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Abstract

The Gaussian statistic model, despite its mathematicgaete, is found to be too fac-
titious for many real world signals, as manifested by itsatisgéactory performance
when applied to non-Gaussian signals. Traditional nonsGian signal processing
techniques, on the other hand, are usually associated wgthdomplexities and low
data efficiencies. This thesis addresses the problem ofapti estimation of non-
Gaussian signals in computation-efficient and data-effici@ys. The approaches that
we have taken exploit the high temporal-resolution notiestarity or the underlying
dynamics of the signals. The sub-topics being treated decljoint MMSE estimation
of the signal DTFT magnitude and phase, high temporal-séisol Kalman filtering,
blind de-convolution and blind system identification, aqdimum non-linear estima-
tion. Applications of the proposed algorithms to speechaensbment, non-Gaussian
spectral analysis, noise-robust spectrum estimationpéind channel equalization are
demonstrated.

The thesis consists of two parts, the Introduction and theefa The Introduc-
tion gives background information of the problems at handtes the motivation of
approaches taken, summarizes the state-of-the-art iatlitee, and describes our con-
tributions briefly. The Papers presents our contributiartbé form of published papers.

The first part of the Papers (paper A and B) deals with the itapoe of phase in
non-Gaussian signal estimation. Joint MMSE estimator®tf nagnitude spectra and
phase spectra are developed. Application to the enhant¢eyhanisy speech signals
results in clearer sounds and higher SNR than frequency idokisISE estimators.
Here the non-Gaussianity of the speech signal is modeleldébjjrtearity in the phase
spectrum, and is enhanced by the joint estimator. This isirtrast to the spectral
domain MMSE estimator (e.g., the Wiener filter), which isezphase.

The second part of the Papers (paper C and D) attacks the aoss{an estimation
problem with a purely temporal domain approach. It is recogphthat a temporal-
domain high-resolution non-stationary LMMSE estimatoalide to extract structures
in both magnitude and phase spectra at a lower complexity.sp@ech signals, the
non-Gaussianity is represented by an excitation sequeitheawapidly varying vari-



ance filtered by an all-pole filter. A Kalman filter with a tirverying system noise is
ideally suitable to this model. This so called high tempeesiolution Kalman filtering
technique fully exploits the non-stationary processingatdlity of the Kalman filter,
yet takes advantage of the fact that the all-pole filter cbargjowly over time. This is
in contrast to the conventional frame-based Kalman filtgrimhich presumes signals
to be stationary within a processing frame, and to the adajptalman filtering which
adapts all system parameters in every time instant.

The third part of the Papers (paper E, F and G) sees the noss@auestimation
problem from yet another angle. Her the non-Gaussian eiuite treated as a discrete-
state finite-alphabet symbol sequence. The new model cankire HMM and the
AR model to represent a wide range of signals, thus we catig@tHidden Markov-
Autoregressive model (HMARM). The HMARM can efficiently extt the second or-
der and higher order temporal structure with the two dynanodels respectively. Effi-
cient ML system identification algorithms are derived basethe EM methodology to
jointly estimate the HMM parameters and the AR parametarpaper F, the HMARM
is extended to having a measurement noise at the output é&Rhmaodel. This exten-
sion increases the estimation complexity significantlycsithe system output is now
hidden and the measurement noise variance need to be estifjoattly with other
parameters. A nonlinear MMSE estimator is incorporated the EM algorithm to
provide the sufficient statistics for the learning. The HMMRnd its extended ver-
sion are applied to speech analysis, noise robust specstimmation, and blind channel
equalization for PAM and PPM signals.

The proposed algorithms in this thesis only involve compaits of the second or-
der statistics explicitly. The higher order structure isugh represented by the appro-
priately chosen models. Thus the computational complégitpw and data efficiency
is high compared to Higher Order Statistics based methotgharequire no signal
models.
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Introduction

1 Non-Gaussian time series and Bayesian estimation

A time series is a sequence of observations that are ordetiye (or space). Most of
the natural and man-made signals are time series, e.g.lspeages, and communica-
tion signals. Many important time series exhibit certamperal structures, or temporal
dependencies. Temporal dependency in a time series israfideled by linear models,
such as auto-regressive (AR), moving average (MA), andregtessive-moving aver-
age (ARMA) models, although nonlinear temporal dependé&nsgmetimes of interest
and can be modeled by nonlinear models such as the Voltates $&] [2] and neural
network based models [3]. A linear model can be seen as & limea invariant (LTI)
filter excited by a stationary Gaussian process, whereaslimaar model can be seen
as a nonlinear filter excited by either a Gaussian or a nors§iamn process. In this
work, we focus on LTI filters, especially the AR filters, exdtby non-stationary or
non-Gaussian processes. The motivation is that linearfittee easier to analyze, and,
as will be shown later on, the LTI filter model with a non-statkiry/non-Gaussian input
is able to represent a wide range of nonlinear signals.

In the category of linear models, the AR model is the mostfegrdly used in appli-
cations. There are several reasons for its popularity:eLAR model can well represent
spectra with narrow peaks, and narrow band spectra are gergnon in practice [4]; 2)
for a Gaussian process, the maximum entropy spectrum [Bgisgectrum given by AR
modeling [6]; 3) under the Gaussian assumption, the AR pai@nestimation problem
is linear while the MA and ARMA estimation problems are naekr. Moreover, the
AR model with a sufficiently high order can be used to appr@tarany ARMA models
arbitrarily well [7, p.52] [8, p.411].

Under the standard definition of the AR model, an AR processsiated by filtering
an independent, identically distributed (i.i.d.) sequeelg an all-pole filter [9] [10]. The
most used distribution in the AR modeling is the Gaussian Ppdifs model is, however,
too restrictive to suit many important signals. As we wilbahlater, voiced speech sig-
nals and some communication signals are better modeleddaen-Gaussian or non-



i.i.d. processes as inputs to the all-pole filters. In thest, we use a generalized AR
model definition in which the input process to the all-poltefilcan be non-Gaussian,
non-stationary, and temporally dependent.

Definition 1 The processX;} is said to be a generalized AR(process if for every
it satisfies the difference equation

X=Xy — - — apr,—p =17, (1)

whereZ, is a random process that can take on any probability densitgtion (pdf),
can be non-stationary within the analysis frame, and carebgporally dependent.

Remark 1. The generalized AR model belongs to the big category of tmua
error-type models, which is defined in [11, p.71, p.74]. AktAR models mentioned
in the sequel are under this generalized definition.

Remark 2: This definition means that the input proc&scan be any time series.
This is especially useful for de-convolution problems.

When the excitation process; in an AR model is stationary, white, and Gaus-
sian, the model is known as the Gaussian AR model. The GauaBianodel has been
widely used in many signal processing fields including lm@adiction [12] [13], spec-
tral analysis [6] [14], and linear dynamical modeling [15420] [16]. The identification
of the Gaussian AR model has also been extensively studieghkE to the stationary-
white-Gaussian assumption, the Gaussian AR parametetsedadentified analytically
using, e.g. the Least Squares (LS) method [11] [15] [4].

When the excitation proceg is i.i.d. non-Gaussian, the model is known as the
non-Gaussian AR model. Non-Gaussian AR models have rgcatithcted an in-
creased attention in the signal processing society. Mamyats are found to be far
from Gaussian [17] [18] [19]. In other words, for many sighalon-Gaussian stochas-
tic models often outperform Gaussian models significantig ean be used to solve
problems that are unsolvable with the Gaussian models (Bliond Source Separa-
tion using Independent Component Analysis [20]). Majordfiga of hon-Gaussian
estimation includes smaller estimation variance and [#4a} [P2], robustness to out-
liers [23], and efficient representation of signals [23]][225]. Research works on
non-Gaussian AR modeling have appeared in image procel@Shf27] [28], speech
processing [29] [23], medical signal processing [30], ragignals [31], navigation [32],
econometrics [33], and communications signal proces§iag [

When the excitation proce&; is a non-stationary Gaussian process with possibly
temporal dependency, i.e., a non-ii.@Gaussian process, it is often treated as an i.i.d.
non-Gaussian process too. Note that here, we are talking al®aussian process that

IHere, a non-i.i.d. process is referred to as a non-indeperastel/or non-identically distributed random
process.
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changes its mean and/or variance at every time instance tsatthe usual short-time
processing techniques (based on the quasi-stationargnptisn) are not applicable.

Similar generalizations of the linear time-invariant (L§stem to accommodating
non-Gaussian input process date back to the 60’s. Bar@8}tif 1955 and Brillinger
et al. [36] in 1967 analyzed the polyspectra for the i.i.dn+@aussian and non-i.i.d.
processes excited linear systems (see [37]). In [11], ARM&dets are generalized
such that the modeling errors are themselves AR or MA presgs$serefore correlated
errors are introduced. In [38, Theorem 2], it is shown thabhedr system with a non-
i.i.d., non-Gaussian input process can be identified usiglyeln order statistics. The
non-i.i.d. Gaussian excited AR process, though, has reddiss research attention
than the i.i.d. non-Gaussian excited AR process. In thikwee promote the use of
the non-i.i.d. Gaussian excited AR process, and we givedllefing motivations for it:
1) its optimum filtering problem can be solved analyticalith appropriate adaptations
to the classical optimum linear filters; 2) there is ofterhrdiemporal structures in the
input process which can be exploited to facilitate the idieation of the underlying
dynamics of the non-stationary Gaussian process, whileittie non-Gaussian model
ignores this temporal structure.

It is well known that a nonlinear transformation of an i.i.kaussian process in
general results in an i.i.d. non-Gaussian process. We edfitere that a non-stationary,
though linear, transformation of a Gaussian process camage an i.i.d. non-Gaussian
distribution if viewed as a static system. By non-statigriarear transform, we mean
the transform that changes its functional form or coeffitd@hong time. As an example,

Y = CltX + bt (2)

is such a transform, whet¥ is a stationary Gaussian processandb, are the trans-
form coefficients that change over time. The resulting pge&ecan be seen as either
a non-Gaussian process if assumed stationary, or a ndorstat process if assumed
Gaussian. In other words, the same set of data can be exglayneither a statistical
structure in a static view, or a temporal structure in a dyieahview. Fig. 1 shows the
relations between the two transforms. The double-arrolearcenter shows the duality,
i.e., a process can be modeled as an i.i.d. non-Gaussiaegsrby ignoring the tempo-
ral structure in it, or modeled by a non-i.i.d. Gaussian pssdf the temporal structure
can be identified.

We prefer to use the dynamical view anywhere possible, straléows analytical
solution to the optimum estimation problem now that the Geusassumption is main-
tained. Such observations are analogous to the time-vtdinaar system theory, which
linearizes a nonlinear system along its trajectory andlt®$u a time-variant linear
system. The Extended Kalman filter (EKF) [39] is a good ex&ngflsuch a dynam-
ical linearization. But unlike the EKF, the non-i.i.d. Gaisn AR model confines its
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Figure 1: Non-Gaussianity, non-stationarity, and nonlinearity.

nonlinearity in the input process instead of the filter. Thrimgs several benefits:
1. The filter is linear and is easier to identify;

2. The nonlinearity of the input process is in the form of a+@aussian pdf, which
has no problem of representing discontinuity such as simidcéffects. Whereas
the EKF requires the existence of derivatives of the noalifienction.

3. This is useful in many de-convolution problems, whereitipeit to the filter has
non-Gaussian structures.

The applicability of the dynamical view, however, requikemwledge of the dy-
namics of the input process. For example, in [18, p.145], itckimg model in which
one of its constituent Gaussian sub-processes is selectsth instant is shown to
have a non-Gaussian pdf, since its switching is random. Ackwig process can not
be treated as a non-stationary Gaussian unless the svgtishileterministic. In other
words, if the switching mechanism is decoded, the switclpirggcess can be modeled
by a non-stationary Gaussian process without losing armyrimdtion.

We are interested in two types of non-stationary Gaussjaut jorocesses: the Gaus-
sian process with a time-varying variance, and the Gaugs@ess with a time-varying
mean. In contrast to the conventional AR model whose inpotgss must be white,
there can be temporal dependency in the input process ofetherglized AR model.
In fact, temporal dependency in the input process is welcbimeur models since it
facilitates the estimation of the temporal structure. Aaraple of the non-stationary-
in-variance Gaussian process with temporal dependencysiaugsian process with a
smoothly varying variance. An example of the non-statignarmean process with
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(») (B)

Figure 2: (A) A non-stationary Gaussian process with a smoothly varyiariance. The red curve is the
scaling factor as a function of time. (B) The resulting histog is non-Gaussian.

(") (B)

Figure 3: (A) A non-stationary Gaussian process with a smoothly varyirean. The red curve is the mean
as a function of time. (B) The resulting histogram is non-Géars

temporal dependency is a Gaussian process with a smootlyipganean. An example
of the switching process with deterministic switching is6lK& or HMM process with
decoded states. Fig. 2 and Fig. 3 shows examples of non-@aysscesses created by
varying the variance or mean of a Gaussian process, and Blgpwis a switching pro-
cess with two Gaussian components. They all can altermatreeseen as non-Gaussian
processes if viewed statically (by the histograms).
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Figure 4: (A) A switching process with deterministic switching statéB) The resulting histogram is non-
Gaussian.

Bayesian estimation of non-Gaussian signals

Despite the promising results given by non-Gaussian sigmalessing techniques, the-
ories and methods in this field are still underdeveloped dBarental problems such as
optimum filtering of non-Gaussian signals and parametémasibn of non-Gaussian
models are still difficult. The major difficulty is that optum non-Gaussian estimation
problems are nonlinear. So either a nonlinear equatioresysieeds to be solved (in
estimating parameters), or numerical integration of aiitrary pdf need to be eval-
uated (in filtering). These problems become even more diffiehien the signal is a
non-Gaussian AR process instead of a non-Gaussian i.ictegs, because the pdf of
the non-Gaussian AR process evolves along time axis, uthlikstable pdf in the i.i.d.
case.

Recognizing the difficulty of the general non-Gaussian @igmocessing problem,
we, in this thesis, avoid solving the problem in a generasseinstead, we attack the
problem by taking on a particular type of signals that hawegyéul structures which
can be exploited for efficient filtering and system identifima. This class of signals are
the generalized AR signals with prominent temporal stmgsin their input processes.
The signals that we treated in this thesis include voicedapsignals, Pulse Amplitude
Modulation (PAM) signals and Pulse Position Modulation ¥BRsignals with Inter-
Symbol Interference (IS1). A wide range of other signalssan¢able for this model too,
although not treated in this work, such as images, musicradhat signals.

Here we define the signal estimation process as the act ofedng a signal wave-
form from its distorted or noisy observations. Any time esréstimation problem can
be decomposed into three basic tasks: model design, estimatmodel parameters,
and estimation of the time series given the estimated moldestatistics and neural
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networks literature, the last two tasks are also known awileg (of the model) and
inference (of the data). These terms will be used interchally in the sequel.

In this work, we consider Bayesian estimation methods, itiqudar the Minimum
Mean Squared Error (MMSE) estimator, for the signal esiiomaproblem. Bayesian
estimation provides a convenient framework for exploitnior knowledge of the signal
statistics in the estimation. The prior knowledge is repnésd by the prior probability
distribution. For a Gaussian AR process, the prior is a Gangdf, while for a non-
Gaussian AR process the prior takes the form of a non-Gaupslifa It is well known
that the Bayesian methods result in linear estimators drilyei signals are Gaussian.
For arbitrary priors, the Bayesian estimators are genenalhlinear.

Established methods for solving non-Gaussian MMSE esitimgitroblems can be
grouped as follows:

1. integrating non-Gaussian parametric pdfs, which resutighly nonlinear equa-
tions [40] [41];

2. approximating priors using Gaussian Mixture Models (GMMhich results in
the Gaussian Sum Estimator [42] [43];

3. using sampling techniques to approximate the pdf, whésults in the Monte
Carlo filters [44] [45] [46] [47] [48].

The problem with the first group of methods is that, the cldseh nonlinear solutions
do not generally exist. Even the proposed ones are obtaimder wery restrictive as-
sumptions. For the Gaussian Sum Estimator, a major drawilsatlat the number of
constituent states grows exponentially with the time index so does the complexity.
The Monte Carlo filters are also associated with high conifdexsince large numbers
of samples need to be generated and their likelihood to Iectes

In the works included in this thesis, we adapt a generalegyatlifferent from the
above. Specifically, we extend the classic linear Gaussitets to accommodate non-
Gaussian signals by exploiting special temporal strustinréhe signals. In this way, the
complexity is maintained at a comparable level with thedinBaussian methods, while
the non-Gaussian features of the signals are faithfullyesgnted. In the following
sections, the signal structures of interest are first intced, then classic methods in
Bayesian signal estimation and parameter estimation wibhitefly reviewed, and our
views on how these problems should be approached in the aosgi&n case will be
briefly introduced.

2 Temporal structures of non-Gaussian AR signals

A time series carries information in its temporal strucfeg. audio signals, images,
and certain modulated signals used in communications,tgusme a few. This is
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in contrast with signals that carry information in the frequy of occurrence, eg. the
failure rate of a component, the bit-error rate of a commation system, results of
independent experiments, the histogram of a random proeesisetc. Thus in time
series modeling, exploiting temporal structure is one efkby factors. Here the tem-
poral structure is defined as any pattern exhibited by theasig the time domain that
can be described by a mathematical model with a small numbeoedficients. The
conventional Gaussian AR model however,

1. only models the signal correlation, which is a secondrdépendency;

2. contributes all signal correlation to the all-pole filteven though for some AR
signals the input processes are not white.

Many signals have prominent temporal structures in thetippacess when modeled by
the AR model. In this work, we study two important groups afrsils: speech signals
and communications signals.

Specifically, the speech signals that are of interest hertharvoiced speech signals,
and the communication signals that are of interest are thé 8d PPM signals with
ISI. When modeled by the AR model, the residual of the voicezksh signal exhibits
an impulse train structure, as shown in Fig. 5. This strechas long been recognized
to be important to the speech quality in speech coding titeed49] [50]. In the filtering
problem, this structure is usually ignored due to the uséeflr Gaussian models. To
exploit this structure, from a Bayesian optimum filteringmof view, the input process
can be modeled by a super-Gaussian pdf (e.g., Laplacebdistm) [51] [52], due to
the large amplitude of the spikes. Solving for the MMSE eat#rrequires integrating
the non-Gaussian pdf, which is generally intractable fghkiimension problems. In
the first part of the Papers, We propose to model the inputeggas a non-stationary
Gaussian process with a constant mean and a time-deperaté&rice. The variance
goes up at the vicinity of an impulse and remains low betwéenimpulses. Thus,
the time-dependent variance can represent the tempoedidation of the power in the
input process. As will be shown below, this high temporabhason modeling brings
in many advantages for both the block-based spectral domsIBE estimator and the
temporal domain sequential MMSE estimator.

In the second part of the Papers, we propose to model the prpaess as a se-
guence of discrete-valued symbols from a finite alphabeedddth white Gaussian
noise. A Hidden Markov Model (HMM) is ideal for modeling suatprocess, with the
assumption that the temporal dependency is Markovian. TH&lHtan be seen as a
Kalman filter model with a simple nonlinearity [53]. It carsalbe seen as modeling a
Gaussian process with a mean controlled by a switching nmésrathat is nonlinear.
More about the HMM and nonlinear filtering will be introducedSection 3.3. When
the HMM is cascaded with the AR model, they respectivelyaettthe nonlinear tem-
poral dependency and the linear dependency from the sifhed.model can represent
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(A (B)

Figure 5: (A) LPC residual of the vowel /ae/. (B) The waveform of theete

a broader range of signals that have equivalent discreté prpcesses with temporal
dependency. Besides the analysis of voiced speech sigmalbave investigated the
channel equalization problem of PAM and PPM signals. Spedifi the ISI channel is
modeled as an AR filter, with or without additive measurenmanige, and the transmit-
ted symbols are modeled by the HMM. If the transmitted seqgeef symbols possess
a certain dependency, the HMM can capture it and exploit thanfiltering. The de-
pendency between symbols is due to the special way the sgrabelarranged, such
as the PPM signals, or is introduced into the sequence oropesuch as the trellis
modulated signals [54]. If the transmitted symbols are éndei.d., such as ordinary
PAM signals, the HMM reduces to a Gaussian Mixture Model (GMMg. 6 shows an
example of PPM signals.

3 Signal estimation

This section reviews the estimation of the signal wavefofarnoAR (p) process, assum-
ing that the signal model and its parameters are known. F&R{p) process we have
the following signal model

2(t) =Y apa(t — k) + u(t), 3)
k=1
y(t) = x(t) +o(t), (4)

wherey(t) is the observation(t) is the clean signak(t) is the observation noise(t)
is the excitation process to the AR (filter, anda; are the AR coefficients. The signal
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® (®)

Figure 6: (A) The transmitted symbol sequence of a combined PPM-PAM mtduala(B) The received
waveform, assuming the channel is ARYJ.

model (3) and (4) are also known as the linear dynamic model.

To simplify the presentation, we assume that the nofsgis an i.i.d. Gaussian pro-
cess. In the case that the additive noise is correlated | dirmon-Gaussian, the noise
should be treated as another signal, and optimum joint attim of the two signals
can be done by generalizing the estimator to its vector fdrhis is more of a topic of
source separation, which is not addressed in this thesis.

3.1 Wiener filtering

The causal Wiener filter (WF) is a Linear Minimum Mean SquareE(LMMSE)
estimator of the signat(¢) given the observatiop(k) for —oco < k < ¢. The causal
Wiener filter is rarely used in practice due to the difficulfyaorequired spectral fac-
torization procedure [55, p.265]. Commonly used in pra&ciscthe non-causal Wiener
filter (or Wiener smoother). We will now review both filters.

Causal Wiener filters

The LMMSE estimator solves a special case of the MMSE esitimatoblem, in which
the priors of the clean signal and the observation noisesmanaed to be Gaussian. We
use the Gaussian AR signal model (3) and (4) again. To be o@me we re-write the
signal model in matrix form.

y=x+v, (5)

where the boldface letters represéntdimensional vectors that contain the data from
time1 to N. The LMMSE estimate of the signalcan be shown to be the conditional
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expectation of the signal given the observatjofi5]:

x = Elxly]

= CyxyCyyy, (6)
whereCy,, is theN x IV covariance matrix of, andC,y, is the N x N cross-covariance
matrix of x andy. In practical problems, the covariance matrix of the clegna is
unknown and difficult to estimate. In the Wiener theory, tigmal length/V is assumed
to be infinitely long, spanning from timeco to present time. Based on this assump-
tion and the stationarity assumption, Wiener and Hopf psega spectral factorization
method to find the spectral response of the causal Wiener ti¢i@g power spectral
density (psd) of the signal, which is much easier to estirttzda the covariance ma-
trix [55, p.231] [10, p.417]. Notice that in this method, gignal is assumed to be wide
sense stationary (WSS) in order to use the power spectraltylearsl the signal length
is assumed to be semi-infinite.

Non-causal Wiener filters

The non-causal Wiener filter solves the problem by assunhiegignal length and the
filter taps length to be infinite, in addition to the WSS asstomtNow, to minimize the

MSE of the estimate by applying the orthogonality princiglee obtains the following
equation:

“+00
Ryz(t) = Y h(k)Ry,(t—k)  forallt, 7
k=—o00

whereh(k) is the kth coefficient of the Wiener filterR, . (t) is the cross-correlation
function of they(t) andx(t), Ry, (t) is the auto-correlation function of(t). Because
of the infinite summation, taking the Fourier transform oftbsides of (7) results in

Syz(f) :H(f)syy(f)a (8)
or g
H(f)= sZ,,EQ 9)

where S, (f) and S,,(f) are the psds, andé/(f) is the frequency response of the
Wiener filter.
Extension to the Wiener filter

In both the causal and non-causal Wiener filter, it is assuhedhe signal is wide sense
stationary and the signal length is infinite or semi-infinifbese assumptions are obvi-



14

ously inappropriate in practical problems. First, the obston data are often of short
length. Short time processing is a common technique in mgmakprocessing appli-
cations, such as speech processing. When the length of thdrdate is comparable
to the correlation span of the signal, the stationarity mgztion does not hold. Second,
the local stationarity assumption rules out the possybidftmodeling the dynamics of
the signal within the processing frame. For a time seriesttha rich temporal struc-
tures, the stationarity assumption is a major drawback. dksequences, the Wiener
filter 1) provides only trivial estimate of the phase speatiy@) does not exploit poten-
tial inter-frequency correlation; 3) does not suppress@&pobwer according to temporal
distribution of the signal power.

As an example, we consider the voiced speech signal. A frdmeiced speech
can be modeled by filtering a noisy impulse train by an AR fil#éris is known as the
speech production model, or the source-filter model anddslyiused in speech coding
and speech synthesis [49]. It is obviously a non-Gaussianm®Bel, since the input
to the AR filter is super-Gaussian due to the large valuesefrtipulses. Because of
the mechanism of glottal folds movement, the excitatiom#AR filter has an impulse
train structure. Instead of modeling this temporal strreetuith a static super-Gaussian
model, it is beneficial to model it as a non-stationary Gausgirocess with rapidly
varying variance. That is, between two impulses, the pmbes a low variance, and
at the vicinities of the impulses, the process has largeanaés. The large variance
represent the concentration of power at certain time points

We show in paper A and B, that with a high temporal resolutiadating of the
input process, a block based LMMSE estimator can be obtamigdh jointly estimates
the phase and magnitude spectra of the signal, exploitsfir@guency correlation to
help estimation of those spectral components with low I8&IRs, and attenuates noise
power at the valleys between the excitation impulses.

Frequency domain methods

In the speech processing literature, estimation methagkscban frequency domain ma-
nipulations are dominant, e.g. the power spectral sulirachethod [56], the MMSE
short-time spectral amplitude estimator [40], the MAP sr@@amplitude estimator and
MMSE spectral power estimator [57], and the MMSE estimafanagnitude-squared
DFT coefficients [41]. These estimators only estimate tleespl magnitude and have
zero phase, and they all assume stationarity of the sigrthiratependence between
spectral components. Thus they share the same propertg nbtircausal Wiener filter
as discussed above.
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3.2 Kalman filtering

The Kalman filter is a very important extension to the Wien&grfivithin the LMMSE
framework. The Kalman filter generalizes the LMMSE estima&baallow the parame-
ters to evolve in time. This is possible because of the uskeotate-space model and
sequential estimation. Thanks to its capability of harglion-stationary signals, the
Kalman filter is ideal for our high temporal resolution mddglof the input process
to the AR filter. Also, because the Kalman filter is a time dam@iethod, it has no
such problem as ignoring phase spectra as in the Wiener (filtemer filter is some-
times referred to as a time domain method, whereas it is thdelved in the spectral
domain).

The Gaussian AR signal model (3) and (4) can be written intdedard state-space
form:

x(n) = Ax(n — 1) + bu(n)

10
y(n) = hx(n) + v(n), (0

wherex is the state vector of the signal(n) is the process noisey(n) is the
observationy(n) is the observation noise is the state transition matrix, and

0 1 0 0
0 0 1 0

A= : , (11)
0 0 0 1
ap Ap—1 Ap—2 aq

b"=h=[ - 0 1]. (12)

The Kalman filtering is first published in the 60s by Rudolf Ealikan [58] [59]
and since then has been extensively studied and appliedige@humber of fields. The
Kalman filter solutions can be found in many text books, €.§].[For the fixed-interval
smoothing problem, the Kalman theory also provides anéstérg time-domain solu-
tion. Basically, Kalman smoothers first do a forward filtgriiollowed by a backward
filtering, and then combine the two filtering results. In thisrk, we use a "two-pass”
Kalman smoothing algorithm which combines the last two stepone sweep [60,
p.572].

Although having been recognized as one of the major feattitesnon-stationary
processing capability of the Kalman filter is, in many sigpedcessing applications,
not fully exploited. In speech processing, for example gbeech signals are known as
highly non-stationary due to the fast movement of the aldious. The standard way
of handling this non-stationarity is via short time prodags That is, to segment a
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long sequence of speech signal into small frames, and adsgalestationarity within
each frame. As a consequence, the input process in the ARInsod®deled as a
stationary Gaussian process. As we have pointed out beffigrénpulse train structure
in the input process is important to a good representatidhesignal and should be
modeled as either a non-Gaussian static process or a rtggnatg Gaussian process.
Thus we show, in paper C and D, that if the input process ofeeb&peech is modeled
as a Gaussian process with rapidly varying variance, thenKalfilter (or smoother)
can achieve a lower estimation MSE than the quasi-statydfaiman filter. Different
methods of estimating the slowly varying and fast varyingapzeters of the Kalman
filter are also proposed in these two papers.

3.3 HMM filters and switching Kalman filters

The Hidden Markov Model (HMM) [61] [62] is a state-space miogith discrete states.
It is analogous to its continuous-state counterpart, thienka filter model in many
ways. For example, both models use first-order Markoviaradyos to model state
evolutions, and both observation processes are linear andsgan. The HMM can be
expressed in a state-space form similar to the Kalman madel (10)), but with a

nonlinear system equation:

z(n) = f(z(n - 1)) 13)

y(n) = z(n) +v(n),

wheref () is a nonlinear function. Itis shown in [53] that tli€¢ ) is a "winner-takes-all"
nonlinearity, and that there is mapping between the reptatsen using this nonlinear-
ity and the one using a transition matrix. The HMM can alsodrnsas a Markovian-
dynamical version of the Gaussian Mixture Model, which msden-Gaussianity with
a sum of Gaussian pdfs. The HMM is widely used in modeling rmtide systems
with temporal structures in the transition of modes. Thaddad HMM filter estimates
the discrete-valued Markov sequence hidden in white Ganssdise. The filtering or
smoothing is done with the forward-backward recursion [61]

Having the interesting capability of modeling the non-Gaasity with a dynami-
cal model, the HMM is ideal for modeling a non-Gaussian ARcpss with temporal
structures in the input process. We designed a Hidden Magkderegressive Model
(HMARM), which cascades the HMM with the AR model, to modet tiemporal de-
pendency in the input process and the dependency caused Byrtfilter respectively.
The motivation is that the conventional AR model only modelgelation of the signal,
which is a second order statistics, while the HMM can modghér order dependency
that exists in the input process. The HMARM can also be seemasxtension of the
HMM to explicitly model time correlation in the emitted salep. The conventional
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HMM assumes that the emitted sample is independent of théopie ones. In the
HMARM, the emitted samples are allowed to have correlatiod the correlation is
modeled by an AR{) model. In this respect, a method in [63] provides an altiraa
of achieving a similar goal. In [63], the emission probapils modeled as a correlated
multi-variate Gaussian pdf, which takes into account thestation between the current
sample and the previous one. This turns out to be a first orBemadel.

The HMARM can be extended by introducing observation noiéée call it the
Extended-HMARM (E-HMARM). When the signal is distorted byselovation noise,
the HMM filter alone is not sufficient, since it only deals witle process noise in the
HMARM. An optimum nonlinear smoothing scheme is now needd propose to use
a variant of the Switching Kalman filter with soft switching.

Switching Kalman filter is the collective name given to a grafimethods (see [64]
for a review). Conceptually, a switching Kalman filter maglalsystem with a bank of
linear models, and does optimum inference by switching betwthem or taking linear
combinations of them. The switching decision is based omptbbability of the hidden
states that govern the linear models. Instead of switchingpaameters of the system
at every time instant as in [65] [66], or switching only the ARrameters frame-wise as
in [67] [68], we switch the parameter of the input process/atytime instant and keep
the AR parameter constant within an analysis frame. In tlag, whe slowly varying
AR parameters and the fast varying input process are moadeted efficiently (see
Fig. 7). This is justified by our knowledge of many physicasteyns. For example,
in the speech production system, the vocal tract (the fitleanges slowly compared to
the movement of the vocal folds (the source); in commurocesiystems, the physical
channel (the filter) changes slowly compared to the trariethtymbols (the source).

VA
Ziz) qt X,

) All-pole filter ——=
zM)

Figure 7: The switching AR signal model, whe) is the Mth constituent input process, aiX is the
observed signal. The state variablecontrols the switch to select one input process at each tistarn

In paper E, F and G, we present the HMARM and E-HMARM models algd-
rithms for the filtering and system identification problergplications in speech anal-
ysis, noise robust spectra estimation, and blind channgllegtion are demonstrated.
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4 Parameter estimation

Parameter estimation, or system identification, is theggeof learning the parameters
of a system model given the observations and other infoanatbout the system. In
the previous section we discussed the optimum filtering ifowathing) problems for
non-Gaussian AR signals, assuming known parameters. ttiggasystem parameters
are generally unknown and need to be estimated before thal sign be estimated.

In the specific problem of AR model parameter estimation,pdw@meters can be
grouped into two groups: the all-pole filter parameters dredexcitation parameters.
For a Gaussian AR model, the excitation process assumesdarGaussian pdf. Thus
the only excitation parameter is the variance. For the GanssR model, the filter
parameter estimation problem and the excitation paranestanation problem are de-
coupled. So all parameters can be estimated jointly. ForGaumssian AR models, the
excitation processes usually assume more complex modulsthe filter parameters
estimation problem and excitation parameters estimatioblem are usually coupled.
Most non-Gaussian AR model estimation algorithms estirttaetwo sets of param-
eters separately in iterative manners to reduce complé@y[70] [71]. In paper E
and F, we show that the filter parameters and the excitaticanpeters can be jointly
estimated by appropriately constraining the model.

In the following, we will review several major techniques fiptimum estimation
of parameters.

4.1 Least Squares methods

Least Squares (LS) is one of the most often used criterioraithematical optimization.
The LS method tries to find a set of parameters of the selectmtththat best fit to
the measured data by minimizing the sum of the squares of tuelng error. It is
shown by the Gauss-Markov theorem that the Least Squaies#st is the best linear
unbiased estimator (BLUE) if the model is linear and if thed®lang errors have zero
mean and equal variance, and are uncorrelated. It is nateyvibrat the LS criterion is
a finite-sample approximate solution of the MSE criteriond91].

In the AR model parameter estimation problem, the optimulmegfor the param-
etersa,, are to be chosen such that the sum of the squared errors etveesignalz (¢)

and the predicted signal(¢) is minimized. The prediction here is a linear prediction
using the previoup samples. Thus the cost function to be minimized is

C(9) = Z [x(t) > ana(t - k)] ’ (14)
t=N1 k=1

where thef = [ay, -+ ,a,]T. The N; and N, are the indices of the boundary samples,
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and the signal is assumed to be zeros outside of the bouadarFiee vectord that
minimizes the cost function can be shown to be

6 = (X*X) "1 (X*x) (15)

wherex = [2(Ny), -+ ,2(Ny)]|T, andX is a Toeplitz matrix witH0, x(Ny), - - - , x(No)|T
as the first column. This result can also be obtained by writie AR model in a matrix
form:

x=X60+u (16)

where thex andX are defined as same as above, arid the vector of residuals. The
residual is assumed to be a stationary process, andithaes be seen as a perturbation
vector. The parameter vector can be estimated by solvingeherbed linear system
x =~ X6 with the pseudo inverse, which results in (15).

There are two major variants that differ from each other leydhoice of the bound-
aries: the autocorrelation method, which uses all availabmples of the data frame in
forming theX, and the covariance method, which uses all samples excetitefdirst
p samples in forming the matriX. Notice that the matriXX*X is equivalent to the
finite-sample estimate of the signal covariance matrix ¢up $caling factor).

The covariance method is found to be more accurate than theatelation method
when the data length is small [14]. The autocorrelation wetihough, is more popu-
lar in applications due to the existence of efficient impletagon, e.g., the Levinson-
Durbin algorithm (LDA) [72] [73]. An important observationere is that the auto-
correlation method and the well known Yule-Walker method [éad to the same set
of equations. For a Gaussian AR signal, the Yule-Walker ow#olves the optimum
linear prediction problem by solving the Yule-Walker eqoas or normal equations:

r(0) r(=1) - r(=p)] 11 o2
r(1)  r(0) : a‘l _ O 17)
: r(—1) :
r(n) - r(0) | Lap 0

wherer(k) is the autocorrelation at lalg, ando? is the variance of the input process.
Due to the stationarity assumption, the autocorrelatiotimia the Yule-Walker system
of equations is Toeplitz and Hermitian. The LDA exploitssthtructure and solve (3) in
a recursive manner.

Both variants of the Least Squares method, as said, is baséldeostationarity
assumption. When applied to non-Gaussian or non-staticsignals, the bias and
variance of the LS estimates are higher than that of the rewsS§an estimators [17,
p.147]. The cause of large bias and variance is the mismdtG@aossian models to
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non-Gaussian signal structures. For example, in the LP@/sisaf voiced speech

signals, the impulse train structure causes spectral sagnglfects, which bias the es-
timated spectral envelope upwards at the harmonic fregeenad downwards at other
frequencies. In paper E and F, a multi-state version of thes&an AR model has been
developed, where the input process is modeled as severasi@ayprocesses controlled
by a nonlinear switching mechanism. The resulting equagicgtem is linear and can
be seen as a multi-state version of the LS solution in (15).

Nonlinear Least Squares

The regression is called nonlinear regression when thessgm model is not a linear
function of the parameters. The method for nonlinear resjpaswith the least squares
criterion is called the Nonlinear Least Squares (NLS) metfidtne NLS method is often
used in parameter estimation where the underlying nonlinelaavior of the process is
well known. In general, solving the NLS problem requires euical minimization
techniques [75] such as Gauss-Newton method and grid segrch

The Multi-Pulse Linear Predictive Coding (MPLPC) is an exdenof the NLS
method. The MPLPC is originally proposed by Atal and Remd# {@ optimally de-
termine the impulse position and amplitude of the input psscto the AR filter in the
context of analysis-by-synthesis linear predictive cgdifihe criterion of the optimality
is to minimize the sum of squares of modeling errors. Assgrthiati(n) is the (trun-
cated) impulse response of the AR filter, and thereldrpulses located at positioms;
with amplitudesy;, i € [1, M], the cost function can be written as

M 2
C(gi,mi) = Z [I(t) - Zgih(t - mz)] ; (18)

t=1 =

where N is the data frame length. Here the position parametgilis the nonlinear
parameter. To solve the multi-dimensional nonlinear ojiation (18) is difficult. A

popular sub-optimal technique for this kind of problem is tlatching Pursuit (MP)
technique, which decomposes the problem into a sequenaeedimension optimiza-
tions. The MP finds the single best impulse, and subtract fieeteof this impulse

from the signal, and then find the next best impulse. Findimg impulse at a time is
easy since it can be casted to a linear problem. Continuitibtiha required number of
impulses are found, one gets a sequence of impulses thanings the cost function
(18).

The MPLPC method is used in paper B and paper C for the estimafitemporal
localization of power in the speech excitation. In using MLPC method for esti-
mating the structure of the input process, the AR filter patans need to be known or
estimated first. The estimation of the AR parameters is dattetie linear LS method
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as introduced in the previous section. In paper B, the MPLR@eahis modified such
that the input process is a sum of a pulse train and a noise tfiobetter model the
excitation of speech signals. The noise sequence and ititadepare optimized as part
of the nonlinear optimization.

The Total Least Squares method

In many practical problems, the output of the AR filter is dittd by observation noise.
It is thus preferable to distinguish system noise and measeint noise since they are
generated by different mechanisms. The ordinary LS methadgh, attributes all per-
turbations to the system noise. This can be seen clearlyg ifdbidual vecton in (16)
can be written as a perturbation vectorxof

x + Ax = X0. (19)

The Total Least Squares (TLS) is an extension to the LS maetlitbcan explicit pertur-
bation to the signal matriX:

x + Ax = (X + AX)6. (20)

The TLS problem can be solved by first finding {B& x] that minimize§AX; Ax]
subject tox € Range(X), and then solving for

x = X0. (21)

The minimization is usually done by finding the best lowerkrapproximation of the
augmented matrikX + AX; x + Ax], using the Singular Value Decomposition (SVD)
technique.

It is shown in [77] (and the references therein) that the T&8mator is a more ro-
bust parameter estimator than the LS estimator in noisy@mvients. Whereas, due to
its very simple model, the TLS estimator can not utilize pkisowledge of the probabil-
ity distributions of the system noise and measurement ntfifee Gaussian assumption
is significantly violated, e.g., when outliers are prestd,accuracy of the TLS deterio-
rates considerably and may be quite inferior to that of thetBnates [77, p.5]. In this
respect, the Bayesian analysis based on dynamical systeelsrie a good alternative
since it allows convenient modeling of system noise and oreasent noise statistics.

4.2 Bayesian analysis of dynamic systems

One of the most popular dynamic model is the Kalman filter rhodhich is briefly
reviewed in Section 3.2. Like the TLS, the Kalman filter mogeldels both the system
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noise and the measurement noise. But the Kalman filter medabre flexible in that
the noise processes can be correlated, and non-statidhary.general dynamic models
even allow non-Gaussian modeling of the noise, e.g., [78&of the non-Gaussian
MMSE estimation techniques mentioned in Section 1 have beean be generalized
to the dynamic models. Bayesian analysis though, is more fesesignal estimation
than parameter estimation, because the prior distribugfgparameters are harder to
learn than that of the signal waveforms. Thus the systentifaetions of Bayesian
dynamic models are often treated as hidden data problerdsgrarsolved via the EM
algorithm. The principle is that, an MMSE estimator estiesahe signal given the prior
distributions of the system noise and the distribution efitieasurement noise, and the
parameters of the distributions of the noises are estimayelllaximum Likelihood
estimators given the estimated clean signal. It can be shioairthe iterations increase
the likelihood function monotonically, so the resultingiestes of the parameters are
equivalent to the ML estimates. The ML estimation and EM athm will be reviewed

in the next section. Examples of identification of linear ayric models can be found
in [79] [53] [80]. In paper E and F, we derived blind systemritification algorithms
for non-Gaussian and nonlinear dynamic systems based &Mtgaradigm.

4.3 The Maximum Likelihood method

The LS estimator reviewed in the previous section belongieterministic estimators
since there is no statistics involved explicitly in its mbdatroducing statistical models
into the estimation is a way to improve estimation perforogaby exploiting statistical
structure of the data. The Maximum Likelihood (ML) estimatoa popular statistical
estimator for estimating parameters of an underlying godipadistribution of a given
data set.

In the ML estimation, the observation datare assumed to be samples of a random
process whose probability distribution are parameterined set of parametefs The
ML estimator seeks the values @fthat maximize the likelihood of the observations
given the model. The likelihood is defined as

L(6) x P(x|0). (22)

The ML estimator is widely used in applications because itasy to use and it is
asymptoticly consistent and efficient. Asymptotic coraisy and efficiency means that
if the observation data length approaches infinity, the bidlse ML estimates approach
zero and the variance approach the Cramer-Rao lower bound.

For the specific problem of ML estimation of Gaussian AR pastars, several
works have been reported for the clean observation case[§2]][83] [84]. Even
for Gaussian AR models, the exact ML estimators are nonlifg#4 [17], and are often
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solved by numerical optimization or approximate ML estiioas [17].

For the noisy observation case, the ML estimation of AR patans are often
done with iterative algorithms. A powerful iterative ML @sttion technique called
the Expectation-Maximization (EM) algorithm will be rewied in the next section.

4.4 The Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm is an itevaticomputation technique
for maximum likelihood estimation. It is most suitable focomplete data, or hidden
data problems. Observation data corrupted by noise, outsigf models whose latent
variables are of real interest are examples of incomplete dgor an estimation prob-
lem that direct formulation of ML estimator is intractableeammplicated, the problem
can often be casted into a complete-data problem by apptefyrichoosing the com-
plete data set, for which the ML estimation is more efficiebr example, while the
maximization of the likelihood of the observation data nemtie solved by computa-
tionally complex numerical optimizations, the maximinatiof the joint likelihood of
the observation data and some other data can have a closesétution. The obser-
vation data and the extra data together are called the ctengidea. The extra data is
usually unknowra priori, so the conditional mean (expectation) of the joint likebd
is maximized instead. Thus the EM algorithm iterates betwbe two steps, the max-
imization step (M-step) and the expectation step (E-st€pg& EM algorithm is shown
to monotonically increase the likelihood at every iterat[B5]. Thus it is an iterative
ML estimator and enjoy the asymptotic property of the ML resiior.

Compared to other algorithms employing numerical optitidretechniques such as
gradient ascent methods and Newton type methods, the EMthlgdas the following
advantages:

1. the EM algorithm has no such parameter as step size. [girgitimum time-
dependent step size in the gradient ascent methods is g ek rather ad hoc
process.

2. No need of finding Hessian and inverting Hessian as is meiedevery iteration
of the Newton type methods.

3. The EM algorithm is numerically stable with each iteratimonotonically in-
creasing the likelihood.

4. The E-step and M-step equations of an EM algorithm oftea igituitive insights
to the estimation problem, while the other numerical methpibvide no such
insight.
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Generalized EM algorithms

In some problems, the M-step has no closed form solutionsud cases, instead of
choosing the parameters that maximize the expected ld@titof the complete data,
the parameters can be chosen such that the expected lib@libincreased. It can be
shown that this choice of parameters also increase théided monotonically at each
iteration [86, p.84]. This is called the Generalized EM (GEAlgorithm. One line of
GEM algorithms use numerical maximization techniques ichdd-step. Depending
on the numerical methods used for the maximization, theig diferent variants of
GEM, such as the GEM Newton-Raphson algorithm [87] and th#@Eadient algo-
rithm [88]. Another line of GEM uses the coordinate-asceitgiple, which increases
the multivariate likelihood function at each iteration byanging one parameter at a
time [34]. If the free variable at each time is chosen to mézé@mhe likelihood, the
coordinate ascent converges to a local maximum [89].

The GEM algorithms, being easy to implement, have slowevexgence rates than
the exact EM algorithms, if exist. Also notice that in evetgration of the GEM, the
expected likelihood is increased or locally maximizedjkenthat in the exact EM the
expected likelihood is globally maximized. So the GEM is meensitive to the initial
condition.

EM for parameter and signal estimation

In the application of EM algorithms to the estimation prablef noisy AR signals,
the parameter estimation and signal estimation problemsnéegrated nicely in one
theoretical framework. For Gaussian signal and noise, timeptete data is usually
defined as the concatenation of the observation and the sigaal. Using the signal
model defined in (3) and (4), the complete data is denoted as

- N . (23)

X

The parameters to be estimated, including the AR paramjeters - , a,|”, the process
noise variance, and the measurement noise variance areddaythe parameter vector
0.

In the M-step, the expected likelihood to be maximized isoded by the)-function

Q(0,0") = E{log f(2/0)|y}, (24)

whered") is the estimate of at thel'th iteration, and the expectation is over the clean
signalx. The@Q-function is maximized with respect to the paramélgeresulting in a
set of linear equations.
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In the E-step, the expectation in (24), or the sufficienistias of the signal, is cal-
culated. This is usually done with the non-causal Wienearfdr the Kalman smoother.

At the stationary point of the algorithm, the ML estimateafyfparameters and the
MMSE estimates of the clean signal given the parameterstaaened.

Applying the EM algorithm to the estimation of Gaussian ABnsils is first pro-
posed by Feder, Oppenheim, and Weinstein [90] [91]. Thoaglgsely related iterative
algorithm due to Lim and Oppenheim appears much earliet [92]

For non-Gaussian AR signals, the model for the excitatiatess is more com-
plex, and either the M-step or the E-step can be nonlinear.efample, in [34] the
non-Gaussian pdf is approximated by a mixture of Gaussi&s galthat the filtering
becomes a linear combination of linear filters, but the Mystxjuires solving a set of
nonlinear equations. The solution in [34] is to use the galimyd EM with coordinate
ascent as described earlier.

Our approaches in paper E and F, are to impose further cortstom the excitation
model. We show that when the mixture of Gaussian pdfs areti@oned to have equal
variance, the exact EM algorithm results in linear M-step Brstep. Further more, to
exploit the temporal structure of the excitation process,use an HMM to model the
dynamics of the excitation process. It is shown that the E&hiification algorithm
for the HMM combined with the AR model has better convergemamerty and bet-
ter estimation accuracy than the GMM ones for signals withpteral structure in the
excitations.

Approximate EM algorithms

In the speech enhancement literature, there is a group ofitims that have similar
iterative structures to the EM algorithm. In [92] and [98ltalgorithm iterates between
the estimation of AR parameters and the estimation of theasigsing Wiener filtering.
In [94] and [95], The iterations are between AR parametémagion and the Kalman
filtering. In [96], a model for the long term correlation iretlpitch is introduced. The
parameters of the long term correlation model and the AR reréeestimated from the
noisy signal and then the Kalman filtering is done based oresienated parameters.
The algorithm iterates until convergence criterion is m&hese algorithms are not
designed explicitly based on the EM theory, but they areetjoselated to the EM
algorithm and are conventionally seen as approximate Egrighgn.

In Paper D, we proposed an iterative algorithm based on Kafittaring. Different
from the above mentioned quasi-stationary EM methods,ni@thod uses a Kalman
filter model that has a non-stationary system noise with ihagarying variance. This
method is an approximate EM algorithm. Another novelty it tthe iteration is in a
frame-wise sequential form. Instead of doing several ti@na for each signal frame,
the algorithm does the iterations along consecutive fresndbat each frame is filtered
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only once. The estimated spectrum of the previous framedd usthe initialization
of the current frame estimation by a Weighted Power SpeSubtraction (WPSS) ini-
tialization scheme. The WPSS filter combines the estimatkeoptevious frame with
the current Power Spectral Subtraction estimate, muched3¢hision-Directed method
used in [40]. But it has different property than the Decisidinected method because
the signal phase is enhanced during the iteration due toigfireresolution excitation
modeling, while in the DD method phase is unprocessed. Duketstrong correla-
tion between signal spectra of consecutive frames, theitigofilters each frame only
once and achieves the same gain as the conventional itesatieme. In this way we
can also obtain a good initialization for the iteration whis very important in iterative
algorithms.

4.5 Higher Order Statistics based methods

Higher Order Statistics (HOS) based methods estimate npzttameters using cumu-
lants and their fourier transforms, known as polyspecti@SHbarameter estimation of
LTI systems with non-Gaussian inputs has been extensitedijes! in the recent years.
Works on AR estimation using HOS methods are found in [97] [98] [37] [99]. In
addition to the common properties of non-Gaussian proegdsichniques mentioned
previously, major advantages of the HOS methods include:

1. The HOS based methods do not require a model for the pdedhfiut process.
Thus they are more general than methods assuming cert@imptic forms for
the distributions of input processes.

2. The HOS based methods are immune to Gaussian measureomsat Either
white or colored Gaussian noise can not degrade the esbimaticuracy.

On the other hand, drawbacks associated with HOS methoddsarsignificant:

1. HOS methods require longer data lengths than second-orehod do. This
is also a side effect of the non-parametric calculation ghbr order statistics
from samples. For many fast varying non-stationary sigrthks calculation of
high order cumulants are prohibitive in terms of data efficieand computation
efficiency.

2. HOS methods seldom use higher than 4th-order cumulaatsuse the higher
the moment, the higher the estimator’s variance will be [188]. So they are
unable to model nonlinearities higher than 4th-order.

In the speech processing literature, it is found that thbdrigrder spectral analysis
is associated with a higher spectral distortion compardde@econd order ones [101].
This is due to the high variance of the HOS estimates givent $taomes of data. As
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a principle, if any information/structure of the signal isdwna priori, one should try
to build it into a model, and then fit the model to the data. Goutlels help reduce
estimation variance without need of long data.

5 Summary of contributions

The works included in this thesis are dedicated to solviegsignal estimation and pa-
rameter estimation problems for non-Gaussian signalspitesges rich temporal struc-
tures. We model such a signal as a stochastic process clsdilidring a non-Gaussian
input process with an all-pole filter. We term this model tkaegralized AR model since
it resembles the standard AR model except that the inputegsocan be of any prob-
ability distribution and can be temporally dependent. Thizdel contains two parts:
the all-pole filter with a moderate order models part of thrageral correlation of the

signal, and a dynamical model is used to model the non-Ganissand correlation of

the input process. Optimum non-Gaussian signal estimatioinparameter estimation
are addressed. A brief summary of our contributions on thigest is depicted in Fig.

8. Also shown in the diagram are the major established mettasttl their positions in

the big picture of AR signal estimation.

In papers A, B, C, and D, the focuses are on the optimum fijeahthe non-
Gaussian AR signals, based on extensions to the classieal lGaussian filtering theo-
ries. We show that by treating the input process to the d#-filter as a non-stationary
process (i.e., dispensing with the quasi-stationarity@ggion imposed on the input
process), the temporal structures in the input process eaxjuloited for a better es-
timation of the signal. Thus by viewing a non-Gaussian psscas a non-stationary
Gaussian process, this approach solves the non-Gausgieh astimation problem by
modeling the non-stationarity. Specifically, the inputqess is modeled as a Gaus-
sian process with zero-mean and a fast varying time-depéndgance. Parameters of
the model are estimated before the filtering using the MPL&Brtique, or using an
iterative scheme, which iterates between parameter estimend filtering.

In papers E, F and G, the non-Gaussianity of the input procsessodeled by a
GMM or an HMM model. The parameters of the GMM or the HMM, thkple filter
parameters, and the measurement noise statistics arly jestimated under the EM
framework. The MMSE estimates of the non-Gaussian signabiained as a results
of the E-step of the algorithm. The MMSE estimator we usee lien variant of the
Switching Kalman Filter. The SKF is a nonlinear filter whiaimebines a number of lin-
ear filters with a nonlinear switching function. When the GMdMused in the model, the
non-Gaussianity in the input process is modeled withouptaal dependency. When
the HMM is used, the dynamics or the nonlinear temporal dépecy in the input
process is modeled. Thus it is possible in the HMARM modet tha temporal de-
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pendency in the input process and the temporal correlatiared by the all-pole filter
are distinguished by the system identification algorithrhisTis especially useful for
de-convolution and equalization problems. Applicatianspeech analysis and channel
equalization are demonstrated in the papers.

In summary, we propose, in this thesis, several non-Gaussgnal processing
methods. These methods extend the classical linear Gaussidels in various ways
to approach the non-Gaussian signal estimation problemmdtderate additional com-
plexities to the Gaussian ones by exploiting special sigtrattures. In these methods,
the non-stationarity is fully exploited to model structsigsed to be modeled by non-
Gaussianity and non-linearity.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

E. Mumolo and A. Carini, “Volterra adaptive prediction of speech vaftplication to
waveform coding,European Transactions on Telecommunicatjmas. 6, No. 6, pp. 685—
693, 1995.

Y.-S. Zhang and D.-B. Li, “Volterra adaptive prediction of multipédlding channel,Elec-
tronics Lettersvol. 33, No. 9, pp. 754-755, 1997.

S. Haykin, Neural networks: a comprehensive foundation Englewood Cliffs, NJ:
Macmillan Publishing Company, 1994.

P. Stoica and R. Mose#troduction to spectral analysis Prentice Hall, 1997.
J. Burg, “Maximum entropy spectral analysi®hD dissertation1975.

D. B. Percival and A. T. WalderSpectral analysis for physical applications: Multitaper
and conventional univariate techniquesCambridge, UK: Cambridge University Press,
1993.

G. P. Box and G. M. Jenkingjme series analysis - Forecasting and controSan Fran-
cisco, CA: Holden-Day, 1976.

T. W. Anderson,The statistical analysis of time seriesNew York: John Wiley & Sons,
1971.

P. J. Brockwell and R. A. Daviglime series - theory and methodsNew York: Springer-
Verlag, 1991.

K. S. Shanmugan and A. M. Breipotikandom Signals - detection, estimation and data
analysis John Wiley & Sons, Inc, 1988.

L. Ljung, System identification - Theory for the usePrentice Hall, Englewood Cliffs, N
J, 1987.

B. Atal and M. Schroeder, “Adaptive predictive coding of sgfesignals,'The Bell System
Technical Journalpp. 1973-1987, Oct. 1971.

J. Makhoul, “Linear prediction: A tutorial reviewProc. IEEE pp. 561-580, Apr. 1995.



REFERENCES 29

(14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

S. L. Marple,Digital spectral analysis with applications Englewood Cliffs, NJ: Prentice
Hall, 1987.

S. M. Kay, Fundamentals of Statistical Signal Processing - Estimation Theo®yentice
Hall PTR, 1993.

K. K. Paliwal and A. Basu, “A Speech Enhancement Method BaseKalman Filtering,”
Proc.of ICASSP 198%0l. 12, pp. 177-180, Apr. 1987.

S. Kay and D. Sengupta, “Recent advances in non-gaussiaregtessive processes,” in
Advances in spectrum analysis and array processing,,\®l.Haykin, Ed. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

M. Grigoriu, Applied non-Gaussian processe&nglewood Cliffs, NJ: PTR Prentice Hall,
1976.

G. K. Grunwald, R. J. Hyndman, L. Tedesco, and R. L. Tweethen-Gaussian condi-
tional linear AR(1) models,Australian & New Zealand Journal of Statistja®l. 42, issue
4, pp. 479-495, Dec. 2000.

A. Hyvarinen, J. Karhunen, and E. Ojadependent Component Analysigohn Wiley &
Sons, Inc., 2001.

D. Sengupta and S. Kay, “Efficient estimation of parametersdor@aussian autoregres-
sive processes|/EEE Trans. Acoustics, Speech and Signal Processiolg 37. No.6, pp.
785—794, 1989.

C. Liand S. V. Andersen, “Blind identification of non-Gaussiart@agressive models for
efficient analysis of speech signalBfoceedings of ICASSR006.

C.-H. Lee, “Robust linear prediction for speech analysiEEE Trans. on Acoustics,
Speech and Signal Processjmgl. 12, pp. 289—-292, Apr. 1987.

B. Olshausen and D. Field, “Sparse coding with an overcompletis Iset: A strategy
employed by v1,Vision Researchvol. 37, No.23, pp. 3311-3325, 1997.

Y. Li, A. Cichocki, and S.-I. Amari, “Analysis of sparse repeesation and blind source
separation,Neural Computationvol. 16, pp. 1193-1234, 2004.

R. C. Reininger and J. D. Gibson, “Distribution of the two-dimensi@@T coefficients
for images,"IEEE Trans. Communvol. COM-31, pp. 835-839, 1983.

S. R. Kadaba, S. B. Gelfand, and R. L. Kashyap, “Recursstimation of images us-
ing non-Gaussian autoregressive moddEEE Trans. on Acoustics, Speech and Signal
Processingvol. 7. Issue 10, pp. 1439 — 1452, Oct. 1998.

W. D. Penny and S. J. Roberts, “Variational Bayes for nonsSmm autoregressive mod-
els,” IEEE intl. Workshop on Neural Networks for Signal Processig. 1, pp. 135-144,
2000.

Y. Linde and R. M. Gray, “Fake process approach to data cesgwn,”|[EEE Trans.
Commun.vol. COM-26, pp. 840-847, 1978.

M. Shen and L. Sun, “The analysis and classification of phomti@gram based on higher-
order spectra,lEEE Signal Processing Workshop on Higher-Oder Statistigs 29-33,
1997.



30

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

[47]

S. Fang, W. Li, and D. Zhu, “Modeling and simulation of non-Gaussorrelated clutter,”
Proc. of CIE Int. Conf. on Radapp. 195-199, 1996.

D. A. Hsu, “Long-tailed distributions for position errors in navigatiodour. Roy. Statist.
Soc. ser. Cvol. 28, pp. 62—-72, 1979.

G. Barnett, R. Kohn, and S. Sheather, “Bayesian estimation ofitoregyressive model
using Markov chain Monte CarloJournal of Econometrigsvol. 74(2), pp. 237-254,
1996.

S. M. Verbout, J. M. Ooi, J. T. Ludwig, and A. V. Oppenheim, f@aeter estimation for
autoregressive Gaussian-Mixture processes: the EMAX algoritltBE Trans. on Signal
Processingvol. 46. No.10, pp. 2744-2756, 1998.

M. S. Bartlett,An introduction to stochastic processed.ondon, UK: Cambridge Univer-
sity Press, 1955.

D. R. Brillinger and M. Rosenblatt, “Computation and interpretationtbfdrder spectra,”
in Spectral analysis of time serigB. Harris, Ed. New York: Wiley, 1967.

J. M. Mendel, “Tutorial on higher-order statistics (spectra) in aigmocessing and system
theory: Theoretical results and some applicatioRsgceedings of the IEEEol. 79, No.
3, pp. 278-305, 1991.

G. B. Giannakis and J. M. Mendel, “Identification of non-minimunmapé systems using
high-order statistics,JEEE Trans. Acoust., Speech, Signal Processuay 37, pp. 360—
377, 1989.

A. Gelb,Applied optimal estimatian Cambridge, Massachusetts: The M.I.T. Press, 1974.

Y. Ephraim and D. Malah, “Speech Enhancement Using a MinimusatSquare Error
Short-Time Spectral Amplitude EstimatofZEE Trans. on Acoustics, Speech, and Signal
Processingvol. ASSP-32, pp. 1109-1121, Dec. 1984.

C. Breithaupt and R. Martin, “MMSE estimation of magnitude-sqddd&T coefficients
with supper Gaussian priorgProc.of ICASSPvol. 1, pp. 848-851, 2003.

H. W. Sorensen and D. L. Alspach, “Recursive Bayesian estimasing Gaussian sums,”
Automaticavol. 7, pp. 465-479, 1971.

G. Kitagawa, “The two-filter formula for smoothing and an impleméata of the
Gaussian-sum smootheAhn. Inst. Statist. Mathvol. 46, No.4, pp. 605-623, 1994.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel appto# nonlinear/non-
Gaussian Bayesian state estimatid&E Proceedingsvol. 140, No.2, pp. 107-113, Apr.
1993.

S. J. Godsill and P. J. Rayner, “Robust noise reduction foedpeand audio signals,”
ICASSP Prog.pp. 625-628, 1996.

E. R. Beadle and P. M. Djuric, “Parameter estimation for non-&ansautoregressive
processes|CASSP Prog.vol. 5, pp. 3557-3560, Apr. 1997.

R. Chen and J. S. Liu, “Mixture Kalman filters]. R. Statist. Soc.,B/ol. 62, Part 3, pp.
493-508, 2000.



REFERENCES 31

[48]

[49]

[50]

[51]

[52]

(53]

[54]
[55]
[56]

[57]

(58]

[59]

[60]

[61]

(62]

(63]

[64]
(65]

P. M. Djuric, J. H. Kotecha, F. Esteve, and E. Perret, “Sequepéieameter estimation
of time-varying non-Gaussian Autoregressive proces€edRASIP Journal on Applied
Signal Processingvol. 8, pp. 865-875, 2002.

J. R. Deller, J. H. L. Hansen, and J. G. ProaKigcrete-Time Processing of Speech Sig-
nals Wiley-Interscience-IEEE, 1993.

A. M. Kondoz,Digital Speech, Coding for Low Bit Rate Communications Systedshn
Wiley & Sons, 1999.

E. Denoel and J.-P. Solvay, “Linear Prediction of Speech witheast Absolute Error
Criterion,” IEEE Trans. on Acoustics, Speech, and Signal ProcessolgASSP-33, No.
6, pp. 1397-1403, 1985.

M. Namba, H. Kamata, and Y. Ishida, “Neural Networks Leagnivith L1 Criteria and
Its Efficiency in Linear Prediction of Speech SignaRybc. ICSLP '96 vol. 2, pp. 1245—
1248, 1996.

S. Roweis and Z. Ghahramani, “A unifying review of linear Gaussiaodels,”Neural
Computationvol. 11. No.2, 1999.

J. G. ProakisDigital Communications New York: McGraw-Hill, Inc, 1995.
T. Kallath, A. H. Sayed, and B. Hassilhinear estimation Prentice Hall, 2000.

S. F. Boll, “Suppression of Acoustic Noise in Speech Using SpleStratraction,”IEEE
Trans. Acoust., Speech, Signal Processiog ASSP-27, No. 2, pp. 113-120, Apr. 1979.

P. J. Wolfe and S. J. Godsill, “Simple alternatives to the Ephraim aathMsuppression
rule for speech enhancemerfoc. IEEE signal processing workshop on statistical signal
processingpp. 496-499, Aug. 2001.

R. E. Kalman, “A new approach to linear filtering and prediction peots,”J. Basic Engr.
(ASME Trans.,)vol. 82 D, pp. 35-45, 1960.

——, “New methods in Wiener filtering theoryProc. of the 1st. Symposium on Engineer-
ing Applications of Random Function and Probabilipp. 270-388, 1963.

G. Strang and K. Borrd,inear Algebra, Geodesy and GPSW\ellesley-Cambridge, U.S.,
1997.

L. R. Rabiner and B. H. Juang, “An introduction to Hidden Markowedé|,” IEEE ASSP
Magazing pp. 4-16, Jan. 1986.

L. R. Rabiner, “A tutorial on Hidden Markov Models and selectegl@ations in speech
recognition,”Proceedings of the IEEpp. 257-286, Feb. 1989.

C. J. Wellekens, “Explicit time correlation in hidden Markov modelsgpeech recogni-
tion,” ICASSP Prog.vol. 12, pp. 384-386, 1987.

K. Murphy, “Switching Kalman filters, Technical report, U. C. Berkeleg998.

J.B.Kim, K. Y. Lee, and C. W. Lee, “On the applications of the latting Multiple Model
algorithm for enhancing noisy speectEEE Trans. on Speech and Audio Processirg.
8, No.3, pp. 493-508, May 2000.



32

[66] J. Deng, M. Bouchard, and T. Yeap, “Speech enhancensémg @ switching Kalman filter
with a perceptual post-filterProc. of ICASSPvol. |, pp. 1121-1124, 2005.

[67] B.-H.Juang and L. R. Rabiner, “Mixture autoregressive Hidéliarkov Models for speech
signals,”IEEE Trans. on Acoustics, Speech and Signal ProcessiigASSP-33. No.6,
pp. 1404-1413, 1985.

[68] A. Poritz, “Linear predictive hidden Markov models and the spesignal,” ICASSP’82
vol. 7, pp. 1291-1294, 1982.

[69] S. Kay and D. Sengupta, “Statistically/computationally efficient estimaté non-
Gaussian autoregressive processESXSSP’87vol. 12, pp. 45-48, 1987.

[70] D. Burshtein, “Joint modeling and maximum-likelihood estimation oftpaad linear pre-
diction coefficient parametersJournal of Acoustic Society of Americaol. 91(3), pp.
1531-1537, Mar. 1992.

[71] Y. Zhao, X. Zhuang, and S.-J. Ting, “Gaussian mixture densigeling of non-Gaussian
source for autoregressive proced§EE Trans. on Signal Processingol. 43. No.4, pp.
894-903, 1995.

[72] N. Levinson, “The Wiener RMS (root mean square) criterion inffittesign and predic-
tion,” Journal of Math. and Physig¢sol. 25, pp. 261-278, 1947.

[73] J. Durbin, “The fitting of time series modelsRev. Inst. Int. Statvol. 28, pp. 233-244,
1947.

[74] S. B. KeslerModern spectral analysis.Il New York: IEEE Press, 1986.

[75] L. Ljung, “General structure of adaptive algorithms: adaptatieh thacking,” inAdaptive
system identification and signal processing algorithidsKalouptsidis and S. Theodor-
idis, Eds. UK: Prentice-Hall international, 1993.

[76] B. Atal and J. Remde, “A new model of LPC excitation for prodgcimatural sounding
speech at low bit ratesProc. of ICASSP 1982o0l. 7, pp. 614-617, May 1982.

[77] S. V. Huffel and J. VandewalleThe total least squares problem: computational aspects
and analysis Philadelphia: Society for Industrial and Applied Mathematics, 1991.

[78] A. Pole, M. West, and P. J. Harrison, “Nonnormal and nonlimgaamic bayesian model-
ing,” in Bayesian analysis of time series and dynamic modelS. Spall, Ed. New York:
Marcel Dekker, Inc., 1988.

[79] Z. Ghahramani and G. E. Hinton, “Parameter estimation for lingaanhical systems,”
Technical Report CRG-TR-96-2, University of Torqrit®96.

[80] ——, “Variational Learning for Switching State-Space Model¢ural Computationvol.
12. No.4, pp. 831-864, 2000.

[81] F. C. Schweppe, “Evaluation of likelihood functions for Gaussignals,” IEEE Trans.
Inform. Theoryvol. IT-11, pp. 61-70, 1965.

[82] J. P. Burg, D. G. Luenburger, and D. L. Wenger, “Estimatiorstwéictured covariance
matrices,"Proc. IEEE vol. 70, pp. 963-974, 1982.



REFERENCES 33

(83]

(84]

(85]

(86]

[87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

[98]

[99]

T. Kailath, B. Levy, L. Ljung, and M. Morf, “Fast time invariant irrg@mentation of Gaus-
sian signal detectorslEEE Trans. Inform. Theoryol. IT-24, July 1978.

L. T. McWhorter and L. L. Scharf, “Nonlinear Maximum Likelihoagbstimation of Au-
toregressive time seriedEEE Trans. Signal Processingol. 43, No.12, pp. 2909-2919,
Dec. 1995.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihoomifn incomplete
data via the EM algorithmJ. R. Statist. Soc., Series B 138, 1977.

G. J. McLachlan and T. Krishnamhe EM algorithm and extensiansJohn Wiley & Sons,
Inc., 1997.

S. N. Rai and D. E. Matthews, “Improving the EM algorithnBfometrics vol. 49, pp.
587-591, 1993.

K. Lange, “A gradient algorithm locally equivalent to the EM algorithrdournal of the
Royal Statistical Societyol. B, 57, pp. 425—437, 1995.

D. G. Luenbergei.inear and nonlinear programming, 2nd edAddison Wesley, 1984.

M. Feder, A. V. Oppenheim, and E. Weinstein, “Maximum likelihoaidse cancellation
using the EM algorithm,JEEE Trans. on Acoustic, Speech and Signal Processiig37,
no.2, pp. 204-216, 1989.

E. Weinstein, A. V. Oppenheim, and M. Feder, “Signal enharegnusing single and
multi-sensor measurement®LE Tech. Rep. 560, MIT, Cambridge, M. 46, pp. 1—
14, 1990.

J. S. Lim and A. V. Oppenheim, “All-pole Modeling of Degraded 8gie” IEEE Trans.
Acoust., Speech, Signal Processingl. ASP-26, pp. 197-209, June 1978.

J. H. L. Hansen and M. A. Clements, “Constrained Iterative Spdgnhancement with
Application to Speech RecognitiodEEE Trans. Signal Processingol. 39, pp. 795-805,
1991.

J. D. Gibson, B. Koo, and S. D. Gray, “Filtering of colored noisedpeech enhancement,”
IEEE Trans. on Signal Processingpl. 39, pp. 1732-1742, 1991.

S. Gannot, D. Burshtein, and E. Weinstein, “lterative and settpléfalman filter-based
speech enhancement algorithm&EE Trans. on Speech and Audiml. 6, pp. 373-385,
July 1998.

Z. Goh, K. Tan, and B. T. G. Tan, “Kalman-filtering speech artgmnent method based
on a voiced-unvoiced speech mod¢EEE Trans. on Speech and Audio Processira.
7, No.5, pp. 510-524, 1999.

G. B. Giannakis, “On the identifiability of non-Gaussian ARMA modedsg cumulants,”
IEEE Trans. Automat. Conjwol. 35, pp. 18-26, 1990.

A. Swami and J. M. Mendel, “ARMA parameter estimation using onltpat cumulants,”
IEEE Trans. Acoust., Speech, Signhal Processing 38, pp. 1257-1265, 1990.

K. K. Paliwal and M. M. Sondhi, “Recognition of noisy speech usognulant-based
linear prediction analysisProc. ICASSPvol. 1, pp. 429-432, 1991.



34

[100] K. S. Lii and M. Rosenblatt, “A fourth-order deconvolution teitjure for non-gaussian
linear processes,” iMultivariate Analysis-V|IP. R. Krishnaiah, Ed. New York: Elsevier

Science, 1985, pp. 395-410.
[101] J. M. Salavedra, E. Masgrau, A. Moreno, J. Estarellas, addve, “Robust coefficients of

a higher order AR modeling in a speech enhancement system usimggiarzed Wiener
filtering,” Proc. 7th Mediterranean Electrotechnical Conferened. 1, pp. 69-72, 1994.



*(90®Jp|0g UI) YI0M SIY} JO SWRIUOD PUE ‘UOITRWIISS [eubiS YV 10} SPOYISW JO AJewwnS Jalq v :8 ainbi4

Optimum estimation
of AR signals

estimation

MMSE signal

\

\

Gaussian signals

Non-Gaussian signals

\

- Wiener filter

- Kalman filter

- EKF

- Gaussian Sum Filter

- Monte Carlo method

- WF with non-Toeplitz
signal covariance matrix
- KF with high temporal
resolution modeling

- Switching KF with
dynamic system noise

Optimum parameter
estimation

Gaussian signals

|
' '

Non-Gaussian signals

'

'

Without measurement | With measurement

Without measuremen

t

With measurement

noise noise noise noise
-LS -TLS - EMAX [34] - E-HMARM
- ML - XLS -HOS -HOS
-EM[91] - HMARM - Iterative KF

S3ON3Id343d

15



36




Part |l

Papers

37






Paper A

Inter-frequency Dependency in MMSE Speech
Enhancement

Chunjian Li and Sgren Vang Andersen

The paper has been published in
Proceedings of the 6th Nordic Signal Processing Sympq9pm200-203.
June 9-11, 2004. Espoo, Finland.



(© 2004 NORSIG
The layout has been revised.



1. INTRODUCTION A3

Abstract

In this paper an MMSE estimator of the complex short-timecspen is considered for
optimum noise reduction of speech. The correlation betwesguency components
is exploited to improve the estimation, especially of thoseponents with low local
SNR. Furthermore, by making use of both spectral envelopktiame envelope, the
estimator is able to suppress noise power in frequency doaral time domain simul-
taneously. The performance of the resulting estimator umdoto be superior to the
non-causal IIR Wiener filter. The enhanced signal suffess $pectral distortion, while
achieving a lower mean squared error than the Wiener filter.

1 Introduction

In recent years, several MMSE approaches to speech enhantappeared, includ-
ing the non-causal IR Wiener filter [1], the MMSE STSA esttorg2], and MMSE
estimator using non-Gaussian priors [3]. Most of them cacHzracterized as short-
time spectral amplitude estimators. A common characierdtthese methods is that
they only process the spectral amplitude and use the noiagepbpectra to generate
the enhanced signals (except for [3], in which the real pamtsimaginary parts of the
DFT coefficients are independently estimated). As an exentgke the non-causal IIR
Wiener filter with transfer function defined by

Pys(w)

HWF(“)) = PSS(M) ¥ Rw(w> (1)
whereP;;(w) andP,, (w) denote the power spectral density of the speech signal and th
uncorrelated additive noise, respectively. Hereafteraferito (1) as the Wiener filter or
WEF. The transfer function of the WF is of zero phase and theedfdeaves the phase
unprocessed. In addition, the WF does not exploit any imEgtfency dependency.
This is a consequence of the stationarity assumption, aadather common point of
the established MMSE approaches. One reason for not pingeks phase spectrum is
that phase is found to play a less important role in the huneaogption of speech [4].
An approximate threshold of phase perception was found Jirc¢dresponding to a
local SNR of about 6 dB. If a frequency component in a frameehlmeal SNR higher
than 6 dB, the phase distortion is not audible. The secondrammpoint comes as
a consequence of assuming the speech frame to be infinitedydod stationary [5].
Although speech signals are known to be non-stationary hod-§ime processing is
applied, this assumption is widely used in order to simgilify estimator.

In this paper we show that if these two restrictions are readpbetter estimators
are obtained.
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2 Phase spectrum and inter-frequency dependency

The motivation for involving phase information in the MMSEtienator is that, first

of all, phase distortion is audible with low SNR speech. Bssing low SNR speech
with an estimator working only on the spectral amplitudegsi reverberant effect and
roughness to the enhanced speech. Recent works [6, 7] cahfitirespecially for the

voiced male speech, phase information is of clear percEjptpartance. Moreover, the
phase noise causes amplitude spectrum distortion throa@sepmodulation when the
signals are short-time processed using the overlap-adubaieT he rise of the spectrum
in the valley between pitch harmonics causes audible arsifand higher residual noise.

Secondly, phase coherence in the voiced speech is a sigimsimarce of correlation
between frequency components. Two sources of correlatimng frequency compo-
nents can be identified. One is the finite-length window effdtis known that the
infinite Fourier matrix is the eigenvector matrix of an infeniToeplitz matrix [8]. If
we denote the covariance matrix of the speech samples,waesaFourier matrix, and
the covariance matrix of the frequency component€asF, andCy, respectively, we
can write the covariance matrix & = FC,FH. WhenC; is a Toeplitz matrix, if
the frame length of the Fourier analysis approaches infidity will become diago-
nal. However in general the speech signal is non-statipaacyvery long windows are
not applicable. The finite-length window effect causes tMadance matrixCy to be
generally non-diagonal. Therefore correlation exist agnitre frequency components.
The second, and more interesting source of correlatioreiptiase coherence in voiced
speech. Voiced speech can be modeled as an excitation paifséltered by an all-pole
filter. The phase of the pulse train is approximately linggitah harmonic frequencies.
After the filtering, the coherence in phase is maintainedtaes extend. If the phase
coherence is lost, the voiced speech sounds reverberanTf® coherence in phase
corresponds to energy localization in the time domain, tvieiEn be modeled by a time
envelope.

Because of the importance of phase stated above, and babaugatimum ampli-
tude estimator and the optimum phase estimator do not ¢d@isve formulate the
MMSE estimator as an estimate of the complex Fourier coefftsiinstead of inde-
pendently derived spectral amplitude and phase estimasars[2] or independent real
parts and imaginary parts as in [3].

3 MMSE estimator with time and frequency envelopes

The key feature of the new MMSE estimator is modeling the dawae matrixCy as
a full matrix instead of a diagonal matrix as in the WF. We wilbss the frequency
domain MMSE estimator first and then transform it to time doma
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We use the following statistical model and problem formolat The DFT coef-
ficients of each speech segment are modeled as complex &@awuasdom variables
with zero mean and varying variance. kgh, k), s(n, k), v(n, k) denote the:'th sam-
ple of noisy observation, speech, and additive white Ganssbise of the'th frame,
respectively. Then

y(n, k) = s(n, k) + v(n, k). 2

Let6(m, k) represent thex'th DFT coefficient of thek'th frame, defined by(m, k) =
EnN:o s(n, k)exp(—j2mnm/N). For compactness we use vector representation and
omit the index in the following discussion. Lgt 8, v, andF denote the vectors af,

#, v and the inverse Fourier matrix respectively. Then (2) cawiitten as

y=F0+v. 3)
The MMSE estimator can be shown to be the conditional megh [10

0 =E0ly)

H H 1 )
= CyF (FC@F + Cv) y

where(-)* denotes the Hermitian transpose ang denotes the covariance matrix of

the noisev. The covariance matriCy is generally unknown and must be replaced with

an estimate. We propose here an approach to the estimati®p &bm the all-pole

model of the speech. Le/ A(z) denote the transfer function of the all pole model. Let

H be the corresponding synthesis filter matrix derived fromdh-pole model, and

be the residual vector, such that

s = Hr. )

Since the residual is a white noise sequence with unit veeigfor voiced speech it is
a few impulses present periodically in the white noise),dbréariance matri>xC, of r
can be written as a diagonal matrix with the squared resigsithe diagonal elements
1, OnceC:, is obtainedC, andCy can easily be found. We have

C, = HC,H" (6)
Cy = FEC,F. (7)

Inserting (7) in (4) gives the MMSE short-time spectral mstior.

Fig.1 shows how the covariance matfiy estimated by this approach differs from
the diagonal matrix underlying the standard WF. We can sdettiaoff-diagonal el-
ements are generally non-zero. At the brims of the matrixctiess-correlations are

IHere we ignore the long term correlation of the residual.
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significant. This represents the windowing effect causedhleyhigh spectral power
at low frequencies. More interestingly, we see how integérency dependency, espe-
cially between neighboring formants show up as significdfitiagonal elements in
the covariance matrix. It is well known that a properly choséndow can reduce the
correlation between frequency components but can notmgitaiit. In Fig.1 a Hanning
window is used, and we see that the remaining correlatictilisignificant and can be
exploited to improve the estimator.

The frequency domain MMSE estimator given by (4) is mainly thee purpose
of demonstrating the difference to the WF made by a full cavaré matrix. In the
estimation of the speech waveform, (4) is transformed batkrte domain, giving the
desired time domain MMSE estimator,

§ = C4(Cs + Cy) ty. €)

Estimating the diagonal elements @f. is equivalent to estimating the residual
power distribution over the time axis. It can also be seenstismating phase from
the residual, because the power spectrum of the residuabisrkto be white. Estimat-
ing the squared residual from noisy observation is difficOltr solution is to estimate
the time envelope of the squared residual with simple shagesa constant floor plus
some pulses located periodically. These varying variantessidual represent time
localization of energy. This is a major difference to the WHjah can be seen as us-
ing constant residual variance because of the stationangstion. We estimate the
residual envelope in a simple but effective way. The noigesp signal is first lowpass
filtered with cut-off frequency of 800 Hz. A 3-tap whiteningfdr is found by applying
linear prediction on the filtered signal. The output of the jmass filter is then filtered
by the whitening filter to get a reference residual. The pasiof the maximum in the
reference residual is chosen as the first impulse positidineoéstimated residual enve-
lope. According to an estimate of the pitch period the posgiof remaining impulses
are found. A pre-defined pulse shape is put on every impulsigigo. The pulse shape
is chosen to be wider and smoother than a true residual imjpulsrder to gain robust-
ness against error in estimating the impulse positions. réseof the residual will be
approximated with a constant whose amplitude is decideabpikg the average power
of the estimated residual equal to unity. The estimatiomefresidual envelope is only
needed for voiced frames. Fig.2 shows an example of the agtthtesidual envelope.

Because the above described MMSE estimator requires arapentelope and a
temporal envelope as the prior knowledge, we hereaftert@feas the Time-Frequency
Envelope MMSE (TFE-MMSE) estimator.



4. RESULTS A7

Amplitugle [dB]

Figure 1: Amplitude plot of the covariance matri€y. Matrix size is 160 by 160 (only one quarter of the
matrix is shown).

f v
0 20 40 60 80 100 120 140 160

Figure 2: The squared residual (dashed) and the estimated enveldjoh.(so

4 results

We first compare the performance of the TFE-MMSE estimatdrtae WF based on
known spectral envelope of the signal. Since the purposeskdw that using the extra
information about phase (or energy localization in time$ ippossible to achieve lower
mean squared error and lower spectral distortion at the siamee we first use known
spectral envelopes for both estimators.

Both estimators run with 30 sentences from different spesakes male and 15
female) from the TIMIT database added with artificial whitauSsian noise at a signal-
to-noise ratio of 0 dB. All sentences are 16kHz sampled, agdented into frames of
160 samples. For the TFE-MMSE estimator, the time enveloptree residual are esti-
mated from noisy observations using the method describséddtion 3. For the output
of both estimators, the SNR, Segmental SNR (segSNR) andSpegitral Distortion
(LSD) to the original signal spectrum are calculated. Th&kS$&defined as the ratio of
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the total signal power to the total noise power in the seeiitie segSNR is defined
as the average ratio of signal power to noise power per framéfing frames with a
power more than 30 dB below average power. The LSD is defindldeadistance be-
tween two log-scaled DFT spectra summed over all frequendiee LSD is calculated
only for voiced frames since for the unvoiced frames bothredbrs are identical.

From Table 1 we see consistent improvement of the TFE-MM3iEhator over WF
in all three measurements. Fig.3 shows the signal spectramaiced frame comparing
with the spectrum of the output of the two estimators. Onby lttwer frequency half
is plotted to show the details of the harmonic structures #aen that the TFE-MMSE
estimator preserves the harmonic structure better thawthe

To verify the performance in a practical scenario, estithatPC coefficients are
also used in the comparison. The LPC coefficients are esdrint a method similar to
the decision directed method in [2]. The experimental sitigentical to the above one,
except that input SNR is now set to 10 dB. Table 2 shows thdtseshignificant im-
provements are observed with the segSNR measurement. Theflt8e TFE-MMSE
estimator also improves significantly over the WF. Infornigteining experiments show
that the reduction of spectral distortion is significant.

Male Female
SNR | segSNR| LSD | SNR | segSNR| LSD
WF 10.73 5.21 290 10.57 5.59 347
TFE-MMSE 11.24 5.48 265 10.85 5.71 315
Improv. 0.51 0.27 25 0.28 0.12 32

Table 1: Performance of WF and the TFE-MMSE estimator with known AR coieffits. All SNR measures
are in dB. Input SNR is 0 dB. Results are averaged over 30segggby 15 male and 15 female speakers).

Male Female
SNR | segSNR| LSD | SNR | segSNR| LSD
WF 15.65 8.73 245 | 15.38 9.30 303
TFE-MMSE 16.71 9.42 183 16.48 9.83 231
Improv. 1.06 0.70 62 1.10 0.53 72

Table 2: Performance of WF and the TFE-MMSE estimator with estimated Ad¥ficients. Input SNR is 10
dB. Results are averaged over 30 sentences (by 15 male anthaefepeakers).

5 Discussion

In the first part of this paper we stated the motivation of folating an MMSE joint es-
timator of amplitude and phase spectrum, i.e., phase isroéptial importance for low
SNR sources, and estimating phase provides the additiofioamation about the corre-
lation of DFT coefficients which improves the amplitude dpgm estimation in return.
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Figure 3: A comparison of amplitude spectrum for the output of WF and thE-MMSE estimator to the
original signal spectrum.

We have avoided the widely used assumption of independeqtuiéncy components.
This is justified by the fact that both finite-length windovfeet and time localization of
energy (caused by phase coherence) in the voiced speeatiliog correlation among
the frequency components. Phase is known as hard to estisoate re-formulate the
problem into estimating time envelope of the residual poWee MMSE joint spectral

estimator (4) shows us that a full covariance matrix canakfhe inter-frequency de-
pendency, achieving a better spectrum estimate. The #igois finally implemented

as a time domain MMSE estimator (8).

The performance of the TFE-MMSE estimator and Wiener filkercampared based
on known LPC coefficients as well as estimated ones. The TIMSHM estimator shows
higher SNR and less spectral distortion than the WF. In the gagsing estimated LPC
coefficients, the improvement of segmental SNR and spedistdrtion of the TFE-
MMSE estimator over the WF is even more significant. This isaliee the spectral
suppression and the temporal suppression benefit from ¢behroaking a better joint
estimator.

References

[1] J. S. Lim and A. V. Oppenheim, “Enhancement and Bandwidth Gesgion of Noisy
Speech,'Proceedings of the IEE®oI. 67, pp. 1586-1604, Dec. 1979.

[2] Y. Ephraim and D. Malah, “Speech Enhancement Using a MinimunaM8&quare Error
Short-Time Spectral Amplitude EstimatotEEE Trans. on Acoustics, Speech, and Signal
Processingvol. ASSP-32, pp. 1109-1121, Dec. 1984.



Al0

[3] R. Martin, “Speech Enhancement Using MMSE Short Time Spedistimation With
Gamma Distributed Speech PriorBfoc.of ICASSP 20Q2o0l. 1, pp. 253-256, May 2002.

[4] P. Vary, “Noise Suppression By Spectral Magnitude Estimation -Matsm and Theoreti-
cal Limits,” Signal Processing,8p. 387—400, May 1985.

[5] W. B. Davenport and W. L. RootAn Introduction to the Theory of Random Signals and
Noise New York: McGraw-Hill, 1958.

[6] H.Pobloth and W. B. Kleijn, “On Phase Perception in Speeegt.of ICASSP 1999ol. 1,
pp. 29-32, Mar. 1999.

[7] J. Skoglund, W. B. Kleijn, and P. Hedelin, “Audibility of Pitch-Synchiausly Modulated
Noise,” Speech Coding For Telecommunications Proceeding, |B6E 7-10, pp. 51-52,
Sept. 1997.

[8] R. M. Gray, “Toeplitz and Circulant Matrices: A reviewfbundations and Trends in Com-
munications and Information Theqryol. 2, Issue 3, pp. 155-239, 2006.

[9] T.F. Quatieriand R. J. McAulay, “Phase Coherence in Speechf&truction for Enhance-
ment and Coding ApplicationsProc.of ICASSP 1989vol. 1, pp. 207-210, May 1989.

[10] S. M. Kay, Fundamentals of Statistical Signal Processing - Estimation TheoBrentice
Hall PTR, 1993.



Paper B

A Block Based Linear MMSE Noise Reduction with a
High Temporal Resolution Modeling of the Speech
Excitation

Chunjian Li and Sgren Vang Andersen

The paper has been published in
EURASIP Journal on Applied Signal Processing, SpeciadssuDSP in Hearing
Aids and Cochlear Implantsol. 2005:18, pp. 2965-2978, October 2005.



(© 2005 C. Liand S. V. Andersen
The layout has been revised.



1. ABSTRACT B3

1 Abstract

A comprehensive Linear Minimum Mean Squared Error (LMMSEpr@ach for para-
metric speech enhancement is developed. The proposediatgeaim at joint LMMSE
estimation of signal power spectra and phase spectra, hasvekploitation of correla-
tion between spectral components. The major cause of tieisfirequency correlation
is shown to be the prominent temporal power localizatiorhim éxcitation of voiced
speech. LMMSE estimators in time domain and frequency doa first formulated.
To obtain the joint estimator, we model the spectral sigoabhdance matrix as a full
covariance matrix instead of a diagonal covariance matriis ¢he case in the Wiener
filter derived under the quasi-stationarity assumption.ad@complish this, we decom-
pose the signal covariance matrix into a synthesis filterisiahd an excitation matrix.
The synthesis filter matrix is built from estimates of thepdle model coefficients, and
the excitation matrix is built from estimates of the instargous power of the excita-
tion sequence. A decision-directed Power Spectral Sulramethod and a modified
Multi-Pulse Linear Predictive Coding (MPLPC) method aredigh these estimations,
respectively. The spectral domain formulation of the LMM&timator reveals impor-
tant insight about inter-frequency correlations. Thisxgleited to significantly reduce
computational complexity of the estimator. For resouingtéd applications such as
hearing aids, the performance-to-complexity tradeoff lsartonveniently adjusted by
tuning the number of spectral components to be includedeiegtimate of each compo-
nent. Experiments show that the proposed algorithm is alileduce more noise than a
number of other approaches selected from the state-cdrthd-he proposed algorithm
improves the segmental SNR of the noisy signal by 13 dB fomthiée noise case with
an input SNR of 0 dB.

2 Introduction

Noise reduction is becoming an important function in hegaias in recent years thanks
to the application of powerful DSP hardware and the progoéswise reduction algo-
rithm design. Noise reduction algorithms with high perfarme-to-complexity ratio
have been the subject of extensive research study for mamg.y&mong many different
approaches, two classes of single-channel speech enhanicerathods have attracted
significant attention in recent years because of their bpédormance compared to the
classic spectral subtraction methods (A comprehensivdty sifi Spectral Subtraction
methods can be found in [1]). These two classes are the fnegumain block based
Minimum Mean Squared Error (MMSE) approach and the signbsgace approach.
The frequency domain MMSE approach includes the non-cdlgaViener filter [2],
the MMSE Short-Time Spectral Amplitude (MMSE-STSA) estiord 3], the MMSE
Log-Spectral Amplitude (MMSE-LSA) estimator [4], the Ctrasned Iterative Wiener
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Filtering (CIWF) [5], and the MMSE estimator using non-Gaasspriors [6]. These
MMSE algorithms all rely on an assumption of quasi-statiipand an assumption of
uncorrelated spectral components in the signal. The iasenarity assumption re-
quires short time processing. At the same time, the assampfiuncorrelated spectral
components can be warranted by assuming the signal to béehfitong and wide-
sense stationary [7] [8]. This infinite data length assuampts in principle violated
when using the short-time processing, although the effetttis violation may be mi-
nor (and is not the major issue this paper addresses). Mgrertamtly, the wide-sense
stationarity assumption within a short frame does not weltlet the prominent tempo-
ral power localization in the excitation source of voicedegh due to the impulse train
structure. This temporal power localization within a sHomime can be modeled as a
non-stationarity of the signal that is not resolved by therstime processing. In [9],
we show how voiced speech is advantageously modeled astaiionary even within
a short frame, and that this model implies significant ifitequency correlations. As
a consequence of the stationarity and long frame assunsptioea MMSE approaches
model the frequency domain signal covariance matrix asgodia matrix.

Another class of speech enhancement methods, the sigredatéapproach, im-
plicitly exploits part of the inter-frequency correlatidny allowing the frequency do-
main signal covariance matrix to be non-diagonal. Thisslasludes the Time Domain
Constraint (TDC) linear estimator and Spectral Domain @an# (SDC) linear esti-
mator [10], and the Truncated Singular Value Decomposi{idsVD) estimator [11].
In [10], the TDC estimator is shown to be an LMMSE estimatathvedjustable input
noise level. When the TDC filtering matrix is transformed te frequency domain,
it is in general non-diagonal. Nevertheless, the knownaiganbspace based methods
still assume stationarity within a short frame. This canédensas follows. In TDC and
SDC the noisy signal covariance matrices are estimatechisy dveraging of the outer
product of the signal vector, which requires stationaritthim the interval of averaging.
The TSVD method applies singular value decomposition tostgeal matrix instead.
This can be shown to be equivalent to the eigen decomposifitine time averaged
outer product of signal vectors. Compared to the mentioregliency domain MMSE
approaches, the known signal subspace methods implieitig &he infinite data length
assumption, so that the inter-frequency correlation chbgehe finite length effect is
accommodated. However, the more important cause of inégrency correlation, i.e.,
the non-stationarity within a frame is not modeled.

In terms of exploiting the masking property of the human targlisystem, the above
mentioned frequency domain MMSE algorithms and signal pats based algorithms
can be seen as spectral masking methods without explicielimgdof masking thresh-
olds. To see this, observe that the MMSE approaches shapegiueial noise (the
remaining background noise) power spectrum to one mordasitoi the speech power
spectrum, thereby facilitating a certain degree of maskinipe noise. In general, the
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MMSE approaches attenuate more in the spectral valleysttigagpectral subtraction
methods do. Perceptually, this is beneficial for high pitoiced speech, which has
sparsely located spectral peaks that are not able to maskdutral valley sufficiently.
The signal subspace methods in [10] are designed to shapeditrial noise power
spectrum for a better spectral masking, where the maskirgglibld is found exper-
imentally. Auditory masking techniques have received éasing attention in recent
research of speech enhancement [12—14]. While the majdrttyese works focus on
spectral domain masking, the work in [15] shows the impareaof the temporal mask-
ing property in connection with the excitation source ofceal speech. It is shown
that noise between the excitation impulses is more perfgleithan noise close to the
impulses, and this is especially so for the low pitch speechvhich the excitation im-
pulses locates temporally sparsely. This temporal magkiogerty is not employed by
current frequency domain MMSE estimators and the signasade approaches.

In this paper, we develop an LMMSE estimator with a high terapoesolution
modeling of the excitation of voiced speech, aiming for miogea certain non-stationarity
of the speech within a short frame, which is not modeled bysgstationarity based
algorithms. The excitation of voiced speech exhibits praeant temporal power local-
ization, which appears as an impulse train superimposeu avibw level noise floor.
We model this temporal power localization as a non-statignarhis non-stationarity
causes significant inter-frequency correlation. Our LMMSEmator therefore avoids
the assumption of uncorrelated spectral components, aablésto exploit the inter-
frequency correlation. Both the frequency domain signeadance matrix and filtering
matrix are estimated as complex-valued full matrices, tvheans that the information
about inter-frequency correlation are not lost and the #og# and phase spectra are
estimated jointly. Specifically, we make use of the lineadiction based source-filter
model to estimate the signal covariance matrix, upon whigtme domain or frequency
domain LMMSE estimator is built. In the estimation of thersgcovariance matrix,
this matrix is decomposed into a synthesis filter matrix amexcitation matrix. The
synthesis filter matrix is estimated by a smoothed powertsgesubtraction method
followed by an autocorrelation Linear Predictive Coding?(@) method. The excitation
matrix is a diagonal matrix with the instantaneous powehefitPC residual as its diag-
onal elements. The instantaneous power of the LPC resigleatimated by a modified
Multi-Pulse Linear Predictive Coding (MPLPC) method. Hayiestimated the signal
covariance matrix, we use it in a vector LMMSE estimator. Wevs that by doing
the LMMSE estimation in the frequency domain instead of inetidomain, the com-
putational complexity can be reduced significantly due eoftftt that the signal is less
correlated in the frequency domain than in the time domagmgared to several quasi-
stationarity based estimators, the proposed LMMSE estinmasults in a lower spectral
distortion to the enhanced speech signal while having higbise reduction capability.
The algorithm applies more attenuation in the valleys betwgitch impulses in time
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domain, while small attenuation is applied around the gitgbulses. This arrangement
exploits the temporal masking effect, and results in a betteservation of abrupt rise
of the waveform amplitude while maintaining a large amountase reduction.

The rest of this paper is organized as follows. In Sectione3rtbtations and as-
sumptions used in the derivation of LMMSE estimators ardireed. In Section 4, the
non-stationary modeling of the signal covariance matiiedsscribed. The algorithm is
summarized in Section 5. In Section 6, the computationalptexity of the algorithm
is reduced by identifying an interval of significant corteda and by simplifying the
modified MPLPC procedure. Experimental settings, objegtand subjective results
are given in Section 7. Finally, Section 8 discusses theimdxderesults.

3 Background

In this section, notations and statistic assumptions ferdirivation of LMMSE esti-
mators in time and frequency domain are outlined.

3.1 Time domain LMMSE estimator

Lety(n, k), s(n, k), v(n, k) denote the'th sample of noisy observation, speech, and
additive noise (uncorrelated with the speech signal) okitieframe, respectively. Then

y(n, k) = s(n, k) +v(n, k).
Alternatively, in vector form we have
y=s+v, 1)

where boldface letters represent vectors and the frameasadire omitted to allow a
compact notation. For exampye= [y(1,k),y(2,k),--- ,y(N, k)]T is the noisy signal
vector of thek’th frame, whereV is the number of samples per frame.

To obtain linear MMSE estimators, we assume zero mean GauBf)F'’s for the
noise and the speech processes. Under this statistic niedeMMSE estimate of the
signal is the conditional mean [16]

8 = Els|y] )

whereCg andC, are the covariance matrices of the signal and the noisegctgply.
The covariance matrix is defined @ = F[ss”], where(-)? denotes Hermitian trans-
position andE[-] denotes the ensemble average operator.
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3.2 Frequency domain LMMSE estimator and Wiener filter

In the frequency domain the goal is to estimate the compleX Baefficients given a
set of DFT coefficients of the noisy observation. Létm, k), (m, k), andV (m, k)
denote then'th DFT coefficient of thek'th frame of the noisy observation, the signal,
and the noise, respectively. Due to the linearity of the Dp&rator, we have,

Y(m,k) =60(m, k) +V(m,k). (3)

In vector form we have
Y=60+V, 4)

where again boldface letters represent vectors and thesfiiadlices are omitted. As an
example, the noisy spectrum vector of #ith frame is arranged as

Y = [Y(1,k),Y(2,k), -, Y(N, k)T

where the number of frequency bins is equal to the numbermopkes per frameV.

We again use the linear modd&’, 8, andV are assumed to be zero-mean complex
Gaussian random variables afddndV are assumed to be uncorrelated to each other.
The LMMSE estimate is the conditional mean

6 = E[0]Y]

5
= Cy(Cy + Cvy) 'Y, ©)

whereCy andCy; are the covariance matrices of the DFT coefficients of theadignd
the noise, respectively. By applying inverse DFT to eack,H#) can be easily shown
to be identical to (2).
The relation between the two signal covariance matricesrnia and frequency do-
main is
Cy = FC,F 1, (6)
whereF is the Fourier matrix. If the frame was infinitely long and thignal was
stationary,Cs would be an infinitely large Toeplitz matrix. The infinite F@r matrix
is known to be the eigenvector matrix of any infinite Toepfitatrix [8]. Thus,Cy
becomes diagonal and the LMMSE estimator (5) reduces todhecausal IIR Wiener
filter with the transfer function
Pys(w)
B A mES ) v
where P, (w) and P, (w) denotes the power spectral density (PSD) of the signal and
the noise, respectively. In the sequel we refer to (7) as tlemV filter or WF.
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4 High temporal resolution modeling for the signal co-
variance matrix estimation

For both time and frequency domain LMMSE estimators desdrilm Section 3, the
estimation of the signal covariance matfi is crucial. In this work, we assume the
noise to be stationary. For the signal, however, we propuseise of a high temporal
resolution model to capture the non-stationarity causethbyexcitation power varia-
tion. This can be explained by examining the voice produactieechanism. In the well
known source-filter model for voiced speech, the excitationrce models the glottal
pulse train, and the filter models the resonance propertii@fdcal tract. The vocal
tract can be viewed as a slowly varying part of the system.icB}fy in a duration of
20 to 30 ms it changes very little. The vocal folds vibrate &ster rate producing
periodic glottal flow pulses. Typically there can be 2 to 8tglbpulses in 20 ms. In
speech coding, it is common practice to model this pulse trgia long-term correla-
tion pattern parameterized by a long-term predictor [18] [19]. However, this model
fails to describe the linear relationship between the pha$¢he harmonics. That is,
the long term predictor alone does not model the temporalilation of power in the
excitation source. Instead, we apply a time envelope thatticas the localization and
concentration of pitch pulse energy in the time domain. Timigurn, introduces an
element of non-stationarity to our sighal model becausextic#&ation sequence is now
modeled as a random sequence with time varying variancethe glottal pulses are
modeled with higher variance and the rest of the excitatemuence is modeled with
lower variance. This modeling of non-stationarity withisteort frame implies a tem-
poral resolution much finer than that of the quasi-statitydrased algorithms. The
latter has a temporal resolution equal to the frame lengtluswe term the former the
high temporal resolution model. It is worth noting that saim&oiced phonemes, such
as plosives, have very fast changing waveform envelopeshvellso could be modeled
as non-stationarity within the analysis frame. In this papewever, we focus on the
non-stationary modeling of voiced speech.

4.1 Modeling signal covariance matrix

The signal covariance matrix is usually estimated by avegatipe outer product of the
signal vector over time. As an example this is done in theadigubspace approach [10].
This method assumes ergodicity of the autocorrelationtfonawvithin the averaging
interval.

Here we propose the following method of estimatidg with the ability to model
a certain element of non-stationarity within a short frafmke following discussion is
only appropriate for voiced speech. Letlenote the excitation source vector, ddd
denote the synthesis filtering matrix corresponding to theabtract filter such as
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[ h(0) 0 0 0]
h(1) h(0)
H=| h©) h(1)  h(0) :
. : .0
[M(N 1) h(N-2) - h(0) ]

whereh(n) is the impulse response of the LPC synthesis filter. We thee ha
s = Hr, (8)

and therefore
C, = E[ss”'] = HC,H” 9)

whereC., is the covariance matrix of the model residual veetdn (9) we treafH as a
deterministic quantity. This simplification is common iee also when the LPC filter
model is used to parameterize the power spectral densitjassic Wiener filtering
[20] [5]. Section 4.2 addresses the estimatiortbf Note that (8) does not take into
account the zero-input response of the filter in the previocaime. Either the zero-
input response can be subtracted prior to the estimatioadaf &#ame, or a windowed
overlap-add procedure can be applied to eliminate thigeffe

We now modelr as a sequence of independent zero mean random variables. The
covariance matrixC, is therefore diagonal with the variance of each element a$
its diagonal elements. For voiced speech, except for theh pihpulses, the rest of
the residual is of very low amplitude and can be modeled astaohvariance random
variables. Therefore, the diagonal @f takes the shape of a constant floor with a few
periodically located impulses. We term this the temporaktpe of the instantaneous
residual power. This temporal envelope is an importantgiaite new MMSE estima-
tor because it provides the information of uneven tempooalgy distribution. In the
following two subsections, we will describe the estimatidthe spectral envelope and
the temporal envelope respectively.

4.2 Estimating the spectral envelope

In the context of LPC analysis, the synthesis filter has atsp@cthat is the envelope of
the signal spectrum. Thus, our goal in this subsection istimate the spectral envelope
of the signal. We first use the Decision Directed method [&diimate the signal power
spectrum and then use the autocorrelation method to findptiwral envelope.

The noisy signal power spectrum of thigh frame Y (k)|? is obtained by applying
the DFT to thek’th observation vectoy (k) and squaring the amplitudes. The Decision

Directed estimate of the signal power spectrum ofittieframe, |6 (k) |2, is a weighted
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sum of two parts, the power spectrum of the estimated sightideoprevious frame,
|0(k — 1)|?, and the power-spectrum-subtraction estimate of the cufr@me’s power
spectrum:

0(k) = al0(k — D + (1 - a)maz([Y (k)* — B[V (k)),0),  (10)

wherea is a smoothing facton € [0,1], andE[|V (k)|?] is the estimated noise power
spectral density. The purpose of such a recursive schenteiisprove the estimate
of the power spectrum subtraction method by smoothing aitahdom fluctuation in
the noise power spectrum, thus reduce the “musical noisédetr[21]. Other iterative
schemes with similar time or spectral constraints are agple in this context. For a
comprehensive study of constraint iterative filtering t@ghes, readers are referred to
[5]. We now take the square-root of the estimated power sp@cand combine it with
the noisy phase to reconstruct the so called intermedititaas, which has the noise-
reduced amplitude spectrum but noisy phase. An autoctimelmethod LPC analysis
is then applied to this intermediate estimate to obtain yimhesis filter coefficients.

4.3 Estimating the temporal envelope

We propose to use a modified MPLPC method to robustly estithatéemporal en-
velope of the residual power. MPLPC is first introduced byl Atad Remde [17] to
optimally determine the impulse position and amplitudehsf éxcitation in the con-
text of analysis-by-synthesis linear predictive codingePprinciple is to represent the
LPC residual with a few impulses in which the locations angides (gains) of the
impulses are chosen such that the difference between tet gignal and the synthe-
sized signal is minimized. In the noise reduction scendhie target signal will be the
noisy signal and the synthesis filter must be estimated flmmobisy signal. Here, the
synthesis filter is treated as known. For the residual ofeaigpeech, there is usually
one dominating impulse in each pitch period. We first deteentine impulse per pitch
period, then model the rest of the residual as a noise flodr @ghstant variance. In
MPLPC the impulses are found sequentially [22]. The firstuiap location and ampli-
tude is found by minimizing the distance between the syitkdssignal and the target
signal. The effect of this impulse is subtracted from thgeasignal and the same pro-
cedure is applied to find the nextimpulse. Because this wlgdihg impulses does not
take into account the interaction between the impulsesptinization of the impulse
amplitudes is necessary every time a new impulse is founé. nlimber of pitch im-
pulsesp in a frame is determined in the following wayis first assigned an initial value
equal to the largest number of pitch periods possible in mdéraThenp impulses are
determined using the above mentioned method. Only the sapukith an amplitude
larger than a threshold are selected as pitch impulses.rlaxperiment, the threshold
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is set to 0.5 times the largest impulse amplitude in this &aitaving determined the
impulses, a white noise sequence representing the noisefltte excitation sequence
is added into the gain optimization procedure together wafitkthe impulses. We use a
codebook of 1024 white Gaussian noise sequences in theipatiom. The white noise
sequence that yields the smallest synthesis error to thettsignal is chosen to be the
estimate of the noise floor. This procedure is in fact a metdge coder withy impulse
stages and one Gaussian codebook stage, with a joint reimation of gains. Detailed
treatment of this optimization problem can be found in [28Jter the optimization,
we use a flat envelope equal to the square of the gain of thetsdlpoise sequence to
model the variance of the noise floor. Finally, the temporsedope of the instanta-
neous residual power is composed of the noise floor variamtéhee squared impulses.
When applied to noisy signals, the MPLPC procedure can bepirtied as a non-linear
Least Square fitting to the noisy signal, with the impulseitpmss and amplitudes as
the model parameters.

5 The algorithm

Having obtained the estimate of the temporal envelope oirtbantaneous residual
power and the estimate of the synthesis filter matrix, we ate & build the signal
covariance matrix in (9). The covariance matrix is used sttme LMMSE estimator
(2) or in the spectral LMMSE estimator (5) after being tramsfed by (6).

The noise covariance matrix can be estimated using speeagmtaftames. Here,
we assume the noise to be stationary. For the time domain LEIESimator (2), if
the noise is white, the covariance matfiX, is diagonal with the noise variance as
its diagonal elements. In the case of colored noise, theermgariance matrix is no
longer diagonal and it can be estimated using the time agdragter product of the
noise vector. For the spectral domain LMMSE estimator (5, is a diagonal matrix
with the power spectral density of the noise as its diagotehents. This is due to
the assumed stationarity of the ndisén the special case where the noise is white, the
diagonal elements all equal the variance of the noise.

We model the instantaneous power of the residual of unvaspeeich with a flat
envelope. Here, voiced speech is referred to as phoneme®thdre excitation from
the vocal folds vibration, and unvoiced speech consistsefést of the phonemes. We
use a simple voiced/unvoiced detector that utilize the tlaat voiced speech usually
has most of its power concentrated in the low frequency bahie unvoiced speech
has a relatively flat spectrum withinto 4k H z. Every frame is low pass filtered and

LIn modeling the spectral covariance matrix of the noise we ignered the inter-frequency correlations
caused by the finite-length window effect. With typical windlength, e.g15 to 30ms, the inter-frequency
correlations caused by the window effect is less signifitaanh those caused by the non-stationarity of the
signal. This can be easily seen by examining a plot of the sdextivariance matrix.
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Algorithm 1 TFE-MMSE estimator

1

13:

14:
15:

16

Take thek'th frame,

2: Estimate the noise PSD from the latest speech-absent frame.
3:
4. Do power spectrum subtraction estimation of the signal RBD refine the estimate

Calculate the power spectrum of the noisy signal.

using Decision-Directed smoothing (eq.(10)).

: Reconstruct the signal by combining the amplitude speceatimated by 4 and

the noisy phase.

: Do LPC analysis to the reconstructed signal. Obtain thehggid filter coefficients,

and form the synthesis matrH.

. IF the frame is voiced

Estimate the envelope of the instantaneous residual posieg the modified
MPLPC method.

. IF the frame is unvoiced

Use a constant envelope for the instantaneous residuakpowe

: ENDIF
10:
11:
12:

Calculate the residual covariance maigx.
Form the signal covariance mati® = HC,H” (eq.(9)).
IF time domain LMMSE:
§ = C4(Cs + Cyv) 'y (€0.(2)).
IF frequency domain LMMSE:
transformCs to frequency domaily = FC F 1,
filter the noisy spectrurd = Cy(Cy + Cv)~ 1Y (eq.(5)),
obtain the signal estimate by inverse DFT.
ENDIF
Calculate the power spectrum of the filtered sigt@lk — 1)|2, for use in the PSD
estimation of next frame.
k=k+1landgotol.

then the filtered signal power is compared with the origingthal power. If the power

loss is more than a threshold, the frame is marked as an wt/bi@me, and vice versa.
Note however, that even for the unvoiced frames, the sgexivariance matrix is non-
diagonal because the signal covariance mattpx built in this way, is not Toeplitz.

Hereafter, we refer to the proposed approach as the TinguEney-Envelope MMSE
estimator (TFE-MMSE), due to its utilization of envelopasiioth time and frequency
domain. The algorithm is summarized in Algorithm 1.

6

Reducing computational complexity

The TFE-MMSE estimators require inversion of a full covada matrixCg or Cy.
This high computational load prohibits the algorithm frozalrtime application in hear-
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ing aids. Noticing that both covariance matrices are symmand positive definite,
Cholesky factorization can be applied to the covarianceiogs, and the inversion can
be done by inverting the Cholesky triangle. A careful impéetation requiresv? /3
operations for the Cholesky factorization [24] and the &than complexity iSO(N?).
Another computation intensive part of the algorithm is thedified MPLPC method.
In this section we propose simplifications to these two parts

Further reduction of complexity for the filtering requirasderstanding of the inter-
frequency correlation. In the time domain the signal samale clearly correlated with
each other in a very long span. However, in the frequency durtiee correlation span
is much smaller. This can be seen from the magnitude ploteetwo covariance
matrices (see Fig.1).

4000
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0
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-2000 1 1 1 1 1 1
20 40 60 Sample 80 100 120

(a) Voiced speech waveform

60

Sample
Frequency bin

80

20 40 60 80 100 120 20 40 60 80 100 120
Sample Frequency bin

s

0 20 40 60 30 40 50 60
dB dB

(b) covariance matrix in time domain (left) and spectral domaghf)

Figure 1: The voiced speech waveform and its time domain and frequenoaitio(amplitude) covariance
matrices estimated with the non-stationary model. Frame leadth8 samples.

For the spectral covariance matrix, the significant valusscentrate around the
diagonal. This fact indicates that a small number of diatpocapture most of the inter-
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frequency correlation. The simplified procedure is as fedio Half of the spectrum
vector@ is divided into small segments o6frequency bins each. The sub-vector start-
ing at thej’th frequency is denoted &, ;, wherej € [1,[,2l,--- ,N/2] andl < N.
The noisy signal spectrum and the noise spectrum can be ségpne the same way
giving Y 5up,; andV ;. The LMMSE estimate ofl .., ; needs only a block of the co-
variance matrix, which means that the estimate of a frequeomponent benefits from
its correlations withl neighboring frequency components instead of all companent
This can be written as

Osub; = Co..,(Coouy; + Crins,)” Youp - (11)

ub,j

The first half of the signal spectrum can be estimated segimesegment. The sec-
ond half of the spectrum is simply a flipped and conjugategigarof the first half.
The segment length is chosen tobe- 8, which in our experience does not degrade
performance noticeably when compared with the use of thefalrix. Other segmen-
tation schemes are applicable, such as overlapping segiiéig also possible to use
a number of surrounding frequency components to estimategéescomponent at a
time. We use the non-overlapping segmentation becausedniputationally less ex-
pensive while maintaining good performance for smhalWhen the signal frame length
is 128 samples and the block lengthlis= 8, using this simplified method requires
only % = 5—}2 times of the original complexity for the filtering part of th&gorithm
with an extra expense of FFT operations to the covariancebmatvhen! is set to
values larger than 24, very little improvement in perforceus observed. Whehis
set to values smaller than 8, the quality of enhanced speegtades noticeably. By
tuning the parametér an effective trade-off between the enhanced speech yaailit
the computational complexity is adjusted conveniently.

In the MPLPC part of the algorithm, the optimization of thepimse amplitude and
the gain of the noise floor brings in heavy computational Idadan be simplified by
fixing the impulse shape and the noise floor level. In the ditegiversion, the MPLPC
method is only used for searching the locations ofitldeminating impulses. Once the
locations are found, a predetermined pulse shape is putlai@eation. An envelope of
the noise floor is also predetermined. The pulse shape i€ohiode wider than an im-
pulse in order to gain robustness against estimation efthieampulse locations. This
is helpful as long as noise is present. The pulse shape used @xperiment is a raised
cosine waveform with a period of 18 samples and the ratio &éetvthe pulse peak and
the noise floor amplitude is experimentally determined t6 I6e Finally, the estimated
residual power must be normalized. Although the pulse shapehe relative level of
the noise floor are fixed for all frames, experiments showttteaT FE-MMSE estimator
is not sensitive to this change. The performance of bothithpldgied procedure and
the optimum procedure are evaluated in Section 7. Fig.2 shiogvestimated envelopes
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of residual in the two ways.
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(a) Complete MPLPC method
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Figure 2: Estimated magnitude envelopes of the residual by the MPLPCaudethd the simplified MPLPC
method.

7 Results

Objective performance of the TFE-MMSE estimator is firstlexged and compared
with the Wiener filter [2], the MMSE-LSA estimator [4], andetBignal subspace method
TDC estimator [10]. For the TFE-MMSE estimator, both the ptete algorithm and
the simplified algorithms are evaluated. For all estimatbessampling frequency is
8kHz, and the frame length is 128 samples with 50% overlaghdnViener filter we
use the same Decision Directed method as in the MMSE-LSA hadlFE-MMSE
estimator to estimate the PSD of the signal. An importantupater for the Decision
Directed method is the smoothing facter The larger thex is, the more noise is re-
moved and more distortion imposed to the signal, becauseooé smoothing made to
the spectrum. In the MMSE-LSA estimator with the aforesadameter setting, we
found experimentallyy = 0.98 to be the best trade-off between noise reduction and
signal distortion. We use the samdor the WF and the TFE-MMSE estimator as for
the MMSE-LSA estimator. For the TDC, the parameigj: = 1) controls the degree
of over suppression of the noise power [10]. The largerih®, the more attenuation
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to the noise but larger distortion to the speech. We chpose3 in the experiments by
balancing the noise reduction and signal distortion.

All estimators run with 32 sentences from different speak&6 male and 16 fe-
male) from the TIMIT database [25] added with white Gaussiaise, pink noise, and
car noise in SNR ranging from 0 dB to 20 dB. The white GaussiEgsenis computer
generated, and the pink noise is generated by filtering wivitge with a filter having a
3 dB per octave spectral power descend. The car noise isdextdmside a car with a
constant speed. Its spectrum is more low pass than the pis&.nthe quality measures
used include the SNR, the segmental SNR, and the Log-SpBéstartion (LSD). The
SNR is defined as the ratio of the total signal power to thd taiise power in the sen-
tence. The segmental SNR (segSNR) is defined as the avetagefrsignal power to
noise power per frame. To prevent the segSNR measure frarg deiminated by a few
extreme low values, since the segSNR is measured in dB,atigreon practice to apply
a lower power threshold to the signals. Any frame that has an average power lower
thane is not used in the calculation. We setio 40dB lower than the average power of
the utterance. The segSNR is commonly considered to be mardated to perceived
quality than the SNR measure. The LSD is defined as [26]:

K M 241

1 1 X(m7k)|—|—e> ]2
LSD=—=3"|= 3" (20l0gig LT | 12
K,C_l{M ( T\ R (e, k)| + € (12)

m=1

wheree is to prevent extreme low values. We again se¢b 40 dB lower than the
average power of the utterance. Results of the white Gausgiese case are given
in Fig. 3. TFE-MMSEL is the complete algorithm, and TFE-MMSE the one with

simplified MPLPC and reduced covariance matfix=(8). It is observed that the TFE-
MMSEZ2, although a result of simplification of TFE-MMSE1, Haetter performance
than the TFE-MMSEL. This can be explained as follows: 1) lidewpulse shape is
more robust to the estimation error of impulse positionsl 2nthe wider pulse shape
can model to some extent the power concentration aroundrpalse peaks, which
is overlooked by the spiky impulses. For this reason, in tilewing evaluations we

investigate only the simplified algorithm.

Informal listening tests reveal that, although the speettaerced by the TFE-
MMSE algorithm has a significantly clearer sound (less mdfftean the reference al-
gorithms), the remaining background noise has musicabktofsolution to the musical
noise problem is to set a higher value to the smoothing factéfsing a largery sacri-
fices the SNR and LSD slightly at high input SNR’s, but impmtlee SNR and LSD at
low input SNR's, and generally improves the segSNR signifiga The musical tones
are also well suppressed. By setting= 0.999, the residual noise is greatly reduced,
while the speech still sounds less muffled than for the referenethods. The reference
methods can not use a smoothing factor as high as the TFE-NYEriments show
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Figure 3: SNR gain, segSNR gain, and Log-Spectral Distortion gaittferwhite Gaussian noise case.

that atae = 0.999 the MMSE-LSA and the WF result in extremely muffled sounds. The

TDC also suffers from a musical residual noise. To supptesesidual noise level to
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as low as that of the TFE-MMSE with = 0.999, the TDC requires @& lager than
8. This causes a sharp degradation of the SNR and LSD, anltisresuery muffled
sounds. The TFE-MMSE2 estimator with a large smoothingfaet = 0.999) is here-
after termed TFE-MMSE3 and its objective measures are &lsarsin the figures. To
verify the perceived quality of the TFE-MMSE3 subjectivglyeference test between
the TFE-MMSE3 and the WF, and between the TFE-MMSE3 and the EHASA
are conducted. The WF and the MMSE-LSA use their best valuenobthing factor
(o = 0.98). The test is confined to white Gaussian noise and a limitega@f SNR’s.
Three sentences by male speakers and three by female spatikech SNR level are
used in the test. Eight unexperienced listeners are redjtoreote for their preferred
method based on the amount of noise reduction and speeoitidist The utterances
are presented to the listeners by a high quality headphohe.clBan utterance is first
played as a reference, and the enhanced utterances ard plage or more if the lis-
tener finds this necessary. The results in Table 1 and 2 staiwlthat 10 dB and 15 dB
the listeners clearly prefer the TFE-MMSE over the two refiee methods, while at 5
dB the preference on the TFE-MMSE is unclear; 2) the TFE-MN&&Ehod has a more
significant impact on the processing of male speech than @prbhcessing of female
speech. At 10 dB and above, the speech enhanced by TFE-MM&ERBdnely audi-
ble background noise, and the speech sounds less mufflethinaeference methods.
There is one artifact heard in rare occasions that we bekes@used by remaining mu-
sical tones. It is of very low power and occur some times a¢sp@resence. The two
reference methods have higher residual background noiksudfer from muffling and
reverberance effects. When SNR is lower than 10 dB, a cenpaiech dependent noise
occurs at speech presence in the TFE-MMSE3 processed spEeeltiower the SNR
is, the more audible this artifact is. Comparing the male f@nthle speech processed
by the TFE-MMSE3, the female speech sounds a bit rough.

The algorithms are also evaluated for pink noise and caergzises. The objective
results are shown in Fig. 4 and 5. In these results the TDQidligo is not included
because the algorithm is proposed based on the white Gaussige assumption. In-
formal listening test shows that the perceptual qualityhigapink noise case for all the
three algorithms are very similar to the white noise case tlaat in the car noise case all
tested methods have very similar perceptual quality dubdoséry low pass spectrum
of the noise.

A comparison of spectrograms of a processed sentence (imalle lawyers love
millionaires") is shown in Fig. 6.
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Table 1: Preference test between WF and TFE-MMSE3 with additive whéassian noise.
[ 15dB [ 10dB [ 5dB
Male WF 8% 7% 37%
speaker | TFE | 92% 83% | 63%
Female WF 37% 33% | 58%
speaker | TFE | 63% 67% | 42%

Table 2: Preference test between MMSE-LSA and TFE-MMSE3 with adelitvhite Gaussian noise.
[15dB [ 10dB [ 5dB
Male LSA 4% 25% 46%
speaker | TFE 96% 75% | 54%
Female LSA 25% 42% | 50%
speaker | TFE | 75% 58% | 40%

8 Discussion

The results show that for male speech, the TFE-MMSES3 estiniats the best perfor-
mance in all the three objective measures (SNR, segSNR, @b{. [For female speech,
the TFE-MMSE3 is the second in SNR, the bestin LSD, and amuagést in segSNR.
The TFE-MMSE3 estimator allows a high degree of suppresgiae noise while
maintaining low distortion to the signal. The speech enbdray the TFE-MMSE3
has a very clean background and a certain speech dependiehaienoise. When the
SNR is high (10 dB and above), this speech dependent noisrysmell masked by
the speech, and the resulting speech sounds clean andAsespectrograms in Fig. 6
indicates, the clearer sound is due to a better preservedlsigpectrum, and a more
suppressed background noise. At SNR lower than 5 dB, alththugbackground still
sounds clean, the speech dependent noise becomes audibleegraeived as a distor-
tion to the speech.The listeners preference start shifitomg the TFE-MMSE3 towards
the MMSE-LSA that has a more uniform residual noise, alttiaihg noise level is high.
The conclusion here is that at high SNR, it is preferable toawe background noise
completely using the TFE-MMSE estimator without major diison to the speech.
This could be especially helpful at relieving listeningidaie for the hearing aid user.
Whereas, at low SNR it is preferable to use a noise reductiaegty that produces
uniform background noise, such as the MMSE-LSA algorithm.

The fact that female speech enhanced by the TFE-MMSE estirmatinds a little
rougher than the male speech is consistent with the obgamvat [15], where male
voiced speech and female voiced speech are found to haegetiffmasking proper-
ties in the auditory system. For male speech, the auditasteryis sensitive to high
frequency noise in the valleys between the pitch pulse pealtse time domain. For
the female speech, the auditory system is sensitive to legugncy noise in the valleys
between the harmonics in the spectral domain. While the tiomeaih valley for the
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Figure 4: SNR gain, segSNR gain, and Log-Spectral Distortion gainHermpink noise case.

male speech is cleaned by the TFE-MMSE estimator, the sp@elteys for the female
speech are not attenuated enough; a comb filter could hegartowe the roughness in
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the female voiced speech.

In the TFE-MMSE estimator, we apply a high temporal resolution-stationary
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Figure 6: Spectrograms of enhanced speech. Input SNR is 10 dB.

model to explain the pitch impulses in the LPC residual otedispeech. This enables
the capture of abrupt changes in sample amplitude that aeaptured by an AR linear
stochastic model. In fact, the estimate of the residual p@mgelope contains infor-
mation about the uneven distribution of signal power in temis. In Fig.7 the original
signal waveform, the WF enhanced signal waveform and the MIMSE enhanced
signal waveform of a voiced segment are plotted. It can berwbd in this figure that
by a better model of temporal power distribution the TFE-MB&stimator represents
the sudden rises of amplitude better than the Wiener filter.
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Figure 7: Comparison of waveforms of enhanced signals and the origigiadk Dotted line: original, solid
line: TFE-MMSE, dashed line: WF.

Noise in the phase spectrum is reduced by the TFE-MMSE estimalthough
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human ears are less sensitive to phase than to power, itrid fouecent work [27] [28]
[29] that phase noise is audible when the source SNR is very llo [27] a threshold
of phase perception is found. This phase-noise tolerameshhbld corresponds to an
SNR threshold of about 6 dB, which means for spectral commsneith local SNR
smaller than 6 dB, it is necessary to reduce phase noise. FEeMMSE estimator
has the ability of enhancing phase spectra because of ity abiestimate the temporal
localization of residual power. It is the linearity in thegde of harmonics in the residual
that makes the power be concentrated at periodic time iossanthus producing pitch
pulses. Estimating the residual power temporal envelopargres the linearity of the
phase spectrum of the residual and therefore reduces pbsscimthe signal.

References

[1] S. F. Boll, “Suppression of Acoustic Noise in Speech Using SpeSuéitraction,”IEEE
Trans. Acoust., Speech, Signal Processiog ASSP-27, No. 2, pp. 113-120, Apr. 1979.

[2] J. S. Lim and A. V. Oppenheim, “Enhancement and Bandwidth Gesgion of Noisy
Speech,'Proceedings of the IEE®oI. 67, pp. 15861604, Dec. 1979.

[3] Y. Ephraim and D. Malah, “Speech Enhancement Using a MinimunaiM8&quare Error
Short-Time Spectral Amplitude EstimatotEEE Trans. on Acoustics, Speech, and Signal
Processingvol. ASSP-32, pp. 1109-1121, Dec. 1984.

[4] ——, “Speech Enhancement Using a Minimum Mean-Square Erogr&pectral Ampli-
tude Estimator,1IEEE Trans. on Acoustics, Speech, and Signal ProcessolgASSP-33,
pp. 443-445, Apr. 1985.

[5] J. H. L. Hansen and M. A. Clements, “Constrained lterative Spdethancement with
Application to Speech RecognitionEEE Trans. Signal Processingol. 39, pp. 795805,
1991.

[6] R. Martin, “Speech Enhancement Using MMSE Short Time Spedistimation With
Gamma Distributed Speech PriorBfoc.of ICASSP 20Q2ol. 1, pp. 253—-256, May 2002.

[7] W. B. Davenport and W. L. RootAn Introduction to the Theory of Random Signals and
Noise New York: McGraw-Hill, 1958.

[8] R. M. Gray, “Toeplitz and Circulant Matrices: A reviewgbundations and Trends in Com-
munications and Information Theqryol. 2, Issue 3, pp. 155-239, 2006.

[9] C. Liand S. V. Andersen, “Inter-frequency Dependency in BEISpeech Enhancement,”
Proceedings of the 6th Nordic Signal Processing Sympaslume 2004.

[10] Y. Ephraim and H. L. V. Trees, “A Signal Subspace ApproawhSpeech Enhancement,”
IEEE Tran. Speech and Audio Processingl. 3, pp. 251-266, July 1995.

[11] M. Dendrinos, S. Bakamidis, and G. Carayannis, “Speech ig#rmaent from Noise: A
Regenerative Approach3peech Communicatipwol. 10, pp. 45-57, Feb. 1991.



B24

[12]

[13]

[14]

(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

D. Tsoukalas, J. Mourjoupoulos, and G. Kokkinakis, “Speettaacement based on audi-
ble noise suppressionlEEE Trans. on Speech and Audio Processia. 5(6), pp. 497—
514, Nov. 1997.

N. Virag, “Single channel speech enhancement based onimgggtoperties of the human
auditory system,IEEE Trans. on Speech and Audio Processil. 7,n0.2, pp. 126-137,
1999.

K. Arehart, J. Hansen, S. Gallant, and L. Kalstein, “Evaluatiomaiaditory masked thresh-
old noise suppression algorithm in normal-hearing and hearing impaiteddis,”Speech
Communicationsvol. 40, no.4, pp. 575-592, Sept. 2003.

J. Skoglund and W. B. Kleijn, “On Time-Frequency Masking in Vaic8peech,"|IEEE
Trans. Speech and Audio Processingl. 8, No.4, pp. 361-369, July 2000.

S. M. Kay, Fundamentals of Statistical Signal Processing - Estimation TheoBrentice
Hall PTR, 1993.

B. Atal and J. Remde, “A new model of LPC excitation for prodagcimatural sounding
speech at low bit ratesProc. of ICASSP 198%o0l. 7, pp. 614-617, May 1982.

B. Atal, “Predictive Coding of Speech at Low Bit Rat¢éEE Trans. on Commpp. 600—
614, Apr. 1982.

B. S. Atal and M. R. Schroeder, “Adaptive predictive codingsp&ech signalsBell Syst.
Techn. J.vol. 49, pp. 1973-1986, 1970.

J. S. Lim and A. V. Oppenheim, “All-pole Modeling of Degraded &g’ IEEE Trans.
Acoust., Speech, Signal Processingl. ASP-26, pp. 197-209, June 1978.

O. Cappé, “Elimination of the Musical Phenomenon with the Ephraich alah Noise
Suppressor,IEEE Trans. Acoust., Speech, Signal Processimd 2, pp. 345-349, Apr.
1994.

A. M. Kondoz, Digital Speech, Coding for Low Bit Rate Communications Systerdshn
Wiley & Sons, 1999.

N. Moreau and P.Dymarski, “Selection of excitation vectors for@ie P coders,TEEE
Trans. on Speech and Audio Processiva). 2, no. 1, pp. 2941, January 1994.

G. H. Golub and C. F. V. LoaMatrix Computations The Johns Hopkins University Press,
1996.

“DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus)-ROM, NTIS, 1990.

J.-M. Valin, J. Rouat, and F. Michaud, “Microphone array plittr for seperation of si-
multaneous non-stationary sourcéASSP 2004pp. 1-221, 2004.

P. Vary, “Noise Suppression By Spectral Magnitude Estimationehdaism and Theoreti-
cal Limits,” Signal Processing,8p. 387—400, May 1985.

H. Pobloth and W. B. Kleijn, “On Phase Perception in Speeehgt.of ICASSP 199%o0l. 1,
pp. 29-32, Mar. 1999.

J. Skoglund, W. B. Kleijn, and P. Hedelin, “Audibility of Pitch-Synohously Modulated
Noise,” Speech Coding For Telecommunications Proceeding, |BBE 7-10, pp. 51-52,
Sept. 1997.



Paper C

Integrating Kalman Filtering and Multi-pulse Coding
for Speech Enhancement with a Non-stationary Model
of the Speech Signal

Chunjian Li and Sgren Vang Andersen

The paper has been published in
Proceedings of the Thirty-eighth Annual Asilomar Confeeean Signals, Systems,
and Computers
November 7 - November 10, 2004, Pacific Grove, CaliforniaAUS



(© 2004 IEEE
The layout has been revised.
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Abstract

In this paper, speech enhancement via Kalman filtering isiciemed. A non-stationary
signal model for the speech signal is first described. Thidehoonsists of a slowly
varying AR model and an excitation source that exhibits adlggime-varying vari-
ance. The AR model and the excitation model fit nicely inti&kéiman filtering frame-
work, fully exploiting the capability of the Kalman filter ppocess non-stationary sig-
nals in an LMMSE optimum manner. The AR-model coefficiemsesatimated by a
decision-directed type Power Spectral Subtraction mefblbolwed by an LPC analysis.
For the robust estimation of the rapidly time-varying eatiin model in the presence of
noise, we propose the use of a Multi-Pulse Linear Predidieeing (MPLPC) based
method. The Kalman filtering algorithm based on the norictary signal model is
able to partially avoid the commonly used quasi-statiotyagissumption of the speech.
Therefore the non-stationarity of the signal is fully exfdd in suppressing the noise
power that is more stationary. Our experiments show thaKidenan filter with rapidly
time-varying variance modeling using the proposed MPLP§&eblamethod brings sig-
nificant performance improvement both when compared to alinesKalman filter-
ing method with quasi-stationarity assumption and whenpgzamed to the well-known
MMSE Log-Spectral Amplitude estimator (MMSE-LSA).

1 introduction

Kalman filters have been applied to speech enhancement laghevo decades. An
early proposal can be dated back to Paliwal and Basu in the8G@i$ [1]. The Kalman
filter can be seen as a generalization of the Wiener filterhdtefore has important
properties that are superior to those of the Wiener filtere Ofithe most fundamental
differences between the Wiener filter and the Kalman filtethis ability of the lat-
ter to accommodate non-stationary signals. However, magn#n filters previously
proposed for speech enhancement have not fully exploitedagpect. On the con-
trary, it is common practice to simply segment the speeahshort frames and assume
the signal to be stationary within each frame [1-3]. Thislé®&nown as the quasi-
stationarity assumption. Thus, the modeling of signal stationarity in these methods
is not significantly different from common practice for Wearfiltering [4] and Spectral
Subtraction [5] based speech enhancement methods.

The speech signal is known to be non-stationary due to thement of the articu-
lators consisting of the vocal tract and the vocal folds. 3tmert time processing usually
segments signals into frames with length of about 20 ms. fEmgporal resolution is
good enough to resolve the movement of the vocal tract, buemaugh to resolve the
movement of the vocal folds. Reducing the frame length iseinggal undesirable be-
cause it undermines the capability of averaging that eveegtsal estimator relies on.
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Therefore, for voiced speech, a model with high temporailig®n is desired to fully
exploit the non-stationarity of the signal.

A Kalman filter with modeling of non-stationarity is propaséy Popescu and
Zeljkovic [6]. This filter aims at modeling non-stationgrivf the noise but still as-
sumes the speech to be stationary within the analysis frdree.et al. proposed an
EM-based noise reduction approach [7], in which the exoitasource of an AR filter
is modeled as an outcome from one of two Gaussian processese processes dif-
fer by having a low and a high variance, respectively. This isontrast to the single
variance used in other proposed Kalman filters. Goh et aphgeed another EM-based
algorithm with a voiced-unvoiced speech model that is ablenbdel the periodicity
or long-term correlation in the excitation of the voicedegte[8]. This model is still a
guasi-stationary model since the long-term correlationalcan not model the temporal
power concentration in the excitation source.

In this paper, we present a Kalman filter based approach witkxalicit effort to
estimate the time varying variance of the excitation soufidas is achieved by mod-
eling the excitation as a combination of sparse impulsesaandise component with
low variance. To robustly identify the locations of thesésps, we propose the use of a
modified Multi-Pulse Linear Predictive Coding (MPLPC) medhwhich was originally
proposed for lossy compression of speech by Atal and Renjdé@li@ AR parameters
are estimated in a recursive manners similar to the decilifected method in [10]. A
forward-backward Kalman filtering using the estimated Higimporal resolution exci-
tation variance and the AR model is then applied to obtaina &stimate of the signal.

2 Non-stationary signal modeling

In [11] we show that voiced speech can be advantageously letde non-stationary
even within a short analysis frame. Examining the speecHymtion mechanism re-
veals that for voiced speech the vocal tract filter is slovdyying while the excitation
source produced by the vocal folds exhibits rapid variatiopower. An all-pole filter
estimated by the Linear Predictive Coding (LPC) methodtexrlddy the LPC residual is
a good mathematical model of speech production. With thidehdahe high temporal
resolution estimation and robust spectral envelope estmare divided into separate
problems: the LPC residual exhibits rapid power variattbns requires a high tempo-
ral resolution modeling; the all-pole filter representsgpectral envelope of the signal,
thus demands large data length for a robust estimation. efdrer, our non-stationary
signal model consists of an all-pole filter that is invariaiithin the span of a frame,
and an excitation sequence modeled¥ysaussian random variables with zero means
and varying variances, wherg is the frame length. This is different from the quasi-
stationary model, which models the excitation source asngaa constant variance
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within a frame. This signal model partially avoids the gestsitionarity assumption,
therefore is termed non-stationary signal model.

3 Kalman filtering

The non-stationary signal model is most suitable for Kalrfitkering because of the
Kalman filter's capability to handle non-stationarity. Tdly utilize the data buffered
in frames, as is the case in many applications, we chooseeta fisrward-backward
Kalman filtering formulation.

We use the following state space model:

x(n) = Ax(n — 1) + bu(n)

1
y(n) = hx(n) +v(n), .

wherex is the state vector of the speech signdlp) is the process noise(n) is
the observationy(n) is the observation noise is the state transition matrix, and

0 1 0 0

0 0 1 0
A= : ; )

0 0 0 1

ap Ap—1 Ap—2 ai
b"=h=1[ - 0 1]. ®3)

The Kalman forward filtering solution is summarized as fato
X(nln—1)=Axk(n—1n—-1) 4)
M(n|n —1) = AM(n — 1jn — 1)AT + 62(n)bb” (5)
M(n|n — 1)hT(n

K(n) — - Mnln— D" () )

024+ h(n)M(n|n — 1)hT
X(nln) = x(njn — 1)+

K (1)[y(n) — h(n)X(nln — 1)} (7)

M(nln) = [T~ K(m)h(n)]M(njn — 1). ®)
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The backward filtering solution can be shown to be [12]:

%(n —1|N) =%(n — 1jn — 1)+
F(n—1R(n|N) —X(n[n - 1)] 9)

F(n—1)=M(n—1n - 1)AT™M *(n|n - 1). (20)

In the equations listed above(n|n — 1) denotes the forward prediction &{n) using
previous data up to time — 1, andx(n|n) denotes the forward filtering estimate using
data up to time». Likewise,M(n|n—1) andM(n|n) are the forward prediction and fil-
tering estimate MSE matrix, respectively. The vecton — 1| N') denotes the backward
prediction ofx(n — 1) using future data from time to the end of the frame. The matrix
F(n — 1) denotes the backward prediction MSE matrix. The filteringt fgoes for-
ward obtaining the forward estimate and forward MSE mathign goes backward and
combine the forward-backward estimate by eq.(9). The unkrqmarameters need to be
estimated before the filtering, which includas o2 (n), ando2. The observation noise
are assumed to be white Gaussian in this work. Its variafée time invariant and can
be estimated using the speech absent frames. The variatioe mfocessing noise, on
the other hand, is time varying. The estimationfofindo? (n) will be presented in the
following section.

4 Parameter estimation

4.1 AR parameter estimation

The estimate of AR coefficients is needed in building theestinsition matrix of the
Kalman filter. Since the AR model represents the spectratlepe of the signal, it is
convenient to estimate the signal spectrum first and themai its envelope. To esti-
mate the signal spectrum robustly and efficiently, we us@tveer Spectral Subtraction
method in a time-recursive manner similar to the decisioeatéd method used in [13].
Denote the DFT spectrum of the speech inkkieframe by a vecto@ (k). The current

estimate of the signal power spectrum of ttith frame, \é(kz)|2, is a weighted sum
of two parts, the power spectrum of the estimated signal@ptievious frame and the
power-spectral-subtraction estimate of the current flfaumaver spectrum:

16(k)[2 =alf(k — 1)+
(1 — a)maz([Y (k)2 - E[[V(k)[2],0), (12)

wherea is a smoothing factoriY (k)|? is the noisy power spectrum @fth frame,
|6(k — 1)|? is the power spectrum of the estimated signal of(the- 1)'th frame and
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E[|V(K)|?] is the estimated noise power spectral density. The smapthtora con-
trols the degree of smoothing over time. Such a smoothingreethas been shown to
be effective in reducing musical noise artifact. We takesttpgare-root of the estimated
signal power spectrum and combine it with the noisy phaseébtai an intermediate
estimate of the signal. An auto-correlation type LPC analisthen applied to the
intermediate estimate to obtain the estimate of the AR mookefficients.

4.2 Estimating the excitation variance with high temporal resolu-
tion

The conventional quasi-stationarity based algorithmsege the excitation source vari-
ance by explicitly or implicitly averaging the power of thstienate of the excitation
source over the whole frame. In our non-stationary modedyder to resolve the rapid
power variation of the excitation of the voiced speech, thieance must be estimated
within smaller intervals. Acknowledging the impulse traitnucture of the LPC resid-
ual (see Figure 1), a time varying variance can be found bydgsmating the resid-
ual instantaneous power and then doing smoothing to tharitesteous power with
less smoothing around the impulses and more smoothing bettire impulses. The
smoothed instantaneous power is our estimate of the variaimcthis way, the onset
of the power rise at the impulse is preserved, and the vagiastimate between the
impulses are robust to outliers because of higher degremadthing. Since impulses
are of high amplitudes and easier to estimate than the flaareles the impulses, when
noise is present, we propose the following simplified procedwhich does not require
estimating all samples of the excitation source. The positdf the impulses are first es-
timated, then a pre-determined pulse shape is put on eveuylsea position. A constant
noise floor with an amplitude that is proportional to the pydeak is put on, together
with the pulses, to form an envelope of the instantaneouspofthe excitation. The
envelope is finally scaled to ensure that its total energylsghe estimated energy of
the excitation. The pulse shape and the amplitude ratioeterrdined by experiments.
We choose a raised cosine waveform with a period of 18 saraplé® pulse shape, and
the amplitude ratio is set to 6.6. To robustly estimate thaulse positions, we propose
to use the Multi-Pulse Linear Predictive Coding (MPLPC) lnoet The basic MPLPC
method is originally proposed by Atal and Remde [9] for deti@ing the impulse posi-
tion and amplitude of the excitation in linear predictivelty (LPC) applications. The
MPLPC procedure finds the optimum position and amplitudéefixcitation impulses
that minimize the distance between the target signal waneémd the synthesized sig-
nal waveform. In our noise reduction application, the tagjgnal is the noisy speech
signal. The impulses are estimated in a sequential wayy éwvee an impulse has been
determined, its contribution to the waveform is subtraeted a search for the next im-
pulse is started. The search continues until the amplitdideeonewest impulse gets
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below a certain threshold. We choose the threshold to bérfiés tthe highest impulse
amplitude. Any new impulse smaller than this threshold isregarded as a pitch im-
pulse. The following is a brief description of the MPLPC opization procedure. For
details the reader is referred to [14].

The squared error between the synthesized signal usingrgiénfipulse and the
noisy signal can be written as

N
e=Y_ly(n) — gh(n —m)P?, (12)
n=1
where N is the frame lengthg andm are the amplitude and location of the impulse
respectively, and(n) is the impulse response of the synthesis filter. By diffeatinig
(12) with respect tg and setting the derivative to zero, the optimum amplitudeusd

to be N
g = Zac Y(mhin —m) a3
>on=1 h?(n —m)
and the optimum value for. can be shown to be
N _ 2
m* = arg max (2n=y y()h(n = m)) ) (14)

m S h2(n—m)

wherem* denotes the optimum position of the impulse. After the eatiom of all the
pitch impulses sequentially, only the position informatis used in constituting the
envelope, as described previously. An example of the etuinenvelope is shown in
Figure 1.
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Figure 1: Top: a segment of voiced speech waveform; middle: the LPC rakafithe speech waveform;
bottom: the instantaneous magnitude of the residual (th&) lmd the estimated amplitude envelope (thick
line).
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5 experimental results

To evaluate the performance of the proposed Non-statiokahyan filter (NSK), we
compare it with two reference methods, the conventionairi&al filter (CK) based on
quasi-stationary assumption, and the MMSE-LSA estimdl6t.[In CK, the all-pole
model is estimated by the decision directed power subtmactiethod as same as the
one used in the MMSE-LSA, followed by an LPC analysis. Theatining factora in

all three algorithms is set to 0.98. All algorithms run with&ntences from the TIMIT
database corrupted by white Gaussian noise at different SN&sampling frequency
is 8 kHz and the frame length is 128 samples with 50% overlap. Dnaparison is on
objective measures including SNR gain and Log-Spectrabiiien (LSD). The SNR
is defined as the ratio between the total signal power anddise power. The LSD is
defined as the distance between log-scaled DFT spectragfat¢bn and the processed
speech summed over all frequencies and divided by the numhfrequency bins. Com-
parison of spectrograms, and informal listening test age peérformed. Figure 2 and 3
show the results for SNR gain and LSD, respectively.

= NSK
-¥- MMSE-LSA
8l —— CK

SNR gain (dB)

10
Input SNR (dB)

Figure 2: Comparison of SNR gain.

It is observed that the proposed NSK has constantly the bigBldR gain among
the three algorithms, and has the lowest spectral distoetkazept for O dB input SNR.
In Figure 4, the spectrograms of the processed speech bigréreedlgorithms are com-
pared. Here we clearly see that the NSK preserves the hacrsacture of the voiced
speech better than all the other algorithms. Finally, imfairlistening test shows that
the NSK results in a less muffled sound than the other two ilgos, as is evident from
the spectrogram plots.
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Figure 3: Comparison of LSD.
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Figure 4: Comparison of spectrograms.

6 Conclusion

In this paper, we proposed a non-stationary signal modelgtable to model the rapid
power variation in the excitation source of the voiced spegignals. This model es-
timates the variance of the excitation source with a highptenal resolution by fitting

an envelope to the instantaneous power of the LPC residial .efvelope is designed
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to emphasize the temporal power concentration at the irmpudile reducing noise
power between the impulses. Locating the impulses is dorabPLPC optimization
procedure. The Kalman filter with this non-stationary slgnadel shows better SNR
gain and suffers from lower spectral distortion than thesgtstationarity based Kalman
filter and MMSE-LSA estimator.

References

[1] K. K. Paliwal and A. Basu, “A Speech Enhancement Method Baselalman Filtering,”
Proc.of ICASSP 198%ol. 12, pp. 177-180, Apr. 1987.

[2] J.D. Gibson, B. Koo, and S. D. Gray, “Filtering of colored noisedpeech enhancement,”
IEEE Trans. on Signal Processingpl. 39, pp. 1732-1742, 1991.

[3] S. Gannot, D. Burshtein, and E. Weinstein, “Iterative and sequdftitnan filter-based
speech enhancement algorithm&EE Trans. on Speech and Audiml. 6, pp. 373-385,
July 1998.

[4] J. S. Lim and A. V. Oppenheim, “Enhancement and Bandwidth Gesgion of Noisy
Speech,'Proceedings of the IEE®oI. 67, pp. 1586—-1604, Dec. 1979.

[5] S. F. Boll, “Suppression of Acoustic Noise in Speech Using SpeSuéitraction,”IEEE
Trans. Acoust., Speech, Signal Processind ASSP-27, No. 2, pp. 113-120, Apr. 1979.

[6] D.C. Popescu and I. Zeljkovic, “Kalman filtering of colored noisedpeech enhancement,”
Proc. ICASSPvol. 2, pp. 997-1000, 1998.

[7] B.G.Lee, K. Y. Lee, and S. Ann, “An EM-based approach fargmeter enhancement with
an application to speech signalSjgnal Processingvol. 46, pp. 1-14, 1995.

[8] Z. Goh, K. Tan, and B. T. G. Tan, “Kalman-filtering speech erdeament method based
on a voiced-unvoiced speech modéEEE Trans. on Speech and Audio Processird. 7,
No.5, pp. 510-524, 1999.

[9] B. Atal and J. Remde, “A new model of LPC excitation for producimgjural sounding
speech at low bit ratesProc. of ICASSP 198%ol. 7, pp. 614-617, May 1982.

[10] Y. Ephraim and D. Malah, “Speech Enhancement Using a MinimueamiSquare Error
Log-Spectral Amplitude EstimatorfEEE Trans. on Acoustics, Speech, and Signal Pro-
cessingvol. ASSP-33, pp. 443-445, Apr. 1985.

[11] C. Liand S. V. Andersen, “Inter-frequency Dependency iIMSE Speech Enhancement,”
Proceedings of the 6th Nordic Signal Processing Sympaslume 2004.

[12] H. Rauch, “Solutions to the linear smoothing problef&EE Trans. on Automatic Control
vol. AC-8, 1963.

[13] Y. Ephraim and D. Malah, “Speech Enhancement Using a MinimueaddSquare Error
Short-Time Spectral Amplitude EstimatotEEE Trans. on Acoustics, Speech, and Signal
Processingvol. ASSP-32, pp. 1109-1121, Dec. 1984.

[14] A. M. Kondoz, Digital Speech, Coding for Low Bit Rate Communications Systerdshn
Wiley & Sons, 1999.



C12




Paper D

A New Iterative Speech Enhancement Scheme Based on
Kalman Filtering

Chunjian Li and Sgren Vang Andersen

The paper has been published in
Proceedings of the 13th European Signal Processing Camfere
September 9-11, 2005, Antalya, Turkey.



(© 2005 EURASIP
The layout has been revised.



1. INTRODUCTION D3

Abstract

A new iterative speech enhancement scheme that can be saerapproximation to
the Expectation-Maximization (EM) algorithm is proposdde algorithm employs a
Kalman filter that models the excitation source as a spégtmahite process with a
rapidly time-varying variance, which calls for a high termabresolution estimation of
this variance. A Local Variance Estimator based on a PredicError Kalman Fil-
ter is designed for this high temporal resolution varianstiraation. To achieve fast
convergence and avoid local maxima of the likelihood funmgta Weighted Power Spec-
tral Subtraction filter is introduced as an initializatiorrqgredure. Iterations are then
made sequential inter-frame, exploiting the fact that tiierAodel changes slowly be-
tween neighboring frames. The proposed algorithm is coatioually more efficient
than a baseline EM algorithm due to its fast convergence.foPerance comparison
shows significant improvement over the baseline EM algarithterms of three objec-
tive measures. Listening test indicates an improvementlijestive quality due to a
significant reduction of musical noise compared to the bagdtM algorithm.

1 Introduction

Single channel noise reduction of speech signals usingtiter estimation methods
has been an active research area for the last two decades.oMbe known iterative
speech enhancement schemes are based on, or can be integwethe Expectation-
Maximization (EM) algorithm or a certain approximation to Proposals of the EM
algorithms for speech enhancement can be found in [1] [2]4B]5]. Some other
iterative speech enhancement techniques can be seen asiaggiions to the EM al-
gorithm, see e.g. [6] [7] [8] [9]. A paradigm of these EM basgubroaches is to iterate
between an expectation step comprising Wiener or Kalmagrifily given the current
estimate of signal model parameters, and a maximizatigrcstprising the estimation
of the parameters given the filtered signal. By doing so, timelitional likelihood of the
estimated parameters and the signal increases monotgninél a certain convergence
criterion is reached.

Evolution of these EM approaches is seen in the underlyimgasimodels. In early
proposals [6] [1] [7], the non-causal IR Wiener filter (WF)ised, where the signal is
modeled as a short-time stationary Gaussian process. sTaigather simplified model,
where the speech is assumed to be stationary and the voidatheoiced speech share
the same Gaussian model even though voiced speech is knderfaofrom Gaussian.
The time domain formulation in [2] uses the Kalman smootimeplace of the WF,
which allows the signal to be modeled as non-stationarytbuises one model for both
voiced and unvoiced speech. In [3], the speech excitatiorcedas modeled as a mixture
of two Gaussian processes with differing variances. Fareaspeech, the process with
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higher variance models the impulses and the one with loweéarvee models the rest
of the excitation sequence. The detection of the impulseisedy a likelihood test
at every time instant. In [4], an explicit model of speechduction is used, where
the excitation of voiced speech is modeled as an impulse sw@perimposed in white
noise. The impulse parameters (pitch period, amplitude prase) and the noise floor
variance are estimated iteratively by an inner loop in eitergtion. In [9], the long term
correlation in voiced speech is explicitly modeled. To anpbsh this, the instantaneous
pitch period and the degree of voicing need to be estimatedary frame. In general,
using finer models has the potential to improve the enhangeecé quality, but also
raises the concern of complexity and robustness, sincesttisidn on voicing and other
pitch related parameters are difficult to extract from nabgervations.

Another line of development in speech enhancement em@difie models of the
voiced speech production mechanism puts effort into mndehe rapidly varying vari-
ance of the excitation source of voiced speech signals umdérear Minimum Mean
Squared-Error Estimator (LMMSE) framework [10] [11] [12]t is shown that the
prominent temporal localization of power in the excitatBwurce of voiced speech is
a major source of correlation between spectral compondnitesignal. An LMMSE
estimator with a signal model that models this non-statibnaan achieve both higher
SNR gain and lower spectral distortion. It is well known thiz¢ Kalman filter pro-
vides a more convenient framework for modeling signal n@atignarity than the WF:
the WF assumes the signal to be wide-sense stationary; \keil&alman filter allows
for a dynamic mean, which is modeled by the state transitiodeh) and a dynamic
system noise variance, which is assumed to be knawenori. Whereas, in most of
the proposed Kalman filtering based speech enhancememizaghgs, the system noise
variance is modeled as constant within a short frame, thumpartant part of the non-
stationarity is not modeled. In [12], the temporal locdiiaa of power in the excitation
source is estimated by a modified Multi-pulse LPC method,thad&alman filter using
this dynamic system noise variance gives promising results

In this paper, we propose a new iterative approach empldyatgnan filtering with
a signal model comprising a rapidly time-varying excitatvariance. The proposed
algorithm consists of three steps in every iteration, itkee, estimation of the auto-
regressive (AR) parameters, the excitation source vagigstimation with high tem-
poral resolution, and the Kalman filtering. The high tempeogaolution estimation of
the excitation variance is performed by a combination ofedjmtion-error Kalman fil-
ter and a spline smoothing method. By employing an initéion procedure called
Weighted Spectral Power Subtraction, the convergencehig\ad in one iteration per
frame. The iterative scheme thus becomes frame-wise stagl drecause the esti-
mation in the current frame is based on the filtered signahefgrevious frame. In
constrast with the aforementioned EM approaches with fieeapproduction models,
this approach has the advantages of simplicity and robsstsiace it requires no ex-
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plicit estimation of pitch related parameters neither gditinvoiced decisions. The low
computational complexity is also attributed to its fastvangence.

2 The Kalman filter based iterative scheme

It is convenient to introduce the overall scheme before gaito detailed discussion.
Figure 1 shows the function blocks of the proposed algoritiFhe noisy signal is
segmented into non-overlapping short analysis frames. &vetd thenth sample of
the speech signal, the additive noise, and the noisy olsmmvaf the kth frame as
s(n, k), v(n, k) andy(n, k), respectively. At the first iteration of thith frame, the
noisy signal is first filtered by a Weighted Power Spectralt@&dbion (WPSS) filter as
an initialization step. The WPSS does a Power Spectral Stling(PSS) estimation of
the signal spectrum, and combines it with the estimated pspectrum of the previous
frame. The filtered signal,.s(n, k) is then synthesized using the combined spectrum
and the noisy phase, and is fed into an LPC analysis (by gdbmswitch to the WPSS
output) to estimate the AR coefficients. A Prediction Errairidan filter (PEKF) takes
the 5,,5(n, k) as input and estimates the system naiée, k). The time dependent
variance of the excitation;?(n, k), is estimated by a Local Variance Estimator (LVE)
that locally smoothes the instantaneous power ofithe k). A second Kalman filter
then filters the noisy signal to get the final signal estimaténg the estimated SR
coefficients and system noise variance. The signal estigfaté) is used by the LPC
block in the next iteration (by closing the switch to the fdsatk link) to improve the
estimation of the AR coefficients.

The iterations can be made sequential on a frame-to-frasie by fixing the num-
ber of iterations to one, and closing the switch to the WPS#&aeently. This is a
frame-wise-sequential approximation to the originaldtie algorithm, with the pur-
pose of reducing computational complexity, exploiting thet that the spectral enve-
lope of the speech signal changes slowly between neigtipérames. As is shown
in the experiment section, with an appropriate paramettingeof the WPSS proce-
dure, the iterative algorithm can achieve convergenceadrfitht iteration with an even
higher SNR gain. For comparison, the block diagram of theatitee-batch EM ap-
proach (IEM) [2] [5] that is used as a baseline algorithm inwark is shown in Figure
2 (A). Note that for the IEM, the system noise variance is a@dpendent on the frame
index k, while for the proposed algorithm, it is dependent on bot#indn. The two
new functional blocks in the proposed algorithm are the WR®&tlae High Temporal
Resolution Modeling (HTRM) block. The function of the WPSSddmprove the ini-
tialization of the iterative scheme to achieve fast conerog. Section 3 addresses the
initialization issue in details. The HTRM block estimaths system noise variance in
a high temporal resolution, in contrast to the IEM where ty&team noise variance is
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Figure 1: Block diagram of the proposed algorithm
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Figure 2: Block diagrams of the IEM algorithm (A), and the IEM with WPSSiadization (B) .

constant within a frame. The formulation of the Kalman filigrwith high temporal
resolution modeling is treated in section 4.

3 Initialization and sequential approximation

The Weighted Power Spectral Subtraction procedure corsliireesignal power spec-
trum estimated in the previous frame and the one estimatédeolyower Spectral Sub-
traction method in the current frame, so that the iteratiothe current frame is started
with the result of the previous iteration as well as the nefgrimation in the current
frame. The weight of the previous frame is set much largen tih& weight of the
current frame because the signal spectrum envelope véoiely etween neighboring
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frames. The WPSS combines the spectrum estimates as follows:
6(K)|> = al6(k = 1)* + (1 — a)maz(Y (k)" = E[[V(K)[*],0), (6

where | (k)|? is the estimate of théth frame’s power spectrum at the output of the
WPSS,« is the weighting for the previous framg(k — 1)|2 is the power spectrum
of the estimated signal of the previous frani¥,(k)|? is the power spectrum of the
noisy signal, andt[|V (k)|?] is the Power Spectral Density (PSD) of the noise. Here
we use bold face letters to represent vectors. The WPSS tkes tiae square-root of
the weighted power spectrum and combines it with the noisseho form its output
$pss(n, k). The LPC block uses th&,,(n, k) to estimate the AR coefficients of the
signal.

The WPSS procedure pre-processes the noisy signal so thierdwon starts at
a point close to the maximum of the likelihood function, asdhus an initialization
procedure. Initialization is crucial to EM approaches. Adanitialization can make
the convergence faster and prevent converging into a loeaima of the likelihood
function. Several authors have suggested using an impiioited estimate of the pa-
rameters at the first iteration. In [4], Higher Order Statssis used in the first estimation
of AR parameters in order to improve the immunity to Gauss@ise. In [9], the noisy
spectrum is first smoothed before the iteration begins. Thmlization that is used
here can be understood as using the likelihood maximum fautite previous frame
as the starting point in the search of the maximum in the atiframe, at the same time
adapts to changes by incorporating new information fromP88& estimate. It can also
be understood as a smoothed Power Spectral Subtractiomdp@ibting the similarity
between (1) and the Decision-Directed method used in [18t.e@periments show that
with this initialization procedure, an EM based approaahaehieve faster convergence
and higher SNR gain when theis set appropriately.

Other authors have suggested sequential EM approacheg.if2ld3] [4] [5] [9].
These methods are sequential on a sample-to-sample bdmis.tie AR coefficients
and the residual related parameters need to be estimateergtiene instant. Our new
algorithm is sequential frame-wise. This reduces commurtat complexity by exploit-
ing the slow variation of the spectral envelopes (represkby the AR model). The
system noise variance, on the other hand, needs a high tahmpsolution estimation,
and is discussed in the next section.
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4 Kalman filtering with high temporal resolution signal
model

Speech signals are known as non-stationary. Common peastic segment the speech
into short frames of 10 to 30 ms and assume a certain staitipnéthin the frame.
Thus the temporal resolution of such a quasi-stationaaged processing equals the
frame length. For voiced speech, the system noise usualipiexlarge power varia-
tion within a frame (due to the impulse train structure),sttumuch higher temporal
resolution is desired. In this work, we allow the variancehef system noise to be in-
deed time variant. We estimate it by locally smoothing amest of the instantaneous
power of the system noise.

4.1 The Kalman filtering solution

We use the following signal model,

s(n) = i_zlais(n — 1) +u(n) @

y(n) = s(n) +v(n)

where the speech signa(n) is modeled as ath-order AR process, ang(n) is the
observationg; is theith AR parameter, the system noisg:) and the observation noise
v(n) are uncorrelated Gaussian processes. The systemuiaiseodels the excitation
source of the speech signal and is assumed to have a timedégpesrariancer?(n)
that needs to be estimated. The observation noise varighé® assumed to change
much slower, such that it can be seen as time invariant in tihation of interest and
can be estimated from speech pause. In this work, we furdsmae that it is known.
Equation (2) can be represented by the state space model

x(n) = Ax(n — 1) + bu(n)

3
y(n) = hx(n) +v(n) ©

where boldface letters represent vectors or matrices.

This is a standard state space model for the speech signtdildabout the state
vector arrangement and the recursive solution equatien®mitted here for brevity.
Interested readers are referred to the classic paper [14.u8¥ the Kalman fixed-
lag smoother in our experiment since it obtains the smogthan at the expense of
delay only (again, see [14]. Though, note that in the prog@dgorithm the system
noise variance is truly time variant, whereas in the corivaat Kalman filtering based
speech enhancement the system noise variance is quasnatg].
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4.2 Parameter estimation

The AR coefficients and the excitation variance should lgida¢ estimated jointly.
However, this turns out to be a very complex problem. Here lse take an iterative
approach. The AR coefficients are first estimated as descib&ection 3, and then
the excitation and its rapidly time-varying variance arénested by the HTRM block,
given the current estimate of the AR coefficients. The Kalfilsar then uses the current
estimate of the AR coefficients and the excitation variandéter the noisy signal. The
spectrum of the filtered signal is used in the next iteratioimiprove the estimate of the
AR coefficients. It is again an approximation to the Maximuikelihood estimation
of the parameters, in which every iteration increases timelitonal likelihood of the
parameters and the signal.

The time-varying residual variance is estimated by the HTIRtdtk. Given the AR
coefficients, a Kalman filter takes thig,; as input and estimate the system noise, which
is essentially the linear prediction error of the clean algmo distinguish this operation
from the second Kalman filter, we call it the Prediction Erk@alman filter (PEKF).
Instead of using a conventional linear prediction analysiBnd the linear prediction
error, we propose to use the PEKF because it has the capab#istimate the excitation
source for the clean signal given an explicit model of naisthe observations. Noting
that 5,55 is the output of a smoothed Power Spectral Subtraction a#tirit contains
both remaining noise and signal distortion. We model thatjobntribution of the
remaining noise and the signal distortion by a white Gauss@sez(n). The PEKF
thus assumes the following state space model:

x(n) = Ax(n — 1) + bu(n)

4
Spss(n) = hx(n) + z(n). @

Comparing with (3), the differences are: 1) now the, becomes the observation, 2)
the system noise(n) is now modeled as a Gaussian process withstant variance
within the frame, 3) the observation noisg:) has a smaller variance thatw) because
the WPSS procedure has removed part of the noise power. Theksaman solution as
stated before is used to evaluate the predictidn/n — 1), and the filtered estimation,
%(n|n). The prediction error is defined agn) = x(n|n) — x(n|n — 1). The reason
that in the PEKF the system noise variance is modeled asardngithin a frame is that
we only use it as an initial estimate, and a finer estimate @ftithe variant variance
is obtained at the output of the HTRM block. This is necessarge we can not use
the estimate of the?(n) in the previous frame as the initialization, due to the faat t
the proposed processing framework is not pitch-synchrende assume(n) to be
zero-mean Gaussian with varianeg = 302, wherej3 is a fractional scalar determined
by experiments.
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The high temporal resolution estimate of the system noisiaveec?2(n) is ob-
tained by local smoothing of the instantaneous powet(af). By a moving average
smoothing using 2 or 3 points at each side of the current datd we get a quite good
result. However, we found that a cubic spline smoothingdgddetter performance.
The reason could be that the spline smoothing smoothes mdhe ivalleys between
two impulses than at the impulse peaks because of the laffgeedice between the
amplitudes of the impulse and the noise floor. This propergptine smoothing is de-
sirable for our purpose since we want to maintain the dynaemge of the impulse as
much as possible while smoothing out noise in the valleyg. dibic spline smoothing
is implemented using the Matlab routissaps with the smoothing parameter set to
0.1.

5 Experiments and results

We first define three objective quality measures used in #tta, i.e., the signal to
noise ratio (SNR), segmental SNR (segSNR), and Log-Spézistortion (LSD). The
SNR is defined as the ratio of the total signal power to thd tuégse power in the
utterance. SNR provides a simple error measure althougluiitzbility for perceptual
quality measure is questioned since it equally weightsridumés with different energy
while noise is known to be especially disturbing in low eygpgrts of the speech. We
mainly use SNR as a convergence measure. Segmental SNRnisdlef the average
ratio of signal power to noise power per frame, and is reghtdée better correlated
with perceptual quality than the SNR. The LSD is defined aglitiance between two
log-scaled DFT spectra averaged over all frequency bins JA/6 measure the LSD on
voiced frames only. Common parameters are set as follovessampling frequency is
8 kHz, the AR model order i$0, the frame length i$60 samples. We aim at removing
broad band noise from speech signals. In the experimemspibech is contaminated
by computer generated white Gaussian noise. The algoriéimie easily extended for
the colored noise by augmenting the signal state vectorletransition matrix with
the ones of the noise [8].

N 00 08 09 095 096 097 098 o.%9|EM
Iter.

1 9.45 10.39 10.86 11.22 11.3111.38 11.41 11.3310.36
2 10.57 11.07 11.26 11.36 11.3711.37 11.33 11.2111.06
3 1094 11.12 11.20 11.22 11.22 11.20 11.17 11.0861.17
4 10.99 11.06 11.09 11.09 11.08 11.07 11.05 10{97.11

Table 1: Output SNR of IEM+WPSS at differeat and IEM.

We then compare the performance of the IEM with and without Witfttializa-
tion, in order to show the effectiveness of the WPSS init@lom. The two system
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configurations are as in Fig. 2. When it is without the WPSS, E¥M Is initialized

by estimating the AR coefficients from the noisy signal. Ia triginal IEM [2], the
observation noise variance is estimated iteratively asqgiahe EM estimation and the
system noise variance is obtained from the variance of th@ teBidual. In this work,
the observation noise variance is estimated from the speagbe. Utilizing this in-
formation, for the IEM, the initial estimate of the systenisgvariance is obtained by
subtracting the noise variance from the LPC residual vagal/e found that this mod-
ification improves the SNR gains by about 2 dB. In the sequelrefer to the modified
version as the IEM. Table 1 shows the output SNR of the IEM WPSS initialization
(IEM+WPSS) at differentv and the IEM versus the number of iterations. The input sig-
nal is 3.6 seconds of male speech corrupted by white Gaussiaa at 5 dB SNR. By
the SNR measure, the IEM converges at the third iteration.|&¥bi the IEM+WPSS,
the iteration of convergence is dependentofWhena is greater thar).96, the al-
gorithm achieves convergence at the first iteration. Witlarger than0.98 the SNR
improvement decreases. Experiments on more speech saamolé&3\R levels show a
consistent trend. Thus theis decided to b@®.98. The result shows that the IEM with
WPSS initialization ¢ = 0.98) can achieve convergence at the first iteration and obtain
even higher SNR gain than the IEM with three iterations.

Next, to determine the values of the weighting factoand the remaining-noise-
factor 3 for the proposed iterative Kalman filtering (IKF) algoriththe algorithm is
applied to 16 sentences from the TIMIT corpus added withev@iaussian noise at 5 dB
SNR with various values af andg. As is for the IEM+WPSS, the number of iterations
needed for convergence of IKF is dependent of the parameles combination ofy
and g that makes convergence at the first iteration and gives therbsult is chosen.
By balancing the noise reduction and signal distortion, Wweose the combination:
a=0.950=0.5.

Itis observed in this experiment that for arsmaller thar0.98, settings to a value
larger thar0 results in a great improvement in the SNR, segSNR, and LS&nrmpari-
son to whens is 0. Note that wher equals), the PEKF is reduced to the conventional
linear prediction error filter. This suggests that the pr#dn-error Kalman filter suc-
ceeds in modeling and reducing the remaining noise in thigegbom source that can not
be modeled by the linear prediction error filter. Whendhie larger thar).98, settings
to a positive value does not improve the SNR and LSD, butsighificantly improves
the segSNR.

Now we compare the IKF with the base line IEM, and the IEM+WP&®rihm.
The results averaged on 30 TIMIT sentences (the trainingset in the parameter se-
lection is not included) are listed in Table 2. Significanpimovement in all the three
performance measures is observed, especially the sedrB&ifta The only exception
is the LSD at 0 dB. To confirm the subjective quality improvemeve apply a Degra-
dation Mean Opinion Score (DMOS) test on the enhanced sgmBettte IKF and IEM,
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with 10 untrained listeners. The result is shown in Tab 3. lidtening test reveals that
the background noise level in the IKF output is perceivedaaignificantly lower than

the IEM. Besides, the low score of IEM is attributed to the@ing musical artifact,

which is greatly reduced in the IKF. At input SNR higher thandB, the background
noise in the IKF enhanced speech is reduced to almost ineudithout introducing

any major artifact.

Input [ Methods [ SNR[dB] [ segSNR[dB] [ LSD[dB]

IKF 23.13 12.60 1.89
20dB | IEM+WPSS 22.75 11.42 2.08
IEM 22.72 11.61 2.07
IKF 19.16 9.48 2.46
15dB | IEM+WPSS 18.74 7.79 2.68
IEM 18.69 8.13 2.65
IKF 15.37 6.65 3.15
10dB | IEM+WPSS 14.96 4.36 3.33
IEM 14.85 4.76 3.30
IKF 11.71 4.07 4.06
5dB IEM+WPSS 11.40 1.13 3.96
IEM 11.18 1.56 3.97
IKF 8.25 1.81 5.24
0dB IEM+WPSS 8.11 -1.95 4.54
IEM 7.81 -1.44 4.67

Table 2: Performance comparison. White Gaussian noise.

IKF | 3.92 IKF | 3.12 IKF | 2.14
15dg IEM | 2.25| 10dg IEM | 1.98 | 5dB | IEM | 1.64
noisy | 2.11 noisy | 1.79 noisy | 1.63

Table 3: DMOS scores.

6 Conclusion

In this paper, a new iterative Kalman filtering based speettaecement scheme is
presented. It is an approximation to the EM algorithm emibgathe maximum likeli-
hood principle. A high temporal resolution signal modelsed to model voiced speech
and the rapidly varying variance of the excitation sourcessmated by a prediction-
error Kalman filter. Distinct from other algorithms utilig fine models for voiced
speech, this approach avoids any voiced/unvoiced decsidrpitch related parameter
estimation. The convergence of the algorithm is obtaingteafirst iteration by intro-
ducing the WPSS initialization procedure. Performanceuatan shows significant
improvements in three objective measures. Furthermdi@nral listening indicates a
significant reduction of musical noise. This result is conéd by a DMOS subjective
test.
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1. INTRODUCTION E3

Abstract

Speech signals, especially voiced speech, can be bettezledobly non-Gaussian au-
toregressive (AR) models than by Gaussian ones. Non-Gausdt estimators are
usually highly non-linear and computationally prohibivThis paper presents an effi-
cient algorithm that jointly estimates the AR parameterd tre excitation statistics and
dynamics of voiced speech signals. A model called the HititlrRov-Autoregressive
model (HMARM) is designed for this purpose. The HMARM matielexcitation to
the AR model using a Hidden Markov Model with two Gaussiatestthat have, re-
spectively, a small and a large mean but identical varianddss formulation enables
a computationally efficient exact EM algorithm to learn afirpmeters jointly, instead
of resorting to pure numerical optimization or relaxed EMyatithms. The algorithm
converges in typically 3 to 5 iterations. Experimental fesghow that the estimated
AR parameters have much lower bias and variance than theectional Least Squares
solution. We also show that the new estimator has a very duifteiisvariance property
that is useful in many applications.

1 Introduction

Autoregressive (AR) modeling has been one of the most immpbtéchniques in speech
signal processing. While the classical Least Squares (LU8}s0, also known as LPC
analysis, is computationally simple, it relies on a Gaus#& model assumption.
However, many important natural signals, including spesighals, are found to be
far from Gaussian. The mismatch of a Gaussian model to a reusstan signal causes
an unnecessarily large variation in the estimates. Thigpparted by the fact that the
Cramer-Rao bound for the variances of the AR estimatorsisidn the non-Gaussian
case than in the Gaussian case [1]. Smaller variances of AilRaters are desirable
in many speech processing applications. As an examplenéadipredictive coding,
when a sustained vowel is segmented into overlapping fréinag¢sre subsequently en-
coded, small variance and shift-invariance property ofastimates of AR parameters
are very beneficial in reducing the entropy and thus the riebideate for encoding
the AR parameters. Non-Gaussian modeling of speech siglsiseduces the bias of
the AR estimator caused by the spectral sampling effecteofrtipulse train in voiced
speech excitations. Applications in speech synthesigctpeecognition, and speech
enhancement can benefit from these properties of non-Gauas modeling.

We see the non-Gaussian AR model estimation problem as @ $jistem identi-
fication problem since the AR parameters and the non-Gaustadistics of the exci-
tation need to be estimated jointly. Reported works in tlgkifinclude Higher Order
Statistics (HOS) based methods (see [2] for a comprehensiew), Gaussian Mix-
ture Model (GMM) based methods [1, 3, 4] and non-linear dyisahmethods [5].
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The HOS-based methods do not require explicit knowledgaeekcitation probabil-
ity density function (pdf), but tend to produce high-vadarestimates when the length
of the data record is small [3] and are associated with highptdational complexity
due to the bispectrum calculation. The GMM-based methaiiimate their parameters
using the Maximum Likelihood (ML) criterion. Since the ex&dL solution for non-
Gaussian signals typically involves solving a set of highdyn-linear equations, it has
to be solved by computationally complex numerical algonish or by solving for an
approximation of the ML solution. In [1], the ML solution islsed by a conventional
Newton-Raphson optimization algorithm. In [4], the AR pasters and the excita-
tion probability density function (pdf) are separatelyimstted in a recursive manner
to approximate the joint estimation in a tractable way. Ih {Be AR parameters and
the excitation pdf are estimated by a generalized EM (GErhm, which relaxes
from the standard EM algorithm by breaking the multi-dinienal optimization into
recursive one-dimensional optimizations. The price tofpathe GEM is a slower con-
vergence rate than the EM. The non-linear dynamic methopgsed in [5] estimates
the coefficients of an inverse filter by minimizing a dynarba&sed complexity measure
called phase space volume (PSV). This method does not assyn&ructure of the
excitation, but the computation of PSV is rather involved.

Most of the reported non-Gaussian AR modeling techniquesargeneral pur-
poses. While being applicable to any probability distribatithis also makes them less
efficient in handling speech signals, whose production meisim is well known and
implies powerful structures in the signal. In this paper, wepose an algorithm that
is designed to exploit the structure of voiced speech sig@@ining at better computa-
tional efficiency and data efficiency. The algorithm joinglstimates the AR parameters
and the excitation statistics and dynamics based on a Mermit. Here the voiced
speech signal is modeled by a Hidden Markov-Autoregredsadel (HMARM), where
the excitation sequence is modeled by a Hidden Markov Madd®IN]) that has two
states with Gaussian emission densities of different mbansame variances and then
convolved with an AR filter. The HMARM parameters can be |earefficiently by
an exact EM algorithm consisting of a set of linear equatioftis model is different
from the Linear Predictive HMM (LP-HMM), or AutoregressidMM (AR-HMM)
used in [6] and [7]. The AR-HMM applies its dynamic modeling twacking the AR
model variation along frames, while the proposed HMARM &ptlynamic modeling
on tracking the impulse train structure of the excitatiothwn a frame.

The remainder of this paper is organized as follows. Se@&idescribes the problem
formulation and derives the EM algorithm. The algorithmvalaated with synthetic
signals and speech signals in Section 3. Conclusion is nmafedtion 4.
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2 The Method

The speech production mechanism is well modeled by theaganitfilter model, where
an AR(p) filter models the vocal tract resonance property and an lsepwain models
the excitation of voiced speech. To improve naturalnesd@fspeech, a white noise
component is added to the impulse train. This can be exptésgbe following equa-
tions:

o(t) =Y g(k)a(t — k) +r(t) 1)
k
r(t) = v(t) + u(t), 2

wherez(t) is the signalg(k) is thekth AR coefficient, and-(¢) is the excitation. The
excitation sequence is the sum of an impulse trgit) and a white Gaussian noise
sequence(t) with zero mean and variane€®. This noisy impulse train structure is
perfectly suitable for stochastic dynamic modeling. Weigles two-state HMARM
whose diagram is shown in Fig.1. The statet timet selects according to the state
transition probabilitys,, ,,, one of two states. The emission pdfs of the two states are
Gaussian pdfs with identical variance$, and a small meam,.(1) and a large mean
m,-(2) respectively. The small mean is close to zero, and the laggnris equal to the
amplitude of the impulses. The emission outcome constittite excitation sequence
r(t), which is independent af(l) for [ # ¢ and only dependent on the state The
excitationr(t) is then convolved with an ARJ filter with coefficients[g(1), - - - , g(p)]

to produce the observation signalt). The objective of the algorithm is to learn the
model parameter® = [A,m,.(1),m.(2),02,g(1),--- , g(p)] given a frame of signal
x with lengthT, where the state transition matx = (a,;), with 4, j € (1, 2).

Agy_1q: @ hidden unit
N(T(t); mT(j)7 02)

intermediate unit

Jun

Q
=

n
1

visible unit

@f

Figure 1: A generative data structure of the HMARM.

We now define the notations for the HMARM model. Lletj,¢) and 3(i,t) de-
note the forward and backward likelihoods as defined in thadstrd HMM (8], a;;
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denote the state transition (stat® statej) probability,b,.(j, t) denote the observation
pdf (emission pdf) of the excitation(¢) given the state; = j, which is a Gaussian
distribution

br(4, 1) = N (r(t);mq (), 0%), ®3)

andb,.(j, t) denote the observation pdf of the signél) given the statg, = j. From (1)
and (3),b.(j, t) can be shown to be a Gaussian process with a varying meé ¢),

bt(]at) ZN(I(t),mx(Lt),O'Q), (4)
where

Zg k) + my (). (5)

The forward and backward likelihood inductions are given by

N

aj,t) = [;a@,t - Va1, ©)
{Za” (G, t+1) (3775—&-1)}, @)

respectively. Now definé(s, j,t) to be the probability of being in stateat timet and
in statej at timet + 1, i.e. £(¢,7,t) = p(q: = i,q¢+1 = j|x,¢). One can evaluate
£(i,5,t) by

§<i7ja t) = T—1
t=0 GQtQt+1bx(Qt+1at + 1)

(8)

Definey(i,t) = Zj.vzl &(i,7,t). It can then be shown that the quant@f:_l1 ~(i,t)
represents the expected number of transitions made frammistand ZtT:_ll &(i,4,t)
represents the expected number of transitions from &tatstate; [8].

Now we derive the EM algorithm. Let bold face lettersandq denote a frame of
signal and the state vector of the corresponding frame dfagian, respectively. We de-
fine the complete data to lfg, q). Instead of maximizing the log-likelihood lggx|¢)
directly, we maximize the expectation of the complete dilihood logp(x, q|¢)
over the stateg given the datax and current estimate ap, denoted bqu. So the
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function to be maximized in each iteration is written as:

Zp x q“f’ g p(x, ql9) ©
- Zp X q‘d) (Z IOg alh 19t
X|¢’ t=1
+ Zlog b (qt,w(t))> (10)
_Zzzp X, qt—1 =0, qt = jl(z;)loga
X|¢) qt—14t
+Zszfh |¢‘7¢)Iogb (Qn ())’ (11)
7 (x

where (10) follows from the identity

p(x,q|d) Ha%s 1th Qt7 (t))’

and (11) follows from the first order Markov assumption. Tigtfierm in (11) concerns
only a;; and the second term concerns the rest of the parametersthghagtimization
can be done on the two terms separately. The re-estimatisatioq ofa,; is found
by the Lagrange multiplier method, and is identical to ttendard Baum-Welch re-
estimation algorithm:

Y pxa =ia =46 X «S(i j,t)
= =1 — : (12)
Yooy P(X,qi—1 =1i|p) St

We denote the second term of (11) Qy¢, B). Following (1) and (4) we can write
Zsz% jl®) (Iog 1
~ = p(x|@) V2ro?

it (o)~ m.3.0)). (a9

202

The re-estimation equations of the rest of the parameterfoand by setting the par-
tial derivatives of (13) to zero, and solving the equatiostesn. Forg(k), we havep
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equations:

T—

PIPILIE (t)—mm(j,t))x(t—k):(), k=1, ,p. (14)

t=1

wherey(j,t) = % is now interpreted as the posterior of statat timet given

the observatiox and¢. Form,.(j), we get two equations:

>0 (o) —ma(it) =0, =12 (15)

t

Foro?2, we get

2
B I (D) (x(t) —ma(jit))
o2 = . (16)
>, i 1)
Equation (14) and (15) form + 2 coupled linear equations which can be solved ana-
lytically. Then (16) can be solved by inserting the estirdatg:) andm,.(5).

In this model,m,(j,¢) can be interpreted as the linear predictionz¢f) taking
into account the excitation dynamics, as shown in (5). Thestanation equations also
have intuitive interpretations. In (12),;; equals the expected number of transitions
from statei to statej divided by the expected number of transitions made frone stat
Equation (14) is a multi-state version of the orthogongditinciple; Equation (15) tells
that the prediction error weighted by state posterior issobanean; and (16) calculates
the mean of the prediction error power weighted by the stastgpior as the variance
of the stochastic element of the signal.

The existence of linear solutions to the maximization of ¢h&unction makes fast
convergence. This is a direct benefit from our proposed kigndel. Compared to the
GMM-based method in [3], which has no analytical solutiotht® maximization of)
function, the HMM in our model is constrained to have statéh wdentical emission
variance. It is this constraint that renders the set of moeal equations linear, without
compromising the validity of the model.

A GMM with similar constraint can be used in place of the HMMaar signal
model, and the EM equations can be derived in the same wayoamsibove with
proper changes in the definition @fands (and{ (i, j, t) is not needed in the GMM). In
our experience, this constrained GMM-AR model results itoavar convergence rate
and slightly worse estimation accuracy than the HMARM. Tikiexpected since the
GMM lacks capability of dynamic modeling, while the impulsain does show a clear
dynamic structure.

Finally, we point out an implementation issue of the HMARMimgtion. Since
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the signal model is a causal dynamic model and the analysisually frame-based,
the ringing from the last impulse of the previous frame hasiadesired impact on
the current frame estimates. This is because the estimatx ot see the previous
impulse but its effect is there. This could sometimes degjthd performance mildly.

We therefore suggest to do a pre-processing that removemieg from the previous

frame, or simply set the signal before the firstimpulse togeThe latter is used in our
experiments.

3 Experimental results

We now experimentally compare the spectral distortion,vélmance, and the bias of
the AR parameters estimated by the proposed HMARM analysidlee LPC analysis.
To get different realizations of an AR process, we shift daregular window along a
long segment of the signal by one sample each time. Everymtuifluces a different
realization frame of the AR process. A small variance of ttengates based on shifted
realizations is also known as the shift-invariance prgpeithe LPC analysis has a
poor shift-invariance property when it is applied to voismeech. This is because its
underlying Gaussian model does not fit the non-Gaussiamenafithe excitation of the
voiced speech.

First, to have access to the true values of the AR parametexssiginal, we use
a synthetic signal that mimics a voiced speech signal. Tdweasis analyzed by the
HMARM and the LPC analysis respectively for 50 realizatianith a frame length of
320 samples. The 50 realizations of estimated AR spectra@arpared to the true
AR parameters and the difference is measured by the Logt@&p&istortion (LSD)
measure. The LSD versus the shiftis shown in Fig 2. Itis dletrithe proposed method
has a flat distortion surface and this surface is lower tharLBC's. It is important to
note that the LPC analysis encounters huge deviation frerrtie values in the second
half of the plot. This is where a large “hump” in the signal asrinto the analysis
frame. The large humps in the signal are caused by the ingputsthe excitation,
which represent the non-Gaussian structure of the signhk bias is0.092 for the
HMARM analysis, and compared to tliel97 for the LPC analysis, accounts for an
improvement of more than 6 dB. The varianc®is28 for the HMARM and9.69 for
the LPC analysis, representing a variance reductior8 afB.

Second, we test the shift-invariance property with trueespesignals. The AR
spectra of four different sustained voiced phonemes aima&®d 50 times with one
sample shift each time. The frame length is set to 256 samplesspectra are plotted
in Fig 3. The estimates by the HMARM show good consistencylethe LPC analysis
appears to be poor. In Fig. 4 we show the prediction residcafaise signal using the
AR parameters estimated by the HMARM and the LPC respegtivi¢lis clear that
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Figure 2: (a): The Log-Spectral Distortion of the AR spectra. (b): siyathetic signal waveform used in the
test.

the residual of the HMARM has more prominent impulses, asd t®rrelation in the
valleys. From, as one example, a speech coding point of ‘levlower variance of
the AR estimates reduces the entropy of the AR parametetisth@nmore impulsive
residual is also easier to code.

As it is well known that a properly chosen window can reduce tariance of
the LPC estimates, we also conducted comparisons betweeHNMARM analysis
and the Hamming-windowed LPC analysis. For the syntheginadj the variance of
the Hamming-windowed LPC i$.197, which is still 9.7 dB higher than that of the
HMARM. Although its variance is reduced, the Hamming-winga LPC in general
suffers from larger bias and lower spectral resolution. Bugpace limit, more results
will be presented in a following paper.

4 Conclusion

A non-Gaussian AR model is proposed to model the voiced $psigoal. This model
enables an efficient EM algorithm that consists of a set @direquations. The algo-
rithm jointly estimates the AR parameters of the signal dreddynamics of the exci-
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Figure 3: The AR spectra estimated by HMARM and LPC analysis.

tation that is highly non-Gaussian in the voiced speech.cise experimental results
using synthetic signals and real speech signals show thaldlorithm has a good shift-
invariance property, and the variance and bias are significamaller than the classical

LPC analysis.
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1. INTRODUCTION F3

Abstract

We have previously proposed a blind system identificatichadethat exploits the un-
derlying dynamics of non-Gaussian signals in [1]. The signadel being identified is
an Auto-Regressive (AR) model driven by a discrete-staddeti Markov process. An
exact EM algorithm was derived for the joint estimation & %R parameters and the
HMM parameters. In this paper, we extend the system modeitipducing an addi-
tive measurement noise. The identification of the extengitdra model becomes much
more complicated since the system output is now hidden. dy®ge an exact EM al-
gorithm that incorporates a novel Switching Kalman Smopthikich obtains optimum
nonlinear MMSE estimates of the system output based ondteisformation given
by the HMM filter. The exact EM algorithms for both models agamable only by
appropriate constraints in the model design, and have bet@vergence properties
than algorithms employing generalized EM algorithm or emcpl iterative schemes.
The proposed methods also enjoy good data efficiency simgs@rond order statistics
is involved in the computation. The signal models are gdraerd suitable to numer-
ous important signals, such as speech signals and base-tmndhunication signals.
This paper describes the two system identification algoritin an integrated form, and
provides supplementary results to the noise-free modehamdresults to the extended
model with applications in speech analysis and channel kzpat&n.

1 Introduction

One of the recent trends in signal processing is to explait-@aussianity or non-
stationarity of the signals to accomplish tasks that areegaly impossible for tradi-
tional linear estimators, e.g., blind source separatitindlchannel equalization, and
blind system identification. Blind system identificationSB solves the fundamental
problem residing in most signal processing fields: estingathe system parameters
from system output only. In this definition of BSI, the modelextion is a prelimi-
nary step to the actual identification process. Model siele@$ usually done according
to prior knowledge of the underlying physics of the systenu. ti$ task of the BSI
is to extracta posterioriinformation from the system output. A good model selec-
tion should facilitate the identification process withoaitrgpromising the validity of the
model much.

In this work, we present two signal models that have efficidantification solu-
tions. On one hand, they are general enough to accommodateimportant signals
such as speech signals and base band communications sigttathe presence of
Inter-Symbol Interference (I1SI). On the other hand, thecigfficy of the algorithms
comes from the prior knowledge of the specific signal stmectarried by the model.

The first system model consists of a linear time-invariant fier excited by a
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first-order discrete-state Hidden Markov process. In treesh analysis application,
the AR filter models the resonant property of the vocal trant a two-state Hidden
Markov process models the excitation to the filter as a naigyuise train. The task of
system identification here is to jointly estimate the AR &ioifnts and the excitation
dynamics, which contains information about the impulsdtrs the impulse ampli-
tude, and the noise variance, under a certain optimumicriteBy the joint estimation,
the highly non-Gaussian impulse train structure of thetation no longer affects the
AR estimation as it does in the classic Least Squares (L8}isnl The LS methods,
such as the auto-correlation method, a.k.s. the LPC asabssumes a Gaussian signal
model. The consequence of the mismatch of Gaussian modeht&aussian signals
is an unnecessarily large variation in the estimates. Bheapported by the fact that the
Cramer-Rao bound for the variances of the AR estimatorsiefidn the non-Gaussian
case than in the Gaussian case [2]. Estimating the AR paeasiietking into account
the impulse structure of the excitation can also reduce Hiags bias is present in the
LPC analysis because of the spectral sampling effect oftipellise train. We will show
that the AR spectra estimated by our method have smallean@giand bias and a better
shift invariance property than the LPC analysis. These gntas are useful in a wide
range of speech processing fields, such as speech codioly,npitdification, speech
recognition, and speech synthesis. The identification redbrough an exact EM al-
gorithm that consists of forward-backward calculationstate posterior and solving a
small linear equation system iteratively. Initialized wihe LPC estimates, using only
a few dozens of samples, the algorithm converges in typi&atb 5 iterations.

Application of this model to the blind channel equalizatfpoblem is also demon-
strated in this paper. To combat ISl in a dispersive chamhannel equalizers are used
in many communication systems before decoding the signaleneither the chan-
nel response nor the transmitted-symbol statistics arevkrgopriori, hence the name
blind equalization, the channel response and transmitterbsls need to be estimated
jointly. Most established blind equalization methods pres the channel to be FIR.
Our blind equalization method, instead, is based on an gstsumof an IIR all-pole
channel model with the following arguments: 1) The use of &channel model can
reduce the computational complexity dramatically by ekjsig the Markovian prop-
erty of the channel; 2) In channels that exhibit resonancpgty, such as wireline
channels, an AR model is probably more realistic than an Fédeh 3) An AR model
with a sufficiently high order can approximate any ARMA or MAodel very well. To
be specific, the AR filter models the channel response, andittden Markov process
models the sampled base-band signals. The algorithm éxpha underlying dynam-
ics and non-Gaussianity of the finite alphabet symbol sezpiém accomplish system
identification. An example of equalizing an MA channel isopademonstrated.

Inthe second system model, observation noise is takendctoat. Now, the model
consists of a linear time-invariant AR filter excited by atfiosder discrete-state Hidden
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Markov process, and the measurements of the system outpyteaturbed by white
Gaussian noise. The identification algorithm must jointtireate the AR parameters,
the excitation dynamics, and the measurement noise varidine introduction of mea-
surement noise complicates the problem significantly. iBHhgcause that the simplicity
of the first algorithm partly comes from the fact that the ARd®albaggregates the state
information in the most recent system output samples, wdriemot directly observable
now due to the presence of measurement noise. We adoptestedaiata structure with
Markov property between layers, which is analogous to tleeused in the Independent
Factor Analysis [3]. The EM algorithm thus involves a noein MMSE smoother,
which provides estimates of the conditional first and seamednents of the system
output needed in the parameter estimations. We proposeliaeanMMSE smoother
that can be seen as a variant of the soft-decision Switchelghn Filter [4], where
the states control the discrete inputs to the AR filter, amdsthitching relies on tha
posteriori probability of states estimated by a forward-backward @igm. The EM
algorithm thus iterates between the nonlinear MMSE smagthind the ML parameter
estimations.

The introduction of measurement noise modeling in the ssystem model is a
major extension to the first system model. The second meththais noise robust and
applicable in adverse environments, although with a priceégher computational com-
plexity. In its application to robust spectrum estimatidispeech signals, the algorithm
gives better estimates of the signal spectra than refemaetigods do, under moderate
noise conditions. Established iterative estimators baseGaussian AR models are
known to have convergence problems, thus an empirical textion is required [5] [6].
They also require prior knowledge of measurement noisésstat The proposed al-
gorithm does not require prior knowledge of the noise dtasisand its convergence is
guaranteed. Applications to channel equalization undetaeraie noise conditions are
also demonstrated. Simulations show that the proposedithigohas better estimates
of the channel response and the transmitted symbols thdretist Squares method.

The remainder of the paper is organized in the following w&gction 2 introduces
the two signal models and derives the EM algorithms for béigstem identification. In
Section 3 the proposed algorithms are applied to solvinglpros in speech analysis,
noise robust spectrum estimation, and blind channel exptans with and without
measurement noise. We conclude in Section 4.

2 Method

We consider the stochastic source-filter model, in whicheaadr time invariant (LTI)
filter is excited by a stochastic process with a certainstatproperty. When the ex-
citation is stationary and Gaussian, the Least Squaresoahgtfovides an optimum
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solution to the system identification problem. Neverth&laesany important signals are
far from Gaussian. Voiced speech signhals and modulated cmrication signals trans-
mitted through a dispersive channel are just two examplesici signals. A common
characteristic of the above mentioned two non-Gaussiarakbgs that the excitation
can be viewed as a sequence of symbols drawn from a finitelzphaith possibly ad-
ditive noise. More specifically, for voiced speech, the @tn is well modeled by an
impulse train with additive white Gaussian noise [7]. Thigsy impulse train structure
can be characterized by a two-state symbol sequence. Whilé-any Pulse Ampli-
tude Modulation (PAM) signal can be characterized byMrstate symbol sequence.
The probability distribution functions (pdfs) of thesedfiste state excitations are thus
multi-modal, and possibly asymmetric (as is for the imptla@). Based on this obser-
vation, either a Gaussian Mixture Model (GMM) or a Hidden ktar Model (HMM)
with discrete states is suitable to characterize the statisf such excitations. When
such non-Gaussian excitations are filtered by an AR filterfexma the system model
a Hidden Markov-Auto Regressive Model (HMARM) or a Gausdirture-Auto Re-
gressive model (GMARM), respectively. We will show in thédldaving sections that
when the emission pdfs of all states are constrained to besgaupdfs with identi-
cal variance, both the HMARM and the GMARM have exact EM aiipons for their
identifications. Whereas, the HMM is preferable in modelihg &xcitation because
of its capability of modeling the underlying temporal sture that is not captured by
the GMM, which is still a static statistical model. Therefpthe following presentation
will mainly focus on the HMARM with a brief discussion on théxentage of the HMM
over the GMM in modeling temporal structure.

In Section 2.1, we present the HMARM and its identificatiothout measurement
noise. Section 2.2 deals with the identification of HMARMwiits output perturbed by
white Gaussian noise, which is termed the Extended-HMARM.

2.1 The HMARM and its identification

For an ARp) filter excited by a Hidden Markov sequence, we have theviotig system
model:

2(t) = g(k)a(t — k) +r(t) (1)
k
r(t) = v(t) + u(t), 2

wherez(t) is the observed signal (system outpuyt)k) is thekth AR coefficient, and
r(t) is the excitation. The excitation is a Hidden Markov process, a first order
Markov chainv(t) plus white Gaussian noise(t) with zero mean and variance’.

A diagram of the data structure of the HMARM is shown in Fig.which adopts a
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layered data structure analogous to the one used in [3]. THteg at timet selects
according to the state transition probability, ,,, one of M states. The emission pdfs
of the states are Gaussian pdfs with S@ne variancer?, and meansn,.(j), j €
(1,---, M), respectively. The emission outcome constitutes the aimit sequence
r(t), which is independent af(l) for I # ¢ and only dependent on the state The
excitationr(t) is then convolved with an AR filter with coefficients[g(1), - - - , g(p)]

to produce the observatiar(t). The objective of the identification algorithm is to learn
the model parametees = [A, m,.(1),--- ,m,.(M),c2%,g(1),--- ,g(p)] given a frame
of signal with lengthT’, where the state transition matrix is denoted &dy= (a;;),
i,je(l, -, M).

Ag_1q: @ hidden data layer
N (r(t);mr(5),0°)

intermediate data layer

=

Q
=

n
N

@«

observation data layer

Figure 1: A generative data structure of the HMARM.

We now define some HMM type notations. legltj, ¢) andf3 (4, t) denote the forward
and backward likelihoods as defined in [8], angldenote the state transition probability
(from stateg; = i to statey 1 = j), andb,.(j, t) denote the emission pdf of state= j
observed at the intermediate lay€t). Follows from (2), the emission pdf (j, t) takes
on a Gaussian distribution

b-(5,1) :N(T(t);mr(j),ch). 3)

Now, letb,(j,t) denote the emission pdf of staje = j observed at the observation
data layer(t). Itis difficult to deduce this pdf from top layer down to thettmon layer
because of the filtering. But we can use the autoregressofepy of the filter, i.e.,
the p most recent system outputs and the current input state déggneurrent output
uniquely. From (1), (2) and (3)..(4,t) can be shown to be a Gaussian pdf wittinae
varyingmeanm,(j,t),

ba(3,8) = N (@ ()i ma (3., 0% (4)
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where

Zg k) +m.()- (5)

The forward and backward likelihood inductions are given by

M

a(j,t) = {Za(z‘,t - 1)%} b2(4,1), 6)

i=1

Zﬁ :|:Za’17 j’t+1 (j7t+1):|’ (7)

respectively. Now defin€(i, j,t) to be the probability of being in stateat timet and
in statej at timet + 1, i.e. £(¢,5,t) = p(q: = i,q¢+1 = j|x,¢). One can evaluate

£(i, 4,t) by
(Z t)az]b (],t+ 1)ﬂ(j,t—|— 1)
Et 1 Qqugei1b o (qey1,t+1)

&(i, j,t) = , tell,T-1]. (8)

Define(i,t) = Y37, £(4,4.t). It can then be shown that the quant}y; ;' (i, )
represents the expected number of transitions made framistand ZtT:’ll (i, 4,t)
represents the expected number of transitions from statetate; [8].

Now we are ready to derive the EM algorithm for identificatiobet bold face
lettersx andq denote a frame of sighal and the state vector of the correlépgframe
of excitation, respectively. We define the complete dataetthie concatenation of the
observation data and the hidden dé&taq), as indicated in Fig. 1. The excitatioft)
can not be treated as hidden data because once the parapetegsknown,r(t) is
linearly dependent on the observation data. Hence we tethe itntermediate data.
Following the EM paradigm [9], we maximize, instead of thg-likelihood logp(x|¢)
directly, the expectation of the complete data likelihoodp(x, q|¢) over the states
q given the observatiox and current estimate @, which is denoted byp. So the
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function to be maximized in each iteration is writtentas

Q(¢, d) = Zp (alx, $)log p(x, q|¢) ©)
p(x ,Q\cﬁ
= Z log p(x, a|) (10)
— Zp X, q:’ (Z log ag, ,q. +Z|ogb G, @ ) (11)
(x t
722217 X, Gt—1 = 1, qs = j|¢)loga
X‘d’) qt—19t

+ZZp )'Ogb (42, 2(1)), (12)

where (11) follows from the identity

X Q|¢ Hath 1(11 Qf7 (f))v

and (12) follows from the first order Markov assumption. Thetfierm in (12) concerns
only a;; and the second term concerns the rest of the parametersthihogtimization
can be done on the two terms separately. The re-estimatisatieq ofa,; is found
by the Lagrange multiplier method, and is identical to trendard Baum-Welch re-
estimation algorithm [10]:

G — i p(X g1 =, qt—~j|<5) Y 5(@ 5t
thl p(X7Qt—1 _Z|¢) Zt 1 7(7 t)

We denote the second term of (12) Qy¢, b). Following (1) and (4) we can write

p(x, ¢t = j|$) 1
Z; p(x|@) (Og V2mo?

J

L(x(t) — ma(j, t))Q). (14)

(13)

202

The re-estimation equations of the rest of the parameterfoand by setting the partial
derivatives of (14) w.r.t. the parameters to zero, and sglthe equation system. Define

1n the following, the notation of summation is abbreviated ioveing only the variable’s name if the
summation interval is over the whole range of the variable. theocase the summation interval will be
shown explicitly.
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~v(4,t) = %ﬁé@, which is now interpreted as the posterior of stag timet given

the observatiox and . Forg(k), we havep equations:

T—1
>3O0 —maGD)xt = k) =0, k=1 p  (15)

Form..(j), we haveM equations:

T-1

G4 (20 = ma (i) =0, G =1, M, (16)

t=1

Foro?2, we get ,
A;Eyzfltw@@fmﬁmn
o2 = . a7)
Z Zt 1 rY(j’ )
Equation (15) and (16) fornp + M coupled linear equations which can be solved
analytically, whereinn,(j, t) is calculated by (5). Then (17) can be solved by inserting
the estimated (k) andm,.(j).

In this model;m, (7, t) can be interpreted as the linear prediction:0f) taking into
account the mean of the state= j. The re-estimation equations also have intuitive in-
terpretations. In (13),; equals the expected number of transitions from sttdestate
j divided by the expected number of transitions made fronegtaEquation (15) is a
multi-state version of the orthogonality principle; Eqoat(16) tells that the prediction
error weighted by state posterior is of zero mean; and (lieutzes the mean of the
prediction error power weighted by the state posterior as/ériance of the stochastic
element of the signal.

The existence of linear solutions to the maximization of ¢h&unction makes fast
convergence. This is a direct benefit from the HMM modelinghef excitation, where
the HMM is constrained to have states with identical emissiariance. Without this
constraint, the resulting maximization equations woulélset of nonlinear equations.
GMM-based, general purpose identification methods do nes klasis constraint, e.g.
[11]. Thus they have to resort to numerical maximizationhaf @ function, which is
known as the Generalized EM algorithm.

A GMM with similar constraint can be used in place of the HMMaar signal
model, and the EM equations can be derived in the same wayoamshbove with
proper changes in the definition @fands (the&(4, j, t) used in the HMM is not needed
in the GMM). The derivation of the GMARM is briefly described Appendix 5. The
advantage of the GMARM is a lighter computational load thaat of the HMARM.
Whereas, the lack of dynamic modeling makes the GMARM cormslgwer and es-
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timate less accurately than the HMARM when there is a disdeshporal structure in
the excitation that is ignored by the GMM, since the GMM id stistatic model. Ex-
amples of this discrete temporal structure include the isgtrain structure in voiced
speech signals and Pulse Position Modulation (PPM) sigaals trellis-coded modu-
lation signals. They all have inherent temporal structtines can be well modeled by
a state transition matrix. The GMARM on the other hand, canemploit this useful
information in its estimation. For excitations that havetemporal structure, the two
algorithms perform similarly.

Remark: An advantage of this two-layer structure is that the AR masletacts
the linear temporal structure from the signal, and the HMkésacare of the nonlinear
temporal structure overlooked by the AR model. Thus it is aarefficient way of
modeling complex temporal structures than using AR modéeiMM alone.

2.2 The Extended-HMARM and its identification

In the previous signal model, the output of the AR filter isuased to be exactly mea-
surable. In many applications, however, measurement imisevitable. To be robust
against noise, the signal model need to be extended to io@iga noise model. As-
suming stationary white Gaussian measurement noise, we daaew system model
whose structure is depicted in Fig. 2. We term this model tkerttled-HMARM
(E-HMARM).

Qg _1q: @ top hidden data layer

N (r(t);mr(j), 0
@ intermediate data layer

1
bottom hidden data layer
N(y(t);my(jv ) y‘lIt

observation data layer

.
[
[83
|

Figure 2: A generative data structure of the E-HMARM.

In this extended data model, we define two hidden data layleesstate;; and the
filter outputax(t). Observe that(t) is not hidden because it is linearly dependent on
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z(t). The system model can be expressed in the following equgtion

-

a(t) =Y glk)a(t — k) + r(t) (18)
k=1

r(t) = v(t) + u(t) (29)

y(t) = a(t) + 2(t), (20)

wherey(t) is the observations;(t) is the measurement noisgk) is thekth AR co-
efficient, andr(¢) is the non-Gaussian process noise, or, the filter excitaidewrite
r(t) as the sum ob(t), a sequence ab/-state symbols, and a white Gaussian noise
sequenceu(t) with zero mean and varianee?. Thus the excitation'(¢) is actually
a Hidden Markov process with/ states. In HMM terms, these states have Gaussian
emission pdfs with meam,.(5), j € [1,---, M], and identical variance?. The state
transition matrix is denoted byA = (a; ;). The observation noise is assumed to be
white Gaussian noise with zero mean and variarice

The HMM used here is different from the standard HMM and theMilvsed in the
HMARM in that, the emission pdf of the stage = j observed at the observation data
layer is a Gaussian pdf withtame varying meamn,(j, t) and atime varyingvariance

ag‘qt. This can be written as:

b?/t“]hy(j?t) :N(y(t);my(j,t),az‘qt), (21)

From (20), the mean af(¢) should bex(t) if 2(¢) was known. But since:(¢) is not
available, a proper choice of the meanygt) will be the mean ofz(¢) giveny. So
my(j,t) can be obtained by calculating the smoothing estimate ©)fusing the obser-
vationsy and the current statg. The variance of the emission pdf is therefore the sum
of the smoothing error variance and the measurement noignea. The smoothing
estimates and the error variance can be calculated with Bnean MMSE smoother,
which will be described later. It can be summarized as fadlow

my (i.1) = (2(0)ly. ). (22)

U;\qt = Uip (.77 t) + 0'5, (23)
with oﬁp (4,t) being the smoothing error variancexdf) giveng; = j. In (22) and in the
following, we use the angle brackép|y) to denote the expectation g@f conditioned
on . The forward and backward likelihood denoteddy, ¢) and3(j, ¢) are defined
in the same way as in the HMARM, and can be calculated realysiv
The parameters to be estimated@re: [A, m..(1),--- ,m,.(M),02,02%,9(1),--- ,9(p)].

u’
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Applying the EM methodology again, we write tgefunction as follows:

A6.5)=3 [ axly.3) logplax.ylé)dx (24)

= 3 sl &) loaiale) + 3 plaly. & | plxla.y,8) log pixia, dex

q xX
+ / p(xly. ) log p(y x, b)dx (25)

Equation (25) follows from the first order Markovian propest the layered data model:

p(a,x,y|¢) = p(ale)p(x|q, d)p(y[x, ¢). (26)

Denote the first, second, and third term in (25¥hs, @5, andQy, respectively. Thus
Q@ involves only the top hidden layer parameteps; involves only the bottom hidden
layer parameters, an@y, involves only the visible (observation) layer parametéitse
maximization of the) function can now be done by maximizing the three terms in (25)
separately.

According to the Gaussian assumption of the observatiosen@i,, can be written
as:

Qv = [ ocly. )Y [lo0 —s — 5 (0(0) — (1)’ (27)

7 oS

:Z/ o PO ) ['Og ¢227 207 (W)—fc(ﬂf]dw(t) (28)
= Z log ——

2 2 (O -206e0m + bow). @
Note that all the conditioned mean should also be conditiareg, but it is omitted
here and in the sequel for brevity.

271'02
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From (18) and (25)Q g can be written as:

Qn =S slaly.d) [ pxia.y.d) 3 iog o («t0
=S gWet— ) ma )) Jos
k=1

=Y vl d) [ iy §)os s~ 5 (+0

- ég(’f)w(f — k) —ma(j )ﬂdx( t)

= zt: >_plaly.9) {log \/2;73 - 2;3<(a:(t)

P 2
=3 gkt — k) — my (4 )) 40,y ﬂ (30)
k=1
whereg; = j, andj € (1,--- , M). Here, the posterior mean is conditioned on both the

state at present timg and the observation.
QT can be written as:

Qr =) paly,$)>_logay, q
q t

= ZZP(% :j|Ya§5)|09 Qg _1q45 (31)
t

wherea,, ., is the state transition probability (from stage ; to g;).
Now we maximize th&) functions by setting the derivatives with respect to the
parameters to zeros. Fof we get equations:

6 .
68‘2/ B 202 02 2 Z{ ‘y> + <:c >} =0,

from which we get

Z{ —2y()(=(t)ly) + <~’62(t)ly>} /T. (32)

t
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For the AR parameterg k), we get:
P
M S S =iy 2{ (o0~ X atwrate )

t=1 3
qtj,yﬂ

= me () )(t — k)

— ) (st = Rl = iy)| 20 k=1 P @3

Here,p(¢: = jly, qS) is the posterior probability of the state beipgt timet, and is to
be denoted in the sequel byt, j) = p(¢: = jly, <73). In (33), the sum of the posterior
mean{ - |¢: = j,y) over the state weighted by the state posterior can be exress
the posterior mean conditioned only gnThat is,

Zv(t,j)< Nae,y) = (- ly). (34)

Therefore, (33) can be re-written as

[<x<t>x bly) - zg (@){x(t (i~ by)

T-1

- it dme )t - Bla=i.y)] =0 @)
Form,(j) we have
8235) :T_lv( J)[ %@(z(t) = > g()z(t —c) mr(ﬂ))(*l) e j’yﬂ
t1:1T_1 e=1 R
= = Y a(d) Kx(t)qt —J,y> - gl )< (t—c)lgr = j y>
it =1

_mr(]):| :O’ J: 7)M (36)



F16

Foro2, we have
83?;5 - EZV(W [—2; + 2(013)2 < (x(t) - ijg(c)x(t _p
—my(j ) ’Qt_J Y>} 0, (37)

from which we get

= jz:_: ny(t,j) [< (x(t) — zp:g(c)x(t —c) —m(j ) ‘Qt =J Y>}

c=1

w

/ S5t ), (38)
t=1

J

where
W= (2*O]a =3,y ) = 2m.() (@(O)]ae = 3.y ) +m? ()
N Qig(c)<x(t)x(tc) a :j,y> +om,(j Zg < (t—o)|q :j,y>
3 ss(@(att - dott - D = 5, (39)
c=1d=1

The transition probability can be estimated in the same waiy the standard HMM:

CAL“ = Z?:zl p(X’ qi—1 = Z.7qt :~.7|d;) 23711 5(7/ ja )
>y p(x, g1 = i[) ST (i t)

where¢(i, j,t) andy(i, t) are defined in the same way as in the HMARM.

Equation (32), (35), and (36) consist of a setlof P + M linear equations and
can be solved by matrix inversion. Then (38) can be solvednbgrting the newly
updated parameter estimates. The quantities needed edbaations include: the state
posterior< (4, j, t) andy(i, t), which are calculated by the forward-backward algorithm;
the first and second momentsaxft), which are estimated by a nonlinear MMSE fixed-
interval smoother.

The nonlinear MMSE smoother consists of a forward sweep dnatkward sweep.
In the forward sweep, at timig a Kalman filter produces/ estimates of the mean and
correlation matrix ofz(¢) conditioned ong; = j, 5 = 1,--- , M, andy. We com-

; (40)
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bine theM estimates weighted by the statgosterioriprobabilities,y (i, ¢), to get an
MMSE filtering estimate conditioned only gn Then the backward sweep calculates
the smoothing estimates and MSE matrices using the filterstignates and MSE ma-
trices obtained in the forward sweep. The backward sweeptiems are identical to
those of the two-pass Kalman smoother, and can be foundgn,[82, p.572]. The
algorithm thus iterates between the nonlinear MMSE smap#émel the estimation ap
and~y(i,t).

The algorithm stacks two dynamic state estimators toggtkerthe nonlinear MMSE
smoother and the HMM estimator. A unifying view of the Kalrigpe state estimator
and the HMM state estimator can be found in [13]. The nonlisesoother uses a con-
tinuous state model, where the state vector is the outplieohR(P) filter, x|¢— py1.¢,
and the state transition is ruled by the auto-regressivegnty of the ARP) filter. The
HMM uses a discrete state model, where the states are thesymiols, and the state
transition is ruled by the underlying mechanism that predube symbols.

Remark:The proposed nonlinear MMSE smoother falls in the categbSwvatch-
ing Kalman Filter (SKF) with soft-decision, as is defined #].[ Different from the
typical SKFs whose control mechanism switches the AR filtefficients and/or the
system-noise variance over segments of data, the propd€ed\8itches its system-
noise mean from sample to sample.

3 Applications and results

We apply the proposed system models and their identificatigorithms to tackle prob-
lems in speech analysis and channel equalization. In thechpanalysis examples, we
show that the proposed non-Gaussian AR system identificatethod can provide bet-
ter estimates of the AR coefficients, and better structueediual, than those given by
the classical LPC analysis. We also show that under mildencésditions, robust AR
analysis can be achieved without knowing the noise variateehe channel equal-
ization examples, we show that joint channel estimationsymabol estimation can be
done efficiently to a high accuracy when SNR is high. When SNRaderate, the joint
estimation can be done with extra computational complexity

3.1 Efficient non-Gaussian speech analysis

In a vast variety of speech processing applications, ARfioberfits or AR spectra, and
linear prediction residual need to be calculated. LeasaBgumethods, such as the LPC
analysis (implemented as an autocorrelation method), beee the standard methods
of analyzing AR models. The Gaussian assumption taken by$hmethod results in
simple analytic solutions. But when applied to non-Gaussignals such as voiced
speech signals, the mismatch of assumption brings in uraddgilarge variance and
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bias. The large variance implies a bad shift-invarianceverty of the LPC analysis.
This means that, when a sustained vowel is segmented inevaddvames, the LPC
estimates of the AR parameters for each frame can be vepreliff. This causes, as an
example, in a CELP coding application, more bits than nexgds be transmitted, and
in a packet loss concealment application, difficulty toiptéate a missing frame. Here
we apply the HMARM method to AR analysis, and compare the aiasthe variance
of the estimates to those given by the LPC analysis.

First, we use a synthetic signal that resembles a sustagieed/speech signal. The
synthetic signal is made by filtering a noisy impulse trainhman AR(10) filter. 50
realizations of this signal are analyzed. To get the 50zatitins we shift a rectangular
window along the signal one sample each time 50 times. Thedamirength is 320
samples. The estimated AR spectra of the 50 realizations@rgared to the true
AR spectrum, and the difference is measured by the Log-8pdotistortion (LSD)
measure. The LSD is defined as follows:

LSD =1 [EL: <2010910 :i Eg:ﬂ g (41)

=1

whereL is the number of spectral bins. The LSD versus the shift isvehia Fig 3. It

is clear that the proposed method has a flat distortion seidad this surface is lower
than the LPC's. Itis important to note that the LPC estimatesounter huge deviation
from the true values in the second half of the plot. This is netee large “hump” in
the signal comes into the analysis frame. The large humpkersignal are caused
by the impulses in the excitation, which represent the nangSian/nonlinear structure
of the signal. The bias and variance of the estimates arecalsalated using sample
mean and sample variance. The bia8.i®2 for the HMARM analysis, and compared
to the 0.197 for the LPC analysis, accounts for an improvement of more tHhalB.
The variance i$).128 for the HMARM and9.69 for the LPC analysis, representing a
variance reduction of8.8 dB.

Now, we test the shift-invariance property with true spesighals. For real speech
signals, there is an implementation issue needed to begobintt. Since the HMARM
is a causal dynamic model, and the analysis is usually flaased, the ringing from
the last impulse of the previous frame has an undesired iimpathe current frame
estimates. This is because the estimator does not see theysrénpulse but its effect
exists. This could sometimes degrade the performanceymilde therefore suggest
to do a pre-processing that removes the ringing from theiguevframe, or simply set
the signal before the first impulse to zero. The latter is usazlr experiments. The
AR spectra of four different voiced phonemes are estima@etilfes with one sample
shift each time. The frame length is set to 256 samples. Teetspare plotted in Fig
4. The estimates by the HMARM show good consistency, whigecthnsistency of the
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Figure 3: (a): The Log-Spectral Distortion of the AR spectra of the &fited frames. (b): the synthetic
signal waveform used in the experiment.

LPC analysis appears to be poor. We observed the same tgnaben we varied the
segment length and compared the estimates from differaatlelagth. These results
show that, the LPC analysis is sensitive to the differendbénwaveforms of different
realizations of the same process, while the HMARM is sigaiiity less sensitive. The
residual of the HMARM analysis also has different propearttean the LPC analysis. In
Fig. 5 we show the prediction residual of a voiced speechasigsing the AR param-
eters estimated by the HMARM and the LPC respectively. liéarcthat the residual
of the HMARM has more prominent impulses, and the noise betvtkee impulses ap-
pears to be less correlated. In general, the residual of HMARS a smaller L1 norm
than that of the LPC analysis. From a sparse coding pointes¥,\the proposed method
provides a sparser representation of the voice signal trearte given by LPC analysis.
Traditionally, sparse representation is achieved by niiiirg L1-norm with numerical
optimizations (see [14] for a review, and [15] for applicatin speech analysis), or us-
ing Bayesian inference with a super Gaussian pdf as prigr [liee HMARM method
proposed here provides a computationally simple altar@dt the sparse coding of
voiced speech signals.

In the experiments described above, the analysis windoweéstangular window.
As it is well known that an appropriately chosen window caduce the variance of
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the LPC estimates, we also conducted comparisons betweeHNtARM analysis
and the Hamming-windowed LPC analysis. For the synthetjnadj the variance of
the Hamming-windowed LPC i$.197, which is still 9.7 dB higher than that of the
HMARM. Although its variance is reduced, the Hamming-winga LPC in general
suffers from lower spectral resolution due to the large nhatie of the Hamming win-
dow. We show in Fig. 6 that the Hamming-windowed LPC analfgls to resolve two
closely located spectral peaks, while the HMARM succeedi® Signal used herein is
a synthetic signal, which is made by filtering a noisy imputsén with an AR filter
with order 40. Windowing technique can sometimes cause laigs because it alters
the signal waveform significantly, especially when the d&tguence is short. We show
in Fig. 7 the difference in spectrum caused by windowing. &jucing the amplitude
of the last peak, the Hamming window changes the waveformtlams the spectrum
significantly.

Another known LS method is the covariance method [17, CH. 318 covariance
method is known to give more accurate estimates of the ARficaefts than the au-
tocorrelation method when the data length is small. In opeerents, it is so when
the analysis window is rectangular. When a Hamming windowsedythe covariance
method gives similar results as the autocorrelation method
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Figure 4: The AR spectra estimated by HMARM and LPC analysis.

3.2 Blind channel equalization

We consider a discrete-time communication channel modshawn in Fig. 8, where
the channel response has included the response of the ttemdiiter, the medium, the
receiver filter, and the symbol-rate sampler. We assumethieathannel can be well
characterized by an AR model, and no measurement noisedsmiréor, the channel
has a very high SNR). The transmitted symbols are quatefP@ky symbols. At the

receiver end, the channel distortion is compensated anttahemitted symbols are
decoded. The receiver has no prior knowledge about the ehatme alphabet of the
transmitted symbols, and the probability distributionle symbols.

Using the HMARM, the equalization and decoding are donetlyinin the first
experiment, 200 symbols generated randomly using a fombsy alphabetd={ -3,-
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Figure 5: Prediction residuals by the HMARM and the LPC analysis.
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Figure 6: Spectral resolution comparison using a synthetic signat. AR model order is 40.

1,1,3} are transmitted. The channel is ARY with coefficients
A =11,-1.223,-0.120,1.016,0.031, —0.542, —0.229, 0.659, 0.307, —0.756, 0.387].

The received signal waveform, the equalizer output, anc¢tienated channel spectra



3. APPLICATIONS AND RESULTS F23

Spectrum - HMARM

A\J\AM

Spectrum — LPC without Hamming window

/\/\J

Spectrum - LPC with Hamming window

-

Signal waveform

N S

Figure 7: Using Hamming window on a short frame alters the spectrum.

White Gaussian noise
z

Transmitted symbol sequence \ Received symbol sequenc

X {AR(p) channe i S

Figure 8: The discrete-time channel model.

are shown in Fig. 9 Fig. 10 and Fig. 11, respectively. Here garause the LS
method as the reference method. It is clear from the figursstitle recovered symbol
sequence by the HMARM method coincides with the transmistgdbols very well,
and the spectrum estimated by the HMARM method completedylaps with the true
channel spectrum. Whereas the LS method has a much largeagsti error on both
the recovered symbols and the channel spectrum. More phgdise estimation error
variance of the recovered symbol sequence(s x 10~2° for the HMARM method
and0.36 for the LS method, which represent2&5 dB gain of the HMARM method
over the LS method.

In the second experiment, we consider an FIR channel madehokt of the chan-
nel equalization literature, channels are modeled by MA @efgdA major advantage of
MA modeling in channel equalization is the simplicity in aighm design. Whereas,
most realistic channels have both an MA part and an AR part. \ithe channel re-
sponse is lIR, the drawback of an MA model is obvious: it reggia very large number
of coefficients to approximate an IIR channel, while the ARdglccan approximate an
MA channel with a mildly larger order. Equalization of MA afzel using AR model
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Figure 9: The received signal waveform. The channel is AR(10).
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Figure 10: The recovered symbol sequences. Dots: the transmitted syneboles: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method.
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Figure 11: The true and estimated spectra. Note that the HMARM spectmgriaps the true spectrum.
has been shown before, e.g. [11]. In this example we use the saperimental setup

as in [11] to demonstrate the applicability of our methodn®e MA channel equaliza-
tion. The alphabet is the same as before, and the 3rd order MA channel coefficient
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are B = [1.0,—0.65,0.06,0.41]. The received signal waveform is shown in Fig. 12.
The recovered symbol sequence and the estimated chanc#iuspare shown in Fig.
13 and Fig. 14, respectively. The estimation error variasfcihe recovered symbol
sequence i8.0023 for the HMARM method, and.4212 for the LS method. The gain
of the HMARM method over the LS method24.6 dB.
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Figure 12: The received signal waveform. The channel is MA(3).
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Figure 13: The recovered symbol sequences. Dots: the transmitted synebolss: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method.

When there exists white Gaussian measurement noise in thengythe perfor-
mance of the HMARM method degrades. For a channel SNR of 6GdBB, and 40
dB, the gain of the HMARM method over the LS method are 27.50B5 dB, and 8
dB, respectively. From 30 dB down, the performance of HMARMimilar to that of
the LS method.
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Figure 14: The true and estimated spectra.

3.3 Noise robust spectrum estimation for voiced speech

When measurement noise is present in an AR system, the dasst Squares method
performs poorly because there is no noise modeling in it. D®enethod can be ex-
tended to modeling both process noise and measurement Adigeis known as the
Extended Least Squares (XLS) method [18]. Examples of GausdRk model identi-
fication are given in [18]. On another thread, EM-type AR madtimations in noisy
environments have been extensively studied, especiatheispeech processing litera-
ture. Pioneered by Lim and Oppenheim [5], and followed bysé¢arand Clements [19],
Weinstein and Oppenheim [20], Gannot [21], and etc., thagigm of EM-type al-
gorithms is an iterative ML or MAP estimation. These aldguris are all based on
Gaussian signal assumption and succeed in achieving raigstrAR estimation with
low complexities. Yet a common drawback of the Gaussian Ed&-@lgorithm is that
convergence is not guaranteed. Often an empirical stogricnit is needed, or certain
constraints based on knowledge of speech signals are nfijed

Using the E-HMARM method, we show that the observation nsisength, the AR
parameters, and the excitation statistics of voiced spgigalal can be jointly estimated,
and the convergence is guaranteed.

The synthetic signal used in Section 3.1 is added with whaagsSian noise, such
that the SNR equals 15 dB and 20 dB. Fig. 15 and Fig. 16 showighalsspectrum
and the estimated spectra by the E-HMARM and LS, respeytivielble 1 shows the
averaged values of parameters of 50 estimations. The seshdtv that the E-HMARM
algorithm gives much better estimates of the signal spetma the LS method. The
estimates of the impulse amplitude and measurement noiEgga are also quite ac-
curate. The estimated process noise variance is alwayer ldrgn the true value, espe-
cially when the SNR is low. This is because in the E-HMARM aition, the modeling
error is included as part of the process noise.
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Figure 15: The true and estimated spectra. The SNR is 15 dB.
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Figure 16: The true and estimated spectra. The SNR is 20 dB.

Table 1: The true and estimated parameters. Results are the averagestirhations.

AR(10) filter coefficients o? o? m(1) m,(2)
Truevalues | 0 0 6507 0756 00ar] 049 | 02 | O 10
s | Miosen oiobs 0,016 067e paan| 136 | 057 | 003 | 1025
o) | V050, biodt 0,338 075, 0475 051 | 027 | -003 | 1023
Lsasde) | o D0 0,297 0096, 0078 | - : : :
Ls@0d) | o0 ooee 007 0sabotes|  C | | | -
215 dB
b20 dB

Like all EM-type algorithms, it is possible for the E-HMARMgm®rithm to con-
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verge towards a local maxima. A good initialization can preéxconverging to the local
maxima. In our implementation of the E-HMARM algorithm, th8 estimates of the
AR coefficients are used as initial values. The convergeniterion is set such that
the iteration stops when the norm of the difference in theupater vectors is smaller
than10~%. No divergence has ever been observed under extensiveiraepés. The
E-HMARM algorithm works best at SNRs above 15 dB. From 10 dB below, the
algorithm converges to the LS solution.

3.4 Blind noisy channel equalization

In Section 3.2 we have shown the performance of the HMARMdtinannel equaliza-
tion in a high SNR communication system. We now show that atet SNR range,
the E-HMARM algorithm can do the job better.

In this example, we consider a Pulse Position ModulatioMP$ignal. PPM is a
modulation scheme in whichf messages are encoded by transmitting a single pulse in
one of M possible time-shifts in a time frame. PPM is typically usedptical com-
munications and recently in ultra-wide-band (UWB) syste&#] pnd indoor infrared
communications [23]. PPM is known to be vulnerable to ISlsaese of its very large
signal bandwidth, and equalization is necessary for higiedgransmission. Different
from the white spectrum of the PAM symbol sequence, the spmcof a PPM sym-
bol sequence is high pass and has a strong DC compéndifte smaller the\/, the
more high pass the spectrum. This imposes a difficulty toyktem identification, i.e.,
the auto-correlation in the symbol sequence can be absartzethe AR spectrum es-
timates resulting in biased estimates of the channel regpom the E-HMARM, this
difficulty can be circumvented by exploiting the known syrhbmplitudes. That is,
if the transmitted symbol amplitudes are known to the rezreias is the case in most
communication systems, we can constrairrtheto be equal to the known values. This
not only speeds up the convergence, but also makes thethlgodbust against the
non-whiteness of the symbol sequence.

In the experiment, the transmitted symbols are randomlggged from an\/-ary
alphabet with\/ = 8. A signal frame thus has 8 time slots, each correspondingé¢o o
symbol in the alphabet. When tt¢h symbol is to be transmitted, a pulse is put at the
kth time slot, and zeros elsewhere. We again use an equivdikarete-time channel
model to simplify the analysis. Without loss of generalitye transmitted signal is
modeled as a "1" at the symbol position and "0" at the othersitipas. The channel is
modeled as an AR() filter. White Gaussian noise is added to the output of thelAR(
filter. The E-HMARM equalizer estimates the channel respargl the noise variance,

2Instead of defining the whole frame as a symbol, here we tregiuise duration as the symbol duration.
Thus a time frame consists &ff symbols, and the sampler at the receiver samplesmes per frame. This
is why the received symbol sequence has a strong DC comporetatligh pass spectrum.
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and does inverse filtering to recover the transmitted symbithe standard LS method
is used as a reference method. It is shown in Fig. 17 that toveeed symbol sequence
by the E-HMARM method has much smaller error variance thahdhthe LS method.
In Fig. 18 it is shown that the E-HMARM gives a very good estienaf the channel
spectrum, while the LS estimate is far off. The channel SNRii;mexample is 18 dB,
and the signal length is 400 samples. The E-HMARM equalizenka/best at SNRs
above 18 dB. At SNRs below 18 dB its performance degradesAa8NRs below 15
dB the E-HMARM algorithm converges to the LS solution.
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Figure 17: The recovered symbol sequence. Dots: the transmitted syndirales: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method. MR is 18 dB.
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Figure 18: The true and estimated spectra. The SNR is 18 dB.

Next, we consider a combined PAM-PPM modulation with a senall. A time
frame has nowM/ = 4 pulse positions. Only one of the positions has an impulsé, an
the other positions have zeros. The impulse can have an tadhplof either "1" or
"2". So the alphabet still has 8 symbols, but the time franmshi@ter and thus the high
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pass effect of the symbol sequence is more severe. Fig. 18sdhe spectrum of a
transmitted symbol sequence. The LS equalizer mistakeligfnepass characteristics
of the transmitted symbol sequence as part the channettibstoand results in a biased
spectrum estimate, as shown in Fig. 20. In the same figuresphetrum estimate by
the E-HMARM method is shown, and its curve overlaps the tpecsum. Fig. 21
shows the recovered symbol sequence. It shows clearly ibaEtHMARM gives a
much lower estimation error variance than the LS methodhigéxperimental setup,
the E-HMARM works best at SNRs above 23 dB.
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Figure 19: The spectrum of the transmitted symbol sequence.
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Figure 20: The true and estimated spectra. The SNR is 23 dB.

4 Conclusion

In this paper we have presented two blind system identifinaglgorithms for two non-
Gaussian AR systems. The algorithms combine an AR model mhtMM such that
second order temporal structure (auto-correlation) agtdriorder temporal structure
(abrupt changes and discrete dynamics) in the signals cexttaeted efficiently by the
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Figure 21: The recovered symbol sequence. Dots: the transmitted syndirales: the recovered symbols
by the HMARM, stars: the recovered symbols by the LS method. MR is 23 dB.

two models, respectively. By constraining the variancehef HMM emission pdfs to
be identical, the algorithms have analytical solutiongorhaximization of thé) func-
tions in each iteration, which results in faster convergethan numerical optimization
methods. In the case that measurement noise is presentjreao™MMSE smoother is
integrated into the EM algorithm. This smoother obtainsropin MMSE estimates of
the non-Gaussian signal at a complexity comparabl¥ tiialman smoothers. At mod-
erate noise levels, the algorithm gives accurate estinohtes parameters of the HMM,
the AR model, and the measurement noise variance. Apgitatf the algorithms in
speech analysis and channel equalization are demonstrated

5 Appendix |

Here we show how to combine a GMM with an AR model in the twcelagata struc-
ture. The forward-backward algorithm used in the HMM partankearning is a conve-
nient and insightful way of calculating the state postepimbability. So we can modify
the HMM learning algorithm to obtain a GMM learning algorith

Assume the GMM had/ Gaussian terms. Denote the vector of the weights for
Gaussian terms byl = [a;], wherei € 1,--- , M. Denote the emission pdf given the
stateq; = j by b,.(j,t). Define the forward and backward likelihoadj, t) and3(i, t)
as same as in the HMM. So the induction equations can be wratglogous to those
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of the HMM, as:

ali,t) =3 [a(i,t - 1)}ajbm(j, )

:ajbx(j,t), (42)

and

Bli,t) = Y |aiba (Gt + 1Bt +1)]. (43)

J

Now, we can derive the EM algorithm. Tldggfunction can be written as

Q(6,®) = 3" plalx, )log p(x, al) (44)
_yoPxal) ( | log b, ( 45
Xq: X|¢ ; Og a<If +Z Og Qtv ) ( )
_Zsz% J\¢ Iogaqt+zzp 7Qt )Iogb (Qt, ())
J =1 X|¢ J =1
(46)

Comparing (46) with (12), only the first terms are differeo all the re-estimation
equations are identical except for the one dor For a; we have the following re-
estimation equation:

;= Z?:lp(xaqt :]|(ZE)
J 1
>, 00 plx, ¢ = 1)
D SR
= 2= @S DALY (47)
Zj >im1a(d, )B4, t)
This GMARM algorithm has a lighter computational load thae HMARM pre-

sented in Section 2.1 since the calculation of the stategosprobability has a simpler
form.
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1. INTRODUCTION G3

Abstract

The Hidden Markov Auto-Regressive model (HMARM) has recbaen proposed to
model non-Gaussian Auto-Regressive sighals with hidderkdwaype driving noise.

This model has been shown to be suitable to many signalsgdimgj voiced speech and
digitally modulated signals received through ISI channdife HMARM facilitates a

blind system identification algorithm that has a good corapahal efficiency and data
efficiency. In this paper, we solve an implementation is$tteedHMARM identification,

which can otherwise degrade the efficiency of the model amdehiextensive evalua-
tions of the algorithm. Then we study in more detail the prige associated with the
autoregressive (AR) spectral analysis for signals of iesér

1 Introduction

Exploiting the non-Gaussianity of signals in spectral gsial can often offer signifi-
cant improvements in estimation accuracy over traditiéelissianity based methods.
In [1] and [2], we show that specially designed non-Gaussiadels for specific types
of signals can exploit the structures in the signals andeaettiigher computational and
data efficiency than general purpose non-Gaussian methetisas the higher order
statistics methods and Gaussian Mixture Model based mgthbde Hidden Markov
Auto-Regressive model (HMARM) proposed by the authors ingXailored for sig-
nals generated by exciting an autoregressive (AR) filteh wither a finite-alphabet
symbol sequence or a hidden Markov sequence. Due to the aass@n nature of
the excitation, this type of signal belongs to the class oF-Gaussian AR signals. We
proposed an efficient learning algorithm for the HMARM tonly estimate the AR
coefficients and the excitation symbols or the parametethehidden Markov se-
guence. The joint estimation is what distinguishes the oweffom other identification
algorithms of models that have similar source-filter stuget most known methods es-
timate the source parameters and the filter parameters igueisegal way, resulting in
lower efficiencies. The HMARM algorithm is an exact EM algbm, which solves for
a set of linear equations iteratively and converges in a fevations. It is shown that
compared to the classical autocorrelation method of ARtspleanalysis, the HMARM
has a smaller bias, a smaller variance, and a better shétiamce property. In [2], the
HMARM is extended for robust analysis of noisy signals byaducing an observation
noise model to the system. At moderate noise levels, theitligo achieves a high
estimation accuracy withouwt priori knowledge of the noise variance. Applications of
the model to different signals, including noise robust s@éanalysis of speech signals
and blind channel estimation, are demonstrated in [1] [8f promising results are
obtained.

One critical issue in the frame based implementation of théARM algorithm
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in [1] is that, if a signal is segmented into frames, the HMARBUId have problems
estimating the parameters for those frames that do not icotlita onset of the signal.
This is because when estimating the AR parameters of therdufirame, the estimator
has no knowledge about the excitation in the previous fradmgthe large impulses in
the previous excitation can cause large "ripples" in therbegg of the current frame,
which then causes the state estimator in the HMARM to makengvdecisions. Since
the parameter estimations are based on the state deciiers,estimates become er-
roneous too. In the previous papers, this problem is solyguté-processing the frame
to remove the "ripples" caused by the previous frame. Foplsiity of that approach,
all samples before the first impulse in the current frame atécszero. This solution
is somewhat troublesome since it requires an impulse aetacthe residual domain,
whose accuracy affects the performance of the whole sysidns. and other ways of
subtracting the ripples also lower the computation efficjeand data efficiency, since
they add extra complexity and discard data samples. In tgiemp we address this
problem by exploiting the Markovian property of the AR moiteh way analogous to
the covariance method for AR spectral analysis. Our prapgs&ution costs no extra
complexity, and is highly reliable.

The rest of the paper is organized as follows. Section 2 descthe covariance
implementation, and discusses its benefits. Then, in Se8tiave investigate some
interesting properties of the HMARM using our new proposeglementation in ap-
plication to spectral analysis.

2 Covariance method for the HMARM

The causality problem associated with the frame based mmai¢ationt of the HMARM

is functionally different from the boundary problem in theast-squares (LS) method.
The classical LS solution to the AR spectral analysis assuitreexcitation to the AR
filter to be a stationary white Gaussian sequence. With #ssiraption, the only pa-
rameter of the excitation statistics, the variance, is dplam from the estimation of
the AR filter coefficients. Therefore, the excitation has fiea on the AR filter esti-
mates. However, the HMARM has a more sophisticated modehfexcitation, and
the estimations of the excitation parameters and the ARnpatexs affect each other.
Specifically, the HMARM models the excitation as a hidden kéarsequence. During
the estimation, the states of the excitation sequence htteae instant are first esti-
mated by calculating the state probabilities. Based onttite slecisions, the AR filter
coefficients and the parameters of the hidden Markov modeéstimated by a set of
coupled linear equations, c.f. [1] and [2] for derivatioRsr convenience, we list below
the signal model and the final equations of the estimator.

1In this context, the frames have no overlap.
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For a signal generated by the following model,

2(t) =Y glk)a(t — k) +r(t) 1)
k
r(t) = v(t) + u(t), (2)

wherez(t) is the signalg(k) is thekth AR coefficient, and-(¢) is the excitation se-
guence consisting of a Markovian sequengg and additive white Gaussian noisg),
the estimates of the parameters are obtained from solviadottowing p + m equa-
tions, wherep is the order of the AR model, and is the number of states of the HMM.
Fork=1,--- ,p,andj =1,--- ,m:

339G (al8) — maG )t~ k) =0 S
T-1
> 90,0 (2(t) = maGit)) =0, (4)

t

Here,~(j,t) is the posterior probability of the states, and

p

ma(j:t) = Y g(k)z(t — k) +m,(j), (5)
k

1

wherem,.(j) is the mean of statg

The state posterioy(j, ¢) is estimated by a forward-backward induction, based on
an initial estimate of the AR coefficients. The LS estimatethe AR coefficients are
used as the initialization. With the voiced speech signahragxample, the voiced
speech can be modeled as a noisy impulse train filtered by @ trect filter, and a
two-state HMM is sufficient for representing the impulsdrtraa state with a mean
equal to the magnitude of the impulses, and a state with ameem. For a frame that
does not contain the onset of the impulse train, there musippées, or ringing, at
the beginning of the frame, which is originated from an ingeuh the previous frame.
If the ringing is large enough, it will be erroneously intefed by the algorithm as
having a non-zero-mean state at the beginning of the frathewah the true state is a
zero-mean state. The wrong decision on the state certadislyamegative impact on the
subsequent estimation of parameters. To illustrate thelgmg in Fig. 1, we plot the
log-spectral distance (LSD) between an estimated speandrthe true spectrum for
frames of signal beginning at different time instants. Tigmal is a synthetic speech
signal, generated by filtering a noisy impulse train wittOgh order AR filter (the first
200 samples of the signal and its excitation are shown in B)g. The first impulse,
i.e. the onset, is located at tl6th sample. A hundred frames with length of 320
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Figure 1: The log-spectral distances between the true AR spectrunthanestimates.
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Figure 2: The synthetic signal waveform (upper panel) and its exoitafower panel).

samples are taken from the signal by shifting the frame ongplaeach time. The
figure shows that for the first 50 frames, i.e. all the framed tontain the onset, the
spectral distortions of the HMARM spectra are low and camtstin the rest 50 frames,
where the onset impulse is absent, the distortion is gdgenaich higher. Also shown
in Fig. 1 are the distortion curve for the LS spectral estesailhese curves show that
the problem with the LS method is of another kind, which waisijgal out in [1].

The results of the HMARM shown in Fig. 1 are without any pregssing. To
avoid the problem, in [1] and [2], a preprocessor detectptisition of the first impulse
of the excitation in the current frame, and sets all sampédarb this position to zero,
such that large ripples trailing from the previous frameraraoved. The problem with
this solution is that removing samples reduces data effigief the algorithm. The
reliability of the impulse detector is also a concern. Amutbolution is to calculate the
ripples from the previous frame, using the estimated ARrfated the impulses of the
previous frame, and subtract it from the current frame. Fbistion also reduces data
efficiency, since a certain part of the signal energy is dama, which could have been
used by the estimator. Furthermore, the ringing will be adied using an inaccurate

estimate of the AR coefficients. Moreover, these solutiaitsextra complexity to the
algorithm.
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The solution we propose in this paper is based on the obgamgahat the HMARM
has a built in linear predictor, i.e. (5), and that an pARgrocess is a Markovian process
with vector states op-dimension. So, instead of calculate the long trailing legp
from the previous frame using estimated parameters andaglittfrom the following
frames, it is better to initialize the predictor of the cumtrérame with thep samples in
the end of the previous frame, which gives the state estinaditthe information about
the past. therefore the causality problem is avoided.

To implement this solution, we only have to change the waydtita matrix and the
p covariance vectors are populated. They are used in thexhfiatrn of the predictor
(5) and the equations systef??] in the following forms:

i) xr_1 Xr_9 o Topt1
I ) 1 - T_py2
T2 T e ot T—p43 , (6)
rr—-1 Tr-2 ITT-3 °° TT—p
whereT is the frame length, and
t
I:xlxl—k:a T2lo—k, ", -rTxT—k] ak =1, y P- (7)

In the frame based implementation the samples with negiatilrees are of value zero.
To provide the estimator a correct starting state, the sagriplthe previous frame must
be put into the appropriate positions of the matrices. Ircdse that the previous frame
is missing, the firsp rows of the matrices in (6) and (7) must be removed, so that
there is no un-populated elements (the zeros) in the matritkis is formally similar
to the covariance method of the LS analysis of AR models [3]er&fore, we term it
the covariance method HMARM, and the original implementathe autocorrelation
method HMARM. The LSD of the two implementations are plotiedrig. 3 for com-
parison. It is clear from this figure that the covariance médtiMARM maintains its
good performance for all frames. Notice that for frames tioatain the onset impulse,
the performance of the covariance method HMARM is similath® autocorrelation
method HMARM. This is in contrast to the LS, whose covariameghod always out-
performs its autocorrelation method, given that the sitgradth is small.

3 HMARM for spectral analysis

Now, we discuss some properties of the HMARM that can be beiakiin the AR spec-
tral analysis. The HMARM hereafter refers to the covariamethod implementation.
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Figure 3: The log-spectral distances between the true AR spectrunttendstimates. HMARM-a: the
autocorrelation method of the HMARM; HMARM-c: the covari@method of the HMARM.

3.1 Window design and covariance methods

As shown in [1] and [2], the HMARM estimate of the AR spectruastsignificantly
lower bias and variance than the LPC analysis, which is aocautelation LS method.
The variance studied therein is the shift variance, wheeestt of realizations of an
AR process is generated by shifting a time window many timigls @ne sample as the
shift step length. Other known methods for reducing thet shifiance of the LS anal-
ysis are the window design and the covariance method LS.])rit[kas been shown
that applying a Hamming window reduces the shift variancthefLPC analysis, but
the reduced variance is still significantly larger than thfdhe HMARM. Besides, any
window other than the rectangular window has the side effeotduced spectral res-
olutions. Here, we discuss the covariance method LS asalged compare the three
methods under a more general variance analysis.

The covariance method LS reduces the shift variance by engpttle boundary ef-
fect. This is done by feeding a number of samples precediaguirent frame to the
data matrix. In this way, the covariance matrix of the sigredomes non-Toeplitz, and
thus the assumption of the signal being stationary is adyiddereas it is still based
on the assumption that the excitation is white stationarygsian. Therefore, for the
signals of interest in this work, the large variance causethb mismatch between the
assumption and the signal is still there. To reveal a moreigetatistics than only the
shift variance, we let the sliding window shift so many tintleat the beginning frames
and the ending frames contain completely different sampfethis way, it is possible
to show a variance consisting of both the shift variance hadiariance due to different
realizations. We investigate the statistical propertfab® three estimators, with a syn-
thetic speech signal and a bipolar signal received throngkRachannel. The synthetic
speech signal is the one used in the previous example (Rignd)the received bipolar
signal is generated by filtering a random [-1,1] sequench wiit AR filter. They are
the two typical non-Gaussian AR signals with different elederistics: the excitation of
the speech signal is spectrally colored due to the periogitises, and has a Gaussian
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Speech Bipolar
bias | variance bias [ variance
HMARM-c 0.0861] 27.68 | 8.8 x 1015 | 4.7 x 10~ 2%
LS-c 0.1524 | 169.39 0.1595 190.41
LS-a-w 0.1276 | 185.90 0.1862 560.95
LS-a 0.1879 | 179.22 0.3100 160.46

Table 1: Comparison of biases and variances. HMARM-c: the covarianethod HMARM, LS-c: the
covariance method LS, LS-a-w: the autocorrelation method it Mamming window, LS-a: the autocorre-
lation method LS.

component due to the noise; while the transmitted bipolqueece is spectrally white,
and very non-Gaussian since there is no Gaussian noiseTalit. 1 shows the biases
and variances of the three methods. The statistics areneltdiom estimating 600

frames of an AR process, and the frames are obtained by ma82@-sample window

600 times by one sample each time.

The results show that: 1) the HMARM has a far smaller variathea the auto-
correlation method LS, especially for the signal that hassaoissian componets, and
2) generally, the Hamming windowing and the covariance pritho not reduce the
variance of an LS AR analysis.

3.2 Avoiding spectral sampling effect

Having a more sophisticated model for the excitation makesstimation accuracy of
the HMARM superior to the traditional Gaussian AR model wiag@plied to spectral
analysis of certain non-Gaussian signals. This is becdugsexcitation to an AR filter
is often not spectrally white and/or non-Gaussian. WithHiMARM, correlation in
the excitation can be separated from that caused by the AR filthus the estimates
of the AR spectral envelop are not affected by the excitatidn example of related
problems for the Gaussian AR model is the spectral sampffiegtadue to the impulse
train structure in voiced speech.

A voiced speech signal is commonly modeled by AR filtering mfirapulse train.
The impulse train has a comb-shape spectrum. Although ti@drlysis is intended
for estimating the spectral envelop of the signal, which ei®dhe vocal tract reso-
nance property, the comb-shape excitation spectrum hascrapsampling effect on
the estimated spectral envelop. This causes the followinglems. Firstly, when a
formant peak happens to locate at one of the harmonic freigef the impulse
train, the estimated spectral envelop will have an abndynsdlarp peak. This is a
well known problem for the LPC analysis in speech codingeeggly for high pitch
speech [4] [5]. Secondly, in the case that the formant peaksotilocate at a harmonic
frequency, the peaks of the estimated spectral envelopetdedrift to the neighboring
harmonic frequencies. This effect is undesired in appboatsuch as speech synthesis
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Figure 4: The AR spectra estimated by the HMARM (upper) and the LPC (re)ddind the true spectrum
(lower). The vertical bars show the harmonic frequencie fitch frequency is 133Hz.

Figure 5: The AR spectra estimated by the HMARM (upper) and the LPC (re)ddind the true spectrum
(lower). The vertical bars show the harmonic frequencie® fitch frequency is 200Hz.

and prosody manipulation. We compare the spectral envelesémated by the LPC
and the HMARM, using two synthetic speech signals with pftelquencies of 133Hz
and 200Hz. Fig. 4 shows that the LPC spectral envelope hasramraally sharp peak,
while the HMARM estimate does not have the problem. Fig. Sshilnat the spectral
peaks of the LPC estimate drift towards the harmonic freqgiesnwhile the HMARM
estimate has the peaks in correct positions.

3.3 Avoiding over training

Another problem associated with parametric modeling isstknas over training, or
over fitting. In the specific case of AR spectral analysisy éragning is referred to the
phenomena that when modeling the signal with a model orageidhan the true order,
the AR spectrum tends to fit to the FFT spectrum instead offibetsal envelope. Here
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Figure 6: The AR spectra estimated by the HMARM (upper) and the LPC (rejddith order 40, and the
true spectrum of order 10 (lower).

we take the bipolar sighal as an example. The transmittehkigia randomly generated
bipolar signal with a white spectrum. The signal is convdlzg an AR channel before
itis received. The receiver tries to de-convolve the chhdiseortion by first estimating
the channel. In general, the model order is unknown, andyusilarger model order
could risk over training. In Fig. 6 we show that the HMARM lalg avoids the effect
of over training, while the LPC spectral envelope startsasenting the random peaks
due to the spectrum of the transmitted signal.

4 Conclusion

In this paper, we propose a covariance method type implatientof the HMARM
system identification algorithm. The method solves the alitygproblem that can cause
the state estimator to fail in a frame based HMARM analysike proposed method
costs no additional complexity to the system, and is proyerxtensive experiments
to be highly reliable. Based on the results of the covaridnmg@ementation, a few
interesting issues concerning the AR spectral analysisaddeessed. Examples are
given for speech and digitally modulated signals with ping results.
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