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Abstract

Fiberline Composites A/S, a leading manufacturer of composite window profiles, is
developing a new concept for window frames. Identifying suitable material systems
is a particular challenge to develop the future high-performance window frames.
Compared with the materials used for existing standard window frames, Fiberline
Composites A/S aims to develop a new type of foam core material that will be
placed inside the pultruded composite laminate profile to provide thermal insulation
as well as structural support for the thin walled composite profile. Ideally, polymer
foam core materials can be considered as homogenous isotropic materials. However,
in practice most polymer foams display both heterogeneous and anisotropic material
behaviour due to the density variations and directionality of foam cells developed
during the manufacturing process. Following normal practices for mechanical
testing of polymer foams it is necessary to conduct a large number of tests to derive
average values of material constitutive parameters. The material properties obtained
are often obscured by parasitic effects that are induced when conducting
conventional tensile, shear and compressive tests, since these effects  disturb the
stress and strain fields thus making it very difficult to deduce the true material
constitutive parameters.

This thesis presents an efficient and robust methodology to characterize the whole
set of elastic constitutive stiffness parameters of polymer foam core materials using
just in one single test. Two main experimental techniques were used: Digital Image
Correlation (DIC) and the Virtual Fields Method (VFM). A modified Arcan fixture
[1,  2]  was  used  to  provide  complex  multi-axial  to  the  foam  core  samples.  The
loading angle and the off-axis angle of the principal material direction relative to the
principal geometrical direction of the foam specimens are used as the two design
variables. Noise and missing data effects are introduced as the two main error
sources to construct a cost function to optimize the test configuration. After
conducting an elaborate sensitivity study to identify the optimized test
configurations, experimental validation was undertaken on both optimized and
poorly setup test configurations. The results were compared with the reference
parameters obtained using conventional uniaxial testing procedures.

Although the selected test configuration led to a notable improvement of the
experimental results, significant differences were found between reference values of
material parameters known from literature and/or other tests, and the experimental
results  from that  study.  It  was  thought  that  one  of  the  reasons  for  this  was  that  the
conducted optimization study was based on finite element simulated strain fields
which did not include the sources of error that arise from real DIC measurements. In
particular, the low-pass spatial filtering effect of the DIC measurements will lead to
underestimation of the strains in large strain gradients areas of the test specimen,
which in turn will lead to biases on the identified stiffness components. Moreover,
the low signal to noise ratio associated with the measurement of the elastic material
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properties of polymer foams will tend to increase the random error (scatter) of the
data. Accordingly, a prerequisite for resolving the issues identified from the
previous study, and thereby providing more accurate and robust materials parameter
identification, is the establishment of a reasonable quantification of the uncertainty
of the measurements as well as further improvement of the experiments. It must be
noted that establishing realistic uncertainty bounds in identified material parameters
from such inverse approaches is key to the diffusion of such techniques to industry
in  the  future.  This  topic  has  very  rarely  been approached in  the  past  and when so,
only the random error was addressed but not the bias arising from the spatial low-
pass filtering effect mentioned above.

In order to solve the issues listed above, extensive work has been done in this PhD
project to develop a more advanced procedure to realistically simulate the modified
Arcan test for polymer foams using Digital Image Correlation and the Virtual Fields
Method. The actual image recording process was mimicked by numerically
generating a series of deformed synthetic images. Subsequent to this, the entire
measurement and data processing procedure was simulated by processing the
synthetic images using DIC and VFM algorithms.  This procedure was used to
estimate the uncertainty of the measurements (systematic and random errors) by
including the most significant parameters of actual or physical experiments, e.g. the
geometric test configuration, the parameters of the DIC process and the noise. By
using these parameters as design variables, and by defining different error functions
as object functions, an optimization study was performed to minimize the
uncertainty of the material parameter identification and to select the optimal test
parameters. The confidence intervals of the identified parameters were predicted
based on systematic and random errors obtained from the simulations. The simulated
experimental results have shown that averaging multiple images can lead to a
significant reduction of the random error. Finally, an experimental determination of
the elastic coefficient of a PVC foam material was conducted using the optimized
test parameters obtained from the numerical study. The identified stiffness values
matched well with data from previous tests, but even more interesting was the fact
that the experimental uncertainty intervals matched reasonably well with the
predictions of the simulations, which is a highly original result and an important
outcome of this work.
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1. Introduction
1.1. Background and Motivation

Large amounts of energy are consumed for the heating of buildings. Roughly 30-60%
of the energy loss of a building is due to windows and doors, hereof a significant
part through the window frames that have higher thermal transmittance values than
the glass. The political target is to reduce CO2 emission by 75% in new buildings by
2020 in several European countries [1]. Therefore the market for high-performance
window frames is very promising.  Fiberline Composites A/S, a leading
manufacturer of composite window profiles, is developing a new concept for
window frames, which can provide super insulation and high strength with
minimum cost of materials. For the development of this kind of window frames,
Fiberline Composites A/S is exploring new material systems, including new types of
polymer foam core materials to provide superior thermal insulation properties, and
advanced thin-walled composite laminates made by pultrusion, to provide for the
structural requirements. Therefore materials development and characterization
(mechanical and thermal) are topics of primary importance for the development of
material systems and the design of new window frames that are both energy and
structurally effective.

This PhD project is part of a research project entitled “Advanced Thermal Breaker”
co-funded by Innovation Fund Denmark, Fiberline Composites A/S and Aalborg
University. The aim of project is to develop and take to market a new concept for
composite/foam window frame systems that doubles the insulation capability as
compared with existing window frame systems, and which at the same time fulfils
the stiffness and strength requirements. To achieve this, extensive research needs to
be carried out to be able to experimentally characterize and to model both the
thermal barrier and the mechanical properties of these new material systems, so as to
find the optimal combination of the two material systems (polymer foam and
pultruded composites). Polymer foam materials are widely used as core materials in
sandwich structures or as insulation materials (as is the case here), and they are
ideally considered as homogenous isotropic materials [2]. However, in practice most
polymer foams display both heterogeneous and anisotropic material behaviour due
to the density variations and directionality of foam cells developed during the
manufacturing process [3, 4]. Therefore accurate experimental characterization of
the mechanical behaviour of polymeric foam materials is essential for their efficient
use in sandwich structures, as well as for the development of accurate numerical
models on the material and structural levels. Conventional mechanical test methods
including tensile, shear or bending tests are widely used to characterize both
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isotropic and orthotropic homogeneous materials. However there are significant
difficulties associated with the application of such standard methods for the
mechanical characterization of heterogeneous, anisotropic materials or functionally
graded materials due to the presence of heterogeneous strain fields when the
materials are subject to mechanical loading. In addition, it is normally required to
conduct a large number of tests to deduce average values of material constitutive
parameters, and parasitic effects occur during tensile, shear and compressive tests
which can disturb the stress field [4, 5].

The overall goal of this PhD project is to develop a novel methodology for
mechanical testing, which enables the extraction of all the elastic material
parameters of polymer foam core materials (including manufacturing variations)
from one single test. This methodology will be based on the Digital Image
Correlation (DIC) technique combined with the Virtual Field Method.  The design
of the experimental methodology is optimized by introducing a new procedure to
realistically simulate the whole measurement chain.

1.2 State of the art - Characterisation of polymer foam materials,
Digital Image Correlation and the Virtual Fields Method

Cellular polymer closed cell foams are commonly used as core material in
lightweight sandwich structures as well as for insulation purposes. Common
polymer closed cell foams include Polyvinylchlorid (PVC), Polymethacrylimide
(PMI), Polyurethane (PU) or polyethylene terephthalate (PET) foams. The
orthotropic material behaviour of polymeric foams has been studied extensively in
the  literature  [4-7].  Most  of  the  studies  rely  on  the  use  of  several  different  testing
methods including uniaxial tension, uniaxial compression and shear, conducted
along with deformation measurements that are based on either point-wise or area-
wise (averaged) measurement techniques like e.g. extensometers or strain gauges.
Since Since polymer foam materials are relatively soft/compliant in comparison with
most other engineering materials, the experimental measurement of the elastic
material properties is very sensitive to stiffening and contact effects introduced by
using conventional methods like e.g. strain gauges and clip gauges.  For example,
the adhesive used to bond strain gauges onto the foam surface may penetrate into the
open foam cells thus reinforcing the core material locally, and this may lead to
significant errors in the measured elastic coefficients. Also, clip gauges have a
relatively large gauge length, and this makes it difficult to capture the  foam
deformation in critical areas in sufficient detail. Therefore, as an alternative, the use
of a non-contact measurement technique would be beneficial in order to enable
accurate mechanical characterization of polymer foam materials. Recent works [8]
and [2]  have  addressed  the  characterization  of  the  cross  linked PVC foam material
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Divinycell H100  [9] using Digital Image Correlation (DIC). Both of these studies
measured the orthotropic properties of PVC foam, and the obtained results were in
good agreement with the datasheets from the manufacturer [9]. However, the
experimental design of these works was still based on the use of conventional
mechanical testing methodology, necessitating the conduction of several tests.
Essentially one test was conducted to obtain each elastic property/quantity to be
measured, except for the Poisson’s ratio that is extracted from a tensile test together
with Young’s modulus. A significant amount of time and effort was spent on
designing the different test specimen shapes needed to reach a uniform stress/strain
state in the gauge area.

Several of the listed drawbacks can potentially be overcome using full field
measurement techniques such as Digital Image Correlation (DIC) [10-12], speckle
pattern interferomerty [13] and grid methods [14-16]. These techniques can capture
a heterogeneous strain field which involves the whole set of constitutive parameters,
and it is conceivable to extract all the elastic coefficients from one single test.
However no closed-form solution exists between such measurement(s) and the
unknown material parameters sought for. To circumvent this problem different
methodologies have been proposed to solve the inverse problem defined as the
identification of a set of constitutive material parameters that minimizes the
difference (expressed in terms of a residual) between the measured and a “calculated”
field based on certain assumptions like e.g. elastic behaviour (or non-linear elastic,
plastic or visco-elastic material behaviour), and where the “field” in principle can be
displacements, strains or stresses. Among the “inverse” approaches can be
mentioned the finite element model updating technique [17], the constitutive
equation gap method [18], and the Virtual Fields Method (VFM) [19].

The VFM method is one of the most effective and popular techniques developed in
recent years. This methodology is based on the principle of virtual work [20] to
solve the inverse problem. In this case, integrals that involve/depend on the strain
fields are included in the principle or governing field equations. These integrals can
be approximated with the full-field measurements using e.g. DIC (or another full
field measurement technique). The development of VFM and its applications is
documented in [21, 22, 23]. The efficiency of this method is underlined by the fact
that it does not require the use of iterative procedures to solve the inverse problem.
Thus, the VFM approach is much less time consuming than e.g. classical finite
element model updating approaches applied to similar applications [22, 23], and
VFM used in conjunction with full-field deformation measurements is becoming
widely used for the extraction of constitutive parameters for composites and other
types of materials [20]. However, there have been relatively few studies concerning
polymer foam materials using this technique, and the first attempt at identifying
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Poisson’s ratios of standard low-density (homogeneous) polyurethane foams by
using DIC and VFM was only published recently [24].

One of the most important challenges to overcome when using such inverse
procedures is to choose a suitable mechanical test configuration. Since the
heterogeneous stress/strain fields play an important role in the identification
procedure, it is very important to have a test configuration that activates all the
sought constitutive parameters of the materials under investigation. This means that
the actual stress/strain fields must be sufficiently sensitive to variations of each of
the sought parameters. Optimization of the test configuration for VFM identification
was firstly proposed in [25]. The idea was to identify an optimized specimen length
and a material orthotropic axis angle so as to minimize a cost function based on the
sensitivity to noise of the sought material stiffness components. Recently, a refined
test configuration design procedure was proposed in [26]. The study used the grid
method as the full-field technique and simulated the whole measurement and
identification chain, including image forming and grid method algorithm. This study
provided a significant improvement of the optimization procedure by introducing the
many different types of error sources into the cost function. However, this approach
was not fully validated experimentally. Moreover, it used a specific test fixture,
namely the un-notched Iosipescu test as described in [25], and it is important to
extend the optimization to other test configurations and full-field techniques, like
DIC. Also more experimental work needs to be done to validate the optimization
study.

1.3 Statement of objectives and outline of thesis

The present work aims to establish an efficient and reliable methodology to
simultaneous identification of the orthotropic elastic stiffness components of a cross-
linked PVC foam in one single mechanical test. This will be achieved by developing
a robust optimization procedure to predict the uncertainty of the experimental
characterisation of cross-linked PVC orthotropic foam materials and to optimize the
design of the experiments. The structure and remaining chapters of this thesis are
outlined as follow:

Chapter 2
Chapter 2 introduces the experimental setup developed and utilized throughout the
project. The method is based on DIC to capture the heterogeneous strain field which
involves the whole set of constitutive parameters in one single test. A Modified
Arcan Fixture (MAF) is used to active the heterogeneous deformation field. The full
deformation field is processed by the ‘inverse’ approach (The VFM method)
described in Chapter 3 to extract full set of material parameters.
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Chapter 3
Chapter 3 presents the basic idea of the Virtual Fields Method (VFM) and how to
adopt the methodology to the experimental setup demonstrated in Chapter 2. The
method is derived based on the principle of virtual work to process full-field
measurements and solve the inverse problem directly.

Chapter 4
In Chapter 4, the methodology developed in Chapters 2 and 3 is applied on a PVC
foam core material to validate the ability of the procedure to identify all the elastic
parameters in actual test. The preliminary study reveals that the principal material
parameter in the transverse material direction is very unstable and difficult to
identify. The value of this parameter depends on different filtering techniques and
the adopted smoothing level in the DIC procedure. Since the smoothing
methodology is difficult to handle, the most feasible and efficient way to solve this
problem is to modify the test configuration so that more transverse stresses/strains
are introduced thus reducing the effect of noise. (Appended Paper 1).

Therefore, a numerical optimization study is performed with different loading angles
of the MAF test fixture and different off-axis angles relative to the principal material
axes. A finite element (FE) model is developed to simulate the strain fields with
different test configurations. The objective is to identify the configuration that gives
the minimum sensitivity to noise and missing data on the specimen edges, which are
the two major issues when identifying the stiffness components from actual DIC
measurements. After deciding on the optimized test configurations, experimental
validation is undertaken on both optimized and “poor” test configurations. The
results are compared with the reference parameters obtained using the conventional
uniaxial testing procedures. (Appended Paper 2).

Chapter 5
In Chapter 5, a more robust optimization procedure is developed to overcome the
issues revealed in the optimization study in Chapter 4. Instead of using FE simulated
strain fields, the new procedure simulate the entire realistic measurement chain,
including the DIC image capturing and processing. By using this method, much
more uncertainties of the measurements are included into the study. (Appended
Paper 3).

Based on the new optimization methodology, an effective method to reduce the
random error from the measurements is proposed by studying the effect of image
averaging, and an optimal number of images to be averaged is identified.  Finally, a
detailed experimental validation is conducted based on the optimized test
configuration and other test parameters from the numerical study. (Appended Paper
4).

Chapter 6
Chapter 6 summarizes the findings of this project.
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Chapter 7
Chapter 7 recommends the future work.
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2. Test setup with DIC and modified
Arcan fixture
2.1 Test specimen and fixture

The material chosen for the studies in this thesis to validate the developed
experimental methodology is a closed-cell cross-linked Divinycell H100 PVC foam
[9]. This is a polymer foam material that is widely used as core material for
sandwich structures. The reason to choose the PVC foam is that detailed
investigations have been carried out previously for this material to identify reliable
material properties by using conventional mechanical tests. In [8] it was shown that
this material has orthotropic/transversely isotropic properties due to the different
lengths of the foam cells in the rising (through-thickness) and in-plane directions,
respectively. This orthotropy is generated in the manufacturing process, and can be
observed from microscopic images. Therefore the material principal axes are defined
as the above two directions.  All specimens in this study were prepared from 60 mm
thick flat foam core plates.

(a)              (b)
Figure 1: (a) Schematic of MAF rig with indication of tensile, compressive, and
shear loading configurations [27]; (b) MAF rig with foam specimen subjected to
combined tension/shear loading.

In this research, a MAF fixture was used to characterize the constitutive parameters
of the foam. This fixture has been developed recently to identify orthotropic material

F
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parameters [3]. It has an S-shaped configuration consisting of two arms (shown in
Figure 1). By connecting different loading holes on the arms, more complex loading
conditions can be introduced compared with the conventional Arcan fixture. Besides
the different combinations of shear and tensile loads, the modified Arcan fixture can
also introduce pure compression or high compression to shear bidirectional loading
conditions that are unable to achieve with conventional Arcan fixtures. A previous
study using this modified Arcan fixture provided very reliable test results for a PVC
foam material [2, 3]. However, since the PVC foam is orthotropic, the use of
multiple tests to obtain the stiffness parameters is time consuming, as both through-
thickness and in-plane specimens have to be prepared.  Furthermore, different
specimen shapes are needed to ensure a well-defined stress/strain state in the gauge
area of the shear, tension and compression test specimens.

In this study there is no need to attempt to obtain homogeneous stress/strain fields,
since DIC combined with the VFM allows for the identification of constitutive
parameters from heterogeneous strain fields. On the contrary, heterogeneity is
required for the simultaneous and accurate identification of all stiffness components.
This is very important as it provides much more freedom to choose loading and
boundary conditions as well as specimen geometry in the mechanical test.

(a) (b)

Figure 2: (a) Foam panel with principal material directions 1, 2 and 3; (b)
Schematic of foam core specimen with Al tabs, principal material directions and
load direction indicated.

A 20 x 20 x 5 mm3 rectangular foam block was produced to induce a heterogeneous
strain field. The detailed strain maps that plotted in the following sections
demonstrated that the stress state in the specimen was dominated by shear and
longitudinal tensile stresses (bending). Compressive stress concentrations occur near
the ends of the bonded region. Since this material has different mechanical
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properties in the through-thickness (1) and in-plane (2) directions (see Figure 2 for
directions), all the orthotropic stiffness components should be involved in the full
deformation maps of this test. It should be noted that there is some random
variations of elastic coefficients inside the foam panel due to the manufacturing
process, especially towards the top and bottom surfaces of the panel [2]. Therefore,
foam specimens with different off-axis angles θ were cut with high precision using a
3-axis  CNC  milling  machine  from  the  central  part  of  a  thick  foam  panel  so  as  to
avoid the inclusion of material near the top and bottom surfaces where density and
stiffness variations are relatively large. Material direction 1 is the through thickness
direction, and material direction 2 is the in-plane direction. After milling, the two
sides of the specimens that are perpendicular to the x-axis were bonded to
aluminium tabs using Araldite epoxy adhesive (indicated in Figure 2 and clearly
visible in Figure 3) and fixed into the S-shape MAF rig.

2.2 DIC testing setup for the multi-axial Arcan test

2D Digital Image Correlation (DIC) was used to capture the deformation of the
foam specimens. DIC is a flexible and effective technique to measure the
displacements on specimen surfaces by matching the reference subsets in the
undeformed image with the target subsets in the deformed image. The basic idea is
that a random grey scale speckle pattern is applied onto the specimen surface using
spray paint. Then by dividing each image into many small computational units
called facets or subsets, the displacement can be computed at the centre of each facet
by correlating the random speckle pattern. The strain components can then be
obtained by numerical differentiation. A larger square facet is able to include a
wider variation in grey levels and reduce the noise in the results. However, the
spatial resolution is reduced when increasing the facet sizes. The detailed principle
of this technique can be found in [28]. In this research, the commercial DIC system
Aramis 4M [27, 29] was used to capture a series of images during deformation and
to perform correlation between the deformed and undeformed images.
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(a)                    (b)

Figure 3: (a) DIC setup; (b) Foam core specimen with Aluminium tabs.

A particular testing set-up (see Figure 3) was built to measure the heterogeneous
deformation fields on the two back-to-back foam specimen planes. Two cameras
with a resolution of 2048 x 2048 pixel2 were  placed  on  opposite  sides  of  the
specimen to capture the images on both sides simultaneously. The square shaped
specimen was loaded multi-directionally using the Modified Arcan fixture (MAF).
The cameras were rotated according to the loading angle of the specimen so that the
displacements and strains were computed along the global coordinate direction of
the specimen (x and y, see Figure 2). The advantage of this set-up is that it enables
the elimination of out-of-plane movements by averaging the measured values from
the two cameras. It can also account for possible through-thickness gradients of the
strain field. This setup was already successfully employed in [30]. The detailed
performance of this set-up is reported in Table 1. Resolutions were evaluated as the
standard deviation of the displacement and strain maps of two consecutive images of
the stationary specimen.
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Table 1: Performance report of the DIC set-up.

Technique
Subset size
Shift
Shape function
Interpolation function
Correlation criterion

Pre-smoothing applied to the
images

2D image correlation
Variable, to be prescribed for each set of

results
50% of the subset size

Affine
Bicubic polynomial

Approximated Normalized Sum of
SquaredDifference (Approximated NSSD)

None
Camera
Field of view
Noise

8 bit, 2048 x 2048 pixel2

24mm x 24mm
White Gaussian, standard deviation 1% of

dynamic range (2.56 grey levels)
Strain field:

Differentiation method
Smoothing method

Finite differences
Gaussian smoothing (kernel size variable, to be

précised for each set of results)

http://pages.stat.wisc.edu/~mchung/teaching/768/reading/lecture02-smoothing.pdf
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3. VFM model applied to the multi-
axial MAF test
3.1 VFM – basic principles

The Virtual Fields Method (VFM) has been specifically developed for processing
full-field kinematic measurements to extract parameters driving the mechanical
behaviour  of  materials.  The  basic  idea  of  the  VFM  is  to  express  the  condition  of
global equilibrium of the tested specimen using the principle of virtual work. The
principle of virtual work without body forces and subjected to quasi-static loading
conditions can be expressed as:

ò ò ×=
¶V V

dSuTdV **: es (1)

where ‘:’ denotes the contracted product of the stress tensor σ and the virtual strain
tensor ɛ*, and ‘.’ denotes the dot product between the external traction force vector
T and the virtual displacement vector u*. The equation expresses the condition of
global equilibrium between the internal virtual work over the specimen volume V
and the external virtual work over the boundary surface of V. The only condition on
the vectorial function u* is that it is continuous and differentiable over the domain V.
It is then assumed that the specimen material (polymer foam) can be described as a
homogeneous, orthotropic and linear elastic solid, and that the specimen is subjected
to  a  state  of  plane  stress.  The  constitutive  equations  of  the  foam  material  can
therefore be written as (in the material orthotropy axes):
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where si, ei, (i=1,2,6) are the in-plane stress and strain components according to the
so-called contracted notation [31], and Qij (i,j=1,2,6) are the in-plane stiffness
components. Substituting the stress components with the actual strains and
constitutive parameters, equation (1) can be rewritten as:
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where t is the thickness of the specimen. Since the elastic strain fields are known
from the full-field measurement, and since the resulting force applied to the
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specimen is known from the load cell readings, a new set of equations can be
obtained in which only the elastic parameters are unknown for each new selected
virtual field. When choosing at least as many independent virtual fields as unknowns,
all the parameters can be identified directly by solving the resulting linear system
[30].

For the construction of the virtual fields, piecewise functions were used in this study
[32, 33]. This method uses shape functions Φ(i) which are similar to those employed
in finite element analysis. They express the virtual displacement u* at any points in
the solid as a function of the virtual displacement u*(i) at  the  nodes  of  a  mesh  as
demonstrated in eq. (4):
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where n is the number of nodes per element. In the present study, bilinear shape
functions with 4-noded quadrilateral elements have been used. The shape functions
and nodal displacement in the element are defined as:

(5)

(6)

The virtual strain components in the elements are obtained by differentiating eq. (4):
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where S is a linear differential operator defined as:
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As an infinite number of virtual fields can be found, an additional criterion was
employed to select the virtual fields optimally and automatically aiming at
minimizing noise influence on the identified parameters. The detailed derivation of
this procedure is proposed in the optimized VFM theory [32].  The basic idea is to
assume a Gaussian white noise added to the actual strain fields. Then the standard
deviation

ijQs of each constitutive parameter Qij is directly proportional to the

standard deviation  of the strain noise [33]:

ijQij
ghs = (9)

where ɳij describes the sensitivity of each constitutive parameter to the noise in the
VFM identification procedure. The expression of (ɳij)2 is derived as:
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where S is the measurement area, np is the amount of data points. By rewriting eq.
(10), sensitivity to noise parameters can be expressed as:
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where Y*(ij) is a vector with virtual nodal displacements. H is a square matrix which
contains the unknown stiffness parameters and the formulation of the virtual strain
component from eq. (7). Previous work [32] has proven that (ɳij)2 exhibits a unique
minimum. So the minimization of (ɳij)2 will be a criterion from which  thethe virtual
fields Y*(ij) can be chosen. The Lagrangian L associated with the constrained
minimization problem can be written as:

ijQs
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Λ(ij)(AY*(ij)-Z(ij)) defines the constraints of this minimization problem. The first
constraint is that the virtual field must be kinematically admissible (mainly
continuity conditions). The second constraint is that the virtual field must be special
so that stiffness parameters can be obtained directly as detailed definition in [32].
IΛ(ij) is a vector containing the Lagrange multipliers. A is the matrix that defines the
constraints imposed. Z(ij  )is a vector containing only zeros except one component
which  is  equal  to  one.  The  location  of  this  nonzero  component  depends  on  which
stiffness is to be identified with this particular special field. Four optimized virtual
fields are defined by solving this problem after changing the position of the 1 in the
Z(ij) vector.

The minimization of the Lagrangian L is obtained by solving the following linear
system:
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After obtaining the virtual nodal displacement vector Y*(ij), the unknown stiffness
parameters Qij are required to determine ij. The idea here is to give some initial
value of Qij and to identify a first set of four special optimized virtual fields to
provide updated values of Qij. Then the new Qij parameters are used in the next
iteration to find the new virtual fields, etc. Previous work [32] has shown that the
iterative procedure generally converges quickly within two loops regardless of the
choice of initial values for the Qij.

3.2 VFM – applied to specific foam specimen and test
configuration

Based on the VFM methodology described in the previous section, particular virtual
fields was formulated to adapt to the current experimental set-up and specimen
design. 4 x 4=16 virtual elements were employed which gives a total of 50 virtual
degrees of freedom.  The convergence study indicated that a 4 x 4 element size was
enough to provide stable identification and save computing time compared with a
higher number of virtual elements. It was found during the experiments that the
aluminium tabs casted some shadow that blurred the speckle pattern and caused
difficulty for DIC processing right to the edges. In addition, the adhesion used to
bond the specimen and tabs might affect the accuracy of the data close to edges.
Therefore,  only  the  strain  data  on  the  area  S2 (shown in Figure 4) are used for the
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VFM processing. This area has been moved slightly away from the glued specimen
boundaries all the issues stated above.. The ratio between the length W of the field
of view and the specimen length L is 0.95 (see Figure 4).

Therefore the area of the specimen is divided into three parts: one area with actual
deformation fields being measured (S2), and two areas without actual strain field
measurements (S1 and  S3). By separating the integrals in the principle of virtual
work and assuming a state of plane-stress, equation (3) can be rewritten as:
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As a consequence of the above, the virtual displacements on areas S1 and  S3 are
constrained to be rigid body-like, so that missing experimental data on these two
areas will not appear in the final equation (zero virtual strain fields cancelling out
the  virtual  work  of  internal  forces  on  S1 and  S3). Therefore, the terms related to
actual stress σ on areas S1 and  S3 should be removed in equation (14). Since no
external force is applied on S2, equation (14) becomes:
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Figure 4: Measurement area S2 used for identification (W/L=0.95)
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The virtual displacement on S1 is selected to be zero. For S3, the total force F
measured from the load cell can be divided into two resultant components Fx and Fy

by the relation:

aa cos,sin FFFF yx == (16)

where α is the loading angle relative to the global coordinate direction (Figure 2).
Hence the virtual work of the external forces on S3 can be written as:
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where f1 and f2 are the horizontal and vertical linear force distributions along the
boundaries, respectively. Since only the resultant force F is measured and the virtual
displacement has to be rigid body-like on S3, the horizontal and vertical virtual
displacements on this area are defined as constants a and b. Therefore, equation (17)
transforms into:

ïþ

ï
ý
ü

ïî

ï
í
ì

þ
ý
ü

î
í
ì

=×
ò

ò
ò

¶

¶

¶

3

3

3 )(

)(

2

1
*

S

S

S dyyf

dyyf

b
a

dluT
(18)

Since the resultant is only known in the vertical direction (direction of F in Figure 2),
a good choice for a and b is:
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and the virtual work of external forces reduces to F.

In addition, the continuity conditions of the virtual displacement field lead to the
following constraints on the boundary of S2 when automatically selecting piecewise
optimized virtual fields:

(20)

(21)
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Since the specimens might be cut in different off-axis angles relative to the material
principal directions, the actual strain and virtual strain fields should be transferred
along the material principal directions from the global coordinate system when
identifying the orthotropic material parameters. The transformation relation is given
below.
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where θ is the off-axis angle relative to the material principal direction (Figure  2).
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4. Optimized experimental
characterization of PVC foam based on
finite element simulated strain fields
4.1 Aims and methodology

In this chapter the experimental method developed in Chapters 2 and 3 is applied to
the PVC foam core material specimens to investigate the ability of the proposed
methodology to identify all the elastic parameters in an actual/physical test. An
extensive preliminary study has been carried out by using different test
configuration, such as cantilever beam and pure shearing tests. The results indicate
that  the  values  of  Q22 and  Q12 change significantly when using data with different
filtering levels. The most reliably determined parameters are Q11 and Q66, which is
due to the predominant longitudinal tensile and shear stresses/strains in the
considered specimen. Thus it is difficult to accurately extract Q22 and Q12 from these
test configurations because the transverse compressive stress/strain fields are heavily
blurred by noise. The detailed results are documented in the appended Paper 1. The
values of these constitutive parameters depend on different filtering techniques and
the smoothing level adopted in the DIC process. Since the smoothing methodology
is difficult to handle, the most feasible and efficient way to solve this problem is to
modify the test configuration so that more transverse stresses/strains are introduced
thus reducing the effect of noise. Therefore, a numerical optimization study is
performed with different loading angles of the MAF test rig as well as different off-
axis angles of the principal material axes (see Figure 2). The objective is to identify
the test configuration that gives the minimum sensitivity to noise and missing data
on the specimen edges, since these are the two major issues when identifying the
stiffness components from actual/physical DIC measurements. After deciding on the
optimized test configurations, experimental validation was undertaken on both
optimized and poor (or low quality) test configurations. The results are compared
with the reference parameters obtained using the conventional uniaxial testing
procedures. The research reported in this chapter is documented in appended Papers
1 and 2.

4.2 Investigation of optimized test configuration

Some preliminary study with an arbitrary test configuration (pure shearing test
configuration) has been done to evaluate the VFM routine developed in Chapter 3.
Both the FE simulation and experimental strain fields were used to input into the
VFM Matlab program. The identification results are listed in Table 2. It can be seen
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that the VFM routine achieved a quite accurate identification using FE simulated
strain fields. However, when the actual experimental test was performed,
signification deviation was displayed, especially the identified parameters Q22 and
Q12. This problem mainly results from the reduction of the compressive zones near
the loading region (as shown in Figure 5). Thus, the compressive stresses/strains are
significant smaller than the predominant longitudinal tensile and shear stress/strain.
Various external error sources (noise, speckle pattern, lighting, etc) cause much
more difficulty in the identification procedure when using the real DIC test data
which contain much more noise than the FEA generated strain fields.

Table 2: Identified results using the FE simulated and actual experimental strain
fields.

Q11 [MPa] Q22 [MPa] Q12 [MPa] Q66 [MPa]

Identified parameters using
FE simulated strain field

63.0 143 25.7 30.0

Identified parameters using
experimental strain field

81.4 41.9 5.61 32.0

Reference [2] 63.4 143 26.0 30.1
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Figure 5: The simulated strain maps using pure shearing test configuration.

This preliminary investigation lead to the further study of the optimum test
configuration so that more balanced stresses/strains are introduced thus reducing the
effect of noise for all the stiffness parameters. The idea is to choose several design
variables that can be easily adjusted to changes of the test configuration. Then an
optimization routine is introduced to find the best combination of the design
variables that leads to the best identification results. In the MAF test several design
variables could be considered. The measurement area, loading angle and principal
material directions are obvious variables that affect the identification performance,
see Figures 2, 3 and 4. However, to ensure that the loading axis passes through the
centre point of the specimen, the distance between the two bonded edges was fixed
to 20 mm in this work. Therefore, the measurement area could only be varied freely
along the unglued specimen sides (y direction). In order to utilize the pixels of the
cameras optimally, a 20  x 20 mm2 specimen dimension is best because it has the
same aspect ratio as that of the CCD camera (2048 x 2048 pixels), as shown in [26]
for a similar test configuration. As a result, the design variables selected here are the
loading angle and the material principal direction (Figure 2). The loading angle can
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be adjusted by connecting to different holes of the modified Arcan fixture (Figure 3).
The change in material principal direction is obtained by cutting the specimen in
different directions within the foam slab as demonstrated in Chapter 2 (Figure 2). FE
analyses were conducted using ANSYS version 13.0 along with the ANSYS APDL
language, to create 361 simulated tests with different combinations of the two design
variables. The FE model is shown in Figure 6.

Figure 6: FE model of foam specimen in MAF test rig.

The FE model was built using the quadrilateral isoparametric element PLANE 82,
with eight nodes and sixteen degrees of freedom (DOF). Through a thorough
convergence study, a 80x80 mesh density was selected. This approximated closely
the number of experimental data points (76x76), thus avoiding the introduction of
any significant influence from spatial resolution differences. The number of FE
simulation data points is slightly larger than the number of experimental data points,
as additional data points would be removed later for studying the missing data effect.
In  the  FE analyses,  the  two arms of  the  MAF were  simulated  as  rigid  bodies.  The
material principal direction was varied from 0° to 90° with increments of 5°. The
load angle was varied from 0° to 90° (pure shear to pure tension) with increments of
5°. All strain maps were input into a MATLAB VFM identification routine, which
was adjusted according to the loading and material angles. In the following study,
two main error sources during the identification process were introduced. One is
measurement noise, and the other is missing data at the edges. A cost function must
be defined to describe the stability of the identified parameters with respect to the
different error sources. The procedure results in plots of the cost function as a
contour map with respect to the two design variables.
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At the beginning, the influence of measurement noise was studied. Generally, the
noise will cause the deviation of measured strain values from the exact values and
certain scatter of the identified stiffness parameters. In this parametric study, the
chosen cost function is identical to that used in [30] for the unnotched Iosipescu test.
The sensitivity to noise parameters were used to form this cost function to find the
test configuration which led to the most balanced simultaneous identification of all
stiffness parameters. The relative sensitivity to the noise parameters rij used in the
cost function are defined by the ratio of the sensitivity parameter ɳij to the
corresponding stiffness parameter Qij. The detailed expression of the sensitivity
parameter ɳij has  been  given  in equation (14). The reason to choose the relative
parameters ɳij/Qij instead of using the sensitivity parameter ɳij  directly is to eliminate
the influence of the order of magnitude of the different Qi  j give a more clear
representation of the impact of ɳij on the corresponding stiffness parameters.  The
chosen cost function C1 is:
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In this equation, the parameter r12 corresponding to Q12 was not included in the cost
function to avoid the cost function being dominated by this term which is inherently
larger than the other rij parameters. The contour map of this cost function as a
function of off-axis and loading angles is shown in Figure 7.

Figure 7: Cost function for the noise sensitivity study.
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From Figure 7 it can be seen that the value of the cost function is much more
dependent on the off-axis angle (also referred to as the material principal direction)
than the load angle.  When the material principal axes coincide with the specimen
coordinate system, it is difficult to obtain an accurate identification of all four
stiffness parameters regardless of the loading direction. Therefore the material
principal direction is the most important factor when aiming to obtain a balanced
parameter identification. The test configurations with off-axis angles between 25°
and 65° provide good identification with the lowest combined sensitivity to noise.
Two local minima can be observed; one is located at (θ=35°, α=30°), and the other
at  (θ=35°,  α=85°).   Since  the  MAF  rig  enables  variation  of  the  loading  angle  
between 0° to 90° with increments of 15°, the off-axis tensile test configuration
(θ=35°, α=90°)  will be selected instead of the test configuration (θ=35°, α=85°).

Missing data effect

During the experimental study the missing data issue is observed around the edges
of the specimen (as shown in Figure 8). It can be noted that at least half a facet size
is  lost  at  the  edges  of  the  field  of  view  due  to  the  intrinsic  nature  of  the  DIC
algorithms. Using the smaller facet size helps reduce this influence, but
unfortunately this also raises the noise level.

Figure 8: The facets on the edge of the specimen.

In the current study, two rows of data points at the top and bottom specimen edges
(5% of total cross section data points) were removed in the simulated strain maps to
investigate the effect of missing data. In practice, at least one row of data points at
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the edges is normally incomplete and has to be deleted before inputting the strain
maps into the virtual fields routine. The relative error of each of the identified
stiffness parameters which is shown in Figure 9 is computed as:

ijref
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where Qij is the stiffness parameter identified from the VFM routine and Qijref is the
reference stiffness input into the FE model. The results shown in Figure 9 (b)
indicate that missing data on the upper and bottom free edges introduces significant
bias on the identified material parameters.

(a)

(b)

Figure 9: (a) Relative error of each of the identified parameters with missing data
on the left and right sides; (b) Relative error of each of the identified parameters

with missing data on the upper and bottom edges.

Figure (a) display the study by removing two rows of data from the right and left
hand side  edges.  It  can  be  seen  that  this  missing  data  issue  is  not  important  on  the
right and left hand side edges. The main reason for this is the formulation of the
VFM method given in Chapter 3. In Figure 4, the specimen was separated into 3
areas and different virtual fields were defined in these 3 areas to take into account
that missing strain data on areas S1 and S3. Since the virtual displacements on S1 and
S3 are  set  to  be  rigid  body  motions,  the  principle  of  virtual  work  is  expressed  as
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given in eq. (15). However due to the missing data on the up and bottom free edges,
the actual strains are also not available in the areas S4 and S5 shown in Figure 10.
Thus, eq. (15) can be rewritten as:
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dSes are the error terms introduced by the missing

data effect. It would be possible to assign rigid body-like virtual fields to S4 and S5

as well, but the continuity conditions on the virtual displacements would then make
it impossible to include the applied force in the equation. Thus, it would only be
possible to identify stiffness ratios, not actual stiffness values. Therefore the VFM
identification area can be easily adjusted in the horizontal direction when missing
data at the left and right edges. However, if data are missing at the top and bottom
edges, this means that the fraction of the shear/tension force going through this
section will be missing in the equilibrium equation, resulting in significant
overestimation of the stiffnesses as seen from Figure 9 (b).

Figure 10: The measurement area S2 used for identification with missing data on
free edges.

A new cost function C2 was defined to represent the overall identification error with
missing data on the free edges, and is given as:

S2S1 S3

y

S5

S4

x
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In eq. (27) Qijref are the reference values of the four identified material stiffness
parameters, and Qij are the identified parameters affected by missing data. The plot
of this cost function contour map according to different test configurations is shown
in Figure 11. It corresponds to 5% missing data. The results show that the missing
data effect significantly affects the identification results on lots of different test
configurations. For some shear and biaxial loading test configurations, the overall
identification error of the four stiffness parameters becomes extremely significant.
This is due to that a bending moment is gradually induced when the loading angle is
increased. The bending moment produces large bending stresses at the free edges,
resulting in a more significant error on the equilibrium equation when data points
are missing there. Therefore, the minimal identification error is obtained around the
tensile test configuration.

Figure 11: The cost fuction for missing data sensitivity study (5% of total data
missing).
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In order to further validate the optimized test configuration, the cost function
contour  was  created  by  increasing  the  amount  of  missing  data  to  20%  (shown  in
Figure 12). The overall identification error for the four stiffness parameters increases
significantly compared with the results in Figure 11. Although there is a slight
variation between the patterns of the two cost function plot, the best areas (around
tensile loading angle) of these two contours are still very stable and consistent. It
should be noted that what appear to be singularities occur at several locations in
Figure 11 (θ=25° and α=45°, etc). But at the same time the number of ‘singular
points’ is greatly reduced in Figure 12, even though they tend to occur in the same
location of the design space. The main reason for this is that some ‘poor’ test
configurations are very sensitive to the missing data effect. So the results produced
by these ‘poor’ test configurations are very unstable and easily affected by the
amount of missing data. The experimental study in the next section also indicates
that these ‘poor’ test configurations are very sensitive to the virtual field mesh sizes.
Therefore, a more reliable way to select an optimized test configuration is to look
for the locations/spots and their near vicinity with the lowest value of the cost
function.

Figure 12: The cost fuction for missing data sensitivity study (20% of total data
missing).
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In order to reduce the missing data effect on the identification procedure
demonstrated above, the missing data points at the two free edges were
reconstructed by extrapolating the 2D data (strain) maps. The idea is to use the
nearest data points and to copy them to the missing data positions (‘padding’
procedure). The cost function contour map after conducting this extrapolation is
shown in Figure 13. The maximum value is around 0.12, which is much smaller than
the  value  shown  in  Figure  11.  This  indicates  that  much  improved  parameter
identification can be achieved when the missing data have been recovered. The plot
in Figure 13 also indicates that the “poor” test configurations represented by the
central part of the cost function map shown in Figure 11 experienced significant
improvement when missing data recovery was performed. Nevertheless, choosing a
test configuration which can give less sensitivity to missing data is still important
even with the extrapolation of 2D data maps. Combining this result with the
conclusion derived from the noise sensitivity study, it is found that the best test
configuration to minimize the noise effect displayed in Figure 7 is around θ=35° and
α=30°, while the best configuration to minimize the missing data effect is around
θ=35° and α=90°. Therefore a compromise between these two factors has to be
made in the actual/physical test.  By combining the plots in Figures 7, 11 and 13 it is
found that θ=35° and α=90° provides the best compromise. Therefore this
configuration has been selected for the experimental validation. Another good test
configuration is the biaxial loading test with θ=35° and α=30°. The reason that this
test configuration was also selected for the experimental validation is that it has the
minimal cost function value when only noise is considered (see Figure 7). Thus, if
the error from missing data can be reduced to a very low level, this test
configuration should provide the best parameter identification. A comparison of
these two configurations will provide insight into the real practical effect of missing
data.
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Figure 13: Cost function with extrapolation of missing data

4.3 Experimental validation and discussion

In order to validate the above findings from the numerical optimization study,
several experimental study has been conducted. The two optimized test
configurations selected from chapter 4.1 have been used to compare with the pure
shear test configuration investigated in the preliminary study (θ=90°, α=0°).
Reference values for the elastic properties were obtained using ASTM standard tests
in [8], as well as from measurements conducted using the MAF jig with tensile tests
along the in-plane and through-thickness directions and shearing tests using
butterfly-shaped specimens [2]. Figure 14 shows the strain maps for the pure shear
test given in the material orthotropy axes. The load is applied to the foam specimens
up  to  around  150  N  in  5  load  steps.  The  strain  maps  are  derived  within  the  linear
elastic region based on the previous study [1] of the tensile and shear stress vs. strain
curves until failure using classical mechanical testing method. The constitutive
parameters identified for the 4 foam specimens are listed in Table 3. The relative
difference is given by comparing the average testing results and the mean value of
two sets of reference data [2, 8]. It is observed from the results that the most reliably
determined constitutive parameters in the pure shear loading test configuration are
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Q22 and Q66, which is due to the predominant longitudinal bending and shear
stresses/strains in the specimen. At the same time, it is difficult to extract Q11 and
Q12 from this (pure shear) test configuration because of the very low levels of
transverse stress. Thus, Q11 and Q12 exhibit a large bias even when applying the
extrapolation on the edges of the data maps.

Figure 14: DIC strain maps for the θ=90° and α=0° test configuration (pure shear).
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Table 3: θ=90° and α=0° - pure shear test configuration.

After Extrapolation Before Extrapolation

[MPa] Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test1 20.3 73.4 4.15 28.7 59.5 83.5 19.0 29.0

Test2 1.06 66.0 0.01 30.6 12.9 78.0 2.33 32.5

Test3 13.0 71.3 2.35 32.1 43.0 80.9 11.1 34.9

Test4 3.44 70.0 0.670 32.0 20.7 80.2 6.06 33.4

Average 9.45 70.2 1.80 30.9 34.0 80.6 9.63 32.5

Ref(AAU)
[2]

140 63.5 23.6 32.5 140 63.5 23.6 32.5

Ref(SOU)
[8]

143 63.4 26.0 30.1 143 63.4 26.0 30.1

Relative
Difference

93.3% 10.6% 92.4% 1.28% 75.7% 26.9% 59.2% 3.83%



38

Figure 15: DIC strain maps for the θ=35° and α=30° test configuration (multi axial
loading).
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Table 4: θ=35° and α=30° - multi-axial test configuration.

After Extrapolation Before Extrapolation

[MPa] Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test1 156 73.9 11.1 35.5 165 101 19.8 46.3

Test2 152 77.3 9.98 34.6 159 94.2 14.7 43.6

Test3 158 81.0 11.3 34.0 170 101 19.3 45.9

Test4 148 69.2 8.05 33.6 158 88.6 13.2 40.6

Average 154 75.4 10.1 34.4 163 96.2 16.7 44.1

Ref(AAU)[
2]

140 63.5 23.6 32.5 140 63.5 23.6 32.5

Ref(SOU)[
8]

143 63.4 26.0 30.1 143 63.4 26.0 30.1

Relative
Difference

8.83
%

18.8
%

59.2
%

9.90
%

15.2
%

51.5
%

32.7
%

40.9
%

Figure 15 and 16 demonstrated the strain maps obtained using the biaxial test
configuration (θ=35° and α=30°) and the off-axis tensile test configuration (θ=35°
and α=90°).  The identification results are listed in Table 4 and 5. As observed from
the DIC strain maps obtained, the two optimized positions gave much more
balanced strain values for all components with non-zero values over most of the
field  of  view  (Figure  15  and  16),  whereas  in  the  pure  shear  test,  most  of  the
significant normal strain values are concentrated at the corners (Figure 14). Hence,
the accuracy of the identified parameters with two optimized test configuration is
significantly improved compared with the results using pure shear test.  For the
results without any data extrapolation on the edges to recover missing data, the off-
axis tensile test gives much more accurate results than the biaxial test, especially for
the stiffness parameter Q22.
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Figure 16: DIC strain maps for the θ=35° and α=90° test configuration (off-axis
tensile).

By correcting the missing data on the upper and bottom edges of the specimen, the
results from both test configurations was brought much closer to the reference
values. This is consistent with the findings of the simulation study demonstrated in
Figure  11.  However,  the  variation  before  and  after  correcting  the  missing  data  is
much smaller for off-axis tensile test compared with the results of the biaxial test.
To further evaluate the two optimized test configurations, different virtual field
element mesh sizes were used to extract the stiffness parameters from the DIC strain
data. Table 6 and Table 7 show the comparison between the two test configurations
using different virtual field mesh sizes. It is observed that the results of the off-axis
tensile tests are much more stable than those obtained from the off-axis multi-axial
test, especially for the identification of the parameters Q22, Q12 and Q66. The most
stable parameter identified in the current test is Q66. This was expected since off-axis
tensile tests induce very large shear strains, and such test configuration is therefore
commonly used to determine the in-plane shear modulus of anisotropic materials
[34]. The major limitation of the standard off-axis tensile test is that it is very hard to
produce a homogeneous stress/strain distribution in the specimen gauge section.
However  by  using  DIC  and  VFM  this  problem  is  solved.  By  comparing  the  strain
maps from these two test configurations (Figure 15 and 16), it can be noted that the
off-axis tensile test provides much less spatial heterogeneity. That is the major
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reason why this test configuration leads to the best and most stable results. As a
consequence, the limited spatial resolution of DIC has less impact on the strain maps
for this test than for the biaxial configuration.

Table 5: θ=35° and α=90° - off-axis tensile test configuration.

Table 6: θ=35° and α=30° - muti-axial test configuration with different virtual field
mesh sizes.

[MPa] Mesh 4x4 Mesh 6x6 Mesh
10x10

Ref(AAU) Ref(SOU)

Q11 156 155 150 141 143

Q22 73.9 50.8 35.7 63.5 63.4

Q12 11.1 6.61 3.02 23.6 26.0

Q66 35.5 29.7 21.4 32.5 30.1

After Extrapolation Before Extrapolation

[MPa] Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test1 144 75.4 19.4 29.5 147 77.3 20.9 30.6

Test2 152 78.8 19.0 31.6 157 84.2 19.7 33.6

Test3 148 78.0 20.1 31.3 150 81.1 21.3 31.9

Test4 150 71.2 18.0 28.2 153 74.6 18.2 30.6

Average 148 75.9 19.1 30.2 152 79.3 20.0 31.7

Ref(AAU)[2
]

140 63.5 23.6 32.5 140 63.5 23.6 32.5

Ref(SOU)[8
]

143 63.4 26.0 30.1 143 63.4 26.0 30.1

Relative
Difference

4.59
%

19.5
%

23.0
%

3.51
%

7.42
%

25.0
%

19.4
%

1.28
%
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Table 7: θ=35° and α=90° - off-axis tensile test configuration with different virtual
field mesh sizes.

[MPa] Mesh 4x4 Mesh 6x6 Mesh
10x10

Ref(AAU) Ref(SOU)

Q11 144 138 136 141 143

Q22 75.4 66.5 58.7 63.5 63.4

Q12 19.4 27.8 31.6 23.6 26.0

Q66 29.5 29.9 30.2 32.5 30.1

Although the off-axis tensile test gives a relatively reliable identification, there are
still some differences between the identified parameters and the reference values.
Significant density variations exist within the tested PVC foam panels, and this may
account for some of the differences observed. However, the significant variations
observed for Q22 and Q12 when the virtual field mesh size is varied indicate that
there are some unresolved issues in the present methodology. This thought leads to a
further investigation in order to set up a more realistic  simulation of the
identification procedure to track all possible sources of bias, and based on this to
choose regularizing parameters (subset size, smoothing) in a more rational way. This
part of study will be report in the next Chapter.
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5. Optimization study by simulating the
entire measurement chain
5.1 Aims and methodology

Although the selected test configuration in Chapter 4 demonstrates the capability of
extracting the full set of elastic stiffness parameters, several issues still bring
uncertainty to the identified results. The investigation in Chapter 4 highlighted that
one  of  the  reasons  for  this  was  that  the  optimization  study  was  based  on  finite
element simulated strain fields, which did not include the sources of error that arise
from real DIC measurements. In particular, the low-pass spatial filtering effect of the
DIC measurements will result in underestimation of the strains in large strain
gradient areas of the test specimen, which in turn will lead to biases on the identified
stiffness components. Moreover, the low signal to noise ratio associated with the
measurement of the elastic material properties of polymer foams will tend to
increase the random error (scatter) of the data. These unresolved issues led to the
work described in this chapter, aiming to establish a method for quantifying the
uncertainty of the measurements and to further improve the experiments.

A procedure has been developed to realistically simulate the MAF test for polymer
foams using DIC and the VFM. The idea is to construct deformed synthetic images
using displacements generated from FE analyses. From this, the reference and
deformed synthetic images will be processed using DIC, and VFM will be used
subsequently to extract all the stiffness parameters. The uncertainty of the
measurements, including the systematic and random errors, has been evaluated
thoroughly by including several different sources of error. The systematic and
random errors of the measurements were analyzed separately by introducing two
different error functions based on data with and without simulated camera noise.
The optimization study was undertaken by using the loading angle and the off-axis
angle relative to the material principal direction as the two design variables. By
minimizing the uncertainty predicted from the error functions, an optimized test
configuration has been identified. Subsequently, the influence of subset size and
smoothing levels has been evaluated based on the optimized test configuration.
Moreover, an effective method to reduce the random error from the measurements
has been proposed by studying the effect of image averaging, and an optimal
number of images to be averaged has been identified. Finally, a detailed
experimental validation has been conducted based on the optimized test parameters
selected from the numerical study. The research reported in this chapter is
documented in appended Papers 3 and 4.
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A simulator tool has been developed to produce optimal test configurations to
identify mechanical constitutive parameters from full-field measurements and
inverse identification using the VFM. Figure 17 illustrates a flowchart of the
developed simulator. It is seen from the measurement chain depicted in Figure 16
that the identification accuracy depends on many parameters. Some of these are
selected by the operator in an intuitive way, like e.g. the types of cameras or subset
sizes. Others parameters are often overlooked such like the parameters hidden in
commercial DIC packages (the shape functions or the interpolation functions), or the
speckle pattern which is often produced in a non-optimized nor reproducible manner
with paint spray. For future wider and possibly industrial application of this new test
methodology, it is essential to be able to quantify the uncertainty of all the
parameters in the grey boxes mentioned in Figure 17 (and there are others not
mentioned like the effect of lighting or the lens quality for instance) to produce the
most robust results. Since addressing this complex optimization problem with all
parameters included is out-of-reach, the research conducted in this study focuses on
a few parameters considered to be the most influential: the subset size, the strain
smoothing kernel as well as the two test design variables (loading and off-axis
angles).

As  stated  in  the  GUM  (Guide  to  the  expression  of  Uncertainty  in  Measurement,
[35]), the uncertainty of a measurement result is usually evaluated using a
mathematical model of the measurement and the law of propagation of uncertainty.
This is the principle undertaken in this study. Two main sources of uncertainty are
defined in the GUM: type A, which relates to the random part of the uncertainty and
can be evaluated with statistical parameters, and type B which relates to systematic
errors or biases. In the rest of the thesis, type A uncertainty will be named ‘random
error’, whereas type B will be called ‘systematic error’ or ‘bias’.
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Figure 17: Flowchart of the developed identification simulator (in grey, fixed
parameters, in yellow, parameters studied here)

Two error functions were defined to evaluate the systematic and random errors
separately.  The hypothesis is that minimization of the systematic and random errors
will make it possible to specify a set of design variables that will provide the best
identification of the materials parameters. In order to simplify the problem, the
optimization will be conducted in two steps. First, the two test design variables (the
loading angle and the off-axis angle relative to the material principal direction) will
be chosen to achieve the overall minimal systematic and random errors. After
deciding on these, the optimization of the image processing parameters will be
conducted to further improve the material parameter identification. The procedure is
similar to the optimization study conducted on the test configurations except that the
DIC subset and smoothing kernel sizes are considered as the new design variables,
while the test configuration has been selected based on the first step. Finally, an
efficient method to reduce the random error is proposed in which multiple stabilized
images are captured and then averaged. An optimal number of images will be
defined based on this study.

As stated in Chpater 3.2, the DIC measurement data near the edges of the specimen
may  be  influenced  by  the  adhesive  or  the  shadow  cast  by  the  MAF  fixture  (see
Figures 2 and 3). The way to solve this issue is similar to the procedure presented in
Chapter 3.2, and henceforth will not be described in detail here. Only the
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measurement area S2 is taken into account in this VFM study (shown in Figure 18).
The ratio between the length W of the field of view and the specimen length L is 0.8.
It It is important not to reduce this value too much as this would result in a loss of
strain heterogeneity which would negatively impact the simultaneous identification
of the complete set of stiffness components.

Figure 18: Measurement area S2 used for identification (W/L=0.8).

More details of the derivation of the virtual boundary conditions can be found in
Chapter 3. For the identification of the orthotropic material parameters, the strain
and virtual strain fields obtained in the global coordinates x and y (see Figure 2)
were transformed into the material principal directions 1 and 2 (Figure 2). The
transformation relations are given in Equations (22) and (23) given in Chapter 3.
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5.2 DIC simulator

An important improvement of this new optimization study compared with the
previous  work  in  Chapter  4  is  to  simulate  the  DIC  process  realistically.  The
procedure includes three steps: (1) Development of a FE model to create the
displacements field; (2) Superimpose the reference images with displacements
obtained from the FE analysis; (3) DIC between the reference and deformed
synthetic images. The parametric FE analysis was performed using ANSYS version
14.0 together with the ANSYS APDL language to simulate the MAF specimen
response with different test configurations. The reference material properties
(Q11=143.4 MPa, Q22=63.41 MPa, Q12=26.01 MPa, Q66=30.12 MPa). The details of
the FE model were described in Chapter 4.

The FE simulated displacement fields were generated with different combinations of
the two design variables (the loading angle and the material principal direction).
After obtaining the FE displacement fields, a synthetic deformation procedure of the
speckle patterns was adopted to simulate the image recording process. The reference
image, captured from one of the test specimens in real testing conditions, is shown
in Figure 19(a). The reference image was deformed according to the displacement
fields calculated from the FE model. The deformation process was performed
numerically using an interpolation routine.  This procedure is based on the 2D
interpolation functions in Matlab, and it was proposed and validated previously [36].
Figure 19(b) shows an example of the deformed synthetic images for a specimen
configuration subjected to pure shear loading. The synthetic images were processed
by the MatchID DIC software [37, 38] to calculate the displacement fields, and the
strain fields were subsequently derived using finite differences and subsequent
Gaussian smoothing. The advantage of this DIC software compared with other
commercial  software  is  that  users  can  write  their  all  own  scripts  to  control  all  the
parameters inside DIC process (subset size, shift, measurement areas, etc). This
feature can be embedded with Matlab code to perform parametric study and find the
optimum DIC parameters. The details of this study will be reported in the following
sections. Table 8 summarizes the parameters used for DIC.



48

                       (a)                                                                 (b)
Figure 19: (a) Reference image (size 1650 x 1650 pixel2); (b) Deformed synthetic
image for a vertical shear load.

Table 8: DIC parameters for the numerical study (MatchID DIC package).

Technique
Subset size
Shift
Shape function
Interpolation function
Correlation criterion

Pre-smoothing applied to the
images

2D image correlation
Variable, to be precised for each set of results

50% of the subset size
Affine

Bicubic polynomial
Approximated Normalized Sum of Squared

Difference (Approximated NSSD)
None

Camera
Field of view
Noise

8 bit, 2048 x 2048 pixel2

24mm x 24mm
White Gaussian, standard deviation 1% of dynamic

range (2.56 grey levels)
Strain field:

Differentiation method
Smoothing method

Finite differences
Gaussian smoothing (kernel size variable, to be

précised for each set of results)

http://pages.stat.wisc.edu/~mchung/teaching/768/reading/lecture02-smoothing.pdf
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(a)

(b)

(c)
Figure 20: (a) Strain maps from DIC using synthetic images without noise (Subset
size: 30, Gaussian kernel size: 10); (b) Strain maps from FE model; (c) Strain maps
from DIC using synthetic images without noise (Subset size: 30, Gaussian kernel
size: 2).

Figure 21: ɛxx strain maps with Gaussian kernel size of (a) 10; (b) 20; (c) 30.
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This systematic reconstruction bias is an important source of error which has to be
taken into account in order to predict the identification error realistically. For test
configurations which result in more severe strain gradients, the low-pass filtering
effect of DIC will be more critical and lead to significant errors in the parameter
identification. A detailed study of this is presented in the following section.

5.3 Test optimization based on the systematic error

With the simulated experimental procedure described previously, it is possible to
quantify the systematic error caused by DIC process for different test configurations.
By  using  the  similar  parametric  study  approach  stated  in  Chapter  4,  the  FE
displacements were obtained by using different combinations of the two design
variables of the test configuration (the material principal direction and the loading
angle). The material principal direction (q - see Figure 2) was varied between 0° to
90° with increments of 5°. The loading angle (a – see  Figure  2)  was  also  varied
between 0° to 90° (from pure shear to pure tension) with increments of 15°
according to the MAF test jig, see Figures 1 and 2. However, instead of inputting the
FE deformation fields into the VFM routine to study the optimized test configuration,
the FE simulated displacements were imposed on the reference speckle pattern by
using the DIC simulator introduced in the previous section, synthetic deformed
images corresponding to different test configurations were produced. Since only the
systematic error is considered in this section, noise was not added to the synthetic
images. The reference and deformed synthetic images were processed by the DIC
software run in batch mode to calculate the new simulated DIC displacement fields.
A subset size of 30 x 30 was selected here.  After this the strain maps were derived
by numerical differentiation with Gaussian smoothing with a kernel size of 10.
Based  on  the  tensile  and  shear  stress  vs.  strain  curves  until  failure  obtained  from
previous  work  [1],  the  strain  maps  are  restricted  to  the  linear  elastic  region  of  the
PVC foam. Based on the experience from the study in Chapter 4, the random error is
highly dependent on the signal to noise ratio. Therefore, it is beneficial to
achievestrains that are as large as possible. However, this is limited in practice by
the fact that the material needs to remain linear elastic. Moreover, different test
configurations (off-axis and load angles) lead to different stiffnesses, so in order to
provide an unbiased comparison, it  is necessary to normalize the applied load by a
scaling factor k defined here as:

max max maxmax max , max , max
i ii
y xyx

x y xy

k
e ee

e e e

é ù
= ê ú

ê úë û

(28)
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where i
xe , i

ye and i
xye  are the strain components at i'th data point of the model. Max

|.| is the maximum absolute value over all the data points, and max
xe , max

ye and

max
xye  are the maximum allowable strain values for the material to remain linear

elastic. These were obtained from previous experiments with standard mechanical
test methods and reach up to 2% [1] as mentioned above. Finally, a VFM subroutine
was used to extract the stiffness parameters from the simulated DIC results. The
entire procedure described above was programmed using MATLAB®.

An error function C1 has been introduced to evaluate the overall systematic error of
the VFM identification. By minimizing this error function, the best test
configuration can be identified.  The error function C1 is defined as:

1
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ij ijref

ij ijref

Q Q
C
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a q
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ç ÷=
ç ÷
è ø

å (29)

where α is the loading angle, θ is the off-axis angle of the material principal
direction, Qijref  are the reference values of the four identified material stiffness
parameters input into the FE model, and Qij  are the identified parameters from the
simulated DIC measurements. This function represents an average identification bias
over the four stiffness components. The research reported in Chapter 4 indicated that
missing data on the upper and bottom free edges of the specimen have a significant
influence on the identified results due to the formulation of the Virtual Fields
Method. A way to deal with this would be to reconstruct the missing data  the same
as was done with the areas S1 and S3 discussed in Chapter 4 (see Figure 17). Missing
data on the free edges will systematically be reconstructed the remainder of this
chapter by copying the nearest data points to the missing data positions (padding).
This was shown to be a very simple and efficient route to mitigating this issue.

The plots of the error function C1 before and after the reconstruction are presented in
Figure 22. As can be observed from Figure 22, the reconstruction of the data at the
edges significantly reduces the error for all test parameters. In the remainder of this
chapter, DIC data will systematically be reconstructed at the edges. When the off-
axis angle q  is equal to 0° or 90° the identification errors are relatively large
regardless of the value of the loading angle a. This can be expected because the
MAF test jig only introduces tensile loading, shear loading or a combination of
tensile and shear loading. With the off-axis angle  near zero, the transverse
stress/strain components are too small to enable stable identification of the
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transverse stiffness component. The good performance of the off-axis tensile test
configuration (q =90°) confirms what has been found previously using the FE strain
fields. When comparing the identification procedures using either the strains directly
derived from the FE model or the strains from the DIC simulation (Figure 23), it  is
clear that the latter produces much larger errors than the former. This is not
surprising as the error generated by the DIC process is taken into account here,
which provides a much more realistic evaluation of the identification error. It can
also be seen that the plot in Figure 23(a) discriminates much better between “good”
and “bad” test configurations. This observation justifies the current approach,
showing that simplistic procedures based on FE strains do not produce results that
are sufficiently realistic. Finally, comparing Figures 22(b) and 23(a), it is observed
that increased smoothing significantly affects the resulting identification error,
particularly in the low angles where bending is predominant and large strain
concentrations are present at the specimen corners. Nevertheless, choosing the
parameters q =90° and a =25° lead to minimal error with little effect of the increase
of smoothing.

(a) (b)

Figure 22: Error function C1 before (a) and after (b) reconstructing missing data at
the edges (using simulated DIC strain fields with subset 30 and Gaussian smoothing
kernel size of 2).



53

 (a)     (b)

Figure 23: Error function C1 from (a) DIC strain fields with subset 30 and Gaussian
smoothing kernel size of 10 and (b) FE strains

It is observed from Figures 22 and 23 that several test configurations display very
high identification errors. In order to investigate the cause of this phenomenon, the
strain components of one of these test configurations (θ=5° and α=60°) have been
compared with the strain components of the optimal test configuration (defined by
θ=25° and α=90°). It was found that the optimal test configuration exhibited lower
strain gradients, especially for the strain components along the transverse direction
as can be seen in Figure 24. For the test configuration with the highest identification
errors (θ=5° and α=60° - Figure 24 (a)), strain values above 0.4% only occur at the
corners of the specimen while most of the field of view exhibits very low strains.

(a)                                                            (b)

Figure 24: FE ɛyy strains for (a) θ=5° and α=60°; (b) θ=25° and α=90°.

eyy eyy
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During the DIC process, large concentrated strains are significantly underestimated
which in turn leads to a large bias in the VFM identification. This is demonstrated in
Figure 25 from which a significant difference between the FE simulated strain maps
and  the  simulated  DIC  strain  maps  can  be  observed.  This  finding  shows  that  the
systematic error originating from the low-pass spatial filtering effect of the DIC
process has an important impact on the accuracy of the VFM identification. The
optimal selection of the parameters of the DIC measurements (subset size,
smoothing kernel) will be investigated later. In this study, the aim was to identify the
best test configuration which leads to the minimum sensitivity to this systematic
error.

As illustrated by the C1 contour maps (see Figures 22 and 23), the most stable and
accurate identifications are found in the tensile test configuration region (a=90°)
with off-axis angles ranging between 10° and 35°. In the actual experiments, it is
difficult to control the off-axis angle θ accurately so the optimized test configuration
for this study was selected to be θ=25° and α=90° which is close to the centre of the
favourable region to ensure accuracy of the identified results. Figure 23(a) shows the
C1 contour maps with a larger Gaussian kernel size of 10. By comparing the minima
with the result in Figure 22(b) with less smoothing, it can be noted that the optimal
configurations are found in the same region of the search space. In addition, this test
configuration confirms the results from the previous study using FE strains in
Chapter 4 (shown in Figure 23(b)), even though another good potential candidate at
(θ=35° and α=30°) was found in that study, which is clearly discarded with the
present approach. The current study also provides a much more realistic evaluation
of the expected identification error. As can be observed from Figures 22(b) and
23(a), the level of predicted error on the identification is increased from 0.01 to 0.06
by including the DIC simulation.

(a)

exx eyy exy
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(b)
Figure 25: (a) Strain maps from simulated DIC using synthetic images without
noise (subset 30, Gaussian smoothing kernel size of 10, θ=5° and α=60°); (b) Strain
maps from FE model (θ=5° and α=60°).

The error functions corresponding to each of the identified material stiffness
parameters Q11, Q12, Q22 and Q66 are plotted separately in Figure 26. The results
shown in Figure 26 indicate that the systematic error is the largest for Q22 and Q12.
This was expected as transverse strains tend to concentrate near the corners of the
specimen for most test specimen configurations. The identification accuracy of the
Q11 and Q22 parameters mainly depends on the off-axis angle of the specimens.
When the loading direction a is aligned with the stiffness component direction (θ=0°
for Q11 and θ=90° for Q22), the best identification of these two components is
obtained. The off-axis tensile test configuration provides balanced identification of
the four stiffness components.

Besides the systemic error caused by the DIC process, another important
identification bias can be introduced by the through-thickness stress and strain
heterogeneity which is neglected when using the plane stress assumption in the
VFM routine (namely when volume integrals are approximated by the thickness
multiplied by a surface integral in the principle of virtual work).

To check for this, a full 3D FE model was built up and the surface displacements
from this model were input into the identification simulator. The optimized test
configuration (θ=25° and α=90°) from the above systematic error study was used in
this model. The identified parameters are compared with the results using 2D FE
model so that the error related to this through-thickness heterogeneity can be
isolated, as the 2D FE model results already capture the DIC-based errors.

exx eyy exy
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Figure 26: Relative error for each of the identified material parameters (Q11,  Q12,
Q22 and  Q66) after reconstructing the missing data on the edges of the specimen,
subset 30, Gaussian smoothing kernel size of 10.

The identification biases are listed in Table 9. It can be seen that although the
thickness of the specimen is only a fourth of its in-plane dimensions, there is still  a
slight over-estimation of the identification parameters. By further reducing the
thickness, this identification bias can be decreased. However, a much thinner
specimen would be easily damaged during the mounting of the specimen in the
fixture. So it is more practical to keep this specimen thickness and correct for this
bias.
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Table 9: Identification bias due to through-thickness strain heterogeneities.

Q11 Q22 Q12 Q66

3D FE model 148.4 67.8 29.4 31.8

2D FE model 146.3 66.2 28.2 31.1

Identification bias 1.4% 2.4% 4.2% 2.3%

DIC systematic bias 2.1% 4.6% 7.2% 2.7%

Figure 27: 3D FE model of the modified Arcan test.
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5.4 Test optimization based on the random error

Besides the systematic error, intrinsic noise of the acquired images can be
propagated through the DIC and VFM processes and  causes a large scattering of the
identified results, especially if the signal to noise ratio is low. The noise level from
actual measurements is evaluated by capturing two stationary images and then
calculating the standard deviation of the difference of the two images which is
around 1% of the dynamic range.  According to this noise level, the noise has been
simulated by adding standard Gaussian white noise to the grey level values of the
synthetic images. The random error of the identified parameters is quantified by the
coefficients of variation of the identified stiffness distributions obtained from repeats
of the identification process with different copies of the noise on the images. The
coefficient of variation is defined as the ratio of the standard deviation to the mean
value to produce a scaled measure of scatter regardless of the different orders of
magnitude of the stiffness components. The simulations for each test configuration
were repeated 20 times to evaluate the standard deviation of the identified
parameters. The error function C2 representing the average of the coefficients of
variation of the four identified material parameters Q11, Q12, Q22 and Q66 has been
defined as follows:
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where (as before) α is the loading angle, and θ is the off-axis angle of the material
principal direction. Qijref represents the reference values of the four identified
material stiffness parameters [1], and stdij is the standard deviation of the identified
parameters over 20 repetitions. As can be seen from the plot of the C2 error function
in Figure 28, the off-axis shear and off-axis tensile test configuration provide the
most precise identification results with the lowest standard deviation. The highest
scatter is observed when the pure tensile load is applied along the in-plane direction
(α=90°, θ=90°). This can be expected as the test specimen has much lower stiffness
along the in-plane direction (Q22=63.41 MPa) compared with the through-thickness
direction (Q11=143.4 MPa). When the specimen is loaded along the 2-direction, the
strain component in the 1-direction is very small and highly influenced by noise.
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Figure 28: Error function C2 (average coefficient of variation) with influence of
measurement noise subset 30, Gaussian smoothing kernel size of 10.

The standard deviations of each stiffness component are plotted separately in Figure
29. For the identification of Q11 and Q22,  the  lowest  scatter  was  obtained when the
loading direction is aligned with the stiffness component direction, i.e. the 1 or 2-
directions, respectively, for the two stiffness parameters. The identification of Q66 is
the most stable. The reason for this is the relatively low value of this stiffness
component (Q66=30.12 MPa) which results in relatively larger strain values which
are less affected by noise. This confirms that balanced strain components with
relatively large magnitudes can reduce both systematic and random errors. When
this is combined with the previous findings in the study of the systematic error, the
optimal test configuration is confirmed to be the off-axis tensile test defined by α=90°
and θ=25°. This test can be referred to as the 'Short Off-Axis Tension' test (SOAT
test) and is potentially an excellent candidate to become a new standard test for
orthotropic materials, including fibre composites, as it can be performed in a
standard test machine. This will be investigated in the forthcoming section.
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Figure 29: Coefficients of variation of the identified results over 20 repetitions,
subset 30, Gaussian smoothing kernel size of 10.

Besides evaluating the standard deviation, the mean value of each identified
parameter over 20 repetitions was also calculated. From this the identification error
function C1 can be recalculated as in eq. (31) with the mean of the distribution. For
the sake of clarity, this cost function has been named C3, and is defined as follows:
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where
ijQ is the mean value of 20 repetitions, Qijref  are the reference values of the

four identified material stiffness parameters [1] input into the FE model, and (as
before) α is the loading angle, and θ is the off-axis angle of the material principal
directions. The results are plotted in Figure 30, from which it is observed that the
contour map nearly coincides with the plot of the systematic error in Figure 22(b).
This shows that the noise does not produce a significant additional bias.
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Figure 30: Error function C3 (mean value of identified results over 20 repetitions),
subset 30, Gaussian smoothing kernel size of 2.

5.5 Selection of subset sizes and smoothing levels

As was demonstrated before, the DIC process hidden inside most of the commercial
DIC software strongly influences the quality of the measured strain maps and can
lead to a significant bias on the VFM identification. It is therefore important to
systematically study the effect of the main DIC parameters (subset size, smoothing
kernel) and define optimal values for these. This enables a more rational approach to
these important choices which directly impact the quality of the results. In
accordance with the results from the study of the systematic and the random errors
in the previous sections, the 'Short Off-Axis Tension' (SOAT) test configuration
(θ=25°, α=90°) has been selected as the most optimal for conducting the physical
experiments.  Based on this most optimal test configuration, two main DIC process
parameters (subset size, smoothing kernel) were chosen here as variables to study
the optimal combination of these two parameters.  Subset size is the main
parameters in DIC process and is critical to the accuracy of the measurement results.
However, the most of users of the existing DIC techniques still rely on experience
and intuition to manually define the size of the subset. Spatial smoothing of the
displacements is also necessary to improve the strain resolution, particularly in the
low elastic strain range considered here. However, while reducing the random
component of the error, smoothing can significantly increase the systematic part of
the error as was shown earlier in this thesis. At a certain stage, the systematic error
overtakes the random error, so there is an optimal point or trade off between the two.
Therefore, the optimal choice of the two DIC process parameters (subset size,
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smoothing levels) will be investigated by seeking for the minimal overall
identification error of systematic and random error together. In this study, the
smoothing technique is Gaussian smoothing of the strain maps. Other types of
smoothing could have been investigated but it is hypothesized that the regularization
parameter (kernel size here) is more important than the actual smoothing technique
used, as they all provide some form of low pass filtering where the cut-off frequency
is driven by the regularization parameter. The identification errors will be obtained
by comparing the identified values with the reference values (Q11=143.4 MPa,
Q22=63.41 MPa, Q12=26.01 MPa, Q66=30.12 MPa) from previous chapters. A way to
define the optimal point (minimal error) is to consider a 95% confidence interval,
which is the mean plus or minus twice the standard deviation. Therefore, the largest
possible error, with a 95% confidence, is obtained as follows:  if the mean is below
the reference, it will be the mean minus twice the standard deviation; if the mean is
above the reference, then it will be the mean plus twice the standard deviation. By
plotting this maximum error, the optimal parameters and a confidence interval are
identified. The error function is below where the variables used are the subset and
kernel sizes:
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where Qijref  are the reference values of the four material stiffness parameters [2]
input into the FE model, C

ijQ  are the stiffness parameters with 95% confidence
interval which is defined as follows:
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Where ijQ  is the mean of the four stiffness parameters over 20 repetitions calculated
with different subset and kernel sizes, and stdij is the standard deviation of the four
stiffness parameters over 20 repetitions.

First, it is possible to evaluate the systematic part of the error by evaluating C4
without any noise. This leads to the systematic error displayed in Figure 31. As
expected, this error increases for increasing subset sizes and smoothing levels. Then,
adding noise, it is possible to evaluate the random part of the error by subtracting the
systematic error from the total error obtained from C4 with noise. This part of the
error increases moderately with decreasing subset size, and decreases more sharply
with increasing smoothing levels. At some stage, these two curves cross over,
showing that  there  should  be  an  optimum trade-off  point  between the  two types  of
error.  This  optimum  is  clearly  seen  on  Figure  32  which  shows  that  a  kernel  size
equal to 11 and a subset size of 40x40 provides minimum value of C4.
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Figure 31: Systematic and random errors

Figure 32: Error function C4 with different subsets and Gaussian smoothing kernel
sizes
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5.6 Confidence interval and effect of image averaging

After obtaining the systematic and random errors predicted from the above study,
confidence intervals (CI) can be calculated to indicate the reliability of the
identification. The confidence interval of each identified stiffness parameter is
defined as follows corresponding to a 95% confidence level:

CIij=Qij (without noise)±2stdij (standard deviation with noise),
(ij=11,22,12,66)

(34)

As was observed in section 5.4, the averaging of each identified parameter over 20
repetitions will reduce the random error and leave only the systemic error.  This
finding indicates that the averaging of multiple static images may provide an
efficient way to reduce the data dispersions caused by image noise. In a
practical/physical testing context when the specimen is loaded up to a certain level
and stabilized, it is possible to record many images and then average them to filter
out camera noise. The effect of image averaging has been further investigated using
the simulated DIC experimental procedure developed in this Chapter. The test
configuration and other DIC test parameters were determined from the above
optimization study. The confidence intervals of the four stiffness parameters have
been calculated individually based on averaging different numbers of images (5, 10,
20, 50, and 100).  The results are plotted in Figure 33, where the black dots show the
upper limits of the confidence interval and the red dots represent the lower limits.



65

Figure 33: Confidence intervals (CIs) of the four stiffness parameters.

As expected, it is seen from Figure 33 that the confidence intervals reduce when the
number of images is increased. This phenomenon demonstrates that the averaging of
multiple stabilized images exerts an influence on the identification. Thus, by
utilising this procedure instead of increasing the smoothing level, the random error
can be effectively reduced without raising the systematic bias.  Furthermore, the
results also indicate that the elastic stiffness parameters tend to converge to values
that are slightly larger than the reference values. This is due to the systematic error
originating  from  the  low  pass  filtering  effect  of  the  DIC  process.  Although  the
random error of the measurement is significantly reduced, the systematic bias still
exists and results in an over-prediction of the stiffness parameters.  When the
number of images exceeds 50, the confidence interval stabilizes, and the optimal
number of images was therefore set to 50.
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5.7 Final experimental validation using all the optimal test
parameters

The Short Off-Axis Tensile (SOAT) experiments (see Figure 34) were conducted on
using 3 different but identical specimens to validate the findings from the
optimization investigation.  The testing was set up according to the optimized test
parameters selected from the numerical study. The stiffness parameters were
calculated by averaging the DIC measured displacement results from two back-to-
back  cameras  firstly  and  perform  the  VFM  identification  using  this  averaging
displacement fields. Subset size and smoothing kernels were selected to be 40 and
10 according to the systematic and random error study previously reported. The
detailed performance of this setup is given in Table 10.

The resolutions reported in Table 10 were evaluated as the standard deviation of the
displacement and strain maps of two consecutive images of the stationary specimen.
In order to validate the effect of image averaging investigated in Section 5.6, the
experiments were conducted by capturing single and multiple images of the
stabilized  specimens.  All  the  specimens  were  load  up  to  only  100 N to  ensure  that
the deformations were not beyond the range of linear elasticity. After around 30 s
when the specimen has stabilized (stable force reading), multiple images were
captured with the rate of one image per second. This measurement procedure was
then repeated 20 times on the same day and the specimen was kept in the
fixture/machine during the process.  Both the mean value and the standard deviation
of the identified material stiffness parameters were then calculated, and the results
were subsequently compared with both the simulated data and the reference
experimental data. The simulation data was calculated using the simulated DIC
measurement procedure and based on the same realistic/physical images captured in
this experiment. The reference values for the elastic properties were obtained using
ASTM standard tests in [7], as well as from measurements conducted using the
modified MAF test jig with tensile tests along the in-plane and through-thickness
directions and shear tests using butterfly-shaped specimens [1].  The reference
values reported in [7] and [1] are very similar.
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Table 10: Experimental DIC settings and performances (MatchID DIC package).

Technique Used
Subset size
Shift
Shape function
Interpolation function
Correlation criterion

Presmoothing applied to the images

2D image correlation
40 x 40 pixel2
20 pixel (50%)

Affine
Bicubic polynomial

Approximated Normalized Sum of Squared Difference
(Approximated NSSD)

None
Camera
Field of view

8 bit, 2048 x 2048 pixel2

24mm x 24mm

Displacement field:
Resolution

Strain field:
Differentiation method
Smoothing method
Resolution

0.2 mm / 0.017 pixel

Finite differences
Gaussian smoothing (kernel size 11)

1.3x10-4

Figure 34: Short Off-Axis Tensile (SOAT) test experimental set up.

http://pages.stat.wisc.edu/~mchung/teaching/768/reading/lecture02-smoothing.pdf
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Figure 35: (a) Strain maps from DIC simulations (subset 40x40, smooth kernel 11,
load 100 N); (b) Strain maps from physical experiments (the average of two back-to
back cameras, subset 40x40, smooth kernel 11, load 100 N)

Figure 35 displays the comparison of the two sets of strain maps obtained from the
simulated DIC experiments and the physical measurements. It can be observed that
the DIC simulator provides a good prediction of the strain maps obtained from the
physical measurements. The mean values of the identified stiffness components
obtained over 20 repetitions using 50 averaged images are listed in Table 11 below.

Table 11: The mean value from 20 repetitions using 50 average images.

Q11 [MPa] Q22 [MPa] Q12 [MPa] Q66 [MPa]

Specimen 1 149.3 68.1 27.9 32.9

Specimen 2 147.6 70.8 29.6 31.1

Specimen 3 150.1 69.1 29.9 32.4

Mean value 149.0 69.3 29.1 32.1

DIC Simulation 146.1 66.0 27.9 30.9

Reference data [1] 143.4 63.4 26.0 30.1
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The experimental identified parameters have a good correlation between the
simulation results. Both the experimental and the simulated results display an over-
prediction of the stiffness parameters compared with the reference data. This is
mainly due to that the DIC process smooths out of local strain peaks and creates the
systematic error. The material parameters identified from the physical experiments
display slightly larger mean values than that predicted using the simulated DIC
procedure.  This is not surprising as other sources of error come into play like non-
uniform lighting or lens distortions [39]. Tables 12 and 13 provide the standard
deviations and coefficients of variation of the identified results over 20 repetitions
using either the average of 50 images or a single image. The results using the
average of 50 images display a significant reduction of the standard deviation of the
20 repeated measurements. This confirms the findings from the simulation study in
section 5.6.  However, the efficiency of this method in the experiments is not as
significant as was suggested by the results of the numerical study, and the resulting
standard deviation has not come down to the expected value.

Table 12: The standard deviation and coefficients of variation from 20 repetitions
using 50 averaged images.

Q11 [MPa] Q22 [MPa] Q12 [MPa] Q66 [MPa]

Specimen 1 0.169 0.646 0.225 0.132

Specimen 2 0.155 0.623 0.203 0.133

Specimen 3 0.223 0.715 0.250 0.159

Mean value 0.182 0.661 0.226 0.131

DIC Simulation 0.0458 0.138 0.0520 0.0152

Coefficients of variation

Experimental 0.12% 0.95% 0.78% 0.41%

DIC simulation 0.030% 0.20% 0.18% 0.047%
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Table 13: The standard deviation and coefficients of variation from 20 repetitions
using one single image.

Q11 [MPa] Q22 [MPa] Q12 [MPa] Q66 [MPa]

Specimen 1 0.345 1.42 0.302 0.251

Specimen 2 0.389 1.39 0.295 0.230

Specimen 3 0.413 1.62 0.337 0.278

Mean value 0.382 1.48 0.311 0.253

DIC Simulation 0.275 0.993 0.205 0.122

Coefficients of variation

Experimental 0.25% 2.1% 1.07% 0.79%

DIC simulation 0.18% 1.5% 0.73% 0.39%

In order to further investigate the cause of this deviation, the difference of the grey
level intensity between two consecutive images is compared with the average of
different numbers of images. The evolution of the noise level by averaging different
numbers of stabilized images is illustrated in Figure 36.
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Figure 36: The noise level (in grey level values) of the images using either a single
image (IM=1) or the average of multiple images: (a) based on the results of the
physical experiments; (b) based on simulation.

The previous simulation study in section 5.6 demonstrated that the noise effect is
gradually reduced when the number of images that are used in the averaging is
increased  (shown  in  Figure  33).   However,  by  evaluating  the  images  from  the
physical measurements (shown in Figure 36(a)), the situation is not quite the same
as that observed from the predictions of the simulated experiments. It can be seen
that when taking up to 10 images and averaging them, the noise influence is reduced
as in the numerical prediction. However, by taking images continuously up to 50 the
noise is seen to increase again. This is the reason why the standard deviation of the
experimental results is not significantly reduced using the optimal number of images
(50). This likely cause of this phenomenon is that the specimen was not
experiencing static steady state conditions when the recording of the multiple
images was conducted. Since the integration time was one second per image, this
indicates that the patterns on the surface of the specimen may have displayed a slight
variation after 10 seconds. A likely explanation for this time-dependency problem is
that the PVC foam material displays viscoelastic behaviour, hence creep can occur
over  50  seconds  even  when  the  load  appears  to  be  stabilized.  Other  effects  like
changes of lighting conditions or air movements can also play a role. Furthermore,
camera heating is also an important aspect. A way to resolve this issue would be to
increase the rate of image acquisition to reach the optimal number of images within
10 seconds. For the current study, 10 images are used as the optimal image number
instead of 50. Table 14 displays the standard deviation calculated using 10 instead of
50 images. Comparing with the data in Table 12, the difference between the test
results and the predicted standard deviation from DIC simulation is significantly
reduced.

Table 14: The standard deviation from 20 repetitions using 10 averaged images.

Q11 [MPa] Q22 [MPa] Q12 [MPa] Q66 [MPa]

Specimen 1 0.118 0.403 0.138 0.0689

Specimen 2 0.095 0.363 0.117 0.0534

Specimen 3 0.132 0.471 0.152 0.0692

DIC Simulation 0.0701 0.235 0.0914 0.0376
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6. Conclusions
This PhD dissertation presents work that has focused on the establishment of an
efficient and reliable methodology for simultaneous identification of the orthotropic
stiffness components of polymer foam in one single test. The aim has been to
develop a robust optimization procedure to predict the uncertainty of the
experimental characterisation of polymer orthotropic foam materials and to optimize
the design of the experiments. However, the developed methodology is generic, and
as such it will in principle be applicable to other material systems.

In the first part of the study, the basic framework with the combination of DIC and
an extraction VFM routine has been developed. The preliminary experimental
investigation shows that the accuracy of the identification of the elastic stiffness
coefficients heavily depends on the test configuration as well as on the full-field
measurement parameters such as camera noise, spatial resolution and smoothing
levels. Therefore, the most feasible and efficient way to solve this problem is to
modify the test configuration so that more transverse stresses/strains are introduced
thus reducing the effect of noise.

Based on the preliminary study, a modified Arcan test fixture (MAF) was used for
the testing, and an optimization routine based on finite element simulated strain
fields was developed to identify the best test configuration as a function of loading
angle and material principal directions. The effect of noise and missing data were
included into the optimization study as the two main error sources. The experimental
results validated the findings of the numerical optimization study in that the off-axis
tensile test gave an improved identification of the orthotropic stiffness components
of the polymer foam considered. Missing strain data at the free edges proved to have
a very significant influence on the identification results. This was accounted for by
using a data extrapolation scheme which proved to be successful. The larger
sensitivity of the shear test to missing data as opposed to the off-axis tensile test was
also revealed in the experimental data and confirmed the numerical analysis results.
This is due to large bending stresses at the free edges of the specimen. The
identification results were significantly affected by the size of the virtual mesh,
particularly for the parameters Q22 and Q12. This may be caused by errors introduced
by inappropriate spatial resolution of the measurements. Different Virtual Fields
process the bias caused by inappropriate local spatial resolution differently, hence
different stiffness values are obtained. The only way to assess this issue rigorously is
to simulate the realistic/physical DIC measurement process.

In order to solve the issues discussed above, a more advanced optimization routine
was developed to bring further improvements to the current procedure. Optimal test
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parameters have been sought to provide a reliable identification of all the elastic
stiffness parameters in one single test using DIC and VFM. The image recording
from physical experiments was mimicked by deforming the reference speckle
patterns using displacements derived from FE analysis. DIC and VFM routines were
used to process the synthetic speckle patterns and to extract all the elastic stiffness
parameters.  By using this method, a large number of simulated experiments were
generated efficiently with varying testing parameters. For the current study, the test
parameters selected were the loading angle (a), the off-axis angle (q) relative to the
material principal direction, the subset size and the smoothing kernel. Several error
functions have been defined to describe the influence of both the systematic and
random errors on the VFM identified results. Based on this, an optimum test
configuration was identified by minimizing the identification error.

The study of the systematic error has demonstrated that the low pass filtering effect
of the DIC process can bring significant bias to the identification results. By using
the  simulated  DIC  measurements,  this  error  source  can  be  included  into  the
optimization study and also provide a more realistic prediction of the expected
identification error. It was further observed that the random error can be reduced by
averaging over multiple images.  By combining the results from the analyses of the
systematic and random errors, a Short Off-Axis Tensile (SOAT) test (θ=25°, α=90°)
was chosen as the optimized test configuration.

Based on the optimized test configuration, several optimal test parameters related to
the DIC process were determined. The results showed that increasing the subset size
and the smoothing level exerted opposite effects on the systematic and random
errors of the VFM identification. It is therefore important to balance out the two
different sources of error when choosing the optimal DIC processing parameters.

The confidence interval of the parameters obtained from the simulations was
calculated based on the systematic and random errors. The study of image averaging
revealed that the confidence intervals tend to stabilize when the number of images
used in the averaging is increased, whereas the systematic error remains unchanged
and causes over-prediction of the identified material parameters.

Finally, the predictions of the simulated experiments in terms of identified material
parameters have been validated against physical experiments. From this it was
further concluded that the simulated measurement procedure can provide a realistic
quantification of the identification error, and also that the optimized testing
configuration and DIC parameters led to a stable and accurate parameter
identification. However, when using the average of the optimal number of images,
the random error of the experimental results was not reduced as effectively as was
predicted from the simulated experiments. The reason for this is hypothesized to be
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the lack of stability of the imaging conditions during the image recording process.
To reduce this error, a higher frame rate would be required to capture the optimal
number of images within as short a time as possible.
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7. Future work
The work carried during this PhD project has included extensive modelling,
experimental validation and optimization studies. The final methodology proposed
has been proven to be able to provide reliable and accurate identification of elastic
constitutive parameters. However, some of the issues addressed in this work require
further investigation. One such issue is the visco-elastic (creep) behaviour displayed
by the polymer foam considered (cross-linked PVC foam) during the final
experimental study of the effect of image averaging. Thus, it would be interesting to
increase the rate of image acquisition to further investigate the optimal number of
images which can provide the lowest random error.

Another important research direction is to study additional error sources that were
not considered in the present work, for instance slight misalignments between the
specimen surface and the camera sensors, non-uniform lighting and light noise from
the environment, the shape functions or the interpolation functions hidden in DIC
commercial package, and also the fact that the speckle pattern is often produced in a
non-optimized and non-reproducible manner with paint spray. A follow-up on this
work will be to include such errors and perform a sensitivity analysis. The long term
objective would be to develop a new generation of robust and reliable test methods
which can be used in industry in the future. To reach this goal, extensive
optimization investigations of all relevant test parameters should be conducted.

The work presented in this PhD dissertation represents a step towards the
development of new standard tests based on full-field measurements and inverse
identification, which will enable faster and more cost-effective materials testing in
the future. There are still a few steps in this left to investigate, develop and validate
before this is achieved, but the end goal appears to be within reach. A key issue is
the systematic error, but it is likely that this will soon be mitigated due to
technological development and the availability of affordable high quality, high
spatial resolution (16 Mpixels) and low noise (sCMOS) cameras. The last step is to
make all the elements of this procedure robust to routine use by non-experts.

Finally, materials with more complex material properties, for instance
heterogeneous materials, can be investigated to test the current experimental
methodology.  The formulation of the VFM described in Chapter 2 needs to be
adjusted for heterogeneous materials. This can be done by modelling the spatial
evolution of the constitutive parameters with a suitable function of the spatial
coordinates.  Some  preliminary  study  has  been  done  during  this  project  using  FE
modelling to simulate a specimen with a polynomial spatial distribution of the
material elastic parameters. Based on the simulated FE strain fields, the VFM
routine can successfully extract all the coefficients of this polynomial.  However, the
scope of this project has been to apply the developed methodology on experimental
validation for industrially practical/physical foam material systems. Due to
limitations of the manufacturing processes, it is extremely difficult to produce
polymer foam core materials which have a regular spatial distribution, and also to
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suggest reasonable guesses for the polynomials used to describe the constitutive
parameters to construct the virtual fields. Therefore, further experimental study
should be conducted to investigate suitable material systems which can be used to
validate the possibility of this possible future application of the methodology.
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