidence as to reject the null that the
distributional assumptions are well-specified.9 We note that finding suitable
marginal models is of great concern when working with copula models, since
the copula takes as input iid Unif(0, 1) variables that result from applying the
probability integral transform to the standardized residuals. A violation of
the assumptions will thus automatically lead to a misspecified copula model.

Because we condition with different information sets when specifying the
marginal models, we need to investigate whether or not lagged values of
wind power production help explain electricity prices and vice versa. To do
this, we consider the specified models for the conditional mean with added

9We perform simulation-based GoF tests, that take the parameter estimation errors from the
ARMA–GARCH models into account. Specifically, we test for whether or not the probability
integral transforms implied by the estimated conditional densities are iid Unif(0, 1). The p-
values for the tests are based on 999 simulations.
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explanatory variables consisting of seven lagged values of the “other” series,
and test for the significance of cross-sectional effects by performing a Wald
test. For the wind power production, we consider an ARMAX(1,3,7) model,
and for the electricity prices, we consider an ARMAX(3,1,7) model. The tests
yield a p-value of 0.25 for the wind power production model, and 0.09 for
the electricity price model, thus suggesting no cross-equation effects at a 5%
significance level.10

3.2 Symmetric vs. asymmetric dependence

Having decided upon the marginal models for price and wind power produc-
tion, the remaining of this section focuses on the modeling of the dependence
structure. First, we apply the probability integral transform to the standard-
ized residuals resulting from the marginal models to obtain approximately
uniformly distributed variables. To perform this transformation, we use the
estimated parametric models for the distribution functions F, i.e. the esti-
mated skewed generalized error distribution and skewed t distribution, see
Table A.1. We obtain

ÛW,t = Fskew ged(η̂W,t, ν̂W , ξ̂W) (A.8)

ÛS,t = Fskew t(η̂S,t, ν̂S, ξ̂S), (A.9)

where ÛW,t and ÛS,t denote the resulting uniforms corresponding to the
wind power production time series and the spot price time series, respec-
tively. Standardized residuals are denoted by η̂, and estimated distribution
parameters are denoted by ξ̂ (skew parameter) and ν̂ (shape parameter).

As an introductory investigation of the dependence structure, we com-
pute some measures of dependence for ÛW and ÛS. Table A.2 displays the
estimated coefficients for Spearman’s ρ, Kendall’s τ and linear correlation,
implying (not surprisingly) that prices and wind power production are neg-
atively correlated. Based on Eq. (A.5) we also compute quantile dependence
measures, and the results, displayed in Fig. A.2, show evidence for a sym-
metric dependence structure. When considering the farther right and left
portions of Fig. A.2(a), the results reveal a slightly larger probability of ob-
serving low prices given that the production is high than the opposite. How-
ever, according to Fig. A.2(b), this difference is not statistically significant.

3.3 Constant copula models

Although we anticipate time-variation in the dependence structure, we con-
sider six constant copula models, to have as benchmarks for later compar-

10We have tried testing for cross-sectional effects with different other specifications, and none
of the results indicate cross-equation effects at a 5% significance level.
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Spearman’s ρ Kendall’s τ Linear correlation

Estimate −0.5024 −0.3478 −0.5030
95% CI (−0.5716,−0.4332) (−0.3987,−0.2969) (−0.5714,−0.4347)

Table A.2: Estimated dependence measures with 95% confidence intervals based on the block-
bootstrap procedure described in Section 2.4 and M = 999 bootstrap samples.
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Fig. A.2: Fig. A.2(a) displays estimated quantile dependence for quantile q ∈ [0.025, 0.975] and a
size step of 0.025, along with a 95% confidence interval based on the block-bootstrap procedure
described in Section 2.4 and M = 999 bootstrap samples. The y-axis provides the probability
of ÛW lying below (above) its q quantile given that ÛS lies above (below) its 1− q quantile for
q ≤ 1/2 (q > 1/2). Fig. A.2(b) shows the difference in corresponding left and right quantile
dependence illustrated in Fig. A.2(a) with a corresponding 95% confidence interval.
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isons. A brief overview of these copula models is provided in A. The es-
timation results for the proposed constant copulas are given in Table A.3,
together with GoF test results. Among the constant copulas we consider, it is
only the Gaussian and Student t that allow for negative dependence. To deal
with this issue, we have performed suitable rotations of our data when esti-
mating the Clayton, Gumbel, Joe-Frank and Symmetrized Joe-Clayton (SJC)
copulas. Furthermore, the Gaussian and the Student t copulas are symmet-
ric, the Clayton and Gumbel are asymmetric, and the combinations Joe-Frank
and SJC allow for more flexible dependence structures and nest the case of
symmetric dependence.

The GoF results in Table A.3 support our earlier findings in Section 3.2.
The Gaussian and Student t copulas are, according to all tests, a good spec-
ification. Clayton is rejected by all tests, while Gumbel is only partly re-
jected. For the combination copulas, the test results are more surprising: The
Joe-Frank specification is accepted by all tests, while the SJC specification
is rejected by all tests. We attempt to understand these results by plotting
the quantile dependence we observe in our data together with the quantile
dependence implied by some of the fitted copulas in Fig. A.3.
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Fig. A.3: Quantile dependence implied by some of the fitted constant copula models in Table A.3.

We observe that the quantile dependence implied by the Gaussian copula
provides a reasonable fit to our data. So does the Joe-Frank copula, by pro-
viding a fit that generates almost no asymmetry. The Gumbel copula on the
other hand is too asymmetric, producing large deviations as we approach one
of the tails. Lastly, the SJC, although implying less asymmetry than Gumbel,
assigns too much probability to extreme events compared to what we observe
in the data, and thus produces large deviations as we approach both tails.11

11 We have omitted the quantile dependence implied by the Student t and Clayton copulas
in Fig. A.3 for clarity reasons. The Student t copula implies quantile dependence coefficients
that are almost indistinguishable from the Gaussian ones, which is due to the very high value
we estimate for the degree of freedom of this copula. The Clayton copula implies even more
asymmetry than Gumbel in the far right side of the quantile plot.
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3.4 Time-varying copula models

To confirm our suspicion that the dependence of spot electricity prices and
wind power production is time-varying, we perform the two tests briefly de-
scribed in Section 2.3. The results are given in Table A.4, showing no evidence
of a one-time break in the dependence structure, but strong evidence for the
presence of autocorrelation in the rank correlations.

One-time break Time-varying dep. of autoreg. type

AR(1) AR(5) AR(7)

p-value 0.7898 0.0020 0.0110 0.0000

Table A.4: Test results for time-varying dependence. To test for the presence of a one-time break
in the rank correlation we use the “sup” test, and test the null of no one-time break. To test
for the presence of time-varying dependence of autoregressive type we consider the regression
ÛW,tÛS,t = µ + ∑

p
i=1 φiÛW,t−iÛS,t−i + εt, for p = 1, 5, 7; the null of a constant copula cannot be

rejected if we find that φi = 0, for i = 1, . . . , p. For all tests, p-values are obtained by bootstrap
testing (based on 999 bootstraps, where bootstrap samples are obtained by randomly drawing
rows, with replacement, from (ÛW , ÛS)

′).

In light of these findings, we consider three copula models where the
transformed dependence parameter denoted by g evolves according to a
GAS(1,1) model, see Eq. (A.4). The transformations applied to the copula
dependence parameters, estimation and GoF test results are all displayed in
Table A.5. For the Gaussian copula, a closed form expression for the Fisher
information can be derived (see e.g. [36]). For the Gumbel and the Joe-Frank
copulas, the Fisher information is computed numerically by performing the
steps in Section 2.3. The Joe-Frank copula has two dependence parameters,
and we consider the case where one parameter evolves according to the GAS
specification, while the other is kept constant. It should however be men-
tioned that letting both parameters vary through time provides very little
improvement. Regarding the parameter estimates, α is high in all models,
implying a very persistent time-varying correlation process. Also, the inter-
cept parameter ω is not significant in any model. As far as the GoF test
results are concerned, the Joe-Frank and Gaussian GAS models are accepted
at a 5% level, while the Gumbel GAS model is only partially accepted.

To visualize and compare the fits of the proposed GAS models, we plot the
conditional rank correlation implied by the fitted time-varying copula models
in Fig. A.4(a). The numbers are obtained by mapping the copula parameter(s)
to a rank correlation coefficient12. In Figs. A.4(b)-(d) we plot actual 60-day

12Specifically, we follow the procedure described in [18]: (1) construct a grid of copula pa-
rameters, (2) perform 100,000 simulations from the copula model at each point in the grid, (3)
compute the rank correlation of the simulations, and finally (4) use linear interpolation to obtain
the correlation at intermediate points. We also mention that the functions mapping the copula
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rolling rank correlations of the data (ÛW , ÛS)
′ together with the in-sample fit

of the proposed time-varying models. To perform the same comparison for
the out-of-sample period, we obtain the approx. uniforms (ÛOOS

W , ÛOOS
S )′ by

first applying the estimated function for removing seasonality and then the
ARMA–GARCH filters, without re-estimating any parameters, to the out-of-
sample wind power production data and the out-of-sample spot electricity
price data. The 60-day rolling rank correlations of (ÛOOS

W , ÛOOS
S )′ are then

computed and compared to one-step-ahead forecasts from the time-varying
copulas. Due to the elevated computational cost of using a rolling estimation
window to produce forecasts, we restrict ourselves to considering a fixed
estimation window corresponding to the in-sample period, but enlarge the
conditioning set as information becomes available.
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Fig. A.4: Fits and forecasts produced with the three time-varying copulas from Table A.5.

One first and surprising remark regarding Fig. A.4 is related to the data
itself and implicitly the fits produced by the GAS models, namely that the
correlation is generally stronger during winter than during summer. There
are many factors that can help explain this finding since price formation is a

parameters to rank correlation are smooth.
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4. A simulation study

complex process that is not only influenced by supply and demand (which
in turn have strong seasonal components), but also transmission capacity. To
provide a few facts that can help explain our findings, we mention that the
wind power production relative to the consumption in the DK1 price area
has been higher for winter periods than summer periods, during the sample
period we consider in this paper. Also, we can expect that situations with
little wind during summer do not always push the prices upwards. This is
(aside from consumption being lower during summer) due to the fact that
DK1 is well connected with cables to Norway, Sweden and Germany, which
are all heavy producers of renewable energy, and hence electricity could be
imported at a lower price compared to the cost of having to turn on the more
costly power stations in DK1.

Considering now the fits implied by the proposed time-varying copulas,
Fig. A.4 reveals that the Gaussian GAS implies most variation in the corre-
lation and is able to capture periods with weaker dependence the best. The
Gumbel GAS specification is the one that least captures the variation that we
observe in the data. The Joe-Frank GAS specification is superior at reaching
the stronger correlations, but does not produce correlations that are weaker
than around −0.3. The plots clearly help establish that the Gumbel GAS
specification is the inferior choice. However, it is difficult to choose the better
copula when considering the Gaussian GAS against the Joe-Frank GAS.

From fitting not only time-varying copulas but also constant ones, we
have so far obtained many different models that are actually well-specified
according to the GoF tests. To help choose among all the considered copu-
las, we perform the pairwise comparison tests described in Section 2.5.13 The
results are summarized in Table A.6. We find that The Joe-Frank GAS specifi-
cation outperforms all other specifications in-sample, however its superiority
over the Gaussian GAS specification is not statistically significant. When con-
sidering the out-of-sample results, the situation reverses, with the Gaussian
GAS specification performing the best, but not significantly better than the
Joe-Frank GAS. Since the Gaussian GAS is the smaller model, we will choose
this specification as our preferred one, and continue our investigations using
this model to describe the dependence between wind power production and
spot electricity prices.

4 A simulation study

Performing simulations from a copula model is straightforward. The basic
steps are (1) at time t, generate the pair (UW,t, US,t) from the Gaussian copula
with dependence parameter ρt, (2) perform the inverse of the transformations

13The in-sample pairwise comparison between the Gaussian and the Student t copula is based
on a simple t-test, since these models are nested.
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4. A simulation study

given in Eqs. (A.8) and (A.9) to obtain standardized residuals (ηW,t, ηS,t), (3)
insert the standardized residuals in the marginal models from before (see
Table A.1) to obtain a deseasonalized pair (ỸS,t, ỸW,t), (4) use the estimated
seasonal function to obtain a pair (YS,t, YW,t) of spot electricity price and wind
power production, (5) compute ρt+1 using the Gaussian GAS update equation
and (6) repeat steps (1)–(5). Using this procedure one day at a time, we can
construct spot electricity price series and wind power production series; and
by repeating the process many times, an empirical distribution is produced.
Such an empirical distribution is shown in Fig. A.5.
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Fig. A.5: Simulated joint distribution for the daily spot electricity prices and the wind power
production in December 2013. The results are based on 10,000 simulations (for each day of
December) and a Gaussian GAS model for the dependence structure.

Fig. A.5 illustrates the simulated conditional joint distribution for Decem-
ber 2013 obtained by simulating 10,000 random paths for a one-month hori-
zon. Note that although we have chosen a Gaussian copula model for the
dependence structure, the marginal distributions were chosen to be a skewed
generalized error distribution and a skewed t distribution for the wind power
production and spot electricity prices, respectively. Therefore, the resulting
joint distribution is not bivariate normal; as illustrated in Fig. A.5, the simu-
lated distribution exhibits asymmetry and heavy tails.

We will now use our model to study how different wind scenarios af-
fect the distribution of prices. To this end, we perform one-month ahead
simulations for all OOS months, i.e. a total of 24 months. Due to the ele-
vated computational cost, we do not re-estimate the parameters of our joint
model; we do however enlarge the conditioning set one month at the time.
In Figs. A.6(a)–(b), we display simulated empirical price distributions condi-
tional on different levels of low/high wind scenarios. The simulations are
grouped into winter (Dec., Jan., Feb.) and summer (Jun., Jul., Aug.) months.
To define what a low/high wind scenario is during winter, we have consid-
ered the 20% and 80% quantiles of our actual OOS wind power production
data during the specified winter months; the same procedure was followed
for the summer months. For both the winter and the summer period, we ob-

49



Paper A.

serve that the different wind scenarios shift the simulated price distributions.
Moreover, the simulated distributions are left-skewed for the high wind sce-
narios (the skewness parameter is −1.98 for the winter months and −1.03 for
the summer months), implying that extreme low prices are more likely than
extreme high prices. For the low wind scenarios, the estimated distributions
are right-skewed (the skewness is 0.64 and 1.06 for the winter and summer
months respectively), thus implying the opposite compared to the high wind
cases. We also notice that the low/high wind scenarios push the price distri-
butions further apart for the winter months than the summer months, which
we have confirmed by measuring the Kullback-Leibler distance between dis-
tributions. This can be explained by the fact that during summer periods, the
dependence between electricity prices and wind power production is weaker
than during winter periods, as earlier illustrated in Fig. A.4. All these features
are present when performing the same calculations on the actual data, which
we show in Figs. A.6(c)–(d), confirming that our empirical model captures the
dynamics between daily spot electricity prices and wind power production.

5 Application to pricing and risk management

In the following we present applications of the proposed joint model for
spot electricity prices and wind power production. We start by consider an
energy trading company that enters into agreements with wind power pro-
ducers, where a predetermined fixed price R is paid for the fluctuating wind
power production. Since the production will first become known through
the delivery period of the agreements, these products imply a volumetric
risk. Furthermore, we assume that the trading company sells the production
it receives from the wind power producers on the day-ahead market, at a
spot price we denote by S. Hence, the company will also be exposed to price
risk. In the remaining of this section, we will refer to such agreements as
fixed price for fluctuating wind power production agreements. With such a
formulation, we can express the profit of the trading company as

T2

∑
t=T1

Qt(St − R), (A.10)

where time is measured in days, Qt is the wind power production at time
period t, St is the daily spot electricity price valid at t, and R is a fixed price
set at the inception of the contract, which we denote t0. Furthermore, the
contract length spans from T1 to T2, where t0 < T1 ≤ T2. We note that to
participate in the day-ahead electricity auction market, buy or sell bids have
to be made to the exchange one day before delivery takes place. By working
with the payoff in Eq. (A.10), we implicitly assume that the quantity we bid
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Fig. A.6: Distributions for the daily spot electricity prices during winter and summer months,
for the out-of-sample period 01/01/2013 to 31/12/2014, under the assumption of high and low
wind power production. The simulated predictive distributions are based on 10,000 one-month-
ahead simulations, using a Gassian GAS model for the dependence structure. Fig. A.6(c) and
Fig. A.6(d) are based on 37 observations. To define the percentage corresponding to high/low
wind scenarios during winter and summer, we used the 0.20 and 0.80 quantiles of the actual
out-of-sample wind power production data.
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one day before equals the actual wind power production, i.e.

Qt = Et−1[Qt],

where Et−1[Qt] denotes the expectation at time t − 1 for the production at
time t. Thus, we assume no balancing risk.

What differentiates the product described above with payoff given in
Eq. (A.10) from a standard forward contract is the production uncertainty
associated with the former, and hence the presence of an additional risk due
to the correlation between S and Q. If we express the price R in terms of the
forward price F, Eq. (A.10) becomes

T2

∑
t=T1

Qt(St − (F− c)), (A.11)

where F ≡ F(t0, T1, T2) denotes the forward price at time t0, for the delivery
period from T1 to T2 and c ≡ c(t0, T1, T2) denotes the compensation that is to
be subtracted from the forward price due to the negative correlation between
prices and volume. So c can be thought of as the price of correlation risk. The
fair value of c can be obtained by the usual practice of setting the discounted
conditional expectation of the payoff given in Eq. (A.11) equal to zero.14 To
ease the presentation, we will assume a risk-free rate of zero, thus obtaining:

E
Q
t0

[
T2

∑
t=T1

Qt(St − (F− c))

]
= 0, (A.12)

c = F−
E

Q
t0

[
T2

∑
t=T1

QtSt

]

E
Q
t0

[
T2

∑
t=T1

Qt

] . (A.13)

With our framework, an estimate for c can easily be obtained by performing
Monte Carlo simulations from the proposed copula model. However, this es-
timate will reflect the price of correlation risk under the physical or objective
measure P, since the model is fitted to historical spot electricity price and
wind power production data. According to Eqs. (A.12) and (A.13), the ex-
pectations must be taken under a pricing measure Q, that will reflect the risk
premium charged by, in our context, the energy trading company offering the
“insurance” to the wind power producer. Following [38], the pricing measure
Q is equivalent to P, but needs not be an equivalent martingale measure due
to the non-storability of our underlying “assets”. Since neither electricity nor

14Risk preferences could easily be included by e.g. introducing a simple volumetric risk aver-
sion rule like in [37].
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wind can be stored, they are not tradable assets in the classical sense. This
implies that the spot–forward relation, for example, cannot be derived based
on a buy-and-hold hedging argument. Instead, the usual practice is to simply
define the forward price as the conditional expectation of the spot electricity
price under the risk-neutral probability measure Q, thereby turning the dis-
counted spot price into a martingale (see [39] and [40]). Indeed, by defining

F(t0, T1, T2) = E
Q
t0

[
1

T2 − T1 + 1

T2

∑
t=T1

St

]
,

for the case of electricity, one can compute the implied market price of risk by
considering the difference between quoted forward prices in the market and
forward prices obtained by simulation with our model under P.15 In theory,
the same could be done to estimate the risk premium associated with wind,
however forwards with wind index as underlying are not currently traded in
most European energy markets – and if they are, they are highly illiquid.

The fact that our setting is a bivariate one complicates the question of
measure change even further, since aside from the marginal behavior of spot
electricity price and wind power production under Q, implied information
regarding the market price of dependency risk must also be provided. A
parametrization of this is not straightforward; in fact, the discussion can be-
come quite extensive in the context of copulas and incomplete markets. Such
a discussion is outside the scope of this paper, and we refer instead to [45] for
more details. Moreover, even if a theoretical procedure to calibrate the market
price of dependency risk were to be established, the lack of exchange-traded
instruments written on spot times wind would impede applying this in prac-
tice.

In light of the above discussion, we turn to the rational expectation hy-
pothesis, which is a valid choice and a common assumption in this context
(see e.g. [20], [9], and [7]). This implies that we set P = Q, i.e. set the market
price of risk to zero. Since we suspect a measure change to yield different
prices, but not to alter the overall conclusions in our following empirical
analysis, we find this assumption to be a reasonable one.

According to the payoff in Eqs. (A.10) or (A.11), it is clear by now that we
are dealing with two sources of risk simultaneously: one is related to price
uncertainty, and the other is related to production uncertainty; and since the
market is incomplete, a perfect hedge cannot be performed. However, the
price risk can be hedged. Here, we construct a simple hedging portfolio by
taking a short position in a quantity H∗ of standard forward power contracts.
We assume that the hedge is static and performed at time t0. The payoff of

15For further discussions and empirical studies regarding pricing in electricity markets we
refer to [41], [42], [43], and [44].
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the hedge for the entire delivery period is given by

H∗
(

E
Q
t0

[
1

T2 − T1 + 1

T2

∑
t=T1

St

]
− 1

T2 − T1 + 1

T2

∑
t=T1

St

)
,

or in a compact form

H∗(F− S),

where F denotes the same forward price as in Eq. (A.11), and S denotes the
average day-ahead electricity price for the same delivery period. To obtain
H∗, we fix c to its value obtained from Eq. (A.13) and follow the standard
procedure of minimizing the variance of the portfolio payoff:

min
H∗
Vt0

[
T2

∑
t=T1

Q̃t(St − (F− c)) + H∗(F− S)

]
. (A.14)

In Eq. (A.14), Q̃t = 24 · Qt · Λ, with Λ being the total installed capacity un-
der the agreement that pays out a predetermined fixed price in return for
the fluctuation wind power production. Since Qt corresponds to daily wind
power production relative to the total installed capacity in the entire DK1
price area, we need to transform this number to daily wind power produc-
tion measured in MWh corresponding to the total installed capacity that the
energy trading company actually has under agreement. By performing this
transformation, we imply that our joint model is a good representation on
a smaller scale. This is a realistic assumption as long as the energy trading
company manages a portfolio of diversified wind turbines in terms of type
and location. Solving for H∗ in Eq. (A.14) yields

H∗ =

Covt0

[
S,

T2

∑
t=T1

Q̃tSt

]
− (F− c)Covt0

[
S,

T2

∑
t=T1

Q̃t

]
Vt0

[
S
] . (A.15)

It is clear that by hedging a quantity that is equal to H∗, we are protected
on average and not against worst case scenarios, such as the combination of
extremely low prices / high wind power production, which is a probable
outcome in the DK1 price area. We could remedy the situation to a large
extent by adding options to our portfolio, however this is outside the scope
of the present paper. Work related to the optimal hedging of volumetric
risk associated with wind power production is, to the best of our knowl-
edge, not yet available. However, energy related discussions regarding the
hedging of volumetric risk associated with consumers’ load are presented in
e.g. [8] and [46], where many of the ideas can be transferred to our applica-
tion. Nonetheless, our simple hedge is actually realistic since the market for
options is very illiquid in DK1.
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5. Application to pricing and risk management

5.1 Example 1

Having developed a joint model for day-ahead electricity prices and wind
power production, we can perform Monte Carlo simulations and use Eq. (A.13)
to find the fair fixed price/compensation of a contract with any given specifi-
cations. Assume that we stand on the last trading day of November 2013, de-
noted t0, and wish to find the fixed price for a front month contract, namely a
December 2013 contract. Given all information available up to and including
the valuation date t0, we perform 10,000 simulations for price and quantity
from our proposed joint model, where for each simulation we keep a path
of length 31 (since we work with daily data) corresponding to the number
of days in December. We note that we work with a fixed estimation window
corresponding to the IS period, but enlarge the filtration, conditioning on the
information up to and including the valuation date t0. The contract specifi-
cations and results are summarized in Table A.7, and we see that due to the
negative correlation between prices and production, the compensation c that
is to be subtracted from the forward price equals 3.24 EUR/MWh.

In addition to calculating the fixed price of a contract with fluctuating
wind power production, we can extract information from the performed sim-
ulations that can be useful in a risk management context. We assume that
agreements corresponding to an installed capacity of 500 MW are entered
into on the last trading day of November 2013, with delivery December 2013.
The price of a standard forward contract is fixed to its estimated value of
35.26 EUR/MWh, and the price of an agreement with a fluctuating wind
power production is set to 32.02 EUR/MWh cf. Table A.7. Given these spec-
ifications, we estimate the distribution of the portfolio payoff (see Fig. A.7)
and calculate the 5% Value-at-Risk (see Table A.7) in two cases: One where
the portfolio includes a price hedge, and one without a price hedge. When
covering our price exposure in the forward market by assuming a short posi-
tion corresponding to a quantity of H∗ forwards, we observe that the variance
of the profit distribution reduces significantly. In this example, the 5% Value-
at-Risk is reduced from approximately EUR 1.1 million to EUR 0.5 million. It
is also important to notice that the profit distribution is in both cases asym-
metric, with a heavy-tail to the left, translating to the fact that expected losses
are greater than expected gains.

Revisiting the issue of pricing and considering the profit distributions in
Fig. A.7, alternative approaches to that of performing a measure change can
be applied. An example can be to consider an a priori given 5% Value-at-
Risk level that is acceptable, and solve for the correlation risk premium that
satisfies this level.

To stress the effect of correlation on the profit distribution, we perform
additional simulations, where all but the copula model remains unchanged.
Specifically, we assume the independence copula and thus a zero compen-
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Fig. A.7: Profit distributions for a December 2013 contract. The results are based on 10,000
simulations of price and quantity, using a Gaussian GAS model for the dependence structure.
The forward price is fixed to 35.26 EUR/MWh, the compensation is fixed to 3.24 EUR/MWh
and the total installed capacity of the portfolio equals 500 MW. The variance minimizing hedge
quantity H∗ is obtained by performing the calculation in Eq. (A.15).

sation, instead of the Gaussian GAS model which we have established re-
flects the reality to a much greater extent. Fig. A.8(a) illustrates the estimated
profit distributions of the portfolio (with no hedge), and shows that the neg-
ative correlation implies a distribution that is more asymmetric. If prices
and production were independent, we estimate a 5% Value-at-Risk of EUR
0.93 million corresponding to a reduction of approximately 15% compared to
the 5% Value-at-Risk of EUR 1.1 million we obtain with the Gaussian GAS
copula. Assuming independence would thus lead to an underestimation of
risk. We also display the average spot electricity price for the period of the
contract as a function of the estimated profit in Fig. A.8(b). Under indepen-
dence, we observe that the payoff becomes linear, and hence forwards would
suffice as hedging instruments. Under negative dependence, the payoff be-
comes non-linear, emphasizing the need for options in the hedging portfolio.
Furthermore, we observe that a larger profit (smaller loss) can be obtained if
prices and production are independent as we move away from the mean av-
erage price of 35.26 EUR/MWh. This is also supported by Fig. A.8(a), where
we observe that the negative correlation implies that a smaller probability is
assigned to large profits, and a higher probability is assigned to large losses.

5.2 Example 2

In Section 3.4, we have established that some of the fitted time-varying copula
models are superior to the constant ones, see e.g. Table A.6. Here, we wish to
investigate if this also holds when comparing the actual profits or losses gen-
erated with different copula models. For this, we consider the OOS period
corresponding to the years 2013 and 2014. We assume the following trading
strategy: On the last trading day of each month (Dec. 2012 - Nov. 2014),
we enter into front month agreements with wind power generators, where
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Fig. A.8: Illustration of the importance of correlation in the analysis of profit. The results
are based on 10,000 Monte Carlo simulations with a Gaussian GAS copula (c is fixed to 3.24
EUR/MWh) and the independence copula (c is fixed to 0 EUR/MWh), respectively. The total
installed capacity of the portfolio is set to 500 MW, and the same marginal models for prices and
wind power production are used.

a fixed price is paid for the fluctuating wind power production. The total
installed capacity of each monthly portfolio is fixed to 500 MW. We perform
10,000 simulations from joint models with the different copula specifications
that we wish to compare against each other (marginal models are kept un-
changed), and estimate compensations c and hedge quantities H∗ for each
month at a time using Eqs. (A.13) and (A.15). For each monthly portfolio,
we then calculate the realized profit using the actual daily electricity prices,
actual daily wind power production16 and actual forward prices.

For clarity, let us consider a concrete example: We stand on the last trad-
ing day of December 2012, and wish to enter into fixed price agreements
with fluctuating wind power production for the January 2013 month. To en-
ter the contract, we first estimate the fixed price that we are willing to pay for
the production that we will receive during January. Since we also perform a
hedge in the forward market, we estimate the quantity of forwards we are to
short. In this example, we will use a constant Clayton copula to describe the
dependence between prices and wind power production, and hence we ob-
tain an estimated compensation denoted by ĉClayton

t0,Jan and an estimated hedge

quantity Ĥ∗,Clayton
t0,Jan . On the last trading day of December 2012, we can ob-

16The actual daily wind power production is given in % for the entire price area, but only a
subset of the existing wind turbines in DK1 is part of our portfolio. Therefore, we note that the
realized profit we calculate is an approximation; We obtain the actual production of the wind
turbines under agreement by multiplying the actual daily wind power production for the entire
price area with the assumed installed capacity of the portfolio of 500 MW and 24 hours.
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5. Application to pricing and risk management

serve the actual forward price FObs
t0

, and thus the fixed price we offer the
wind power producers is

R̂Clayton
t0,Jan = FObs

t0
− ĉClayton

t0,Jan .

By the end of January 2013, we will also have observed the actual daily spot
electricity prices SObs and the actual daily wind power production QObs for
the DK1 price area. With this information, we can now approximate the
actual profit resulting from the trades we have performed:

Actual profitJan =
T2

∑
t=T1

Q̃Obs
t (SObs

t − R̂Clayton
t0,Jan )︸ ︷︷ ︸

Agreement payoff

+ Ĥ∗,Clayton
t0,Jan (FObs

t0
− SObs

)︸ ︷︷ ︸
Hedge payoff

where t0 = 31/12/2012, T1 = 01/01/2013, T2 = 31/01/2013 and Q̃Obs is the
approximation

Q̃Obs
t = QObs

t · 24 (h) · 500 (MW).

The results obtained by performing the above calculations for all OOS months
with different copula specifications are presented in Table A.8. The numbers
show that the joint model with a Gaussian GAS copula provides the highest
(lowest) monthly profit (loss) in 15 out of the 24 months, corresponding to
62.50%. Considering the second column block of Table A.8, we see that it is
indeed the Gaussian GAS and the Joe-Frank GAS that yield the lowest losses
in average, which supports the results we obtained in Section 3.4. Hence,
allowing for time variation in a suitable copula model is beneficial. The
constant Clayton specification performs the poorest, generating the largest
average loss. This is again in accordance with earlier findings, where we
have established that the constant Clayton specification is not suitable for the
dependence of prices and wind power production, and also least suitable
among the copula models we consider in Table A.8. The time-varying Gaus-
sian and Joe-Frank copulas outperform the other copulas since they are able
to capture the increasingly negative correlation we observe towards the last
years of our sample (see Fig. A.4); and thus, they are able to generate larger
compensations. For instance, the constant Gaussian copula yields an average
compensation for the OOS period of 2.69 EUR/MWh, while the Gaussian
GAS copula yields a value of 2.98 EUR/MWh.

Lastly, we illustrate in Fig. A.9 the evolution of actual forward prices and
also the evolution of compensations estimated with our proposed joint model
for electricity prices and wind power production, i.e. the one with the Gaus-
sian GAS copula specification for the dependence structure.

Overall, compensations amount to an increasing percentage of the for-
ward price during the period of our study. Clearly, this is mainly due to the
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Highest profit (lowest loss) Realized average profit for
per month for the OOS period the OOS period (EUR/MWh)

Constant Time-varying (GAS) Constant Time-varying (GAS)

Gaussian 4.16% 62.50% -0.9144 -0.6103
Gumbel 16.67% 0.00% -0.8693 -0.7961
Joe-Frank 0.00% 16.67% -1.0294 -0.6666
Clayton 0.00% - -1.1465 -

Table A.8: OOS model comparisons based on realized monthly profit/loss. In the first col-
umn block, we calculate how often each copula model yields the lowest monthly loss or the
highest monthly profit. The second column block presents the realized average profit/loss (in
EUR/MWh) for selected copula models, obtained by dividing the total realized cash flow for the
period by the total realized wind power production. All results are based on the same trading
strategy and 10,000 simulations.

In-sample Out-of-sample20

40

60

80

2008 2010 2012 2014
Time

Fo
rw

ar
d 

pr
ic

e 
M

1 
(E

U
R

/M
W

h) Mean
Observed price

(a) Actual forward prices for a front month
(M1) contract, valid the last trading day be-
fore delivery start. Total of 84 prices, one
for each month in our IS and OOS sample.

In-sample Out-of-sample1

2

3

4

5

2008 2010 2012 2014
Time

Si
m

. c
om

pe
ns

at
io

n 
(E

U
R

/M
W

h)

Mean
Sim. compensation

(b) Simulated compensations for a front
month contract, valued the last trading
day before delivery start. The results are
based on 10,000 simulations, with a Gaus-
sian GAS models for the dependence struc-
ture.

Fig. A.9: Evolution of actual forward prices and estimated compensations.

60



6. Conclusion

decreasing tendency in forward prices, but also due to the slight increase in
compensations if we consider the IS and OOS average compensations. The
slight increase in compensations can be justified by the increasing installed
capacity of wind power that Denmark has experienced over the past years
- and hence the stronger dependence between wind power production and
electricity prices. This also explains the decrease in forward prices, but only
to a small extent; the major contributing factor here has been the decreasing
raw material prices. The reduction in forward price due to the correlation
risk amounts to an average of 7%, and can reach as high as 11%. A similar
conclusion is reached by [3], where the authors study the market value of
wind power at different locations in Germany, and show that this value is
reduced compared to the average spot price as a result of increasing wind
power penetration.

6 Conclusion

This work concentrates on the dependency between daily spot electricity
prices and wind power production, and its role regarding the pricing and
the risk distributions associated with contracts exposed to both price and
volumetric risk. The analysis is carried out on data from the Danish power
market, which is characterized by a high penetration of wind power in the
system. We propose a copula approach since we wish to concentrate on
the dependence in more detail. We employ marginal models of the ARMA–
GARCH type and parametric error distributions for each individual variable,
and then link the innovations through various constant and time-varying
copulas. Based on statistical tests concerning copula selection, we choose a
time-varying Gaussian copula as our preferred specification for the depen-
dence structure. By performing Monte Carlo simulation studies, we are able
to visualize the joint empirical distribution implied by our model, and see
how this deviates from the Gaussian benchmark. Also, we study the distri-
bution of prices conditional on different levels of wind power penetration,
and show that prices decrease (increase), on average, at times of high (low)
levels of wind power production; the shape of the conditional distribution
of prices is also affected by the different levels of wind power production.
These findings confirm what previous studies concerned with the impact of
wind power – or predicted wind power penetration – on electricity prices
have shown (e.g. [2], [1]).

We apply the developed empirical model in the context of an energy trad-
ing company offering wind power producers a predetermined fixed price for
their fluctuating wind power production. We find that the correlation risk
premium that the energy trading company should charge when entering such
agreements is significant, amounting to 7% of the price of a standard forward
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power contract on average. Furthermore, our results indicate that the choice
of copula impacts the price of correlation risk: An out-of-sample study based
on comparing realized profits generated by different copulas shows that in-
troducing time-variation in the copula model is beneficial. When considering
the profit distribution, we find that under independence, the risk is underes-
timated. Additionally, we show that a simple hedge in the forward market
can reduce e.g. the 5% Value-at-Risk of the profit distribution significantly.
However, due to the non-linearity of profit, options should be included in the
hedging portfolio in order to reduce the risk even further; this could be an
interesting subject for further research.

Finally, although our empirical study concentrates on the Danish power
market, the mechanism of spot price formation in e.g. other European elec-
tricity markets is also based on matching supply and demand. Further, wind
power production has a very low marginal cost, ensuring that it will always
be represented in the merit order stack. Due to the physical conditions upon
which the day-ahead electricity markets are based, we believe that the pro-
posed modeling framework is relevant and can be applied to other electricity
markets that, like Denmark, rely heavily on wind power production. Such
extensions are left for future research.

A Properties of selected copula models

A.1 Elliptical copulas

A bivariate elliptical copula is defined as

C(u1, u2) = F(F−1
1 (u1), F−1

2 (u2)),

where u1, u2 ∈ [0, 1]. The elliptical copulas we consider in this paper are the
Gaussian copula and the Student t copula. In the case of the Gaussian copula,
F corresponds to the bivariate standard normal cdf, and F−1

1 and F−1
2 denote

the inverse of the univariate standard normal cdf. In the case of the Student t
copula, F corresponds to the bivariate Student t cdf, and F−1

1 and F−1
2 denote

the inverse of the univariate Student t cdf. Properties of these copulas are
summarized in Table A.9.

A.2 Archimedian copulas

A bivariate Archimedian copula is defined as

C(u1, u2) = φ−1(φ(u1) + φ(u2)),

where u1, u2 ∈ [0, 1] and φ : [0, 1] → [0, ∞) is a generator function satisfying
that φ−1 is monotone on [0, ∞). The Archimedian copulas we consider in
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this paper are Clayton and Gumbel, and also the combinations Joe-Frank
and a symmetrized version of Joe-Clayton. Properties of these copulas are
summarized in Table A.9.

B Additional figures
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Fig. A.10: Diagnostics for marginal models for spot electricity price and wind power production.
Figs. A.10(a) - A.10(c) display the autocorrelation function, histogram and quantile plot for the
standardized residuals resulting from the marginal model for wind power production. Corre-
spondingly, Figs. A.10(d) - A.10(f) display the same diagnostics for the standardized residuals
resulting from the marginal model for spot electricity prices.
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1. Introduction

Abstract

We examine credit value adjustment (CVA) estimation under wrong-way risk (WWR)
by computing the expected positive exposure (EPE) under an equivalent measure as
suggested in [1], adjusting the drift of the underlying for default risk. We apply
this technique to European put and call options and derive the analytic formulas for
EPE under WWR obtained with various approximations of the drift adjustment. We
give the results of numerical experiments based on 4 parameter sets, and supply fig-
ures of the CVA based on both of the suggested proxys, comparing with CVA based
on a 2D-Monte Carlo scheme and Gaussian Copula resampling. We also show the
CVA obtained by the formulas from Basel III. We observe that the Basel III formula
does not account for the credit-market correlation, while the Gaussian Copula re-
sampling method estimates a too large impact of this correlation. The two proxies
account for the credit-market correlation, and give results that are mostly similar to
the 2D-Monte Carlo results.

1 Introduction

In this paper we aim at computing the credit valuation adjustment (CVA)
expressions of European calls and puts under the Black-Scholes-Merton-Cox
model, that is when the underlying stock follows GBM dynamics and the
default is governed by a totally inaccessible stopping time corresponding to
the first jump time of a Cox process. Specifically, we assume that the default
intensity follows a CIR-process.

Let us consider a portfolio with maturity T and whose discounted price
process is Ṽ. The CVA associated to such a portfolio traded with a coun-
terparty whose recovery rate is R and default time is τ with survival (risk-
neutral) probability curve G(t) := Q(τ > t) is given by

CVA = −(1− R)
∫ T

0
EQ

[
Ṽs

+
∣∣ τ = s

]
dG(s), (B.1)

where x+ := max(x, 0). It has been shown in [1] that when the default time
is modeled as the first jump’s time of a Cox process, the “τ = s” condition
in the expectation in Eq. (B.1) — associated to market-credit dependency that
is, to wrong-way risk — can be absorbed in the drift of the portfolio price
process:

CVA = −(1− R)
∫ T

0
EQ

Cs [Ṽ+
s
]

dG(s).

Here, Ct is a rolling numéraire corresponding to the default leg of a CDS
offering protection in a small interval around t, and is not to be confused
with the call option price at t, noted Ct. We refer the reader to [1] for more
details about this technique.
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We define the expected positive exposure (EPE) without taking wrong-
way risk into account as the expectation in Eq. (B.1) without the condition.
Thus the no-WWR EPE is simply the function EPE⊥(s) := EQ

[
Ṽ+

s
]

for s ∈
[0, T]. The EPE under wrong-way risk (referred to as the WWR EPE) is
defined as

EPE(s) = EQ
[

Ṽ+
s
∣∣ τ = s

]
= EQ

Cs [Ṽ+
s
]

.

From Girsanov theorem, a Q-Brownian motion on [0, s] will become, un-
der QCs , a Brownian motion plus a drift. In particular, we note θs

· the drift
associated to the Q-Brownian motion driving the exposure. Its analytical
expression is derived explicitly in [1]. We now show that when this (stochas-
tic) drift is approximated by a deterministic function θ(·, s), the quantity
EQ

Cs [Ṽ+
s
]

is available in closed form for calls and puts, leading to an an-
alytical approximation for the CVA under wrong-way risk, and compare the
effect on CVA of two approximations of this drift to the Monte Carlo set-up.

2 Call and put risk-neutral dynamics

We assume GBM dynamics for the stock under the risk-neutral measure Q,
with constant risk-free rate r and volatility σ > 0. Hence, denote by W a
Q-Brownian motion,

dSt = rStdt + σStdWt,

whose solution is
St = S0e(r−

σ2
2 )t+σWt .

Let us note C the price process of a European call option on the stock S
with maturity T and strike K. Hence, using the Theta-Delta-Gamma relation-
ship,

dCt = Θtdt + ∆tdSt +
1
2

Γtd〈S〉t = rCtdt + σSt∆tdWt,

and it is well-known that

Ct = StΦ(d(T − t))− Ke−r(T−t)Φ
(

d(T − t)− σ
√

T − t
)

∆t = Φ(d(T − t))

d(s) :=
1

σ
√

s

(
ln

St

K
+

(
r +

σ2

2

)
s
)

.

Let us note the time-t discounted value of any process X = (Xt)t≥0 as
X̃t := Xte−rt. The discounted call price process C̃ can be written in terms of
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the discounted stock price process S̃:

C̃t = S̃tΦ (d(t, T))− Ke−rTΦ
(

d(t, T)− σ
√

T − t
)

d(t, T) =
1

σ
√

T − t

(
ln

S̃t

K
+ rT +

σ2

2
(T − t)

)
,

where we have used that ln St = ln S̃t + rt. Using Wt
(Q)∼
√

tZ where Z
(Q)∼

N (0, 1), one obtains

S̃t = S0e−
σ2
2 t+σWt ∼ S0e−

σ2
2 t+σ

√
tZ

∆t = Φ
(

1
σ
√

T − t

(
ln

S0

K
+

(
r +

σ2

2

)
T − σ2t

)
+

Wt√
T − t

)
∼ Φ

(
1

σ
√

T − t

(
ln

S0

K
+

(
r +

σ2

2

)
T − σ2t

)
︸ ︷︷ ︸

:=α(t)

+

√
t√

T − t︸ ︷︷ ︸
:=β(t)

Z
)

,

so that

C̃t = S0e−
σ2
2 t+σWt Φ

(
α(t) + Wt/

√
T − t

)
− Ke−rTΦ

(
α(t)− σ

√
T − t + Wt/

√
T − t

)
∼ S0e−

σ2
2 t+σ

√
tZΦ (α(t) + β(t)Z)

− Ke−rTΦ
(

α(t)− σ
√

T − t + β(t)Z
)

.

A similar development yields the dynamics and the marginal distributions of
the corresponding put

P̃t = Ke−rTΦ
(

σ
√

T − t− α(t)−Wt/
√

T − t
)

− S0e−
σ2
2 t+σWt Φ

(
−α(t)−Wt/

√
T − t

)
∼ Ke−rTΦ

(
σ
√

T − t− α(t)− β(t)Z
)

− S0e−
σ2
2 t+σ

√
tZΦ (−α(t)− β(t)Z) .
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3 Expected Positive Exposures under No WWR

As C̃ ≥ 0 and P̃ ≥ 0, the expected (discounted) exposure corresponds to the
expected positive (discounted) exposure. Hence,

EQ
[
C̃t
]
= S0e−

σ2
2 tEQ

[
eσ
√

tZΦ (α(t) + β(t)Z)
]

− Ke−rTEQ
[
Φ
(

α(t)− σ
√

T − t + β(t)Z
)]

= S0Φ

(
α(t) + β(t)σ

√
t√

1 + β2(t)

)
− Ke−rTΦ

(
α(t)− σ

√
T − t√

1 + β2(t)

)
EQ

[
P̃t
]
= Ke−rTEQ

[
Φ
(

σ
√

T − t− α(t)− β(t)Z
)]

− S0e−
σ2
2 tEQ

[
e−σ
√

tZΦ (−α(t)− β(t)Z)
]

= Ke−rTΦ

(
σ
√

T − t− α(t)√
1 + β2(t)

)
− S0Φ

(
−α(t)− β(t)σ

√
t√

1 + β2(t)

)
,

where we have used

EQ
[
eηZΦ (µ + σZ)

]
= e

η2
2 Φ

(
µ + ση√

1 + σ2

)
.

It can be checked that EQ
[
C̃t
]
= C0 and EQ

[
P̃t
]
= P0 for all t ∈ [0, T] as ex-

pected from the martingale property of discounted price processes under Q.
Nevertheless, because of the drift-adjustment, those expressions will become
time-dependent as soon as WWR will enter the picture.

4 Expected Positive Exposures under WWR

Under no WWR (risk-neutral measure Q), C̃ is a martingale,

dC̃t = σS̃t∆tdWt,

whose solution is given by the standard Black-Scholes-Merton equation in
Sec. 3. As discussed above, Girsanov theorem yields

dWt = dWs
t + θs

t dt,

where Ws is a QCs -Brownian motion on [0, s]. We assume that under Q, the
default intensity λ is governed by a CIR process with volatility η, i.e.

dλt = κ(µ− λt)dt + η
√

λtdWλ
t ,
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where Wλ
t is aQ-Brownian motion whose correlation with W is ρ. A non-zero

value for ρ introduces a dependency between S and λ that controls wrong-
way risk. The drift adjustment is given by [1]

θs
t = θs

t (λt) = ρη
√

λt

(
Aλ(t, s)Bλ

s (t, s)
Aλ(t, s)Bλ

s (t, s)λt − Aλ
s (t, s)

− Bλ(t, s)
)

, (B.2)

where Aλ, Bλ are known zero-coupon bond functions in affine models [2] :

EQ
[

e−
∫ s

t λudu
∣∣∣Ft

]
= Aλ(t, s)e−Bλ(t,s)λt .

The subscripts refer to the variable with respect to which we compute the
derivatives of Aλ and Bλ.

Let us now look at the dynamics of the call for t ∈ [0, s] under QCs . First,
observe that we can write C̃ as a deterministic function of the variables (t, Wt)
(instead of the usual (t, St) couple):

C̃t = v(t, Wt),

with

v(s, x) := S0e−
σ2
2 s+σxΦ

(
α(s) + x/

√
T − s

)
− Ke−rTΦ

(
α(s) + x/

√
T − s− σ

√
T − s

)
.

Applying Ito’s lemma,

dC̃t =

(
vt(t, Wt) +

1
2

vxx(t, Wt)

)
dt + vx(t, Wt)dWt,

and we have, for all (s, x) where s ∈ [0, T] and x ∈ R the following relation-
ships for the partial derivatives of v:

vt(s, x) +
1
2

vxx(s, x) = 0 (B.3)

vx(s, x) = σS0e−
σ2
2 s+σxΦ

(
α(s) + x/

√
T − s

)
. (B.4)

Now let us look at the dynamics of the call as a function of the QCs -
Brownian motion Ws on t ∈ [0, s]:

C̃t := v
(

t, Ws
t +

∫ t

0
θs

udu
)

.
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Using Ito’s lemma and the relationships between vt, vx and vxx in Eqs. (B.3)
and (B.4), we have

dC̃t =

(
vt

(
t, Ws

t +
∫ t

0
θs

udu
)
+

1
2

vxx

(
t, Ws

t +
∫ t

0
θs

udu
))

dt

+ vx

(
t, Ws

t +
∫ t

0
θs

udu
)
(dWs

t + θs
t dt)

= vx

(
t, Ws

t +
∫ t

0
θs

udu
)

θs
t dt + vx

(
t, Ws

t +
∫ t

0
θs

udu
)

dWs
t .

Defining now

Ŝt := S̃teσ
∫ t

0 θs
udu

∆̂t := Φ
(

d̂(t, T)
)

d̂(t, T) :=
1

σ
√

T − t

(
ln

Ŝt

K
+ rT +

σ2

2
(T − t)

)
,

one gets

dC̃t = σS̃teσ
∫ t

0 θs
udu∆̂tθ

s
t dt + σS̃teσ

∫ t
0 θs

udu∆̂tdWs
t

= σŜt∆̂tθ
s
t dt + σŜt∆̂tdWs

t .

Clearly, C̃ is a Q-martingale. This is no longer true under the new measure:
it features a drift. Moreover, the martingale part is impacted by the drift as
well as Ŝ features θ.

Let us consider the deterministic approximation θs
t ≈ θ(t, s) where λt is

replaced by a deterministic proxy λ(t). By replacing λt with λ(t) in Eq. (B.2),
we have

θ(t, s) := ρη
√

λ(t)
(

Aλ(t, s)Bλ
s (t, s)

Aλ(t, s)Bλ
s (t, s)λ(t)− Aλ

s (t, s)
− Bλ(t, s)

)
. (B.5)

Then, the WWR EPE expression EPE(s) = EQ
Cs [C̃s

]
is known analytically. To

compute EPE(t), the WWR EPE at time t, we need to evaluate the expectation
of C̃t under QCt . We thus set s = t and define

Θ(t) :=
∫ t

0
θ(u, t)du

α̂(t) := α(t) +
Θ(t)√
T − t

Zt (QCt )∼ N (0, 1).
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t

This yields (up to the approximation of the stochastic drift by its deter-
ministic expression)

C̃t = v
(
t, Wt

t + Θ(t)
)

= S0e−
σ2
2 t+σΘ(t)+σWt

t Φ
(

α̂(t) + Wt
t /
√

T − t
)

− Ke−rTΦ
(

α̂(t)− σ
√

T − t + Wt
t /
√

T − t
)

∼ S0e−
σ2
2 t+σΘ(t)+σ

√
tZt

Φ
(
α̂(t) + β(t)Zt)

− Ke−rTΦ
(

α̂(t)− σ
√

T − t + β(t)Zt
)

,

showing that the WWR EPE takes a similar form as the No-WWR EPE:

EQ
Ct [C̃t

]
≈ S0eσΘ(t)Φ

(
α̂(t) + β(t)σ

√
t√

1 + β2(t)

)
− Ke−rTΦ

(
α̂(t)− σ

√
T − t√

1 + β2(t)

)
,

where the approximation results from the fact that we have replaced the ran-
dom variable

∫ t
0 θt

udu by the deterministic quantity
∫ t

0 θ(u, t)du. As regards
to the WWR EPE of the put, one easily gets

EQ
Ct [P̃t

]
≈ Ke−rTΦ

(
σ
√

T − t− α̂(t)√
1 + β2(t)

)
− S0eσΘ(t)Φ

(
−α̂(t)− β(t)σ

√
t√

1 + β2(t)

)
.

5 Proxys of θs
t

Here we use two different proxys for θs
t . As presented in [1], we consider

a proxy where the Q-expectation of λt is used in the formula for the drift
adjustment (B.5). However, here we also present an alternative proxy, by
using an approximation of the QCT -expectation of λt and compare the impact
on CVA in Sec. 7.

5.1 Q-expectation

Here we use θ(t, s) = θs
t (λ̄t), where λ̄t := EQ[λt]. One strength for this proxy

is that we have an analytic formula for λ̄t and the proxy θ(t, s) is straight-
forward to obtain. The disadvantage is that we are ‘operating’ under other
measures than Q. Specifically when estimating the WWR EPE at time t, we
have changed measure to QCt . This changes the dynamics of λ, but it is
ignored in this approach.
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5.2 Approximation of QCT -expectation

In order to improve the deterministic approximation of θs
t , we aim to obtain

an approximation for the QCT -expectation of λt. Remark that we use the mea-
sure for the maturity of the contract for all t ∈ [0, T]. A possible weakness
of this proxy is that for calculating WWR EPE at time t we should use the
QCt -dynamics not the (terminal) QCT -dynamics. However, using the termi-
nal measure is a more convenient choice, since it is just necessary to obtain
one ‘term structure’ of λt, t ∈ [0, T], whereas using the QCt -dynamics for
the WWR EPE at time t will have the effect that it is necessary to compute
separate values for λu, u ∈ [0, t], corresponding to each t ∈ [0, T]. This may
be computationally heavy, and thus we assume the simpler version with the
benefit that only one term structure has to be computed while the effect of
the drift-adjustment in λ from the change of measure may be accounted for.
A closed-form expectation of λt under QCT can however not be readily found,
but in the following we present an approximation of this expectation.

One further remark is that the QCT -dynamics of λ is completely inde-
pendent of the correlation between the underlying stock and λ, but is solely
determined by the parameters of the Q-dynamics of λ as well as the maturity
of the contract. This allows for computed λ’s to be used for calculating CVA
on several contracts with the same counterparty, since the dynamics of the
contract and its correlation with the default intensity does not enter any of
the expressions.

Firstly, consider the QCT -dynamics of λt for t ∈ [0, T]:

dλt = κ(θ − λt)dt + η
√

λt

(
dWT

t + η
√

λt θ̃
T
t (λt)dt

)
(B.6)

θ̃T
t (x) :=

a(t, T)
a(t, T)x− b(t, T)

− c(t, T),

where

a(t, T) := Aλ(t, s)Bλ
s (t, s), b(t, T) := Aλ

s (t, s), and c(t, T) := Bλ(t, s) .

Hence, integrating both sides of the above SDE in Eq. (B.6),

λt = λ0 + κθt− κ
∫ t

0
λsds + η2

∫ t

0
λs θ̃T

s (λs)ds + η
∫ t

0

√
λsdWT

s

and using Tonelli’s theorem,

EQ
CT [λt] = λ0 + κθt− κ

∫ t

0
EQ

CT [λs]ds + η2
∫ t

0
EQ

CT
[
λs θ̃T

s (λs)
]

ds,

where the Ito integral has zero expectation, and thus has vanished. We want
to simplify the term that includes

λs θ̃T
s (λs) =

a(t, T)λs

a(t, T)λs − b(t, T)
− c(t, T)λs,
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t

and therefore we use a first-order Taylor-expansion of the function
a(t, T)x/(a(t, T)x − b(t, T)) around some point x(t) > 0. We use a positive
function since QCT is an equivalent measure to Q and thus the expectation of
λt is always positive. Expanding the function around zero also turns out to
be an undesirable choice that leads to unstable estimates of the expectation
close to maturity, as a(t, T)/b(t, T) diverges for t → T. We choose to make
the expansion around the Q-expectation of λt, since this is indeed a posi-
tive function, and the Q-expectation may give some reasonable input to the
QCT -expectation. The Taylor expansion looks as follows

a(t, T)x
a(t, T)x− b(t, T)

=
a(t, T)x(t)

a(t, T)x(t)− b(t, T)

− a(t, T)b(t, T)
(a(t, T)x(t)− b(t, T))2 (x− x(t)) + o(x)

=

(
a(t, T)x(t)

a(t, T)x(t)− b(t, T)

)2

− a(t, T)b(t, T)
(a(t, T)x(t)− b(t, T))2 x

+ o(x).

Setting g(t) := EQ
CT [λt] we have

g(t) ≈ λ0 + κθt− κ
∫ t

0
g(s)ds

− η2
∫ t

0

(
a(s, T)b(s, T)

(a(s, T)x(s)− b(s, T))2 + c(s, T)
)

g(s)ds

+ η2
∫ t

0

(
a(s, T)x(s)

a(s, T)x(s)− b(s, T)

)2

ds.

Differentiating both sides we obtain a first-order linear inhomogeneous ODE

g′(t) ≈ κθ + η2
(

a(t, T)x(t)
a(t, T)x(t)− b(t, T)

)2

− h(t, T)g(t),

where

h(t, T) := κ + η2
(

a(t, T)b(t, T)
(a(t, T)x(t)− b(t, T))2 + c(t, T)

)
.

Disregarding the drift approximation the solution to this SDE is

g(t) = e−H(t,T)
(

g(0) +
∫ t

0

(
κθ + η2G(s, T)

)
eH(s,T)ds

)
,

where in this context, g(0) = λ0, and

H(s, T) :=
∫ s

0
h(u, T)du

G(s, T) :=
(

a(s, T)x(s)
a(s, T)x(s)− b(s, T)

)2

.
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6 Potential Future Exposures (PFE)

We would like to compare the risk-neutral CVA (CVA computed with market-
implied default probabilities and WWR EPE) with actuarial CVA, computed
with PFE (e.g. 99% quantile of exposures) and historical default probabilities.

From the above, Ct = Ht(Wt) where Ht

Ht(x) = S0e(r−
σ2
2 )t+σxΦ

(
α(t) + x/

√
T − t

)
− Ke−r(T−t)Φ

(
α(t)− σ

√
T − t + x/

√
T − t

)
is the monotonic increasing and invertible function.

The k-PFE is defined as the profile of the exposure’s quantile at level k.
All functions Ht being continuous and strictly increasing (with slope given

by ∆t(x)), this means that

q(t) = Ht

(
Φ−1(k)

√
t
)

.

This is merely the Ht function (that is, the function that gives the time-t
exposure as a function of the time-t value of the Brownian motion) evaluated
at the k-quantile of a centered Normal distribution with variance t.

Remark that a similar expression is valid for WWR PFE, by replacing Ht
with Ĥt with similar notations as before.

7 Numerical experiments

We use the four parameter sets for the CIR-process of λ used in [1]. Thus in
the forthcoming we will regard parameters in Tab. B.1 as set 1–4. Further we
use S0 = K = 15, r = 1%, µ = 3% and σ = 30%, and call options with a
time to maturity of 1 year and 5 years, respectively. The corresponding CVA
figures are given in Figs. B.1 and B.2, and are compared with a 2D Monte
Carlo scheme as well as the Gaussian Copula resampling approach (for more
details about this approach, see e.g. [3], [4] or [5]).

We also consider the actuarial CVA; CVA calculated from the 99% PFE,
which is described in Sec. 6, and on historical rather than risk-neutral default
probabilities. We use the default rates from [6], and we consider parameter
set 1, 2 and 4 to have rating Ba and set 3 to have rating A. Specifically the flat
hazard rates used for A rating are 2 bps for 1-year contracts and 9.4 bps for
5-year contracts, while for the Ba rating we use 110 bps for 1-year contracts
and 176 bps for 5-year contracts. The actuarial CVA is shown in Figs. B.3 and
B.4.

In the following, we use the terms QCT -proxy and Q-proxy for the proxys
of θs

t using the λ expectation under QCT and Q, respectively.
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7. Numerical experiments

Rating used for
λ0 (bps) κ θ (bps) η actuarial CVA

Set 1 300 02% 1610 8% Ba
Set 2 350 35% 450 15% Ba
Set 3 100 80% 200 20% A
Set 4 300 50% 500 50% Ba

Table B.1: Parameter sets for the dynamics of λ in the numerical experiments.

Consider the CVA on 1-year contracts in Fig. B.1. We observe a pattern
that for negative correlations, we tend to estimate a higher CVA compared
to the 2D Monte Carlo scheme. Generally this overestimation of CVA is
stronger for the QCT -proxy than for the Q-proxy. The exception is parameter
set 4, where the Q-proxy which estimates a slightly lower CVA. For positive
correlations — when we experience WWR on the call — we observe a very
good fit of the QCT -proxy and the Monte Carlo CVAs parameter set 1–3, while
the Q-proxy also tends to overestimate the CVA on this end.

Comparing the results for the two proxys, we observe that the Q-proxy
tends to suggest a larger WWR-effect, giving a larger compensation than the
QCT -proxy for positive correlations, while it suggests a lower compensation in
the case of negative correlations. Thus the Q-proxy suggests a higher impact
of the “market-credit correlation”.

Consider now the CVA on the 5-year contract in Fig. B.2. Firstly, we
observe that even for one million sample paths and a time step of 0.01, the
Monte Carlo simulations of the CVA does include some bias, since the zero-
correlation case does not completely correspond with the analytic formula.
This is especially pronounced for parameter set 4. Here we experience a
weakness of the 2D Monte Carlo approach; it is computationally heavy, but
moreover includes a bias with a very small time-step and large number of
paths. Comparing the CVA of the two proxys, we observe similar behavior
as in the 1-year case.

For both 1 and 5-year CVA — and for all parameter sets — we observe that
the resampling approach is highly sensitive to the market-credit correlation.
This allows to model very strong WWR impact. The problem however is
that it is unclear how the value of the dependence parameter (the correlation
between τ and the exposure Vti at any given point in time ti) has to be chosen.

Further, we provide the CVA under Basel, based on [7], [8]. In this context
(T being the contract maturity, where we consider 1 and 5 years), the No-
WWR figure is given by

CVAbasel = (1− G(T))
EPE⊥(0) + EPE⊥(T)

2
,
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where EPE⊥(t) is the (No-WWR) EPE at time t, which is constant and equal
to C̃0 for the call and P̃0 for the put. The WWR CVA is given by

CVAbasel
α = (1− G(T))αEPE⊥(T/2), (B.7)

where αEPE⊥(T/2) is called the “exposure at default” (EAD) and the scaling
coefficient α is typically set to 1.4. The corresponding levels are indicated on
Figs. B.1 and B.2.

The Basel III parameter α cannot be considered as a way to represent
market-credit correlation, but in fact capture the “market-credit covariance”.
This is a crucial point, that complicates drastically the choice of a reasonable
value for α. In order for the Basel type formula to be a decent approach to
account for WWR, α has to be chosen not only with regards to dependence
between portfolio and credit, but also according to both market and credit
volatilities. This observation suggests that it is a bit naive to hope that a
kind of “universal constant” would be able to account for this effect. The
approximation proposed in [1] is therefore, from this perspective, a signif-
icant improvement to Basel type formulae. Tab. B.2 show the values of α
that make the CVA in the Basel type formulae agree with the ones obtained
from Monte Carlo simulation for 1-year contracts. Across parameter sets the
value changes quite significantly. Obviously α ≈ 1 for zero-correlation, and
the values are larger (smaller) for positive (negative) correlations. Thus the
Basel approach cannot capture right-way risk, which is experienced when
the correlation is negative, while the performance of the method is highly
dependent both on the correlation and the parameter set used.

ρ -0.9 -0.6 -0.3 0 0.3 0.6 0.9

Set 1 0.75 0.83 0.92 1.01 1.10 1.20 1.30
Set 2 0.63 0.74 0.87 1.01 1.16 1.31 1.48
Set 3 0.42 0.58 0.78 1.01 1.28 1.59 1.95
Set 4 0.29 0.45 0.70 1.03 1.44 1.95 2.57

Table B.2: The values of α for which Eq. (B.7) agrees with the 2D-MC results for 1-year call
options.

The interpretation of the actuarial CVA in Figs. B.3 and B.4 are similar
to the interpretation of the risk-neutral CVA results. We generally observe
a larger impact of the correlation on the CVA when using the Q-proxy than
what suggested by both the Monte Carlo simulations and the QCT -proxy.
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Conclusion

From the change-of-measure approach suggested in [1], we have examined
the CVA on put and call options under WWR. In the Basel III framework,
WWR is treated by a multiplier. But it should not be based on “market-
credit correlation”, but rather on “market-credit covariance”. We find that
the Basel III approach is a naive way of estimating the CVA that does not
recognize right-way risk and cannot capture the wrong-way risk in a desir-
able way. However, using the set-up in this paper, one can obtain CVA on
put and call options, and capture the effect of the market-credit correlation
by analytic formulas. Specifically, we present the formulas for two proxys
of the drift-adjustment process, using each proxy, the CVA can be obtained
analytically. Further the actuarial CVA based on PFE also has an analytic
expression, based on the formulas in the paper.

In the numerical experiments, we examine the estimated CVA — both
the risk-neutral and actuarial CVA — from the formulas supplied in the pa-
per, compared with joint (exposure-credit) Monte Carlo simulations, Gaus-
sian Copula resampling and Basel III figures. We observe that the Gaussian
Copula resampling approach is very sensitive to the correlation, leading to
too high CVA estimates when experiencing WWR. We do not find 2D Monte
Carlo to be a desirable method, since it is computationally heavy, and in some
cases includes a bias, even for a small time-step and large number of sample
paths.

On the other hand, we get very encouraging results from the CVA based
on the two proxys, both when calculating the risk-neutral CVA and the actu-
arial CVA. The simple Q-proxy is performing quite reasonably and captures
the general behavior of the CVA. This proxy is very easy to implement and
fast to compute since all formulas are analytic (up to the deterministic ap-
proximation of the drift adjustment). Using the QCT -proxy requires an addi-
tional approximation (to compute the corresponding expectation of λt), but
gives a slightly more realistic (considering the MC-results to be the true CVA)
CVA when experiencing WWR.
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Fig. B.1: 1-year call CVA profiles for the four parameter sets using a 2D Monte Carlo scheme
(blue) with 106 paths and a time step of 0.01, compared with the analytic approximation using
the Q-expectation (red) and QCT -approximation (green). CVA based on the Gaussian Copula
resampling approach (cyan) and the analytic CVA with zero-correlation (dashed grey line) are
included. The Basel no-WWR CVA is indicated by grey dots and the WWR CVA using α = 1.4
is indicated by grey triangles.
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Fig. B.2: 5-year call CVA profiles for the four parameter sets using a 2D Monte Carlo scheme
(blue) with 106 paths and a time step of 0.01, compared with the analytic approximation using
the Q-expectation (red) and QCT -approximation (green). CVA based on the Gaussian Copula
resampling approach (cyan) and the analytic CVA with zero-correlation (dashed grey line) are
included. The Basel no-WWR CVA is indicated by grey dots and the WWR CVA using α = 1.4
is indicated by grey triangles.
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Fig. B.3: 1-year actuarial call CVA profiles for the four parameter sets using a 2D Monte Carlo
scheme (blue) with 106 paths and a time step of 0.01, compared with the analytic approximation
using the Q-expectation (red) and QCT -approximation (green). The dashed grey line shows the
analytic CVA with zero-correlation is included.
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Fig. B.4: 5-year actuarial call CVA profiles for the four parameter sets using a 2D Monte Carlo
scheme (blue) with 106 paths and a time step of 0.01, compared with the analytic approximation
using the Q-expectation (red) and QCT -approximation (green). The dashed grey line shows the
analytic CVA with zero-correlation is included.
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1. Introduction

Abstract

We present a rigorous framework for CDS valuation and calibration to market quotes
on single-name CDSs and methods of calculating the market price of risk (MPR) on
such markets. We use the results of MPR for bond markets, and thus the MPR
corresponds to the survival probabilities, which is a non-tradable asset. Further, we
present a set-up for numerical valuation of triparty CDS agreements, where two
default risky parties trade a CDS with a third entity as reference credit.

1 Introduction

Since the recent financial crisis of ‘07-‘08, the necessity of a bilateral frame-
work for valuations of contracts on credit markets has been evident [1–3]. In
this paper, we aim at providing a thorough explanation of the method and
complications associated with reduced form model calibration to market data
on Credit Default Swaps (CDSs). Further, we provide frameworks for applying
the models to estimate the Market Price of Risk (MPR) on CDS markets as well
as valuation of triparty CDS contracts, which we define as a CDS between two
defaultable entities with a third entity as the underlying reference credit.

Specifically, we consider the default of each entity to be governed by a
Cox-process as suggested in [4], and consider the CIR++ specification due
to [5]. We are focused on numerical experiments and provide the necessary
results to conduct the model calibration and include formulas and deriva-
tions that are closely related to the implementation itself.

Sec. 2–7 provide the fundamental set-up of reduced form modeling on
credit markets with Bilateral Credit Value Adjustments (BCVA), including a
formulation of the value of CDS contracts that is essential for the model
calibration to market data. Sec. 8 provides a description of the Bloomberg
data used in our analysis and the assumptions implied by our choice of data.
Sec. 9–10 provide the application of the models to estimation of MPR on CDS
markets and BCVA estimation for triparty CDS contracts.

2 Modeling default intensities with a Cox-process

.1) We use the modeling framework presented in [4], where default intensi-
ties are modeled using a Cox-process. Thus we consider a jump process with
stochastic intensity denoted λi

t(Xi
t) – for shorter notation we use λi

t ≡ λi
t(Xi

t)
– instantaneously at time t, where Xi

t is the state variable(s) driving the de-
fault intensity of firm i observed at time t. Note that in this paper we calibrate
the Cox-process to CDS quotes, and thus we consider λi to be a process under
the pricing measure Q, which is assumed to exist for all considered firms.
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Let τi be the first jump of the jump process, given that no jump has yet
occurred at the current time t:

τi = inf
{

s > t :
∫ s

t
λi

udu ≥ Ei
}

,

where Ei ∼ Exp(1) is assumed to be independent of the factors driving λi
s.

Note that τi depends on t, but for simplicity this is suppressed in the notation.
We define G i

s = σ{Xi
u : u ≤ s}, Hi

s = σ{1{τi≤u} : u ≤ s}, and F i
s = G i

s ∨
Hi

s; here A ∨ B for any two σ-algebras A and B represents the minimal σ-
algebra containing both A and B. Thereby Ei is independent of G i, λi

s is a G i
s

measurable process, and τi is Hi
s measurable.

Now we present a few results for the Cox-process set-up, all of which are
necessary for developing CVA pricing formulas. Let f and F denote CDF and
PDF, respectively, of τi|G i

T . For all t ≤ s ≤ T we have:

Fτi

(
s
∣∣∣ G i

T

)
= EQ

[
1{τi≤s}

∣∣∣ G i
T

]
= 1− exp

{
−
∫ s

t
λi

udu
}

fτi

(
s
∣∣∣ G i

T

)
= λi

s exp
{
−
∫ s

t
λi

udu
}

(C.1)

EQ
[
1{τi>T}

∣∣∣ G i
T

]
= exp

{
−
∫ T

t
λi

udu
}

EQ
[
1{τi≤T}g(τi)

∣∣∣F i
t

]
=
∫ T

t
EQ
[
λi

se−
∫ s

t λi
udug(s)

∣∣∣F i
t

]
ds, (C.2)

where it is assumed that g(s) is a G i
s-measurable function for all s ≥ t.

3 Valuing a general derivative with UCVA and risk-
free closeout

After the introduction of BCVA, the most widely used recovery assumption
was that of risk-free closeout, according to [6]. This resembles the assumption
of recovery of the treasury, which was commonly used prior to the financial cri-
sis in ’07-’08, see e.g. [7]. Under the risk-free closeout assumption, the value
of the contract at default is determined in a completely risk-free environment;
meaning both the defaulted and surviving counterparties are seen as risk-free
in the closeout valuation. If the value of the contract is positive from the non-
defaulted counterparty’s point of view, a fraction of this value is recovered,
and if the contract has negative value, the surviving counterparty will give
the absolute contract value to the defaulted counterparty’s creditors. Hence-
forth, we consider estimating UCVA on a derivative from a bank’s point of
view (denoted entity b) and denote the bank’s counterparty in the derivative
as entity c.
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3. Valuing a general derivative with UCVA and risk-free closeout

In order to derive UCVA pricing formulas, we need to define the payoff
structure. Let Π(u, v) denote the sum of all cash flows – not including the set-
tlement upon counterparty default – generated by the derivative from time u
to v ≥ u, each discounted back to time u by the risk-free rate. Note that cash
flows received by the bank are positive and payments from the bank to the
counterparty are negative. E.g. for a zero coupon bond with a $1 notional,
the payoff structure is $1 discounted if the cash flow time span includes the

maturity and zero otherwise; Π(u, v) = 1{u≤T≤v}e
−
∫ T

u rsds. Further, we de-
fine Gr

s = σ{Xr
u : t ≤ u ≤ s} as the sigma-algebra generated by the factors

Xr
u driving the risk-free rate, and introduce the sigma-algebra containing all

information about counterparty default, default intensity, and the risk-free
rate as

F i,r
s = F i

s ∨ Gr
s = G i

s ∨Hi
s ∨ Gr

s , i ∈ {b, c}.

We denote the (constant) loss-given-default of the counterparty as Lc and
of the bank as Lb and introduce the notation f+ = max( f , 0) and f− =
max− f , 0.

The UCVA pricing formula from the perspective of b with only one default-
risky party (c and b, respectively) is calculated by:

PUCVA
b,{c} (t, T)

= EQ
[

Π(t, T)− 1{τc≤T}L
ce−

∫ τc
t rsdsΠ(τc, T)+

∣∣∣∣F c,r
t

]
(C.3)

= EQ[Π(t, T)
∣∣F c,r

t ]− Lc
∫ T

t
EQ
[
λc

se−
∫ s

t (ru+λc
u)duΠ(s, T)+

∣∣∣F c,r
t

]
ds

PUCVA
b,{b} (t, T)

= EQ
[

Π(t, T) + 1{τb≤T}Lbe−
∫ τb

t rsdsΠ(τb, T)−
∣∣∣∣F b,r

t

]
= EQ

[
Π(t, T)

∣∣∣F b,r
t

]
+ Lb

∫ T

t
EQ
[
λb

s e−
∫ s

t (ru+λb
u)duΠ(s, T)−

∣∣∣F b,r
t

]
ds.

The second representation of the formulas follows from Eq. (C.2). Note that
pricing from b’s perspective with only b being default-risky is a constructed
scenario that comes into importance when considering BCVA.

It is clear that the pricing formulas with UCVA takes form of a risk-free
price adjusted by an always positive value, which we refer to as the CVA
value. The CVA value is interpreted as the risk premium required by the
bank due to the default riskiness of the counterparty.
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4 Valuing a general derivative with BCVA and risk-
free closeout

The approach from Sec. 3 is applied with the distinction that both the coun-
terparty and the bank are now considered to be default-risky. The default
time of the bank, τb, and the default time of the counterparty, τc, are both
modeled with the Cox-process set-up of Sec. 2 and are allowed to be corre-
lated. As discussed in [8], we are only concerned with the first of the two
possible defaults, since we assume the contract is terminated at this point.
For completeness, the two counterparties are also allowed to default simulta-
neously. We denote the “full information” of the risk-free rate as well as the
defaults and default-intensity drivers for both the bank and the counterparty
as

Ft = F c
t ∨ F b

t ∨ Gr
t .

This associated pricing formula from the point of view of b is

PBCVA
b (t, T) = EQ[Π(t, T) | Ft]

+ LbEQ
[
1{τb≤T,τb≤τc}e−

∫ τb
t rsdsΠ(τb, T)−

∣∣∣∣Ft

]
− LcEQ

[
1{τc≤T,τc≤τb}e−

∫ τc
t rsdsΠ(τc, T)+

∣∣∣∣Ft

]
. (C.4)

Here the BCVA pricing formula takes the form of a risk-free contract value,
added a positive adjustment from the default-risk of b and subtracted a pos-
itive adjustment yielding from c’s default-risk. The adjustment from the
default-risk of the pricing entity, b, is referred to as the Debit Value Adjust-
ment (DVA) and is interpreted as the risk premium the counterparty requires
due to the risk of the bank defaulting. The adjustment from the default-risk
of the counterparty is, as in the UCVA case, referred to as the CVA, which is
the value the bank requires due to the default riskiness of its counterparty.

Note that Eq. (C.4) is consistent with the UCVA pricing formula in Eq. (C.3)
in the sense that if we let the bank be default free such that it holds almost
surely that τb > T and τb > τc, then the formula reduces to Eq. (C.3).

5 Valuing a general derivative with BCVA and re-
placement closeout

As stated in Sec. 3 risk-free closeout was the conventional choice after the
credit crisis. However, in [6] an alternative closeout type is introduced: The
replacement closeout. Essentially replacement closeout assumes that when
valuing the closeout after a default event, the defaulted counterparty is seen
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as risk-free, whereas the surviving party is seen as defaultable. The closeout
convention is also described as valuing the contract from the point of view of
a risk-free party, taking the position of the defaulted counterparty in the con-
tract. The argument in replacement closeout is that since the new (risk-free)
counterparty would not neglect the risk of the surviving party defaulting
before the contract matures, this should not be neglected when valuing the
contract at closeout.

Here we apply the framework for risk-free closeout in Sec. 4, but with
a distinction in the closeout value of the derivative contract upon default at
τ1 = inf{τb, τc} given τ1 ≤ T. With risk-free closeout, this value is simply

EQ
[
Π(τi, T)

∣∣∣F
τi

]
. However, with replacement closeout, the value is found

by applying the formulas from Sec. 3 where the default-risky party is the
surviving party, i.e. the party that has not defaulted at τ1. The cash flows in
each possible default-scenario are then given by

τb > T, τc > T : Π(t, T)

τb ≤ T, τb < τc : Π(t, τb) + e−
∫ τb

t rsds
(

PUCVA
b,{c} (τb, T) + Lb(PUCVA

b,{c} (τb, T)
)−)

τc ≤ T, τc < τb : Π(t, τc) + e−
∫ τc

t rsds
(

PUCVA
b,{b} (τc, T)− Lc(PUCVA

b,{b} (τc, T)
)+)

τc = τb = τ ≤ T : Π(t, T) + e−
∫ τ

t rsds
(

LbΠ(τ, T)− − LcΠ(τ, T)+
)

,

The BCVA pricing formula is then given by

PBCVA
b (t, T) = EQ

[
Π(t, T)− 1{τb≤τc≤T}LcEQ

[
e−
∫ τc

t rsdsΠ(τc, T)+
∣∣∣∣Fτb

]
+ 1{τc≤τb≤T}LbEQ

[
e−
∫ τb

t rsdsΠ(τb, T)−
∣∣∣∣Fτc

]
+ 1{τb≤T,τb<τc}Lbe−

∫ τb
t rsds

(
PUCVA

b,{c} (τb, T)
)−

− 1{τc≤T,τc<τb}Lce−
∫ τc

t rsds
(

PUCVA
b,{b} (τc, T)

)+ ∣∣∣∣Ft

]
.

In the formula, the value of the corresponding risk-free valuation,
EQ[Π(t, T) | Ft], originates from the first term of states one and four along
with the first two terms of states two and three, whereas the remaining terms
in the fourth scenario is incorporated through the non-strict inequalities in
the case that both counterparties default prior to contract termination.
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6 CDS contracts

A Credit Default Swap (CDS) is a derivative, which is constructed as an instru-
ment that allows one to recover parts of a possible loss due to counterparty
default. Thus a CDS can be seen as an insurance contract against losses due
to a default event. A CDS can be specified as with several underlying enti-
ties whose default can trigger the CDS recovery payment, however we only
consider single name CDS which are used to hedge exposure due to the credit
riskiness of a single counterparty.

We consider a receiver CDS contract on a single-name, which means that
there is only one reference credit. Moreover, we will only consider CDSs with
an underlying reference credit, and thereby the reference is not specifically
a bond or another security, but the issuer itself. Since we consider receiver
CDSs, we are approaching the valuation as the party selling protection against
such a default of a counterparty, and thereby our counterparty is buying pro-
tection.

In this paper, CDSs are of crucial importance since these are traded assets
that give information about the market-expected default probabilities of an
entity. Calibration of the parameters associated with a specific Cox-process
for the default intensity of an entity is done by matching the default (or
equivalently survival) probabilities with those implied by the market, which
are extracted from market-quotes on CDS contracts.

6.1 Formulation of the CDS and its cash flows

In this section, we mostly adopt the notation from [9], but we modify some
parts to keep consistency in the text. Moreover, we aim to construct a more
flexible set-up that allows not only for pricing at initialization and resettle-
ment dates, as is the case in [9], but at any time before or during the lifespan
of the CDS. This extension allows for the framework to be used both for
pricing CDS options and for hedging purposes. The CDS has an annual-
ized premium S, called the CDS spread, which is the annualization of the
amount paid at every resettlement date for the protection. We consider a
CDS that is initialized at time Ta and matures at time Tb, and we denote the
resettlement dates as T1, . . . , Tn where T1 ≥ Ta and Tn ≤ Tb. We denote the
distance between two consecutive periods (in yearly terms) by αi = Ti − Ti−1
for i = 1, . . . , n, with the convention T0 = Ta.

We define two functions that can be used to find the following and pre-
vious resettlement date of a CDS at any time. We define γ(t) as the index
for the first resettlement date after time t provided this exists and n + 1 if t is
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after the last resettlement date. Thus

γ(t) =

{
inf{i ∈ N : t ≤ Ti, 1 ≤ i ≤ n}, if t ≤ Tn

n + 1, if t > Tn

Moreover, we define ζ(t) as the index for the last resettlement date before
time t or zero if this resettlement date does not exist, i.e. t is before the first
resettlement date.

ζ(t) =

{
sup{i ∈ N : t ≥ Ti, 1 ≤ i ≤ n}, if t ≥ T1

0, if t < T1

Lastly, we denote the time of default of the reference credit as τr. In the
case that the reference credit defaults before the CDS maturity, τr < Tb, the
protection will be paid. The protection amount depends on the contract, but
three common protections are a fraction of the notional, a fraction of the
value at τr of a risk-free bond maturing at time Tb and the realized loss at
default of a corporate bond issued by the defaulted entity. We define the full
protection amount paid at default as P(τr).

We now have the necessary definitions to characterize the discounted risk-
free cash flow structure of the CDS. By risk-free cash flows, we mean the cash
flows, disregarding the counterparty credit risk, i.e. the only entity assumed
to be defaultable is the reference credit. These cash flows are specifically
important for calibration purposes since a CDS that is traded on an exchange
(assuming the market is liquid) or through a clearing house can be considered
as a contract where we only have a defaultable reference credit. The risk-
free cash flows are discounted by the risk-free discount-factor, and thereby
this discounted risk-free cash flow structure is equivalent to the Π-function
introduced in Sec. 3–5. The cash flow is split up into three terms; the payment
of the CDS premium S, the payment of the protection upon default of the
reference credit, and payment of the accrued interest of the next premium
payment, if the default happens between two resettlement dates. We want
to present the function Π(u, v) for any u < Tb and v > T1, such that this
function can be utilized in the framework presented in Sections 4 and 5. The
three terms of the cash flow are analyzed separately in the following.

Premium payment. At each resettlement date, the premium S is paid, pro-
vided the reference credit has not defaulted at this time. The first pay-
ment occurs at the first resettlement date following u, and the last pay-
ment occurs at the last resettlement date prior to v, i.e. Tγ(u) and Tζ(v).
Each of these payments are discounted to time u, which yields the fol-
lowing cash flow

Premium(u, v) =
ζ(v)

∑
i=γ(u)

Sαie−
∫ Ti

u rtdt1{τr>Ti}. (C.5)
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Since the premium S is annualized it is multiplied by αi, which is the
time since the last resettlement date (or since initialization for i = 1).

Protection payment. The protection payment is a (potentially) one time trans-
action. Upon default, the protection seller has promised to pay some
specified amount that may be constant, but that may also depend on
the realized recovery at default of the reference credit. The protection
amount is conventionally the difference between the face value of the
underlying defaultable bond and the realized recovery on the corporate
bond at default of the reference credit, see [3, p. 21]. The protection
payment will only be in the considered u, v time period under certain
conditions. In general for the protection to be paid, the default must
happen during the CDS’s lifetime, i.e. Ta < τr ≤ Tb. Moreover it must
hold that u ≤ τr ≤ v for the payment to be in the considered time
period of cash flows. Thereby, the discounted protection payment is

Protection(u, v) = −e−
∫ τr

u rtdtP(τr)1{max{u,Ta}≤τr≤min{v,Tb}} (C.6)

Note that this cash flow is negative, as we are taking the role as protec-
tion sellers.

Accrued interest. Conventionally it is required of the protection buyer to pay
an accrued interest on the next (non-realized) premium payment to the
protection seller, if the reference credit defaults between two resettle-
ment dates, see [3, pp. 21-22]. The accrued interest is the most difficult
part of the cash flow to construct, and thus we build up by first con-
sidering a simplified scenario, and subsequently adjusting for the more
complex scenarios. The initial scenario we consider is where u < T1
and v > Tn. This means that all resettlement dates are included in the
time interval considered. In this case the discounted accrued interest
takes the form

Se−
∫ τr

u rtdt
n

∑
i=1
1{Ti−1<τr≤Ti}(τ

r − Ti−1), given u < T1, v > Tn.

In the above equation, we have used the notation T0 = Ta, such that
default of the reference credit between Ta and the first resettlement date
T1 will result in an accrued interest on the T1-payment of the premium.
Note that τr − Ti−1 should be seen as the fraction (in years) between the
default and the previous resettlement date, and since S is annualized,
this fraction multiplied by S exactly corresponds to the accrued interest
paid at the time of default.

Generalizing the above, we use the definition of Tγ(t) and Tζ(t) as the
resettlement dates directly before and after time t, provided t is between
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two resettlement dates. Therefore we can let the sum start at γ(u) and
end at ζ(v), which means that if u is below T1 the sum will begin at
one and if v is greater than Tn the sum ends at n. Simultaneously we
can have u or v (or both) be between two resettlement dates, and the
sum will only consider the accrued interest beginning from the first
resettlement date after u and ending with the last resettlement date
before v, thus not considering accrued interest on premium payments
that are not in the considered time period. The more difficult situations
are where u ≤ v < T1 or Tn < u ≤ v. In these two scenarios, the
summation will be from 1 to 0 and from n + 1 to n, respectively. Here
we have to use the notion that ∑k

i=k+1( · ) = 0 for any integer k. Note
that for any choice of u = v ∈ [t, ∞) this notion also makes sure that the
accrued interest term is zero. The resulting cash flow for the accrued
interest between time u and v is

Accrued(u, v) = Se−
∫ τr

u rtdt
ζ(v)

∑
i=γ(u)

1{Ti−1<τr≤Ti}(τ
r − Ti−1). (C.7)

Collecting the results in Eqs. (C.5), (C.6), and (C.7), the risk-free discounted
cash flows of the CDS are given by

ΠCDS(u, v) =
ζ(v)

∑
i=γ(u)

S
(
αie−

∫ Ti
u rtdt1{τr>Ti} + e−

∫ τr
u rtdt1{Ti−1<τr≤Ti}(τ

r − Ti−1)
)

− e−
∫ τr

u rtdtP(τr)1{max{u,Ta}≤τr≤min{v,Tb}}

Note that when pricing a CDS at initialization, i.e. t = Ta, this cash flow
structure corresponds to [10, Eq. (2.2)] and [3, p. 22]. However, t 6= Ta is an
important case when considering model calibration due to the CDS quoting
mechanism, explained in Sec. 8.

6.2 Valuing a risk-free CDS

CDS valuation without taking into account the credit risk of the entities en-
tering the CDS serves an important role in all aspects of reduced form credit
risk modeling. We call this type of CDS a risk-free CDS. When a CDS is ei-
ther traded on a stock-exchange or cleared through a central clearing house,
the two parties entering the CDS can disregard credit risk of their individual
counterparty, due to collateralization and guarantee from the central clearing
house/stock-exchange. The only defaultable entity we consider in this case is
the reference credit, and the cash flows in the CDS are only dependent on the
time of the first credit event of the reference credit. When considering CDS
quotes from either a stock-exchange or a central clearing house, we thereby
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allow for calibration of the default intensities separately for each entity, pro-
vided this type of data is available. For a discussion of calibration of default
intensities to market data, see [3, pp. 23-24].

This section serves as a building block for calibrating default intensities to
CDS quotes. In this section no model is assumed for the default intensity of
the reference credit, it is only assumed that we are in the Cox-process set-up.
Later we exemplify using CIR-models for the default intensities.

Using the payoff-structure of the CDS, the value of a risk-free CDS at time
t with initialization Ta, maturity Tb and resettlement dates T = (T1, . . . , Tn)
can be expressed as

VCDS(t; Ta, Tb, T) = E
Q
t

[
ΠCDS(t, Tb)

]
= E

Q
t [Premium(t, Tb) + Protection(t, Tb) + Accrued(t, Tb)]

where the three terms of the Π-function are given in Eq. (C.5), (C.6) and (C.7).
We will now look at each of these terms separately, and obtain equations for
their expectations in the Cox-process set-up. Firstly we consider the premium
payment.

E
Q
t [Premium(t, Tb)] = E

Q
t

 ζ(Tb)

∑
i=γ(t)

Sαie−
∫ Ti

t rudu1{τr>Ti}


= S

n

∑
i=γ(t)

αiE
Q
t

[
e−
∫ Ti

t rudu1{τr>Ti}

]

= S
n

∑
i=γ(t)

αiE
Q
t

[
e−
∫ Ti

t (ru+λr
u)du

]
.

For the protection payment, we have to go back to the conditional distribu-
tion of τr found in Eq. (C.1) in Sec. 2. In that section, we find the probability
density function for τi|G i

T , T > t, for some entity i, where we recall that G i

is the σ-algebra generated by all factors driving the λi process. The Cox-
processes start at time t, and it is assumed that no credit event has happened
up to and including t, since a credit event will ruin the motivation for pric-
ing. This means that we have conditioned on knowing Hi

t and that default of
i has yet to happen, where Hi is the σ-algebra generated by the event-process
{τi > s}s≥t. To calculate the value of the protection payment, we need the
distribution of τr|Gref

Tb
∨Href

max{t,Ta}, since knowledge about the default up to
time max{t, Ta} is necessary when using the law of iterated expectations on
the indicator function 1{max{t,Ta}≤τr≤Tb}. Note the superscript “ref” is used
for the σ-algebras that are connected to the reference credit, to avoid con-
fusion with those connected to the risk-free rate. If t ≥ Ta, we are pricing
the CDS when or after it is initialized, and at the time of pricing we have
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the knowledge that the reference credit has not yet defaulted (otherwise the
CDS is a redundant derivative with price zero). In this case, we can carry
on, as usual, using the density in Eq. (C.1). If on the other hand t < Ta, we
aim at pricing a CDS which is initialized at a future time; a relevant scenario
when pricing CDS options. In this case we need to adjust for the fact that
the only relevant time period for the default to occur is between Ta and Tb.
Here there are two scenarios; either the reference credit defaults in the time
period between t and Ta in which case the CDS is worthless at initialization
or the reference credit defaults in the time period [Ta, ∞). Given Ta ≤ τr the
conditional stopping time τr|Gref

Tb
∨ Href

Ta
has the density of Eq. (C.1) with t

replaced by Ta and T replaced by Tb, whereas given the opposite, τr < Ta,
the density is not of interest since the CDS has value zero. This proves itself
useful in rewriting the expected protection payment:

1{t<Ta}E
Q
t

[
e−
∫ τr

t ruduP(τr)1{Ta≤τr≤Tb}

]
= 1{t<Ta}E

Q
t

[
EQ
[

e−
∫ τr

t ruduP(τr)1{Ta≤τr≤Tb}

∣∣∣∣ Gr,ref
Tb
∨Href

Ta

]]
= 1{t<Ta}E

Q
t

[
1{Ta≤τr}

∫ Tb

Ta
e−
∫ v

t ruduP(v)λr
ve−

∫ v
Ta λr

ududv
]

= 1{t<Ta}E
Q
t

[
EQ
[
1{Ta≤τr}

∣∣∣ Gr,ref
Tb
∨Href

t

] ∫ Tb

Ta
e−
∫ v

t ruduP(v)λr
ve−

∫ v
Ta λr

ududv
]

= 1{t<Ta}E
Q
t

[
EQ
[
1{Ta≤τr}

∣∣∣ Gr,ref
Ta
∨Href

t

] ∫ Tb

Ta
e−
∫ v

t ruduP(v)λr
ve−

∫ v
Ta λr

ududv
]

= 1{t<Ta}E
Q
t

[
e−
∫ Ta

t λr
udu

∫ Tb

Ta
e−
∫ v

t ruduP(v)λr
ve−

∫ v
Ta λr

ududv
]

= 1{t<Ta}E
Q
t

[∫ Tb

Ta
λr

ve−
∫ v

t (ru+λr
u)duP(v)dv

]
The only change in the above formula when t ≥ Ta (and t ≤ Tb) is that the
integration is from t to Tb instead of from Ta to Tb. Hereby it is possible to
characterize the expected protection payment as

E
Q
t [Protection(t, Tb)] = −EQt

[∫ Tb

max{t,Ta}
λr

ve−
∫ v

t (ru+λr
u)duP(v)dv

]
The same trick as in the above is used to calculate the expected accrued
interest since this relies on a sum of terms each containing an event of the
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type Ti−1 < τr ≤ Ti.

E
Q
t [Accrued(t, Tb)] = E

Q
t

Se−
∫ τr

t rudu
ζ(Tb)

∑
i=γ(t)

1{Ti−1<τr≤Ti}(τ
r − Ti−1)


= S

n

∑
i=γ(t)

E
Q
t

[
e−
∫ τr

t rudu1{Ti−1<τr≤Ti}(τ
r − Ti−1)

]

= S
n

∑
i=γ(t)

E
Q
t

[∫ Ti

Ti−1

λr
ve−

∫ v
t (ru+λr

u)du(v− Ti−1)dv
]

= SEQt

[∫ Tn

Tγ(t)−1

(v− Tγ(v)−1)λ
r
ve−

∫ v
t (ru+λr

u)dudv

]

The following equation sums up the results and provides a general formula
for calculating the value of a CDS at any time t ≤ Tb.

VCDS(t; Ta, Tb, T) = S
n

∑
i=γ(t)

αiE
Q
t

[
e−
∫ Ti

t (ru+λr
u)du

]

−EQt
[∫ Tb

max{t,Ta}
λr

ve−
∫ v

t (ru+λr
u)duP(v)dv

]
+ SEQt

[∫ Tn

Tγ(t)−1

(v− Tγ(v)−1)λ
r
ve−

∫ v
t (ru+λr

u)dudv

]
(C.8)

Independence and regularity of payments

Here we present CDS pricing under some assumptions usually made when
calibrating default intensities to CDS market data from an exchange or a
central clearing house. It is assumed that the protection is a constant frac-
tion (corresponding to the expected loss-given-default) of the corporate bond
price on the reference credit. In fact according to [3, pp. 23-24], the market
spreads are usually found this way using a constant recovery, which is quoted
and very irregularly updated. Therefore we want to find market quotes that
include a quoted constant recovery, such that the CDS value in Eq. (C.8) is
only used to calibrate the λr process along with its possible correlation to the
risk-free rate. The risk-free rate itself is calibrated to market data on e.g. the
overnight interest rate swap (OIS) in the considered currency issued by e.g.
a central bank.

Moreover, it is assumed that the CDS contract has equidistant premium
payments, i.e. αi = α ∀i, that the time between initialization and the first
payment is α, i.e. T1 = Ta + α, and that the last payment is at contract
termination, Tb = Tn. Lastly, a usual assumption is that the risk-free rate
and the default intensities are independent, which simplifies the situation
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considerably. In [11] this assumption is only used in the CDS calibration,
and a correlation structure is found afterwards. The argument in [11] for this
approach is that when using the CIR++ model for both risk-free rates and
default intensities, this correlation does not affect the value of the CDS. A
case study of parameters is used to confirm this claim.

Under these assumptions, the CDS price at initialization is given by

VCDS(Ta; Ta, Tb, T) = Sα
n

∑
i=1

D(Ta, Ti)E
Q
Ta

[
e−
∫ Ti

Ta λr
udu
]

(C.9)

− P
∫ Tb

Ta
D(Ta, v)EQTa

[
λr

ve−
∫ v

Ta λr
udu
]
dv

+ S
∫ Tb

Ta
(v− Tγ(v)−1)D(Ta, v)EQTa

[
λr

ve−
∫ v

Ta λr
udu
]
dv

where T = (Ta + α, . . . , Tb − α, Tb) and

D(u, v) = E
Q
u

[
e−
∫ v

u rudu
]
, for v ≥ u,

is the zero coupon bond price with the risk-free rate as the underlying. In
order to obtain an analytic expression for this value, it is clear that we need
analytic expressions for a zero coupon bond with the risk-free rate as the
underlying as well as a similar derivative with the default intensity as the
underlying. Moreover an analytic expression of

E
Q
Ta

[
λr

ve−
∫ v

Ta λr
udu
]

is necessary in order to obtain an exact analytic pricing formula for the CDS.
In Sec. 7.2 it is shown how to avoid this expectation for calibration pur-

poses.

7 Modeling risk-free interest rates and default in-
tensities

Models for pricing counterparty credit risk in CDS contracts have different
properties.

In [11] a Shifted Square Root Diffusion (SSRD) Model is introduced. The
SSRD model ensures positivity in the process, which makes the model fea-
sible to treating both the risk-free interest rates and default intensities for
different entities.

In [5] the case of CVA with CIR++ processes for the default intensities
of both the reference credit and the counterparty is considered. The interest
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rates and recovery rates are assumed constant, and the pricing entity is as-
sumed default-free (thus we are in the UCVA pricing framework). The corre-
lation between the reference credit and the counterparty is modeled through
a Gaussian copula.

In [9] a BCVA extension of [5] is provided. The authors propose a General
bilateral counterparty risk pricing formula and provides a proof for this formula
in the paper’s appendix. Further they specify the pricing formula for receiver
CDS in which default intensities (for the pricing entity, the counterparty and
the reference credit, respectively) are modeled as CIR++ models with jumps.
The default intensities are modeled through a trivariate Gaussian copula. The
risk-free interest rate is assumed deterministic, as are the recovery rates of the
pricing entity and the counterparty. Further the paper provides a numerical
example and pseudo code with real data.

We limit our experiments to a CIR++ model, due to simplicity in the cal-
ibration and due to the closed-form expressions of the relationship between
Q and P parameters that are important for the estimation of the market price
of risk in Sec. 9.

7.1 Model calibration through implied survival probabilities
and implied hazard rates

This section follows the idea of [1, pp. 66-69] and [12, pp. 731-735 and
764-776]. It is rewritten using our notation, and to fit our purpose, with
several extra details and comments. Note that the first part of this section is
model-independent. In this approach to model calibration, we assume that
the model provides survival probabilities in closed form. Specifically, we
apply the approach to the CIR-model, however the method’s application is
not limited to the CIR-model.

Firstly, we express the value of a CDS using the formula in (C.9), rewritten
using Theorem 2 on page 108:

VCDS(Ta; Ta, Tb, T) = Sα
n

∑
i=1

D(Ta, Ti)E
Q
Ta

[
e−
∫ Ti

Ta λr
udu
]

(C.10)

+ P
∫ Tb

Ta
D(Ta, v)

∂

∂v

(
E
Q
Ta

[
e−
∫ v

Ta λr
udu
])

dv

− S
∫ Tb

Ta
(v− Tγ(v)−1)D(Ta, v)

∂

∂v

(
E
Q
Ta

[
e−
∫ v

Ta λr
udu
])

dv,

where T = (Ta + α, . . . , Tb − α, Tb). Here we have assumed independence
between interest rates and the default intensity of the reference name. The
aim is to rewrite each of the three terms in Eq. (C.10) as expressions of
the conditional survival probability of the reference credit given the current

104



7. Modeling risk-free interest rates and default intensities

market information. The first term is trivial:

Term 1 = Sα
n

∑
i=1

D(Ta, Ti)E
Q
Ta

[
e−
∫ Ti

Ta λr
udu
]

= Sα
n

∑
i=1

D(Ta, Ti)Q
(
τr ≥ Ti

∣∣FTa

)
.

In the second term, the aim is to obtain an integral in the survival probability.

Term 2 = P
∫ Tb

Ta
D(Ta, v)

∂

∂v

(
E
Q
Ta

[
e−
∫ v

Ta λr
udu
])

dv

= P
∫ Tb

Ta
D(Ta, v)

d
dv
Q
(
τr ≥ v

∣∣FTa

)
dv

= P
∫ Tb

Ta
D(Ta, v)dQ

(
τr ≥ v

∣∣FTa

)
.

The third term is rewritten in the same manner as the second.

Term 3 = −S
∫ Tb

Ta
(v− Tγ(v)−1)D(Ta, v)

∂

∂v

(
E
Q
Ta

[
e−
∫ v

Ta λr
udu
])

dv

= −S
∫ Tb

Ta
(v− Tγ(v)−1)D(Ta, v)dQ

(
τr ≥ v

∣∣FTa

)
,

where S is the credit spread, P is the constant loss-given-default. D(s, t) is the
discount factor from time s to t for s ≤ t, which is interpolated from quotes
of zero-coupon bonds.

The function to be calibrated to CDS spreads is

S =
P
∫ Tb

Ta
D(Ta, v)dQTa(v)

α ∑n
i=1 D(Ta, Ti)QTa(v)−

∫ Tb
Ta
(v− Tγ(v)−1)D(Ta, v)dQTa(v)

, (C.11)

where Q̂a(v) = Q
(
τr ≥ v | FTa

)
.

Using the quoted CDS-spread, we need to extract survival probabilities
such that the above formula holds. This is done by considering the integrals
as Riemann-Stieltjes integrals in the survival probability and approximate
this numerically with Riemann-Stieltjes sums. We consider some discretiza-
tion {

t(i) : i = 0, 1, . . . , n, t(i) < t(i+1), t(0) = Ta, t(n) = Tmax
b

}
,

where Tmax
b is the largest maturity for all available CDS quotes on the refer-

ence name. Then {
Qmkt

(
τr > t(i)

∣∣∣FTa

)
: t(i) ≤ 1y

}
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is calibrated using the 1-year CDS quote. Next{
Qmkt

(
τr > t(i)

∣∣∣FTa

)
: 1y < t(i) ≤ 2y

}
is calibrated to the 2-year CDS quote, and so forth. Note, we use the nota-
tion Qmkt for the survival probabilities implied by the market to be able to
distinguish these from the model survival probabilities.

Similarly, we can consider the implied hazard rates, using the implied
survival probabilities by the formula

Qmkt(τr > s
∣∣FTa

)
= e−Γmkt(s;Ta), for all s > t.

Here Γmkt(v; u) is the function representing the integrated implied hazard
rates from time u to time v for all v > u ≥ Ta. Specifically

Γmkt(s; Ta) =
∫ s

Ta
λmkt

u du, for all s > Ta. (C.12)

Turning to the model survival probabilities, we have assumed that these take
on a closed form. We denote the parameter vector for the model Θ and use
the following notation for the survival probabilities generated by the model:

P(Ta, s, Θ) = Qmodel(τr > s
∣∣FTa

)
= E

Q
Ta

[
e−
∫ s

Ta λr
udu
]
.

Now, we can express the function that is used for calibration; we wish to
calibrate model parameters such that the model and market survival proba-
bilities agree, i.e.

Γmkt(s; Ta) = − ln (P(Ta, s, Θ)) (C.13)

Assuming the discretization used for the Riemann–Stieltjes integrals is rea-
sonable and gives a good approximation, it is observed that the model CDS
spreads will agree with the quoted CDS spreads, if the default intensities for
the model agree with those implied from the quotes. Thus we change the
problem of calibrating model CDS spreads to quotes to the problem of calibrat-
ing model survival probabilities to implied survival probabilities.

One problem that needs to be addressed: Implied hazard rates from CDS
quotes will only yield information on the integrated hazard rates and not the
instantaneous ones. This means that one needs to choose to either consider
these constant or linear on each interval – both cases considered in [12] – or
use interpolation to obtain intermediate values. [3, pp. 23-25] consider only
the case of piecewise constant hazard rates, i.e. they assume

λmkt
u =

{
λmkt

γ(u), if u ≤ Tn

λmkt
Tn

, if u > Tn.
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Thus Eq. (C.12) simplify to

Γmkt(s; Ta) =
ζ(s)−1

∑
i=0

αλmkt
Ti+1

+ (s− Tζ(s))λ
mkt
Tζ(s)+1

and the implied survival probabilities can easily be translated into implied
hazard rates. The above formulas use the functions γ and ζ as defined in Sec.
6.1.

7.2 The CIR++ model

We consider the CIR++ model, presented in [12], which is a shifted CIR model
defined by:

λt = xt + φt

dxt = κ(θ − xt)dt + σ
√

xtdwt, x0 = x (C.14)

where the φt is a non-negative deterministic function added to ensure that
the calibration fits the data exactly. The parameters κ, θ, σ are all required to
be non-negative, and the Feller condition 2κθ > σ2 must be satisfied in order
to secure that the state variable x is positive. The ws are Wiener-processes
under the Q-measure.

The SDE in Eq. C.14 has the following analytic expression and conditional
mean and variance

xt = e−κ(t−s)xs + θ
(

1− e−κ(t−s)
)
+ σ

∫ t

s
e−κ(t−u)√xudwu,

EQ
[

xt

∣∣∣ G i
s

]
= e−κ(t−s)xs + θ

(
1− e−κ(t−s)

)
VQ
[

xt

∣∣∣ G i
s

]
= xs

σ2

κ

(
e−κ(t−s) − e−2κ(t−s)

)
+

σ2θ

2κ

(
1− e−κ(t−s)

)2

When calibrating data to CDS spreads, two conditional expectations are
of specific interest

E
Q
t

[
e−
∫ T

t λudu
]
= e−

∫ T
t φuduE

Q
t

[
e−
∫ T

t xudu
]

(C.15)

E
Q
t

[
λTe−

∫ T
t λudu

]
= φTe−

∫ T
t φuduE

Q
t

[
e−
∫ T

t xudu
]
+ e−

∫ T
t φuduE

Q
t

[
xTe−

∫ T
t xudu

]
Therefore we want to analyze the two resulting expectations of the CIR pro-
cess

E
Q
t

[
e−
∫ T

t xudu
]

and E
Q
t

[
xTe−

∫ T
t xudu

]
. (C.16)
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We observe that the first expectation in Eq. (C.16) is equivalent to a bond
price when using a CIR model for the short-rate. To obtain the solution to
the bond price, we introduce three functions of the time to maturity

a(τ) = 2h e
1
2 (κ+h)τ , b(τ) = 2

(
ehτ − 1

)
, and c(τ) = 2h + (κ + h)

(
ehτ − 1

)
.

and two constants

h =
√

κ2 + 2σ2 and α = 2κθ
σ2 .

Using the above concepts, the bond price according to [12, p. 66] is

PCIR(t, T, xt; κ, θ, σ) = E
Q
t

[
e−
∫ T

t xudu
]
= A(t, T)e−B(t,T)xt , (C.17)

where

A(t, T) =
[

a(T − t)
c(T − t)

]α

and B(t, T) =
b(T − t)
c(T − t)

.

For the calculation of the second mean in (C.16), we need the following two
theorems, where Theorem 1 is a subresult of the well known the Fubini-
Tonelli theorem3 and Theorem 2 is a self-constructed theorem by the authors.
We remark that this theorem plays an important role in model calibration,
and is used to find implied survival probabilities and implied default inten-
sities, as described in Section 7.1.

Theorem 1 (A result from the Fubini-Tonelli theorem). Let (X,F , µ) and
(Y,G , ν) be measure spaces, and µ and ν be finite measures. Let f : X × Y → R be
a non-negative function that is measurable wrt. the product σ-algebra F ⊗ G . Then∫

X

∫
Y

f (x, y)dν(y)dµ(x) =
∫

Y

∫
X

f (x, y)dµ(x)dν(y).

Theorem 2 (Changing the order of expectation and differentiation).
Let (Ω, F , Q, F̄ ) be a probability space with the filtration F̄ = {Ft}t≥0. Let
F : R+ ×Ω → R be differentiable in the first variable. Further let ∂

∂T F(T, ω) =
f (T, ω) be an F̄ -measurable function, i.e. given ω ∈ Ω, f (T, ω) ∈ FT for T ≥ 0.
If f (T, ω) is non-negative for all T ∈ R+ and all ω ∈ Ω, then

E
Q
t

[
∂

∂T
F(T, ω)

]
=

∂

∂T
E
Q
t [F(T, ω)]. (C.18)

3Theorem 1 is based on the Fubini-Tonelli theorem as stated in [13, pp. 77–78] and [14, p.
477].
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Proof. The proof takes its initial point in right-hand-side of (C.18) by writing
a difference of a finite step of length h ∈ (0, ∞);

E
Q
t [F(T + h, ω)]−EQt [F(T, ω)] = E

Q
t

[∫ T+h

T
f (s, ω)ds

]
=
∫ T+h

T
E
Q
t [ f (s, ω)]ds,

where the last equality is obtained by using Theorem 1 on f (s, ω), which is
allowed due to the assumptions that f (s, ω) is non-negative and measurable
wrt. Fs ⊗ B([0, s]) for all s ≥ 0, where B( · ) denotes the Borel measure.
The proof is completed by dividing with h on both sides of the equality and
letting h→ 0.

Using Theorem 2, we get the following result for the second expectation of
(C.16).

E
Q
t

[
xTe−

∫ T
t xudu

]
= E

Q
t

[
− ∂

∂T
e−
∫ T

t xudu
]
= − ∂

∂T
E
Q
t

[
e−
∫ T

t xudu
]

= −∂A
∂T

(t, T)e−B(t,T)xt + A(t, T)
∂B
∂T

(t, T)xte−B(t,T)xt

=

(
α

(
c′(T − t)
c(T − t)

− κ + h
2

)
+

2h b′(T − t)xt

c(T − t)2

)
A(t, T)e−B(t,T)xt .

Note that here we only present the initial formula used and the result, since
rewriting the expressions are rather long and tedious.

The derivative of the bond price is hereby seen to be a known, com-
putable, function of time to maturity and current value of the stochastic pro-
cess x multiplied by the bond price itself.

8 Calibration to market data

Here, we change the notation such that the CDS is dependent on the quoted
CDS spread. We denote the quoted spread of a CDS with initialization Ta and
maturity Tb as Sa,b, and the value of such a CDS at time t as VCDS(t; Ta, Tb, T ,
Sa,b).

The loss-given-default of the reference credit is assumed constant equal to
0.4, and will take on the role as the constant protection rate in Sec. 6.2. Note
that all data considered in this paper, described in Sec. 8.1, are based on the
assumption that loss-given-default is 0.4.

In the market, CDS spreads have formerly been quoted in the following
way. At time Ta the contract has value zero, i.e.

VCDS(Ta; Ta, Tb, T , Sa,b) = 0.
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Note that the spread Sa,b is the mid-spread, and is often found through the
bid- and ask quotes obtained from the market. All market quotes are set such
that the contract initialization is on the day of the quote and the maturities are
a fixed set of tenors e.g. Tb ∈ {1, 2, 3, 4, 5, 7, 10} year(s). The contract length is
kept constant in the market such that at time Ta + x day(s) the quoted spread
corresponds to a contract maturing at Tb + x day(s). In other words, the
quoted 1-year CDS spread will always correspond to a CDS with one year to
maturity at the time the spread is quoted. If the reference credit experiences
a default event, the CDS spread is no longer quoted.

According to [15, p. 8], the quoting mechanism has changed such that
the maturity date stays fixed and the CDS corresponding to the quotes at
Ta + x day(s) is x day(s) “closer” to the maturity date than the quotes at Ta.
When the quoted contracts reach the maturity date, a new set of tenor dates
is determined. Thus it is of great importance to know exactly what kind of
data are available.

8.1 Bloomberg CDS data

We consider so-called single-name GCDS data from Bloomberg. A GCDS is
a CDX-tranch with a bond as the underlying, and thus a single-name GCDS
is equivalent to a CDS on a bond. We use only CBGN-quotes, i.e. the closing
quotes from BBG, New York,4 and consider all available tenors, which are
1, 2, 3, 4, 5, 7, and 10 years. We restrict the data analysis to the following 6
names within the financial sector; the name in parenthesis is used to shorten
the notation throughout the analysis:

• Goldman Sachs Group Inc/The (GSachs)

• Citigroup Inc (Citi)

• JPMorgan Chase & Co (JPMorgan)

• Bank of America Corp (BoAmerica)

• Bear Stearns Cos LLC/The (BStearns)

• Lehman Brothers Holdings Inc (Lehman)

The data on all names are from January 27, 2005 to January 28, 2015. The
number of observations and the number of NA’s in the data for each name
and tenor is displayed in Tab. C.1 and C.2. The following is observed

• The number of observations for Lehman Brothers and Bear Stearns is
quite low, due to a high number of NA’s after the default in the two
companies in 2008

410 sources (exchanges) of GCDS quotes are available in Bloomberg, 4 of which can only be
viewed in the Bloomberg terminal and cannot be exported.
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• The tenors 5 and 10 years are the most common across names, followed
by the tenors 1 and 3 years. The tenors 2 and 4 years have fewer obser-
vations, as well as fewer NA’s.

Tables C.3, C.4, C.5, and C.6 give some descriptive statistics of the data. We
observe that the data tend to be skewed to the right with high standard
deviations compared to the spreads’ means. Further, the spreads tend to be
leptokurtic.

Tenor

I II III IV V VII X

GSachs 2276 1587 2288 1572 2552 1911 2413
Citi 2277 1570 2320 1578 2594 1907 2411
JPMorgan 2236 1569 2296 1584 2599 1871 2226
BoAmerica 2247 1490 2275 1568 2589 1578 2389
BStearns 805 344 889 336 1157 661 782
Lehman 537 28 504 67 889 271 515

Table C.1: Number of observations

Tenor

I II III IV V VII X

GSachs 182 135 266 142 56 369 131
Citi 181 152 234 136 14 373 133
JPMorgan 222 153 258 130 9 409 318
BoAmerica 211 232 279 146 19 702 155
BStearns 1653 1378 1665 1378 1451 1619 1762
Lehman 1921 1694 2050 1647 1719 2009 2029

Table C.2: Number of NA observations

8.2 Assumptions and formulas for calibration to Bloomberg
data

In the following, we present our assumptions used to calibrate the model
to the GCDS data from Bloomberg. For the ISDA specifications of standard
corporate CDSs, we refer to [16] for European contracts and to [17] for North
American.

Loss-given-default The loss-given-default is assumed to be 40% of the cor-
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Tenor

I II III IV V VII X

GSachs 95.01 140.55 111.03 160.77 125.68 153.94 137.57
Citi 97.62 151.27 116.86 175.34 130.22 164.77 143.52
JPMorgan 36.86 60.50 54.73 84.25 74.17 93.22 89.14
BoAmerica 85.14 132.25 104.14 156.44 116.97 173.55 131.77
BStearns 80.68 115.22 76.34 116.20 75.73 95.21 89.49
Lehman 101.97 126.66 94.62 303.64 73.49 131.76 89.60

Table C.3: Mean values

Tenor

I II III IV V VII X

GSachs 113.39 104.62 100.47 88.83 91.37 84.91 84.51
Citi 148.41 141.21 124.60 114.24 112.38 103.21 99.61
JPMorgan 38.41 37.16 40.05 34.76 42.07 39.18 43.39
BoAmerica 113.81 111.66 101.58 92.72 95.19 79.74 89.48
BStearns 109.77 46.95 85.00 38.54 70.89 67.46 59.46
Lehman 191.76 36.18 142.39 134.38 91.69 107.77 82.73

Table C.4: Standard deviations

porate bond price on the reference credit. Thus that the constant pro-
tection rate on the CDS, P, is assumed to be 0.4.

Distance between premium payments is assumed to be a quarter of a year,
and is assumed to be equal for all consecutive premium payments; thus
α = 0.25. This assumption coincides with the ISDA specification for
both Europe and North America.

Reset dates i.e. the dates on which a new set of maturities are fixed, are
assumed to be the ISDA CDS dates; 20th of March, June, September,
and December of every year.

Maturity date is assumed to be a reset date.

First premium payment is assumed to be on the pricing date if this date
coincides with a reset date. If the pricing date is not a reset date, the
first premium payment is the first reset date after the pricing date. The
ISDA specifications are that all premium payments are paid on four
specific dates; 20th of March, June, September, and December.

Last premium payment is assumed to be on the maturity of the contract.
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Tenor

I II III IV V VII X

GSachs 1.79 1.24 1.26 1.09 1.00 0.75 0.81
Citi 2.91 2.12 1.94 1.77 1.47 1.07 0.82
JPMorgan 2.30 1.67 1.10 0.99 0.43 -0.05 0.10
BoAmerica 2.09 1.48 1.51 1.27 1.12 1.29 0.84
BStearns 4.03 1.48 3.44 0.90 2.67 2.51 2.88
Lehman 2.57 0.33 2.12 0.17 2.30 1.18 2.09

Table C.5: Skewness

Tenor

I II III IV V VII X

GSachs 5.86 3.97 4.08 3.51 3.65 3.38 3.38
Citi 12.70 8.17 7.84 7.06 6.30 5.33 4.25
JPMorgan 9.79 6.32 4.20 3.67 2.72 2.73 1.95
BoAmerica 6.86 4.45 5.02 4.17 4.14 4.25 3.56
BStearns 31.38 5.41 25.43 3.66 17.09 17.40 20.43
Lehman 9.10 1.93 6.96 3.35 8.51 4.09 7.55

Table C.6: Kurtosis (Normal distribution: 3)

Time to maturity on the pricing date is assumed to be T years for a T-year
CDS if the pricing date coincides with a reset date. If this is not the
case, the contract maturity is assumed to be the first reset date, which
is more than T years after the pricing date. In this way, a T-year CDS
will always have at least T years to maturity when it is traded, and it
will always have time to maturity strictly less than T + α.

Initialization of the contract is assumed to be on the first reset date prior to
the pricing date. If the pricing date coincides with a reset date, then
initialization is assumed to be on the pricing date.

Accrued interest on premium payments is assumed to start on the first ISDA
CDS date before the pricing date. Thus the period of accrual on the first
premium payment starts α before the actual quoting date.

Under these assumptions, we can add further details to Eq. (C.11), which
explains the relationship between the default probability of a CDS and the
quoted fair spread. For this purpose, we introduce two constant time steps:
The time from t to the first premium payment date is denoted δ. We use the
convention that δ is zero if the first premium payment occurs at time t; and
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the time lag between a default occurring and the settlement of the protection
and accrued interest, denoted ∆.

Let St,T denote the quoted CDS spread at time t for a T-year CDS. Eq.
(C.11) can then be written as:

St,T =
− f1 (Q( · ); t, Tb, 0.25, 0.4, ∆, D(t, · )))

f2(Q( · ); t, T, 0.25, D(t, · ))− f3(Q( · ); t, T, Tb, 0.25, ∆, D(t, · )) ,(C.19)

where Tb = t + T + δ by definition and

f1(Q( · ); t, Tb, α, P, ∆, D(t, · ))

= P
∫ Tb

t
D(t, v + ∆)

∂

∂v
Q(τr ≥ v | Ft)dv

f2(Q( · ); t, T, α, D(t, · ))

= α

T
α +1

∑
i=1

D(t, Ti)Q(τr ≥ Ti | Ft)

= α

T
α +1

∑
i=1

D(t, t + δ + (i− 1)α)Q(τr ≥ t + δ + (i− 1)α | Ft)

f3(Q( · ); t, T, Tb, α, ∆, D(t, · ))

=
∫ Tb

t

(
v− Tγ(v)−1

)
D(t, v + ∆)

∂

∂v
Q(τr ≥ v | Ft)dv.

Several remarks on these formulas are in order. Firstly, a few notes on two of
the function inputs: We use the input T as the time span from first to last pre-
mium payment in the contract, i.e. T = 1 for a 1-year CDS always. The input
Tb is used as the maturity date of the contract, and since the first premium
payment occurs at time t + δ and there is a time difference of T between the
first and last premium payments, we have Tb = t + δ + T. Note that the num-
ber of premium payments is always T/α+ 1 since the time distance from first
to last premium payment is T.

The accrual period in the integral is not from t to the possible default,
but starts at the first reset date prior to or at t. This means that if t is not a
reset date, a default occurring before the first premium payment date of the
contract will result in accrued interest of the missing premium from a time
step of (α − δ) before t until the time of default. This way of defining the
accrual period is exactly the ISDA specification of accrual for both European
and North American contracts.

Note that the formula for the spread presented in this section is in accor-
dance with the general CDS valuation formula in Eq. (C.8). In order to obtain
Eq. (C.8) we use the assumptions that

Ta =

{
t, if t is a reset date
t− (α− δ), otherwise
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that the maturity date is Tb = t+ T + δ, that there are T
α + 1 coupon payments

occurring at T = (T0, . . . , Tn) with Ti = t + δ + (i− 1)α for i = 0, . . . , n, and
lastly that the risk-free rate and the default intensity are independent.

8.3 ith tenor

We now consider n CDSs on the same reference credit, quoted on the same
date t, with different tenors. In the Bloomberg data, the tenors available are
1, 2, 3, 4, 5, 7, and 10 years. We denote the contracts in ascending order with
respect to the tenors, such that contract 1 has the smallest tenor and contract
n has the largest tenor. By assumption, δ is equal for all n contracts, since
they all have the same quoting date. Further α and the constant protection
fraction P are assumed equal for all contracts, and we assume that ∆ = 0, i.e.
the settlement of the CDS protection occurs exactly at the (possible) time of
default of the reference credit.

Consider the quote for the ith tenor with 1 ≤ i ≤ n. Let T(i) be the tenor
and T(i)

b = t + δ + T(i) the maturity of this contract. We assume that – since
we are currently considering tenor i – the implied survival probabilities are
calibrated (and can be applied in the formulas) up to time T(i−1)

b , where we

use the convention that T(0)
b = 0.

We denote the implied survival probabilities as Qt(s) for s ∈ [0, T(i)
b − t]

such that Qt(s) is used to approximate Q(τr ≥ t + s | Ft) and the derivative
of Qt(s) as Q̇t(s) for s ∈ [0, T(i)

b − t] such that Q̇t(s) is used to approxi-
mate ∂

∂sQ(τr ≥ t + s | Ft). Further we denote the discount factor to time s as
Dt(s) = D(t, t + s), and assume that these are known; for example, we have
calibrated the risk-free interest rate process from quoted OIS rates from a
central bank and have a closed-form solution of Dt(s) for all s ∈ [0, T(i)

b − t].
We discretize the integrals in Eq. (C.19), such that there are Nα ∈ N dis-

crete time periods between any two consecutive premium payments; thus
the discrete time step considered is ∆t = α/Nα. After discretizing the in-
tegrals, we approximate each integral on each of these time periods by the
trapezoidal rule. Note that this construction does not ensure that the time
between the quoting date and the first premium payment can be split into
“complete” consecutive discrete time steps each of length ∆t. Therefore we
force the first step in the discretization to be defined such that all other steps
have length ∆t. Let

Nδ = sup{j ∈ N0 : δ ≥ j∆t}.

The first step in the discretization then has length δ−Nδ∆t and the remaining
Nδ steps between t and t + δ are all “full” periods of length ∆t. With this
construction, the first discretization step has a length of 0 if δ = 0, i.e. if the
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quoting date coincides with a reset date. However, this does not have any
practical implications on the formulas presented below.

We define the total number of time periods in the discretization for the ith

contract as
N(i) = Nδ + 1 + T(i)

∆t = Nδ + 1 + T(i)

α Nα,

and denote the length of each time step in the discretization as

dk =

{
δ− Nδ∆t, for k = 1
∆t, for k = 2, . . . , N(i).

Thus we have the following discretization of the interval [0, T(i)
b − t] = [0, δ+

T(i)]:

DIS =
(
(0, d1], (d1, d1 + d2], (d1 + d2, d1 + d2 + d3], . . . ,

(δ + T(i) − dN(i) , δ + T(i)]
)

. (C.20)

The objective is now to construct a formula for calibrating implied survival
probabilities Qt(s) for s ∈ (T(i−1)

b − t, T(i)
b − t] to the quoted spread for the

ith tenor. We use the implied survival probability and its derivative obtained
from this calibration for smaller tenors (if i > 1), i.e. we treat Qt(s) and
Q̇t(s) for s ∈ [0, T(i−1)

b − t] as deterministic and known when considering the
quote for tenor i. We use the discretization and assumptions explained above
to construct such a formula from Eq. (C.19). Firstly, we need to approximate
the integrals in the functions f1 and f3 in Eq. (C.19).

Approximation of integrals

We apply the trapezoidal rule to approximate the two integrals in the func-
tions f1 and f3 in Eq. (C.19). Thereby we will evaluate the survival probability
at discrete time points, specifically the endpoints of the discretization inter-
vals presented in Eq. (C.20). Entry k in the approximation sum will evaluate
the survival probability in uk and vk which are defined to be the lower and
upper endpoint of the kth interval in Eq. (C.20). We have the intervals and
their endpoints defined as:

Ik = [d1 + (k− 2)dk, d1 + (k− 1)dk)

vk = sup Ik = d1 + (k− 1)dk

uk = inf Ik = d1 + (k− 2)dk = vk−1,
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where we use the convention that v0 = 0. The formula approximating the
integral in f1 is given by

f1 = P
∫ T(i)

b

t
D(t, v)

∂

∂v
dQ(τr ≥ v | Ft)dv

= P
∫ T(i)

b −t

0
Dt(v)

∂

∂v
dQ(τr ≥ t + v | Ft)dv

≈ P
d1

2
Dt(v0)Q̇t(v0) + P

N(i)−1

∑
k=1

dk + dk+1
2

Dt(vk)Q̇t(vk)

+ P
dN(i)

2
Dt(vN(i))Q̇t(vN(i)). (C.21)

For approximating the integral in f3 it is necessary to obtain the last pre-
mium payment date at any given vk for k = 0, 1, . . . , N(i). Specifically, we
need to evaluate the function v− Tγ(v)−1 at each of these points. At any time
before the first premium payment, the accrued interest on missing payments
may extend the time between quoting date and actual default; specifically,
this is extended by the time from the quoting date to the last reset date,
i.e. by α − δ. Therefore, during the time period prior to the first premium
payment, we have:

v− Tγ(v)−1 = α− δ + v− t, for all v ∈ [t, t + δ). (C.22)

This formula is used to approximate the integrand – by setting v− t = vk –
for all vk ∈ [0, δ) or equivalently for k = 0, 1, . . . , Nδ.

During the next periods, we need to ensure that the accrued interest is
only calculated wrt. the time since the previous reset date. We subtract δ in
the second period, δ + α during the third period, δ + 2α during the fourth
period and so forth. Thus for period j ∈ {2, . . . , T(i)

α + 1}, we can write

v− Tγ(v)−1 = (2− j)α− δ + v− t, (C.23)

for v ∈ [t+ δ+(j− 2)α, t+ δ+(j− 1)α). Eq. (C.23) is used in the approxima-
tion for all vk ∈ [δ + (j− 2)α, δ + (j− 1)α). If we approximate the function
f3 by summing the integrand yielding from Eq. (C.23) using the iterator
k = 1, . . . , N(i), it is necessary to identify the payment period in every entry
in the sum, due to the dependence in the accrual on the payment period j.
This requires a function to identify j based on k, which does not yield an el-
egant formulation of the approximated integral. A more elegant formulation
is obtained by changing the iterator in the sum from k to k′, where in the jth

payment period, we define k′ such that it satisfies

k =

{
k′, for j = 1
Nδ + (j− 2)Nα + k′, for j > 1

(C.24)
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The benefit of the k′ is that in all periods it will initiate at 1, and that it is
terminated at Nα in all but the first period. This allows the approximation
of the integral to be written as a double sum over the premium payments
and the k′ s, yielding independence of j in the approximation of the accrued
interest itself. The discounting and the implied survival probabilities still
depend on j, but the js are known due to the “outer” sum. For all j > 1,
substituting k with k′ yields

(2− j)α− δ + vk = (2− j)α− δ + d1 + (k− 1)dk

= (2− j)α− δ + (δ− Nδ∆t) + (Nδ + (j− 2)Nα + k′ − 1)∆t

= (2− j)(α− Nα∆t) + (k′ − 1)∆t

= (k′ − 1)∆t. (C.25)

Here d1 and dk are substituted directly from their definition using that since
j > 1 we have k > 1 and thus dk = ∆t for all values of k. Further Nα∆t = α
by the definition of Nα, and thereby the dependency of j disappear.

Lastly, we need to be aware what happens, when the accrued interest is
approximated on an interval that contains a premium payment. By construc-
tion, a premium payment occurs for k′ = 1 for any j > 1, as is seen in Eq.
(C.25). Using the trapezoidal rule, we have a dependency on both k′ and
k′ − 1 in the summation. Thus for k′ = 1, the sum will include a term on the
premium payment date and a term just before this date. Since the term just
before the premium date does not correspond to using k′ = 0 in Eq. (C.25),
we need to specify what happens in this case. For this purpose we introduce
a function for the time of accrual, which corresponds with Eq. (C.22) during
the first time period and with Eq. (C.25) for all other periods, but also in-
cludes an exception when the discretization overlaps two payment periods.
In the latter case, the lagged accrual period equals exactly (Nα − 1)∆t, since
this is the accrual time period immediately before a premium payment.

TA(k′, j) =


α− δ, if k′ = 0, j = 1
(Nα − 1)∆t, if k′ = 0, j > 1
α− δ + d1 + (k′ − 1)dk′ , if k′ 6= 0, j = 1
(k′ − 1)∆t, if k′ 6= 0, j > 1

(C.26)

Note that a consequence of this construction is that the jth premium payment
is included in the j + 1st time period. This is due to the convenience as
a consequence of the structure of the function in Eq. (C.23): Considering
a contract with premium payments T = (T1, T2, . . . , Tm) for some m > 1,
the function in Eq. (C.23) is piecewise linear on the interval [Tj−1, Tj) for
1 < j < m. Thus it is convenient to consider intervals that contain a premium
payment date as the infimum, and not as the supremum even though this
construction may seem more intuitive.
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The difference in the expression in Eq. (C.26) between the first and all
other payment periods means that we will have two terms in the approxi-
mation, one for the initial period and another for all other periods. In this
way, we avoid a problem with the termination of the summation over k′ as
well since k′ will terminate at Nδ for j = 1, and Nα for all other periods. The
approximation formula used for the integral in the f3 function is:

f3 =
∫ T(i)

b

t

(
v− Tγ(v)−1

)
D(t, v)

∂

∂v
Q(τr ≥ v | Ft)dv

=
∫ T(i)

b −t

0

(
(t + v)− Tγ(t+v)−1

)
Dt(v)

∂

∂v
Q(τr ≥ t + v | Ft)dv

≈ d1

2
(α− δ)Dt(v0)Q̇t(v0)

+
Nδ

∑
k′=1

dk′ + dk′+1
2

(
α− δ + d1 + (k′ − 1)dk′

)
Dt(vk)Q̇t(vk)

+

T(i)

α +1

∑
j=2

Nα

∑
k′=1

(k′ − 1)(∆t)2Dt(vk)Q̇t(vk), (C.27)

where we obtain the k s by using Eq. (C.24).

Specification of the expression for the spread

We aim to use the approximations presented in Sec. 8.3 for specifying the
expression for the fair spread of a CDS, Eq. (C.19), and obtain a sum of
known constants multiplied by the implied survival probability to different
times. Firstly we rearrange Eq. (C.19). Note that henceforth we do not specify
the inputs of the functions f1, f2, and f3; in all occurrences these are as in Eq.
(C.19) using the contract specifications for the ith tenor.

St,T(i) =
− f1

f2 − f3
⇔ 0 = St,T(i) f3 − f1 − St,T(i) f2. (C.28)

The function f2 represents the value of the CDS premium payments and thus
does not include an integral. This function can be exactly expressed as:

f2 = α

T(i)

α +1

∑
j=1

D(t, Tj)Q
(
τr ≥ Tj

∣∣Ft
)

= α

T(i)

α +1

∑
j=1

Dt(δ + (j− 1)α)Qt(δ + (j− 1)α)
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In order to collect terms in the sums used to approximate the integrals in Eq.
(C.28), we rewrite the approximation of f1 given in Eq. (C.21), such that it
includes a double-sum as f3 does in Eq. (C.27)

f1 ≈
d1

2
PDt(v0)Q̇t(v0) +

Nδ

∑
k′=1

P
dk′ + dk′+1

2
Dt(vk′)Q̇t(vk′)

+

T(i)

α +1

∑
j=2

Nα

∑
k′=1

∆tPDt(vk)Q̇t(vk) +
∆t
2

PDt(vN(i))Q̇t(vN(i)).

Collecting the representations of the three functions, Eq. (C.28) can be ex-
pressed as:

0 = St,T(i) f3 − f1 − St,T(i) f2 (C.29)

≈ −αSt,T(i)

T(i)

α +1

∑
j=1

Dt(δ + (j− 1)α)Qt(δ + (j− 1)α)

+
Nδ

∑
k′=1

dk′ + dk′+1
2

(
St,T(i)(α− δ + d1 + (k′ − 1)dk′)− P

)
Dt(vk′)Q̇t(vk′)

+

T(i)

α +1

∑
j=2

Nα

∑
k′=1

∆t
(
St,T(i)(k′ − 1)∆t− P

)
Dt(vk)Q̇t(vk)

+
d1

2
(
St,T(i)(α− δ)− P

)
Dt(v0)Q̇t(v0)−

P∆t
2

Dt(vN(i))Q̇t(vN(i)),

where the k s are obtained from Eq. (C.24), using j and k′ from “current
values” in the double-sum.

8.4 Specification of the implied survival probabilities

In order to calibrate the implied survival probabilities such that they solve
Eq. (C.29), we need a parametric assumption on these. We assume one of
two forms, either the default intensities are piecewise constant or piecewise
linear on the intervals(

(t, T(1)
b ], (T(1)

b , T(2)
b ], . . . , (T(n−1)

b , T(n)
b ]
)

. (C.30)

For simplicity, we let t = 0 in the remainder of this section.
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Piecewise constant default intensities

Denoting the constant implied default intensity on the ith interval in Eq.
(C.30) as λ(i), the implied survival probabilities are specified as

Qt(v) = Qt
(
T(i−1)

b
)
e−λ(i)v for all v ∈ (T(i−1)

b , T(i)
b ] (C.31)

for i = 1, . . . , n with T(0)
b = t = 0. The quoted spread for each tenor on a spe-

cific trading date is used to find an implied default intensity λ(i), such that
Eq. (C.29) holds when using the specification in Eq. (C.31) for the implied
survival probabilities. This ensures that the fair spread of the CDS corre-
sponds to the quoted spread for all maturities at the quoting time t, under
the assumption that the discretization of the integrals and the specification of
the implied default intensities are effective.

Piecewise linear default intensities

For i = 1, we assume that the implied default intensity is constant, and thus
the implied survival probability is defined as in Eq. (C.31). Thus

Qt(v) = e−λ(1)v, for v ∈ (0, T(1)
b − t] = (0, T(1)

b ].

For 1 < i ≤ n, the implied default intensity is assumed to be linear on
the corresponding interval in Eq. (C.30) and to intersect the implied default
intensity from the last interval at its supremum. We define the value of the
implied default intensity at these intersections as Λ(i−1) for i = 2, . . . , n. Note
that for i = 2, the intersection is at Λ(1) = λ(1) since the implied default
intensity is constant on the first interval. For i = 2, . . . , n, let a(i) be the slope
of the piecewise linear default intensity on the ith interval in Eq. (C.30). Then
the intersection at the supremum of the ith interval is

Λ(i) = Λ(i−1) + a(i)(T(i)
b − T(i−1)

b ) for i = 2, . . . , n− 1.

We specify the implied survival probability as

Qt(v) = Qt
(
T(i−1)

b
)

exp

{
−
∫ v

T(i−1)
b

(
Λ(i−1) + a(i)

(
u− T(i−1)

b
))

du

}

= Qt
(
T(i−1)

b
)

exp

{
−Λ(i−1)(v− T(i−1)

b
)
− a(i)

2
(
v− T(i−1)

b
)2
}

= exp

{
−Λ(1)(v− t)−

i−1

∑
j=2

a(j)(T(j)
b − T(j−1)

b
)(

v− T(j)
b
)}

× exp

{
−

i−1

∑
j=2

a(j)

2

(
T(j)

b − T(j−1)
b

)2
− a(i)

2

(
v− T(i−1)

b

)2
}

121



Paper C.

for v ∈ (T(i−1)
b , T(i)

b ]. The objective is to find λ(i) and a(i) for i = 2, . . . , n, such
that the fair spread of the CDSs with each available tenor is exactly equal to
the quoted spread.

A problem with this specification is that the implied default intensities are
not ensured to be non-negative. One can constrain a(i) to be calibrated such
that no negative implied survival probabilities occur; however, this specifica-
tion does not ensure that the fair CDS spread will equal the quoted spread.

8.5 Objective function and calibration of parameters

Using the assumptions of Sec. 8.2 and the formulas derived in Sec. 8.3, we
now specify the objective function used to calibrate the model parameters for
the default intensity. Note that in Sec. 8.2 and 8.3 no model assumptions on
the default intensity process is used. The results of those sections can thus be
applied to any process of the default intensity. We have, however, assumed
that the default intensity is independent of the risk-free rate, which may be a
shortfall.

We now consider the case, when the default intensities follow a CIR
model, i.e. the model presented in Sec. 7.2 disregarding the deterministic
shifts φ( · ) since these do not influence the parameter calibration. Consider,
as in Sec. 8.3, a set of n CDSs on the reference credit quoted at time t with
maturities T(i)

b for i = 1, . . . , n. Further, we consider a window of m consecu-
tive quoting dates and denote this window t = {t1, . . . , tm}. Under the CIR
assumption, we have the survival probability of the reference credit specified
in Eq. (C.15) for each t ∈ t;

Q
(

τr > T(i)
b

∣∣∣F ref
t

)
= E

Q
t

[
e−
∫ T(i)b

t xudu

]
= PCIR(t, T(i)

b ; xt, κ, θ, σ), (C.32)

where PCIR( · ) is the bond price in the CIR model. The closed-form solution
to the CIR bond price in displayed in Eq. (C.17). Note that here we consider
xt as a parameter since this is not observable and needs to be calibrated along
with the CIR-parameters κ, θ, and σ. To limit the number of parameters, we
do not estimate a term structure of xt’s over the window t, but only estimate
the initial value xt0 and consider this constant throughout the period.

As “observed data”, we consider the implied survival probabilities, in-
troduced in Sec. 8.4. We assume that the implied default intensities are
piecewise constant. Using the formulas for piecewise constant default prob-
abilities, we get n derived quotes;(

Qt
(
T(1)

b
)
,Qt
(
T(2)

b
)
, . . . ,Qt

(
T(n)

b
))

.

Note that we use the term derived quotes to stress that these are not in fact
market quotes, but implied survival probabilities derived from the market
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quotes. From the derived quotes of the survival probability and the expres-
sion in Eq. (C.32), we can now express the error function, explaining the
difference between the ith derived quoted at time t ∈ t and the model sur-
vival probability;

E(Θ; i, t) = Qt
(
T(i)

b
)
− PCIR(t, T(i)

b ; Θ),

where Θ = (xt0 , κ, θ, σ) is the parameter vector.
Using mixed cross-sectional and time series approach to parameter esti-

mation and a minimum sum-of-squares objective function, the optimization
problem at hand is

min
Θ

∑
t∈t

n

∑
i=1

E(Θ; i, t)2

It is important to notice, that though this is not purely a cross-sectional ap-
proach since we estimate the parameters using several quoting dates, we
consider these parameters as Q-parameters. For pricing derivatives pricing
purposes, we need the Q-parameters, and thus the purely cross-sectional
method, where one only considers the derived quotes at time t, is a more
natural way of estimating the parameters. However, we have 7 tenors and
thus at most 7 observations at time t to calibrate 4 parameters which is prob-
lematic. Often several tenors include NA-values and thus one can experience
a problem of insufficient data for parameter calibration. Therefore we con-
sider a window; specifically, we consider each calendar month in our data as
an estimation window. For comparison and to use as starting values, we also
consider calibration with a window spanning the full available data set.

8.6 Calibration routine

The calibration routine is implemented from scratch in C++11.
Assumptions, data, and methods:

1. To evaluate the integrals in order to obtain implied default intensities,
we use 2000 equidistant discrete time steps between each tenor, which
by assumption is a quarter of a year. To find the implied default inten-
sities that satisfy Eq. (C.13), we use the implementation of the Newton
method in the boost library. Note that for each tenor the problem at
hand is finding the root of an equation in one parameter.

2. We calibrate 4 parameters (including the initial default intensity, x0).

3. The parameters are bounded such that x0 ≥ 0.001, κ ≥ 0, θ ∈ [0, 1], and
σ ≥ 0.

4. The initial values for the optimizer are found by deterministic search,
specifically the DIRECT algorithm, where the maximum number of
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evaluations is 1000. We use the nlopt library for an implementation of
the DIRECT algorithm as well as the algorithms presented in Item 8.

5. Data for all names start on January 27, 2005. For Bear Stearns the data
stops at October 14, 2009, for Lehman Brothers at September 12, 2008,
and for all other names at Januar 26, 2015.

6. Implied default intensities are assumed to be piecewise constant.

7. NA values in the data are omitted.

8. We use two algorithms to estimate the parameters which are both local
derivatives based optimization algorithms. To evaluate the gradient of
the objective function, we use algorithmic differentiation with its imple-
mentation in the Eigen library. The maximum number of evaluations is
set at 10000. The algorithms used are:

• The BFGS algorithm. This algorithm is commonly used and gen-
erally supply good results, however non-linear constraints cannot
be used in the BFGS implementation in NLOPT. Thus we cannot
ensure that the Feller condition is satisfied.

• The SLSQP algorithm. This algorithm is constructed to handle
non-linear constraints; combined with being gradient based this is
our choice of an algorithm that ensures that the Feller condition is
not violated.

We estimate the parameters with both BFGS and SLSQP. When the
Feller condition is violated in the BFGS estimates, we choose the SLSQP
estimates. Otherwise, we choose the estimates that have the lowest sum-
of-squares.

8.7 Calibration results

For the 6 names, we calibrate the CIR-parameters, and calculate the mean
absolute difference between the model survival probabilities and the implied
survival probabilities. The results are displayed in Tab. C.7.

Monthly parameters

We consider the estimation of CIR-parameters for each month in the data.
The assumptions are largely the same as in Sec. 8.6 with the exception of
the starting values. Here we consider two sets of starting values for the
parameters in each month: The estimates for the entire data set, presented
in Sec. 8.7, and the estimates from the previous month. The estimation is
conducted for each of the two sets of starting values, and we choose the
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Name x0 κ θ σ Mean abs. diff.

Bank of America 0.001 3.35976 0.02369 0.398938 0.050116
Bear Stearns 0.01421 0.00402 0.03627 0.000004 0.037425
Citi Bank 0.02245 0.18269 0.02783 0.100564 0.058232
Goldman Sachs 0.00854 3.17184 0.02379 0.347606 0.049498
JP Morgan 0.001 0.80846 0.01751 0.155109 0.025138
Lehman Brothers 0.02386 1.4796 0.01397 0.000669 0.058606

Table C.7: Parameter results using all available data as the estimation window

parameter estimates that gives the lowest sum-of-squares. The estimated time
series of parameters are shown in Sec. 9.2.

8.8 Challenges in parameter calibration

Standard errors Obtaining standard errors on the CIR parameters includes
inversion of a 4 by 4 matrix, which is a source of errors. With refer-
ence to [18], we use the following method to estimate standard errors.
Consider the Jacobian J of the objective function in Sec. 8.5. The stan-
dard errors of Θ are estimated by (J′ J)−1σ2

res, where σ2
res is the sum of

squares of the objective function. Here J′ J is a 4× 4 positive definite
matrix which in theory is always invertible. However, in the situation
where the columns are close to linearly dependent, the matrix can be
numerically singular, see [19] for further discussion on this issue. We
exhibit this case in many instances, yielding faulty standard errors. In
most cases the estimated standard errors are very large – when the
matrix is close to singular – and in some cases, we obtain NA-values,
if the matrix is estimated to be (numerically) singular. Characteristics
of the standard errors of the parameters based on calendar months is
shown in Tab. C.8; it is observed that in the mean standard error will
cause a confidence interval that includes the origin for any reasonable
parameter estimates.

Parameter bounds By the nature of the CIR-model, all four estimation pa-
rameters x0, κ, θ, and σ are required to be non-negative. An issue that
occurs in our estimation is that the parameters – especially the param-
eter x0 – tends for longer periods at a time to reach its lower bound,
the origin. Due to the approach to measuring the Market price of risk
presented in Sec. 9, we have imposed a lower bound on x0 of 0.001,
i.e. 10 bps, to secure non-zero denominators. For some names, a simi-
lar tendency but with fewer hits are observed for κ and θ, respectively.
Moreover, θ tends to reach extreme values for certain names at certain
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time steps. Thus we have imposed an upper bound on θ at 1. The effect
of this bound is that θ tends to fluctuate between high values (near 1)
and low values (near 0), which is an undesirable feature. See Figs. C.5,
C.6, and C.7 for a visualization of this behavior.

se(x0) se(κ) se(κ) se(σ)

Mean 0.71019 431.08 659.5 5553.0
3rd quartile 0.01971 7.44 5.2 99.8

Max 71.60720 75665.70 330680.0 482871.0
#NAs 9 8 9 7

Table C.8: Parameter standard error summary

9 Market price of risk

We consider the model dynamics in Eq. (C.14). For each name i = 1, . . . , n,
we have calibrated CIR parameters for each calendar month, as explained in
Sec. 8.7. Thus for each name i we have the Q-parameters from the calibration
(x̂i,t, κ̂i,t

Q , θ̂i,t
Q , σ̂i,t

Q ) for each month t = 1, . . . , T. Note that x̂i,t is the estimated
value of the x-process at the beginning of month t.

We now turn to consider some regressions of xt+1 on xt, i.e. with a dis-
tance of one month. Considering the Euler-approximation of Eq. (C.14) with
dt = 1 we have

xt+1 − xt = κ(θ − xt) + σx
1
2
t (wt+1 − wt). (C.33)

Compare this with the exact conditional expectation of xt+1

E[xt+1 | xt] = e−κxt + θ(1− e−κ), (C.34)

and we can improve the Euler-approximation in Eq. (C.33) by replacing the
first term in the right-hand side by the exact conditional expectation in Eq. (C.34)

xt+1 − xt = e−κxt + θ(1− e−κ) + σx
1
2
t (wt+1 − wt).

Finally, we divide by σx
1
2
t and obtain errors that are i.i.d. standard normally

distributed:

xt+1 − xt

σx
1
2
t

= σ−1e−κx
1
2
t + σ−1θ(1− e−κ)x−

1
2

t + (wt+1 − wt). (C.35)

126



9. Market price of risk

We want to apply Eq. (C.35) as a non-linear regression using the calibrated
values of x̂i,t for each i as data, and thus obtaining parameter values of κ, θ
and σ for each month. Since this regression across a month, the parameters
we obtain are P-parameters. Moreover since x̂i,t is the estimated value for the
process at the beginning of month t we are applying the regression is across
month t, and thereby the parameters we obtain from are P-parameters for
month t.

In the regression, we also consider the calibrated Q-parameters for each
name as data and use the relationship between P and Q-parameters for a
CIR process to estimate the P-parameters for each name as well as a monthly
market price of risk for all names.

9.1 Q and P-parameter relations

Since we are using a CIR-model, we have known formulas for Q and P pa-
rameters, given by

σP = σQ

κP = κQ −m

θP =
θQκQ

κQ −m

where m is the market price of risk. Applying these relations to Eq. (C.35) we
have the equation

xt+1 − xt

σx
1
2
t

=
e−κQ+m

σ
x

1
2
t +

θQκQ(1− e−κQ+m)

σ(κQ −m)
x−

1
2

t + (wt+1 − wt).

For a given month, we consider the problem of estimating the market price
of risk in CDS markets. We use the Q-parameters estimated in Sec. 8.7 and
define the following regression formula for each name i = 1, . . . , n in order
to obtain the market price of risk mt for each month t:

x̂i,t
t+1 − x̂i,t

t

σ̂i,t
Q

(
x̂i,t

t
) 1

2
=

e−κ̂i,t
Q+mt

σ̂i,t
Q

(
x̂i,t

t
) 1

2 +
θ̂i,t
Q κ̂i,t

Q (1− e−κ̂i,t
Q+mt)

σ̂i,t
Q (κ̂i,t

Q −mt)

(
x̂i,t

t
)− 1

2 + εi,t.(C.36)

Note that this problem is considering a non-linear regression in n observa-
tions. Specifically, when using the estimated parameters in Sec. 8.7 we have
n = 6 observations. The estimated market price of risk for month t is thus

m̂t = arg min
mt

n

∑
i=1

ε2
i,t
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9.2 Results – monthly price of risk

We apply the method of Sec. 9 with the estimated parameters from Sec. 8.7
to obtain the market price of risk for each month across all names, i.e. a
monthly market price of risk in the CDS market.

One problem arises when the xt+1 = xt, a common scenario in our cali-
bration since xt has a tendency to hit its lower bound for several periods in
a row. Thus the left-hand side of Eq. (C.36) is zero, in which case low errors
can be reached by a large negative value of the market price of risk. The
estimated market price of risk is displayed in Fig. C.1 and the corresponding
P-parameter estimates of κ and θ are displayed in Figs. C.2–C.7 along with
the estimated Q-parameters. Figs. C.2–C.7 also include the Q-estimates of x0,
for which we do not have P-estimates as well as Q-estimates for σ, which
is exactly equal to the P-estimates due to the relationships between P and
Q-parameters presented in Sec. 9.1.

The MPR estimates in Fig. C.1 tends to be negative. We note that the
MPR relates to survival probabilities since we have used formulas from bond
markets. Therefore the MPR is calculated on a non-tradable asset, and we
cannot conclude whether MPR for survival probabilities has to be positive
or negative based on our understanding of MPR on bond markets. In our
context the MPR gives the relation between physical and pricing measures;
both are of interest wrt. calculation of survival probabilities. The physical
measure is used to calculate e.g. the distance to default of a firm.
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Fig. C.1: Monthly market price of risk based on CIR estimates
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Fig. C.2: Parameter estimates for Bank of America. The black line is the monthly Q-estimates,
the grey line is the Q-estimate for the entire data sample and the blue line is the estimated
P-parameters.
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Fig. C.3: Parameter estimates for Bear Stearns. The black line is the monthly Q-estimates, the
grey line is the Q-estimate for the entire data sample and the blue line is the estimated P-
parameters.
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Fig. C.4: Parameter estimates for Citi. The black line is the monthly Q-estimates, the grey line is
the Q-estimate for the entire data sample and the blue line is the estimated P-parameters.
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Fig. C.5: Parameter estimates for Goldman Sachs. The black line is the monthly Q-estimates,
the grey line is the Q-estimate for the entire data sample and the blue line is the estimated
P-parameters.
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Fig. C.6: Parameter estimates for JP Morgan. The black line is the monthly Q-estimates, the grey
line is the Q-estimate for the entire data sample and the blue line is the estimated P-parameters.
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Fig. C.7: Parameter estimates for Lehman Brothers. The black line is the monthly Q-estimates,
the grey line is the Q-estimate for the entire data sample and the blue line is the estimated
P-parameters.
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10 Triparty CDSs with BCVA and risk-free close-
out

We now consider the valuation of a CDS with BCVA. Here we have three
parties present; the protection buyer (the bank), the protection seller (the
counterparty), and the reference credit. We consider all three parties to be
subject to credit risk and will use the calibrated parameters from Sec. 8.7 to
value such a contract.

In order to obtain pricing formulas, we use the general set-up presented
in Sec. 4, where risk-free closeout is considered. We assume risk-free close-
out due to convenience with respect to the closeout value at the first default;
here either the contract terminates before first default or the reference credit
is the first entity to default which leads to the same payoffs as for the risk-
free CDS, or contrarily prior to contract termination either the bank or the
counterparty experiences the first default in which case the closeout value
has to be assessed. In the case of risk-free closeout this value is purely deter-
mined by the value of a risk-free CDS on the reference credit with the given
spread valued at default with the same maturity date as the initial contract;
thus the closeout value has a deterministic solution since the risk-free CDS
value can be obtained by the method presented in Sec 6.2. In the case of
replacement closeout, the closeout value is the CDS value with UCVA, con-
sidering the surviving entity as defaultable; this value requires Monte Carlo
simulation and thus this method requires nested Monte Carlo methods. Due
to this difference between the two closeout conventions, risk-free closeout is
the simpler of the two. It should be mentioned, that replacement closeout is
the most used convention, see [1].

We use similar assumptions to those presented in Sec. 8.2 for all involved
entities, e.g. we assume a constant loss-given-default at 40 % for all parties,
i.e. L ≡ Lb = Lc = Lref = 0.4. We consider valuation at or after initialization
Ta with maturity Tb, and assume the default risk of all three parties are inde-
pendent of the risk-free interest rates. We thus have the pricing formula for
all t ∈ [Ta, Tb]

VCDS,BCVA
b (t, Tb) = VCDS(t, Tb) + DVACDS(t, Tb)−CVACDS(t, Tb),(C.37)

where

VCDS(t, Tb) = EQ
[
1{τr≥min{τb ,τc}}Π

(
t, Tb

) ∣∣∣Ft

]
DVACDS(t, Tb) = LEQ

[
1{τb≤T,τb≤τc ,τb<τr}D(t, τb)

(
VCDS(τb, Tb)

)− ∣∣∣Ft

]
CVACDS(Ta, Tb) = LEQ

[
1{τc≤T,τc≤τb ,τc<τr}D(t, τc)

(
VCDS(τc, Tb)

)+ ∣∣∣Ft

]
One CDS spread is calculated and used in all appearances of VCDS; the spread
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is chosen to ensure that the value of a risk-free CDS is fair at initialization, i.e.
it holds that VCDS(Ta, Tb) = 0. We use the risk-free CDS pricing formula pre-
sented in Eq. (C.10), this assuming independence between default intensities
and risk-free interest rates.

10.1 Simulation of default-intensities and defaults

For i ∈ {b, c, ref} we update the default intensity for name i using a sim-
ulation scheme consisting of the Euler approximation with a positive-parts
adjustment to ensure non-negativity, see [20]. Thus the update of λi at some
time step tj with equidistant time steps of size ∆t is given by

λi(tj + ∆t) = λi(tj) + κ
(
θ −

(
λi(tj)

)+)∆t + σ

√
∆t
(
λi(tj)

)+Zi
j (C.38)

where
(
λi(tj)

)+
= max{λi(tj), 0}. The realizations of the error term Zi

j are
iid. standard normally distributed j = 1, . . . , N; note that these are not i.i.d.
across i s and we specifically wish to ensure positive correlation between de-
fault intensities of different entities. For each i and each month, the process
is initialized at the calibrated x0 s from Sec. 8.7, i.e. λi(t0) = x̂i,t0 where t0
represents the first day of a calendar month.

Let ρb,c, ρb,ref, and ρc,ref be the correlations between Wiener-processes driv-
ing the default intensity of the bank, the counterparty, and the reference
credit. We define

ξ1 ≡
√

1−
(
ρb,c
)2, ξ2 ≡

ρb,ref − ρb,cρc,ref

ξ1
, ξ3 ≡

√
1−

(
ρc,ref

)2 − ξ2
2

and simulate three independent error-processes from the standard normal
distribution: Z̃1, Z̃2, and Z̃3. The error processes to be used in Eq. (C.38) are
then expressed as

Zb = Z̃1, Zc = ρb,cZ̃1 + ξ1Z̃2, Zref = ρb,refZ̃1 + ξ2Z̃2 + ξ3Z̃3.

With this definition all three error processes are standard normally distributed
and simultaneously the Wiener-process correlations are ensured.

10.2 Simulation of CDS cash flows

Here we describe the method used to obtain the value of the triparty CDS
agreement by Monte Carlo simulation. Thereby we need to simulate paths of
default intensities, simulate corresponding default events, and in each path
determine a resulting cash flow to be discounted. If no default event occurs
prior to contract termination, we naturally stop the simulation of all pro-
cesses at this point and start simulating the next paths of the processes. On
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the contrary, if some default does occur prior to contract termination, we only
need to simulate default intensities for the three parties until the first default.
Depending on which party defaults first, we may have a contribution to each
of the three terms in Eq. (C.37): If the reference credit is the first to default
the CDS compensation is paid by the counterparty to the bank which con-
tributes to the first term, if the bank defaults first we have a contribution to
the second term if the current value at default of a risk-free CDS is negative,
and lastly if the counterparty is the first to default there will be a contribution
to the third term if the current value at default of a risk-free CDS is positive.
If the situation occurs where both the bank and counterparty defaults simul-
taneously, the current value of the risk-free CDS will determine which part
gets a contribution. Lastly, if another default occurs simultaneously with the
reference credit we have a few further adjustments; if τref = τb and the coun-
terparty survives these defaults the full CDS protection amount is retrieved
by the bank’s creditors. How if the counterparty and the reference credit de-
faults simultaneously only a fraction (60% by assumption) is retrieved by the
bank or the bank’s creditors, depending on whether the bank survives the
first defaults or all three parties default simultaneously. These last cases will
usually have a rather low probability and thus will not significantly affect the
CDS value, however for completeness, we present all options.

For each path m = 1, . . . , M we conduct the following steps:

• Simulate Eb, Ec and Eref as independent draws from the Exp(1)-distri-
bution.

• Define Λi(t0) = 0 for i ∈ {b, c, ref}, and conduct the following recursion
for each time step tj, j = 1, . . . , n, where t1 = t0 + ∆t and tn = Tb

1. Simulate λi(tj) for i ∈ {b, c, ref}, using the simulation scheme from
Sec. 10.1. We use equidistant time steps, and thus ∆tj = ∆t and
tj = tj−1 + ∆t for all j = 1, . . . , n.

2. Define Λi(tj) = Λi(tj−1) + ∆tλi(tj), i.e. the integral of the default
intensities are obtained by right-point approximation.

3. If Λi(tj) ≥ Ei for any i, we have default of entity i by the definition
of the default times in Sec. 2. If one or more entities have defaulted,
proceed to Item 4, else if contract termination has been reached
proceed to Item 5. If neither of these conditions has been met,
check whether a CDS payment date has been reached and add
the spread to the cash flows if this is the case; afterwards repeat
Item 1–3.

4. Determine which of the default-cases we have and determine the
cash flow as described above.
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5. The final CDS payment is added to the cash flows and the path is
terminated.

11 Premiminary conclusion and further work

We have presented a rigorous framework for CDS valuation and calibration
to market quotes on single-name CDSs, and have presented methods of cal-
culating the market price of risk (MPR) on such markets. We use the results
of MPR for bond markets, and thus we obtain the MPR corresponding to the
survival probabilities, i.e. a non-tradable asset. Further, we have presented
a set-up for numerical valuation of a triparty CDS agreement, where two
default risky parties trade a CDS with a third entity as reference credit.

Further work includes conducting the numerical experiments based on
the framework presented in Sec. 10. To improve the validity of the MPR
results, further work also includes expanding the data considered since our
current results are based on only six names. Lastly, it is of interest to apply
the piecewise linear assumption on the implied survival probabilities, using
the theory presented in Sec. 8.4, to our numerical experiments and see the
effects of this assumption on both MPR and CVA estimates.
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