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Abstract

Having accurate localization capability is becoming important for existing and

future terrestrial wireless communication systems, in particular for orthogonal

frequency-division multiplexing (OFDM) systems, such as WiMAX, wireless lo-

cal area network, long-term evolution (LTE) and its extension LTE-Advanced.

To obtain accurate position estimates, not only advanced estimation algorithms

are needed but also the transmitted signals should be scrutinized. In this dis-

sertation, we investigate how to design OFDM pilot signals and propose and

evaluate high accuracy ranging techniques with tractable computational com-

plexity for localization.

We first employ an important tool from radar theory, the ambiguity func-

tion, to assess the accuracy of joint delay and Doppler shift estimation using

a certain pilot signal. Accordingly, an optimal pilot signal should lead to an

ambiguity function with a narrow main-lobe and low side-lobes. It is found

that the equispaced and equipowered pilot signal (as used in LTE) results in

an ambiguity function with high side-lobes. We propose to use the Cramér-

Rao bound in combination with the normalized side-lobe level (NSL) of the

ambiguity function as figures of merit to devise the pilot signals. We then for-

mulate the pilot signal design problem as a constrained optimization problem

for which we propose a genetic algorithm to compute close-to-optimal solu-

tions. The proposed method is a sound choice in a single-path scenario and a

multi-path scenario with separable path components.

For scenarios where the number of path components is unknown and these

components are not necessary separable, we propose a direct ranging technique

using the received frequency-domain OFDM pilot signals. Compared to con-

ventional (two-step) ranging methods, which estimate intermediate parameters

such as the received signal strength, time-of-arrival, and biases introduced by

non-line-of-sight (NLOS) propagation, etc., the direct ranging approach esti-

mates the range from the received signal in one-step. This approach has the

merit that it avoids LOS and first-path detection problems, the requirement of

knowing the number of path components and it relaxes the separability condi-

tion of the path components. Employing a point process formulated channel

model, which allows us to compute the necessary moments of the received sig-
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nal, we propose and evaluate non-Bayesian and Bayesian range estimators. We

show by means of Monte Carlo simulations that the proposed estimators, while

exhibiting a tractable computational complexity, yield a significant ranging

accuracy gain as compared to the non-coherent correlator-based estimator.



Resumé

Pålidelig lokalisering af mobile enheder bliver I stigende grad vigtig for jord-

baserede trådløse kommunikationssystemer. Dette gør sig særligt gældende for

såkaldte “orthogonal frequency-division multiplexing” (OFDM) systemer, så-

som WiMAX, trådløse LAN netværk, LTE og udvidelsen LTE-A. For at opnå

præcis estimering af position, påkræves ikke kun avancerede algoritmer, men

også designet af OFDM pilot-signalerne skal undersøges. I denne afhandling

undersøger vi designet af OFDM pilot signaler. Vi foreslår og evaluerer afs-

tandsmålingsalgoritmer med høj præcision og overkommelig beregningsmæssig

kompleksitet.

Vi anvender først et vigtigt værktøj fra radar teori, tvetydighedsfunktionen,

til at evaluere nøjagtigheden ved samlet estimering af forsinkelse og Doppler

skifte under et givet pilot signal. Et optimalt pilot signal er kendetegnet ved

en tvetydighedsfunktion med smal hovedsløjfe og små sidesløjfer. Det viser

sig at ved ligelig fordeling af afstand og effekt mellem pilot signalerne (som i

LTE), opnås en tvetydighedsfunktion med store sidesløjfer. Vi foreslår bru-

gen af Cramér-Rao uligheden sammen med normaliseret sidesløjfe niveau af

tvetydighedsfunktionen som godhedstal for udvælgelsen af pilot signaler. Vi

formulerer derefter designet af pilot signalet som et begrænset optimeringsprob-

lem, for hvilket vi foreslår en genetisk algoritme der finder næsten-optimale løs-

ninger. Den foreslåede metode finder anvendelse i tilfælde med kun én enkelt

udbredelsesvej, samt når alle udbredelsesveje er velseparerede.

I tilfælde hvor antallet af udbredelsesveje er ukendt og udbredelsesvejene

ikke nødvendigvis kan separeres, foreslår vi en metode til direkte at beregne

afstande ved brug af de modtagne OFDM pilot signaler i frekvensdomænet.

Konventionelle afstandsberegningsmetoder fungerer i to trin, idet de først es-

timerer mellemliggende parametre såsom modtaget signal styrke, ankomsttid-

spunkt af udbredelsesveje og bias introduceret af ikke-sigtelinje udbredelse,

osv. Vores foreslåede metode fungerer, i modsætning til de konventionelle

metoder, i et enkelt trin og afstanden beregnes direkte fra the modtagne sig-

nal. Fordelen ved denne fremgangsmåde er at detektion af sigtelinje signalet

eller først ankomne udbredelsesvej undgås, antallet af udbredelsesveje ikke skal

kendes samt krav til adskilligheden af udbredelseskomponenterne undgås. Ved
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at antage en kanalmodel baseret på en punktproces foreslår og evaluerer vi

Bayesianske samt ikke-Bayesianske metoder til afstandsestimering. Ved hjælp

af Monte Carlo simulationer viser vi at de foreslåede metoder giver en bety-

delig forbedring i præcisionen af afstandsestimatet i forhold til ikke-kohærent

korrelations-baserede estimering.
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Introduction

With soaring number of smart devices, location-based services are becoming

important for terrestrial wireless systems [43]. Having location information

not only becomes a demand from network operators but also is a request from

the users’ perspective in many scenarios. With location information of the

subscribers, network operators can perform fraud detection, automated billing,

radio resource management, and predict channel information etc. [29]. For

users, services such as navigation and tracking, advertising, games etc. are be-

coming an important part of their daily lives. In addition, location information

can be exploited for rescue services required from E-911 in USA and E-112 in

Europe. Therefore, obtaining reliable location information can boost the users’

experience that the network operators deliver and increase the success rate of

rescuing.

Currently, global navigation satellite systems (GNSSs) are most often used

to provide these services. Well-known systems include the American Global

Positioning System (GPS), the Russian GLONASS, the European Galileo, and

the Chinese COMPASS. GNSSs deliver accurate location information if at least

four satellites are visible1 to the to-be-localized terminal at the same time, see

Fig. 1. In a synchronized GNSS, the geometric distance (range r) between

1It means that there is an unobstructed propagation path or direct path between a ter-
minal and the satellite’s antenna.

r1

r2

rN

Sat.1 Sat.2 Sat.N

Terminal

Fig. 1: To-be-localized terminal with N visible satellites (Sat.).
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s(t) y(t) TOA estimate
Channel

Parameter

estimation

Fig. 2: A block diagram of a communication/localization system with (known) transmit
signal s(t), unknown channel, and received signal y(t) which can be used for estimating the
TOA. Note that this diagram symbols not only a satellite-based localization system but also
positioning systems using other networks, for example the wireless communication networks.

Tx1 Tx2

Tx3

r1
r2

r3

Fig. 3: An example of localization using trilateration principle on a 2D map in a noiseless
scenario. The solid line indicates a constant range circle. The red triangular symbol marks
the position of the to-be-localized terminal.

a satellite and the terminal is firstly inferred from the time-of-arrival (TOA).

Fig. 2 shows a general system model for estimating the TOA. Typically, a

known signal s(t) is emitted at the terminal or a satellite. After passing through

an unknown channel, it is picked up at the receiver side as y(t), which can then

be used to estimate the TOA. Afterwards, trilateration is used to obtain the

position of a terminal based on the range estimates. Fig. 3 shows the principle

of trilateration on a 2D map. From one range estimate, the terminal infers that

its position is somewhere on a circle centered at a satellite position. Therefore,

in an ideal case, when at least three range estimates between the terminal and

the corresponding satellites are available, the intersection of the range circles

provides the terminal’s position unambiguously on a 2D map. To obtain a 3D

coordinate, at least four satellites are required.

The GNSSs’ operating condition, i.e. at least four visible satellites, is of-

ten not satisfied in indoor environments, city areas with high rise buildings,

or forestry etc. In these environments, multi-path propagation and non-LOS

(NLOS) condition prevail. If this happens, the positioning accuracy may be

significantly degraded [44] [45].
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When GNSSs fail to operate, terrestrial communication systems with lo-

calization capabilities are proposed to substitute, complement, or supplement

satellite-based positioning systems [33] [45]. For example, assisted GPS (A-

GPS) systems aim at improving the performance of GPS systems by exploit-

ing the current terrestrial communication networks, such as Global System

for Mobile (GSM) Communications, Wideband Code Division Multiple Access

(WCDMA), and Long Term Evolution (LTE) etc. In fact, these networks have

the potential to be stand-alone solutions for positioning since the deployed base

stations offer a high coverage, especially in urban canyons or inside buildings

where GPS precisely fails to operate.

State-of-the-art Localization Techniques

We now provide and discuss a brief overview of the state-of-the-art localization

techniques. We classify them into three categories:

Fingerprinting methods employ pattern matching techniques to obtain lo-

cation information [31] [45]. These methods rely on “off-line” collected

and stored fingerprints, which are location-dependent parameters sam-

pled at a specific grid of the considered environment. In the “on-line”

phase, a terminal obtains its position by matching the estimated pa-

rameters with those stored in the database. Potentially, this approach

is capable of providing reliable location estimation in NLOS conditions.

However, it may become inaccurate when the database is outdated due to

changes of the environment or movement of the transmitter or receiver.

Geometry-based algorithms exploit the received signal strength (RSS), an-

gle of arrival (AOA), and propagation delay [45] [55] [25], etc., for ranging

and positioning. Range estimators employing RSS techniques are used be-

cause of their low cost and many terminals are capable of estimating RSS.

However, they require an accurate path loss model and the estimation

error grows with increasing range. AOA methods reduce the number of

required measuring units at the expense of demanding multiple antennas.

This increases the manufacturing complexity and cost of hardware units,

especially for small devices. Furthermore, when a terminal is far from the

base station, small angle measurement errors may significantly degrade

the positioning accuracy [45]. Localization methods based on measuring

the propagation time between transmitter and receiver are widely de-

ployed in wireless communication systems [20]. Despite requiring accu-

rate synchronization between the transmitter and all the receivers, TOA

based methods are commonly preferred for systems with large bandwidth

or low complexity devices. Time-difference-of-arrival based methods re-

lease the requirement on the synchronization between the transmitter and

5
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Fig. 4: Block diagram of an OFDM system base-band representation.

receiver, but they still demand accurate synchronization between all the

receivers [45].

Direct positioning methods estimate a terminal position directly from the

observation of the received signals [37] [36]. In these techniques, the re-

ceived signals (raw measurements) from all base stations are collected and

then used at a central server unit to estimate the terminal position. They

potentially can improve the localization performance in multi-path envi-

ronments. However, jointly processing received signals from all available

base stations may introduce rather high computational complexity.

Among the above mentioned techniques, range-based localization is pre-

ferred and standardized in cellular networks [20] [25]. In this thesis, we in-

vestigate how to obtain reliable range estimates for localization in orthogonal

frequency-division multiplexing (OFDM) based communication systems. We

address two important aspects to achieve this goal, namely the design of optimal

transmit signals (typically pilot signals) and high-accuracy ranging algorithms.

In the following, we first introduce the signal model of an OFDM system to set

up the estimation problem. Then we lay out the focus of this thesis.

Signal Model for OFDM Transmission

In modern communication systems, OFDM has been widely used in many ex-

isting systems, such as WLAN, LTE and its extension LTE-A [48] [33]. This

technique is considered due to its flexibility in bandwidth utility, robustness to

multi-path propagation, simple synchronization and equalization schemes, and

its ability to achieve high data rates [1].

For simplicity, we consider a single-input single-output OFDM setup with N

sub-carriers and K symbols in a frame, see Fig. 4. An OFDM symbol with time

duration T is generated by multiplexing a sequence of data symbols and known

pilot symbols onto N orthogonal sub-carriers with frequency spacing ∆f = 1
T .
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i 7→ (n(i), k(i))

1 2 · · · K

1

2

.

.

.

N

Fig. 5: The structure of an OFDM frame with N = 12 subcarriers and K = 7 symbols. Each
square represents a resource element. Black and white squares indicate resource elements for
pilot and data symbols, respectively. We also show the ith pilot location and its mapping
function.

Afterwards, time domain symbols are obtained by applying an inverse Fourier

transform. Finally, a cyclic prefix of duration Tcp is appended to prevent inter-

symbol and inter-carrier interference.

At the pilot insertion stage in Fig. 4, Np = |Ip| pilots are multiplexed with

data symbols to form an OFDM frame, see Fig. 5, where Ip denotes the set of

pilot indices. The remaining resource elements are allocated for data symbols

with indices set Id. We further define the mapping

I→ {1, . . . ,N}× {1, . . . ,K} : i 7→ (n(i), k(i)),

where n(i) and k(i) specify respectively the sub-carrier and the OFDM symbol

index of resource element i. Accordingly, the complex based-band signal model

for the transmission of one OFDM frame reads

s(t) =
∑

i∈Ip

si(t)

︸ ︷︷ ︸

sp(t)

+
∑

i∈Id

si(t)

︸ ︷︷ ︸

sd(t)

(1)

with

si(t) =
1

√
Ep

aie
2πn(i)∆f (t−k(i)Tp)

where Ep is the pilot signal energy,  =
√
−1, and Tp = T + Tcp. In this thesis,

the term pilot signal embraces the pilot pattern (i.e. placement of pilots in an

OFDM frame) and signatures (i.e. amplitudes and phases).

The signal s(t) is then modulated to the carrier frequency and radiated to

a wireless medium, the so-called radio channel, before it is picked up at the

receiver side as y(t). In real environments, due to reflection, diffraction, scat-

tering, and noise, a superposition of different replicas of the transmit signal s(t)

7



plus noise contribution is observed at the receiver side. In addition, movements

of the transmitter or receiver or possibly changes in the surroundings may lead

to a time-varying channel. In mathematical form, the received signal y(t) is

given by

y(t) =

∫

h(t, τ)s(t− τ)dτ +N (t),

where the noise contribution N (t) is assumed to be a circular white com-

plex Gaussian process and the time-dependent channel impulse response h(t, τ)
reads

h(t, τ) = qα0δ(τ − τ0)e
−2πν0t +

L∑

l=1

αlδ(τ − τl)e
−2πνlt, (2)

where the lth multi-path component, l = 0, . . . ,L, is characterized by its com-

plex gain αl, delay τl, and Doppler shift νl. The LOS indicator q takes value 1

in a LOS condition and 0 otherwise. Accordingly, the channel transfer function,

i.e. the Fourier transform of h(t, τ) with respect to the delay variable τ , reads

H(t, f ) = qα0e
−2πfτ0e−2πν0t +

L∑

l=1

αle
−2πfτle−2πνlt. (3)

Based on these notations, we first optimize the pilot signals for estimating

range-related parameters such as TOA and Doppler shift based on a single

path channel assumption in Chapter 1.2. In a multi-path propagation scenario,

we then propose a ranging technique, which infers range r directly from the

received OFDM pilot signals in the frequency domain in Chapter 2.

Focus of the Thesis

To estimate the range for localization in OFDM communication systems, we fo-

cus on two topics, namely the design of OFDM pilot signals for estimating range

related parameters and novel ranging algorithms. In the first topic, we propose

close-to-optimal pilot signals for estimating delay and Doppler shift under a

single path channel and a multi-path channel with separable path components.

Using an important tool from radar theory, the ambiguity function, we show

that the state-of-the-art pilot signals are not optimal for estimating delay and

Doppler shift. In the second topic, we propose direct ranging methods, which

bypass the LOS condition and first-path detection problems and estimating the

number of path components.

The thesis essentially addresses two key research questions:

1. What is the optimal pilot signal sp(t) for estimating delay and Doppler

shift in single path or multi-path channels with well-separated path com-

ponents?

8



1. Pilot Signal Design for OFDM Systems

2. Relaxing the separability condition of the path components in the channel

response, how to improve ranging performance by developing novel rang-

ing algorithms with tractable computational complexity, which overcome

some challenges that the state-of-the-art range estimators are facing?

1 Pilot Signal Design for OFDM Systems

This section addresses Research Question 1. We first outline the state-of-the-art

pilot signals and their selected figures of merit in OFDM based communication

systems in Section 1.1. In Section 1.2, we emphasis our contributions on pilot

signal design for estimating the delay and Doppler shift. In principle, the

more resource elements are allocated for pilot symbols in an OFDM frame, see

Fig. 5, the better the performance to be obtained is expected. But the number

of allocated resource elements for data symbols is reduced that may lower the

data rate. Therefore, in the optimal case, we would like to employ as few pilots

as possible to keep certain constraints on a selected figure of merit satisfied.

In this thesis, we employ the same number of pilots as used in a LTE system.

Therefore, in the first topic of the thesis summarized in Section 1.2 and detailed

in Paper A, we focus on optimizing the pilot pattern and signatures based on

a proper selected channel model and figure of merit.

1.1 Pilot Signal Design for Communications

In communication systems, the traditional objective of pilot signal design is

to find parsimonious pilot signals that lead to efficient channel estimation in

OFDM receivers. Figures of merit such as the mean-square-error (MSE) of the

channel impulse or frequency response estimates, channel capacity/throughput,

outage probability, and bit error rate are widely used2 [50]:

Information theoretic metric. By using this metric, the objective is to

find optimal pilot signals that maximize Shannon’s capacity. Therefore,

mutual-information should be maximized with respect to the number,

pattern and signature of the pilots [3] [38] [32]. Unfortunately, depending

on the involved channel model, the required expression for the capacity

is often difficult to obtain [50]. In some cases, however, lower bounds of

the capacity can be derived. In this case, pilot signals are designed to

maximize such lower bounds given the channel estimates obtained at the

receiver.

Channel estimation error: MSE and Cramér-Rao bound (CRB).

Accurately estimating the channel impulse or frequency response is of

2Depending on the application, other figures of merit exist. Here we only outline some
commonly used criteria.
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great importance for decoding. Therefore, pilot signals are optimized

to minimize the MSE of the channel estimates [35] [8]. In addition, the

CRB is also widely used, since it is desirable that the design of pilot

signals does not depend on a specific estimation algorithm employed at

the receiver [12]. However, if the estimation problem is non-linear, the

CRB does not show at which SNR, the MSE deviates from the CRB,

see Fig. 7; therefore, the CRB is only a sensible figure of merit at high

SNR [18] [4].

Bit error rate (BER). For decoding purposes, the BER (or symbol error

rate) is the most appropriate performance metric. It is also one of the

most difficult metrics to characterize precisely. Using this metric, the

optimal or close-to-optimal pilot signal minimizes the BER [9] [58].

Peak to average power ratio (PAPR). A high PAPR reduces the effi-

ciency of power amplifiers. Accordingly, pilot signal can also be designed

to minimize PAPR [19].

For single-input single-output OFDM systems, equispaced and equipowered

pilot signals are shown to maximize the channel capacity [32] [38], minimize the

channel estimation error [34] [35], and minimize the BER [16] [19] in their con-

sidered scenarios. The optimal pilot signal for multiple-input-multiple-output-

OFDM can be found in [8] [34].

1.2 Pilot Signal Design for Delay and Doppler Shift Es-

timation

The demand from location-based services puts another requirement on the pilot

signals: they should be additionally designed to provide accurate positioning

performance. One way to improve localization performance is to obtain reliable

range estimates [20]. Therefore, it may be important to estimate range-related

parameters such as delay and Doppler shift. These estimates are also used

for synchronization, channel prediction etc. in communication systems. In

addition, delay and Doppler shift estimation is also relevant in many signal

processing areas, for example sonar/radar range and speed estimation, motion

detection and compensation in image processing to name a few.

We design the pilot signal sp(t) to obtain accurate estimation of the delay

and Doppler shift. For simplicity, we assume a single path channel. Accord-

ingly, the received signal y(t) reads

y(t) = qα0s(t;θ0) +N (t),

where θ0 = [τ0, ν0]. We further assume that the receiver employs a maximum-

likelihood (ML) estimator to estimate ψ0 = [θ0,α0]T based only on the obser-

vation of the pilot signal, i.e. we set sd(t) = 0 in (1). Therefore, maximizing

10



1. Pilot Signal Design for OFDM Systems

the log-likelihood function of the delay and Doppler shift is equivalent to max-

imizing [41]

∣
∣
∣
∣

∫

s∗
p(t;θ)y(t)dt

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∫

s∗
p(t;θ)sp(t;θ0)dt

︸ ︷︷ ︸

χ(θ,θ0)

+

∫

s∗
p(t;θ)N (t)dt

︸ ︷︷ ︸

W (θ)

∣
∣
∣
∣

2

(4)

in which the term χ(θ,θ0) is the so-called ambiguity function of sp(t) [52] [18]3.

It is a two-dimensional function characterizing the similarity between the trans-

mit signal and a version of itself shifted in delay and Doppler shift. In fact,the

ambiguity function [52] is an important tool in radar theory that is used to

assess the estimation accuracy in joint estimation of delay and Doppler shift

of a transmit signal. Setting ν = 0, we obtain the auto-correlation function

of sp(t). Selecting τ = 0, we obtain the Fourier transform of the squared

magnitude of the complex envelope sp(t).
The ambiguity function has some important properties [18] [52]:

• Symmetry with respect to θ0

|χ(θ,θ0)| = |χ(−θ,θ0)|. (5)

• Volume invariance property

∫ +∞

−∞

∫ +∞

−∞
|χ(θ,θ0)|2dτdν = Ep. (6)

• Maximum at θ0

|χ(θ,θ0)| ≤ |χ(θ0,θ0)| = Ep. (7)

If Ep = 1, we name χ(θ,θ0) as the normalized ambiguity function. We define

the normalized side-lobe level (NSL) of the ambiguity function as the magnitude

of its highest side-lobe.

Fig. 6 shows the magnitude of the ambiguity functions of a Dirac delta and

a practical band-limited signal. We observe that the ambiguity functions are

symmetric and exhibit their maximum at θ0. In fact, the ambiguity function in

Fig. 6(a) exhibits a desired behavior, namely a peaky main-lobe and no side-

lobes. But for band-limited signals, the corresponding ambiguity functions

exhibit a main-lobe and many side-lobes, see Fig. 6(b).

The ambiguity function is closely related to the achievable estimation ac-

curacy of the delay and Doppler shift. For a nonlinear estimation problem,

an example of a sketch of the typical behavior of the MSE of the delay and

Doppler shift is shown in Fig. 7. The CRBs for delay and Doppler shift de-

pend essentially on the curvature of the main-lobe of the ambiguity function at

3For wide-band signals, the definition of ambiguity function can be found in [30].
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Fig. 6: Examples of the ideal ambiguity function (a) and the ambiguity function of a
equipower, equispaced pilot signal (b). A contour plot of (b) is shown in (c). Without loss of
generality, we set θ0 = 0.
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Fig. 7: MSE of the delay or Doppler shift versus SNR.
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1. Pilot Signal Design for OFDM Systems

θ0 [18]. Narrowing the main-lobe in fact reduces the CRB. Due to the volume

invariance property, reducing the width of the main-lobe may increase the NSL.

The NSL is closely related to the SNR threshold at which the MSE starts to

significantly deviate from the CRB [4], see Fig. 7. The lower the NSL is, the

more robust the estimator is towards noise. Thus, the pilot signal design prob-

lem can be formulated as: we search for a pilot signal sp(t) with an ambiguity

function exhibiting a narrow main-lobe and low NSL.

In a single path scenario, the ML estimator for delay and Doppler shift is

a non-coherent correlator-based estimator, see (4). In a multi-path scenario

with separable path components, if a pilot signal has an ambiguity function

with sufficiently narrow main-lobe and low side-lobes, the objective function

(4) exhibits L well separated dominant peaks. Therefore, the non-coherent

correlator-based estimator is optimal since it achieves the CRBs [51]. Therefore,

using the ambiguity function to design pilot signal is a sound approach in single-

path and multi-path propagation scenarios with separable path components.

Applying the ambiguity function to design pilot signal becomes problem-

atic in multi-path scenarios where the path components are not necessarily

separable. Firstly, the computation of the CRBs for delay and Doppler shift

requires the number of path components to be known. If these components are

non-separable, reliably estimating its number is challenging. Even if the CRBs

are computable, they only are sensible measures of the accuracy of the delay

and Doppler shift at high SNR region. Secondly, it is difficult to define the

NSL for a multi-dimensional ambiguity function. Accordingly, to obtain the

optimal pilot signals in multi-path scenarios, we may need to resort to other

tools, which is not a part of this thesis.

1.3 Contributions of the Thesis: Close-to-optimal Pilot

Signals for Joint Estimation of Delay and Doppler

Shift

Paper A intends to answer Research Question 1. It addresses the problem of

searching for the optimal pilot signal of an OFDM system when the purpose is

to estimate the delay and Doppler shift under the assumption of a single-path

channel or a multi-path channel with resolvable path components. Inspired

from techniques from radar theory, we propose to use the CRB and the NSL

of the ambiguity function as figures of merit to devise the pilot signals. We

formulate the design problem as a constrained optimization problem for which

we propose a genetic algorithm that computes close-to-optimal solutions.

Several findings are reported in this paper. Firstly, the conventional equi-

spaced and equipowered pilot signal, as used in LTE, is suboptimal for joint

delay and Doppler estimation. It has an ambiguity function with a high NSL,

which causes the ML estimator to break down at rather high SNR. Secondly,

the proposed genetic algorithm generates pilot signals that minimize the NSL,
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y(t) or y θ̂ r̂ = g′(θ̂)Range-related

parameter estimation

Range

Estimation

Fig. 8: Two-step ranging. In the first block, one or more range-related intermediate param-
eters are estimated. The second block uses these estimates to infer the range r.

while maintaining the CRBs for the delay and Doppler shift below a target

value. The obtained pilot signals produce much lower NSL and CRBs as com-

pared to the state-of-the-art pilot signals. The results clearly exemplify that

the possible reduction in MSE of the delay and Doppler shift estimation can be

achieved with the same number of pilots by placing them in a better manner.

An important feature of the genetic algorithm is that it can generate close-to-

optimal pilot signals regardless of the OFDM frame size and the number of

pilots. Thirdly, the pilot pattern affects more significantly the NSL and the

CRBs than the pilot signatures.

We also obtained some results on the achievable BER using the proposed

pilot signals, but they are not published in open literature. We applied them

to uncoded and coded (convolutional and Turbo codes) OFDM systems with

winner filter applied for channel estimation. The results show that these pilot

signals show inferior BER as compared to the equispaced and equipowered

pilot signal. To balance the estimating accuracy of the delay and Doppler shift

and the BER, constraints on the channel estimation error could potentially

be added to the genetic algorithm. Another way could be to exploit more

advanced channel estimation algorithms instead of the winner filter.

.

2 Direct Ranging Techniques for Localization

This section addresses Research Question 2. In wireless communication sys-

tems, path components may become non-separable due to the system band-

width limitation. In addition, NLOS propagation prevails in indoor environ-

ments and densely populated areas in cities [56] [45] [5]. Under these conditions,

how to obtain reliable ranging techniques is still an open issue.

State-of-the-art Ranging Techniques

The existing ranging techniques follow a two-step approach, see Fig. 8. Firstly,

parameters, such as LOS condition, RSS, TOA, bias induced by NLOS prop-

agation, etc., are estimated from the received signal. Then, these estimates

are used for ranging. In the two-step approach, estimating TOA is essentially
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2. Direct Ranging Techniques for Localization

equivalent to detect the first arrival path component and estimate its delay.

Commonly, correlator-based, energy-detection-based [10], or multidimensional-

search-based estimators [42] [49] are employed to estimate the TOA:

Correlator-based estimators are instances of the ML estimator for delay

estimation under a single path channel assumption [18] [13] [33]. In

multi-path scenarios, where the first path component is not necessarily

the strongest or the multi-path components are not separable, the rang-

ing accuracy of correlator-based estimators deteriorates even for ultra-

wideband systems [11].

Energy-detection-based estimators offer a low-complexity method to de-

tect the first path component [21] [2] [10]. It is difficult to select a proper

threshold value as it highly depends on the noise level and the channel

condition. When the threshold value is set too small, early detection may

appear and when it is set too large, a miss detection of the first path may

lead to large ranging errors.

Multidimensional-search-based estimators estimate all path delays and

complex gains. This is similar to the channel estimation problem for

communication purposes. A ML TOA method based on OFDM signals

for a scenario with separable multi-path components has been proposed

in [51]. Due to the assumed separability (in the delay domain) of these

components, the obtained estimator converges to the correlator-based es-

timator. For the separability condition to hold, a large system bandwidth

is needed and even in this case it is not guaranteed that all path compo-

nents are separable. In [49], the authors derived the CRB on the MSE of

the range estimator and investigated how OFDM signal parameters and

the spacing between the multi-path components affect the bound. The

CRB is a lower bound for the MSE of the TOA estimator proposed in [42],

which requires estimation of the delays of all separable multi-path com-

ponents. The bound in [49] and the methods in [14] [51] [42] require the

knowledge of the exact number of path components, which is generally

difficult to estimate reliably. Furthermore, the required multidimensional

search is impractical for a realistic number of multi-path components. Po-

tentially, lower complexity iterative schemes, such as the SAGE (space-

alternating generalized expectation-maximization) algorithm [6], can be

applied. These schemes, however, require the knowledge of the number

of path components and might converge to a local maximum.

Under LOS conditions (with an example of power delay profile shown in

Fig. 9) where the LOS component is not blocked or faded, employing state-

of-the-art TOA estimators provides reliable range estimates when the SNR is

sufficiently high. When the system bandwidth is insufficient, the first-path
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Fig. 9: An example of the power delay profile in a LOS condition. The width of the pulse
depends on the system bandwidth. A threshold value is needed when energy-detection-based
estimators are employed.
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1st 2nd 3rdr
c

Fading/Blockage

Fig. 10: An example of the power delay profile in a NLOS condition. The first path
component is delayed and its amplitude is attenuated.

component is comprised of multiple non-separable path components and ex-

hibits fading. Under these conditions, the ranging performance degrades sig-

nificantly [56] [45]. In addition, the TOA estimators may be sensitive to NLOS

conditions. In a NLOS condition, where the first-path is delayed as shown in

Fig. 10, bias is introduced which may results in poor ranging and localization

performance.

To improve the ranging accuracy using the two-step ranging methods, LOS

detection and mitigation techniques are proposed to discern between the “LOS”

and “NLOS” range estimates. Detailed overviews of NLOS detection and mit-

igation techniques can be found in [24] [45]. Such an approach is reliable

provided a sufficient signal bandwidth and SNR [57] [27] [20] [46].

The LOS identification techniques can be classified into methods based on

range-estimate [23], position-estimate [54], and channel statistic [24]. The

channel-statistic-based methods include hypothesis-testing [22] [20] [23] and

machine-learning [46] [17] approaches. These methods are brought up based
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2. Direct Ranging Techniques for Localization

y(t) or y

Ranging
r̂ = g(y)

Fig. 11: Direct ranging.

on observations that certain features, such as complex amplitudes, mean de-

lay, excess delay, and root-mean-square (RMS) delay spread differ in “LOS”

or “NLOS” conditions. In [22], the kurtosis and mean excess and RMS delay

of the multi-path channel are assumed to be known to form a hypothesis test

to detect the LOS condition. The results in [47] indicate that employing the

RMS delay spread estimate provides a robust and computationally efficient

way to identify NLOS condition when ultra-wideband systems are employed.

The machine-learning approach in [46] [17] employs a subset of the features

of received signal amplitude and energy, rise time, mean excess delay, RMS

delay spread, or kurtosis to perform NLOS identification and mitigation using

support-vector-machine classifier and regressor. The NLOS identification step

labels range estimates as “LOS” or “NLOS” and thereafter use this information

for localization [53] [17]. The rational is that if the LOS condition can be cor-

rectly identified, this information helps improving the ranging and localization

accuracy.

To provide reliable range estimates, two-step ranging methods require LOS

or first-path detection, the knowledge on the number of path components or

the separability condition for these components. We remark that depending on

the selected range estimator, some of these requirements should be fulfilled. In

communication systems with limited bandwidth and SNR, reliable detection

of the LOS condition and first path and estimation of the number of path

components are challenging.

Direct Ranging Techniques

To bypass the LOS and first-path detection problems and obviate the require-

ment on the knowledge of the number of path components and their separability

condition, we propose a direct ranging technique as shown in Fig. 11. We as-

sume that the Doppler shift is negligible such that the multi-path channel in (2)

is time-invariant during the transmission of one OFDM symbol. Therefore, we

drop the time dependency in the following representation of channel transfer

function:

H(f ) = qα0e
−2πfτ0 +

L∑

l=1

αle
−2πfτl , (8)

where the random excess delays form a point process T = {τ1, τ2, . . .} with

intensity function ρ(τ). The shape of ρ(τ) controls the average number of
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points in T per time unit. Depending on the specific point process assumed,

the number L = |T | of multi-path components may be random and potentially

infinite. The adoption of a channel model formulated via a point process is

inspired from Turin’s pioneer work [15]. The point process perspective offers

not only simulation convenience to draw channel realizations, but also closed-

form analytical results to characterize channel properties by using tools such

as Campbell’s theorem [26].

Removing the cyclic prefix and concatenating the received pilot signals in

the observation vector y, for each OFDM symbol, we obtain

y = Ah + n, (9)

where A = diag{a1, . . . , aNp
} is a diagonal matrix with ai denoting the ith pilot

symbol, n is a circular white complex Gaussian noise vector with component

variance σ2. The column vector h contains samples of the channel transfer

function in (8).

Based on these notations, the direct ranging technique infers range r directly

from the observation y:

r̂ = g(y), (10)

where g(·) denotes a direct ranging estimator.

2.1 Maximum Likelihood Ranging

The direct ML estimator of r reads

r̂ML = arg max
r
p(y|r),

where p(y|r) denotes the likelihood function. When p(y|r) is unknown, an

approximate ML estimator can be applied, which is of the form

r̂AML = arg max
r
p̃(y|r), (11)

where p̃(y|r) denotes some approximation of the likelihood function p(y|r).

2.2 Bayesian Ranging Approach

If prior information on the range and LOS condition are available, we invoke

Bayesian inference for ranging. We consider here the range to be a random

variable with a priori pdf p(r) with mean µr and variance σ2
r . We model the

LOS condition indicator q as a Bernoulli random variable with pLOS = p(q =
1). Therefore, Bayesian estimators such as the maximum a posteriori (MAP)

estimator and minimum mean-squared error (MMSE) estimators can be applied

provided that the required pdfs are available. If higher-order moments of y are

available, a pth-order polynomial MMSE estimator [39] can be applied.
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Approximate MAP Estimator

A MAP estimator selects r̂ to maximize the posterior probability density func-

tion p(r|y) [28]:

r̂MAP = arg max
r
p(r|y)

= arg max
r
p(y|r)p(r).

When p(y|r) is unknown, using an approximation p̃(y|r) yields

r̂AMAP = arg max
r

ln p̃(y|r) + ln p(r). (12)

The difference with the approximate ML estimator in (11) is that prior p(r) is

employed which potentially can be used to increase the ranging accuracy.

Approximate MMSE Estimator

The MMSE estimator for range r reads

r̂MMSE = E[r|y]

=
1

∫
p(y|r)p(r)dr

∫

rp(y|r)p(r)dr.

When p(y|r) is unknown, we approximate p(y|r) with p̃(y|r). The resulting

approximate MMSE estimator is given by

r̂AMMSE =
1

∫
p̃(y|r)p(r)dr

∫

rp̃(y|r)p(r)dr. (13)

For a general p(r), a closed-form expression for the right-hand side of (13)

may become difficult to obtain or does not exist. Instead, we may resort to

numerical evaluation of the two 1D integrals in (13).

Similar to the approximate ML and MAP estimators, the performance of

the approximate MMSE estimator (13) depends on the accuracy of the ap-

proximation of the likelihood function p(y|r). Depending on the employed pdf

approximation, implementing (11) and (12) may require numerical searching

procedures. Therefore, there is a tradeoff between the searching grid and the

ranging accuracy. This dilemma does not exist if the approximate MMSE esti-

mator is employed. Instead, it may require the evaluation of two 1D integrals

in (13).

A pth-order Polynomial MMSE Estimator

When the pdf of the observation y is unknown but its higher-order moments are

known or can be reliably estimated, a pth-order polynomial MMSE estimator

can be employed. Such an estimator has been applied to estimate the amplitude

of a real signal [39]. For complex signals, widely linear4 MMSE (p = 1) and

4Discussions of the terminology “widely linear” can be found in [40].
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widely linear quadratic MMSE (p = 2) estimators have been investigated in [7]

and [40]. We generalize their results to complex signals. For a given p =
1, 2, . . ., the pth-order polynomial MMSE estimator can be formulated as

r̂(y) = β∗
0 +

∑

i♦
1

β∗
i♦
1

y
♦i1
i1

+ · · ·+
∑

i♦
1

,...,i♦p

β∗
i♦
1

,...,i♦p
y
♦i1
i1
· · · y♦ip

ip
, (14)

where we adopt the notation y
♦i
i from [40] with ♦i indicating whether or not

yi is conjugated and i♦ = (i,♦i). Thus, the sum over i♦ includes 2N terms.

We recast the expression (14) in a vector form as

r̂(y) = β∗
0 + βHz, (15)

where the column vector z has entries y
♦i1
i1
· · · y♦ip

ip
with the associated coeffi-

cients arranged in β.

Using the orthogonality principle to compute the coefficients in (15), we

obtain

r̂(y) = µr +CrzC
−1
zz(z−E[z]), (16)

where

Crz = E[(r− µr)(z−E[z])H ],

Czz = E[(z−E[z])(z−E[z])H ].

As compared to the approximate MAP (12) and MMSE estimators (13), an

advantage of the pth-order polynomial MMSE estimator is that no approxima-

tion on the pdf of y is needed. Instead, it requires that all the cross moments of

y and r up to order p and all the moments of y up to order 2p to be known or

can be reliably estimated. In addition, the covariance matrix in (16) is assumed

to be invertible.

2.3 Contributions to the Thesis: Non-Bayesian and

Bayesian Direct Ranging Techniques

Paper B: Maximum Likelihood Direct Ranging via Gaussian Approx-

imations

We propose an approximate ML estimator for direct ranging. In contrast to

estimators which require a multidimensional search procedure, the proposed

estimator does not require the knowledge of the number of multi-path compo-

nents in the channel response and these components to be separable. If the

power delay spectrum of the channel and SNR are known, the computational

complexity of the proposed estimator is tractable. In the single-path scenario,

the non-coherent correlator-based estimator coincides with the proposed ap-

proximate ML estimator. In multi-path scenarios, the proposed estimator sig-

nificantly outperforms the non-coherent correlator-based estimator.
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To derive the second-order moments of the received frequency domain sig-

nal, we employ a channel model formulated via a point process approach, which

allows for the application of Campbell’s theorem to conveniently compute the

required moments of the received signal [26]. Note that this formulation is

also quite attractive for the simulation of a multi-path channel in which the

path component delays and their number are random [26]. An additional find-

ing is that both the proposed and correlator-based estimators achieve higher

estimation accuracy when a random pilot pattern is employed instead of the

uniform pilot pattern, as currently used in LTE. This is due to the fact that

the uniform pilot signal causes high side-lobes in the objective function. This

might be eliminated by selecting a proper search range for the objective func-

tion, which, however, would lead to significant constraints on the obtainable

estimation range.

Paper C: Bayesian Ranging with Known LOS Condition

We employ prior information of range r for ranging assuming the LOS condition

is known. In contrast to the ML estimator, we address the direct ranging

problem via Bayesian estimators, namely MAP, linear MMSE, and MMSE

estimators. The first finding of this work is that these estimators cannot be

directly applied since the pdf of the received frequency-domain OFDM signal is

unknown. Instead, we propose approximate versions of these estimators which

employ approximations on the pdf of received pilot signals in the frequency

domain.

Employing any multi-path channel model which makes the computation of

the first- and second-order moments of the received signal possible, approx-

imate MAP and MMSE estimators can be applied. If the channel model is

formulated as a Poisson point process (the classical Turin’s channel model), we

compute all moments of the received signal using Campbell’s theorem. This is

a remarkable benefit which allows us to apply the pth-order polynomial MMSE

estimator. We find that the standard widely linear MMSE estimator (p = 1) is

inapplicable. Instead, we apply the widely linear quadratic MMSE estimator

(p = 2), which is unbiased according to the orthogonality principle. Secondly,

all the proposed estimators have merits, such as they do not rely on a first-

path detection, any separability condition, and the knowledge of the number

of multi-path components. Thirdly, simulation results show that the proposed

estimators are fairly robust against channel model mismatches.

Paper D: Bayesian Ranging with and without LOS Detection

We propose ranging methods with and without LOS detection. In contrast

to Paper C, we model the LOS condition parameter as a Bernoulli random

variable instead of a known value. We propose approximate MAP and MMSE
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estimators which are derived by approximating the pdf of the received signal.

Through Monte Carlo simulations, we observe that the approximate MMSE

estimators outperform the approximate MAP estimators in terms of RMSE.

Furthermore, including LOS detection in the estimators, while adding com-

putational complexities, has no major impact on the ranging performance at

least for the employed pdf approximations. Our simulation study indicates

that there is a potential for improving the ranging performance by employing

better pdf approximations.
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Summary of Main Findings,

Conclusions, and Outlook

When the ambiguity function is used to facilitate designing pilot signals for

delay and Doppler estimation, pilot signals resulting in narrow main-lobe and

low NSL are required. State-of-the-art pilot signals, such as the equispaced

and equipowered pilot signals, are suboptimal since their ambiguity functions

exhibit high NSLs. Using the CRB and the NSL of the ambiguity function

as figures of merit, the proposed genetic algorithm yields pilot signals that

exhibit simultaneously low CRBs for delay and Doppler shift and low NSL. The

algorithm computes close-to-optimal pilot signals offline regardless of the size of

the OFDM frame and the number of pilots. Since these signals have ambiguity

functions with much lower NSL, employing them increases the robustness of

the non-coherent correlator-based estimator towards noise.

Using the ambiguity function as a tool to design pilot signal is a sound

approach in single-path and multi-path scenarios with separable path compo-

nents. Under these conditions, the ML estimator for delay and Doppler shift

estimation is the non-coherent correlator-based estimator. If the system band-

width is not high enough to resolve the multi-path components, employing an

non-coherent correlator-based estimator leads to poor ranging performance.

To cope with this scenario, we propose direct ranging methods that bypass

the LOS condition and first-path detection problems and obviate the require-

ment of knowing the number of path components in the channel response and

any separability condition on these components. If the first- and second-order

moments of the received signal are available, approximate ML estimators can

be applied for direct ranging. When prior information on the range is available,

approximate MAP and MMSE estimators are applied. If we further have ac-

cess to up to 2pth-order moments of the received signal, the unbiased pth-order

polynomial MMSE estimator can be employed. Using Turin’s classical channel

model, all moments of the received signal can be computed analytically via

Campbell’s theorem. In addition, the RMSE of the polynomial MMSE estima-

tor can be obtained in a closed-form expression. This is not the case for the
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approximate ML, MAP, and MMSE estimators.

Furthermore, we propose approximate MAP and MMSE estimators that

inherently take the prior of the LOS into account and thereby bypass the LOS

detection problem. Monte Carlo simulations show that this approach and the

approach employing a LOS detector yield similar ranging accuracies consid-

ering the employed pdf approximations. But a ranging method without LOS

detection is advantageous in computational complexity.

In short, we show by means of Monte Carlo simulations that 1) applying

the proposed pilot signals increases the robustness of the correlator-based es-

timators towards noise; 2) the proposed direct ranging estimators significantly

outperform the non-coherent correlator-based estimator in a multi-path chan-

nel. These findings trigger the forthcoming question: what is the ranging

accuracy using the proposed pilot signals and estimators if they are applied to

measurements obtained from practical scenarios? To validate the performance

of these estimators, a measurement campaign could be conducted. It would

also be of high relevance to show how much the improved ranging accuracy (if

there is any) translated to a superior localization accuracy is.

The performance of the proposed range estimators is inherently limited by

the underlying pdf approximations. When a multi-path channel with low av-

erage number of path components is encountered, the Gaussian approximation

of the conditional pdf of the received signal is poor. In this or similar cases,

a straightforward way to improve the performance of the proposed estimators

is to investigate more accurate approximations that take into account higher-

order moments of the received signal.

In this thesis, we assume that the SNR and the delay power spectrum are

known to apply the direct ranging estimators. In future contributions, one

may include the estimation of the parameters of the delay power spectrum.

The model mismatch analysis in Papers B and C has shown that estimating

the parameters up to a certain accuracy causes negligible performance loss.

Therefore, having unreliable estimates of these parameters is not critical to the

performance of the proposed estimators. Another aspect not considered in this

contribution that can be the subject of future investigations is the distribution

of range errors. This distribution is widely used to derive range-based localiza-

tion algorithms. As with other ranging methods, the exact distribution of the

range errors of the proposed estimators is unknown. Thus, one must resort to

empirical models of the pdf of the range errors. Since direct ranging methods

do not rely on LOS and first-path detection, potential range errors resulting

from missed LOS and first-path detection, which are often considered in error

models, are avoided. This rationale leads us to conjecture that direct ranging

techniques give rise to differently distributed range errors compared to existing

ranging methods.

The proposed methods for designing pilot signals and estimating the range

are not only relevant to improving ranging accuracy using wireless communi-
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cation networks. They can also be applied to improve synchronization per-

formance in communication or localization systems. In challenging scenarios

where multi-path propagation prevails and LOS condition may not appear, we

may also apply the proposed methods to increase the estimation accuracy of

the target location and velocity for radar/sonar applications. In addition, the

proposed methods potentially can be used to improve accuracy of the delay

estimation for speech signal processing.
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1. Introduction

Abstract

We address the problem of searching for the optimal pilot signal, i.e. pattern

and signature, of an orthogonal frequency-division multiplexing (OFDM) sys-

tem when the purpose is to estimate the delay and Doppler shift under the

assumption of a single-path propagation channel. This problem is relevant for

synchronization and for time-based localization using said signals. We propose

to use the Cramér-Rao bound and the normalized side-lobe level (NSL) of the

ambiguity function as figures of merit to devise the pilot signals. We formulate

the design problem as a constrained optimization problem for which we propose

a genetic algorithm that computes close-to-optimal solutions. Simulation re-

sults demonstrate that the proposed algorithm can efficiently find pilot signals

that outperform the state-of-the-art pilot signals in both single-path and multi-

path propagation scenarios. In addition, we demonstrate that data interference

causes a performance loss if a standard non-coherent correlator is used. The

results also indicate that the pilot pattern impacts the estimator’s performance

more than the pilot signature.

1 Introduction

In Orthogonal Frequency-Division Multiplexing (OFDM) systems, data signals

are embedded in an OFDM frame together with pilot signals which are used

to acquire channel information [12]. In this contribution, the term pilot signal

embraces the pilot pattern (i.e. the placement of pilots in the time-frequency

grid) and the pilot signature (i.e. pilot amplitudes and phases). The traditional

objective of pilot signal design is to find parsimonious pilot signals that lead

to efficient channel estimation in OFDM receivers. A comprehensive survey

of pilot signal design can be found in [12]. Equispaced and equipowered pilot

signals are shown to maximize the channel capacity, minimize the channel

estimation error, and minimize the bit error rate for the considered scenarios,

see [12] and references therein.

The last ten years have witnessed a steady increasing endeavor in research

on localization using terrestrial wireless systems, especially long-term evolution

(LTE) and its extension LTE-A. The deployment of localization capabilities in

terrestrial wireless systems is aimed at substituting, complementing, or sup-

plementing satellite-based positioning systems in scenarios where the latter

systems are unable to operate [10] [3] [5]. These localization features put addi-

tional requirements on the pilot signals transmitted by these wireless systems:

pilot signals should additionally be designed to optimize positioning capabili-

ties. Position-bearing channel parameters commonly exploited for localization

are the received signal strength (RSS), the propagation delay, and the angle

of arrival (AOA) [10] [5]. Time-of-arrival (TOA) and time-difference-of-arrival

35



Paper A.

(TDOA) based positioning methods rely on estimates of the propagation delay

between the reference stations and the mobile station to be localized. Doppler

shift estimate can be used to extract the relative velocity for navigation and

thereby to enhance the positioning accuracy [3]. In this contribution, we focus

on pilot assisted delay and Doppler shift estimation in OFDM for the purpose

of synchronization and localization.

In radar theory, the ambiguity function [7] of the transmit signal is an im-

portant tool for assessing the accuracy of the joint estimation of the delay and

Doppler shift. To achieve good estimation accuracy, it is mandatory that the

ambiguity function exhibits a narrow main-lobe and low side-lobes. However,

these two features are contradictory due to the volume invariance property [7].

The ambiguity function of equispaced and equipowered pilot signals does not

fulfill the second of these requirements: it exhibits high side-lobes (see Fig. A.2

in Section 5). Two approaches have been proposed in the literature to obtain

pilot signals with a “good” ambiguity function in the aforementioned sense.

The first approach consists in using pilot patterns that belong to the class of

“perfect periodic” Costas arrays [6]. This class is an extension of the class of

Costas arrays. Costas arrays leads to an ambiguity function with low side-lobes

away from the main-lobe, though high side-lobes remain near the main-lobe [4].

A limitation of the Costas arrays is their inherent constraint: the array must

be square and the number of pilots must equal the array length. The class of

“perfect periodic” Costas arrays [6] allow for alleviating this constraint. The

second approach, proposed in [13], is to use a genetic algorithm to design pilot

signals for one OFDM symbol that yields an autocorrelation function—the de-

lay ambiguity function in our terminology—with low side-lobes. The objective

function that the algorithm attempts to minimize is a linear combination of

the maximum side-lobe magnitude and the 3 dB main-lobe width of the delay

ambiguity function.

Inspired by the above two approaches, we consider in this contribution the

constrained optimization problem of designing pilot signals that yield a delay-

Doppler ambiguity function with low side-lobes, while keeping the Cramér-Rao

bounds (CRBs) for the estimation of the delay and Doppler shift below a pre-

scribed level. We propose a genetic algorithm to compute close-to-optimal

solutions. For a given number of pilots, the algorithm can efficiently find pilot

signals which yield lower side-lobes and CRBs than the corresponding val-

ues achieved with equispaced, equipowered pilot signals and “perfect periodic”

Costas arrays. We provide simulation results showing that the pilot signals

designed with the genetic algorithm lead to a better estimation accuracy com-

pared to the accuracy achieved by using “perfect periodic” Costas arrays in

both single-path and multipath channels when the delay-Doppler estimator is

implemented via a standard (pilot-based) correlator. The results also show

that the pilot pattern affects the estimator performance more than the pilot

signature and that the data symbols affect the threshold region performance of
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2. Signal Model

resource element
N

K

Fig. A.1: The structure of an OFDM frame with N = 12 subcarriers and K = 7 OFDM
symbols. One box stands for one resource element. Black boxes indicate pilot symbols and
white boxes indicate data symbols.

the correlator-based delay-Doppler estimator.

2 Signal Model

We consider a single-input single-output OFDM setup with N subcarriers and

K symbols in a frame as the example shown in Fig. A.1. An OFDM symbol

with time duration T is generated by multiplexing a sequence of data symbols

and known pilot symbols onto N orthogonal sub-carriers. Afterward, the time

domain symbols are obtained by using an inverse Fourier transform. Finally,

a cyclic prefix of duration Tcp is appended to prevent inter-symbol and inter-

carrier interference. The total duration of an OFDM symbol is thus Tp =
T + Tcp. The adjacent sub-carrier spacing is ∆f = 1

T .

An OFDM frame consists of a total of NK so-called resource elements

indexed by the set I = {1, 2, . . . ,NK}. Of these resource elements, Np = |Ip|
are pilots indexed by Ip and Nd = |Id| are allocated to data indexed by Id. We

further define the mapping

I→ {1, . . . ,N}× {1, . . . ,K} : i 7→ (n(i), k(i)), (A.1)

where n(i) and k(i) specify the subcarrier and the OFDM symbol respectively

of resource element i. The OFDM signal reads in complex baseband notation:

s(t) = sp(t) + sd(t)

=
∑

i∈Ip

si(t) +
∑

i∈Id

si(t) (A.2)

with si(t) = aie
2πn(i)∆f (t−k(i)Tp)

1( t
Tp
− k(i) ∈ [− 1

2 , 1
2 ]). Here, ai is the ith

transmit symbol,  =
√
−1, and 1(·) denotes the indicator function.

Assuming transmission across a multipath propagation channel, the re-

ceived signal reads

Y (t) =
L−1∑

l=0

αls(t,θl) +N (t) (A.3)
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with s(t,θl) = s(t− τ)e2πνlt where s(t− τ) = sp(t− τl) + sd(t− τl). The

lth multipath component is characterized by its complex weight αl, delay τl,

and Doppler shift νl. We concatenate the later two parameters in the vector

θl = [τl, νl]
T . The noise contribution N (t) is assumed to be a circular white

complex Gaussian process with autocorrelation

E[N (t)N∗(t+ τ)] = N0δ(τ), (A.4)

where E[·] denotes expectation, (·)∗ stands for complex conjugation, N0 is a

positive constant, and δ(·) is the Dirac delta function.

3 Maximum-Likelihood Estimation of Delay

and Doppler Shift

In this section, we first derive the joint maximum likelihood estimator of the

delay and Doppler shift in an OFDM scenario with pilot-only transmission

across a single-path propagation channel. Then, we define the pilot ambiguity

function and derive the CRBs for the estimation of the delay and Doppler shift.

Finally, we propose a constrained optimization problem for pilot signal design.

We assume a single-path propagation channel (L = 1) with complex gain

α0, delay τ0 and Doppler shift ν0
1. Furthermore, the OFDM frame duration is

short enough so that α0, τ0 and ν0 are constant during one OFDM frame. Under

these assumptions, the channel time-frequency response is flat in frequency, but

varies from one OFDM symbol to another due to the Doppler shift. We define

the signal to noise ratio (SNR) γ =
Ep

N0
with Ep =

∫
|sp(t)|2dt.

We further assume that the receiver estimates the unknown parameter vec-

tor ψ0 = [θ0,α0]T based only on the observation of the pilot signal, i.e. we set

sd(t) = 0, and thus s(t) = sp(t) and s(t;θ0) = sp(t;θ0). From (A.3) and with

the above assumptions, the log-likelihood function of ψ = [θ,α]T reads [9]

Λ̃(ψ;Y (t)) =
2

N0
R{α∗

Λ(θ;Y (t))}− |α|
2

N0

∫

|sp(t;θ)|2dt. (A.5)

In this expression, R{·} and | · | denote respectively the real part and the

absolute value of the argument and Λ(θ;Y (t)) =
∫
s∗

p(t;θ)Y (t)dt. Note that

the term
∫
|sp(t;θ)|2dt = Ep that arises in the log-likelihood function does

not depend on θ. Given the pilot signal observation Y (t) = y(t), the joint

maximum likelihood (ML) estimator of the delay, Doppler and complex gain is

ψ̂0 = arg max
ψ

Λ̃(ψ; y(t)). (A.6)

1We will return to the multipath scenario in Section 5.
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The estimation problem in (A.6) is separable:

θ̂0 = arg max
θ
|Λ(θ; y(t))|2 (A.7)

α̂ =
Λ(θ̂0; y(t))

Ep
. (A.8)

Therefore, to estimate the delay and Doppler shift, we need to compute

Λ(θ; y(t)). In practice, this computation can be implemented via a correlator

which correlates the observed signal y(t) with the delayed and Doppler shifted

replicas of the pilot signal.

3.1 Ambiguity Function of Pilot Signals

We can rewrite the objective function in (A.7) as

∣
∣
∣
∣

∫

s∗
p(t;θ)sp(t;θ0)dt

︸ ︷︷ ︸

χ(θ,θ0)

+

∫

s∗
p(t;θ)N (t)dt

︸ ︷︷ ︸

W (θ)

∣
∣
∣
∣

2

. (A.9)

The term χ(θ,θ0) is the so-called ambiguity function of sp(t) [14] and W (θ)
is a zero mean colored Gaussian process.

The ambiguity function of the pilot signal limits the accuracy of the es-

timation of θ0. To minimize the estimation error, sp(t) shall be designed

such that its ambiguity function exhibits a narrow main-lobe centered at θ0

and low side-lobes [14]. However, due to the volume invariance property

(
∫∫
|χ(θ,θ0)|2dτdν = 1), the design involves a trade-off between the width

of the main-lobe and the magnitude of the side-lobes [7]. Thus if sp(t) is

selected such that its ambiguity function exhibits a narrow main-lobe, high

side-lobes may appear and vice-versa.

3.2 Fisher Information and Cramér-Rao Bound

In the subsequent investigation, we consider the real vector ψ̃ =
[θ,R(α), I(α)]T with I(·) denote the imaginary part of the argument. The

Fisher information matrix for ψ̃ is defined as [7]

J(ψ̃) = Eψ̃

[

∂

∂ψ̃
Λ̃(ψ;Y (t))

(
∂

∂ψ̃
Λ̃(ψ;Y (t))

)H
]

, (A.10)

with (·)H denoting hermitian transposition. Using (A.3) and (A.5), we obtain

after some algebraic manipulations

J(ψ̃) = γ
8π2

Ep
R

{

GHM(ψ̃)G
}

(A.11)
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where

G = diag{N, 1, 1, 1}

M(ψ̃) =

∫






|α|2∆f2 −|α|2t∆f −α
∆f
2π

−α
∆f
2π

|α|2t∆f |α|2t2 αt αt

α
∆f
2π

−αt 1 0

α
∆f
2π

−αt 0 1




⊗C(θ,θ, t)dt

with diag{} stands for a block diagonal matrix with the column vector on its

diagonal, ⊗ denoting the Kronecker product, 1 being a column vector of all

ones, N = [n(1),n(2), . . . ,n(NK)]T , and C(θ,θ
′
, t) denoting the NK ×NK

matrix with (i, j)th entry si(t,θ)1(i ∈ Ip)s∗
j (t,θ

′
)1(j ∈ Ip).

The mth diagonal element of the inverted Fisher information matrix is the

CRB on the variance of the estimation error of an unbiased estimator of [ψ0]m.

In particular,

CRBτ = [J−1(ψ0)]1,1 and CRBν = [J−1(ψ0)]2,2. (A.12)

The CRB is “local bound” in the sense that it depends essentially on the

curvature of the main-lobe of the ambiguity function [7, Ch.10]. The narrower

the main-lobe, the lower the CRB. As the SNR γ is a common factor that can

be factored out from the Fisher information matrix (A.11), it is irrelevant when

comparing the CRBs for various pilot signal selections. For such comparison,

we can therefore consider the re-scaled versions γCRBτ and γCRBν .

3.3 Constrained Optimization Problem for Pilot Signal

Design

It is well-known that the mean-squared error (MSE) of a nonlinear estimator

such as (A.7) exhibits a so-called threshold effect [7]: If the SNR drops below

a certain threshold value γth, there is an abrupt increase in the MSE of the

estimator. We define γth for our particular application as follows:

Definition 1

The threshold value of a nonlinear estimator of (τ0, ν0) that asymptotically

approaches the CRBs in (A.12) as the SNR increases is

γth = max{γth
τ̂ , γth

ν̂ }
with

γth
τ̂ = min{γ′

: MSEτ̂ (γ) ≤ 2CRBτ (γ) for allγ > γ
′},

γth
ν̂ = min{γ′

: MSEν̂(γ) ≤ 2CRBν(γ) for allγ > γ
′}.

The threshold effect is caused by outliers which occur if the estimate move

from the main-lobe of the ambiguity function in (A.9) to one of its side-lobes
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due to noise. The probability that outliers occur at a particular SNR is closely

connected to the magnitude of the highest side-lobe of the normalized ambi-

guity function [7] [2]. We define the normalized side-lobe level (NSL) as the

magnitude of the highest side-lobe of the normalized ambiguity function. A

high NSL leads to a high sensitivity of the estimator towards noise, therefore,

leading to high γth. Determining γth requires time-consuming Monte Carlo

simulations. As an alternative, we can numerically obtain the NSL with a

much lower computational effort.

To keep γth low, the NSL needs to be minimized. At the same time, to

minimize the estimation error when the SNR is larger than γth, the CRBs also

need to be minimized. But there is a tradeoff between the NSL and the CRBs.

To account for this tradeoff, we formulate the design of the pilot signal as a

constrained optimization problem2:

arg min
Ip∈I

NSL(Ip)

subject to |Ip| = Np (A.13)

CRBτ (Ip) < CRBτ (I0),

CRBν(Ip) < CRBν(I0),

where I0 is a reference pilot signal with |I0| = Np.

The optimization procedure (A.13) differs from the optimization procedure

formulated in [13] in three respects. First, whereas both procedures make use of

the NSL as the first figure of merit, the former utilizes the CRBs as the second

figure, while the latter utilizes the 3 dB bandwidth. Note that the CRBs can

be easily computed via (A.12) and the NSL can be computed numerically.

Second, while the latter procedure accounts for the tradeoff between the two

figures of merit by specifying a weighted sum of them as the objective function

to be optimized, the former deals with this tradeoff by means of a constrained

optimization. Third, the procedure in [13] is constrained to the delay domain

only, while (A.13) extends over the delay-Doppler domain.

2We could equally formulate another optimization problem which takes the NSL as con-
straint and minimizes the CRBs, i.e.

arg min
Ip∈I

CRBτ (Ip), CRBν (Ip)

subject to |Ip| = Np

NSL(Ip) < NSL(I0).

In this case, however, one needs to simultaneously optimize two conflicting objectives (CRBτ

and CRBν). Indeed, reducing CRBτ might increase CRBν and vice versa.
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4 A Genetic Algorithm for Pilot Signal Design

The global optimal solution to the above optimization problem may be in prin-

ciple found by exhaustive search. However, this search is unfeasibly complex

since the number of possible patterns is (NK
Np

), which is large even for moderate

values of NK and Np. A feasible alternative is to use a genetic algorithm.

Genetic algorithms are easy to implement, have fast convergence and are able

to avoid local extrema [11]. Although the obtained solutions are suboptimal,

genetic algorithms are well-suited for combinatorial optimization problems. We

refer the interested reader to [11] for the basics and the applications of such

algorithms in signal processing.

We propose the genetic algorithm described below (Algorithm 1) to solve

the constraint optimization problem (A.13). In this context, we define the

“chromosomes” to be the pilot patterns. The algorithm can be conveniently

extended to jointly design the pilot pattern and the pilot signature by addi-

tionally including the complex amplitudes in each chromosome.

5 Numerical Performance Evaluation

In this section, we utilize the proposed Algorithm 1 to design pilot signals

for delay-Doppler estimation and then compare their performance to state-

of-the-art pilot signals via Monte Carlo simulations of the MSE for the joint

delay-Doppler shift estimator in (A.7). For these investigations, we use the

settings summarized in Table A.1. The considered OFDM frame corresponds

to 24 resource blocks according to the LTE specifications.

In Fig. A.2, we consider four pilot signals (a)-(d): Pattern (a) is the eq-

uispaced and equipowered pilot signal; Pattern (b) is the “perfect periodic”

Costas array; Pattern (c) is the pilot pattern designed using Algorithm 1; and

Pattern (d) is obtained using Algorithm 1 modified to design pilot pattern and

signature jointly. Fig. A.2 reports patterns (a)-(d), along with their associated

magnitude of the ambiguity functions, NSLs, and CRBs. From the results in

Fig. A.2, we make two observations: Firstly, we observe that the pilot signal

designed with Algorithm 1, i.e. (c) and (d), leads to much lower fitness pa-

rameters (NSL and CRBs) than that are obtained for (a) and (b). Thus, as

expected, Algorithm 1 is able to improve the design of pilot signals in terms

of their fitness parameters as expected. We remark that the noticeably high

NSL of the ambiguity function associated with the “perfect periodic” Costas

array (b) is induced jointly by the high side-lobes near the main-lobe of the

ambiguity function of the Costas array and the repetition of this array with

the selected spacing in the frequency domain. Secondly, we observe only small

differences between the NSLs and the CRBs for pilot signals (c) and (d). This

observation indicates that the impact of the pilot pattern is predominant on
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Algorithm 1: Genetic algorithm for the design of pilot pattern for joint delay-

Doppler estimation.

←: assignment operation. URWR: uniformly at random without replacement.

Initialization: Set Nind, Nelite(even number), Nm and randomly

generate the initial population I(0) = {Ip1 , . . . , IpNind
} with |Ipi | = Np ;

for g = 0, 1, . . . ,MaxGen do

Elite selection: Form Ielite(g) ⊂ I(g) consisting of the Nelite pilot

patterns with the lowest fitness

F (Ipi) =







NSL CRBτ (Ipi) < CRBτ (I0) &

CRBν(Ipi) < CRBν(I0)

1 otherwise.

;

I(g+ 1)← Ielite(g) ;

for j = 1, . . . , Nelite
2 do

Pick two elements I
′
, I

′′ ∈ Ielite(g) URWR ;

Generate offspring Ioff ⊂ I
′ ∪ I

′′
by picking Np elements from

I
′ ∪ I

′′
URWR ;

Mutation: Pick Nm elements from Ioff URWR and substitute

them by Nm elements picked from Ic
off = I \ Ioff URWR to

generate Im ;

Ielite(g)← Ielite(g) \ {I
′
, I

′′} ;

Update population: I(g + 1)← I(g + 1) ∪ Im ;

end

end
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Table A.1: Simulation Settings

OFDM system:

N = 288, K = 7, Np = 96

Tp = T + Tcp = 66.7+ 6.67 = 73.4 µs

Genetic algorithm:

Nind = 100, Nelite = 40, Nm = 1, MaxGen = 80

I0 = “Perfect periodic” Costas array

Estimation range τ ∈ [−Tp

2 ,
Tp

2 ], ν ∈ [−∆f
2 , ∆f

2 ]

Pilots are equipowered with zero phase unless otherwise specified.

the estimator performance compared to the impact of the pilot signature.

We now evaluate the reduction of MSE that can be obtained for the pilot

signals designed with Algorithm 1 by means of Monte Carlo simulations using

the joint delay-Doppler shift estimator (A.7). We demonstrate that although

Algorithm 1 is proposed under simplified conditions, the designed pilot sig-

nals are also appropriate under more realistic conditions. We consider three

scenarios of increasing realism: Scenario 1 is the single-path propagation with

pilot-only transmission, i.e. the scenario for which estimator (A.7) coincides

with the maximum likelihood estimator of the delay and Doppler shift. Sce-

nario 2 is the same as Scenario 1, but includes data transmission. Scenario

3 is with both data transmission and multipath propagation. In the first two

scenarios, we assume without loss of generality that ψ0 = [0, 0, 1]T .

5.1 Scenario 1: Single-Path Propagation, Without Data

Transmission

Fig. A.3 reports the MSE of estimator (A.7) computed from Monte Carlo sim-

ulations, using pilot signals (a)-(c) in Fig. A.2. It appears that pilot signal (c)

designed with Algorithm 1 leads to a threshold gain of 7 dB and 2 dB compared

to pilot signals (a) and (b) respectively, as a result of the significant reduction

of the NSL.

5.2 Scenario 2: Single-Path Propagation, With Data

Transmission

So far the effect of data signals on the estimation performance of the estima-

tor (A.7) has been neglected in the literature, see e.g. [10] [5] [6] [13]. In this

subsection, we compare the effect of data signals on patterns (b) and (c).
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Case Pilot Pattern |χ(θ,θ0)| Fitness parameters
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Fig. A.2: The considered pilot signals. The pilot pattern and signature of the pilot sig-
nal in panel (d) are jointly optimized: the amplitudes and phases of all pilots are drawn
independently according to a uniform distribution on [0, 1] and [0, 2π] respectively during
the initialization of Algorithm 1. At each mutation stage of the algorithm, the signature of
the Nm selected pilots is drawn similarly. After each random drawing, the pilot signature is
scaled such that its energy equals 1.
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Fig. A.3: Scenario 1: MSE performance of estimator (A.7) and CRBs versus SNR when
using pilot patterns (a), (b), and (c) in Fig. A.2. The corresponding threshold values (γth)
are 23 dB, 18 dB and 16 dB, respectively. Each point is obtained from 10000 Monte Carlo
trials.
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Fig. A.4: Scenario 2: MSE performance of estimator (A.7) and CRBs versus SNR when
using pilot patterns (b) and (c) in Fig. A.2. Each point is obtained from 10000 Monte Carlo
trials.

During the data transmission phase, (A.3) reads Y (t) = α0(sp(t;θ0) +
sd(t;θ0)) +N (t). The objective function in (A.7) is given by

Z(θ;Y (t)) =

∣
∣
∣
∣

∫

s∗
p(t;θ)Y (t)dt

∣
∣
∣
∣

2

=
∣
∣
∣α0χ(θ,θ0) + α0

∫

s∗
p(t;θ)sd(t;θ0)dt

︸ ︷︷ ︸

Interference

+W (θ)
∣
∣
∣

2
. (A.14)

Fig. A.4 reports the MSE of estimator (A.7) when using pilot signals (b)

and (c). A comparison with the MSE results reported Fig. A.3 shows that

the interference caused by data transmission only affects the threshold value,

which is shifted to the right by approximately 1 dB. In the high SNR regime,

the data interference has no significant effect on the estimator performance.
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5.3 Scenario 3: Multipath Propagation, With Data

Transmission

In the third and most realistic scenario, we consider both data transmission

and multipath propagation. In this scenario, the objective function (A.7) reads

Z(θ;Y (t)) =
∣
∣
∣

L−1∑

l=0

αlχ(θ,θl) +

L−1∑

l=0

αl

∫

s∗
p(t;θ)sd(t;θl)dt

︸ ︷︷ ︸

Interference

+W (θ)
∣
∣
∣

2
. (A.15)

First we consider the case where the main-lobe and the side-lobes of the

ambiguity function of the pilot signal devised with Algorithm 1 are respec-

tively sufficiently narrow and low enough, so that the L multipath components

can be resolved in the delay-Doppler domain. This implies that, if one dis-

cards the effect of noise and data interference in (A.15), Z(θ;Y (t)) exhibits

L well-separated dominant peaks, each peak being contributed by one multi-

path component. Each peak uniquely corresponds to the main-lobe of one of

the weighted ambiguity function in the first summand in (A.15). In this case,

the joint ML estimator of the L pairs {(τl, νl)}Ll=1 is accurately approximated

by L independent ML estimators, one for each pair. The outputs of these L

estimators are the L delay-Doppler arguments corresponding to the L largest

maxima of Z(θ;Y (t)). The same approximation holds true in the presence of

data interference and of noise at high SNR and even at medium SNR since the

NSL is low. Thus, in a scenario with well-separable multipath components,

a pilot signal designed using Algorithm 1 still essentially keeps its optimality

properties in medium and high SNR regime.

A necessary condition for multipath components to be separable is that the

bandwidth of the OFDM system is large enough. Due to practical constraints

on the available bandwidth of the OFDM system and the number of pilots,

not all path components may be resolved in Z(θ; y(t)) in (A.15). We consider

such a case in the following and show that the pilot pattern designed using

Algorithm 1 is still a good choice. We use (A.7) to obtain the delay and Doppler

shift estimates and compute the MSE of the delay and Doppler shift by using

the first path component as the reference. As indicated in the introduction, this

estimate can be used—in combination with other such estimates computed from

other transmission links—for localization in a TOA or TDOA based positioning

method, or also for synchronization [8]. However, due to the unresolvable

path components with higher delay than the first component, the estimator is

expected to be biased.

The “Extended Vehicular A” channel model specified in the 3GPP LTE
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Fig. A.5: Scenario 3: MSE performance of estimator (A.7) versus SNR when using pilot
patterns (b) and (c) in Fig. A.2. Each point is obtained from 10000 Monte Carlo trials.

standard [1] is used to generate a new channel impulse response for each sim-

ulation trial. The values of the delay, Doppler shift and weight magnitude of

the L = 9 multipath components are kept fixed while generating the channel

responses. The phases of the path weights are drawn independently from a

uniform distribution on [0, 2π) for each trial.

A comparison of the MSE curves depicted in Fig. A.5 with those reported

in Fig. A.4 shows that a much higher error floor appears at high SNR due to

bias caused by unresolved multipath components. In addition, the multipath

channel leads to a significantly shifts of the thresholds. Specifically, for the

pilot signal designed with Algorithm 1, a pronounced threshold appears at

25 dB while for the “perfect periodic” Costas array, it appears at 30 dB. This

observation indicates that even though pilot pattern (c) is optimized for the

idealized scenario ignoring multipath propagation and data transmission, it

still leads to better performance than obtained by using the “perfect periodic”

Costas array.
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6 Conclusion

The conventional equispaced and equipowered pilot signals, as used in LTE, is

suboptimal for joint delay and Doppler estimation. It has an ambiguity function

with a high normalized side-lobe level (NSL), which causes the correlator-based

estimator (A.7) to exhibit a high threshold value. The proposed genetic algo-

rithm generates pilot signals that minimize the NSL, while maintaining the

CRBs for the delay and Doppler shift estimation below a target value. Com-

pared to the “perfect periodic” Costas arrays, these pilot signals produce much

lower NSL and CRBs. The results clearly exemplify that the possible reduction

in MSE can be achieved with the same number of pilots. An additional finding

is that the pilot pattern affects more significantly the NSL and the CRBs than

the pilot signature does. Our genetic algorithm can generate close-to-optimal

pilot signals regardless of the OFDM frame size and the number of pilots. This

computation can be done offline. We also show that the pilot signals computed

with the genetic algorithm remain a good choice in single-path and multipath

propagation conditions during the data transmission phase when a correlator

is employed for delay and Doppler shift estimation.

Among the interesting open research avenues, we would like to mention the

extension of the constrained optimization problem to account for transmission

across multipath channels, especially when more sophisticated channel estima-

tors are used. The performance of these estimators could then be assessed by

means of performance criteria traditionally employed in communications, such

as channel estimation error and bit-error-rate.

Acknowledgment

This work has been funded by the project ICT-248894 Wireless Hybrid En-

hanced Mobile Radio Estimators–Phase 2 (WHERE2).

References

[1] 3GPP. Base station (BS) radio transmission and reception. 3GPP TS

36.104, V8.12.0 (2011-06) Technical Specification, 2011.

[2] F. Athley. Threshold region performance of maximum likelihood direction

of arrival estimators. IEEE Trans. Signal Process., 53(4):1359–1373, Apr.

2005.

[3] P. Chestnut. Emitter location accuracy using TDOA and differential

doppler. IEEE Trans. Aerosp. Electron. Syst., AES-18(2):214–218, Mar.

1982.

50



References

[4] J. Costas. A study of a class of detection waveforms having nearly ideal

range-Doppler ambiguity properties. Proc. IEEE, 72(8):996–1009, Aug.

1984.

[5] A. Dammann, C. Mensing, and S. Sand. On the benefit of location and

channel state information for synchronization in 3GPP-LTE. In European

Wireless Conf., pages 711–717, 2010.

[6] J.-C. Guey. Synchronization signal design for OFDM based on time-

frequency hopping patterns. In IEEE International Conf. on Commun.,

pages 4329–4334, June 2007.

[7] Harry L. Van Trees. Detection, Estimation, and Modulation Theory - Part

III. John Wiley & Sons, 2001.

[8] C. Mensing. Location Determination in OFDM Based Mobile Radio Sys-

tems. PhD thesis, Technische Universität München, 2013.

[9] H. Poor. An Introduction to Signal Detection and Estimation. Springer-

Verlag, 1994.

[10] A. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless loca-

tion. IEEE Signal Process. Mag., 22(4):24–40, 2005.

[11] K. Tang, K. Man, S. Kwong, and Q. He. Genetic algorithms and their

applications. IEEE Signal Process. Mag., 13(6), Nov. 1996.

[12] L. Tong, B. Sadler, and M. Dong. Pilot-assisted wireless transmissions:

general model, design criteria, and signal processing. IEEE Signal Process.

Mag., 21(6):12–25, Nov. 2004.

[13] O. Ureten, S. Tascioglu, N. Serinken, and M. Yilmaz. Search for OFDM

synchronization waveforms with good aperiodic autocorrelations. In Cana-

dian Conf. on Elect. and Compt. Eng., volume 1, pages 13–18, May 2004.

[14] P. Woodward. Probability and Information Theory, with Applications to

Radar. Pergamon Press, 1953.

51



References

52



Paper B

Direct Ranging in Multi-path Channels Using OFDM

Pilot Signals

Lishuai Jing, Troels Pedersen, Bernard H. Fleury

The paper has been published in the

15th IEEE International Symposium on Signal Processing Advances in

Wireless Communications (SPAWC)

June 22 - June 25, Toronto, Canada, 2014.



c©2014 IEEE

The layout has been revised.



1. Introduction

Abstract

OFDM ranging is becoming important for positioning using terrestrial wireless

networks. Conventional ranging methods rely on a two-step approach: range

related parameters, such as the time of arrival (TOA), the bias induced by

non-line-of-sight (NLOS) propagations etc., are first estimated, based on which

the range is then inferred. In multi-path conditions, two-step range estima-

tors which employ the correlator-based estimator or the energy detector lead to

poor ranging accuracy when applied in non-ultra-wideband scenarios due to a

bias. More advanced ranging schemes that estimate all multi-path components

using a multidimensional search procedure provide higher ranging accuracy but

have a prohibitive complexity. In this work, we propose a novel direct ranging

technique that uses a point process formulated channel model. Based on this

model, we derive an approximate maximum likelihood estimator of the range.

In contrast to the estimator which requires a multidimensional search procedure,

the proposed estimator does not demand the knowledge of the exact number of

multi-path components and these components are separable. If the power de-

lay spectrum of the multi-path channel and the signal-to-noise-ratio (SNR) are

known, the complexity of the proposed estimator is tractable. We show by means

of Monte Carlo simulations that this estimator outperforms the correlator-based

estimator.

1 Introduction

Accurate localization is becoming important for terrestrial wireless systems,

in particular for OFDM systems such as WLAN, LTE and its extension LTE-

A [14] [11]. One approach to improve the localization accuracy is to design high

precision ranging techniques [1] [15]. State-of-the-art ranging techniques follow

a two-step approach. First, parameters, such as the received signal strength,

the TOA, the bias induced by NLOS propagations etc., are estimated from the

received signal. Then, these estimates are used for ranging [1]. Since some of

these information bearing parameters are readily available in communication

systems, two-step ranging methods are very popular.

Two-step approaches employing OFDM signals have been considered

in [15] [2] [16]. Wang et al. [16] proposed a maximum-likelihood ranging method

based on OFDM signals for a scenario with separable multi-path components.

Due to the assumed separability (in the delay domain) of these components,

the obtained estimator converges to the correlator-based estimator [1]. How-

ever, for the separability condition to hold, a large system bandwidth is needed

and even in this case it is not guaranteed that all paths are separable. In

addition, because this method relies on the detection and estimation of the

line-of-sight (LOS) path, it is sensitive to fading of early non-separable com-
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ponents [1]. MUltiple SIgnal Classification (MUSIC) algorithm was applied by

Zhao et al. in [2] to estimate the delays of all multi-path components assuming

their exact number is known. In [15], Wang et al. derived the Cramér-Rao

bound (CRB) on the mean square error (MSE) of the range estimator and

investigated how the OFDM signal parameters and the spacing between the

multi-path components affect the bound. The CRB is a lower bound for the

MSE of the estimator proposed in [13], which requires estimation of the delays

of all separable multi-path components. The bound in [15] and the methods

in [2] [16] [13] require the separability of the multi-path components and the

knowledge of their exact number, which is generally difficult to estimate re-

liably. Furthermore, the required multidimensional search is impractical for

a realistic number of multi-path components. As an alternative to the two-

step approach, ranging can be performed in one step—referred to as “direct”

ranging—avoids the need for the detection of the first-path and the estimation

of its parameters. Despite the ability to bypass both the first-path detection

problem and the path separability requirement, direct ranging has attracted

little attention in the literature.

In this contribution, we address the problem of direct ranging using OFDM

pilot signals in multi-path channels. The objective is to obtain a ranging es-

timator with low complexity, which does not rely on first-path detection, any

separability condition, and the knowledge of the number of multi-path compo-

nents. To that end, we formulate a multi-path channel model using a point pro-

cess approach [3] [5] [9]. The channel transfer function is reformulated such that

the range parameter is factored out to make it accessible for direct estimation.

We then propose a direct ranging method using a Gaussian approximation of

the channel transfer function. The method avoids the requirement of knowing

the exact number of multi-path components and relaxes the constraint on their

separability. Given the SNR and the RMS delay spread of the channel, the pro-

posed estimator is computationally tractable. Simulation results demonstrate

that the proposed estimator outperforms the correlator-based estimator.

2 System Model

We consider a single-input single-output OFDM setup with N active sub-

carriers. An OFDM symbol with time duration T is generated by multiplexing

a sequence of data symbols and known pilot symbols onto N orthogonal sub-

carriers. The adjacent sub-carrier spacing is defined as ∆f = 1
T . A cyclic

prefix with duration Tcp is appended to prevent inter-symbol and inter-carrier

interference. We index the N active sub-carriers with the set I = {1, 2, . . . ,N}.
Of these sub-carriers, Np = |Ip| are pilots indexed by Ip ⊆ I.

We address estimation of the range parameter d based on the pilot signals.

The multi-path channel is assumed to be time-invariant during the transmission
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of each OFDM symbol. Removing the cyclic prefix and concatenating the

received pilot signals in the observation vector y, we obtain the signal model

in the frequency domain:

y = Ah(d) + w, (B.1)

where A = diag{an : n ∈ Ip} is a diagonal matrix with an denoting the nth

pilot symbol, the vector h(d) = [h(d;n∆f ) : n ∈ Ip], contains the samples of

the channel frequency response, and w is a white circular-symmetric complex

Gaussian noise vector with component variance σ2. We define the SNR as Es

σ2

with Es = E[|an|2].
The channel frequency response is modeled as a sum of delayed and atten-

uated multi-path components [9]:

h(d; f ) = qα0e
−j2πf (τ0+

d
c )

︸ ︷︷ ︸

LOS term

+
L∑

l=1

αle
−j2πf (τl+

d
c
)

︸ ︷︷ ︸

Tail

, (B.2)

where path l has complex gain αl and excess delay τl and c is the speed of light.

The indicator q specifies the settings of the LOS path component. For LOS

channels i.e. q 6= 0, q adjusts the power of the LOS component. When q = 0,

the system operates in NLOS conditions. The delay of the LOS path is d
c and

thus we set the LOS excess delay equal to zero: τ0 = 0. The excess delays of

the NLOS paths form a point process T = {τ1, τ2, . . .} with intensity function

ρ(τ). Note that the number of multi-path components L, i.e. the cardinality

of T , is not necessarily deterministic or finite under such channel formulation.

We also assume that

E[αl|τl] = 0, E[αlα
∗
l′ |τl, τl′ ] =

{

σ2
α(τl), l = l′

0, otherwise.
(B.3)

For convenience, we reformulate (B.2) as the product of a range-dependent

factor r(d; f ) and a factor ε(f ) independent of d:

h(d; f ) = e
−j2πf

d

c
︸ ︷︷ ︸

r(d;f )



qα0 +
∑

τl∈T

αle
−j2πfτl





︸ ︷︷ ︸

ε(f )

. (B.4)

The assumption that ε(f ) is independent of d is a simplification which may or

may not be realistic. Here, we employ it to simplify the forthcoming derivations.

We leave investigation of more sophisticated distance dependent channel models

such as presented in [4] to future works. Defining the diagonal matrix R(d) =
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diag{r(d;n∆f ) : n ∈ Ip} and the vector ε = [ε(n∆f ) : n ∈ Ip]T , the channel

vector reads

h(d) = R(d)ε. (B.5)

Following the assumptions (B.3), E[ε] = 0 and thus E(y) = 0. With these

results, the covariance matrix of the observation vector y is given by

Cy(d) = AR(d)CεR
H(d)AH + σ2

I, (B.6)

where Cε = E[εεH ] with (·)H denoting conjugate transpose and I being the

identity matrix. Inspired by [5], Cε can be computed from an underlying

channel model. Entry (m,n) of Cε reads

[Cε]mn = q2σ2
α(0) +E




∑

τl,τl′∈T

αlα
∗
l′e

−j2π∆f (mτl−nτl′ )



 .

By the law of total expectation, conditioning on the point process T , and

utilizing (B.3), we obtain

[Cε]mn = q2σ2
α(0) +E




∑

τl∈T

σ2
α(τl)e

−j2π∆f (m−n)τl



 .

Applying Campbell’s theorem [7] yields

[Cε]mn =

∫ ∞

0
σ2

α(τ)(ρ(τ) + q2δ(τ))
︸ ︷︷ ︸

P (τ )

e−j2π(m−n)∆fτdτ

= F{P (τ)}((m− n)∆f ), (B.7)

where δ(·) denotes the Dirac delta function, P (τ) is the delay power spectrum

(the average delay power profile) and F denoting the Fourier transform [5]. In

practice, the delay power spectrum can be evaluated empirically or approxi-

mated using an appropriated channel model [12] [10]. We further assume that

ρ(τ) = ρ with ρ being a constant. Thus, we assume a constant arrival rate for

the delays induced in the “Tail”. With this assumption, (B.7) reads

[Cε]mn = q2σ2
α(0) + ρ

∫ ∞

0
σ2

α(τ)e
−j2π(m−n)∆fτdτ

︸ ︷︷ ︸

gmn=F{σ2
α(τ )}((m−n)∆f )

. (B.8)

To gain some insight into the impact of the properties of the channel model

on Cε, we consider the following three example models.
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Example 2.1

The number L is fixed and σ2
α(τ) =

1
L . The delays in the “Tail” are drawn

independently and uniformly on [0,Tcp]. In this case, T is a Binomial point

process. Hence, ρ = L
Tcp

. Consequently, (B.8) reads

[Cε]mn = q2 1

L
+ sinc((m− n)∆fTcp)e

−jπ(m−n)∆fTcp (B.9)

with sinc(x) = sin(πx)/(πx). In the LOS scenario, the covariance matrix

depends on the exact number of paths L, which is generally unknown in

practice. In the NLOS scenario, i.e. q = 0, the covariance matrix looses the

dependency on L since the first term in (B.9) vanishes due to the somewhat

artificial assumption σ2
α(τ) = 1

L . Note that the involved assumptions are

similar to those used to derive the robust Wiener filter [8].

Example 2.2

The number L is fixed and motivated by experimental observations [4], we

assume that

σ2
α(τ) = C exp(− τ

λ
), (B.10)

where C is a positive constant and λ denotes the RMS delay spread of the

“Tail” of the multi-path channel. We reuse the assumptions invoked in Ex-

ample 2.1 except the assumption on σ2
α(τ). Assuming that

∫ ∞
Tcp

σ2
α(τ)dτ is

negligible, (B.8) reads

[Cε]mn = q2C +
L

Tcp
gmn, (B.11)

where

gmn = C
1− e−(j2π(m−n)∆f+ 1

λ
)Tcp

j2π(m− n)∆f + 1
λ

. (B.12)

Notice that the covariance matrix depends on L.

Example 2.3

T is modeled as a homogeneous Poisson point process on [0,Tcp] with rate

ρ and exponential power decay for σ2
α(τ). This is a special case of Turin’s

model [3]. Then L is a Poisson random variable with mean µL = E[L] =
ρTcp. Assuming that

∫ ∞
Tcp

σ2
α(τ)dτ is negligible and utilizing (B.10), (B.8)

reads

[Cε]mn = q2C + ρgmn (B.13)
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with gmn defined as in (B.12). We observe that the covariance matrix Cε
does not depend on the exact number of paths of a specific channel realization

but depends on the intensity ρ and λ. The intensity ρ and λ may be provided

by an appropriate channel model.

3 Direct Maximum Likelihood Ranging Via

Gaussian Approximations

The direct maximum likelihood estimator of d based on the observation y reads

d̂ML = arg max
d

p(y|d), (B.14)

where p(y|d) denotes the likelihood function of d given y. Estimator (B.14)

is a “direct” range estimator since no intermediate parameters such as delays,

complex gains, etc. are estimated. To implement (B.14), the likelihood func-

tion p(y|d) needs to be computed. In the considered case, however, p(y|d) is

unknown. Instead, estimator (B.14) may be approximated as in [15] and [13]

via a two-step approach. These methods, however, require the knowledge of the

number of path components, which is generally unknown and hard to estimate.

Here, we follow the alternative approach of approximating p(y|d) with a

Gaussian pdf p̃(y|d) with the same first- and second-order moments. This

approximation is exact if ε is a Gaussian random vector. It is a reasonable ap-

proximation in a multi-path channel where L is large and σ2
α(τ) is a constant.

In more realistic channels with an exponential power decay, the Gaussian ap-

proximation can be inaccurate. Since the first- and second-order moments of

y are known by (B.6), this approximation leads to an estimator that can be

derived analytically. Using p̃(y|d) instead of p(y|d) in (B.14) yields

d̂AML = arg max
d

ln p̃(y|d), (B.15)

where the log-likelihood ln p̃(y|d) is of the form [6]

ln p̃(y|d) ∝ − ln det(Cy(d))− yHC−1
y (d)y (B.16)

with x ∝ z denoting x = z + constant and det(·) denoting the determinant.

Using the eigenvalue decomposition Cε = UΛUH , we can recast (B.6) as

Cy(d) = R(d)GRH(d),

with G = AU(Λ + Iσ2/Es)UHAH . Since R(d) is unitary, the determinant

det (Cy(d)) = det(G) does not depend on d and can be dropped. Thus,

ln p̃(y|d) ∝ −yHR(d)G−1RH(d)y, (B.17)
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Table B.1: Simulation Settings

OFDM system:

N = 512, Np = 103, ∆f = 15 kHz,

Tp = T + Tcp = 66.7+ 5.4 = 72.1 µs

Estimation range dobs ∈ [0, 7 km]; True range: d = 1 km.

Results obtained from 10000 Monte Carlo trials are displayed.

where

G−1 = AU(Λ +
σ2

Es
I)−1UHAH . (B.18)

Since the matrices AU and Λ can be pre-computed and stored, the inversion

of G amounts to compute the diagonal matrix (Λ + σ2

Es
I)−1. This circumvents

the brute force inversion of Cy(d) in (B.16) and thereby reduces the complex-

ity of the estimator. We remark that Cε and thus U and Λ depend on the

parameters of P (τ). It can be shown that the non-coherent correlator-based

estimator [11] [1] [16] is a limiting case of the proposed estimator (B.15) when

q →∞, which implies a single path channel.

4 Numerical Performance Evaluation

We first evaluate the performance of estimator (B.15) in a multi-path channel

with different parameter settings and contrast it with the performance of the

non-coherent correlator-based estimator [11] [16]. We omit the comparison

with the energy detector, which is sensitive to the selected threshold value and

provides inaccurate TOA estimates [1] [12]. We also omit the comparison with

multidimensional search approach, because these estimators require access to

L, which is assumed to be unknown in this work [15] [13]. We then report the

performance of estimator (B.15) when there is a mismatch between the channel

assumptions made for its derivation and the real channel conditions in which it

is used. Specifically, we say that there is a mismatch if a LOS (NLOS) condition

prevails in the channel, while the used estimator is the one derived under the

assumption of NLOS (LOS). Otherwise there is a match. Remember that the

factor q controls which of the LOS (q = 1) or NLOS (q = 0) condition holds.

Table B.1 summarizes the settings used for the simulations of the considered

OFDM system. Pilots with equal power are placed either with equal spacing

(Uniform pilot pattern) or randomly (Random pilot pattern) in an OFDM

symbol. A random pilot pattern is generated by sampling Np pilots uniformly

at random without replacement from I. In the Monte Carlo simulation, we use

the channel model in Section 2 Example 2.3.
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Fig. B.1: LOS scenario: RMSEE obtained by using different estimators and pilot patterns
for a multi-path channel with RMS delay spread λ = 50 ns and average number of paths
µL = 480.

4.1 LOS Scenarios: Performance Evaluation Using Dif-

ferent Pilot Patterns and Estimators

Fig. B.1 shows the simulated root mean square estimation error (RMSEE) of d

using estimator (B.15) and the correlator-based estimator. We observe that for

both estimators, the uniform pilot pattern leads to outliers due to high side-

lobes in the respective objective functions. This effect does not occur when

the random pilot pattern is used. We observe in this case that the proposed

estimator outperforms the correlator-based estimator. We then compare the

results with the CRB [6], which is computed under the assumption that ε and y

are jointly Gaussian. Since such assumption is not fulfilled here, the simulated

RMSEE does not meet the CRB.

4.2 Performance Evaluation Under Different Channel

Settings

From this point on, we only report the results obtained by employing a random

pilot pattern. Fig. B.2 reports the simulated RMSEE in the LOS scenario. We

observe that estimator (B.15) outperforms significantly the correlator-based

estimator. As the average number of paths increases, the performance of the

correlator-based estimator deteriorates. When µL is small, i.e. the Gaussian

assumption is significantly violated, the RMSEE of estimator (B.15) notice-

ably deviates from the CRB. Such deviation becomes smaller as µL increases.

Moreover, the accuracy of estimator (B.15) increases as the RMS delay spread
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Fig. B.2: LOS scenario: RMSEE versus average number of paths µL for different values of
the RMS delay spread λ at SNR = 40 dB.

decreases. Fig. B.3 depicts the cumulative distribution function (CDF) of the

range errors in the LOS scenario. We observe that the medians are positive

which indicates that positive errors are more frequent than negative errors. As

µL decreases, the corresponding CDF shows a sharper slope and the median

decreases accordingly. We remark that rare large outliers appear when µL is

small, which lifts the overall RMSEE up as shown in Fig. B.2.

Fig. B.4 reports the simulated RMSEE in the NLOS scenario. Contrary to

the LOS scenario, the RMSEE decreases as µL increases and the proposed es-

timator’s performance becomes insensitive to the RMS delay spread when this

parameter is large enough. When µL and the RMS delay spread of the channel

are small, in which case the Gaussian assumption is significantly violated, both

estimators yield large errors. However, compared to the correlator-based esti-

mator, estimator (B.15) exhibits a promising performance gain when µL and

the RMS delay spread of the channel are large. Fig. B.5 depicts the CDF of

the range errors in NLOS scenarios. We notice that µL affects the proposed

estimator’s performance. Contrary to what was observed in Fig. B.3, the me-

dian increases as µL decreases. When µL = 9, the median is at around 80 m,

which explains the high RMSEE in Fig. B.4.

4.3 Performance Comparison in Conditions with Model

Match and Mismatch

Fig. B.6 reports the simulated RMSEE when the assumptions used to derive

estimator (B.15) match or mismatch the real channel propagation conditions.
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Fig. B.3: LOS scenario: Empirical CDF of the range errors obtained using (B.15) when
RMS delay spread λ = 360 ns and SNR = 40 dB.
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Fig. B.4: NLOS scenario: RMSEE versus the average number of paths µL for different
values of RMS delay spread λ at SNR = 40 dB.

64



5. Conclusion

 

 

µ = 480
µ = 60
µ = 9

P
(d̂
−

d
<

d
e)

de [m]
−100 0 100 200 300 400

0

0.25

0.5

0.75

1

Fig. B.5: NLOS scenario: Empirical CDF of the range errors obtained using (B.15) when
λ = 360 ns and SNR = 40 dB.

Clearly, estimator (B.15) still outperforms the correlator-based estimator and

both estimators benefit from the LOS propagation channel, which leads to lower

RMSEEs. In case of a mismatch, estimator (B.15) performs worse than when

there is a match. This is particularly noticeable in LOS conditions with small

µL. Except for the matched case when the real channel is in LOS conditions,

the RMSEE decreases as µL increases due to the Gaussian assumption becomes

more realistic.

5 Conclusion

Using a channel model formulated as a point process, we demonstrate that

the proposed approximate maximum likelihood estimator outperforms the

correlator-based estimator. In the single-path scenario, the correlator-based

estimator coincides with the proposed estimator. The proposed estimator does

not require first-path detection, path separability, nor estimation of the number

of path components. Though the invoked Gaussian assumptions is not fulfilled

in typical channel conditions, the proposed estimator achieves promising range

accuracy. An additional finding is that both proposed and correlator-based

estimators achieve higher estimation accuracy when a random pilot pattern is

employed rather than the uniform pilot pattern, as currently used in LTE.

Given the SNR and the covariance matrix of the channel, the complexity

of the proposed estimator is tractable. The estimator accuracy depends on

the RMS delay spread and the average number of path components. The

proposed estimator achieves promising results in the LOS scenario even if there
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Fig. B.6: RMSEE versus average number of paths µL for RMS delay spread λ = 360 ns
and SNR = 40 dB. Green and red curves indicate the real channel conditions. “Est: LOS
Assump.” shows the RMMSE of estimator (B.15) assuming that the real propagation channel
is in LOS conditions while “Est: NLOS Assump.” denotes the RMMSE of estimator (B.15)
assuming that the real channel is in NLOS conditions.

is a mismatch between the assumptions used to derive the proposed estimator

and the real channel conditions. In the NLOS scenario, the average number

of path components limits the estimator’s performance in both matched and

mismatched cases.
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1. Introduction

Abstract

Direct ranging, which estimates the ranging parameter in one-step without es-

timating intermediate parameters, such as complex gains and delays, has re-

cently been proposed. In this work, we address the problem of direct ranging

using OFDM pilot signals via Bayesian estimators, namely the maximum-a-

posteriori (MAP) estimator, the linear minimum mean-squared error (MMSE)

estimator, and the MMSE estimator. However, these estimators cannot be

directly applied to this problem since the probability density function of the

received frequency-domain OFDM pilot signals is unknown. Instead, we pro-

pose approximate versions of them. Though the probability density function of

the received signal is unknown, all its moments become readily available when

Turin’s classical multi-path channel model, which describes the path delays as

a realization of a Poisson point process, is applied. We exploit this knowledge

and derive a pth-order polynomial MMSE estimator which utilizes moments

up to 2pth-order of the received signals for direct ranging. When p = 1, the

proposed estimator coincides with the linear MMSE estimator, which is inap-

plicable to the addressed problem. To balance the computational complexity and

the ranging accuracy, we choose to use the widely linear-quadratic MMSE es-

timator (p = 2). Monte Carlo simulations show that the proposed estimators

achieve promising ranging accuracy gains and are fairly robust against model

mismatches.

1 Introduction

Accurate localization is increasingly important for terrestrial wireless systems,

in particular for OFDM systems such as WLAN, LTE and its extension LTE-

A [20] [15]. One approach to improve the localization accuracy is to rely on high

precision ranging techniques [4] [19] [21]. State-of-the-art ranging techniques

(for instance the correlator-based estimator [15] [7], the energy-detection-based

estimator [4], and the multidimensional-search-based estimator [21] [18]) follow

a two-step approach. First, parameters, such as the received signal strength,

the time of arrival, the bias induced by none-line-of-sight (NLOS) propagation,

etc., are estimated from the received signal. Then, these estimates are used for

ranging. The correlator-based and energy-detection-based estimators are easy

to implement, but both suffer from inferior ranging accuracy when the sys-

tem bandwidth is not sufficiently high or the line-of-sight (LOS) component is

not strong enough [4]. The multidimensional-search-based estimator proposed

in [21], on the other hand, offers better ranging accuracy when the number of

paths in the channel response is known in advance. But, in general, estimating

the exact number of paths is a difficult task. Even if this number is known, the

complexity of performing a multidimensional search is high. Potentially, lower
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complexity iterative schemes, such as the SAGE (space-alternating general-

ized expectation-maximization) algorithm [2], can be applied. These schemes,

however, require the knowledge of the number of path components and might

converge to a local maximum.

An alternative approach is direct ranging, which estimates the range in one

step. In [14], Jing et al. employ a model of the channel impulse response that

formulates the random set of path delays as a realization of a point process.

When the number of path components in the channel response and the sepa-

rability condition of these components are unknown and the delay power spec-

trum exhibits an exponential decay, the vector of received OFDM pilot signals

is not Gaussian. In such scenarios, the authors propose an approximate maxi-

mum likelihood estimator (referred to as GAML estimator) that uses a Gaus-

sian approximation of the distribution of the received pilot vector to increase

the ranging accuracy. This estimator does not rely on first-path detection, any

separability condition, and the knowledge of the number of path components.

The GAML estimator assumes that the SNR and the delay power spectrum

are known. It has a tractable complexity and offers significantly higher rang-

ing accuracy than the non-coherent correlator-based estimator. However, as a

consequence of the Gaussian approximation, the GAML estimator only utilizes

the first- and second-order statistics of the received signal. In case higher-order

moments of the received signal and the prior distribution of the range are acces-

sible, this knowledge can potentially be exploited for improving ranging accu-

racy. An overview on utilizing the higher-order statistics and prior knowledge

of the parameters of interest in signal processing can be found in [9].

In the present contribution, we address the problem of direct ranging using

OFDM pilot signals in multi-path channels via Bayesian estimators. Inspired by

the Gaussian approximation used in [14], we derive an approximate maximum-

a-posteriori (MAP) estimator and an approximate minimum-mean-square-error

(MMSE) estimator. Compared to [14], we impose a prior distribution for the

range parameter, which makes the application of Bayesian inference possible.

In addition, we show that when the classical Turin’s channel model [5] is ap-

plied, all moments of the frequency-domain channel vector and therefore of

the received OFDM pilot signal vector become computable, while their joint

probability density functions (pdfs) are not. Having access to these higher-

order moments, we propose to use a pth-order polynomial MMSE estimator

for direct ranging. Such estimators have been applied for the estimation of

signal amplitudes using higher-order statistics [16]. A pth-order polynomial

MMSE estimator requires the moments up to order 2p of the received signal.

In contrast to many other engineering problems [16] in which the required

higher-order statistics need to be estimated to employ the pth-order polyno-

mial MMSE estimator, in our particular application context, we can compute

them in a closed form expression. The pth-order polynomial MMSE estima-

tor requires the signal-to-noise-ratio (SNR). But it is unbiased and inherits all
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merits of the GAML estimator: it avoids first-path detection problem and the

requirement of knowing the exact number of path components and it relaxes

the separability condition. When p = 1, the pth-order polynomial MMSE es-

timator coincides with the linear MMSE estimator. However, this estimator

collapses to the mean of the prior due to the invoked assumptions on the multi-

path channel model. Therefore it is inapplicable to the problem at hand. The

widely linear-quadratic MMSE estimator, i.e. p = 2, can be applied, how-

ever. We demonstrate by means of Monte Carlo simulation that the widely

linear-quadratic MMSE, the approximate MAP, and the approximate MMSE

estimators significantly outperform the correlator-based estimator.

2 System and Signal Model

We consider a single-input single-output OFDM setup with N pilots indexed by

n = 1, 2, . . . ,N in one OFDM symbol of time duration T . An OFDM symbol is

generated by multiplexing a sequence of data symbols and known pilot symbols

onto a number of orthogonal sub-carriers. The adjacent sub-carrier spacing is

∆f = 1
T . A cyclic prefix of duration Tcp is appended to prevent inter-symbol

and inter-carrier interference.

We address the problem of the estimation of the range parameter r based

on the received pilot signals. In contrast to [14], we consider here r to be a

random variable having a-priori pdf p(r) with mean µr and variance σ2
r . The

multi-path channel is assumed to be time invariant during the transmission of

one OFDM symbol. Removing the cyclic prefix and concatenating the received

pilot signals in the observation vector y, we obtain the signal model in the

frequency domain [14]:

y = A
[
ϕ(r)⊙ (qα01 + ε)

︸ ︷︷ ︸

ε̃

]
+ n. (C.1)

In (C.1), A = diag{a1, . . . , aN} is a diagonal matrix with ai, i = 1, . . . ,N ,

denoting the ith pilot symbol, ⊙ is the Hadamard product, 1 is an all-ones

vector, and n is a white circular (in the sense defined in [17]) complex Gaussian

noise vector with component variance σ2. The column vector containing the

ranging parameter reads

ϕ(r) = [ϕ1, . . . ,ϕN ]T ,

where

ϕn = e−2πfn
r
c

with fn denoting the frequency of pilot n, c being the speed of light, and

 =
√
−1. As suggested by Jing et al. [14], we factorize the channel frequency

response in a range-dependent term ϕ(r) and a range-independent term ε̃ for

73



Paper C.

direct ranging purpose. The simplifying assumption that ε is independent of r

may or may not be realistic. We leave the investigation of more sophisticated

distance-dependent channel models, such as the one presented in [6], to future

works.

The indicator parameter q ≥ 0 specifies the setting of the LOS path compo-

nent. In a LOS condition i.e. q > 0, q adjusts the power of the LOS component.

When q = 0, the system operates in a NLOS condition. The mth entry of the

column vector ε reads

εm =
L∑

l=1

αle
−j2πfmτl , (C.2)

where αl is the complex gain and τl is the excess delay of path l with respect

to the delay r
c induced by the geometric distance between the transmitter

and receiver. As proposed by Turin [5], we model the random set of excess

delays as a Poisson point process T = {τ1, τ2, . . .} with intensity function ρ(τ)
which gives the average number of points in T per time unit. Under these

assumptions, the elements in T and the number of multi-path components

L = |T | are random. In addition, depending on the shape of ρ(τ), L may not be

finite. We further assume that the complex gains are circular random variables

and conditionally independent. Thus, they have mean zero and conditional

second-order moments

E[αlα
∗
l′ |τl, τl′ ] =

{

σ2
α(τl), l = l′

0, otherwise.
(C.3)

With these assumptions, it is readily verified that y is circular. The delay

power spectrum is given by [11]

P (τ) = σ2
α(τ)(ρ(τ) + q2δ(τ))

with δ denoting the Dirac delta function.

3 Approximate MAP and Approximate MMSE

Direct Ranging Techniques

When the prior p(r) is known, we can use Bayesian inference to estimate r.

Well-known Bayesian estimators include the maximum a posteriori (MAP) es-

timator, the minimum mean-squared error (MMSE) estimator, and the linear

MMSE estimator. When higher-order moments of the observation vector y are

available, polynomial MMSE estimators [16] can be applied. We remark that all

estimators discussed next are “direct” range estimators since no intermediate

parameters, such as delays, complex gains, etc., are estimated [14].
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3.1 Approximate MAP Estimator

The MAP estimator selects a value r̂ that maximizes the posterior probability

density function p(r|y) [12]:

r̂MAP(y) = arg max
r
p(r|y)

= arg max
r
p(y|r)p(r). (C.4)

In the second line, p(y|r) denotes the likelihood function of r given the ob-

servation y. Due to the invoked assumptions on the channel model, p(y|r) is

unknown. If the number of path components is assumed to be known as in [21],

p(y|r) may become computable. But accurately estimating the number of path

components can be difficult given the system bandwidth limitation.

Here, we follow the alternative approach of approximating p(y|r) with a

Gaussian pdf p̃(y|r) with the same first- and second-order moments [14], i.e.

p̃(y|r) is a second-order maximum entropy approximation of p(y|r) [10]. This

approximation is exact if ε̃ is a Gaussian random vector, which is a reasonable

approximation when L is large and σ2
α(τ) is a constant. However, in more

realistic propagation conditions, e.g. when the delay power spectrum decays

exponentially, the Gaussian approximation can be inaccurate. The Gaussian

approximation leads to an estimator that can be derived analytically. Using

p̃(y|r) instead of p(y|r) in (C.4) yields

r̂AMAP(y) = arg max
r

ln p̃(y|r) + ln p(r), (C.5)

where

p̃(y|r) = 1

πN det(Cy(r))
e−yHC

−1
y (r)y (C.6)

with det(·) denoting the determinant. The conditional covariance matrix

Cy(r) = E[yyH |r] reads

Cy(r) = AΦ(r)Cε̃Φ
H(r)AH + σ2

I (C.7)

with Φ(r) = diag(ϕ(r)), (·)H denoting conjugate transposition, I being the

identity matrix, and Cε̃ = E[ε̃ε̃H ]. The (m,n)th entry of Cε̃ reads [11]

[Cε̃]mn = F{P (τ)}(fm− fn), (C.8)

where F denotes the Fourier transform. Using the eigenvalue decomposition

Cε̃ = UΛUH , we can recast (C.7) as

Cy(r) = Φ(r)GΦ
H(r)

with

G = AU(Λ + Iσ2/Es)U
HAH ,
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where Es = E[|an|2] is the pilot symbol power. Since Φ(r) is unitary,

det (Cy(r)) = det(G), i.e. the determinant of Cy(r) does not depend on

r. Thus, the log-likelihood ln p̃(y|r) is of the form

ln p̃(y|r) = −yH
Φ

H(r)G−1
Φ(r)y + constant (C.9)

with

G−1 = AU(Λ +
σ2

Es
I)−1UHAH . (C.10)

Thus, the approximate MAP estimator reads

r̂AMAP(y) = arg max
r
−yH

Φ(r)G−1
Φ

H(r)y + ln p(r). (C.11)

Since the matrices AU and Λ can be pre-computed and stored, the inversion of

G amounts to compute the diagonal matrix (Λ+ σ2

Es
I)−1. This circumvents the

brute force inversion of Cy(r) in (C.6) and thereby reduces the complexity of

the estimator. We remark that the matrices U and Λ depend on P (τ). There-

fore, they should be precomputed and stored for each setting of the parameters

of P (τ).
The approximate MAP estimator is readily related to the GAML estimator

proposed in [14]. When r is uniformly distributed on an interval D, (C.11)

simplifies to

r̂AMAP(y) = arg min
r∈D

yH
Φ(r)G−1

Φ
H(r)y. (C.12)

The approximate MAP estimator (C.12) differs from the GAML estimator [14]

in the restriction to D of the argmin operation. It can be shown that,

when r is a deterministic parameter, the non-coherent correlator-based esti-

mator [15] [4] [22] is a limiting case of (C.12) as q →∞, which corresponds to

a single-path channel.

3.2 Approximate MMSE Estimator

The standard MMSE estimator for the problem at hand reads

r̂MMSE(y) = E[r|y]

=

∫

rp(r|y)dr

=
1

∫
p(y|r)p(r)dr

∫

rp(y|r)p(r)dr, (C.13)

where the last step follows by invoking Bayes’ rule. Using the same line of

arguments as in Section 3.1, we replace p(y|r) with p̃(y|r) in (C.13) to obtain

the approximate MMSE estimator

r̂AMMSE(y) =
1

∫
p̃(y|r)p(r)dr

∫

rp̃(y|r)p(r)dr. (C.14)
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Since the terms det (Cy(r)) = det(G) in the numerator and denominator

cancel each other out, (C.14) takes the form

r̂AMMSE(y) =
1

∫
p(r)e−yHC−1

y (r)ydr

∫

re−yHC−1
y (r)yp(r)dr. (C.15)

For a general p(r), a closed-form expression of the right hand side of (C.14)

is difficult to obtain or does not exist [1]. Inversion of the conditional co-

variance matrix Cy(r) can be performed efficiently as shown before, see (C.9)

and (C.10). As a result, the complexity of implementing (C.15) amounts to

that of the numerical evaluation of two 1D integrals, which can be done fairly

accurately via many existing numerical integration methods.

Compared to the GAML estimator and the approximate MAP estima-

tor (C.11), the approximate MMSE estimator has the advantage that no search

procedure is needed. However, it exhibits the same drawback as the approx-

imate MAP estimator: its performance is expected to deteriorate when the

average number of path components in (C.2) is small or the delay power spec-

trum exhibits a fast exponential decay. In this case, the assumption that y is

jointly Gaussian may not be well justified since the central limit theorem does

not apply.

4 A pth-order Polynomial Direct Ranging Esti-

mator

When the MMSE estimator cannot be obtained in closed form and its imple-

mentation becomes too complex, linear estimators come into use. Since the ob-

servation y is complex, widely linear estimators can be applied [17]. As shown

in Appendix B, for the addressed ranging problem the linear and widely linear

MMSE estimators, however, are inapplicable since Cry = E[(r− µr)yH ] = 0,

as a result of ε and r being independent.

We show in Section 4.1 that, with our selection of the stochastic model of

the radio channel, it is possible to compute analytically the moments of any

order of the observation y. We exploit this fact and propose estimators of the

range that are polynomial functions of y. Specifically, for a given p = 1, 2, . . .,

a pth-order polynomial estimator of r is given by

r̂(y) = β∗
0 +

∑

i♦
1

β∗
i♦
1

y
♦i1
i1

+ · · ·

+
∑

i♦
1

,...,i♦p

β∗
i♦
1

,...,i♦p
y
♦i1

i1
· · · y♦ip

ip
, (C.16)

where we adopt the notation y
♦i
i from [17] with ♦i indicating whether or not

yi is conjugated and i♦ = (i,♦i). Thus, the sum over i♦ includes 2N terms.
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We recast the expression (C.16) in a vector form as

r̂(y) = β∗
0 + βHz, (C.17)

where the column vector z has entries y
♦i1
i1
· · · y♦ip

ip
with the associated coeffi-

cients arranged in β. Note that the subsequent results hold irrespective of the

arrangement of the entries in z. For p = 1, (C.17) is the so-called widely linear

MMSE estimator1 [17] with z defined as z = [yT yH ]T . For p = 2, (C.17) is

referred to as the widely linear MMSE estimator [17] with

z =









y

y∗

y⊗ y

y∗ ⊗ y∗

y⊗ y∗









, (C.18)

where ⊗ denotes the Kronecker product.

The coefficients of the optimal pth-order polynomial estimator minimize

the mean-square-error E[|r− r̂(y)|2]. By invoking the orthogonality principle,

these coefficients are the solutions of the set of equations

E[r− r̂(y)] = 0, (C.19)

E[(r− r̂(y))zH ] = 0. (C.20)

Solving (C.19) and (C.20) yields

β∗
0 = µr −βHE[z], βH = CrzC

−1
zz , (C.21)

where

Crz = E[(r− µr)(z−E[z])H ],

Czz = E[(z−E[z])(z−E[z])H ].

Consequently, the pth-order polynomial MMSE estimator of r reads

r̂(y) = µr +CrzC
−1
zz(z−E[z]). (C.22)

Accordingly, the root-mean-square-error (RMSE) of the estimator is given by

√

E[|r− r̂(y)|2] =
√

σ2
r −CrzC

−1
zzC

H
rz . (C.23)

The estimator (C.22) requires the moments up to order 2p of y to be known.

By adopting Turin’s channel model, we can in fact compute all its moments of

any order. This is a remarkable benefit of the mechanism generating the path

1Strictly speaking, the pth-order MMSE estimator (C.17) is not a linear estimator. We
stick to the terminology used in [17].
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delays using a Poisson point process. Without this feature, we would need

to estimate the required higher-order moments, like many other engineering

problems do [16]. In addition, as compared to the approximate MAP estima-

tor (C.11) and the approximate MMSE estimator (C.14), another advantage

of the pth-order polynomial MMSE estimator is that no approximation of the

pdf of y is needed as long as all its moments up to order 2p are known.

In writing (C.22), we assume that Czz is invertible. In principle, as p

increases, a higher ranging accuracy can be achieved. But the complexity of

computing C−1
zz grows exponentially as p increases. When p = 2, computing

C−1
zz with dimension (2N + 3N2) × (2N + 3N2) can be time consuming for

large N . As shown in Appendix A, for circular y, Czz is a block diagonal

matrix. This structure reduces the complexity of computing C−1
zz . To further

decrease the computational effort without increasing (C.23) too much, one

might need to judiciously choose the terms of the sum in (C.17). Hence the

RMSE in (C.23) may be used as a criterion for this selection.

4.1 Higher-order Cumulants and Moments

Application of the pth-order polynomial MMSE estimator in (C.22) necessitates

computation of the two covariance matrices Crz and Czz . By the law of total

expectation, we have

Crz = E
[

rE[zH |r]
]

− µrE
[

E[z|r]
]

, (C.24)

Czz = E
[

E[zzH |r]
]

−
∣
∣
∣E

[

E[z|r]
]∣
∣
∣

2
. (C.25)

Thus, computation of the covariance matrices using (C.24) and (C.25) requires

access to the conditional moments of the entries of y up to order 2p. To do

so, we follow the approach of first calculating cumulants and then use these to

obtain the required moments.

We define the cumulant generator (cumulant generating function) of a com-

plex random vector ν = [ν1, . . . , νN ] as

ψν(w) = lnE[eℜ(wHν)],

where ℜ denotes real part. Let νI = (ν
♦i1
i1

, · · · , ν
♦ik
ik

) denote a selection of k =
k1 + k2 entries of ν of which k2 are conjugated. The corresponding cumulant

is defined as

κ(νI) =
(2



)k ∂kψν(w)

∂wI

∣
∣
∣
∣
∣
w=0

(C.26)

with ∂wI = (∂w
♦i1
i1

)∗ · · · (∂w♦ik
ik

)∗. The conditional moments and cumulants
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are related via [9] [8]

Mom(νI) = E[ν
♦i1
i1
· · · ν♦ik

ik
] =

∑

π

∏

b∈π

κ(b) (C.27)

where π runs through all partitions of the sequence νI and b runs through all

sets of the partition π. In the case of a circular vector ν, the task of evaluating

(C.27) is alleviated by noticing that all cumulants, but those corresponding to

k1 = k2, are zero. To compute the conditional cumulants, we replace νI by νI|r
in the above definitions.

We now compute the conditional cumulants of y by applying Campbell’s

theorem. From (B.1), given r, the cumulants of y is a sum of three terms:

κ(yI|r) = κ(nI) + κ((qα0Aϕ(r))I|r) + κ((Aϕ(r)⊙ ε)I|r). (C.28)

These terms are the cumulants of the noise, the signal received via a LOS path,

and the remaining multi-path components, respectively.

All cumulants of the circular Gaussian noise vector n vanish except the

second-order cumulants, which are of the form

κ(ni,n
∗
i ) = σ2, i = 1, . . . ,N .

The second term in (C.28) simplifies due to the homogeneity property of

cumulants:

κ
(

(qα0Aϕ(r))I

∣
∣
∣r

)

= κ
(

α
♦i1
0 , . . . ,α

♦ik
0

)

qk
∏

i′=i1,...,ik

a
♦i′

i′ ϕ
♦i′

i′ . (C.29)

Since α0 is circular Gaussian, we have

κ
(

α
♦i1
0 , . . . ,α

♦ik
0

)

=

{

σ2
α(0) for k1 = k2 = 1

0 otherwise.

As expected, these cumulants all vanish in a NLOS condition, i.e. when q = 0.

Invoking homogeneity property and using the assumption that ε is inde-

pendent of r, the third term in (C.28) becomes

κ
(

(Aϕ(r)⊙ ε)I

∣
∣
∣r

)

= κ(εI)
∏

i′=i1,...,ik

a
♦i′

i′ ϕ
♦i′

i′ . (C.30)

The cumulant κ(εI) is computed from the cumulant generator ψε(w), which

can be derived via the Campbell’s theorem [13] as

ψε(w) =

∫

(Ψξ|τ (w)− 1)ρ(τ)dτ . (C.31)
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Here, ξ|τ denotes a circular complex Gaussian vector with entries ξi = ατe
−2πfiτ ,

i = 1, 2, . . . ,N , and conditional characteristic function

Ψξ|τ (w) = E[exp(ℜ(wHξ))|τ ]

= e− 1
4
wHCξ|τw, (C.32)

where Cξ|τ = E[ξξH |τ ] = σ2
α(τ)ϕ(cτ)ϕ

H(cτ). The cumulants of ε can be

evaluated by applying (C.31) to (C.26). Doing so, we observe that the moments

of ξ|τ need to be computed. By inspection of (C.27) and using the fact that

ξ|τ is Gaussian with zero-mean yield

E[ξ
♦i1
i1

. . . ξ
♦ik
ik
|τ ] = k1!e−2πfdifτσ2k1

α (τ)δk1,k2
,

where δk1,k2
denotes the Kronecker delta and fdif = (±fi1

± fi2
· · · ± fik

) with

the ith term negated if ♦i means complex conjugation, and positive sign oth-

erwise. Therefore,

κ(εI) = k1!

∫

e−2πfdifτσ2k1
α (τ)ρ(τ)dτ . (C.33)

The conditional cumulants of y can now be computed by insertion into (C.28).

Thereafter, the conditional moments are obtained from (C.27), which are in-

serted in (C.24) and (C.25) to compute the (unconditional) moments of y.

We remark that due to the particular form of the cumulants in (C.29)

and (C.30), computation of the expectations over r in (C.24) and (C.25) amount

to computing the factors

E
[ ∏

i′=i1,...,ik

ϕ
♦i′

i′

]

=

∫

p(r)e−2πfdifr/cdr

= F{p(r)} (fdif/c) (C.34)

E
[

r
∏

i′=i1,...,ik

ϕ
♦i′

i′

]

=

∫

rp(r)e−2πfdifr/cdr

= F{rp(r)} (fdif/c) . (C.35)

We remark that (C.34) is the value of the characteristic function of the prior

pdf p(r) evaluated at 2πfdif/c. Upon evaluating these expressions analytically

or numerically, we can compute all required higher-order moments of y for a

particular prior p(r).

4.2 Widely Linear Quadratic MMSE Estimator

We now illustrate a specific example of the pth-order polynomial MMSE es-

timator: the widely linear-quadratic MMSE estimator. Its general form for a
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complex signal model reads

r̂LQ(y) = β∗
0 +

∑

i

g∗
i yi +

∑

i

h∗
i y

∗
i

+
∑

i,j

γ∗
i,jyiyj +

∑

i,j

ϑ∗
i,jy

∗
i y

∗
j +

∑

i,j

β∗
i,jyiy

∗
j . (C.36)

Since Cry = 0, it follows that g∗
i = h∗

i = 0, i = 1, . . . ,N . It is shown

in Appendix C that since E[yiyj ], E[y∗
i y

∗
j ], E[ryiyj ], and E[ry∗

i y
∗
j ], i, j =

1, . . . ,N , are zero, the corresponding filter coefficients γ∗
i,j and ϑ∗

i,j, i, j =
1, . . . ,N , vanish. Hence, (C.36) simplifies to

r̂LQ(y) = β∗
0 +

∑

i,j

β∗
i,jyiy

∗
j

= β∗
0 + βH(y⊗ y∗). (C.37)

Accordingly, for the addressed ranging problem, the widely linear-quadratic

MMSE estimator is obtained from (C.22) with z = y⊗ y∗. In this particular

case, inversion of a covariance matrix Czz of dimension N2 ×N2 instead of

dimension (2N + 3N2)× (2N + 3N2) is needed.

Next, we compute the coefficients for the widely linear-quadratic MMSE

estimator, which requires the moments of the entries of y up to fourth-

order. Since y is circular, we only need to compute its even moments.

From (C.27), (C.34), and (C.35), the second-order moments and cross moments

are of the form

E[ymy
∗
n] = ama

∗
nF{p(r)}

(
fm − fn

c

)

[Cε̃]m,n + σ2δm,n (C.38)

E[rymy
∗
n] = ama

∗
nF{rp(r)}

(
fm − fn

c

)

[Cε̃]m,n + σ2δm,n. (C.39)

The non-zero fourth-order moments of y have the form E[yiy
∗
j y

∗
myn]. In-

specting (C.27) and dropping the cumulants that are zero, we obtain

E[yiy
∗
j y

∗
myn] = κ(yiy

∗
j y

∗
myn) + κ(yiy

∗
j )κ(yny

∗
m) + κ(yiy

∗
m)κ(yny

∗
m). (C.40)

The second-order cumulants in (C.40) equal the second-order moments in (C.38).

From (C.30) and (C.33), the remaining fourth-order cumulant reads

κ(yiy
∗
j y

∗
myn) = aia

∗
ja

∗
manF{p(r)} (fdif/c) 2

∫

e−2πfdifτσ4
α(τ)ρ(τ)dτ . (C.41)

Thus, we have derived all moments necessary to calculate the coefficients of

the widely linear-quadratic MMSE estimator in (C.37).

Inspection of expression (C.40) in combination with (C.23) shed some light

on the properties of the estimator at extreme SNRs. When the SNR tends
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Table C.1: Simulation Settings

OFDM system:

Bandwidth: 4.5 MHz, N = 50, ∆f = 15 kHz,

Tp = T + Tcp = 66.7+ 5.4 = 72.1 µs, SNR =
E[|ai|

2]
σ2 ,

Equal power and equal spacing pilot signal is used.

Channel parameters:

Homogenous Poisson point process: ρ(τ) = ρ0, λ = 360 ns,

Average no. of paths: µL = ρ0Tcp, r ∼ U [0, 100]m.

Results obtained from 10000 Monte Carlo trials are displayed.

“Theo.” is short for theoretical.

to infinity, i.e. the noise variance σ2 approaches zero, (C.40) and (C.39) are

constant. Using these results in (C.23), we can show that the RMSE approaches

a constant when the SNR tends to infinity. At the other end of the scale, when

the SNR tends to zero, Czz is dominated by σ2 and the RMSE approaches σr.

In short,
√

E[|r− r̂(y)|2]→
{

σr for σ2 →∞
constant for σ2 → 0.

5 Numerical Performance Evaluation

We first evaluate the performance of the approximate MAP, approximate

MMSE and linear-quadratic MMSE estimators in a multi-path channel and

contrast it with the performance of the non-coherent correlator-based estima-

tor [15] [22] and the GAML estimator [14]. We omit the comparison with the

multidimensional-search-based estimators [21] [18], because these estimators

require access to L, which is assumed to be unknown.

5.1 Simulation Scenarios and Considered Estimators

Table C.1 summarizes the settings of the scenarios considered in the simulation.

For simplicity, we adopt the homogeneous Poisson point process (ρ(τ) = ρ0)

and assume that

σ2
α(τ) = C exp(− τ

λ
),

where C is a positive constant and λ denotes the root-mean-square (RMS)

delay spread when the LOS component is removed from the channel response.

With these assumptions, the delay power spectrum reads

P (τ) = C exp(− τ
λ
)(ρ0 + q2δ(τ)). (C.42)
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Furthermore, we adopt a uniform prior for the range:

p(r) =

{
1

rmax
for 0 < r ≤ rmax

0 otherwise.

This choice reflects the situation where the user terminal (to be localized) can

appear at any distance to the base station within the interval D = [0, rmax].
Accordingly, the approximate MMSE estimator simplifies to

r̂AMMSE(y) =
1

∫ rmax

0 e−yHC
−1
y (r)ydr

∫ rmax

0
re−yHC

−1
y (r)ydr. (C.43)

Based on the above assumptions on the multi-path channel, we now derive

the analytical results that are needed to obtain the proposed estimators. We

assume that
∫ −∞

Tcp
Ce

τ
λ dτ is negligible. Then, the entries of the covariance

matrix Cε̃ in (C.8) read [14]

[Cε̃]ij = q2C + ρ0gij (C.44)

with

gij = C
1− e−(2π(fi−fj )+

1
λ
)Tcp

j2π(fi− fj) +
1
λ

i, j = 1, . . . ,N . (C.45)

Note that Cε̃ depends on the intensity function ρ0 and the RMS delay spread

λ. The values of ρ0 and λ may be provided in the settings of an appropriate

channel model for the propagation environment under consideration.

The fourth-order cumulants of y read

κ(yiy
∗
j y

∗
myn) = aia

∗
ja

∗
manF{p(r)} (fdif/c) 2ρ0C

2 1− e
(−2πfdif−

2

λ
)Tcp

2πfdif +
2

λ

.

(C.46)

The fourth-order moments of ϕ(r) in (C.46), see (C.34), read

F{p(r)} (fdif/c) =

{
1−e̺

̺ i 6= j

1 i = j
(C.47)

with ̺ = 2πfdifrmax/c. Similarly, from (C.35) we have

F{rp(r)} (fdif/c) =







1
̺

(
1
̺ + e̺(rmax +

1
̺ )

)

i 6= j

µr i = j
. (C.48)

Knowing the maximum range of r, (C.47) and (C.48) can be computed straight-

forwardly.
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Fig. C.1: RMSEE versus SNR of the considered estimators: LOS condition and µL = 60.

The above results are inserted in the corresponding estimators as needed.

The argmax operation in the approximate MAP (AMAP) estimator (C.12) is

carried out by first performing a coarse grid search to capture the main-lobe

of the objective function followed by a refined search to improve the estimates.

The integrals in the approximate MMSE (AMMSE) estimator (C.43) are com-

puted numerically.

5.2 Ranging Accuracy Versus SNR in LOS Conditions

Fig. C.1 and Fig. C.2 report the simulated RMSE and bias of the investigated

estimators. The GAML, approximate MAP, approximate MMSE, and widely

linear-quadratic MMSE estimators significantly outperform the correlator-based

estimator. Overall, the approximate MMSE estimator exhibits the best ranging

performance in the considered SNR range. In the high SNR region, the ap-

proximate MAP and GAML estimators achieve higher ranging accuracy than

the other considered estimators. They lose this advantage to the widely linear-

quadratic MMSE estimator in the low SNR region. Because it exploits the prior

information on r, the approximate MAP estimator outperforms the GAML esti-

mator. In addition, the simulated RMSE of the widely linear-quadratic MMSE

estimator coincides with the RMSE in (C.23). Fig. C.2 shows that the bias

of all estimators decreases as the SNR increases. The widely linear-quadratic

MMSE and approximate MMSE estimators are unbiased, while the other three

exhibit positive biases.
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Fig. C.2: Bias versus SNR of the considered estimators: LOS condition and µL = 60.

5.3 Performance Evaluation Under Different Channel Set-

tings

Fig. C.3 reports the simulated RMSEs versus the average number of path com-

ponents µL = ρ0Tcp for the LOS condition. We observe again that the GAML,

approximate MAP, approximate MMSE and widely linear-quadratic MMSE

estimators significantly outperform the correlator-based estimator, with the

approximate MMSE estimator achieving the highest ranging accuracy. As the

average number of paths increases, the performance of the approximate MAP,

approximate MMSE, and widely linear-quadratic MMSE estimators deterio-

rate, while the performance of the GAML estimator improves. The simu-

lated RMSE of the widely linear-quadratic MMSE estimator coincides with

the RMSE in (C.23).

Fig. C.4 reports the simulated RMSEs in the NLOS condition. Contrary to

what is observed in the LOS condition, the RMSE decreases as µL increases.

Compared to the correlator-based and GAML estimators, the widely linear-

quadratic MMSE estimator achieves a promising performance gain, in partic-

ular when the average number of paths is small. When the average number of

paths is large, the approximate MMSE estimator shows the best ranging accu-

racy among the considered estimators. This is a consequence of the fact that the

Gaussian approximation of the distribution of y becomes more accurate. When

the average number of paths is small, leading to a more pronounced deviation

of the distribution of y from the Gaussian approximation, the fourth-order mo-
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Fig. C.3: RMSEE versus average number of paths µL of the considered estimators: LOS
condition and SNR = 20 dB.

ments have a larger impact on the ranging accuracy. As a result, the widely

linear-quadratic MMSE estimator outperforms the approximate MMSE esti-

mator. Finally, because it utilizes the prior knowledge on r, the approximate

MAP estimator achieves higher ranging accuracy than the GAML estimator.

5.4 Performance Comparison in Model Mismatch

The performance of the proposed estimators is anticipated to degrade if there

is a mismatch between the settings of the parameters of the channel in which

the estimators effectively operate and the selected channel parameter settings

used in these estimators. From (D.23), the intensity function ρ0, the RMS

delay spread λ, and the LOS indicator q are the parameters governing the

delay power spectrum of the channel. In Section 5.3, we have investigated the

impact of the average number of path components µL, and therefore of ρ0, on

the performance of the proposed estimators. Here, we report the impact of

having mismatches on the RMS delay spread λ and the LOS indicator q. For

the RMS delay spread, we say that there is a mismatch if the selected setting

of λ used to derive the considered estimators is different from that setting

of the channel in which the estimators effectively operate. This reflects the

situation that either the estimate of λ or the information on λ that we obtained

from the settings of the channel model has some uncertainties. For the LOS

indicator, we say that there is a mismatch if a LOS (NLOS) condition prevails
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Fig. C.4: RMSEE versus the average number of paths µL of the considered estimators:
NLOS condition and SNR = 20 dB.

in the channel, while the value of q used in the estimators correspond to a

NLOS (LOS) condition. Otherwise there is a match. This study has practical

implications: since detecting LOS and NLOS conditions can be difficult in

many scenarios, it allows for testing the robustness of the proposed estimators

against such channel state mismatches.

We show the impact of a mismatch on λ to the RMSE of the estimators

in Fig. C.7 (LOS condition) and Fig. C.8 (NLOS condition). In the LOS con-

dition, the mismatch causes performance loss. However, this loss is negligible

when the widely linear-quadratic MMSE estimator is employed. The approx-

imate MAP and approximate MMSE estimators show a noticeable loss, but

they still outperform the widely linear-quadratic MMSE estimator. Moreover,

the smaller the RMS delay spread, the smaller the loss, since a smaller RMS

delay spread leads to fewer path components with large delays appearing in the

channel response. In the NLOS condition, the widely linear-quadratic MMSE

estimator is still quite robust against the mismatch. Despite the mismatch on

λ, the ranging accuracy increases when the RMS delay spread decreases. This

implies that even if the value of λ used in the estimators is wrong, the approxi-

mate MAP and MMSE estimators still lead to a lower RMSE due to the better

channel condition.

The impact of the LOS/NLOS mismatch is shown in Fig. C.5 and Fig. C.6.

It appears that both approximate MAP and widely linear-quadratic MMSE
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Fig. C.5: RMSEE versus the deviation of λ that is used in the channel as compared to that
is assumed in the estimators: LOS condition, SNR = 20 dB, and µL = 60.
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Fig. C.6: RMSEE versus the deviation of λ that is used in the channel as compared to that
is assumed in the estimators: NLOS condition, SNR = 20 dB, and µL = 60.
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Fig. C.7: RMSEE of the approximate MAP estimator versus average number of paths
µL for SNR = 20 dB. Blue and red curves indicate the real channel conditions. “Estimator:
LOS Assumption” shows the RMMSE of estimator (C.12) assuming that the real propagation
channel is in a LOS condition while “Estimator: NLOS Assumption” denotes the RMMSE
of estimator (C.12) assuming that the real channel is in a NLOS condition.

estimators benefit from the LOS condition, which leads to a lower RMSE. In

case of a mismatch, both estimators perform worse than when there is a match.

This is particularly noticeable in the LOS condition with small µL. Except for

the matched case when a LOS condition prevails, the RMSE decreases as µL

increases. We remark that the approximate MMSE and approximate MAP

estimators behave similarly. Therefore, we omit to include their performance

plots.

6 Conclusion

The proposed direct ranging methods bypass the first-path detection problem

and obviate the requirements of knowing the number of path components in the

channel response and of any separability condition of these components. These

methods rely on a channel model formulated via a point process approach,

which allows for computing the required moments of the channel response.

If the first- and second-order moments of the received signal are available,

the approximate MAP and MMSE estimators can be efficiently evaluated. If

we further have access to up to 2pth-order moments, the unbiased pth-order

polynomial MMSE estimator can be applied. By using Turin’s classical channel
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Fig. C.8: RMSEE of the widely linear-quadratic MMSE estimator versus average number
of paths µL for SNR = 20 dB. Blue and red curves indicate the real channel conditions.
“Estimator: LOS Assumption” shows the RMMSE of estimator (C.22) assuming that the
real propagation channel is in a LOS condition while “Estimator: NLOS Assumption” denotes
the RMMSE of estimator (C.22) assuming that the real channel is in a NLOS condition.
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model, all moments of the received signal can be computed analytically via

Campbell’s theorem.

Remarkably, the standard linear MMSE estimator (p = 1) is inapplicable

in this case, whereas the widely linear-quadratic MMSE estimator (p = 2)

can be employed. Our findings show that if a prior information on the range

is available, Bayesian estimators, such as the approximate MAP, the approxi-

mate MMSE, and the widely linear-quadratic MMSE estimators significantly

outperform the non-coherent correlator-based estimator. Furthermore, simula-

tion results demonstrate that the proposed estimators are fairly robust against

model mismatches.

For the pth-order polynomial MMSE estimator, the required moments of

the observation vector are needed, not its pdf. In addition, the RMSE of the

polynomial MMSE estimator can be analytically computed. This is not the

case for the approximate MAP and MMSE estimators. The performance of

these two estimators are inherently limited by the underlying Gaussian ap-

proximation. When a multi-path channel with low average number of path

components is encountered, the Gaussian approximation of the distribution of

y is poor. In this particular case or in similar cases, a straightforward way to

improve the performance of the two estimators is to investigate more accurate

approximations that take into account higher-order moments of the received

signal.

An aspect not considered in this contribution that can be the subject of

future investigations is the distribution of range errors. This distribution is

widely used to derive range-based localization algorithms. As with other rang-

ing methods, the exact distribution of the range errors of the proposed esti-

mators is not known. Thus, one must resort to empirical models of the pdf of

the range errors. Since direct ranging methods do not rely on first-path detec-

tion, potential range errors resulting from missed first-path detection, which

are often considered in error models, are avoided. This rationale leads us to

conjecture that direct ranging techniques give rise to differently distributed

range errors compared to existing ranging methods.

A Inversion of Czz

For circular y, the covariance matrix in (C.18) with p = 2 is of the form

Czz =









Cy 0 0 0 0

0 CT
y 0 0 0

0 0 Cz1 0 0

0 0 0 Cz2
0

0 0 0 0 Cz3









,
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where

Czi
= E[(zi −E[zi])(zi −E[zi])

H ]

with

z1 = y⊗ y, z2 = y∗ ⊗ y∗, z3 = y⊗ y∗. (C.49)

Obviously, z1 = z∗
2 leading to Cz2 = CT

z1
. The block diagonal structure of

Czz greatly reduces the computational complexity of inverting this matrix.

The complexity of computing C−1
zz amounts to that of inverting the covariance

matrix Cy, which contains the second-order moments, and the matrices Cz1

and Cz3
, which contain the fourth-order moments of y. Notice that Cz1

and

Cz3 have the same entries but ordered differently.

B Widely Linear MMSE and Linear MMSE Es-

timator

The widely linear MMSE estimator for a complex signal y reads [17]

r̂(y) = β∗
0 + hHy + gHy∗. (C.50)

Thus βH = [hH gH ] and z = [yT yH ]T . Referring to (C.21), Crz needs to be

computed in order to obtain β. Since E[z] = 0, the cross-covariance matrix

Crz equals E[rzH ]. Inserting (B.1), the entry E[ry♦i
i ] of E[rzH ] reads

E[ry♦i
i ] = E[rϕ♦i

i (r)]E[ε̃♦i
i ]

︸ ︷︷ ︸

=0

+E[n♦i
i ]

︸ ︷︷ ︸

=0

= 0, (C.51)

which follows from the assumption that ε̃i and r are independent. Thus, βH =
0 leading to β0 = µr. The widely linear MMSE estimator

r̂(y) = µr

is therefore independent of the observed data. It only depends on the prior

knowledge of r. Therefore, this estimator is inapplicable to our problem.

Setting either h or g to be zero, the estimator is commonly referred to as

the linear MMSE estimator [3]. Following the same procedure as to obtain

the widely linear MMSE estimator, we show that the linear and widely linear

MMSE estimators coincide as a consequence of y being circular [17]. Therefore,

we do not distinguish between the widely linear MMSE estimator and the linear

MMSE estimator.
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C Linear Quadratic MMSE Estimator

The general form of a widely linear-quadratic MMSE estimator for a complex

signal model reads

r̂LQ(y) = β∗
0 +

∑

i

g∗
i yi +

∑

i

h∗
i y

∗
i

+
∑

i,j

γ∗
i,jyiyj +

∑

i,j

ϑ∗
i,jy

∗
i y

∗
j +

∑

i,j

β∗
i,jyiy

∗
j . (C.52)

It follows from (C.51) and the circularity of y that gi = hi = 0, i = 1, . . . ,N .

Thus, (C.52) simplifies to

r̂LQ(y) = β∗
0 +

∑

i,j

γ∗
i,jyiyj +

∑

i,j

ϑ∗
i,jy

∗
i y

∗
j +

∑

i,j

β∗
i,jyiy

∗
j .

To proceed, we formulate z = [zT
1 zT

2 zT
3 ]

T with z1, z2, and z3 given

in (C.49). We define the column vector of the corresponding filter coefficients

β = [γT ϑT βT
1 ]

T .

First, we compute the coefficients associated to z2. Applying the orthogo-

nality principle (C.20), we obtain

E[rzH
1 ] = β∗

0E[z
H
1 ] + γHE[z1z

T
1 ] + ϑ

HE[z1z
T
2 ] + β

H
1 E[z1z

T
3 ]. (C.53)

We can show that the entries of E[rzH
1 ] vanish:

E[ryiyj ] = E[rϕi(r)ϕj(r)]E[ε̃iε̃j ]
︸ ︷︷ ︸

=0

+E[ninj ]
︸ ︷︷ ︸

0

= 0.

This results from ε̃ being circular and n being white. Since the vector y is circu-

lar, E[zH
1 ] = 0. Furthermore, E[z1z

T
1 ] = E[z1z

T
3 ] = 0. Consequently, (C.53)

simplifies to

ϑHE[z1z2] = ϑHE[z1z
H
1 ] = 0. (C.54)

Since the matrix E[z1z
H
1 ] is positive definite, by (C.54) ϑ = 0. Following the

same procedure, we obtain γ = 0. Consequently, the widely linear-quadratic

MMSE estimator is of the form

r̂LQ(y) = β∗
0 +

∑

i,j

β∗
i,jyiy

∗
j . (C.55)
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1. Introduction

Abstract

We consider Bayesian ranging methods for localization in wireless communi-

cation systems. Based on a channel model and given priors for the range and

the line-of-sight (LOS) condition, we propose range estimators with and with-

out LOS detection. Since the pdf of the received frequency-domain signals is

unknown, we approximate the maximum-a-posteriori (MAP) and the minimum

mean-squared error (MMSE) estimators. The promising ranging accuracy ob-

tained with the proposed estimators is demonstrated by Monte Carlo simula-

tions. We observe that the approximate MMSE estimators outperform the ap-

proximate MAP estimators. In addition, we find that including LOS detection

in the approximate estimators, while adding a higher computational complexity,

has no major impact on the ranging performance.

1 Introduction

Having accurate localization capability is increasingly important for wireless

communication systems [14] [6]. One approach to increase localization per-

formance is to rely on high precision ranging techniques [3]. State-of-the-art

ranging techniques based on, for example, the received signal strength, angle-

of-arrival, time-of-arrival, time-difference-of-arrival, etc, may be sensitive to

line-of-sight (LOS) conditions [6] [16]. Therefore, accounting for the unknown

LOS or non-LOS (NLOS) conditions is an issue considered in many ranging

and localization techniques [7] [9].

To tackle this issue, one approach is to rely on LOS identification techniques.

Such a approach is reliable provided that the signal bandwidth and signal-to-

noise ratio (SNR) are sufficiently large [16] [22] [10] [5] [17] [2]. Existing LOS

identification techniques include methods based on machine-learning [17] [4]

and hypothesis-testing [7] [5] [6]. The LOS identification step labels range es-

timates as “LOS” or “NLOS” to facilitate the localization algorithms [21] [4].

The rational is that if the LOS condition can be correctly identified, this infor-

mation can be used to improve the ranging and localization accuracy. However,

in communication systems with limited bandwidth and SNR, the LOS detector

may be unreliable [16].

Instead of identifying and mitigating NLOS range estimates, direct rang-

ing, which infers the range parameter directly from the received signal, can

be potentially applied. Direct ranging methods have been proposed in [12, 13]

for bypassing a related problem, i.e. the first-path detection. These meth-

ods rely on a channel model formulated via a point process to compute the

required moments of the received signal. In [13], an approximate maximum-

likelihood ranging method using the first- and second-order moments of the

received signal has been presented. Using the prior distribution of the range,
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Bayesian estimators, including approximate maximum a posteriori (MAP) and

minimum-mean-square-error (MMSE) estimators and a pth-order MMSE poly-

nomial estimator, are proposed in [12]. In contrast to the methods in [20] [15],

direct ranging operates without knowledge of the number of multi-path compo-

nents in the channel response and separability condition on these components.

Although the methods in [12, 13] still rely on LOS state information, the prin-

ciple of ranging without estimating intermediate parameters seems promising.

In the present contribution, we propose Bayesian ranging methods with and

without LOS detection for multi-path channels. Inspired by the direct ranging

principle, we make use of a channel model to approximate pdfs of the received

signal. In addition, we incorporate prior information on the range and the

LOS condition. For this setup, we propose and evaluate approximate MAP

and MMSE estimators. In addition, we derive variants of these estimators

with approximate MAP and Bayes decision rules for LOS detection. We test

the performance of the proposed methods by means of Monte Carlo simulations

of an OFDM system with limited bandwidth.

2 Signal and Channel Model

We address the problem of estimating the range parameter r directly from the

received signal vector y = [y1, . . . , yN ]T obtained at frequencies f1, . . . , fN . We

follow the Bayesian approach and consider the range r to be a random variable

with a priori pdf p(r). Assuming the channel to be time-invariant with additive

noise, we write

y = Ah(r) + n, (D.1)

where A = diag{a1, . . . , aN} is a diagonal matrix containing the known pilot

symbol, h(r) denotes the range-dependent frequency-domain channel response,

and n is a white circular complex Gaussian noise vector with component vari-

ance σ2.

As in [13] and [12], we decompose h(r) as the Hadamard product of a

range-dependent factor ϕ(r) and a range-independent factor ξ:

h(r) = ϕ(r)⊙ ξ (D.2)

with

ϕ(r) = [ϕ1, . . . ,ϕN ]T , ϕn = e−2πfn
r
c ,

where  =
√
−1 and c is the speed of light. Unlike [13] and [12], we here

consider the case of a multi-path channel in which LOS propagation occurs

with probability pLOS. Thus we write ξ as a superposition of a LOS term and

a multi-path term

ξ = qα01 + ε, (D.3)
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where 1 denotes an all-ones vector. The random LOS indicator q takes value

one with probability pLOS and zero otherwise. The complex gain of the LOS

term is denoted by α0. The multi-path term ε = [ε1, . . . , εN ]T has entries

εn =
L∑

l=1

αle
−j2πfnτl , n = 1, . . . ,N , (D.4)

where αl is the complex gain and τl is the excess delay of path l with re-

spect to the LOS delay r
c . The random excess delays form a point process

T = {τ1, τ2, . . .} with intensity function ρ(τ) whose shape controls the average

number of points in T per time unit. By convention, we set the delay associ-

ated to the LOS component to be zero, i.e. τ0 = 0. Depending on the specific

point process assumed, the number L = |T | of multi-path components may be

random and potentially infinite. We further assume that

E[αl|τl] = 0, E[αlα
∗
l′ |τl, τl′ ] =

{

σ2
α(τl), l = l′

0, otherwise,
(D.5)

where σ2
α(τl) denotes the expected power of a path component with delay τl.

With these definitions, the delay power spectrum of the considered channel

model is of the form

P (τ) = E[P (τ |q)|q] (D.6)

where P (τ |q) is the conditional delay power spectrum [13]

P (τ |q) = σ2
α(τ)(ρ(τ) + q2δ(τ)) (D.7)

with δ denoting the Dirac delta function. Thus, P (τ) = σ2
α(τ)(ρ(τ)+ pLOSδ(τ)).

3 Estimation of Range

3.1 Approximate Likelihood Function

Standard Bayesian estimators such as MAP and MMSE estimators necessitate

the computation of the posterior pdf p(r|y). For a specific estimation problem,

this pdf may be known directly or alternatively computed via Bayes Theorem,

provided that the likelihood function p(y|r) is known. For the problem de-

scribed in Section 2, it is most convenient to work with the likelihood function,

which can be expressed as

p(y|r) =
1∑

q=0

p(y|r, q)p(q), (D.8)

where p(q) denotes the probability mass function of q. Unfortunately, for the

case considered, the two likelihood functions p(y|r, q) and p(y|r) are unknown
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and therefore we resort to approximations. Here, we consider two different

approximations for p(y|r).
To derive the first approximation, we follow the same approach as in [13]

and [12]: we approximate the likelihood function p(y|r, q) as a Gaussian pdf

pG(y|r, q) with the same first and second moments, i.e. with mean zero and

covariance

Cy|r,q = E[yyH |r, q] = AΦ(r)Cξ|qΦ
H(r)AH + σ2

I, (D.9)

where Φ(r) = diag{ϕ(r)}, I denotes the identity matrix, and Cξ|q = E[ξξH |q]
with the (m,n)th entry computed as

[Cξ|q]mn = F{P (τ |q)}(fm− fn). (D.10)

Here, F denotes the Fourier transform. Inserting pG(y|r, q) for p(y|r, q) in (D.8),

we obtain the Gaussian mixture

pGM (y|r) =
1∑

q=0

pG(y|r, q)p(q). (D.11)

In the second approximation, we replace p(y|r) directly by a Gaussian

pG(y|r) with the same first and second moments as y|r, i.e. with mean zero

and covariance

Cy|r = E[Cy|r,q] (D.12)

in which Cξ = E[Cξ|q] can be straightforwardly computed.

Evaluation of pG(y|r) and pGM(y|r) requires calculation of determinants

and inverses of the matrices defined in (D.9) and (D.12). Following the same

line of arguments as in [13], these computation tasks simplify since the determi-

nants do not depend on r and inversion of the involved matrices can be carried

out efficiently.

The accuracy of the above approximations depends on the specific parame-

ter settings of the channel model. As an example, the Gaussian approximation

may be inaccurate if the average number of path components in the multi-

path channel, see (D.4), is small or the delay power spectrum exhibits a fast

exponential decay. In the other extreme where the delay power spectrum is

a constant and the average number of path components is high, the Gaussian

approximation is well justified. Consequently, the accuracy of the estimators

derived from the proposed approximations should be assessed, e.g. via Monte

Carlo simulations.

3.2 Approximate MAP Ranging

The MAP estimator for r, defined as

r̂MAP(y) = arg max
r
p(y|r)p(r), (D.13)
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cannot be computed since p(y|r) is unknown. Therefore, we propose to approx-

imate it by replacing p(y|r) with either pGM (y|r) or pG(y|r) defined above.

Accordingly, we define two approximate MAP estimators:

r̂AMAP,GM(y) = arg max
r
pGM(y|r)p(r), (D.14)

r̂AMAP,G(y) = arg max
r
pG(y|r)p(r). (D.15)

In (D.14) and (D.15), we marginalized over q and therefore LOS detection

is not needed. Alternatively, we can obtain the range by detecting the LOS

condition first. This results in an approximate MAP estimator for r:

r̂AMAP,Dec(y) = arg max
r
pG(y|r, q̂)p(r), (D.16)

with q̂ denoting the approximate MAP decision rule

q̂(y) = arg max
q
p(q)

∫

pG(y|r, q)p(r)dr. (D.17)

Computation of (D.16) and (D.17) is a two-step procedure with a LOS detec-

tion step followed by a ranging step. However, it is unclear if this additional

complexity due to the LOS detector translates into improved ranging accuracy

since the involved Gaussian approximations may undermine the performance

of (D.16) and (D.17). In Section 4, we carry out a simulation study to answer

this question.

Depending on the choice of prior and delay power spectrum, the optimiza-

tion in (D.14)–(D.17) may require numerical procedures. We remark that to

numerically evaluate the objective functions, it is necessary to invert the cor-

responding covariances defined in (D.9) and (D.12) for each value of r. As

already shown (see [13]), this inversion can be simplified using eigenvalue de-

composition.

3.3 Approximate MMSE Ranging

For the ranging problem, the MMSE estimator is given by

r̂MMSE(y) = arg min
r′

E[(r− r′)2|y] = E[r|y], (D.18)

where the expectation is taken over the unknown pdf p(r|y).
Using the approximations for p(r|y) in Section 3.1, we obtain approximate

MMSE estimators:

r̂AMMSE,GM(y) = EpGM
[r|y], (D.19)

r̂AMMSE,G(y) = EpG
[r|y], (D.20)

where the expectations are taken over pGM(r|y) and pG(r|y) respectively.
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The performance of the estimators (D.19) and (D.20) is essentially limited

by the involved approximations. These estimators are therefore not optimal in a

particular sense. Better performing estimators could potentially be obtained by

invoking more accurate approximations. One candidate improvement provided

a reliable detection of the LOS condition is to use separate approximations for

the LOS and NLOS cases. Here, we consider Bayes’ decision rule in combination

with the approximate MMSE estimator defined in (D.20) where pLOS = 1 when

LOS is detected and zero otherwise:

r̂AMMSE,D = EpG
[r|y, q̂]. (D.21)

Bayes’ decision rule for q reads

q̂(y) =







1; C11p(q = 1|y) +C01p(q = 0|y)
< C10p(q = 1|y) +C00p(q = 0|y)

0; otherwise,

(D.22)

where Cqq′ is the cost resulting from the MSE of the estimator (D.21) with

LOS decision q′ applied under the true LOS condition q.

Implementation of the approximate MMSE estimators requires, in contrast

to the approximate MAP estimators, evaluation of certain integrals. In case no

closed-form expression can be obtained, this can be done fairly accurately by

using standard numerical integration methods. We remark that the cost func-

tions in (D.22) can be computed using Monte Carlo methods and stored for each

considered parameter setting of the power delay profile. Therefore, range esti-

mators with LOS detection require additional computational effort and storage

compared to the estimators without LOS detection in (D.19) and (D.20).

4 Numerical Performance Evaluation

The invoked approximations of the likelihood function naturally impair the

estimation performance. It is, however, unclear which of the estimators suffers

the most. Note that the theoretical result that the MMSE estimator achieves

lower MSE than all other estimators, e.g. the MAP estimator, does not hold for

the approximate MMSE estimators. Thus, we rely on Monte Carlo simulations

for assessing which of the above estimator yields the lowest MSE.

We compare the performance of the proposed estimators in terms of root-

mean-squared-error (RMSE) and probability of LOS detection error. In ad-

dition, we compare them to “genie-aided” estimators obtained from (D.16)

and (D.21) by inserting the true q value for q̂. The genie-aided estimators

provide lower bounds on the RMSE. As a study case, we simulate an OFDM

communication system operating in the channel defined in the next subsection.

Table D.1 reports the parameter settings used for the simulations.

104



4. Numerical Performance Evaluation

Table D.1: Simulation Settings

OFDM system:

Bandwidth: 9 MHz, N = 100,

∆f = 15 kHz, Tcp = 5.4 µs, SNR =
E[|ai|

2]
σ2 ,

Equal power and equal spacing pilot signal is used.

Channel parameters:

Homogenous Poisson point process: ρ(τ) = ρ0, λ = 360 ns,

κ = 2; Average no. of paths: µL = ρ0Tcp, r ∼ U [0, 100]m.

Results obtained from 3000 Monte Carlo trials are displayed.

4.1 Simulation Scenarios and Related Analytical Results

To reflect the situation where the user terminal (to be localized) can appear at

any distance within an interval, we assume that the prior of range r is uniform

on [0, rmax]. Inspired by Turin’s channel model, we assume that the random

excess delays form a Poisson point process. For simplicity, we assume that the

process is homogeneous, i.e. ρ(τ) = ρ0. The conditional second moments of

the path gain are modeled as

σ2
α(τ) =







Cκ; τ = 0

C exp(− τ
λ); 0 < τ < Tcp

0; otherwise

,

where parameter κ determines the power of the LOS component, λ denotes

the root-mean-square (RMS) delay spread of the multi-path term, and C is

selected to normalize the channel power gain. The cyclic prefix length, Tcp, is

assumed to be long enough such that the power of the path components with

excess delays larger than Tcp becomes negligible. Accordingly, the delay power

spectrum reads

P (τ) = C exp(− τ
λ
)(ρ01(0 < τ < Tcp) + κpLOSδ(τ)) (D.23)

with 1 denoting indicator function and the conditional delay power spectrum

is given by

P (τ |q) =
{

C exp(− τ
λ)(ρ01(0 < τ < Tcp) + κδ(τ)); q = 1

C exp(− τ
λ)ρ01(0 < τ < Tcp); q = 0.

(D.24)

For the simulation, it is necessary to compute the covariance matrices Cξ
and Cξ|q:

[Cξ]mn = κpLOSC + ρ0gmn (D.25)
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Fig. D.1: RMSE of the approximate MAP estimators versus SNR with pLOS as a parameter:
µL = 60.

and

[Cξ|q]mn =

{

κC + ρ0gmn; q = 1

ρ0gmn; q = 0
(D.26)

with

gmn = C
1− e−(j2π(fm−fn)+

1
λ
)Tcp

j2π(fm − fn) +
1
λ

.

4.2 Evaluation of Ranging Accuracy

In the simulation, we obtain similar RMSEs for the approximate MAP esti-

mators (D.14) and (D.15). The same observation holds for the approximate

MMSE estimators (D.19) and (D.20). Therefore, we omit reporting the perfor-

mance of (D.14) and (D.19).

Figs. D.1 and D.2 report the simulated RMSE versus SNR of the approxi-

mate MAP and MMSE estimators respectively for different values of pLOS. It is

apparent that the approximate MMSE estimators outperform the approximate

MAP estimators. We observe that as pLOS increases, the ranging accuracy

improves.

To investigate the impact of the average number of path components on

the estimators performance, we plot simulated RMSE versus µL in Figs. D.3
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Fig. D.4: RMSE of the approximate MMSE estimators versus the average number of paths
with pLOS as a parameter: SNR = 20 dB.

and D.4, again when pLOS is varied. We observe that, overall, the RMSE

decreases with increasing µL. Similarly, the RMSE decreases as pLOS increases

as expected. As it is also observed in Figs. D.1 and D.2, the approximate

MMSE estimators exhibit a higher ranging accuracy than the approximate

MAP estimators.

Figs. D.1–D.4 indicate that including the LOS detector somewhat improves

the ranging accuracy for low and medium values of pLOS. However, for large

pLOS, the trend is different. For the approximate MAP estimator, there is no

noticeable performance gain, while including the LOS detection in the approx-

imate MMSE estimator degrades the performance. To investigate the cause of

this behavior, we turn our attention to the performance of the detectors, see

Fig. D.5. The probability of detection error seems rather high considering the

prior information. This high value may be due to either the considered multi-

path channel or the pdf approximations applied to the design of the detectors.

Given these results, it seems obvious to ask whether or not the accuracy

of the proposed methods can be improved by using better pdf approximations.

Due to the fact that we cannot access the likelihood functions, lower bounds

such as the Cramér-Rao bound, are not available. It is, therefore, unclear how

much the estimation accuracy can be improved. To evaluate the importance

of the impact of the approximations on the performance of the detectors, we

applied them to signals generated according to their respective approximate
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Fig. D.5: Probability of error versus the average number of paths at SNR = 20 dB.

pdfs. The results, not reported here, show error probabilities less than 7 %

for all considered detectors with µL settings as given in Fig. D.5. We thus

conclude that the accuracy of the pdf approximations indeed plays a major role.

The potential performance gain in ranging accuracy obtained by better pdf

approximations in the detector can be assessed by comparing the RMSE curves

to those of the genie-aided methods as done in Figs. D.1–D.4. We conjecture

that better pdf approximations can also increase the ranging accuracy of the

estimators without detection.

5 Conclusion

We have proposed approximate MAP and MMSE estimators of the range with

and without LOS detection. These estimators are derived by approximating the

pdf of the received signal vector. The approximate MMSE estimators outper-

form the approximate MAP estimators in terms of RMSE. Using the proposed

pdf approximations, we observe that including LOS detection in the estimators,

while adding complexity, has no major impact on the ranging performance. Our

simulation study indicates that there is a potential for improving the ranging

performance by relying on better pdf approximations.

109



References

Acknowledgment

This work was supported in part by the EU FP7 Network of Excellence in

Wireless COMmunications NEWCOM# (Grant agreement no. 318306).

References

[1] A. Hero. Timing estimation for a filtered Poisson process in Gaussian

noise. IEEE Trans. Inf. Theory, 37(1):92–106, Jan. 1991.

[2] B. Denis, J. Keignart, and N. Daniele. Impact of NLOS propagation

upon ranging precision in UWB systems. In IEEE Conference on Ultra

Wideband Systems and Technologies, pages 379–383, Nov. 2003.

[3] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win. Ranging

with ultrawide bandwidth signals in multi-path environments. Proc. IEEE,

97(2):404–426, 2009.

[4] H. Wymeersch, S. Marano, W. Gifford, and M. Z. Win. A machine learning

approach to ranging error mitigation for UWB localization. IEEE Trans.

Commun., 60(6):1719–1728, 2012.

[5] I. Guvenc and Chia-Chin Chong. A survey on TOA based wireless local-

ization and NLOS mitigation techniques. IEEE Communications Surveys

Tutorials, 11(3):107–124, Aug. 2009.

[6] J. Borras, P. Hatrack, and N. Mandayam. Decision theoretic framework

for NLOS identification. In Proc. IEEE Int. Technol. Conf., volume 2,

pages 1583–1587 vol.2, May 1998.

[7] J. Khodjaev, Y. Park, and A. Saeed Malik. Survey of NLOS identification

and error mitigation problems in UWB-based positioning algorithms for

dense environments. Annals of telecommunications, 65(5-6):301–311, 2010.

[8] J. N. Kapur. Maximum-entropy Models in Science and Engineering. Wiley,

1989.

[9] J. Shen and A. F. Molisch. Indirect path detection based on wireless propa-

gation measurements. IEEE Trans. Wireless Commun., 11(12):4482–4493,

Dec. 2012.

[10] Junyang Shen and A. F. Molisch. Indirect path detection based on

wireless propagation measurements. IEEE Trans. Wireless Commun.,

11(12):4482–4493, Dec. 2012.

110



References

[11] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation

Theory. Prentice-Hall PTR, 1998.

[12] L. Jing, T. Pedersen, and B. Fleury. Bayesian estimators for direct ranging

in multi-path channels using OFDM pilot signals. 2014. Submitted to

IEEE Trans. Wireless Commun.

[13] L. Jing, T. Pedersen, and B. Fleury. Direct ranging in multi-path chan-

nels using OFDM pilot signals. In 15th IEEE Int. Symposium on Signal

Process. Advances in Wireless Commun., pages 150–154, June 2014.

[14] C. Mensing. Location Determination in OFDM Based Mobile Radio Sys-

tems. PhD thesis, Technische Universität München, 2013.

[15] R. Adam and P. A. Hoeher. Semi-blind channel estimation for joint com-

munication and positioning. 10th Workshop on Positioning Navigation

and Commun., pages 1–5, 2013.

[16] R. Zekavat and R. M. Buehrer. Handbook of Position Location: Theory,

Practice and Advances. IEEE Series on Digital & Mobile Communication.

Wiley, 2011.

[17] S. Marano, W. Gifford, H. Wymeersch, and M. Win. NLOS identification

and mitigation for localization based on UWB experimental data. IEEE

J. Sel. Areas Commun., 28(7):1026–1035, 2010.

[18] A. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless loca-

tion. IEEE Signal Process. Mag., 22(4):24–40, 2005.

[19] T. Wang, Y. Shen, S. Mazuelas, H. Shin and M. Z. Win. On OFDM

ranging accuracy in multipath channels. IEEE Systems Journal, PP(99):1–

11, 2013.

[20] D. Wang, M. Fattouche, and F. Ghannouchi. Fundamental limit of OFDM

range estimation in a separable multipath environment. Circuits, Systems,

and Signal Processing, 31(3), 2012.

[21] Y. Qi, K. Hisashi, and H. Suda. On time-of-arrival positioning in a mul-

tipath environment. IEEE Trans. Veh. Technol., 55(5):1516–1526, 2006.

[22] Z. Xiao, H. Wen, A. Markham, N. Trigoni, P. Blunsom, and J. Frolik. Non-

line-of-sight identification and mitigation using received signal strength.

IEEE Trans. Wireless Commun., (99):1–1, Nov. 2014.

111


	Front page
	Abstract
	Resumé
	Contents
	Preface
	Thesis Details
	I Introduction
	Introduction
	1 Pilot Signal Design for OFDM Systems
	1.1 Pilot Signal Design for Communications
	1.2 Pilot Signal Design for Delay and Doppler Shift Estimation
	1.3 Contributions of the Thesis: Close-to-optimal Pilot Signals for Joint Estimation of Delay and Doppler Shift

	2 Direct Ranging Techniques for Localization
	2.1 Maximum Likelihood Ranging
	2.2 Bayesian Ranging Approach
	2.3 Contributions to the Thesis: Non-Bayesian and Bayesian Direct Ranging Techniques


	Summary of Main Findings, Conclusions, and Outlook
	References


	II Papers
	A Pilot Signal Design via Constrained Optimization with Application to Delay-Doppler Shift Estimation in OFDM Systems 
	1 Introduction
	2 Signal Model
	3 Maximum-Likelihood Estimation of Delay and Doppler Shift
	3.1 Ambiguity Function of Pilot Signals
	3.2 Fisher Information and Cramér-Rao Bound
	3.3 Constrained Optimization Problem for Pilot Signal Design

	4 A Genetic Algorithm for Pilot Signal Design
	5 Numerical Performance Evaluation
	5.1 Scenario 1: Single-Path Propagation, Without Data Transmission
	5.2 Scenario 2: Single-Path Propagation, With Data Transmission
	5.3 Scenario 3: Multipath Propagation, With Data Transmission

	6 Conclusion
	References

	B Direct Ranging in Multi-path Channels Using OFDM Pilot Signals 
	1 Introduction
	2 System Model
	3 Direct Maximum Likelihood Ranging Via Gaussian Approximations
	4 Numerical Performance Evaluation
	4.1 LOS Scenarios: Performance Evaluation Using Different Pilot Patterns and Estimators
	4.2 Performance Evaluation Under Different Channel Settings
	4.3 Performance Comparison in Conditions with Model Match and Mismatch

	5 Conclusion
	References

	C Bayesian Estimators for Direct Ranging in Multi-path Channels Using OFDM Pilot Signals 
	1 Introduction
	2 System and Signal Model
	3 Approximate MAP and Approximate MMSE Direct Ranging Techniques
	3.1 Approximate MAP Estimator
	3.2 Approximate MMSE Estimator

	4 A pth-order Polynomial Direct Ranging Estimator
	4.1 Higher-order Cumulants and Moments
	4.2 Widely Linear Quadratic MMSE Estimator

	5 Numerical Performance Evaluation
	5.1 Simulation Scenarios and Considered Estimators
	5.2 Ranging Accuracy Versus SNR in LOS Conditions
	5.3 Performance Evaluation Under Different Channel Settings
	5.4 Performance Comparison in Model Mismatch

	6 Conclusion
	A Inversion of  bold0mu mumu CCCCCCbold0mu mumu zzzzzzbold0mu mumu zzzzzz 
	B Widely Linear MMSE and Linear MMSE Estimator
	C Linear Quadratic MMSE Estimator
	References

	D Bayesian Ranging for Radio Localization with and without Line-of-Sight Detection 
	1 Introduction
	2 Signal and Channel Model
	3 Estimation of Range
	3.1 Approximate Likelihood Function
	3.2 Approximate MAP Ranging
	3.3 Approximate MMSE Ranging

	4 Numerical Performance Evaluation
	4.1 Simulation Scenarios and Related Analytical Results
	4.2 Evaluation of Ranging Accuracy

	5 Conclusion
	References



