
Aspects of Data Modeling and
Query Processing for

Complex Multidimensional Data

Torben Bach Pedersen
Ph.D. Dissertation

A dissertation submitted to the faculty of
Engineering and Science at Aalborg Uni-
versity, Denmark, in partial fulfillment of
the requirements for the Ph.D. degree in
computer science.

c
 (2000) Torben Bach Pedersen – All rights reserved.

Aspects of Data Modeling
and Query Processing for

Complex Multidimensional Data

Torben Bach Pedersen
Ph.D. Dissertation

A dissertation submitted to the faculty of
Engineering and Science at Aalborg Uni-
versity, Denmark, in partial fulfillment of
the requirements for the Ph.D. degree in
computer science.

Danish Academy of Technical Sciences (ATV) and
Erhvervsfremmestyrelsen.

Industrial Research Education, Ph.D., EF–661.

Project Title The Clinical Data Warehouse
Company Kommunedata A/S, Århus
Institute and University Department of Computer Science, Aalborg University

c
 (2000) Torben Bach Pedersen – All rights reserved.

Abstract

This thesis is about data modeling and query processing for complex multidimen-
sional data. Multidimensional data has become the subject of much attention in both
academia and industry in recent years, fueled by the popularity of data warehousing
and On-Line Analytical Processing (OLAP) applications.

One application area where complex multidimensional data is common is within
medical informatics, an area that may benefit significantly from the functionality of-
fered by data warehousing and OLAP. However, the special nature of clinical appli-
cations poses different and new requirements to data warehousing technologies, over
those posed by conventional data warehouse applications. This thesis presents a num-
ber of exciting new research challenges posed by clinical applications, to be met by
the database research community. These include the need for complex-data modeling
features, advanced temporal support, advanced classification structures, continuously
valued data, dimensionally reduced data, and the integration of complex data.

OLAP systems typically employ multidimensional data models to structure their
data. This thesis identifies eleven modeling requirements for multidimensional data
models. These requirements are derived from a realistic assessment of complex data
found in real-world applications. A survey of twelve multidimensional data mod-
els reveals shortcomings in meeting some of the requirements. Existing models do
not support many-to-many relationships between facts and dimensions, do not have
built-in mechanisms for handling change and time, lack support for imprecision, and
are unable to insert data with varying granularities. Additionally, most of the models
do not support irregular dimension hierarchies and aggregation semantics. This the-
sis defines an extended multidimensional data model and algebraic query language
that address all eleven requirements. The model reuses the common multidimen-
sional concepts of dimension hierarchies and granularities to capture imprecise data.
For queries that cannot be answered precisely due to the imprecise data, techniques
are proposed that take into account the imprecision in the grouping of the data, in
the subsequent aggregate computation, and in the presentation of the imprecise re-
sult to the user. In addition, alternative queries unaffected by imprecision are offered.
The presented data model and query evaluation techniques can be implemented using
relational database technology. The approach is also capable of exploiting multidi-
mensional query processing techniques like pre-aggregation. This yields a practical
solution with low computational overhead.

Pre-aggregation, the prior materialization of aggregate queries for later use, is an
essential technique for ensuring adequate response time during data analysis. Full
pre-aggregation, where all combinations of aggregates are materialized, is infeasible.
Instead, modern OLAP systems adopt thepractical pre-aggregationapproach of ma-
terializing only select combinations of aggregates and then re-use these for efficiently
computing other aggregates. However, this re-use of aggregates is contingent on the
dimension hierarchies and the relationships between facts and dimensions satisfying
stringent constraints. This severely limits the scope of the practical pre-aggregation
approach. This thesis significantly extends the scope of practical pre-aggregation to

ii

cover a much wider range of realistic situations. Specifically, algorithms are given
that transform “irregular” dimension hierarchies and fact-dimension relationships,
which often occur in real-world OLAP applications, into well-behaved structures
that, when used by existing OLAP systems, enable practical pre-aggregation. The
algorithms have low computational complexity and may be applied incrementally
to reduce the cost of updating OLAP structures. The transformations can be made
transparently to the user. A prototype implementation of the techniques is reported.

OLAP systems provide good performance and ease-of-use for queries that ag-
gregate large amounts of data. However, the complex structures and relationships
inherent in data in non-standard applications are not accommodated well by OLAP
systems. In contrast, object database systems are built to handle such complexity,
but do not support OLAP-type querying well. This thesis presents the concepts and
techniques underlying a flexible, “multi-model” federated system that enables OLAP
users to exploit simultaneously the features of OLAP and object systems. The sys-
tem allows data to be handled using the most appropriate data model and technology:
OLAP systems for dimensional data and object database systems for more complex,
general data. As a vehicle for demonstrating the capabilities of the system, a pro-
totypical OLAP language is defined and extended to naturally support queries that
involve data in object databases. The language permits selection criteria that ref-
erence object data, queries that return combinations of OLAP and object data, and
queries that group dimensional data according to object data. The system is designed
to be aggregation-safe, in the sense that it exploits the aggregation semantics of the
data to prevent incorrect or meaningless query results. These capabilities may also
be integrated into existing languages. A prototype implementation of the system is
reported.

Acknowledgements

I owe my thanks for contributions to this thesis to a great many persons. First of all,
I would like to thank my Ph.D. advisor, Christian S. Jensen, for his great interest in,
and support of, the work that led to this thesis. He has taught me, primarily by his
own example, how to conduct high-quality research at an international level. I would
also like to thank my industrial advisor, Preben Etzerodt, for providing a good work
environment for me at Kommunedata. My co-author Curtis Dyreson showed me how
to conduct research while still maintaining the spirit of a true surfer.

Together with my family, I spent seven wonderful months in Berkeley, California,
being the guest of Dr. Arie Shoshani in the Scientific Data Management Group at
Lawrence Berkeley National Laboratory. Arie and my colleagues at LBNL made my
stay great both scientifically and personally. I would like to thank Arie for being
a source of constant inspiration and good discussions, and Junmin Gu and Henrik
Nordberg for the many nice lunches we had together. I hope to come back for another
visit someday.

Thanks are also due to my great colleagues at Kommunedata and in the Database
Group at Aalborg University. Especially, I would like to thank Henning Peter Jensen
for always reminding me of the value of practical work.

Last, but certainly not least, I would like to thank my family for all their support.
Especially, I would like to thank Pia for being a “good researcher’s wife” as well as
a wonderful woman, and Andrea and Amalie for being so good at steering my mind
away from research.

This work was supported by Kommunedata and by grant no. EF-661 from the
Danish Academy of Technical Sciences.

iii

iv Acknowledgments

Contents

Acknowledgments iii

Contents v

1 Introduction 9

2 Research Issues in Clinical Data Warehousing 13
2.1 Introduction . 13
2.2 Background. 14

2.2.1 A Brief Characterization of Data Warehousing. 14
2.2.2 Previous Work . 15
2.2.3 A Case Study . 16

2.3 Clinical Data Warehousing Requirements. 18
2.3.1 The Electronic Patient Record 18
2.3.2 The EHCRA Standard for EPRs 19
2.3.3 New Challenges . 20
2.3.4 Comparison of Conventional and Clinical DW 25
2.3.5 Standardization Efforts . 26

2.4 Summary . 26

3 A Foundation 29
3.1 Introduction . 29
3.2 Motivation and Related Work . 31

3.2.1 A Case Study . 31
3.2.2 Requirements for Data Analysis 35
3.2.3 Existing Multidimensional Models. 37
3.2.4 Related Work on Imprecision 40

3.3 An Extended Multidimensional Data Model. 41
3.3.1 The Basic Model . 41
3.3.2 Handling Time . 46
3.3.3 Properties of the Model. 48

3.4 The Algebra . 49
3.4.1 The Basic Algebra . 49
3.4.2 Handling Time in the Algebra 55

3.5 Handling Imprecision . 56
3.5.1 Overview of Approach . 57

v

vi CONTENTS

3.5.2 Alternative Queries . 58
3.6 Handling Imprecision in Query Evaluation 61

3.6.1 Imprecision in Grouping 61
3.6.2 Imprecision in Computations 63
3.6.3 Presenting the Imprecise Results. 66

3.7 Addressing the Requirements. 67
3.8 Using Pre-Aggregated Data . 68
3.9 Conclusion and Future Work . 70
3.10 Relational Representation of the Model. 71
3.11 SQL Implementation of Imprecision 73

4 Extending Practical Pre-Aggregation in On-Line Analytical Processing 77
4.1 Introduction 77
4.2 Motivation—A Case Study . 79
4.3 Method Context . 81

4.3.1 A Concrete Data Model Context 83
4.3.2 Hierarchy Properties. 85

4.4 Dimension Transformation Techniques 88
4.4.1 Non-Covering Hierarchies 88
4.4.2 Non-Onto Hierarchies . 91
4.4.3 Non-Strict Hierarchies. 93

4.5 Fact-Dimension Transformation Techniques 98
4.5.1 Mixed Granularity Mappings 98
4.5.2 Many-To-Many Relationships 99

4.6 Architectural Context . 100
4.7 Conclusion and Future Work . 102
4.8 Incremental Computation . 103

4.8.1 Covering Hierarchies . 103
4.8.2 Onto Hierarchies . 104
4.8.3 Strict Hierarchies .. 104

5 Extending OLAP Querying To Object Databases 107
5.1 Introduction 107
5.2 Motivation . 109

5.2.1 Reasons for Federation . 109
5.2.2 Case Study . 111

5.3 Federation Data Models and Query Languages 113
5.3.1 Summary Data Model . 113
5.3.2 Summarizability .. 116
5.3.3 The Summary Query Language. 117
5.3.4 The Object Model and Query Language. 118

5.4 Linking Databases . 120
5.5 The Federated Data Model and Query Language. 122

5.5.1 The Federated Data Model 122
5.5.2 The SumQL++ Language 123
5.5.3 Summary . 129

CONTENTS vii

5.6 Implementation . 129
5.6.1 Implementation Overview 130
5.6.2 Representation of Metadata 131
5.6.3 Query Processing 131
5.6.4 Query Optimizations . 133
5.6.5 Implementation of the SDB System 134

5.7 Conclusion and Future Work . 135
5.8 Formal Definition of SumQL .. 136

5.8.1 Syntax of SumQL . 136
5.8.2 Semantics of SumQL . 137

6 Summary of Conclusions and Future Research Directions 139

Bibliography 143

A Clinical Data Warehousing — A Survey 153
A.1 Introduction . 153
A.2 Data Warehousing . .. 154
A.3 Clinical Data Warehousing Systems 156

A.3.1 Oracle and Partners . 156
A.3.2 SAS Institute . 157
A.3.3 MEDai . 157
A.3.4 Information Architects Inc. 158
A.3.5 Shared Medical Systems 158
A.3.6 Quest Informatics . 158
A.3.7 Turku University Central Hospital 159
A.3.8 Stanford Medical Informatics 159

A.4 Discussion and Summary . 160

B The TreeScape System 163
B.1 Introduction . 163
B.2 Normalizing Hierarchies . 163
B.3 System Architecture . 165
B.4 Implementation Specifics . 166
B.5 Demonstration . 169

C OLAP++ 171
C.1 Introduction . 171
C.2 Federations of OLAP and Object Databases. 171
C.3 System Architecture . 173
C.4 The Demonstration . 174

C.4.1 User Interface . 174
C.4.2 Query Processing 175

D Summary in Danish 179

viii CONTENTS

Chapter 1

Introduction

The interest in analyzing data has grown tremendously in recent years, as businesses
in all sectors have discovered the potential of using the data scattered in diverse busi-
ness systems as one coherent whole for better understanding and management of
the business. To analyze data, a multitude of technologies is needed, namely tech-
nologies from the areas of Data Warehousing (DW), On-Line Analytical Processing
(OLAP), Data Mining (DM), Data Visualization (DV), and Customer Relationship
Management (CRM). The market for these technologies is already large, and will
grow rapidly in the coming years. The well-known analysis firm Meta Group esti-
mates that the DW market alone will reach USD 15 billion in 2000 [76], while the
analysis firm Palo Alto Management Group expects the largerbusiness intelligence
market, which consists of DW, OLAP, DM, DV, and CRM, to grow by an average of
50% over the next three years and reach a total of USD 113 billion in 2002 [91].

Data analysis systems are increasingly based on amultidimensionaldata model,
in which measured values, termed facts, are characterized by descriptive values,
drawn from a number of dimensions; and the values of a dimension are typically
organized in a containment-type hierarchy. A prototypical query applies an aggre-
gate function, such as average, to the facts characterized by specific values from
the dimensions. Multidimensional data models are used as they are generally bet-
ter suited for data analysis tasks than other data models such as the relational, en-
tity/relationship, or object-oriented models. Compared to these models, multidimen-
sional models provide additional ease-of-use and better performance for the specific
queries used for data analysis.

However, some application areas cannot be handled satisfactorily using current
multidimensional technology, as the data is too complex. One such area isclinical
data, which has been the source of inspiration for the research that led to this thesis.
This thesis is the result of an industrial Ph.D. project and is a collaboration between
the Department of Computer Science at Aalborg University and Kommunedata, the
largest supplier of healthcare informatics in Denmark. As a concrete benefit of the
collaboration, all the examples used in the thesis are real-world case studies based on
Kommunedata’s systems. The study of how data analysis technology can be applied
to the clinical area has led to the focus of this thesis, namely that of solving some
of the problems related to using multidimensional technology for handling complex

9

10 Introduction

multidimensional data, e.g., as found in clinical applications. The remainder of the
thesis is structured as follows.

Chapter 2 investigates the exciting new challenges that data warehousing and
OLAP technology face from the area of clinical data warehousing. Challenges espe-
cially important to the general database research community include the following:
advanced data models including temporal support, advanced classification structures,
continuously valued data support, dimensional reduction of data, and integration of
complex data.

Chapter 3 presents eleven requirements that multidimensional data models data
should support to accommodate analysis of complex multidimensional data. Twelve
previously proposed data models are evaluated against the eleven requirements, and
it is seen that existing models do not support many-to-many relationships between
facts and dimensions, do not have built-in mechanisms for handling change and time,
lack support for imprecision, and are unable to insert data with varying granularities.
Additionally, most of the models do not support irregular dimension hierarchies and
aggregation semantics. Chapter 3 presents an extended multidimensional data model
and algebraic query language that addresses all eleven requirements. In particular,
imprecise data is handled using the common multidimensional constructs of dimen-
sion hierarchies and granularities. The presented data model and query evaluation
techniques can be implemented using standard OLAP technology such as RDBMSes
and the query performance can be enhanced using pre-aggregation.

Chapter 4 investigates the practical use of pre-aggregated data over irregular
OLAP hierarchies. The scope of practical pre-aggregation is significantly extended
to cover a much wider range of realistic situations. Specifically, algorithms are
given that transform irregular dimension hierarchies and fact-dimension relation-
ships, which often occur in real-world OLAP applications, into well-behaved struc-
tures that, when used by existing OLAP systems, enable practical pre-aggregation.
The algorithms have low computational complexity and can be applied incremen-
tally to reduce the cost of updating OLAP structures. The transformations can be
made transparently to the user.

Chapter 5 presents the concepts and techniques underlying a flexible, “multi-
model” federated system for extending OLAP querying to external object databases.
The system eases the integration of OLAP data with complex, external data con-
siderably and allows data to be handled using the most appropriate data model and
technology: OLAP systems for dimensional data and object database systems for
more complex, general data. A prototypical OLAP language is defined and extended
to naturally support queries that involve data in object databases. The language per-
mits selection criteria that reference object data, queries that return combinations of
OLAP and object data, and queries that group dimensional data according to object
data. The system is designed to be aggregation-safe, in the sense that it exploits the
aggregation semantics of the data to prevent incorrect or meaningless query results.
A prototype implementation of the system is reported.

Appendix A surveys the field of clinical data warehousing, both from an indus-
trial and an academic point of view, as of Mid 1997. Seven evaluation criteria are
presented and nine products and projects are evaluated against them, giving a good
overview of the (by then) current state of the art. The field is still in its infancy, but

Introduction 11

the potential for clinical benefits of the technology is large. However, the products
surveyed do not address several advanced requirements for clinical use, including
richer data models, temporal support, and intelligent integration of complex data.

Appendix B presents the TreeScape system that, unlike any other system known
to the authors, enables the reuse of pre-computed aggregate query results for irregular
dimension hierarchies, which occur frequently in practice. The system establishes a
foundation for obtaining high query processing performance while pre-computing
only limited aggregates, even when the hierarchies are irregular. This is done using
the dimension transformation techniques described in Chapter 4. It is described how
the transformations can be made transparent to the user by applying a query re-write
mechanism.

Appendix C presents the OLAP++ system for federating OLAP and object data-
bases. The system allows users to easily pose OLAP queries that reference external
object databases. This enables very flexible and fast integration of object data in
OLAP systems without the need for prior physical integration. It is shown how the
user interface allows the user to easily specify OLAP queries over the federation and
how these queries are processed.

This thesis is organized as a collection of individual papers. This means that the in-
dividual chapters and appendices are self-contained and can be read in isolation, e.g.,
related work is treated in each individual paper. However, it also means that there
are small overlaps, mostly in basic definitions, between the chapters. Specifically,
Section 4.3.1 may be skipped when reading the thesis from the beginning. Sections
4.3.2, 5.3.1, and 5.3.2 mostly contain material already covered in Section 3.3, but
should be read, as they also include additional material that is important for the top-
ics of the chapters. Most importantly, the data model presented in Section 5.3.1 is
somewhat different from the model used in Chapters 3 and 4 due to the introduction
of measures with automatic aggregation. Appendices B and C cover some material
already presented in Chapters 4 and 5, respectively, but most of their contents is new
material on the implementation of the systems.

The papers have been modified slightly to support the integration into the thesis,
e.g., the references have been combined into one bibliography and references to “this
paper” changed to “this chapter,” etc. The papers included in the thesis are listed
below. Chapter 2 is based on Paper 1. Chapter 3 is based on Paper 4, which is an
integration of the extended versions of Paper 2 [95] and Paper 3 [96]. Chapter 4 is
based on the extended version of Paper 5 [97]. Chapter 5 is based on an extended
version of Paper 6. Appendix A is based on Paper 7. The demonstration proposals in
Appendices B and C are based on Papers 8 and 9, respectively.

1. T. B. Pedersen and C. S. Jensen. Research Issues in Clinical Data Warehous-
ing. In Proceedings of the Tenth International Conference on Statistical and
Scientific Database Management, pp. 43–52, 1998.

2. T. B. Pedersen and C. S. Jensen. Multidimensional Data Modeling for Com-
plex Data. InProceedings of the Fifteenth International Conference on Data
Engineering, pp. 336–345, 1999.

12 Introduction

3. T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Supporting Imprecision
in Multidimensional Databases Using Granularities. InProceedings of the
Eleventh International Conference on Statistical and Scientific Database Man-
agement, pp. 90–101, 1999.

4. T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A Foundation for Capturing
and Querying Complex Multidimensional Data.Manuscript, awaiting submis-
sion, March 2000, 35 pages.

5. T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Extending Practical Pre-
Aggregation in On-Line Analytical Processing. InProceedings of the Twenty-
Fifth International Conference on Very Large Databases, pp. 663–674, 1999.

6. T. B. Pedersen, A. Shoshani, J. Gu, and C. S. Jensen. Extending OLAP Query-
ing to Object Databases.Submitted for publication, February 2000, 23 pages.

7. T. B. Pedersen and C. S. Jensen. Clinical Data Warehousing - A Survey. In
Proceedings of the VIII Mediterrannean Conference on Medical and Biological
Engineering and Computing, Section 20.3 (CDROM proceedings), 1998, 6
pages.

8. T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. The TreeScape System: Reuse
of Pre-Computed Aggregates over Irregular OLAP Hierarchies.Demonstra-
tion proposal, submitted for publication, February 2000, 4 pages.

9. J. Gu, T. B. Pedersen, and A. Shoshani. OLAP++: Powerful and Easy-to-
Use Federations of OLAP and Object Databases.Demonstration proposal,
submitted for publication, February 2000, 4 pages.

Chapter 2

Research Issues in Clinical Data
Warehousing

2.1 Introduction

Modern businesses use a multitude of different computer systems to manage their
daily business processes such as sales, production, planning, etc. These systems,
commonly referred to asoperational systems, have been acquired from several ven-
dors over a long period of time and are often based on different technologies. The
integration between the operational systems is thus typically poor. However, integra-
tion is needed when the business must combine data from several operational systems
in order to answer important business questions, e.g., sales and production data must
be combined to determine the profitability of a product. Thedata warehousingap-
proach solves the problem by integrating data from the operational systems into one
common data store, known as the data warehouse, which is optimized for data anal-
ysis purposes [130, 129].

Data warehousing technology has traditionally been used in a business context,
in order to answer questions about sales and other important events in the business of
concern. The data models employed conceptually provide a multidimensional view
of data, whether implemented in relational or dedicated multidimensional DBMS’s,
and this has proven very successful in the traditional application areas. However,
some application areas have a need for more complex data structures. One such area
is clinical data warehousing, where clinical data about a large patient population is
analyzed to perform clinical quality management and medical research. Clinical data
warehousing is a substantial application area in itself, and we focus on describing
the requirements of this area. The issues described also apply to other application
areas, in science or business, but such areas are beyond the scope of this chapter.
We will also concentrate on the use of clinical data for analysis purposes. Discus-
sion of the operational use of clinical data, e.g., for cooperative purposes or remote
diagnostization, is also not covered here.

The clinical domain requires more powerful data model constructs than con-
ventional multidimensional approaches, and the data model should also provide ad-
vanced temporal support, e.g., for bitemporal data. More advanced classification

13

14 Research Issues in Clinical Data Warehousing

structures are also needed, including means of managing dynamic, non-strict hier-
archies, and of handling change. Continuously valued data, e.g., measurements, is
very common and has special demands for aggregation and computation compared
to conventional business data. The number of dimensions in clinical data is often
very large, sparking a need for intelligent ways of dimensionally reducing the data
into high-level abstractions.

There should also be a way of integrating very complex data, e.g., X-rays, in the
data warehouse for analysis purposes, by more advanced means than just allowing
the raw data to be retrieved. Clinical treatment protocols should be tightly integrated
with the clinical data warehouse, to allow for follow-up on the corresponding quality
of treatment, e.g., outcomes, for the individual protocols. Finally, medical research
should be supported directly by the clinical data warehouse, e.g., by integrating data
mining capabilities tailored to the specific domain.

The chapter is outlined as follows. Section 2 describes the conventional use of
data warehousing, as used primarily in business settings. To illustrate the various
issues, a case study concerning a small clinical data warehouse is included. Section 3
describes the concept of an Electronic Patient Record (EPR), and lays out a roadmap
for a new foundation for Clinical Data Warehouses (CDWs). The primary rationale
is that a CDW should be very tightly integrated with the EPR, to support physicians
and other clinical users throughout their daily work. We argue that it is attractive to
base the CDW on the EPR and introduce EHCRA, the European Standard for EPR’s.
This standard has some nice features w.r.t. using EPR data for data warehousing.
Section 3 also describes the research challenges that CDWs provide, and it compares
CDWs with ordinary data warehouse applications. Section 4 summarizes the chapter
and offers suggestions for next steps.

2.2 Background

This section provides a definition of a data warehouse, describes previous work, and
presents a case study of a CDW.

2.2.1 A Brief Characterization of Data Warehousing

The term “Data Warehouse” (DW) was first used by Barry Devlin [28], but Bill Inmon
has won the most acclaim for introducing the concept, defined as follows. “A Data
Warehouse is asubject oriented, integrated, non-volatileandtime-variantcollection
of data in support ofmanagement’s decisions” [58]. Let us have a closer look at these
interesting properties.

� Subject Oriented:In operational systems, data is organized to support specific
business processes. Thus, the same data might be organized very differently
in different operational systems. For example, it is likely that person data in
a Human Resource application is organized differently from person data in a
Point-of-Sale application. In a DW, data is organized by subject, or topic, e.g.,
Person, rather than by function.

2.2 Background 15

� Integrated:A business typically employs many different operational systems,
each optimized for a special business process, and each with its own data store.
In the DW, data from all these systems is integrated, both bydefinition, i.e.,
the same data has the same type, and bycontent, i.e., the value sets of an
attribute are the same, wherever they occur. Integration does not imply data
warehousing—an appropriate organization is also required. If all operational
data is in one operational system, e.g., the SAP system, it is still necessary to
have a DW, where data is organized w.r.t. data analysis instead of data entry1.

� Non-volatile: In the typical operational system, data is often kept only for a
short period of time, e.g., 3 to 6 months, as it is only interesting for the daily
business during this timespan. In a data analysis situation, however, the need
to discover trends in the way business is doing and compare them with those
of previous periods sparks a need to keep data for longer periods of time. Most
DW’s keep data for at least a couple of years, and many intend to keep it much
longer.

� Time-variant: Operational data does not always have an explicit temporal di-
mension. It might not be interesting for an application, e.g., an inventory sys-
tem, to know when a transaction actually took place. Also, operational systems
often only store the current state of data. In the DW, time is a whole different
matter. When analyzing data for trends, it is almost always important to know
“the time of the data,” so that all data in a DW can be related to a specific
time point or interval. Also, not only the current value of data is stored, but
often either snapshots of data at specific points in time, or a complete history
of changes of the data.

� Management’s decisions:Both words in this phrase are interesting in their own
right. The word “decisions” indicates the very important fact that data in a DW
is optimized for data analysis, not data entry. Thus normal database design
principles do not necessarily apply, and managed redundancy of data is usually
appropriate in a DW because it simplifies the database schema and improves
analysis performance. The word “management’s” indicates that DW data is
traditionally used at the strategic level, by top management, for setting the
course for the entire business. We would like to modify this to “management
decisions,” to capture the tendency that the DW is now also used at a “lower”
level of the organization, by non-management employees, to get to know their
part of the business better, thus providing better “micro” management in the
daily work.

2.2.2 Previous Work

Like the database management area itself, the birth and rise of data warehousing has
almost entirely taken place in the business world. Data warehousing was born out of

1In fact, the SAP company has done just this, and is now marketing a DW solution as an addition to
their operational system.

16 Research Issues in Clinical Data Warehousing

the need of many businesses to view and analyze data from their many different op-
erational systems together, to get a complete understanding of the business. Until re-
cently, academia did not take interest in the area, and thus the field has been driven by
the market, rather than by the research community. Research in distributed databases
on issues such as global schemas and schema integration address some of the same
challenges [7], but data warehousing still differs by employing data scrubbing, data
cleaning, non-automatic data mappings, and bulkloading. Among other differences a
DW stores more data than the sources and data is aggregated [130, 58, 64].

The focus of DW vendors as well as researchers has been on support for OLAP
(OnLine Analytical Processing) functionality with good performance. In database
research terms, the work has concentrated on the physical rather than the conceptual
level. The data models employed have been of the multidimensional variety, where
data is divided intomeasurable business factsand mostly textualdimensions, which
characterize the facts and have hierarchies in them. In a retail business,productsare
sold tocustomersat certaintimesin certainamountsat certainprices. A typical fact
would be apurchase, with the amount and price as the measures, and the customer
purchasing the product, the product being purchased, and the time of purchase as the
dimensions. A good visualization of the model, is to envisage data as living in an
n-dimensional cube, with facts in the cells and the dimensions along the dimension
axes [40].

OLAP systems have typically been implemented using two technologies: RO-
LAP (Relational OLAP), where data is stored in an RDBMS, and MOLAP (Multidi-
mensional OLAP), where a dedicated multidimensional DMBS (MDDMBS) is used.
Reports indicate that traditional database design techniques, i.e., ER modeling [19]
and normalized tables, are not well suited for DW applications; as a result, new tech-
niques, e.g.,star schemas[64], have emerged that better support the DW purpose of
data analysis. As mentioned above, most work has concentrated on performance is-
sues; and higher-level issues, such as conceptual modeling, have largely been ignored
so far, at least in academia.

Recently, several researchers have pointed to this lack in DW research, and it
has been suggested to try to combine the traditional DW virtues of performance with
the more advanced data model concepts from the field ofscientific and statistical
databases[116]. This appears to be a very valuable direction, as users of a DW tend
to work directly with the data, creating a need to put more semantics directly into the
database schema, as opposed to storing the data semantics in application programs,
as is the case in operational systems.

2.2.3 A Case Study

The case study illustrates the special demands of clinical data warehousing. The
simplified case is taken from the domain of diabetes treatment [67, 82]. An ER
diagram of the case using standard notation [34] is seen in Figure 2.1.

The most important entity type is thepatient, as indicated by the placement in
the middle of the diagram. A patient is identified by a Social Security Number (SSN)
and has additional attributes Name, Birth Date, and Height, all of which we will
consider to be static. A patient has many relationships to other entities, whose main

2.2 Background 17

Patient has
(0,n)

Diagnosis

Diagnosis
Group

grouping

(1,n)

(0,n)

(1,n)

* SSN
* Name
* Birth Date
* Height

* Begin Time
* End Time

* Begin Time
* End Time

HbA1c%
measuring

HbA1c%
Measurement

(0,n)

* Measurement Time
* Level

lifestyle
registra-

tion

Lifestyle
Factor

Measurement

(0,n)

* Registration Time

D

Weight Smoking Alcohol Exercise

* Kg * Cigarets/Day * Units/Week * Hours/Week

(1,1)

Foot
Picture

picture
taking

(1,1)

(0,n)

Protocol

treated
according

to

(0,n)

(0,n)

* Begin Time
* End Time

* Code
* Text
* Begin Time
* End Time

* Measurement Time
* Picture

* Code
* Text
* Begin Time
* End Time

* Code
* Text
* Begin Time
* End Time

Patient

(1,1)

Figure 2.1: Case Study of a CDW for Diabetes

purposes are tocharacterizethe patient. Thus, these other entities might be viewed
as dimensions of the particular patient.

First, a patient can be given one or morediagnoses. These are only valid in spec-
ified time intervals, as the patient’s condition changes over time. The set of possible
diagnoses is given by a classification of diseases, e.g., the World Health Organisa-
tion’s ICD-10 standard [133]. A diagnosis has an alphanumeric code, a descriptive
text, and an associated period of validity. A specific diagnosis might be superseded
by another as medical knowledge evolves, thus ending its validity, but for histori-
cal reasons it is important to keep it in the classification. Diagnoses are grouped
into diagnosis groups, e.g., “Diabetes diseases” or “Pregnancy-related diseases,” for
overview purposes. One diagnosis can be a part of multiple groups, e.g., “Diabetes

18 Research Issues in Clinical Data Warehousing

during pregnancy2” can be a part of both of the just-mentioned groups. The partici-
pation in the diagnosis groups of diagnoses can change over time, as the demands for
grouping vary. The groups also have an alphanumeric code and a descriptive text.

A patient is treated according to aprotocol, which is a formal description of
how a treatment should progress. Different protocols are used depending on the
characteristics, e.g., the age, of the patient. We will not go into the very complex
internal structure of a protocol, but will just record a code, a text, and a period of
validity. The protocol used for treating a patient may vary over time.

An important indicator for the status of a diabetes patient is the condition of the
feet, e.g., the blood circulation and presence of wounds. From time to time, the feet
are photographed, and the pictures are stored along with the times they were taken.

One of the most important measurements for diabetes patients isHbA1c%, which
indicates the long-time blood sugar level and provides a good overall indicator of the
patient’s status during the recent months. This measurement is taken approximately
every three months.

For diabetes patients, a healthy lifestyle is even more important than normally, as
it can literally make the difference between life and premature death. To monitor the
lifestyle, severallifestyle factorsare measured. These include weight and smoking,
alcohol, and exercise habits. These factors are not measured on a regular basis, but
rather considered to be valid from the time of registration until a new registration is
being made. As the lifestyle factors have a lot in common, they are modeled using
subtypes.

2.3 Clinical Data Warehousing Requirements

In this section we characterize the special requirements that surface in a CDW. We
will start by introducing the concept of the Electronic Patient Record (EPR), explain-
ing how it can serve as a solid foundation for a CDW.

2.3.1 The Electronic Patient Record

It is important to define exactly what is meant by an EPR. The Medical Records
Institute (MRI), an independent, customer-owned non-profit organization, provides
a six-page definition of electronic patient records [74], organized into five levels of
computerization of patient information. We will use the definition from Level 3 “The
Electronic Medical Record,” as this is the lowest level where all patient information
originating from one healthcare enterprise, e.g., all patient data kept by a single hos-
pital, resides in the EPR in a structured format, i.e., as separate data items rather than
simply as scanned documents.

To paraphrase the standard, an Electronic Medical Record (EMR) shall be able to
uniquely identify the person that the information concerns, e.g., through the use of an
enterprise-wide patient index. It is thecompletecollection of information; thus data

2The reason for having a separate pregnancy related diagnosis is that the diabetes must be monitored
and controlled much more intensely during a pregnancy to assure good health of both mother and child.

2.3 Clinical Data Warehousing Requirements 19

from other clinical systems should be integrated in the EMR and harmonized accord-
ingly. The EMR shall be used directly by all healthcare staff to record information.
It shall have legal validity as any other document. This places severe demands on the
security system for access control, electronic signatures, auditing, and data integrity,
i.e., data can only be corrected by amendments.

The EPR is thus the central component in the IT-infrastructure of a modern
healthcare enterprise. It is the common tool used by all healthcare professionals
working in the enterprise. It is the point of entry for most patient information, and it
provides access to the data born in other systems, e.g., laboratory or financial systems.
In spite of these characteristics, the EPR cannot be considered a data warehouse in it-
self. Data in the EPR is used and organized according to operational purposes, where
many kinds of data about one patient is presented to get an overview of the health
status of the patient. Thus, data in the EPR is used and organized in aby-patient
fashion.

In a DW, specific aspects of properties for a large population of patients are ana-
lyzed for trends, thus data is used and organized in aby-propertyfashion. The EPR is
more akin to what Inmon defines as anoperational data store(ODS) [57]: the inte-
grated data store used as the basis for building the DW. The most important obstacle
in using the EPR as a basis for a CDW is the multitude of different EPR systems on
the market; the task of integrating data from several EPR systems is a hard one. This
creates the need for a common standard for EPR data.

2.3.2 The EHCRA Standard for EPRs

The EHCRA standard [36] is the result of a European EPR standardization effort. It
describes how to structure an EPR and lists demands that an EPR should meet. The
ideas in the EHCRA standard originated from the Norwegian NORA project [118],
which has led to the development of the DocuLive EPR system by Siemens Nixdorf
Norway. DocuLive EPR is a tool for implementing EPR’s based on the EHCRA
standard.

EHCRA defines the EPR by means of adocument metaphor: The EPR for a
patient should be thought of as consisting of a number of documents containing in-
formation about the patient. The documents are structured, i.e., are not in free-form
text. The structure of a document ishierarchical, with a document made up ofrecord
itemsor record item complexes, see Figure 2.2.

The lowest level of a document is the record item, which can be thought of as a
basic element of information, e.g., the patient’s name. Record item complexes can
be made up of record items or record item complexes, leading to a tree-structured
document. A typical record item complex would consist of lifestyle information such
as weight, smoking, alcohol, and exercise, grouped together. A record item can also
point to the record item or record item complex in another document, where this
piece of information was originally entered, thus providing multiple views of the
data. This gives the EPR the structure of adirected, acyclic graph. All record items
have some common properties such as a reference to the patient and a reference
to the original context of the data (in case of a pointer). The original context is
important when information is exchanged, as new users of the information can then

20 Research Issues in Clinical Data Warehousing

Record Items Record Item ComplexDocument

Weight Smoking Alcohol Exercise

Figure 2.2: An EHCRA Document

get a complete view of the patient’s situation when, e.g., a diagnosis, was chosen.
The legal requirements are met by recording the time the data is included in the EPR,
the status of the data, i.e., valid or invalid, and the unique id of the healthcare person
entering the data. An update of the patient’s weight is thus made by marking the old
weight as invalid, and inserting a new valid weight, thereby keeping the full history
of changes.

2.3.3 New Challenges

As mentioned above, clinical data warehousing introduces several new challenges to
DW technology, compared to conventional data warehousing. We will illustrate these
by referring to the example from the previous section.

Utilizing EPR Features

One very important issue is to utilize the features of the EPR optimally for building
a clinical data warehouse. EPR systems in general, and EHCRA-based systems, in
particular, have features that make them a very good foundation for clinical data
warehouses.

The EHCRA standard is the European standard for the structure of the EPR. All
EPR systems must thus be able to at least deliver data in an EHCRA-compliant for-
mat, even if they do not structure data internally according to EHCRA. Thus, utilizing
the features of EHCRA in the integration of EPR data with the CDW allows for a very
attractive and open solution that will work with many different EPR systems.

All versions of data in the EPR are stored along with their times of update.
This gives full transaction-timesupport in EHCRA-based systems, thereby making
it much easier to provide this support in the clinical DW. Oftenvalid time is also
attributed to the data in the EPR, providing for fullbitemporalsupport [63].

The EPR is supposed to be the only (or at least the primary) tool that the clinical
user is using in the daily work, so there is a great need to have access to all data,
also lab results, etc., through the EPR. Thusintegration of operational data is al-
ready achievedin the EPR, making the integration process in the DW very easy in
comparison to conventional data warehousing. At a higher level in the MRI standard
mentioned in Section 3.1, data from several healthcare enterprises, potentially the

2.3 Clinical Data Warehousing Requirements 21

whole world, is integrated in the EPR. This makes the integration in the DW of data
from different locations much easier.

The EU-sponsored project Synapses [24] concerns the building of afederated
healthcare record serverthat integrates a wide variety of EPR systems. This should
provide access to clinical data in an EHCRA-compliant format, no matter how the
actual EPR systems structure the data internally. Initially, the goal of the Synapses
project is to facilitate the exchange of electronic patient records between different
healthcare units, possibly using different EPR systems. However, another exciting
application would be to use the Synapses server to transfer data to the CDW in a
uniform way, no matter what the underlying EPR systems are, thus making the task
of integrating data from different EPR systems very easy. A lot of effort could be
saved, compared to accessing the proprietary EPR systems directly.

In normal operational systems, data is entered “post mortem” either automati-
cally or by a clerk. The data is almost never used again by the person registering
or entering the data, thus giving little incentive for carefully registering all the data,
the correct data, and nothing but the correct data. This means that extensive data
cleaning procedures must be established when the data is to be transferred to the DW
[58]. In the EPR, the physician entering the data is also the primary user of the data,
so entering dirty data will directly translate into problems in the daily treatment of
the patients. Thus, data is quality assured continuously by the primary users. This
means that the operational data is more likely to be ofhigh quality, thus requiring
less cleaning when being moved to the CDW. This will give the results obtained from
the CDW a high level of credibility.

There are many unresolved issues in how to optimally exploit EHCRA-compliant
systems as the basis for CDW’s.

Complex Data Modeling Features

One of the most prominent demands is a data model for the CDW that includes more
complex modeling constructs than typical multidimensional models, while not losing
their obvious strengths in the area of decision support, i.e., we should not return to
the full generality of the ER model.

In the multidimensional model [40], facts are in a n-1 relationship to the base
elements of the dimensions, which in turn encode strict hierarchies, i.e., lower levels
have n-1 relationships to upper levels. An example of this is a purchase. Exactly one
product can be purchased, the product can belong to exactly one product category,
etc.

But consider the case study where a patient has multiple diagnoses at the same
time. The relation between patient and diagnosis is most naturally modeled as an n-n
relationship, as thesamepatient may have multiple diagnoses. For instance, if we
ask the question “How many patients have diagnoses A or B” we only want patients
with both to be counted once. We should be able to capture this intended behavior in
the schema. This is not easily possible using a conventional multidimensional model.

In multidimensional modeling [64], we have three alternatives for encoding n-
n relationships: traditional dimensions, mini-dimensions, and snowflaking. Using
traditional dimensions, we would enumerate all the possible combinations of diag-

22 Research Issues in Clinical Data Warehousing

noses. Having 10.000 diagnoses, this would amount to210:000 dimension records,
making this solution practically unusable. Enumerating only the combinations actu-
ally used would still yield a very large number of dimension records. Furthermore,
the dimension tables would be very wide and incomprehensible to the users. Using
mini-dimensions with one dimension for each possible diagnosis would yield 10.000
dimensions, making the solution bad-performing as well as incomprehensible. Using
snowflaking will not give any advantages over traditional dimensions, as the basic
elements of the dimensions would the same, i.e., the possible combinations of diag-
noses.

Another characteristic of clinical data is that we have many “loosely coupled”
facts, e.g., the weight and smoking measurements from the case study. The values of
these two measurements can change independently of each other, and a value is not
always present at a given point in time, i.e., if the patient has not reported smoking
habits. The measurements can be viewed in two ways, as time-variant attributes of
the patient, or as separate entities that can be manipulated independently. The data
model should be able to handle both treating the facts together, as if they belonged to
the same entity, e.g., patient, or treating them separately.

In addition the data model should provide integrated semantic support for the
demands listed in the following sections, e.g., temporal support, so that the solutions
do not appear as poorly integrated “add-ons.”

Advanced Temporal Support

One very important property of clinical data is the importance of temporal aspects.
The same test, e.g., the HbA1c% measurement, can be made hundreds of times,
so it is important to know both when the data is considered to bevalid in the real
world, and when it isstored and changed in the database. These temporal aspects
of the data, known asvalid time and transaction time, must both be supported to
provide bitemporal support [62]. This support is for instance needed in order to
“couple” different facts, e.g., smoking and weight, thereby computing “snapshots” of
measurement values at specific intervals or points in time3. These snapshots are used
to observe temporal trends in the evolution of one type of data values or in the relation
between different types. In order to conduct these and other types of time studies, it is
necessary to have available a strong support for time-series data, including a rich set
of temporal analysis tools. It should be possible to use the above-mentioned advanced
temporal concepts wherever meaningful. These advanced temporal concepts are not
supported by current models.

Advanced Classification Structures

A data type of extreme importance in the clinical sector is “coded,” or classified, data.
One example is a diagnosis, which at the lowest level is a very precise indication of
one specific medical condition. Diagnoses are then grouped repeatedly into larger,
more general classes. A diagnosis is a good example of a typical OLAP “dimension,”

3This is possible because although the same property may be measured many times for the same
patient, only one measurement value is considered to be “valid” at any given point in time.

2.3 Clinical Data Warehousing Requirements 23

as it characterizes the condition of the patient, it is attached to; but unlike the typical
dimension, the diagnosis hierarchy is non-strict. Take for instance the diagnosis “Di-
abetes during pregnancy.” This is in the group “Other pregnancy related diseases,”
but also in the group “Diabetes.” This leads to an interesting requirement. If we ask
for the number of patients, grouped by diagnosis at the lowest level, we naturally
only want each pregnant-diabetes patient to be counted once. Then, if we “roll up” to
the next level of diagnoses, we want the patients to be counted both in the pregnancy-
related and the diabetes diseases groups. If we then roll up again, not considering
the diagnosis dimension at all, we should again only count the patients once. Clearly
the user of the DW should be able to work with the data and get the correct results,
without having to worry about double-counting, etc. In the case of strict hierarchies,
this feature is referred to assummarizability[103, 70].

Current data models do not specifically address this issue of correct aggregation
in the case of non-strict hierarchies.

Another requirement related to classification structures is that they should be able
to handle temporal change. Classifications change and new diagnoses and new groups
come and go at a steady rate. The CDW should support this in an intelligent way, so
that analysis of data across changes is handled smoothly and preferably transparently
to the user. This requirement is also not handled well by current techniques.

Continuously Valued Data

Measurements and lab results, e.g., the HbA1c% measurement from the case study,
are the key facts in the CDW. Unlike typical DW facts, these types of data clearly do
not yield any meaning when summed. Other standard aggregation operators, such as
MIN, MAX and AVG do apply, but the real demands are for more complex opera-
tions, such as standard deviation and other statistical functions. These operators are
mainly used during follow-up on treatment in relation to clinical protocols, see below,
or in medical research. The CDW should be able to support these advanced opera-
tions very efficiently, to supply the performance necessary to analyze large amounts
of data accumulated over long periods of time. To do so, it must be investigated how
pre-stored and pre-aggregated data can be used to achieve high performance. Cur-
rent techniques for maintaining pre-aggregated data support only simple aggregation
operators such as SUM.

Dimensionally Reduced Data

In a clinical DW, average patients might have hundreds of different facts describing
their current situation, in diabetes treatment about 200 facts are recorded. There is
an urgent need to be able to aggregate this massive amount of information in a use-
ful way. In the case study, a patient has four independent indicators describing the
lifestyle, i.e., levels of smoking, exercise, alcohol, and weight. These could be com-
bined into one aggregate measure indicating the overall lifestyle of the patient. In
multidimensional terms, we have reduced the previous four dimensions to just one.
In a traditional OLAP world, the only way to reduce dimensionality is by projection,
therebyignoring all information about the omitted dimensions. The dimension re-

24 Research Issues in Clinical Data Warehousing

duction approach clearly has advantages over this, as the complexity of the data is
reduced, while the essence is maintained. The clinical DW should be able to support
the definition of such combination functions, and it should provide good performance
for reducing/increasing the number of dimensions. The issue of pre-aggregation in
connection with dimensionality reduction is also very interesting.

Integration of Very Complex Data

The clinical world is also characterized by very complex types of data. One example
is the 2048 by 2048 pixel foot picture from the case study, which in multidimensional
terms could be viewed as being 4.194.304 dimensional, by considering all pixels to
be independent dimensions. While this clearly is an overly complex way of looking
at it, it should be possible to incorporate this type of data in the CDW for data anal-
ysis purposes. The functionality should be more advanced than just allowing the raw
data to be stored and retrieved, i.e., the support often associated with “blobs.” Rather,
it should be possible to definefeature extractorson the raw data, e.g., pattern recog-
nition functions for wounds, and to perform analyses on the extracted features. The
extractors should be tightly integrated with the DW, allowing for addition of new and
modification of existing extractors incrementally, i.e., without having to recompute
every feature from scratch. Existing data warehouse techniques accommodate only
with simple, structured data such as text and numbers.

Support for Clinical Protocols

The introduction ofmanaged careis a very prominent current trend in the clinical
world. Instead of relying solely on the judgment and knowledge of one doctor, the
treatment of specific diseases is conducted according to well-defined protocols that
specify the conditions and actions for using specific treatments. The protocol can be
viewed as a “best practice” or an advanced set of business rules. A patient can be
treated according to different protocols at different times, as shown in the case study.

There is a need to analyze the actual treatments, to investigate conformance to
the protocols, outcomes, etc. As an example, we could ask what protocol provides
the best treatment in terms of keeping the HbA1c% close to normal.

Ideally, the protocols would be specified formally, to allow “automatic” follow-up
on treatments. That is, queries against the CDW could be generated directly from the
protocols, and the results of these be used to test conformance, to adjust the protocols,
etc. The CDW should have integrated support for clinical protocols, to accommodate
this important part of clinical practice. Today, data warehouse systems do not have
any support for advanced business rules like these.

Support for Medical Research

Medical research can take several different forms; one form that the clinical DW en-
ables is the so-calledqualitativeresearch where large amounts of data is analyzed to
confirm known or discover unknown trends and correlations in the data. For example,
a correlation between the weight and the HbA1c% of a patient could be discovered.
The discovery process in medical research would benefit enormously from having

2.3 Clinical Data Warehousing Requirements 25

data mining facilities integrated into the CDW. There should be a conceptually sim-
ple, fast-performing, and yet flexible way to produce the “flat” sets of data that are
normally fed into data mining algorithms. The results could be used as inspiration
for hypotheses that could then be tested in controlled, formal clinical studies. The
integration of data mining and data warehousing and the use of a DW for research
purposes are both in their infancy in today’s DW products.

2.3.4 Comparison of Conventional and Clinical DW

The differences between clinical and conventional data warehouses extend into their
corresponding operational systems. For conventional systems, the operational sys-
tems often consist of a wide range of poorly integrated legacy systems. In a modern
clinical setup, however, almost all data is already accessible in an EPR, thus provid-
ing integration at the operational level. The EPR also has other characteristics that
differ from most typical operational systems (see Table 2.1). Both types of systems
have small granularity of data, but in the EPR, data is never deleted, and a full trace
of all updates are maintained for legal reasons.

Conventional Clinical (EPR)
Integration No Yes
Granularity Small Small
Volatility High Zero
History No Yes

Table 2.1: Comparing Conventional and Clinical Operational Systems

If we consider the same characteristics for conventional versus clinical data ware-
houses, we also see some interesting trends (see Table 2.2).

Conventional Clinical
Integration Yes (hard) Yes (easy)
Granularity Medium Small (drill back)
Volatility Low Zero
History Sometimes Always

Table 2.2: Comparing Conventional and Clinical Data Warehouses

Integration of data is achieved for both types, but in the typical conventional DW,
integration is difficult to achieve because data is scattered in many legacy systems. In
contrast, integration of data is already achieved in the EPR, thus making it easier to
build the DW. Granularity varies from small to large in a conventional DW, but in a
CDW, we always need to have the operational granularity of data. This is caused by
the need to “drill back” to the EPR, e.g., when encountering an interesting anomaly
in the data. The physician then needs access to the full patient record to determine the
exact cause. In a conventional DW only 6-10 years of data is kept, but in the clinical
world it is important to see the full disease history, which might span 50 years or

26 Research Issues in Clinical Data Warehousing

Conventional Clinical
Data Model Simple Complex
Temporal Support Medium Advanced
Classifications Simple Advanced
Continuously Valued Data No Yes
Dimensionally Reduced DataNo Yes
Very Complex Data No Yes
Advanced Business Rules Maybe Yes (Protocols)
Data Mining Maybe Yes (Medical Research)

Table 2.3: Characteristics of Conventional versus Clinical Data Warehouses

more, e.g., in the case of diabetes patients. It is also very important to have the full
update history of the EPR, to facilitate trend analysis. This level of temporal support
is not always present in business data warehouses.

2.3.5 Standardization Efforts

An area of high importance to clinical information systems is the various standard-
ization efforts in the field of healthcare informatics.

First, the Health Level 7 (HL7) organization’s work on standardization of elec-
tronic data interchange in healthcare environments [30] specifies the content of elec-
tronic messages transmitting healthcare information, by referring to a common model
that specifies domain concepts and legal data values. The HL7 standard is widely
used in the industry for interfacing different systems.

Second, the Object Management Group (OMG) has launched the CORBAmed
initiative [84] that is aimed at providing standard interfaces to healthcare information
systems based on OMG’s Common Request Broker Architecture (CORBA). Several
CORBAmed workgroups focus on specific areas such as clinical decision support,
clinical observations, patient identification, and HL7 integration.

Third, the most recent player is Microsoft, with the “ActiveX for Healthcare”
initiative [77] that is a direct competitor to CORBAmed, but is based on Microsoft’s
Distributed Component Object Model (DCOM) instead of CORBA.

From a clinical data warehousing perspective, these initiatives deal almost en-
tirely with integration of clinical data in the CDW and can thus be seen as enablers
of integration, whether the CDW is based on an EPR or not. These initiatives do not
address the other challenges presented in the chapter.

2.4 Summary

Table 2.3 summarizes the challenging needs covered in the chapter and compares
them with the characteristics of a conventional DW, i.e., a DW as it is often used in
a business context. This does not imply that business or other domains do not need
the advanced features presented in the chapter. Rather, the comparison shows why

2.4 Summary 27

conventional DW techniques fail to meet the requirements of clinical data warehous-
ing. The investigation of these requirements are the focus of this chapter. From the
comparison it is clear that the needs of a clinical DW poses some very interesting
challenges for researchers and developers alike.

The data model must support advanced constructs such as many-to-many rela-
tionships between facts and dimensions. Full support for bitemporal data and analy-
sis over time is also needed. Advanced classification structures must be provided that
integrate support for non-strict hierarchies with means of handling change and time,
while maintaining support for correct aggregations.

Continuously valued data must be efficiently supported, including how to per-
form advanced operations on them. Dimensional reduction of data in the CDW is
important in order to make sense of the high-dimensional data. Very complex data
such as pictures or x-rays must be available in the CDW, with facilities for doing
analysis on them.

The integration of clinical protocols in the CDW is important to allow for follow-
up on the treatment of patients. Support for medical research, e.g., via data mining
facilities, will enable the clinical community to perform their research much more
efficiently than is possible today.

We have shown that DW technology faces exciting new challenges from the area
of clinical data warehousing. Clinical data warehousing provides excellent opportu-
nities for first-class DW research that will also have applications in areas beyond the
clinical world.

The challenges that are especially important to the general database research
community include the following: advanced data models including temporal support,
advanced classification structures, continuously valued data support, and dimensional
reduction of data.

We will work on these issues in clinical applications in order to support the suc-
cessful application of data warehousing in the clinical world.

28 Research Issues in Clinical Data Warehousing

Chapter 3

A Foundation for Capturing and
Querying Complex
Multidimensional Data

3.1 Introduction

On-Line Analytical Processing (OLAP) [22] is an area of active commercial and re-
search interest. Continued advances in hardware for on-line mass storage have made
possible the warehousing of large amounts of data. OLAP tools focus on providing
fast answers to ad-hoc queries thataggregatethe warehouse data. This enables users
to quickly analyze the data and make informed decisions.

Traditional data models, such as the ER model [19] and the relational model,
do not provide good support for OLAP applications. As a result, new data models
based on amultidimensionalview of data have emerged. Multidimensional models
typically categorize data as eithermeasurable business facts(measures), which are
numerical in nature, ordimensions, which are mostly textual and characterize the
facts. For example, in a retail business,productsare sold tocustomersat certain
timesin certainamountsat certainprices. A typical fact would be apurchase. Typical
measures would be the amount and price of the purchase. Typical dimensions would
be the location of the purchase, the type of product being purchased, and the time of
the purchase.

Most OLAP research to date has concentrated on performance issues. Higher-
level issues, such as conceptual modeling, have received less attention. Several re-
searchers have identified this deficiency and have suggested combining the good per-
formance of OLAP systems with the advanced data modeling capabilities ofscientific
and statistical databases[116]. Such a combination would inject more semantics into
the database schema and would support the typical OLAP style of working directly
with the data instead of relying on pre-formatted reports.

The use of OLAP tools has recently spread to medical applications, where physi-
cians study the data associated with patients. Denmark’s largest provider of health
care IT, Kommunedata, spends significant resources on applying OLAP technology
to medical applications.

29

30 A Foundation

The use of OLAP tools in medical and other real-world applications raises new
challenges for OLAP technology. This chapter presents eleven advanced require-
ments that a multidimensional data model should satisfy. The requirements are illus-
trated using a medical case study. Twelve previously proposed data models, which
are representative for the spectrum of multidimensional data models, are evaluated
against the eleven requirements. No existing model satisfies more than four of these
requirements. This chapter presents an extended multidimensional data model that
addresses all eleven requirements.

The medical case study presented in Section 3.2 highlights two main problem ar-
eas for current OLAP technology. The first problem area is “imperfect” data. Imper-
fections, which invariably occur in medical data, include data values that aremissing
and values that areimpreciseto varying degrees, i.e., in multidimensional database
terms, they havevarying granularities. The problem of varying granularities sur-
faces in OLAP applications for several different reasons. Some data, such as the
data in the case study presented in Section 3.2, has naturally varying granularities.
Data at varying granularities is also common when data from different organizations
is combined. Such data cannot be handled by existing OLAP tools and techniques
since they require that the data have a uniform granularity. In a process calleddata
cleansing, granularity variances are removed prior to admitting the data to an OLAP
database. Data is cleansed by mapping it to a common, coarse granularity. But this
degrades the quality of the data, possibly leading to erroneous conclusions based on
the results of subsequent OLAP queries. Rather, offering the physicians the ability
to access the imperfect data enables them to obtain as meaningful and informative
answers as possible to their OLAP queries.

The second problem area is “imperfect” hierarchies. Many OLAP data models
support hierarchies in the dimensions. These enable a user to drill-down and roll-
up in the aggregate data. Our model adds to the traditional hierarchies in several
ways. Multiple hierarchies in each dimension are supported, to allow for different
aggregation paths within a dimension.Non-strict hierarchies, where a dimension
item may have several parents, are also supported. Our model treats dimensions
and measures symmetrically, to allow measures to be used as dimensions and vice
versa. Many-to-many relationships between facts and dimensions can be captured
directly in the model, which is important since relationships often occur in real-world
data. The data model supports the use of the aggregation semantics of the data to
obtain correct results when aggregating data, e.g., data will not be double-counted and
non-additive data cannot be added. Data changes over time, so support for handling
change and time is part of the model.

This chapter is structured as follows. Section 3.2 sets the stage by presenting
a real-world, medical case study together with eleven requirements to multidimen-
sional data models. It also describes and evaluates previously proposed models
against the requirements. Section 3.3 defines the basic extended multidimensional
data model, using examples from the case study for illustration, then adds support
for handling time to the model. With the data structures of the model available,
Section 3.4 defines the algebraic query language of the model and discusses its prop-
erties. The model’s algebraic query language is closed and at least as strong as rela-
tional algebra with aggregation functions. Section 3.5 extends the model to handle

3.2 Motivation and Related Work 31

imprecision. It also describes how to suggest alternative queries if the original query
is affected by imprecision in the data. Section 3.6 covers imprecision in the grouping
of data and in the computation of the aggregate results, as well as in the presenta-
tion of the imprecise result to the user. Section 3.7 evaluates the model against the
requirements. Section 3.8 discusses the use of pre-aggregated data for query evalua-
tion involving imprecision. Section 3.9 summarizes the chapter and points to future
directions. Appendices 3.10 and 3.11 describe how to use relational databases tech-
nology to implement the new model and to handle imprecise data during querying,
respectively.

3.2 Motivation and Related Work

Section 3.2.1 presents a medical case study. The study illustrates the chapter’s contri-
butions and also motivates the requirements for multidimensional models, which are
presented in Section 3.2.2. Section 3.2.3 relates these requirements to existing mul-
tidimensional data models. Finally Section 3.2.4 considers related work in imprecise
data management.

3.2.1 A Case Study

The case study concerns diabetes patients. Over a period of several years, the study
monitors each patient’s blood sugar level, diagnosis (i.e., what kind(s) of diabetes
they suffer from), and their place of residence. The goal of the study is to determine
how blood sugar levels vary among diagnoses. Also of interest is whether specific
diagnoses are more frequent in some areas than in others. A high frequency may
indicate environmental factors that contribute to a disease pattern. An ER diagram
illustrating the underlying data is shown in Figure 3.1.

The most important entity type isPatient. The study records a patient’s Name,
Date of Birth, Age, HbA1c%, and Precision. Age is parenthesized to show that
it is derived. HbA1c% is the long-term blood sugar level [59]. It is an important
measurement for diabetes patients since it provides a good overall indicator of the
patient’s status. But sometimes this value ismissing, usually because a physician
does not test the HbA1c% during a patient’s visit. The HbA1c% is measured using
two different methods. Several hospitals use an older, imprecise method, but some
have improved their practice and now use a more precise method. The precision
attribute records this difference in HbA1c% measurement methods. The value of the
attribute is eitherprecise, imprecise, or inapplicable(when the HbA1c% is missing).

The entity typeDiagnosisrepresents a condition that a physician identifies in a
patient. The code and text description of a diagnosis are determined by a standard
classification of diseases, e.g., the World Health Organization’s International Clas-
sification of Diseases (ICD-10) [133]. A patient always has at least one diagnosis,
but may be ill enough to have several diagnoses. The time interval when each diag-
nosis is considered valid for a patient is also stored since the diagnoses for a patient
vary over time. Thetypeof a diagnosis indicates whether it is consideredprimary or
secondary. A patient can have only one primary diagnosis at any time. A primary

32 A Foundation

Diagnosis
Diagnosis

Family
Is part of

* Valid From
* Valid To
* Type

* Code
* Text
* Valid From
* Valid To

Patient

* Name
* Date of birth
* (Age)
* HbA1C%
* Precision

(0,n)

Grouping
Diagnosis

Group

* Valid From
* Valid To
* Type

(1,n)

Has

Low-level
Diagnosis

* Valid From
* Valid To
* Type

Address

Lives
at

(1,1)

(0,n)

City County
City

located
in

Located
in city

* Address * Name * Name

(1,1)(0,n) (1,n)

Diagnosis

D

(0,n)

(0,1)

(1,n)(0,n)(1,n)

(0,1)
Located in
rural area

(0,n)

Figure 3.1: Patient Diagnosis Case Study

diagnosis constitutes the most important reason for a treatment, while secondary di-
agnoses complete the description of a patient’s condition.

Diagnosing a patient is inherently difficult and inexact. When registering a diag-
nosis for a patient, a physician may make a very precise diagnosis such as “Insulin
dependent diabetes.” But often a physician will be less sure of the diagnosis and
will use a less precise diagnosis such as “Diabetes,” which covers a wider range of
patient conditions corresponding to a number of more precise diagnoses. To model
this, the entity type Diagnosis is specialized into three subtypes:Low-level Diagno-
sis, Diagnosis Family, andDiagnosis Group. Each of the subtypes is a diagnosis. For
example, “Diabetes” is a diagnosis group. The most precise diagnosis is a low-level
diagnosis. A diagnosis family is a less precise diagnosis. Each diagnosis family con-
sists of 5–25 related low-level diagnoses. A diagnosis group is an even less precise
diagnosis. Each group consists of 5–50 diagnosis families.

The diagnosis subtypes capture ahierarchyof diagnoses, from low-level diag-
noses to diagnosis groups. Hierarchies are central to OLAP tools since they enable

3.2 Motivation and Related Work 33

users to query aggregate data at any level of precision within the hierarchy, drilling
down to a more precise view or rolling up to a more abstract view when desired.
Three aspects of the hierarchy of diagnoses deserve special attention. First, the di-
agnosis hierarchy isnon-strict. In a non-strict hierarchy a lower-level item can be a
member of several items at a higher-level. Traditionally, OLAP systems only permit
strict hierarchies where every lower-level item belongs to a single higher-level item.
In the diagnosis hierarchy, a low-level diagnosis can be part of several diagnosis
families or groups. In particular, the “Insulin dependent diabetes during pregnancy”
diagnosis is part of both the “Diabetes during pregnancy” diagnosis family and the
“Insulin dependent diabetes” diagnosis family. In this chapter, we develop a model
that correctly and efficiently supports non-strict hierarchies.

Second, the hierarchy evolves over time. Standards like the World Health Or-
ganization classification for diseases constantly evolve. New diseases are added to
the standard, and old diseases are reclassified as new knowledge becomes available.
While changes in the hierarchy are commonplace in the real-world, OLAP support
for change is rare. In this chapter, we present a model that fully supports changing
hierarchies. To capture the diagnosis classification as it changes over time, we also
record the time intervals where the diagnoses are “valid,” i.e., when they can be used
for diagnosing patients.

Third, the hierarchy is notonto (not balanced), e.g., the “Cancer” Diagnosis
Group has a “Lung Cancer” Diagnosis Family under it in the hierarchy, but there
is no further subdivision into more precise Low-level Diagnosis cancer types. The
model presented here also addresses this aspect of hierarchies.

We also record the place of residence for the patients. A patient lives at onead-
dress. For simplicity, we do not capture the changes of addresses over time. Some
addresses are incities, whereas others are rural, in which case we just record the
county they are in. Cities are part of exactly onecounty. This hierarchy also has
a property that occurs in real-world hierarchies, but is not supported by OLAP sys-
tems. Not every address is in a city. Hence cities does not cover the same portion of
the underlying domain as do addresses (and counties). We call this anon-covering
hierarchy, and it is important that OLAP systems support such hierarchies, e.g., to
permit drilling down from counties to cities and then to addresses. In this chapter we
describe a model that supports non-covering hierarchies.

In order to list some example data, we assume a standard mapping of the ER
diagram to relational tables, i.e., one table per entity type, one-to-many relationships
handled using foreign keys, and many-to-many relationships handled using separate
tables. Relationships that change over time are also handled using separate tables.
Surrogate keys, namedID, with globally unique values are used. Dates are written
in the format dd/mm/yy. For theValid Toattribute, the special value “NOW” denotes
the continuously changing current time [20]. As the three subtypes of the Diagnosis
type have the same attributes, all three are mapped to a common Diagnosis table.
The “is part of” and “grouping” relationships are also mapped to a common “Group-
ing” table. The data consists of three patients and their associated diagnoses and
addresses, 12 diagnoses in a hierarchy, four addresses, two cities, and three counties.
On January 1, 1980, a new, more detailed classification with a new coding scheme

34 A Foundation

ID Name D.O.B. HbA1C% Precision Addr
0 Jim Doe 03/05/57 Unknown Inappl. 52
1 John Doe 12/21/69 5.5 Precise 50
2 Jane Doe 10/10/50 7 Imprec. 51

Patient Table

ID Address
50 21 Central Str.
51 34 Main Str.
52 123 Rural Rd.
53 1 Sandy Ds.

Address

ID Name CountyID
20 Sydney 30
21 Melbourne 31

City

AddressID CityID
50 20
51 21

LocatedInCity

AddressID Name
52 31
53 32

LocatedInRuralArea

ID Name
30 Sydney
31 Melbourne
32 Outback

County

PatientID DiagnosisID ValidFrom ValidTo Type
0 11 12/21/82 NOW Primary
1 10 01/01/89 NOW Primary
2 3 23/03/75 24/12/75 Scndr.
2 8 01/01/70 31/12/81 Primary
2 5 01/01/82 30/09/82 Scndr.
2 9 01/01/82 NOW Primary

Has Table

ID Code Text ValidFrom ValidTo
3 P11 Diabetes during pregnancy 01/01/70 31/12/79
4 O24 Diabetes during pregnancy 01/01/80 NOW
5 O24.0 Insulin dependent diabetes during pregn.01/01/80 NOW
6 O24.1 Non insulin dpdnt diabetes during pregn.01/01/80 NOW
7 P1 Other pregnancy related diseases 01/01/70 31/12/79
8 D1 Diabetes 01/10/70 31/12/79
9 E10 Insulin dependent diabetes 01/01/80 NOW
10 E11 Non insulin dependent diabetes 01/01/80 NOW
11 E1 Diabetes 01/01/80 NOW
12 O2 Other pregnancy related diseases 01/10/80 NOW
13 A1 Cancer 01/01/80 NOW
14 A11 Lung Cancer 01/01/80 NOW

Diagnosis Table

ParentID ChildID ValidFrom ValidTo Type
4 5 01/01/80 NOW WHO
4 6 01/01/80 NOW WHO
7 3 01/01/70 31/12/79 WHO
8 3 01/01/70 31/12/79 User-defined
9 5 01/01/80 NOW User-defined
10 6 01/01/80 NOW User-defined
11 9 01/01/80 NOW WHO
11 10 01/01/80 NOW WHO
12 4 01/01/80 NOW WHO
13 14 01/01/80 NOW WHO

Grouping Table

Table 3.1: Data for the Case Study

was introduced. The resulting tables are shown in Table 3.1 and will be used in
examples throughout the chapter.

3.2 Motivation and Related Work 35

A particularly interesting problem in the case study is the presence of imprecise
data. The primary users are physicians that issue queries that aggregate the available
data in order to obtain high-level information. For example, it is important to keep
the HbA1c% as close to normal as possible, as patients might collapse or get liver
damage if the HbA1c% is too low or too high, respectively. Thus, a typical query
is to ask for theaverage HbA1c% grouped by low-level diagnosis. This shows the
differences in the blood sugar level for the different patient groups, as determined by
the diagnoses, indicating which patients will benefit the most from close monitoring
and control of the HbA1c%.

However, as the example data shows, there are some problems in answering this
query. First, one of the patients, Jim Doe, is diagnosed with “Diabetes,” which is a
diagnosis family. Thus, the diagnosis is not precise enough to determine the low-level
diagnosis for Jim Doe. Second, the HbA1c% values themselves are imprecise. John
Doe has a value obtained with the new, precise measurement method, Jane Doe has
only an imprecise value, and Jim Doe’s HbA1c% is unknown.

The imprecision of the data must be communicated to the physicians so that the
level of imprecision can be taken into account when interpreting the query results.
This helps to ensure that the physicians will not make important clinical decisions on
a “weak” basis. Several strategies are possible for handling the imprecision. First,
the physicians may only be allowed to ask queries on data that isprecise enough,
e.g., the grouping of patients must be by diagnosis family, not low-level diagnosis.
Second, the query can return an imprecise result. Possible alternatives to this can
be to include in the result only what isknownto be true, everything thatmight be
true, and acombinationof these two extremes. The chapter presents an approach
to handling imprecision that integrates both the first and the second strategy, i.e.,
only “precise enough” data or imprecise results, and provides all the three above-
mentioned alternatives for returning imprecise results.

3.2.2 Requirements for Data Analysis

This section describes the features that a data model should possess in order to fully
support our sample case and other uses. Current multidimensional models are evalu-
ated against these features in the next section.

1. Explicit hierarchies in dimensions. The hierarchies in the dimensions should
be captured explicitly by the schema. This permits the user to drill-down and
roll-up. In our example, the hierarchiesdiagnosis < family < group and
address < city < county should be captured.

2. Symmetric treatment of dimensions and measures. The data model should al-
low measures to be treated as dimensions and vice versa. In our example, the
attribute Age for patients would typically be treated as a measure, to allow for
computations such as average age, etc., but we should also be able to define an
Age dimension which allows us to group the patients into age groups.

3. Multiple hierarchies in each dimension. A single dimension can have several
paths for aggregating data. As an example, assume that we have a Time di-
mension on the Date of Birth attribute. Days roll up to weeks and to months,

36 A Foundation

but weeks do not roll up to months. To model this, multiple hierarchies in each
dimension are needed.

4. Support for aggregation semantics. The data model should capture the aggre-
gation semantics of the data and use this to provide a “safety net” that catches
queries that might give results that have no meaning to the user. Aspects of
this include built-in support for avoiding double-counting of data and avoiding
addition of non-additive data.

For example, when asking for the numbers of patients in different diagnosis
groups, we should only count the same patient once per group, even if the
patient has several diagnoses in a group. The user should also be able to spec-
ify which aggregations are considered meaningful for the different kinds of
data available, and the model should provide a foundation for enforcing these
specifications. As an illustration, it may not be meaningful to add inventory
levels together, but performing average calculations on them does make sense.
In the field of statistical databases, a closely related concept issummarizabil-
ity [70, 103], which means that an aggregate result, e.g., total sales, can be
computed by directly combining results from lower-level aggregations, e.g.,
the sales for each store.

5. Non-strict hierarchies. The hierarchies in a dimension are not always strict,
i.e., we can have many-to-many relationships between the different levels in
a dimension. In our example, the diagnosis hierarchy is not strict. The data
model should be able to handle these just as well as “ordinary” strict dimen-
sions.

6. Non-onto hierarchies. Often, the hierarchies in a dimension are not balanced,
i.e., the path from the root to the leaves has varying length. In our case, this
occurs in the diagnosis hierarchy, where the “Lung Cancer” diagnosis has no
low-level diagnosis children.

7. Non-covering hierarchies. Another common feature of real-world hierarchies
is that links between two nodes in the hierarchy “skips” one or more levels. For
example, the address “123 Rural Road” in the residence hierarchy is mapped
directly to the county, bypassing the city level.

8. Many-to-many relationships between facts and dimensions. The relationship
between fact and dimension is not always the classical many-to-one one. In our
case study, the same patient may have several diagnoses, even simultaneously.

9. Handling change and time. Although data change over time, it should be pos-
sible to perform meaningful analyses across times when data change. In the
example, one diagnosis can be superseded by two new ones, but patients are
still diagnosed with the old one. It should be possible to easily combine data
across changes. The problem typically referred to as handlingslowly changing
dimensions[64, 9] is part of this problem.

10. Handling different levels of granularity. Fact data might be registered at dif-
ferent granularities. In our example, the diagnosis of a diabetes patient may

3.2 Motivation and Related Work 37

be registered differently by different physicians. Some will use a very specific
diagnosis such as “Insulin dependent diabetes,” while others will use the less
precise “Diabetes,” which covers several lower-level diagnoses. It should still
be possible to get correct analysis results when data is registered at different
granularities.

11. Handling imprecisionFinally, it is very important to be able to capture directly
the imprecision in the data and allow queries to take it into account. For exam-
ple, the HbA1c% for patients has varying precision and it is important that this
is captured and communicated to the users, as described in Section 3.2.1.

3.2.3 Existing Multidimensional Models

We proceed to evaluate twelve data models for data warehousing on the requirements
just presented. We consider the models of Rafanelli & Shoshani [103], Agrawal et
al. [2], Gray et al. [40], Dyreson [31], Kimball [64], Li & Wang [71], Gyssens &
Lakshmanan [48], Cabbibo and Torlone [12], Datta & Thomas [26], Lehner [69],
Vassiliadis [127], and Microsoft’s OLE DB for OLAP standard [78]. These models
are representative of the current state of the art in both the research community and
commercial systems. The models can be divided intosimple cube models, structured
cube models, andstatistical object models.

The simple cube models [40, 64, 48, 26] treat data asn-dimensional cubes. Gen-
erally, the data is divided intofacts, or measures, e.g., Age, on which calculations
should be performed, anddimensions, e.g., Diagnosis, which characterize the facts.
Each dimension has a number of attributes, which can be used for selection and
grouping. In our example, a “Residence” dimension having the attributes “Area,”
“County,” and “Region” would be used to characterize the patients. The hierarchy
between the attributes is not captured explicitly by the schema of the simple cubes,
so the user will not be able to learn from the schema that Area rolls up to County and
not the other way around. Simple cubes include Star schema designs [64].

The structured cube models [2, 71, 31, 12, 69, 127, 78] capture the hierarchies in
the dimensions explicitly, providing better guidance for the user navigating the cubes.
This information may also be useful for query optimization [68]. The hierarchies
are captured using eithergrouping relations[71], dimension merging functions[2],
measure graphs [31], roll-up functions [12], level lattices [127], or an explicit tree-
structured hierarchy as part of the cube [69, 78].

The last group of models is thestatistical object models[103]. For this group, a
structured classification hierarchy is coupled with an explicit aggregation function on
a single measure to produce a “pre-cooked” object that will answer a very specific set
of questions. This approach is not as flexible as the others, but unlike most of these, it
provides some protection, using aggregation semantics, against getting query results
that are incorrect or not meaningful to the user.

The results of evaluating the twelve data models against our eleven requirements
are seen in Table 3.2. If a model supports all aspects of a requirement, we say that
the model providesfull support, denoted by “

p
”. If a model supports some, but not

all, aspects of a requirement, we say that it providespartial support, denoted by “p”.

38 A Foundation

When it has not been possible to determine how support for a requirement should be
accomplished in the model, we say that the model providesno support, denoted by
“-”.

1 2 3 4 5 6 7 8 9 10 11
Rafanelli & Shoshani [103]

p
- -

p
p p - - - - -

Agrawal et al. [2] p
p p

- p - - - - - -
Dyreson [31]

p
-
p

p - - - - - p p
Gray et al. [40] -

p p
p - - - - - - -

Kimball [64] - -
p

p - - - - p - -
Li & Wang [71] p -

p
p - - - - - - -

Gyssens & Lakshmanan [48] -
p p

p - - - - - - -
Cabbibo & Torlone [12]

p
-
p

p - - - - - - -
Datta & Thomas [26] -

p p
- p - - - - - -

Lehner [69]
p

- -
p

- - - - - - -
Vassiliadis [127]

p
-
p p

- - - - - - -
MS OLE DB for OLAP [78]

p
-
p

p - - - - - - -

Table 3.2: Evaluation of the Data Models

1. Explicit hierarchies in dimensions: The simple cube models [40, 64, 48, 26]
do not capture the hierarchies in the dimensions explicitly. Some models pro-
vide partial support by thegrouping relation[71] anddimension merging func-
tion [2], but do not capture the complete hierarchy together with the cube. This
is done by the remaining models [103, 31, 12, 69, 127, 78], thus capturing the
full cube navigation semantics in the schema.

2. Symmetric treatment of dimensions and measures: Most of the models [64,
103, 31, 71, 12, 69, 127, 78] distinguish sharply between measures and dimen-
sions. An attribute designated as a measure cannot be used as a dimensional
attribute and vice versa. This restricts the flexibility of the cube designs, e.g.,
if the Age attribute of the example is a measure, it cannot be used to group
patients into age groups. The other models [40, 2, 48, 26] do not impose this
restriction. They either do not distinguish between measures and dimensions
[40, 48], or they allow for the conversion of measures to dimensions and vice
versa [2, 26].

3. Multiple hierarchies in each dimension: Some models [103, 69] require that
the schema of dimension hierarchies is tree-structured. To support multiple
hierarchies, a more general lattice structure is required. All the other models
[40, 64, 2, 48, 71, 31, 12, 26, 127, 78] allow multiple hierarchies.

4. Support for aggregation semantics: Most of the models [40, 31, 64, 48, 12, 71,
78] support aggregation semantics partially, by implicitly requiring the dimen-
sion hierarchies to bestrict, onto, andcovering, i.e., the hierarchies should be
balanced trees. This is one of the conditions of summarizability [70] and means

3.2 Motivation and Related Work 39

that data will not be double-counted. Two of the models allow for non-strict
hierarchies, while not addressing the issue of double-counting, thus providing
no support [2, 26]. Two models [103, 69] place explicit conditions on both the
hierarchy (strict, onto, and covering) and the aggregation functions used (only
additive data may be added, etc.), thus providing full support for aggregation
semantics. One model [127] provides the support by always keeping a refer-
ence to the base data and computing from that when the aggregation semantics
indicate the need to do so.

5. Non-strict hierarchies: Most of the models [40, 31, 64, 48, 71, 12, 69, 127, 78]
implicitly or explicitly require that hierarchies be strict. Two models [2, 26]
mention briefly that non-strict hierarchies are allowed, but does not go deeper
into the issues raised by allowing this, e.g., the possibility of double-counting
and the use of pre-computed aggregates. The remaining model [103] inves-
tigates the possible problems with allowing non-strict hierarchies and advises
against using this feature.

6. Non-onto hierarchies: Only one model [103] discusses the possibility of hav-
ing non-onto hierarchies, but advises against using this feature. All the other
models do not allow non-onto hierarchies.

7. Non-covering hierarchies: None of the models allow non-covering hierarchies.

8. Many-to-many relationships between facts and dimensions: None of the mod-
els allow many-to-many relationships between facts and their associated di-
mensions, such as the relationship between patients and diagnoses in the ex-
ample.

9. Handling change and time: Only one model [64] discusses this issue, but none
the proposed solutions fully support analysis across changes in the dimensions.
None of the other models support analysis across changes, although one men-
tions that this is a very important issue [69].

10. Handling different levels of granularity: Dyreson [31] specifies anincomplete
data cubeto be a union ofcubettes. Each cubette may have a different data
granularity, thus providing some support for different levels of granularity.
However, the granularity is fixed at the schema level, rather than at the data
level, so the support is only partial. None of the other models handle different
levels of granularity in the data.

11. Handling imprecision: For the reasons mentioned above, the concept of in-
complete data cube [31] provides partial support for imprecision in the data,
as this can be handled using varying granularities. None of the other models
provide explicit means for handling imprecise data.

To conclude, the models generally provide full or partial support for most of
requirements 1–4. Requirement 5 (non-strict hierarchies) is partially supported by
three of the models, while requirement 6 (non-onto) is partially supported by only
one model. Requirement 9 (handling change and time) is only partially supported by

40 A Foundation

Kimball [64]. Requirements 10 and 11 (handling different levels of granularity and
imprecision) are only partially supported by Dyreson [31]. Requirements 7 and 8 are
not supported by any of the models. The objective of the model presented next is to
support all eleven requirements.

3.2.4 Related Work on Imprecision

The area of “imperfect information” has attracted much attention in the scientific
literature [80]. We have previously compiled a bibliography on uncertainty man-
agement [32] that describes the various approaches to the problem. Considering the
amount of previous work in the area, surprisingly little work has addressed the prob-
lem of aggregation of imprecise data, which is the focus of this chapter. Aggrega-
tion of imprecise data has been examined in the context of both possibilistic (fuzzy)
databases [108] and (to a lesser extent in) probabilistic databases [37], but not to date
in a data warehousing or multidimensional model. Statistical techniques have also
been applied to the problem of managing uncertain information in databases [132],
and in this chapter, we similarly use tools from statistics to handle imprecise aggre-
gate data.

The approach presented in this chapter aims to maximally reuse existing concepts
from multidimensional databases to support imprecise data. In particular, query pro-
cessing techniques, such aspre-aggregationfor handling the imprecision are reused.
The yields an effective and practical solution that can be implemented using current
technology. It is shown how to test if the underlying data isprecise enoughto give
a precise result to a query; and if not, analternative queryis suggested, that can be
answered precisely. If the user accepts an imprecise result, the imprecision is handled
as well in the grouping of data as in the actual aggregate computation.

A number of approaches to imprecision exist that allow us to characterize this
chapter’s contribution. It is common to distinguish betweenimprecision, which is
a property of thecontentof an attribute value, anduncertainty, which concerns the
degree of truthassociated with an attribute value, e.g., it is 100% certain that the
patient’s age is in the (imprecise) range 20–30 vs. it is only 85% certain that the
patient’s age is (precisely) 25. Our work concerns only imprecision. The most basic
form of imprecision ismissingor applicable nullvalues [21], which allow unknown
data to be captured explicitly.

Multiple imputation [106, 11] is a technique from statistics, where multiple val-
ues areimputed, i.e., substituted, for missing values, allowing data with some miss-
ing values to be used for analysis, while retaining the natural variance in the data. In
comparison with our approach, multiple imputation handles onlymissingvalues, not
imprecise values, and the technique does not support efficient query processing using
pre-aggregated data.

The concept of null values has been generalized topartial values, where one of
a set of possible values is the true value. Work has been done on aggregation over
partial values in relational databases [14]. Compared to our approach, the time com-
plexity of the operations is quite high, i.e., at leastO(n5=2), wheren is the number
of tuples, compared to theO(n logn) complexity of our solution. Additionally, all

3.3 An Extended Multidimensional Data Model 41

values in a partial value have the same weight, and the use of pre-aggregated data is
not studied.

Fuzzy sets [136] allows adegree of membershipto be associated with a value in
a set, and can be used to handle both uncertain and imprecise information. The work
on aggregation over fuzzy sets in relational databases [107, 108] allows the handling
of imprecision in aggregation operations. However, the time complexity is very high,
i.e., exponential in the number of tuples, and the issue of pre-aggregation has not
been studied.

The concept ofgranularities[8] has been used extensively in temporal databases
for a variety of purposes, including the handling of imprecision in the data [33].
However, aggregation of imprecise temporal data remains to be studied. In the area
of multidimensional databases, only the work onincomplete data cubes[31] has
addressed the issue of handling imprecise information. Compared to this chapter’s
approach, the incomplete data cubes have the granularity of the data fixed at schema
level, rather than the instance level. Additionally, imprecision is only handled for the
grouping of data, not for the aggregate computation.

To our knowledge, imprecision in the actual aggregate result for multidimen-
sional databases has not been supported previously; and in general, no one has studied
the use of pre-aggregated data for speeding up query processing involving impreci-
sion. Also, the consequent use of the multidimensional concept of granularities in all
parts of the approach, we believe is novel.

3.3 An Extended Multidimensional Data Model

In this section, our data model is developed in detail. The basic elements of the
model are presented first. The basic model is then extended to handle change over
time. Finally, several important properties of the model are presented. For every part
of the new multidimensional model, we define theintension, theextension, and give
an illustrating example.

3.3.1 The Basic Model

An n-dimensional fact schemais a two-tupleS = (F ;D), whereF is afact typeand
D = fTi; i = 1; ::; ng is its correspondingdimension types.

Example 1 In the case study from Section 3.2.1 we will havePatient as the fact
type, andDiagnosis, Residence, Age, Date of Birth (DOB), Name, andHbA1c%as
the dimension types. The intuition is thateverythingthat characterizes the fact type is
considered to bedimensional, even attributes that would be considered asmeasures
in other models.

A dimension typeT is a four-tuple(C;vT ;>T ;?T), whereC = fCj ; j =
1; ::; kg are thecategory typesof T , vT is a partial order on theCj ’s, with >T 2 C
and?T 2 C being the top and bottom element of the ordering, respectively. Thus,
the category types form a lattice. The intuition is that one category type is “greater
than” another category type if members of the former’s extension logically contain

42 A Foundation

members of the latter’s extension, i.e., they have a larger element size. The top el-
ement of the ordering corresponds to the largest possible element size, that is, there
is only one element in it’s extension, logically containing all other elements. We say
that Cj is a category type ofT , written Cj 2 T , if Cj 2 C. We assume a function
Pred : C 7! 2C that gives the set of immediate predecessors of a category typeCj .

Example 2 Low-level diagnoses are contained in diagnosis families, which are con-
tained in diagnosis groups. Thus, theDiagnosisdimension type has the follow-
ing order on its category types:?Diagnosis = Low-level Diagnosis< Diagnosis
Familiy < Diagnosis Group< >Diagnosis. We have thatPred(Low-level Diagno-
sis) = fDiagnosis Familyg. Other examples of category types areAgeandTen-year
Age Groupfrom the Age dimension type, andDOB andYearfrom the DOB dimen-
sion type. Figure 3.2, to be discussed in detail later, illustrates the dimension types
of the case study.

Many types of data, e.g., ages or sales amounts, can be added together to produce
meaningful results. This data has an ordering on it, so computing the average, mini-
mum, and maximum values make sense. For other types of data, e.g., dates of birth
or inventory levels, the user may not find it meaningful in the given context to add
them together. However, the data has an ordering on it, so taking the average, or com-
puting the maximum or minimum values do make sense. Some types of data, e.g.,
diagnoses, have no meaningful ordering, and so it does not make sense to compute
the average, etc. Instead, the only meaningful aggregation is to count the number of
occurrences.

We can support the aggregation semantics of the data by keeping track of what
types of aggregate functions can be applied to what data. This information can then
be used to either prevent users from doing “illegal” calculations on the data com-
pletely, or to warn the users that the result might be “wrong,” e.g., the same patient
is counted twice, etc. In line with this reasoning and previous work [69, 102], we
distinguish between three types of aggregate functions:�, applicable to data that can
be added together,�, applicable to data that can be used for average calculations, and
c, applicable to data that is constant, i.e., it can only be counted. Considering only
the standard SQL aggregation functions, we have that� = fSUM, COUNT, AVG,
MIN, MAX g, � = fCOUNT, AVG, MIN, MAXg, andc = fCOUNTg. The aggre-
gation types are ordered,c � � � �, so data with a higher aggregation type, e.g.,�,
also possess the characteristics of the lower aggregation types. For each dimension
typeT = (C;vT), we assume a functionAggtypeT : C 7! f�; �; cg that gives the
aggregation type for each category type.

Example 3 In the case study,Aggtype(Low-level Diagnosis) = c, Aggtype(Age) =
�, Aggtype(Ten-year Age Group) = c, andAggtype(DOB) = �.

A dimensionD of type T = (fCjg;vT ;>T ;?T) is a two-tupleD = (C;v),
whereC = fCjg is a set ofcategoriesCj such thatType(Cj) = Cj andv is a
partial order on[jCj , the union of all dimension values in the individual categories.
A categoryCj of typeCj is a set ofdimension valuese such thatType(e) = Cj.

3.3 An Extended Multidimensional Data Model 43

The definition of the partial order is: given two valuese1; e2 thene1 v e2 if e1
is logically contained ine2. We say thatCj is a category ofD, writtenCj 2 D, if
Cj 2 C. For a dimension valuee, we say thate is a dimensional value ofD, written
e 2 D, if e 2 [jCj .

We assume that the partial order on category types and the functionPred work
directly on categories, with the order given by the corresponding category types. The
category?T in a dimensionD contains the values with the smallest value size. The
category with the largest value size,>D, contains exactly one value, denoted>. For
all valuese of the categories ofD, e v >. Value> is similar to theALL construct of
Gray et al. [40].

Example 4 In ourDiagnosisdimension we have the following categories, named by
their type. Low-level Diagnosis= f3; 5; 6g, Diagnosis Family= f4; 7; 8; 9; 10; 14g,
Diagnosis Group= f11; 12; 13g, and>Diagnosis = f>g. The values in the sets refer
to theID field in the Diagnosis table of Table 3.1. The partial orderv is given by the
first two columns in the Grouping table in Table 3.1. Additionally, the top value> is
greater than, i.e., logically contains, all the other diagnosis values.

We distinguish between the dimension and category types versus the actual di-
mensions and categories to allow several dimensions or categories to have the same
type. This provides a way to ensure that two dimensions or categories aretype com-
patible. Type compatibility is useful for ensuring meaningful results for several types
of operations, as described in Example 5 below. If the type compatibility feature is
not needed for a concrete application of the model, the model may be simplified by
removing category and dimension types altogether, specifying hierarchies directly on
categories instead.

Example 5 Suppose we have an “Own Birth Date” and a “First Child Birth Date”
dimension, both of the dimension type “Date of Birth” discussed above. We want
to take the union of those two dimensions (and the categories in them) to produce a
combined “Birth Date” dimension with both types of birth dates in it. This should be
allowed since the dimensions and the categories have the same type. However, if we
have a “Shipment Date” dimension with the same structure (days, weeks, months,
quarters, years) we should not be allowed to take the union of that and the “Birth
Date” dimension since they are not of the same type, meaning that the data in them
does not represent the same thing and thus should not be mixed. Another example
would be to subtract Own Birth Date years from First Child Birth Date years, e.g.,
when performing an aggregation computation on the data, to get the age of people
at the time their first child is born. This should be allowed since the two categories
have the same type. On the contrary, it probably does not make sense to subtract
Own Birth Date years from Shipment Date years. This can be prevented by using
different category types for the “Year” category in the two dimensions. The union
and aggregation operators are discussed in detail in Section 3.4

We say that the dimensionD0 = (C 0;v0) is a subdimensionof the dimension
D = (C;v) if C 0 � C ande1 v0 e2 , 9C1; C2 2 C 0(e1 2 C1; e2 2 C2 ^ e1 v e2)
, that is,D0 has a subset of the categories ofD andv0 is the restriction ofv to these
categories. We note thatD is a subdimension of itself.

44 A Foundation

Example 6 We obtain a subdimension of the Diagnosis dimension from the previ-
ous example by removing theLow-level DiagnosisandDiagnosis Familycategories,
retaining onlyDiagnosis Groupand>Diagnosis .

It is desirable to distinguish between the dimension values in themselves and the
real-world “names” that we use for them. The names might change or the same value
might have more than one name, making the name a bad choice for identifying an
value. In common database terms, this is the argument forobject idsor surrogates.

To support this feature, we require that a categoryC has one or morerepresen-
tations. A representationRep is a bijective functionRep : Dom(C) $ DomRep,
i.e., a value of a representation uniquely identifies a single value of a category and
vice versa, thus making the representation an “alternate key.” We use the notation
Rep(e) = v to denote the mapping from dimension values to representation values.

Example 7 A diagnosis value has two representations,Codeand Text. Using the
ID’s from the Diagnosis table to identify the values, we haveCode(3) = \O2400 and
Text(3) = \Diabetes during pregnancy:00

Let F be a set of facts, andD = (fCjg;v) a dimension. Afact-dimension
relation betweenF andD is a setR = f(f; e)g, wheref 2 F ande 2 [jCj. Thus
R links facts to dimension values. We say that factf is characterized bydimension
value e, written f ; e, if 9e1 2 D ((f; e1) 2 R ^ e1 v e). We require that
8f 2 F (9e 2 [jCj ((f; e) 2 R)); thus we do not allow missing values. The reasons
for disallowing missing values are that they complicate the model and often have an
unclear meaning. If it is unknown which dimension value a factf is characterized
by, we add the pair(f;>) toR, thus indicating that we cannot characterizef within
the particular dimension.

Example 8 The fact-dimension relationR links patient facts to diagnosis dimension
values as given by the Has table from the case study. Leaving out the temporal aspects
for now, we get thatR = f(0,11),(1,10), (2,3), (2,5), (2,8), (2,9)g. Note that we can
relate facts to values in higher-level categories, e.g., fact 1 is related to diagnosis
10, which belongs to theDiagnosis Familycategory. Thus, we do not require thate
belongs to?Diagnosis , as do the existing data models. If no diagnosis is known for
patient 1, we would have added the pair(1;>) toR.

A multidimensional object(MO) is a four-tupleM = (S; F;D;R), whereS =
(F ;D = fTig) is the fact schema,F = ffg is a set offactsf whereType(f) = F ,
D = fDi; i = 1; ::; ng is a set ofdimensionswhereType(Di) = Ti, andR =
fRi; i = 1; ::; ng is a set of fact-dimension relations, such that8i((f; e) 2 Ri) f 2
F ^ 9Cj 2 Di(e 2 Cj)).

Example 9 For the case study, we get a six-dimensional MO,M = (S; F;D;R),
whereS = (Patient, fDiagnosis, DOB, Residence, Name, Age, HbA1c%g) and
F = f0; 1; 2g. The definition of the diagnosis dimension and its corresponding fact-
dimension relation was given in the previous examples. We do not list the contents
of the other dimensions and fact-dimension relations, but just outline their structure.

3.3 An Extended Multidimensional Data Model 45

The Name dimension is simple, i.e., it just has a? category type, Name, and a>
category type. The Age dimension groups ages (in years) into five-year and ten-year
groups, e.g., 10–14 and 10–19. The Date-of-Birth dimension has two hierarchies in
it: days are grouped into weeks, or days are grouped into months, with the further
levels of quarters, years, and decades. The Residence dimension groups addresses
into cities or counties, and cities into counties. The HbA1c% dimension has the cat-
egoriesPrecise, Imprecise, and>HbA1c%. The Precise category has values with one
decimal point, e.g., “5.5”, as members, while the Imprecise category has integer val-
ues. The values of both categories fall in the range [2–12]. The partial order on the
HbA1c% dimension groups the precise values into the imprecise in the natural way,
e.g.,4:5 v 5 and5:4 v 5 (note thatv denotes logical inclusion). We will refer to
this MO as the “Patient” MO. A graphical illustration of the schema of the “Patient”
MO is seen in Figure 3.2.

Day

Week Month

Quarter

Year

LL Diagnosis

Diagnosis
Family

Diagnosis
Group

Diagnosis Date of Birth Residence

Address

City

County

Patient

Decade

Name

Name HbA1c%

PreciseAge

Five year
group

Ten year
group

Age

Imprecise

T T T T T T

Figure 3.2: Schema of the Case Study

A collection of multidimensional objects, possibly with shared subdimensions, is
called amultidimensional object family.

Example 10 To illustrate the usefulness of shared subdimensions in multidimen-
sional object families, imagine performing the following steps. Create a subdimen-
sion of the Diagnosis dimension that includes onlyDiagnosis Groupand>Diagnosis,
and a subdimension of the Age dimension that includes onlyTen-Year Groupand
>Age. Make an MO with these two dimensions and the fact type Patient for all
patients in the country. This results in an MO capturing all patients in the coun-
try together with their diagnosis groups and their ten-year age groups. Putting this
MO together with the “Patient” MO from the example above, we obtain a multidi-
mensional object family with two shared subdimensions. The shared subdimensions

46 A Foundation

could be used to investigate how diagnoses versus age groups for the patient group
from the case study compare to the national average.

To handle the imprecision, we need an additional definition.
For a dimension valuee such thate 2 Cj , we say that thegranularity of e isCj.

For a factf such that(f; e) 2 Ri ande 2 Cj, we say that thegranularity of f in
dimensioni is Cj . Dimension values in the? category are said to have thefinest
granularity, while the value in the> category has thecoarsestgranularity.

For dimensionD = (C;v), we assume a functionGD : D 7! C, that gives
the granularity of dimension values. For an MOM = (S; F;D;R), whereDi =
(Ci;vi), we assume a family of functionsGFi : F 7! Ci; i = 1; ::; n, each giving
the granularities of facts in dimensionDi.

To summarize the essence of our model, the facts are objects withseparate iden-
tity. Thus, we can test facts for equality, but we do not assume an ordering on the
facts. The combination of the dimension values that characterize the facts in an MO
do not constitute a “key” for the MO. Thus, we may have “duplicate values,” in the
sense that several facts may be characterized by the same combination of dimension
values. But the facts of an MO is aset, so we do not have duplicatefactsin an MO.

3.3.2 Handling Time

We now investigate how to build temporal support into the model. The vast majority
of research in temporal data models assumes a discrete time domain (for example,
most data models in the most recent collection of temporal database papers [35] ex-
plicitly assume a discrete model of time). Also the temporal data types offered by the
SQL standard [75] are discrete and bounded. Thus, we assume a time domain that is
discrete and bounded, i.e., isomorphic with a bounded subset of the natural numbers.
The values of the time domain are calledchronons. They correspond to the finest
granularity in the time domain [8]. We letT , possibly subscripted, denote a set of
chronons.

Thevalid timeof a statement is the time when the statement is true in the modeled
reality [63]. Valid time is very important to capture because the real world is where
the users reside, and weallow the attachment of valid time to the data, but do not
require it. If valid time is not attached to the data, we assume the data to bealways
valid. If valid time is attached to an MO, we call it avalid-timeMO.

In general, valid time may be assigned to anything that has a truth value. In our
model, this is the partial order between dimension values, the mapping between val-
ues and representations, the fact-dimension relations, and the membership of values
in categories. It is important to be able to capture all these aspects.

We add valid time to the dimension partial orderv by addingTv, the set of
chronons during which the relationship holds in the real world, to each relationship
between two values. We write thate1 vTv e2 if e1 v e2 during each chronon in
Tv. The partial ordervTv has the following property:e1 vT1v e2 ^ e2 vT2v e3)
e1 vT1v\T2v e3. Similarly, we writeRep(e) =Tv v to denote that the representation
Rep of the valuee has valuev during each chronon inTv. For each fact-dimension
relation between a factf and a dimension valuee, we capture the set of chronons

3.3 An Extended Multidimensional Data Model 47

Tv when the two are related. We write(f; e) 2Tv R when(f; e) 2 R during each
chronon inTv. We use the notationf ;Tv e when(f; e0) 2Tv R^ e0 vTv e. Finally,
we add valid time to membership of dimension values in categories, writinge 2Tv C
whene 2 C during each chronon inTv.

The set of chronons that is attached to a statement is themaximalset of chronons
when the statement is valid, so the data is always “coalesced” [63]. Thus, we do
not have the problem of “value-equivalent” statements [63, 119, 61], where the same
statement appears several times with different times attached to it, e.g.,e1 vT1 e2
ande1 vT2 e2, whereT1 6= T2. However, by implication, statements are valid for
any subset of their attached time, e.g.,T1 � T2 ^ e1 vT2 e2) e1 vT1 e2.

Example 11 For our examples, we use interval notation forTv, with the chronon
size equal to Day. For the partial order for the Diagnosis dimension, we have that
7 v[01=01=70�31=12=79] 3. For the representation, we have the relationship
Code(8)[01=01=70�31=12=79] = D1. For the fact-dimension relation, we have the
relationship(2; 3) 2[23=03=75�24=12=75] R. For the category membership, we have
10 2[01=01=80�NOW] Diagnosis Family.

To sum up, by extending the dimension partial order with links between dimen-
sion values that represent the “same” thing across change, we have a foundation for
handling analysis across changes. This allows us to obtain meaningful results when
we analyze data across changes in the dimension.

Example 12 If we want to look at the data only from the current point in time, we
want to include count data for patients with the “old” diagnoses, i.e., the diagnoses
that were valid until 1980, together with data for patients with the new diagnoses. One
way to do this is to count the patients diagnosed with the old “Diabetes” diagnosis
(ID = 8) together with those diagnosed with the new “Diabetes” diagnosis(ID =
11) from 1970 to the present. This is done by defining that8 v[01=01=80�NOW] 11,
i.e., from 1980 up till now, we consider the diagnosis 8 to be logically contained in
the diagnosis 11. Another way of enabling analysis across time would be to introduce
a new category for holding diagnoses that are common across time, i.e., we would
introduce a new, common “Diabetes” value in this category and define the hierarchy
so that the new, common value was a parent of the two values(ID = 8) and(ID =
11). Thus, both the old and the new “Diabetes” patients would be counted under the
new, common “Diabetes” value.

Valid time is not the only temporal aspects that may be interesting to our model.
It is also interesting to capture when statements are present in the database, as the
time a statement is present in the database almost never corresponds to the time it is
true in the real world. We need to know when data are present in the database for
accountability and traceability purposes.

The transaction timeof a statement is the time when the statement is current in
the database and may be retrieved [63]. Generally, transaction time can be attached
to anything that valid time can be attached to. The addition of transaction time is or-
thogonal to the addition of valid time. Additionally, transaction time can be added to
data that does not have a truth value. In our model, we could record when facts, e.g.,

48 A Foundation

patients, are present in the database. We do not think that this is very interesting in
itself, as facts are only interesting when they participate in fact-dimension relations.
Thus, we do not record this.

If transaction time is attached to an MO, we call it atransaction-timeMO. If both
valid and transaction time is attached to an MO, we call it abitemporalMO. If no
time is attached to an MO, we call it asnapshotMO. In our notation, we useTt to
denote the set of chronons when data is current in the database. We useTt � Tv to
denote sets of bitemporal chronons.

3.3.3 Properties of the Model

In this section important properties of the model that relate to the use of pre-computed
aggregates is defined and discussed. The first important concept issummarizability,
which intuitively means that individual aggregate results can be combined directly to
produce new aggregate results.

Definition 1 Given a typeT , a setS = fSj ; j = 1; ::; kg, whereSj 2 2T , and a
functiong : 2T 7! T , we say thatg is summarizablefor S if g(fg(S1); ::; g(Sk)g) =
g(S1 [:: [Sk). The set of arguments on the left side of the equation is a multi-set,
or bag, i.e., the same result value can occur multiple times.

Summarizability is an important concept as it is a condition for the flexible use
of pre-computed aggregates. Without summarizability, lower-level results generally
cannot be directly combined into higher-level results. This means that we cannot
choose to pre-compute only a relevant selection of the possible aggregates and then
use these to compute higher-level aggregates on-the-fly. Instead, we have to pre-
compute the total results for all the aggregations that we need fast answers to, while
other aggregates must be computed from the base data. Space and time constraints
can be prohibitive for pre-computing all results, while computing aggregates from
scratch results in long response times.

It has been shown that summarizability is equivalent to the aggregation function
beingdistributive, all paths beingstrict, and the hierarchies beingcoveringandonto
in the relevant dimensions [70]. If data with time attached to it is aggregated such that
data for one fact is only counted for one point in time, this result extends to hierarchies
that aresnapshot strict, snapshot covering, andsnapshot onto. These concepts are
formally defined below. In the definitions, we assume a dimensionD = (C;v).

Definition 2 Given two categories,C1; C2 such thatC2 2 Pred(C1), we say that
the mapping fromC1 to C2 is onto iff 8e2 2 C2(9e1 2 C1 (e1 v e2)). Otherwise,
it is non-onto. If all mappings in a dimension are onto, we say that the dimension
hierarchy isonto. The hierarchy inD is snapshot ontoif it is onto at any given time
t.

Definition 3 Given three categories,C1, C2, and C3 such thatType(C1) <

Type(C2) < Type(C3), we say that the mapping fromC2 to C3 is covering with
respect toC1 iff 8e1 2 C1 (8e3 2 C3 (e1 v e3) 9e2 2 C2 (e1 v e2 ^ e2 v e3))).
Otherwise, it isnon-covering with respect toC1. If all mappings in a dimension are

3.4 The Algebra 49

covering w.r.t. any category, we say that the dimension hierarchy iscovering. The
hierarchy inD is snapshot coveringif it is covering at any given timet.

Definition 4 If 8C1; C2 2 C(e1; e3 2 C1 ^ e2 2 C2 ^ e2 v e1 ^ e2 v e3)
e1 = e3) then the mapping betweenC1 andC2 is strict. Otherwise, it isnon-strict.
The hierarchy in dimensionD is strict if all mappings in it are strict; otherwise, it is
non-strict. Given a categoryCj 2 Di, we say that there is astrict pathfrom the set
of factsF to Cj iff 8f 2 F : f ; e1 ^ f ; e2 ^ e1 2 Cj ^ e2 2 Cj) e1 = e2

1.
The hierarchy in dimensionD is snapshot strict, if at any given timet, the hierarchy
is strict.

Example 13 The hierarchy in the Residence dimension is strict, onto and non-cover-
ing (due to the rural addresses). The hierarchy in the Diagnosis dimension is non-
strict (due to multiple parent diagnoses), non-onto (the “Lung cancer” diagnosis), and
covering. The sub-hierarchy of the Diagnosis dimension obtained by restriction to the
standard classification is snapshot strict, snapshot covering, and snapshot non-onto.

3.4 The Algebra

This section defines an algebra for multidimensional objects. The presentation first
defines the basic algebra. The algebra is then extended to handle time. Examples of
the more complicated operators are provided.

3.4.1 The Basic Algebra

In this section the fundamental operators are defined. These operators are similar to
the standard relational algebra operators. For unary operators, we assume a single
multidimensional objectM = (S; F;D = fDig; R = fRig); where i = 1; : : : ; n.
For binary operators we assume two multidimensional objects,M1 = (S1; F1;D1 =
fD1ig; R1 = fR1ig); i = 1; : : : ; n andM2, which is similarly defined. We note
that the representations of the categories in the resulting MO’s are the same as in the
argument MO’s, thus we do not specify the values representations for the resulting
MO’s. The aggregation types are only changed by the aggregate formation operator,
so they are not specified for the other operators. Two helper definitions are important
in several of the operators.

1. TheGroup operator groups the facts characterized by the same dimension val-
ues together. Given an n-dimensional MO,M = (S; F;D = fDig; R =
fRig); i = 1; ::; n, a set of categoriesC = fCi j Ci 2 Dig; i = 1; ::; n,
one from each of the dimensions ofM , and an n-tuple(e1; ::; en), where
ei 2 Ci; i = 1; ::; n, we defineGroup as: Group(e1; ::; en) = ff j f 2
F ^ f ;1 e1 ^ :: ^ f ;n eng.

2. Theunion operator on dimensions performs union on the categories and the
partial orders. Given two dimensionsD1 = (C1;v1) andD2 = (C2;v2) of

1Note that the paths from the set of factsF to the>T categories are always strict.

50 A Foundation

typeT , whereCk = fCkjg; k = 1; 2; j = 1; ::;m, we define the union op-
erator on dimensions,

S
D, as:D1

S
DD2 = (C 0;v0), whereC 0 = fC 0

jg; j =
1; ::;m, C 0

j = C1j [C2j, where[denotes regular set union, ande1 v0 e2 ,
e1 v1 e2 _ e1 v2 e2.

selection: Given a predicatep on the dimension typesD = fTig, we define the
selection� as:�[p](M) = (S 0; F 0;D0; R0), whereS 0 = S, F 0 = ff 2 F j 9e1 2
D1; ::; en 2 Dn (p(e1; ::; en) ^ f ;1 e1 ^ :: ^ f ;n en)g, D0 = D, R0 = fR0

ig,
andR0

i = f(f 0; e) 2 Ri j f 0 2 F 0g. Thus, we restrict the set of facts to those that
are characterized by values wherep evaluates to true. The fact-dimension relations
are restricted accordingly, while the dimensions and the schema stay the same.

Example 14 If selection is applied to the “Patient” MO with the predicateName =
”John Doe,” the resulting MO has the same schema, the factsF 0 = f1g, the fact-
dimension relationsR0

i = f(1; e) j (1; e) 2 Rig, e.g.,R2 = f(1; 10)g, and the
dimensionD0 = D.

projection: Without loss of generality, we assume that the projection is over the
k dimensionsD1; ::;Dk. We then define the projection� as: �[D1; ::;Dk](M) =
(S 0; F 0;D0; R0), whereS 0 = (F 0;D0); F 0 = F ; D0 = fT1; ::; Tkg; F 0 = F; D0 =
fD1; ::;Dkg, andR0 = fR1; ::; Rkg. Thus, we retain only thek dimensions, but the
set of facts stays the same. Note that we do not remove “duplicate values.” Thus the
same combination of dimension values may be associated with several facts.

Example 15 If projection over the Name and Diagnosis dimensions is applied to the
“Patient” MO, the resulting MO has the same fact type, only the Name and Diagnosis
dimension types, the same set of facts, the Name and Diagnosis dimensions, and the
fact-dimension relations for these two dimensions. A graphical illustration of the
resulting MO is seen to the left in Figure 3.3.

1 2

John
Doe

Jane
Doe

Name
dimension

7 8 4 9 10

3 5 6

12 11

Diagnosis
dimension

Diagnosis
Group

Diagnosis
Family

Low-level
Diagnosis

Name

Patient

13

14

Jim
Doe

0

T T

{0,1,2}{2}

12 11

Diagnosis
dimension

Result
 dimension

1 30
...

0-2 >2

Set-of-Patient

Diagnosis
Group Count

Range

13 2

TT

Figure 3.3: Resulting MO’s for Projection and Aggregate Formation

rename: Given a multidimensional object,M = (S; F;D;R), and fact schema
S 0 = (F 0;D0), such thatD is isomorphic withD0, we define the rename� as:
�[S 0](M) = M 0, whereM 0 = (S 0; F;D;R). We see that rename just return the

3.4 The Algebra 51

contents ofM with the new schemaS 0, which has the same structure as the old
schemaS. Rename is used to alter the names of dimensions so that dimensions with
the same name, e.g., resulting from a “self-join,” can be distinguished.

union: Given two n-dimensional MO’s,Mk = (Sk; Fk;Dk; Rk); k = 1; 2 such
thatS1 = S2, we define the union

S
as:M1

S
M2 = (S 0; F 0;D0; R0), whereS 0 =

S1; F
0 = F1 [F2; D0 = fD1i

S
DD2i ; i = 1; ::; ng; andR0 = fR1i [R2i ; i =

1; ::; ng. In words, given two MO’s with common schemas, we take the set union of
the facts and the fact-dimension relations. The

S
D operator is used to combine the

dimensions.

difference: Given two n-dimensional MO’s ,Mk = (Sk; Fk;Dk; Rk); k = 1; 2
such thatS1 = S2, we define the differencen as:M1 nM2 = (S 0; F 0;D0; R0), where
S 0 = S1; F

0 = F1 nF2; D0 = D1,R0 = fR0
i; i = 1; ::; ng, withR0

i = f(f 0; e) j f 0 2
F 0 ^ (f 0; e) 2 R1i . Thus, given two MO’s with common schemas, we take the set
difference of the facts, the dimensions of the first argument MO are retained, and the
fact-dimension relations are restricted to the new fact set. Note that we do not take
the set difference of the dimensions, as this does not make sense.

Example 16 Performing the difference operator on the MO resulting from the pro-
jection example and the MO resulting from applying the selectionName = ”Jane
Doe” to the projection MO gives as a result an MO with the same schema, with the
fact setF = f0; 1g, the dimensions from the first argument, and the fact-dimension
relationsR1 = f(0; 11); (1; 10)g andR2 = f(0; Jim Doe); (1; John Doe)g.

identity-based join: Given two MO’s,M1 andM2, and a predicatep(f1; f2) 2
ff1 = f2; f1 6= f2; trueg, we define the identity-based join1 as: M1 1[p] M2 =
(S 0; F 0;D0; R0), where(S 0 = (F 0;D0), F 0 = F1 � F2, D0 = D1 [D2, F 0 =
f(f1; f2) j f1 2 F1 ^ f2 2 F2 ^ p(f1; f2)g, D0 = D1 [D2, R0 = fR0

i; i =
1; ::; n1 + n2g, andR0

i = f(f 0; e)jf 0 = (f1; f2) ^ f 0 2 F 0 ^ ((i v n1 ^ (f1; e) 2
R1i) _ (i > n1 ^ (f2; e) 2 R2i�n1

))g. In words, the new fact type is the type of
pairs of the old fact types, and the new set of dimension types is the union of the
old sets. The set of facts is the subset of the cross product of the old sets of facts
where the join predicatep holds. Forp equal tof1 = f2, f1 6= f2, andtrue, the
operation is anequi-join, non-equi-join, andCartesian product, respectively. For the
instance, the set of dimensions is the set union of the old sets of dimensions, and
the fact-dimension relations relates a pair to an value if one member of the pair was
related to that value before.

Example 17 We want to know if any patients are registered with more than one
name. We take two copies of the “Patient” MO and perform projection over the
Name dimension for both. For the second copy, the Name dimension type is re-
named to “Name2”. We then perform an identity-based join of the two with the pred-
icatef1 = f2. This gives us an MO with two dimension types,NameandName2.
The fact type is the type of pairs of patients; the set of facts is stillF = f0; 1; 2g,
and the contents of the two dimensions are identical. The fact-dimension relations

52 A Foundation

are also identical:R1 = f(0; Jim Doe); (1; John Doe); (2; Jane Doe)g andR2 =
f(0; Jim Doe); (1; John Doe); (2; Jane Doe)g. We can now perform a selection on
this MO with the predicateName6= Name2to find patients with more than one name.

aggregate formation: The aggregate formation operator is used to compute aggre-
gate functions on the MO’s. For notational convenience and following Klug [66],
we assume the existence of afamily of aggregation functionsg that take somek-
dimensional subsetfDi1 ; ::;Dikg of the n dimensions as arguments, e.g.,SUM i

sums thei-th dimension andSUM ij sums thei-th andj-th dimensions. We assume
a functionArgs(g) = fj j g uses dimensionj as argumentg that returns the argument
dimensions ofg.

Given an n-dimensional MO,M , a dimensionDn+1 of type Tn+1, a function,
g : 2F 7! Dn+1 (the functiong “looks up” the required data for the facts in the
relevant fact-dimension relations, e.g.,SUM i finds its data in fact-dimension relation
Ri) such thatg 2 MIN fAggtype(?Dij

); j 2 Args(g)g, and a set of categories
Ci 2 Di; i = 1; ::; n, we define aggregate formation,�, as follows.

�[Dn+1; g; C1; ::; Cn](M) = (S 0; F 0;D0; R0);

where

S 0 = (F 0;D0);F 0 = 2F ;D0 = fT 0i ; i = 1; ::; ng[fTn+1g;T 0i = (C0i;v0Ti ;?0Ti ;>0Ti);

C0i = fCij 2 Ti j Type(Ci) vTi Cijg;v0Ti = vTijC0
i

;?0Ti = Type(Ci);>0Ti = >Ti ;

F 0 = fGroup(e1; ::; en) j (e1; ::; en) 2 C1 � ::� Cn ^Group(e1; ::; en) 6= ;g;
D0 = fD0

i; i = 1; ::; ng [fDn+1g;D0
i = (C 0

i;v0i);
C 0
i = fC 0

ij 2 Di j Type(C 0
ij) 2 C0ig;v0i = vijD0

i

; R0 = fR0
i; i = 1; ::; ng [fR0

n+1g;

R0
i = f(f 0; e0i) j 9(e1; ::; en) 2 C1 � ::� Cn (f

0 = Group(e1; ::; en) ^ f 0 2 F 0

^ei = e0i)g; andR0
n+1 = [(e1;::;en)2C1�::�Cnf(Group(e1; ::; en);

g(Group(e1; ::; en))) j Group(e1; ::; en) 6= ;g
The aggregation types for the remaining parts of the argument dimensions are

not changed. The aggregation types for the result dimension is given by the follow-
ing rule. If g is distributive, the paths toC1; ::; Cn are strict, and the hierarchies up to
C1; ::; Cn are onto and covering, thenAggtype(?Dn+1) = MIN fAggtype(?Dj

); j 2
Args(g)g. Otherwise,Aggtype(?Dn+1) = c, i.e., no further aggregation is al-
lowed. For the higher categories in the result dimension,Aggtype(C 0

m) = MIN f
Aggtype(Cm);Aggtype(?Dn+1)g.

Thus, for every combination(e1; ::; en) of dimension values in the given “group-
ing” categories, we applyg to the set of factsffg, where thef ’s are characterized
by (e1; ::; en), and place the result in the new dimensionDn+1. The new facts are of
typesetsof the argument fact type, and the argument dimension types are restricted
to the category types that are greater than or equal to the types of the given “group-
ing” categories. The dimension type for the result is added to the set of dimension

3.4 The Algebra 53

types. The new set of facts consists ofsets of the original facts, where the original
facts in a set share a combination of characterizing dimension values. The argument
dimensions are restricted to the remaining category types, and the result dimension
is added. The fact-dimension relations for the argument dimensions now link sets of
facts directly to their corresponding combination of dimension values, and the fact-
dimension relation for the result dimension links sets of facts to the function results
for these sets.

If the functiong is distributive, the paths up to the grouping categories are strict,
and the hierarchy up to the grouping categories is onto and covering, i.e., g is “sum-
marizable,” then the aggregation type for the bottom category in the result dimension
is the minimum of the aggregation types for the bottom categories in the dimensions
that g uses as arguments; otherwise, the aggregation type isc. For the higher cate-
gories, the minimum of the aggregation types given in the result dimension and the
bottom category’s aggregation type is used. Thus, aggregate results that are “unsafe”
in the sense that they contain overlapping data, cannot be used for further aggrega-
tion. This prevents the user from getting incorrect results by accidentally “double-
counting” data.

Example 18 We want to know the number of patients in each diagnosis group. To
do so, we apply the aggregate-formation operator to the “Patient” MO with theDiag-
nosis Groupcategory and the> categories from the other dimensions. The aggregate
functiong to be used isset-count, which counts the number of members in a set. The
resulting MO has seven dimensions, but only the Diagnosis and Result dimensions
are non-trivial, i.e., the remaining five dimensions contain only the> categories. The
set of facts is stillF = f0; 1; 2g. The Diagnosis dimension is cut, so that only the part
from Diagnosis Groupand up is kept. The result dimension groups the counts into
two ranges: “0–2” and “>2”. The fact-dimension relation for the Diagnosis dimen-
sion links the sets of patients to their corresponding Diagnosis Group. The content is:
R1 = f(f0; 1; 2g; 11); (f2g; 12)g, meaning that the sets of patientsf0; 1; 2g andf2g
are characterized by diagnosis groups11 and12, respectively. The fact-dimension
relation for the result dimension relate each group of patient to the count for the
group. The content is:R7 = f(f0; 1; 2g; 3); (f2; g; 1)g, meaning that the results of
g on the setsf0; 1; 2g andf2g are3 and1, respectively. A graphical illustration of
the MO, leaving out the trivial dimensions for simplicity, is seen on the right side
of Figure 3.3. Note that each patient is only counted once for each diagnosis group,
even though patient2 hasseveraldiagnoses in each group.

Now, we will show how other common OLAP and relational operators can be
defined in terms of the fundamental operators.

value-based join: A join of two MO’s on common dimension values can be made
in the usual way by combining Cartesian product (a special case of the identity-based
join), selection, and projection.Natural join is a special case of the value-based join,
where the selection predicate requires that values from the “matching” dimensions
should be equal, followed by projecting “out” the duplicate dimensions. Performing

54 A Foundation

drill-across from one MO to another is just the value-based join of the two MO’s on
their common dimensions.

duplicate removal: We can remove “duplicate values,” i.e., several facts character-
ized by the same combination of dimension values, by performing aset-countaggre-
gate formation on the? categories, followed by projecting out the result dimension.

SQL-like aggregation: Computation of an SQL aggregate function on an MO,
grouped by a set of dimension categories, is done by first applying the aggregate
formation operator to the MO with the given categories2, and the given function. The
dimensions not in the “GROUP BY” clause are then projected out.

star-join: A star-join as described in [64] is just a selection on the dimensions,
usually combined with an aggregate formation with a given aggregate function on a
set of category types.

drill-down: A drill-down on an MO means giving “more detail” by descending
the dimension hierarchies. An implicit aggregation function, e.g., COUNT or SUM,
is assumed. Thus, a drill-down corresponds to performing aggregate formation on
“lower” category types with the given aggregate function. To get to the lower cate-
gory types, a reference to theoriginal MO is needed. In order to obtain the required
detail, the aggregate formation is applied to the original object.

roll-up: A roll-up on an MO means giving “less detail” by ascending the dimension
hierarchies, aggregating with an implicit aggregation function. This corresponds to
performing aggregate formation on “higher” category types with the given aggregate
function. Sometimes, wealsoneed a reference to the original MO in this case. This is
caused by the possiblenon-summarizabilityin the MO, which means that we cannot
necessarily combine the aggregate results from intermediate levels into higher-level
results, but need to compute the result directly from the lowest-level data (base data).

Theorem 1 The algebra is closed.

Proof: By examining the output of all operators, we see that the results are always
MO’s.

Theorem 2 The algebra is at least as powerful as the relational algebra with aggre-
gation functions[66].

Proof: A relation r with schemaSr = (a1; ::; an) is mapped to an n-dimensional
MO M = (S; F;D;R), whereS = (r; fTi; i = 1; ::; ng), Ti = (fai;>Tig;vi
;>Ti ; ai), ai vi ai; ai vi >Ti ;>Ti vi >Ti , F = f(v1; ::; vn) 2 rg, D = fDig; i =
1; ::; n, Di = (fAi;>ig;v), Ai = Dom(ai), 8v 2 Ai : v v >, R = fRig; i =
1; ::; n, andRi = f((v1; ::; vi; ::; vn); vi) j (v1; ::; vi; ::; vn) 2 rg. Thus, ann-ary

2The categories not in the “GROUP BY” clause are the> categories of their dimensions.

3.4 The Algebra 55

relation is mapped to an MO withn “flat” dimensions, each containing the domain
of the corresponding attribute. The facts, corresponding to tuples in the relation,
are mapped to the corresponding values in the respective dimensions by the fact-
dimension relations.

For every relational algebraic operator, we apply the corresponding operator in
our algebra to the corresponding MO, followed by removing duplicates using the
method described above. In this way we can emulate all the relational algebraic
operations.

3.4.2 Handling Time in the Algebra

We will now turn our attention to how time can be handled in the algebra. Our
requirements are to be able to view data as it appeared at a given point in time, in the
database or in the real world, and to do analysis related to time, including analysis
across times of change in the data. We note that the operators do not introduce any
“value-equivalent tuples,” thus the data stays coalesced. First, we consider valid-time
MO’s. To support the need to view data as they appeared at any given point in time
in the real world, we introduce thevalid-timeslice operator[63].

valid-timeslice operator: Given an MO,M = (S; F;D;R), and a chronont, we
define the valid-timeslice operator,�v, as: �v(M; t) = (S 0; F 0;D0; R0), whereS 0 =
S, F 0 = F , D0 = fD0

ig; i = 1; ::; n, D0
i = (C 0

i;v0i), C 0
i = fe j e 2T Ci ^ t 2 Tg,

e1 v0i e2 , (e1 viT e2 ^ t 2 T), R0 = fR0
ig; i = 1; ::; n, andR0

i = f(f; e) j
(f; e) 2T Ri ^ t 2 Tg. For a representationRep of a category typeCj, we have
thatRep(e) = v , (Rep(e) =T V ^ t 2 T). Thus, the valid-timeslice operator
returns the parts of the MO that are valid at timet, with no valid time attached, i.e.,
the valid-timeslice operator changes the temporal type of the MO from valid-time or
bitemporal to snapshot or transaction-time, respectively.

To support analysis related to time, we allow predicatesp and functionsg, to be
used in selections and aggregate formations that refer to time. We will not go deeper
into the structure of temporal predicates and functions; for a full treatment, see, e.g.,
the TSQL2 language [119].

The last step is to define how the basic algebra operations deals with the time
attached to MO’s. Neither the selection operator, the projection operator, or the re-
name operator change the time attached to the resulting MO’s. For the union oper-
ator, time attachments for the resulting MO is computed according to the following
rules3. (f; e) 2T1 R1i ^ (f; e) 2T2 R2i) (f; e) 2T1[T2 R0

i, e1 v1T1
e2 ^ e1 v2T2

e2) e1 v0T1[T2 e2, Rep1(e) =T1 v ^ Rep2(e) =T2 v) Rep0(e) =T1[T2 v,
e 21T1 Cj ^ e 22T2 Cj) e 20T1[T2 Cj. Thus, we simply take the union of
the chronon sets for data that occur in both MO’s; otherwise, we just transfer the
original time. For the difference operator, the following rules are used.(f; e) 2T1
Ri1^(f; e) 2T2 Ri2^T1nT2 6= ;) (f; e) 2T1nT2 R0

i, F
0 =
T
i=1;::;nff j 9(f; ei) 2

3We use subscriptT1 to denote time for the first argument MO, andT2 for the second.

56 A Foundation

R0
i ((f; ei) 2T 0 R0

i ^ T 0 6= ;)g. Thus, the time for a pair in a fact-dimension rela-
tion for the first MO is cut by the time that the corresponding pair has in the fact-
dimension relation for the second MO. Only pairs with non-empty chronon sets are
retained. The facts in the resulting MO are those that participate in all the resulting
fact-dimension relations during a non-empty set of chronons. As in the non-temporal
case, we do not alter the dimensions of the first MO.

The identity-based join operator does not change the time attached to the dimen-
sions of the resulting MO. For the fact-dimension relations, the following rule is used.
(fk; ek) 2Tk Rki ; k = 1; 2 ^ p(f1; f2)) ((f1; f2); ek) 2Tk R0

i+(k�1)n1
. Thus the

pair (f1; f2) inherits its time attachment from the fact-dimension relation of the rele-
vant argument MO, i.e,((f1; f2); e) 2T R0

i getsT from (f1; e) 2T R1i if i v n1 and
from (f2; e) 2T R2i if i > n1.

The aggregate formation operator does not change the time attached to the re-
maining parts of the argument dimensions or to the result dimension. The time at-
tached to the fact-dimension relations between the facts and the argument dimensions
is given by the following rule. Given a tuple of dimension values(e1; ::; en) from the
grouping categories,(Group(e1; ::; en); ei) 2T 0i R0

i, whereT 0i = \f2Group(e1;::;en)
ftf j f ;tf eig. Thus, the time attached to the fact-dimension relation between a
set of facts and a dimension value is the intersection of the time attached to the rela-
tions between the members of the set and that value. The fact-dimension relation for
the result dimension is given by the following rule. Given a tuple of dimension val-
ues(e1; ::; en) from the grouping categories,(Group(e1; ::; en); g(Group(e1; ::; en))
2T 0n+1 R0

n+1, whereT 0n+1 =
T
f2Group(e1;::;en);i2Args(g)ftfi j f ;tfi

eig. Thus,
the time attached to the fact-dimension relation between a set of facts and the re-
sult of g on that set is the intersection of the time attached to the relations between
the members of the set and the dimension values for the dimensions thatg uses as
arguments.

For transaction time support, we can define thetransaction-timeslice operator, �t,
in the same way as the valid-timeslice operator. Given a transaction-time or bitem-
poral MO, it returns a snapshot or valid-time MO, respectively. The operators in the
algebra support transaction time in the same way as valid time.

3.5 Handling Imprecision

We now describe our approach to handling imprecision in multidimensional data
models. We start by giving an overview of the approach, and then describe how
alternative queriesmay be used when the data is not precise enough to answer queries
precisely, i.e., when the data used to group on is registered at granularities coarser
than the “grouping” categories. The approach proposed here attempts to use the
standard data model just defined to additionally capture imprecision. We assume that
the chronons attached to the MOs are precise, which is reasonable as we can use, e.g.,
the load time in the DW, to obtain precise time. With this assumption, the handling
of imprecision works seamlessly together with the handling of time. We will not deal

3.5 Handling Imprecision 57

with the separate subject of imprecise time in this chapter, as this has been covered
extensively in previous research [33, 32].

3.5.1 Overview of Approach

Along with the model definition, we presented how the case study would be handled
in the model. This also showed how imprecision could be handled, namely by map-
ping facts to dimension values ofcoarser granularitieswhen the information was
imprecise, e.g., the mapping to> when the diagnosis is unknown. The HbA1c%
dimension generalizes this approach, as severalprecisemeasurement values are con-
tained in oneimprecisemeasurement value. In turn, several imprecise values are
contained in the> (unknown) value. Thus, the approach uses the different levels of
the granularity already present in multidimensional data models to also capture im-
precision in a general way. An illustration of the approach, showing how the possible
spectrum of imprecision in the data is captured using categories in a dimension, is
seen in Figure 3.4.

The approach has a nice property, provided directly by the dimensional “impre-
cision” hierarchy described above. When the data isprecise enoughto answer a
query, the answer is obtained straight away, even though the underlying facts may
havevarying granularities. For example, the query from Example 18 gives us the
number of patients diagnosed with diagnoses in theDiabetesdiagnosis group, even
though two of the patients are diagnosed with diagnosis families, while one is diag-
nosed directly with the “Diabetes” diagnosis group. In this case, the data wouldnot
be precise enough to group the patients by Diagnosis Family.

Most imprecise = Unknown =

Very imprecise

Most precise =

⊥

Very precise

⊥

Figure 3.4: The Spectrum of Imprecision

Our general approach to handling a query starts bytesting if the data is precise
enoughto answer the query, in which case the query can be answered directly. Other-
wise, analternative queryis suggested. In the alternative query, the categories used
for grouping arecoarsenedexactly so much that the data is precise enough to answer
the (alternative) query. Thus, the alternative query will give the most detailedprecise
answer possible, considering the imprecision in the data. For example, if the physi-
cian was asking for the patient count grouped by diagnosis family, the alternative
query would be the patient count grouped by diagnosis group.

58 A Foundation

If the physician still wants to go ahead with the original query, we need to han-
dle the imprecision explicitly. Examining our algebra, we see that imprecision in
the data will only affect the result of two operators, namelyselectionandaggregate
formation (the join operator tests only for equality onfact identities, which are not
subject to imprecision). Thus, we need only handle imprecision directly for these
two operators; the other operators will just “pass on” the results containing impre-
cision untouched. However, if we can handle imprecision in thegroupingof facts,
ordinary OLAP style “slicing/dicing” selection is also handled straightforwardly, as
slicing/dicing is just selection of data for one of a set of groups. Because our focus is
on OLAP functionality, we will not go into the more general problem of imprecision
in selections, but refer to the existing literature [80].

Following this reasoning, the general query that we must consider is:�[C1; :
:; Cn; Dn+1; g](M), whereM is ann-dimensional MO,C1; ::; Cn are the “group-
ing” categories,Dn+1 is the result dimension, andg is the aggregation function. The
evaluation of the query proceeds (logically) as follows. First, facts are grouped ac-
cording to the dimension values in the categoriesC1; ::; Cn that characterize them.
Second, the aggregate functiong is applied to the facts in each group, yielding an
“aggregate result” dimension value in the result dimension for each group. The eval-
uation approach is given by the pseudo-code below. The text after the “%” sign are
comments.

ProcedureEvalImprecise(Q,M) %Q is a query,M is an MO.
if PreciseEnough(Q,M) then Eval(Q,M) % use normal evaluation
else

Q0 = Alternative(Q,M) % suggest alternative query
if Q0 is acceptedthen Eval(Q0,M) % normal evaluation for alt. query
else

Handle Imprecision in Grouping forQ
Handle Imprecision in Aggregate Computation forQ
Return Imprecise Result ofQ

end if
end if

Our overall approach to handling the imprecision in all phases will be to use the
granularity of the data, or measures thereof, to represent the imprecision in the data.
This allows for a both simple and efficient handling of imprecision.

3.5.2 Alternative Queries

The first step in the evaluation of a query is to test whether the underlying data is
precise enoughto answer the query. This means that all facts in the MO must be
linked to categories that are “less-than-or-equal” to the “grouping” categories in the
query, e.g., if we want to group by Diagnosis Family, all fact-dimension relations
from patients to the Diagnosis dimension must map to the Diagnosis Family category
or lower, not to Diagnosis Group or>.

3.5 Handling Imprecision 59

In order to perform the test for data precision, we need to know the granularities
of the data in the different dimensions. For this, for each MO,M , we maintain a
separateprecision MO, Mp. The precision MO has the same number of dimensions
as the original MO. For each dimension in the original MO, the precision MO has a
corresponding “granularity” dimension. Thei’th granularity dimension has only two
categories,Granularity i and>pi . There is onevalue in a “Granularity” category
for each category in the corresponding dimension inM . The set of factsF is the
same as inM , and the fact-dimension relations forMp map a factf to the dimension
value corresponding to the category thatf was mapped to inM . The determination
of whether a given query can be answered precisely is dependent on the actual data
in the MO, and can change when the data in the MO is changed. Thus, we need to
update the precision MO along with the original MO when data changes.

Formally, given an MO,M = (S; F;D;R), whereS = (F ;D), D = fTi; i =
1; ::ng, Ti = (Ci;vTi), Ci = fCijg, D = fDi; i = 1; ::; ng, andRp = fRpi ; i =
1; ::; ng, we define theprecision MO,Mp, as:

Mp = (Sp; Fp;Dp; Rp);

where

Sp = (Fp;Dp);Fp = F ;Dp = fTpi ; i = 1; ::; ng;Tpi = fGranularity i;>pig;

Fp = F;Dp = fDpi ; i = 1; ::; ng;Dpi = (Cpi ;vpi); Cpi = fGranularity i;>pig;
Granularity i = fGDi

(e) j e 2 Dig;>pi = f>ig;
e1 vpi e2 , (e1 = e2) _ (e1 2 Granularity i ^ e2 = >i; and

Rpi = f(f;GDi
(e)) j (f; e) 2 Rig

Example 19 The MO from Example 94 has precision MOMp = (Sp; Fp;Dp; Rp),
where the schemaSp has the fact typePatientand the dimension typesGranDiagnosis
and GranHbA1c%. The dimension typeGranDiagnosis has the category types
GranularityDiagnosis and>GranDiagnosis . The dimension typeGranHbA1c% has the
category typesGranularityHbA1c% and>GranHbA1c%. The set of facts is the same,
namelyFp = f0; 1; 2g. Following the dimension types, there are two dimensions,
GranDiagnosis andGranHbA1c%. TheGranDiagnosis dimension has the categories
GranularityDiagnosis and>GranDiagnosis . The values of theGranularityDiagnosis
category is the set of category typesf Low-level Diagnosis, Diagnosis Family, Diag-
nosis Group, >Diagnosisg. The GranHbA1c% dimension has the categories
GranularityHbA1c% and>GranHbA1c%. The values of theGranularityHbA1c% cat-
egory is the setf Precise, Imprecise, >HbA1c%g. The partial orders on the two di-
mensions are the simple ones, where the values in the bottom category are unrelated
and the> value is greater than all of them. The fact-dimensions relationsR1 andR2

have the contentsR1 = f(0; Diagnosis Group); (1; Diagnosis Family); (2; Diagno-
sis Family)g andR2 = f(0;>HbA1c%); (1;Precise); (2; Imprecise)g. A graphical
illustration of the precision MO is seen in Figure 3.5.

60 A Foundation

Diagnosis
Family

Diagnosis
Group Diag.

Gran
Diagnosis

Patient 0 1 2

Gran
HbA1c%

Precise Imprecise HbA1c%
Low-level
Diagnosis

T T

TT

Figure 3.5: Precision MO

The test to see if the data is precise enough to answer a queryQ can be per-
formed by rewriting the queryQ = �[C1; ::; Cn;Dn+1; g](M) to a “testing” query
Qp = �[G1; ::; Gn; Gn+1;SetCount](Mp), whereGi is the corresponding “granu-
larity” component inDpi if Ci 6= >i. Otherwise,Gi = >i. Thus, we grouponly
on the granularity components corresponding to the components that the physician
has chosen to group on. The dimensionGn+1 is used to hold the result of counting
the members in each “granularity group.” The result of the testing query shows how
many facts map to eachcombinationof granularities in the dimensions that the physi-
cian has chosen to group on. This result can be used to suggest alternative queries, as
it is now easy for each dimensionDi to determine the minimal categoryC 0

i that has
the property thatType(Ci) vTi Type(C 0

i)^ 8Cij(f 2 F ^ (f; e) 2 Ri ^ e 2 Cij)
Type(Cij) <Ti Type(C

0
i)), i.e., in each dimension we choose the minimal category

greater than or equal to the original “grouping” category where the data is “precise
enough” to determine how to group the facts. We can alsodirectly presentthe result
of the testing query to the physician, to inform about the level of data imprecision
for that particular query. The physician can then use this additional information to
decide whether to run the alternative query or proceed with the original one.

Example 20 The physician wants to know the average HbA1c% grouped by Diagno-
sis Family. The query asked isQ = �[Diagnosis Family;>HbA1c%;D3;AVG2](M),
thus effectively grouping only on Diagnosis Family, as the>HbA1c% component has
only one value. The testing query then becomesQp = �[GranularityDiagnosis ;
>GranHbA1c%;D3;SetCount](Mp), which counts the number of facts with the dif-
ferent Diagnosis granularity levels. The result ofQp, described by the fact-dimension
relations, isR1 = f(f1; 2g; Diagnosis Family); (f0g; Diagnosis Group)g, R2 =
f(f1; 2g;>GranHbA1c%); (f0g;>GranHbA1c%)g, andR3 = ff(f1; 2g; 2); (f0g; 1)g.
This tells us that 2 patients are diagnosed with a diagnosis family, while 1 is diag-
nosed with a diagnosis group diagnosis. Thus, the alternative query will beQ =
�[Diagnosis Group, >HbA1c%;D3;AVG2](M), which groups on Diagnosis Group
rather than Diagnosis Family.

4To avoid unnecessary complexity of the examples, we consider only one diagnosis for Jane Doe in
this section, namely the diagnosis “9” (Insulin Dependent Diabetes, current version).

3.6 Handling Imprecision in Query Evaluation 61

3.6 Handling Imprecision in Query Evaluation

If the physician wants the original query answered, even though the data is not precise
enough, we need to handle imprecision in the query evaluation. This section shows
how to handle imprecision in the grouping of data and in the computation of aggregate
functions, followed by presenting the imprecise result to the physician.

3.6.1 Imprecision in Grouping

We first need the ability to handle imprecision in the data used to group the facts. If
a fact maps to a category that is finer than or equal to the grouping category in that
dimension, there are no problems. However, if a fact maps to a coarser category, we
do not know with which of the underlying values in the grouping category it should be
grouped. To remedy the situation, we give the physicianseveral answersto the query.
First, aconservativeanswer is given that includes in a group only data that isknown
to belong to that group, and discards the data that is not precise enough to determine
group membership. Second, aliberal answer is given that includes in a group all data
thatmightbelong to that group. Third, aweightedanswer is given that also includes
in a group all data that might belong to it, but where the inclusion of data in the group
is weightedaccording to how likely the membership is. Any subset of these three
answers can also be presented if the physician so prefers. These three answers give
a good overview of how the imprecision in the data affects the query result and thus
provide a good foundation for making decisions taking the imprecision into account.
We proceed to investigate how to compute the answers.

The conservative grouping is quite easy to compute. We just apply thestandard
aggregate formation operator from the algebra, which by default groups only the facts
that are characterized by dimension values having a granularity finer than or equal to
the granularity of the grouping components in the respective dimensions. The rest of
the facts are discarded, leaving just the conservative result.

For the liberal grouping, we need to additionally capture the data that are mapped
directly to categories coarser than the grouping categories. To allow for a precise
definition of the liberal grouping, we change the semantics of the aggregate forma-
tion operator. In Section 3.8, we discuss how to get the same result using only the
standard aggregate formation operator, thus maintaining the ability to implement the
approach without the need for new operators. We change the semantics of the aggre-
gate formation operator so that the facts are grouped according to dimension values
of thefinest granularity coarser than or equal to the grouping categoriesavailable.
Thus,eithera fact is mapped to dimension values in categories at least as fine as the
grouping categories, i.e., the data is “precise enough,”or the fact is mappeddirectly
to dimension values of a coarser granularity than the grouping categories. The for-
mal semantics of the modified aggregate formation operator is given by replacing the
original definitions with the ones given below:

F 0 = fGroup(e1; ::; en) j (e1; ::; en) 2 D1 � ::�Dn ^ Type(C1) vT1 G1(e1) ^
::^Type(Cn) vTn Gn(en)^Group(e1; ::; en) 6= ;^(8i(6 9e0i(e0i <i ei^Group(e1; :

62 A Foundation

:; e0i; ::; en) � Group(e1; ::; ei; ::; en)))g andR0
i = f(f 0; e0i) j 9(e1; ::; en) 2 D1 �

::�Dn (f
0 = Group(e1; ::; en) ^ f 0 2 F 0 ^ ei = e0i)g.

Thus, we allow the dimension values to range over the categories that have coarser
or the same granularity as the grouping categories. We group according to themost
precisevalues, of a granularity at least as coarse as the grouping categories, that
characterize a fact.

Example 21 If we want to know the number of patients, grouped by Diagnosis
Family, and project out the other three dimensions, we will get the set of facts
F 0 = ff0g; f1g; f2gg, meaning that each patient goes into a separate group, one
for each of the two diagnosis families and one for the Diabetes diagnosis group.
The fact-dimension relations areR1 = f(f0g; 11); (f1g; 10); (f2g; 9)g andR2 =
f(f0g; 1); (f1g; 1); (f2g; 1)g. We see that each group of patients (with one member)
is mapped to the most precise member of the Diagnosis dimension with a granularity
coarser than or equal to Diagnosis Family, that characterize the group. The count for
each group is 1.

We can use the result of the modified aggregate formation operator to compute
the liberal grouping. For each group characterized by values in the grouping cate-
gories, i.e., the “precise enough” data, we add the facts belonging to groups charac-
terized by values that “contain” the precise values, i.e., we add the facts thatmight
be characterized by the precise values. Formally, we say thatGroup l(e1; ::; en) =
[e01�1e1;::;e0n�nenGroup(e

0
1; ::; e

0
n), where theGroup(e01; ::; e

0
n)’s are the groups in

the result of the modified aggregate formation operator. Thus, the liberal (and con-
servative) grouping is easily computed from the result of the modified aggregate for-
mation operator.

Example 22 If we want the number of patients, groupedliberally by Diagnosis
Family, we will get the set of factsF 0 = ff0; 1g; f0; 2gg, meaning that patient 0
goes into both of the two diagnosis family groups. The fact-dimension relations are
R1 = f(f0; 1g; 10); (f0; 2g; 9)g andR2 = f(f0; 1g; 2); (f0; 2g; 2)g. We see that
each patient is mapped to all the diagnosis families that might be true for the patient.
The count for each group is 2, meaning that for each of the two diagnosis families,
there might be two patients diagnosed with that diagnosis family. Of course, this
cannot be true for both diagnosis families simultaneously.

The liberal approach over-represents the imprecise values in the result. If the
same fact ends up in, say, 20 different groups, it is undesirable to give it the same
weight in the result for a group as the facts that certainly belong to that group, because
this would mean that the imprecise fact is reflected 20 times in the overall result,
while the precise facts are only reflected once. It is desirable to get a result where the
imprecise facts are reflected at most once in the overall result.

To do so we introduce aweightw for each factf in a group, making the group a
fuzzy set[136]. We use the notationf 2w Group(e1; ::; en) to mean thatf belongs
to Group(e1; ::; en) with weightw. The weight assigned to the membership of the

3.6 Handling Imprecision in Query Evaluation 63

group comes from the partial orderv on dimension values. For each pair of values
e1; e2 such thate1 v e2, we assign a weightp, using the notatione1 v (p) e2,
meaning thate2 should be counted with weightp when grouped withe1. Normally,
the weights would be assigned so that for a categoryC and a dimension valuee, we
have that�e12C^e1v(p)e p = 1, i.e., the weights for one dimension value w.r.t. any
given category adds up to one. This would mean that imprecise facts are counted only
once in the result set. However, we do not assume this, to allow for a more flexible
attribution of weights.

Formally, we define a newGroup function that also computes the weighting
of facts. The definition of this isGroupw(e1; ::; en) = [e0

1
�1(p1)e1;::;e0n�n(pn)en

Group(e01; ::; e
0
n), where theGroup(e01; ::; e

0
n)’s are the groups from the result of the

modified aggregate formation operator. The weight assigned to facts is given by the
group membership as:f 2 Group(e01; ::; e

0
n)) f 2Comb(p1;::;pn) Groupw(e1; :

:; en), where theei’s, thee0i’s, and thepi’s come from theGroupw definition above.
The functionCombcombines the weights from the different dimensions to one, over-
all weight. The most common combination function will beComb(p1; ::; pn) =
p1 � :: �pn, but for flexibility, we allow the use of more general combination functions,
e.g., functions that favor certain dimensions over others. Note that all members of a
group in the result of the modified aggregate formation operator get the same weight,
as they are characterized by the same combination of dimension values.

The idea is to apply the weight of facts in the computation of the aggregate result,
so that facts with low weights only contribute a little to the overall result. This is
treated in detail in the next section, but we give a small example here to illustrate the
concept of weighted groups.

Example 23 We know that 80% of Diabetes patients have insulin-dependent dia-
betes, while 20% have non-insulin-dependent diabetes. Thus, we have that9 v
(:8) 11 and10 v (:2) 11, i.e., the weight on the link between Diabetes and Insulin-
dependent diabetes is:8 and the weight on the link between Diabetes and Non-
insulin-dependent Diabetes is:2. The weight on all other links is1. Again, we want
to know the number of patients, grouped by Diagnosis Family. TheGroupw func-
tion divides the facts into two sets with weighted facts, giving the set of factsF 0 =
ff0:8; 21g; f0:2; 11g. Using subscripts to indicate membership weighting, the result
of the computation is given in the fact-dimension relationsR0

1 = f(f0:8; 21g; Insulin-
dependent Diabetes); (f0:2 ; 11g; Non-insulin-dependent Diabetes)g and R0

2 =
f(f0:8; 21g; 1:8); (f0:2 ; 11g; 1:2)g, meaning that the weighted count for the group
containing the insulin-dependent diabetes patients 0 and 2 is 1.8 and the count for
the non-insulin-dependent diabetes patients 0 and 1 is 1.2.

3.6.2 Imprecision in Computations

Having handled imprecision when grouping facts during aggregate formation, we
proceed to handle imprecision in the computation of the aggregate result itself. The
overall idea is here to compute the resulting aggregate value by “imputing” precise
values for imprecise values, and carry along a computation of the imprecision of the
result “on the side.”

64 A Foundation

For most MO’s, it only makes sense to the physician to perform computations on
someof the dimensions, e.g., it makes sense to perform computations on the HbA1c%
dimension, but not on the Diagnosis dimension. For dimensionsD, where computa-
tion makes sense, we assume a functionE : D 7! ?D that gives theexpected value,
of the finest granularity in the dimension, for any dimension value. The expected
value is found from the probability distribution of precise values around an impre-
cise value. We assume that this distribution is known. For example, the distribution
of precise HbA1c% values around the> value follows a normal distribution with a
certain mean and variance.

The aggregation functiong then works by “looking up” the dimension values for
a factf in the argument dimensions, applying the expected value function,E, to the
dimension values, and computing the aggregate result using the expected values, i.e.,
the results of applyingE to the dimension values. Thus, the aggregation functions
need only work on data of the finest granularity. The process of substituting precise
values for imprecise values is generally known asimputation[106]. Normally, im-
putation is only used to substitute values forunknowndata, but the concept is easily
generalized to substitute a value of the finest granularity for any value of a coarser
granularity. We term this processgeneralized imputation. In this way, we can use
data of any granularity in our aggregation computations.

However, using only generalized imputation, we do not know how precise the
result is. To determine the precision of the result, we need to carry along in the com-
putation a measure of the precision of the result. Agranularity computation measure
(GCM) for a dimensionD is a type CM that represents the granularity of dimension
values in Dduring aggregate computation. Ameasure combination function(MCF)
for a granularity computation measure CM is a functionh : CM� CM 7! CM, that
combines two granularity computation measure values into one. We require that an
MCF bedistributiveandsymmetric. This allows us to directly combine intermediate
values of granularity computation measures into the overall value. Afinal granularity
measure(FGM) is a type FM, that represents the “real” granularity of a dimension
value. Afinal granularity function(FGF) for a final granularity measure FM and a
granularity computation measure CM is a functionk : CM 7! FM, that maps a com-
putation measure value to a final measure value. The reason to distinguish between
computation measure and final measures is only that this allows us to require that the
MCF is distributive and symmetric. The choice of granularity measures and func-
tions is made depending on how much is known about the data, e.g., the probability
distribution, and what final granularity measure the physician desires.

Example 24 The level of a dimension value, with0 for the finest granularity,1 for
the next, and so on, up ton for the> value, provides one way of measuring the
granularity of data. A simple, but meaningful, FGM is theaverage levelof the di-
mension values that were counted for a particular aggregate result value. As the
intermediate average values cannot be combined into the final average, we need to
carry the sum of levels and the count of facts during the computation. Thus the GCM
isCM = N �N , the pairs of natural numbers, and the GCM value for a dimension
valuee is (Level(e); 1). The MCF ish((n1; n2); (n3; n4)) = (n1 + n3; n2 + n4).
The FGM isR, the real numbers, and the FGF isk(n1; n2) = n2=n1. In the case

3.6 Handling Imprecision in Query Evaluation 65

study, precise values such as5:5 has level0, imprecise values such as5 has level1,
and the> value has level2.

Example 25 The standard deviation�(X) of a set of valuesX from the average
valuee(X) is a widely used estimate how much data varies arounde. Thus, it can
also be used as an estimate of theprecisionof a value. Given the probability dis-
tribution of precise valuesp around an imprecise valuei, we can compute the stan-
dard deviation of thep’s from E(i) and use it as a measure of the granularity ofi.
However, we cannot use� as a GCM directly because intermediate�’s cannot be
combined into the overall�. Instead we use as GCM the typeCM = N �R �R,
computing using thecountof values, thesumof values, and thesum of squaresof
values as the GCM values. For a valuex, the GCM value is(1; x; x2). The MCF is
h((n1; x1; y1); (n2; x2; y2)) = (n1+n2; x1+x2; y1+y2). This choice of MCF means
that the MCF is distributive and symmetric [113]. The FGM is FM= R, which
holds the standard deviation, and the FGF isk(n; x; y) =

p
(y � x2)=(n� 1). For

values of the finest granularity, only data for oneX is stored. For values of coarser
granularities, we store data for severalX values, chosen according to the probability
distribution of precise values over the imprecise value. In the case study, we would
store data for 1X value for precise values such as5:5, for 10X values for imprecise
values such as5, and for 100X values for the> value. This ensures that we get a
precise estimate of the natural variation in the data as the imprecision measure, just
as we would get usingmultiple imputation[106, 11].

For both theconservativeand theliberal answer, we use the above technique
to compute the aggregate result and its precision. All facts in a group contribute
equally to both the result and the precision of the result. For theweightedanswer, the
facts in a group are counted according to their weight, both in the computation of the
aggregate result and in the computation of the precision. We note that for aggregation
functionsg whose result depend only on one value in the group it is applied to, such
as MIN and MAX, we get the minimum/maximum of theexpected values.

Example 26 We want to know the average HbA1c% for patients, grouped by Di-
agnosis Family, and the associated precision of the results. As granularity mea-
sures and functions, we use thelevel approach described in Example 24. We dis-
cuss only the weighted result. As seen in Example 23, the resulting set of facts is
F 0 = ff0:8; 21g; f0:2; 11g, and theSetCountis 1:8 for the first group and1:2 for the
second. When computing thesumof the HbA1c% values, we impute7:0 and6:0
for the imprecise values7 and>, respectively. For the first group, we multiply the
values6:0 and5:5 by their group weights:8 and1, respectively, before adding them
together. For the second group,5:5 and6:0 are multiplied by1 and:2, respectively.
Thus, the result of the sum for the two groups is10:3 and6:7, giving an average result
of 5:7 and5:6, respectively.

The computation of the precision proceeds as follows. The level of the values>,
5:5, and7 is 2, 0, and1, respectively. Theweighted sumof the levels for each group
is found by multiplying the level of a value by the group weight of the corresponding
fact, yielding1:6 for the first group and1:4 for the second. Theweighted countof the
levels is the same as that for the facts themselves, namely1:8 and1:2. This gives a

66 A Foundation

weighted average levelof :9 for the Insulin-dependent Diabetes group and1:2 for the
Non-insulin-dependent diabetes group, meaning that the result for the first group is
more precise. The relatively high imprecision for the first group is mostly due to the
high weight (:8) that is assigned to the link between Diabetes and Insulin-dependent
Diabetes. If the weights instead of:8 and:2 had been:5 and:5, the weighted average
levels would have been:7 and1:3.

3.6.3 Presenting the Imprecise Results

The final step in the imprecision handling is topresentthe imprecision in the result
to the physician. We have several alternatives for this step. The most straightforward
approach is to present the result values along with their correspondingfinal granu-
larity measurevalues. This gives a very precise estimate of the precision of a result
value.

Example 27 For Example 26, this approach would present the (Diagnosis Fam-
ily, AVG(HbA1c%), AVG(Level)) tuples from theconservative, the liberal, and the
weightedanswers. For the conservative answer, the result is(Insulin-dependent
diabetes; 5:5; 0); (Non-insulin-dependent Diabetes; 7; 1). For the liberal answer, the
result is(Insulin-dependent diabetes; 5:8; 1); (Non-insulin-dependent Diabetes; 6:5;
1:5). For the weighted answer, the result is(Insulin-dependent diabetes; 5:7; :9);
(Non-insulin-dependent Diabetes; 5:6; 1:2).

The other alternative for presenting the imprecision is one which follows our
overall approach of using the granularity itself as an estimate of the precision of data.
We use the imprecision of a result value to convert (coarse) the value into a value of
a granularity corresponding to the imprecision. Avalue coarsing function (VCF)for
a dimensionD and a FGMM is a functionc : ?D�M 7! D, wherec(e) = e1 such
that e v e1. Thus, the VCF maps values of the finest granularity into “containing”
values of a possibly coarser granularity, determined by the imprecision. The VCF
and the granularities of the result dimension are chosen so that the granularity of the
result gives a good overview of the true precision.

Example 28 We choose the HbA1c% dimension, with the same granularities, as the
result dimension. As the VCF we chooser(x) = v such thatx v v ^ Level(v) =
Ceiling(x), i.e., for a numberx, we choose the value that “contains”x and has the
level of the least natural number greater than or equal tox, e.g., r(:9) = 1 and
r(1:2) = >. A graphical illustration of the resulting MO’s for the conservative,
liberal, and weighted results are seen in Figure 3.6. We note that the liberal and
weighted answers are identical, suggesting that this is closer to the truth than the
conservative answer in this case. The result value for AVG(HbA1c%) is> in both
the liberal and the weighted answer for the Non-insulin-dependent group because half
of the input data is unknown, yielding the resulting average value very imprecise.

3.7 Addressing the Requirements 67

{1} {2}

9

Diagnosis
dimension

10

11

Result
dimension

5 6 7

5.55.4

Conservative result

7.0

{0,2} {0,1}

9

Diagnosis
dimension

10

11

Result
dimension

5 6 7

5.55.4

Liberal result

7.0

...

{0,2} {0,1}

9

Diagnosis
dimension

10

11

Result
dimension

5 6 7

5.55.4

Weighted result

7.0

TTTT T T

Figure 3.6: Resulting MO’s for the Conservative, Liberal, and Weighted Answers

3.7 Addressing the Requirements

In this section, we discuss how our model addresses the eleven requirements pre-
sented in Section 3.2.2.

The model captures theexplicit hierarchies in dimensionsusing the lattice struc-
ture of the dimension types. The structure of the case study, seen in Figure 3.2, is an
example. The modeltreats dimensions and measures symmetricallyby treating all
data as being dimensional. Computations can be performed on dimension values and
the results are placed in a dimension. For example, the Age attribute from the case
study is used both as a measure and as a dimensional entry.Multiple hierarchiesare
allowed in a dimension. The model requires that the dimension types form a lattice,
i.e., with a unique top and bottom type, thus allowing several aggregation paths. The
Time dimension in Figure 3.2 has multiple hierarchies in it. TheAggtype mechanism
ensures that only aggregation functions that the user finds meaningful are applied to
the data, and the specification of the aggregate-formation operator ensures that every
fact is only counted once in each result. Thus, the model provides a foundation for us-
ing aggregation semantics. For example, in Example 18 every patient is only counted
once perDiagnosis Group, even though the same patient has several diagnoses in a
diagnosis group.

An value in a dimension may have several direct parents in the model , e.g., the
diagnosis “Insulin dependent diabetes during pregnancy” has both “Insulin dependent
diabetes” and “Diabetes during pregnancy” as direct parents in the Diagnosis dimen-
sion. Thus,non-strict hierarchiesin dimensions are supported.Non-ontohierarchies
are directly supported, e.g., the “Lung Cancer” diagnosis has no low-level diagnosis
child. Similarly, the model supportsnon-covering hierarchies, e.g., as illustrated by
the rural addresses in the Residence dimension. The fact-dimension relations of the
model supportmany-to-many relationships between facts and dimensions, e.g., the
relationship between Patient and Diagnosis from the case study. By building valid-
and transaction-time support into the model, we can view data as it appeared at any
given point in time. By extending the partial order of a dimension, it is possible to
link values that represent the “same” thing across change, e.g., the old and the new
“Diabetes” diagnosis. In this way, we may obtain meaningful analysis results across
changes in the data. In this respect, the model supportshandling change and time.

68 A Foundation

The dimension values that are part of the fact-dimension relations can belong to any
category in the dimension, supporting in this mannerdifferent levels of granularity
in the data. For example, we can express that some patients are diagnosed withlow-
level diagnoses, some withdiagnosis families, and some withdiagnosis groups. We
have shown how the model can use the concept of granularities to handleimprecise
data, e.g., as exemplified by the HbA1C% values.

3.8 Using Pre-Aggregated Data

The approach we have presented above handles imprecision by storing a few extra
attributes for the dimension values and computing the imprecision based on these
attributes during normal query evaluation. No new algorithms, loops, etc., are intro-
duced. Thus, the computational complexity of query evaluation is only changed by a
constant factor and is unchanged in big-O terms. The computational complexity of
query evaluation is dominated by the grouping of data. Using normal sorting, this can
be accomplished inO(n logn) time, wheren is the number of facts. Even though this
is a low complexity compared to previously suggested approaches [107, 108, 14], it
is attractive to lower the running time of queries even further. A very decisive factor
in the success of commercial OLAP products is the successful use ofpre-aggregated
data for speeding up query execution. Ideally, the handling of imprecision in OLAP
systems should also take advantage of pre-aggregated data, so that query evaluation
remains fast when handling imprecision. This section investigates how our approach
can exploit pre-aggregated data.

The most common strategies for pre-aggregation isfull, no, and partial pre-
aggregation. With full pre-aggregation, aggregates are stored forall combinations
of granularities in the different dimensions. This provides fast response time, but
requires very large amounts of storage space, and the cost of keeping the aggregates
updated is very high. In some real-world cases, full pre-aggregation requires up to
200 times as much space as the raw data, making it a very expensive option. How-
ever, if the multidimensional space for an MO is small anddense, i.e., facts exist for
most combinations of dimension values, full pre-aggregation is attractive [86]. If full
pre-aggregation is too expensive, partial pre-aggregation is an option. With partial
pre-aggregation, a number of combinations of dimension granularities is chosen, and
the aggregate values are stored for these. The aggregate values are thenre-usedfor
coarser granularities, e.g., the aggregate results for Low-level Diagnosis could be re-
used to compute the results for Diagnosis Family. The condition for re-use is that
we havesummarizabilityfor the MO [70], which intuitively means that lower-level
results can be directly combined into higher-level results. It has been proven [70] that
summarizability is equivalent to the hierarchies in dimensions beingstrict, onto, and
covering, i.e., one lower-level dimension value map to exactly one higher-level value,
and for every higher-level value there exist at least one lower-level value that map to
it. Additionally, facts must be mapped only to dimension values of the finest gran-
ularity, and the aggregation function must be distributive. This insight is important
when investigating the use of pre-aggregated data.

3.8 Using Pre-Aggregated Data 69

The first step in the query evaluation is thetestfor sufficient data precision, and
the possible suggestion of analternative query. This step was achieved by rewrit-
ing the original query to a “testing” query on the precision MO, as described in
Section 3.5.2. With 10 dimensions and 4 levels in each dimension, the size of the
multidimensional space for the precision MO will be410 = 220 � 1; 000; 000, which
is very small, and probably also quite dense. We need to store the result of theSet-
Countoperation for each combination of dimension values. This does not take up
very much space, so full pre-aggregation is feasible, yielding very fast response time
for this part of the query evaluation. The next steps in the query evaluation are the
grouping of facts and the aggregate computation. With respect to pre-aggregation, it
only makes sense to consider these two steps in conjunction. For the computation of
theaggregate resultitself, using the expected values, ordinary pre-aggregation tech-
niques can be applied. If we want to usepartial pre-aggregation, we need to make
sure that we have summarizability. When checking the conditions for our case, we
see that facts are mapped directly to values of coarser granularity, e.g., patient 0 is
mapped directly to the Diabetes value. To ensure summarizability, we must intro-
duce “placeholder” values [70] of the finest granularity, that “takes the place” of a
coarser value. In our case, we could introduce a “Diabetes” placeholder value in the
Low-level Diagnosis category and map patient 0 to it. The placeholder value is then
mapped to the “real” Diabetes value, in this case through another “Diabetes” place-
holder value in the Diagnosis Family category. When doing this, we also get the side
benefit that theliberal result is automatically computed using the standard aggregate
formation operator.

If we do not want to alter the MO in this way, we need to usefull or no pre-
aggregation, which may or may not be sensible in the given case. We note that
full pre-aggregation can be applied even though we donot have summarizability. If
the hierarchies are not altered to achieve summarizability, we can still compute the
liberal result using the standard aggregate formation operator. This is done by issuing
a series of queries, one foreach combination of granularities coarser than or equal
to the grouping categories. If grouping by Diagnosis Family (and>HbA1c%), we
would issue queries that grouped by Diagnosis Family and>HbA1c%, by Diagnosis
Group and>HbA1c%, and by>Diagnosis and>HbA1c%. From the result of these
queries, we can deduce the aggregate result for the part of the liberal answernot in
the conservative answer, e.g., when knowing that the count of patients for>Diagnosis
is 3, the count for Diabetes is also3, the count for Insulin-dependent Diabetes is1,
and the count the Non-insulin-dependent diabetes is1, we can deduce that the count
for patients mapped directly to Diabetes is1, and that no patients are mapped directly
to>Diagnosis .

We also need to consider pre-aggregation in relation to the computation of the
precision. The values that should be pre-aggregated is the aggregate values for the
granularity computation measures. With respect to pre-aggregation, GCM values are
just ordinary values, so the criteria and conditions discussed above for choosing full
or partial pre-aggregation also applies. The measure combination function is required
by definition to be distributive, so partial pre-aggregation can be applied if the rest of
the summarizability conditions are met, meaning that intermediate precision values

70 A Foundation

can be re-used to compute the total precision value. Thus, the computation of the
precision of the result isfully supported by pre-aggregation.

For both the computation of the aggregate result and the computation of the
imprecision, we note that the introduction ofweighting does not disturb the pre-
aggregation. We just store the weighted results and imprecisions instead of the un-
weighted.

3.9 Conclusion and Future Work

Motivated by the popularity of On-Line Analytical Processing (OLAP) systems for
analyzing business data, multidimensional data models have become a major data-
base research area. However, current models do not handle well the complex and
imprecise data found in some real-world systems.

We present a real-world case study from the clinical world, where we track pa-
tients, their diagnoses, names, dates of birth, ages, places of residence, and their
HbA1C%, an indication of the long-term blood sugar level. We use the case study
to justify eleven requirements that a multidimensional data model must satisfy in or-
der to support the complex data found in real-world applications. Requirements not
handled by current models include many-to-many relationships between facts and di-
mensions, handling change and time, handling imprecise data, and handling different
levels of granularity. Twelve previously proposed data models are evaluated accord-
ing to the requirements, and it is shown that none of them satisfies more than five
requirements fully or partially.

We propose a new, extended multidimensional data model, which addresses all
eleven requirements. The data model improves over previously proposed models by
supporting non-onto, non-covering, and non-strict hierarchies, many-to-many rela-
tionships between facts and dimensions, handling change and time, handling impre-
cise data, and handling different levels of granularity. Especially, time is handled by
adding valid time and transaction time to the basic model. We propose an algebra
on the multidimensional objects from the model, and we show that it is closed and
at least as strong as relational algebra with aggregation functions. The algebra is
extended to handle time.

We show how to use the presented data model to capture imprecise data using the
concept ofdata granularity. Data imprecision is handled by firsttestingif the data
is precise enough to answer a query precisely. If this is not the case, analternative
querythat might be answered precisely is suggested. If the physician asking the query
elects to proceed with the original query, the imprecision in the data is reflected in the
groupingof data, as well as in theaggregate computation. The physician is presented
with the three results. Theconservativeresult includes only what isknownto be true,
the liberal answer includes everything thatmightbe true, while theweightedanswer
includes everything that might be true, but gives precise data higher weights than
imprecise data. Along with the aggregate computation, a separate computation of the
precisionof the result is carried out. As the last part of imprecise query handling, the
imprecise result is presented to the physician. We discuss how to use pre-aggregated
data for more efficient query processing. Finally, we show how to represent the

3.10 Relational Representation of the Model 71

multidimensional objects as relational tables and how to implement the imprecision
handling approach using SQL, thus providing a basis for implementing the model
using relational technology.

Compared to previous approaches to handling imprecision, this work improves
by showing how existing concepts and techniques from multidimensional databases,
such as granularities and pre-aggregation, can be maximally re-used to also support
imprecision. This yields an effective approach that can be implemented using current
technology. Additionally, imprecision is handled for both the grouping of data and in
the aggregate computation.

In future work, it should be investigated how the model and query handling tech-
niques may be efficiently implemented using special-purpose algorithms and data
structures, to achieve optimal concrete complexity. Next, a notion of completeness
for multidimensional algebras, similar to Codd’s relational completeness would be
an exciting research topic. We also believe that it is important to investigate how
multidimensional models can cope with the hundreds of dimensions found in some
applications. There are several future research directions related to imprecision. The
investigation of the issues related to “single-value” aggregation functions such as
MIN and MAX, that are not readily sensitive to weighting, in relation to data granu-
larity is warranted. It would also be interesting to explore other means of graphically
presenting imprecision in the result to facilitate the user interpretation of an imprecise
result, or to possibly present the user with the data thatpreventeda given query from
being precisely answerable. Also, it would be good to give precise measures for the
usefulness of technique, given the available data.

3.10 Relational Representation of the Model

This appendix outlines how to implement the model using relational database tech-
nology. Our primary concern is a relational representation that allows efficient eval-
uation of queries in the model. The metadata specified in the model, e.g., the aggre-
gation types, must be stored separate from the data and handled by the query tool
accessing the data. We do not go into how to represent this metadata in a relational
database.

The traditional way to map a multidimensional data model to a relational database
is to use astar schema[64], where thefact tablecontains measures and foreign keys
to thedimension tables. However, a star schema design requires the relationships
between the fact and dimension tables to be many-to-one, and that the hierarchies
in the dimensions be strict. To represent many-to-many relationships between facts
and dimensions, several rows in the fact table are necessary for each fact. To rep-
resent non-strict hierarchies, several rows in the dimension tables are necessary for
each dimension key. These violations of the pure star schema design can lead users
to get incorrect results when aggregating data, as it is easy to accidentally double-
count data. Alternatively, if the users understand the potential problems, they need to
employ the expensive SELECT DISTINCT clause in SQL statements to get correct
results.

72 A Foundation

To avoid these problems, we use a non-standard mapping to relational tables.
The basic idea for representing the dimensions is to encode the partial order on a
dimension composed with a category representation, directly in one table. Thus, for
each representationRep of a categoryCj in the given MO, we get a tableTCj�Rep

that encodes the composition ofRep with the partial order on the dimension. If
Rep is encoded in the tableTRep = (RepValue;DimensionValue) and the di-
rect parent-child relationships in the partial order is encoded in the tablePO =
(ParentValue;ChildValue) then TCj�Rep = TRep 1DimensionValue=ParentValue

PO�, wherePO� denotes the reflexive, transitive closure ofPO. Note thatTCj�Rep

does not contain duplicates. This means that we will not get double-counting of
data when computing aggregates in term of the base table if the hierarchy is non-
strict, as would have been the case with the star schema representation described
above. TCj�Rep can be updated incrementally during insertions toPO using the
rule: PO0 = f(e1; e2)g [PO) PO0� = PO� [PO�

1 f(e1; e2)g 1 PO�.

Example 29 The Grouping table in Table 3.1 encodes the direct parent-child rela-
tionships in the Diagnosis dimension. We perform the reflexive, transitive closure of
the Grouping table, thus getting all ancestor-descendent pairs in the Diagnosis partial
order. This is joined with the Diagnosis table, which encodes theCoderepresentation
for the Diagnosis Group category. This gives us the the tableTDiagGroup�Code which
can be seen in Table 3.3. The temporal aspects of the table will be discussed later.

Code ParentValue ChildValue ValidFrom ValidTo
E1 11 5 01/01/80 NOW
E1 11 6 01/01/80 NOW
E1 11 9 01/01/80 NOW
E1 11 10 01/01/80 NOW
E1 11 11 01/01/80 NOW
O2 12 4 01/01/80 NOW
O2 12 5 01/01/80 NOW
O2 12 6 01/01/80 NOW
O2 12 9 01/01/80 NOW
O2 12 12 01/01/80 NOW
A1 13 13 01/01/80 NOW
A1 13 14 01/01/80 NOW

Table 3.3: TheTDiagGroup�Code Table for the Example

Several alternatives exist for the representation of the fact-dimension relations.
If the fact-dimension relationships are many-to-one, a standard fact table approach
with “foreign keys” to the dimension-encoding tables will suffice. If relationships are
many-to-many, there are three alternatives: a) maintain the dimension encoding tables
joined with the fact-dimension relation, with no duplicates, making the resulting table
“point to” the facts, b) make a new “lowest” level in the dimension-encoding tables
for eachcombinationof dimension values pointed to by one fact, and make the fact
table point to the combination, and c) encode the fact-dimension relation directly as
a separate table.

3.11 SQL Implementation of Imprecision 73

Example 30 For the example above, alternative a) would maintain the join of
TDiagGroup�Code with the Has table. Alternative b) would give three combinations,
f10g, f11g, andf3; 5; 8; 9g, which would be the bottom values in the extension of
theTDiagGroup�Code table. The fact table would then point to these combinations,
instead of the diagnoses directly. Alternative c) would just keep theTDiagGroup�Code
and Has tables.

Each alternative has its own advantages. Alternative a) provides direct access
to the facts, with no problems of double-counting, but the tables can become very
big, as we have several rows for each fact-dimension pair, thus rendering the solution
impractical. Alternative b) is attractive if the number of combinations is small, as we
avoid the problems of double-counting, but if the number of combinations is large,
we have the same size problems as in a). Alternative c) keeps the size of the tables to
the minimum, but accidental double-counting is possible, thus SELECT DISTINCT
clauses must be used in SQL statements.

When extending the representations to capture valid/transaction time, the basic
dimension-encoding mechanism still works. The encoding table is extended with
columns capturing the time when the tuple is true. We take the intersection of the time
periods when tables are joined, thus capturing the time period when the combined
tuples are valid. TheTDiagGroup�Code table extended with time is seen in Table 3.3.
Alternative a) and c) can be extended with time columns without any problems. For
alternative b) we need to enumerate all combinations of dimension valuesand the
associated time periods. This will probably lead to a number of combinations that is
close to the number of facts, thus rendering the solution impractical.

3.11 SQL Implementation of Imprecision

This section discusses how to implement the imprecision handling approach using
commercial relational database technology. The goal is to provide a mapping to
relational tables and a set of query templates that allows the physician to get the same
results as in the presented approach with reasonable efficiency.

In most relational representations of multidimensional data, the tables are divided
into fact tablesanddimension tables[64]. As the names suggest, a fact table con-
tain data related to a particular fact, while the dimension tables contain information
about the dimension values and the hierarchies between them. In the presented data
model,all data is considered to bedimensional, even data that would normally be
treated as “measures” in other multidimensional models, e.g., the HbA1c% mea-
surements. We follow this approach in the relational design, leading to a “factless”
fact table [64], i.e., a fact table where all the columns aredimension keys(DK),
i.e., foreign keys to dimension tables. However, as the combination of dimension
values for a factf is not a “key” for f in our model, we also need to include a
column to represent thefact identity in the fact table. Thus, the fact table has the
schema(FactId ;DK1; :::;DKn). All data about the dimension values will be kept
in dimension tables. We can still have reasonably fast access to the data using tech-
niques such asstar join query processing [105], a technique optimized for “multi-
dimensional” relational queries. If the performance obtained with this design is not

74 A Foundation

sufficient, we can denormalize the fact table by putting the expected values (EV)
and the granularity computation measures (GCM) into it. This gives a schema of
the form(FactId ;DK1; EV1; GCM1; ::;DKn; EVn; GCMn). We include the EV’s
and GCM’s only for the dimensions on which computation is meaningful. Assuming
that the size (in bytes) of EV’s and GCM’s is the same as the size of the dimension
keys, and that computation makes sense for half of the dimensions, this willdouble
the space required for the fact table.

The design of the dimension tables depends on the complexity of the data. If
the hierarchies are strict, onto, and covering, and we only map facts to dimension
values of the finest granularity, we can capture the dimensions using ordinary “flat”
dimension tables, leading to “star schema” type design [64]. We record the dimen-
sion values (DV) for the different granularities as different columns. We need to
store the weights (W) for each of relations between a dimension value of the finest
granularity and the values of coarser granularities. Because of the restrictions, we
need only to record the expected values and granularity computation measures for
the finest granularity. The schema of the dimension tables will have the structure
(DK;EV?; GCM?;DV?;W?; ::;DV>;W>).

However, we would like to capture explicitly in the relational schema the situation
that facts are mapped directly to dimension values of a coarser granularity. This
can be captured by storing a table of pairs of allancestors(A) anddescendents(D)
in the dimension partial order, i.e., thetransitive closureof the direct parent-child
relationships. The computation and maintenance of materialized transitive closures
has been studied intensively in the scientific literature [1, 43], so we do not discuss
it further. For each (A,D) pair of dimension values, we record thelevels(L) of the
ancestor and descendent, i.e., 0, 1, .., n, as well as the weight (W) on the link between
A and D. Additionally, we record the EV’s and GCM’s for thedescendents only,
where it makes sense. The schema of the dimension tables will have the structure
(A;LA;D; LD;W;EVD; GCMD). We note that we can still take advantage of star
join processing with this schema.

The aggregate formation queries must be translated into standard SQL queries.
The most general type of query is the one that computes theliberal grouping, while
taking theweightinginto account. We will deal with this; the SQL queries needed
for the other parts of query evaluation are just special cases. The general SQL query
has the form seen below.

SELECTg(Comb(D1:W; ::;Dm:W) �Dk:EV),
GCF (Comb(D1:W; ::;Dm:W) �Dk:GCM)

FROMF;D1; ::;Dm

WHERE
F:DK1 = D1:DK AND... ANDF:DKm = Dm:DK AND
F:DKk = Dk:DK ANDDk:LA = Dk:LD AND
(D1:LA = GL1 OR(D1:LA > GL1 ANDD1:LA = D1:LD)) AND
....
(Dm:LA = GLm OR(Dm:LA > GLm ANDDm:LA = Dm:LD))

GROUP BYD1:A; ::;Dm:A

3.11 SQL Implementation of Imprecision 75

In the query,g is the aggregation function,Combis the weighting combination
function,Dk is the dimension on which we compute,F is the fact table, GCF is the
granularity combination function,D1; ::;Dm are them dimensions where we group
on something else than the> category, andGL1; ::; GLm is the corresponding group-
ing levels. We can use this type of query only if the weights can be multiplied directly
into the results, e.g., wheng is SUM. For other types of aggregation functions, e.g.,
AVG, we need to use several queries and combine the results. The first line of the
WHERE clause specifies join predicates join on the fact table and the dimension ta-
bles used for grouping. The second line specifies join predicates on the fact table and
the dimension table holding the data to be computed on, and ensures that we only get
one value for each fact. The following lines of the WHERE clause handle the group-
ing of facts. The part before the “OR” handles theconservativegrouping, while the
remainder handles the additional data in theliberal grouping.

Fact DiagKey HbA1Key
0 11 6
1 10 7
2 9 8

Fact Table
AnsID DesID Ancestor AnsLevel DesLevel W

9 9 Ins. dep. diab. 0 0 1
10 10 Non-ins. dep. diab. 0 0 1
11 11 Diabetes 1 1 1
11 9 Diabetes 1 0 .8
11 10 Diabetes 1 0 .2

Diagnosis Dimension Table

AnsID DesId Ancestor AnsLevel DesLevel W EV GCM
6 6 Unknown 2 2 1 6.0 2
7 7 5.5 0 0 1 5.5 0
8 8 7 1 1 1 7.0 1
6 7 Unknown 2 0 .01 5.5 0
6 8 Unknown 2 1 .1 7.0 1

HbA1c% Dimension Table

Table 3.4: Relational Implementation of the Case Study

Example 31 We implement the MO from the case study5 with only the Diagnosis
and HbA1c% dimensions, using the basic fact table design and (A,D) type dimension
tables. We include the text of the ancestors for readability. The resulting tables are
seen in Table 3.4. When using SQL to compute the weighted average of the HbA1c%,
grouped by Diagnosis Family seen in Example 26, we get two SQL queries. One for
computing the weighted sum and one for computing the weighted count. The results
of these two queries can then be combined into the total weighted result as described
in Example 26. The SQL statements are seen below.

5To avoid unnecessary complexity, we consider again only diagnosis “9” for Jane Doe, and we
consider only the Diagnosis Family and Diagnosis Group categories in the Diagnosis dimension.

76 A Foundation

SELECTD.Ancestor, SUM(H.EV * D.W), SUM(H.GCM * D.W)
FROMFact F, Diagnosis D, HbA1C H
WHERE

F.DiagKey = D.DesIDAND
F.HbA1Key = H.DesIDANDH.AnsLevel = H.DesLevelAND
(D.AnsLevel = 0OR(D.AnsLevel> 0 ANDD.AnsLevel = D.DesLevel))

GROUP BYD.Ancestor

SELECTD.Ancestor, SUM(D.W)
FROMFact F, Diagnosis D, HbA1C H
WHERE

F.DiagKey = D.DesIDAND
F.HbA1Key = H.DesIDANDH.AnsLevel = H.DesLevelAND
(D.AnsLevel = 0OR(D.AnsLevel> 0 ANDD.AnsLevel = D.DesLevel))

GROUP BYD.Ancestor

If pre-aggregation is used, we also need tables to store the pre-aggregated values.
These should have the format of the denormalized fact table described above. If
(A,D) type dimension tables are used in the design, we can re-use these to access
the aggregate tables. If “flat” dimension tables are used, we need to construct new
dimension tables with only the relevant (higher category) columns [64] to access the
aggregate tables.

Chapter 4

Extending Practical
Pre-Aggregation in On-Line
Analytical Processing

4.1 Introduction

On-Line Analytical Processing (OLAP) systems, which aim to ease the process of
extracting useful information from large amounts of detailed transactional data, have
gained widespread acceptance in traditional business applications as well as in new
applications such as health care. These systems generally offer a dimensional view
of data, in which measured values, termed facts, are characterized by descriptive val-
ues, drawn from a number of dimensions; and the values of a dimension are typically
organized in a containment-type hierarchy. A prototypical query applies an aggre-
gate function, such as average, to the facts characterized by specific values from the
dimensions.

Fast response times are required from these systems, even for queries that ag-
gregate large amounts of data. The perhaps most central technique used for meeting
this requirement is termedpre-aggregation, where the results of aggregate queries
are pre-computed and stored, i.e., materialized, for later use during query process-
ing. Pre-aggregation has attracted substantial attention in the research community,
where it has been investigated how to optimally use pre-aggregated data for query
optimization [44, 25] and how to maintain the pre-aggregated data when base data is
updated [81, 101]. Further, the latest versions of commercial RDBMS products offer
query optimization based on pre-computed aggregates and automatic maintenance of
the stored aggregates when base data is updated [131].

The fastest response times may be achieved when materializing aggregate results
corresponding to all combinations of dimension values across all dimensions, termed
full (or eager) pre-aggregation. However, the required storage space grows rapidly,
to quickly become prohibitive, as the complexity of the application increases. This
phenomenon is calleddata explosion[27, 117, 86] and occurs because the number
of possible aggregation combinations grows rapidly when the number of dimensions
increase, while the sparseness of the multidimensional space decreases in higher di-

77

78 Extending Practical Pre-Aggregation in On-Line Analytical Processing

mension levels, meaning that aggregates at higher levels take up nearly as much space
as lower-level aggregates. In some commercial applications, full pre-aggregation
takes up as much as200 times the space of the raw data [86]. Another problem with
full pre-aggregation is that it takes too long to update the materialized aggregates
when base data changes.

With the goal of avoiding data explosion, research has focused on how to select
the best subset of aggregation levels given space constraints [49, 46, 135, 4, 124, 112]
or maintenance time constraints [47], or the best combination of aggregate data and
indices [45]. This approach is commonly referred to aspractical (or partial or semi-
eager [31, 49, 130]) pre-aggregation. Commercial OLAP systems now also exist
that employ practical pre-aggregation, e.g., Microsoft Decision Support Services
(Plato) [79] and Informix MetaCube [56].

The premise underlying the applicability of practical pre-aggregation is that low-
er-level aggregates can bere-usedto compute higher-level aggregates, known as
summarizability [70]. Summarizability occurs when the mappings in the dimen-
sion hierarchies areonto (all paths in the hierarchy have equal lengths),covering
(only immediate parent and child values can be related), andstrict (each child in a
hierarchy has only one parent); and when also the relationships between facts and
dimensions are many-to-one and facts are always mapped to the lowest levels in the
dimensions [70]. However, the data encountered in many real-world applications fail
to comply with this rigid regime. This motivates the search for techniques that allow
practical pre-aggregation to be used for a wider range of applications, the focus of
this chapter.

Specifically, this chapters leverages research such as that cited above. It does so
by showing how to transform dimension hierarchies to obtain summarizability, and
by showing how to integrate the transformed hierarchies into current systems, trans-
parently to the user, so that standard OLAP technology is re-used. Specifically, al-
gorithms are presented that automatically transform dimension hierarchies to achieve
summarizability for hierarchies that are non-onto, non-covering, and non-strict. The
algorithms have low computational complexity, and are thus applicable to even very
large databases. It is also described how to use the algorithms to contend with non-
summarizable relationships between facts and dimensions, and it is shown how the
algorithms may be modified to accommodate incremental computation, thus mini-
mizing the maintenance cost associated with base-data updates.

To our knowledge, this work is the first to present algorithms to automatically
achieve summarizability for non-covering and non-onto hierarchies. The research re-
ported here is also the first to demonstrate techniques and algorithms for achieving
summarizability in non-strict hierarchies. The integration of the techniques into cur-
rent systems, transparently to the user, we believe is a novel feature. The only past
research on the topic has been on how to manually, and not transparently to the user,
achieve summarizability for non-covering hierarchies [103].

The next section presents a real-world clinical case study that exemplifies the
non-summarizable properties of real-world applications. Section 4.3 proceeds to de-
fine the aspects of a multidimensional data model necessary for describing the new
techniques, and defines also important properties related to summarizability. Sec-
tions 4.4 and 4.5 present algorithms that transform dimension hierarchies to achieve

4.2 Motivation—A Case Study 79

summarizability, then apply the algorithms to fix non-summarizable relationships be-
tween facts and dimensions. Section 4.6 demonstrates how the techniques may be
integrated into current systems, transparently to the user. Section 4.7 summarizes
and points to topics for future research. Appendix 4.8 describes how to modify the
algorithms to accommodate incremental computation.

4.2 Motivation—A Case Study

This section presents a case study that illustrates the properties of real-world dimen-
sion hierarchies. The case study concerns patients in a hospital, their associated diag-
noses, and their places of residence. The data analysis goal is to investigate whether
some diagnoses occur more often in some areas than in others, in which case envi-
ronmental or lifestyle factors might be contributing to the disease pattern. An ER
diagram illustrating the underlying data is seen in Figure 4.1.

Diagnosis
Diagnosis

Family
Belongs

to(1,n)

* Code
* Text

Patient

* Name

(0,n)

Grouping
Diagnosis

Group(1,n)(1,n)

Has

Low-level
Diagnosis

Address

Lives
at

(0,1)

(0,n)

City County
City

located
in

Located
in city

* Address * Name * Name

(0,1) (1,1)(0,n) (1,n)

Diagnosis

D

(0,n)

Located in
rural area

(0,n)
(0,1)

* Type * Type

(1,n)

Figure 4.1: ER Schema of Case Study

The most important entities are thepatients, for which we record the name. We
always want to count the number of patients, grouped by some properties of the
patients. Thus, in multidimensional terms, the patients are thefacts, and the other,
describing, entities constitute thedimensions.

Each patient has a number ofdiagnoses, leading to amany-to-manyrelationship
between facts and the diagnosis dimension. When registering diagnoses of patients,
physicians use different levels of granularity, ranging from very precise diagnoses,
e.g., “Insulin dependent diabetes during pregnancy,” to more imprecise diagnoses,

80 Extending Practical Pre-Aggregation in On-Line Analytical Processing

e.g., “Diabetes,” which cover wider ranges of patient conditions. To model this,
the relationship from patient to diagnoses is to the supertype “Diagnosis,” which
then has three subtypes, corresponding to different levels of granularity, thelow-level
diagnosis, the diagnosis family, and thediagnosis group. Examples of these are
“Insulin dependent diabetes during pregnancy,” “Insulin dependent diabetes,” and
“Diabetes,” respectively. The higher-level diagnoses are both (imprecise) diagnoses
in their own right, but also serve as groups of lower-level diagnoses.

Each diagnosis has an alphanumeric code and a descriptive text, which are spec-
ified by some standard, here the World Health Organization’s International Classi-
fication of Diseases (ICD-10) [133], or by the physicians themselves. Indeed, two
hierarchies are captured: the standard hierarchy specified by the WHO, and the user-
defined hierarchy, which is used for grouping diagnoses on an ad-hoc basis in other
ways than given by the standard. TheTypeattribute on the relationships determines
whether the relation between two entities is part of the standard or the user-defined
hierarchy.

The hierarchy groups low-level diagnoses intodiagnosis families, each of which
consists of 2–20 related diagnoses. For example, the diagnosis “Insulin dependent
diabetes during pregnancy1” is part of the family “Diabetes during pregnancy.” In
the WHO hierarchy, a low-level diagnosis belongs to exactly one diagnosis family,
whereas the user-defined hierarchy does not have this restriction. Thus, a low-level
diagnosis can belong to several diagnosis families, e.g., the “Insulin dependent dia-
betes during pregnancy” diagnosis belongs to both the “Diabetes during pregnancy”
and the “Insulin dependent diabetes” family. Next, diagnosis families are grouped
into diagnosis groups, consisting of 2–10 families, and one family may be part of
several groups. For example, the family “Diabetes during pregnancy” may the part
of the “Diabetes” and “Other pregnancy related diseases” groups.

In the WHO hierarchy, a family belongs to exactly one group. In the WHO
hierarchy, a lower-level value belongs to exactly one higher-level value, making it
strict andcovering. In the user-defined hierarchy, a lower-level value may belong to
zero or more higher-level values, making itnon-strictandnon-covering. Properties
of the hierarchies will be discussed in more detail in Section 4.3.2.

We also record the addresses of the patients. If the address is located in a city,
we record thecity; otherwise, if the address is in a rural area, we record thecounty
in which the address is located. A city is located in exactly one county. As not all
addresses are in cities, we cannot find all addresses in a county by going through the
“City located in” relationship. Thus, the mapping from addresses to cities isnon-
coveringw.r.t. addresses. For cities and counties, we just record the name. Not all
counties have cities in them, so the mapping from cities to counties isinto rather than
onto.

In order to exemplify the data, we assume a standard mapping of the ER diagram
to relational tables, i.e., one table per entity and relationship type. We also assume
the use of surrogate keys, namedID, with globally unique values. The three subtypes
of the Diagnosis type are mapped to a common Diagnosis table, and because of this,

1The reason for having a separate pregnancy related diagnosis is that diabetes must be monitored
and controlled particularly intensely during a pregnancy to assure good health of both mother and child.

4.3 Method Context 81

the “belongs to” and “grouping” relationships are mapped to a common “Grouping”
table. The resulting tables with sample data are shown in Table 4.1 and will be used
in examples throughout the chapter.

If we apply pre-aggregation to the data from the case study, several problems
occur. For example, if the counts of patients by City are pre-computed and we use
these for computing the numbers of patients by county, an incorrect result will occur.
In the data, the addresses “123 Rural Road” and “1 Sandy Dunes” (one of them is the
address of a patient) are not in any city, making the mapping from City to County not
coveringw.r.t. addresses.

Next, if the counts of patients by Low-Level Diagnosis are pre-computed and we
use these for computing the total count of patients, an incorrect result again ensues.
First, patients only with lung cancer are not counted, as lung cancer is not present at
the level of Low-Level Diagnosis; the mapping from Low-Level Diagnosis to Diag-
nosis Family isinto. Second, patients such as “Jim Doe” only have higher-level diag-
noses and will no be counted; the fact-to-dimension mapping hasvarying granularity.
Third, patients such as “Jane Doe” have several diagnoses and will be counted sev-
eral times; , the relationship between facts and dimensions ismany-to-many. Fourth,
Low-Level diagnoses such as “Insulin dependent diabetes during pregnancy” are part
of several diagnosis families, which may also lead to “double” counting when com-
puting higher-level counts; the dimension hierarchy isnon-strict.

These problems yield “non-summarizable” dimension hierarchies that severely
limit the applicability of practical pre-aggregation, leaving only full pre-aggregation,
requirering huge amounts of storage, or no pre-aggregation, resulting in long re-
sponse time for queries.

The properties described above are found in many other real-world applications.
Many-to-many relationships between facts and dimensions occur between bank cus-
tomers and accounts, between companies and Standard Industry Classifications
(SICs), and between students and departments [65, 70]. Non-strict dimension hi-
erarchies occur from cities to states in a Geography dimension [103] and from weeks
to months in a Time dimension. In addition, hierarchies where the change over time is
captured are generally non-strict. The mapping from holidays to weeks as well as or-
ganization hierarchies of varying depth [53] offer examples of “into” mappings. Non-
covering relationships exist for days-holidays-weeks and for counties-cities-states, as
well as in organization hierarchies [53].

Even though many real-world cases possess the properties described above, cur-
rent techniques for practical pre-aggregation require that facts are in a many-to-one
relationships to dimensions and that all hierarchies are strict, onto, and covering.
Thus, current techniques cannot be applied when the hierarchies has these properties.

4.3 Method Context

This section defines the aspects of a multidimensional data model that are necessary
to define the techniques that enable practical pre-aggregation in applications as the
one just described. The full model is described elsewhere [95]. Next, the data model
context is exploited for defining properties of hierarchies relevant to the techniques.

82 Extending Practical Pre-Aggregation in On-Line Analytical Processing

ID Name
1 John Doe
2 Jane Doe
3 Jim Doe

Patient

PatientID AddressID
1 50
2 51
3 52

LivesAt

ID Address
50 21 Central Street
51 34 Main Street
52 123 Rural Road
53 1 Sandy Dunes

Address

PatientID DiagnosisID Type
1 9 Primary
2 5 Secondary
2 9 Primary
3 11 Primary

Has
ParentID ChildID Type

4 5 WHO
4 6 WHO
9 5 User-defined
10 6 User-defined
11 9 WHO
11 10 WHO
12 4 WHO
13 14 WHO

Grouping

ID Code Text Type
4 O24 Diabetes during pregnancy Family
5 O24.0 Insulin dependent diabetes during pregnancy Low-Level
6 O24.1 Non insulin dependent diabetes during pregnancyLow-Level
9 E10 Insulin dependent diabetes Family
10 E11 Non insulin dependent diabetes Family
11 E1 Diabetes Group
12 O2 Other pregnancy related diseases Group
13 A1 Cancer Group
14 A11 Lung cancer Family

Diagnosis

ID Name
20 Sydney
21 Melbourne

City

AddressID CityID
50 20
51 21

LocatedInCity

ID Name
30 Sydney
31 Melbourne
32 Outback

County

ID Name
52 31
53 32
LocatedInRuralArea

CityID CountyID
20 30
21 31
CityLocatedIn

Table 4.1: Tables for the Case Study

The particular data model has been chosen over other multidimensional data mod-
els because it quite naturally captures the data described in the case study and because

4.3 Method Context 83

it includes explicit concepts of dimensions and dimension hierarchies, which is very
important for clearly presenting the techniques. However, the techniques are also ap-
plicable to other multidimensional or statistical data models, as will be discussed in
Section 4.6.

4.3.1 A Concrete Data Model Context

For each part of the model, we define theintensionand theextension, and we give an
illustrating example.

An n-dimensional fact schemais a two-tupleS = (F ;D), whereF is afact type
andD = fTi; i = 1; ::; ng is its correspondingdimension types.

Example 32 In the case study from Section 4.2,Patient is the fact type, andDiag-
nosis, Residence, andNameare the dimension types. The intuition is thateverything
that characterizes the fact type is considered to bedimensional.

A dimension typeT is a four-tuple(C;vT ;>T ;?T), whereC = fCj ; j =
1; ::; kg are thecategory typesof T , vT is a partial order on theCj ’s, with >T 2 C
and?T 2 C being the top and bottom element of the ordering, respectively. Thus,
the category types form a lattice. The intuition is that one category type is “greater
than” another category type if members of the former’s extension logically contain
members of the latter’s extension, i.e., they have a larger value size. The top element
of the ordering corresponds to the largest possible value size, that is, there is only one
value in it’s extension, logically containing all other values.

We say thatCj is a category type ofT , writtenCj 2 T , if Cj 2 C.

Example 33 Low-level diagnoses are contained in diagnosis families, which are
contained in diagnosis groups. Thus, theDiagnosisdimension type has the following
order on its category types:?Diagnosis = Low-level Diagnosis< Diagnosis Family<
Diagnosis Group< >Diagnosis . Other examples of category types areAddress, City,
andCounty. Figure 4.2, to be discussed in detail later, illustrates the dimension types
of the case study.

A categoryCj of typeCj is a set ofdimension valuese. A dimensionD of type
T = (fCjg;vT ;>T ;?T) is a two-tupleD = (C;v), whereC = fCjg is a set
of categoriesCj such thatType(Cj) = Cj andv is a partial order on[jCj, the
union of all dimension values in the individual categories. We assume a function
Pred : C 7! 2C that gives the set of immediate predecessors of a categoryCj .
Similarly, we a assume a functionDesc : C 7! 2C that gives the set of immediate
descendants of a categoryCj. For bothPred andDesc, we “count” from the category
>T (of type>T), so that category>T is the ultimate predecessor and category?T
(of type?T) is the ultimate descendant.

The definition of the partial order is: given two valuese1; e2 thene1 v e2 if e1
is logically contained ine2. We say thatCj is a category ofD, writtenCj 2 D, if
Cj 2 C. For a dimension valuee, we say thate is a dimensional value ofD, written
e 2 D, if e 2 [jCj .

84 Extending Practical Pre-Aggregation in On-Line Analytical Processing

The category of type?T in dimension of typeT contains the values with the
smallest value size. The category with the largest value size, with type>T , contains
exactly one value, denoted>. For all valuese of the dimensionD, e v >. Value>
is similar to theALL construct of Gray et al. [40]. When the context is clear, we refer
to a category of type>T as a> category, not to be confused with the> dimension
value.

Example 34 In our Diagnosisdimension we have the following categories, named
by their type. The numbers in parentheses are the ID values from the Diagnosis table
in Table 4.1.Low-level Diagnosis= f“Insulin dependent diabetes during pregnancy”
(5), ”Non insulin dependent diabetes during pregnancy” (6)g, Diagnosis Family=
f“Diabetes during pregnancy” (4), “Insulin dependent diabetes” (9), ”Non insulin de-
pendent diabetes” (10), “Lung cancer” (14)g, Diagnosis Group= f“Diabetes” (11),
“Other pregnancy related diseases” (12), “Cancer” (13)g, and>Diagnosis = f>g. We
have thatPred (Low-level Diagnosis) = fDiagnosis Familyg. The partial orderv is
obtained by combining WHO and user-defined hierarchies, as given by the Group-
ing table in Table 4.1. Additionally, the top value> is greater than, i.e., logically
contains, all the other diagnosis values.

Let F be a set of facts, andD = (C = fCjg;v) a dimension. Afact-dimension
relation betweenF andD is a setR = f(f; e)g, wheref 2 F ande 2 [jCj. Thus
R links facts to dimension values. We say that factf is characterized bydimension
value e, written f ; e, if 9e1 2 D ((f; e1) 2 R ^ e1 v e). We require that
8f 2 F (9e 2 [jCj ((f; e) 2 R)); thus, all fact maps to at least one dimension
value in every dimension. The> value is used to represent an unknown or missing
value, as> logically contains all dimension values, and so a factf is mapped to> if
it cannot be characterized within the particular dimension.

Example 35 The fact-dimension relationR links patient facts to diagnosis dimen-
sion values as given by the Has table from the case study, so thatR = f(“John Doe”
(1), “Insulin dependent diabetes” (9)), (“Jane Doe” (2), “Insulin dependent diabetes
during pregnancy” (5)), (“Jane Doe” (2), “Insulin dependent diabetes” (9)), (“Jim
Doe” (3), “Diabetes” (11))g. Note that facts may be related to values in higher-level
categories. We do not require thate belongs to?Diagnosis . For example, the fact
“John Doe” (1) is related to the diagnosis “Insulin dependent diabetes” (5), which
belongs to theDiagnosis Familycategory. This feature will be used later to explicitly
capture the different granularities in the data. If no diagnosis was known for patient
“John Doe” (1), we would have added the pair (“John Doe” (1),>) toR.

A multidimensional object(MO) is a four-tupleM = (S; F;D;R), whereS =
(F ;D = fTig) is the fact schema,F = ffg is a set offactsf whereType(f) = F ,
D = fDi; i = 1; ::; ng is a set ofdimensionswhereType(Di) = Ti, andR =
fRi; i = 1; ::; ng is a set of fact-dimension relations, such that8i((f; e) 2 Ri) f 2
F ^ 9Cj 2 Di(e 2 Cj)).

Example 36 For the case study, we get a three-dimensional MOM = (S; F;D;R),
whereS = (Patient, fDiagnosis, Name, Residenceg) andF = f“John Doe” (1),

4.3 Method Context 85

Low-level Diagnosis = ⊥

Diagnosis Family

Diagnosis Group

⊥

Diagnosis
Dimension

Residence
Dimension

Address = ⊥

City

County

⊥

Patient

Name = ⊥

⊥

Name
Dimension

Name

NameResidence

Residence

Diagnosis

Diagnosis

Figure 4.2: Schema of the Case Study

“Jane Doe” (2), “Jim Doe” (3)g. The definition of the diagnosis dimension and
its corresponding fact-dimension relation was given in the previous examples. The
Residence dimension has the categoriesAddress(= ?Residence), City, County, and
>Residence . The values of the categories are given by the corresponding tables in Ta-
ble 4.1. The partial order is given by the relationship tables. Additionally, the only
value in the>Residence category is>, which logically contains all the other values
in the Residence dimension. The Name dimension is simple, i.e., it just has aName
category (= ?Name) and a> category. We will refer to this MO as the “Patient” MO.
A graphical illustration of the schema of the “Patient” MO is seen in Figure 4.2. Be-
cause some addresses map directly to counties, County is an immediate predecessor
of Address.

The facts in an MO are objects withvalue-independent identity. We can test
facts for equality, but do not assume an ordering on the facts. The combination of
dimensions values that characterize the facts of a fact set isnot a “key” for the fact
set. Thus, several facts may be characterized by the same combination of dimension
values. But, the facts of an MO is aset, so an MO does not have duplicatefacts. The
model formally defines quite general concepts of dimensions and dimension hierar-
chies, which is ideal for the presentation of our techniques. The presented techniques
are not limited by the choice of data model.

4.3.2 Hierarchy Properties

In this section important properties of MOs that relate to the use of pre-computed
aggregates are defined. The properties will be used in the following sections to state
exactly what problems the proposed algorithms solve. The first important concept

86 Extending Practical Pre-Aggregation in On-Line Analytical Processing

is summarizability, which intuitively means that higher-level aggregates may be ob-
tained directly from lower-level aggregates.

Definition 5 Given a typeT , a setS = fSj ; j = 1; ::; kg, whereSj 2 2T , and a func-
tion g : 2T 7! T , we say thatg is summarizablefor S if g(ffg(S1); ::; g(Sk)gg) =
g(S1 [::[Sk). The argument on the left-hand side of the equation is a multiset, i.e.,
the same value may occur multiple times.

Summarizability is important as it is a condition for the flexible use of pre-
computed aggregates. Without summarizability, lower-level results generally cannot
be directly combined into higher-level results. This means that we cannot choose to
pre-compute only a relevant selection of the possible aggregates and then use these
to (efficiently) compute higher-level aggregates on-the-fly. Instead, we have to pre-
compute the all the aggregate results of queries that we need fast answers to, while
other aggregates must be computed from the base data. Space and time constraints
can be prohibitive for pre-computing all results, while computing aggregates from
base data is often inefficient.

It has been shown that summarizability is equivalent to the aggregate function
(g) being distributive, all paths beingstrict, and the mappings between dimension
values in the hierarchies beingcoveringandonto [70]. These concepts are formally
defined below. The definitions assume a dimensionD = (C;v) and an MOM =
(S; F;D;R).

Definition 6 Given two categories,C1; C2 such thatC2 2 Pred(C1), we say that
the mapping fromC1 toC2 is onto iff 8e2 2 C2(9e1 2 C1 (e1 v e2)). Otherwise, it
is into. If all mappings in a dimension are onto, we say that the dimension hierarchy
is onto.

Mappings that are into typically occur when the dimension hierarchy has varying
height. In the case study, there is no low-level cancer diagnosis, meaning that some
parts of the hierarchy have height2, while most have height3. It is thus not possible
to use aggregates at the Low-level Diagnosis level for computing aggregates at the
two higher levels. Mappings that are into also occur often in organization hierarchies.

Definition 7 Given three categories,C1, C2, and C3 such thatType(C1) <

Type(C2) < Type(C3), we say that the mapping fromC2 to C3 is covering with
respect toC1 iff 8e1 2 C1 (8e3 2 C3 (e1 v e3) 9e2 2 C2 (e1 v e2 ^ e2 v e3))).
Otherwise, it isnon-covering with respect toC1. If all mappings in a dimension are
covering w.r.t. any category, we say that the dimension hierarchy iscovering.

Non-covering mappings occur when some of the links between dimension values
skip one or more levels and map directly to a value located higher up in the hierarchy.
In the case study, this happens for the “1 Sandy Dunes” address, which maps directly
to “Outback County” (there are no cities in Outback County). Thus, we cannot use
aggregates at the City level for computing aggregates at the County level.

4.3 Method Context 87

Definition 8 Given an MOM = (S; F;D;R), and two categoriesC1 andC2 that
belong to the same dimensionDi 2 D such thatType(C1) < Type(C2), we say
that the mapping fromC1 to C2 is covering with respect toF , the set of facts, iff
8f 2 F (8e2 2 C2 (f ;i e2) 9e1 2 C1 (f ;i e1 ^ e1 vi e2))).

This case is similar to the one above, but now it is the mappings between facts
and dimension values that may skip one or more levels and map facts directly to
dimension values in categories above the bottom level. In the case study, the patients
can map to diagnoses anywhere in the Diagnosis dimension, not just to Low-level
Diagnoses. This means that we cannot use aggregates at the Low-level Diagnosis
Level for computing aggregates higher up in the hierarchy.

Definition 9 Given two categories,C1 andC2 such thatC2 2 Pred (C1), we say that
the mapping fromC1 toC2 is strict iff 8e1 2 C1 (8e2; e3 2 C2 (e1 v e2^e1 v e3)
e2 = e3)). Otherwise, it isnon-strict. The hierarchy in dimensionD is strict if all
mappings in it are strict; otherwise, it isnon-strict. Given an MOM = (S; F;D;R)
and a categoryCj in some dimensionDi 2 D, we say that there is astrict pathfrom
the set of factsF toCj iff 8f 2 F (f ;i e1 ^ f ;i e2 ^ e1 2 Cj ^ e2 2 Cj) e1 =
e2). (Note that the paths to the>T categories are always strict.)

Non-strict hierarchies occur when a dimension value has multiple parents. This
occurs in the Diagnosis dimension in the case study where the “Insulin dependent
diabetes during pregnancy” low-level diagnosis is part of both the “Insulin Dependent
Diabetes” and the “Diabetes during pregnancy” diagnosis families, which in turn both
are part of the “Diabetes” diagnosis group. This means that we cannot use aggregates
at the Diagnosis Family level to compute aggregates at the Diagnosis Group level,
since data for “Insulin dependent diabetes during pregnancy” would then be counted
twice.

Definition 10 If the dimension hierarchy for a dimensionD is onto, covering, and
strict, we say thatD is normalized. Otherwise, it isun-normalized. For an MO
M = (S;D; F;R), if all dimensionsDi 2 D are normalized and8Ri 2 R ((f; e) 2
Ri) e 2 ?D) (, i.e., all facts map to dimension values in the bottom category), we
say thatM is normalized. Otherwise, it isun-normalized.

For normalized hierarchies and MOs, all mappings are summarizable, meaning
that we can pre-aggregate values at any combination of dimension levels and safely
re-use the pre-aggregated values to compute higher-level aggregate results. Thus, we
want to normalize the dimension hierarchies and MOs for which we want to apply
practical pre-aggregation.

We proceed to describe how the normalization of the dimension hierarchies and
MOs used for aggregation is achieved. We first show how to perform transforma-
tions on dimension hierarchies, then later describe how the same techniques may be
applied to eliminate the non-summarizable properties of fact-dimension relations.

88 Extending Practical Pre-Aggregation in On-Line Analytical Processing

4.4 Dimension Transformation Techniques

This section describes how dimensions can be transformed to achieve summariz-
ability. Transforming dimensions on their own, separately from the facts, results in
well-behaved dimensions that can be applied in a number of different systems or sold
to third-party users. The transformation of the dimension hierarchies is a three-step
operation. First, all mappings are transformed to becovering, by introducing extra
“intermediate” values. Second, all mappings are transformed to beonto, by intro-
ducing “placeholder” values at lower levels for values without any children. Third,
mappings are madestrict, by “fusing” values together. The three steps are treated in
separate sections. None of the algorithms introduce any non-summarizable proper-
ties, so applying each once is sufficient.

In general, the algorithms take as input a set of tablesRC1;C2 that specifies the
mapping from dimension values in categoryC1 to values in categoryC2. The input
needs not contain all pairs of ancestors and descendants—only direct parent-child
relationships are required. If there are non-covering mappings in the hierarchy, we
have categoriesC;P;H such thatfP;Hg � Pred(C) andType(P) < Type(H). In
this case, the input must also containRP;H tables that mapP values toH values.

4.4.1 Non-Covering Hierarchies

The first algorithm renders all mappings in a dimension hierarchy covering w.r.t. any
category. When a dimension value is mappeddirectly to another value in a category
higher than the one immediately above it in the hierarchy, a new intermediate value is
inserted into the category immediately above, and the two original dimension values
are linked to this new value, rather than to each other.

Example 37 In the hierarchy for the Residence dimension, two links go from Ad-
dress directly to County. The address “123 Rural Road” (52) is in “Melbourne
County” (31), but not in a city, and the address “1 Sandy Dunes” (53) is in “Outback
County” (32), which doesnot have any cities at all. The algorithm inserts two new
dimension values in the City category,C31 and C32, which represent Melbourne
and Outback county, respectively, and links them to their respective counties. The
addresses “123 Rural Road” and “1 Sandy Dunes” are then linked toC31 andC32,
respectively. This occurs in the first call of procedure MakeCovering (on the Address
category; the procedure is given below). When MakeCovering is called recursively
on the City, County, and> categories, nothing happens, as all mappings are already
covering. The transformation is illustrated graphically in Figure 4.3. The dotted lines
show the “problematic” links, and the bold-face values and thick lines show the new
dimension values and links.

In the algorithm,C is achild category,P is aparentcategory,H is a “higher”
category,L are the non-coveringlinks from C to H, andN are the “higher” di-
mension values inL. The1 operator denotes natural join. The algorithm works as
follows. Given the argument categoryC (initially the bottom category) in line (1),
the algorithms goes through allC ’s parent categoriesP (2). For each parent category
P , it looks for predecessor categoriesH of C that are “higher” in the hierarchy than

4.4 Dimension Transformation Techniques 89

⊥

30 3231

20 21

50 51 52 53

⊥

30 3231

20 21

50 51 52 53

C31 C32

Figure 4.3: Transformations by the MakeCovering Algorithm

P (4). If such anH exist, there might be links in the mapping fromC to H that
are not available by going throughP . Line (6) finds these “non-covered” links,L,
in the mapping fromC to H by “subtracting” the links thatare available by going
throughP from all the links in the mapping fromC toH. Line (7) usesL to find the
dimension valuesN in H that participate in the “non-covered” mappings. For each
value inN , line 8 inserts a corresponding marked value intoP ; these marked values
represent theN values inP . The marked values inP are then linked to the original
values inH (9) and C (10). Line (12) contains a recursive call to the algorithmP ,
thus fixing mappings higher up in the hierarchy. The algorithm terminates when it
reaches the> category, which has no predecessors.

(1) procedure MakeCovering(C)
(2) for eachP 2 Pred(C) do
(3) begin
(4) for eachH 2 Pred(C) whereType(H) > Type(P) do
(5) begin
(6) L RC;H n �C;H(RC;P 1 RP;H)
(7) N �H(L)
(8) P P [fMark (h) j h 2 Ng
(9) RP;H RP;H [f(Mark (h); h) j h 2 Ng
(10) RC;P RC;P [f(c;Mark (h)) j (c; h) 2 Lg
(11) end
(12) MakeCovering(P)
(13) end
(14) end

All steps in the algorithm are expressed using standard relational algebra oper-
ators. Thegeneralworst-case complexity of join isO(n2), wheren is the size of
the input. However, because the input to the algorithm are hierarchy definitions, the

90 Extending Practical Pre-Aggregation in On-Line Analytical Processing

complexity of the join in the algorithm will only beO(n log n). Thus, all the op-
erators used can be evaluated in timeO(n logn), wheren is the size of the input.
TheMark operation can be performed inO(1) time. The inner loop of the algorithm
is evaluated at most once for each link between categories, i.e., at mostk2=2 times,
wherek is the number af categories (if all categories are directly linked to all others).
Thus, the overall big-O complexity of the algorithm isO(k2n logn), wherek is the
number of categories andn is the size of the largest participatingRC1;C2

relation.
The worst-case complexity will not apply very often; in most cases, the inner loop
will only be evaluated at mostk times.

The algorithm inserts new values into theP category to ensure that the mappings
from P to higher categories are summarizable, i.e., that pre-aggregated results for
P can be directly combined into higher-level aggregate results. The new values in
P mean that the cost of materializing aggregate results forP is higher for the trans-
formed hierarchy than for the original. However, if the hierarchy was not transformed
to achieve summarizability, we would have to materialize aggregates forG, and per-
haps also for higher level categories. At most one new value is inserted intoP for
every value inG, meaning that the extra cost of materializing results forP is never
greater than the cost of the (otherwise necessary) materialization of results forG.
This is a very unlikely worst-case scenario—in the most common cases, the extra
cost forP will be much lower than the the cost of materializing results forG, and
the savings will be even greater because materialization of results for higher-level
categories may also be avoided.

The correctness argument for the algorithm has two aspects. First, the mappings
in the hierarchy should becoveringupon termination. Second, the algorithm should
only make transformations that are semantically correct, i.e., we should get the same
results when computing results with the new hierarchy as with the old. The correct-
ness follows from Theorem 3 and 4, below. As new values are inserted in theP
category, we will get aggregate values for both the new and the original values when
“grouping” by P . Results for the original values will be the same as before, so the
original result set is asubsetof the result set obtained with the transformed hierarchy.

Theorem 3 Algorithm MakeCovering terminates and the hierarchy for the resulting
dimensionD0 is covering.

Proof: By induction in the height of the dimension lattice.Base: The height is
0, making the statement trivially true.Induction Step: We assume the statement is
true for dimension lattices of heightn, and consider lattices of heightn + 1. For
termination, we note that there is a finite number of(P;H) pairs, all operations in
the inner loop terminate, and the algorithm is called recursively onP , which is the
root of a lattice of heightn. For the covering property, we note that the insertion of
intermediate, marked values intoP means that the mapping fromP toH is covering
w.r.t.C. By the induction hypothesis, the mappings higher in the hierarchy are fixed
by the recursive call of the algorithm.

Theorem 4 Given dimensionsD andD0 such thatD0 is the result of running Make-
Covering onD, an aggregate result obtained usingD is a subset of the result obtained
usingD0.

4.4 Dimension Transformation Techniques 91

Proof: Follows easily from Lemma 1, next, as the inserted values are “internal” in
the hierarchy.

Lemma 1 For the dimensionD0 = (C 0;v0) resulting from applying algorithm
MakeCovering to dimensionD = (C;v), the following holds:8e1; e2 2 D (e1 v0
e2 , e1 v e2) (there is a path between any two original dimension values in the new
dimension hierarchy iff there was a path between them in the original hierarchy).

Proof: By induction in the height of the dimension lattice.Base: The height is0
making the statement trivially true.Induction Step: We assume the statement is true
for dimension lattices of heightn, and consider lattices of heightn+1. Examing the
inner loop, we see that the insertion of intermediate values intoP , and the linking of
values inC andH to these, only links values inC andH that were linked before.
No links or values are destroyed by the inner loop. Thus, the statement is true for
the links fromC to P , and fromC toH. By the induction hypothesis, the statement
holds true for the transformations made by the recursive call onP .

We see that the original values in the hierarchy are still linked to exactly the same
original values as before, as stated by Lemma 1, although new values might have
been inserted in-between the original values. Thus, when evaluating a query using
the transformed hierarchy, the results for the original values will be the same as when
using the original hierarchy.

Assuming only the original result set is desired, results for the new values must
be excluded, which is easy to accomplish. The new, “internal” values are marked
with “mark=internal”, whereas the original values have “mark=original”. In order
to exclude the new, internal values from the result set, the equivalent of an SQL
HAVING clause condition of “mark=original” is introduced into the original query.

4.4.2 Non-Onto Hierarchies

The second algorithm renders all mappings in hierarchies onto, i.e., all dimension
values in non-bottom categories have children. This is ensured by inserting place-
holder values in lower categories to represent the childless values. These new values
are marked with the original values, making it possible to map facts to the new place-
holder values instead of to the original values. This makes it possible to only map
facts to the bottom category.

Example 38 In the Diagnosis dimension, the “Lung cancer” diagnosis family (ID =
14) has no children. When the algorithm reaches the Diagnosis Family category, it
inserts a placeholder value (L14) into the Low-level Diagnosis category, representing
the “Lung cancer” diagnosis, and links it to the original value. Facts mapped to
the “Lung cancer” value may then instead be mapped to the new placeholder value,
ensuring that facts are mapped only to the Low-level Diagnosis Category. A graphical
illustration of the transformation is seen in Figure 4.4. The bold-facedL14 value is
the new value inserted, and the thick line between 14 andL14 is the new link inserted.

92 Extending Practical Pre-Aggregation in On-Line Analytical Processing

12 11

4 9 10

5 6

⊥

13

14

12 11

4 9 10

5 6

⊥

13

14

L14

Figure 4.4: Transformations by the MakeOnto Algorithm

In the algorithm below,P is aparentcategory,C is achild category, andN holds
the parent values withnochildren. The algorithm works as follows. Given a category
P (initially the > category) in line (1), the algorithm goes through all categoriesC
that are (immediate) descendants ofP (2). For eachC, line (4) finds the valuesN in
P that havenochildren inC, by “subtracting” the valueswith children inC from the
values inP . For each “childless” value inN , lines (5) and (6), respectively, insert into
C a placeholder value marked with the parent value, and links the new value to the
original. MakeOnto is then called recursively onC (7). The algorithms terminates
when it reaches the? category, which has no descendants.

(1) procedure MakeOnto(P)
(2) for eachC 2 Desc(P) do
(3) begin
(4) N P n �P (RC;P)
(5) C C [fMark(p) j p 2 Ng
(6) RC;P RC;P [f(Mark(p); p) j p 2 Ng
(7) MakeOnto(C)
(8) end
(9) end

Following the reasoning in Section 4.4.1, we find that the overall big-O complex-
ity is equal toO(k2n logn), wherek is the number of categories andn is the size
of the largest participatingRC1;C2 relation. However, the complexity will only be
O(kn log n) for the most common cases.

The MakeOnto algorithm inserts new values intoC to ensure that the mapping
fromC toP is summarizable. Again, this means that the cost of materializing results
for C will be higher for the transformed hierarchy than for the original. However,
if the new values were not inserted, we would have to materialize results forP , and
perhaps also higher categories, as well asC. At most one value is inserted inC for

4.4 Dimension Transformation Techniques 93

every value inP , meaning that the extra cost forC is never greater than the cost
of materializing results forP . As before, this is a very unrealistic scenario, as it
corresponds to the case whereno values inP have children inC. In most cases,
the extra cost forC will be a small percentage of the cost of materializing results
for P , and the potential savings will be even greater, because pre-aggregation for
higher-level categories may be avoided.

As before, the correctness argument for the algorithm has two aspects. First, the
mappings in the hierarchy should beonto upon termination. Second, the algorithm
should only make transformations that are semantically correct. The correctness fol-
lows from Theorems 5 and 6, below. Again, the result set for the original values
obtained using the original hierarchy will be a subset of the result set obtained using
the transformed hierarchy. The results for the new values can be excluded from the
result set by adding a HAVING clause condition.

Theorem 5 Algorithm MakeOnto terminates and the hierarchy for the resulting di-
mensionD0 is onto.

Proof: By induction in the height of the dimension lattice.Base: The height is
0, making the statement trivially true.Induction Step: We assume the statement is
true for dimension lattices of heightn, then consider lattices of heightn + 1. For
termination, we note that there is a finite number of descendantsC for eachP , that
all operations in the loop terminate, and that the algorithm is called recursively onC,
which is the top element in a lattice of heightn. For the onto property, we note that
the insertion of placeholder values intoC makes the mapping fromC to P onto. By
the induction hypothesis, the mappings further down in the lattice are handled by the
recursive call.

Theorem 6 Given dimensionsD andD0 such thatD0 is the result of applying the
MakeOnto algorithm toD, an aggregate result obtained usingD is a subset of the
result obtained usingD0.

Proof: Follows easily from the observation that “childless” dimension values are
linked to new, placeholder values in lower categories in one-to-one relationships,
meaning that data for childless values will still be counted exactly once in aggregate
computations that use the new dimension.

4.4.3 Non-Strict Hierarchies

The third algorithm renders mappings in hierarchies strict, meaning that problems of
“double-counting” will not occur. Non-strict hierarchies occur when one dimension
value has several parent values.

The basic idea is to “fuse” a set of parent values into one “fused” value, then
link the child value to this new value instead. The fused values are inserted into a
new category in-between the child and parent categories. Data for the new fused
category may safely be re-used for computation of higher-level aggregate results, as
the hierarchy leading up to the new category is strict.

94 Extending Practical Pre-Aggregation in On-Line Analytical Processing

The fused value is also linked to the relevant parent values. This mapping is by
nature non-strict, but this non-strictness is not a problem, as we prevent aggregate
results for the parent category from being re-used higher up in the hierarchy. This is
done by “unlinking” the parent category from its predecessor categories.

The categories higher up are instead reached through the fused category. This
means that we can still get results for any original category, while being able to ap-
ply practical pre-aggregation throughout the hierarchy. In pre-aggregation terms, the
“unlinking” of the parent categories means that we must prevent results for including
this category from being materialized—only “safe” categories may be materialized.
This should be given as a constraint to the pre-aggregation system that chooses which
levels of aggregation to materialize.

We note that the algorithm does not introduce morelevelsin the hierarchy, only
more categories, and that the number of “safe” categories in the result is the same
as the number of original categories. This means that the complexity of the task of
selecting the optimal aggregation levels to materialize is unaffected by the algorithm.

12 11

4 9 10

5 6 5 6

4,9 4,10

4 9 10

11,12

⊥ ⊥

12 11

⊥ ⊥

Diagnosis
Group

Diagnosis
Group

Diagnosis
Family

Diagnosis
Family

Low-level
Diagnosis

Low-level
Diagnosis

Set-of
Diagnosis

Family

Set-of
Diagnosis

Group

13

14

L14 L14

14

14

13

13

Figure 4.5: Schema and Value Transformations by the MakeStrict Algorithm.

Example 39 The result of running the algorithm on the Diagnosis dimension is seen
in Figure 4.5. Because of the non-strictness in the mapping from Low-level Diag-
nosis to Diagnosis Family, and from Diagnosis Family to Diagnosis Group, two new
category types and the corresponding categories are introduced. The third picture
indicates the argument to the algorithm; and, in addition, its dotted lines indicate the
links deleted by the algorithm. The fourth picture gives the result of applying the
algorithm; here, the bold-face values and thick lines indicate the values and links
inserted by the algorithm.

In the first call of the algorithm the three Low-level Diagnosis values—“(low-
level) Lung cancer” (L14); “Insulin dependent diabetes during pregnancy” (5); and
“Non insulin dependent diabetes during pregnancy” (6)—are linked to the three new
fused values—“(low-level) Lung cancer” (14); “Diabetes during pregnancy, Insulin
dependent diabetes” (4, 9); and “Diabetes during pregnancy, Non insulin dependent
diabetes” (4, 10)—and these are in turn linked to “Lung Cancer” (14); “Diabetes
during pregnancy” (4); “Insulin dependent diabetes” (9); and “Non insulin dependent

4.4 Dimension Transformation Techniques 95

diabetes” (10). The these latter four values in the Diagnosis Family category are un-
linked from their parents, as the Diagnosis Family category is “unsafe.”

When called recursively on the Set-of Diagnosis Family category, the algorithm
creates the new fused values “Cancer” (13) and “Diabetes, Other pregnancy related
diseases” (11, 12) in the Set-of Diagnosis Group category. These new values are
linked to the values “Cancer” (13), “Diabetes” (11), and “Other pregnancy related
diseases” (12) in the Diagnosis Group category, and to the> value; and the values in
the Diagnosis Group category are un-linked from their parents. Note the importance
of having a> value: the values not linked to> are exactly the unsafe values, for
which aggregate results should not be re-used.

The algorithm assumes that all the paths in the dimension hierarchy have equal
length, i.e., all direct links are from children to their immediate parents. This is
ensured by the MakeCovering and MakeOnto algorithms. In the algorithm below,C
is achild category,P is aparentcategory,G is agrandparentcategory,N is thenew
category introduced to hold the “fused” values, and1 denotes natural join.

(1) procedure MakeStrict (C)
(2) for eachP 2 Pred (C) do
(3) begin
(4) if (9e1 2 C (9e2; e3 2 P (e1 v e2 ^ e1 v e3 ^ e2 6= e3)))

^Pred(P) 6= ; then
(5) begin
(6) N CreateCategory (2P)
(7) RC;N f(e1;Fuse(fe2 j (e1; e2) 2 RC;Pg))g
(8) N �N (RC;N)
(9) RN;P f(e1; e2) j e1 2 N ^ e2 2 Unfuse(e1)g
(10) Pred (C) Pred (C) [fNg n fPg
(11) Pred (N) fPg
(12) for eachG 2 Pred(P) do
(13) begin
(14) RN;G �N;G(RN;P 1 RP;G)
(15) Pred(N) Pred(N) [fGg
(16) Pred(P) Pred(P) n fGg
(17) end
(18) MakeStrict(N)
(19) end
(20) elseMakeStrict(P)
(21) end
(22) end

The algorithm takes a categoryC (initially the? category) as input. I then goes
through the set of immediate parent categoriesP ofC (line (2)). Line (4) tests if there
is non-strictness in the mapping fromC toP and if P has any parents (4). If this test
fails, there is no problem as aggregate results forP can either be safely re-used or
are guaranteed not be re-used; and the algorithm in then invoked recursively, in line
(20).

96 Extending Practical Pre-Aggregation in On-Line Analytical Processing

If the test succeeds, the algorithm creates a new fused category. First, a new,
empty categoryN with domain2P is created in line (6). The values inserted into this
category representsetsof values ofP . For example. the value “1, 2” represents the
set consisting of precisely1; 2. Values inC are then linked to to new, fused values,
representing their particularcombinationof parents inP (7). The new values are
constructed using a Fuse function, that creates a distinct value for each combination
of P values and stores the correspondingP values along with it.

The resulting links are used in line (8) to insert the fused values into their category
N , and an “Unfuse” function, mapping fused values fromN into the corresponding
P values, is used in line (9) to map the values inN to those inP . In line (10),N
is included in, andP is excluded from, the sets of predecessors ofC. The set of
predecessors ofN is set toP in line (11), meaning that the new categoryN resides
in-betweenC andP in the hierarchy.

For each grandparent categoryG, the algorithm links values inN to values in
G, in line (14), includesG in the predecessors ofN , in line (15), and excludesG
from the predecessors ofP , in line (16), thereby also deleting the links fromP to
G from the hierarchy. The exclusion of theG categories from the predecessors ofP
means that aggregate results forP will not be re-used to compute results for theG
categories.

In the end, the algorithm is called recursively on the new category,N . Note that
the test forPred (P) 6= ; in line (4) ensures that the mapping fromN to P will not
be altered, asP now hasnopredecessors.

Following the reasoning in Section 4.4.1, we find that the overall big-O complex-
ity is equal toO(pnk logn log k), wherep is the number of immediate parent and
children categories in the dimension type lattice,n is the size of the largest mapping
in the hierarchy, andk is the maximum number of values fused together. For most
realistic scenarios,p andk are small constants, yielding a lowO(n logn) complexity
for the algorithm.

The MakeStrict algorithm constructs a new categoryN and insert fused values in
N to achieve summarizability for the mapping fromN to P , and fromN toG. The
algorithm only inserts the fused values for the combinations that are actually present
in the mapping fromC to P . This means that the cost of materializing results for
N is never higher than the cost of materializing results forC. This is a worst-case
scenario, for the most common cases the cost of materializing results forN will be
be close to the cost of materializing results forP . However, without the introduction
of N , we would have to materialize results not only forP , but also forG andall
higher-level categories. Thus, the potential savings in materialization costs are very
high indeed.

Considering correctness, the mappings in the hierarchy should bestrict upon ter-
mination, and the algorithm should only make transformations that are semantically
correct. More specifically, it is acceptable that some mappings be non-strict, namely
the ones from the new, fused categories to the unsafe parent categories. This is so be-
cause unsafe categories donot have predecessors in the resulting hierarchy, meaning
that aggregate results for these categories will not be re-used.

The correctness follows from Theorems 7 and 8, below. When evaluating queries
we get the same result for original values as when evaluating on the old hierarchy.

4.4 Dimension Transformation Techniques 97

The values that are deleted by the algorithm were not linked to any facts, meaning that
these values did not contribute to the results in the original hierarchy. As all the new
values are inserted into new categories that are unknown to the user, the aggregate
result obtained will be the same for the original and transformed hierarchy. Thus, we
do not need to modify the original query.

Theorem 7 Let D0 be the dimension resulting from applying algorithm MakeStrict
on dimensionD. Then the following hold: Algorithm MakeStrict terminates and the
hierarchy for the dimensionD00, obtained by removing unsafe categories fromD0, is
strict.

Proof: By induction in the height of the dimension lattice.Base: The height is0,
making the statement trivially true.Induction Step: Assuming that the statement is
true for lattices of heightn, lattices of heightn + 1 are considered. All steps in the
algorithm terminate, and the algorithm is called recursively on eitherP (in the strict
case) orN (in the non-strict case), both of which are the root of a lattice of heightn,
thus guaranteeing termination.

For the strictness property, there are three cases. If the mapping fromC to P
is already strict, this mapping is not changed, and by the induction hypothesis, the
statement holds for the recursive call onP . If the mapping fromC to P is non-strict,
butP does not have any parents, strictness is ensured, asP is excluded fromD00. If
the mapping is non-strict andP has parents, the resulting mapping fromC to N is
strict. By the induction hypothesis, the statement holds true for the recursive call on
N , as the introduction ofN has not increased the height of the lattice.

Theorem 8 Given dimensionsD andD0 such thatD0 is the result of applying the
MakeStrict algorithm toD, an aggregate obtained usingD0 is the same as that ob-
tained usingD.

Proof: Follows from Lemma 2, as all facts are mapped to values in the? category,
which is a safe category. Thus, there will be a path from a factf to an original
dimension valuee iff there was one in the original hierarchy, meaning that aggregate
results computed using the original and the new hierarchy will be same.

Lemma 2 For the dimensionD0 = (C 0;v0) resulting from applying the MakeStrict
algorithm to dimensionD = (C;v), the following holds.8e1; e2 2 D (e1 2 C1 ^
Safe(C1) ^ e1 v0 e2 , e1 v e2) (there is a path between an original dimension
value in a safe category and any other original dimension value in the new dimension
hierarchy iff there was a path between them in the original hierarchy).

Proof: By induction in the height of the dimension lattice.Base: The height of the
lattice is0, making the statement trivially true.Induction Step: If either the mapping
fromC to P is strict, orP does not have any parents, the algorithm does not change
the mappings, and by the indiction hypothesis, the statement is true for the recursive
call onP . Otherwise, we observe that the creation of fused values inN , and the
linking of C, P , andG values to these, only linksexactlythe values inC andP , or
C andG, that were linked before. BecauseP is not safe, the links fromP toG may
be deleted. By the induction hypothesis, the statement is true for the recursive call on
N .

98 Extending Practical Pre-Aggregation in On-Line Analytical Processing

4.5 Fact-Dimension Transformation Techniques

This section explains how the set of algorithms from Section 4.4 may also be applied
to the relationships between facts and dimensions, thus providing a basis for enabling
practical pre-aggregation on concrete MOs that include fact data.

The basic idea is to view the set of factsF as the bottom granularity in the lattice.
The input to the algorithms then consists of the facts,F , theRF;C tables, describing
the mappings from facts to dimension values, and theC andRC1;C2

tables, describing
the dimension categories and the mappings between them.

Only the covering and strictness properties are considered because for the fact-
dimension relationships, a mapping between facts and dimension values that isinto
means that not all dimension values in the bottom category have associated facts,
which does not affect summarizability. As before, we first apply the MakeCovering
algorithm, then the MakeStrict algorithm.

The computational complexity of the algorithms will now be dominated by the
size,n, of the mapping between facts and dimension values, i.e., the complexity will
beO(n logn) if we assume the height of the lattice and the maximum number of
values fused together to be small constants. This means that the algorithms can be
applied to even very large databases.

4.5.1 Mixed Granularity Mappings

The first case to consider is the one where some of the mappings are non-covering
w.r.t. the facts, meaning that not all facts can be reached through these mappings and
thus resulting in these facts not being accounted for in aggregate computations. This
occurs when some facts are mappeddirectly to dimension values in categories higher
than the? category, i.e., the facts are mapped to values ofmixedgranularities.

We use the MakeCovering algorithm to make the mappings covering, initially
calling it onF , which is now the bottom of the lattice. The algorithm makes the
mappings covering w.r.t. the facts by inserting new marked values, representing the
parent values, in the intermediate categories, and by linking the facts to the new
values instead of the parent values. As in Section 4.4.1, the marked values keep
information about their original values, so that when new fact-dimension mappings
are added, the links that are supposed to godirectly to the original parent values now
instead can be set to go to the marked value in the? category.

Example 40 In the case study, the mapping between Patients and Diagnoses is of
mixed granularity: “John Doe” (1) and “Jane Doe” are both mapped to the Diagnosis
Family, “Insulin dependent diabetes” (9), “Jane Doe” is additionally mapped to the
Low-level Diagnosis, “Insulin dependent diabetes during pregnancy” (5), and “Jim
Doe” is mapped to “Diabetes” (11), a Diagnosis Group.

In the first call of the algorithm, two new Low-level Diagnoses are inserted: “L9,”
representing “Insulin dependent diabetes,” and “L11,” representing “Diabetes”; and
the facts are mapped to these instead of the original values. In the recursive call
on Low-level Diagnosis, an “F11” value representing “Diabetes” at the Diagnosis
Family level is inserted between “Diabetes” and value “L11.”

4.5 Fact-Dimension Transformation Techniques 99

The transformations are illustrated in Figure 4.6, where dotted lines indicate links
that are deleted by the algorithm and bold-face value and thick lines indicate dimen-
sion values and links inserted by the algorithm.

12 11

4 9 10

5 6

⊥

13

14

L14

1 2 3

12 11

4 9 10

5 6

⊥

13

14

L14

1 2 3

F11

L11L9

Figure 4.6: Transformations for Varying Granularities.

4.5.2 Many-To-Many Relationships

The second case occurs when relationships between facts and dimension values are
many-to-many. This means that the hierarchy, with the facts as the bottom category,
is non-strict, leading to possible double-counting of facts. It is enough to make the
hierarchy partly strict, as described in Section 4.4.3. The MakeStrict algorithm is
initially called onF , which is now the bottom of the hierarchy lattice. Because the
MakeCovering algorithm has already been applied, all paths from facts to the> value
have equal length, as required by the MakeStrict algorithm.

Some dimension values have no facts mapped to them, leading to an interesting
side effect of the algorithm. When the algorithm fuses values and places the fused
values in-between the original values, it also deletes the child-to-parent and parent-
to-grandparent links. The fact-less dimension values are then left disconnected from
the rest of the hierarchy, with no links to other values.

These fact-less dimension values do not contribute to any aggregate computations
and are thus superfluous. To minimize the dimensions, an “Delete-unconnected” al-
gorithm that deletes the fact-less dimension values by traversing the hierarchy starting
at the facts is invoked in a postprocessing step. For a hierarchy of heightk, this can
be done in timeO(kn log n), wheren is the size of the mapping between facts and
dimensions. Thus, the overall computational complexity is not altered.

100 Extending Practical Pre-Aggregation in On-Line Analytical Processing

12 11

4 9 10

5 6

⊥

13

14

L14

1 2 3

F11

L11L9

12 11

4 9

5

⊥

1 2 3

F11

L11L9

5,L9L9 L11

4,99 F11

11,12 11

Figure 4.7: Transformations for Many-to-many Fact-Dimension Relationships

Example 41 The relationship between patients and diagnoses is many-to-many. In
Example 40, the MO was transformed so that all mappings were covering, as seen
in Figure 4.6; algorithm MakeStrict is applied to this MO. The final result of the
application of the algorithm is seen to the right in Figure 4.7. Values in italics, e.g.,
L14, and dotted lines indicate deleted values and links. Bold-face values and thick
lines denote values and links inserted by the algorithm.

Three new categories are introduced: “Set-of Low-level Diagnosis,” “Set-of Di-
agnosis Family,” and “Set-of Diagnosis Group,” as non-strictness occurs at all levels.
Fused values are inserted into these fused categories. For example, values “(low-
level) Lung Cancer” (L14), “Insulin dependent diabetes during pregnancy, (low-
level) Insulin dependent diabetes” (5, L9), and “(low-level) Insulin dependent di-
abetes” (L9) are inserted into the “Set-of Low-level Diagnosis” category; and the
original values are linked to the new values.

Values “(low-level) Lung cancer” (L14), “Lung cancer” (14), “Cancer” (13),
“Non insulin dependent diabetes during pregnancy” (6), and “Non insulin dependent
diabetes” (10) do not characterize any facts and are deleted by “Delete-unconnected.”

4.6 Architectural Context

The overall idea presented in this chapter is to take un-normalized MOs and transform
them into normalized MOs that are well supported by the practical pre-aggregation
techniques available in current OLAP systems. Queries are then evaluated on the
transformed MOs. However, we still want the users to see only the original MOs, as
they reflect the users’ understanding of the domain. This prompts the need for means
of handling both the original and the transformed MOs. This section explores this
coexistence.

4.6 Architectural Context 101

A current trend in commercial OLAP technology is the separation of the front-end
presentation layer from the back-end database server. Modern OLAP applications
consist of an OLAP client that handles the user interface and an OLAP server that
manages the data and processes queries. The client communicates with the server
using a standardized application programming interface (API), e.g., Microsoft’s OLE
DB for OLAP [78] or the OLAP Council’s MDAPI [85]. The architecture of such a
system is given to the left in Figure 4.8.

Data

OLAP
Client

OLAP
Server

OLAP
Server

Navigational
Data

Aggregational
Data

OLAP
Client

OLAP
Server

Query
HandlerQueries

Queries

Navigational
Queries

Aggregation
Queries

Figure 4.8: Architecture of Integration

This separation of client and server facilitates our desire to have the user see the
original MO while queries are evaluated against the transformed MO. Studies have
shown that queries on a data warehouse consist of 80%navigationalqueries that ex-
plore the dimension hierarchies and 20%aggregationqueries that summarize the data
at various levels of detail [64]. Examples of navigational and aggregation queries are
“Show me the Low-Level Diagnoses contained in the Insulin-Dependent Diabetes
Diagnosis Family” and “Show me the count of patients, grouped by Diagnosis Fam-
ily,” respectively. The navigational queries must be performed on theoriginal MO,
while the aggregation queries must be performed on thetransformedMO. This is
achieved by introducing an extra “Query Handler” component between the client and
the server. The OLAP client sends a query to the query handler, the primary task of
which is to determine whether the query is a navigational query (internal to a dimen-
sion) or an aggregation query (involving the facts). Navigational queries are passed
to one OLAP server that handles the original (navigational) data, while aggregation
queries are passed to another OLAP server that manages the transformed (aggrega-
tion) data. This extended system architecture is seen to the right in Figure 4.8.

The OLAP server for navigation data needs to support dimension hierarchies
which have non-summarizable properties, a requirement not yet supported by many
commercial systems today. However, relational OLAP systems using snow-flake
schemas [64] are able to support this type of hierarchies, as are some other OLAP
systems, e.g., Hyperion (Arbor) Essbase [53]. If the OLAP system available does not
have sufficiently flexible hierarchy support, one solution is to build a special-purpose
OLAP server that conforms to the given API. This task is not as daunting as it may

102 Extending Practical Pre-Aggregation in On-Line Analytical Processing

seem at first because onlynavigationalqueries need to be supported, meaning that
multidimensional queries can be translated into simple SQL “lookup” queries.

We note that the only data needed to answer navigational queries is the hierarchy
definitions. Thus, we only need to store the fact data (facts and fact-dimension rela-
tions, in our model) once, in the aggregational data, meaning that the overall storage
requirement is only slightly larger than storing just the aggregational data. Naviga-
tional queries are evaluated on the original hierarchy definitions and do not need to
be re-written by the query handler.

As described in Section 4.4, aggregation queries need to be re-written slightly by
adding an extra HAVING clause condition to exclude results for the new values in-
serted by the transformation algorithms. This can easily be done automatically by the
query handler, giving total transparency for the user. Even though the added HAV-
ING clause conditions are only necessary for the covering and onto transformations,
they can also be applied to hierarchies transformed to achieve strictness; this has no
effect, but simplifies the query rewriting.

4.7 Conclusion and Future Work

Motivated by the increasing use of OLAP systems in many different applications,
including in business and health care, this chapter provides transformation techniques
for multidimensional databases that leverage the existing, performance-enhancing
technique, known as practical, or partial or semi-eager, preaggregation, by making
this technique relevant to a much wider range of real-world applications.

Current pre-aggregation techniques assume that the dimensional structures are
summarizable. Specifically, the mappings in dimension hierarchies must beonto,
covering, andstrict; the relationships between facts and dimensions must be many-
to-one, and the facts must always be mapped to the lowest categories in dimensions.
The chapter presents novel transformation techniques that render dimensions with
hierarchies that are non-onto, non-covering, and non-strict summarizable. The trans-
formations have practically low computational complexity, they may be implemented
using standard relational database technology, and the chapter also describes how to
integrate the transformed hierarchies in current OLAP systems, transparently to the
user.

The chapter also describes how to apply the transformations to the cases of non-
summarizable relationships between facts and dimensions, which also occur often in
real-world applications. Finally, it is shown how to modify the algorithms to incre-
mentally maintain the transformed hierarchies when the underlying data is modified.

Several directions for future research appear promising. The current techniques
render the entire dimension hierarchies summarizable; extending the techniques to
consider only the parts that have been selected for preaggregation appears attractive
and possible. Another direction is to take into account the different types of aggregate
functions to be applied, leading to local relaxation of the summarizability require-
ment. For example,maxandmin are insensitive to duplicate values, thus relaxing
summarizability.

4.8 Incremental Computation 103

4.8 Incremental Computation

When dimension hierarchies or fact data are updated, the transformed hierarchies
must be updated correspondingly. One solution is to recompute the hierarchies using
the new data. This straightforward solution is attractive when updating small dimen-
sion hierarchies that only change infrequently, or when large bulks of updates are
processed. However, for massive hierarchies and frequent updates, and for updates
of small parts of the hierarchies in general, it is desirable if the algorithms need only
consider thechangedparts of data, which will only be a small fraction of the total
data volume. This section briefly describes how to incrementalize the algorithms.

In addition to modifying the transformed hierarchies, it is also necessary to up-
date the actual pre-aggregated data when the underlying base data is modified. The
modified hierarchies resulting from the algorithms given in this section differ only
locally from the argument hierarchies. This means that the cost of updating the pre-
aggregated data will not be greatly affected by the hierarchy transformations.

In the incremental algorithms, updates are modeled as deletions followed by in-
sertions, so we consider only the latter two modification operations. We use prefix�i

to denote inserted values,�d to denote deleted values, and� to denote all modifica-
tions. For example,�iC denotes the values inserted intoC. The category and links
tables in the algorithms refer to the statesafter modifications; and when a hierarchy
value is deleted, all links to that value are also assumed to be deleted in the same set
of modifications. Below, we only describe how to change the algorithms to fix “prob-
lematic” hierarchy modifications, i.e., modifications that may cause the hierarchies
to become non-covering, non-onto, or non-strict. In a complete incremental solution,
the incremental algorithms need to be complemented by an algorithm (rather trivial)
that applies the non-problematic modifications to the modified hierarhies.

Insrt Dlt
C yes no
P no yes
H no yes

RC;H yes no
RC;P no yes
RP;H no yes

Covering

Insrt Dlt
C no yes
P yes no

RC;P no yes
Onto

Insrt Dlt
C no yes
P no yes
G no yes

RC;P yes yes
RP;G yes yes

Strict

Table 4.2: Effects of Insertions and Deletions on the Covering, Onto, and Strictness
Properties

4.8.1 Covering Hierarchies

Modifications may rendercoveringhierarchies non-covering in several ways. The the
left-most table in Table 4.2, named “Covering” and discussed next, indicates whether
an insertion (“Insert”) or a deletion (“Delete”) on the different parts of the input to
MakeCovering may render the modified hierarchy non-covering.

104 Extending Practical Pre-Aggregation in On-Line Analytical Processing

Problems may arise if links are inserted intoRC;H that are not covered by in-
sertions intoRC;P andRP;H , or if links are deleted inRC;P or RP;H , but the cor-
respondingC-to-H links are not deleted inRC;H . If values are deleted inP or H,
their links will be deleted too, which is handled by the case above. Values cannot be
inserted intoC without any links, as all values in the original hierarchy must at least
be linked to the> value.

The incremental version of MakeCovering algorithm starts by finding (in line (6))
the linksL from C toH that are not covered by the links fromC to P andP toH.
These links are used as the base for the rest of the transformation. Thus, line (6) of
the algorithm becomes the following expression.

L �iRC;H [�C;H(�dRC;P 1 RP;H) [�C;H(RC;P 1 �dRP;H)
n�C;H(�iRC;P 1 �iRP;H) n�dRC;H

4.8.2 Onto Hierarchies

The effects on theontoproperty of insertions and deletions are outlined in the middle
table in Table 4.2. Insertion of values intoP , deletion of values inC, and deletion of
links inRC;P may cause the hierarchy to become non-onto. The incremental version
of the MakeOnto algorithm thus starts by finding (in line (4)) the “childless” values
N from P with no children inC. As a result, line (4) of the algorithm becomes the
following expression.

N �iP [�P (�DRC;P) n �P (�dP) n �P (�iRC;P)

4.8.3 Strict Hierarchies

The case of maintaining thestrictnessproperty of hierarchies is more complicated
because a new categoryN is introduced by the algorithm. We assume that all new
categories have already been created before the incremental algorithm is used, i.e., if
non-strictness is introduced in new parts of the hierarchy, we have to recompute the
transformed hierarchy. The introduction of non-strictness requires major restructur-
ing of both the hierarchy and the pre-aggregated data, so this is reasonable.

An overview of the effect on strictness of insertions and deletions in the input
to algorithm MakeStrict is given in the right-most table in Table 4.2. If links are
inserted into, or deleted from,RC;P or RP;G, the links toN for the affectedC, P ,
andG values must be recomputed.

Insertions into, or deletion from,C, P , orG will be accompanied by correspond-
ing link insertions and deletions, so they are handled by the above case. The incre-
mental MakeStrict, given below, works by finding the affectedC, P , andG values,
then recomputes their links toN and deletes the old links, and finally inserting the
new links. As before, it is followed by a step that deletes the disconnected parts of
the hierarchy.

4.8 Incremental Computation 105

(1) procedure IncrementalMakeStrict(C)
(2) for eachP 2 Pred(C) such thatPred(P) 6= ; do
(3) begin
(4) dC �C(�RC;P)
(5) dRC;N f(c;Fuse(fp j (c; p) 2 dC 1 RC;Pg)g
(6) dN �N (dRC;N)
(7) N N [dN
(8) RC;N RC;N n f(c; n) j c 2 dCg [dRC;N

(9) dP �P (�RC;P)
(10) dRN;P f(n; p) j n 2 dN ^ p 2 dP \UnFuse(n)g
(11) RN;P RN;P n f(n; p) j p 2 dPg [dRN;P

(12) for eachG 2 Pred (P) do
(13) begin
(14) dG �G(�RP;G [(dP 1 RP;G))
(15) RN;G RN;G f(n; g) j g 2 dGg

[�N;G(RN;P 1 RP;G 1 dG)
(16) end
(17) IncrementalMakeStrict(N)
(18) end
(19) end

106 Extending Practical Pre-Aggregation in On-Line Analytical Processing

Chapter 5

Extending OLAP Querying To
Object Databases

5.1 Introduction

On-Line Analytical Processing (OLAP) systems have become increasingly popular
in many application areas, as they considerably ease the process of analyzing large
amounts of enterprise data. Designed specifically with the aim of better support-
ing the retrieval of higher-level summary information from detail data, these systems
offer substantial additional user-friendliness over general database management sys-
tems (DBMSs). The special dimensional data models employed in OLAP systems
enable visual querying, as well as contribute to enable OLAP systems to offer better
performance for aggregate queries than do traditional DBMSs. As another example,
most OLAP systems supportautomatic aggregation[103, 70], which means that the
system knows which aggregate functions to apply when retrieving different higher-
level summaries.

Almost all OLAP systems are based on adimensionalview of data, in which
measured values, termed facts, are characterized by descriptive values drawn from
a number of dimensions; and the values of a dimension are typically organized in
a containment-type hierarchy. While the dimensional view of data is particularly
well suited for the aggregation queries performed in OLAP analysis, it also limits the
abilities of OLAP systems to capture complex relationships in the data. As a result,
an OLAP database only captures some of the structure available in the data from
which it derives. Furthermore, it is often difficult or impossible to combine data from
an OLAP system with data from other sources.

In contrast, object database (ODB) systems excel at capturing and querying gen-
eral, complex data structures. These systems offer semantically rich data models and
query languages that include constructs such as classes, inheritance, complex associ-
ations between classes, and path expressions. However, ODB systems do not support
aggregate queries well. For example, the complex data structures tend to make it hard
to formulate correct queries that aggregate the data in the ODB. Also, ODB systems
are optimized to perform more general types of queries, mostly on the detail level, so
the performance for aggregate queries is usually not satisfactory.

107

108 Extending OLAP Querying To Object Databases

Federated database systems [115, 51, 52, 29] support thelogical integration of
autonomous database systems, without requiring data to be physically moved and
while allowing the individual autonomous database systems to function as before.
Federation is a flexible solution that may leverage existing technology and adapt
quickly to changing information requirements. In contrast,physical integration of
data, commonly referred to as the physical (as opposed to logical) data warehousing
approach [130]. This approach has its own advantages, perhaps most significantly in
terms of performance when combining data from different databases, but it is very
difficult to keep the warehouse data up to date. Thus, it is often impossible or im-
practical to use physical data warehousing, especially if the data sources belong to
different organizations. The two approaches are complimentary, in that they are ap-
propriate under different circumstances.

When integrating data from databases based on different data models, the tradi-
tional approach has been to map all data into one common data model and federate
the (logically) transformed data rather than the original data [115, 51, 29]. In this pa-
per, we adopt an alternative approach and show how to combine data from summary
databases (SDBs) and object databases using a federated database approach1, where
data is handled using the most appropriate data model and database technology: SDB
systems for summary data and ODB systems for complex, general data. No attempt
is made at “shoehorning” the data into one common format, which is unlikely to fit
all the data.

Focus is on enabling OLAP-style queries over SDBs to also include data from
ODBs without jeopardizing the benefits of OLAP queries. Specifically, aggregation
safety remains enforced, meaning that incorrect or meaningless extended queries are
avoided. As a first step in demonstrating the capabilities of the system, a prototypical,
user-oriented query language for SDBs, termed SumQL, is defined. The concept of a
link, which enables the connection of SDBs to ODBs in a general and flexible man-
ner, is then integrated into SumQL along with object features, yielding an extended
language, termed SumQL++.

With this language as a vehicle, it is shown how the system enables using path
expressions for referencing data in SDBs inselection criteria. Queries over SDBs
may return ODB data along with the aggregate results, i.e., the result of an OLAP
query may bedecoratedwith object data. Finally, SDB data may be grouped based
on ODB data. All extensions are accompanied by formal definitions in terms of
SumQL and the underlying object query language (the ODMG data model and OQL
query language [13] are used for the ODBs). The paper’s contribution is presented
in terms of the SumQL and SumQL++ languages, which are defined formally in the
paper and concisely capture the relevant concepts, to be self-contained and ensure
precision. Other languages such as SQL [], OQL [], and MDX [] may take the place
of SumQL++ once enriched with the constructs in SumQL++ that they do not already
offer.

A prototype has been built [41] that supports the execution of SumQL++ queries
over a federation of autonomous SDBs and ODBs.

1Although the paper’s contributions are applicable to almost all current OLAP systems, we use the
term SDB instead of OLAP DB to emphasize the focus on aggregate queries over summary data.

5.2 Motivation 109

The arguably most related previous work concerned the system based on thenD-
SQL language [39]. This system enables the querying of a federation of solely re-
lational data sources, which are treated symmetrically, usingnD-SQL. In contrast,
we extend OLAP-style queries on an identified SBD to object databases with related
data. Further,nD-SQL supports neither dimension hierarchies nor the aggregation
semantics that enable safe aggregation. Other existing middleware offerings such
as DataJoiner [54], Cohera [23], and Oracle Gateways [88] exhibit the same limita-
tions, which renders the formulation of distributed OLAP queries cumbersome and
errorprone in comparison to this paper’s proposal.

More specifically, we believe this paper to be the first to consider the integrated
querying of data from independent summary and object databases without prior phys-
ical integration, with the objective of giving OLAP users enhanced, aggregation-safe
query capabilities. Surveys of OLAP data models and languages [95, 125, 128] in-
dicate that this issue has not been addressed previously. To our knowledge, the pa-
per is also the first to demonstrate a “multi-paradigm” (or “multi-model”) federa-
tion [6, 50, 51], where one of the data models is a dedicated summary data model.
Finally, the paper is the first to investigate how OLAP concepts such as summariz-
ability and aggregation safety are influenced by federation with external data and how
they may be preserved to ensure safe query results.

The remainder of the paper is structured as follows. Section 5.2 presents a real-
world case study and considers the arguments for why federating summary and ob-
ject databases is a good idea. Section 5.3 introduces the foundations for the SDBs
and ODBs. It describes a prototypical summary data model and its high-level, user-
oriented summary query language, SumQL, as well as the central concept of summa-
rizability. It also briefly presents the Object Data Management Group (ODMG) data
model and its OQL query language. Section 5.4 describes the notion of link that con-
nects SDBs to ODBs, and Section 5.5 proceeds to describe the federated data model,
which incorporates links, and its extended SumQL query language, which enables
queries to access information in both SDBs and ODBs. Section 5.6 describes the
prototype implementation of a system that implements the concepts and techniques
presented. The last section summarizes and offers research directions. Finally, an
appendix describes the formal syntax and semantics of SumQL.

5.2 Motivation

In this section, we discuss why it is a good idea to federate summary and object
databases and present a real-world case study that is used for illustration throughout
the paper.

5.2.1 Reasons for Federation

Many reasons exist for preferring federating SDBs with ODBs, as opposed to physi-
cally integrating these. The generic arguments for federation include leveraging exist-
ing technology, accessing the most current information, and allowing the autonomous
existence of the systems being federated. These arguments also apply in this case, so
we concentrate on the advantages specific to summary and object databases.

110 Extending OLAP Querying To Object Databases

In many situations, SDBs only contain abstract summary data and do not con-
tain the base data from which the summary data is derived, thus rendering access
to external databases necessary to be able to answer certain queries. For example,
summary databases provided by the Ministry of Health do not permit access to base
data, because the base data is unavailable or considered too sensitive for general dis-
closure, e.g., diagnosis information. The same situation arises in census databases,
where only high-level information is disclosed publicly.

Federating SDBs and ODBs enables asimple and special-purposeSDB system.
An SDB needs not contain all objects, attributes, and relationships in the base da-
tabase, but only the elements relevant to summary querying. This is attractive, as
capturing all information in the SDB unnecessarily impedes casual use of the SDB
system. Indeed, most OLAP systems that implement summary databases do not have
the necessary facilities, e.g., category inheritance [69], to support this extra informa-
tion. The federated approach allows the SDB to contain only the most commonly
used information, providing a simple summary-level view of data, while still allow-
ing access to relevant data that resides in the SDB. When SDB data resides in a
special-purpose SDB system, we cannot use existing database middleware to access
it, leading to a need for technology that enables federations of SDBs and ODBs.

It is possible to obtainbetter performancewhen performing summary querying
in an OLAP-type system rather than in a general-purpose DBMS. The former type
of system typically employs specialized, performance enhancing techniques, such
as multidimensional storage and pre-aggregation. So even if all data comes from
one single (non-SDB) database, it is desirable to perform summary querying in a
specialized OLAP system.

Next, it iseasier to formulate summary queriesin an SDB system than in a gen-
eral (relational or object) DBMS. This is because an SDB query language is designed
exclusively for expressing summary queries over categories, taking advantage of,
e.g., the automatic aggregation implied by the summary database semantics. Even
when extending an SDB language to access object data (as we do in Section 5.5), it is
easier to pose summary queries in the extended language than in a general database
query language such as OQL or SQL.

An SDB system may support the formulation of summary queries that returncor-
rect, or meaningful, query results. When building an SDB, the data may be shaped in
order to satisfy summarizability conditions [70]. Briefly, a summary query satisfies
summarizability conditions if the query result is correct w.r.t. the real world. For
example, summarizing the populations over cities to get summaries for states will
produce incorrect results if the populations in towns and farms outside cities are not
accounted for. As another example, if patients have several diseases, and we summa-
rize over all diseases to get the total number of sick people, we will get the wrong
result as some patients are counted more than once. We may enrich an SDB sys-
tem with information that enables the system to ensure correctness. For example,
we may specify that inventory levels should not be added across time [70] or that
patient counts for diseases should not be added. In a general-purpose DBMS, no
mechanisms for ensuring correct summary results are available.

The federated approach offers additionalflexibility when the query requirements
change. SDBs may be huge, and therefore rebuilding them may be time consuming.

5.2 Motivation 111

Updates to an SDB, e.g., adding new types of information, may require a total or
partial rebuild of the database. Because of the rebuild time, a rebuild of the SDB
will most likely be refused (by the IS department) or postponed to the next scheduled
rebuild, e.g., once a week or once a month. In contrast, a new link can be added in a
matter of minutes, yielding much faster access to newly required information. This
allows rapid prototypingof OLAP systems. In a relational DB setting, the ability
to do this rapid prototyping is one of the key selling points for the Cohera federated
DBMS [23].

The above reasoning suggests that in many cases, it is advantageous to logically
federate existing OLAP and object databases instead of performing physical integra-
tion.

5.2.2 Case Study

The case study concerns data in three different databases, each managed by a separate
organization. Each databases serves a different purpose, but the databases contain
related data. A graphical illustration of the databases is seen in Figure 5.1.

Admission

- day
- reason

Hospital

- name

Diagnosis

- code

Diagnosis
Group

- code

1

2..*

primary
diagnosis

admitted to

1

0..*0..*

1

part of

City

- name
- population

State

- name
- area

State

- name

1

0..*

1

0..*
located inin state

Mayor

- name
- age

1

1

 has current mayor

Demographic
Database

Admissions
Database

Epidemiology
Database

Diagnosis

- code
- text
- deaths/year
- incidences/year
- lifestyle_disease

- date
- reason

Admission

Symptom

- name
- description

0..*

0..*

Contagious
Diagnosis

- transfer_mode

Non-
contagious
Diagnosis

diagnosis symptoms

Figure 5.1: UML Schema of Case Study

The databases are modeled using the Unified Modeling Language (UML) [104].
Compound boxes denote classes. The class name is in boldface in the top part of
the box, while class attributes are listed in the middle part. The bottom part is re-
served for class methods, i.e., dynamic aspects of the class, but since we are only
interested in the data, methods are omitted. Associations, i.e., relationships, between
classes are represented by lines tagged with an association name. The cardinality of
an association is shown by the numbers at the ends of the association line. Either a

112 Extending OLAP Querying To Object Databases

single cardinality or a range of cardinalities are specified. A “*” denotes any natural
number.

Thedemographic databaseis maintained by the Department of the Interior and
offers central access to demographic data for all cities and states in the country. Data
is collected forstates, for which name and area is stored, and forcities, for which
name and population is recorded. The database also contains information about the
currentmayorof a city. There are zero or more cities in each state, and each city has
exactly one current mayor.

Next, theadmissions databaseis maintained by the Department of Health and
provides an overview of the admissions patterns for all hospitals nationwide. For an
admission, the date of admission and the reason for admission, e.g., accident, are
recorded. Additionally, we record whichhospital the patient is admitted to and the
primary diagnosisthat caused the admission. For hospitals, the name and thestate
where the hospital is located are recorded. For diagnoses, we record an alphanumeric
code, determined by a standard classification of diseases, e.g., the World Health Orga-
nization’s International Classification of Diseases (ICD-10) [133]. The classification
also determines how the diagnoses are grouped intodiagnosis groups. Diagnosis
groups consist of at least 2 related diagnoses and a diagnosis belongs to exactly one
diagnosis group. For diagnosis groups, we record a alphanumeric code, determined
by the classification.

The last database is anepidemiology databasemaintained by a medical school
for research purposes. Data are collected from hospitals, practicing physicians, and
insurance companies to obtain a rich overview of the occurrence of diseases. The
database is organized around thediagnosesin the standard disease classification also
used in the admissions database, but more information is recorded. In addition to the
alphanumeric code and an additional descriptive text, the database also records the
number of incidences per year, the number of deaths per year, and whether the disease
is dependent on the lifestyle of the patient. The Diagnosis class has two subclasses,
Contagious DiagnosisandNon-contagious Diagnosis. For contagious diagnoses, we
additionally record the mode of transfer of the disease, e.g., by air. Thesymptomsof
diseases are also recorded. For symptoms, we record a name and a description of the
symptom.

The three databases were built and are used separately, which explains the dif-
ferences in their information contents. But, we want to use them together, to include
information from the demographic and epidemiology databases in queries against the
admissions database. Thus, we need to provide alogical integration of the databases.

To obtain some example data, we assume a standard mapping of the UML sche-
mas to relational schemas, i.e., one table per class, and relationships expressed using
foreign keys. We also assume the use of surrogate keys, namedID, with globally
unique values. Subclasses are supported by sharing of IDs with the superclass. For
example, the Contagious Diagnosis subclass is represented by a separate table with
the ID shared with the Diagnosis table. The tables for the demographic, admissions,
and epidemiology databases are shown in Tables 5.1, 5.2, and 5.3, respectively.

5.3 Federation Data Models and Query Languages 113

ID Name Area
0 California 100000
1 Oregon 40000

State Table

ID Name Population StateID MayorID
10 Berkeley 140000 0 21
11 Portland 500000 1 22
12 Oakland 400000 0 20

City Table
ID Name Age
20 Mr. X 45
21 Ms. Y 57
22 Ms. Z 33

Mayor Table

Table 5.1: Data for the Demographic Database

ID Day Reason HospitalID DiagnosisID
30 05/23/99 Accident 40 50
31 04/12/99 F.P. referral 41 51
32 05/01/98 Specialist referral 41 52

Admission Table
ID Name StateID
40 Alta Bates 70
41 Portland General Hospital 71
42 Portland Kaiser 71

Hospital Table

ID Code GroupID
50 E10 60
51 E11 60
52 N12 61

Diagnosis Table

ID Code Text
60 E1 Diabetes
61 N1 Infections
DiagnosisGroup Table

ID Name
70 California
71 Oregon

State Table

Table 5.2: Data for the Admissions Database

5.3 Federation Data Models and Query Languages

This section defines a prototypical multidimensional data model and query language
used for the SDB component in the federation; and it briefly presents the data model
and query language of the federation’s ODB component.

The multidimensional model precisely and concisely captures core multidimen-
sional concepts such as categories, dimensions, and automatic aggregation. As part
of this, the notion of summarizability is defined. The ODB data model and query
language is the ODMG data model and OQL query language.

5.3.1 Summary Data Model

The model has constructs for defining theschema, theinstances, and theaggregation
properties.

An n-dimensional fact schemais a two-tupleS = (F ;D), whereF is afact type
andD = fTi; i = 1; ::; ng is its correspondingdimension types.

114 Extending OLAP Querying To Object Databases

ID Code Text Deaths Incidences Lifestyle
80 E10 Insulin dependent diabetes 50000 900000 Yes
81 E11 Non insulin dependent diabetes 20000 1500000 Yes
82 N12 Pneumonia 100000 1000000 No

Diagnosis Table

ID TransferMode
82 Air
ContagiousDiagnosis Table

ID Name Description
90 Cough The lungs of the patient ...
91 Acetone Breath The breath of the patient ...
92 Fever The temperature of the patient...

Symptom Table
DiagnosisID SymptomID

80 91
81 91
82 90
82 92

Diagnosis_Symptoms Table

Table 5.3: Data for the Epidemiology Database

Example 42 In the case study we will haveAdmissionsas the fact type, andDiag-
nosis, Place, Reason, andTimeas the dimension types.

A dimension typeT is a four-tuple(C;vT ;>T ;?T), whereC = fCj ; j =
1; ::; kg are thecategory typesof T , vT is a partial order on theCj ’s, with >T 2 C
and?T 2 C being the top and bottom element of the ordering, respectively. Thus,
the category types form a lattice. The intuition is that one category type is “greater
than” another category type if each member of the former’s extension logically con-
tains several members of the latter’s extension, i.e., they have a larger element size.
The top element of the ordering corresponds to the largest possible element size, that
is, there is only one element in its extension, logically containing all other elements.
We say thatCj is a category type ofT , written Cj 2 T , if Cj 2 C. We assume a
functionPred : C 7! 2C that gives the set of immediate predecessors of a category
typeCj .

Example 43 Diagnoses are contained in Diagnosis Groups. Thus, theDiagnosisdi-
mension type has the following order on its category types:?Diagnosis = Diagnosis
< Diagnosis Group< >Diagnosis. Thus,Pred (Diagnosis) = fDiagnosis Groupg.
Other examples of category types areDay, Month, andYear. Figure 5.2, to be dis-
cussed in detail in Example 47, illustrates the dimension types of the case study.

A categoryCj of typeCj is a set ofdimension valuese. A dimensionD of type
T = (fCjg;vT ;>T ;?T) is a two-tupleD = (C;v), whereC = fCjg is a set of
categoriesCj such thatType(Cj) = Cj andv is a partial order on[jCj, the union
of all dimension values in the individual categories.

The partial order is defined as follows. Given two valuese1; e2 thene1 v e2 if
e1 is logically contained ine2. We say thatCj is a category ofD, writtenCj 2 D, if
Cj 2 C. For a dimension valuee, we say thate is a dimensional value ofD, written
e 2 D, if e 2 [jCj.

5.3 Federation Data Models and Query Languages 115

We assume a partial ordervC on the categories in a dimension, as given by the
partial ordervT on the corresponding category types. The category?D in dimension
D contains the values with the smallest value size. The category with the largest value
size,>D, contains exactly one value, denoted>. For all valuese of the categories of
D, e v >. Value> is similar to theALL construct of Gray et al. [40]. We assume that
the partial order on category types and the functionPred work directly on categories,
with the order given by the corresponding category types.

Example 44 TheDiagnosisdimension has the following categories, named by their
type. Diagnosis= f50; 51; 52g, Diagnosis Family= f60; 61g, and>Diagnosis =
f>g. The values in the sets refer to theID fields in the Diagnosis and Diagnosis
Group tables in Table 5.2. The partial orderv is given by the GroupID field in the
Diagnosis table. Additionally, the top value> is greater than, i.e., logically contains,
all the other diagnosis values.

Let C1; ::; Cn be categories andT a domain that includes the special valuenull.
A measurefor these categories and this domain is a functionM : C1� ::�Cn 7! T .
We say thatM is measure for the set of dimensionsD = fD1; ::;Dng, if M is a
measure for the categories?D1 ; ::;?Dn . Every measureM has associated with it a
default aggregate functionfM : T � T 7! T . The default aggregate function must
be distributive. The null value is used to indicate that no data exists for a particular
combination of category values. As is the case for SQL, the aggregate functions
ignore null values.

Example 45 In the case study we have one measure,TotalAdmissions , which is
the total number of admissions by Diagnosis, Place, Time, and Reason. The default
aggregation function is SUM.

The measures associated with each dimension may have different aggregation
properties. For different kinds of measures, different aggregate functions are mean-
ingful. For example, it is meaningful to sum up the number of admissions; and
because this data is ordered, it is also meaningful to compute the average, minimum,
and maximum values. In contrast, in at least some situations, it may not be mean-
ingful to compute the sum (over time) of measures such as the number of patients
hospitalized, but it remains meaningful to compute the average, minimum, and max-
imum values. Next, it makes little sense to compute these aggregate values on data
such as diagnoses, which do not have any ordering defined on them. Here, the only
meaningful aggregation is the count of occurrences. Whether or not an aggregate
function is meaningful also depends on the dimensions being aggregated over. For
example, patient counts may be summed over the Place dimension, but not over the
Time dimension. For additional discussion of these issues, we refer to reference [70].

By recording what aggregate functions may be meaningfully applied to what data,
it is possible to support correct aggregation of data. With such information available,
it is possible to either completely reject “illegal” aggregation or to warn the users that
the results may not be meaningful.

116 Extending OLAP Querying To Object Databases

Following previous research [69, 102], we distinguish between three distinct sets
of aggregate functions:�, applicable to data that may be added together,�, applica-
ble to data that can be used in average calculations, andc, applicable to data that may
only be counted.

Considering only the standard SQL aggregate functions, we have that� =
fSUM, COUNT, AVG, MIN, MAXg, � = fCOUNT, AVG, MIN, MAXg, and
c = fCOUNTg. The aggregation types are ordered,c � � � �. If a set of ag-
gregate functions is meaningful for some data, so are the functions in lower sets.

For each measureM for a set of dimensionsD = fD1; ::;Dng, we assume a
functionaM : D 7! f�; �; cg that gives the aggregation type for each dimension. In
Section 5.3.2 we further discuss issues related to correct aggregation of data.

Example 46 In the case study,aTotalAdmissions (Diagnosis) = �.

An n-dimensionalsummary database(SDB) is a 3-tupleS = (S;D;M), where
S is the schema,D = fD1; ::;Dng is a set of dimensions, andM = fM1; ::;Mkg is
a set of measures for the categories?D1 ; ::;?Dn .

Example 47 The case study has a 4-dimensional summary database with Diagnosis,
Place, Reason, and Time as dimensions. There is one measure, theTotalAdmissions ,
as described above. A graphical illustration of the SDB is seen in Figure 5.2.

Total admissions

Diagnosis

Diagnosis Group

Diagnosis
Dimension

Diagnosis Place

State

Hospital

Place
Dimension

Day

Month

Year

Time

Time
Dimension

Reason

Reason
Dimension

Reason Group

Reason

TTTT

Figure 5.2: Summary Model for the Admissions Database

5.3.2 Summarizability

This section definessummarizability, an important property of SDBs related to the
use of pre-computed aggregates. Intuitively, summarizability captures when higher-
level aggregates may be obtained directly from lower-level aggregates.

Definition 11 Given a typeT , a setS = fSj; j = 1; ::; kg, whereSj 2 2T , and a
functiong : 2T 7! T , we say thatg is summarizablefor S if g(fg(S1); ::; g(Sk)g) =

5.3 Federation Data Models and Query Languages 117

g(S1 [::[Sk). The argument on the left-hand side of the equation is a multiset, i.e.,
the same value may occur multiple times.

Summarizability is important since it is a condition for the flexible re-use of com-
puted aggregates. Without summarizability, (pre-computed) lower-level results gen-
erally cannot be correctly combined into higher-level results. In such situations, we
have to compute the higher-level results from base data, which may be computation-
ally expensive.

It has been shown that summarizability is equivalent to the aggregate function
(g) beingdistributiveand the mappings between dimension values in the hierarchies
being, strict, covering, andonto [70]. These properties are defined formally else-
where [95, 97, 70]. Informally, summarizability requires that the dimension hierar-
chies take the form of balanced trees, i.e., all paths from the root have the same length
(onto), links between values do not “skip” levels (covering), and all values below the
root have exactly one parent (strictness). If hierarchies do not have this form, some
lower-level values will either be double-counted or ignored.

Summarizability is closely related to the aggregation types defined in the previ-
ous section. We use the aggregation types to capture when it is safe to aggregate a
measure over a given dimension. If we have aggregated over a non-summarizable
hierarchy, e.g., a diagnosis hierarchy where one diagnosis is part of several diagno-
sis groups, it is not permissible to use the aggregate results for the diagnosis groups
to compute the result for the entire dimension, as the same admissions will then be
counted more than once. We use the aggregation types to prevent this. Problems re-
lated to summarizability also occur when we extend the queries over SDBs to include
data from external ODBs, see Section 5.5 for details.

5.3.3 The Summary Query Language

The query language of the SDB component is termed SumQL and is meant to be lan-
guage that makes it easy for the user to pose aggregate queries over SDBs. We have
chosen to define a separate summary language rather than attempting to augment the
object query language, OQL, for querying SDBs because we wish to refer explicitly
to the special data structures in SDBs.

Using OQL, or some variant thereof, for querying SDBs would mean that we
would have to overload some of the language constructs, re-using them with a dif-
ferent meaning. This is undesirable, as it confuses the meaning of statements in the
language.

SumQL is reminiscent of SQL, but includes constructs that reflect SDB concepts
such as measures, dimensions with hierarchically organized categories, and auto-
matic aggregation, thus supporting naturally the expression of aggregate queries over
summary databases. Using SumQL enables us to concisely and precisely define the
extensions for referencing object data.

The general format of a SumQL query is displayed below and explained in the
following. Symbol “+” indicates one or more occurrences and square brackets de-
note optional parts. The formal syntax and semantics of SumQL are given in Ap-
pendix 5.8.

118 Extending OLAP Querying To Object Databases

SumQL query ::= SELECT measure+

INTO summary_database
BY_CATEGORY category+

FROM summary_database
[WHERE predicate_clause]

The SELECT clause contains a list of measures for which a result is to be com-
puted. Unlike in SQL, aggregate functions such as SUM need not be specified; rather,
the default aggregation function specified in the schema is automatically applied to
aggregate the data. An INTO clause follows that specifies the SDB into which the re-
sult of the query is stored. Thus, SumQL queries take SDBs as arguments and return
an SDB.

The BY_CATEGORY clause specifies the aggregation level at which the mea-
sures are to be computed. For each dimensionnot mentioned in this clause, the>
category of the dimension is assumed. Effectively, all dimensions and measures not
mentioned in the BY_CATEGORY and SELECT clauses are ignored.

The FROM clause specifies the SDB from which to aggregate. For simplicity, we
only consider queries over one SDB, and no “drill-across” or “union” functionality is
provided. However, the data model and query language can easily be extended to han-
dle this (see [95] for an example). The optional WHERE clause specifies predicates
that are applied to the SDB before aggregation occurs. The predicates can include
standard constructs such as comparison operators, set operators, and string operators.
These constructs are equivalent or similar to those found in SQL and OQL [13].

Example 48 The following SumQL statement computes the “Total Admissions”
measure from the “admissions” SDB, aggregated to the level of Year and State, for
the years after 1997. The resulting SDB is called “testdb.”

SELECT TotalAdmissions INTO testdb BY_CATEGORY year, state
FROM admissions WHERE year> 1997

5.3.4 The Object Model and Query Language

This section briefly reviews the object data model and query language used by the
ODB component of the federation. We use the Object Data Management Group’s
object data model, ODMG 2.0 [13], and its associated query-language, OQL. The
ODMG data model includes constructs such as object class definitions, attributes,
object identifiers, set-valued attributes, reference attributes, tuple attributes, inverse
attributes, inheritance structures, and object class unions. An in-depth coverage of
the ODMG data model and the OQL language may be found in the literature [13].

Example 49 Data definitions for the demographic and epidemiology databases from
the case study are shown in Figure 5.3 and Figure 5.4, respectively. The keyword
“REQUIRED” for an attribute is similar to SQL’s “NOT NULL” and means that a
value must always be supplied for the attribute. Keyword “DERIVATION” indicates
that the content of the attribute is derived from the content of an attribute in another

5.3 Federation Data Models and Query Languages 119

class. Keyword “isa” denotes a sub-class relationship, while “set-of” specifies a set-
valued attribute with the given cardinality.

OBJECT CLASS State
DESCRIPTION: "states"
ID: name
ATTRIBUTE name: VARCHAR(30) REQUIRED
ATTRIBUTE area: INTEGER
ATTRIBUTE cities

DERIVATION: !in_state[City]

OBJECT CLASS City
DESCRIPTION: "cities"
ID: name
ATTRIBUTE name: VARCHAR(30) REQUIRED
ATTRIBUTE population: INTEGER
ATTRIBUTE in_state: State REQUIRED
ATTRIBUTE current_mayor: Mayor REQUIRED

OBJECT CLASS Mayor
DESCRIPTION: "mayors"
ID: name
ATTRIBUTE name: VARCHAR(30) REQUIRED
ATTRIBUTE age: INTEGER
ATTRIBUTE city

DERIVATION: !current_mayor[City]

Figure 5.3: Demographic ODB Schema.

The OQL query language has constructs such as path expressions and class se-
lectors. Path expressions are used to navigate throughreference attributesto other
classes using dot-notation, while class selectors restrict queries to operate only on a
certain subclass.

Example 50 The following query uses a path expression to select the city name only
for cities where the current mayor is more than 40 years old. The path expressions
navigates from cities to mayors via reference attribute “current_mayor.”

SELECT City.name FROM City WHERE City.current_mayor.age> 40

Example 51 The next query navigates from symptoms to the diagnoses that exhibit
those symptoms using a path expression and then applies a class selector (the square
brackets) to select the attribute “transfer_mode” of the Diagnosis sub-class “Conta-
gious Diagnosis.” Thus, only transfer modes for contagious diagnoses with the the
symptom “Cough” are returned:

120 Extending OLAP Querying To Object Databases

OBJECT CLASS Symptom
DESCRIPTION: "symptoms"
ID: name
ATTRIBUTE name: VARCHAR(50) REQUIRED
ATTRIBUTE description: VARCHAR(255)
ATTRIBUTE diagnoses

DERIVATION: !symptoms[Diagnosis]

OBJECT CLASS Diagnosis
DESCRIPTION: "diagnoses"
ID: code
ATTRIBUTE code: VARCHAR(10) REQUIRED
ATTRIBUTE text: VARCHAR(100)
ATTRIBUTE deaths_pr_year: INTEGER
ATTRIBUTE incidences_pr_year: INTEGER
ATTRIBUTE lifestyle_disease: CHAR(1)
ATTRIBUTE symptoms: set-of [0,] Symptom

OBJECT CLASS ContagiousDiagnosis isa Diagnosis
DESCRIPTION: "Only contagious diseases"
ATTRIBUTE transfermode: VARCHAR(30)

OBJECT CLASS NonContagiousDiagnosis isa Diagnosis
DESCRIPTION: "Non-contagious diseases"

Figure 5.4: Epidemiology ODB Schema

SELECT Symptoms.diagnoses[ContagiousDiagnosis]transfer_mode
FROM Symptoms WHERE Symptoms.name = “Cough”

5.4 Linking Databases

This section defines the links that are used to connect SDBs and ODBs. As mentioned
in the introduction, we use explicit links to connect the databases, rather than relying
solely on implicit knowledge of relationships among the databases when formulating
queries.

Explicit links are preferable for several reasons. First, even if the data in the
SDB is derived from source data in an ODB, the complete mapping may be unknown
because of substitutions for missing data and other types of data cleansing, interpo-
lation, etc. Second, explicit links are needed when linking an SDB to an unrelated
ODB, i.e., an ODB other than the base data from which the SDB was extracted.
Third, the source data may be sensitive and thus unavailable to the SDB user. So,

5.4 Linking Databases 121

we propose to explicitly link even summary data to the base data from which it was
derived.

Links are logically kept separate from the federated data, but can physically be
implemented as part of these databases.

Formally, a link L from a categoryC to an object classO is a relationL =
f(c; o)g, wherec 2 C ando 2 O. All links have anameto distinguish them. This
is because each category and even pair of category and object class may have several
links.

Links may be specified in several ways. Anequivalence linkis specified by a
predicateC = O:a, whereC is a category,O is an object class, anda is an attribute of
O that uniquely identifies instances ofO, i.e.,a is a candidate key forO in relational
database terms. Equivalence links occur when a category in the SDB represents the
same real-world entities as does some object class in an ODB. Anattribute link is
specified by the same type of predicate, the only exception being thata does not
uniquely identify instances ofO. An enumerated linkis given by an a link relation
L = f(c; o)g, where pairs of dimension values inC and object ids from classO are
explicitly enumerated. Therefore multiple dimension values may be assigned to the
same object. Enumerated links are typically used for linking a category in an SDB
and an object class that do not represent the same real-world entities.

Example 52 In our case study, we can specify an equivalence link between the Diag-
nosis category in the Admissions SDB and the Diagnosis Class in the Epidemiology
ODB by the predicate “Diagnosis = Diagnosis.Code,” as the values of the Diagnosis
category are the codes of the diagnoses. In subsequent examples, we term this link
“diag_link.”

Example 53 An enumerated link from the Hospital category in the SDB to the City
class in the Demographic ODB may be specified by explicitly assigning hospitals to
cities based on where the hospitals are located. The contents of the link relation is
L = f(“Alta Bates”,”Berkeley”), (“Portland General Hospital”,”Portland”), (“Port-
land Kaiser”,”Portland”)g. We will use the name “city_link” for this link.

The cardinality of a link is an important property, as the cardinality may affect
summarizability. The cardinality of a linkL = f(c; o)g between categoryC and
object classO is [1 � 1] if jLj = j�C(L)j = j�O(L)j, where� denotes relational
projection andj:j denotes relation cardinality; the cardinality ofL is [n� 1] if jLj =
j�C(L)j > j�O(L)j; and the cardinality is[1 � n] if jLj = j�O(L)j > j�C(L)j.
Finally, if the cardinality ofL is not [1 � 1],[1 � n], or [n � 1], its cardinality is
[n � n]. For some link properties, only the cardinality of the object side of a link is
interesting. As a short-hand notation, we say that the cardinality of a link is[�1] if
the cardinality is[1 � 1] or [n� 1]. Similarly, the cardinality of a link is[�n] if the
cardinality is[1� n] or [n� n].
Example 54 The cardinality of link “diag_link” is[1 � 1] and the cardinality of
“city_link” is [n� 1].

It is also necessary to capture whether some dimensions values or objects do
not participate in a link. For that purpose, we define that a linkL = f(c; o)g from

122 Extending OLAP Querying To Object Databases

categoryC to object classO coversC if C = �C(L). Similarly, L coversO if
Oi = �O(L), whereOi is the set of object ids forO. If L covers bothC andO, L is
complete; otherwise,L is incomplete.

Example 55 The “diag_link” link is complete, while the “city_link” link covers the
Hospital category, but not the City class. For example, the city of Oakland is not
present in the link.

In Section 5.5 we will explore the effect of these link properties on the semantics
of queries. Specifically, we shall see that incomplete links and[�n] links, which are
analogous to non-summarizable hierarchies, require special attention. Interestingly,
an attribute link always has a link cardinality that is[�n], while an equivalence link
always has a[1� 1] cardinality.

In some situations, it is desirable to have links that are more powerful than enu-
merated links. For example, the database designer may want to annotate links with
what may be termed metadata, e.g., the reason why the link was added, who added
the link, or the time interval when the link is valid.

Such annotated links do offer additional modeling capabilities, but are neverthe-
less excluded. The reason is that offering a general solution along these lines—which
allows general annotations, including complex object structures with set-valued at-
tributes, references to other classes, embedded objects, etc.—would amount to the
reinvention of a complete object model, an unnecessary complication.

Instead, we propose that annotations be stored in a separate ODB, and we propose
to store the potentially complex link information in a separate ODB using alink class
that represents the instances of the link. We may then create a normal link from the
desired category to this link class. The link class would also be linked to the desired
object class that we wanted to link to originally.

We do not consider links between ODBs, as this is supported by object database
federation systems, e.g., the “OPM*QS” multidatabase system [18].

5.5 The Federated Data Model and Query Language

Having described the data models and query languages of the SDB and ODB compo-
nents to be federated, as well as a minimal mechanism for linking SDBs and ODBs,
the next step is to provide language facilities that enable OLAP-type queries across
the entire federation. Specifically, we extend SumQL.

The federation approach presented here has the distinguishing feature that it uses
the aggregation semantics of the data to provideaggregation-safequeries, i.e., queries
that do not return results that are incorrect or meaningless to the user. This section
describes how the previously defined concepts of aggregation types, summarizability,
link cardinality, and link coverage combine to provide aggregation-safety for queries.

5.5.1 The Federated Data Model

The federation consists of a collection of independent components, supplemented
with additional information and components that enable functioning of the federation.

5.5 The Federated Data Model and Query Language 123

Specifically, the federation consists of an SDB, a number of ODBs, and links that
interrelate information in the different databases. Formally, a federationF of an
SDBS and a set of ODBsO = fO1; ::; Ong is a three-tupleF = (S;O;L), where
L = fL1; ::; Lmg is a set of links from categories in the dimensions ofS to classes
in O1; ::; On.

We assume only a single SDB. Permitting multiple SDBs introduces additional
challenges, e.g., the matching of categories and dimensions, which are not covered
here. The case of a single SDB is very useful, as typical queries to a federation
naturally centers around one SDB: Typical queries concern SDB measures, grouped
by SDB categories, and involving selection criteria relating to data from the ODBs;
or queries retrieve ODB data along SDB data; and in some cases, it is desirable to
actuallygroupSDB data by categorical ODB data.

Rather than requiring that the SDB and ODB data comply with one common data
model, the federation adopts amulti-paradigmapproach [50, 6], where the data re-
main in their original data models. This approach has previously been advocated in
programming languages, where research has been done on how to allow programs to
be written that exploit imperative, object-oriented, functional, and logical program-
ming paradigms in a single program [10].

Allowing multiple data models (or paradigms) to co-exist in the federation en-
ables us to exploit the strengths of the different data models and query languages
when managing and querying the data. In particular, the availability of multiple
paradigms allows a problem solution to take advantage of the fact that certain subsets
of a problem are often well suited for one solution paradigm, while other problem
subsets are better suited for other paradigms.

Like the arguments to queries are federated databases, the results are also feder-
ated databases, i.e., query results may have SDB, ODB, and link components. This
closure property mirrors those of the well-known relational, object, and multidimen-
sional data models and query languages, and permits the result of one query to be
used in a subsequent query. We allow the sets of ODBs and links,O andL, to be
empty. Thus, an SDB in itself is a federation.

5.5.2 The SumQL++ Language

As our objective is to allow more powerful OLAP queries over SDBs by allowing
the queries to include data from ODBs, we take SumQL as the outset and extend
this language. The new, extended language is termed “SumQL++” as it introduces
object-oriented concepts into its predecessor, akin to the C++ successor to the C
programming language.

The queries we are interested in are the typical OLAP queries that select a set of
measures from an SDB, grouped by a set of categories. Three extensions of SumQL
are useful in this respect. First, we introduce path expressions in selection predicates,
in order to integrate ODB data. Second, we introduce so-calleddecorations[40] of
SumQL results, which enable ODB data to be returned along with the SumQL result.
Third, SumQL is extended to enable SDB data to be grouped by data belonging to
ODBs, i.e., attributes of object classes, rather than just the built-in SDB categories.

124 Extending OLAP Querying To Object Databases

Extended Selection Predicates

The first extension of SumQL is to allow selection predicates that reference ODB
data. The basic idea is to allow the use of standard OQLpath expressions, as de-
scribed in Section 5.3.4, in the category expressions in the selection predicates, using
the well-known dot-notation for path expressions.

The link that is used to get to the ODB is included in the category expression.
A category expression always starts with an SDB category, and is followed by an
optional part consisting of the link name and a path expression. Inside the path
expressions,class selectorsmay occur that restrict predicates to work on selected
(sub)classes. The syntax is shown below. The square brackets in single quotes in the
“class_connector” rule denote (sub)class selection and are part of the language being
defined. Nonterminals not defined below are strings.

category_exp ::= category [. link object_path attribute]
object_path ::= class_connectorj path_list
class_connector ::= .j ’[’ class ’]’
path_list ::= class_connector path_elementj path_list path_element
path_element ::= reference_attribute class_connector

Example 56 We want to use the Epidemiology ODB to get the total admissions by
year for only the diagnoses for which cough is a symptom. We use the “diag_link”
link to do so in the following the SumQL++ statement.

SELECT TotalAdmissions INTO testdb BY_CATEGORY Year
FROM Admissions WHERE Diagnosis.diag_link.symptoms.name = “Cough”

Example 57 We use a class selector in the Epidemiology ODB to get the total ad-
missions by year for only contagious diagnoses with the transfer mode “Air,” with
the following SumQL++ statement.

SELECT TotalAdmissions INTO testdb BY_CATEGORY Year FROM Admissions
WHERE Diagnosis.diag_link[ContagiousDiagnosis]transfer_mode = “Air”

To describe the semantics of this extension to SumQL, we first need some addi-
tional definitions. Given a category expressionE of the formE = C:L:OP :a, where
C is a category,L is a link,OP is a object path (as defined in the syntax above), and
a is an attribute of an object class, thecardinality of E is defined next.

Let R be the set of attribute values resulting from the OQL query “SELECT
X:k;X:OP :a FROMX,” whereX is the class thatL links to,k is the attribute that
L links to inX, andOP anda are as above. LetL0 be the link relation obtained by
performing a natural join ofL with R, i.e.,L0 = L 1 R, where1 denotes natural
join. We say thatL0 is the linkspecified byE. The cardinality ofE is defined as the
link cardinality ofL0.

Informally, the cardinality of a category expression is the combination of the
cardinalities that we encounter as we go through the link and the subsequent (possibly
set-valued) reference-attributes, i.e., going through a[�1] relationship in a link or a

5.5 The Federated Data Model and Query Language 125

reference attribute does not change the running cardinality, but a[�n] relationship
causes the total cardinality to be[�n].

Using the definitions above, and following the definitions given for links, we say
thatE coversO, does not coverO, coversC, does not coverC, is complete, and
is incomplete, if L0 coversO, does not coverO, coversC, does not coverC, is
complete, or is incomplete, respectively. Above,O is the object class thata is an
attribute of, i.e., the last object class reached in the category expression. We say that
O is thefinal classof E. C is the category in the beginning ofE. We say thatC is
thestarting categoryof E.

Example 58 The cardinality of the category expression “Hospital.city_link.located-
in.name” is[n�1] as we only go through[n�1] relationships and the state name is a
key attribute. The cardinality of the category expression “Diagnosis.diag_link.symp-
toms.name” is[n� n] because the “symptoms” reference attribute is set-valued.

The cardinality and covering properties of a category expression affect the mean-
ing of a SumQL++ statement. If the cardinality is[�1], the predicate will only refer-
ence one attribute value and the meaning is clear. However, if the cardinality is[�n],
the predicate will reference more than one attribute value, leading to several possible
semantics for the query.

For example, the category predicate “Diagnosis.diag_link.symptoms.name =
“Cough” ” in Example 56 has a[�n] cardinality. One possible interpretation of this
is thatall the referenced attribute values must match the predicate, e.g., thatall symp-
toms must have name “Cough.” Another interpretation is thatat least oneattribute
value must satisfy the predicate, e.g., that at least one symptom has name “Cough.”
This is the interpretation chosen in the OQL language, and as we also think it is the
most sensible to end users, we will also adopt this interpretation.

Similar problems may when a category expressionE does not cover its starting
categoryC, becauseL0 then will be undefined for the uncovered dimension values of
C. However, if we adopt our previous interpretation, thatat least one attribute value
must match the predicate, the meaning is well-defined. The values inC not covered
byE will then be excluded from the selection. There are no problems ifE does not
cover its final classO, asL0 will be defined for all the instances ofO referenced by
E.

Formally, the semantics of the extended SumQL++ predicates are as follows. We
are given a SumQL++ queryQ with a number of category predicatesP1; ::; PN of
the formPi = Ei POP i Vi. TheE1; ::; En are category expressions of the form
Ei = Ci:Li:OP i:ai; i = 1; ::; n, whereCi is a category,Li is a link,OP i is a object
path, andai is an attribute of the final class ofEi. ThePOP i are thepredicate
operatorparts ofPi, i.e., comparison and BETWEEN, IN, and MATCH operators.
TheVi are thevalueparts of the predicates.

For eachEi, let Ri be the set of attribute values resulting from the OQL query
“SELECTXi:ki FROMXi WHEREOP i:ai POP i,” whereXi is the class thatLi
links to, andki is the attribute thatLi links to. For each predicatePi, we now form
a modified predicateP 0

i = Ci IN (e1i ; ::; eki), wherefe1i ; ::; ekig = �Ci(Li 1 Ri)
(1 denotes natural join). Informally, we obtain the attribute values for the link class

126 Extending OLAP Querying To Object Databases

for which the predicate holds, then obtain the corresponding dimensions values by
joining with the link, and finally form a (pure) SumQL predicate with the resulting
dimension values using the “IN” notation.

With Q0 being the query obtained fromQ by substituting all thePis with the
P 0
is, the result of evaluatingQ on a federationF = (S;O;L) is the federationF 0 =

(S0; ;; ;), whereS0 is the SDB resulting from evaluatingQ0 on S. This federation
has no ODB or links components, which makes sense as the ODB data was only used
to select a subset of the SDB for evaluation.

Example 59 We evaluate the query from Example 56. First we get the result of the
query “SELECT Diagnosis.code FROM Diagnosis WHERE Diagnosis.symptoms-
.name=”Cough.” The result of this is the setR = f“N12”g (the code for pneu-
monia). We then joinR with the link relation “diag_link,” which is the identity
relation, and project over the Diagnosis category, obtaining the dimension value
“N12”. We then form the pure SumQL query: “SELECT TotalAdmissions INTO
testdb BY_CATEGORY Year FROM Admissions WHERE Diagnosis IN (“N12”),”
evaluating it over the Admissions SDB.

Decorating the Query Result

It is often desirable to display additional descriptive information along with the re-
sult of an SDB query. This is commonly referred to asdecoratingthe result of the
query [40]. For example, when asking for the number of admissions by hospital, it
may be desirable to display the name of the city and the name of the city’s mayor
along with the hospital name.

This can be achieved by extending the SumQL with features for decorating the
result. One possibility would be to allow category expressions with path expressions
in the SELECT clause, but we advise against this as it would then be unclear which
parts of the SELECT clause referred to measures and which parts referred to deco-
rations. Instead, we extend SumQL with an optional “WITH” clause. The extended
syntax is shown below.

SumQL query ::= SELECT measure+

INTO summary_database
BY_CATEGORY category+

[WITH expression+]
FROM summary_database
[WHERE predicate_clause]

Example 60 Using this extension, we select the number of admissions by hospital,
decorated with the names of the city and its mayor.

SELECT TotalAdmissions INTO testdb FROM Admissions
BY_CATEGORY Hospital
WITH Hospital.city_link.name, Hospital.city_link.current_mayor.name
FROM Admissions

5.5 The Federated Data Model and Query Language 127

It only makes sense to decorate the result with data that is correlated to the orig-
inal query result, so the categories referenced in the WITH clause MUST be part of
the BY_CATEGORY clause.

Formally, assume a SumQL++ queryQ with category expressionsE1; ::; En in
the WITH clause of the formEi = Ci:Li:OP i:ai; i = 1; ::; n, whereCi is a category,
Li is a link,OP i is a object path, andai is an attribute of the final class ofEi, the
semantics is as follows. For eachEi, letRi be the result of the OQL query “SELECT
Xi:ki;Xi:OP i:ai FROMXi,” whereXi andki are the class thatLi links to and the
attribute thatLi links to, respectively. Then form a new object classZi from the set
of tuplesLi 1 Ri using the concatenation of the categoryCi and the attributeai as
its object identifier. LetQ0 denoteQ, but without the WITH clause. The result of
evaluatingQ over a federationF = (S;O;L) is the federationF 0 = (S0; O0; L0),
whereS0 is the result of evaluatingQ0 overF , O0 = ffZigg, andL0 = fL0ig, where
L0i are attribute links specified byCi = Zi:Ci.

Thus, the decoration data is returned in the ODB and link parts of the federation
and is not integrated into the result SDB. This loose coupling of decoration data and
SDB data is essential in avoiding semantic problems, which might otherwise occur if
the category expressionsEi do not cover the categoriesCi. In this case, we just return
decoration data matching a subset of theCi, i.e., we perform an operation equivalent
to an outer join. Similarly, no cardinalities for theEis cause problems. If the cardi-
nality of Ei is [�n], e.g., for the expression “Diagnosis.diag_link.symptoms.name,”
the object class simply contains several objects for eachCi value, e.g., there will be
two objects, with the symptom names “Cough” and “Fever,” with Diagnosis value
“N12” (pneumonia).

Example 61 For the query in Example 60, we get two object classes in the result,
CityName with the attributes “hospital,” “name,” and “cityÆhospital,” with the latter
as the object identifier, and MayorName with the attributes “hospital,” “name,” and
“mayorÆhospital,” again with the latter as the object identifier. The links have the
specifications “Hospital = CityName.Hospital” and “Hospital = MayorName.Hos-
pital.”

Grouping By Object Class Attributes

The last extension is to allow the measures of an SDB to be grouped by attribute
values in ODBs, enabling aggregation over hierarchies outside the SDB. This feature
will be used when aggregation requirements change suddenly.

To achieve this, we allowcategory expressionsinstead of just categories in the
BY_CATEGORY clause. The syntax of the extension is given below. The only
difference from the previous syntax is that the BY_CATEGORY clause now is a list
of category expressions rather than just a list of categories. Remember that a category
expression is either a category or a category followed by a link, an object path, and
an attribute.

128 Extending OLAP Querying To Object Databases

SumQL query ::= SELECT measure+

INTO summary_database
BY_CATEGORY expression+

[WITH expression+]
FROM summary_database
[WHERE predicate_clause]

Example 62 The number of admissions grouped by symptoms may be retrieved as
follows.

SELECT TotalAdmissions INTO testdb
BY_CATEGORY Diagnosis.symptoms.name FROM Admissions

This type of SumQL++ queries will return SDBs where one new dimension is
added for each category expression in the BY_CATEGORY clause, thereby reflecting
the hierarchy specified by the category expression, and aggregation will occur over
these new dimensions.

Formally, given a SumQL++ query,

Q = “SELECTM1; ::;Mk INTO db BY_CATEGORYE1; ::; En

FROMS WHEREP ”,

with the category expressions in the BY_CATEGORY clause being of the form
Ei = Ci:Li:OP i:ai; i = 1; ::; n, whereCi is a category,Li is a link, OP i is a
object path, andai is an attribute of the final class ofEi, the result ofQ on federation
F = (S;O;L) may be specified as follows.

First, letS0 = (S 0;D0;M 0) be the SDB obtained fromS as follows. For each
Ei, add a new dimension type toS with the category types>i,A0i, and?0i. Category
typeA0i represents the attribute values ofai, while category type?0i represents the
dimension values of the bottom category inS. The ordering of the types is>i >
A0i > ?0i. Thus,S 0 is specified.

For each dimension type, new dimensionsD0
i are added toD0. The categories of

D0
i correspond to the category types. The>i category has just the> value. IfL0i is

the resulting link ofEi, categoryA0i has the values given by�aiL
0
i. Let Ri be the

relation specified by(e1; e2) 2 Ri , e1 2 ?i ^ e2 2 Ci ^ e1 vi e2, i.e., the relation
specified by the partial order between?i values andCi values. LetBi = Ri 1 L0i (1
is the natural join). Then the values of the category?0i is the set�?i

(Bi). The partial
order on dimensionD0

i, v0i, is specified as follows:e1 v0i e2 , e2 = > _ e1 =
e2 _ (e1; e2) 2 Bi. This completes the specification ofD0.

The set of measuresM 0 is identical to the original set of measuresM as the
measures operate on the same categories.

The result of evaluating a SumQL query “SELECTM1; ::;Mk INTO S00 BY_CA-
TEGORYA01; ::; A

0
n FROM S0 WHEREP ” is the federationF 0 = (S00; ;; ;). The

ODB and links components are empty, as the ODB data has been turned into dimen-
sions in this result.

5.6 Implementation 129

Example 63 For the query in Example 62 we get one new dimension type “Symp-
tomName” with the category types “>SymptomName ,” “SymptomName,” and “Diag-
nosis.” The new “SymptomName” dimension has the categories specified by the
category types. The partial order on the new dimension is given by joining the “Di-
agnosis,” “Diagnosis_Symptom,” and “Symptom” tables from Table 5.3 and then
projecting on the “Code” and “Name” attributes. We note that the resulting hierarchy
is non-strict, as the “Acetone Breath” symptom occurs for both “Insulin Dependent
Diabetes” and “Non Insulin Dependent Diabetes.”

Depending on the properties of theEis, problems may occur in the aggregation
process. IfEi does not coverCi, some of the data in the SDB (the data character-
ized by the non-covered subset ofCi) will not be considered in the aggregate result.
Reversely, ifEi does not cover its final classOi, there will not be any measure data
associated with the non-covered objects inOi. This means that the result of the ag-
gregation function will be undefined for multidimensional tuples containing the non-
covered objects. To remedy these problems, we require that theEis becomplete.

Even when the category expressions are complete, special attention is needed to
ensure summarizability. Problems may occur when the cardinality of anEi is [�n],
in which case the same measure data, e.g., the same admissions, will be accounted
for more than once in the overall result, e.g., for different symptoms.

This result is meaningful and correct in itself because the data belongs to several
groups. However, the result should not be used forfurther aggregationas the same
data may then be accounted for more than once for the same group, e.g., we may not
aggregate over all symptoms to get the total number of admissions. To avoid this, we
set the aggregation type for all measures toc, i.e., wedisallow further aggregation
on the data, if the cardinality ofEi is [�n]. If the cardinality ofEi is [�1] the
aggregation types are not changed.

5.5.3 Summary

Although the extensions to SumQL were described separately above, they can be
used together in one SumQL++ statement. Assuming an SumQL++ statement that
contains all three extensions, query evaluation proceeds as follows. First, the rules
for handling grouping by object attributes are used, producing a statement without
object attribute grouping. This statement is then processed using the rules for the
WITH clause described in Section 5.5.2, resulting in a statement without a WITH
clause, which can then be evaluated using the rules for extended selection predicates
as described in Section 5.5.2. The statement produced by the extended predicate
rules is a pure SumQL statement which may be evaluated following standard SumQL
semantics.

5.6 Implementation

This section describes the prototype implementation of a system capable of answer-
ing SumQL++ queries over federations of an SDB and several ODBs.

130 Extending OLAP Querying To Object Databases

5.6.1 Implementation Overview

The overall architecture of the federated system is seen in Figure 5.5. The parts of the
system handling object and link data are based on the commercially available OPM
tools [72, 38] that implement the Object Data Management Group’s (ODMG) object
data model [13] and the Object Query Language (OQL) [13] on top of a relational
DBMS, in this case the Oracle8 RDBMS. In-depth descriptions of the OPM toolset
exist in the literature [16, 17]. The OLAP part of the system has been implemented
using both Microsoft’s SQL Server OLAP Services using the Multi-Dimensional eX-
pressions (MDX) [78] query language (MOLAP) and the Oracle8 RDBMS using
SQL as the query language (ROLAP). The graphical user interface (GUI) is imple-
mented as Java classes running in a standard Web browser for optimal flexibility. A
description of the user interface may be found in Chapter C.

Federation
Meta-data
(Oracle)

Federation
Coordinator SQL

SumQL++

OQL-to-SQL
translator

ODB Data
(Oracle)

OQL

OQL-to-SQL
translator

Link Data
(Oracle)

OQL

SumQL-to-MDX/
SQL translator

SDB Data
(MS OLAP/

Oracle8)

SumQL

Federation
Coordinator Link

Meta-data

Graphical User
Interface

SQL SQL MDX/SQL

Figure 5.5: Architecture of the Federated System

The system has six major components: the GUI, the ODB systems, the link DB
system, the SDB system, the federation coordinator, and the metadata database. The
ODB, link DB, and SDB components are treated as independent units by the fed-
eration system; only their published interfaces are used, and no assumptions about
their internal workings are made. The link component stores enumerated links and
is placed in an independent “link” DB, as it cannot generally be assumed that these
links may be stored in some ODB component. Should this be possible, we can choose
to do so, e.g., to obtain better performance. The operation of the prototype is entirely
based on federation metadata specified in the metadata database. This allows for a
very flexible system that may adapt quickly to changes. For example, if a new con-
nection to an outside ODB is desired, appropriate links just needs to be specified and
stored as metadata, after which queries can start using the new ODB.

5.6 Implementation 131

5.6.2 Representation of Metadata

We now describe the metadata for the federation system in detail. A UML diagram
describing the meta-data is seen in Figure 5.6.

Measure

- name
- unit
- default_aggr_
 function
- column_name

Summary
Database

- name
- fact_table
- db_name

1

1..n

measures

Dimension

- name
- column_name
- join_columncharac-

terizes

1..n1

Category

- name
- level
- top_category
- column_name

1

1..n

part of

Link

- name
- link_type
- attribute

1

0..n

Class

- name
- db_name

0..n 1

links
class

links
category

Measure

- name
- unit
- default_aggr_
 function
- column_name

Assigment
Link

- link_db
- link_class

Figure 5.6: UML Schema of Federation Meta-Data

The meta-data consists of two subject areas: summary meta-data and link meta-
data. For simplicity, we have chosen to implement both the summary and link meta-
data in the same meta-database, but the system does not make any assumptions about
this. The summary meta-data could be stored in a separate meta-database, e.g., the
meta-database for an OLAP system used to implement the SDB. The summary meta-
data contains information about the SDBs and their internal components such as mea-
sures, dimensions and categories, as well as information on how the SDB is mapped
to the implemention of the SDB, e.g., a relational star schema. The link meta-data
tracks the links in the system, their types, and the categories and object class attributes
they link to. For assignment links, we also record the ODB and class used to hold the
physical link relation. The meta-data for ODBs is not recorded in the meta-database,
instead it is maintained by the OPM system as a part of the ODBs. Thus, we have
no redundancy in the meta-data, which makes it much easier to maintain consistency
when the meta-data changes.

5.6.3 Query Processing

This section describes the processing of SumQL++ queries over the federation. We
start by giving an overview of the processing of queries using MS SQL Server OLAP
Services for the SDB.

Queries are generated by the GUI and sent to the federation coordinator which then
parses the query. Based on the content of the query, the system looks up the relevant
metadata (link specifications, ODB names, etc.) in the metadata database and pro-

132 Extending OLAP Querying To Object Databases

cesses the query according to the metadata by issuing queries to the DB components.
Example 64 below explains how a particular query is processed.

Example 64 The query below selects the total admissions by diagnosis, state and
year, restricted to diagnoses with “Cough” as a symptom and years later than 1997.

SELECT TotalAdmissions INTO testdb BY_CATEGORY Diagnosis,State,Year
FROM Admissions
WHERE (Diagnosis.diag_link.symptoms.name ="Cough") AND (Year> 1997)

This query is processed as follows. The Federation Coordinator (FC) parses the
query and identifies the link and ODB parts of the query. Based on the link name
(diag_link), the FC looks up in the metadata which ODB, object class, and attribute
the link is to and the type of the link, i.e., equivalence, attribute, or enumerated.
For this query, the ODB is the “Epidemiology” DB, the class is “Diagnosis,” the
attribute is “code,” and the link type is “equivalence.” The object path to be followed
is “.symptoms,” and the final attribute is “name.”. Based on this information, the FC
forms the OQL query seen below.

SELECT code = @n001 FROM @n000 IN SUMDB:Diagnosis,
@n001 IN @n000.code WHERE @n000.symptoms.name = "Cough";

The OQL query is then executed against the Demographic ODB, giving as result
the single diagnosis code “N12”. Based on the result of the OQL query, the FC now
forms the SumQL query seen below, which is executed against the SDB component
of the federation to obtain the final result. The reason for using the intermediate
SumQL statements is to isolate the implementation of the OLAP data from the FC.
As an another alternative, we have also implemented a translator into SQL statements
against a relational "star schema" design.

SELECT TotalAdmissions INTO testdb BY_CATEGORY Diagnosis,State,Year
FROM Admissions WHERE (Diagnosis IN (’N12’) AND Year> 1997)

The SumQL query is now translated into the MDX statement seen below and
executed against the SDB managed by MS SQL Server OLAP Services.

SELECT [Measures].[TotalAdmissions] ON COLUMNS, INTERSECT
(CROSSJOIN(CROSSJOIN([Diagnosis].[N12], [Place].[State].MEMBERS),
[Time].[Year].MEMBERS),CROSSJOIN(CROSSJOIN([Diagnosis].[Diagno
sis].MEMBERS,[Place].[State].MEMBERS), FILTER([Year].MEMBERS,
[Time].CURRENTMEMBER.NAME> "1997")))
ON ROWS FROM Admissions

This example was intended to illustrate the amount of work that a user will have to
go through without the aid of the user interface and the federated translation tools. In
particular, we wish to emphasize the usefulness of the OLAP-object database links
to generate the combined result. Also, the users are spared the verbosity of MDX
(which is hidden from them).

5.6 Implementation 133

We now describe the query processing strategy of the prototype in detail. The
pseudo-code below describes the query processing of a SumQL++ statement with
predicates having path expressions in them. The “<” and “> are used to indicate
substitutions.

The query processing works by examining each extended predicate separately.
For each predicate, the meta-data for the link used in the predicate is retrieved. Based
on the meta-data, an OQL query is constructed to retrieve the attribute values for the
object side of the link for which the predicate holds. If the link is an equivalence or
attribute link, the retrieved values can simply be used to form a pure SumQL predicate
using the “IN” notation. If the link is an assignment link, another OQL query is
constructed and executed against the link database for the particular link. This query
essentiallyjoins the previous result set of object attribute values with the link relation
to retrieve the dimension values for which the predicate holds. These dimension
values are then used to form a pure SumQL predicate using the “IN” notation.

(1) procedureEvaluate(Q) /* Q is a SumQL++ query
(2)Q0 Q

(3) for each SumQL++ predicateP in Q /*in the form of<category>.<link>.<objpath>
<constraint> */

(4) Get<object_db>,<class_name>,<attribute>,<type> for <link>
from eta-database

(5) OQL “ SELECT obj.<attribute>
FROM obj in<object_db>:<class_name>
WHERE<objpath><constraints>”

(6) R1 Execute(OQL)
(7) if link.type IN fE;Ag then /* equivalence or attribute link */
(8) P 0 “<category_name> IN (< R1 >)”
(9) else/* Assignment link */
(10) Get<link_db> and<link_class> from meta-database
(11) LinkOQL “ SELECT link.category

FROM link in<link_db>:<link_class>
WHERE link.<attribute> IN (<R1>)”

(12) R2 Execute(LinkOQL)
(13) P 0 “<category_name> IN (< R2 >)
(14) end if
(15) Q0 Replace(P with P 0 in Q0)
(16)end for
(17) Execute(Q0) on the SDB

5.6.4 Query Optimizations

We now describe some possible optimizations to the query processing strategy de-
scribed above. These optimizations are not implemented in the prototype.

The query processing described above makes use of substituting sets of values
directly into the queries using the “IN” notation. Most of the time, this will give
acceptable performance, as the sets of values are quite small, usually only a few hun-
dred values, and at most a few thousand values. However, sometimes the categories
will be too large, e.g., a large customer dimension, for this approach to be feasible. If

134 Extending OLAP Querying To Object Databases

the query performance is not satisfactory, there are two optimizations that are useful.
The first is to introducetemporary categoriesinto SumQL. Temporary categories are
used to hold subsets of dimension values for a particular category, e.g., the values that
result from an extended selection predicate. The temporary categories (implemented
as MDX named sets or RDBMS tables) can then be used during the processing of
SumQL statements by joining them with the dimension tables before joining with the
fact table. This will often provide better performance than listing the values directly
in the SumQL statement as the parsing of the SumQL statement will be faster and
the underlying DBMS will be able to process the resulting MDX or SQL query more
efficiently.

The other optimization takes advantage of the fact that SDBs often store pre-
aggregated data to answer summary queries faster. In the standard query processing
strategy, selection is always performed before aggregation. However, as is the case
for RDBMS query processing, it is sometimes an advantage to re-arrangere the order
of the operators, in this case we want to perform aggregation before selection. Natu-
rally, we can only perform such re-arrangements when they are semantically correct,
i.e., when the result of the query remains the same, so certain criteria must be met
for the re-arrangement to be valid. In this case, we can perform aggregation before
selection if the selection criteria in a dimension is applied to a category at a higher
level than the category being aggregated to in that dimension. This is formally stated
by the following theorem. If a selection predicate is not applied to a particular di-
mension, this is interpreted as the selection being “>i = >,” i.e., the selection that
selects everything in the dimension. Thus, we interpret the selection predicate as
being applied to the top category in this case.

Theorem 9 LetS = (S;D;M) be ann-dimensional SDB such thatS = fTig; i =
1; ::; n, D = fDi; i = 1; ::; ng. Let Ci; C

0
i; i = 1; ::; n be categories such that

8i : Ci vTi C 0
i. Let p be a predicate such that p is applied to categoryC 0

i in
dimensioni. Then�[C1; ::; Cn](�(S; p)) = �(�[C1; ::; Cn](S); p).

The performance gain of this optimization comes from the fact that the aggre-
gation operation may just correspond to a simple lookup because the data is already
pre-aggregated. Thus, this optimization is only a good idea if pre-aggregation is used.
This optimization is one example of the usefulness of having a low-level, algebraic
query language as well as a high-level user-oriented language such as SumQL.

5.6.5 Implementation of the SDB System

In the sections above, we have described how to use MS SQL OLAP Services and
the MDX language for implementing the SDB system. However, due to the compo-
nent architecture of the system where the implementation-neutral SumQL language is
used to express queries over the SDB, it is quite easy to use a ROLAP system for the
SDB instead. To demonstrate this, we have also implemented the SDB component as
a ROLAP system, using a star schema design [64] on the Oracle DBMS. For this im-
plementation, the SDB component receives a SumQL query which is then translated
into an SQL query over the star schema, based on the meta-data for the particular

5.7 Conclusion and Future Work 135

SDB. We have chosen to also provide a ROLAP SDB implementation for the proto-
type for several reasons. First, relational star schemas are the most commonly used
implementation method for multidimensional data warehouses and data marts. Sec-
ond, as the other components are also based on Oracle, it makes the overall system
simpler. Third, most RDBMSs, including Oracle, do now have special optimization
techniques for processing SDB queries on star schemas. These optimizations include
special join algorithms and the transparent use of pre-aggregated summary tables.
This means that a good SDB performance can be expected even when an RDBMS,
rather than a decicated multidimensional OLAP (MOLAP) DBMS, is used for the
implementation.

5.7 Conclusion and Future Work

Motivated by the increasingly widespread use of OLAP technology, we have pre-
sented the concepts and techniques underlying a prototype system that logically in-
tegrates data in OLAP databases with data from outside object databases, without
requiring physical integration of the data.

Summary data is best handled using OLAP technology, while complex detail-
level data structures are best handled with object database technology. The enables
the handling of the data using the most appropriate data model and technology, while
still allowing queries to reference data across the different databases and data mod-
els. No attempt is made to map data into one common data model, which would
be sub-optimal for some of the data. To our knowledge, this is the first example of a
“multi-model” federation that includes a dedicated summary data model. We also be-
lieve this study to be the first that considers the impact on core OLAP concepts, e.g.,
summarizability, when federating with external data. In contrast to earlier works,
the approach presented here uses the aggregation semantics of data to guard against
meaningless or incorrect queries.

More specifically, as a vehicle for presenting the paper’s contributions, a high-
level language for summary databases, SumQL, has been introduced. This has then
been extended to support queries that reference data in separate object databases.
The resulting language, SumQL++ embodies the concept oflinks that connect an
SDB to ODBs in a general and flexible way, in addition to object-oriented concepts.
SumQL++ permitsselection criteriathat reference data in the ODBs using path ex-
pressions, facilities fordecoratingthe aggregate results of SDB queries with external
object data, and the ability togroupdata in the SDB according to object data. We have
focused on the extension of aggregate queries over SDBs to also include data from
ODBs. The formal semantics of SumQL++ is given in terms of a formal multidimen-
sional data model and the ODMG data model and OQL query language. It is possible
to use other languages such as SQL, OQL, and MDX in the place of SumQL++ once
these are enriched with the necessary SumQL++ constructs that they do not already
offer.

Interesting research directions include extending the approach to handle federa-
tions with several SDBs, as well as the federation with XML databases, which offer
less structure than object databases and thus may benefit even more from the en-

136 Extending OLAP Querying To Object Databases

forcement of aggregation semantics by the federation. Next, it would be of interest
to investigate the dynamic restructuring of the OLAP schema, enabling the use of
measures as dimensions and vice versa. Yet another interesting direction would be to
consider the optimization of queries over the federation. For example, it may in some
situations be advantageous to perform aggregation before selection, to take advantage
of OLAP techniques such as pre-aggregation.

5.8 Formal Definition of SumQL

This sections formally defines the syntax and semantics of the SumQL language.

5.8.1 Syntax of SumQL

We now list the syntax for SumQL. The following notation is used in the syntax
below: lower case letters are used for variable names; upper case letters are used for
keywords;j denotes ’or’; [] is used to designate optional expressions. To save space,
we have not included definitions of strings, reals, and integers, as their definitions are
obvious.

select_query ::= SELECT measure_list
INTO summary_database
BY_CATEGORY category_list
FROM summary_database
[WHERE predicate_clause]

measure_list ::= measurej measure_list measure
measure ::= string
summary_database ::= string
category_list ::= categoryj category_list category
category ::= string
predicate_clause ::= predicate_factor

j predicate_clauseboolean_op predicate_element
predicate_factor ::= predicate_elementj (predicate_clause)
boolean_op ::= ANDj OR
predicate_element ::= category_predicatej NOT category_predicate
category_predicate ::= category_exp predicate_op value

j category_exp BETWEEN (value, value)
j category_exp IN value_list
j category_exp MATCH ’ string ’

category_exp ::= category
predicate_op ::= =j != j > j >= j < j <=
value ::= integerj real j ’ string ’
value_list ::= valuej value_list value

5.8 Formal Definition of SumQL 137

5.8.2 Semantics of SumQL

To describe the formal semantics of SumQL, we first specify a formal algebraic query
language on the multidimensional data model. The algebraic query language is rather
low-level and not for end-users, but is convenient for describing semantics. Next, we
specify the semantics of SumQL by translation to the algebraic language. The al-
gebraic language presented here is not meant to be computationally complete. We
only include the operators that correspond to standard OLAP functions, such as ag-
gregation and selection, while other operators such as union are left out. This is done
purposefully, to make sure that the computational power of the language will not sur-
pass that of any commercial OLAP tool, rendering the results presented here widely
applicable to commercial OLAP tools.

selection: Given an SDBS = (S;D;M) and a predicatep on the dimension types
D = fTig, we define the selection� as: �[p](S) = (S 0;D0;M 0), whereS 0 = S,
D0 = D, M 0 = fM 0

i ; i = 1; ::; kg, M 0
i(e1; ::; en) = if (p(e1; ::; en)) then Mi(e1; :

:; en) else null . The aggregation types are not changed by the selection operator.
Thus, the schema and the dimensions are retained, while the measures are re-

stricted to the part of the multidimensional space where predicatep holds.

Example 65 If selection is applied to the sample SDB with the predicateYear =
1998, the resulting SDB has the same schema and dimensions, but the Total Admis-
sions measure is restricted to only return non-null values for the multidimensional
combinations where the daysd vTime 1998 and where the original measure returned
non-null values for those combinations. All other combinations return the null value.

projection: Given an SDBS = (S;D;M), whereS = (F ;D), a set of mea-
suresMq1 ; ::;Mqp 2 M , and a set of dimension typesfTj1 ; ::; Tjmg � D such that
Ti = (f>Tig; identity ;>Ti ;>Ti) for i 62 fj1; ::; jmg, we define the projection� as:
�[Tj1 ; ::;Tjm ;Mq1 ; ::;Mqp](S) = (S 0;D0;M 0), whereS 0 = (F 0;D0), F 0 = F ,D0 =
fTj1 ; ::;Tjmg, D0 = fDi 2 D j Type(Di) 2 D0g, M 0 = fM 0

i ; i 2 fq1; ::; qpgg, and
M 0

i(e1; ::; em) =Mi(e
0
1; ::; e

0
n), wheree0j = if (j 2 fj1; ::; jmg) then ej else>. The

aggregation types are not changed by the projection operator.
Thus, we require that the dimensions left out in the projection are “simple,” hav-

ing only the> categories. We then keep only the dimension types specified in the
projection and their corresponding dimensions. The measures are modified to take
only the remaining dimensions as arguments. Only the measures specified in the
projection are kept. Note that we do not have to perform any other modifications
(such as aggregation) on the measures, as the requirement on the dimensions left out
makes sure that the measures have well-defined results, even when the number of
dimensions is reduced.

Example 66 Imagine having a version of the example SDB,S0, where the Reason
and Time dimensions have only the> category. This could for instance be the result
of aggregating along these dimensions (see the aggregation operator below). The re-
sult of a projection�[Diagnosis ;Place;TotalAdmissions](S0) is the SDB where

138 Extending OLAP Querying To Object Databases

Reason and Time are removed from the set of dimension types and dimensions,
making the SDB2-dimensional, and the new “Total Admissions” measure gives the
same values for the combination(d; p) as the old measure gave for the combination
(d; p;>;>).

aggregation: Given an SDBS = (S;D;M) and a set of categoriesC1; ::; Cn

such thatCi 2 Di; i = 1; ::; n, we define aggregation� as: �[C1; ::; Cn](S) =
(S 0;D0;M 0), whereS 0 = (F 0;D0), F 0 = F , D0 = fT 0i ; i = 1; ::; ng, T 0i = (C0i;v0Ti
;>0Ti ;?0Ti), C0i = fCij 2 Ti j Type(Ci) vTi Cijg, v0Ti = vTijC0

i

, ?0Ti = Type(Ci),

>0Ti = >Ti , D0 = fD0
i; i = 1; ::; ng, D0

i = (C 0
i;v0i), C 0

i = fC 0
ij 2 Di j Type(C 0

ij) 2
C0ig, v0i = vijD0

i

, M 0 = fMi; i = 1; ::; kg, M 0
i(e1; ::; en) = fMi

(fMi(e
0
1; ::; e

0
n) j

e01 2 ?D1
^ :: ^ e0n 2 ?Dn ^ e01 v1 e1 ^ :: ^ e0n vn eng) (the set on the right-hand

side of the last equation is a multi-set, or bag).
If the hierarchies up to the grouping categories are summarizable, the aggregation

types for the new dimensions are the same as for the original. If one or more of the
hierarchies in the dimensions being aggregated over are not summarizable, then the
aggregation types for all dimensions are set toc, as no further aggregation should be
based on the data.

Example 67 On the example SDB, S, we apply the operation�[Diagnosis;
Hospital ;>Reason ;>Time](S), i.e., we aggregate over all of the Reason and Time
dimensions, but not over the Diagnosis and Place dimensions. This gives us the
SDB described in the previous example. To make the new SDB, for each (diagno-
sis,hospital) combination(di; h), we find the group of (diagnosis,hospital,reason,day)
combinations(di; h; r; da) such thatr vReason >Reason and da vTime >Time ,
i.e., all the4-dimensional combinations thatdi andh are part of. For each(di; h; r;
da), we apply the “Total Admissions” measure,M , to the combination to get the
corresponding measure value. We store the measure values for each(di; h) combina-
tion in their own multiset, to which we apply the default aggregation operator, SUM.
The measure values for the new “Total Admissions” measure,M 0 for a combination
(di; h) is thusM(di; h) = SUMrvReason>Reason ;davTime>Time

(fM(di; h; r; da)g),
i.e., the sum over all the(di; h; r; da) combinations that(di; h) is a part of. Note
that the set on the right-hand side of the equation is a multi-set, or bag.

We can now give the formal semantics of a SumQL statement in terms of the alge-
braic query language. The semantics are as follows. Given an SDBS = (S;D;M),
categoriesCj1 ; ::; Cjm in dimensionsDj1 ; ::;Djm with dimension typesTj1 ; ::; Tjm
and measuresM1; ::;Mp the result of the SumQL statement: SELECTM1; ::;Mp

INTO S0 BY CATEGORYCj1 ; ::; Cjm FROMS WHEREp is: S0 = �[Tj1 ; ::; Tjm ;
M1; ::;Mp](�[C1; ::; Cn](�[p](S))), whereCi = if(i 2 fj1; ::; jmg) then Cji else
>Di

.

Chapter 6

Summary of Conclusions and
Future Research Directions

This chapter summarizes the conclusions and future research sections in Chapters 2
through 5 and Appendices A through C.

Motivated by the increasing use of multidimensional databases for data analysis
in complex application areas such as health care, this thesis has investigated several
aspects of data modeling and query processing for complex multidimensional data.

Chapter 2 investigated the exciting new challenges that data warehouse and
OLAP technology faces from the area of clinical data warehousing. The challenges
that are especially important to the general database research community included
the following: advanced data models including temporal support, advanced classifi-
cation structures, continuously valued data support, dimensional reduction of data,
and integration of complex data.

Chapter 3 presented eleven requirements that multidimensional data models data
should support to accommodate analysis of complex multidimensional data. Twelve
previously proposed data models were evaluated against the eleven requirements, and
it was seen that existing models did not support many-to-many relationships between
facts and dimensions, did not have built-in mechanisms for handling change and time,
lacked support for imprecision, and were unable to insert data with varying granulari-
ties. Additionally, most of the models did not support irregular dimension hierarchies
and aggregation semantics. Chapter 3 presented an extended multidimensional data
model and algebraic query language that addressed all eleven requirements. In par-
ticular, imprecise data was handled using the common multidimensional constructs
of dimension hierarchies and granularities. The presented data model and query eval-
uation techniques could be implemented using standard OLAP technology and tech-
niques such as RDBMSes and pre-aggregation.

Chapter 4 investigated the practical use of pre-aggregated data over irregular
OLAP hierarchies. The scope of practical pre-aggregation was significantly extended
to cover a much wider range of realistic situations. Specifically, algorithms were
given that transformed irregular dimension hierarchies and fact-dimension relation-
ships, which often occur in real-world OLAP applications, into well-behaved struc-
tures that, when used by existing OLAP systems, enabled practical pre-aggregation.

139

140 Summary of Conclusions and Future Research Directions

The algorithms had low computational complexity and could be applied incremen-
tally to reduce the cost of updating OLAP structures. The transformations could be
made transparently to the user.

Chapter 5 presented the concepts and techniques underlying a flexible, “multi-
model” federated system for extending OLAP querying to external object databases.
The system eased the integration of OLAP data with complex external data consider-
ably and allowed data to be handled using the most appropriate data model and tech-
nology: OLAP systems for dimensional data and object database systems for more
complex, general data. A prototypical OLAP language was defined and extended to
naturally support queries that involve data in object databases. The language permit-
ted selection criteria that referenced object data, queries that returned combinations
of OLAP and object data, and queries that grouped dimensional data according to
object data. The system was designed to be aggregation-safe, in the sense that it
exploited the aggregation semantics of the data to prevent incorrect or meaningless
query results. A prototype implementation of the system was reported.

Appendix A surveyed the field of clinical data warehousing, both from an indus-
trial and an academic point of view, as of Mid 1997. Seven evaluation criteria were
presented and nine products and projects were evaluated against them, giving a good
overview of the (by then) current state of the art. The field was still in it’s infancy, but
the potential for clinical benefits of the technology was large. However, the products
surveyed did not address several advanced requirements for clinical use, including
richer data models, temporal support, and intelligent integration of complex data.

Appendix B presented the TreeScape system that, unlike any other system known
to the authors, enables the reuse of pre-computed aggregate query results for irregu-
lar dimension hierarchies, which occur frequently in practice. The system established
a foundation for obtaining high query processing performance while pre-computing
only limited aggregates, even when the hierarchies were irregular. This was done us-
ing the dimension transformation techniques described in Chapter 4. It was described
how the transformations could be made transparent to the user using a query re-write
mechanism.

Appendix C presented the OLAP++ system for federating OLAP and object
databases. The system allowed users to easily pose OLAP queries that reference ex-
ternal object databases. This enabled very flexible and fast integration of object data
in OLAP systems without the need for prior physical integration. It was shown how
the user interface allowed the user to easily specify OLAP queries over the federation
and how these queries were processed.

The work reported in this thesis may be continued in several directions in the fu-
ture.

For the presented data model, it should be investigated how the model and query
handling techniques may be efficiently implemented using special-purpose
algorithms and data structures, to achieve optimal concrete complexity. Next, a no-
tion of completeness for multidimensional algebras, similar to Codd’s relational com-
pleteness would be an exciting research topic. We also believe that it is important to
investigate how multidimensional models can cope with the hundreds of dimensions
found in some applications.

141

There are several future research directions related to imprecision. The investi-
gation of the issues related to “single-value” aggregation functions such as MIN and
MAX, that are not readily sensitive to weighting, in relation to data granularity is
warranted. It would also be interesting to explore other means of graphically pre-
senting imprecision in the result to facilitate the user interpretation of an imprecise
result, or to possibly present the user with the data thatpreventeda given query from
being precisely answerable. Also, it would be good to give precise measures for the
usefulness of technique, given the available data.

The presented normalization approach for enabling practical pre-aggregation has
several promising directions for future research. The current techniques render the
entire dimension hierarchies summarizable; extending the techniques to consider
only the parts that have been selected for pre-aggregation appears attractive and pos-
sible. Another direction is to take into account the different types of aggregate func-
tions to be applied, leading to local relaxation of the summarizability requirement.
For example,maxandmin are insensitive to duplicate values, thus relaxing summa-
rizability.

For the federation approach presented in this thesis, interesting research direc-
tions include extending the approach to handle federations with several SDBs, as
well as the federation with XML databases, which offer less structure than object
databases and thus may benefit even more from the enforcement of aggregation se-
mantics by the federation. Next, it would be of interest to investigate the dynamic
restructuring of the OLAP schema, enabling the use of measures as dimensions and
vice versa. Yet another interesting direction would be to consider the optimization of
queries over the federation. For example, it may in some situations be advantageous
to perform aggregation before selection, to take advantage of OLAP techniques such
as pre-aggregation.

Bibliography

[1] R. Agrawal and J. Kiernan. An Access Structure for Generalized Transitive
Closure Queries. InProceedings of the Ninth International Conference on
Data Engineering, pp. 429–438, 1993.

[2] R. Agrawal, A. Gupta, S. Sarawagi. Modeling Multidimensional Databases.
IBM Technical Report 1995. Also appeared inProceedings of the Thirteenth
International Conference on Data Engineering, pp. 232–243, 1997.

[3] E. B. Baatz. Return on Investment - What’s It Worth.CIO MagazineOctober
1, 1996

[4] E. Baralis, S. Paraboschi, and E. Teniente. Materialized View Selection in a
Multidimensional Database. InProceedings of the Twenty-Third International
Conference on Very Large Data Bases, pp. 156–165, 1997.

[5] D. Barbará, H. García-Molina, and D. Porter. The Management of Probabilis-
tic Data. IEEE Transactions on Knowledge and Data Engineering, 4(5):487–
502, October 1992.

[6] T. Barsalou and D. Gangopadhyay. M(DM): An Open Framework for Interop-
eration of Multimodel Multidatabase Systems. InProceedings of the Eighth
International Conference on Data Engineering, pp. 218–227, 1992.

[7] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration.ACM Computing Surveys
18(4):323–364, 1986.

[8] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, X. S. Wang. A
Glossary of Time Granularity Concepts. InTemporal Databases: Research
and Practice, pp. 406–413. LNCS 1399, Springer-Verlag, 1998.

[9] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Systematic Change
Management in Dimensional Data Warehousing. InProceedings of the Third
International Baltic Workshop on DB and IS, pp. 27–41, 1998.

[10] T. A. Budd. Multiparadigm Programming in Leda. Addison-Wesley, 1995.

[11] S. van Buuren, E. V. van Mulligen, J. P. L. Brand. Routine Multiple Imputation
in Statistical Databases. InProceedings of the Seventh International Confer-
ence on Scientific and Statistical Database Management, pp. 74–78, 1994.

143

144 BIBLIOGRAPHY

[12] L. Cabibbo and R. Torlone. Querying Multidimensional Databases. InPro-
ceedings of the Sixth International Conference on Database Programming
Languages, pp. 319–335, 1997.

[13] R. G. G. Cattell et al. (editors).The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, 1997.

[14] A. L. P. Chen, J-S. Chiu, and F. S. C. Tseng. Evaluating Aggregate Operations
over Imprecise Data.IEEE Transactions on Knowledge and Data Engineering,
8(2):273–284, 1996.

[15] I-M. A. Chen, V. M. Markowitz. An Overview of the Object-Protocol Model
(OPM) and OPM Data Management Tools.Information Systems, 20(5): 393-
418, 1995.

[16] I. A. Chen and V. M. Markowitz. The Object-Protocol Model (OPM) Version
4.1. Lawrence Berkeley National Laboratory Technical Report LBNL-32738
(revised), 1996.

[17] I. A. Chen, A. Kosky, V. M. Markowitz, and E. Szeto. The OPM Query Lan-
guage and Translator - Version 4.1. Lawrence Berkeley National Laboratory
Technical Report LBNL-38180, 1996.

[18] I. A. Chen. A. Kosky, V. M. Markowitz, and E. Szeto. OPM*QS: The Object-
Protocol Model Multidatabase Query System. Lawrence Berkeley National
Laboratory Technical Report LBNL-38181, 1996.

[19] P. P-S. Chen. The Entity-Relationship Model — Toward a Unified View of
Data.ACM Transaction on Database Systems, 1(1):9–36, 1976.

[20] J. Clifford, , C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass.
On the Semantics of “Now” in Databases.ACM Transactions on Database
Systems, 22(2):171–214, June 1997.

[21] E. F. Codd. Extending the Data Base Relational Model to Capture More Mean-
ing. ACM Transactions on Database Systems, 4(4):397–434, 1979.

[22] E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts:
An IT mandate.Technical report, E.F. Codd and Associates, 1993.

[23] Cohera Corporation. Cohera Data Federation System.<www.cohera.-
com/datasheets.html>. Current as of February 18, 1999.

[24] Commission of the European Communities, Directorate General XII.
Synapses: Federated Healthcare Record Server. Contract no. HC 1046 (HC).

[25] S. Dar, H. V. Jagadish, A. Y. Levy, and D. Srivastava. Answering SQL Queries
Using Views. InProceedings of the Twenty-Second International Conference
on Very Large Data Bases, pp. 318–329, 1996.

BIBLIOGRAPHY 145

[26] A. Datta and H. Thomas. A Conceptual Model and Algebra for On-Line An-
alytical Processing in Decision Support Databases. InProceedings of the Sev-
enth Annual Workshop on Information Technologies and Systems, 1997.

[27] P. M. Deshpande, J. F. Naughton, K. Ramasamy, A. Shukla, K. Tufte, and
Y. Zhao. Cubing Algorithms, Storage Estimation, and Storage and Processing
Alternatives for OLAP.IEEE Data Engineering Bulletin, 20(1):3–11, 1997.

[28] B. A. Devlin and P. T. Murphy. An Architecture for a Business and Information
System.IBM Systems Journal. Vol. 27, No. 1, 1988

[29] R. Domenig and K. Dittrich. An Overview and Classification of Mediated
Query Systems.ACM SIGMOD Record, 28(3), 1999.

[30] Duke University Medical Informatics Department. Health Level 7 (HL7)
WWW page. <http://www.mcis.duke.edu/standards/HL7/
hl7.htm> . Current as of February 26, 2000.

[31] C. E. Dyreson. Information Retrieval from an Incomplete Data Cube. InPro-
ceedings of the Twenty-Second Conference on Very Large Databases, pp. 532–
543, 1996.

[32] C. E. Dyreson. A Bibliography on Uncertainty Management in Information
Systems. In A. Motro and P. Smets (Eds.).Uncertainty Management in Infor-
mation Systems - From Needs to Solutions, pp. 413–458, Kluwer Academic
Publishers, 1997.

[33] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time Indeterminacy.
ACM Transactions on Database Systems, 23(1):1–57, 1998.

[34] R. Elmasri and S. B. Navathe.Fundamentals of Database Systems, 2nd edi-
tion. Benjamin/Cummings Publishing Company, 1994.

[35] O. Etzion, S. Jajodia, and S. Sripada (editors).Temporal Databases: Research
and Practice. LNCS 1399, Springer-Verlag 1998.

[36] European Committee for Standardization (CEN).European Prestandard -
prENV 12265. Medical Informatics - Electronic Healthcare Record Architec-
ture., 1995.

[37] E. Gelenbe and G. Hebrail. A Probability Model of Uncertainty in Databases.
In Proceedings of the Second International Conference on Data Engineering,
pp. 328–333, 1986.

[38] Genelogic Corporation. Genelogic Home Page.<www.genelogic.com>. Cur-
rent as of February 26, 2000.

[39] F. Gingras, Laks V. S. Lakshmanan: nD-SQL: A Multi-Dimensional Language
for Interoperability and OLAP. 134-145, Electronic Edition

146 BIBLIOGRAPHY

[40] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F.
Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Gen-
eralizing Group-By, Cross-Tab and Sub-Totals.Data Mining and Knowledge
Discovery, 1(1):29–54, 1997.

[41] J. Gu, T. B. Pedersen, and A. Shoshani. OLAP++: Powerful and Easy-to-Use
Federations of OLAP and Object Databases.Demo proposal, submitted for
conference publication, 2000.

[42] J. Gu, T. B. Pedersen, and A. Shoshani. The OLAP++ System for Federat-
ing OLAP and Object Databases.Demo proposal, submitted for conference
publication, 2000.

[43] K-C. Guh and C. Yu. Efficient Management of Materialized Generalized Tran-
sitive Closure in Centralized and Parallel Environments.IEEE Transaction on
Knowledge and Data Engineering, 4(4):371–380, 1992.

[44] A. Gupta, V. Harinarayan, and D. Quass. Aggregate Query Processing in Data
Warehousing Environments. InProceedings of the Twenty-First International
Conference on Very Large Data Bases, pp. 358–369, 1995.

[45] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index Selection for
OLAP. In Proceedings of he Thirteenth International Conference on Data
Engineering, pp. 208–219, 1997.

[46] H. Gupta. Selection of Views to Materialize in a Data Warehouse. InProceed-
ings of the Sixth International Conference on Database Theory, pp. 98–112,
1997.

[47] H. Gupta and I.S. Mumick. Selection of Views to Materialize Under a
Maintenance-Time Constraint. InProceedings of the Seventh International
Conference on Database Theory, pp. 453–470, 1999.

[48] M. Gyssens and L. V. S. Lakshmanan. A Foundation for Multi-Dimensional
Databases. InProceedings of the 23rd Conference on Very Large Databases,
pp. 106–115, 1997.

[49] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing Data Cubes
Efficiently. In Proceedings of the ACM SIGMOD International Conference on
the Management of Data, pp. 205–216, 1996.

[50] D. K. Hsiao and M. N. Kamel. The Multimodel, Multilingual Approach to
Interoperability of Multidatabase Systems. InProceedings of the First Inter-
national Workshop on Research Issues on Data Engineering, 1991.

[51] D. K. Hsiao. Federated Databases and Systems: Part I - A Tutorial on Their
Data Sharing.VLDB Journal, 1(1): 127–179, 1992.

[52] D. K. Hsiao. Federated Databases and Systems: Part II - A Tutorial on Their
Resource Consolidation.VLDB Journal, 1(2): 285–310, 1992.

BIBLIOGRAPHY 147

[53] Hyperion Corporation. Hyperion Essbase OLAP Server.<www.hyperion-
.com/downloads/essbaseolap.pdf>. Current as of February 26, 2000.

[54] IBM Corporation. DB2 DataJoiner. <www-4.ibm.com/software/data/
datajoiner/>. Current as of February 24, 2000.

[55] Information Architects Corporation (now InfoMedtrics Corporation). Prod-
ucts/Services.<www.infomedtrics.com/html/products/index.html>. Current
as of February 26, 2000.

[56] Informix Corporation. Informix MetaCube ROLAP Option Overview.
<www.informix.com/informix/products/options/mcro/overview/mcbroweb
.htm>. Current as of February 26, 2000.

[57] W. H. Inmon.Building the Operational Data Store.John Wiley & Sons, 1995.

[58] W. H. Inmon. Building the Data Warehouse, 2nd Ed.Wiley Computer Pub-
lishing 1996.

[59] K. J. Isselbacher, R. D. Adams, E. Braunwald, R. G. Petersdorf, and
J. D.Wilson. Principles of Internal Medicine, Ninth Edition. McGraw-Hill,
1980.

[60] H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava. What can Hierarchies
do for Data Warehouses? InProceedings of the Twenty-Fifth International
Conference on Very Large Data Bases, pp. 530–541, 1999.

[61] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Data Models
via a Conceptual Model.Information Systems, 19(7):513–547, 1994.

[62] C. S. Jensen and R. T. Snodgrass. Semantics of Time-Varying Information.
Information Systems, 21(4):311–352, March 1996.

[63] C. S. Jensen and C. E. Dyreson, (editors). A Consensus Glossary of Temporal
Database Concepts - February 1998 Version. In O. Etzion, S. Jajodia, and
S. Sripada (editors).Temporal Databases: Research and Practice. LNCS
1399, Springer-Verlag, pp. 367–405, 1998.

[64] R. Kimball. The Data Warehouse Toolkit. Wiley Computer Publishing, 1996.

[65] R. Kimball. Data Warehouse Architect: Help with Multi-Valued Dimension.
DBMS Magazine, 11(9), 1998.

[66] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query
Languages Having Aggregate Functions.Journal of the ACM, 29(3):699–717,
1982.

[67] Kommunedata Corporation.GS-Open Design Specification(in Danish). Inter-
nal document, 1996.

148 BIBLIOGRAPHY

[68] W. Lehner and T. Ruf. A Redundancy-based Optimization Approach for Ag-
gregation in Multidimensional Scientific and Statistical Databases. InPro-
ceedings of the Fifth International Conference on Database Systems for Ad-
vanced Applications, pp. 253–262, 1997.

[69] W. Lehner. Modeling Large Scale OLAP Scenarios. InProceedings of the
Sixth International Conference on Extending Database Technology, pp. 153–
167, 1998.

[70] H. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Databases.
In Proceedings of the Ninth International Conference on Scientific and Statis-
tical Databases, pp. 39–48, 1997.

[71] C. Li and X. S. Wang. A Data Model for Supporting On-Line Analytical Pro-
cessing. InProceedings of the Fifth International Conference on Information
and Knowledge Management, pp. 81–88, 1996.

[72] V. M. Markowitz et al. OPM Home Page. <gizmo.lbl.gov/DM_
TOOLS/DMTools.html>. Current as of February 26, 2000.

[73] MedAI Corporation. Clinical Decision Support Services.<www.medai.com/
Products_Services.html>. Current as of February 26, 2000.

[74] Medical Records Institute. Applications for Electronic Patient Record Sys-
tems. <www.medrecinst.com/caregiver/applications.shtml>. Current as of
February 26, 2000.

[75] J. Melton and A. R. Simon.Understanding the new SQL - A Complete Guide.
Morgan Kaufmann, 1993.

[76] Meta Group Corporation. 1999 Data Warehouse Marketing Trends/Opportu-
nities - An In-Depth Analysis of Key Market Trends.Meta Group, 1999.

[77] Microsoft Corporation. ActiveX for Healthcare Committee.<www.mshug
.org/ahc/>. Current as of February 26, 2000.

[78] Microsoft Corporation. OLE DB for OLAP Version 1.0 Specification. Mi-
crosoft Technical Document, 1998.

[79] Microsoft Corporation. OLAP Services White Paper.<www.microsoft.com/
sql/productinfo/ olapservices.htm>. Current as of February 26, 2000.

[80] A. Motro and P. Smets (Eds.).Uncertainty Management in Information Sys-
tems - From Needs to Solutions. Kluwer Academic Publishers, 1997.

[81] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and
summary tables in a warehouse. InProceedings of the ACM SIGMOD Inter-
national Conference on the Management of Data, pp. 100–111, 1997.

[82] L. H. Nielsen. Clinical Aspects of the Concept Electronic Record in the Dan-
ish Health Service (in Danish). Project report, Health Informatics Education,
Aalborg University, Denmark, 1996.

BIBLIOGRAPHY 149

[83] Niinimäki J, et al. Medical Data Warehouse, an Investment for Better Medical
Care.In Proceedings of Medical Informatics Europe 1996, IOS Press 1996.

[84] Object Management Group. CORBAmed WWW page.<www.omg
.org/corbamed>. Current as of April 13th, 1998.

[85] The OLAP Council.MDAPI Specification Version 2.0. OLAP Council Tech-
nical Document, 1998.

[86] The OLAP Report. Database Explosion. <www.olapreport.com/Database-
Explosion.htm>. Current as of February 26, 2000.

[87] F. Olken, D. Rotem. Random Sampling from Databases - A Survey.Statistics
& Computing, 5(1):25–42, March 1995.

[88] Oracle Corporation. Oracle Gateways<www.oracle.com/gateways>. Current
as of February 24, 2000.

[89] Oracle Corporation. Clinical Computing Plc.<alliance.oracle.com/cat-
doc/html/p18409.htm>. Current as of February 26, 2000.

[90] Oracle Corporation. Oracle Unveils Clinical Applications.<www.oracle
.com/corporate/press/html/PR011397.110413.html> Current as of February
26, 2000.

[91] Palo Alto Management Group Corporation. 1999 Business Intelligence and
Data Warehousing Program Competitive Analysis Report.Palo Alto Manage-
ment Group, 1999.

[92] T. B. Pedersen and C. S. Jensen. Clinical Data Warehousing - A Survey (short
version).Presented at the Healthcare Computing 1998 Conference.

[93] T. B. Pedersen and C. S. Jensen. Clinical Data Warehousing - A Survey (long
version, corresponds to Appendix A). InProceedings of the VIII Mediter-
annean Conference on Medical and Biological Engineering and Computing,
Section 20.3 (CDROM proceedings), 1998.

[94] T. B. Pedersen and C. S. Jensen. Research Issues in Clinical Data Warehous-
ing. In Proceedings of the Tenth International Conference on Statistical and
Scientific Database Management, pp. 43–52, 1998.

[95] T. B. Pedersen and C. S. Jensen. Multidimensional Data Modeling for Com-
plex Data. InProceedings of the Fifteenth International Conference on Data
Engineering, pp. 336–345, 1999. Extended version available as TimeCenter
Report TR-37,<www.cs.auc.dk/TimeCenter>, 1998.

[96] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Supporting Impreci-
sion in Multidimensional Databases Using Granularities. InProceedings
of the Eleventh International Conference on Statistical and Scientific Data-
base Management, pp. 90–101, 1999. Extended version available as Technical
Report TR-99-5003, Department of Computer Science, Aalborg University,
<www.cs.auc.dk/TR5003.ps>, 1999.

150 BIBLIOGRAPHY

[97] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Extending Practical Pre-
Aggregation for On-Line Analytical Processing. InProceedings of the Twenty-
Fifth International Conference on Very Large Databases, pp. 663–674, 1999.
Extended version available as Technical Report TR-99-5004, Department of
Computer Science, Aalborg University,<www.cs.auc.dk/XX5004.ps>, 1999.

[98] T. B. Pedersen, A. Shoshani, J. Gu, and C. S. Jensen. Extending OLAP Query-
ing to Object Databases.Submitted for conference publication, 2000.

[99] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A Foundation for Capturing
and Querying Complex Multidimensional Data.Manuscript, to be submitted
for journal publication, 2000.

[100] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. The TreeScape System:
Reuse of Pre-Computed Aggregates over Irregular OLAP Hierarchies.Demo
proposal, submitted for conference publication, 2000.

[101] D. Quass and J. Widom. On-Line Warehouse View Maintenance for Batch
Updates. InProceedings of the ACM SIGMOD International Conference on
the Management of Data, pp. 393–404, 1997.

[102] M. Rafanelli and F. Ricci. Proposal of a Logical Model for Statistical
Databases. InProceedings of the Second International Workshop on Statis-
tical and Scientific Database Management, pp. 264–272, 1983.

[103] M. Rafanelli and A. Shoshani. STORM: A Statistical Object Representation
Model. InProceedings of the Fifth International Conference on Statistical and
Scientific Database Management, pp. 14–29, 1990.

[104] Rational Corporation. UML 1.1 Notation Guide. <www.rational.com/
uml/resources/documentation/notation/index.jtmpl>. Current as of February
26, 2000.

[105] Red Brick Corporation. Star Schema Processing for Complex Queries.White
Paper, Red Brick Inc., 1997.

[106] D. B. Rubin.Multiple Imputation for Nonresponse in Surveys. Wiley, 1987.

[107] E. A. Rundensteiner and L. Bic. Aggregates in Possibilistic Databases. InPro-
ceedings of the Fifteenth International Conference on Very Large Databases,
pp. 287–295, 1989.

[108] E. A. Rundensteiner and L. Bic. Evaluating Aggregates in Possibilistic Rela-
tional Databases. InData and Knowledge Engineering, 7(3):239–267, 1992.

[109] SAS Institute Corporation. SAS Institute Announces the SAS Pharmatechnol-
ogy Process.<www.sas.com/new/preleases/050797/news1.html>. Current as
of February 26, 2000.

[110] SAS Institute Corporation. Health Care.<www.sas.com/software/industry/
healthcare.html>. Current as of February 26, 2000.

BIBLIOGRAPHY 151

[111] SAS Institute Corporation. Release of PH.Interface to Oracle Clinical.
<www.sas.com/software/ industry/pht/headlines/OrClinInter.html>. Current
as of February 26, 2000.

[112] A. Segev and J. L. Zhao. Selective View Materialization in Data Warehousing
Systems.<ftp://segev.lbl.gov/pub/LBL_DB_PUBLICATIONS/1997/aggreg-
dw.ps>. Current as of February 9, 1999.

[113] S-C. Shao. Multivariate and Multidimensional OLAP. InProceedings of the
Sixth International Conference on Extending Database Technology, pp. 120–
134, 1998.

[114] Shared Medical Systems Corporation. NOVIUS.<www.smed.com/ solu-
tions/products/ novius.htm>. Current as of February 26, 2000.

[115] A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases.Computing Surveys,
22(3):183-236, 1990.

[116] A. Shoshani. OLAP and Statistical Databases: Similarities and Differences. In
Proceedings of Sixteenth ACM Symposium on Principles of Database Systems
, pp. 185–196, 1997.

[117] A. Shukla, P. M. Deshpande, J. F. Naughton, and K. Ramasamy. Storage
Estimation for Multidimensional Aggregates in the Presence of Hierarchies.
In Proceedings of the Twenty-Second International Conference on Very Large
Data Bases, pp. 522–531, 1996.

[118] K. Skifjeld. From concept to product - experiences from the development of
the DocuLive EPR system.The British Journal of Healthcare Computing &
Information Management, March 1997.

[119] R. T. Snodgrass et. al.The TSQL2 Temporal Query Language.Kluwer Aca-
demic Publishers, 1995.

[120] Stanford University Medical Informatics Department. Integrating Heteroge-
neous Databases.<www-smi.stanford.edu/projects/helix/hetero.html>. Cur-
rent as of February 26, 2000.

[121] Stanford University Medical Informatics Department. The EON Project.
<www-smi.stanford.edu/projects/eon/index.html>. Current as of February
26, 2000.

[122] Stanford University Medical Informatics Department. Tzolkin Temporal Data
Management System.<www-smi.stanford.edu/projects/eon/tzolken.html>.
Current as of February 26, 2000.

[123] Sybase Corporation. Success Stories: Quest Informatics.<success.sybase
.com/success/docitem.stm?content_id=1000167>. Current as of February 26,
2000.

152 BIBLIOGRAPHY

[124] D. Theodoratos and T. Sellis. Data Warehouse Configuration. InProceed-
ings of the Twenty-Third International Conference on Very Large Data Bases,
pp. 126–135, 1997.

[125] E. Thomsen.OLAP Solutions: Building Multidimensional Information Sys-
tems. Wiley, 1997.

[126] Transaction Processing Council. The TPC-R Benchmark.<www.tpc.org>.
Current as of February 21, 1999.

[127] P. Vassiliadis. Modeling Multidimensional Databases, Cubes, and Cube Op-
erations. InProceedings of the Tenth International Conference on Statistical
and Scientific Database Management, pp. 53–62, 1998.

[128] P. Vassiliadis and T. Sellis. A Survey of Logical Models for OLAP Databases.
In SIGMOD Record, 28(4):64–69, 1999.

[129] J. Widom (editor). Special Issue on Materialized Views and Data Warehous-
ing. IEEE Data Engineering Bulletin, 18(2), 1995.

[130] J. Widom. Research Problems in Data Warehousing. InProceedings of
the Fourth International Conference on Information and Knowledge Manage-
ment., pp. 25–30, 1995.

[131] R. Winter. Databases: Back in the OLAP game.Intelligent Enterprise Maga-
zine, 1(4):60–64, 1998.

[132] E. Wong. A Statistical Approach to Incomplete Information in Database Sys-
tems.ACM Transactions on Database Systems, 7(3):470–488, 1982.

[133] World Health Organization.International Classification of Diseases (ICD-10).
Tenth Revision, 1992.

[134] World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.0. W3C Recommendation, 1998. <www.w3.org/TR/1998/REC-xml-
19980210>. Current as of February 26, 2000.

[135] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design
in a data warehousing environment. InProceedings of the Twenty-Third Inter-
national Conference on Very Large Data Bases, pp. 136–145, 1997.

[136] L. Zadeh. Fuzzy Sets.Information and Control, 8:338–353, 1965.

Appendix A

Clinical Data Warehousing — A
Survey

A.1 Introduction

The concept of data warehousing has taken the computer industry by storm in the
recent years, as enterprises have realized the enormous opportunities in extracting
useful information from the data “hidden” in their computer systems. The new func-
tionality offered by data warehousing has traditionally been used in business, in areas
such as retail and finance, but the technology is now increasingly being used in more
“scientific” areas.

One of these areas is clinical, where clinical data about a large patient population
is analyzed to perform clinical quality management and medical research [3]. The
use of data warehousing in the clinical area will be driven by theneedto manage
the entire care process to stay competitive, as well as theopportunitiesfor gaining
new insights by activelyusing the enormous amount of patient data available. Data
warehousing stands out as the onlyviable technology for realizing the full informa-
tion potential in operational data. Thus, clinical data warehousing will become very
important in clinical enterprises in the not-too-distant future. So far, adoption of the
technology in healthcare has been hindered by lack of knowledge on what data ware-
housing can be used for, and what current products offer. This chapter offers the
needed knowledge by describing the current state-of-the-art of products and other
efforts, providing evaluation criteria for comparing clinical data warehouse systems,
and looking at future directions of the area.

This work was done as part of a clinical data warehouse research project, involv-
ing university computer scientists, industry, and clinicians engaged in a joint effort to
determine how the data warehouse concept should be used and extended to support
the needs of clinical users.

In Section 2, we define the concept of data warehousing and provide evaluation
criteria for clinical data warehouse systems. In Section 3, we describe the various
efforts in the area, and list their conformance to the criteria. Section 4 discusses the
relative merits of the efforts, and offers a look at the future, as well as concluding
remarks.

154 Clinical Data Warehousing — A Survey

A.2 Data Warehousing

The term “Data Warehouse” (DW) was first used by Barry Devlin [28], but it is Bill
Inmon that has won the most acclaim for introducing the concept, see Figure A.1 for
the basic architecture of a DW.

Operational data

Extraction,
transformation,

cleaning

Data Warehouse

Data
analysis

tools

Figure A.1: Integration of Operational Data in the Data Warehouse

He defines a Data Warehouse as: “A Data Warehouse is asubject oriented, inte-
grated, non-volatileandtime-variantcollection of data in support ofmanagement’s
decisions.” [58] Let us have a closer look at these defining properties.

Data is organized bysubjects, such as patients, to allow the users to work with
terms from their daily life. In operational systems, data is organized to support a
particular application, e.g., a laboratory system, often making data incomprehensible
to humans. The subject orientation of a DW makes it much easier to understand the
data.

Data isintegratedfrom multiple operational systems, both by definition and con-
tent. As seen in Figure A.1, data is extracted from the operational systems, trans-
formed into a format suited for data analysis, and “cleaned” to adjust for invalid,
incompatible, or missing data. This makes the previously very hard task of combin-
ing data from different systems a lot easier for the end user.

Data isnon-volatile, i.e., it is kept for many years and sometimes never deleted.
In operational systems, data is often deleted after a few months, when they are no
longer needed by the particular application. Retaining the data makes analysis over
long time periods possible.

Data istime-variant, i.e., it always has a notion of time attached to it, and often
a complete history of changes is kept. This makes analysis for trends over time
possible. In operational systems, data is often not related to time, and only the newest
version of the data is stored.

Data in a DW supportmanagement’s decisions, i.e., it is optimized for data anal-
ysis, not data entry. Data is used tounderstand and managethe enterprise, both at a
strategic and a tactical level. Examples of this include clinical quality management
and medical research.

A.2 Data Warehousing 155

Compared to an ordinary clinical decision support systems (CDSS), the DW has a
much broader scope. Typically CDSS’s are specialized for one very specific purpose,
with an emphasis on a deep level of functionality. There is a very limited possibility
of asking “new” questions. On the other hand, the DW has an emphasis on the data it-
self, providing a possibility to combine all the kinds of data in the enterprise, and thus
more easily answer unanticipated questions. Instead of just providing a set of fixed
reports, an explorative way of working with the data is encouraged and supported.

To allow for comparison of the systems to be covered in Section 3, we list seven
different criteria, that a full-blown clinical DW should meet in order to provide full
business value for the user.

The system should beopen, i.e., it should allow integration with systems or com-
ponents from other vendors. This is very important, as systems without this ability
will lock users into a proprietary, non-extensible solution, which almost surely will
not support all their needs.

The system should have features for importing data fromexternal systems, e.g.,
laboratory systems, into the DW. Without this feature, the system cannot be con-
sidered a “true” DW, as users will have to reenter data into the DW system to gain
advantage of it. This will mean both extra work and more data errors, which will
severely limit the usefulness of the system.

A full-blown clinical DW should supportall the types of dataimportant to the
healthcare enterprise, including financial data (F) such as billing and contracts, de-
mographic data (D) such as age and sex, clinical data (C) such as diagnoses and
procedures, numerical data (N) such as lab results, and image data (I) such as x-rays.
If all kinds of data are not supported in the DW system, the possibility of combining
data to gain new knowledge will be severely limited, thus diminishing the business
value of the DW.

Next, a clinical DW system should support data analysis at several levels. The
lowest level is thepatientlevel, where data about the individual patient can be viewed
and analyzed, e.g., to find a pattern in the development of a disease for a particular
patient. This level of analysis focuses on giving the particular patient the best pos-
sible treatment, and is thus important for thepracticeof care. The next level is the
group level, where data about a group of patients, e.g., patients having a particular
disease, is analyzed. One application of this is clinical quality management, where
treatments and outcomes are analyzed and compared to norms in order to identify
how the care process can be enhanced. This level focuses onmedical researchand
care improvement, and is thus important from a morescientificpoint of view. The top
level is that of the healthcareenterprise, where clinical, financial, and demographic
data are combined to investigate the profitability and overall quality of the services
provided. This level of analysis focuses on overall performance of the enterprise and
is thus important from amanagementperspective.

We also list if the systems have any particularadvanced featuresthat makes them
stand out from the rest such as support for drug development or predefined disease
studies. These features may be very important for some users, e.g., the pharmaceuti-
cal industry, while others have different demands.

156 Clinical Data Warehousing — A Survey

A.3 Clinical Data Warehousing Systems

We will now examine the current state-of-the-art of clinical data warehousing by de-
scribing the most important efforts we have encountered so far. The first five sections
describe commercial data warehouse products, while last three describe specific clin-
ical data warehouse projects. The list is not meant to be exhaustive, but we believe
that it is representative for the current state of affairs. For all DW application areas,
most of the work has been done in industry, rather than in scientific environments.
Compared to using DW for business purposes, clinical data warehousing is still in its
infancy, with only a few providers and no wide-spread use. It is, however, recognized
as an important and emerging field presenting tough challenges [3].

Open Ext. Data Datatypes Patient Group Enterprise Advanced Features
CC No Yes C,N Yes Yes No Collaborative info
OC Yes No C,N Yes Yes No Drug development
SAS Yes Yes C,N Yes Yes No Drug development
Ma Yes Yes F,C,N Yes Yes No Disease studies
IAI Yes Yes F,D,C,N Yes Yes Yes Longitudinal studies
SMS Yes Yes F,D,C,N Yes Yes Yes Rules Engine
QI No No C,N No Yes No Very large database
TUCH No No C No Yes No None
SMI No Yes C,N No No No Temporal, protocols

CC: Clinical Computing; OC: Oracle Clinical; SAS: SAS Institute; Ma: MEDai; IAI: Information
Architects Inc.; SMS: Shared Medical Systems; QI: Quest Informatics; TUCH: Turku University

Central Hospital; SMI: Stanford Medical Informatics

Table A.1: Comparison of Clinical DW Systems

A.3.1 Oracle and Partners

As one of the major DW players, with an extensive consulting business and a great
number of partners, the Oracle corporation has been involved in a lot of DW projects,
including some of the clinical variety.

Clinical Computing [89], an Oracle partner, provides the di-Proton/Clinical Data
Warehouse solution that is aimed at renal, i.e., kidney function, information manage-
ment. The management of information such as treatment assessments, dialysis equip-
ment checks, interdialytic vital signs, complications, procedures, medications, and
infection history is supported. This enables analysis of core clinical indicators and
outcomes. Interfaces to laboratory systems and dialysis machines facilitates the data
collection process. An interesting feature is that collaborative care information such
as nutritional recommendations, psychosocial assessments, etc., is also recorded, pro-
viding a larger picture of the patient’s status. Table A.1 summarizes the evaluation of
each DW effort covered in this section according to the criteria given in Section 2.

Recently, Oracle Inc. itself ventured into the clinical world with the release of
Oracle Clinical [90], the first in the Oracle Pharmaceutical suite of applications. The
product is meant to address the needs of large, pharmaceutical companies for man-

A.3 Clinical Data Warehousing Systems 157

aging information about the extensive clinical trials that are needed to test a new
drug. This involves meeting strict government regulations as well as facing hard
competition. Previous, the companies had to build their own applications for each
series of trials, resulting in very high costs and longer development cycles. The prod-
uct is already in use at several major companies, including Boehringer IngelHeim,
Genentech, and Hoffmann-La Roche. The core product will later be supplemented
by products supporting adverse event handling, remote data entry, and data analysis,
the objective being to provide a complete turn-key solution for the industry.

A.3.2 SAS Institute

Another major player in the DW market, SAS Institute, a long-time champion in
the data analysis marketplace, has recently introduced the SAS Pharmatechnology
Process [109], a clinical data warehouse framework for the specific needs of clinical
research. The cornerstone in the framework is SAS/PH-Clinical, a software system
for assimilating and reviewing data from clinical trials.

The product already supports the review process, and is being further developed
to support all the processes involved in developing a new drug, such as laboratory
analysis and pharmacokinetics. The product allows the clinical trials data to be
viewed in spreadsheet or graphical form. The patient population may be subsetted
based on specific attributes, test results or the treatment protocol used, and the subset
may be compared to other subsets or the complete patient population. The data is
usually displayed in summary form, but the user may drill down to watch the com-
plete patient history, e.g., when an anomaly occurs. Both ad-hoc data exploration and
standardized reporting is supported.

The system is not a complete clinical data warehouse in itself, but it may be used
with SAS Institute’s Data Warehouse Administrator to build such a solution. Indeed,
a clinical data warehouse is a very central part in SAS Institute’s visions for the use of
information in the health care industry [110]. These include data warehousing, con-
tinuous quality improvement, outcomes management, health plan management, and
utilization analysis. Especially interesting on the clinical side is the focus on using
data mining and OLAP techniques to identify key clinical indicators, thus improving
the quality of care.

SAS Institute has several partners in this area, including Xerox for document
integration, and Oracle for integration with the Oracle Clinical software [111]. It is
possible to map views defined in Oracle Clinical into the study definitions that are
required by SAS/PH-Clinical in a reasonably straightforward way, transferring both
data and metadata from Oracle Clinical. This allows the rich data analysis features
offered by the SAS System to be used for clinical data analysis.

A.3.3 MEDai

MEDai is a company focused on utilizing Artificial Intelligence (AI) techniques for
health care data analysis. They provide the Clinical Decision Support System (CDSS)
[73], which is a data warehouse/clinical data repository with powerful analytical ca-
pabilities. The CDSS system can extract data from existing hospital systems to pro-

158 Clinical Data Warehousing — A Survey

vide both clinical and financial data. It allows for comparison of performance to
norms, both at the facility and physician level. It also provides outcome analysis and
has facilities for the development of treatment protocols. AI techniques are used for
severity/risk adjustment for the patients, and data mining and drill down capabilities
allow for data exploration. A distinguishing feature is the more than 20 predefined
“disease studies” for data analysis, covering more than 80 percent of normal ad-
missions. These include pneumonia, cesarean sections, chest pain/coronary artery
disease, HIV, asthma, diabetes mellitus, and migraine. This makes it possible to im-
mediately perform data analysis of the most common diseases.

A.3.4 Information Architects Inc.

In a data warehouse, different types of data are integrated to get a complete view of
an enterprise. This is what Information Architects Inc. (IAI) makes possible with
it’s “healthcare information warehouse” product [55]. In this system, administrative,
financial, and clinical data are integrated to provide a foundation for measuring both
cost and value of the services delivered in the healthcare delivery process. The data
warehouse consists of more than 200 tables, with integrated desktop reporting and
server-side tools. It supports quality-of-care reporting, provider comparisons, out-
come analysis using advanced statistics, and longitudinal health studies. Categories
of care and treatment groups are supported for summary information, with associated
norms for comparison of performance. The system is highly scalable, ranging from
PC servers to Massively Parallel Processor (MPP) machines.

A.3.5 Shared Medical Systems

Shared Medical Systems (SMS) have a long history in the healthcare informatics
business. Their product line Novius.ihn [114] is aimed at the Integrated Health Net-
work (IHN) market, and has several interesting features. It has an integrated DW
that standardizes, stores, and manages demographic, financial, and clinical data from
across the IHN. A common vocabulary engine allows for the definition of terms and
relationships, which can then be used for the definition of clinical protocols. The
rules engine allows for transformation and abstraction of data. Relational data struc-
tures supporting analysis over time and aggregation are provided. The product has
an integrated management solutions component for strategic and tactical analysis. A
quality management component providing study definition, indicator derivation, and
statistical analysis is available as an option. The DW is well integrated with the wide
range of clinical operational system that SMS offers and has support for receiving
data in many formats, including EDI. This provides for easy acquisition of quality
DW data.

A.3.6 Quest Informatics

The clinical data warehouse run by Quest Informatics [123] may well be the currently
largest clinical data repository. Each week, 20 million new test results are loaded,
and the system is predicted to break the terabyte (1000 GB) barrier in the near future,
making it a very large DW by any standard. The system is used by Quest Informatics

A.3 Clinical Data Warehousing Systems 159

to turn the vast amount of lab results received from Quest Diagnostics Incorporated
into valuable knowledge. This information is then employed by the users of Quest
to improve their healthcare delivery. This is done by offering summary data, includ-
ing comparisons between the users’ patients and a standard patient population, thus
identifying the broad areas of improvement. The user can then drill down to more
detailed levels, getting the specific information about where improvements may be
possible. The demands to the system are very tough; it must be very flexible to meet
changing customer requirements, while still being able to perform effectively on the
vast amounts of data.

A.3.7 Turku University Central Hospital

One of the only European efforts in the area is reported by Turku University Cen-
tral Hospital in Finland [83]. The system integrates data from several hospital and
laboratory information systems to provide a broad view of clinical data suitable for
research. The system is comprised of a data transportation tool, a data warehouse
database, and a proprietary front-end query tool. The DW has primarily been used
in two studies, one on drug-laboratory interference and one on drug-drug interac-
tions. The first study is concerned with the interference of drug prescription with
the thyrotropin (TSH) test and determines how often drugs affecting the TSH test are
prescribed. In fact, 11.6% of drug prescriptions turned out to interfere with the TSH
test. The second study concerned drug interactions for nephrological patients, and the
results were used in developing a drug interaction reminder system. An interesting
issue in clinical data warehousing is noted, namely that data protection is very im-
portant due to the sensitive nature of clinical data, as opposed to typical business data
warehouses. The project concludes that the presence of a clinical data warehouse is
very facilitating for clinical research, as it provides an easy way to get precise an-
swers to questions that otherwise often would not even have been asked due to the
difficulties in getting to the data.

A.3.8 Stanford Medical Informatics

The efforts done at the Department of Medical Informatics at Stanford University are
highly relevant to clinical data warehousing, although their approach to clinical data
analysis is not strictly in the DW category.

An important aspect in any DW is integration of heterogeneous source data. This
problem has been treated by the TransFER [120] project, which has developed a
method for a query on a single, integrated, global schema to be translated to queries
against the relevant local schemas, combining the results in the end. However, unlike
the data warehouse approach, data in the global schema is not materialized, but only
kept in the local databases.

Support for clinical treatment protocols is very important in clinical information
systems. The EON project [121] has studied how to formally represent and reason
about clinical protocols. A domain model of clinical concepts, suitable for protocol-
based care has been developed, along with appropriate problem-solving methods.
Representation and reasoning abouttimeplays a very central role in clinical systems,

160 Clinical Data Warehousing — A Survey

and as part of the EON project, the Tzolkin Temporal Data Management System
[122] has been developed to allow temporal abstractions of raw clinical data, i.e.,
identify the time periods when certain clinical generalizations are true.

A.4 Discussion and Summary

In this section, we discuss the relative merits of the products and projects covered in
Section 3, look at future prospects, and offer concluding remarks.

The DW at Turku University solves a specific problem, but does not have general
applicability, and is thus not interesting for the general customer. Clinical Computing
offers a good system, but it is limited to the renal domain. Quest Informatics has an
impressive system in terms of data volume, but it is still a proprietary system designed
specially for the company. Oracle Clinical and SAS/PH-Clinical both are feature-rich
products targeted at an entire industry. Especially the SAS product seems to offer a
high level of functionality. Their drawback is that they are not optimized for ordinary
clinical functions, but rather for the highly specialized process of pharmaceutical
drug development. The work at Stanford Medical Informatics is very interesting
and touches on many of the core issues in clinical data warehousing. However, data
warehousing as such is not treated, and no products are offered. It is the systems
from MEDai, IAI, and SMS that are the most interesting. MEDai employs advanced
AI techniques for data analysis, including predefined disease studies. SMS offers the
widest range of clinical operational systems, and thus achieves very good integration
with operational data, along with advanced functionality such as support for protocols
and rules. IAI perhaps has the most “true DW” offering, with their integration of
administrative, financial, and clinical information, supported by integrated analysis
tools. Selecting one system out of these three must be based on the particular needs
of the customer.

The future of clinical data warehousing looks very bright indeed, provided that
the systems of tomorrow can fulfill the real needs of clinicians for data analysis, most
of which are not well supported by current commercial products. The needs include
a richer data model for capturing more of the semantics of the data, advanced tempo-
ral support to allow for analysis of data that change over time, support for advanced
queries on continuously valued data, e.g., advanced statistics, and intelligent integra-
tion of very complex data, e.g., x-rays, in the DW for analysis purposes. Support for
reducing the complexity of the data while still maintaining the essence is also very
much needed, as well as means of handling the advanced classification structures
employed in medicine. The concepts of clinical treatment protocols and medical
research should also be tightly integrated into the clinical DW.

To summarize, we have introduced the concept of a data warehouse and described
how it is used in a clinical setting. We have described the efforts in the area of clinical
data warehousing and seen what products might be interesting for the general clinical
customer. We think that the use of data warehouses in clinical settings will explode
in the coming years, as systems mature and the clinicians realize the potential of
using their data for quality improvement and research. We are currently working

A.4 Discussion and Summary 161

to meet some of the important challenges to data warehousing provided by clinical
applications.

162 Clinical Data Warehousing — A Survey

Appendix B

The TreeScape System: Reuse of
Pre-Computed Aggregates over
Irregular OLAP Hierarchies

B.1 Introduction

In order to improve query performance, modern On-Line Analytical Processing
(OLAP) systems use a technique known aspractical pre-aggregation, wherese-
lect combinations of aggregate queries are materialized and re-used when comput-
ing other aggregates; full pre-aggregation, where all combinations of aggregates are
materialized, is infeasible, as it typically causes a blowup in storage requirements of
200–500 times the size of the raw data [86, 117]. Normally, practical pre-aggregation
requires the dimension hierarchies to be regular, i.e., to be balanced trees, but this is
quite often not the case in real-world systems.

The TreeScape system presented here enables practical pre-aggregation even for
irregular hierarchies, based on techniques described previously by the authors [97].
We show how to achieve practical pre-aggregation through transformations of the
dimensions and how the transformations can be accomplished transparently to the
user. The system enables the achievement of fast query response while saving huge
amounts of storage compared to current OLAP systems and techniques. The proto-
type implementation of TreeScape demonstrates that these benefits may be achieved
with standard technology. While this demonstration uses a particular RDBMS, it’s
ODBC driver, and particular relational OLAP tool, TreeScape is not dependent on
any specific suite of products1, making the solution flexible and useful.

B.2 Normalizing Hierarchies

We use a small case study concerning patients and their diagnoses for illustrating the
workings of the system. Diagnoses have three different levels of precision, depending

1The solution assumes that an ODBC interface is available for the RDBMS, a requirement that is
met for all commercial RDBMSs.

163

164 The TreeScape System

on how accurate a patient’s condition can be described. The most precise diagnoses
are low-level diagnoses, which are grouped intodiagnosis families, which, in turn,
are grouped into diagnosis groups. The example data consists of 9 diagnoses and
their hierarchical relationship, along with patient counts. The data can be seen in
Table B.1 and to the left in Figure B.1.

5 6

4,9 4,10

4 9 10

11,12

12 11

L14

14

14

13

13

5 6

4 9 10

12 11

14

13

T T

Figure B.1: Dimension Transformations

ID Text Type
4 Diabetes during pregnancy Family
5 Insulin dependent diabetes during pregnancy Low-Level
6 Non insulin dependent diabetes during pregnancyLow-Level
9 Insulin dependent diabetes Family
10 Non insulin dependent diabetes Family
11 Diabetes Group
12 Pregnancy related Group
13 Cancer Group
14 Lung cancer Family

Diagnosis

ParentID ChildID
4 5
4 6
9 5
10 6
11 9
11 10
12 4
13 14

Grouping

DiagID Count
5 1

Patient

Table B.1: Case Study Tables

The hierarchy is irregular. For example, it is unbalanced because the diagnosis
“Lung cancer” (14) has no low-level diagnoses associated with it. The hierarchy is
non-strict because, e.g., diagnosis 4 (“Diabetes during pregnancy”) has several par-

B.3 System Architecture 165

ents. As a result, problems occur when pre-aggregated data is used, e.g., at the low-
level diagnosis level, to compute results such as the number of patients per diagnosis
group. The problems include double-counting data and not counting data that should
be counted, which leads to incorrect results.

A solution of the problems with pre-aggregation is to render the hierarchies well-
behaved bynormalizingthem. Informally, the normalization process introduces new
placeholdervalues where the hierarchy is unbalanced, and introducesfusedvalues
that representsets ofparent values when child values have multiple parents. The
result of normalizing the hierarchy described above is seen to the right in Figure B.1.
For example, value “L14” representing “Lung Cancer” at the low-level diagnosis
level, and value “4,9” representing the set of diagnosesf4; 9g are introduced by
the normalization. In the figure, all boldface values and links have been added by
the normalization process. The normalization technique is described in detail else-
where [97].

The normalized hierarchy supports practical pre-aggregation. For example, it is
possible to store counts of patients at the low-level diagnosis level, and then re-use
these to compute the counts for diagnosis families and diagnosis groups. With the
example data (one patient with diagnosis 5), this will only require the storage of the
one value versus six values being required forfull pre-aggregation (one value for low-
level diagnosis5, two values for diagnosis families4 and9, two values for diagnosis
groups11 and12, and one value for>, which represents the total for all diagnoses).

The example is somewhat indicative of the storage savings achieved within a sin-
gle dimension. When several dimensions are combined, the total space saved (with
respect to full pre-aggregation) is the product of the savings in each dimension, re-
sulting in savings factors of100 or more in practice. The savings occur because
of multidimensional sparseness[86, 117], the phenomenon of the multidimensional
space being very sparse for the lower levels in the dimensions, while quickly becom-
ing more dense at higher levels. The query response time using the normalization
approach will not be quite as fast as using full pre-aggregation, but will most likely
be comparable, i.e., within an order of magnitude. This is much faster than computing
the results from the base data, as would be required withno pre-aggregation.

B.3 System Architecture

While the hierarchy transformations enable practical pre-aggregation, they also have
the undesired side-effect of introducing new values into the hierarchies that are of
little meaning to the users. Thus, the transformations should remain invisible to the
users. This is achieved by working with two versions of each user-specified hierarchy
and by using a query rewrite mechanism. This is described in detail in Section B.4.
The overall system architecture is seen in Figure B.2.

The ROLAP client tool, in this case the ROLAP tool Synchrony, which originated
from Kimball’s Startracker tool [64], makes SQL requests to the ROLAP database,
in this case the Oracle8 RDBMS, using the ODBC standard. We have implemented a
special, query-transforming ODBC driver (QTOD) that, based on case-specific meta-
data, transforms the SQL requests into requests that hide the transformations from

166 The TreeScape System

ROLAP Client Tool

ROLAP DB
(Oracle)

Query-Transforming
ODBC Driver (QTOD)

Generic SQL

Generic
Transformed SQL

DBMS Specific
ODBC Driver

DBMS Specific
Transformed SQL

Figure B.2: System Architecture

the users, returning the query results that the user would expect based on the original
hierarchies. A transformed request is submitted to the OLAP DB using an RDBMS-
specific ODBC driver. The QTOD component is common to all RDBMSs, so Ora-
cle8 may be replaced by another RDBMS such as IBM DB2, Informix, or MS SQL
Server. Another ROLAP tool may also be used, making the solution quite general
and flexible.

We have chosen to base the prototype on an RDBMS (Oracle8) since RDBMSs
are the most commonly used platform for Data Warehouse and OLAP applications.
Additionally, the major RDBMSs now, like dedicated multidimensional DBMSes
(MDDBs), use pre-aggregated data for faster query responses [131]. However, the
approach could also be implemented using multidimensional technology, e.g., based
on the Microsoft OLE DB for OLAP standard [78].

The transformation algorithms are implemented in Oracle’s PL/SQL program-
ming language. The transformations are relatively fast, taking at most a few minutes,
even for large dimensions. Once the dimension hierarchies have been transformed,
the QTOD transforms queries and results between the original and transformed hi-
erarchies. The QTOD is a thin layer and adds very little overhead to queries. It
is implemented using GNU Flex++/Bison++ scanner/parser generators and the MS
Visual C++ compiler.

B.4 Implementation Specifics

Studies have shown that queries on a data warehouse consist of 80%navigational
queries, which explore the dimension hierarchies, and 20%aggregationqueries,
which aggregate the data at various levels of detail [64]. These two types of queries
are treated differently to give the user the illusion that the dimension hierarchies have
their original form.

B.4 Implementation Specifics 167

The multidimensional data is captured in astar schema[64]. The dimension table
for the Diagnosis dimension is given in Table B.2, which has one column for the low-
level diagnosis ID in addition to columns for the textual descriptions of low-level
diagnoses, diagnosis families, and diagnosis groups.

DiagID Lowlevel Family Group
5 Ins. dpndnt. diab. during pregn. Diab. during pregn. Diab.
5 Ins. dpndnt. diab. during pregn. Diab. during pregn. Pregn. related
5 Ins. dpndnt. diab. during pregn. Ins. dpndnt. diab. Diab.
6 Non Ins. dpndnt. diab. during pregn. Diab. during pregn. Diab.
6 Non Ins. dpndnt. diab. during pregn. Diab. during pregn. Pregn. related
6 Non Ins. dpndnt. diab. during pregn.Non Ins. dpndnt. diab. Diab.

100 !Lowlevel!Lung Cancer Lung cancer Cancer

Table B.2: DDiagnosis Dimension Table

The hierarchy captured in the table ispartially normalized, i.e., placeholder val-
ues have been introduced to balance the hierarchy (but it remains non-strict). Specif-
ically, the “!Lowlevel!Lung Cancer” placeholder value has been inserted into the
Low-level Diagnosis level. We prefix such values with a “!” and their level to indicate
that they are inserted by the transformation process. Note the multiple occurrences
of lower-level values caused by the non-strictness of the hierarchy. This is the table
that will be used for user navigation in the hierarchy. Its name is prefixed with a “D”
to distinguish it from another “Diagnosis” dimension table (described below), to be
used for aggregation queries.

We now describe how to achieve transformation transparency fornavigational
queries. The query below retrieves all low-level diagnosis names.

SELECT DISTINCT Lowlevel
FROM Diagnosis

Navigational queries issued by ROLAP tools have exactly this format. The query
is transformed by the QTOD into the query below, which operates against the table
DDiagnosis. The transformed query returns the result seen in Table B.3.

SELECT DISTINCT Lowlevel
FROM DDiagnosis
WHERE Lowlevel NOT LIKE ’!%’

Lowlevel
Insulin dependent diabetes during pregnancy

Non insulin dependent diabetes during pregnancy

Table B.3: Navigational Query Result

Due to the use ofDISTINCT as a quantifier, duplicates are not returned. The
NOT LIKE predicate removes the placeholder values inserted into the hierarchy to

168 The TreeScape System

balance it, which in this case is the value “!Lowlevel!Lung Cancer.” As desired, the
result is unaffected by the translations.

For aggregation queries, it is also possible to achieve transformation transpa-
rency, although this is more difficult. For dimensions with non-strictness, a special
dimension table is introduced that holds only the part of the normalized hierarchy
that doesnot contain non-strictness. In the normalized hierarchy to the right in Fig-
ure B.1, this part is the Low-level Diagnosis category and the two special categories
introduced by the normalization process to holdsets of diagnosis familiesandsets
of diagnosis groups, respectively. This part of the hierarchy is implemented in the
Diagnosis dimension table seen in Table B.4.

DiagID Lowlevel Family Group
1000020 !Low-level Diagnosis!Lung cancer 14 13

5 Insulin dpndnt. diabetes during pregn. 4,9 11,12
6 Non insulin dpndnt. diabetes during pregn.4,10 11,12

Diagnosis
Group SGroup
Cancer 13

Diabetes 11,12
Pregnancy Related 11,12

SGroup

Table B.4: Dimension and Group Tables for Aggregation

The “Lowlevel” column contains the normal textual diagnosis description, where-
as the special “Family” and “Group” columns contain comma-separated ordered lists
of the IDs of the sets of values that are represented by the column values. For exam-
ple, value “4,9” represents the setf4; 9g.

We need to capture the remaining part of the hierarchy, which consists of non-
strict mappings from a “set-of-X” category to the “X” category, e.g., the mapping
of the “set-of-Diagnosis Group” category to the “Diagnosis Group” category to the
right in Figure B.1, which mapsf13g to 13 (Cancer) andf11; 12g to 11 (Diabetes)
and12 (Pregnancy Related). This is done by introducing a special table for each such
mapping, named by the category prefixed with an “S” (for Set-of). For example, for
the Diagnosis Group category, table “SGroup” in Table B.4 maps sets of diagnosis
groups to the individual diagnosis groups in the sets. The “Group” column represents
the diagnosis group, while the “SGroup” column represents the associated set of
diagnosis groups.

With these tables available, it is possible to obtain transformation transparency
for aggregation queries. A ROLAP aggregation query has the format of the query
below that computes the number of patients per diagnosis group.

SELECT Diagnosis.Group, SUM(Patient.Count)
FROM Diagnosis,Patient
WHERE Diagnosis.DiagID=Patient.DiagID
GROUP BY Diagnosis.Group

B.5 Demonstration 169

This is transformed into the more complex query given next.

SELECT SGroup.Group, SUM(QQQQQQQ.Count)
FROM Sgroup,

(SELECT Diagnosis.Group,
SUM(Patient.Count) AS Count

FROM Diagnosis,Patient
WHERE Diagnosis.DiagID=Patient.DiagID
GROUP BY Diagnosis.Group) QQQQQQQ

WHERE QQQQQQQ.Group=SGroup.SGroup AND
SGroup.SGroup NOT LIKE ’!%’

GROUP BY SGroup.Sgroup

The transformed aggregation query has two parts. The nested table expression
computes the number of patients perset of diagnosis group, making this available
via correlation nameQQQQQQQ. This part of the hierarchy is a balanced tree, so the
RDBMS can safely use pre-aggregated data for optimizing the query performance.
The result of the nested table expression is used in the outer query, which aggregates
the last part of the way up to the diagnosis groups using the “SGroup” table. The outer
query also filters out any placeholder values inserted by the normalization process
(prefixed with a “!”). As a result, the client OLAP tool will retrieve the expected
result.

Good query performance without the use of excessive storage for pre-aggregated
data is obtained by using practical pre-aggregation for the “nice” part of the hierarchy
captured in the “Diagnosis” dimension table. The query transformation exemplified
here can be performed for all ROLAP aggregation queries, making the solution quite
general.

B.5 Demonstration

Based on concrete data from a real-world case study, the demonstration will ini-
tially show snapshots that illustrate the hierarchy normalization process. Next, query
processing will be demonstrated by means of concrete navigational and aggregation
queries. This includes a description of how the queries are transformed to hide the
hierarchy transformations from the user, as well as the evaluation of the queries on
concrete data. Finally, the demonstration will compare the query execution times
for the queries and the amount of storage required for pre-aggregated data with the
two alternatives to our approach, namelyno pre-aggregation, which gives very long
query response times, andfull pre-aggregation, which requires unrealistically large
amounts of storage for pre-aggregated data.

Supporting material in the form of slides and posters will be used in the demon-
stration.

170 The TreeScape System

Appendix C

OLAP++: Powerful and
Easy-to-Use Federations of OLAP
and Object Databases

C.1 Introduction

On-Line Analytical Processing (OLAP) systems provide good performance and ease-
of-use when retrieving summary information from very large amounts of data. How-
ever, the complex structures and relationships inherent in related non-summary data
are not handled well by OLAP systems. In contrast, object database systems are built
to handle such complexity, but do not support summary querying well.

This chapter presents OLAP++, a flexible, federated system that enables OLAP
users to exploit simultaneously the features of OLAP and object database systems.
In a previous paper [98], we have defined a comprehensive framework for handling
federations of OLAP and object databases, including the SumQL++ language that
allows OLAP systems to naturally support queries that refer to and retrieve data from
object databases. The OLAP++ system allows data to be handled using the most ap-
propriate data model and technology: OLAP systems for summary data and object
database systems for the more complex, general data. Also, the need for physical
integration of data is reduced considerably. We present a case study based on the
Transaction Processing Council (TPC) TPC-R benchmark [126]. The system is im-
plemented in C++ on top of the Object Protocol Model (OPM) system [15] and the
Microsoft SQL Server OLAP Services system [78].

C.2 Federations of OLAP and Object Databases

OLAP systems use a multidimensional view of data that typically categorizes data as
being measurable facts (measures) or dimensions, which are mostly textual and char-
acterize the facts. Dimensions are structured using categories (levels) that correspond
to the required levels of detail. Object systems use the familiar concepts of classes,
attributes, and relationships between classes. A federation between an OLAP and

171

172 OLAP++

an object database is defined by specifying a link between a category in the OLAP
database and a class in the object database.

Region

name

Nation

name

Supplier

key

Manufacturer

name

Part

key

OrderSummary

TotalOrders
TotalAmount

1

0..*

1
0..*

0..*

1

1

1..*

0..*

Fact Table

Region

key
name
comments

Part

key
name
mfgr
brand
parttype
partsize
container
retailprice
comments

Nation

key
name
population
area
language
comments

Supplier

key
name
address
phone
acctbal
comments

1

1

0..*

0..*

0..*

0..*

OLAP Schema Object Schemalinks

nationlink

partlink

supplierlink

1

Figure C.1: Schema of the Federation

Figure C.1 shows an example schema of a federation in UML notation. The
schema is based on the TPC-R benchmark [126], but has been divided into an OLAP
part and an object part. The measured facts in the OLAP schema are the total number
of orders and the total cost amount for the orders. The facts are characterized by
a Supplier dimension and a Manufacturer dimension. The Supplier dimension has
Customer, Nation, and Region categories that allow the facts to be summarized to
the required level of detail. The Manufacturer dimension has the categories Part
and Manufacturer. The object part of the schema has Region, Nation, Supplier, and
Part classes and relationships between them. Link nationlink connects the Nation
category in the OLAP part to the Nation class in the object part as indicated by the
dotted lines. Links supplierlink and partlink connect the Supplier category and class,
and the Part category and class, respectively. Below is an example SumQL++ query
for the schema.

C.3 System Architecture 173

SELECT TotalAmount INTO testdb
BY_CATEGORY Manufacturer, Nation
FROM OrderSummary
WHERE (Region = "ASIA") AND

Nation.nationlink.[Nation].population > 100,000,000

The above query gets the total cost amount for the two-dimensional cross product
of nation and manufacturer where the nations have populations beyond 100 million
and are in the Asian region. This query uses the link "nationlink" to go from the
OLAP schema to the object schema. The class name in the square brackets is optional
and is only specified here to indicate the class reached by going through the link.

C.3 System Architecture

The overall architecture of the federated system is seen in Figure C.2. The object part
of the system is based on the OPM tools [15] that implement the Object Data Man-
agement Group’s (ODMG) object data model [13] and the Object Query Language
(OQL) [13] on top of a relational DBMS, in this case the ORACLE RDBMS. The
OLAP part of the system is based on Microsoft’s SQL Server OLAP Services using
the Multi-Dimensional eXpressions (MDX) [78] query language. The GUI is imple-
mented as Java classes running in a standard Web browser for optimal flexibility.

Federation
Coordinator

SumQL-to-MDX
translator

Object-to-relational
(OPM) translator

Microsoft
SQL server

OLAP service

ORACLE
RDBMS

SumQL++

SumQL
Link

MetadataOQL

SQL MDX

Graphical
User Interface

Figure C.2: Architecture of the Federated System

174 OLAP++

When a SumQL++ query is received by the Federation Coordinator (FC), it is first
parsed to identify the measures, categories, links, classes and attributes referenced in
the query. Based on this, the FC then queries the metadata to get information about
which databases the object data and the OLAP data reside in and which categories
are linked to which classes.

Based on the object parts of the query, the FC then sends OQL queries to the
object databases to retrieve the data for which the particular conditions hold true.
This data is then put into a "pure" SumQL statement, i.e., without object references,
as a list of category values. This SumQL statement is then sent to the OLAP database
layer to retrieve the desired measures, grouped by the requested categories. The
SumQL statement is translated into MDX by a separate layer, the "SumQL-to-MDX
translator", and the data returned from OLAP Services is returned to the FC.

The reason for using the intermediate SumQL statements is to isolate the imple-
mentation of the OLAP data from the FC. As an another alternative, we have also
implemented a translator into SQL statements against a relational "star schema" de-
sign.

The system offers good query performance even for large databases while making
it possible to integrate existing OLAP data with external data in object databases in a
flexible way that can adapt quickly to changing query needs.

C.4 The Demonstration

The demonstration will show the specification of, and query processing for, specific
queries on a large TPC-R-based database. First, the use of the system will be demon-
strated. Second, we will describe the details of query processing in the system. In the
demonstration, we will also show how new federations can be specified "on-the-fly"
and used immediately. Supporting material in the form of slides and posters will be
used in the demonstration.

C.4.1 User Interface

The web screen interface shown in Figure C.3 shows how the user perceives the
specification of a SumQL++ query. Figure C.3 shows the selection of the summary
measure "TotalAmount". This is followed by the section with the category attributes
"Manufacturer" and "Nation". Note that each category can be selected from a "cat-
egory hierarchy". In the figure, "Nation" was selected from the "Region-Nation-
Supplier" category hierarchy. The order of the category grouping can be specified in
this screen as well by switching the dimension positions.

Figure C.4 shows the specification of query conditions. Initially, each dimension
is shown with its categories and links to the object database. If a category is selected,
a category condition can be entered. In the figure, Region= "ASIA" was selected. If
a link is clicked on, then the attributes of the object linked to are shown. The user can
select an attribute to specify a condition. In the figure, the condition "population >
100 Million" was selected through the "nationlink". The result of the above selections
is a concise SumQL++ query (the same query as the example in Section C.2), as
shown next.

C.4 The Demonstration 175

Figure C.3: Selection of Measures and Category Attributes

SELECT TotalAmount INTO testdb
BY_CATEGORY Manufacturer, Nation
FROM OrderSummary
WHERE (Region = "ASIA") AND

(Nation.nationlink.population > 100000000)

The result of this query is then displayed on the user’s screen, as shown in Fig-
ure C.5.

C.4.2 Query Processing

We now proceed to describe the steps in the query processing in more detail. After
the query is generated, the system parses the query to determine the OLAP and object
parts. For the example above the result of the parsing is:

176 OLAP++

Figure C.4: Specification of Conditions

SELECT TotalAmount INTO testdb
BY_CATEGORY Manufacturer, Nation
FROM OrderSummary
[AND]

predicate: CATEGORY = Region
no object path
——-> = "ASIA"

predicate: CATEGORY = Nation
LINK = nationlink
PATH = .
ATTR = population
——-> > 100000000

C.4 The Demonstration 177

Figure C.5: Query Result

Each link predicate is then evaluated by the object system. For example, the
following OQL query is passed to the object DB system to find the nations with a
population of more than 100 million:

SELECT name = @n001
FROM @n000IN tpcr:NATION, @n001 IN @n000.name
WHERE @n000.population > 100000000;

After the results are returned, they are used in the OLAP part of the system to
generate the following SumQL query that retrieves the desired data.

178 OLAP++

SELECT TotalAmount INTO testdb
BY_CATEGORY Manufacturer, Nation
FROM OrderSummary
WHERE (Region = ’ASIA’ AND

Nation IN (’BRAZIL’, ’INDIA’,
’INDONESIA’, ’JAPAN’,
’CHINA’, ’RUSSIA’,’UNITED STATES’))

This, in turn, gets translated into MDX as follows.

SELECT {[Measures].[L ExtendedPrice] } ON COLUMNS,
INTERSECT
(CROSSJOIN([Part_Manufacturer].[P Mfgr]. MEMBERS ,
DESCENDANTS([R Region Name].[ASIA],[N Nation Name],
SELF)),
CROSSJOIN([Part_Manufacturer].[P Mfgr]. MEMBERS ,
{[N Nation Name].[BRAZIL],[N Nation Name].[INDIA],
[N Nation Name].[INDONESIA],[N Nation Name].[JAPAN],
[N Nation Name].[CHINA],[N Nation Name].[RUSSIA],
[N Nation Name].[UNITED STATES]}))
ON ROWS
FROM OrderSummary

The result is then stored in the Oracle database "testdb," to make it available for
further processing, and converted to HTML for presentation to the user.

This section was intended to illustrate the amount of work that a user will have to
go through without the aid of the user interface and the federated translation tools. In
particular, we wish to emphasize the usefulness of the OLAP-object database links to
generate the combined result. Also, the users are spared the verbosity of MDX (which
is hidden from them). It is optional to display the concise SumQL++ expression to
the user, as a way to verify the correctness of the query.

We do not describe the specification of new links in this chapter. However, this
will be shown at the demonstration.

Appendix D

Summary in Danish

Denne afhandling omhandler datamodellering og forespørgselsudførsel for komplek-
se multidimensionelle data. Multidimensionelle data er blevet genstand for megen in-
teresse indenfor både den akademiske verden og erhvervslivet i de senere år, på grund
af populariteten af data warehousing og On-Line Analytical Processing (OLAP) ap-
plikationer.

Et applikationsområde hvor komplekse multidimensionelle data er almindelige,
er indenfor medicinsk informatik, et område der kan drage stor nytte af funktion-
aliteten der tilbydes af data warehousing og OLAP. Imidlertid stiller kliniske app-
likationers specielle natur nye og anderledes krav til data warehousing og OLAP
teknologierne, i forhold til kravene for konventionelle data warehousing applika-
tioner. Denne afhandling præsenterer et antal spændende, nye forskningsudfordringer
forårsaget af kliniske applikationer, som databaseforskningen kan arbejde på. Disse
inkluderer behovet for datamodelleringsegenskaber for komplekse data, avanceret
temporal understøttelse, avancerede klassifikationsstrukturer, data med kontinuerte
værdier, dimensionelt reducerede data, og integration af komplekse data.

OLAP systemer bruger typisk multidimensionelle datamodeller til at strukturere
deres data. Denne afhandling identificerer elleve modelleringskrav for multidimen-
sionelle datamodeller. Disse krav er udledt af en realistisk vurdering af komplekse
data fra virkelige applikationer. En inspektion af tolv multidimensionelle datamod-
eller afslører mangler i at opfylde nogle af kravene. Eksisterende modeller under-
støtter ikke mange-til-mange relationer mellem facts og dimensioner, har ikke in-
dbyggede mekanismer for at håndtere forandring og tid, mangler understøttelse af
upræcise data og er ikke i stand til at håndtere data med varierende granularitet.
Ydermere understøttede de fleste af modellerne ikke irregulære dimensionshierarkier
og aggregeringssemantik. Denne afhandling definerer en udvidet multidimensionel
datamodel og et algebraisk spørgesprog, som adresserer alle elleve krav. Denne
model genbruger de almindelige multidimensionelle begreber dimensionshierarki og
granulariteter til at beskrive upræcise data. For forespørgsler der ikke kan besvares
præcist p.g.a. upræcise data, foreslås teknikker der tager hensyn til upræcision i grup-
pering af data, i den efterfølgende aggregeringsberegning, og i præsentationen af det
upræcise result til brugen. Ydermere bliver der foreslået alternative forespørgsler der
er upåvirkede af upræcisionen. Datamodellen og de præsenterede forespørgselseval-
ueringsteknikker kan implementeres v.h.a. relationel databaseteknologi. Metoden er

179

180 Summary in Danish

også i stand til at udnytte multidimensionelle teknikker til forespørgselsudførelse så-
som præaggregering. Dette giver en praktisk løsning med lave ekstraomkostninger
for beregninger.

Præaggregering, hvor resultatet af aggregeringsforespørgsler materialiseres til
senere brug, er en essentiel teknik for at sikre tilfredsstillende svartid under dataanal-
yse. Fuld præaggregering, hvor alle kombinationer af aggregater bliver materialis-
eret, er ikke brugbart i praksis. I stedet for bruger moderne OLAP systemer praktisk
præaggregering, hvor kun udvalgte kombinationer af aggregater materialiseres og
disse genbruges til effektivt at beregne andre aggregater. Imidlertid er dette genbrug
af aggregater afhængig af at dimensionshierarkierne og relationerne mellem facts og
dimensioner opfylder strenge krav. Dette begrænser anvendelsesområdet for praktisk
præaggregering alvorligt. Denne afhandling udvider anvendelsesområdet for praktisk
præaggregering betydeligt, så det dækker en meget større mængde af realistiske situ-
ationer. Specifikt præsenteres algoritmer der transformerer “irregulære” dimension-
shierarkier and fact-dimensionsrelationer, som ofte forekommer i virkelige OLAP
applikationer, til regulære strukturer der kan bruges af eksisterende OLAP systemer
til at muliggøre praktisk præaggregering. Algoritmerne har lav beregningskomplek-
sitet og kan anvendes inkrementelt for at reducere omkostningerne ved at opdatere
OLAP strukturer. Transformationerne kan gøres transparente for brugeren. En pro-
totypeimplementation af teknikkerne er beskrevet.

OLAP systemer giver god ydelse og er lette at bruge for forespørgsler der ag-
gregerer store mængder af data. Imidlertid bliver de komplekse strukturer og re-
lationer som ofte findes i data i ikke-standard applikationer ikke understøttet godt af
OLAP systemer. I modsætning hertil er objektdatabasesystemer bygget til at håndtere
denne kompleksitet, men understøtter ikke OLAP forespørgsler godt. Denne afhan-
dling præsenterer begreberne og teknikkerne der understøtter et fleksibelt, “multi-
model” føderationssystem der gør OLAP brugere i stand til udnytte egenskaberne
ved OLAP og objekt systemer samtidigt. Systemet tillader data at blive håndteret
v.h.a. den mest velegnede teknologi: OLAP systemer for dimensionelle data og ob-
jektdatabasesystemer for mere komplekse, generelle data. Som en platform for at
demonstrere systemets evner defineres et prototypisk OLAP sprog der udvides til
naturligt at understøtte forespørgsler der involverer data i objektdatabaser. Spro-
get tillader selektionskriterier der refererer objektdata, forespørgsler der returnerer
kombinationer af OLAP og objekt-data og forespørgsler der grupperer data i.h.t. ob-
jektdata. Systemet er designet til at være aggregeringssikkert, forstået sådan at det
udnytter aggregeringssemantikken for data til at forhindre forkerte eller meningsløse
forespørgselsresultater. Disse egenskaber kan også integreres i eksisterende sprog.
En prototypeimplementation af systemet er beskrevet.

