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Summary

More and more geotechnical structures are being designed on the basis of computer simulation
of the soil behaviour. Thisis due to the fact that precise modelling of soil behaviour and all but
the simplest geometries result in equations that are impossible to solve using hand-calculation
methods. The most often used numerical tool for solving the equations is the finite-element
method, which is the method of choicein thisthesis.

The classical material model for soils is the Mohr-Coulomb material model. For many
years, this model has been the basis in the calculation of the bearing capacity of foundations,
mainly due to its simplicity which allows simple solutions with simple geometries. But for
complex geometries anumerical solution is needed. It turns out that the apparently simple Mohr-
Coulomb model is non-trivial to implement in the finite-element method. Thisis due to the fact
that the Mohr-Coulomb yield criterion and the corresponding plastic potential possess corners
and an apex, which causes numerical difficulties. A simple, elegant and efficient solution to
these problemsis presented in thisthesis. The solution is based on a transformation into principal
stress space and is valid for al linear isotropic plasticity modelsin which corners and apexes are
encountered. The validity and merits of the proposed solution are examined in relation to the
Mohr-Coulomb and the Modified Mohr-Coulomb material models. It is found that the proposed
method compares well with existing methods.

Aswith soils, rock masses also exhibit a pressure dependent constitutive behaviour. There-
fore the Mohr-Coulomb and Modified Mohr-Coulomb material models are frequently used to
model the behaviour of rock masses. The linear dependency of the strength on the pressure in-
herent in the Mohr-Coulomb model has turned out be a poor approximation for rock masses at
the stress levels of practical interest. In recent yearsthis has caused a non-linear Mohr-Coulomb
criterion, the Hoek-Brown criterion, to become extensively applied for practical purposes. No
evidence in literature, however, can be found on how to correctly implement this model in the
finite element method. The known implementations rely on a rounding on the corners and/or
simplifications which greatly increase calculation times. In this thesis the principal stress update
method is extended from the use with linear yield criteria to a Hoek-Brown material. The effi-
ciency and validity are demonstrated by comparing the finite-element results with well-known
solutions for simple geometries.

A common geotechnical problemisthe assessment of slope stability. For slopeswith smple
geometries and consisting of a linear Mohr-Coulomb material, this can be carried out by hand
calculations. For more complex geometries the calculations can be carried out using the finite-
element method. The soil parameters used in the analyses are often based on triaxial testing.
Thereis, however, discrepancies between the stress levelsin thetests, and the stress level s present
at slope failures, where the stress levels are low. This means that the safety of the slope can be
overestimated when using the Mohr-Coulomb criterion with parameters obtained from standard
triaxial tests. The overestimation is caused by the fact that the soil strength, when viewed in a
large stress interval, is not linearly dependent on the pressure, as stated by the Mohr-Coulomb
model. Therefore a non-linear Hoek-Brown material model gives more reliable predictions. The
concept of the slope safety factor is inherently tied to the notion of expressing the sail strength
as a so-called Mohr envelope. The calculation of the slope safety factor using a linear Mohr
envelope is straightforward, but with a curved Mohr envelope this is not trivial. A method of
calculating the safety factor of a slope using the finite-element method and a curved Mohr enve-
lope is presented. The results are compared with the safety factors obtained with a linear Mohr




envelope, with which they are directly comparable, when the presented method is used.

Theclassical problem of yield surfaceswith corners and apexesis elaborated upon. A small
maodification to the formulation of the constitutive matrices on corners and apexes is presented.
Thisformulation greatly improves the numerical stability of plasticity calculations. Thisisillus-
trated with a bearing capacity calculation on a highly frictional soil.




Sammenfatning

Flere og flere geotekni ske konstruktioner bliver projekteret pabaggrund af computersimuleringer
af jordens opfarsel. Dette gares da praecis modellering af jordens opfarsel, ved alt andet end de
simpleste geometrier, resulterer i ligninger som ikke kan lgses med handberegningesmetoder.
Det oftest anvendte numeriske vaaktgj til l@sning af disse ligninger er elementmetoden, som er
den anvendte metode i denne afhandling.

Den klassiske jordmaterialemodel er Mohr-Coulomb materialemodellen. Denne model har
i mange & vaaet grundlaget for beregninger af fundamenters baareevne, mest p& grund af mo-
dellens enkelthed som muligger simple lgsninger ved simple geometrier. Men ved komplicerede
geometrier er der brug for numeriske Igsninger. Det har vist sig at den tilsyneladende simple
Mohr-Coulomb modelsimplementering i elementmetoden ikke er enkel. Dette skyldes at Mohr-
Coulomb kriteriet og det tilhgrende plastiske potentiale indeholder hjgrner og en spids, som
bevirker at numeriske problemer opstar. En simpel, elegant og effektiv |gsningsmetode il disse
problemer bliver prassenteret i denne afhandling. Lasningen er baseret pa en transformering af
problemet ind i hovedspaandingsrummet, og er gyldig for alle linesare, isotrope plasticitetsmod-
eller som besidder hjgrner og spidser. Den angivne metodes gyldighed og kvaliteter undersages
i relation til Mohr-Coulomb og den Modificerede Mohr-Coulomb materialemodel. Det vises at
metoden klarer sig godt i sammenligning med hidtil anvendte metoder.

Pa samme made som jord, udviser klippemasser ogsa en trykafhaangig materialeopfarsel.
Af den grund anvendes Mohr-Coulomb og Modificeret Mohr-Coulomb ofte til at modellere
klippemassers opfarsel. Styrkens lineaare afhaangighed af trykket, som det er anvist af Mohr-
Coulomb, har vist sig at vaae en darlig tilnaamelse for klippemasser i de praktisk forekom-
mende spamndingsintervaller. | de sidste par & har dette bevirket at brugen af et ikke-linesat
kriterium, Hoek-Brown kriteriet, i praktiske beregninger er steget kraftigt. Men imidlertid findes
der ingen anvisninger i litteraturen, som korrekt fortadler hvordan denne materialemodel skal
implementeres i elementmetoden. De nuvaaende implementeringer baserer sig pa en afrund-
ing af hjgrnerne og/eller simplificeringer som kraftigt for@ger beregningstiderne. Den farnaevnte
hovedspaandingsopdateringsmetode udvides frakun at omfatte linesare kriterer til ogsa at omfatte
Hoek-Brown materialer. Metodens effektivitet og gyldighed demonstreres ved at sammenligne
elementmetoderesultater med kendte |gsninger for simple geometrier.

Et aimindeligt geoteknisk problem er vurderingen af en skranings stabilitet. Denne vur-
dering kan klares med héndberegninger for skraninger med simple geometrier og som bestar af
et Mohr-Coulomb materiale. For mere komplicerede geometrier kan elementmetoden benyttes.
De anvendte jordparametre til brug for analysen er ofte fundet ud fra et triaksialforseg. Der
er imidlertid uoverensstemmel ser mellem spaandingsniveauet i forsagene og spaandingsniveauet
i skréningsbrud, hvor lave spandingsniveauer optrader. Dette betyder at skréningssikkerhe-
den kan blive overvurderet n&r Mohr-Coulomb kriteriet, med parametre fra standardtriaksial-
forsag, anvendes. Denne overvurdering udspringer af det forhold at jordens styrke, set over
et stort spaandingsinterval, ikke, som forudsagt af Mohr-Coulomb kriteriet, er linesart afhaangig
af trykket. Derfor giver en ikke-linesa Hoek-Brown model mere trovaadige resultater. Skra
ningssi kkerhedsbegrebet haanger sammen med den made at udtrykke jordstyrker pd, der kaldes
Mohr-kurver. Nér linesare Mohr-kurver anvendes, er beregning af en sikkerhedsfaktor simpel,
men med en krum Mohr-kurve er den kompliceret. | denne afhandling praesenteres en metode til
beregning af skraningssikkerhedsfaktoren med elementmetoden og en krum Mohr-kurve. Resul-
tatet sammenlignes med det resultat der fremkommer ved anvendelse af en linesa Mohr-kurve.




Vi

Denne sammenligning af forskellige materialemodellers sikkerhedsfaktor giver mening, nér den
prassenterede metode anvendes.

Det klassiske problem omkring flydefladers hjarner og spidser gennemgas yderligere. En
mindre modifikation til beregning af de konstitutive matricer pa hjerner og spidser prassenteres.
Denne modifikation forbedrer den numeriske stabilitet drastisk i plasticitetsberegninger. Dette
illustreres igennem en baareevneberegning med jord med hgj friktionsvinkel.
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CHAPTER 1
Introduction

In the last 100 years geotechnical engineering has
gonefrom being almost completely empirically based
into being an advanced analytical branch of engi-
neering, in practiceaswell aswithin research. Huge
engineering structures have been erected which now
rely on sound design practice asopposedto thetrial-
and-error or experience based approach of the past.
One example of thisisseenin Figure 1.1.

Many methods have been developed for cate-
gorising and testing the soil with the purpose of es-
Figure 1.1 An example of amodern large geotech-  tablishing design parameters. These methods can
nical structure. One of the anchor blocks of the Great  be separated into field tests and |aboratory experi-
Belt Bridge. (www.storebaglt.dk) ments.

The field testing methods span from the simple visual and phys-
ical inspection over the simple vane and SPT tests to the pressiometer
test to full-scale loading tests. Paired with experience, the field test is
often sufficient for establishing the parameters needed for design pur-
poses. When the material parameters must be established with more
accuracy, expensive laboratory experiments are called for. In the labo-
ratory, virtually all aspects of the soil can be tested, with apparatuses
ranging from simple sieves to the advanced true triaxial test apparatus
with test time periods ranging from few minutes to months. In Chap-
ter 2 afew of the laboratory test methods will be touched upon.

The type and amount of tests needed are determined by the ma-
terial model which is utilised to predict the behaviour of the soil. For
the more common material models, which in practice meansthe Mohr-
Coulomb material model, many years of experience have made it pos-
sible to assess the material parameters from simple observations and
measurement of the water content and density of the soil sample.

When a geotechnical structure is designed, the designer needs a
material model from which he/she can calculate the settlement andthe  Figure 1.2 A conven-
bearing capacity. Thisis known as a constitutive model. The consti-  tional triaxial test cell.
tutive model must provide a relationship between stresses and strains ~ (WWww.geoengineer.org)
in the soil. Within continuum mechanics, the equations for stresses and strains separately rest
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2 Chapter 1 — Introduction

on sound mathematical arguments but the relation between them is still to be determined by
experiments.

1.1 Constitutive modelling

For the use in settlement and bearing capacity calculation it is necessary to put the behaviour
of soils into a mathematical framework. As with al mathematical models there is a dilemma
between the complexity and the usability of the model. As shown in Chapter 2, the stress-strain
behaviour of soil is quite complicated. The more complex the model is, the better it capturesall
aspects of soil behaviour. But with increasing complexity of the model, two drawbacks become
more pronounced:

The complex model requires many material parameters which must be determined by ex-
periments. As the number of parameters rise, so does the number and complexity of the
experiments.

If the material parameters of a complex soil model are found, the soil behaviour can be
described very accurately. But for general engineering problems with a complex geometry,
the solution to the arising boundary value problem with a complex material model can be
very difficult, if not impossible, to find, even with numerical methods.

These two drawbacks are the main reasons that advanced soil models are only rarely used in
practice. Here the simple Mohr-Coulomb material model is by far the most frequently used
material model. The experience with the model is vast and its simplicity makes it suitable for
hand calculation methods. For the more advanced models, drawback number two simply made
them impossible to use for practical purposes before the advance of computers. In rock mecha-
nics, though, a model which is somewhat more advanced that the Mohr-Coulomb model with
its straight yield surfaces, has won ground and is used in practical rock engineering. Thisis
the Hoek-Brown material model with curved yield surfaces, whose yield criterion is based upon
four parameters, compared to the two of the Mohr-Coulomb model. A large amount of expe-
rience with this criterion has been built up in the years since the criterion was introduced by
Hoek and Brown (1980), and therefore the parameters can be estimated as easily as with the
Mohr-Coulomb criterion. Before that time the Mohr-Coulomb criterion was aso used for the
calculation of bearing capacities of rock masses.

In academia, on the other hand, the advanced constitutive models for soils thrive and are
found in great numbers, covering virtually every aspect of soil behaviour. The number of papers
on advanced soil models and how to solve boundary value problems using them is ever increas-
ing. It seems that there is not yet a consensus regarding the superiority of any model although
the tendency seems to point toward the so-called critical state models, see Chapter 2.

1.2 Methods of calculation

Before the time of computers the calculation and design were obviously done by hand. The
boundary-value problems arising in geotechnical engineering quickly become too sophisticated
with respect to obtaining exact solutions with realistic soil models. Even if the soil is considered
linearly elastic the boundary-value problems become impossible to solve when the geometry of
the problem is other than the very ssimple.
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Figure 1.3 A surface footing on homogenous soil with @) an admissible stress field and b) an admissible collapse
mechanism. These are examples of lower- and upper-bound solutions, respectively.

For this reason, several approximate methods have been developed which are suitable for
hand cal cul ation when the M ohr-Coulomb criterion is employed. The most popular method must
be the method of limit-state analysis. With this method the material models are limited to asso-
ciated plasticity. For granular soils this assumption results in an excessive dilation during shear
deformation; but as long as the soil is relatively unconfined the assumption is not detrimental.
Limit-state analysis provides upper- and lower-bounds for the bearing capacity, i.e. the upper-
bound solution provides a value of the bearing capacity that is too high, i.e. on the unsafe side.
The upper-bound solution is widely used in engineering practice due to its simplicity in finding
areasonabl e solution by hand. For the lower-bound solution, the bearing capacity istoo low, i.e.
it ison the safe side. The two methods combined then bracket the true collapse load. Examples
of upper- and lower-bound solutions are seen in Figure 1.3.

Inthe recent years, several computerised upper- and lower-bound solutions for geotechnical
problems have been implemented, see e.g. (Lyamin and Sloan 2002; Krabbenhgft, Damkilde,
and Krabbenhgft 2006; Merifield, Lyamin, and Sloan 2006b).

However, the limit-state theorems only provide the ultimate bearing capacity. The upper-
bound may give a crude estimate of the deformation but neither the upper nor lower-bound say
anything about the deformation path up until failure.

The ultimate tool for analysing geotechnical problems must be the elasto-plastic finite-
element method. With this method virtually all aspects of soil behaviour can be taken into ac-
count, such as time dependent behaviour, soil-structure interaction and complicated non-linear
elasticity and plasticity. In practical engineering the use of the method is still limited, but is
gaining ground. Some of the advantages and examples of the use of elasto-plastic finite-element
method in practical engineering are given in the Rankine Lecture by Potts (2003).

The finite-element method is a major topic in this thesis, where new methods for the plastic
stress update needed in elasto-plastic calculations are presented. The methods improve the per-
formance of the stress update for several material models which are frequently used in geotech-
nical engineering. The models are simple by the standards of constitutive modelling, but still
their numerical implementation in the finite-element method causes problems. It is the hope and
belief of the author that this thesis has solved some of these problems. One of the goals of the
author is that the solutions should be easy to implement for the enthusiastic reader, and therefore
simple matrix algebra has been chosen over the complicated tensor notation and manipulation
which are seen in many papers on the subject.
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Figure 1.4 Example of ahighway slope failure in Greece. (www.geoengineer.org).

The elasto-plastic finite-element method can aso be applied for slope stability problems,
see Figure 1.4. One of the problems in this aspect is the definition of the slope safety factor
when using finite element calculations. The slope safety factor is defined in terms of the normal
and the shear stresses on a given plane. But if the finite-element method must be applied the
factor must have an analogy in the general stress space. This definition is easily found for the
linear Mohr-Coulomb criterion but for a non-linear criterion thisis not as simple. A method for
calculating the slope safety factor with anon-linear criterion using finite elementsis proposed in
Chapter 7 and in Appendix D.

1.3 Non-linear finite-element method

When the finite-element method is used for solving elasto-plastic problems, the load and/or the
forced displacement are applied in increments. In each increment equilibrium is sought by min-
imising the force residual, i.e. the difference between the external and internal forces. Global
equilibrium iterations are then carried out until the norm of the residua is smaller than a pre-
scribed number. A popular method for establishing equilibrium is the Newton-Raphson scheme.
With the Newton-Raphson scheme the stiffness matrix is updated in each equilibrium iteration.
The stresses and the constitutive matrices are updated according to the constitutive law. Thisis
the method which has been used for all finite element calculationsin this thesis.

A schematic presentation of the Newton-Raphson schemein the el asto-plastic finite-el ement
method is presented in Table 1.1.
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Table 1.1 Schematic principle of the global Newton scheme for equilibrium iterations in the el asto-plastic finite-element
method.

Load stepsk = 1,2,...

Pr = Pr—1 + APk Initiation of the kth load vector.
Aug =0 Initiation of the kth displacement increment.
Global equilibrium iterations j = 1,2,...
Klf; = K]{(Dl;epc’j) ' Form the global tangent stiffness matrix.
My = Pk — a(ug + Auy) Force residual, r/ from p; and internal forces, q.
suj = (KD~ Solve the FEM equations.
Aufrl = Aui + 8u£ Update displacement increment.
Aefrl = BAu,’{'Jrl Calculate strain increment.
6{+1(6{,Ae£+1), D,‘ipc’jﬂ(o{H) Update stress and constitutive matrix.
Stop iterationswhen ||r i || < €|lpg|l € is aprescribed tolerance. Usually around 1073,
Ui+1 = Ug + AuiJrl Update the displacement.

End of load step

In the table the step described as Update stress and constitutive matrix is written in italics
asit isthe main focus of the Chapters 3-6 in thisthesis.

1.3.1 Plastic stress update

In numerical analyses of elasto-plastic materials, akey ingredient isintegration of the constitutive
equations to obtain the unknown stress increment. This has been the subject of numerous papers
over the last decades. The reason for thisis that the equations are highly non-linear and cannot
be integrated analytically. Several approaches have been employed for solving this problem.

The stress update can be carried out by different means. The two main stress update classes
are the forward Euler procedure and stress update by return mapping. The basic forward Euler
procedure has the advantage of simplicity, which is a notable advantage in the implementation
of complex constitutive material models, see e.g. (Sloan, Abbo, and Sheng 2001; Zhao, Sheng,
Rouainia, and Sloan 2005). An advantage of the forward Euler procedure is that the continuum
constitutive matrix isused, and thisis quite easily derived from the equations of theyield function
and the plastic potential. One of the drawbacks of the forward Euler procedureisthat the updated
stress will violate the yield criterion if corrective measures are not taken. Another is that the
forward Euler integration usually requires smaller load steps than a return mapping procedure.

In the recent years it seems that the most frequently used procedure for stress update is the
return mapping scheme in some form, see Figure 1.5, which is also the method of choicein this
thesis. The method was originally proposed by Krieg and Krieg (1977), in a variant named the
radial return method. Of the return mapping methods the backward Euler, or implicit, integration
schemeisthe predominant, seee.g. (Crisfield 1997; Ahadi and Krenk 2003; Asensio and Moreno
2003).

Thecal culationsinvolved are somewhat more complicated than in the forward Euler method,
but an inherent feature of the return mapping scheme is that the updated stresses do not violate
the yield criterion. The method is also proven to be robust and able to handle reasonably large
load steps, see e.g. (Crisfield 1997; Ortiz and Popov 1985).

Nagtegaal (1982) showed that the continuum constitutive matrix, which comes from stan-
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dard derivations of the elasto-plastic equations, see Chapter 3, is not consistent with a global
Newton-Raphson scheme. Simo and Taylor (1985) then derived a consistent constitutive ma-
trix for use with the return mapping scheme with global Newton-Raphson iterations. In order
to calculate this, the second derivative of the plastic potential is needed, and this is one of the
reasons that the manipulationsin the return mapping scheme are more complicated than the basic
forward Euler method.

For many types of plasticity the direct
calculation of the second derivative of the plas-
tic potential is rather cumbersome. This is
even more true for yield criteria which pos-
sess discontinuities. These discontinuities are
the reason that the exact form of areturn map-
ping scheme for a plasticity model such as a
Hoek-Brown material has not previously been
used in elasto-plastic finite element calcula
tions. Thisis donein Chapter 6 and Appen- /

dix E of thisthesis based on the approach pre-
sented in Chapter 4. Figure 1.5 The principle of return mapping.

1.4 Yield criteria in principal stress space

Several classical yield criteria are formulated as linear functions of the principal stresses. This
includesthe Mohr-Coulomb criterion often applied to soil and other granular materials. A specia
case of this is the Tresca criterion used for metals and undrained soils. Sometimes the Mohr-
Coulomb criterion is combined with the linear Rankine, or tension cut-off, criterion to give a
better approximation to the tensile behaviour of certain materials, e.g. concrete, see (Chen and
Han 1988; Nielsen 1999). Theseyield criteriaare shown in Figure 1.6.

The advantage of these criteria is that in many applications analytical or semianalytical
solutions exist for the limit state, which is very seldom the case with non-linear yield criteria.
Examples of these are the classical solutions of Prandtl (1921) for plane strain problems, Cox,
Eason, and Hopkins (1961), Bolton and Lau (1993), Hill and Wu (1992) for geometries showing
axial symmetry and Nielsen (1999) for various geometries.

In the backward Euler scheme, the derivative of the yield function and the first and second
order derivatives of the plastic potential with respect to the stresses are needed, as mentioned in
the previous section. Some yield criteria posses discontinuities where these derivatives become
singular. These discontinuities arise as intersection curves or points between two or moreyield
surfaces. Special care has to be taken when the stress point is returned to such a discontinuity.
A solution to this problem was obtained by Koiter (1953) for associated plasticity. An option
in numerical applications is a local rounding of the discontinuity as proposed by, for example,
(Wan 1992; Abbo and Sloan 1995). This approach inevitably leads to approximative solutions.
More direct approaches to the discontinuity problem in relation to Mohr-Coulomb plasticity are
taken in (De Borst 1987; Yu 1994). In this reference, formulae are given for stress returns and
infinitesimal constitutive matrices, both in relation to regular yield planes and for corner returns,
based on Koiter’stheorem. In the former amethod of determining which type of return should be
applied, resembling the one applied in this thesis, is also presented. A similar approach is taken
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Modified
Mohr-Coulomb

Figure 1.6 Examples of linear yield criteria in principal stress space: a) The Tresca criterion. b) The Mohr-Coulomb
Criterion. ¢) The Rankine criterion. d) The Modified Mohr-Coulomb criterion.

by Crisfield (1997) where a direct calculation of the so-called consistent constitutive matrix is
also proposed.

A natural approach to solve problemsinvolving these yield criteriais to carry out the return
mapping in the principal stress space where the manipulations simplify. Thisis done by Pankaj
and Bicani¢ (1997) who elaborate on the detection of the proper stress return in principal stress
space. The works of Larsson and Runesson (1996), Peri¢ and Neto (1999) and Borja, Sama,
and Sanz (2003) all deal with stressreturn in principal stress space along with formation of con-
stitutive operators for various plasticity models. The derivations and results in these references
are based on tensor algebrawhich is very general but complicated and the implementationin a
computer program is cumbersome. The methods presented in Chapters 4 and 6 exploit the main
advantage of the formulation in principal stress space, namely that the stress states can be visu-
alised in three dimensions and thus facilitate a geometric approach. This geometric approach is
used asthe basisfor deriving very simple formulaefor the stress update and constitutive matrices
utilising basic matrix notation.

The expressionsin Chapter 4 are valid for any isotropic and perfectly plastic yield criterion,
or combination of several yield criteriawhich arelinear in the principal stress space. The expres-
sions in Chapter 6 are for Hoek-Brown plasticity only, but the approach can be applied to other
criteria.

Theimportant concept of ng whether the return should be made to ayield plane/surface,
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line/curve or point is also addressed for general isotropic linear yield criteria. No iteration is
needed when the criteria are linear and the stress return is exact within the framework of the
return mapping scheme. The formulae for the constitutive matrices are also valid for genera
isotropic non-linear associated plasticity aslong as they are formed in principal stress space. The
price to pay for the smplicity of the formulae is the coordinate transformations needed when
transforming the updated stresses and the constitutive matrix back into the original stress space.
It is shown in Chapter 5 that this price is acceptable.

As indicated by the flow charts given in Appendices A, B and E the proposed algorithm is
easily trandlated into computer code. In Chapters 5-7 several examples are given with various
material models. It is shown that the method yields the correct solution and that it performsfaster
than the direct implementation of the return mapping a gorithm for Mohr-Coulomb plasticity as
it is formulated by, for example, Crisfield (1997).

1.5 Commercial finite element codes

The criteriathat are utilised in this thesis are all implemented in commercial elasto-plastic finite
element codes in some form. This section gives a brief overview of some of the codes.

The general purpose finite element program Abaqus, (Abagus 2006) includes a Mohr-
Coulomb material model. An exact form of the criterion is implemented, but with a plastic
potential that is fundamentally different from the one which is traditionally used. The tradition-
aly employed plastic potential has ashapewhichissimilar totheyield criterion, i.e. ahexagonal
pyramid in principal stress space, see Figure 1.6. The plastic potential used in Abaqusis rounded
in the octahedral plane, and hence the plastic strains will differ from those of the traditional
potential. As an addition it is possible to apply a hardening law to the Mohr-Coulomb model.

This Mohr-Coulomb material model is implemented in its exact form in the geotechnical
finite element code Plaxis (Brinkgreve and Vermeer 1998), where the formulation of van Langen
and Vermeer (1990) isimplemented. Thisformulationis efficient, even for a high degree of non-
associativity, due to the automatic adjustment of the load step. The code cannot, however, run
with zero cohesion, which means that the behaviour of cohesionless soils must be approached by
assigning a low value to the cohesion. In Plaxis it is also possible to select the Mohr-Coulomb
model with tension cut-off, i.e. the Modified M ohr-Coulomb model, see Chapter 5.

The Mohr-Coulomb and the Hoek-Brown criteriaare implemented in the code Phase2 (Roc-
science Inc. 2006a) for rock engineering. Here an approximate measure is taken at the corners
in order to avoid the singul arities present there, see Chapter 6.

Thefew examplesabove show that thereis still room for improvement, evenfor the classical
and often used material models. This thesis outlines some procedures that are an improvement
compared to the implementations mentioned above.

1.6 Scope of the thesis

The aim of this thesis is to introduce improvements and novel features in certain aspects of the
numerical modelling of soil and rock mass behaviour. To the best of the author’s belief, the
following aspects of the present theory and analyses may be regarded as novel:
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A methodology for performing the plastic integration and the formation of the constitutive
matricesin principal stress space.

A simple set of formulae for calculating the updated stresses in principal stress space for
any perfectly plastic yield criterion composed of linear criteria. Thisincludes a novel for-
mulation of the stress return to a discontinuity line.

A simple geometrical methodology for determining the correct type of stress return for any
yield criterion composed of linear criteria.

n A simple formulafor the calcul ation of the double-singular infinitesimal constitutive matrix
onalineor acurvein principal stress space.

A simple method for cal culating the modification matrix T, which is needed in the calcula-
tion of the consistent constitutive matrix. For the case of the elements relating to the shear
behaviour the presented formulae involves only the values of the predictor and updated
stresses whereas traditional methods rely on extensive derivations of the plastic potential.

E The value of bearing capacity factors is estimated to great accuracy by extrapolating the
results of a convergence anaysis.

The widely used Hoek-Brown criterion for rock masses is implemented in a plastic stress
update scheme in its exact form.

E A method of computing the slope safety factor with a non-linear Mohr-envelope, using
the elasto-plastic finite-element method is presented. The obtained safety factor is directly
comparableto the safety factor obtained with the traditional linear M ohr-envel ope (a Mohr-
Coulomb material).

E Modifications of the constitutive matrices are presented, which alows for calculations on
highly frictional soils. This allows for the calculation of bearing capacity factors for higher
frictional angles than seen before, when using the elasto-plastic finite-element method.

Somereferences (Larsson and Runesson 1996; Pankaj and Bi €ani¢ 1997; Peri ¢ and de SouzaNeto
1999) a'so carry out some of the manipulationsout in principal stress space. However, the author

is of the opinion that the presented method is novel by the fact that all manipulations are carried

out systematically in principal stress space beforethe updated stresses and the constitutive matrix

are transformed back into the original coordinate space.

1.7 Overview of the thesis

¢ Chapter 2 introduces the material soil as an engineering material. Some of the features that
characterise the constitutive behaviour of soils are outlined. The differences between sands
and clayswill be touched upon as well as the classification of soils. The main feature of the
chapter is on the stress-strain behaviour of soils to which purpose two testing procedures,
namely the shearbox and the triaxial apparatusare introduced. The Mohr-Coulomb criterion
is presented in some detail as an example of a constitutive model that captures some of the
main features of soil behaviour. Other, more advanced, soil material models are outlined.
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¢ Chapter 3 introduces the fundamental notions in computational plasticity. The equations of

the return mapping scheme for perfect plasticity are presented together with equations for
forming the infinitesimal and the consistent constitutive matrix. The case of two activeyield
surfacesis outlined and so is the special case of linear criteria.

In Chapter 4, one of the key issues of this thesis is presented, namely the principal stress
return for material modelswith linear criteriaand plastic potentialsin principal stress space.
The stress is returned to planes, lines and points. The formulations for the constitutive
matrices are also presented in principal stress space, and these are valid for genera yield
surfaces in principal stress space. A simple method of determining the correct return for
linear criteriais presented.

Applications of the principal stress return method are presented in Chapter 5. The mater-
ial models are the Mohr-Coulomb model and the Modified Mohr-Coulomb model. For the
Mohr-Coulomb criterion, the bearing capacity factor N, is calculated and it is shown that it
converges towards the exact value. An analogous calculation of N, is carried out in Appen-
dix C. Thesignificance of including the out-of-plane stress is indicated and a comparison of
the computation times between the methods of Chapters 3 and 4 is given. Different methods
of handling the corner singularities are investigated in Appendix C.

Chapter 6 deals with the non-linear Hoek-Brown criterion for rock masses. The criterion
is presented along with the specific equations for the stress update and formation of the
constitutive matrices, based on the formulation in Chapter 4. Numerical examples show
that the method gives the exact result and is more efficient than previous finite element
implementations of the criterion.

Chapter 7 deals with the concept of the slope safety factor computed by the finite-element
method. A standard method is available for computing this with the Mohr-Coulomb crite-
rion, but this is not the case for a non-linear criterion. A method for calculating the slope
safety factor using the Hoek-Brown material model is presented. A key point is that the
safety factor can be compared directly with the safety factor computed using the Mohr-
Coulomb criterion.

In Chapter 8 two modifications of the equations of Chapter 4 are proposed. The modifica-
tions make the global equilibrium iterations convergefaster and makeit possible to calculate
the bearing capacity factors at a very high friction angle.




_ _ - CHAPTER 2
Soil as an engineering material

Soil is one of the most often used engineering materials, as al civil engineering structures must
be founded on either soil or rock, depending on the location.Soil is composed as a collection par-
ticles with different shapes and voids in between them. These voids, “pores’ may or may not be
filled with water. Soils are classified according to the size distribution of the grains and the con-
tent of organic material. Different standards are used in different countries for the classification
of soil types.

2.1 Sand and clay

Soils are classified according to the grain size distribution. The classification refers to the indi-
vidual grains and to the soil sample as awhole. Thisisillustrated in Figure 2.1, which is taken
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Figure 2.1 Typica particle size distribution curves: (a) is probably a glacia till (b) is Thanet Sand from the London
basin and (c) isan aluvia silt. (Powrie 2004).
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percent sand
A ——

Figure 2.2 Classification of soil samples based on grain size fractions from www.globe.org/partsize.pdf.

from (Powrie 2004). In thefigure, three particle size distribution curves can be seen together with
the European definitions of the individual particle sizes. The classification of the soil sasmpleasa
wholeisthen related to the fraction of each particle size, see Figure 2.2. As can be seen from the
Figure, there are several different classification names for soil samples based on the contents of
clay, silt and sand particles. Soils with alarge fraction of small grains are usually referred to as
clay, and then silt and sand as the diameters of the grainsincrease. Soils with larger grains than
the sizes shown in Figure 2.1 are referred to as pebbles and rocks.

There are some fundamental differences in the behaviour between clays and sands, on ac-
count of the scale differences compared to the adhesion scale of water. In sand the individual
grainstouch each other and stressesin the soil aretransferred grain-to-grain. Theinterconnecting
channels between the pores are relatively big, meaning that pore water can drain away quickly.
This means that sand has practically no tension strength, as thereis no cohesion between the in-
dividual grainswhich will simply part if subjected to tensile stresses. In clay, on the other hand,
the individual grains do not touch each other directly as there is a membrane of water adhering
to each grain. In between the adhering water, pores filled with “free” water or air may still be
present. Because of the small length scale of the pores, pore water flows very slowly. This means
that clay can posses an immediate tensile strength as tensile forces will create a negative pore
pressure.
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2.2 Soil as a continuum

On a horizontal section through a soil sample, the total vertical forces are transferred as inter-
particle forces where the grains touch each other. Ideally all grains should be modelled but this
is an impossible task. The normally applied approach is to “smear out” the force on an area
element, defining the stress on the area element as the force divided by the area. Therefore,
when referring to the stresses in the soil it is not the actual stresses between the grains, but the
stresses in a continuum sense of the word. Thisis the approach that will be taken in this thesis.
A condition for the continuum approach to be valid is that the considered length scale must be
much bigger than the length scale of the grains, which is valid in all cases of practical interest.
On this basis experience shows that the continuum approach yields results that correspond well
with experimental data. (Muir Wood 2004).

2.2.1 Effective stress

As mentioned, a soil comprises a solid phase, air and a water phase. The ability of these three
phasesto withstand shear stressisfundamentally different in that the water phase can only sustain
normal stresses and the air practically no stresses at al. The soil skeleton can sustain shear
stresses on account of the interlocking of particles and on account of interparticle friction. This
leads to the definition of effective stresses for saturated soils, mainly due to Biot (1941, 1956),
see also (Zienkiewicz et al. 1998)

¢ =o0—fp (2.1)

wheres’ isthe effective stress vector, o isthetotal stressvector and p is the pore-pressure vector
given by

P = ppore[l 1 1000]" (2.2)

Where ppore is the pore pressure. Superscript T denotes the matrix transpose. The factor 8 is
given by

K
ﬂ:l—?s (2.3)

Here K is the bulk modulus of the soil matrix, and K; the bulk modulus of the solid material,
which constitutes the soil skeleton. For arock mass made up of gartzitic sandstone, for example,
B =~ 0.54, (Andersen 2006). Sand and clays have K < Ky = B = 1, which resultsin the
origina effective stress definition by Terzaghi (1943).

¢ =0-p (2.4)
The normal components of the effective stress are then identified as the part of the total

stresses carried by the soil skeleton. The effective stress is the stress that affects the soil and
controls the volumetric behaviour and strength of the soil.
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Figure 2.3 &) The principal of a shearbox test, after (Muir Wood 2004). b) Idealised deformation in a shearbox test,
after (Powrie 2004).

Consolidation

When aload on a saturated soil sampleisinstantly increased it will initially be carried mostly by
pore water, i.e. the effective normal stresswill be unaffected. Thisis dueto the fact that the com-
pressibility of water is much lower than that of the soil skeleton. With time the pore water drains
away and all of theimposed load will be carried by the soil skeleton. This processis named con-
solidation. The time scale for the draining of the water is very dependent on the type of soil. For
sands consolidation occurs almost instantaneously, but for clays the time scale in nature can be
measured in years.

a) TxyA P

2.3 Laboratory Testing -
. C Initia n
Initiallz loeoss:

The behaviour of soilsisusually assessed inthe la-
boratory. In this thesis the relevant behaviour isthe
stress-strain relationship of the soil. This behaviour
is traditionally investigated using the shearbox and
the triaxial apparatus. b)

‘P Dilation

2.3.1 Shearbox

The standard shearbox apparatusis a simple means

Comprefssion
Initially loose

v
of classifying soil parameters. A soil sample is oo
placed inside a split brass box with a lid on which
aload, N, is applied, see Figure 2.3a. Thetest is Q) A

then carried out by shearing the two halves of the

sample relative to each other. The normal effective

stress and the shear stress in the sample are then Vit
found by, see Figure 2.3b,

o =— and T=— (2.5) 4

. . Figure 2.4 Results from an idealised shearbox test.
where A is the horizontal area of the sample. After (Powrie 2004).
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According to the idealised shearing mode shown in Figure 2.3b, the engineering shear strain
isgiven by

X
0
where h istheinitial sample height. A volume change of the sample must result in an upward
or downward movement of thelid, y. Hereby the increase in the sample volume and the volume
strain can be found by

—-AV Ay -y
AV = A4 and = = - 2
J TV T Ahe he

2.7)

In this Chapter, the geotechnical sign convention of stress and strain is followed, i.e. tension
and elongation are taken as negative. This means that ¢, is negative for increasing volume. The
specific volume of the sample, v can be found by

@ _ (Vo + Ay)pp
mg mg

(2.9)

where V' isthe volume, p,, is the soil particle density and m; is the dry soil sample mass.

In Figure 2.4 the idealised result of a shearbox test is seen. Thetest is carried out on both a
dense and aloose sand, with the test results being distinctively different for the two. Figure 2.4a
shows the shear stress versus the shear strain. The shear stress experiences a peak in the case
of the dense sand whereas this is not the case for the loose sand. Eventually the shear stresses
reach identical values, which happen at the so-called critical state which is an important feature
of many constitutive models. In Figure 2.4b the development in volume strain can be seen. The
dense sample expands whereas the loose sample contracts. Figure 2.4c shows the devel opment
of the specific volume which eventually reaches the critical value for both samples.

2.3.2 The triaxial test

Thetriaxial test is amore advanced means of testing a soil
sample than the shearbox. In the conventional triaxial test the o1
principle is that a cylindrical specimen is compressed or ex-
tended along the axial dimension while under theinfluenceofa
redial stress, see Figure 2.5. The strains and stresses in the sam-
ple are assumed to be uniform, and therefore no shear stresses
exist. Thismeansthat the horizontal principal stresses areiden-
tical. They are often termed “the chamber pressure” and are
denoted o3 in Figure 2.5. Thevertical stressisdenoted o; inthe
figure.

Triaxial test data are often described viathe stress parame-
tersg and p’ defined by

ho

03

Figure 2.5 The principle of the con-

/ /
r_ o + 203 (2.9) ventional triaxial test.

g=o0,—0y and 3

The parameter ¢ isoften referred to asthe deviator stressand p’ isthe effective hydrostatic stress.
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Figure 2.6 Typical triaxial test data. a) Deviator stress, g, and volumetric strain, &, against axial strain for a drained
test on dense sand. b) Stressratio ¢/ p’ and change in pore water pressure, Au, against axial strain for an undrained test
on alightly overconsolidated clay. After (Powrie 2004).

Examples of typical triaxial test data can be seen in Figure 2.6. These data can then be used
in the calibration of the different constitutive models. Analogousto the results from the shearbox
test the deviator stress for the dense sand reaches a peak after which it dropsto a critical state.
The responses for the volume strain are also similar.

In amore advanced version of the triaxial apparatusit is possible to control the value of all
three principal stresses, and hereby examine the significance of the intermediate principal stress
on the soil strength, see, for example, (Wang and Lade 2001).

2.4 Two often used geotechnical angles

In this section parameters which are often used for characterising soil will be presented.

2.4.1 Dilation angle

An important feature that distinguishes soils and other engineering materials is that soil under-

goes considerable volume changes when sheared plastically, see Figures2.4 and 2.6. Thisfeature

are often described by the so-called dilation angle, v, which was introduced by Hansen (1958).
This is an important feature to capture when modelling soil behaviour. This is especially
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trueif problemswith confined soils are to be analysed.
The rate of volume change is denoted dilation and an often used term in describing thisis
the dilation angle, v, which is defined by (Powrie 2004)
—dSV
dy13

tany = (2.10)
From this definition tany can be identified as the slope of the curves in Figure 2.4b. In the
same figure it is seen that the dilation angle is at its peak when the shearing resistance is at its
maximum. It can also be seen that ¢ — 0 when the soil tends toward the critical state.

In fact the shearbox analogy is well suited for illustrating the notion of the dilation angle.
Thisisillustrated in Figure 2.7. A ball analogy is often used to illustrate the mechanism behind
the dilatative behaviour of soil. Figure 2.7a shows the ball analogy for a dense sand under
shearing action. In order for the grains to pass each other, the void volume, and therefore the
total soil sample volume, must increase. The opposite is the case for a sample of loose sand, as
itisseenin Figure 2.7b.

a) b) Resultant direction
of relative movement

Angle of Vertical
d1latlon component

Horizontal component
dx

Figure 2.7 Dilation. @) Ball analogy of adilating soil. b) Ball analogy of acompacting soil. c) Graphical representation
of the dilation angle.

2.4.2 Friction angle

Thesimple shearbox test will beused againtoillustrate

the concept of the friction angle. If the normal force N A test data S(o’)
on the shearbox lid, see Figure 2.3, is varied, differ-
ent values of the horizontal force, F, will be found at
failure.

The shear stress and normal stress from Eq. (2.5)
at fallurecan beplottedina(o’, ) co-ordinate system.
This can be seen in Figure 2.8. It can be seen that the
soil sample can sustain a higher shear stress when o’ ¢
isincreased. The circle which is symmetric around the
o’ axis and passes through the test data point is the so-
called Mohr’scircle of stress. The envelopethat passes  Figure 2.8 Failure criterionin (o”, T) space and
through the failure pointsis called thefailure, or Mohr, Mohscircles of stress
envelope, and is denoted S(o’). The inclination of this envelope’s tangent is coined the instant
friction angleand is denoted ¢’. It isseeninthefigurethat ¢’ is not aconstant, and that it attains
its highest values at low normal pressures. In simple soil models ¢’ is taken to be constant, but in

~
~
~
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more advanced models the variation ¢ with the normal pressureisincluded . The friction angle
expresses the degree of pressure dependency of the soil strength. This pressure dependency is
amost non-existent in, for example, metals.

Thefriction angle and the dilation of sand is elaborated upon in (Bolton 1986).

2.5 Constitutive modelling of soils

It is clear from the stress-strain curves in Figures 2.4 and 2.6 that soil is not a linearly elastic
material. In principle these curves could be described with a complex non-linear elastic mate-
rial model. If, however, the load on the soil sample is cycled, the soil will behave as seen in
Figure 2.9.The datain this figure is from atriaxial test on dense Tove sand with o3 = 100 kPa,
(Krabbenhgft 2006). It is clear that the soil sample has undergone permanent deformation after
the load is removed, and that the unloading-reloading curves are amost paralel. This suggests
that the soil behaves elasto-plastically, and it is within this framework that nearly all constitutive
theories for soil are found. In the following a few elasto-plastic constitutive models for soil will
be presented. For a thorough discussion of constitutive modelling in general, see (Ottosen and
Ristinmaa 2005), and for plasticity in geotechnical modelling, see (Yu 2006).
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Figure 2.9 Triaxial test data for sand, with unloading and reloading. (Krabbenheft 2006).

2.5.1 The Mohr-Coulomb material model

Thefirst failure criterion for soils was the Coulomb criterion (Coulomb 1773), which in modern
day terminology assumes that the friction angle is constant. This means that the shear envelope
of Figure 2.8 can be written as

Smc(o’) = ¢ + o’ tang’ (2.12)

where ¢ isthe constant friction angleand ¢ istermed the cohesion and isthevalueof r at o’ = 0.
The criterion can be seen in Figure 2.10.
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This criterion is the most widely used criterion in
geotechnical engineering. It captures several features
of soil behaviour and some exact and many approx-
imate solutions to boundary value problems encoun-
tered in civil engineering practice exist. When used as

»ayield criterion together with linearly elastic behav-
iour in elasto-plastic calculations the model is known
as the Mohr-Coulomb material model. In this model
aconstant dilation angle is often assumed. The Mohr-
Coulomb model will be used extensively throughout

Figure 2.10 The Mohr-Coulomb failure crite-  thjsthesis, mainly in Chapter 5, where it will be elabo-

ron. rated on morerigorously. Inthetriaxial test data spaces
of Figures 2.6 and 2.9 the Mohr-Coulomb plots as shown in Figure 2.11. It is seen that the Mohr-

Coulomb criterion exhibits the same trends as the triaxial test data, but that it is limited to two

straight line segments, namely the elastic and the plastic part, respectively.

The visua interpretation of the Mohr-Coulomb yield surface in the three dimensional prin-
cipal stress space will be elaborated upon in Chapter 5, but here it will be noted that the cross
section of the Mohr-Coulomb yield surface on the octahedral plane forms an irregular hexagon,
see Figure5.1. If thiscross section is plotted with true triaxial test data by Lade (2002) the result
can be seen in Figure 2.12. Here it can be seen that the Mohr-Coulomb criterion based on the
conventional triaxial test is not a perfect fit for stress states that are not true triaxial. For design
purposes it should be mentioned that the Mohr-Coulomb criterion is seen to give a conservative
soil strength estimate.

Some of the drawbacks of the Mohr-Coulomb criterion, when it comes to accurately mod-
elling the behaviour of soils, are

Swmc(o’)

QN

The Mohr-Coulomb criterion predicts a constant friction angle, ¢ = ¢, whereas tests sug-
gest that this should be variable, ¢ = ¢(o’), see Figure 2.8.

As mentioned the Mohr-Coulomb criterion is linear in the octahedral plane, where tests
indicate that a slight curvature would be appropriate. In particular, the strength in triaxial
tension and shear is underestimated, see Figure 2.12.

Perfect plasticity is assumed. For real soils this is obviously not the case, as can be seen
in Figures 2.4, 2.6 and 2.9. Hardening plasticity is needed to better capture these effects,
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Figure 2.11 Behaviour of an Mohr-Coulomb soil in a conventional triaxial test. After (De Borst and Vermeer 1984).
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Lade's failure surface
n = 61.73
m = 0.144

® Cylindrical sand specimen
(Conventional triaxial apparatus) \
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= Tall prismatic sand specimen {
failure surface

(True triaxial apparatus)

Figure 2.12 Mohr-Coulomb compared with Lade's failure surface and test data on the octahedral plane. After (Lade
2002).

although non-associated M ohr-Coulomb plasticity is able to capture some of the softening
behaviour under certain circumstances. Thisis due to strain localisation in so-called shear
bands, see e.g. (Vermeer 1990; De Borst 1988).

A constant rate of dilation is predicted. Thisis also not accurate as can be seen from Figures
2.4 and 2.6. An evolution law for the dilation angle or some other parameter that controls
dilation is needed. Particularly one that would eventually lead to ¢ = 0 asthisis observed
after extensive straining (the critical state).

2.5.2 Other soil plasticity models

In this section some material models that mend the drawbacks of the Mohr-Coulomb criterion
will be mentioned. Only a brief qualitative description will be given as a detailed one would be
too lengthy and is out of the scope of this thesis.

2.5.3 Variable friction angle

Several curved Mohr-envelopes similar to the one in Figure 2.8 have been proposed in the lit-
erature, see, for example, (Jacobsen 1970; Baker 2004; Yang and Yin 2004). In general, most
advanced soil material models would plot as a curved Mohr-envel ope. With regard to thisthesis
the Hoek-Brown criterion should be mentioned, see Chapter 6, (Hoek and Brown 1980; Hoek,
Carranza-Torres, and Corkum 2002), which is basically a Mohr-Coulomb criterion with curved
sides. The criterion is used for calculations on rock masses, but can also be used for soils, see
Chapter 7.
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2.5.4 Curved trace in the octahedral plane

Several well-known yield criteria are

curved in the octahedra plane The Triaxial compression
simplest curve is the circle, and this is  Drucker-Prager .- o

the shape of the Drucker-Prager crite- J = constant .-~

rion. This criterion is sometimes used

in place of the Mohr-Coulomb criterion

in numerical calculations due to its sim- —Mohr-Coulomb
plicity and lack of corners, see, for ex- & ¢ = constant = ¢
ample (Sarensen, Clausen, and Ander- ~_

Matsuoka-Nakai

1
11—2 = constant

3

sen 1993), although care should be taken,  Tyiaxial
(Schweiger 1994). More advanced cri-  extension
teria which have a trace in the octahe-

dral plane that lies between the Mohr- N

Coulomb and the Drucker-Prager trace Lade-Duncan
are given in eg. (Matsuoka and Nakai 15 S /\
1982; Lade and Duncan 1975; Sheng, I !

S 3 o, o}
Sloan, and Yu 1999). These criteriatry _ . _—
o del the soil strenath in Figure 2.13 Comparison of different criteria on the octahedral
to accurately mo g plane. (Muir Wood 2004).

the octahedral plane, see Figures 2.12 and
2.13.

2.5.5 Hardening and evolution of the dilation parameter

Figures 2.4 and 2.6 show that after continued straining the soil reaches a critical state, which
is independent of the initial conditions. In order to model this, hardening plasticity must be
employed. The critical state class of constitutive modelstry to capture these features. The most
well-known critical state model is the Cam-Clay model by Roscoe and Schofield (1963) for the
description of clay behaviour. The original idea was further devel oped by Roscoe and Burland
(1968) into the Modified Cam-Clay model which is a widely used model for the description of
the mechanical behaviour of clay, see (De Borst and Groen 2000). The behaviour of the M odified
Cam-Clay model in a conventional triaxial test is visualised in Figure 2.14. It is seen that the

N

q

Stress path Final yield surface

Figure 2.14 The Modified Cam-Clay model in aconventional drained triaxial test.
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Modified Cam-Clay yield surfaceis ellipticin the (p’, ¢)-plane. In the figure the model predicts
softening of the material, but the model can also predict hardening, depending on the stress
history of the material (the over-consolidation ratio). The deviatoric stress, ¢, and the volume
strain ¢, eventually reach a plateau as the critical state is approached.

Modified Cam-Clay plasticity yields good results when applied to many clay materials, but
for sands the results are not adequate. One of the reasons for this is that the model is taken to
obey associated plasticity. This means that for sand other advanced models, which incorporates
anon-associated flow rule, areintroduced. Some examples of these can be found in (Lade 1977;
Yu 1998; McDowell and Hau 2004).

An example of a non-associated critical-state model for sand can be seen in Figure 2.15.
The model is amodified version of the McDowell (2002) criterion for sand taken from (Clausen
and Krabbenhgft 2006), which predicts the behaviour of sand quite well.
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Figure 2.15 The Modified McDowell model from different views. The blue pins represent the plastic strain direction.
a) Section in the (p’, q) space. The section is marked in b) with a dashed line. b) Section in Octahedral space. The
location of the section is marked with adashed linein a&). c) + d) View from two different anglesin principal stress space.




CHAPTER 3
Return Mapping

An often used numerical method for integrating the stresses over a strain increment in elasto-
plastic finite element calculations is the return mapping method. In this chapter the standard
version of the method will be outlined for perfect plasticity. The constitutive model is taken to
be linear elastic - perfectly plastic. The traditionally used equations for a stress return to ayield
surface as well to the intersection of two yield surfaces will be given. One of the purposesisto
givethereader asense of the advantages of the return mapping method presented in the following
chapter over the traditional implementation of the return mapping method.

The basic relation in small strain plasticity is that a strain increment is composed of an
elastic and a plastic part

de = ds° + de? (3.2)
In perfect plasticity, plastic strains occur during yielding when
T
f(e)=0 and (gi) do =0 (3.2
(o}

where f istheyield function and ¢ isthe stress vector. The matrix transpose is indicated with a
superscript T. The stress and strain vectors are ordered according to

o =[0x Oy 07 Txy Txz ryZ]T (3.39)

e =lex & &7 26x) 2&x; ZSyZ]T (3.3b)

Eq. (3.24) describes a closed hypersurface in stress space, and a stress state located inside this
surface, f(o) < 0, iselastic. Asan elastic stress increment is related to an elastic strain incre-
ment by Hooke's law, use of (3.1) provides

do = Dde’ = D (de — de?) = Dde — Dds” (3.9

where D is the elastic constitutive matrix. The analyses in this thesis are confined to linear,
isotropic elasticity. In this case D is given in terms of the Young's modulus, E, and Poisson’'s
ratio, v.

E v v 1—v

T b >

— 23 —
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For later use, D will be partitioned as

D
o-[° 4 59
where
_ E 1—v v v
D=————| v 1—v v and (3.7
(1+v)(1-2v) . . 1—v
— E
G= I 3.8
2(1 +v) 3x3 (38)
with | being the unit matrix.
For afinite strain increment, integration of (3.4) yields afinite stress increment
Ao = DAe — DA€ = Ac® — Ac? (3.9)

whichimpliesthe assumption that afinite stressincrement is composed of an elastic part followed
by aplastic part, see Figure 3.1.
Eq. (3.9) can also be written as

A >0 O'B
! o¢ = of — Ac” (3.10)

The term Ao? is usualy referred to as the
plastic corrector stress and

o =" + Ao (3.11)
o® =" + Ac® (3.12)

/

are the updated stress state and the elastic pre-
dictor stress state, respectively. Egs. (3.9)
and (3.10) are basically the return mapping
scheme, whichisasoillustrated in Figure 3.1.
In general, plastic strain increments are de-

Figure 3.1 The principle of return mapping.

rived from a plastic potential, g, as
g
de? = dA = (3.13)
do

where A is a positive multiplier. Eq. (3.13) istermed the flow rule. If ¢ = f theflow ruleis
associated but in soil mechanics most often g # f. In principle the plastic corrector is found by
inserting (3.13) into (3.1) and integrating

A+AL g
Ao? = A D5 _dh (3.14)
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Most often Eq. (3.14) can not be evaluated analytically and is therefore approximated by

)

As? = AADE or (3.15)
do |
9

Ao? = AADZE (3.16)
do |g

where |c refers to evaluation at the updated stress point, ¢©, and |z at the predictor point, o®.
Eg. (3.15) corresponds to fully implicit integration and usually requires an iterative procedure
for general yield criteria, as ¢ is unknown. For linear criteria and potentials, (3.15) and (3.16)
yield the same result. Eq. (3.16) is named the radial return method after Krieg and Krieg (1977)
and is exact for linear yield criteria, but in general not as robust as the implicit version.

3.1 Infinitesimal constitutive matrix

The infinitesimal or continuum constitutive matrix, D, which relates infinitesimal strain and
stress increments

do = D®de (3.17)

will be derived here. First step in the derivation is to combine Egs. (3.4) and (3.13) into
g
do = Dde — dAD—= (3.18)
do
By insertion of (3.18) into (3.2b), dA isfound to be

T T
0= % do = % Dds—dea—g &
do do do
T
(L) o
dr = "7T (3.19)
I\ pik
do do
The relation between infinitesimal stresses and strains is then obtained by back—substitution into
Eqg. (3.18),
dg (9f\'
D=|=—) D
do ( do )

=
i\ s
do do

Eqg. (3.20) isvalid for any elastic—perfectly plastic continuum.

do = D%®de where D® =D — (3.20)
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3.2 Consistent constitutive matrix

If infinitesimal constitutive matrix D is used together with a Newton-Raphson scheme, see e.g.
Table 1.1, for the global equilibrium iterations the inherent quadratic convergence property will
be lost. Thiswasfirst reported by Nagtegaal (1982). An elasto-plastic constitutive matrix which
is consistent with a global Newton-Raphson scheme wasfirst derived by Simo and Taylor (1985).

The consistent constitutive matrix, D€, relates changes in finite stress and strain incre-
ments,

dAo = D®dAe (3.22)

Insertion of (3.15) in (3.9), while remembering that Ac® = DAse, yields
Ao = DAe — AkDa—g (3.22)
do |

A small perturbation of (3.22) gives

9 92
dAe = DdAe — dAADSE — AXDZE dne (3.23)
oo 002

Rearranging and isolation of dA¢ lead to

e 9
dAo + AAD8 dAe = DdAe — dAADSE &
do2 0o

Pg\ ! 9
dAo = (1 +AADS2 ) D (1dae —anrZs (3.24)
do2 oo
By introduction of the matrices
0%g !
T= (I + A)LDa—Z) and D°=TD (3.25)
o

Eq. (3.24) can be written as

dAo = DdAe — dAADCg—g (3.26)
(o3

Comparing Egs. (3.26) and (3.18) and following the same approach as in obtaining (3.20),
the relation between changesin finite stress and strain incrementsis found to be

dAo = D¥dAe
dg (f\"
De 2% (a_f) D
D% = p° - — 2 1 (3.27)
Y\ pe 98
do do

where T and hereby D€ is evaluated at o ©.
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It should be noticed that D is singular with respect to the strain direction dg/do, i.e.

0
peelf _ (3.28)
do
It should be noted that the modified elastic stiffness matrix, D¢, in somereferencesare given
as
Pg\ "
D = (D '+ A= (3.29)
do2

as opposed to the formulation in Eq. (3.25). The two formulations are mathematically identical
but De Borst and Groen (1994) show that the form given by Eq. (3.25) is the numerically most
stable.

3.2.1 Linear criteria

For linear criteria Crisfield (1997) showed that the consistent constitutive matrix, D ®°¢, can be
calculated in amuch simpler fashion at the stress predictor point, o ®

DE = T D
g (3.30)

T=I1-AAD—
do2|g

with D® given by (3.20). Hereby the matrix inversion in Eq. (3.253) is avoided.

3.3 Return mapping with two active yield surfaces

For some materials the behaviour can best be described by a combination of two yield criteria,
f1 = 0and f, = 0. Thisisthe case in later sections in this thesis. Here the traditional im-
plementation of the return mapping algorithm will be outlined, mainly asit is givenin (Crisfield
1997), but with the difference that a non-associated flow rule will be assumed. When both of the
criteriaareactive, i.e. f1(6®) = 0and f»(c®) = 0 thereturned stressislocated at theintersection
of the two surfaces, see Figure 3.2.

This intersection describes a hypercurve in
stress space, and the task is then to locate the up-
dated stress, ¢, on this curve. Each yield surface
has a corresponding plastic potential, g; and g».
For clarity, the following notation describing the
gradientsisintroduced

_ oy Z s

= =28 331
do ! do ( )
) ad
a = % and b, = 252 (332) X
[
o
These gradients can be seen in Figure 3.2. The up- /
dated stressis then found by Figure 3.2 The principle of return mapping with two

active yield surfaces.

o¢ = 6® — AA;Db; — AX,Db, (3.33)
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i.e
Ac? = A/\lDbl + Alszz (334)

where it should be noted that all gradients are evaluated at o ©.
A first estimate of €, by, b,, AX; and AL, will in general not satisfy Eq. (3.33). Therefore
aresidua, r, isset up as

r = ¢¢ — (6® — AL;Db; — AA,Db,) (3.35)
Theresidual is expanded in the Taylor series

b b
fn = Fodo + d\ Dby + dA,Db, + A)LIDE;—Idc + szDaa—zda (3.36)
o o

Solvingr, = 0 for do leadsto

do do
= —Tro —d\TDb; — dA,TDb, (337)

dby b\ !
do =— |1 + A D— + AALD— (ro + dA\ Dby + dA,Db,)

where the modification matrix T, in the case of two active yield surfaces, is given by (see Eq.
(3.25) for the case of only one active yield surface)

-1
7= (142,02 4 A2,D%2 (3.38)
do do

Application of atruncated Taylor seriesto the two yield functions, with the use of Eq. (3.2),
leads to

fin= fio+ads = fio—a Tro—d\a TDb; — dA,a TDb, =0 (3.39)

fom = fro+abdo = fr0—ayTro—d\ajTDby —di,a) TDb, = 0 (3.39b)

where Eq. (3.37) has been inserted.

From (3.39) dA; and dA, can be found and used to update the values of ALy and AA,.
These values can then be used to obtain a value of do from (3.37) which can then be added to
the previous values of ¢°.

3.3.1 Consistent constitutive matrix with two active yield surfaces

The consistent constitutive matrix for stress points located on an intersection between two yield
surfaces must be formulated with respect to both of the yield functions.
From (3.33) and (3.34) the plastic corrector stress can be expressed as

Ao = DAe — AL Dby — AA,Db, (3.40)
Analogousto Eq. (3.23), Eq. (3.40) is given asmall perturbation

ab ab
dAc = DdAe — d\;Dby — d\,Db, — Axloa—ldo - A)LzDa—zdo (3.41)
o o
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Solving for do, with T from (3.38), gives

do = TD(dAe — dMby — dAsby) = D (dAe — dAby — dAsby) (3.42)
Application of (3.2b) for both yield surfaces gives

alds =0 a'D¢dAe — d)a/ Dby — dA,a] Db, = 0

aldo = 0§ “ %a;DCdAe — d\alDby — dA,alDeb, = 0 (349
For simplicity the following variables are introduced

o1 = a1TDCb1, A1 = a1Tch2, oz = achbl, and o = a;DCbZ (3.44)
Eq. (3.43) can then be written as

a'D°dAe — dyyay; — dhrays =0 (3.453)

alDdAe — dhjaz; — dAyazy =0 (3.45b)
which can be solved for dA; and dA,

dM 1 0% —U12 aiTD"dAs
= — (3.46)
d)\z A —021 11 a;D"dAe
where
A = a11022 — @120021 (3.47)
Insertion of Eq. (3.46) in (3.42) provides
c 022 _Te Q12 _Tc P21 _Te
dAo = D| dAe — —=a; D°dAeb; + —a,DdAeb, + —a D dAeb,
A A A (3.48)

- %a;Dchebz)

Rearranging yields the consistent constitutive matrix for at stress point belonging to the intersec-
tion between two yield surfaces

dAc = D¥°dAe, (3.49)
DePC = D¢ — %DcalblT(Dc)T + %Dcazbir(Dc)T + %Dcalb;(DC)T
(3.50)
o
- %Dcazb;(Dc)T
It can be shown that the D of Eq. (3.50) is singular with respect to both b; and b,, i.e.
D%, =0 and Db, =0 (3.52)

The infinitesimal constitutive version of D¢ on an intersection curve, D%, is found by
replacing D¢ with D in Eq. (3.50).
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Double-singular D%° with a linear yield criterion

For alinear yield criterion with a linear plastic potential the consistent constitutive matrix can
be evaluated at the predictor stress point, 6. In this case Crisfield (1997) gives the following
expression for the consistent constitutive matrix (here modified to include non-associated plas-
ticity)

D¥ = TBD®  with (3.52)
D® =D — "%Dbla,TDT + %Dbla;DT + %Dbzaf DT - %Dbza;DT (3.53)

where T8 is the modification matrix for linear yield criteria, which is evaluated at the predictor
stress point, ¢°,

db db
TB =1 — A4D-2 — AX,D2 (3.54)
do do
Compared to T evaluated at o for general yield criteria, see Eq. (3.38), the matrix inversion is
avoided for linear yield criteria.




CHAPTER 4
Stress update in principal stress

space

The stress update and formation of the consistent constitutive matrix requiresthe derivative of the
yield function and the first and second derivatives of the plastic potential. Thisis a cumbersome
task when carried out in the general six-dimensional stress space for linear criteria as shown by
Crisfield (1997). As only isotropic material models are considered in this thesis, the manipula-
tions can be carried out with respect to any set of coordinate axes. Therefore the predictor stress
is transformed into principal stress space and returned to the yield surface. Considering the fact
that the stressreturn preservesthe principal directions, the updated stress can then be transformed
back into the original coordinate system. The constitutive matrices are also formed in principal
stress space and then subsequently transformed. All transformationsrely on standard coordinate
transformation. It will be shown in the following that this approach simplifies the manipulations
of Chapter 3 remarkably. There are two reasons for this. Firstly the dimension of the problem
reduces from six to three, and secondly, in the three-dimensional stress space the stress states
can be visualised graphically, making it possible to apply geometric arguments. The approachis
applicable for general isotropic yield criteria, but in this chapter only criteriawhich arelinear in
principal stress space will be considered. In this case closed form solutions are found. The for-
mulae will be exemplified with aMohr-Coulomb and a M odified M ohr-Coulomb material with a
non-associated flow rulein Chapter 5. A preliminary view of the method presented in this chap-
ter was given in (Clausen, Damkilde, and Andersen 2004). The method was further elaborated
upon by Clausen, Damkilde and Andersen (2006, 2007), which can be found in Appendices A
and B.

4.1 Linear yield criteria

Linear yield criteriain principal stresses are visualised as planes in principal stress space. The
intersections of these planes form lines and points, making three types of stress returns and
constitutive matrices necessary:

¢ Returnto ayield plane.
¢ Returnto aline, i.e. intersection of two yield planes.

¢ Returnto apoint, i.e. intersection of three or more yield planes.

— 31 —
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Figure 4.1 Three intersecting yield planesin principa stress space with the three types of return shown.

The three types of return are visualised in Figure 4.1. The formulae for the different returns
and corresponding constitutive matrices will be established in the following. The conditions for
determining which return is needed will also be established by dividing the stress space into
different stress regions.

An overview of the method presented in this chapter can be seen in Table 4.1.

Table 4.1 Overal principle of the return mapping method presented in this chapter. See also Table 1.1.

Determine principal predictor stresses, 2 from o®.

Determine the stress region in order to assess the type of stress return.

Calculate returned principal stress, 6.

Calculate the appropriate infinitesimal constitutive matrix in principal stress space, D®.
Calculate consistent constitutive matrix in principal stress space, D.

Transform ¢ and D® back into the original co-ordinate stress space, using standard
co-ordinate transformation methods.

ok wdrE

In the following a vector or a matrix with an overbar, e.g. 68, b or D*® indicate that it is
expressed in the three dimensional principal stress space, i.e. the vectors havethe size3 x 1 and
matrices 3 x 3.

4.1.1 Returnto aplane

The equation of ayield plane in the principal stress space can be written as
@) =a' (5 - 6f) -0 (4.2)

where 6/ isapoint on the plane and a is the gradient, see Figure 4.2

a= U (4.2)
00
The plastic potential is also taken to be linear in principal stress space, i.e.
g

g(6)=b"s with b=-2 (4.3)

o
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Figure 4.2 Stressreturn to ayield plane in principal stress space.

Both & and b are constant. A first-order Taylor expansion of (3.9), using (3.15), yields the well
established solution for A6”?, see, for example, (Crisfield 1991)

-B
AG? = E],;(%;f) b= f(6%)F” (4.43)
B Db
=553 (4.4b)

where 7 is the scaled direction of the plastic corrector in principal stress space, i.e. 77 isat an
angle with the plastic strain direction, b.

4.1.2 Returnto aline

The intersection between two yield planes f; = 0 and f, = 0 definesaline, £, see Figure 4.3,
with the equation

0: 6=14+d (4.5)

where is aparameter with the unit of stress and 6 isapoint on the line. The direction vector of
thelineis ¢,

Z xXa; X a (46)

where“ x” isthe cross product. Analogously the direction vector of the plastic potential line, £,
see Figure 4.4, is defined by the plastic potential normals as

Zg X E)] X 62 (47)
Return is made under the assumption that Koiter's theorem (Koiter 1953) also holds for

non-associated plasticity. This states that the plastic strain increment is composed of a linear
combination of the strain directions of the active potential planes

de? = dby +dhby & AT = ATl + Apofh (4.8)
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03

01 02

Figure 4.3 Return to an intersection line, £.

where w1, p, are some parameters, and 77, F are plastic return directions of the two planes
according to (4.4). From a geometric point of view the return algorithm described above can be
interpreted in the following way: & belongs to a plane with the direction vectors F7 and 77,
see (4.4). Thisplaneincludesthe predictor point, 8. The normal of the plane must be the vector
¥ x 2 and thus the equation of the plane can be expressed similarly to (4.1)
1 2
(F? xF2)" (6°-3%) =0 (4.9)
From this equation, and in combination with (4.5) and (4.6), the parameter ¢ can be found as
_ ([ xR -6y
S P xT)TE

k An aternative expression for ¢ can be
14

(4.10)

obtained by realising that the plastic strainin-
. crement must be perpendicular to the direc-
¢ '\E tion of the plastic potential line, ef, see Fig-
A ure 4.4,

Ae")Ef =0 o

03

01 (o))
(D~'Ad”)TE% =0 &
(6% —6%)D7Ef =0 (4.11)

chigurf 4t-_‘; Tl_he P'ahﬂic Settfa‘f‘_ i“theme'_‘ttngeétPe”dli_CU'az o As the updated stress, 6, belongs to £, Eq.

© potential finewhen returning fo an Intersection fin £ 4 5 can be substituted into Eq. (4.11) and
give a solution for ¢ expressed in the direction vectors of the intersection line and the plastic
potential line

,_ @)D -5

55 (4.12)




4.2 Stress regions 35

4.1.3 Return to a point

If the stressisto be returned to asingularity point, 6¢, e.g. an apex point, see Figure 4.1, thereis
no need for calculations, as the returned stressis simply

¢ =5 (4.13)
This stress return also conforms to the solution of Koiter (1953), i.e. (4.8), in the sense that the
resulting strain increment can be expressed as a linear combination between the gradients of all
the active potential planes.

4.2 Stress regions

In the previous section, formulae for the returned stress state have been given. In this section it

will be clarified how to determine to which plane, line or point the stress should be returned. In

order to do this the concept of stressregionsis introduced, and the boundary planes that separate
them are defined. Each yield plane, line and point is associated with a particular stress region.

When the predictor stress is located in a given region it must be returned to the corresponding

plane, line or point. Two stress regions, | and |1, separated by a boundary plane, pj, = 0 are
illustrated in Figure 4.5. When theyield functions and plastic potentialsare linear in the principal

stresses, the boundary planes are also linear. The direction of the plastic corrector, 7?2, c.f. (4.4),
and the direction vector of theline, £, define the orientation of the plane, and so the equation of

a boundary plane can be found as:

Pi1a(8) = (F? x £)7(6 —6¢) = Ajj,(6 —6¢) =0 (4.14)

where 0y is the normal of the plane. The indices indicate which stress regions the plane sepa-
rates and that ny.; points into region Il from region I. The point on the plane is ¢,, which can
be taken as a point that also belongs to ¢, see Figure 4.5 and Eq. (4.5). If two stress regions
are located as seen in Figure 4.5, the following is valid for a given predictor stress, ¢ 8, located
outsidetheyield locus, i.e. f(¢®) = 0:

@ =0 & Region | & Returnto £ =0

- 4.15
p(@®) >0 & Regonll & Returnto ¢ (4.15)

01 02

Figure 4.5 Boundary plane p;; = 0 with normal ny.;, which separates the stressregions | and 11.
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With the proper combination of boundary planes any yield criterion made up of planes can
be evaluated. Examples of Mohr-Coulomb and Modified Mohr-Coulomb materialswill be given
in Chapter 5.

4.3 Infinitesimal constitutive matrix

Theinfinitesimal constitutive matrix, see Eq. (3.17), relates infinitesimal stress and strain incre-
ments as

de = D®ds (4.16)

It is shown in Eqg. (3.28) that the consistent constitutive matrix is singular with respect to the
strain direction. This also holds for the infinitesimal constitutive matrix, both in (x, y, z) space
and in principal stress space

D®b =0 (4.17)

For perfect platicity (3.2b) statesthat the stressincrement must be tangential to theyield surface.
Based on this, the following relation between D® and D hold

ds = D®(dAb + d&®) = D®de® = Ddz® (4.18)

where (3.1), (3.4) and (3.13) have been utilised.

4.3.1 D% on aplane

When the updated stress state is located on ayield plane, the infinitesimal constitutive matrix is
given by (3.20), here expressed in principal stress space as

_ _ Dba'D
Dj;pzD— S
a'Db

(4.19)

4.3.2 D%®on aline

When the updated stress is located on aline the only possible direction of the stressincrement is
inthe direction of theline, £, see Figure 4.6. The direction of the plastic potential lineis denoted
¢ and is definedin Eq. (4.7).

The infinitesimal constitutive matrix on the line, [_)?’, must be singular with respect to any
strain direction perpendicular to £, i.e. with respect to any linear combination of b; and b,

D (b1 + pabz) =0 (4.20)

where i and ., aresomemultipliers. As £ isthe only possible direction of the stressincrement,
the elastic strain increment must, according to Eq. (4.18), have the direction

& =ED U (4.21)
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In the above the multiplication with the elas-

ticity modulus, E, isto ensure that the direc-

tion vectors are dimensionless. Any strain
increment in principal stress space can be
written as a linear combination of three non- 03
paralel directions

dé = duiby + dusbs + dye 422 72
Then from Egs. (4.18) and (4.20) the follow-
ing system of equationsis defined
D¥s, — E{ Figure 4.6 A direction vector, £, of an intersection line in
_ ¢ - L= principal stress space. The corresponding potential curve di-
Djpbl =0 (4.23)  rection vector isdenoted £° . An elastic strain direction vec-
=epr- tor isdenoted &, . Thevectorsb and b, are perpendicular to
DZ b, =0 the direction vector of the plastic potential intersection line,
28
The solution to Eq. (4.23) reads e
LT (a1 x @) (b xby)T

(4.29)

D = = —
£ ZT[_)—lzg (Z_il X az)T Dfl(bl X bz)
when (4.21) and (4.6) are utilised. As 5?’ only contains elements related to the normal compo-

nents, the full solution in principal stress space is found by adding the shear stiffness, G, defined
in Eq. (3.8)

D = [5ep —} (4.25)

where I:A)‘ip isafull 6 x 6 matrix defined with respect to the principal axes. Eq. (4.24) shows that
D" and D;” are non-symmetric for non-associated plasticity.

4.3.3 D% on apoint

When the updated stress is located at an apex point, see Figure 4.1, the infinitesimal matrix must
be singular with respect to any direction in the principal stress space, i.e. the direction of the
normal stresses

= ~ 0

Do =0 = Dy = [ é] (4.26)
If the yield plane contains a point on the hydrostatic axis, this will always be an apex point for
isotropic materials, and hence an intersection point for six yield planesin six-dimensional stress
space. Thismeansthat DY  is singular with respect to any direction and therefore

point

AP _
Dpoint -

696 (4.27)

An overview of the method can be found in Tables | and 2 in Clausen, Damkilde, and
Andersen (2006, 2007), which can be seen in Appendices A and B respectively.
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4.4 Consistent constitutive matrix

In sections 3.2 and 3.3 the consistent constitutive matrix was derived in the general stress space.
A key element in the calculation is the modification matrix, T. In principal stress space this
calculation simplifies a great deal.

In the following the modification matrix expressed in the principal stress space will be
denoted T. It will be partitioned as

~ [T

Where T relatesto the normal componentsand T g relatesto the shear components. The elements
outside these partitions always vanish in the principal stress space.

Fromthe equationsof T, (3.30), (3.54), (3.25) and (3.38) it isclear that theterm AAD db/do
is the key element in the calculation. Expressed in principal stresses thisterm iswritten as

b
d6
Clausen, Damkilde, and Andersen (2006), see Appendix A, showed with the help of Mohr’s

circles of stressthat the shear components of thisterm, (AAD 86/ 06)¢, for anisotropic material
can always be expressed as

AAD

(4.29)

[ Aoy — Aod
n a1 =02 p p
ob Aot — Ao
(310) - sof 0 w»
a6/ G 01 — 03
Aot — Ao¥

02 — 03

The stress terms, Ao, Ac? and Ao} are the elements of the plastic stress corrector vector in
principal stress space, see Figure 3.1 and Egs. (3.10), (4.4a). The stresstermsin the denominators
are either the components of & or ¢° depending on where the term, Eq. (4.29), should be
evaluated. Eqg. (4.30) isindependent of whether the returnisto the yield surface or to the corner.
The case of vanishing denominatorsin Eq. (4.30) is explained in Appendix B.

441 Modification matrix for a linear criterion

In sections 3.2.1 and 3.3.1 the consistent constitutive matrix was derived in the general stress
space for alinear yield criterion and plastic potential. The corresponding modification matrix,
T, isrepeated here for convenience
32
T=1-ADZE (3.30)
do?|g

and for the return to a discontinuity line in the case of two active yield surfaces/planes

T=1- AMD%L'I _aa,D2

=l s (3.54)

B
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Normal components

For alinear plastic potential the normal components of the double derivative with respect to the
principal stresses vanish, i.e.

ob
AAD% = 393 (4.32)
and therefore
T = 393 (4.32)

for al stressreturns

Shear components

With Egs. (3.30) and (4.30) it can be seen that the shear components of T, T can bewritten as

_1 Aol — Ao¥ ]
of —o7
_ A P — A P
To = [t Bk AR (4.339)
O, — O
1 3
Acd — Ac¥
L 03 =03
where
Aot op
AG? = { Aoy and 6% = {0P (4.34)
Ac¥ o

This formulation of T is valid for all stress returns with a linear plastic potential. Egs. (4.32)
and (4.33) should be compared with the general formulations for linear plasticity in Egs. (3.30)
and (3.54) to show the great simplifications of the present formulation.

To further examine the terms of Eq. (4.33) when returning to a line, consider the plastic
corrector

B_ ,C
0y — 0y
p _B_C_) B_ C
Ag? =6°"—06" =405 —0; (4.35)
B_ ,C
03 — 03

as can be seen from Eq. (3.10). Asan example, Eq. (4.35) isinserted in the (1,1)-term of (4.33)

)4 )4 B C B c
(To) _I_Aol — Aoy 01— — (05 —0y)
G~ B_ B B_ B
0y — 03 0y —0;
B B c c
oy —0, —0,; +0
1 2 1 2
=1- g (4.36)
1 2
B B c_,C c C
_1_01—02+01—02 o7 —0;
= B B B B B B

0y — 03 0y — 0,3 0y — 05
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N

3

Triaxial
01 > 03 > 02 extension
; 03 = 03

dz>0'3>0'1

01 > 0p > 03 5
" 03 > 01 > 03

Triaxial
Corner compression
return 01 = 02
regions

Figure 4.7 A cross section of linear yield criterion on the octahedral plane. Criteria that violate o1 = 02 = 03 ae
shown with dashed curves.

The example shows that if the updated stress state, 6, isin triaxial compression,i.e. o = of,
the corresponding element in T vanishes. This correspondsto the fact that theterm AAD db/do
describes the rotation of the principal axes during the stress return, and this direction is arbitrary
in the plane of identical principal stresses.

For most isotropic materials with alinear yield criterion, triaxial compression and extension
will form a discontinuity line, which can be seen as a corner in the octahedral plane in Figure
4.7. Predictor stresses in the corner regions will always be returned to the corner and therefore
the corresponding element in T will vanish due to Eq. (4.36). If the predictor stressis located
in such a position that e.g. o2 = 62 the denominator in Eq. (4.36) will vanish. In this case the
corresponding element in T will betakento vanish, eg. (T¢) 1.1 = 0. Thismust be the case as

T —0i B B B _ 4B i i
(TG)L1 = O isawaystrueforo; — o5 aso; = o, isawayslocated in acorner return region.

If the manipulations of Eq. (4.36) are carried out for all the elements in T, it can be
reformulated as

- ¢ _
0y — 0
op — oy
= of —o3
Te = L3 (4.37)
0y — 03
c c
0y — 03
B B
L 0y — 03 |

4.4.2 Modification matrix for a non-linear criterion
In sections 3.2 and 3.3 the modification matrix for a general non-linear yield criterion was found
to be:

Pg\ "
T = (I ¥ AAD%—z) (3.25)
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and for the return to a discontinuity curvein the case of two active yield surfaces/planes

b b\ !
T= (I + ALND| 4+ AAZD—Z) (3.38)
do do

C

where the derivatives are eval uated at the updated stress point, €.
In the principal stress space the partitioning of T shown in Eq. (4.28) for alinear criterion
will also be used for the non-linear criterion.

Normal components

The modification matrix for normal componentsis given by

_ _ 82g -1

T = (3|X3 n AkDﬁ) and (4.39)
= S 3281 = 326’2 -

T= (3)|(3 + AMD 952 + AA,D 352 ) (4.39)

for return to the yield surface and a corner, respectively.
Theindividual elements are calculated by straight differentiation, e.g.

-1

0%g 0?g 0?g ]
801801 801302 301303
T-| 1 +arp| 08 g it (4.40)
3x3 00001 00,00, 00,003
0%g 0%g 0%g
_80'3801 80’380’2 30330’3_

for return to the surface. This differentiation is particularly simple if the plastic potential is

expressed in principal stresses.

The value of the plastic multipliers, AA for the surface return and AA;, AA, for the corner

return can be found from the plastic strain increment vector

g

A&? =D 'AG? = AAb = Ma—_ (4.41)
o
for a surface return and
_ _ _ b 9
A =D TAG? = AMDy + Adaby = AN L 4 Ap, 282 (4.42)

for acorner return.

il

It should be noted that each of the partitions of T, see Eq. (4.28), can beinverted separately,
as the elements outside the partitions are always zero.
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Shear components

With Egs. (3.25) and (4.30) it can be seen that the shear components of T, T for anon-linear
plastic potential can be written as

P p
Aoy — Aoy

1+ C c
ot —a
- b Ac? — Ac?
Te = I+ — < (4.43)
0y — 03
Aozp—Aof
b oS — oS
L 2 3

If the elements of A¢”, Eq. (4.35), are inserted and manipulations anal ogue to Eqg. (4.36)
are carried out it turnsout that T can be written as

of — o5
op — oy
o —o¢
= 1 3
T = L2 (4.44)
0y — 03
C c
0y — 03
B B
L 0y — 03 |

The matrix inversionimplied in Eq. (4.43) is easily performed analytically in order to reach the
formulation of Eq. (4.44), as T only contains diagonal elements.

It is seen that this formulation is identical to the formulation for a linear plastic potential,
Eq. (4.37), which meansthat Eq. (4.44) holds for any plastic potential, linear or non-linear.

4.5 Plane calculations

The derivationsin this chapter have al been related to afully three dimensional stress state with
six independent stress components. In the case of plane calculations, i.e. plane strain and axisym-
metry, only one shear component is needed. It must be recalled that all three normal components
are needed. The implementation of plane calculations is elaborated upon in Appendices B and
E.




CHAPTER 5
Applications on linear criteria

Several classical yield criteriaare linear in principal stress space. The most common of these are
depicted in Figure 1.6.

Asoutlined in Chapters 1 and 2 the M ohr-Coulomb criterion is an often used material model
for representing soils. It is defined by the cohesion, ¢, and the friction angle, ¢. The other
three material models seen in Figure 1.6 are all special cases of the Mohr-Coulomb model. The
Trescamaterial model is obtained by setting ¢ = 0 and the Rankine, or tension cut-off, model is
obtained by setting ¢ = 90°. The Modified Mohr-Coulomb model is acombination of a Rankine
criterion and a Mohr-Coulomb (or Tresca) model. Thismodel is often used to mend the problem
that the Mohr-Coulomb model tends to overestimate the tensile strength of materials that exhibit
cohesion.

In an elasto-plastic finite element context the presented models are not trivial to implement
due to the discontinuities present at the intersection of the yield planes, which form discontinu-
ity lines and points. In this chapter the method of the previous chapter is exemplified on two
material models, Mohr-Coulomb and Modified Mohr-Coulomb. Specific formulae and some
computational exampleswill be given.

Further computational examples are givenin Appendices A, B and C.

5.1 Implementation of the non-associated Mohr-Coulomb
model

The Mohr-Coulomb criterion comprises six planesin principal stress space forming an irregular
pyramid as can be seen in Figure 1.6b. If the principal stresses are ordered according to

01 Z 02 Z 03 (5.1

the stresses are returned to only one of the six yield planes, as the other five correspond to an
interchange of the ordering in Eq. (5.1). Thisis referred to as the primary yield planeand it is
shown in Figure 5.1. The Figure showsthe primary yield plane from two different points of view
and also the cross sections in the planeso; = 0, and 0, = 03. The gradients of the secondary
yield planes, denoted by f,, = 0 in Figure 5.1b, are needed when returning to the edge lines,
¢, and £,. The roman numerals refer to different stress predictor regions, see Section 4.2. The
specific equations for the boundary planes defining the regions will be defined subsequently.

— 43 —
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= 2 r e = -
31/ fz/
Uil

f <0 f>0 P Oz £>0
2

Figure 5.1 Different views of the Mohr-Coulomb yield plane in principa stress space: a) isometric view b) trace in the
octahedral plane, c) intersection of planes o1 = o2 and f = 0 (compressive meridian) and d) intersection of planes
o2 = 03 and f = 0 (tensile meridian). p isthe hydrostatic stress axis.

The Mohr-Coulomb criterion and its corresponding plastic potential in principal stresses are
usualy written as

f(6) =01 —03+ (01 +03)Sing —2ccosgp =0 (5.2
g(6) =01 —03 + (01 +03)SNY (53

where ¢ isthe angle of internal friction, ¢ is the cohesion and v is the dilation angle. Rewriting
Egs. (5.2) and (5.3) to the format of Eq. (4.1) one obtains

f(6)=2a[(6 —6,) =koy —03—0, =0 (5.4)
g(6) = BI(? = moy — 03 (5.5
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where
k .
a:{o}, k= L+sne (5.6)
_1 1—sing
m .
_ 1
_q 1—siny

The uniaxial compressive strength, o., is given by
o =2cvk =a'g, (5.8)

where 6, isthe apex point, with the principal coordinates

1
_ O¢
G0 = {}} (5.9)

Together with the ordering of the principal stresses in (5.1), (5.4) describes the triangular
planein principal stress space shown in Figure 5.1.
The edge lines of the criterion, £, and £, are given by

1 1
b 6=t +6, Z1={1} and €r: & =tlr + 6,4, £72={k} (5.10)

k k

Stress states located on the edge line ¢; are in triaxial compression, o1 = 0, > 03. On {,
the stress state is characterised as triaxial extension, oy > o0, = o03. The apex is given by
11 = t = 0. The corresponding direction vectors of the potential lines are

1 1
@ = {1} and £ = {m} (5.11)
m m

This means that for the Mohr-Coulomb criterion there are four different cases of stress
return to be considered, see Figure 5.2:

Return to the yield plane
Returnto ¢;
Returnto £,

Return to the apex

For each case the stress must be updated and constitutive matrices must be formed. The consti-
tutive matrices in the following are partitioned analogously to the elastic stiffness matrix in Eq.

(3.6),
~ Der A Derc
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03 0 ~C p '7 ® 6B
Ze Return to the apex
—Aao?

Returntoline2 €
_A(}P

‘ B Return to the plane

Figure 5.2 Four different stress returns to the Mohr-Coulomb criterion.

5.1.1 Return to the Mohr-Coulomb plane

With the gradients given by Egs. (5.6) and (5.7) the plastic corrector stress direction, 77, can
be found with the use of Eq. (4.4b). The plastic corrector stress, Ag?, is then found from Egs.
(4.4@) and (5.4). The updated stress can now be found from

6¢ = 6% — AG” (5.13)

Infinitesimal constitutive matrix on a Mohr-Coulomb plane

With the gradients given by Egs. (5.6) and (5.7), Eq. (4.19) gives the normal components of the
infinitesimal constitutive matrix as

E

sep _
(1 +v)(mk —mkv —mv —kv +1+v)
1 (m+ v m (5.14)
k+1Dv 1—mv—kv+mk m(k+ 1)
k (m + kv mk

The shear component part is identical to the elastic stiffness, i.e. G® = G, whose definition is
repeated here for convenience

— E

5.1.2 Return to the Mohr-Coulomb lines

With the line directions given in Egs. (5.10) and (5.11) the updated stress, 6, is found by
calculating the line parameterst and ¢, using Eq. (4.12).
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Infinitesimal constitutive matrix on a Mohr-Coulomb line

The directions given by Egs. (5.10) and (5.11) areinserted in Eq. (4.24) to yield D®. For ¢, this
gives

) £ 1 1 m
szl . Ll om (5.15)
, 2 —2v—2kv—2mv +mk k k mk
and for £,
£ 1 m m
o _ i k k 5.16
627 1 = 2kv —2mv + 2mk — 2mkv k Zk Zk o

The shear components are once again found by Eq. (3.8).

5.1.3 Return to the apex
The Mohr-Coulomb apex, given by Eqg. (5.9), is located on the hydrostatic line. Hence the

infinitesimal constitutive matrix is given by

D® = 0 4.2
point 66 ( D

5.1.4 Boundary planes for Mohr-Coulomb plasticity

As stated earlier, four distinct returns exist for a given predictor stress. Therefore four stress
regions, 1-1V, are needed. These regions were indicated in Figure 5.1b-c and can be seen in
Figure 5.3, where the corresponding boundary planes are also shown from two different points
of view.

a)

Figure 5.3 Boundary planes in a) isometric view and b) view from the direction r”. The roman numeras represent
stress regions.
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In principle the equations of all four boundary planes are needed, but a computationally
more efficient means of determining whether the predictor stressislocated in Region 1V exists.
The parametric equations of ¢; and ¢, cf. Eq. (5.10), are defined such that 1; = 7, = 0 at the
apex. If 11 > 0 A 1, > 0, the predictor stressis located in Region 1V. Thisway of evaluating the
stress region is efficient because ¢; or #, might be needed when updating the stresses.

The conditions for determining the region, and hereby the return, are then deduced from
Figure 5.3 and can be seen in Table 5.1.

In the following some computational examples of the principal stress update algorithm will
be given.

Table 5.1 Conditions for Mohr-Coulomb stress return. Valid when f(e®) = 0.

Condition Region Returnto
puz0 A pa=0 | f=0
pin < 0 A P < 0 1 El
pn>0 A poy>0 "l 12

t1 >0 A tp >0 v apex

5.2 Example: Bearing capacity of a surface footing on
a Mohr-Coulomb material

In this section it will be shown that finite element results based on the principal stress update
method converge toward the exact value of the bearing capacity factors N, and N, with great
precision.

The bearing capacity of shallow footingsis usually estimated using an associated perfectly
plastic Mohr-Coulomb material model and the superposition principle of Terzaghi:

Pu=cNe+qNg + yrN, (5.17)

whereq isthe surchargeand r isthe halfwidth of astrip footing or the radiusof acircular footing.
N:, N, and N,, are bearing capacity factors which are all functions of the friction angle, ¢. For
strip footings the plane strain analytical solution of Prandtl for bearing capacity factors N, and
N, iswell established. For circular footings Cox, Eason, and Hopkins (1961) were the first to
tabularise the exact value of N, in axisymmetry for arange of friction angles.

For the bearing capacity factor dependent on the soil weight, N,, the picture is different.
Throughout the years numerous papers have proposed many different values for &, based on
different methods of calculation. A brief historical overview is given recently in the paper by
Hjiaj, Lyamin, and Sloan (2005). Recently the exact value of N, has been calculated by Mar-
tin, see references (Martin 2005a; Martin 2005b; Martin 2004), using the so-called method of
characteristics. Most of these methods are based on some type of limit-state formulation, i.e.
the load-deformation path to failure is not found. The limit-state calculations also imply that the
material must obey an associated flow rule.

Historically the Mohr-Coulomb material model have proved difficult to work with in rela-
tion to the finite-element method, as pointed out in Chapter 1. Thisisindicated by the fact that
N, has not yet been accurately determined by use of the finite-element method. One of the first
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attempts at computing bearing capacity factors of a strip footing by the finite-element method
was carried out by Griffiths (1982) using a viscoplastic technique for the stress update. The
mesh used was rather coarse and the computed N, was therefore higher than the exact values,
and also seemed to be dependent on the footing width. Manoharan and Dasgupta (1995) use
the same approach, but also includes calculations on a circular footing. The bearing capacity
was found by integrating the stresses in the row of Gauss points located just below the footing.
In (Manoharan and Dasgupta 1995) it was found that the bearing capacity factor is affected by
the dilation angle. This dependence is further examined by Frydman and Burd (1997) where
the plane strain Mohr-Coulomb criterion is simulated by calibrating parameters of the Matsuoka
criterion (Matsuoka 1976) so the criteria match in plane strain. This, in turn, implies that the
out-of-plane stress is not taken into account. The drawback with this approach is that although
the ultimate bearing capacity can be modelled accurately, the displacement-load path to failure
depends on the out-of -plane stress.

As mentioned earlier, some of the problems involved in a finite element implementation
of the Mohr-Coulomb criterion seem to stem from the fact that the criterion possesses corners
or edges and an apex. In the plane strain cases cited above it is not stated whether the out-of-
plane stress is taken into account. If this stress is ignored the only singularity present in the
criterion is the apex, but if the out-of-plane stress is included or afull 3D analysisis carried out
the singularities at the corners must be dealt with in the plastic updating scheme.

Material associativity is an inherent
feature in the calculation of the bearing ca-

. : Table 5.2 Mohr-Coulomb material parameters.
pacity factors, and so only an associated

flow law will be used in the footing calcu- Material 1 Material 2

lations. For afooting calculation involving  Friction angle, ¢ 20° 20°

a non-associated Mohr-Coulomb material,  Dilation angle, v 20° 20°

see Appendix B. Cohesion, ¢ 0 1000 kPa
Two materials will be considered with ~ Young'smodulus, £ 20MPa 20 MPa

material parameters as shown in Table 5.2, PoISson'sratio, v 0.26 0.26

The cohesionless material 1 will be used in _S0il weight, y 20kN/m*  OkN/m?’

the calculation of N,,, see Appendix C, and
the weightless material 2 will be used in the
caculation of N,

Both the strip and the circular footings are considered to be rigid and smooth and have the
halfwidth and radius, r, see Figure 5.4. Asthedomain is symmetric or axisymmetric only half of
the footing is modelled. The considered domain with boundary conditions can be seen in Figure
5.4.

The soil is modelled with six-noded triangular elements and a forced displacement, u, is
applied to the nodes connected to the footing. An example of the element mesh is seen in Figure
5.4. A six point Gauss integration ruleis used for calculating the element stiffness matrices. The
distributed load, p = Q/ A, isfound as the average of the sum of foundation reactions, Q, on
the foundation area, A. The horizontal earth pressure coefficient at rest is set to unity.




50 Chapter 5 — Applications on linear criteria
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Figure 5.4 Boundary conditions, geometry and an example of the element mesh with 347 elements and 1500 degrees
of freedom.

5.2.1 Bearing capacity factor N,
The exact value of the bearing capacity factor N, in plane strain is given by Prandtl (1921) as

_ l4sing e —|
~ 1—sing tang

With the parameters of material 2in Table 5.2, N, = 14.8347118 isfound.

In axisymmetry the solution for N, istaken from (Martin 2004), N, = 20.0758.

The stress update algorithm is implemented in the commercial finite element code ANSY S
(Ansys 2001) as a user defined material. In the following bearing capacity calculation is carried
out with Ansys.

In Figure 5.5 the results of the finite element computations are seen. The results are plot-
ted as the relative difference between the computed, N7EM, and the exact value of the bearing
capacity factors,

Ne (5.18)

NFEM
Relative difference = ( j\l — 1) x 100% (5.19)

c

In Figure 5.5a the relative difference is plotted against the number of degrees of freedom,
ngof With logarithmic axes. It is seen that the computed values seem to converge linearly. The
relative difference computed using the finest mesh with nges = 34956 is 1.40% in plane strain
and 3.72% in axisymmetry.

In order to estimate a convergence value the relative difference is plotted against the value
h in Figure 5.5b, see. e.g. (Cook, Malkus, and Plesha 1989), given by

1

N dof

h =

(5.20)

A second order polynomial is fitted to the values by the least squares method and interpolated to
h = 0, which indicates the convergencevalue. It is seen that the computations converge towards
the exact values of N,.. The relative difference of the convergencevaluesat 4 = 0 are -0.028%
in plane strain and -0.018% in axisymmetry.
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Figure 5.5 Relative difference from exact bearing capacity factor, N.. @) Double logarithmic axes. b) Shown with
regression polynomials. ngof isthe number of degrees of freedom.

A convergencestudy of the bearing capacity factor N, iscarried out in (Clausen, Damkilde,
and Krabbenhgft 2007), which can be seen in Appendix C. Here MatLab isused. It is shown that
the N, calculation using the principal stress return can be carried out with the same precision as
the N, calculation.

5.2.2 Significance of the out-of-plane principal stress in plane strain

In limit-state calculationsin plane strain the out-of plane stress, o, has no influence on the result,
asit can be shown to liein theinterval 6, = o, = 0, = o3 for the Mohr-Coulomb criterion,
see e.g. (Chen and Han 1988). But in elasto-plastic calculations the value of o, plays a part
concerning the deformations. In the references mentioned in Section 5.2 it is not clear whether
the out-of -planestressin included in the cal cul ations, except for (Frydman and Burd 1997) where
it cannot be included. This is due to the fact that the Mohr-Coulomb criterion is simulated by
calibration of the Matsuoka criterion, and thisis only avalid approach if the out-of-plane stress
is not included.

Thereasonthat o, hasasignificance stemsfromthefact that it isnot awaystheintermediate
principal stress, especially for low values of the Poisson’s ratio.

To evauate the effect of whether or not the out-of-plane stress, o, is included in elasto-
plastic calculations, four bearing capacity calculations similar to the onesin the previous section
are carried out. Two including, and two not including o,. The Poisson’s ratio takes on two
values, v = 0.05 and v = 0.45. Therest of the material parameters are identical to the material
2 parametersin Table 5.2. The resulting load-displacement curves can be seen in Figure 5.6.

The curves show that for v = 0.45 there is no visible difference whether or not o is
included. For v = 0.05 there is a visible difference in the load-displacement curves, athough
the differenceisvery small. All four calculations arrive, as expected at the same ultimate bearing
capacity of the footing.

The procedurefor correctly including o, in plane calculationsis explained in Appendices B
and E.




52 Chapter 5 — Applications on linear criteria

3 components, v = 0.05
3 components, v = 0.45
4 components, v = 0.05
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u/r

0 0.001

Figure 5.6 Normalised load-displacement curve for a three and four component stress vector with different values of
the Poisson ratio, v.

5.3 Comparison with conventional return mapping for a
Mohr-Coulomb material

In this Section some comparisons of the principal stress update method and the standard imple-
mentation of the return mapping method as given in Chapter 3 will be made.

5.3.1 Comparison of computational efficiency

In the following the computation times for 10 000 stress returns with calculation of D *° for a
given stress predictor are compared. The algorithms are implemented in MatLab and the com-
putations are carried out on alaptop computer with Pentium M 1.4 GHz processor and 512 MB
RAM. Two sets of material parameters are employed. The first set corresponds to material 1
of Table 5.2 and the second set is identical but with a non-associated flow rule with ¢ = 0. It
should be noted that different codes are used for the two materials, i.e. in the associated case the
corresponding code is assuming an associated Mohr-Coulomb material.

The results are shown in Table 5.3. The two methods yield exactly the same values for the
returned stresses and the constitutive matrices within machine precision.

It is seen that the principal stress update method is substantially faster, especially when

Table 5.3 Comparison of computation time for 10 000 stress returns for an associated and a non-associated material.

TA‘C - - TCN?
10 000 returnsto THS. Trﬁi’ﬁ_ﬂm Trﬁ?% TNAS Tp“r‘i PSS T,ﬁ?;ﬁs?%
Plane 2964s 2384s 1.243 3.194s 2644s 1.208
Line 4546s 2374s 1915 4867s 3.154s 1543

Point 3.225s 2133s 1512 339%s 2633s 1.289
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returning to a line which is the case for roughly 75% of the stress returns when the bearing
capacity of acircular footing is calculated. The difference seems to be bigger for the associated
material.

One of the reasons for the increased speed is the fact that D does not need to be computed
each time the function is called with the principal stress update method, whereas this is not
the case in the classical method. In the classica method, on the other hand, the coordinate
transformation is avoided. Another reason is that the built-in eigensolver of MatLab can be
utilised and this is very fast compared to implementing an analytical solution of the eigenvalue
problem.

5.3.2 Some notes on the comparison with direct implementation of
the return mapping formulae

In his book on the non-linear finite-element method, Crisfield (1997) applies the formulae of
Chapter 3 directly, i.e. the derivations are carried out with respect to the (x, y, z) co-ordinate
system. In most cases the two methods yield the exact same result, but some comments should
be noted in relation to the formulation in (Crisfield 1997) in order to make the stress update
stable. This subject is elaborated upon by Clausen, Damkilde, and Krabbenhgft (2007) in the
paper shown in Appendix C. Here it is concluded that the traditional implementation of the
return mapping method suffers some deficiencies which are not found in the principal stress
update method, presented in this thesis.

5.4 Significance of singularity and consistency

In Appendix C the significance of the multiple singular constitutive matrices when returning the
stress to lines and the apex is examined. An alternative to using the multisingular matrices is
to form a standard single singular matrix based on the strain direction obtained by Koiter'srule.
This means that the constitutive matrix on aline and the apex is calculated based on Eq. 4.19 as

Dak (a)™D

———
Dicoiter = D @ ba (5.21)
where
AgP _
ak — A—a, with A& =D~ 'A6? (5.22)

i.e. @k isthe direction of the plastic strain increment. In (Clausen, Damkilde, and Krabbenhgft
2007), which can be seen in Appendix C, the significance of the double-singular matrices of
Chapter 4 compared to the formulation of Eq. (5.21) isindicated. It is shown that the formula-
tion based on the double-singular matrices is by far the superior in plane calculations. Thisis,
however, only partially true for fully three-dimensional calculations, see Chapter 8.

5.5 Modified Mohr-Coulomb plasticity

As stated earlier many geotechnical materials show pressure dependent strength propertieswhich
can be modeled by the Mohr-Coulomb material model. The criterion is given by Eq. (5.4), and
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repeated here for convenience

1 +sing

: and o, =2cvk (5.23)
1 —sing

fuc = koy — o3 — o, =0, with &k =

When ¢ > 0 the Mohr-Coulomb model predicts a uniaxial tensile strength of

oime = % (5.24)
If materials such as concrete and rock are to be modelled this tensile strength is often larger
than the tensile strength observed experimentally, see e.g. (Nielsen 1999; Ottosen and Ristinmaa
2005; Brinkgreve and Vermeer 1998). This discrepancy can be mended by the introduction of
the Rankine or "tension cut-off" criterion

JrR=01—0:=0 (5.25)

where g; isthe "tension cut-off* value, which isthe highest tensile stress allowed in the material.

Nos 5k The combination of these criteriais usually re-
............ g ferred to as the Modified Mohr-Coulomb criterion,
_______ T/G 1 =0 cf. (Ottosen and Ristinmaa 2005). In Figure 1.6d this
______ > criterion can be seen in the principal stress space. In
——————— o1 Figure 5.7 the criterion can be seen projected onto the
f<0 k = Ltsing 01 — 03 plane. . - .
= 1=sne¢ Inthefollowing the M odified M ohr-Coulomb cri-
1 terion will be modelled using the principal stress up-
03 = —0¢ date method from Chapter 4. With this type of plas-
f= f>0 ticity the method is extremely well suited as the Mo-
dified Mohr-Coulomb criterion leads to nine different

Figure 5.7 The Modified Mohr-Coulomb Crite-  types of stressreturns, which must be properly identi-
rion projection onto the 01 — o3 plane. Thesec-  fjeq, Thisisacumbersometask to carry out in general
ondary criterion that violates o1 = o2 = 03 is Th ed imol tati .

shown with a dashed line. st_r&ss space. e_pr&eent Implementation was ori-
ginally published in (Clausen and Damkilde 20064).

The Rankine part of the criterion, Eq. (5.25), is taken to be associated whereas the Mohr-

Coulomb part is non-associated. The principal stresses are ordered according to Eq. (5.1),
01 i (o)) i 03 (51)

This means that the Modified Mohr-Coulomb criterion reduces from the nine planes in
principal stress space shown in Figure 1.6d into the two planes shown in Figure 5.8. As can be
seen on the figure the geometry of the yield planes is bounded by five lines which intersect at
three points. Two of the lines are the Mohr-Coulomb lines given in Section 5.1 as

1 1
b: 6 =014 +6, £ = {1} and (r: 6 =08, +6,, €= {k} (5.10)
k k

where ¢, isthe Mohr-Coulomb apex stress point which can be seenin Figure 5.1 and is given by
Eqg. (5.9).
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a) o3l

Figure 5.8 @) The Modified Mohr-Coulomb criterion in principal stress space. b) Detail of the tension cut-off plane,
IR

With reference to Figure 5.8 the equations for the additional Rankine lines and their direc-
tion vectors are

0

R o =108 4ok, ﬁ:{% (5.263)
1
-R -R 0

& o=ul, +ef 4 =11 (5.26b)

0
R o =slh +oR {} (5.260)

0

where & is the Rankine apex seen in Figure 5.8 and af is the intersection point between lines
{5, (R and (R, A third point, denoted o.X, is the intersection between lines €5, £& and ¢&. The
Rankine points have the coordinates

(of} Ot Ot
65 =10 ¢, 6f = 0; , 6§ = ko, — o, (5.27)
oy ko; — o, ko — o

where o, isthe uniaxial compressive strength for a Mohr-Coulomb material given by Eqg. (5.8).

The stress returns for the different lines and points are calculated by insertion of the equa-
tions for the planes, lines and points into the equations of Chapter 4, analogous to the procedure
for the Mohr-Coulomb criterion in sections 5.1.1-5.1.3.

5.5.1 Boundary planes for the Modified Mohr-Coulomb criterion

The boundary planes that separate the nine stress regions can be seen in Figure 5.9.
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N

Figure 5.9 a) Stress regions, denoted by roman numerals. b) Detall.

The equations of the 11 boundary planes will not be given here but can be found from Eg.
(4.14) with the plastic direction vectors of the two planes found from Eq. (4.4) and the direction
vectors of the lines from Egs. (5.10) and (5.26) together with the pointsin (5.27). The conditions
for each type of stress return are summarised in Table 5.4. The convention has been used that the
normals of the boundary planes points away from regions where the stress is returned to lines
and into regionsthat demand a plane or point return. See Section 4.2 for further explanation.

5.5.2 Constitutive matrix

The normal partition of the infinitesimal constitutive matrix is given by Eq. (4.19) on a plane,
(4.24) on aline and (4.26), (4.27) on points.

Table 5.4 Conditions for Modified Mohr-Coulomb stress return. Valid when f(a®) > 0.

Conditions Region Returnto
pn =0 AN pnz0 A pav =0 | Suc =0
prn <0 A piv <0 I b
pi-m <0 A pviem <0 " 123
pav <0 A pvv <0 A puiav <0 A pyay <0 IV (R
pvai =0 AN pvav =20 A pvvin 20 \ oR
pvimz0 A pyav 20 VI ok
pviav 20 A pvivin 2 0 VIl frR=0
pvvin <0 A pynvin <0 A pixevin <0 VIl (R

pixvin = 0 IX R
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D® on the Mohr-Coulomb plane and lines

For these returns D is defined by the Mohr-Coulomb parameters and given by Egs. (5.14),
(5.15) and (5.16).

D® on the Rankine plane

When a predictor stress is returned to the Rankine plane the infinitesimal constitutive matrix is
found by inserting the rankine normal given by a® = [1 0 0]" into Eq. (4.24) which yields

0 0

_ E

D% = 0 1 (5.28)
0 v

T 1—02
The shear partitionis given by G, see Eq. (3.8).

_< O

D® on Rankine lines

Stress return is only made to the Rankine lines ¢ R and ¢ dueto the fact that the Rankineline ¢ &
is not an edge line but merely marks a division of the Rankine “cube” seen on Figure 1.6¢ and
1.6d.

The constitutive matrices of the lines are then found by inserting the direction vectorsin Eq.
(5.26) in (4.24).
For ¢& and €&, respectively

B 00 0 ~ 0 0
D={0 0 0|, ad D®=|0 E
00 E 0 0

The shear partition is given by G, see Eq. (3.8).

0
0 (5.29)
0

D® on Rankine points

The apex point, 6X, Eq. 5.27, is located on the hydrostatic line, and so the constitutive matrix is
given by
Dpgint = 0 (4.27)

For the two Rankine points|ocated outside the hydrostaticline, 6% and 6%, the constitutive matrix
possesses the elastic shear stiffness, i.e.
DeP

PN 0
point — 0 = Dggint = [ é] (4.26)
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5.5.3 Bearing capacity with the Modified Mohr-Coulomb model

To asses the principa stress update method in conjunction with the Modified Mohr-Coulomb
model the bearing capacity cal culation analogousto the onein Section 5.2 iscarried out. Two ma-
terial modelsare employed. Thefirst isaperfectly plastic Mohr-Coulomb model withg = 20°,
¥ = 5° and ¢ = 20 kPa. The second is the Modified Mohr-Coulomb material model with the
same parameters and also atension cut-off, o; = 0. The elastic parameters, selfweight and earth
pressure coefficient are those of Section 5.2. In Figure 5.10 the load-displacement curves can be
seen. The displacement has been normalised with respect to the footing radius and the load has
been normalized according to the relevant part Terzaghi’s superposition equation, Eq. (5.17),

Pa =cN¢ + yrN, (5.30)

Figure 5.10 shows that the Mohr-Coulomb and the Modified Mohr-Coulomb model predict a-
most the same bearing capacity with the Mohr-Coulomb bearing capacity being slightly larger.
In a problem with an eccentric load the difference would be more pronounced, as positive nor-
mal strains could devel op between the soil and a part of the footing without the devel opment of
tensile stresses. The distribution of the stresses in the different stress regions in the final load
step can be seenin Figure 5.11.

AMp/ Pa Plane strain
<
1 4+
Axisymmetry
0.8
0.6 1
041
Modified Mohr-Coulomb
L 7 A Moht-Coulomb
0 + + + + + + >
0 0.05 0.1 0.15 0.2 0.25 0.3 u/r

Figure 5.10 Normalised load-displacement curves.




5.5 Modified Mohr-Coulomb plasticity 59

74.43 [ Region | [ 286
16.95 M Regionll [ 80.73
. 0 B Regionlll M 0
Plane Strain 6.87 W RegionIV W 0.16
0 [ RegionV [ 12.08
0 Region VI 0
1.75 [ Region VII [l 2.78
0 I Region VIII [l 1.39

0 I RegionlX M O
% %

Axisymmetry

Pyl

Figure 5.11 Thedistribution of yielding gauss points on the different stress regions at the final load step. See Table 5.4
and Figure 5.9 for the definitions of the stress regions.
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o _ CHAPTER 6
Finite element implementation

of the Hoek-Brown material
model

Since it first appeared in (Hoek and Brown 1980) the Hoek-Brown criterion has been widely
used for estimating the bearing capacity and deformation of rock masses. The criterion itself has
developed over time and the most recent edition can be found in (Hoek, Carranza-Torres, and
Corkum 2002). One of the reasons for the popularity of the criterion is due to the fact that the
material parameters can be estimated based on simplefield observations coupled with knowledge
of the uniaxial compressive strength of the intact rock material, see e.g. (Hoek and Brown 1997;
Raocscience Inc. 2006¢; Hoek and Diederichs 2006). The Hoek-Brown failure criterion is one
of the few non-linear failure criteria that are used for practical civil engineering purposes and a
number of analytical and semi-analytical solutions to practical problems have been devel oped.
Some recent examples are found in (Park and Kim 2006; Sharan 2005; Serrano, Olalla, and Jesls
2005; Carranza-Torres and Fairhurst 1999; Serrano, Olalla, and Gonzalez 2000).

In this context of this thesis the Hoek-Brown failure criterion is treated as a yield crite-
rion, which makes it possible to implement it in atraditional elasto-plastic framework. As the
linear Mohr-Coulomb criterion is implemented in many commercia codes, this criterion is of-
ten used instead of the Hoek-Brown criterion. The challenge is then to determine appropriate
Mohr-Coulomb parameters. These are usually found by fitting the Mohr-Coulomb criterion to
the Hoek-Brown criterion within an appropriate stress range, sometimes in conjunction with a
Rankine criterion, see Section 5.5. Examples of these fitting procedures can be found in (Hoek
1980; Sofianos and Nomikaos 2006; Priest 2005; Hoek, Carranza-Torres, and Corkum 2002).

Lower and upper bounds for the limit load for an associated Hoek-Brown material in plane
strain are computed in (Merifield, Lyamin, and Sloan 20064), where the criterion is slightly
modified in order to avoid the singularity present at the apex.

In the literature only a few examples of implementation of the Hoek-Brown criterion in an
elasto-plastic finite element context are given. The ones that are known to the author are found
in (Pan and Hudson 1988; Wan 1992). Both references introduce a rounding of the cornersin
order to avoid numerical difficulties. This means that the results obtained with these methodsin
general do not convergetoward the exact solutions. In both references a non-associated flow rule
has been adopted in order to better capture the dilatative behaviour of the rock mass.

Some commercial finite element codes incorporate the Hoek-Brown criterion, but these
implementations are also based on a rounding of the corners and the apex. Another method

— 61 —
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of dealing with the corner singularities is to approximate the criterion with the Drucker-Prager
criterion for corner stress points, see e.g. (Owen and Hinton 1980) and (Crisfield 1997).

In this chapter the principal stress update method from Chapter 4 will be applied on the
Hoek-Brown yield criterion. As far as the author is aware this is the first exact return mapping
implementation of this criterion including the apex and corner singularities. The principal stress
update method is especially well suited to deal with the Hoek-Brown criterion as it is expressed
in principal stresses and contains curve and point singularities.

Thealgorithmisintended for use with the el asto-plasti ¢ finite-el ement method and examples
of this use will be given. The plastic flow rule is taken to be non-associated with a plastic
potential which is similar to the yield criterion. Perfect plasticity and isotropic linear elasticity
are assumed. The materia in this chapter is based on (Clausen and Damkilde 2007), which can
be found in Appendix E.

Numerical examples that compare the results of other methods with results obtained from
the presented method will be given. Also the added efficiency of the presented method compared
to that of the Drucker-Prager corner approximation will be quantified.

The stress update a gorithm code used in this paper is available from the author inaMatL ab
or a Fortran version.

6.1 The Hoek-Brown material model

The material parametersfor the rock mass are derived from two parameters relating to the intact
rock material, coupled with two parameters which characterise the quality of the in-situ rock
mass. Theintact rock parametersarethe uniaxial compressive strength of the intact rock material,
o¢, and the petrographic constant, m;. Examples of the latter can be found in e.g. (Rocscience
Inc. 2006c; Marinos and Hoek 2000). The first in-situ parameter is the Geological Strength
Index, GS, which is a qualitative classification number for rock masses, see eg. (Marinos,
Marinos, and Hoek 2005). A tool in estimating the GS index is the chart in Figure 6.1. The
second in-situ parameter is the disturbance factor, D, which ranges from 0 to 1, see (Hoek,
Carranza-Torres, and Corkum 2002). For undisturbed rock masses D = 0.

In rock mechanics and geotechnical engineering compressive stresses are most often taken
as positive. With this convention and with the parameters outlined above the failure criterion is
written as

/ a

0] = 05 + 0g (mba—% + s) (6.1)
cl

whereo; = o} = o} aretheeffective principal stresses positivein compression. Inthe remainder

of this chapter, tension will again be taken as positive and thisiis, as usual, denoted by ¢4, 02, 03

without a prime. The empirically determined parametersmy,, s and a are given by

mp = mie(GSI—loo)/(zs—mD) (6.2)

s — e(GS—100)/(9-3D) (6.3)

a= b L(esans _emn) (64)
276 '
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GEOLOGICAL STRENGTH INDEX FOR
JOINTED ROCKS (Hoek and Marinos, 2000)

From the lithology, structure and surface
conditions of the discontinuities, estimate
the average value of GSI. Do not try to
be too precise. Quoting a range from 33
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Figure 6.1 Chart for estimating the Geological Strength Index, GS. Taken from (Marinos, Marinos and Hoek 2005).
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Therock mass modulus of elasticity, Erm, can be estimated from

1-D/2 s
Em = {—omsrmsp—amym * 10 MPa (6.5
or, if theintact rock modulus, E;, is known
1-D/2
Em=E; (0.02 + T aeorisp o9 /11) (6.6)

taken from (Hoek and Diederichs 2006). Examples of Poisson’s ratio, v, for rock masses are
givenin (Hoek and Brown 1997; Gercek 2006).

With positive stresses in tension the Hoek-
Brown yield criterion is then written as

f =01—03—0g (s—mbg) =0 (6.7)

Oci

where o, = 0, = o3 (without a prime) denote
the effective stresses. A projection of the cri-
terion on the 0; — o3 plane in principal stress
space can be seen in Figure 6.2.
Inthisdepictiontheyield surfaceisacurve
with a slope that tends towards infinity as the

/<0 —0¢ curve approachesthe apex point, o,. At the apex
01 = 0y = 03 = 0,4, With
f>0 o
0g =5 — (6.8)
mp

Figure 6.2 Projection of the Hoek-Brown criterion on
the o1 — o3 plane. The hydrostatic axis is denoted p.
The secondary yield criterion, where 03 > o7 is shown
with a dashed curve.

¢ = 0¢s?

which isthe biaxial tensile strength. The uniax-
ial compressive strength, o, is shown in Figure
6.2 and can be calculated by setting o, = 0 in
Eq. (6.7)

(6.9)

The trace of the Hoek-Brown yield criterion on the octahedral plane can be seen in Figure

6.3. Severa cross sections of the criterion corresponding to increasing hydrostatic stress, p =
(01 + 02 + 03)/3, have been plotted. It should be noted that the cross sections are not made up
of straight lines, but of curves with avery small curvature. The Figure showsthat as p increases
the traces change from an almost regular hexagonal shape into a triangular shape, due to the
increasing slope seen in Figure 6.2.

The octahedral traces has been plotted by expressing the Hoek-Brown criterion, Eq. (6.7),
in stressinvariants

1/a
f= (2\/J2 cos@) — 502/

- sinf -
Jpo/a! (0050 - —) +mppol/*t =0

N (6.10)

+ my,
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Slight curvature

Tensile
corner \ !

. O\Q

01 > 02 > 03 & .
,“Compressive
corner

Figure 6.3 Severa cross sections of the Hoek-Brown criterion on the octahedral plane. Secondary criteria are shown
with dotted curves. The geometric interpretations of the Lode angle, 8, and the second deviatoric invariant, J>, are dso
shown

where J; isthe second deviatoric stress invariant and 6 is the Lode angle.

The Hoek-Brown criterion in full three-dimensional principal stress space can be seen in
Figure 6.4. Hereit can be seen that the yield surfaces resembl e a curved M ohr-Coulomb pyramid,
see, for example, Figure 1.6b. The equations of the five neighbouring yield surfaces can be
obtained by interchanging the principal stressesin Eq. (6.7).

In Figure 6.5 only the primary yield surface, which obeyso; = 0, = 03, is shown. The
edges of the yield surface are the curves £; and £,, which corresponds to triaxial compression
and tension, respectively. The parametric equations of the curves are given by

o1 01
b: =130y, = o1 B (6.12)
o3 01— 0d (s - mbg—;)
01
— o1 . g1 “
ly: 6 =40p; =191 0 (S - mba_ci) (6.12)
03

a
(o}
01 — Ogi (s - mba—c‘i)

6.1.1 Plastic potential

For non-associated material behaviour a plastic potential resembling the shape of the yield sur-
faceischosen

ag
g =01 —03—0g (sg — mgﬁ) (6.13)

Ogi




66 Chapter 6 — Finite element implementation of the Hoek-Brown material model

Figure 6.4 The Hoek-Brown criterion in principal stress space. The hydrostatic stress axis is denoted p.

03

Figure 6.5 The primary Hoek-Brown yield surface in principal stress space, i.e. the surface that obeyso; = 02 = 03.

When the parameters of (6.13) are identical to their yield criterion counterparts, the material
behaviour is associated.

Constant rate of dilation

If aconstant rate of dilation is required, the curvature parameter a, should be set to unity, i.e.

8a,=1 = 01(mg + 1) — 03 — 0ciSg (6.14)
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The rate of dilation is then controlled by the parameter m,. A comparison with the Mohr-
Coulomb plastic potential, Eq. (5.5), reveas the following connection between m, and the dila-
tionangle, ¥, whena, =1

l+m, — 9NV 6.15
g

Computational examples utilising both Egs. (6.13) and (6.14) will be given in Section 6.7.

6.2 General and principal stress space

Previous finite element implementations of Hoek-Brown plasticity have carried out the manipu-
lations in the (x, y, z)-stress space, where the criterion and the plastic potential are expressed
via the stress invariants, see Eg. (6.10). As can be seen from Chapter 3 the return mapping
scheme requires the first and second derivatives of the yield function and the plastic potential.
The expressions for these derivatives are quite complicated in general stress space. Moreover
the handling of the discontinuities present at the edges and the apex is difficult in the general
stress space, which is the reason for the fact that previous implementations utilise some sort of
rounding of the corners and the apex.

The Hoek-Brown criterion in its basic formis expressed in the principal stress space, where
it can bevisualised in three dimensions. Thismakesthe principal stress return method of Chapter
4 an obvious choice for the plastic integration. The difference between this chapter and Chapter
5isthat the Hoek-Brown criterion is not linear, and therefore some modificationsto the formulae
in Chapter 4 are called for.

Inthe following the stress updateis outlinedin parts. Thefirst part explainshow to calculate
the updated stress, ¢, for a Hoek-Brown material in principal stress space. As opposed to the
earlier chaptersthis now requires an iterative procedure. The second part outlines how to choose
the correct form of return as the method of boundary planes used in Chapter 4 also needs some
maodifications due to the non-linearity. Finally the formulafor the consistent constitutive matrix
will be given.

6.3 Stress update for Hoek-Brown plasticity

Asinthe previous chaptersit is assumed that the predictor stress state, o, isgivenviaEq. (3.12).
The principal predictor stresses, 62, arethen found by standard methods. In principal stress space
the stressis then returned to the yield surface and the updated stressis then back transformed into

(x, y,z)-space.
For Hoek-Brown plasticity the same stress returns as for Mohr-Coulomb plasticity apply,

ie
¢ Returnto theyield surface
¢ Returnto the curve ¢4
¢ Returntothecurve,

¢ Returnto the apex 6,
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Returnto o,
—Ag

03

Returnto ¢,

Figure 6.6 The four different stressreturns.

as can be seen in Figure 6.6.

The method for determining the correct return is outlined in Section 6.4. Thefirst step isto
determine whether the stress should be returned to the apex. If thisis the case the updated stress
issimply the apex stress defined in Eq. (6.8), see Section 4.1.3. If the stress is not to be returned
to the apex, ayield surface return isinitiated, which will be outlined in the following.

The gradients of the yield surface, (6.7), and the plastic potential, (6.13), are needed later,
and so they will be given here

k kg
a:%: 0 and 6:3—‘?’= 0 (6.16)
d6 1 06 1
where k and k, are the derivatives with respect to o,
a a—1
k= l =14 amy (s —mbﬂ) and (6.17)
doy Oci
8g o1 ag—1
ky = o1 1+ agmg (sg - mga—d) (6.18)

The gradients a and b can be seen in Figure 6.7. Here it should be noted that & varies with the
stress state as opposed to the formulation in Chapter 5, where k is a constant. Obviously, thisis
a so the case for the normals a and b.

6.3.1 Return to the yield surface

As generatrices of the yield surface and the plastic potential are parallel to the o, axis the ite-
rations needed to determine the stress return are one dimensional only, i.e. a scalar Newton-
Raphson procedure is sufficient. The unknowns are the largest and smallest principal stress, olc
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and 5. These terms are connected according to Eq. (6.7), which can be rewritten in order to
reduce the problem to a single variable

Oci

03(01) = 01 — 0g (s —myp ﬁ)a (6.19)

The value of the updated intermediate principal stress, o, can be found from the elastic
return calculation, once o,~ and o5 have been determined.

Consider the terms presented in Figure 6.7. In the figure aline connects the current updated
stress point, 6‘1?, with the stress predictor point 2. The direction of the current plastic corrector,
§, isalso shown. From Egs. (3.15) and (6.16), this direction is given by

(I =v)kg —v
vkg —v (6.20)
vkg —14v

— E
§s=Db=———
(1 4+v)(1—-2v)
with b given by Eq. (6.16) and D being the elastic constitutive relation between normal compo-
nents given by Eq. (3.7).

The slope of the line connecting 6? with 6® isdenoted «,. The slope of §is denoted o. For
the exact updated stress these slopes must be identical, i.e.

hy(6©) =hs(0F) =a, —as =0 (6.21)

The task is then to solve Eq. (6.21) for oF. Thisis done efficiently with the Newton-Raphson
method. From the current value of the returned largest principal stress, oﬁi, atiterationstep i, a
new estimate is given by

hy(aC))
C C 1,i
1,i+1 1, h}(UEZ)
Iterations are performed until
|01C,i+1 - 01C,i| < TOL (6.23)

g =const.

Figure 6.7 Return to the yield surface. Projection onto the o1 — a3 plane.
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where TOL isthetolerance. The detailed calculation of & } can befound in Appendix E.
It should be noted that / 1 is not defined for stress values beyond the apex, i.e. if o1 > o,.
In case Eq. (6.22) yields GIC,H—I > 0, acorrected new estimate can be found by

ofis1 =004+ (1—0)0f;, 0<po<l (6.24)
where the author has found that ¢ = 0.9 works well.

When avalueof o C that satisfies (6.23) isfound, o5 isfound by inserting o © into Eq. (6.19).
The value of the intermediate principal stressisfound as follows

o5 =trsy+of (6.25)
with
c_ B
f = C’lsi"l (6.26)
1

where sy, s, arethefirst and second elements of §, see EqQ. (6.20).

6.3.2 Return to curve ¢;

The intersection of the Hoek-Brown surface and the triaxial compressive plane described by
o1 = o, formsacurvein principal stress space. The parametric equation of the curveisgivenin
Eqg. (6.11), which is repeated here for convenience

01 01
51 : 0 =102, = 01 (611)

a
a
03 01— Oci (s - mb—[,c‘l.)

with o1 being the parameter. The curve is illustrated in Figure 6.5 and a stress return to £, is
illustrated in Figure 6.6. The direction vector of the curveis given by differentiation as

1
=131 (6.27)
k

where k isdefined in Eq. (6.17). The direction vector is shown in Figure 6.8.

The plastic potential also forms a curve, £¢, see Figure 6.8, defined by the intersection of
the plastic potential, Eq. (6.13), with the triaxial compressive plane, 61 = o0,. The direction
vector of this curveis analogously to (6.27) given by

1
¢ =11 (6.28)
kg

where k, isdefined in (6.18). The potential line direction vector is shown in Figure 6.8.
When the stress is returned to the yield surface the flow rule, Eq. (3.13), shows that the
plastic strain direction is perpendicular to the plastic potential. Thisis aso a valid point when
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the stress return is to the curve, and this is the basis for the equation to be solved. This means
that areturned stress, o, is sought which fulfills

hi(c%) = ) TAE? =0 (6.29)
where the plastic strain increment is found from Eq. (3.15) as
A&? = D 'Ag? (6.30)

Analogously to (6.22) the Newton-Raphson proce-
dure for determiningo ;| is

C 73
hi(oy;)
C C 1,i
O i1 =01 — (6.31)
1i+1 1, h/l(o,lc,l)
The current value of the plastic corrector stress is given
by 01
AG? =68 — 6§ (6.32)

where 6¢ belongsto ¢4, i.e. it fulfills Eq. (6.11).
The derivative of 1, can be foundin Appendix E.
Asin the stress return to the surface, /1, is not de-
f@ ned _for o1 > o0;. Thismeans t_hat the procedure out- Figure 6.8 Thecurve £; and its direction vec-
linedin Eq. (6'24) should be applled. . tor in thé point 6?. Al part of the potential
The procedure for stress return to curve £, isana e, €% and the corresponding direction vec-
logous to the return to ¢; and is elaborated upon in Ap-

pendix E.

tor, l_lig in the same point is aso shown.

6.4 Determination of correct stress return

This section will clarify which type of stress return that should be used. First it is determined
whether the stress should be returned to the apex. Thisis carried out using boundary planes as
explained in Chapter 4. If thisis not the case the stress is returned as described in the following.

6.4.1 Conditions for an apex return

Theboundary planes pv.;; = 0and pyv.;1 = 0, that formsthe boundary of the apex return stress
region, are shown in Figure 6.9 together with their normals, ny.; and Ny With the equations
of these boundary planesin hand, the conditions for a possible stress return to the apex are

f@® >0 A pva@® =0 A pvn6®) =0 (6.33)

where the convention of the indicesis givenin Section 4.2.

Three direction vectors, §,;,5; and S, define the orientation of the two planes, see Figure
6.9. These vectors are the stress directions corresponding to three unique strain directions at the
apex, denoted b, b; and b, i.e.

§ =Db,, § =Db; and S = Db, (6.34)
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The first of the strain direc- /
tionsisthe plastic potential normal F‘T 3
at the apex, b,, which from Eq.
(6.16b) isfound as

B {kg (0a) }
b, = 0 (6.35)

VAT

Piv-l

“r
S

Ny

-1

If k¢ (04) = oo, which is the case
for associated plasticity, b, iseval-
uated as

1
b, = {0} (6.36)
0
Figure 6.9 Boundary planes and their normal vectors for determining

. . . whether a predictor stress should be returned to the .
The second direction is the P e

strain direction at the apex, by, parallel to the compressiveplane s, = o>, i.e.

by = (6.37)

kg (0q)

where the fact that b is perpendicular to the direction of the potential line, Zf , Eq. (6.28), has
been exploited. Analogously the third strain direction, b, parallel to the tensile plane, o, = o3
isfound as

-2
1
by, = kg (04) (6.38)
1
kg (0q)

As stated earlier, the stress directions ,, 5 and S, define the orientation of the boundary
plane normals, which are also shown in Figure 6.9. The normals ny.;; and .y are calculated

by

Nivar = & X § and Ny =% x§ (6.39)
Finally the equation of the boundary planes are given as

piv-n(6) = r_‘|Tv-||(6 —0g) =0 and (6.40)
Pivan(6) = Ay (6 —6a) =0 (6.41)

where ¢ = 6® when the predictor stress state is evaluated using Eq. (6.33).
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6.4.2 Conditions for surface or line returns

If the stress is not to be returned to the apex point, i.e. the conditions in Eq. (6.33) are not

fulfilled, a surface return is carried out as outlined in Section 6.3.1and 6 = [oF oS o5]" is

calculated. The components of 6° revedl if the yield surface return is correct
¢ If o = 05 = of thenthereturn to the yield surfaceis correct.

¢ If 65 = oF then the stress must be returned to the curve ¢; with the procedure outlined in
Section 6.3.2.

¢ If 02C = a3° then the stress must be returned to the curve £, with the procedure outlined in
Appendix E.

When the stress is returned to a curve, an efficient first estimate of o' ", _, in the iteration
procedureis the former value of o from the yield surface return.

6.5 Consistent constitutive matrix for the Hoek-Brown
model

The calculation of the consistent constitutive matrix of a Hoek-Brown material is carried out
by introducing the Hoek-Brown criterion, Eq. (6.7), and plastic potential, Eq. (6.13), in the
equations of Section 4.3 and 4.4.2.

6.5.1 Calculation of D*° on the yield surface

In the evaluation of T, the second derivative of the plastic potential is needed, cf. Eq. (3.25).
Thisisdonein two steps. First with respect to the normal stresses, T = T1_3,;—3, and then with
respect to the shear stress related part of T, asseenin Eq. (4.28)

~ [T
T= [ TG:| (4.28)

The normal partition, T, is given by insertion of Eq. (6.13) into Eq. (4.40) which gives

L dis. B
T=(1+ Amaz_g =| 1 +arD]| 9o (6.42)
3x3 962 3x3 0
0
where dkg /doy = 8?g/da} isgiven by

dkg agm? ( Gl)ag—z
— =(1—a Sg — Mg — 6.43
doy (I —ag) e R (6.43)

The plastic multiplier AA can be found from e.g.

~4
) = 1271 (6.44)

IDb|
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where b = 9g/d6 is the plastic potential normal, given by Eq. (6.16b) and || e || signifies the
euclidian norm of the vector.

Thelower right 3 x 3 part of T, denoted by T, assumesthe particularly simple form of Eq.
(4.44), which is repeated here

of —o3
o} — o5
= of —o3
Te = B B (4.44)
0y — 03
c C
0, — 03
B B
L 03 — 03 |

If any of the denominatorsin Eq. (4.44) vanish, the corresponding element in Tg vanishes, see
Section 4.4.1.

The consistent constitutive matrix in principal stress space, D is then calculated by Eq.
(3.27) by replacing D¢ with D¢ = T D,

~ .. Dcba’De
Bee = pe — = 22 2 (6.45)
a'Dcb
where

a b

R 0 A 0

a=1, and b= 0 (6.46)
0 0

6.5.2 Calculation of D®*° on a curve

When a stress return is made to a curve the modification matrix, T, is given by Eq. (3.38), here
written in principal stress space as

- P2 Pgn\ "
T, = (I n Awa—f; + A/\nDngn) (6.47)
o o

where A, isthe plastic multiplier related to the neighbouring plastic potential, g,,. Two neigh-
bour plastic potentials will be used. These are the compressive neighbour potential, in the case
of returnto ¢;, and the tensile neighbour potential in the case of return to £,. The corresponding
yield surfaces are shown in Figure 6.10.

Theequations of the neighbour potentialsand their derivativesare obtained by interchanging
the components of the principa stress vector as shown in Figure 6.10. For the compressive
neighbouring region with o, > o7 > o3 the terms needed in the calculation of T are

0 ) 0

= 0gn 0°gn dkg

b, = — =1k ¢, = — 6.48

86 {_gl } 86’2 dO'l ( )
0

where it should be noted that o1 = 0> when returning to ¢; and therefore dk, /do, = dk, /do,.
See Egs. (6.18) and (6.43) for kg and dkg /do.
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For a return to the tensile corner,
i.e. the curve £,, the terms needed are

Tensile
i} dg kg o1 > 03 >0,  neighbour
by = a_n =43-1¢, (6.49) i surface
? 0 Tensile
2 & ;Zrier&fz "‘.‘ (o))
! :g n_ | doy (6.50) Compressive
9° 0 neighbour
0 surface

Plastic multipliers 01> 02 > 03
When returning to a curve, the assump- Compressive
tion by Koiter (1953) states that the corner, {;
plastic strain is alinear combination of 01 = 02

the strain directionsinvolved, Figure 6.10 A cross section of the Hoek-Brown criterion on the

_ = = octahedral plane. Compressive and tensile neighbour criteria are
Ag” = AAb + AL, b, (6.51)  shown with dashed curves.

where Ag? = D1 Ag”?, see (6.30).
For the compressive corner, £, this gives

Ag? kg 0
AP = A&t =AL3 0 ¢+ Ady 3 kg = (6.52)
Ae¥ ~1 -1
Ag? Ag?
Av=251 and Ax, = 222 (6.53)
kg kg
For the tensile corner, £,, we have
Ag? kg kg
AP = JAeh L =ALL 0} + AL, (-1 = (6.54)
Asg —1 0
AL =—Ael and AL, = —Aek (6.55)

Now T can be computed from Eq. (6.47) with insertion of terms for either £, Egs. (6.42),
(6.48) and (6.53), or for £,, Egs. (6.42), (6.49) and (6.55). The full modification matrix in
principal stress space, T isagain given by Eq. (4.28), as the shear components T ¢ are still given
by Eq. (4.44) when the returned stress is on an edge curve.

Constitutive matrix on a curve
With the modification matrix at hand, the modified elastic constitutive matrix in principal stress
space, D¢ isthen given by Eq. (3.25) as D¢ = T D. R

On a yield surface the consistent constitutive matrix, D¢, would be calculated by Eq.
(6.45), which shows that D¢ is singular with respect to the plastic potential normal, b, i.e.

D®p= 0 (6.56)




76 Chapter 6 — Finite element implementation of the Hoek-Brown material model

When the stress state is located on a curve, D¢ must be singular with respect to all direc-
tions perpendicular to the direction vector of the plastic potential curve, ¢%, as stated in Section
4.3.2. In principal stress space the consistent constitutive matrix that fulfils thisis found from
(4.25) and (4.24) as

) 5T
D¢ = |:(E)T(5c)—1zg B :| (6.57)
GC

where G¢ is the bottom right 3 x 3 quadrant of D¢, i.e. is the modified elastic equivalent of G
defined in Eq. (3.8).

Constitutive matrix on the apex
The constitutive matrix on the apex is defined in Section 4.3.3 as
~epc
D, 0 (4.27)

0i Nt 6x6

6.6 Summary of the method

A summary of the method can be seen in a schematical formin Appendix E.

The derivations in this chapter have all been concerning a fully three dimensional stress
state. Some remarks regarding the implementation for plane cal culations can be seen in the same
appendix.

6.7 Computational examples

In the following some results from elasto-plastic finite element calculations on a Hoek-Brown
material using the presented method will be given. Asin Chapter 5 the elements used are trian-
gular six-noded linear strain elements with two displacement degrees of freedom in each node.
Two validation examples and a comparison with an often used approximation will be given.

¢ Cadculation of the displacement of atunnel wall during excavation
¢ Thebearing capacity of a strip and circular footing

¢ A comparison of the efficiency of the present method with the often used approximation
which utilises the Drucker-Prager gradientsin a corner return.

The presented method will also be used in an elasto-plastic finite element calculation of the
slope safety factor, see Chapter 7 and (Clausen and Damkilde 2006b).

6.7.1 Tunnel excavation

A classical axisymmetric problem using a Hoek-Brown material is the calculation of the dis-
placement of tunnel walls during excavation. Several semi-analytical and numerical solutionsto
this problem exist, see e.g. (Park and Kim 2006; Sharan 2005; Carranza-Torres and Fairhurst
1999).
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The geometry of the problem
isshownin Figure6.11. The exca-
vation of acircular tunnel inanin-
finiterock massis simulated by re-
ducing the pressure, p, on the tun-
nel wall from the initial value p o
to theend value po = 0. Theini-
tia value, p, is the hydrostatic
pressure in the infinite rock mass.
Thetunnel radiusisdenoted ry and
the radius in which the material
changes from plastic to elastic be-
haviour is denoted R. The dis-
placement of the tunnel wall is de-
Figure 6.11 Geometry and definitions of the tunnel excavation problem. noted 1 and thefinal value, uq, will
be compared to an exact solution,

Infinite rock material

ugy Of (Sharan 2005), aswill thevalue of R, Re.

The material and geometric parameters can be seen in Table 6.1. From the table it is seen
that @ = 1/2, which is the value used in the original Hoek-Brown criterion from (Hoek and
Brown 1980). The curvature parameter of the plastic potential is set to unity, a;, = 1, which
indicates a constant plastic dilation rate. The value my = 0 indicates that no plastic dilation
takesplace, i.e. ¥ = 0, cf. Eq. (6.15).

Asthe domain boundariesin the problem are infinite, two different finite element boundary
conditions will be applied. The first boundary condition will give an upper value of the fina
wall displacement, ug > ue. Thisis achieved by applying the far-field pressure, p ., on the
far-field boundary, see Figure 6.12a. The second boundary condition gives a lower value of u ¢,
i.e. ug < ue. Thisisachieved by applying a zero radial displacement condition on the far-field
boundary, see Figure 6.12b.

To examine the significance of the extend of the element mesh, different element meshes
with varying radial extent, rmesh, have been used. The extent varies between rmesy = 15m and
Fmesh = 105m. An example of an element mesh with rmeqn = 15mis shown in Figure 6.12c.
This particular mesh is made up of 107 elements with atotal of 500 degrees of freedom. In the
calculations the pressure is reduced from ps, t0 po = 0 in nine steps.

In Figure 6.13 an example of the displacement-pressure curve can be seen for r pesn = 40 m.
As expected the upper and lower value solutions are too large and to small, respectively. The
average of the two solutions is aso shown in the figure, and this is fairly close to the exact
solution. The curves are straight until the last few steps, which suggests an elastic response until
the tunnel wall pressure, p, reaches values of approximately 10 MPa

Table 6.1 Parametersin the tunnel excavation example. The exact solutions, ue and Rey are taken from (Sharan 2005).

o = 210MPa E = 60.0 GPa Poo = 100.0 MPa

mp = 1.70 v =0.20 po =0

S =0.296 mg =0 ro = 10.0m
=1/2 sg  =0.296 U = 20.9mm
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Tunnel axis

1m

“/

T'mesh

Figure 6.12 Example of mesh geometry and boundary conditions. @) Upper value boundary conditions. b) Lower value
boundary conditions. c) Example of element mesh with the radius finesh = 15 m. The geometry is axisymmetric around

the tunnel axis.

The dependence of the solu-
tions on the mesh extent, ryes, IS
shown in Figure 6.14, where the
relative difference between FEM
and the exact values of the final
tunnel wall displacement is indi-
cated. As expected the upper- and
lower-bound bracket the exact so-
lution in an interval of decreas
ing size, as rmesh grows. The av-
erage value is aso shown. At
I'mesh = 105 m the error on the av-
eragevalueis 0.7 %.

The extent of the plastic zone
can be seen in Figure 6.15 for
mesh = 105 m. |t can be seen that
the yielding areas of the finite ele-
ments are a good approximation to
the exact solution.

+—p[MPq]
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104
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Average

Lower value

v

0 5 10 15 200\ 25
—u [mm] —Uex = 20.9mm
Figure 6.13 Example of load-displacement curve for the tunnel wall. The

upper value and lower value curves are shown together with their average.
The maximum radius of the mesh is rinesn = 40 m.
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Figure 6.14 Final tunnel wall displacement. Difference between finite element and exact solutions with linear and

logarithmic axes.
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Figure 6.15 Yielding elements shown in blue for the upper and lower value solution compared with the exact solution.

The mesh radius is 7mesh = 105 m.

6.7.2 Surface footings on a Hoek-Brown material

The bearing capacity of a footing resting on a Hoek-Brown material has previously been cal-
culated using different approaches, see e.g. the discussion in (Merifield, Lyamin, and Sloan
2006a). Usually some form of a limit-state theorem has been applied. Here the principal stress
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return method will be used for cal culating the bearing capacity of both a strip and acircular foot-
ing. Theresult for the strip footing will be compared with the result given by Merifield, Lyamin,
and Sloan (2006a), where a bearing capacity is given as the average of computed upper- and
lower-bound solutions.

The ultimate bearing capacity, p, isexpressed using the bearing capacity factor, N,, and the
rock mass compressive strength, o,

Pu = 0¢i Ny (658)

The vaue N, depends on the other material parameters.

The finite element calculations are carried out with both an associated and a non-associated
material. For the non-associated material the value mg® = m; /4 has been chosen based on the
guidelines found in (Rocscience Inc. 2006b). The remaining parameters in the plastic potential
are equal to their yield criterion counterparts.

The materia parame-

Table 6.2 Parameters in the surface footing example. The comparative solution, ters are chosen to be fa rIy

N& istaken from (Merifield, Lyamin, and Sloan 2006). consistent with a sandstone
oq = 75MPa  m® = 1395 E = lcidompa WM GS = 30 m = 17,
my = 1.395 m® = 0.349 v =030 o 7l o k;” m? el
s =0.0004 s¢ = 0.0004 y  =20kN/m?  Wedtr = /.

4 =052 4y = 0522 N — 069 model parameters are then
. . e — ).

found from Egs. (6.2)—6.5),
where the rock massis taken
to be undisturbed, i.e. D = 0. The parameters can be seenin Table 6.2.

The calculation is identical to the bearing capacity analyses carried out in Chapter 5 where
the domain geometry and boundary conditions can be seen in Figure 5.4 along with an ex-
ample of the element mesh. The only difference is that the footing is considered rough in
this analysis, which means that the footing nodes are fixed in the horizontal direction.

N

. i 07 . S I R W ¥
Strip footing 0.69 N@Z 2
0.6 1 o

An example of the displacement-load
curves for an associated and a non-
associated material can beseeninFig- o¢ 941
ure 6.16. The exampleis taken from a
calculation with an element mesh with
4684 degrees of freedom. The limit- 02l
state solution of Merifield, Lyamin,
and Sloan (2006a), N& = 0.69, isalso Ol
shown. It is seen that the displacement- o0&

load curves reach a plateau close to 0005 01 0I5 /ro.z 025 03

_the “mlt_,State solution, with ,the bear- Figure 6.16 Example of the normalised displacement-load curves
ing capacity of the non-associated Ma-  for the strip footing. Calculated using an element mesh with 7o =
terial being a bit lower than that of the 4684.

associated material.

q 0.5+ i
e sooexx  Associated

-e-e-o-=  Non-associated
03+ :

S
rd
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Figure 6.17 @) Caculated Ny valuesin plane strain versus the number of degrees of freedom, ngor for the strip footing.
b) Curve fitting and convergence for N, in plane strain.

Thefina value of ¢ /o istaken to represent the bearing capacity factor, N,. The computed
N, values for the different element meshes are shown in Figure 6.17a versus the number of
degrees of freedom.

The computed values of N, drops as the element mesh is refined. This goes well with the
fact that the elements are displacement based, and therefore ought to predict a bearing capacity
larger than the exact value. The non-associated material model predicts a somewhat lower bear-
ing capacity than the associated one. The lowest bearing capacity factors are N, = 0.688 and
N, = 0.677 for the associated and the non-associated material, respectively. For the associated
material thisisadeviation of —0.26 % from the limit-state solution.

Analogously to the calculation in Section 5.2, a convergence value is estimated by plotting
N, against thevalueh = 1/ ,/nqor in Figure 6.17b, along with a fitted second order polynomial.
It is seen that the convergence estimates are N>° = 0.687 and N2° = 0.668 for the associated
and the non-associated material, respectively.

The limit-state solution is an average between an upper- and lower-bound solution. Mer-
ifield, Lyamin, and Sloan (2006a) state that the upper- and lower-bounds stray at most 2.5 %
from the average. For the lower-bound this means a minimum factor of N!*® = 0.6728. This
indicates that the finite element solution is well within the bounds.

Circular footing

In the case of acircular footing resting on a Hoek-Brown material the author is not aware of any
references that contain a solution with which the finite element solution can be compared.

An example of the displacement-load relationship for the circular footing can be seen in
Figure 6.18. Again the non-associated solution is lower than the associated one.

Figure 6.19a displays the computed bearing capacity factors for the circular footing. Again
the factors drop as the mesh is refined. The lowest computed factors are Ny = 1.106 and Ny =
1.096 for the associated and the non-associated material, respectively.

The convergence value is estimated using the same procedure as in the plane strain case.
The fitted polynomials can be seen in Figure 6.19b. Convergencevalues of N>° = 1.101 for the
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in the non-associated case have been
found. The accuracy of the conver-
gence value in the plane strain ex-

g 08 : ample, and the convergence studies
— SR sociii=C with the Mohr-Coulomb material in
98 06 <-e-e-o Non-associated Chapters 5 and 8 lead to the conclu-

sion that the bearing capacity fac-
tor for a circular footing resting on
an associated Hoek-Brown material
with the parameters given in Table
: ] A : . 6.2,isN, = 1.10.
0 0.1 0.2 ur 0.3 0.4 05”7 The bearing capacity of the

non-associated material is less cer-
Figure 6.18 Normalised displacement-load curves for the circular foot-

ing. Calculated using an element mesh with ngos = 4684. The conver- tan becaus_e of the non-unlqum%s
gence value is taken from Figure 6.19 of the solutions for such materials,

see eg. (Vermeer 1990).

6.8 Comparison with the Drucker-Prager corner approx-
imation

A method of bypassing the singularities when the updated stressis|ocated on acorner curve, isto
calculate the Drucker-Prager constitutive matrix for this particular stress return, see e.g. (Owen
and Hinton 1980; Crisfield 1997). Here a numerical example will indicate the advantage of the
presented method, Eq. (6.57), over the Drucker-Prager approximation. Thisis an investigation
similar to the onein sections 5.3.2 and 5.4.

The example is analogous to the numerical example in Section 6.7.2, where the bearing
capacity of afooting on a Hoek-Brown material is computed. See this section for materia para-

N A
1.14 X : 1.14 +
1.135+ ; 1.135¢
L13 4 . 113 4

Associated

1125+ < ~Associated » 1.125¢

112 4 ; 112 §

1115+ ) X . 1.115¢

L+ o RN g : L1 4

1.105+ - X 1.1054

1.1 {Non-Assotiated 2 L1 Non=associated

1.095+ : ; : R R o PO - 1.095¢ - 0‘ : : o g
2 3 4 5678910 20 .1} b 0005 001 0015 002 0.025

a) N dof ) h = 1/ /Mot

Figure 6.19 a) Calculated Ny values in axisymmetry versus the number of degrees of freedom, nget for the circular
footing. b) Curve fitting and convergence for Ny in axisymmetry.
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H (o)
BoP Compressive
1 approximation

Figure 6.20 The Drucker-Prager approximations and potential gradients at the corners.

meters and geometry.

The Drucker-Prager approximation can be seen in Figure 6.20, where also the gradients BIDP
and bSP at the corners are shown. These gradients are calculated from Egs. (6.37) and (6.38),
respectively, with o' replacing o,

-2
i i 1
boP = s and b3° = { k. (o) (6.59)
— 1
ke (cC)
. kg (U1C)

The yield surface normals are cal culated analogously with k(o ©) replacing k. (o). The consti-
tutive matrices are then found by Eq. (3.27).

Regarding the constitutive matrix on the apex, this is found by using the values of the
potential gradient and the yield surface normal at the apex, i.e. Eq. (6.35).

The numbers of global equilibrium iterations of the methods are compared, using the bear-
ing capacity calculation of the previous section. The material is associated with the parameters
of Table 6.2 and the mesh shown in Figure 5.4 is used. A forced displacement is applied in 35
steps. The average numbers of global equilibrium iterationsfor each load step are shownin Table
6.3

Table 6.3 Average numbers of equilibrium iterations for the two methods.

Present method DP approximation
Plane strain 6.00 9.09
AXisymmetry 574 285
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Asseen from the table thereis only asmall differencefor plane strain problems. Thisis due
to the fact that only afew corner and apex returns take place. Less than one percent of the total
number of returnsfor this example. In the axisymmetric problem the differenceis significant due
to the fact that a large percentage of the stress returns are corner returns, approximately 70 %
in this example. In this case the present method presents a large improvement. Similar large
improvements may be expected in 3D solids.




CHAPTER 7
Slope safety factor calculations

with non-linear yield criterion
using finite elements

Slope stability is usually assessed using the linear Mohr-Coulomb criterion, which means that
the angle of friction is constant in the entire stress range, see Figure 2.10. However experimental
evidence suggests that the failure criterion should not be linear, especialy in the range of small
normal stresses, (Baker 2004). This fact can have a significant impact on the safety of slopes as
the slope failures are often shallow and hence associated with small normal stresses along the
diip line. In itself this does not disqualify the Mohr-Coulomb criterion entirely, as reasonable
results can be found if the Mohr-Coulomb parameters are calibrated to test data obtained by
triaxial testing at the applicable normal stress levels. But in standard triaxial tests the pressure
is usually much higher than the pressure along the slip line, and because of this, the safety of
slopes can be overestimated when applying the Mohr-Coulomb criterion, see e.g. (Jiang, Baker,
and Yamagami 2003).

The preferred method of assessing slope stability has for many years been some type of
limit formulation, where the dlip line giving the lowest safety factor is sought out with the aid
of an optimisation algorithm. With the proper numerical agorithm this is possible with both
the Mohr-Coulomb criterion as well as non-linear yield criteria, see e.g. (Jiang, Baker, and
Yamagami 2003).

As opposed to this approach the elasto-plastic finite-element method is an alternative which
isgaining ground, at least in academia, see e.g. (Duncan 1996; Griffiths and Lane 1999; Zheng,
Liu, and Li 2005). An advantage of slope safety calculations with the finite-element method
is that they are relatively easy incorporated into already existing finite element code, including
commercial codes. The location of the slip line is not rigorously defined with the finite-element
method but can be found by visualizing the displacements or the plastic strains at failure. It is
also possible to employ anon-associated flow rulein order to better capture the dilative behaviour
of real soils, as opposed to the limit formulations, where the flow rule must be associated. The
associated flow rule overestimates the dilation effects of soils, athough this usually has little
impact on the safety factor, as the slope failure is relatively unconfined.

In this chapter the soil will betreated as alinearly elastic — perfectly plastic Mohr-Coulomb
material, see Chapter 5, and as Hoek-Brown material, see Chapter 6. The plastic stress updateis
carried out with the principal stress method as explained in these chapters.

— 85 —
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The method and results of this chapter was published in a preliminary form by Clausen and
Damkilde (2005) and in the present form in (Clausen and Damkilde 2006b), which can be found

in Appendix D.

7.1 The concept of slope safety

/

Traditionally the strength of soilsis expressed as

() r a Mohr-envelope, S(o), in (o, t) space, see Figure
\ . 7.1. Here o and t are the normal and shear stress on

7/

ol o’/ loxt

a section of the material, respectively. The envelope
defines the relation between the maximum shear and
. hormal stress which the soil can endure before yield-

i j j o ingoccurs.

If the Mohr circle representing the stress state at

Figure 7.1 A Mohr-envelopeino — z space. A 5 noint n the soil is located in such a way that the

Mohr circle representing a stress state of yield is
shown.

strength envelope is its tangent, the material is yield-

ing at that point. Thisisillustrated in Figure 7.1.
The safety of a slope is usually assessed by calculation of a safety factor. Several def-
initions of the safety factor exist, see e.g. (Gunaratne 2006). In numerical applications the

most frequently used definition is that which
is some times referred to as the stability num-
ber (Taylor 1948), in which the safety fac-
tor is defined as the ratio between the actual
shear strength of the soil to the shear strength
needed to maintain equilibrium, Seq(o)

S(0)

F = Seq(®) (7.2)

Thisrelationisillustrated in Figure 7.2.

S(o0) L2
T/
t//F
Se(0) = S(0)/F \
o’ 0>

Figure 7.2 The actua Mohr-envelope, S(o') and the Mohr-
envelope needed to maintain equilibrium, Seq(o).

7.1.1 Reduced Mohr-Coulomb parameters

Smc(o) r'\

¢

wpf

N
td
o

Figure 7.3 The Mohr-Coulomb strength envelope,
Smc(o) and the corresponding envelope needed to
maintain equilibrium.

Swc(0) ¢ —otang
F F

Smc,eq(0) = =cF

Thesimplest Mohr envelopeisthelinear Mohr-
Coulomb strength envelope, see Figure 7.3, given
by Eq. (2.11), but here given with tension as posi-
tive

Smc(o) =c —otang (7.2
where ¢ isthe cohesion and ¢ is the constant fric-
tion angle.

The M ohr-Coulomb envel ope needed to main-
tain equilibrium, also shownin Figure7.3, isgiven
by

—otangr (7.3
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where the reduced parametersc r and ¢ are given by

F
7.1.2 Reduced parameters in a non-linear Mohr envelope

tan
CF = < and @F = arctan (Tw) (7.4)

Asan example of anon-linear Mohr envel ope consider the envel ope suggested by Hoek & Brown
(1997). This particular envelopeis chosen asit is a close approximation to the Hoek-Brown yield
criterion presented in Chapter 6

B
Sus(0) = Aoe (0’0_ U) (7.5)
Here A and B aredimensionless parameters, o isthe uniaxial compressive strength and o, isthe
value of the normal strength for which Sug(o;) = 0. The envelopeis similar to the one depicted
in Figures 7.1 and 7.2. The reduced envel ope needed to maintain equilibriumis given by

She(0) 0y —0O B A
= Afro, , A = — 7.6
7 FO. p” F=g (7.6)

where Ar isthe reduced parameter. The rest of the parameters are unchanged.

SHB,eq(0) =

7.2 Relation between Mohr envelopes and yield criteria

For usein thefinite-element method the yield criterion must be expressed in stresses rel ated to co-
ordinate axes, rather than as the normal and shear stress on an arbitrary plane. Thereforetheyield
criterion parallels to the Mohr envelopeswill be presented. Both of the applied criteriaare inde-
pendent of theintermediate principal stress. For thisreason and for simplicity the graphical repre-
sentation leaves out this stress component, although all stress components are included in the fi-
nite element analyses.

03

7.2.1 The Mohr-Coulomb cri-
terion in principal stress space ﬂfm =0

The Mohr-Coulomb criterion in principal o1
stresses was presented in Chapter 5 in Eq. K — Ltsing
(5.2) which is repeated here for convenience I=£TiE
with an added subscript yic Sfuc <0 1

fuc(@) = o1 — 03 + (01 +03)Sing —2ck

—2ccosp =0 (5.2

This equation is the principa stress version
of the linear envelope of Eq. (7.2). The
Mohr-Coulomb criterion is seen in three-
dimensional principal stress space in Figure
5.1. The projection onto the (o1, 03) plane
can be seenin Figure 7.4.

Figure 7.4 The Mohr-Coulomb criterion on the (o1, 03)-
plane.
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7.2.2 The Hoek-Brown criterion in principal stress space

To represent the non-linear strength behaviour of the soil in the principal stress space, the Hoek-
Brown yield criterion from Chapter 6 is used. With the added subscript g and the parameter s
fixedass = 1, thecriterioniswritten as

fHBZ(Tl—O3—UC (l—mﬁ) =0 (7.7)
Oc¢

where o, is the uniaxial compressive strength, m is a dimensionless parameter and « is the
curvature parameter. Here the Hoek-Brown criterion is chosen on account of its shape and used
to represent the behaviour of soil. This means that the material parameters in this chapter are
not connected to the guidelines for rock mass parameters as shown in Chapter 6. Thisis aso
the reason why the parameter s isgivenass = 1, asthisis adequate for describing the material
behaviour in this chapter. The projection of the Hoek-Brown criterion on the oy — o3 plane can
be seenin Figure 6.2.

Contrary to the linear Mohr-Coulomb case it is not possible to explicitly express Eq. (7.7)
asaMohr envelopein the r — o space which meansthat the Egs. (7.7) and (7.5) are not identical.
The Mohr envelopeis needed in the parameter reduction because of the safety factor’s definition
in terms of the shear strength, cf. Eq. (7.1).

The uniaxial compressive strength, o, is present in both Eq. (7.7) and Eq. (7.5) and the
Mohr parameter o; is found from the Hoek-Brown parameters as

oy = %ac(\/ m2 + 4 — m) (7.8)

The dimensionless parameters A and B in Eq. 7.5 are found by regression, see e.g. (Hoek &
Brown 1997). The trandation from the (o1, 03) stress pairsinto (o, t) stress pairs needed for
the regression can be found from the equation of the yield criterion with the relations given in
(Balmer 1952)

01 — 03
dos/doy + 1

01 — 03 80'3
_ | 903 7.10
' 903901 + 1\ a0, (7.10)

With fig given by Eq. (7.7) the derivative do3 /do isgiven by Eq. 6.17, here repeated as

0 =01 (7.9)

80'3 01 a-l
c

7.3 Slope safety by finite elements

The procedure used in this paper for determining F is outlined below and is a reduction scheme
similar to the one applied by Brinkgreve & Vermeer (1998).

After satisfying equilibrium for the selfweight with the true material parameters, a series of
steps are repeated until equilibrium can no longer be satisfied. 1n each series of steps the material
parameters are reduced gradually by a current safety factor F; according to Egs. (7.3) and (7.6).
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Table 7.1 Procedure for calculating the safety factor.

1. The current safety factor F; is chosen,
Fi>F_1=z21

2. Reduced material parameters are established from F;

3. Equilibrium iterations are performed
IF global equilibrium can be satisfied
gotostep 1
ELSE
take the factor of safety as F' = F;
END IF

Index i denotes the step number with i = 0 signifying the establishing of equilibrium with the
true material parameters, i.e. Fo = 1. The procedureisoutlined in Table 7.1.
A few comments should be tied to each of the stepsin Table 7.1:

The series of current safety factors must be predetermined and the numerical distance be-
tween each factor must be reasonably small to determine the factor of safety accurately.

Step 2 will be elaborated upon in the following sections

In the equilibrium iterations the stresses are updated according to principles of the return
mapping scheme with the method outlined in Chapters 4 and 6.

7.3.1 Strength reduction for a Mohr-Coulomb material

The reduced material parameters of step 2 in Table 7.1 are found by inserting the current safety
factor, F; in EqQ. (7.4). Equilibrium iterations are then carried out with these reduced parameters
inserted in Eq. (5.2).

7.3.2 Strength reduction for a Hoek-Brown material

As mentioned in Section 7.2.2 there is no explicit relation between Egs. (7.7) and (7.5). This
implies that the material parameter reduction, step 2 in Table 7.1, is not as straightforward as
in the Mohr-Coulomb case. The reduction procedureis outlined in Table 7.2. Some comments

Table 7.2 Procedure for reducing the Hoek-Brown material parameters, see step 2 of Table 7.1.

1. A reduced Mohr envelopeis found from
Shg,i (0) = Sus(0)/ Fi

2. A number of stress pointsin principal stress spaceis
generated on the basis of Syg.; (0).

3. The parameters of a reduced Hoek-Brown criterion,
Jue,i isfound by regression analysis on the
generated stress points
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should be attached to steps 1 and 2 in Table 7.2

The reduced non-linear Mohr-envelopeis found by inserting the current safety factor, F; in
Eq. (7.6).

In step 2 anumber of stress points are transformed from (o, ©) space into the principal stress
space. Thisisdone on the basis of Figure 7.5. The principal stresses are given by

op=C+r C =o0—rttang
with _ T (7.12)
=
o3=C-—r cos¢
Here the center and radius of the circle are denoted C and r, respectively. The instant
friction angleis found by differentiation of Eq. (7.5)

dr ( (O’l —O')B_l)
—tang = — = ¢ =arctan| AB (7.13)

do O¢

N

D !

She(0) o/
/r/,z » \
o] | ;

. . J 7
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Figure 7.5 Caculation of principal stress points.

7.4 Numerical example

Ahmad and Peaker (1977) carried out unconsolidated undrained triaxial tests on marine soft Sin-
gapore clay. Parameters of the Mohr-Coulomb and the Hoek-Brown yield criteria are calibrated
against the reported test results. The regression is carried out by minimising the sum of squares
of the error of the fit. Effective stresses from the test results and the best fit of the two criteria
can be seenin Figure 7.6.

In the range of the ex-
perimental test data the crite-
ria are seen to be amost iden-
tical whereas significant differ-
ences can be seen in the range of
small principal stresses. Atten-
tion should be drawn to the fact
that the Mohr-Coulomb criterion predicts a tensile strength whereas this is not the case for the
Hoek-Brown criterion. The resulting parameters are shown in Table 7.3. In addition to these pa-
rametersaselfweight of y = 15.5 kN/m?, amodulusof elasticity, E = 20 MPa, and aPoisson’s
ratio of v = 0.26 are assigned to the material.

It should be noted that 0. cannot be set to zero, cf. Egs. (7.7) and (7.5). For thisreason it is
set to asmall value to represent zero uniaxial compressive strength, here s, = 0.002 kPa.

Table 7.3 Calibrated yield parameters.

Yield criterion  Parameters
Mohr-Coulomb ¢ = 13.5kPa ¢ = 15.8°
Hoek-Brown oc~0kPa m=665 a=0.735
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Figure 7.6 The Mohr-Coulomb and Hoek-Brown criteria fitted to test results.

7.4.1 Comparison between Hoek-Brown criterion and the non-linear
Mohr envelope

To obtain the non-linear Mohr envelope of Eq. (7.5) ten (o, 7) stress pairs in the experimental
data range was formed from Egs. (7.9) and (7.10). The parameter o, was found from Eq. (7.8)
and the material parameters A and B was obtained by regression. The parameters for the Mohr
envelope can be seen in Table 7.4.

A plot of Syg translated into princi-
Table 7.4 Calibrated yield parameters of the non-linear Mohr en- Pal St_resses by Eq. (7.12) cannot t_’e dis-
velope, Shg. tinguished from the plot of fiz with the
resolution offered in Figure 7.6, which
reveals a good agreement between the
two expressions.

Envelope Parameters
Sus o ~0kPa A=4.17 B =0.7932

7.4.2 Safety factor calculation

The calculation of the safety factorsis carried out on aslope of inclination 1:2 with geometry and
element mesh as shownin Figure 7.7. A total of 902 six-noded linear-strain triangular elements
with atotal of 3818 degrees of freedom are used. The deformations are taken to be plain strain
but the stress component out-of-planeis included in the finite element calculations. Failure was
reached in about 35 steps for both materials.
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Figure 7.7 Geometry and element mesh of the analyzed slope. Measurementsin m.

Theresulting saf ety factor for the two materials can be
- — seen in Table 7.5. It is seen that the Hoek-Brown safety
Yield criterion _ Safety factor factor is significantly lower than the corresponding Mohr-
Mohr-Coulomb  1.47 Coulomb safety factor.
Hoek-Brown 119 The reason for this can be seen in Figure 7.8, where
the stress contours for the smallest principal stress, o3 are
outlined together with the position of the slip lines. It is seen that the locations of the slip lines
are almost identical and that they are located predominantly between the contours of 63 = —72
kPaand o3 = —30 kPa. From Figure 7.6 it is seen that the Hoek-Brown and the Mohr-Coulomb
criteriadiffer significantly at these stresslevels, whereas the two criteriaamost coincide at stress
levels —500 kPa < 03 < —150 kPa
The reduced material parameters corresponding to areduction by the safety factorsin Table
7.5 areshownin Table 7.6

Table 7.5 Calculated slope safety factor.

——— = Mohr-Coulomb slip line
———=— Hoek-Brown slip line

-157 kPa

-200 kPa

Figure 7.8 Slip lines and contour curves of smallest principa stress, a3. Compression is negative.

Table 7.6 Reduced material parameters cf. Tables 7.3 and 7.5.

Yield criterion  Reduced parameters
Mohr-Coulomb ¢ =9.2kPa ¢ =10.9°
Hoek-Brown o.~0kPa m =575 a=0.732




CHAPTER 8
Improvements of multisingular

constitutive matrices

As explained in Section 4.3, the general consistent constitutive matrix is singular with regard to
the gradient of the plastic potentid, i.e.

D% = 0, with  b=-= (8.1)

At the same time the stiffness for a stress point moving paralel to the yield surface must be the
elastic one, i.e.

D% = D@ (8.2

where D¢ is the modified elastic stiffness defined in Eq. (3.25) and @ is the direction of a strain
increment which causes a stress increment parallel to the surface, see, for example, Figure 8.1.
If theyield criterion is linear, D¢ should be replaced with D, according to Eq. (3.30).

Analogously the consgtitutive matrix on a line is singular with respect to all the directions
perpendicular to the potentia line

D7b; =0, DD, =0 with Dbj¢* =0 and B =0 (8.3)

where £ is the direction vector of the plastic potential line and b; and b, are non-parallel and
perpendicular to £°. Again the stiffness for a
stress point moving along the line must be the
elastic one

szcég = D (8.4

where & isthedirection of a strain increment

which causes a stressincrement parallel to the

line, see Figure 8.1. o1 02
On a stress singularity point, eg. an

apex point, the elasto-plastic constitutive ma-

trix vanishes, i.e.

Figure 8.1 A direction vector, £, of an intersection curve
in principal stress space. The corresponding potential curve

direction vector is denoted £ .

D =0

point
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8.1 Problems caused by multi-singular constitutive ma-
trices

From the above it is obvious that if many stress points are located on apex points, the global
stiffness matrix will become singular or at least ill-conditioned due to the many zeros. Although
less obvious, a similar ill-conditioning can happen when many stress points are located on lines,
i.e. many of the constitutive matrices are double-singular. These problems become more out-
spoken as the (instantaneous) friction angle becomes higher. For an associated Mohr-Coulomb
material the calculation of N, as carried out in Appendix C starts to experience problems when
¢ reaches values of around 40° — 45°, depending on the type of mesh and number of load steps.
Denser meshes and larger 1oad steps seem to cause greater problems. These values of the friction
angle often give rise to non-convergencein the global equilibrium iterations or to a breakdown
due to a singular global stiffness matrix. These problems are experienced both in the author’s
finite element code and in the commercial geotechnical software Plaxis. Furthermorefully three-
dimensional calculations with the Mohr-Coulomb model of Chapter 5 implemented in Abagus
show an erroneous dil atative behaviour when double-singular constitutive matrices are used, see
the next section

8.1.1 Erroneous dilatative behaviour in 3-dimensional calculations

A numerical test involving asingle three-dimensional brick element, see Figure 8.2awas carried
out in Abagqus. The Mohr-Coulomb model of Chapter 5 is implemented as a user material. A
vertical displacement is applied while keeping the horizontal pressure constant. This causes
the stress state to be located on the edge line ¢; of the Mohr-Coulomb criterion, see Figure
5.1. After the transition into the plastic regime the dilatative behaviour shown in Figure 8.2b is
observed when applying the double-singular constitutive matrix of Eq. (5.15). Thisis clearly not
correct. The correct material behaviour prescribes identical values of the two horizontal strain
increments, see Figure 8.2c. This error is due to an indeterminate system of equationsarising in
three dimensional calculations when using the double-singular matrix of Egs. 5.15 and 5.16.

In the following the constitutive matrices on the apex and on discontinuity curves will be
maodified in an attempt to remedy the deficiencies. A computational exampleis given to indicate
the improvements.

a) 03

Figure 8.2 A unit cube of Mohr-Coulomb soil in a state of triaxia stress. @) Undeformed configuration. b) Erroneous
dilatative behaviour. c) Correct dilatative behaviour.
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8.2 Modified D*° on an apex

A way to counter the occurrence of many “apex zeros’ is to assign a stiffness also to the apex

constitutive matrix, Dipex. 1N Appendix C this was done by replacing Dipex = 0 with Dgpex =

Dg  given by Eq. (5.21) and repeated here as

Koiter
_ _ DCA&P(A&P)TDC
ec  _ e
DKoiter =D (AEP)TBCAEP (8.5)
where Ag? isthe plastic strain increment in principal stresses, i.e.
Ag? =D 'AG? (8.6)
Note that
_ =_1 .- - ag
Ag? =D A¢? = AAb = Aka—_ (8.7)
o

when the stress is returned to a yield surface.

In Tables 1 and 3 of Appendix C, Dy, iSSeen to slow the cal cul ations down, but otherwise
cause no problems. This leads to the idea of examining the properties of a Dgex Which is a
weighted average of Dge« = 0and Dgpex = Dy HeNce, the proposal isto form aconstitutive
matrix on the apex of the form

—enc
B = 0l (838)
o
where « is ascalar. This matrix will be singular in the direction of the plastic strain increment
but will have a smaller resistance to changes in the plastic strain direction than the Dy, of
Eq. (8.5). The optimal value of the scalar o will be found in the following.

8.2.1 Optimal value of « in an N, calculation

An elasto-plastic bearing capacity calculation similar to the calculations in Chapter 5 will be
used to establish the value of the scalar « from Eq. (8.8). The geometry and boundary conditions
can be seen in Figure 5.4 and the element mesh can be seenin Figure 8.3.

The calculation is carried out for a strip footing resting on a Mohr-Coulomb soil asonly a
very few stress points will be returned to the criterion linesin plane strain. However, a consider-
able amount of stress returns will be made to the criterion apex, when the material parameters
are as shown in Figure 8.3. This makes it possible to study the behaviour of the apex solution
without much influence of the constitutive matrix at line returns. An earth pressure coefficient at
rest of kg = 1 isapplied. Inthe case of ¢ = 50°, kg = 1 is quite high compared to the usually
applied value of anormally consolidated soil, namely ko = 1 —sing. Thishigh valueis used for
convenience here and has no influence on the bearing capacity.

A downward forced displacement is applied to the footing in 25 steps. Different values of «
are applied with the exact same load steps and the average number of global equilibriumiterations
is recorded. The result can be seen in Figure 8.4. The Figure shows that the lowest number
of equilibrium iterations is found for « = 15000, namely 7.83. The number of equilibrium
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Friction angle, ¢ = 50°
Dilation angle, Y = 50°

Cohesion, c=0
Elasticity modulus, £ = 20 MPa
Poisson's ratio, v =10.26
Selfweight, y = 20kN/m?

Figure 8.3 Element mesh and material parameters used in the search for «. The element mesh consists of 508 elements
with atotal of 2166 degrees of freedom.

iterations for the standard apex constitutive matrix, D® = 0, from Chapter 5 is 9.83. The
standard constitutive matrix correspondsto « = oo in Eq. (8.8) and is shown in Figure 8.4 as a
dashed red line. Unfortunately the optimum value seems to depend on the mesh density and the
number of load steps, so further research is required.

Average number of iterations

Figure 8.4 Average number of global equilibrium iterations as a function of «.
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8.3 Modified D*¢ on a curve

The basic approach of modifying D™ is the same as in the apex situation, namely to add a
small stiffness in the otherwise singular directions other than the direction of the plastic strain
increment, Ag”. At the same time the stiffness for stress points moving aong the curve should
still be the elastic one. Mathematically these conditions can be stated as

D A&” =0 (singular in the plastic strain direction) (8.99)
D& = Dg =g, (elastic stiffnessin the direction &) (8.9b)
_ D¢ _ , _—

Dt = ’BC =a, (small stiffnessin the direction ©) (8.9¢)

where § is a scalar analogous to « in Eq. (8.8)
and C is a direction perpendicular to the plastic
strain direction, Ag”, and the potentia curve di-
rection, £%, see Figure 8.5, i.e.

c= A& x £f (8.10)

The vectors g, and g, have the dimension of
stress, and are also shown in Figure 8.5. The vec-
tor g, is parallel to the curve direction vector, £,
the difference between the two being the length o1 02
and the dimension.

03

Figure 8.5 Thedirection of the plastic strain increment,
8.3.1 Exact solution Ag” and avector, ¢, perpendicular to it.

The nine equationsin (8.9) can be solved to obtain an expression for D;™

_ _ _ o _ Rez = AT o 1Pcq(a =P\T
oo _ QA& xOT + 8, @ x AT _ DA x0T + gDC@ x A )
¢ (A&” xT)Tey (A&” xT)Tgy

This matrix is non-symmetric even for an associated material, i.e. when £° = £. Numerical
tests show that use of this matrix does not improve the convergence rate of the finite element
calculations. On the contrary the convergence rate is poorer than with the standard double-
singular matrix of Egs. (5.15) and (5.15).

8.3.2 Approximate solution
In Chapter 4 a double-singular constitutive matrix on a curveis given as
—
szc = _Tz_a%)_ (8-12)
—178
£ (D°)~1¢

As can be seen this matrix is singular with respect to all directions perpendicular to £°, i.e. there
is no stiffness in these directions.
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An approximate solution to the equationsin (8.9) can be given as

Seve _ e L cc’
(D1t BE(D) e

(8.13)

where C is defined in Eq. (8.10). The second term in (8.13) adds a small stiffness in the ¢
direction and no stiffness perpendicular to this. The solution is approximate as a small stiffness
isalso added in the £ direction, as opposed to the exact solution in Eq. (8.11). To illuminate this
an example will be given.

Consider an associated Mohr-Coulomb material with £ = 2 - 107 MPa, v = 0.26, ¢ = 0
and ¢ = 50°. Asthecriterionislinear, D = D. Thedirection vector of the edgelinein triaxial
compression, £, is, according to Egs. (5.10) and (5.11),

1
=10 = 1 (8.14)
7.5486

The edge line can be seen in, for example, Figure 8.6. A plastic strain direction, A&”, is chosen
in such away that it points outward from the yield criterion, see Figure 8.6. Together with EQ.
(8.10) this givesrise to the following direction vectors, al normalised to unit length

0.8126 0.5680 —0.1689
Ag? = 0.5540 ¢ =1-0.8223 and & = ¢—0.1689 (8.15)
—0.1810 0.0337 0.9711
Thescalar B ischosenas 8 = 100. From Eq. (8.11) the exact version of D}™ isfound as
2.1742-1072 1.6792-1072 1.4898-107!

D = E [1.5593-1072 2.5986-1072 1.4951-107" (8.16)
1.4877-107"  1.4972-107! 1.1259

03

Figure 8.6 A possible strain direction from a stress point located on 4 .
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which fulfills Eq. (8.9). It is seen to be non-symmetric.
The approximate version found by Eqg. (8.13) is

B 2.2345-1072 1.6014-107> 1.4930-107"
D = E|1.6014-1072 2.5178-107% 1.4893-107! (8.17)
1.4930-107! 1.4893-107! 1.1259

An evaluation of the equationsin (8.9) with the szpc of (8.17) gives

Dy A&” =0 (8.183)

~ 0.1385 ~ 0.1382

D& = E {0.1377 comparedto D@ = E {0.1382 (8.18b)
1.0429 1.0429

~ 0.004554 1 0.003560

D¢ = E {—0.006592 comparedto  —D°C = E {—0.007474 (8.18¢c)
0.000270 p 0.000681

From the exampleit can be seen that the approximate D™ is still singular in the direction of the
plastic strain increment and that the stiffnesses in the & and ¢ directions are almost the correct
ones.

Optimum value of @ and B in axisymmetry

To determine an optimum value of « and 8 an axisymmetric bearing capacity calculation is
carried out analogoudly to Section 8.2.1. The mesh and material parameters shown in Fig-
ure 8.3 are used. A forced displacement is applied to the circular footing in 60 steps. Se-
veral different values are assigned to « and . The average number of equilibrium iterations
can be seen in Table 8.1. It can be seen that the optimum value seems to be the combination

a = 1500 and § = 120, athough
Table 8.1 Average number of equilibrium iterations for different values the variation is small. The standard
of & and B. n.c. stands for no convergence. double-singular constitutive matrix

on acurve is approached in the limit
p | «=200 1000 1500 2000 10000 oo B = oco. With this value the global

80 n.c. 661 641 648 585 54 equilibrium iterations fail to con-
100 n.c. 624 531 532 570 641 verge no matter the value of «.

120 n.c. nc. 527 nc. 544 6.80 Asin Section 8.2.1 it should be

200 n.c. nc. 585 nc nc. 554 noted that the optimum values of «

o) n.c. nc. nc. nc nc. nc. and B seem to be problem depen-
dent.

With the approximate sol ution the erroneous dil atative behaviour for full three-dimensional
calculations shown in Figure 8.2b is not seen and the behaviour of 8.2c is obtained.

8.4 Computational example

To evaluate the performance of the proposed modified constitutive matrix, a bearing capacity
analysis on a footing resting on a high-friction-angle Mohr-Coulomb soil is carried out. The
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analysis is analogous to the analyses carried out in Chapter 5, with the exception that the ap-
proximate modified version of the constitutive matrix is used. The material parameters and an
example of the element mesh can be seen in Figure 8.3. The modification parameters are given
thevaluesa = 1000 and 8 = 100.

In Figure 8.7 the results from the computations can be seen. The figure shows the relative
difference, defined by Eq. 5.19, from the exact solution of Martin (2004, 2005b). The exact
factorsare N, = 617.8 in axisymmetry and N,, = 371.967 in plane strain.

The lowest computed relative differencesare 2.37 % and 2.28 % in axisymmetry and plane
strain, respectively. The figure also shows the extrapolation polynomials used to estimate a
convergencevalue. The convergencevaluesdiffer from the exact onesby 0.061 % and —0.598 %,
respectively. The reason that the plane strain value is less accurate than the axisymmetric one
is that the discretised domain is a bit too small to contain the plastic zone in the ultimate state.
This causes the bearing capacity to be underestimated by a small amount. The plastic zonein the
axisymmetric problem is much smaller, and the extent of the domain causes no problemsin this
case.

Without the modification of the constitutive matrix the computations break down, and this
can aso be seen in e.g. the commercia code Plaxis which is unable to calculate the bearing
capacity of afooting resting on a soil with the parameters used here.

a) b)
N o 25/\ o
sob d i i T e o Axisymmetry
~ o 1 +
Q ‘g 2 20 + _Plane strain
810 "o
= + 15
5 8 .
% 6 +00 10
o 5 ++0
o
24
= 5
T3 *o
oo >
2 3456 810 20 301;3 0 0.005 0.01 0.015 0.02 0.025
T o ' h =1/ ngof

Figure 8.7 Relative difference from exact bearing capacity factor. () Double logarithmic axes. (b) Shown with regres-
sion polynomials. The number of degrees of freedom is denoted 7.




CHAPTE_R 9
Conclusion

In the following, the conclusions to be drawn in each Chapter containing novel features will be
summarised. The new material in thisthesisis presented in the Chapters 4-8.

Chapter 4 Inthischapter astress update method for finite element el asto-plastic computations
is presented. The key point is that all the manipulations are carried out in the principal stress
space. The formulae for the stress returns assume that the yield criterion is composed of any
number of yield planes, and analogously for the plastic potential. The intersections of these
planes give rise to discontinuity lines and points where the yield functions and plastic criteriaare
not differentiable. The fact that the return does not change the principal directions of the stress
enables the manipulations in the principal stress space and the following transformation of the
updated stress into the original co-ordinate system. In the principal stress space a geometrical
approach facilitates a clear interpretation of the return which yieldsvery simple formulae. Closed
form solutions are obtained for all types of stress return. To assess whether the return should be
made to ayield plane, aline or a point the concept of boundary planes which divide the stress
space into regionsis introduced based upon the constant return direction to the yield planes.

By geometrical arguments the constitutive matrix is formed in principal stress space by
simple formulae on a yield plane, on a discontinuity line and on a discontinuity point. This
formulation is valid for genera perfect plasticity, depending whether using the elastic stiffness
matrix, D, or the modified elastic stiffness matrix, D¢, in the calculation.

The modification matrix, T, used in forming the consistent constitutive matrix is partitioned
in apart relating to the normal elements of stress/strain and a part relating to the shear elements.
The shear element part is shown to be independent of the particular plastic potential and achieves
a very simple form in principal stress space. It is also shown that this simple formulation is
identical whether the potential islinear or non-linear in the principal stresses. The normal part of
T isderived from simple derivation of the plastic potential with respect to the principal stresses.

When the formulae of the chapter are compared to the direct implementation of the return
mapping scheme as it is shown in Chapter 3, it is clear that they are much simpler, and hereby
easier to implement.

Chapter 5  Here the method of the preceding chapter is implemented for the Mohr-Coulomb
criterion and for the Modified Mohr-Coulomb criterion. With computational examples it is
shown that finite element computations relying on the method converge towards the exact re-
sults, regardless of whether the author’s own finite element codeis used, or whether the model is
implemented as a user material in the commercial finite element code Ansys.

Theefficiency of the method is compared to the direct implementation of the return mapping
method asiit is given in Chapter 3. It is shown that the novel method is the faster of the two.

— 101 —
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The influence on the convergence rate of different methods of handling the yield surface
discontinuities is examined.

Chapter 6 Inthischapter the non-linear yield criterion known as the Hoek-Brown criterionis
implemented as a material model using the method presented in Chapter 4. The calculation of
the updated stress is slightly modified to account for the curved yield surface. The Hoek-Brown
criterion is used in calculation of the bearing capacity and deformation of homogeneous rock
masses. To the author’s knowledge this is the first exact implementation of the criterion in a
finite element context. It is demonstrated that the principal stress update method leads to correct
results and that the method is superior to an alternative handling of the corner singularities used
by other finite element codes.

Chapter 7 Theproblem of afinite element cal culation of the slope stability factor by thefinite-
element method is addressed. The calculation of the Mohr-Coulomb safety factor is a standard
feature of several finite element codes, where the translation from the (o, t) space into princi-
pal stress space is straight-forward. Thisis not the case for a non-linear M ohr-envel ope, which
cannot, in general, be translated explicitly into principal stress space. A methodology for calcu-
lation of a slope safety factor for a non-linear Mohr-envel ope, which is directly comparable to
the safety factor for alinear envelope, is presented. The parameter reduction is accomplished by
repeatedly fitting the yield criterion to a reduced Mohr-envelope. In an example M ohr-Coulomb
and Hoek-Brown parameters are fitted against the same test data and the safety factor of a slope
is calculated. As the stresses in the slope are low compared to the stresses at which the test
data are obtained, the Hoek-Brown criterion predicts alower slope safety than the corresponding
Mohr-Coulomb criterion.

Chapter 8 Some corrections for the multisingular constitutive matrices on curves and points
are proposed. The idea behind the correctionsis to add a small amount of stiffness in some of
otherwise singular directions. Thisis due to the fact that finite element calculations with high
friction angle Mohr-Coulomb materials experience nearly singular global stiffness matrices. The
added stiffness helps to overcome this problem. It is shown in the chapter that the correction
improves the convergence rate for associated high friction materials and that it is possible to
calculate the bearing capacity factor N, for a Mohr-Coulomb material with the friction angle,
¢ = 50°. Thisis not possible in the commercial finite element codes that the author has tested.

9.1 Recommendations and future work

The principal stress update method has turned out to be efficient and simpleto implement. There-
fore it would be interesting to compare yield criteria using the prosed method to the implemen-
tationsin the commercial software.

The corrections on the constitutive matrix proposed in Chapter 8 requires further work be-
foreitisfully justified. The values of the correction parameters o and 8 need to be examined for
wider range of problems before atruly optimum value can be proposed.

The approach of performing the stress update in the principal stress space also has awider
scope. If water is seeping though the soil skeleton, drag forces are exerted on it. These forces
can be expressed in the principal coordinate system and hereby facilitate an easy inclusion of the
drag forcesin the finite element calculation.
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SUMMARY

A new return method for implicit integration of linear isotropic yield criteria is presented. The basic
idea is to perform all the manipulations in the principal stress space and thereby achieve very simple
formulae for calculating the plastic corrector stresses, based on the constant gradient of such criteria.
The return formulae are in closed form and no iteration is required. The method accounts for three
types of stress return: return to a single yield plane, to a discontinuity line at the intersection of two
yield planes and to a discontinuity point at the intersection between three or more yield planes. The
infinitesimal and the consistent elastoplastic constitutive matrix are calculated for each type of stress
return, as are the conditions to ascertain which type of return is required. The method is exemplified
with the Mohr—Coulomb yield criterion. Copyright © 2005 John Wiley & Sons, Ltd.

KEY WORDS: return mapping; stress update; corner plasticity; consistent constitutive matrix; Mohr—
Coulomb plasticity

1. INTRODUCTION

In numerical analysis of elastoplastic materials a key ingredient is integration of the constitutive
equations to obtain the unknown stress increment. This has been the subject of numerous papers
for the last decades. The reason for this is that the equations are highly non-linear and cannot
be integrated analytically. Several approaches have been employed for solving this problem.
The most popular seems to be return mapping methods originally proposed by Krieg and Krieg
[1], in a variant named the radial return method. Of the return mapping methods the backward
Euler, or implicit, integration scheme is the predominant, see e.g. References [2—4]. The explicit
integration schemes also have their advocates, e.g. Reference [5]. The method presented here
belongs to the implicit integration schemes.
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Mohr-Coulomb

(@ (b)

Figure 1. Examples of linear yield criteria in principal stress space.

Several classical yield criteria are formulated as linear functions of the principal stresses.
Among these are the Tresca criterion used for metals and undrained soils which is a special
case of the Mohr—Coulomb criterion used in soil mechanics. Some times the Mohr—Coulomb
criterion is combined with the linear Rankine, or tension cut-off criterion to give a better
approximation to the tensile behaviour of certain materials, e.g. concrete, [6,7]. These linear
criteria are depicted in Figure 1. The advantage of these criteria is that in many applications
analytical or semi-analytical solutions exist which is very seldom the case with non-linear yield
criteria. Examples of these are the classical solutions of Prandtl for plane strain problems, Cox
et al. [8], Bolton and Lau [9], Hill and Wu [10] for geometries showing axial symmetry and
Nielsen [7] for various geometries.

In the backward Euler scheme the derivative of the yield function and the first and second-
order derivatives of the plastic potential with respect to the stresses are needed. Some yield
criteria posses discontinuities where these derivatives become singular. These discontinuities
often arise as intersection lines or points between two or more yield surfaces. Special care has
to be taken when the stress point is returned to such a discontinuity. A solution to this problem
was obtained by Koiter [11] for associated plasticity. An option in numerical applications is a
local rounding of the discontinuity which is done for the Mohr—Coulomb criterion by Abbo and
Sloan [12]. This approach inevitably leads to approximative solutions. More direct approaches
to the discontinuity problem in relation to Mohr—Coulomb plasticity are taken in Reference [13].
In this reference formulae are given for stress returns and infinitesimal constitutive matrices,
both in relation to regular yield planes and for corner returns, based on Koiter’s theorem. Also
a method of determining which type of return should be applied, similar to the one applied in
this paper, is presented. A similar approach is taken by Crisfield [2] where a direct calculation
of the so-called consistent constitutive matrix is also proposed.

A natural approach to solve problems involving these yield criteria is to carry out the return
mapping in the principal stress space where the manipulations simplify. This is done by Pankaj
and Bicani¢ [14] who elaborate on the detection of the proper stress return in principal stress
space. The works of Larsson and Runesson [15], Peri¢ and Neto [16] and Borja et al. [17] all
deal with stress return in principal stress space along with formation of constitutive operators
for various plasticity models. The derivations and results in these references are based on
tensor algebra which is very general but complicated and the implementation in a computer

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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program is cumbersome. The method presented in this paper exploits the main advantage of
the formulation in principal stress space, namely that the stress states can be visualized in three
dimensions and thus facilitate a geometric approach. This geometric approach is used as the
basis for deriving very simple formulae for the stress update and constitutive matrices utilizing
basic matrix notation. The expressions are valid for any isotropic and perfectly plastic yield
criterion, or combination of several yield criteria, which are linear in the principal stress space.
The important concept of assessing whether the return should be made to a yield plane, line or
point is also addressed for general isotropic linear yield criteria. No iteration is performed in
the procedure which is exact within the framework of the return mapping scheme. The formulae
for the constitutive matrices are also valid for isotropic non-linear associated plasticity when
no coupling terms between principal stresses are present in the yield criterion. The price to pay
for the simplicity of the formulae is the co-ordinate transformations needed when transforming
the updated stresses and the constitutive matrix back into the original stress space. It is shown
in Section 8 that this price is acceptable.

As indicated by the flow chart in Section 7 the proposed algorithm is easily translated
into computer code. In Section 8 an example is given, in which the method is applied to
the Mohr—Coulomb model. It is shown that the method yields the correct solution and that it
performs faster than the direct implementation of the return mapping algorithm formulated, for
example, in Reference [2]. The presented algorithm is an elaboration on the algorithm presented
in Reference [18].

2. RETURN MAPPING
The basic notion of plasticity is that when a material yields the yield function vanishes

f(e)=0 ey

where ¢ is the stress tensor represented in column matrix format. The stress and strain com-
ponents are ordered according to

T S T
6=[0x 0y 0; Txy Taz Tyzl', &=[ex & & 28y 2&x; 2&y,] 2)

The present analysis employs matrix notation. All bold-faced letters and symbols denote
vectors and matrices and superscript ‘T’ denotes matrix transpose.
In associated plasticity the infinitesimal plastic strain increment is found from the flow rule:

dr—d; 3)
06

where d/ is a non-negative plastic multiplier and Jf/dc is the gradient of the yield function.
In elastoplastic computations using the finite element method the load is applied incrementally.
Formally the stresses are updated within each load increment according to

gj+Ae
Ao = / D (6) de 4)
€

J

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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where Ao is a finite stress increment, &; is the total strain after load increment j, Ag is
the strain increment between load increment j and j + 1, and D®P(o) is the infinitesimal
elasto-plastic constitutive matrix which depends on the current stress state 6.

Because of the high degree of non-linear dependency of D®P(6) on ¢ approximate solutions
to (4) are usually employed. The basic assumption of the return mapping scheme with small
strains is that the strain increment is composed of first an elastic and then a plastic contribution,

de =de® + deP 5)
The elastic stress increments can be found from Hookes law
do =Dde® =D(de — deP) (6)

where D is the elastic constitutive matrix. For a linearly elastic isotropic material

1 —v v v 7
Y 1—v Y
E v v 1—v
D=——— @)
(I+v)(d—2v) %—v
1y
i 3=
where E is the elastic modulus and v is Poisson’s ratio.
Equations (3) and (6) lead to
0
do =Ddg — dAD —f (8)
06

A finite stress increment Ac can be found by integration of (8), leading to the return mapping
scheme

Ac=Ac® — A6® or o¢“ =6 — AcP 9)

where Ac® =DAg is usually referred to as the elastic predictor increment and AeP the plastic
corrector increment. The updated stress located on the yield surface is denoted 6© =6* + Ac
with 6¢* being the previous stress state and 6® =6 + Ac¢® being the elastic predictor stress
state. The different stress states of the return mapping scheme can be seen in Figure 2.

The plastic corrector, AcP, is given by

A+AL 0
AcP = / D —f di (10)
2 Jo

In the return mapping scheme (10) is evaluated as

Ac® = AJD 6_f
0

(11

p

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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ANf>0 oB

/

Figure 2. Principle of return mapping.

where P denotes a point on the integration path. In the backward Euler scheme P is found
by iteration as it corresponds to the unknown updated stress state 6. If the gradient df/dc
is constant along the integration path, (11) can be evaluated at the predictor stress state, 6,
which is the case for linear yield criteria treated in the present paper.

3. RETURN MAPPING IN PRINCIPAL STRESS SPACE

It is assumed that the elastic predictor stress is known from the solution of the global finite
element equations. First step is to transform the stress into principal stress space. Secondly the
stress is returned to the yield surface in principal co-ordinates. The point is that the principal
stress directions do not change during the return stress increment for isotropic materials, due
to the fact that the shear stresses remain zero during the return. This makes it possible to
transform the returned stress and the corresponding consistent constitutive matrix back into the
original co-ordinate system as the final step, using the eigenvectors of the predictor stress point
in a standard co-ordinate transformation.

In what follows all manipulations are carried out in principal stress space. Even so, all the
stress and strain vectors are still six dimensional but the last three terms are zero before the
transformation back into the original co-ordinate system.

The classical linear yield criteria are composed of more than one yield plane, see e.g.
Figure 1. The intersections of these planes give rise to singularities in the form of lines or
points. The stress return can be made to these singular elements as well as to the yield
planes themselves. Therefore, three distinct returns will be considered in the following (see
Figure 3):

e Return to a yield plane.
e Return to a line, i.e. intersection of two yield planes.
e Return to a point, i.e. intersection of three or more yield planes.

When a yield criterion is composed of several planes with intersection lines and points it
must also be strictly defined to which plane, line or point the stress must be returned. This
definition will be given in a concise manner utilizing geometrical arguments.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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I
g L]
I

" [1]]

Figure 4. Return from predictor stress, 6, to the plane f=0.

3.1. Return to a plane

A linear yield criterion in principal stress space is composed of one or more yield planes which
can each be expressed as

fe)=a"(c—¢/)=0 (12)

where a=0df/do=[a; a» a3z 0 0 0]T is the gradient of the yield plane in principal stress
space and ¢/ is a point on the plane.

When returning to the yield plane the plastic corrector can be calculated from (9), (11) and
(12), as the gradient is constant. Hereby the plastic corrector, (see Figure 4) is obtained as

f(a®) Da
TDa Da= f(¢®)r?, rP= ~Da (13)

AcP =

where rP is the scaled direction of the plastic corrector in principal stress space which is at
an angle with a depending on Poisson’s ratio, v. With (13) the updated stress point is found

from (9).

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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Figure 5. Return from predictor stress, 6B, to line .

3.2. Return to a line

In this case the returned stress belongs to a line / in principal stress space, see Figures 3 and 5,
defined by the parametric equation

o=1tr +¢ (14)

/

where ¢ is a parameter with unit of stress, r! is a vector in the direction of the line and ¢’ is

a stress point belonging to /.

The direction of the plastic corrector A6 = A/Da is unknown but the direction of the plastic
strain increment a must be perpendicular to / because of the associated flow rule. Insertion of
(14) in (9) and the orthogonality condition yields the following system of equations which can
be solved for ¢ and Ada:

Aa=D"'(e® — (ir' +¢")) (15a)
alr'=0 (15b)

Upon solving (15) ¢ is obtained as

B (rl)TD—l(o.B _ O'l)
- (rl)TDflrl

(16)

The plastic strain increment AgP = Ala is found by insertion of (16) in (15a). This return
is consistent with Koiter’s solution for two active yield surfaces [11].

3.3. Return to a point

If the stress is returned to a point, 6%, e.g. an apex point, see Figure 3, no formulae are needed
as the returned stress is

¢ =¢" (17)

The plastic strain Ada can be computed with (11). This stress return also conforms to the
solution of Koiter [11].

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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4. STRESS REGIONS

In order to determine the type of return which should be applied for a given predictor stress,
the concept of stress regions is introduced. Each yield plane, line or point has a particular stress
region. The stress is returned to the yield plane, line or point associated with the region of
the predictor stress. The boundaries between these regions are planes when the yield functions
themselves are planes, see Figure 6. When the equations of these boundary planes are known
it can easily be determined to which region a given predictor stress belongs. From (13) it is
seen that the direction rP of the plastic corrector AeP is constant. This direction, along with
the direction of the relevant line, r’ must define the orientation of the boundary plane, see
Figure 6. The boundary plane’s normal can be found from

n_g=rP xr' (18)

where ‘x’ is interpreted as the cross product of the first three components of the direction
vectors which is the orientation in principal stress space. The indices of ni_j; indicate which
stress regions the boundary plane separates. The equation of the boundary plane becomes

pr(e) =n{ (6 — )= xr')T(c —6')=0 (19)
where o'

in (14).

is a point on the plane which can be taken as the same point defining the line

o1 02

~ g
N

pri-11 =0

Ny 111

o3 Region IIT ' fi=0
J2<=0

4

.

g1 g9
Figure 7. Example of stress regions and boundary planes outside two yield planes.
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With the expression of the boundary plane it can be determined if a stress point is located
on either side of the plane. The use of boundary planes is illustrated in Figure 7. In the figure
three stress regions, I, I and III are defined by two yield planes and two boundary planes with
the normals ni—j; and ny—y, respectively. The conditions for the predictor stress to be located
in the regions are:

Region I: & prn(e®) <0 A fi6®) =0
Region II: & prq(e®) 20 A prm(c®) =0 (20)
Region Il & pym(e®) =20 A (6?20

From Regions I and III the predictor stress is returned to the yield planes fi and f>, respectively,

and from Region II to the line [ with direction r!.

The use of boundary planes is a generalization of the singularity indicators for the Mohr—
Coulomb criterion shown by De Borst [13] and Pankaj and Biéani¢ [14].

5. INFINITESIMAL CONSTITUTIVE MATRIX

For use in the global iterations a constitutive matrix must be formed in each integration point.
The constitutive matrix relates infinitesimal stress and strain increments as

do =D dg (21

As do must be tangential to the yield surface in order to stay plastic and not violate the
yield criterion, D must be singular in the direction normal to the yield surface, a=0f/dc
for associated plasticity,

DPa=0 (22)
This means that the stress increment with (5) and (3) can be expressed as
do =D®Pde =D (deP + de®) =DP(dia + de®) =D%Pde* &

DPde® = Dde° (23)
by use of Hookes law.

5.1. Constitutive matrix on a regular surface

When returning to a plane, see Figure 4, the infinitesimal constitutive matrix is given by the
well-known expression

p?_p_ D (24)
F a’Da

It is seen that D?p is singular with regard to a.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:1036-1059
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.

f<0 g1 g2

(a) (b)

Figure 8. (a) Direction of a is unknown at a corner but perpendicular to r'; and (b) direction vector r/

and an elastic strain direction vector, r®. The vectors b and ¢ are two possible directions of a.

5.2. Constitutive matrix on an edge line

On an edge line of a yield plane the normal a=dJ0f/d6 is unknown, see Figure 8(a). When
a stress point is located on such a line the only possible direction of the stress increment in
principal stress space is in the direction of the line, r/, see Figure 8(b). This means that D;’p
must be singular with regard to any vector in principal stress space perpendicular to r/. This
can be written as a linear combination of two non-parallel vectors which are both perpendicular
to rl, see Figure 8(b),

DP (o + fe) =0 (25)

where Dlep is the elastoplastic infinitesimal constitutive matrix for a stress point on a line and
o and f are real numbers.

According to (23) the direction in which the strain increment produces a stress increment is
the direction of the elastic strain increment

def =dyr® (26)

where dy is some multiplier and r° is the direction of the elastic strain increment. The direction
vectors r¢ and r! are related by D:

Drr=r & r*=D'¢ 27

Any strain increment can be expressed as a linear combination of three non-parallel directions,
b, ¢ and r® in the principal space

de=dab+dfc+dyr® (28)
which with (23) and (25) leads to the system of equations
ﬁlep r°=r
DPb=0 (29)
ﬁlep c=0
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where ﬁf’p is a 6 x 6 matrix that only contains elements relating to normal stresses, i.e. the
first three rows and columns. From (29) and (27), ﬁfp is found to be

[ (T
nep  T(T)
D" = () TD- ¢! (30)

The constitutive matrix in the full six-dimensional stress space with axes aligned with the
principal axes includes the shear stiffness G:

D’ =G +D;” 31)

where G contains the constitutive relation between shear components

E 303 303
G=—— | " (32)
2(1+v) 0 1
3x3 3x3

In the case of non-linear yield surfaces r/ should be interpreted as the tangent of the

intersection curve between yield surfaces whereby (30) and (31) are still valid.

5.3. Constitutive matrix with point return

For isotropic materials two different types of infinitesimal constitutive matrices on a point are
relevant. In the first case the point is defined by the intersection of six non-parallel yield
planes in general stress space. This is always the case where the hydrostatic axis intersects an
isotropic yield criterion. On such a point the constitutive matrix must be singular with regard
to any strain direction, i.e.

D’ 0 (33)

point = 6% 6
The second case concerns a stress point in principal stress space which is defined by the
intersection of three yield planes in the principal stress space. With the stress state located on
such a point the material offers resistance only to a rotation of the principal axes. This implies
that the constitutive matrix is singular with regard to any direction in principal stress space but
not with regard to shear strain directions, i.e.
DP =G (34)

point =

where G is defined in (32).

6. CONSISTENT CONSTITUTIVE MATRIX

If the infinitesimal constitutive matrix, DP, is used in the global equilibrium iterations with
a Newton scheme the convergence rate will be lower than quadratic, as shown by Nagtegaal
[19]. A constitutive matrix consistent with the Newton scheme, thus preserving the quadratic
rate of convergence, was developed in the paper by Simo and Taylor [20].
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For yield functions with a constant gradient along the return path the consistent constitutive
matrix, D¢, can be obtained by modifying the infinitesimal constitutive matrix

DP¢ — TDCP (35)

where T is a modification matrix in general defined by

-1
> (36)
C

Here I is the 6 x 6 identity matrix and |c indicates that da/dc is evaluated at the updated
stress point, 6C. For a linear yield function Crisfield [2] shows that T can be computed at the
predictor point as

T= (I+ AiDa—a
06

T= I—AADa—a
06

(37)

B

whereby the inversion needed in (36) is avoided. With this definition T can be rewritten as
shown in (38) where indication of predictor point, |, is omitted.

" /p
T:I—A/lDa—a:I— 0(A/Da) 1 0Ac
0o 0o 06

(38)

The plastic corrector in general stress space, Ac’P, can be expressed as the product of a
co-ordinate transformation matrix A, see Appendix A, and the plastic corrector in principal
stress space, AeP. Hence, (38) can be expressed as

Ac’? ATAc? AT
CAe® _y _OAAeD) A (39)
06 06 06

T=I-

The derivative dAT/0c is the rate of change of direction of the principal axes during a stress
increment. The formal derivation in the general stress space is a tedious task but it can be
carried out by geometrical arguments in principal stress space with the use of Figure 9.

If the xyz and the x/y/z/ axes are aligned, the tensor of angles between the co-ordinate
axes, V; i is

x/ X/ X/ T T
lpx l//y 'ﬁz 0 2 2
0 )
I N I (40)
/ / /
Voo g 730
and the corresponding transformation tensor is
A?J- = Cos lp?j =0;j 41)

where 9;; is the Kronecker delta.
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Ny
yr
WY =5+ dy?
i P =T — dyp*
— x/
,l//,g/ — dw; ‘
z /g T
Cd
l/);’ — d,[’/}z

Figure 9. Angles between co-ordinate axes in an infinitesimally rotated co-ordinate system
around the z-axis with the angle dy/?°.

An infinitesimal rotation of the co-ordinate system about the z-axis, dy?, yields a slightly
changed transformation tensor, see Figure 9,

dy*  F—dyt % 1 —dy* 0
A= COS(lﬁ?j +dyi)=cos| FHdYF Yt T |=|dy* 1 0 (42)
3 7 0 0 0 1

when utilizing the fact that the angles are infinitesimal. Analogously Afj and Aiyj are found to
be

1 0 0 1 0 dy”
AF=10 1 —dy*| and A= 0 1 0 (43)
0 dy* 1 —dy® 0 1

With (41) and (42) the change in the transformation matrix, A, according to (AS5) of Appendix
A, can be found as

dy* 0 0
0 —dy* 0 0
3x3
0 0 0
dA* =A(A) —AA)) = (44)
2dyf —2dy 0 0 dyf 0
0 0 0 —dy° 0 0
0 0 0 0 0 0]

when quadratic terms are ignored.
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2 dyY ) ATy

v

dTy»

Figure 10. Infinitesimal change of stress state illustrated by Mohr’s circles.

Figure 10 shows Mohr’s circles of stress for a three-dimensional stress state. The changes
of the shear stresses arising from an infinitesimal rotation of the co-ordinate system, when
observed in the principal co-ordinate system, are illustrated.

By inspection of the Mohr’s circles it is seen that dy)* is related to an infinitesimal change
in the shear stress, dt,y, by

dr, a1
1/2(o1 — 02) dtyy 01— 02

tan(2 dy/*) = 45)

when the stress state is observed in the principal co-ordinate system. Analogously for diy/”
and dy*:

dy” -1 dy* 1
=—— and = (46)
dty, o1 —03 dty, 03— 03

The derivative of the transformation matrix in principal stress space, A, with respect to the
shear stress 7y, can now be obtained by insertion of (45) in (44)

B 1 0 07
0 -1 0 0
3x3
A 1 0 0 O

= (47)
0ty 01=0202 —2 0 0 1 0
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The derivatives with respect to 7., and 7y, are found in the same manner to be

and
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B 0 -1
0 O
3x3
oA -1 0 1
0ty 61—063|0 0 0 0 O
2 0 -2 0 0
|0 O 0O 1 0
B 0 O
0 0O O
3x3
A1 0 0
0 O 0O 0 O
o 2 -2 0 -1

0

Infinitesimal changes in the normal stresses do not affect A, i.e.

Inserting (47)—(50) in (39) yields T in principal stress space

0A _OA_0A_,
60'1 _50'2_@0'3 B

T=I- — Ac”

06

p p
- AO'1 - A0'2

o1 — 02

01— 03

P p
Aal — Aa3

p P
L Ac’, — Ad,

02 — 03

(48)

(49)

(50)

&1y

In the case of non-linear yield functions with no coupling-terms in the principal stresses the
method is also valid with T formed from (36). The second term is evaluated exactly as in
(51) with the exception that the components of the updated stress point, ¢, are inserted. The

Copyright © 2005 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Engng 2006; 66:1036-1059



RETURN ALGORITHMS FOR MULTIPLE YIELD PLANES 1051

inversion is simple as T only contains diagonal elements. The consistent constitutive matrix is
then formed from (35) and transformed into the original co-ordinate system with the use of
(A6), see Appendix A.

In case that one or more of the principal stresses are identical the fraction parts of (51) with
the identical principal stresses vanish. Thus T reduces to the unit matrix if all three principal
stresses are identical. This can be deduced from Figure 10 and from the fact that the principal
directions associated with the identical principal stresses are arbitrary.

7. FLOWCHART

In Table I the presented method is summarized.
In the flowchart the conditions for determining the active region is not explicitly defined.
These conditions have to be evaluated for the yield criterion in question.

Table I. Stress update for linear associated yield criteria. Performed in each Gauss-point.

INPUT: oA, A¢, D, yield parameters

1. 6B=¢* + DA
. Transform predictor stress, 6>, into principal stress space &

. Compute fl'(GB), i=1... number of yield planes
. Check yield:

IF all ﬁ(cB)g& No stress return:
6C=¢B, D°=D, AgP=0 (if needed)
EXIT
ELSE Stress return
GOTO 5
END IF
5. Stress return

Compute p(o‘E‘):(rp X rl)T(o'B - 0'1) from (19) for all boundary planes
Determine the active region analogously to (20)
IF return to plane:

Compute AcP, 6C and DP from Table II
ELSE IF return to line:

Compute AcP, 6C and D®P from Table III
ELSE return to point:

Compute AcP, 6€ and D®P from Table IV
END IF
AgP =D~ 1 AP (if needed)
Use AoP and 6B to compute T from (51)
D®P¢ = TD®P
6. Transformation back into the original co-ordinate system

Find transformation tensor A; j» shown in Eq. (Al) in Appendix A
Use A;j to form A from (A5)

O.IC — AT 0.C
AP =A"1AgP (if needed)
D/eP¢ — ADCPCAT

OUTPUT: ¢C D'°P¢ (AgP)

B B

B W N
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Table II. Return to a yield plane.

Operation Equation number
1. A6P = f(eB)rP (13)
2. 6 =6B — Ac? 9)
DaaTD
3. D =D — 24
alDa @

Table III. Return to a discontinuity line.

Operation Equation number
I\Tp—1,/~B 1
D —
=)D (@ —0) (16)
(rl )TDflrl
2. 6C=rrl + ¢ (14)
3. Ao =68 — 6© )
[ o[\T
r(r)
4. DP =G+ ———— 30
(rZ)TD—lrl (30)

Table IV. Return to a discontinuity point.
Operation Equation number
1. 6€=¢¢ (17)

2. Ae? =068 — 6€ 9
3.DP=G or (32), (34
DP =0 (33)

For purposes of computational efficiency the computation of the infinitesimal constitutive
matrices in the principal stress space in Tables II-IV can be performed once outside the loop
over the Gauss points and supplied as an input. The reason for this is that these are constants
in the principal stress space. The same goes for the direction vectors, r.

8. NUMERICAL EXAMPLES

This section presents some results from numerical calculations using the presented method
for stress updating. First it is shown how the method is implemented in the case of Mohr-
Coulomb plasticity. Then the limit load of a circular footing resting on Mohr—Coulomb soil
will be computed. Finally, the calculation time of the presented method and the traditional
implementation of implicit integration of Mohr—Coulomb plasticity as shown in Reference [2]
will be compared.
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11T

)

E/'/f<0 la |f>0

(c) d

Figure 11. Different views of the active Mohr—Coulomb yield plane in principal stress space:

(a) isometric view; (b) octahedral plane; (c) crossing of planes ¢; = o2 and f =0 (compressive

meridian); and (d) crossing of planes g = g3 and f =0 (tensile meridian). The Roman numerals
refer to the different stress predictor regions. The hydrostatic axis is denoted P.

8.1. Implementation of the Mohr—Coulomb yield criterion

Expressed in principal stresses the Mohr—Coulomb yield criterion is usually written as
f(o1,02,03) = (a1 — 03) + (01 + 03) sinp — 2ccos ¢ =0 (52)

where o1 and o3 are the major and minor principal stresses, respectively, ¢ is the angle of
internal friction and c is the cohesion. Tension stresses are positive. The principal stresses are
ordered according to

01202203 (53)

The Mohr—Coulomb criterion is usually depicted in principal stress space as an irregular
six-sided pyramid, see e.g. Figure 1(b). With the ordering of the principal stresses from (53)
five of the yield planes become redundant and the criterion can be depicted as a triangular
plane delimited by the lines /; and I», as seen in Figure 11. The figure also shows that the
Mohr—Coulomb criterion in this form comprises a yield plane, two discontinuity lines (the
edges) and a discontinuity point (the apex). Each of these elements have a particular stress
predictor region, I-IV, which can be seen in the figure. The trace of the five redundant yield
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planes are indicated in Figure 11(b) and the tensile and compressive meridians are shown in
Figure 11(c) and (d), respectively.

From a geometrical point of view it is advantageous to express f, from (52), in the general
form of (12)

f(e)=a'(c —c")
=koy—03—0°=0 (54)

Here a is the gradient of the yield plane and ¢“ is a point on the plane which is chosen to
be the apex point, see Figure 11,

GC

= 0 d g
a an () —1

—1

(55)

The material parameter k= (1 + sin ¢)/(1 — sin @) describes the internal friction and
o¢ =aTo% =2c+/k is the compressive yield strength of the material. The directions r; and r»
of the edge lines /1 and I, see Figure 11, can be found by geometrical means and the apex
point, 6, is chosen as the point belonging to both /; and />,

1
li: e=tri+¢%, =141 and Lh: o=nrr+6% =1k (56)
k k

The direction of the plastic return stress is found from (13)
mi
rP = mo (57)
kmp — 1
where m1 and m, are material parameters given by k and Poisson’s ratio, as
k(1 —v)—v vk —1)
= and mp=
(1 —v)(1 +k2) —2vk (1 —v)(A +k2) —2vk

Four boundary planes separate the four stress regions, see Figure 12, where the stress regions
are visualized from two different points of view.

In principle the equations of all four boundary planes should be determined but as /1 and />
intersect at the apex there is a computationally more efficient means of determining whether
the predictor stress is located in Region IV. From (56) it can be seen that the line parameters
f1 and #, vanish at the apex and that ¢1, £,>0 beyond it in Region IV. Thus calculation of #
and #, will determine whether the stress is located in Region IV, hereby eliminating the need
to calculate the equations for the boundary planes pp—rv and pm—v. The equations of the two
remaining boundary planes can be found from (19)

mi (58)

pr-(e) = @ x )T (6 — 6*)=0 (59)

pr—m(e) = (? x 1) (6 — 69) =0 (60)
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Pr-111

(b)

Figure 12. Border planes in: (a) isometric view; and (b) view from the direction rP. The roman
numerals represents stress regions.

The conditions for determining the region and hereby the return are then deduced from
Figure 12:

=20 A prm=0 <« Region I &< Return to f=0

n>0 A n>0 <  Region IV & Return to apex
pi-n<0 A prm<0 < Region I <« Return to /g D
pr-n1>0 A  prm>0 < Region lIl <& Return tol

along with f(cB)>O.

8.2. Computational example

A smooth circular rigid footing is placed on a domain of frictional soil as shown in Figure 13(a).
The footing and the domain have the radii r and 12r, respectively, and the height of the domain
is 10r. According to this geometry the domain is considered to be axisymmetric.

The frictional soil is weightless and has the yield parameters ¢ =20° and c¢= 1000 Pa.
The deformation parameters are E =2 x 10’ Pa and v=0.26. A distributed load p is applied
to the footing. The domain is modelled with six-noded triangular linear strain elements and
the footing with beam elements with high bending stiffness. The left boundary, which is the
symmetry line, is supported against horizontal displacement and the bottom and right boundary
are supported against horizontal and vertical displacements. An example of the element mesh
with 2179 degrees of freedom can be seen in Figure 13(b).

The computations are compared with the exact result of Cox et al. [8] which is pex/c =20.1.
It can be seen in Figure 14 that the computations converge.

8.3. Comparison with classical implementation

The computation time of the present method is compared with implementation shown in
Reference [2] in which the Mohr—Coulomb criterion is expressed in terms of the stress in-
variants. The return is carried out in general co-ordinates based upon the derivatives of these
invariants.
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107

12r

3
>

(@) (b)

Figure 13. (a) Cross section of the static system of the computational example.
The system is axisymmetric around the left boundary; and (b) example of
element mesh with 2179 degrees of freedom.

10 ¢

p
Pex

10 f

10° 10"
Ndof

Figure 14. Convergence of the example analysis. The number of degrees of freedom is denoted ngof.

Table V. Comparison of computation time for 10000 stress returns.

10000 returns to Telassic (8) Tpresent (8) %
Plane 2.964 2.384 1.243
Line 4.546 2.374 1.915
Point 3.225 2.133 1.512

In the following the times for computing 10000 stress returns with calculation of DP¢ for
a given stress predictor are compared. The algorithms are implemented in MatLab and the
computations are carried out on a laptop computer with Pentium(R) M 1.4 GHz processor and
512 MB RAM. The material parameters are the same as in the previous example. The results
are shown in Table V. The two methods yield exactly the same values for the returned stresses
and the constitutive matrices within machine precision.
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It is seen that the present method is substantially faster, especially when returning to a line
which is the case for roughly 80% of the stress returns in the example of the previous section.
One of the reasons for the increased speed is mentioned in Section 7, namely that D®P does
not need to be computed each time the function is called in the present method whereas this is
not the case in the classical method. In the classical method, on the other hand, the co-ordinate
transformation is avoided. Another reason is that the built-in eigensolver of MatLab can be
utilized and this is very fast compared to implementing an analytical solution of the eigenvalue
problem.

9. CONCLUSION

A closed form return mapping algorithm for isotropic, perfect and associated linear plasticity
has been proposed. The yield criteria may be composed of any number of intersecting yield
planes whose intersections give rise to discontinuity lines and points, where the yield functions
are not differentiable. The fact that the return does not change the principal directions of the
stress is utilized in order to carry out all stress manipulations in the principal stress space and
transform the updated stress into the original co-ordinate system. In principal stress space a
geometrical approach facilitates a clear interpretation of the return which yields very simple
formulae. The return stresses are calculated in one step regardless of whether the return is
made to yield plane, line or point. To assess whether the return should be made to a yield
plane, a line or a point the concept of boundary planes which divide the stress space into
regions is introduced based upon the constant return direction to the yield planes.

By geometrical arguments an infinitesimal constitutive matrix, DP, is formed in principal
stress space by simple formulae on a yield plane, on a discontinuity line and on a discontinuity
point. The formulation shown is generally valid also for non-linear criteria.

The modification matrix, T, used in forming the consistent constitutive matrix, DP° =T D®P is
derived based on a visualization of the rotation of co-ordinate systems and of stress visualization
using Mohr’s circles. The closed form expression for T turns out to be extremely simple in
principal stress space. The simple form also extends to non-linear plasticity with no coupling-
terms between principal stresses where the matrix inversion needed for calculating T can easily
be performed analytically as the only non-zero elements are located in the diagonal.

All the resulting formulae are in matrix form which facilitates an easy implementation in
computer codes as shown in a flowchart that presents a step-by-step implementation. The use
of the algorithm is exemplified with regard to Mohr—Coulomb plasticity. The method performs
faster than a classical implementation of the return mapping method.

APPENDIX A: CO-ORDINATE TRANSFORMATION MATRIX

A co-ordinate transformation tensor, A;;, has the form

X/ X/ X/
o 6 G
N S VAN VA U4
Aij=1ca o ¢ (A1)
[T T
e N
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Nzl

x/ €T

Figure Al. The x/y’z/ and xyz co-ordinate systems. A first-order tensor, v;, is shown
along two angles between the axes.

where the elements are direction cosines between the two sets of axes, e.g. c; "= cos Wy, where
lp;“ is the angle between the ys-axis and the x-axis, see Figure Al. If the xyz-co-ordinate system
is aligned with the principal stress directions the columns of A;; are the eigenvectors of the
corresponding eigenvalue problem. A transformation of the components of the first-order tensor
v/; given in the x/y/z/-system to the components v; in the xyz-system is then given by

vj =Ajl'U/,' (A2)

With the elements of A;; the transformation of the strain and stress vector, see (2), can be
written as

e=Ag or ©=A"'g (A3)

6=A"Tesr or o/=A"¢ (A4)

Here A is the transformation matrix,

- ’yr 1 l =
'l Y crley ey c ¥
X/ x/ yr .y 2/ .2/ x/ v/ z/ X/ Yz
cy ¢y Cy Cy cy Cy cy €y cy ¢y ¢y ¢y
X/ X/ vy .y 7 7/ x’ .y 7/ X/ v oz
c;c c; C; c;c; c; c; c;c ez C;
A: / !/ / / / / (AS)
X/ _x/ vy z/ .7/ x/ .y x/ .y z/ X/ z! X/ vz vz
2ep ey 2ex ey 2c0cy ooy oo ey Foyep ooy oy
X/ x/ yr .y 7! .7 x/ .y x’ .y 7/ x/ 7/ X/ vz vz
2c;°¢," 2c; ¢ 20y o ol ool toic ¢y +cc
X/ _x/ yr .y kN4 x/ .y xr Yy Y Y v oz Yoz
| 2¢eyc;’ 205 ¢ 2c5¢; e deiey o iy oy ez

A constitutive matrix, C, is transformed according to

C=ATC'A or C'=ACAT (A6)
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Abstract

An €efficient return algorithm for stress update in numerical plasticity computations is presented. The yield criterion must be
linear in principal stress space and can be composed of any number of yield planes. Each of these yield planes may have
an associated or non-associated flow rule. The stress return and the formation of the constitutive matrix is carried out in
principal stress space. Here the manipulations simplify and rely on geometrical arguments. The singularities arising at the
intersection of yield planes are dealt with in a straightforward way also based on geometrical considerations. The method is
exemplified on non-associated Mohr-Coulomb plasticity throughout the paper.

Key words: Plastic stress update, return mapping, Mohr-Coulomb yield criterion, non-linear FEM

1. Introduction

Stress update is a key part of numerical computa-
tionsinvolving material plasticity. As the stress update
is performed many timeswithin each load stepitisim-
portant that the processis fast and accurate in order to
ensure an efficient numerical solution. Given a strain
increment from the solution of the global equilibrium
equations the stress must be updated at each integra-
tion point. The traditional stress update schemes may
be divided into two categories: Explicit integration
and return mapping. The method presented in this pa-
per comes under the latter category and is an updated
and revised version of the conference paper [1]. The
return mapping method was first promoted by Krieg

* Corresponding author. Tel.: +45 79 12 76 48
Email address: 1d@aaue .dk (Lars Damkilde).

Preprint submitted to Elsevier Science

and Krieg [2] and this type of stress update method
seems to have been the most popular in recent years,
judging from the number of papers on the subject. An
overview of return mapping agorithmsis givenin the
book by Crisfield [3], and some recent contributions
are given in the work by Asensio and Moreno [4] and
Rosati and Valoroso [5].

Several classical yield criteriaarelinear in principal
stress space. This includes the Mohr-Coulomb crite-
rion often applied to soil and other granular materials.
A special case of this is the Tresca criterion for met-
as and undrained soils. Another special case of the
Mohr-Coulomb criterion is the Rankine, or maximal
principal stress criterion, which is often used in con-
junction with other criteriato mend deficiencies con-
cerning yield strength in tension. A depiction of the
Tresca and Mohr-Coulomb criteria in principa stress
space can be seen on Fig. 1.

16 January 2007
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Fig. 1. Examples of linear yield criteria in principa stress space: &) The Tresca criterion. b) The Mohr-Coulomb Criterion.

With non-linear yield criteria, the return mapping
process is usualy iterative; but the return to a linear
yield plane with a linear plastic potential can be per-
formed in one step as the gradientsin stress space are
constant along the return path. The challenge arises
when returning the stress to lines or points of inter-
section between yield planes, which is not seldom in
the case of linear criteria. When the stress point is
located on such a line or point, more than one yield
plane is active, and the gradients are undefined. Sev-
eral approaches to this problem have been proposed
by various authorsin relation to the Mohr-Coulomb or
the Tresca criterion. Abbo and Sloan [6] propose an
approximative rounding of the intersections, thereby
avoiding any singularities.

When singularities are present several authors have
proposed solutions based on Koiter's theorem [7].
Crisfield [3] takes a direct approach and performs
the derivations necessary for the stress return and
the formation of constitutive matrices in the genera
six-dimensional stress space. This approach is valid
for any yield criterion, but for isotropic yield criteria
the method presented in this paper is advantageous as
it reduces the dimension of the problem from six to
three, no matter whether the criterion is linear or not.
The approach of De Borst [8] issimilar to that of Cris-
field, but includes the non-associated case, hardening
and a method of detecting singularities similar to the
one applied in the present paper. Pankaj and Bicanic
[9] elaborate on the detection of singular regions in
the principal stress space for Mohr-Coulomb plastic-
ity. Peri¢ and Neto [10] and Larsson and Runesson
[11] carry out the manipulations and establish the
constitutive matrices in principal stress space, using
rather complicated tensorial analysis.

The method of the present paper basically yields
the same result as the methods of the references
mentioned above. However, the derivation is car-
ried out with geometric argumentation in the three-
dimensiona principal stress space and is thereby
much simpler. The same goes for the resulting for-
mulae for the stress update and formation of the
congtitutive matrices, which are al carried out in
principal stress space and subsequently transformed
back into the original six-dimensional stress space.
Additionally the method is valid for all linear elastic—
perfectly plastic material models, where the yield
functions and the plastic potentials are linear in prin-
cipal stress space. All formulae are expressed using
matrix notation and are therefore well suited for im-
plementation in computer code. The simplicity results
in computational efficiency, which is demonstrated
with numerical examples.

2. Fundamentals of plasticity and return mapping

The basic relation in small-strain plasticity isthat a
strain increment is composed of an elastic and aplastic
part

de = de® 4 deP D
In perfect plasticity, plastic strains occur during yield-
ing when

T
fle)=0 and (g—i) do =0 2

where f istheyield function and o is the stress vector.
The matrix transpose is denoted with superscript T.
The stress and strain vectors are ordered according to
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Eqg. (2a) describes a closed hypersurface in stress
space, and a stress state located inside this surface
(f < 0) is élastic. As an elastic stress increment is
related to an elastic strain increment by Hooke's law,
use of (1) provides

do = Dde® = D (de — de®) = Dde — Dde®  (4)

where D is the elastic constitutive matrix. The present
analyses are confined to linear, isotropic elasticity.
Here D is given in terms of the Young's modulus, E,
and Poisson’s ratio, v. For a finite strain increment,
integration of (4) yields a finite stress increment

Ao = DAe — DAeP = Ag® — Ao® (5)

which implies the assumption that a finite stress in-
crement is composed of an elastic part followed by a
plastic part, see Fig. 2.

Eg. (5) can also be written as

oC =B - Ao? (6)

The term Ao? is usualy referred to as the plastic
corrector stress, € = o + Ac isthe updated stress
state and o = o* + Ao® is the eastic predictor
stress state. Eq.s (5) and (6) are basically the return
mapping scheme, which is also illustrated on Fig. 2.
In general, plastic strain increments are derived from
a plastic potentia, g, as
9g

P _ -
deP = d)\ . (7)

where X is a positive multiplier. Eq. (7) is termed the
flow rule. If ¢ = f the flow rule is associated, but
in soil mechanics most often g # f. In principle the

f>0 oB

e

Fig. 2. The principle of return mapping.

plastic corrector is found by inserting (7) into (1) and
integrating

A+AX
AoP = / D@d/\ (8)
A 80’

Eq. (8) is evaluated as

Ao? = A)\D@ or 9
do |
99

Ac? = AND—— (10
Jo |

where |¢ refers to evaluation at the updated stress
point, o€, and | at the predictor point, o ®. Eq. (9)
corresponds to fully implicit integration and usually
reguires an iterative procedure for general yield crite-
rig, as o© is unknown. For linear criteria and poten-
tias, (9) and (10) yield the same result. Eq. (10) is
named the radial return after Krieg and Krieg [2] and
is exact for linear yield criteria, but in general not as
robust as the implicit version.

2.1. Infinitesimal constitutive matrix

For use in the global equilibrium iterations a con-
stitutive matrix must be calculated. This is composed
of an infinitesmal constitutive matrix, D, which is
then modified to be consistent with global equilibrium
iterations of the Newton-Raphsontype. D relatesin-
finitesimal strain and stress increments

do = D®de (12)

Eq.s (4) and (7) are combined into

do — Dde — dADY (12)
do
By insertion of (12) into (2b), d\ is found to be
T
<§—f) Dde
A= (13)
of\ p9e
do do

The relation between infinitesimal stresses and
strains is then obtained by back—substitution into Eq.
(12),



do = D®de where
T
Dg—g (g—f) D (14)
DP_D_ o ,;7
9\ p9s
oo oo

Eq. (14) is valid for any elastic—perfectly plastic con-
tinuum.

2.2. Consistent constitutive matrix

If D® is used in the globa iterations the conver-
gence will be slow, as the stress and strain increments
arefiniterather than infinitesimal. Thereforearelation
is needed between changes in finite stress and strain
increments,

dAg = D®dAe (15)

where D€ is the so-called consistent constitutive ma-
trix, first derived by Simo and Taylor [12]. Insertion
of (9) in (5), while remembering that Ao ¢ = DAe,
yields

Ao = DAe — A/\D% (16)
Jo |
A small perturbation of (16) gives
dg 0%g
dAo = DdAe — dAND—= — AND—=dAo (17)
Jdo Oo?
and after rearranging
2 —1
dro = (142D 29
Oo?
5 (18)
x D (IdAe - dA)\—g)

do

By introduction of the matrices
0%g -t
T=(I+AND—= and D°=TD (19)
0o?

Eq. (18) can be written as
dAo = D°Ae — dA)\ch—g (20)

g

Comparing Egs. (20) and (12) and following the
same approach as in obtaining (14), the relation be-
tween changes in finite stress and strain incrementsis
found to be

dAo = D®dAe
c 89 af B c
Do (8_0') D (21)
T
Jdo Jdo
where T and hereby D¢ is evaluated at oC. For linear
criteria Crisfield [ 3] showed that the consistent consti-

tutive matrix, D®*, can be calculated in a much sim-
pler fashion at the stress predictor point, o B

D% — T D%

D¢ = D¢ —

2
T:I_A)\DQ (22)
Oo? B

with D% given by (14). Hereby the matrix inversion
is avoided.

3. Stress update in principal stress space

The stress update and formation of the consistent
constitutive matrix requires the derivative of the yield
function and the first and second derivatives of the
plastic potential. Thisis a cumbersometask when car-
ried out in the general six-dimensional stress space
for linear criteria as shown by Crisfield [3]. As only
isotropic material models are considered the manipu-
lations can be carried out with respect to any set of
coordinate axes. Thereforethe predictor stressistrans-
formed into principal stress space and returned to the
yield surface. Considering thefact that the stressreturn
preserves the principal directions, the updated stress
can then be transformed back into the original coordi-
nate system. The constitutive matrices are also formed
in principal stress space and then subsequently trans-
formed. All transformations rely on standard coordi-
nate transformation. It will be shown in the follow-
ing that this approach simplifies the manipulations of
Section 2 remarkably. There are two reasons for this.
Firstly the dimension of the problem reduces from six
to three, and secondly, in the three-dimensional stress
space the stress states can be visualised graphicaly,
making it possible to apply geometric arguments. The
approach is applicable for general isotropic yield cri-
teria, but in the following only criteria which are lin-
ear in principal stress space will be considered. In this
case, closed-form solutions are found. The formulae



are exemplified on the Mohr-Coulomb material model
with a non-associated flow rule.

Linear yield criteria in the principal stresses are
visualised as planes in principal stress space. These
planesintersect in lines and points, making three types
of stress returns and constitutive matrices necessary:
— Return to ayield plane.

— Returntoaline, i.e. intersection of two yield planes.
— Return to a point, i.e. intersection of three or more

yield planes.

The three types of return are visualised on Fig. 3. The
formulae for the different returns and corresponding
congtitutive matrices will be established in the follow-
ing. The conditions for determining which return is
needed will also be established by dividing the stress
space into different stress regions.

The Mohr-Coulomb criterion comprises six planes
in principal stress space forming an irregular pyramid
as can be seen on Fig. 1b. If the principal stresses are
ordered according to

012 09 2 03, (23)

the stresses are returned to only one of the six yield
planes, as the other five correspond to an interchange
of the ordering in Eq. (23). This plane is referred to
as the primary yield plane and it is shown on Fig. 4.
The figure shows the primary yield plane from two
different points of view and also the cross sectionsin
theplaneso; = 09 and o5 = o3. Theroman numerals
refer to different stress predictor regions, which will
be defined subsequently.

In the following the components of vectors and ma-

g3 Aﬁ o
o1 02 —Aa-\p\ /
oB Re}urn to

Return to plane

—Ao?

Fig. 3. Three intersecting yield planes in principal stress space
with three types of return shown.

trices are expressed with respect to the principal axes
unless otherwise stated. This means that the last three
components of vectors are always zero and may not
be shown as a matter of convenience. Even so, al ma-
trices and vectors are six-dimensional.

3.1. Returnto a plane, general formulation

The equation of ayield planein the principal stress
space can be written as

f(o)=a" (a’—af):O (24)
where o/ is apoint on the plane and a is the gradient,
_of

The plastic potential is also taken to be linear in prin-
cipal stress space, i.e.
dg

g(o)=bYe with b= o (26)

Both a and b are constant. A first-order Taylor ex-
pansion of (5), using (9), yields the well established
solution for AoP, see, for example, reference [13],

Ao?P = 1{T(C§31 Db = f(c®)rP (27a)
vt = b"?Db a (27b)

where rP is the direction of the plastic corrector in
principal stress space, i.e. rP is at an angle with the
plastic strain direction, b.

3.1.1. Return to a plane, Mohr-Coulomb plasticity

The Mohr-Coulomb criterion and plastic potential
are usually written as
f(cr) = (01 — 0'3) + (0'1 + 03) sin ¢

—2ccosp =0 (28)

g(o) = (01 —03) + (01 + 03) siny (29)
where ¢ is the angle of internal friction, c is the co-
hesion and ¢ is the dilation angle. Rewriting Eq. (28)
and (29) to the format of EQ. (24) one obtains
flo) =aj (o o)

=koy —o3 —2cVk =0 (30)

g(o) =blo =mo, — o3 (31)
1
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Fig. 4. Different views of Mohr-Coulomb yield plane in principal stress space: a) isometric view b) Trace in w-plane, ¢) intersection of the
planes o1 = o2 and f = 0 (compressive meridian) and d) crossing of planes o» = o3 and f = 0 (tensile meridian). P is the hydrostatic

axis.

where
14 si

ar=[k0 —1T, k=oM% 32)
1—sinep
1+ si

by=[m 0 —1]T, m— L T50Y (33)

= 1 —sinvy

Asthe point on the plane, the apex point, o ., with the
principal coordinates

11T (34

_ 2cvk
S —
is chosen. The uniaxial compressive yield strength of
the material is 2¢vk = af o,. Together with the or-
dering of the principal stresses in (23), (30) describes
the triangular planein principal stress space shown on
Fig. 4. The scaled direction of the plastic corrector is
obtained by insertion of (32) and (33) in (27).

3.2. Returnto aline, general formulation

The intersection between two yield planes f; = 0
and fo = 0 defines a line, ¢ (see Fig. 5), with the
equation

(: o=tr'+of (35

where t is a parameter with the unit of stress and o ¢
is a point on the line. The direction vector of the line
isrt,

r’ x a; x as (36)

where* x” is the cross product between the first three
components of the vectors, so that r* is perpendicular
to both a; and a,. The length of r? is not important,
hence the use of “” instead of “=" in Eq. 36.

Analogously the direction of the plastic potential
line, r} is defined by



01

Fig. 5. Return to intersection line, ¢.

I‘g XX b1 X bg (37)

The plastic strain increment must be perpendicular
to the direction of the plastic potential line, rg, see
Fig. 6.

(Ae:p)Tr‘gg =0 &
(DflAap)Trg =0 &
(o — o'C)TD_lr‘gg =0 (38)

Asthe updated stress, o ©, belongsto theline, Eq. (35)
can be substituted into Eq. (38) and give a solution for
t expressed in the direction vectors of the intersection
line and the plastic potential line

()" (o" ~ o)
(rf)TD—1r!

Thisreturn also correspondsto Koiter’stheorem [ 7],
that states that the plastic strain increment is composed

(39)

01 g2

Fig. 6. The plastic strain increment is perpendicular to the potential
line when returning to an intersection line, £.

of alinear combination of the strain directions of the
active potential planes.

3.2.1. Returnto a line, Mohr-Coulomb plasticity
The Mohr-Coulomb plane on Fig. 4 is delimited by
two lines, ¢; and ¢ with the parametric equations

ri=[11k"
vy =1 k kT
where o® isthe apex point defined in (34). Theline de-
noted ¢, correspondsto triaxial compression, whereas
the line denoted /5 correspondsto triaxial tension.

The corresponding potential direction vectors are
given by

li: o=t r{—kaa, (40)
ls : U:tgrg—kaa,

1 1
I‘Z = 1 and I‘Z = (41)
9,1 g,2 m
m m

where m is defined in (32). With these direction vec-
tors the parameters t; and ¢, in (40) are found from
(39) and the updated stress is then given by (40a) or
(40b) as appropriate.

3.3. Returnto a point

If the stress is to be returned to a singularity point,
o?, eg. an apex point, see Fig. 3, there is no need for
calculations, as the returned stress is simply

o¢ =0 (42

Thisstressreturn also conformsto the solution of Koi-
ter [7], in the sense that the resulting strain increment
can be expressed as a linear combination between the
gradients of all the active potential planes.

3.4. Sress regions

In the previous sections formulae for the returned
stress state have been given. In this section it will
be clarified how to determine to which plane, line or
point the stress should be returned. In order to do
this the concept of stress regions is introduced, and
the boundary planes that separate them are defined.
Each yield plane, line and point is associated with a
particular stress region. When the predictor stress is
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Fig. 7. Boundary plane py_;1 = 0 with norma nj_p;, which
separates the stress regions | and 1.

located in a given region it must be returned to the
corresponding plane, line or point. Two stress regions,
| and Il, separated by a boundary plane, pi_11 = 0
areillustrated on Fig. 7. When the yield functions and
plastic potentialsarelinear in the principal stresses, the
boundary planes are also linear. The direction of the
plastic corrector, rP, cf. (27), and the direction vector
of the line, r’, define the orientation of the plane, and
so the equation of a boundary plane can be found as:

pi—1(o) = (rP x I'E)T(O' - Ue)
=nj_y(o—o')=0 (43)

where n;_q; is the normal of the plane. The indices
indicate which stress regions the plane separates. The
point on the plane is ¢, which can be taken as a
point that also belongs to ¢, see Fig. 7 and Eqg. (35).
If two stress regions are located as seen on Fig. 7,
the following is valid for a given predictor stress, o ®
located outside the yield locus, i.e. f(aB) = 0:

B)S0 o Reg !

pr-n(o & Returnto f =0

& Returnto 4
(44)

pru(e®) >0 & Reg. |l

3.4.1. Stress regions, Mohr-Coulomb plasticity

Four distinct returns exist for a given predictor
stress: Return to the yield plane f = 0, to lines ¢
or ¢5 and to the apex point o®. Therefore four stress
regions, I-1V, are needed, see Figs. 4 and 8. Four
boundary planes separate the stress regions, as seen
on Fig. 8. The equations of the boundary planes p_1;
and p;_y1 can be found from (43),

(45)

pr_1 (o) = (rﬁ) X rf)T (0—0*)=0
0 (46)

promm (o) = (1] x18) " (0 — o)
In principle the equations of the other two boundary
planes, p11—1v and pi1—1v, are needed, but a computa-
tionally more efficient means of determining whether
the predictor stressislocated in Region IV exists. The
parametric equations of ¢, and ¢, cf. Eq. (40), are de-
fined such that t; = ¢, = 0 at the apex. If t1 > 0 A
ta > 0, the predictor stress is located in Region IV.
This way of evaluating the stress region is efficient
because t; or t2 might be needed when updating the
stresses.

The conditions for determining the region, and
hereby the return, are then deduced from Fig. 8 and
can be seenin Tab. 1.

Table 1
Conditions for Mohr-Coulomb stress return.  Vaid when
f(eB) 2 0.

Condition Region Return to
pr-n 20 A prom £0 I f=0
pr-n <0 A pr-m <0 I £y
pr-n>0 A prom >0 I Lo
t1 >0 A to >0 v apex

4, Infinitesimal constitutive matrix

The infinitesimal constitutive matrix, see (11), re-
lates infinitesimal stress and strain increments as
do = D%®de (47)

For perfect plasticity (2b) states that the strain in-
crement must be tangential to the yield surface. This
means that D is singular in the direction of the plas-
tic strain increment, b = dg/0o,

D®b =0 (48)

Along the yield surface the stress increments are elas-
tic,
do = D®(d\b + de®) = D®de® = Dde® (49)

where (1), (4) and (7) have been utilised.
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Fig. 8. Boundary planes and stress regions in Mohr-Coulomb plasticity from two different points of view. a) Isometric view of yield and
boundary planes. b) Overview of the stress regions seen from the direction of ;. The roman numerals represent stress regions.

4.1. D* on a plane

When the updated stress state is located on ayield
plane, the infinitesimal constitutive matrix is given by
(14), here repeated as

Dba'D
e _
Py =P~y 0

4.2. D® onaline

When the updated stressislocated on alinethe only
possible direction of the stress increment is in the di-
rection of theline, r?, see Fig. 9. Theinfinitesimal con-
stitutive matrix on theline, D", must be singular with

‘ e
I'e rr

03
b,

01 02 b2

Fig. 9. An elastic strain direction vector, r* and a direction vector
ry of an intersection line between to yield planes. The vectors
b: and b are the gradients of the two potential planes, see (26),
associated with the yield planes.

respect to the strain directions associated with both of
the yield planes that define the line, b; = 9¢1 /00
and by = dg2 /00, and to any linear combination of
the two

sz(ulbl —+ Mgbg) =0 (51)

where yi; and p, are plastic multipliers. As rf is the
only possible direction of the stress increment, the
elagtic strain increment must, according to Eq. (49),
have the direction

r° =D (52
Any strain increment in principal stress space can be

written as a linear combination of three non-parallel
directions

de = dulbl + d,ugbg + d”yre (53)

Then from Eqg.s (49) and (51) the following system of
equations is defined

]f)jpre =rt
Db, =0 (54)
DPb, =0

where D only contains elements related to normal
stresses, i.e. the elements of the upper left quadrant.
The solution to Eq. (54) reads
fep rf (rg)T
¢ (r/)TD-1r!
N (a1 X ag) (bl X bg)T
- (a1 X ag)T Dfl(bl X b2)

(55




when (52) and (36) are utilised. The full solution in
six-dimensional stress space includes the shear stiff-
ness, G,

& ~ep E 393393

D¥ - G+D®, G- 56

¢ + B0 ) | o 1] &
3x3 3x3

4.3. D*P on a point

When the updated stressis located at an apex point,
see Fig. 3, the infinitesimal matrix must be singular
with respect to any direction in the principal stress
space, i.e. the direction of the normal stresses

f)ggint =0 = Dggint =G (57)

If the yield plane contains a point on the hydrostatic
axis, this will always be an apex point for isotropic
material, and hence an intersection point for six yield
planesin six-dimensional stress space. Thismeansthat
Df,; is singular with respect to any direction and
therefore

D® =0

point —

(58)
4.4. Consistent constitutive matrix

The consistent congtitutive matrix is defined in Sec-
tion 2.1. In reference [14] an dternative form is de-
rived. The idea is that the consistent constitutive ma-
trix, D®°, and hereby the modification matrix T of
(21) and (22) isformed in principal space. In principal
stress space the term AAD(92g/00%) can be formed
by geometrical arguments and achieve a very simple
form,

0%g
AND—= =

0o?

0
0
0
Aot — Ad?
o1 — 02
Aol — Ac¥
01 — 03
Aok — Aok

L 09 — 03

10

(59)

The lower right 3 x 3 partition holds for any kind of
plasticity but the upper left 3 x 3 partition consist of
zeros for linear potentials only.

The components of the plastic corrector in principal
stress space, Aoy, Ach, Ao, are given by Eq. (6).
The principal stresses o1, 02, o3, are either the val-
ues at the predictor point, o B, or at the updated stress
point, o. If the general definition of D¢, Eq. (21)
is used, then the denominators are evaluated at o ©.
Otherwise, if the plastic potential and the yield func-
tion are linear, leading to a D®° defined by (22), the
denominators are evaluated at o B.

If the denominator of any of the fractions in (59)
vanish, the fraction is reduced to unity, which is the
limit for the denominator — 0. To elaborate on this,
consider the plastic corrector

B ¢
01 — 01
AoP =P - 0% = o — ¥ (60)
B ¢
03 — 03

as can be seen from Eq. (6). As an example Eq. (60)
isinserted in the (4,4)-term of (59)

9?%g Aot — Adb
(AADSG5> S
4,4 1 2

o —of — (o8 = of)
- B B
01 — 03
C C
01 — 93
BGET (1
1 2

If the predictor stress is located in region Il, the
stress is returned to ¢; where o = 0¥, see Fig. 10.
This implies that (61) reduces to unity. This will be
the case for al stress states in the limit 0P — o3,
cf. Fig. 10, which leads to the conclusion that unity is
indeed the limit for o2 = o5,

Both the infinitesimal and the consistent constitu-
tive matrices are thus formed in principal stress space.
For linear yield criteria the infinitesimal constitutive
matrix D® is formed from either (50), (56), (57) or
(58), as appropriate. The modification matrix, T, is
formed by inserting (59) in (22). Then the consistent
constitutive matrix in principal stress space is formed
by D%¢ = T D®, and finally transformed back into
the original stress space using coordinate transforma-
tion, see Appendix A.
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Fig. 10. All predictor stress states in the limit o — of
returned to the line ¢; where o = o

are

It should be noted that the consistent constitutive
matrix found from the equations above is identical to
the consistent constitutive matrix derived by Crisfield
[3] by adirect application of the return mapping for-
mulae in Section 2. But the expression for the double
singular constitutive matrix on aline, Eqg. 55, is much
simpler, and hence faster to compute, than the corre-
sponding expression in reference [3].

5. Summary of the method

A brief summary of the method is given in Tab. 2.
Concerning the calculation of the principal stressesin
Step 2 this can be done either analytically or with a
built-in eigensolver, depending on the efficiency. The
calculation of the infinitesimal constitutive matrices
in Step 6 can be performed outside the function and
supplied as an input, as these matrices are constant
in the principal stress space. This is not the case for
the consistent constitutive matrix, and therefore the
modification matrix, T, must be calculated for each
stress update.

Thecoordinatetransformationmatrix, A for general
six-dimensional stress statesisderived in Appendix A.
When the method is used on plane problems, specia
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Table 2
Summary of the method.

INPUT: o'® A€

D yield parameters

1. Predictor stress, o/ = 6’4 + D A¢’.
2. Calculate principal predictor stress, o®.

3. Cdculate f;(aB). If dl f; <0, 6'C = o'B, D¥° = D and
EXIT.

4. Determine predictor stress region with boundary planes.
5. Calculate € by returning the stress.

6. Calculate infinitesimal constitutive matrix, D.

7. Calculate modification matrix, T.

8. Calculate consistent constitutive matrix, DFFC.

9. Cadculate principa directions and transformation matrix, A
(see Appendix A).

10. Transform oC and D back into the original space.

OUTPUT: /¢ D'&°

care should be taken in the calculation of this transfor-
mation matrix and the calculation of the modification
matrix T, see Appendix B.

6. Examples of implementation

An example of the performance of the method
is presented in this section. First the limit load is
computed for a circular footing resting on a Mohr-
Coulomb material, in the associated as well asin the
non-associated case. Next a comparison of computa-
tion time between the present method and the direct
implementation of return mapping by Crisfield [3] is
shown.

6.1. Computational example

A smooth rigid footing is placed on a domain of
frictional soil, as shown on Fig. 11. Two cases will
be considered: A strip footing, i.e. plane strain, and a
circular footing, i.e. axisymmetry. The geometry and
the boundary conditions are seen on Fig. 11.

Thefrictional soil hasaweight of 20 kN/m? and has
the yield parameters ¢ = 20°, ¢ = 0, and the defor-
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Fig. 11. Geometry and boundary conditions in the computational
example. The system is (axi-)symmetric with respect to the left
boundary.

mation parameters £ = 2- 107 Pa, v = 0.26. Both an
associated and a non-associated material model is em-
ployed. In the non-associated model the dilation angle
issetto ) = 0°. A forced displacement, u, is applied
to the footing. These parameters correspond to a cal-
culation of the bearing capacity factor IV.,. Theaverate
footing pressure, p, is computed as the sum of foot-
ing reactions divided by the footing area. The footing
nodes are free to move in the horizontal direction in
order to simulate the smooth interface.

The results will be compared with the exact val-
ues given by Martin [15,16], N., = 1.57862 for plane
strain and N, = 1.271 for axisymmetry with the
present parameters. The exact bearing capacity isthen
given by pec = N, where r is the footing halfwidth
or radius. The exact values are for an associated ma-
terial only, but they will also be compared to the nu-
merica results for an associated material.

The domain is modelled with 6-noded triangular
linear strain elements. Theleft, right and lower bound-
aries are supported against displacements perpendic-
ular to their directions. An example of the element
mesh with 1962 degrees of freedom can be seen on
Fig. 12. The global convergencetoleranceis set to

TOL = 107 5VRTR (62)

where R is the vector of globa reactions at the last
converged load step.

On Fig. 13 examples of |oad-displacement histories
can be seen. Theload has been normalised with respect
to the exact bearing capacity and the displacement with
respect to the footing radiushalfwidth. The curves are
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Fig. 12. Example of element mesh with 468 elements and 1962
degrees of freedom.
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Fig. 13. Normalized load-displacement curves generated with the
element mesh shown on Fig. 12.

computed with the mesh shown on Fig. 12, which is
rather coarse, which leads to an overshoot compared
to the exact bearing capacity. This overshoot decreases
as the mesh is refined, see Fig. 14. As expected the
associated material can sustain a higher load before
collapse.

The relative difference in maximum load for both
materialsis shown on Fig. 14. Thisrelative difference
is given by

Relative difference = (p max
Pex

Itis seen that the results converge for both materials

- 1) 100%  (63)
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Fig. 14. Relative difference from exact solution of the associated
material versus the number of degrees of freedom, ngf.

although it could be expected that in the limit the
failure load for the non-associated case will be lower
than pe.

With the denser meshes the calculation with the
non-associated material needs an increased number of
load steps to avoid numerical instability. This prob-
lem is more outspoken with higher friction angles, if
the dilation angle is kept as ¢» = 0. This problem is
related to the non-uniqueness of the solutions for a
non-associated material and is therefore not related to
the stress return in each Gauss point.

6.2. Comparison with classical implementation

For an estimation of the efficiency of the presented
method a comparison with the direct implementation
of the return mapping scheme shownin Crisfield [3] is
carried out. The results of both the returned stress and
the constitutive matrices are identical within machine
precision, so the comparison is on computation time
only. The material is the non-associated material used
in the previous section. Comparison is made based on
computation time for 10 000 stress returns and forma-
tion of the corresponding consistent constitutive ma-
trices. The agorithms are implemented in MATLAB,
and the computations are carried out on a laptop com-
puter with Pentium(R) M 1.4 GHz processor and 512
MB RAM. The material parameters are the same as
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Table 3
Comparison of computation time for 10000 stress returns.

Telassic

10000 returns to Telassic Tpresent r—
Plane 3194 s 2644 s 1.208
Line 4.867 s 3154 s 1.543
Point 33% s 2633 s 1.289

in the previous example in the associated case. The
results are shown in Tab. 3.

It is seen that the present method is substantially
faster, especialy when returning to a line, which is
the case for roughly 75% of the stress returns with the
axisymmetry calculation in the example of the pre-
vious section. One reason for the increased speed is
mentioned in Section 5, namely that D must be cal-
culated in each stress update in the classical method,
whilethisis not the case in the present method, where
D is aconstant in principa stress space. The price
to be paid, however, is the coordinate transformation.
In the above example the built-in eigensolver of MAT-
LAB has been utilised.

6.3. Rate of convergence

To examine the properties the proposed consistent
constitutive matrix, two examples of the rate of con-
vergence will be given. The examples are taken from
the calculation of the curves shown in Fig. 13 for the
non-associated materials. The residua is given by

Residual = /QTQ (64)

where Q is the global vector of residual forces.

More specifically the development of the residual
for the equilibrium iterations of load step 9 in Fig. 13
isshown in Tab. 4. It is seen that the convergencerate
is quadratic or nealy quadratic. Thisisto expected as
the presented constitutive matrices are identical to the
direct derivation found in reference [3].

In the particular load step shown in Tab. 4, the dis-
tribution of stress pointsin the different stress regions
areas shownin Tab. 5. Thetable showsthat the consti-
tutive matrix on thelinesis activated in alarge number
of the stress returns.

The average numbers of equilibrium iterations for
al theload steps shownin Fig. 13 are 3.73and 3.63 for
the non-associated material in axisymmetry and plane
strain respectively. Anidentical calculation carried out



Table 4
Development of global residual for load step 9 in plane strain and
axisymmetry.

Iteration number Axisymmetry Plane strain
1 2.018 -103 1533 -103
2 1.116 102 8.131 -102
3 3.769 2.045 102
4 4,823 .10~3 2.063 -10
5 7.859 -10~2
6 4.296 -10~6

Table 5
Distributions of stress points in different stress regions, see Fig.
8 and Tab. 1.

Regions  Return to Axisymmetry Plane strain
| plane, f =0 18 % 7%
I ling, ¢4 78 % 23 %
" line, ¢ 0 % 0 %
IV  apex o€ = o2 4% 0%

using the infinitesimal constitutive matrix, D®, in-
stead of D¢ makes these numbers increase with at
least a factor 10.

7. Conclusion

A method is presented for stress update in the prin-
cipal stress space for isotropic material models. The
formulation in principal stress space resultsin simple
and efficient formulae for the stress update, that are
easily implemented in finite element software as ma-
trix notation is employed.

The method is elaborated for linear yield criteria
with linear plastic potentials, and it is exemplified on
a Mohr-Coulomb material, assuming both associated
and non-associated plasticity. All types of singulari-
ties are handled, and it is also explained how to de-
termine if the predictor stress is located in a singu-
lar region, in a simple and unambiguous manner. The
method also includes calculation of constitutive matri-
ces in the principal stress space, for all types of stress
return. In case of stress returnsto lines and points the
formulae simplify considerably compared to the direct
implementation of the return mapping formulae.
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It is shown that the method performs correctly and
efficient in comparison with classical methods, and
that the quadratic convergence rate, which should
be expected for the consistent constitutive matrix, is
achieved.

The presented method is implemented in MATLAB
and FORTRAN and the code can be obtained from the
corresponding author.

Appendix A. Coordinate transfor mation matrix

The principal stresses and directions are found by
solving the well-known eigenval ue problem

(07 — pdij)n; =0,  i=1,2,3 (A.1)

where o/ is the stress tensor, v is the eigenvalue, d;;
is the Kronecker delta and n; is the eigenvector. The
three eigenvectors form a coordinate transformation

t€3151)r,/\ij

x/ x! _x/
C C

Co y “z

Aij=[nj nj ni] = | ¥ ¥ (A.2)

zl Lzl Lzl

c, C

Ca Yy z

where the components are direction cosines between
the two sets of axes, e.g. ¢’ = cos ¢y, where ¢y’ is
the angle between the y/-axis and the z-axis. With the
elements of A;; the transformation of the strain and
stress vector (see Eq. (3)) can be written as

el=A"l¢

o/=ATo

e = Ae/

o=A"Tor

or (A.3)

or (A.9)

The transformation matrix, A, is given as
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(A.5)

A congtitutive matrix, D istransformed according
to
D'® = AD®AT

D® = ATD"®A or (A.6)

Appendix B. Remarks about plane calculations

The derivations presented in this paper have been
concerned with general three-dimensiona stress
states. Several problems, including the ones in Sec-
tion 6.1, can be treated as plane problems, either as
plane strain or axisymmetry. In this appendix a few
remarks will be tied to the implementation of the
method in two dimensions (2D). The stress and strain
vectorsin 2D are taken to be

O Ex
0. &
o= "' and e=¢ "* (B.1)
UZ 62
Txy 25.’Ey

For axisymmetry x, y and z is taken to be radial, axial
and circumferentia directions, respectively.

y!

Fig. B.1. The zry/zr and zyz coordinate systems in a plane
problem.

B.1. Coordinate transformation matrix in 2D

Compared to the coordinate transformation matrix
in Eq. (A.5), the plane coordinate transformation ma-
trix isalot simpler. Thisis dueto the fact that the z di-
rectionisalwaysaprincipal direction. However, anim-
portant point to consider is, that the out-of-planestress,
o, is not always the intermediate principal stress, i.e.
it is possible to have o1 = o, or 03 = 0., and there-
fore o, plays a part in evaluating the yield criterion,
asthisis expressed in o7 and o3, cf. Eq. (30).

This problem can be addressed by a proper ordering
of the rowsin the stress transformation matrix, A. The
elements of A depend on the angle between the two
coordinate systems, «, shown on Fig. B.1.

If O, =01

1 0 0 0
2 02 , 3
0 cos“a sin“a cosa sina
A= ) ) (B.2)
0 sin“a cos“a —cosa sina
. . 2 .. 2
0 —sin2a sin2a cos” o — sin” «
Elseif o0, = 02
2 .. 2 .
cos“a 0 sin“a cosa sina
0 1 0 0
A= , \ (B.3)
sin“a 0 cos“a —cosa sina

—sin2a 0 sin2a cos? o — sin® «

And finaly if o, = o3



cos’a sin®a 0 cosa sina
.2 2 .
sin“a cos“a 0 —cosa sino
A= (B.4)
0 0 1 0

—sin 2a sin2a 0 cos? o — sin?

The transformation matrices shown in Egs. (B.2)-
(B.4) are based on the assumption that the full stress
vector in principal stress space has the form

(B.5)

with o1 = 02 = o3. The coordinate transformations
are then carried out at shown in Egs. (A.4) and (A.6).

g = [0'1 g9 03 O]T

B.2. Maodification matrix T in 2D

The modification matrix, T is needed for the cal-
culation of the consistent constitutive matrix, cf. Eq.
(22). In plane calculations the term AAD(92g/00?)
of Eq. (59) reduces to

0

9o 0 (B6)

b _ P
AO’C Aan

0¢ — Oy

where the indices ¢ and n take the following values
—ifoB =coPthen¢=2andn =3
—dseifol =B then¢(=1andn =3
—orfindly if o2 = o then¢ =1 andn =2

If the two active principal stresses are identical,
o¢ = oy, the term reduces to unity on account of the
elaboration given in Section 4.4.

References

[1] J Clausen, L. Damkilde, L. Andersen, An efficient
return algorithm for non-associated Mohr-Coulomb plasticity,
in. B. H. V. Topping (Ed.), Proceedings of the
Tenth International Conference on Civil, Structural and
Environmental Engineering Computing, Civil-Comp Press,
Stirling, United Kingdom, 2005, paper 144.

[2] R.Krieg, D. Krieg, Accuracies of numerical solution methods
for the elastic-perfectly plastic model., ASME Journa of

Pressure Vessel Technology (99) (1977) 510-515.

16

[3] M. Crisfield, Non-Linear Finite Element Analysis of Solids
and Structures, Vol. 2: Advanced Topics, John Wiley & Sons,

1997.
(4

G. Asensio, C. Moreno, Linearization and return mapping
algorithms for elastoplasticity models, International Journal

for Numerical Methods in Engineering 57 (2003) 991-1014.

[5] L. Rosdti, N. Valoroso, A return map agorithm for general
isotropic elasto/visco-plastic materials in principal space,
International Journa for Numerical Methods in Engineering

60 (2004) 461-498.

A. Abbo, S. Sloan, A smooth hyperbolic approximation to
the Mohr-Coulomb yield criterion, Computers & Structures
54 (3) (1995) 427-441.

W. Koiter, Stress-strain relations, uniqueness and variational
theorems for elastic-plastic materials with a singular yield
surface, Quarterly of Applied Mathematics 11 (1953) 350-
354,

(6l

[8] R. De Borst, Integration of plasticity equations for singular
yield functions, Computers & Structures 26 (5) (1987) 823—

829.

[9] Pankaj, N. Bitanic, Detection of multiple active yield
conditions for Mohr-Coulomb elasto-plasticity, Computers

and Structures 62 (1) (1997) 51-61.

D. Peric, E. de Souza Neto, A new computational model
for tresca plagticity at finite strains with an optimal
parametrization in the principal space, Computer Methods in
Applied Engineering 171 (1999) 463-489.

(10

[11] R. Larsson, K. Runesson, Implicit integration and consistent
linearization for yield criteria of the Mohr-Coulomb type,
Mechanics of Cohesive-Frictional Materials 1 (1996) 367—

383.

[12] J. Simo, R. Taylor, Consistent tangent operators for rate-
independent elastoplasticity, Computer Methods in Applied
Mechanics and Engineering 48 (1985) 101-118.

[13] M. Crisfield, Non-Linear Finite Element Analysis of Solids
and Structures, Vol. 1: Essentias, John Wiley & Sons, 1991.

[14] J. Clausen, L. Damkilde, L. Andersen, Efficient return
agorithms for associated plasticity with multiple yield planes,
International Journal for Numerical Methods in Engineering
66 (6) (2006) 1036-1059.

[15] C. M. Martin, User guide for ABC - analysis of bearing
capacity, version 1.0, OUEL Report No. 2261/03, University
of Oxford (2004).

[16] C. M. Martin, Exact bearing capacity for strip footings,
http://www.civil .eng.ox.ac.uk /people/cmm/ncngngammanx|s
(2005).



APPENDIX C
Efficient finite element

computation of Ny,

The paper presented in this appendix is accepted for publication in the Proceedings of The
Eleventh International Conference on Civil, Sructural and Environmental Engineering Com-
puting, to be held in Malta, September 2007.

— 155 —



156 Appendix C — Efficient finite element computation of N,,




Efficient finite element calculation of N,
J. Clausen', L. Damkilde' and K. Krabbenhgft?

'Esbjerg Ingtitute of Technology, Aalborg University, Esbjerg, Denmark
2Centre for Geotechnical and Materials Modelling, University of Newcastle,
Newcastle, New South Wales, Australia

Keywor ds: Mohr-Coulomb, bearing capacity, implicit integration, stressupdate, elasto-
plastic constitutive matrix, non-linear FEM.

Abstract

The performance of a return mapping scheme for plasticity with linear yield planes
in principa stress space is evaluated in relation to a Mohr-Coulomb material. For
purely frictional materials this material model is known to cause problems in numer-
ical calculations, but these problems are not experienced with the presented method.
All manipulationsare carried out in principal stress space and the singularities present
intheyield criterion are handled in asimple and robust manner. A numerical example
shows that results converge toward the exact solution of the footing bearing capacity
factor IV,. The advantage of multisingular constitutive matrices is demonstrated.

Keywor ds: Mohr-Coulomb, bearing capacity, implicit integration, stressupdate, elasto-
plastic constitutive matrix, non-linear FEM.

1 Introduction

The bearing capacity of shallow footings is usually approximated using a perfectly
plastic Mohr-Coulomb material model and the superposition principle of Terzaghi:

Dy = N + qN, + %’VBN7 D

where c is the cohesion, ¢ is the surcharge, v is the unit weight and B is the width
of a strip footing or the diameter of a circular footing. N., N, and NV, are bearing
capacity factors which are all functions of the friction angle, . For strip footings the
plane strain analytical solution of Prandtl for bearing capacity factors N, and IV, is
well established, and for circular footings Cox et a. [1] were the to first tabularize the
exact value of V. in axisymmetry for arange of friction angles.



For the bearing capacity factor dependent on the soil weight, N, the pictureis dif-
ferent. Throughout the years numerous papers have proposed many different values
for IV, based on different methods of calculation. A brief historical overview is given
recently in the paper by Hjig et a. [2]. Recently the exact value of N., has been
calculated by Martin, see references [3, 4, 5], using the so-called method of charac-
teristics. Most of these methods are based on some kind of limit state formulation,
i.e. the load-deformation path to failure is not found. The limit state calcul ations also
imply that the material must obey an associated flow rule.

The method of choice in this paper is the finite element method. Historically the
Mohr-Coulomb material model have proved difficult to work with in relation to this
method. Thisisindicated by the fact that V., has not yet been accurately determined
by use of the finite element method. One of the first attempts at computing bearing
capacity factors of a strip footing by the finite element method was carried out by
Griffith [6] using a viscoplastic technique for the stress update. The mesh used was
rather coarse and the computed V., was therefore higher than the exact values, and
also seems to be dependent on the footing width. Manoharan and Dasgupta [7] uses
the same approach, but also includes calculations on a circular footing. The bearing
capacity was found by integrating the stresses in the row of Gauss points located just
below the footing. In [7] was found that the bearing capacity factor is affected by
the dilation angle. This dependence is further examined by Frydman and Burd [8]
where the plane strain Mohr-Coulomb criterion is simulated by calibrating parame-
ters of the Matsuoka criterion [9] so the criteria match in plane strain. This, in turn,
implies that the out-of-plane stress is not taken into account. The drawback with this
approach is that athough the ultimate bearing capacity can be modelled accurately,
the displacement-load path to failure depends on the out-of -plane stress.

Some of the problems involved in a finite element implementation of the Mohr-
Coulomb criterion seem to stem from the fact that the criterion possesses corners or
edges and an apex. At these points the gradients needed in the plastic stress update
are not defined and care must be taken to ensure a correct handling. In the plane strain
cases cited above it is not stated whether the out-of-plane stress is taken into account.
If this stressisignored the only singularity present in the criterion is the apex, but if
the out-of-plane stress is included or afull 3D analysisis carried out the singularities
at the corners must be dealt with in the plastic updating scheme. In this paper a
method of return mapping for linear plasticity in principal stress space presented in
[10] will be elaborated upon with respect to Mohr-Coulomb plasticity. It is shown
that finite element results based on the method converge toward the exact value of V.,
with great precision. The significance of different methods of handling of the corners
and the apex is also examined, and finally an appendix offers some comments on a
comparison between the presented method and the direct implementation of the return
mapping found in Crisfield [11].



2 Plastic stressupdate

The method presented in this paper belongs to the backward Euler or return mapping-
class of stress update methods and isvalid for associated isotropic plasticity with yield
functions that are linear in principa stress space. The fact that the yield function is
linear in principal stress space means that it can be depicted as a plane. The method
handles yield functions composed of any number of yield planes in principal stress
space. Where two or more planes intersect corners or edges exist where the yield
function normal becomes singular. Thisis known to cause problems when the return
mapping formulag, see e.q. [11], are applied directly. In the following an outline of
the basic return mapping formulae will be given, followed by an exemplification of the
principal stress return method with respect to an associated Mohr-Coulomb material.

2.1 Return mapping

Plastic straining in an isotropic and associated perfectly plastic material is taken to
occur when the yield criterion and the consistency equation are satisfied

fle)=0 and a'do =0 2

where f is the yield function, a = 0f /0o isits gradient and do is an infinitesimal
stressincrement. Superscript ” T“ denotes matrix transpose.

The principle of return mapping is visualized on Figure 1. From the solution of the
global equilibrium equations atrial strain increment, Ae, for load step 7 isfound. An
elastic predictor stress state is calculated by

oP =o*+DAe =0 + Ac® 3

where o is a stress point inside or on the yield surface, D is the elastic constitutive
matrix and Ac® = DAe isan elastic stress predictor increment.

The updated stress point, o©, which satisfies f (o) = 0 isfound by
o =0oP — A\Da =0cP — Acg? 4

a

Figure 1: Principle of return mapping




where A\ is a plastic multiplier, D is the elastic constitutive matrix and Ao? =
AMDa is the plastic corrector stress increment. The plastic multiplier can be found
with the use of Equation (2). In the backward Euler return mapping scheme a is
evaluated at the updated stress point o and iterations are necessary to find this point.
If a is constant along the return path it can be evaluated at the predictor point, o® and
no iterations are necessary. Thisisthe case for the Mohr-Coulomb criterion treated in
this paper.

2.2 Constitutive matrices

The standard elastic constitutive matrix is given by

(1 —v v v
v 1—v v
FE v v 1—v

D:(1+I/)(1—2y) s—v

©)

L 7 V]

where F is the elastic modulus and v is Poisson’s ratio. For later use D may be
decomposed into

D=D+G (6)
where D and G relates normal and shear stresses, respectively
1—v v v
b E v 1—v v 303 q .
= X an
1+v)1—-2v) | ¥ v l-v )
0 0
3x3 3x3
— E 393 393] (8)
2(1 T V) 393 313
Here the unit matrix is denoted 1.
The infinitessmal elasto-plastic constitutive matrix is given by
Daa'D
D® =D — 9
aDa ©)

The so-called consistent constitutive matrix for use with a global Newton iteration
scheme for general plasticity is
Dfaa’™D¢
D? =D — ———— 10
aTDca (10)

Here the matrix D¢ is given by

—1 —1
D¢ = (D1 + A)\g—a> oo D= (I + AADg—a) D (11
o o

4



where I isaunit matrix of proper size. In reference [12] it is shown that the latter of
the two formulationsin (11) is numerically the most stable.

When the normal, a, is constant along the return path Crisfield [11] shows that the
consistent constitutive matrix can be simplified into

D¢ = TD® (12
with T given by
Oa
T=1I-A\ND— (13)
Jdo

3 Stressreturnintheprincipal stress space

Isotropic yield criteria can be expressed in terms of principal stresses rather than in
six-dimensional stress space. The stress return in Equation (4) leaves the principal
directions unchanged, i.e. the principal directions are the same at o® and o©. This
due to the fact that the yield plane normal a expressed in principal coordinates only
contains zeros in the elements related to shear strains. These observations are the
basis of the presented method. The predictor stress, o2, found from the solution of
the global equilibrium equations is transformed into principal stress space and the
principal directionsare found. Then the return stress cal culations and formation of the
consistent constitutive matrix outlined above are carried out exclusively in principal
stress space. The standard stress co-ordinate transformation matrix, A isthen formed
from the principal directions and the updated stress and the constitutive matrix with
respect to the original xyz co-ordinate system, here denoted by a prime, is found by

o’® =ATo" (149

DP¢ = AT DA (14b)
Here o© and D°P° are expressed in the principal co-ordinate system.
The advantages of operating in principal stresses are several:

e The expression for the yield criterion simplify
e Yield surfaces can be visualized in 3D
e The detection of singular regions is simple and numerically stable

e All vectors contain at most three non-zero components

where the importance of the last point is more significant when dealing with a non-
linear yield criterion where iterations must be performed.

In the case of the Mohr-Coulomb criterion no iterations need to be performed in
return mapping scheme as the criterion is linear in principal stress space. The return
mapping scheme for Mohr-Coulomb plasticity with respect to the general zyz axes



is explained in reference [11]. This approach gives rise to some problems, and a
suggestion to their solutionis given in Appendix A.

In the following the formulae for stress update in principal stress space for Mohr-
Coulomb material will be given. The return formulae for singular returns are consis-
tent with the findings of Koiter [13], although they are derived in a different manner.
Koiter states that the strain direction can be found as alinear combination of the yield
planes which intersect at the corner.

The constitutive matrices at acorner are derived from the assumption that they must
be singular with respect to all theintersecting yield planes at the corner. An alternative
approach is to calculate constitutive matrices at a corner on the basis of Equation (9)
with the resulting strain direction of Koiter. The advantage of the first approach will
be shown in section 6.

4 Equationsfor a Mohr-Coulomb material

In principal stress terms the Mohr-Coulomb yield criterion is usually written as
f(o1,09,03) = %(01 —03) + %(01 +03)sinp —ccosp =0 (15)

where ¢ is the angle of friction and ¢ is the cohesion. In principal stress space the
criterion forms the well-known irregular six-sided pyramid. If the principal stresses
are ordered according to

012 09 2 03 (16)
the Mohr-Coulomb criterion reduces to atriangular plane, see Figure 2.

In the following all vector components are expressed in the principal coordinate
system where the last three components vanish. For convenience, the vanishing com-
ponents are not shown when vectors are written out.

To achieve a simpler form, which is more recognizabl e as the equation of a plane,
Equation (15) isrewritten as

flo)=a' (o -0

=koy—o03—0.=0

(17)

where a is gradient of the plane, o® isthe apex point, & isafriction parameter and o..
isthe compressive yield strength. The gradient and the apex point are given by

k (1
a=+{ 0 and o%=-—°{1 (18)

and o.=2cVk (19)

and k£ and o by



Figure 2: Two different views of the active Mohr-Coulomb yield plane in principal
stress space: (@) isometric view (b) octahedral plane. The Roman numerals refer to
the different stress predictor regions. The hydrostatic axisis denoted P.

The edge lines of the criterion, ¢, and ¢, are given by

1 1
812 a:t1r1+0'“, r = 1 and 622 a:t2r2+a'“, ro = k
k k

(20)

Stress states located on the edge line /; are in triaxial compression, o, = o9 > 03.
On /, the stress state is characterized astriaxial extension, oy > 09 = 03. The apex is
givenby t; =ty = 0.

There are four different cases of stress return to be considered, see Figure 3:

1. Returntotheyield plane
2. Returnto ¢,

3. Returnto /,

4. Return to the apex

For each case the stress must be updated and constitutive matrices must be formed.
After the derivation of the stress return formulae the concept of stress regions will be
introduced in order to determine which of the above mentioned stress returns should
be applied.
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Figure 3: Four different stress returns to the Mohr-Coulomb criterion.

4.1 Returntothe Mohr-Coulomb plane

With the yield criterion given by Equation (17) the plastic corrector stress, Ao P, can
be found with the use of Equations (2b, 4) as

f(a?)

aTDa

Da=f(ob)r?, p o D3 (21)

Ao? =
7 aTDa

where r? is the scaled direction of the plastic corrector stress. Insertion of Equation

(18) in (21) providesr? as
my
rf = mo (22)
k:ml —1

where m; and m, are given by the friction parameter, k, and Poisson’sratio, v as

E(l—v)—v B vk —1)
A0k -2k M ™= A0 i) — 2k

(23)

mq =

The updated stress state is then found from (4).

4.2 Returntotheedgelines

Stress states belonging to the edge lines, ¢, and /5, must fulfill Equation (20), see
Figure 2. From the fact that the gradient, a, must be perpendicular to the lines and
with the use of Equation (20), the parameters ¢, and ¢, can be found as

(r)TD (0" — %)
(r1)™D1ry

(I‘g)TD_l(O'B _ a.(z)

t, =
! (rg)TD*1r2

and to =

(24)

When it is determined whether the stress should be returned to either of the lines, the
updated stress point, o, is then found by proper insertion in Equation (20).



4.3 Return tothe apex

When the stress must be returned to the apex, o ¢, found in Equation (18b), the stress
update is simply given by
o’ = o (25)

4.4 Stressregions

To determine whether the stress should be returned the plane, one of the lines or the
apex point, the concepts of stress regions and boundary planes are introduced. This
is similar to the approach taken by De Borst [14] and Pankaj and Bicani¢ [15]. Each
element of the yield criterion, be it plane, line or point, has a stress region associated
with it. These stress regions are separated by boundary planes, and the equations of
these planes can be used to determine the active stress region. As noted in the above
four different returns are possible with Mohr-Coulomb plasticity and each case has a
corresponding stress region I-1V associated with it, see Figure 4

1. Region |: Return to the yield plane
2. Regionll: Returntoline 1
3. Region Ill: Returnto line 2

4. Region IV: Return to the apex

Region | is separated from region Il by the boundary plane p;_y;. The direction
vector of line 1, r; and the direction vector of the plastic corrector, r? both lie in the
boundary plane, see Figure 4. This means that the plane normal can be found from

np_y =1’ xXr; (26)

pii-1v

)

Figure 4. Boundary planesin (a) isometric view and (b) view from the direction rP.
The roman numerals represents stress regions.



where” x* denotesthe cross product between thefirst three components of the vectors.
When realizing that the apex point, o must belong to p;_1y, its equation can be found
as

pru(e) =nf (e —0c") =" x11)" (6 —0") =0 (27)

Similarly the boundary plane between regions| and 111, see Figure 4, is found by
prm (o) = nITfm (0 —0") = (r" x r2)T (0—0")=0 (28)

With the equations of the boundary planesit is now possible to determine whether
the predictor stress is located in region | or in one of the regions Il and IV or Il
and V. To distinguish between the regions I1/IV and the regions I11/IV one option
is to calculate the equations of the boundary planes pi;_1v and pr_1v, See Figure 4.
Another option which is more computationally efficient is to determine the value of
the line parameters t;, t, from Equation (24). If both parameters are positive the
predictor stressislocated inregion I'V. Now it is possible to unambiguously determine
the active stress region, and hereby the proper stress return

p-n=0 A pm S0 & Regionl < Returnto the plane
t1 >0 A ty>0 < RegionlV < Return to apex
pn<0 A prm<0 < Regonll < Returnto /,
prn >0 A prm>0 <  Regionlll < Returnto/,
(29)

4.5 Infinitessmal constitutive matrix

The constitutive matrices are formed in principal stress space and then transformed
back into the original xyz co-ordinate system.

When the updated stress, o€ is located on the yield plane, the infinitesimal con-
stitutive matrix is given by Equation (9). It is noted that the infinitesimal constitutive
matrix is singular with respect to the yield plane normal, a. For Mohr-Coulomb plas-
ticity a isgiven by Equation (18a) in principal stress space and D isgiven by Equation
(5). Thisyields

E
D® = G
RO A Tty 2110
1 (k+1)v k |
(k+ 1y 1=2kv+k k(k+ 1y 0 (30)
X
k k(k + 1)v 2
0 0
| 3x3 3%3 ]

where G containsthe constitutive relation between shear components, given by Equa-
tion (8).
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When o€ is located on either ¢, or ¢, the infinitessmal constitutive matrix should
be singular with regard to all directions perpendicular to thelines. Thisisachieved by

D? =DP + G (31)

where D¢ contains elements related to the normal stresses. The matrix DS is given
by

. v’ ()T
D" = (r)TD1x! (32)
For line 1 we haver’ = r;, which gives
1 1 k
<o E 1 1 k 3O3 33
= X
0T oy —dkw— k2 |k kK 33
0 0
3x3 3x3
andforline2, r! =r,
1 k k
B E kokK 0 y
— X
T T gy — 2k + k2 |k KR (34)
0 0
3x3 3x3

If the stressisreturned to the apex point theinfinitesimal constitutive matrix should
be singular with regard to any strain direction, i.e.
DP® =0 (35)

point 6x6

4.6 Consistent constitutive matrix

For consistency with aglobal Newton iteration scheme the consistent constitutive ma-
trix is used. Astheyield plane normal, a = Jf /00 is constant along the return path
the formulation of Equation (12) is used rather than Equation (10). In this case the
term AADJda/0c can be evaluated at the predictor stress state as

"0 0 -
3x3 3x3
Aot — Ac¥ 0 0
Oa of —oy
ANDZ= = Ac? — Ac? (36)
do 1.0 0 5B 0
3x3 0y — O3
Aol — Ao}
0 0 —5 5
L 02 - 03 -
where
Ao} ob
Ao? = { Ao} and oB = (o} (37)
Ao¥ ob

11



To further examine the terms of Equation (36) when returning to a line, consider
the plastic corrector

oy — o
Ag? =c® -~ ={ 08 —0f (38)
03 — 03

as can be seen from Equation (4). As an example Equation (38) is inserted in the
(4,4)-term of (36)

A/\D% _ Aa]lz — ABJS _ oB — U?B— (Ji —0%) L ai - 0'2: (39)
0o ) 44 oy — 0y oy — 0y oy — 0y

If the predictor stressis located in region 1, the stress is returned to ¢, see Figures
2 and 3. Thisimplies, in turn, that ¥ = ¢ and therefore (39) reduces to unity. In
the limit o2 — o2, the predictor stress will be located in region Il and (39) reduces
to unity, which is therefore also taken to be the case when o = 2. This also cor-
responds to the fact that the term AADo0a/Jo describes the rotation of the principal
axes during the stress return, and this direction is arbitrary in the plane of identical
principal stresses.

After forming Equation (36) the consistent constitutive matrix, D" in principal
stress space is found from Equations (12, 13).

5 Calculation of bearing capacity factorsusing FEM

To indicate the robustness of the method cal culations are carried out on a cohesionless
friction material with the purpose of showing that the results converge towards the
exact value of the bearing capacity factor V., both for a strip footing as well as a
circular footing. It should be noted that all three principal stresses are taken into
account. The only differences between stress updates in plane strain, axisymmetry
and full 3D liesin the formulation of the stress transformation matrix, A, of Equations
(144, 14b).

Both footings are considered to be rigid and smooth and have the width, or diam-
eter, B = 2r, see Figure 5. Asthe domain is symmetric or axisymmetric only half
of the footing is modelled. The considered domain with boundary conditions can be
seen on figure 5.

The soil ismodelled with six-noded triangular elements and a forced displacement,
u is applied to the nodes connected to the footing. An example of the element meshis
seen on Figure 5. The distributed load, p = @)/ A, is found as the average of the sum
of foundation reactions, (), on the foundation area, A. The material parametersarethe
module of elasticity, £ = 2 x 107 Pa, Poisson’sratio, v = 0.26, soil weight, v = 20
kN/m? and friction angle, ¢ = 20°. The horizontal earth pressure coefficient at rest is
set to unity.

The exact values of the bearing capacity factors are given by Martin in refs. [4, 5]
and are N, = 1.57862 for plane strain and N, = 1.271 for axisymmetry with the

12
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12r

(@ + (b)

Figure 5: (a) Cross section of the static system of the computational example. The
system is (axi-)symmetric around the left boundary. (b) Example of element mesh
with 954 degrees of freedom.

parameters shown above.

On Figure 6 the results of the finite element computations are seen. Theresultsare
plotted as the relative difference between the computed, N, and the exact value of
the bearing capacity factors,

FEM

Relative diff = J
elative 1rrerence < N

(40)

Y

— 1) x 100%

On Figure 6(a) the relative difference is plotted against the number of degrees of
freedom, nq.¢ With logarithmic axes. It is seen that the computed values seem to
converge linearly. The relative difference computed using the finest mesh with ny,; =
34956 is 1.08% in plane strain and 1.20% in axisymmetry.

7|
s
(o] 12 . O,
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Figure 6: Relative difference from exact bearing capacity. (a) Double logarithmic
axes. (b) Shown with regression polynomials. n4.¢ isthe number of degrees of free-

dom.
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In order to estimate a convergence value the relative difference is plotted against
the value h on Figure 6(b), see. e.g. [16], given by

1
v Ndof

A second order polynomial is fitted to the values by the least squares method and
interpolated to . = 0, which indicates the convergence value. It is seen that the
computations converge towards the exact values of V... The relative difference of the
convergence valuesat h = 0 are -0.002% in plane strain and 0.030% in axisymmetry.

h:

(41)

6 Significance of singularity and consistency

In this section the significance of the multiple singular constitutive matrices when
returning the stress to lines and the apex is examined. An alternative to using the
multisingular matricesisto form a standard single singular matrix based on the strain
direction obtained by Koiter’s rule, as explained in Section 3.

A series of load-displacement paths similar to the ones used to find the bearing
capacity factor in Section 5 are cal cul ated with and without the multisingular matrices.
The calculationsare carried out with the mesh shown on Figure 5. Two setsof material
parameters have been used. Thefirst set isthe same asin section 5 and is denoted IV,
in Tables 1, 3 and 4, and the second is a weightless soil with cohesion, v = 0 and
¢ = 1000 Pa, the rest of the parameters are unchanged. Results from the second set
are denoted V.. in the tables.

To evaluate the significance of the multisingular matrices the number of global
equilibriumiterationswill be compared. The average number of equilibrium iterations
for a displacement step is shown in Table 1 for both plane strain and axisymmetry
conditions. It should be noted that all results for each set of parameters and each
type of strain have been computed using an identical series of displacement steps,
which makes it meaningful to compare the average number of equilibrium iterations.
It should also be noted that the value of computed bearing capacity after the final
displacement step is unaffected by the type of constitutive matrices.

In Table 1 the advantage of the to types of multisingular matrices can be seen. The
second and third column shows whether the multi-singular matrices, Dy, and D77,
have been used in the calculation. If the associated position is not ticked, a single
singular D°P found by Equation (9), with a given by Koiter's rule, has been used.
The reduction in the number of equilibrium iterationsis clearly seen when comparing
rows 1 and 4 of Table 1, especialy for the IV, set of parameters. It is also seen that
the reduction due to D} _ is greater under axisymmetric conditions. This due to the
fact that the major part of the stress returns are to the edge lines in this strain state, see

Table 2.

To quantify the significance of the multisingular matrices compared to the signifi-
cance of the consistent constitutive matrix, the calculations of Table 1 are repeated in

14



N, N, N, N,
Dy Do Plstr. Ax.sym. Pl.str. AX.sym.

1 6.3 33 841 180.2
2 Vv 6.1 27 839 911
3 v 3.5 2.5 4.9 171.4
4 v v 2.8 1.7 3.2 3.3

Table 1: Average number of equilibrium iterations for a displacement step with and
without multiple singularities in the consistent constitutive matrix.

N, N, N, N,

Return to Pl. str.  Ax. sym. Pl str. Ax. sym.
Plane, o, > 09 > 03 616% 131% 745% 6.8 %
ly, o1=09>03 21.9% 70.0% 202%  88.0%

ly, 01 >09=03 20% 03% 11% 0.0%
Apex, oy =09 =03 145% 166% 41% 52%

Table 2: Approximate distributions of the four different return types in the computa-
tions. For the location of the plane, ¢, ¢, and apex, see Figure 2

Table 3, but this time using the infinitesimal constitutive matrix. As expected more
iterations are needed that in Table 1.

The significance of DP. isnow seen to be far greater than that of D;* _ in all the

point line

calculations. Thisis due to the fact that DP. . is anull matrix and therefore there is

oint
no difference between the infinitesimal andpthe consistent version.
A final load-displacement path was computed with D°P¢ always formed from a =
[k 0 —1]T, i.e. dl singularities was ignored. The results can be seen in Table 4.
Compared to row 1 of Table 1 where Koiter’s rule is used it is seen that this rather
crude approach increases the number of equilibrium iterations, but it is till possible
to reach satisfactory results.

N, N, N, N,

Dy, Dl Plsir. Ax.sym. P.sr. Ax. sym.
1 77.8 320 4132 500.9
2 Vv 77.6 306 4132 484.5
3 v 61.9 23.7 2017 264.4
4 v v 60.9 272 2018 224.2

Table 3: Average number of equilibrium iterations for a displacement step with and
without multiple singularities when using the infinitesimal constitutive matrix.
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N, N, N. N.
Pl.str. Ax.sym. Pl str.  Ax. sym.

172.1 101.3 3295 329.5

Table 4: Average number of equilibrium iterations a displacement step when ignoring
singularities when forming the constitutive matrix.

7 Conclusion

The performance of the method presented in reference [10] is evaluated in relation
to alinearly elastic — perfectly plastic Mohr-Coulomb material. It is shown that finite
element computati ons using the presented return mapping method converge toward the
exact value of the bearing capacity factor IV, both in plane strain and axisymmetry.
The advantages of applying a multisingular constitutive matrix is demonstrated along
with the advantage of applying a consistent constitutive matrix.

The method is implemented as a MatLab function which is the one used in this
paper. The method is also found in Fortran version where it isimplemented as a user
material inthe FEM code Abaqus and asa user programmablefeatureinthe FEM code
Ansys. On contacting the authors these source codes can be obtained. These subrou-
tines handles 3-dimensional stress states, as well as non-associated Mohr-Coulomb
plasticity, which is explained in reference [17].
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Appendix A: Comparison with direct implementation of
thereturn mapping formulae

In hisbook on the non-linear finite element method, [11], Crisfield applies the formu-
lae of section 2.1 directly, i.e. the derivations are carried out with respect to the zy =
co-ordinate system. In most cases the two methods yields the exact same result, but
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some comments should be noted in relation to the formulation in [11] in order to make
the stress update stable.

Crisfield assesses whether the stress state should be returned to the plane, a corner
or the apex, i.e. the stress region, by calculating the angle, 5 between the normal
vector at the predictor point, a® and the normal vector at atrial updated stress point,
aP, see Figure 7(a). Thisangleisfound from

(aB)TaD

088 = 128 D)

(42)

Thisis not correct, as a® and aP are vector representations of strain-like tensors and
therefore the shear components are twice the tensorial shear components. One way to
mend thisisto calculate § as

cosff = —t—— 43
’ = T )
with
ab = [all3 a]23 a? %af’ %a? %aE]T and a® = [a]f a2D agD %a4D %a? %QE}T
(44)

where a?, aP are the components of a® and aP, respectively. With this correction the
(3-condition determines the correct stress region in most cases, although it sometimes
fails when the stress states are close to the apex. An aternative for determining the

stress region would be to implement the method used in references [14, 15].

In the calculation of the yield plane normal, a® the terms tan 3¢ and 1/ cos 30 are
evaluated. Here 0 isa stress invariant usually termed the Lode angle, see Figure 7(b).
If oB is positioned such that # = +£30° these terms become singular and a® can

Drucker-Prager 03

Figure 7: (a) Yield plane normals a® and aP at predictor stress state and trial return
stress state, respectively. (b) Trace of Drucker-Prager and Mohr-Coulomb yield crite-
riaand Lode angle, 0, on the w-plane.
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not be calculated. Crisfield suggests to use the corresponding Drucker-Prager stress
return instead, whenever |¢| > 29.99°. However this limit should be set as close to
as possible to +30° as the Mohr-Coulomb normal actually approaches the Drucker-
Prager normal in the limit & — +30°, as shown in reference [14]. Only in the case
of an exact match, § = +30°, does the numerical computations based on the Mohr-
Coulomb return fail on account of division by zero.

To illustrate this a series of computations were carried out on a simple mesh with
the N.-set of material parameters as described in section 6. The results can be seen
on Table 5, where the number of average equilibrium iterations for a load step is
shown for different values of the Lode angle limit. The amount of Drucker-Prager
stress returns relative to the total number of stress returns is aso shown. It is seen
that if the Lode angle limit is set too low the equilibrium iterations fail to converge
at some point. As the Lode angle limit approaches 30° the number of equilibrium
iterations drops marginally as this decreases the number of Drucker-Prager returns.
In the bottom row the performance of the method presented in this paper is shown.
The difference is due to the problems in detecting apex returns with the 5-angle, as
mentioned above.

6] limit Av. no. it. DP-returns [%)]
1 10| >29.9° 6.28 15.409 Not completed
2 10 >29.99° 431 4.140
3 0] > 29.999° 4.00 4.377
4 6] > 29.9999° 3.96 0.032
5 6] > 29.99999° 3.96 0.007
6 [0] > 29.999999° 3.96 0
7 Presented method 341

Table 5: Average number of equilibrium iterations in each load step with different
conditions on when to use a Drucker-Prager stress return.
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APPENDIX D
Slope safety factor calculations

with non-linear yield criterion
using finite elements

The paper presented in this appendix is can be found in Numerical Methods in Geotechnical
Engineering, edited by Helmut F. Schweiger. The paper was presented at the Sxth European
Conference on Numerical Methods in Geotechnical Engineering NUMGEQOQS, in Graz, Austria,
September 2006.
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Slope safety factor calculations with non-linear yield criterion

using finite elements

Johan Clausen & Lars Damkilde

Esbjerg Institute of Technology, Aalborg University Esbjerg, Esbjerg, Denmark

ABSTRACT: The factor of safety for a slope is calculated with the finite element method using a non-linear
yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test
data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial data and the corresponding
safety factor is calculated. Of the two safety factors the Hoek-Brown factor is the lower. Triaxial tests carried
out with a wide stress range indicate that the failure envelope of soils is indeed non-linear, especially at low con-
finement stresses. As standard triaxial tests are carried out at much higher stress levels than present in a slope
failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design.

1 INTRODUCTION

Slope stability is usually assessed using the linear
Mohr-Coulomb criterion, which means that the angle
of friction is constant in the entire stress range.
However experimental evidence suggests that the fail-
ure criterion should not be linear, especially in the
range of small normal stresses, (Baker 2004). This fact
can have a significant impact on the safety of slopes as
the slope failures are often shallow and hence associ-
ated with small normal stresses along the slip line. In
itself this does not disqualify the Mohr-Coulomb criter-
ion entirely, as reasonable results can be found if the
Mohr-Coulomb parameters are calibrated to test data
obtained by triaxial testing at the applicable normal
stress levels. But in standard triaxial tests the pressure is
usually much higher than the pressure along the slip
line, and because of this the safety of slopes can be
overestimated when applying the Mohr-Coulomb criter-
ion, see e.g. (Jiang et al. 2003).

The preferred method of assessing slope stability
has for many years been some type of limit formula-
tion, where the slip line giving the lowest safety factor
is sought out with the aid of an optimizing algorithm.
With the proper numerical algorithm this is possible
with both the Mohr-Coulomb criterion as well as non-
linear yield criteria, see e.g. (Jiang et al. 2003).

As opposed to this approach the elasto-plastic finite
element method is an alternative which is gaining
ground, at least in academia, see e.g. (Duncan 1996),
(Griffiths & Lane 1999) and (Zheng et al. 2005).
An advantage of slope safety calculations with the
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finite element method is that they are relatively easy
incorporated in already existing finite element code,
including commercial codes. The location of the slip
line along which the slope fails is not rigorously defined
with the finite element method but can be found by
visualizing the displacements or the plastic strains at
failure. It is also possible to employ a non-associated
flow rule in order to better capture the dilative behaviour
of real soils, as opposed to the limit formulations, where
the flow rule must be associated. The associated flow
rule overestimates the dilation effects of soils, although
this usually has little impact on the safety factor, as the
slope failure is relatively unconfined.

In this paper the soil will be treated as a linearly
elastic — perfectly plastic material. The plastic integra-
tion needed to update the stresses in each Gauss point
is done by return mapping on the basis of a method
outlined in (Clausen et al. 2006). An elaboration on the
plastic integration of the Hoek-Brown yield criterion
will be available in (Clausen & Damkilde in prep.).

2 THE CONCEPT OF SLOPE SAFETY

Traditionally the strength of soils is expressed as a
Mohr-envelope, S(o), in o — T space, see Figure 1.
Here o and 7 are the normal and shear stress on a sec-
tion of the material, respectively. The envelope
defines the relation between the maximal shear and
normal stress which the soil can endure before yield-
ing occurs. If the Mohr circle representing the stress
state at a point in the soil is located in such a way that
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Figure 1. A Mohr-envelope in o — 7 space. A Mohr circle

representing a stress state of yield is shown.

S(o) L N
T/
T v/ F
Seq(0) = S(0)/F \
i > o

Figure 2. The actual Mohr-envelope, S(o) and the Mohr-
envelope needed to maintain equilibrium, Seq(o).

the strength envelope is its tangent the material is
yielding at that point. This is illustrated on Figure 1.

The safety of a slope is usually assessed by calcula-
tion of a safety factor. Several definitions of the safety
factor exist, see e.g. (Gunaratne 2006). In numerical
applications the most frequently used definition is that
which is some times referred to as the stability num-
ber (Taylor 1948), in which the safety factor is
defined as the ratio between the actual shear strength
of the soil to the shear strength needed to maintain
equilibrium, Seq(o)

S(o)

F= Seq(0)

(M

This relation is illustrated on Figure 2.

2.1 Reduced Mohr-Coulomb parameters

The simplest Mohr envelope is the linear Mohr-
Coulomb strength envelope, see Figure 3 given by

Smc(0) =c—otan@ )

where c is the cohesion and ¢ is the friction angle.
The Mohr-Coulomb envelope needed to maintain
equilibrium, also shown on Figure 3, is given by
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Smc(0)

SMC,eq(G)
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S
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9

Figure 3. The Mohr-Coulomb strength envelope, Syc(o)
and the corresponding envelope needed to maintain
equilibrium.

Smc(0) __c—otan@

SMC.eq(0) =
=cFr—OtanQrp
where the reduced parameters ¢ and ¢ are given by

c tan@
cr = 7 and @ = arctan (F) 4)

2.2 Reduced parameters in a non-linear Mohr
envelope

As an example of a non-linear Mohr envelope con-
sider the envelope suggested by Hoek & Brown
(1997). This particular envelope is chosen as it is a
close approximation to the Hoek-Brown yield criter-
ion presented in section 3.2

_ B
Sup(0) = Ao, (Gt }0'> %)

Here 4 and B are dimensionless parameters, o, is the
uniaxial compressive strength and o, is the value of the
normal strength for which Syg(o;) = 0. The envelope
is similar to the one depicted on Figures 1 and 2. The
reduced envelope needed to maintain equilibrium is
given by

B
SHB eq(0) = SHBT@ =AFGC; (%j) (6)

c

with the reduced parameter

Ar=4 (M

The rest of the parameters are unchanged.



3 RELATION BETWEEN MOHR ENVELOPES
AND YIELD CRITERIA

For use in the finite element method the yield criterion
must be expressed in stresses related to coordinate
axes, rather than as the normal and shear stress on an
arbitrary plane. Therefore the yield criterion parallels
to the Mohr envelopes will be presented. Both of the
applied criteria are independent of the intermediate
principal stress. For this reason and for simplicity the
graphical representation leaves out this stress compon-
ent, although all stress components are included in the
finite element analyses.

3.1 The Mohr-Coulomb criterion in principal
stress space

The Mohr-Coulomb criterion in principal stresses,
see Figure 4, corresponding to the envelope of Eq. (2)
is given as

M+msin(pfccos(p :O (8)

fmc = 5 5

3.2 The Hoek-Brown criterion in principal stress
space

To represent the non-linear strength behaviour of the
soil in the principal stress space, the Hoek-Brown
yield criterion is used, see (Hoek & Brown 1997)

G n
fHB:01536c<1m62) =0 )

¢

where o is the uniaxial compressive strength, m is a
dimensionless parameter and # is a curvature param-
eter. It should be noted that the original Hoek-Brown
parameter s here have been fixed to a value of s = 1,
which is adequate for the present analysis. The Hoek-
Brown criterion can be seen on Figure 5.

Contrary to the linear Mohr-Coulomb case it is not
possible to explicitly express Eq. (9) as a Mohr envel-
ope in the T — o space which means that the Equations
(9) and (5) are not identical. The Mohr envelope is
needed in the parameter reduction because of the
safety factor’s definition in terms of the shear
strength, cf. Eq. (1).

The uniaxial compressive strength, o is present in
both criteria and the Mohr parameter g, is found from
the Hoek-Brown parameters as

o = to.(Vm2+4—m)

(10)

The dimensionless parameters 4 and B are found
by regression, see e.g. (Hoek & Brown 1997). The
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fmc<0 1

Figure 4. The Mohr-Coulomb criterion in principal stress
space.

63

/}/fHB =0
(S

fup< 0

Figure 5.
space.

The Hoek-Brown criterion in principal stress

translation from the oy — o3 stress pairs into o — T
stress pairs needed for the regression can be found
from the equation of the yield criterion with the rela-
tions given in (Balmer 1952).

c=0 -1 "%
717 903/001 + 1 (11
__01—-03 [do3
"= 365/90, + 1\ 9o, (12)

With fig given by Eq. (9) the derivative do3/do is
calculated by

863 (e)] n-l
8(51:1+nm(1_m0c (13)



4 SLOPE SAFETY BY FINITE ELEMENTS

The procedure used in this paper for determining F is
outlined below and is a reduction scheme similar to
the one applied by Brinkgreve & Vermeer (1998).

After satisfying equilibrium for the selfweight with
the true material parameters a series of steps is repeated
until equilibrium can no longer be satisfied. In each
series of steps the material parameters are reduced
gradually by a current safety factor F; according to
Egs. (3) and (6). Index i denotes the step number with
i = 0 signifying the establishing of equilibrium with the
true material parameters, i.e. F; = 1. The procedure
is outlined in Table 1.

A few comments should be tied to each of the steps
in Table 1:

1. The series of current safety factors must be prede-
termined and the numerical distance between each
factor must be reasonably small to determine the
factor of safety accurately.

2. Step 2 will be elaborated upon in the following
sections.

3. In the equilibrium iterations the stresses are
updated according to principles of the return map-
ping scheme with a method outlined in (Clausen
et al. in press).

4.1 Strength reduction for a Mohr-Coulomb
material

The reduced material parameters of step 2 in Table 1
is found by inserting the current safety factor, F; in
Eq. (4). Equilibrium iterations are then carried out
with these reduced parameters inserted in Eq. (8).

4.2 Strength reduction for a Hoek-Brown material

As mentioned in Section 3.2 there is no explicit rela-
tion between Eqgs. (9) and (5). This implies that the
material parameter reduction, step 2 in Table 1, is not
as straight forward as in the Mohr-Coulomb case. The
reduction procedure is outlined in Table 2. Some com-
ments should be attached to steps 1 and 2 in Table 2:

1. The reduced non-linear Mohr-envelope is found by
inserting the current safety factor, Fi in Egs. (6)
and (7).

2. In step 2 a number of stress points are transformed
from o — 7 space into the principal stress space.
This is done on the basis of Figure 6. The principal
stresses are given by

C=0—1tan0
with o "
cos O

61 =C+r
(14)

(53:C—r
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Table 1. Procedure for calculating the safety factor.

1. The current safety factor F; is chosen,
F>F_ =1

2. Reduced material parameters are established from F;

3. Equilibrium iterations are performed
IF global equilibrium can be satisfied
go to step 1
ELSE
take the factor of safety as F = F;
END IF

Table 2. Procedure for reducing the Hoek-Brown material
parameters, see step 2 of Table 1.

1. A reduced Mohr envelope is found from
S (o) = Sup(0)/F;

2. A number of stress points in principal stress space is
generated on the basis of Syp (o).

3. The parameters of a reduced Hoek-Brown criterion,
Jfug,; 1s found by regression analysis on the generated
stress points.

Sup(o)

T/

oo \
J

o} C'o/ o c

Figure 6. Calculation of principal stress points.

Here the centre and radius of the circle are denoted C
and r, respectively. The instant friction angle is found
by differentiation of Eq. (5)

dt
—t —_
an i

B-1
¢ = arctan (AB (M) >
(o

5 NUMERICAL EXAMPLE

(15)

Ahmad & Peaker (1977) carried out unconsolidated
undrained triaxial tests on marine soft Singapore clay.
Parameters of the Mohr-Coulomb and the Hoek-Brown
yield criteria are calibrated against the reported test
results. The regression is carried out by minimizing the
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Figure 7. The Mohr-Coulomb and Hoek-Brown criteria

fitted to test results.

Table 3. Calibrated yield parameters.

Yield criterion ~ Parameters

Mohr-Coulomb ¢ = 13.5kPa ¢ = 15.8°

Hoek-Brown o. =~ 0kPa m = 66.5 n=10.735

sum of squares of the error of the fit. Effective stresses
from the test results and the best fit of the two criteria
can be seen in Figure 7.

In the range of the experimental test data the cri-
teria are seen to be almost identical whereas significant
differences can be seen in the range of small principal
stresses. Attention should be drawn to the fact that the
Mohr-Coulomb criterion predicts a tensile strength
whereas this is not the case for the Hoek-Brown criter-
ion. The resulting parameters are shown in Table 3.
In addition to these parameters a selfweight of
v = 15.5kN/m?, a modulus of elasticity, £ = 20 MPa,
and a Poisson’s ratio of v = 0.26 are assigned to the
material.

It should be noted that o, can not be set to zero, cf.
Eqgs (9) and (5). For this reason it is set to a small
value to represent zero uniaxial compressive strength,
here o, = 0.002kPa.

5.1 Comparison between Hoek-Brown criterion
and the non-linear Mohr envelope

To obtain the non-linear Mohr envelope of Eq. (5) ten
o — T stress pairs in the experimental data range was
formed from Egs. (11) and (12). The parameter o,
was found from Eq. (10) and the material parameters

Table 4. Calibrated yield parameters of the non-linear
Mohr envelope, Syg.

Envelope Parameters
Sus o, ~ 0kPa A=417 B =10.7932
[
|

10

e
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Figure 8. Geometry and element mesh of the analyzed

slope. Measurements in m.

Table 5. Calculated slope safety factor.

Yield criterion Safety factor

Mohr-Coulomb 1.47
Hoek-Brown 1.19

A and B was obtained by regression. The parameters
for the Mohr envelope can be seen in Table 4.

A plot of Sy translated into principal stresses by
Eq. (14) can not be distinguished from the plot of fp
with the resolution offered on Figure 7, which reveals
a good agreement between the two expressions.

5.2 Safety factor calculation

The calculation of the safety factors is carried out on
a slope of inclination 1:2 with geometry and element
mesh as shown on Figure 8. A total of 902 six-noded
linear-strain triangular elements with a total of 3818
degrees of freedom are used. The deformations are
taken to be plain strain but the stress component
out-of-plane is included in the finite element calcula-
tions. Failure was reached in about 35 steps for both
materials.

The resulting safety factor for the two materials can
be seen in Table 5. It is seen that the Hoek-Brown safety
factor is significantly lower than the corresponding
Mohr-Coulomb safety factor. The reason for this can
be seen in Figure 9, where the stress contours for the
smallest principal stress, o5 is outlined together with
the position of the slip lines. It is seen that the locations
of the slip lines are almost identical and that they
are located predominantly between the contours of
o3 = —72kPaand o3 = —30kPa. From Figure 7 it is
seen that the Hoek-Brown and the Mohr-Coulomb
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——— Mohr-Coulomb slip line

————— Hoek-Brown slip line

Figure 9.

Slip lines and contour curves of smallest princi-
pal stress, a3. Compression is negative.

Table 6. Reduced material parameters cf. Tables 3 and 5.

Yield criterion Reduced parameters
Mohr-Coulomb ¢ =9.2kPa ¢ =10.9°
Hoek-Brown o, =~ OkPa m =575 n=0.732

criteria differ significantly at these stress levels,
whereas the two criteria almost coincide at stress lev-
els —500kPa < g3 < —150kPa.

The reduced material parameters corresponding to
a reduction by the safety factors in Table 5 are shown
in Table 6.

6 CONCLUSIONS

A finite element methodology for calculating the
slope safety factor with a non-linear yield criterion is
presented. For a non-linear Hoek-Brown criterion it is
not possible to translate explicitly between the formu-
lations in o — 7 space and the principal stress space
as opposed to the linear Mohr-Coulomb criterion. For
this reason the parameter reduction is carried out by
repeatedly fitting the yield criterion to a reduced
Mohr envelope. In an example Mohr-Coulomb and
Hoek-Brown parameters are fitted against the same
test data and the safety factor of a slope is calculated.
As the stresses in the slope are low compared to the

stresses at which the test data are obtained, the Hoek-
Brown criterion predicts a lower slope safety than the
corresponding Mohr-Coulomb criterion.
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APPENDIX E
An exact implementation of the

Hoek-Brown criterion for
elasto-plastic finite element
calculations

The paper presented in this appendix is submitted to the International Journal for Rock Mecha-
nics and Mining Sciences, December 2006.
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Anexact implementation of the Hoek-Brown criterion for elasto-plasticfinite
element calculations

Johan Clausen and Lars Damkilde ™
Esbjerg Institute of Technology, Aalborg University, Niels Bohrs Vi 8, 6700 Esbjerg, Denmark

Abstract

A simple stress update algorithm for generalised Hoek-Brown plasticity is presented. It is intended for use in elasto-plastic finite element
computations and utilizes the return mapping concept for computing the stress increment belonging to a given increment in strain at a material
point. In the algorithm all manipulations are carried out in principal stress space, where the Hoek-Brown criterion has a very simple form
compared to its formulation in general stress space. In principal stress space it is also simple to determine whether the stress should be returned
to one of the edges or to the apex of the yield surface and to form the constitutive matrices. As opposed to earlier finite element implementations
of Hoek-Brown plasticity the exact criterion is used, i.e. no rounding of the yield surface corners or edges is attempted. Numerical examples
and a comparison with an often used method for dealing with the corner singularities indicates the efficiency of the presented.

Key words: Hoek-Brown yield criterion, plastic stress update, return mapping, non-linear FEM

1. Introduction

Since it first appeared in [1] the Hoek-Brown criterion has
been widely used for estimating the bearing capacity and defor-
mation of rock masses. The criterion itself has developed over
time and the most recent edition can be found in [2]. One of
the reasons for the popularity of the criterion is due to the fact
that the material parameters can be estimated based on sim-
ple field observations coupled with knowledge of the uniaxial
compressive strength of the intact rock material, see e.g. [3-5].
The Hoek-Brown failure criterion is one of the few non-linear
failure criteriathat are used for practical civil engineering pur-
poses and a number of analytical and semi-analytical solutions
to practical problems have been developed. Some recent exam-
ples are found in the references [6-10].

The most versatile method of performing elastic-plastic cal-
culations on arbitrary geometries is the finite element method.
In this context the Hoek-Brown failure criterion is treated as a
yield criterion. As the linear Mohr-Coulomb criterion isimple-
mented in many commercial codes, this criterion is often used
instead of the Hoek-Brown criterion. The challenge is then to
determine appropriate Mohr-Coulomb parameters. These are
usualy found by fitting the Mohr-Coulomb criterion to the
Hoek-Brown criterion within an appropriate stress range, some-

* Corresponding author. Tel.: +45 79 12 76 48; fax: + 45 75 45 36 43
Email address. 1d@aaue.dk (Lars Damkilde).

Preprint submitted to Elsevier

times in conjunction with a tension cut-off, i.e a Rankine cri-
terion. Examples of these fitting procedures can be found in
[11-13,2].

Lower and upper bounds for the limit load for an associated
Hoek-Brown material in plane strain are computed in reference
[14], where the criterion is slightly modified in order to avoid
the singularity present at the apex.

Intheliterature only afew examplesof implementation of the
Hoek-Brown criterion in an elasto-plastic finite e ement context
are given. The ones that are known to the authors are found in
references [15], [16]. Both references introduce a rounding of
the cornersin order to avoid numerical difficulties. This means
that the results obtained with these methods in general do not
converge toward the exact solutions. In both references a non-
associated flow rule has been adopted in order to better capture
the dilatative behaviour of the rock mass.

Some commercial finite element codesincorporate the Hoek-
Brown criterion, but these implementations are also based on a
rounding of the corners and the apex. Another method of deal-
ing with the corner singularities is to approximate the criterion
with the Drucker-Prager criterion for corner stress points, see
eg. [17] and [18].

This paper presents a plastic stress update algorithm for the
exact generalised Hoek-Brown criterion including the apex and
corner singularities. The algorithm is intended for use with the
elasto-plastic finite element method and examples of this use
will be given. The plastic flow ruleistaken to be non-associated

28 March 2007



with a plastic potential which are similar to the yield criterion.
Perfect plasticity and isotropic linear elasticity are assumed.
The stress update algorithm belongs to the class of algorithms
termed return mapping, backward euler or implicit integration.

Numerical examplesthat compare the results of other meth-
ods with results obtained from the presented method will be
given. Also the added efficiency of the presented method com-
pared to that of the Drucker-Prager corner approximation will
be quantified.

The stress update algorithm code used in this paper is avail-
able from the authors in a MatLab or a Fortran version.

2. The Hoek-Brown criterion

The material parameters for the rock mass are derived from
two parametersrelating to the intact rock material, coupled with
two parameters which characterise the quality of the in-situ
rock mass. The intact rock parameters are the uniaxial com-
pressive strength of the intact rock material, o;, and the pet-
rographic constant, m ;. Examples of the latter can be found in
e.g. references[4,19]. Thefirst in-situ parameter is the Geolog-
ica Strength Index, GSI, which is a qualitative classification
number for rock masses, see e.g. reference[20]. The second in-
situ parameter is the disturbance factor, D, which ranges from
0 to 1, see [2]. For undisturbed rock masses D = 0.

Based on these parameters the failure criterion is written as

’ a

oy = 0%+ 0 (mbg—i + s) D
where o] = o}, = o, arethe effective principal stresses. In Eq.
(1) compression is taken as positive, which is often the case
in rock mechanics and geotechnical engineering. Later on in
this paper tension will taken as positive and this is denoted by
o1, 092,03 Without a prime. The emperically determined para-
meters my, s and a are given by

my = mie(G517100)/(28714D) )

s — o(GSI=100)/(9-3D) ®)
1 1

a=3 + o (e—GSI/15 _ e—zo/3) @

The rock mass modulus of elasticity, E,.,,, can be estimated
from
1-D/2

B = 1 + e(75+25D—GSI)/11

-10° MPa (5)

or, if the intact rock modulus, E;, is known

1-D/2 )

1 + e(60+15D—GSI)/11

(6)

taken from reference [5]. Examples of Poisson's ratio, v, for
rock masses are given in [3].

In the context of finite element derivations, extension and
tensile stresses are usually taken as positive. This will be the
case in the remainder of this paper. The Hoek-Brown yield
criterion is then written as

f201—03—0a<s—mb2) =0 (7

Oci
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Fig. 1. Projection of the Hoek-Brown criterion on the o1 — o3 plane. The
hydrostatic axis is denoted p. The secondary yield criterion, where a3 > o1
is shown with a dashed curve.

where oy 2 09 = o3 (without a prime) denotes the effective
stresses with tension taken as positive. A projection of the cri-
terion onthe oy — o3 planein principal stress space can be seen
on Figure 1. In this depiction the yield surface is a curve with
a slope that tends towards infinity as the curve approaches the
apex point, o;. At the apex o1 = 09 = 03 = oy, with

UtZS; (8)

which is the biaxial tensile strength. The uniaxial compressive
strength, o, is shown on Figure 1 and can be calculated by
setting o1 = 0 in Eq. (7)

Oc = 0¢i8” )

Thetrace of the Hoek-Brownyield criterion on the octahedral
plane can be seen on Figure 2. Several cross sections of the
criterion corresponding to increasing hydrostatic stress, p =
(o1 + 02 + 03)/3, have been plotted. It should be noted that
the cross sections are not made up of straight lines, but of
curves with avery small curvature. The Figure shows that as p
increases the traces change from an almost regular hexagonal
shapeinto atriangular shape, dueto theincreasing slope seenon
Figure 1. The octahedral traces has been plotted by expressing
the Hoek-Brown criterion, Eq. (7), in stress invariants

f= (2\/J_gcos 6) e sacli/a

+my JZUcli/a71 (COSQ — %) + mbpaii/a71 -0 (10)
where J; is the second deviatoric stress invariant and 6 is the
Lode angle.

TheHoek-Brown criterionin full three-dimensional principal
stress space can be seen on Figure 3. Here it can be seen that
the yield surfaces resemble a Mohr-Coulomb pyramid with a
curvature. The equations of the five neighbouring yield surfaces
can be obtained by interchanging the principal stresses in Eq.

@.
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Fig. 2. Several cross sections of the Hoek-Brown criterion on the octahedral
plane. Secondary criteria are shown with dotted curves. The geometric inter-
pretations of the Lode angle, 6, and the second deviatoric invariant, .5, are
also shown

Fig. 3. The Hoek-Brown criterion in principa stress space. The hydrostatic
stress axis is denoted p.

On Fig. 4 only the primary yield surface, that obeys o7 =
oy 2 o3 is shown. The edges of the yield surface are the
curves/, and ¢5, which correspondsto triaxial compressionand
tension, respectively. The parametric equations of the curves
aregiven by

Fig. 4. The primary Hoek-Brown yield surface in principal stress space, i.e
the surface that obeys o1 = o2 2 03.

g1 01
ly: o= o9 p = 01 (11)
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01
o3 01 = 0ci |\ S—Mp——
Oci
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2% =<0y = 01 —O0¢i | S — mb(f_ci (]_2)
o a
1
73 01— 0ci (S—mb—>
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2.1. Plastic potential

For non-associated material behaviour a plastic potentia re-
sembling the shape of the yield surface is chosen

g=01— 03— 0¢ <sg — mgﬂ> (13)
Oci

When the parametersof (13) areidentical totheir yield criterion

counterparts, the material behaviour is associated.

2.1.1. Constant rate of dilation
If a constant rate of dilation is required, the curvature para-
meter a, should be set to unity, i.e.

ge=glag =1) =0o1(mg+1) — 03 — 0csy (14)

The rate of dilation is then controlled by the parameter m 4. A
comparison with the Mohr-Coulomb plastic potentia reveas
the following connection between m , and the dilation angle,
Y, whena, =1

~ 1+siny
1 —sin

Computational examples utilising both Eq. (13) and (14) will
be given in Section 11.

1+my (15)



Table 1

Schematic principle of the global Newton scheme for equilibrium iterations in the elasto-plastic finite element method.

Load steps k =1,2,...
Pk = Pr—1+ Apg
Au, =
Global equilibrium iterations 7 =1,2,...
J _ I (Pered
K/ = K] (D7)
r, = pi — q(ug + Auj)
z?ugC = (Kfc)_lrfc
Au?—l = Aui + (Sufc
J+1 _ j+1
Aek, = BAuk
j+1,_j j+1 G4l g+l
* oIt (o], Ael™h), DPOITH (oI
Stop equilibrium iterations when ||rx|| < €||px||
u;4+1 = Ui + Aui+1

End of load step

Initiation of the k’th load vector.

Initiation of the k’th displacement increment.

Form the global tangent stiffness matrix.

Calculate the force residual, r;c from p;, and internal forces, q.

Solve the FEM equations.

Update displacement increment.

Calculate strain increment.

Update stress and constitutive matrix. The present paper deals with this step.
e is a prescribed tolerance. Usualy around 10~3.

Update the displacement.

3. Elasto-plagtic finite element procedure

When the finite element method is used for solving elasto-
plastic problems, the load and/or the forced displacement is
applied in increments. In each increment equilibrium is sought
by minimising the force residual, i.e. the difference between
the external and internal forces. Global equilibrium iterations
are then carried out until the norm of the residua is smaller
than a prescribed number. A popular method for establishing
equilibrium is the Newton-Raphson scheme. With the Newton-
Raphson scheme the stiffness matrix is updated in each equi-
librium iteration. The stresses and the constitutive matrices are
updated according to the constitutive law, i.e. linear elastic -
perfectly plastic Hoek-Brown plasticity in this paper.

A schematic presentation of the Newton-Raphson schemein
the elasto-plastic finite element method is presented in Table 1.

The remainder of this paper deals with the update of the
stress and the constitutive matrix. The corresponding row in
Table 1 is marked with ” * “.

The stress update can be carried out by different means. The
two main classes of stress update is the forward Euler proce-
dure and stress update by return mapping. The basic forward
Euler procedure has the advantage of simplicity, which is a no-
table advantage in the implementation of complex constitutive
material models, see e.g. reference [21]. One of the drawbacks
of the forward Euler procedure is that the updated stress will
violate the yield criterion if corrective measures are not taken.

In the recent years it seems that the most used procedure for
stress updateis the return mapping schemein someform, which
is aso the method of choice in this paper. The calculations
involved are somewhat more complicated than in the forward
Euler method, but an inherent feature of the schemeis that the
updated stresses do not violate the yield criterion. The method
is also proven to be robust and able to handle reasonably large
load steps, see e.g. [19].

Nagtegaal [22] showed that the continuum constitutive ma-
trix, which comesfrom standard derivations of the elasto-plastic

equations and is used in the forward Euler method, is not con-
sistent with a global Newton-Raphson scheme. Simo and Tay-
lor [23] then derived a consistent constitutive matrix for use
with the return mapping scheme with global Newton-Raphson
iterations. In order to calculate this, the second derivative of
the plastic potential is needed, and this is one of the reasons
that the manipulations in the return mapping scheme are more
complicated than the basic forward Euler method.

For Hoek-Brown plasticity the direct calculation of the sec-
ond derivative of the plastic potential is rather cumbersome.
Another issue that complicates the implementation of the return
mapping scheme for Hoek-Brown plasticity is the presence of
discontinuitiesin the yield surface. Care must be taken in order
to ensure a proper stress update and cal culation of the constitu-
tive matrix at these points. These discontinuities are the reason
that the exact form of Hoek-Brown plasticity has not previously
been used in elasto-plastic finite element calculations.

In the following the return mapping method will be sum-
marised followed by the specific formulae for a linear elastic -
perfectly plastic Hoek-Brown material.

4. Fundamentals of plasticity and return mapping

The basic relation in small strain plasticity is that a strain
increment is composed of an elastic and a plastic part

de = de® + de? (16)
In perfect plasticity, plastic strains occur during yielding when
T
fle)=0 and (ﬁ> do =0 a7)
Jdo

where f is the yield function and o is the stress vector. The
matrix transpose is denoted with superscript T. The stress and
strain vectors are ordered according to

o = [Ugc Oy Oz Txy Txz Tyz]T 18
_ T (18)
€=z €y €5 264y 2e5. 2ey;]



Equation (17a) describes a closed hypersurfacein stress space,
and a stress state located inside this surface (f < 0) is elastic.
As an elastic stress increment is related to an elastic strain
increment by Hooke's law, use of (16) provides

do = Dde® = D (de — de?) = Dde — Dde” (19)

where D is the elastic congtitutive matrix given by Young's
modulus, E, and Poisson’s ratio, v

D o
D= o B(j; (20)
3x3
where
1—v v v
_ FE
D:(1+V)(1_2y) v 1l—v v and (21)
v v 1—v
G:L I (22
2(1+V) 3x3

where I is the unit matrix.
For afinite strain increment, integration of (19) yieldsafinite
stress increment

Ao =DAe — DAe? = Ao® — Ao? (23)

which implies the assumption that a finite stress increment is
composed of an elastic part followed by a plastic part, see
Figure 5.

A f:>0 UB

/

Fig. 5. The principle of return mapping.

Equation (23) can aso be written as
oc® =0 - Aco? (24)

The term Ao? is usualy referred to as the plastic corrector
stress.The updated stress, o, and the predictor stress state,
oB, are given by

o =%+ Ao (25)
o® =o” + Ac® (26)
respectively. Equations (23) and (24) are basicaly the return
mapping scheme, which is also illustrated on Figure 5. In gen-
eral, plastic strain increments are derived from a plastic poten-
tia, g, as

0

de? = dx 24 (27)
oo

where )\ is a positive multiplier. Equation (27) is termed the
flow rule. If ¢ = f the flow rule is associated. In principle
the plastic corrector is found by inserting (27) into (19) and
integrating

A+AN
Ao? = / D@d)\ (28)
A 80’

Equation (28) is evaluated as

Ao? = A)\D@ or (29)
0o |

, dg

Ao? = AND-= (30)

do |y

where |¢ refers to evaluation at the updated stress point, o ©,
and |p at the predictor point, o ®. Equation (29) corresponds
to fully implicit integration and usually requires an iterative
procedure for general yield criteria, as ¢ © is unknown. For
linear criteriaand potentials, (29) and (30) yield the sameresult.
Equation (30) is named the radial return after Krieg and Krieg
[24] and is exact for linear yield criteria, but in general not as
robust as the implicit version.

5. General and principal stress space

Previous finite element implementations of Hoek-Brown
plasticity have carried out the manipulations in the zyz-stress
space, where the criterion and the plastic potentia are ex-
pressed via the stress invariants, see Eq. (10). As can be seen
from Section 4 and Appendix D the return mapping scheme
requires the first and second derivatives of the yield function
and the plastic potential. The expressions for these derivatives
are quite complicated in genera stress space. Moreover the
handling of the discontinuities present at the edges and the
apex is difficult in the general stress space, which is the reason
for the fact that previous implementations utilise some sort of
rounding of the corners and the apex.

The Hoek-Brown criterion in its basic form is expressed in
the principal stress space, where it can be visualised in three
dimensions. Moreover the first and second derivatives of the
criterion and the plastic potential are easily computed. These
arguments are the motivation behind the method used in the
present paper, which is based on performing all the manipula-
tionsin the principal stress space. In a return mapping context
this path has been taken before for other criteriain e.g. refer-
ences [25,26], which both rely on complicated tensor algebra.
Here a much simpler approach will be taken, which only in-
volves simple matrix manipulations and geometric arguments,
along the same lines as reference [27].

As the elasto-plastic Hoek-Brown material model is consid-
ered isotropic the stress return and calculation of the constitu-
tive matrix can be carried out with respect to any set of coor-
dinate axes. Therefore the predictor stress is transformed into
principa stress space and returned to the yield surface. The
point isthat the principal stress directions do not change during
the return stress increment for isotropic materials, due to the
fact that the shear stresses remain zero during the return. The



updated stress can then be transformed back into the origina
co-ordinate system. The constitutive matrices are also formed
in principal stress space and then subsequently transformed. Al
transformations rely on standard coordinate transformation. It
will be shown in the following that this approach simplifies the
manipulations of Section 4 remarkably. There are two reasons
for this. Firstly the dimension of the problem reduces from six
to three, and secondly, in the three-dimensional stress space the
stress states can be visualized graphically, making it possible
to apply geometric arguments.

In the following the stress update is outlined in parts. The
first explains how to calculate the updated stress, &, in prin-
cipal stress space. The second part outlines how to choose the
correct form of return and finally the formulafor the consistent
constitutive matrix will be given.

In this paper a vector or amatrix with an overbar, e.g. a or T
has 3 or 3 x 3 elements expressed with respect to the principal
co-ordinate system.

6. Stress update for Hoek-Brown plasticity

From the solution of the global finite element equations, cf.
Tab. 1, the predictor stress state in the general stress space,
oB, isgiven viaEq. (26). The principal predictor stresses, 2,
are then found by standard methods. In principal stress space
the stress is then returned to the yield surface and the updated
stress is then back transformed into zy z-space.

For Hoek-Brown plasticity four different stress returns apply,
as can be seen on Fig. 6,

— Return to the the yield surface
— Return to the curve ¢,
— Return to the curve ¢4
— Return to the apex

The method for determining the correct return is outlined
in Section 7. The first step is to determine whether the stress
should be returned to the apex. If this is the case the updated

/ Return to &
03 —

Return to /5

Return to surface

Fig. 6. The four different stress returns.

stressis simply the apex stress defined in Eq. (8). If the stressis
not to be returned to the apex, ayield surfacereturnis initiated,
which will be outlined in the following.

The method for returning the stress to the edges is outlined
in Appendices B-C.

For use in the following the gradients of the yield surface,
(7), and the plastic potential, (13), will be given here,

k k,

of _ - 99 _

72 =10 ad b=->=40 (31
—1 -1

5:

where k and k&, are the derivatives with respect to o1,

8f o1 a—1
k=——=1+amp|s—mp— and (32
0o Oci
ag o ag—1
kg = Dot =14+agmg | sg— mgg—m_ (33

The gradients a and b can be seen on Fig. 7.

6.1. Return to the yield surface

As generatrices of the yield surface and the plastic potential
are paralel to the o5 axis the iterations needed to determine
the stress return are one dimensional only, i.e. a scalar Newton-
Raphson procedure is sufficient. The unknowns are the largest
and smallest principal stress, o and 0§ These terms are con-
nected according to Eq. (7), which can be rewritten in order to
reduce the problem to a single variable

o3(01) = 01 — 0 (s—mb%) (34)

The value of the updated intermediate principal stress, o5,
can be found from the €elastic return calculation, once o { and
oS have been determined.

Consider the terms presented on Fig. 7. On the figure aline
connects the current updated stress point, %, with the stress
predictor point 2. The direction of the current plastic correc-
tor, s, is aso shown. From Eqg. (29) and (31), this direction is
given by

g = const.

Fig. 7. Return to the yield surface. Projection onto the o3 — o3 plane.



(1-v)ky—v
vky —v (35)
vk —14+v

E
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with b given by Eq. (31) and D being the elastic constitutive
relation between normal components given by Eqg. (21).

The slope of the line connecting ¢ with &® is denoted ..
The slope of s is denoted «. For the exact updated stress these
slopes must be identical, i.e.

hi(@°) = hp(of) = ar —as =0 (36)

Thetask isthento solve Eq. (36) for o {'. Thisisdone efficiently
with the Newton-Raphson method. From the current value of
the returned largest principal stress, aﬁi, at iteration step 4, a
new estimate is given by

hf(olci)
Ulc,i-‘rl = a-lc,i - h/f(o_?,) (37)

Iterations are performed until
oy, — of;| < TOL (39)

where TOL is the tolerance. The detailed calculation of /', can
be found in Appendix A.

It should be noted that h s is not defined for stress values
beyondtheapex,i.e.if o1 > 0. IncaseEq. (37)yieldso{, ; >
o acorrected new estimate can be found by

01 = 00y + (1 — 0)ot,, 0<o<1 (39)

where the authors have found that ¢ = 0.9 works well.

When avalue of 0§ that satisfies (38) is found, o is found
by inserting o{ into Eq. (34). The value of the intermediate
principal stress is found as follows

oS =tpsg + 0P (40)
with
cC_ B
ty = 9r — 91 (41)
S1

where sy, s, arethefirst and second elements of s, see Eq. (35).
The plastic corrector, which is needed in the calculation of
the constitutive matrix in Section 8, is found from Eq. (24) as

Ag? =B — ¢ (42)
7. Determination of correct stress return

This section will clarify which type of stress return should
be used.

7.1. Conditions for an apex return

First the concept of boundary planes is introduced in order
to determine if the stress should be returned to the apex. A
boundary plane is a plane in principal stress space that sepa-
rates different stress regions. The boundary planesp; = 0 and

g1

Fig. 8. Boundary planes and their normal vectors for determining whether a
predictor stress should be returned to the apex.

p2 = 0, that forms the boundary of the apex return stress re-
gion, are shown on Fig. 8 together with their normals, n; and
ny. With the equations of these boundary planes in hand, the
conditions for a possible stress return to the apex are

f@®) >0 A pi(@®) =20 A p(eB) 20 (43)

Threedirection vectors, s¢, s; and s, define the orientation of
thetwo planes, see Fig. 8. These vectorsarethe stress directions
corresponding to three unique strain directions a the apex,
denoted b?, by and by, i.e
§t = DBt, S1 = f)l_)l and Sg = DBQ (44)

Thefirst of the strain directionsisthe plastic potential normal
at the apex, bt, which from Eq. (31b) is found as

kg (o1)
b'=4¢ 0 (45)

If ky(or) = oo, which is the case for associated plasticity, b
is evaluated as

1

b =

o

(46)
0

The second direction is the strain direction at the apex, by,
parallel to the compressive plane o1 = 03, i.e.

by = ! (47)

kg (ot)

where the fact that b, is perpendicular to the direction of the
potential line, t¢, Eq. (B.2), has been exploited. Analogously
the third strain direction, b, parallel to the tensile plane, o5 =
o3 isfound as
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1
ky(o)

1
ky(or)
As stated earlier, the stress directions s, §; and s, define

the orientation of the boundary plane normals, which are also
shown on Fig. 8. The normals n; and n, are calculated by

(48)

n; =5§" x 8§ and ny =8y x & (49)
Finally the equation of the boundary planes are given as

p@)=nl(g-5)=0 and (50)
pa(6) =ni (6 —a;)=0 (51)

where & = &2 when the predictor stress state is evaluated
using Eqg. (43).

7.2. Conditions for surface or line returns

If the stress is not to be returned to the apex point, i.e. the
conditionsin Eq. (43) arenot fulfilled, asurfacereturnis carried
out as outlined in section 6.1 and 6 = [o¥ of o7 is
calculated. The components of &€ reveals if the yield surface
return is correct

—If 6 = 0f = of then the return to the yield surface is
correct.
— If 6§ = o then the stress must be returned to the curve ¢4

with the procedure outlined in Appendix B.
— If 6§ < 0§ then the stress must be returned to the curve £

with the procedure outlined in Appendix C.

When the stress is returned to a curve, an efficient first esti-
mate of O'E ,—1 intheiteration procedure of is the former value
of o¥ from the yield surface return.

8. Consistent constitutive matrix for the Hoek-Brown
criterion

In general stress space the constitutive matrix consistent with
the global Newton schemefor the global equilibrium equations,
Dere| is given by

aof
D* oo (30’)

D¢ =D° — (52)
o\ e 99
Jo Jdo
where D€ is a modified elastic stiffness given by
D°=TD (53)
The modification matrix, T is given by
29\ "
(I + AAD—) (54)
Oo?

where all the terms are evaluated at the updated stress point,
o©. The derivation of D“P¢ can be found in Appendix D and
in eg. [18].

This formulation of D ¢P¢ isvalid for areturnto ayield sur-
face. In this section it will be shown that the calculation of the

consistent constitutive matrix in principal stress space, D¢, is

asimple task compared to adirect calculation in general stress
space using Egs. (54), (53) and (52). In this section a vector or
amatrix with ahat, ” e “ isafull 6 x 1 vector or 6 x 6 matrix
expressed with respect to the principal coordinate axes. Thisis
as opposed to the overbar ” e “ introduced in Section 5, which
signifiesa 3 x 1 vector and a3 x 3 matrix.

The calculation of D¢P¢ isdependent on whether the returned
stress belongs to the yield surface, a line or a point. In the
following formulae for D¢ for the three cases will be shown.

8.1. Calculation of D“P¢ on the yield surface

In the evaluation of T the second derivative of the plastic
potential is needed, cf. Eq. (54). A direct calculation of this
derivative demands that the potential, (13), must be given in
general stress space, where the derivations are a cumbersome
task. Aswill be shown this calculation simplifies when carried
out in principal stress space. This is done in two steps. First
with respect to the normal stresses, T = T, 3.1-3, and then
with respect to the shear stress related part of T.

The second derivative in principal stress space with respect
to the principal stresses 92g/da? is simply calculated by dif-
ferentiation of the potential in Eq. (13)

dky

(55)

where dk,/doy = 0%g/do? is givenin Eq. (A.5).
Then T is given by

82
( I + A)\Da—>

The plastic multiplier A can be found from e.g.
_l1ag7|
|Db|
whereb = 0g/0& isthe plastic potential normal, given by Eq.
(31b) and || e || signifies the euclidian norm of the vector.
Thelower right 3 x 3 part of T, denoted by T = T4_6.4_6,

relating to the shear stresses assumes a particularly simpleform
as shown by Clausen et a. [27]

(56)

(57)

[Act — Adh ]
of —of
p p
T - I Aoy — Ao
= |1 + C_ _C
3x3 0'1 —0'3
p p
Aoy — Ao
i of —of |

(58)

If any of the denominatorsin Eg. (58) vanish, the corresponding
element in T vanishes.



The modification matrix, T for stress return to the yield
surface is then assembled as

N T

T = _ (59)
T

The consistent constitutive matrix in principal stress space,

D¢ is then calculated by Eq. (52) by replacing D¢ with

D¢ = TD,

R R Ael aTTHe
pere — e DPa D7 (60)
aTDcb
where
a b
0 R 0
a= and b= (61)
0 0
0 0

8.2. Calculation of D*P¢ on a curve

When a stress return is made to a curve the modification
matrix, T, is changed slightly compared to the yield surface
return, see e.g. [18],

9%g 929\
where A )\, isthe plastic multiplier related to the neighbouring
plastic potential, g,,. Two neighbour plastic potentials, namely
the compressive neighbour potential and the tensile neighbour
potential will be used. The corresponding yield surfaces are
shown on Fig. 9.

g3
Tensile
o1 > o3 >0y  neighbour
%/ surface
Tensile
corner, {2 09
09 = 03
Compressive
neighbour

surface

01 > 02 > 03

Compressive
corner, {1
01 = 09

Fig. 9. A cross section of the Hoek-Brown criterion on the octahedral plane.
Compressive and tensile neighbour criteria are shown with dashed curves.

The equations of the neighbour potentials and their deriva-
tives are obtained by interchanging the components of the prin-
cipal stress vector as shown on Fig. 9. For the compressive

secondar){ region with oo > o1 > o3 the terms needed in cal-
culating T are

0 0
0%gn _ dkg
062 | doy

where it should be noted that oy = o2 when returning to ¢,
and therefore dk, /dos = dky/doy. See Egs (33) and (A.5) for
kg and dkg/dos.

For areturn to the tensile corner, i.e. the curve ¢, the terms
needed are

_ 990 _
" 9

b (63)

A dky
! %gn, doy

=4-17, 062 = 0 (64)
0 0

- dgn
b, = —2%
GE

8.2.1. Plastic multipliers

When returning to a curve, the assumption by Koiter [28]
states that the plastic strain is alinear combination of the strain
directions involved,

AP = AXb + A\, b, (65)

where Ae? = D~'Ag?, see (B.4).
For the compressive corner, ¢1, this gives

Ael kg 0
AeP = S Aeh p = AN 0 p + AN K, = (66)
A&l -1 -1
Ag? Aeb
AN="51 and AN, =222 (67)
kg kg
For the tensile corner, /5, we have
Ael kg kg
AeP = ¢ Ahp =AXNT 0 p +AN {1 = (68)
Al -1 0
AN=—-Acl and AN, = —Ac) (69)

Now T can be computed from Eq. (62) with insertion of
termsfor either /1, Egs. (55), (63) and (67), or for £, Egs. (55),
(64) and (69). The full modification matrix in principal stress
space, T is again given by Eq. (59), as the shear components
T are still given by Eq. (58) when the returned stress is on
an edge curve.

8.2.2. Constitutive matrix on a curve

With the modification matrix a hand, the modified elastic
stiffness matrix in principal stress space, D¢ is then given by
Eq. (53), D¢ = T D.

On ayield surface the consistent constitutive matrix, D¢,
would be calculated by Eq. (60), which shows that Dere is
singular with respect to the plastic potential normal, b, i.e.

Aepcre
Db = 0, (70)



When the stress state is located on a curve, D°”° must be
singular with respect to all directions perpendicular to the di-
rection vector of the plastic potential curve, 9. In principal
stress space the consistent constitutive matrix that fulfils this
condition is given by, [29]

r(r9)"

Gc

DePe = (71)

where G¢ is the bottom right 3 x 3 quadrant of D¢, i.e. is
the modified elastic equivalent of G defined in Eq. (22). The
formulafor the double singular constitutive matrix of Eq. (71)
isagreat simplification compared to the expression for adouble
singular constitutive matrix in general stress space, see e.g.
reference [18].

8.2.3. Constitutive matrix on the apex

When the updated stress is located on the apex the constitu-
tive matrix must be singular with respect to al the intersecting
yield surfaces. This means that it must be a zero matrix, i.e.

Dere — 0
6Xx6

(72)

9. Summary of the method

A summary of the method can be seen in Tab. 2.

The references in the table refer to a full 3D stress state
calculation. Some remarks and differences regarding a plane
calculation can be found in Appendix F.

In Tab. 2 the calculation of the plastic strain increment is
given. This is not necessary for the stress update calculation,
but may be needed for the purpose of tracing and plotting the
plastic strain.

10. Comparison with the Drucker-Prager corner
approximation

A method of bypassing the singularities when the updated
stress is located on a corner curve, is to calculate the Drucker-
Prager constitutive matrix for this particular stress return, see
e.g. references [17,18]. Here a numerical example will indi-
cate the advantage of the presented approach over the Drucker-
Prager approximation.

The example is analogous to the numerical example in Sec-
tion 11.2, where the bearing capacity of a footing on a Hoek-
Brown material is computed. See this section for material pa-
rameters and geometry.

The Drucker-Prager approximation can be seen on Fig. 10,
where also the gradients bPP and b5P at the corners are shown.
These gradients are calculated form Egs. (47) and (48), respec-
tively, with o{ replacing o,
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Table 2
Return mapping scheme for the Hoek-Brown criterion. Performed in each
Gauss-point.

INPUT: o®, Ae, D, material parameters

1 6B =04+DAe

2. Transform predictor stress, o, into principal stress space
% =[(e®)T 000"

. Check yield criterion:
IF f(&B) < 0: No stress return:

B Dere =D

o€ =B, AeP =0
ELSE Stress return
. Stress return and constitutive matrix

Compute p1 (&) and p2(&B) from Eq. (43)

IFp1(6B) 20 A p1(&B) 20 return to apex:
Set 6€ = &4
Set D»¢ = 0 from Eq. (72)
6x6
EL SE return to the yield surface:
Compute &€ and A&P by solving Eq. (36)
Compute T by Eq. (59)
Compute Der¢ by Egs. (53) and (60)
END IF

IF 0§ = o€ return to curve ¢
Compute € and A&? by solving Eq. (B.3)
Compute T by Egs. (62) and (59)
Compute DeP¢ by Egs. (53) and (71)

ELSEIF 6§ < 0§

return to curve £o:

Compute &€ and A&P by solving Eq. (B.3)
Compute T by Egs. (62) and (59)

Compute DeP¢ by Egs. (53) and (71)

END IF

AP = D-1A&P
5. Transformation back into the original coordinate system
Find transformation tensor A;;, shown in Eq. (E.2) in Appendix E
Use A;; to form A from (E.6)
oC = ATsC
AeP = A~1AeP

Dere — A]jepcAT

END IF
OUTPUT: o€ D¢ AegP
1 -2
i.DP 1 i.DP !
b1 = and b2 =93k (UC) (73)
9 g\91
. 1
ka(or) kg(of)
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Fig. 10. The Drucker-Prager approximations and potential gradients at the
corners.

The yield surface normals are calculated analogously with
k(o) replacing k,(c¥). The congtitutive matrices are then
found by Eq. (52).

Regarding the constitutive matrix on the apex, thisisfound by
using the values of the potential gradient and the yield surface
normal at the apex, i.e. Eq. (45).

The number of global equilibrium iterations of the methods
are compared, using the bearing capacity calculation of Section
11.2. The material is associated with the parameters of Tab. 5
and the mesh shown Fig. 17 is used. A forced displacement is
applied in 35 steps. The average numbers of global equilibrium
iterations for each load step are shown in Tab. 3

Table 3
Average numbers of equilibrium iterations for the two methods.
Present method DP approximation
Plane strain 6.00 9.09
Axisymmetry 5.74 285

As seen from the table there is only a small difference for
plane strain problems. This due to the fact that only a few cor-
ner and apex returns take place. Less than one percent of the
total number of returns for this example. In the axisymmet-
ric problem the difference is significant, due to the fact that a
large percentage of the stress returns are corner returns, approx-
imately 70 % in this example. In this case the present method
presents alarge improvement. Similar large improvements may
be expected in 3D solids.

11. Computational examples

In the following some results from elasto-plastic finite el-
ement calculations on a Hoek-Brown material using the pre-
sented method will be presented. The elements used are trian-
gular six-noded linear strain elements with two displacement
degrees of freedom in each node. Two validation examples, a
comparison with an often used approximation and an indication
of the consistency of the constitutive matrix will be given.

11

— Calculation of the displacement of a tunnel wall during ex-
cavation
— The bearing capacity of a strip and circular footing
— Anindication of the efficiency of the presented constitutive
matrix is given Appendix G
The presented method has al so been used in an elasto-plastic
finite element calculation of the slope safety factor, see refer-
ence [30].

11.1. Tunnel excavation

A classical axisymmetric problem using a Hoek-Brown ma-
terial isthe calculation of the displacement of tunnel walls dur-
ing excavation. Several semi-analytical and numerical solutions
to this problem exist, see eg. [6,7,9].

The geometry of the problemis shown on Fig. 11. The exca-
vation of acircular tunnel in an infinite rock mass is simulated
by reducing the pressure, p, on the tunnel wall from the initial
value p, to the end value pg = 0. Theinitial value, p., isthe
hydrostatic pressure in the infinite rock mass. The tunnel ra-
diusis denoted r, and the radius in which the material changes
from plastic to elastic behaviour is denoted R. The displace-

Plastic limit

- -~

Tunnel surface

Infinite rock material

Fig. 11. Geometry and definitions of the tunnel excavation problem.

ment of the tunnel wall is denoted « and the final vaue, u,
will be compared to an exact solution, u., of [7], as will the
value of R, Rey.

The material and geometric parameters can be seen in Tab.
4. From the table it is seen that « = 1/2, which is the value
used in the original Hoek-Brown criterion from reference [1].
The curvature parameter of the plastic potential is set to unity,
ag = 1, which indicates a constant plastic dilation rate. The

Table 4
Parameters in the tunnel excavation example. The exact solutions, wx and
Rex are taken from reference [7].

oc; = 210 MPa E =60.0GPa Poo = 100.0 MPa

mp = 1.70 v =0.20 po =0

s =0.296 mg = ro =10.0m

a =1/2 sg =0.296 Uex = 20.9 mm
ag = Rex = 10.62m
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Fig. 12. Example of mesh geometry and boundary conditions. (a) Upper value
boundary conditions. (b) Lower value boundary conditions. (c) Example of
element mesh with the radius ry,0s;, = 15 m. The geometry is axisymmetric
around the tunnel axis.

value m, = 0 indicates that no plastic dilation takes place, i.e.
¥ = 0, cf. Eq. (15).

As the domain boundaries in the problem are infinite, two
different finite element boundary conditions will be applied.
The first boundary condition will give an upper value of the
final wall displacement, ug > uex. Thisisachieved by applying
the far-field pressure, p, on the far-field boundary, see Fig.
12a. The second boundary condition gives a lower value of
ug, 1.6 ug < uex. This is achieved by applying a zero radial
displacement condition on the far-field boundary, see Fig. 12b.

To examine the significance of the extend of the element
mesh, different element meshes with varying radial extent,
Tmesh, NAvebeen used. The extent variesbetweenr s = 15 m
and ryesn = 105m. And example of an element mesh with
Tmesh = 15m is shown on Fig. 12c. This particular mesh is
made up of 107 elements with a total of 500 degrees of free-
dom. In the calculations the pressure is reduced from p ., to
po = 0 in nine steps.

On Fig. 13 an example of the displacement-pressure curve
can be seen for r .5 = 40 m. Asexpected the upper and lower
value solutions are too large and to small, respectively. The
average of the two solutions is also shown on the figure, and
thisis fairly close to the exact solution. The curves are straight
until the last few steps, which suggests an el astic response until
the tunnel wall pressure, p reaches values of approximately
10 MPa.

The dependence of the solutions on the mesh extent, 7 esh,
isshownon Fig. 14, wheretherel ative difference between FEM
and the exact values of the final tunnel wall displacement is
indicated. As expected the upper and lower bound bracket the
exact solution in an interval of decreasing size, as r e, grows.
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—p [MPa]

Lower value ‘

20 25
—Uex = 20.9 mm

10 15
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Fig. 13. Example of load-displacement curve for the tunnel wall. The upper
value and lower value curves are shown together with their average. The
maximum radius of the mesh is 7,05, = 40m.

The average value is also shown. At r s, = 105 m the error
on the average value is 0.7 %.

The extent of the plastic zone can be seen on Fig. 15 for
rmesh = 105m. It can be seen that the yielding areas of the
finite elements are a good approximation to the exact solution.

11.2. Surface footings on a Hoek-Brown material

The bearing capacity of a footing resting on a Hoek-Brown
material has previously been calculated using different ap-
proaches, seee.g. thediscussionin reference[14]. Usually some
form of a limit state theorem has been applied. Here the pro-
posed method will be used for calculating the bearing capacity
of both a strip and a circular footing. The result for the strip
footing will be compared with the result given by Merifield et
a. [14], where a bearing capacity is given as the average of
computed upper and lower bound solutions.

Tunnel axis
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e
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Rex =10.62m

Fig. 15. Yielding elements for the upper and lower value solution compared
with the exact solution. The mesh radius is resp = 105 m.
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Table 5

Parameters in the surface footing example. The comparative solution, NS*
is taken from reference [14].

oci = T5MPa mas = 1.395 E =1644.9MPa
my = 1.395 mia=0.349 v =030

s =0.0004 sg = 0.0004 ¥ =20kN/m?
a =0.522 ag =0.522 N = 0.69

The ultimate bearing capacity, ¢, is expressed using the
bearing capacity factor, N, and the rock mass compressive
strength, o;,

qu = UCiNO' (74)

The value N, depends on the other material parameters.

The finite element calculations are carried out with both
an associated and a non-associated material. For the non-
associated materia the value my? = my/4 has been chosen
based on the guidelines found in reference [31]. The remain-
ing parameters in the plastic potential are equal to their yield
criterion counterparts.

The material parameters are chosen to be fairly consistent
with a sandstone with GSI = 30, m; = 17, o.; = 75 MPaand
a selfweight v = 20kN/m”. The model parameters are then
found from Egs. (2)—«5), where the rock mass is taken to be
undisturbed, i.e. D = 0. The parameters can be seenin Tab. 5.

The domain geometry and boundary conditions can be seen
on Fig. 16. The footing has a halfwidth/radius of » = 1 m and
the modelled domain has awidth and height of 12 m and 10 m,
respectively. Forced displacement increments are applied to the
footing nodes and the footing pressureis calculated as the sum
of vertical footing node reactions divided by the footing area.
To simulate a rough footing the footing nodes are fixed in the
horizontal direction.

The domain is meshed with an increasing element density
in order to examine the convergence properties of the finite
element solution. An example of the element mesh is seen on
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107

127
Fig. 16. Geometry and boundary conditions for the footing problem. The

domain is symmetric and axisymmetric around the centerline, for the plane
strain and the axixymmetric example, respectively.

Fig. 17.

Fig. 17. An example of the element mesh with 347 elements and 1500 degrees
of freedom.



11.2.1. Strip footing

An example of the displacement-load curves for an asso-
ciated and a non-associated material can be seen on Fig. 18.
The example is taken from a calculation with an element mesh
with 4684 degrees of freedom. The limit state solution of Meri-
field et a. [14], NS* = 0.69, is aso shown. It is seen that
the displacement-load curves reach a plateau close to the limit
state solution, with the bearing capacity of the non-associated
material being a bit lower than that of the associated material.

0.69

VRVIVIVIVRY, Assqciated

-e-e-e-& Non-associated

I I I I N
0.15 ,02 025 03

=‘1
0 u/r

0.05

Fig. 18. Example of the normalised displacement-load curves for the strip
footing. Calculated using an element mesh with ng.s = 4684.

The final value of ¢/o; is taken to represent the bearing
capacity factor, N,. The computed N, values for the different
element meshes are shown on Fig. 19 versus the number of
degrees of freedom.

NI
0.705 +

0.7 x Associated

0.695 +

0.69 -

0.685 +

| Non-Associated: o o

0.68

i i i Ao i i
5 6 78910
Ndof

- - - —>
2 34 20,0?

Fig. 19. Caculated N, values in plane strain versus the number of degrees
of freedom, nq¢ for the strip footing.

The computed values of N, dropsas the element mesh isre-
fined. Thisfits well with the fact that the elements are displace-
ment based, and therefore ought to predict a bearing capacity
larger than the exact value. The non-associated material model
predicts a somewhat lower bearing capacity than the associated
one. The lowest bearing capacity factors are N, = 0.688 and
N, = 0.677 for the associated and the non-associated mater-
ia, respectively. For the associated material thisis a deviation
of —0.26 % from the limit state solution.
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Associated

Non-associated

0.675
0.67
| | | ! >
0 0.005 0.01 0.015 0.02 0.025
h = 1/\/ Ndof

Fig. 20. Curve fitting and convergence for N, in plane strain.

In order to estimate aconvergencevalue N, is plotted against
the value h on Fig. 20, see. e.g. [32], given by

1
- Vv Ndof

A second order polynomid is fitted to the values by the least
sguares method and interpolated to h = 0, which indicates the
convergence value. It is seen that the convergence estimates
are N>° = 0.687 and N2° = 0.668 for the associated and the
non-associated material, respectively.

The limit state solution is an average between and upper and
lower bound solution. Reference [14] states that the upper and
lower bounds stray at most 2.5 % from the average. For the
lower bound this means aminimum factor of N over = (.6728.
Thisindicates that the finite element solution is well within the
bounds.

(75)

11.2.2. Circular footing

In the case of a circular footing resting on a Hoek-Brown
material the authors are not aware of any references that con-
tain a solution with which the finite element solution can be
compared.

An example of the displacement-load rel ationship for the cir-
cular footing can be seen on Fig. 21. Again the non-associated
solution is lower than the associated one.

Fig. 22 displaysthe computed bearing capacity factorsfor the
circular footing. Again the factors drop as the mesh is refined.
The lowest computed factorsare N, = 1.106 and N, = 1.096
for the associated and the non-associated material, respectively.

The convergencevalueis estimated using the same procedure
asinthe planestrain case. Thefitted polynomialscan beseenon
Fig. 23. Convergencevalues of V2° = 1.101 for the associated
case and N° = 1.094 in the non-associated case have been
found. The accuracy of the convergence value in the plane
strain example, and similar convergence studies with a Mohr-
Coulomb material, see reference [33], lead to the conclusion
that the bearing capacity factor for a circular footing resting on
an associated Hoek-Brown material with the parameters given
in Tab. 5, is N, = 1.10.
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Fig. 21. Normalised displacement-load curves for the circular footing. Cal-
culated using an element mesh with ng.s = 4684. The convergence value
is taken from Fig. 23
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Fig. 22. Calculated N, vaues in axisymmetry versus the number of degrees
of freedom, nqor for the circular footing.

The bearing capacity of the non-associated material is less
certain, because of the non-uniqueness of the solutionsfor such
materials, see e.g. reference [34].
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Fig. 23. Curve fitting and convergence for N, in axisymmetry.

12. Conclusions

A method for the plastic stressintegration for alinear elastic -
perfectly plastic Hoek-Brown material is presented. As opposed
to earlier finite element implementations of this criterion the
exact criterion is used, i.e. no rounding of the corners or the
apex is performed. The method is based on the return mapping
scheme, i.e. apredictor - corrector scheme. The cornerstonefor
the formulationisto carry out all the manipulationsin principal
stress space and to use simple matrix algebra. In the principal
stress space all the cal culations needed to update the stress and
to form the constitutive matrices simplify remarkably.

The iteration process needed to calculate the updated stress
point reducesto solving asingle scalar equation, whichiseasily
done by the Newton-Raphson method.

The conditionsfor surface, line and apex returns can be given
a geometrical meaning in principal stress space, and they are
therefore easily implemented.

In connection with the calculation of the constitutive matri-
ces the first and second derivative of the yield function and the
plastic potential is needed. The calculation of these simplify
greatly in the principal stress space, as the Hoek-Brown crite-
rionisformulated in principal stresses. Especially the formulae
for the double singular constitutive matrix on a curveis simple
compared to its formulation in general stress space, see [18].

The presented method is found to be far superior to a text
book method of dealing with corner singularities. Thisis espe-
cially true for axisymmetric geometries, due to the great num-
ber of corner stress returns.

The method is validated by comparing some finite element
results with results from the literature. The results are shown
to converge toward previously reported solutions with great
accuracy. For the axisymmetric footing, no valuefor the bearing
capacity was found in the literature but the presented value is
believed to be accuate.

Appendix A. Derivative of hy used in a surfacereturn

The function % ¢ is defined in Eq. (36). Its derivative, ', is
given by

Y _@_dar_das
£ d0'1 - dO’l dO’l

(A.1)

The slope of the connecting line, «.., see Fig. 7, and its deriv-
ative are given by

oS-k dar _ kof —oP) - (of ~ oB)
Ty (of P

(A2)

where 0© s taken from Eq. (34) and k = Of/do is taken
from Eq. (32).

The slope of the current plastic corrector direction, s, EQ.
(35), and its derivative are given by
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where k, = dg/do is taken from Eq. (33). The derivative of
k4 is given by
dkg B agmg o1 ag—2
dT‘l - (1 — ag) i Sg — mgU—Ci (A5)

Appendix B. Return to curve £, i.e. totriaxial compressive
corner

The intersection of the Hoek-Brown surface and the triaxial
compressive plane described by o1 = o9 forms a curve in
principal stress space. The parametric equation of the curve is
givenin Eq. (11), which is repeated here for convenience

g1 01
/1 : o= o9 (= 01 (ll)
01
o3 01 —O0¢i | S —Mp——
Oci

with o being the parameter. The curveisillustrated on Fig. 4
and a stress return to ¢ is illustrated on Fig. 6. The direction
vector of the curve is given by differentiation as

rh =<1 (Bl)

where k is defined in Eq. (32). The direction vector is shown
on Fig. B.1. In the case of returning the stress to ¢, the plastic
potential also forms a curve, £, see Fig. B.1, defined by the
intersection of the plastic potential, Eq. (13), with the triaxial
compressive plane, o1 = o2. The direction vector of this curve
is analogously to (B.1) given by

03

01

Fig. B.1. The curve ¢; and its direction vector in the point c‘r?. A part of the
potential curve, ¢/ and the corresponding direction vector, £ in the same
point is also shown.
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(B.2)

where k, is defined in (33). The potential line direction vector
is shown on Fig. B.1.

When the stress is returned to the yield surface the flow rule,
Eq. (27), showsthat the plastic strain direction is perpendicular
to the plastic potential. Thisisalso avalid point when the stress
return isto the curve, and thisis the basis for the equation to be
solved. This means that a returned stress, o ¥, is sought which
fulfills

hi(0%) = (¥9)TAe? =0 (B.3)

where the plastic strain increment is found from Eq. (29) as
Ag? =D 'Ag? (B.4)

Analogously to (37) the Newton-Raphson procedure for deter-
mining o, ,, is

oC —gC hl(ggi)
1,241 1,2 h/l (USZ)

(B.5)

The current value of the plastic corrector stress is given by

AG? = &® - &Y (B.6)
where &¢ belongsto /1, i.e it fulfills Eq. (11).
The derivative of h; is given by
dhy  dE)T oo AAEP
My =—=—L—A&" + ()T B.7
! dO’l d0'1 € +(I‘1) dO’l ( )
where
0
=9
dcgrl) o (B.8)
g
.
dUl

with dk,/do given by Eq. (A.5).
The derivative of the plastic strain increment is given by

of — oy
D14 0B~ oS
dAEr o dAGT %05 ) _ o
d(Tl - d(Tl - d(Tl N !
(B.9)

In the above derivation use has been made of the fact that the
updated stress, 6 belongs to ¢, see Eq. (11), and that the
corresponding derivative is given by Eq. (B.1).

As in the stress return to the surface, h1, is not defined for
o1 > o;. This means that the procedure outlined in Eq. (39)
should be applied.



Appendix C. Return to curve £5 i.e. to thetriaxial tensile
corner

The intersection of the Hoek-Brown surface and the triaxial
tensile plane described by 0, = o3 forms a curve in principal
stress space. The parametric equation of the curveis given in
Eq. (12), which is repeated here for convenience

01

g1 a

01
ly: ={0,p=1{01"0ci 5—mb0_6i (12)

o a
1

g3 01 — O <s — mb—)
Oci

with o1 being the parameter. The curveisillustrated on Fig. 4
and a stress return to ¢ isillustrated on Fig. 6. The direction
vector of the curve is given by differentiation as

(C.1)

o~

where k is defined in Eqg. (32).
The corresponding plastic potential direction vector and its
derivative are given by

1 0
_ drd dky
=1k, and del =1 doy (C2)
ky dky
dO’l

The procedure of returning the stress to ¢, is completely
analogous to the stress return to ¢4, with t5 replacing vy and
9 replacing t.

Appendix D. Consistent constitutive matrix

A congtitutive matrix consistent with the global Newton-
Raphson equilibrium iterations will be calculated in this Ap-
pendix. A relation is needed between changes in finite stress
and strain increments,

dAo = DdAe (D.1)

where D¢P¢ js the so-called consistent constitutive matrix, first
derived by Simo and Taylor [23]. Insertion of (29) in (23), while
remembering that Ao ¢ = DAg, yields

Ao = DAe — A)\D@ (D.2)
0o |
A small perturbation of (D.2) gives
2
iAo = DdAe — dADY — a2 dne (D.3)
oo Oo?

and after rearranging

2

—1
iro = (1+ D22 D (1086 —ann?2) (D4
Oo? oo

By introduction of the matrices

92\ "
T=(I+AND— (D.5)
ol
with
D°=TD (D.6)
Eq. (D.4) can be written as
dAo = DdAe — dA)\DCg—g (D.7)
g

For finite stress elements the consistency condition of Eq.
(17b) is written as

T
(8_f) dAo =0 (D.8)

Jo

Insertion of Eq. (D.7) in (D.8) provides an expression for
dAM, which can then be back-substituted into Eg. (D.7) toyield
arelation between changesin finite stress and strain increments

dAo = DP°dAe  with (D.9)
09 (Or\" .
D22 (8_0) D

f\" . 99
(a—a) D%

where all the terms are evaluated at the updated stress point,

oC.

D¢ — D¢ —

(D.10)

Appendix E. Coordinate transformation matrix

The principal stresses and directions are found by solving
the well-known eigenvalue problem

i=1,2,3 (E.1)

where o;; is the stress tensor, u is the eigenvalue, 4,5 is the
Kronecker delta and n ; is the eigenvector. The three eigenvec-
tors form a coordinate transformation tensor, A ;;

(0ij — piz)n; =0,

Cs C, C

Ayj = [nj nf nil = | , (E.2)
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where the components are direction cosines between the two
sets of axes, e.g. ¢§ = cos o, where ¥, is the angle between
the y-axis and the z-axis, see Fig. E.1.

A transformation of the components of the first-order tensor
v; given in the xyz-system to the components ©; in the Zg2-
system is then given by

(E.3)

With the elements of A;; the transformation of the strain and
stress vector (see Eg. (18)) can be written as

e=A"1¢

oc=A"s

v = Ajivi

Ae or
A To or

(E.4)
(E.5)
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Fig. E.1. The zyz and £gZ coordinate systems. A first order tensor, v;, is
shown along two angles between the axes.

The transformation matrix, A, is given as
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A constitutive matrix, D¢ is transformed accordi ngto

D = ATD”°A or D% = AD?AT (E.7)
Appendix F. Remarks about plane calculations

The derivations presented in this paper have been concerned
with general three dimensional stress states. Several problems,
including the ones in Section 11, can be treated as plane prob-
lems, either as plane strain or axisymmetry. In this Appendix a
few remarks will be tied to the 2D implementation. The stress
and strain vectors in 2D are taken to be

O Ex
(oF Eq
Oz €z
Tay 2e 5y

For axisymmetry x, y and z is taken to be radial, axia and
circumferential directions, respectively.
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F.1. Coordinate transformation matrix in 2D

Compared to the coordinate transformation matrix in Eq.
(E.B), the plane coordinate transformation matrix is a lot sim-
pler. This is due to the fact that the = direction is always a
principal direction, i.e. Z = z. However, an important point to
consider is, that the out-of-plane stress, o, isnot awaysthein-
termediate principal stress, i.e. itispossibleto haveo, = o, or
o3 = o,, and therefore o, plays a part in evaluating the yield
criterion, as thisis expressed in o7 and o3, cf. Eq. (7).

This problem can be addressed by a proper ordering of the
rows in the stress transformation matrix, A. The elements of
A depend on the angle between the two coordinate systems, «,
shown on Fig. F.1.

Fig. F1. The zyz and 32 coordinate systems in a plane problem.

Ifo, =0y
1 0 0 0
0 2 22 .
cos“« sin“a  cosa sina
A= ) ) (F2)
0 sin“a cos“a —cosa sina
0 —sin2a sin 2« cos? o — sin? «
Elseif o, = 09
_ , . . -
cos“a 0 sin“a cosa sina
0 1 0 0
A= , , (F3)
sin“a 0 cos“a —cosa sina
. " 2 o2
—sin2a 0 sin2a cos” a — sin” «
And finally if o, = o3
_ , L, . -
cos“a sin“a 0 cosa sina
-2 2 .
sin“a cos“a 0 —cosa sina
A= (F4)
0 0 1 0
. . 2 .2
—sin2a sin2a 0 cos® o — sin” «

The transformation matrices shown in Egs. (F.2)-(F.2) are
based on the assumption that the full stress vector in principal

stress space has the form



o1
61" (F5)
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with o1 = 09 2 o3. The coordinate transformations are then
carried out at shown in Eq. (E.5).

F.2. Modification matrix T in 2D

The modification matrix, T is needed for the calculation of
the consistent constitutive matrix, cf. Eq (53). As shown earlier
T is partitioned in principal stress space according to

T = _ (59)
Tqg
The upper left partition relating to the normal stresses, T,
is unchanged in plane problems. The lower right part relating
to the shear stresses reduces into a scalar, T, as T isa4 x 4
matrix in plane calculations. Formally T is calculated as, see
Eq. (54),

1

T = 5 (F6)
14+ A3G Y
+ANGH S

where G is the elastic shear modulus. Analogous to (58), this
expression can be simplified into

1
Te = Aot — Ac? (F7)
1+ —¢ T7m
C C
of — oy

where ¢ and n take the following values
—ifolB=oPthen(=2andn =3
—dseif o8B =0l then(=1andn =3
—orfindly if o2 = oD then( =1 andn =2

If the two active principal stresses are identical, o0 = oy,
then T = 1 is chosen.

Appendix G. Convergencerate

A rigorous proof that the presented constitutive matrix isin
indeed the consistent constitutive matrix will not be given here.
Instead and indication of the efficiency will be given.

In the computational example presented in Section 11 the
average number of global equal equilibrium iterations was be-
tween 5 to 6 for most calculations. For comparison purposes
some of the calculations were also carried out using the infin-
itesimal constitutive matrix. This matrix is found by replacing
D¢ with the dastic stiffness, D in Egs. (60) and (71). The av-
erage number of global equilibrium iterations then soares to
more than 100, which indicates the efficiency of the proposed
constitutive matrix.
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