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Abstract

This thesis is concerned with designing data driven plug and play control
for mixing loops used in heating for buildings. Designing energy efficient
control for buildings has been a topic of interest for decades. This is mainly
due the large operating cost and the often considerable potential for savings.

Classic industrial grade control of mixing loops for building heating is
based on set point control. In the academic world control in heating for
buildings, has been mostly focused on model predictive control. This ap-
proach however relies on models of the building and in the case of a mixing
loop being sold as a standard prefabricated solution to different buildings a
plug and play solution is to be desired. Therefore the attention has been on
the data driven control methods within the field of Reinforcement Learning
(Approximate Dynamic Programming). In its purest form no prior knowl-
edge is needed for this controller to reach optimal control, but the training
time becomes infeasible for an application such as a mixing loop.

With trends such as Internet of Things, big data and A.I. emerging a mul-
titude of data becomes available for the control. Using this data in a self
learning optimal control scheme can improve the control. However due to
the curse of dimensionality the learning rate deteriorates as more sensor sig-
nals are used. A data driven algorithm based on partial mutual information
has been developed to identify which sensor nodes should be used by the
self learning controller for that specific building.

One of the major problems in mixing loop control is that long flow de-
pendent transport delays occur. In this work a flow compensation is added
to improve both the self learning control, but also taken into account in the
initial selection of input variables.

Testing building control is difficult due to long testing time and diffi-
culty of benchmarking. To combat this a hardware in the loop setup was
designed to test the proposed control. Data was logged from an office build-
ing equipped with a multitude of sensors. This data was then used to form
a load model. A hydraulic setup, including a mixing loop, was then con-
trolled such that the mixing loop acted up against that load model. The con-
trol algorithms were embedded into microprocessors of the type that could
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be applied in a mixing loop application to ensure feasibility of computa-
tion time. The proposed self learning control has been compared with an
industrial grade controller. The results shows a promising improvement of
performance within reasonable time leading to considerable savings.

The project has been carried out under the Danish Industrial PhD pro-
gramme and has been financed by Grundfos Holding A/S together with the
Danish Foundation of Innovation. Supervision of the project has been from
Controls within Grundfos Holding A/S and the department of Automation
and Control at Aalborg University.



Resumé

Denne afhandling omhandler design af et data dreven kontrolsystem til blan-
desløjfer anvendt til opvarmning af bygninger. I mange årtier har design af
energi effektive kontrol systemer til bygninger vækket interesse. Det er hov-
edsageligt på grund af de store driftsomkostninger og det ofte store spare
potentiale.

Klassisk har industriel kontrol af blandesløjfe til opvarmning af bygninger
været baseret på setpunktskontrol. I den akademiske verden har fokus hov-
edsageligt været på model prædikativ kontrol. Denne metode afhænger dog
af modeller af bygningen, hvilket i tilfælde af præfabrikeret blandesløjfer som
sælges til mange forskellige bygninger, kan være svært. En selvindkørende
løsning uden modelafhængighed er derfor at foretrække. Fokus er derfor
på data drevne kontrol metoder indenfor feltet ”Reinforcement Learning”. I
denne metode er der ikke behov for forhåndsviden omkring systemet for at
opnå optimal styring. Træningstiden kan dog blive for lang for en applika-
tion som blandesløjfer.

Med tendenser såsom ”Internet of Things”, ”Big Data” og ”A.I.” i ud-
vikling bliver der mere og mere data tilgængeligt til anvendelse i kontrol.
At anvende disse data i et selvlærende kontrol system vil kunne forbedre
ydeevne. Dog er den forhøjede dimensionalitet med til at forværre læringsraten
for hvert ekstra sensorsignal der anvendes. En datadreven algoritme baseret
på ”Partial Mutual Information” er blevet udviklet til at identificere hvilket
sensorer der med fordel kan anvendes i den selvlærende kontrol for en given
bygning.

Et af de store problemer i blandesløjfekontrol er den lange flow afhængige
transport forsinkelse der opstår i vandrørende. I dette værk vil en flow kom-
pensering blive præsenteret for at forbedre både den selvlærende kontrol og
den initiale udvælgelse af sensorer.

Det er svært at lave test på bygninger grundet lange testtider og et besværligt
sammenligningsgrundlag. En ”hardware in the loop” test opstilling til test af
kontrolalgoritmen er udviklet for at overvinde dette problem. Der er blevet
opsamlet data fra et væld af sensorer i en kontorbygning. Disse data er blevet
anvendt til at forme en belastningsmodel. Et hydraulisk system, indehold-
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ende en blandesløjfe, blev designet således at blandesløjfen spiller op imod
denne belastningsmodel. Kontrolalgoritmerne blev implementeret på mikro-
processorer af sammenlignelig type med dem der findes i blandesløjfer for at
anskueliggøre overholdelse af processeringstid. Den foreslåede selvlærende
kontrol er sammenlignet med industrial klasseficeret kontrol algoritmer. Re-
sultaterne viser en lovende forbedring indenfor en overkommelige tidsho-
risont hvilket fører til betydelige besparelser.

Projektet af lavet under det danske erhvervs PhD program og er blevet fi-
nanseret af Grundfos Holding A/S samt den danske innovationsfond. ”Con-
trols” afdelingen hos Grundfos samt afdeling for Automation og Kontrol på
Aalborg Universitet har stået for vejledning under projektet.
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Introduction

1 Background and Motivation

This project was initiated by The Controls department at Grundfos Core Tech-
nology. Grundfos is a global company, employing approximately 19,000 peo-
ple in 56 countries, with headquarters located in Denmark. The main busi-
ness area for Grundfos is pumps and pump systems for heating and cooling.
Grundfos is market leading for circulators worldwide. There are multiple
motivation drivers for this project which are discussed here

1.1 Value Driven Motivation

The intrinsic motivation is driven by the Grundfos value of sustainability.
This is achieved by providing energy efficient solutions that reduce the en-
ergy consumption leading to a reduction in CO2 emissions. Increasing effi-
ciency of Heating, Ventilation and Air condition (HVAC) systems has a large
potential. Energy consumption is increasing in the world due to larger popu-
lation and wealth. Improved efficiency has been used to combat the increase
in energy consumption. In Fig. 1 the rise in energy consumption with and
without the improved efficiency measures in the three largest energy consum-
ing sectors throughout countries that participate in the International Energy
Agency (IEA) can be seen.
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Fig. 1: Energy use in IEA countries and other major economies with and without energy savings
from efficiency improvements, by sector, 2000-17. [46]

With increased focus on energy consumption, heating and cooling comes
in focus, as these systems account for a large amount of the worldwide energy
consumption. According to the United Nations Environment Programme the
energy consumption for buildings corresponds to 40% of the overall energy
consumption and 30% of the released green house gasses in the world [108].
According to [81] 34% of the building energy goes to HVAC in a typical office
building as seen in Fig. 2.

Fig. 2: Typical energy consumption breakdown in an office building [81]

This means that a large amount of energy is worldwide being used on
HVAC, and thus the potential for energy savings is huge. This potential
increases the motivation to do research within energy efficient control for
HVAC systems.

1.2 Adding Customer Value

To achieve energy savings a proposed solution has to be sold and actually
utilized in as many buildings as possible. By developing solutions that adds
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1. Background and Motivation

customer value, the odds of selling the product and getting it adapted on
large scale increases. Some ways of increasing customer value of HVAC sys-
tems are; Increasing comfort, minimizing energy consumption, reducing op-
erational cost and limiting commissioning time.

Reducing operational cost is mainly achieved through energy savings.
In [60] heating systems in UK was analysed and it was found that there was
a potential for 20% less energy consumption through improved heat control.
Tuning and proper set point selection in existing standard control structures
can lead to reduced operational cost. Another way is changing control struc-
ture. Optimal control where the controls is often optimized towards high
comfort and low operational cost can lead to considerable savings. In [9] up
to 56% savings in operational cost was shown using model predictive op-
timal control. Here a model of the specific building had to be developed,
contributing to a higher initial cost.

Minizing energy consumption does not only lead to a reduced operational
cost, but can create value for the customer on its own. In many countries
buildings code, policies or incentives are made for buildings with low energy
consumption. In Denmark as an example the building code for residential
buildings is demanding an increasingly lower energy consumption per area
as seen in Fig. 3.

Fig. 3: Danish building codes from 1961 to present: Maximum allowed energy demand per year
and m2 heated floor space in a new 150 m2 residential building. The limit is on the total amount
of supplied energy for heating, ventilation, cooling and domestic hot water [26].

Commissioning is the phase where the building equipment is fit to the
specific building. A large part of this phase involves preparing the HVAC
equipment to meet the demands of the building. The challenge is that HVAC
systems often come in the form of prefabricated systems that are sold to a
variety of buildings. Fig. 4 illustrates how different buildings can be in terms
of materials, window to wall ratio and purpose of the building. The function
of the building might also require specific standards such as high fresh air
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change rate in hospitals.

Fig. 4: Different buildings require different control. Differences in materials, window ratio,
pipe layout, HVAC equipment, heat source, regulations for the type of building or other aspects
change how the buildings is optimally controlled [96].

In HVAC systems that often means tuning the controllers or providing the
right set points. This phase is time consuming and thereby expensive mak-
ing the initial cost higher, but also has the effects of making the operational
cost lower. In the case of one party constructing the building and another
party buying and operating the scale often tips towards reducing initial cost
and therefore limiting commission time. This might be the explanation why
many systems are ill commissioned. In [70] 150 newly constructed buildings
was tested with the conclusion that the average energy saving that could be
achieved by doing a proper commissioning of the existing equipment was
18%. After doing the commissioning, improvement of thermal comfort was
reported in 19% of the cases.

1.3 Technology Enablers

Many digital technology enablers are being developed within Intelligent sys-
tems and connected solutions these years. Areas such as Artificial Intelli-
gence (A.I), Machine Learning, Model Predictive Optimal Control, Internet
of Things (IoT) and Big Data is recieving a lot of focus in academia and in
industry. An illustration of the increase in papers within artificial intelligence
can be seen in Fig. 5.
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1. Background and Motivation

Fig. 5: Amount of papers in the Artificial Intelligence section of the open source database of
scientific papers "arXiv" per year [71].

Advances within the before mentioned technology areas opens up for
the possibility of developing self learning optimal control for systems. By
measuring, learning and optimizing the HVAC system directly for a specific
building the hope is to provide a control solution that delivers on all the
presented customer values.

1.4 Business Driven Motivation

Another motivation for this research is staying ahead of the competition.
Today companies, which have data as the main business, start entering the
market for heating and cooling, with Google’s acquisition of the thermostat
company Nest as the most prominent example. Danfoss has taken up the
competition with its smart valve system. Also small start-up companies are
entering the market such as Building Robotics, AVOB, Kiltech Controls, and
for example a Swedish company Nordiq has shown a good business case by
dynamic control of the supply temperature to buildings. Other companies, as
German Tado have combined whereabouts information from mobile phones
with the temperature control, and thereby enabled huge savings, while still
maintaining the high comfort for the users. It is believed that by combin-
ing the large system knowledge within Grundfos and the large knowledge
about control and optimization at Aalborg University it is possible to build
a system that can harvest the huge energy savings expected to be available
in the building business without compromising user comfort. Such a solu-
tion will have great impact in the market. In this project we are concerned
with the use of connection between digitalized products, from both Grundfos
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and other companies, to optimize the control of heating systems. It can be
stated thus: It is not a project that works on how to make products commu-
nicate, but instead this project focuses on what to communicate about. The
technologies that will be developed in the project are in line with the main
business area for Grundfos. As a step towards supplying system solutions
Grundfos launched MIXIT. MIXIT is a mixing loop which is often used in
hydronic based building heating and cooling for proper pressure and tem-
perature control. Traditionally a mixing loop is put together from multiple
components from different suppliers. In MIXIT a mixing loop system is of-
fered in one unit, uniting a electronic 3 way regulating valve, balancing valve,
one-way valve, sensors and controls.

Fig. 6: Grundfos mixing loop solution MIXIT

MIXIT is therefore the platform for the implementation of the control
algorithm and methods developed in the project.

Grundfos provides and will in the future provide system solutions for
many thermal hydronic applications. The learnings and the technology de-
veloped in this project within self training optimal controllers will hopefully
have a spillover effect to these other applications.
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2. Brief Introduction to building energy systems using mixing loops

2 Brief Introduction to building energy systems
using mixing loops

This chapter is intended to provide a brief introduction to building energy
systems using mixing loops. Building energy systems is the subject of heating
and cooling in buildings. Many aspects and subsystems are the same. In this
brief introduction a heating system is described, but many of the challenges
and local control structures are the same.

Heating systems in large buildings are often designed with a main supply
line delivering heat to a number of building sections. Mixing loops connect
the main supply line to different sections of the building and to air handling
units that ensure the air quality in the sections. The mixing loops connecting
the building sections control the supply temperatures and pressure to ensure
satisfying heat supply and room temperature control. A number of heat
emitters, typically radiators, are connected to a mixing loop supplying heat
to the rooms of the building. The structure with mixing loops controlling the
supply to different sections of the buildings makes it possible to adjust the
settings to the demands of the sections individually, e.g. north, south, east,
and west zones of a building. Fig. 7 presents a sketch of such a system where
the heat source is a heat exchanger connected to a district heating system.

Fig. 7: Typical heating system for commercial buildings in its most simple form, with k rising
mains and n local thermostats connected to each of the rising mains. A number of local P
or PI controllers, controlling the temperatures and pressure in the network, forms the control
architecture.

The mixing loop that is in focus in the project is marked with the dashed
oval in Fig. 7. Large buildings typically contains a number of these dividing
the building into heating zones. The second branch is an airhandling unit,
which supply fresh air to the heating zones. To control the temperature
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of the water leaving the mixing loop and the zone pressure, local setpoint
controllers are used. A number of disconnected typically P or PI controllers
takes care of the local control in such a systems. On paper, this makes the
system easy to set into operation and enable set point control of important
variables in the system. Unfortunately, often the controllers are not well
tuned and it is hard to decide the optimal set points for the different parts of
the system.

Pump Control

By controlling the speed of the pump, the zone pressure can be controlled
to allow for the needed flow. On the other hand if the speed is set too high
unnecessary power is consumed by added pressure losses. The affinity laws
are often used to predict pump head, flow rate and power consumption as a
function of changing between two rotational speeds [3].

∆p2

∆p1
=

(
ω2

ω1

)2 q2

q1
=

ω2

ω1

P2

P1
=

(
ω2

ω1

)3
(1)

Here the subscript 1 is before the change and 2 is after. Where ω is the
rotation speed of the pump, ∆p is the differential pressure (pump head), q is
volumetric flow rate, and P is power consumption. From this it can be noticed
the cubic relation between a change in pump speed and power consumption.
Pump curves describe the differential pressure and the power consumption.
These pump curves are often approximated by polynomials [116] [107].

∆p = ah0ω2 + ah1ωq + ah2q2 (2)

P = ap0ω3 + ap1ω2q + ap2ωq2 (3)

Here ah and ap are pump specific constants, often measure and supplied by
the manufacturer.

In building heating, thermostatic valves are often used to regulate the
zones temperatures. By reducing the opening of a valve, the flow can be re-
duced and thereby the heat power being consumed at the terminal unit. The
same reduction in flow could have been achieved by lowering the differential
pressure of the pump. This would have saved pump power, but since the
pump is supplying the whole zone this would affect other parts of the zone.
This becomes even more complex when realising that the variable temper-
ature, that the mixing loop offers, also affects the dissipated heat power at
the terminal units. In industrial applications pumps are often controlled by
constant speed, constant pressure or proportional pressure, see Fig. 8. The
system curve caused by the system resistance giving the relation between
flow and pressure. This curve is for constant resistance, meaning no changes
in the form of valves opening and closing. The system curve at higher load is
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2. Brief Introduction to building energy systems using mixing loops

where the valves are more opened than under design condition due to higher
load.

Fig. 8: Pump curves under different control schemes and at maximum speed. System curve at
design condition and at higher load.

For all of these control schemes the design point (−12oC outside tem-
perature in Denmark) has to be met to ensure the needed pressure. Due to
the shape of the system curve there is a potential to save pump energy by
moving from constant speed to constant pressure. To go even further many
industrial applications use proportional pressure control where the pressure
is controlled proportional to the flow. Even with proportional pressure con-
trol where the pressure curve is fitted well, there is a potential here for the
pump to match the system even better. Furthermore the system curve will
change as a function of temperature since this influences the heat dissipation
and therefore the opening of the thermostatic valves.

Temperature Control

In most heating systems the temperature reference on the supply temperature
(Tm in Fig. 7)and the water temperature at the rising mains (Ts1 in Fig.
7) is compensated with the outdoor temperature, such that; low outdoor
temperature means higher supply temperature and vice versa. An example
of this can be seen in Fig. 9, where four points define the compensation curve.
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Fig. 9: Screenshot from a building management system of the outside temperature compensa-
tion.

However, due to the slow dynamics of the house and delays in the piping,
this is not a very precise compensation. This is often refined by applying a
first order filter approximation to this compensation, where the time constant
should match that of the building dynamics. The outdoor temperature is not
the only parameter that affects the heat of the rooms. In many buildings, the
sun radiation has a larger impact. This is especially true, in houses and offices
building with large window areas and good insulation. These effects are typ-
ically called disturbances. Other examples of disturbances that impacts the
heat load are occupancy, electric appliances or wind speeds. When standard
thermostats control the room temperatures, and the mixing loop tempera-
ture control does not compensate the disturbances very well, the result is
variations in the room temperatures. In many buildings, the heat set point is
lowered during night when the building is not in use, this is denoted night
setback. This is often implemented as a constant offset on the temperature
curve. Other implementations uses calendar modules for setback periods for
buildings that has off time such as school vacation. The load of the heating
system is in its extremes when the rooms are reheated after a setback, which
results in high return temperatures from the radiators. This often leads to
too high return temperature at the heat source, which again leads to poor
efficiency at the heat source. To combat this challenge industrial controllers
sometimes apply a return temperature limit which is a slow feedback loop
which enables when the limit is reached and slowly brings down the sup-
ply temperature. Due to the long and often unknown flow variable delay
this feedback loop has to be tuned very conservatively to avoid an unstable
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control loop.
Here the classic control strategies used in building energy systems via

mixing loops was introduced. Next the advances in control of building en-
ergy systems within academia and frontrunners in the industry is presented
in a state of the art analysis. Afterwards the research objectives of this work
are described.

3 State of the art and related work

The focus in this project is on self learning optimal control with data driven
input selection and experimental validation for building heating using mix-
ing loops. To provide an overview of current practices within the HVAC
industry, as well as related work within the computer science and control
engineering community, this chapter is divided into five parts. The first
part covers industrial (commercial) available solutions. The next parts cover
research advances done in academia within HVAC control, reinforcement
learning, input selection and delay systems.

3.1 Industrial solutions

A mixing loop is typically build up from multiple components and local tem-
perature and pressure controllers. In this project it is the set point control for
the temperature of the water leaving the mixing loop and the pressure or
pump speed that is of interest. Controlling mixing loop temperature and
pressure is too specific an area to find content, but the same methods are also
used in broader HVAC control, which is therefore the area of interest.

There is a gap between industrial applied controllers and the ones researched
in academia. This is of cause the natural development process, but even re-
search topics such as model predictive control that has been researched for
many years has not been widely applied in the industry. Perhaps that is due
to a focus on easy commissioning and reliability through simplicity.

In chapter 2 the basic control schemes for temperature and pressure was
presented. Most commercial solution uses these methods, variations or parts
hereof. In Danfoss ECL Comfort controller [25] weather compensation is im-
plemented as a 6 point slope. A return temperature limitation is implemented
as an offset on the weather compensation curve. It also has the feature of
being able to autotune the parameters of the local PI controllers. Another
example is the Sauter Flexotron controller [89] where an 8 point outside tem-
perature compensation curve is used. A return temperature limit can be used
that offsets the supply temperature by the amount of a chosen parameter. On
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top of this a wind speed compensation can further be used on the supply
temperature where a shift factor (oC per m/s) has to be chosen. A night re-
duction functionality is further used where the temperature error along with
a user specified heat capacity of the zone determines how early the reheating
starts when coming out of night reduction. Pumps are controlled by constant
pressure.

Some more advanced control solutions are commercial available, but not as
wide spread. BuildingIQ [18] offers savings by using a model predictive con-
trol scheme. Machine learning techniques such as support vector machines
(SVM) and K-means clustering is used to segment data and defer the contri-
butions from different energy sources to heating and cooling. This solution is
based on having engineers analysing 3-12 months of data and from this build-
ing the algorithm. This makes the initial price costly, but is earned through
improved savings over time. NordIQ [80] has the SoftControl method where
the supply temperature is control optimally. The savings stems from bet-
ter control where room temperatures are kept from going higher than the
setpoint at warm periods keeping comfort, while reducing the average tem-
perature. NeuroBat [76] is a startup which offers a model predictive HVAC
control solution. Here the model is a neural network which is trained and
adapted to the specific building of operation. BrainBoxAI offers an A.I. solu-
tion build on deep learning. A deep neural network is trained from multiple
data points such as outside temperature, sun/cloud positioning, fan speed,
duct pressure, heater status, humidity levels and occupant density to predict
the energy leak of the zones. A non-linear solving algorithm is then used to
find the control actions leading to highest comfort at lowest cost. This solu-
tion is very computational heavy and is therefore run as a cloud solution [17].

3.2 HVAC control

The most active research topic within building HVAC control is optimal con-
trol in various forms.

In [93] a review on optimized control systems for building energy and com-
fort management is done. Research done in 121 works was analysed. In those
works the most researched control schemes are model predictive control and
multi-agent control. Another review of advanced control methods for build-
ing energy and comfort management can be read in [30].

In model predictive control a model of the system is used to compute an opti-
mal trajectory of the system given selected control actions. Examples of build-
ing energy system control using model predictive control is [86] [33] [92] [97].
The performance of model predictive control depends on the accuracy of the
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model. Different model approaches are used to capture the buildings and
heating system dynamics. A review of thermal buildings models for control
is in [10].

There are many solutions to overcome the modelling of the building from
prior knowledge. A model was found for model predictive control using
subspace identification in [20]. In [76] a neural network is trained from data
and used as thermal model of the building. This model is then used to com-
pute the optimal control trajectory. In [2] a review of artificial neural network
(ANN) based model predictive control (MPC) is done. Backpropagation is
used for training the neural networks. The challenge is finding the optimal
control with a highly nonlinear function such as a neural network. Different
nonlinear solvers has been proposed to solve this. In [5] Lagrangian dual
method is used, while a multi-objective genetic algorithm was used in [37]
and [84] utilised the method simplex.

Another popular advanced control method for HVAC is multi-agent con-
trol. A multi-agent system tries to accomplish objectives according to a set of
rules and regulations. A multi-agent system consists of a set of agents that
interact, communicate and coordinate themselves to achieve the established
objectives. Self-coordination refers to the way in which the agents that make
up the system cooperate to reach the objective of consuming less resources.
Examples of multi-agent control in building energy systems are [27] [50] [88].
In [115] a review is done on HVAC multi-agent control.

Other topics of advanced building energy control include fuzzy logic [4] [29],
scheduling [83] [8], plug and play control [100] and reinforcement learning,
which is the focus of this work.

3.3 Reinforcement Learning

Reinforcement learning, also known as approximate dynamic programming,
is a self learning optimal control scheme. For a basic introduction into re-
inforcement learning see section 7.2. Here some results from general de-
velopments within reinforcement learning is presented. This is followed by
examples of HVAC implementations in the literature.

Research interest in reinforcement learning increased when deep Q-learning
combining classic Q-learning with deep neural networks was presented in
[72]. The most applied benchmark for reinforcement learning algorithms
is Atari games, where soon after double-q learning was shown to improve
performance by removing the bias of the max selection in in Q-learning by
adding a second estimator [44]. Whereas Q-learning is value based, mean-
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ing that a value function is used that maps an action to a value. The higher
value the better action. Other reinforcement learning methods are policy
based meaning that an optimal control policy is found directly without the
use of a value function. In [73] actor-critic deep reinforcement learning was
proposed to improve performance further. Here the actor is a policy based
agent and the critic holds a state action value function that evaluates how
well the action chosen by the actor performs. These advances are as stated
benchmarked on Atari games. Another benchmark used to test algorithms
has been a set of continous control tasks such as cart-pole balancing, cart-
pole swingup, double inverted pendulum balancing and mountain car [117].
For this benchmark the methods truncated natural policy gradient [12], trust
region policy optimization [90] and deep deterministic policy gradient [105]
was shown to have good performance. Creating a wider benchmark with
a large set of different environments to improve on generalization is still a
work in progress in the research community, with [43] being an example of a
community working on this.

Function approximation is an important area of reinforcement learning. A
function approximation is often used to represent the value function. Dif-
ferent functionalities can be achieved by choosing the correct function ap-
proximation. For the methods which has a proof of convergence this is often
build from theory that relies on linear or linear in the weights function ap-
proximation [99] [119]. When deciding basis function one might be chosen to
achieve good performance in a specific domain due to a natural fit of struc-
ture. Examples of this are; using fourier basis [52], polynomial basis [106],
coarse coding [104], tile coding [95], radial basis [53] and sigmoid basis [31].
A lot of research is also being done into nonlinear function approximators
such as artificial neural networks. Here deep consists of a succession of mul-
tiple processing layers. Each layer consists in a non-linear transformation and
the sequence of these transformations leads to learning different levels of ab-
straction [34] [82]. Different layer structures have been proposed with specific
capabilities. Using recurrent networks it is possible for the network to exhibit
temporal dynamic behavior by having an internal memory state [78]. To be
able to have both long and short memories a variant of the recurrent neu-
ral network called long short term memory is proposed [40]. Convolutional
neural networks uses convolution in layers to take advantage of hierarchical
patterns in data. In this way more complex patterns can be assembled using
smaller and simpler patterns. This makes it especially suitable for analysing
visual imagery [74].

Eligibility Trace is a strong mechanism of reinforcement learning that pro-
vides a computational efficient way of implementing multi step behaviour.
Instead of saving in memory all state transitions and rewards a trace vec-
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tor is utilized. In [110] the true online TD(λ) was proposed using a dutch
trace to improve on the popular TD(λ) method employing an accumulating
eligibility trace. In [65] a gradient Q-learning method was proposed with
guarantees of stability for off-policy learning using eligibility traces. The
same guarentee of stability in off-policy training using eligibility traces has
also been achieved via gradient-TD(λ) [102] and emphatic-TD(λ) [1]. In [77]
the conditions required to learn efficiently and safely with eligibility traces
from off-policy experience are provided and the novel method retrace(λ) is
introduced. In [118] a unified approach for multi-step temporal-difference
learning with eligibility traces in reinforcement learning is proposed.

Reinforcement Learning has also been implemented on HVAC systems. In
[24] reinforcement learning was used for energy conservation and comfort in
buildings. [19] used reinforcement learning to control HVAC and windows
to provide natural ventilation at minimum operational cost. In [35] rein-
forcement learning is used to optimize occupant comfort and energy usage
in HVAC systems. In [28] an adaptive Critic-Based Event-Triggered Control
for HVAC System was proposed. An apprenticeship approach is used where
the intial control is done by an LQR control scheme while the reinforcement
learning agent trains in the background. After a while the control is shifted to
the reinforcement learning controller. In [32] adaptive control for building en-
ergy management using reinforcement learning. Here a neural network was
proposed for state approximation to help with the curse of dimensionality.
Experimental analysis of simulated reinforcement learning control for active
and passive building thermal storage is shown in [61]. Here pre-simulation
was used to help improve the initial performance of the controller. [109] pro-
poses a learning agent for heat-pump thermostat control. Here the challenge
is that in standard heat pump control the auxiliary electric heating is being
used after setback due to the large energy demand. This decreases efficiency
and is avoided by applying a control scheme that learns to slowly return from
setback to avoid using the auxiliary electric heater. The same control prob-
lem is investigated in [87] where another learning agent for a heat-pump
thermostat with a set-back strategy is proposed. In [114] deep reinforcement
learning was investigated for for Building HVAC Control. [75] proposes an
on-line Building Energy Optimization using Deep Reinforcement Learning,
where the focus is on having the building perform in a smart grid. Both deep
Q-learning and deep policy gradient approaches are investigated. In [21]
load control of a residential area using convolutional neural networks for au-
tomatic state-time feature extraction in reinforcement learning is shown to
reduce the electrical cost.
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3.4 Input Selection

Input variable selection is the domain of selecting a set of inputs that leads to
the optimal prediction model, with optimality being maximising some cost
function. This closely relates to feature selection, but is more focused on the
individual inputs rather than features generated by a set of inputs. Another
close area which will not be analysed is dimension reduction where princi-
ple component analysis is often used in many forms such as singular value
decomposition or eigenvalue decomposition. Here input variable selection
is the focus, but there will be some overlap to feature selection and dimen-
sion reduction methods. In [68] a review of multiple input variable selection
methods is done. The methods within input variable selection can generally
be divided into three categories; wrapper, embedded or filter methods.

In wrapper methods an iterative approach is used where models are trained
with the different inputs and evaluated. Here the result depends on how
well the relation between variables that is sought is represented in the test-
ing models. In [42] a single variable regression was used where models are
created using each candidate variable and ranked according to performance.
Another approach to single variable regression was proposed in [16] where
a general regression neural network is utilised. In [15] a genetic optimisation
algorithm was used in a general regression input variable selection scheme
to find the optimal inputs.

In embedded methods the evaluation of the input variables takes place dur-
ing the training of a single model. The input selection is done while the
inputs are embedded in the model. [42] uses an embbedded input selection
method where recursive feature elimination is done durnig an iterative model
training. Here all inputs are used at the beginning and then removed based
on rank magnitude of the weights impacted by the inputs. Multiple optimal-
ity driven methods adds penalty to model complexity onto the cost function
to reduce weights. In [22] L2 regularisation was used for learning kernels. [51]
utilised L1 regularisation for temporal difference learning. Pruning is another
method where weights are analysed and those having little importance are
removed [41]. Another approach has been proposed in [6] where a genetic al-
gorithm was used for training the model using a decision variable to choose
inputs. In [111] a genetic algorithm was used to choose the horizon and
length of the input variables for prediction of air temperature.

Whereas wrapper and embedded methods relied on models, filter methods
are model free. Filter methods is the category of methods where a measure of
importance of the input candidates is used to choose the input set. Different
input output relation measurements can be used to establish importance of
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the input. The most well know relation measurement used for input variable
selection is perhaps Pearsons correlation (linear correlation) [68]. Another
popular relation measurement is mutual information. In [13] the mutual in-
formation criterion was used to find a subset of inputs for a neural network.
In [48] a neural network was used to predict broiler weight as a function
of various inputs such as indoor climate data. A subset of these input was
selected using mutual information. Partial mutual information is an input
variable selection method first proposed in [94]. Here an iterative procedure
of choosing inputs via mutual information and then removing the added in-
formation is used to remove redundancy. Partial mutual information is later
used with success in [69] and [59]. Mutual information is often implemented
via kernel density estimation [39]. In [36] a shifted histogram implementa-
tion of mutual information was proposed.

Above a collection of data driven methods of selection inputs have been pre-
sented. Another approach is to use domain knowledge to select the inputs as
in [11]. Here a procedure is suggested for identification of suitable models for
the heat dynamics of a building. Grey-box models based on prior physical
knowledge and data-driven modelling are applied. A hierarchy of models of
increasing complexity is formulated based on prior physical knowledge and
a forward selection strategy is suggested enabling the modeller to iteratively
select suitable models of increasing complexity.

3.5 Delay compensation

In building HVAC pipe systems transport the energy to the different zones
and back. Due to this flow dependent transport delays occur making the sys-
tem highly non-linear. The problem that transport delays in systems incurs
to control is well researched topic in control litterature - see [85] or the more
recent [38] for an overview. The Smith predictor where a constant delay can
be compensated for in a stable linear system is perhaps the most well known
approach in classic control [98]. In [7] [57] [66] finite spectrum assignment is
used to compensate in unstable systems using prediction of future states. Us-
ing feedback of predictions has also been extended to nonlinear systems with
constant input delays [54] [56] and state delays [62] [63] [47]. Compensation
for linear system with time varying input delay was proposed in [64] [79] [55].
In [14] a predictor feedback for nonlinear system with time varying input and
state delay was proposed. Only few works consider delay compensation for
reinforcement learning control schemes. In [49] a model-free H∞ control de-
sign for unknown linear discrete-time systems via Q-learning with LMI was
proposed. While [119] suggested a nearly data-based optimal control for lin-
ear discrete model-free systems with delays via reinforcement learning. For
estimating the time delay in non-Linear systems [67] presented a method
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using average amount of mutual information.

4 Objectives

The overall scope of this project is to clarify potential savings and implica-
tions as a consequence of introducing a plug & play control scheme to the
mixing loop control for building heating. To this end, four research objectives
have been identified to form the basis for the work presented in this thesis.

In this work, a self learning control approach is chosen to effectively deal
with the challenges that the problem poses in terms of variation of systems,
delays and disturbances. To be able to learn the disturbances a lot of data
points containing information of these need to be used. With the increased
availability of sensor data the task becomes finding the correct data that gives
information about the problem. Since some data holds value for some build-
ing, but not others, a data driven solution is desired. The first objective
is therefore to develop input selection that determines the data points that
holds information for the mixing loop application in a specific building.

The second objective is to demonstrate self learning optimal control on the
mixing loop application. Self learning meaning that no extensive modelling
of the system is needed, but is instead learned. Optimal in the sense that
control actions are chosen to maximise some cost function.

Having demonstrated self learning optimal control and input selection on
a mixing loop application the third objective is combining it. The objective
is to utilize the input selection to decrease training time, while maintaining
performance of the self learning optimal controller.

The background for this project is founded by the idea and intention of
reducing operating cost while maintaining comfort of the building energy
system using mixing loops. Verification of actually obtained cost reductions
by the implementation of new control laws compared to industrial grade con-
trollers is the fourth and last research objective. To reach this objective an the
proposed control scheme should be implemented and tested on an experi-
mental system.

Summarized, the four research objectives are:

Research Objective 1: Input selection methodology
Develop input selection method suitable for the application area of building
heating via mixing loop.

Research Objective 2: Control design methodology
To demonstrate a self learning optimal control design methodology applicable
to the mixing loop application
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Research Objective 3: Plug & Play control
Develop a plug & play control scheme combining the methods derived in
objective 1 and 2.

Research Objective 4: Experimental Verification of savings
To verify operational savings obtained through the implementation of the
proposed control scheme on an experimental test setup.

Together, these research objectives make up the scope of this project, and
all the work presented in this thesis can be related to one or more of these
objectives.

5 Contributions

The main contributions in this project are divided into three categories which
are closely related to the research objectives in Chapter 4.

Input Selection

• Proposal of a method for input selection for estimation of the return
temperature. This method is based on partial mutual information due
to the ability of dealing with non linear relations. The return tempera-
ture is one of the important states of the mixing loop application. It is
however also one of the harder to estimate due to flow variable delay.
The proposed method uses the flow measurement to find the variable
delay that holds the most information between the inputs and the re-
turn temperature [Paper A].

Control Design

• Proposal of reinforcement learning based control strategy for mixing
loops for building heating. To ensure convergence the state-action value
function is a table implementation. A Gaussian kernel backup is pro-
posed to increase training speed. This implementation showed the abil-
ity to increase performance compared to industrial standard controller
that is well tuned. This work however also showed the necessity of
increasing training speed further due to slow convergence caused by
limited amount of data [Paper B].

• A generic physical model describing only basic relations is proposed for
pre-training. This model has to add information in all system variations
for it to add value and is therefore proposed as a basic generic model.
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The pre-training was shown to provide a better initial performance of
the control scheme [Paper B].

• Proposal of a reinforcement learning control scheme that improves on
performance and training speed. Here function approximation is used
to improve training speed. An method for varying the eligibility trace
as a function of the flow is used to improve performance [Paper C].

• Proposal of a plug & play control scheme. A reinforcement learning
agent [Paper C] is combined with input variable selection [Paper A] to
create a solution that adapts to the specific building without manual
tuning. Input selection is used to find the input variables that holds the
most mutual information with respect to the return [D].

Validation

• Input selection performance for the method proposed in [Paper A]. This
was done using experimental data from an office building supplied by
mixing loop as described in [Appendix E].

• High fidelity simulation driven test of control scheme proposed in [Pa-
per B]. Here the performance was compared against an industrial con-
troller on three different buildings. The generated simulation models
are described in [Appendix G]

• A hardware in the loop experimental setup is proposed to validate the
methods in [Paper C] [Paper D]. The setup i described in [Appendix F]

6 Outline of thesis

This thesis is based on a collection of publications written throughout the
course of the PhD project. Consequently, the thesis is divided into two parts:

The first part provides an introduction, summary of work and conclusions
for this PhD project, while the second part contains all the related publica-
tions. More specifically, the structure of the remaining thesis is as follows:

Part I

Chapter 7 provides a summary of the work and results on input selection,
control design and experimental validation. This chapter is intended to give
a coherent overview of the problems and solutions that are considered in this
work. Conclusions and recommendations, including suggestions for future
work, are presented in Chapter 8.
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Part II

This part contains the publications written during the PhD project. These are
included in the following order:

[A] Anders Overgaard, Carsten Skovmose Kallesøe, Jan Dimon Bendtsen
and Brian Kongsgaard Nielsen, "Input Selection for Return Tempera-
ture Estimation in Mixing Loops using Partial Mutual Information
with Flow Variable Delay",
Proceedings of 2017 IEEE Conference on Control Technology and Applica-
tions (CCTA), pp. 1372–1377, 2017.

[B] Anders Overgaard, Carsten Skovmose Kallesøe, Jan Dimon Bendtsen
and Brian Kongsgaard Nielsen, "Mixing Loop Control using Reinforce-
ment Learning",
CLIMA 2019 REHVA HVAC World Congress. E3S Web of Conferences
Vol. 111, 2019

[C] Anders Overgaard, Brian Kongsgaard Nielsen, Carsten Skovmose
Kallesøe and Jan Dimon Bendtsen, "Reinforcement Learning for Mix-
ing Loop Control with Flow Variable Eligibility Trace",
Proceedings of IEEE Conference on Control Technology and Applications
2019

[D] Anders Overgaard, Carsten Skovmose Kallesøe, Jan Dimon Bendtsen
and Brian Kongsgaard Nielsen, "Reinforcement Learning for Building
Heating via Mixing Loop with Data Driven Input Variable Selection",
This paper has been submitted to IEEE Transaction on Neural Networks and
Learning Systems

The layouts of the above publications have been revised from their origi-
nal form to fit the layout of this thesis. In addition to the above publications,
unpublished technical reports outlining the work in relation to experimental
validation has also been prepared as a part of this PhD thesis:

[E] Anders Overgaard, "Technical Report on instrumentation of office build-
ing for data collection", Unpublished technical report 2017

[F] Anders Overgaard, "Technical Report for experimental mixing loop
control", Unpublished technical report 2018

[G] Anders Overgaard, "Technical Report for simulation driven test",
Unpublished technical report 2017
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Introduction

7 Summary of Work

This chapter summarizes the contributions from this PhD project on the sub-
jects of input variable selection, flow compensation, reinforcement learning
and experimental validation. The final outcome is a plug and play control
scheme that builds on all the proposed elements. Fig. 10 shows an illustra-
tion of the final plug and play control scheme.

AI
CONTROL

...

...

COLLECT DATA
DETERMINE

RELEVANT DATA
BUILDING

HVAC

Fig. 10: Illustration of the plug and play control scheme

The chapter is based on papers A-D and appendix E-G but to add to the
coherency of the summary, the contributions are presented in the order of
topics rather than in chronological order. A quick reference list on test form
when an appendix is mentioned is here given:

E Test setup where data is gathered from an office building located in
Bjerringbro, Denmark.

F Hardware in the loop test setup where multiple mixing loop systems
are installed and feeding into heat exchangers that are controlled to
emulate a load model generated from the data gathered in the office
building.
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G Simulation environment where control of different building types and
HVAC equipment can be tested.

7.1 Input variable selection

The purpose of input variable selection considered in this PhD project is to
establish a method for deriving which sensors contribute with information
to improve building control. By selecting a subset of inputs that holds the
most information the dimension of the learning problem can be reduced. By
reducing dimension a reinforcement learning control scheme can achieve a
training time that is feasible for mixing loop applications.

The method proposed treats the input variable selection for reinforcement
learning as a prediction task. In reinforcement learning, see chapter 7.2, the
controlling agent seeks to maximise the return, where the return is the sum of
rewards given over a time horizon. The reward function, outputting a scalar
reward at every time step, is comparable to the cost function in other opti-
misation schemes. By analysing which input variables that has the strongest
relation to the return a subset of these can be chosen to represent the agents
state knowledge. In the later plug and play control scheme a filter approach
will be used based on partial mutual information to determine relation be-
tween a set of inputs x and the return G. The input variable selection method
proposed in this work will here be summarised.

Mutual Information

The basic relation criteria used in partial mutual information is mutual infor-
mation that for two contionusly joint random variables X and Y is defined
as [23].

I(X ;Y) =
∫ ∫

p(X ,Y) log
(

p(X ,Y)
p(X )p(Y)

)
dX dY . (4)

Here p(X ), p(Y) are the marginal probability density functions with p(X ,Y)
being the joint probability density function. When the log function is used
in base 2, the unit of mutual information is "bits". In the case of independent
variables p(X ,Y) = p(X )p(Y) the fraction p(X ,Y)

p(X )p(Y) becomes 1 and the mu-
tual information 0. The mutual information is a measurement of how much
uncertainty about Y is removed by knowing X . Mutual information also ex-
ists for the multivariate case I(X1;X2; ...;Xn). In this work only second order
relations will be examined due to computation limitations. This means that
inputs that holds most information in third order will be neglected. Examples
of this could be wind speed holding most information about the cooling of
the building when coupled with the wind speed. Another example of a third
order relation could be the solar radiation giving most information towards
the free heat when the blinds position is added. In the second order relation
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7. Summary of Work

information can still be present for each of the examples on their own, but
maybe in a lower amount.

Another important aspect to consider is that of time delay. The return is
often a weighted summation of future rewards and is therefore a function of
the time in the horizon G(t, t + 1, ..., t + n). For readability the n-step return
at time t is written as Gt+n. An input might hold most information about
Gt+n at time t, but other delays might hold more information. An example of
this could be the outside temperature holding most information with respect
to the return temperature at a delay due to slow dynamics of the building. In
the proposed framework the same input variable can be used at multiple time
delays. Inputs might hold information (that is not redundant) at multiple
delays. This can as an example be due to higher order dynamics where
a row of time instances represents the dynamic state. This means that the
problem of finding the input variable that has highest mutual information
with relation to return can be formulated as

max
j,k

I
(

xj
t−d; Gt+n

)
, (5)

where d is the delay and j is the index of the input in the full set of inputs.
To estimate the mutual information between two sampled variables a local

gaussian approximation is used [39]

I(X ;Y) ≈ 1
ns

n

∑
i=1

log
(

f (xi, yi)

f (xi) f (yi)

)
, (6)

where f is the estimated probability density from ns samples of X and Y .
Kernel density estimation with parzen window is used for the probability
density estimations. For the joint probability density this is [91]

f̂ (x, y) =
1
n

n

∑
i=1

KH

([
x
y

]
−
[

xi
yi

])
=

1
n

n

∑
i=1

KH (x) (7)

For KH the Gaussian kernel is used on the form [59]

KH(x) =
1√

(2π)m |H|
exp

(
−1

2
xTH−1x

)
(8)

Here m is the dimension of x and H is the bandwidth matrix that controls
orientation (off diagonal terms) and shape (diagonal terms). An often used
bandwidth matrix for the bivariate case (only second order mutual informa-
tion relations are investigated) is [112]

H = h2
[

S2
x Sxy

Sxy S2
y

]
. (9)
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Here S2
x and S2

y are sample variances. Sxy is the covariance between x and y,
with h being the bandwidth parameter.

Fig. 11 shows mutual information, computed for the input variables as
seen in table 1 with relation to return temperature in a mixing loop heating
system as described in [Appendix E]. For an easier overview mutual informa-
tion is only shown for the different inputs at the delay that yields the highest
mutual information.
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Fig. 11: Mutual Information as a function of input index. For each input only mutual information
at the delays yielding highest mutual information is shown. See Table 1 for input indexes [Paper
A].
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Index (j) Input Description Name

1 Supply Temperature (Ts)
2 Diff. pressure (dp)
3 Primary Flow (qp)
4 Mixing Valve Opening Degree (ODmv)
5 Heat Power Mixing Loop (Pm)
6 Outside Temperature (To)
7 Solar Radiation (So)
8 Wind Direction (Wd)
9 Wind Speed (Ws)
10-13 Heat Power Ventilation Systems (Hv1−4)
14-18 Ventilation Air Temperature (Tv1−5)
19-51 Ventilation Ducts Opening Degrees (ODd1−33)
52-56 Ventilation Fan Speeds (VAV1−5)
57-82 CO2 level in zones (C1−26)
83-116 Zone Temperatures (Ts1−34)
117-143 Radiator Valve Opening Degrees (ODr1−27)

Table 1: Inputs indexes [Paper A].

Partial Mutual Information

One way of choosing an input set would be to choose a subset of the in-
puts holding highest mutual information. This however might lead to input
supplying redundant information. To handle this partial mutual information
was suggested in [94]. In this method a search for the input providing the
highest mutual information is done first. Afterwards the information pro-
vided by this input variable is removed from and a new search is done. In
this way redundant information is removed. Another way of formulating
this is finding the remaining mutual information between X and Y variables
when Z is already given I(X ;Y|Z). This is done iteratively until some stop-
ping criteria. Partial mutual information uses estimators to remove mutual
information from the inputs x and the output y and create the residuals v
and u.

ut:T = yt:T − E[yt:T |zt:T ]

vt:T = xt:T − E[xt:T |zt:T ].
(10)

The subscript t : T means that it is a time series going from time t to time T.
The partial mutual information is then computed from the residuals as

I(x; y|z) = I(v; u) (11)

A pseudo code algorithm for partial mutual information would be
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repeat

Determine input variable z with highest mutual information as

z← argmax
j,d

I
(

xj
t−d; yt

)
Create the estimators E[y|z] and E[x|z]

u← y− E[y|z]

v← x− E[x|z]

y← u

x← v

Move z to the subset of inputs z

until Stop Criteria;

The stopping criteria used is based on the root mean square prediction
error (RMSE) of the prediction model E[y|z]. When the prediction error im-
proves less than a set tolerance tol the algorithm is stopped

tol >
RMSEi−1 − RMSEi

RMSEi−1
(12)

where i is the algorithm iteration counter.
In this work a generalized regression neural network is used to generate

the estimators. These networks uses the radial basis function with the feature
point center xi and width σ.

φi = exp
(
− (xi − x)T(xi − x)

2σ2

)
(13)

In the case of a single layer network with d weights (w) this means that E[y|x]
would be modelled by

ŷ =
d

∑
i=1

wiφi(x), (14)

Flow Compensation

A flow variable delay compensation scheme will now be presented. The
purpose of this delay compensation is twofold. First it is applied to the input
variable selection and secondly it is used to determine the horizon of the
return as seen in chapter 7.2.
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7. Summary of Work

In building heating thermal delays occurs due to long piping networks.
An example of this is the propagation of the supply water throughout the
system before ending up at the return. While most variable relations in the
mixing loop application is subject to this longer delay, the pressure relations
act on a much faster time scale.

Due to variable transport delays the input variable delays that holds most
information will change with flow. In a simplified system containing only a
single pipe between the supply and return, no heat losses, no mixing of the
fluid and constant flow the relation between supply and return temperature
can be described by a constant delay d

Tr(t) = Ts(t− d) (15)

In this simplified system an estimator of the delay d based on mutual infor-
mation could be

argmax
d

I (Ts(t− d); Tr(t)) , (16)

Flow does however change over time in the system. The first assumption that
will be applied is that the flow is quasi static meaning that it stays constant
in the time frame of the delays. In Fig. 12 flow data from the experimental
setup installed in the office building in Bjerringbro [Appendix E] can be seen.
Here the flow changes slowly enough to be considered quasi static within the
thermal delay between supply and return.

Fig. 12: Flow time series from mixing loop installed in office building [Appendix E]. Flow
changes over whole period, but is quasi static within the delay times between supply and return
[Paper A].

With the assumption of quasi static flow, while still maintaining the rest of
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the simplifications from before the flow variable delay can now be estimated
as

argmax
V

I
(

Ts

(
t− V

q

)
; Tr(t)

)
. (17)

Here measurements of the flow (q) is used to find the volume of the pipe (V).
When the pipe volume has been established the flow variable delay can be
calculated using measurements of the flow. This is however still only for a
single pipe system. For a system with multiple pipes routes the relation is
extended to

Tr(t) = h (Ts, q) , (18)

where

Ts =

[
Ts

(
t− V1

q1

)
, ..., Ts

(
t− Vn

qn

)]
q = [q1, ..., qn]

(19)

Usually there will only be measurements of the total flow available and not
how the flow divides into specific pipe routes. A flow ratio β is introduced
to relate the specific pipe flows to the total flow.

p

∑
n=1

βn = 1

qn = βnq

(20)

A lumped parameter υ, here named the lumped volume, is defined as

υn =
Vn

βn
, (21)

The approximation used here is that the flow ratios β stay constant. The
preciseness of this assumption is discussed later. When inserted into (19) this
becomes

Ts =

[
Ts

(
t− υ1

q

)
, ..., Ts

(
t− υn

q

)]
(22)

To demonstrate how partial mutual information, as described in chapter 7.1,
is used to find the lumped volume, a simulation of the system in (22) was
done. Three pipe routes with the lumped volumes (υ1 = 0.02, υ2 = 0.04,
υ3 = 0.12) was simulated with the input of total flow being the time se-
ries seen in Fig. 12. The supply temperature was changed multiple times
to induce a change of return temperature as seen in Fig. 13. Partial mu-
tual information where the total flow is measured was applied to find the
lumped volumes that holds most mutual information. The resulting mutual
information as a function of υ at the different partial iterations can be seen
in Fig. 14. Here the lumped volumes was successfully found at each itera-
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Fig. 13: One edge of the pulses given in the simulation. The delays between supply and return
are a function of the flow given at that time [Paper A].

Fig. 14: Mutual Information between Ts and Tr as a function of υ [Paper A].

tion. The above analysis have been done on the relation between supply and
return temperature, however flow compensation makes sense for other input
variables as well.

Somewhere between the supply and return a terminal unit will emit ther-
mal power. The amount of thermal power dissipated relies on zone tempera-
ture, so a relation between zone temperature and return temperature would
also be subject to flow variable delay. In this work input variable selection is
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used with relation to the return, the performance measure, that the reinforce-
ment learning agent receives. In this work the reward function is shaped
to maximise comfort and minimise operational cost, see chapter 7.3. Rela-
tion between input variables and the return will be subject to flow variable
delay. By using the lumped volume approximation for flow variable delay
compensation each partial step of selection input variables become

argmax
j,υ

I
(

x
(

t− υ

q

)
; y(t)

)
(23)

A minimum flow has to be utilised to secure a maximum delay, since
zero flow would have to delay go towards infinity. The flow compensation
proposed here is derived from a simplified system and is as such an ap-
proximation. One approximation that was used is that the flow ratios β stay
constant and can therefore be as in the constant lumped parameter υ. The
terminal units are controlled by regulating valves which will change how the
flow ratios are distributed. Changes to outside temperature might change
little in ratios due to affecting all zones, were solar radiation only hitting one
side of a building might change the ratios more depending on the specific
building. Sampling of the continuous system is another approximation error
since not all values of delay can be used.

To illustrate the improvement data from an mixing loop heated office
building [Appendix E] was analysed with and without flow compensation.
Mutual information between return temperature and the three input vari-
ables supply temperature and two different zone temperature at the constant
delay or flow variable delay that yields the highest mutual information can
be seen in table 2.

Model/Input Ts Tz1 Tz11

Constant Delay 0.091 0.032 0.047
Flow Variable Delay 0.102 0.034 0.054

Improvement 12% 6% 15%

Table 2: Highest Mutual Information using Constant or Variable Delay [Paper A].

The mutual information as a function of υ can be seen in figure Fig. 15
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Fig. 15: Mutual Information between Tr and the three inputs Ts,Tz1 and Tz11 as a function of υ
[Paper A].

Here the input variable selection with flow compensation that is used to
determine the controlling agents state domain in reinforcement learning was
proposed. How this is used in greater detail with relation to reinforcement
learning to create a plug & play control scheme can be seen in chapter 7.3.

7.2 Reinforcement learning

Here a reinforcement learning control scheme with flow compensated eligi-
bility trace will be presented. A basic introduction to reinforcement learning
and the advantage for the mixing loop application is given first. A broader
introduction into reinforcement learning is given in [101].

Basics of reinforcement learning

In reinforcement learning, see Fig. 16 a controlling agent observes which
state the environment is in a what reward this yields. The agent over time
learns to choose an action on the environment that maximises some sum
of rewards. The reinforcement learning theory builds on the assumption
that the environment holds the Markov property such that the probability of
ending in state s′ only depends on the current state s and the action a

P a
ss′ = Pr(st+1 = s′|st = s, at = a). (24)

The expected reward to be received can then be described as

Ra
ss′ = E[rt+1|st = s, st+1 = s′, at = a]. (25)
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Fig. 16: Agent-environment interaction [103].

The series of rewards the that the controlling agents seeks to maximise is
called the return G. An often used return is the weighted (0 ≤ γ ≤ 1) sum of
rewards

Gt+n = rt+1 + γrt+2 + γ2rt+3 + ... + γnrt+n+1 =
n−1

∑
k=0

γkrt+k+1, (26)

The agent consists mainly of two parts. A policy π that determines what
control actions should be taken and a value function describing the expected
return given a state, action and policy.

Qπ(s, a) = E[Gt+∞|st = s, at = a] = E[
∞

∑
k=0

γkrt+k+1|st = s, at = a]. (27)

For the agent to perform optimal control both of these need to be optimal,
that is the value function needs to perfectly fit the system and the policy to
choose the best action. However they are co-dependent so updating the ap-
proximation of the value function (value iteration) is a function of the policy.
While updating the policy to yield maximum return (policy iteration) relies
on the value function. In most reinforcement learning methods this is done
by running both the two processes directly or indirectly in succession which
can be illustrated as in Fig. 17.

Fig. 17: Value- and policy iteration in succession converging to the optimal value and policy
functions [101].
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The greedy policy as used in Fig. 17 chooses that action as

at = arg max
a

Qπ(st, a). (28)

Reinforcement learning is a self learning optimal control scheme, where op-
timal refers to the bellman equation being satisfied, which is a necessary
conditions for optimality. The bellman equation which for the action value
function can be derived from (27) ends up on the form

Qπ(s, a) = ∑
s′
P a

ss′

[
Ra

ss′ + γ ∑
a′

π(s′, a′)Qπ(s′, a′)

]
(29)

If the greedy policy is used then it becomes

Qπ∗(s, a) = ∑
s′
P a

ss′

[
Ra

ss′ + γmax
a′

Qπ∗(s′, a′)
]

(30)

Probably the most used classical reinformcent learning method Q-learning
[113], which many later methods builds upon, approximates the bellman
equation by at each iteration updating the value function as

Q(s, a)← Q(s, a) + α

[
rt+1 + γmax

a′
Q(s′, a′)−Q(s, a)

]
. (31)

This implementation is a one step method since only one value of reward in
the update. The value function however still represents the predicted return.
Since this is an approximate solution a learning rate (0 < α ≤ 1) is utilized.

In [Paper B] Q-learning was combined with a gaussian backup scheme
onto a tabular representation of the value function. In Fig. 18 results from
simulation test [Appendix G] can be seen. In this test the actions that is con-
trolled is pump differential pressure and supply temperature and the state
space only contains the outside temperature and time of day. The reward
function contained comfort and operational cost, for more specific represen-
tation see Chapter 7.3. The compared controllers are classic Q-learning, Q-
learning with Gaussian backup, Q-learning with Gaussian backup and pre-
simulation on generic physical model and a industrial controller that is tuned
for the specific building.
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Fig. 18: Norm. returns for a year without further training as a function of training duration.
Pre-simulation is on the method Q-learning with gaussian kernel backup. C1-30 is an industrial
grade controller that is tuned to the specific building [Paper B].

Table 3 shows the results different controllers on different buildings for a
year of operation after having been trained for 60 months prior.

Modern House - Copenhagen

Controller Norm. Return RMSE [oC] Cost e

Q -1.06 1.27 971
C1-15 -1.25 1.31 (3.1%) 1056 (8.0%)
C1-30 -1.19 1.33 (4.5%) 1003 (3.2%)
C1-30-NW -1.29 1.39 (8.6%) 1018 (4.6%)

Old House - Copenhagen

Q -0.96 1.12 1920
C2-15 -1.25 1.11 (-0.9%) 2128 (9.8%)
C2-30 -3.24 1.20 (6.6%) 1985 (3.3%)
C2-30-NW -4.13 1.26 (11.1%) 2022 (5.0%)

Modern Apartment - Copenhagen

Q -0.61 0.96 492
C3-15 -0.72 0.94 (-2.1%) 539 (8.7%)
C3-30 -0.74 0.96 (0.0%) 512 (3.9%)
C3-30-NW -0.77 1.03 (6.8%) 521 (5.6%)

Table 3: Comparison of Controllers With Setback [Paper B].
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There was two takeaways from these initial results of mixing loop control
using reinforcement learning. First of all it is possible to improve perfor-
mance compared to an industrial well tuned controller given a long enough
training period. Secondly the training speed has to be improved, with the
results showing an infeasible long duration before reaching and overtaking
the performance of a well tuned industrial controller.

In the rest of the work three steps are taken to improve training speed of
the controller. A multi step method was implemented using a radial basis
function approximation, a flow compensated eligibility trace was proposed
and partial mutual information was used to choose better state information
for the controlling agent.

Function approximation

In the initial work in [Paper B] the value function was represented using a ta-
ble where the state action space was discretized. Depending on the granular-
ity of the discretization and the numbers of state and actions the dimension
quickly increases. To combat this other weight based function approxima-
tions are often used where the value function is estimated by a set of weights
(w)

Q̂(s, a, w) ≈ Qπ(s, a). (32)

To update the weights the stochastic gradient descent approach is often used
[101]

wt+1 = wt −
1
2

α∇
[
Qπ(s, a)− Q̂(s, a, w)

]2 (33)

= wt + α
[
Qπ(s, a)− Q̂(s, a, w)

]
∇Q̂(s, a, w) (34)

where ∇ is a vector of partial derivatives of the weights in dimension d

∇ f (w) =

(
∂ f (w)

∂w1
,

∂ f (w)

∂w2
, ...,

∂ f (w)

∂wd

)
(35)

Since Qπ(s, a) is unknown an unbiased bootstrapped target is often used Ut
as an approximation

wt+1 = wt + α
[
U − Q̂(s, a, w)

]
∇Q̂(s, a, w). (36)

Often bootstrap targets are used that are not unbiased. In (31) the update
of Q-learning was shown. If function approximation is used the bootstrap
target is rt+1 + γmax

a′
Q(s′, a′, w). Here it can be seen that the bootstrap target

is dependent of the weights making it biased. Methods like this that ignore
the influence of the weights on the target are called semi gradient.

Different function approximations have been tried throughout this project,
such as the table based in earlier example, but also non-linear deep neural
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networks has been tried with different basis functions and forms. The best
results has however been using a linear form of radial basis function approx-
imation. This might be due to the smooth nature of radial basis functions
fitting the nature of the mixing loop application. The smoothness and differ-
entiability also provide easier solutions for solving the value function with
regards to the action providing maximum return.

A linear function approximation is given on the form

Q̂(s, a, w) =
d

∑
i=1

wixi(s, a), (37)

where x(s, a) is a feature vector. In the linear case the stochastic gradient
reduces to the simple form

wt+1 = wt + α
[
U − Q̂(s, a, w)

]
x(s, a) (38)

The radial basis function that is used for the basis of the feature vector is

xi(s, a) = exp

(
−

ns

∑
ks=1

(sks − cks ,i)
2

2ς2
ks ,i

−
na+ns

∑
ka=ns+1

(aka − cka ,i)
2

2ς2
ka ,i

)
. (39)

Here s is a vector of ns states and a is a vector of ns actions.
c = [cks,1 , ..., cks,ns

, cka,1 , ..., cka,na
] are the center points and ς the width of the

features in the dimension Rn=ns+na . In this work the features are placed
uniformly over the state action space.

On or off policy

Training on or off policy is a key concept in Reinforcement Learning. Train-
ing on policy means approximating the value function for the policy being
used for control. Training off policy means finding the value function for a
policy other than what is being used for training. Often the greedy policy is
desired for control since this maximises the return. However if only actions
are taken that by the current knowledge are optimal, no new knowledge of
potential better actions will be acquired. So instead a policy that incorporates
exploration can be used. An example of such policy could be the ε-greedy
policy where a random action is chosen with ε probability. In this case off
policy training could be used where the policy that is being trained is the
greedy policy while the controlling policy is ε-greedy. In this manner the
controlling agent ensures to explore new actions other than the one which by
current knowledge is the optimal action. Is it however desired to exploit the
current knowledge and control optimal with respect to current knowledge
this can be done since off policy training was done towards the greedy pol-
icy. The concept of exploration versus exploitation is a common one in self
learning optimal control.
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The temporal difference error is the error between the bootstrapped target
value function and the new estimate, here given for the on policy method
State-Action-Reward-State-Action (SARSA)

δS
t = rt+1 + γQ(st+1, at+1)−Q(st, at). (40)

The classic Q-learning is an off policy method where the max function is
used on the bootstrap target to learn the greedy policy while controlling with
another.

δQ
t = rt+1 + γmax

a
Q(st+1, a)−Q(st, at). (41)

In [118] a shift parameter σ was introduced to shift between on and off pol-
icy and even used intermediate values which has been shown to improve
performance in some cases.

δσ
t = σt+1δS

t + (1− σt+1)δ
Q
t . (42)

In Chapter 7.3 it is shown how this is used to achieve what is often referred
to as apprenticeship training. Here a mentoring controller is used while the
apprenticeship is getting some initial training before taking over.

Eligibility trace

In one step methods, which the classic Q-learning is an example of, only a
single measured reward is used to generate the bootstrap target. In multi step
methods multiple rewards are used to calculate a more accurate bootstrap
target. If the full return is used as target then the method becomes a monte
carlo method. An n-step method would use the following return in the target

Gt+n =̇ rt+1 + γrt+2 + γn−1rt+n + γnV(St+n), 0 ≤ t ≤ T − n (43)

Instead of using a single return, n-step returns are often weighed by λn−1.

Gλ
t = (1− λ)

T−t−1

∑
n=1

λn−1Gt+n + λT−t−1Gt+∞ (44)

With this bootstrap target the semi gradient descent becomes

wt+1 = wt + α
[

Gλ
t − Q̂(s, a, w)

]
∇Q̂(s, a, w). (45)

In this way using λ parametrization all methods in between one step (λ = 0)
and Monte Carlo (λ = 1) are representable. In these forward looking methods
n-steps are taken and rewards sampled before an update can be done. This
means that the updates for a Monte Carlo method can only be done after
all rewards are sampled and the episode is over taking longs and filling a
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lot of memory. To combat this and ease computation eligibility trace is often
used. Where the above multi step implementation is called a forward view,
eligibilty trace achieves the same updates to the weights using a backward
view. The eligibility trace is implemented as a trace vector (z) with the same
dimension as the weights, initialised to zero and at each step updated by

zt =̇ γλzt−1 +∇Q̂(st, at, wt). (46)

Here the trace for a state is incremented by the gradient and decays by γλ as
depicted on Fig.

Fig. 19: Eligibility trace of a state as function of times visited [58].

The weights are then adjusted according to

wt+1 =̇ wt + αδtzt. (47)

This means that the trace keeps a record of which weights has contributed
recently according to the time frame of γλ. A proof of equivalence of the
updates to the weights between the forward view of (45) and the backward
view of (47) can be seen in [58]. Now the basic of eligibility trace has been
introduced a flow variable eligibility trace is proposed.

Flow variable eligibility trace

The state action value function describes the expected return as a function of
the state the system is in and the chosen action. The actions in the mixing
loop application are pump speed and supply temperature. To make sure that
the impact that the actions instigate on the return is captured in the return
horizon a flow compensation is proposed. An example of this is ensuring
a high ∆T. Here the return horizon needs to be contained in the return
temperature that arises from changing mixing temperature. A trace decay λ
based return scheme is used with added flow compensation.

The proposed method lets λ be dependent on the varying transport delay
by utilizing a constant parameter φ and the scaled flow qn(t) as in

λ(q) =
φ

qn(t)
qn(t) ∈ [qn,min ≤ qn(t) ≤ 1] , (48)

It is proposed that the φ∗ giving optimal performance of the controlling agent
is a function of the lumped volume υ as described in chapter 7.1. The lumped
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volume that is used here is the one providing most mutual information be-
tween the supply and the return temperature.

φ∗ = h(υn), (49)

where υn is scaled by the maximum flow of the system and the function h()
mapping φ ∈ R : 0 ≤ φ ≤ 1.

In [Paper B] a generic physical model of the mixing loop application was
presented to be used for pre-training. The same model was used in [Paper
C] to establish the relation between υn and φ∗ using an empirical approach.
In Fig. 20 two reinforcement learning controllers are compared. One using a
constant λ and the other with flow compensated λ(φ/q). The control is run
on the model for a year and the sum of the returns over a year is plotted as a
function of either λ or φ.

Fig. 20: Norm. yearly return for different values of constant λ and flow variable delay with
different α for physical model with upsilonn = 20 [Paper C].

Here the flow compensated λ performs better than the constant. Further-
more in this system with υn = 1 the highest yearly return occurs at φ∗ = 0.6.
To find the relation φ∗ = h(υn) multiple simulations are run with different
υn. In Fig. 21 the φ∗ found for different υn can be seen.
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Fig. 21: Data points for relations between φ∗ and υn. An affine linear curve is fitted to the data
[Paper C].

An affine linear approximation is deemed to fit the relation. For a de-
scription of how this is used in the final control scheme see chapter 7.3.

To validate the improvement of using a flow compensation λ the proposed
method was compared with other controllers on the experimental setup de-
scribed in [Appendix F]. Results from the comparison of controllers with
lower and higher φ compared to φ∗, together with one using constant λ and
an industrial grade controller can be seen in Table 4.

Controller Norm. Return RMSE [K] Cost e

Q(φ*) -1 0.31 10076
Industrial -1.44 0.28 12146 (20.5%)
Q(φ∗ − 0.2) -1.16 0.25 10519 (4.4%)
Q(φ∗ + 0.2) -1.25 0.33 10690 (6.1%)
Q(λ = 0.5) -1.29 0.29 10751 (6.7%)

Table 4: Comparison of Controllers performance over 6 months after 5 months training [Paper
C].

7.3 Plug & play control scheme

A plug and play control scheme is presented here. Plug and play is meant
in the sense when the mixing loop is plugged in and connected to the sensor
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network then no further tuning or calibration should be needed in regards to
control.

Algorithm

To get a better overview of the full plug & play control scheme it is divided
into the sequential components illustrated in Fig. 22.

Fig. 22: Overview of components included in the control scheme.

The content of each of the components is described in the following.

Industrial Control

The pseudo code for the industrial control component can be seen in Algo-
rithm 1.

Result: Industrial control with data logging
Initialize : Industrial Controller
Parameters : ttrain, tvali
begin

repeat
Industrial standard mixing loop control
Logging input variables xs, actions as
and rewards rs

until Runtime = ttrain;
repeat

Industrial standard mixing loop control
Logging input variables xv, actions av
and rewards rv

until Runtime = tvali;
end

Algorithm 1: Component: Industrial Control with data logging [Paper
D].

For an initial period an industrial commercial available controller is used.
While a, here unnamed, commercial controller is used for this work other
controllers are also applicable. For a general understanding on the control
in the industrial controller see Chapter 2. While the industrial controller is
running data is collected. This data consists of all available measured state
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data points, with flow however being necessary for the flow compensations.
Furthermore the actions pump speed and supply temperature along with
the reward at all time steps are also stored. The reward function giving the
rewards to be stored is on the form

R(t) =

{
−(e(t)2 + β(ψheat(t) + ψpump(t))) 5 ≤ t mod(24h) ≤ 21
−β(ψheat(t) + ψpump(t)) otherwise

(50)

Here e(t) is the maximum absolute temperature error for all the measured
zones. The parameter β is a weight between comfort and cost due to the multi
objective nature of the reward. ψheat(t) is the heating power cost. By using
cost the reinforcement learning will be able to learn the relations that differ
for different heat sources. Example of this could be a tariff for high return
temperature in district heating or varying electricity cost for self owned heat
pump system. The reward function here shown uses a static time setback
period. This can be set to match a calendar module.

Determine φ

The pseudo code for the determination of φ component can be seen in Algo-
rithm 2.

Result: Determine φ
Initialize : Load logged data from industrial control
begin

Determine υ∗ as max
υ

I
(
Ts,t−υ/q:T−υ/q; Tr,t:T

)
Find qmax as maximum measured flow in logged data. Normalise

υ∗η =
υ∗

qmax
Determine the optimal φ as φ∗ = h(υ∗η)

λ(q) is computed at all time steps in the logged data as

λ(q) =
φ∗

qη(t)
Where qη(t) =

q(t)
qmax

Compute Gλ(q)
t:T from logged

data

end
Algorithm 2: Component: Determine φ [Paper D]

This component determines φ∗. This is used to calculate the flow vari-
able return in the logged return and therefore needs to be the first step. The
first task is to find the lumped volume that provides highest mutual informa-
tion between the supply temperature and the return. From the normalised
lumped volume φ∗ is determined from the linear approximation h(). When
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φ∗ has been determined the flow variable return from the initial logged data
can be computed and used in the input variable selection. Later φ∗ is used in
the reinforcement learning control to establish the trace length online.

Input Variable Selection

The pseudo code for the input variable selection component can be seen in
Algorithm 3.

Result: Input Variable Selection
Initialize : Load training data of all inputs xt:t+ms , return Gλ(q)

t:t+ms
and

flow qt:t+ms . Load validation data of n inputs xt:t+mv , return Gλ(q)
t:t+mv

and flow qt:t+mv .
Parameters : tol
begin

Remove information given by actions by
Gλ(q)

t:t+ms
← Gλ(q)

t:t+ms
− E[Gλ(q)

t:t+ms
|at:ms ]

xt:t+ms ← xt:t+ms − E[xt:t+ms |at:ms ]

add actions a to set of selected inputs z repeat

Find input with highest mutual information as

zs,t:ms ← max
j,υ

I
(

xj
t−υ/q:t+ms−υ/q; Gλ(q)

t:t+ms

)
Generate estimators E[Gλ(q)

t:t+ms
|zs,t:ms ]

and E[xt:t+ms |zs,t:ms ]

Calculate residuals as

Gλ(q)
t:t+ms

← Gλ(q)
t:t+ms

− E[Gλ(q)
t:t+ms

|zs,t:ms ]

xt:t+ms ← xt:t+ms − E[xt:t+ms |zs,t:ms ]

Add z to set of selected inputs z

RMSE←

√√√√∑mv
t=1

(
Gλ(q)

t:t+mv
− E[Gλ(q)

t:t+mv
|zv,t:t+mv ]

2
)

mv

RMSEprev ← RMSE

until tol >
RMSEprev − RMSE

RMSEprev
;

end

Algorithm 3: Component: Input Variable Selection [Paper D]
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The objective of the input variable selection is to choose a subset of input
variables to represent the value function. This is done by choosing the inputs
that holds the most information with respect to predicting the return. The
input selection is done from data logged during the initial industrial control
phase. The returns calculated in the determine φ component is also loaded.
The dataset is divided into two parts, one for training and one for cross val-
idation used as stopping criteria. A tolerance is declared. If there is less
improvement than the tolerance in the cross validation RMSE by adding an
additional input the input selection is stopped. Prediction models based on
radial basis networks are used to sort the information in the selection input
from the remaining inputs and return to establish the residuals used for se-
lecting the following inputs. Since the actions are used in the state action
value function to predict the return these can be considered as input vari-
ables that are predetermined for the subset of input variables. Therefore,
the information given from the actions needs to be removed before analysing
the remaining input variables. After the stopping criteria is reached a sub-
set of input variables with respect to index and lumped volume has been
determined and the next component can be initiated.

Pre-training

The pseudo code for the pre-training component can be seen in Algorithm 4.

Result: Pre-training
Initialize : Load logged data for selected input sets zt:T, flow qt:T ,
rewards rt:T and φ∗. Set weights w and trace vector z to zero.

begin
Set σ = 0 to train off policy

Train reinforcement learning as Algorithm 6 on logged data

wpt ← w

end
Algorithm 4: Component: Pre-training [Paper D]

The objective of the pre-training component is to use the initial gathered
data to pre-train the reinforcement learning controller before it is used for
online control. For pre-training the dataset from the initial phase of the in-
dustrial control is used for the input variables that was selected. The whole
time series is used as one and not divided as in the previous component.
Since the data was gathered while being controlled by the industrial con-
troller the reinforcement learning has to train off-policy and σ is there set
to zero. After the reinforcement learning has trained on the initial data the
weights are saved to use in the online reinforcement learning control.
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Reinforcement Learning Control

The pseudo code for the reinforcement learning control component can be
seen in Algorithm 5.

Result: Online Qφ(σ, λ)
Initialize : Load φ∗. Weights w = wpt, trace vector z. Take action a′

according to ε-greedy π(.|s0). Calculate feature state x = x(s0, a′).
Qold = 0

Parameters : ε, α, γ, σ
repeat every sample

Observe r and s′

Choose a′ according to ε-greedy π
x′ ← x(s′, a′)
Q← wTx
Q′S ← wTx′

Q′Q ← max
a′

(wTx(s′, a′))

δσ ← σ(r + γQ′s −Q) + (1− σ)(r + γQ′Q −Q)
Observe flow q
if qmax ≤ q then

qη ← 1
else if q ≤ qmin then

qη ← qmin/qmax
else

qη ← q/qmax
end

λ← φ∗

qη

z← γλz + (1− αγλzTx)x
w← w + α(δσ + Q−Qold)z− α(Q−Qold)x
Qold ← σQ′S + (1− σ)Q′Q
x← x′

Take action a′
until Mixing Loop Stop;

Algorithm 5: Component: Reinforcement Learning Control [Paper D]

The objective of this component is to implement reinforcement learning
control. To get a better initial performance the pre-training weights are used.
The reinforcement learning scheme contains flow variable eligibility trace as
introduced. The trace is implemented as a dutch trace as proposed in [45]
due to good computational properties.
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7.4 Results on performance of control scheme

A summary of the results regarding the plug and play control scheme is here
done. The control scheme is tested on a hardware in the loop test setup.
The test consists of two parts; a hardware part where a mixing loop system is
supplying a heat exchanger. The heat exchanger is cooled by a chiller and that
is controlled to match a load model. The load model controls the flows and
temperature from the heat exchanger such that the office buildings behaviour
is emulated. The load model is generated from data logged in the office
building as can be seen in [Appendix E]. Multiple parallel hardware in the
loop test are run under same load conditions, but with different controllers
for comparison. A more thorough description of the experimental setup is in
[Appendix F].

To illustrate the process of the proposed plug and play algorithm results
from the intermediate components are shown along with the final results. In
Fig. 23 the lumped volume giving highest mutual information between the
supply and return temperature can be seen. This is used in the component
determine φ∗ and lead to φ∗ = 0.8.
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Fig. 23: Mutual information between supply temperature and return temperature as a function
of υ [Paper D]

From φ∗ the flow variable return can be computed for the logged data.
The computed return is used in the 3. component Input Variable Selection.

In Fig. 24 prediction error on validation data of of the return is shown as
a function of input set length. In this way it can be seen how the prediction
error improves by adding the next input that is chosen. The stopping criteria
of component 3 stopped after the first 8 inputs are selected, with the actions
being the first 2. For a better overview the prediction error was calculated for
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the first 15 inputs as shown in Fig. 24.
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Fig. 24: Return prediction error as function on number of inputs from sorted list. The inputs
are shown at the lumped volume which leads to highest mutual information [Paper D]. Inputs:
Forward Temperature (Tf ), pump Speed (Np), temperature eastern zone (TzE), flow (q), return
temperature (Tr), time of day (td), outdoor measured temperature (Tom), measured wind speed
(Wm), Opening degree radiator valve eastern zone (ODE), CO2 level eastern zone (CzE), temper-
ature northern zone (TzN), outdoor predicted temperature (Top), Solar radiation measured (Sm),
temperature western zone (TzW ), temperature southern zone (TzS).

To test how other subsets of input variables would be perform compared
to the chosen subset multiple subsets was run for 200 days. The first plot
of Fig. 25 is a representation of the convergence of the weights. Instead of
plotting all weights a normalised sum of the weights is shown is for an easier
overview. The number of input variables used in the state subset is declared
as ns. The plug and play control scheme stopped after the 6 first input vari-
ables containing highest partial mutual information (ns = 6). The results
show that subsets with lower amount of states leads to a faster convergence
speed. The flow variable return at all time steps is shown in Fig. 25. The
plug and play controller (ns = 6) achieves the highest return during this time
period. It is to be expected that versions with larger state spaces will in time
converge and give same or higher return as the chosen subset.
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Fig. 25: Comparison of returns and weight convergence for different sets of states [Paper D].

In Fig. 26 both the plug and play control scheme and a industrial con-
troller that is hand tuned are tested for 140 days. The first plot shows the
RMSE of the average zone temperature for the whole building. The second
plot shows at every sample the summation of operating cost for the last 14
days. The third plot shows the return which the reinforcement learning agent
seeks to maximise. The fourth plot shows the sum of absolute values of the
weights.
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Fig. 26: Comparison of Building Temperature RMSE with a 14 days running window. Operating
cost for running 14 days. The return and the summation of absolute weights [Paper D].

For the first 30 days the control is identical due to this being the initial
data gathering phase for the plug and play control scheme. In the weights
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plot it can be seen that from the data during this initial period pre-training
takes the weights only a small way towards the value it later converges to-
wards. This is due to the industrial control only exploring a narrow area of
the state-action space. At 30 days when the reinforcement learning takes over
control the performance goes down. At this stage the reinforcement learning
controller only has the information gained from off policy training on the
initial data. After approximate 25 days the performance in the measure of
the return equals that of the industrial controller. From this point onwards
the performance improves compared to the industrial controller. When mea-
sured from day 60 to day 140 the plug and play control scheme improves the
comfort by having 19% less temperature error while saving 14% on opera-
tional cost.

8 Conclusion and recommendations

The work presented in this thesis is the development of a plug and play con-
trol scheme for building heating via mixing loops. The problem originated
from a desire to implement optimal control to decrease operational cost of the
mixing loop while keeping high comfort without a long manual commission-
ing phase of the system. The result of this work is presented as a collection
of papers enclosed in Part II of this thesis, and has been summarized in the
previous chapters. This chapter presents the conclusions drawn on the basis
of these results, as well as the author’s recommendation for future investiga-
tions on the subject of plug and play mixing loop control.

8.1 Conclusion

A plug and play control strategy was employed to deal with the challenges of
providing optimal control from a prefabricated mixing loop system to a vari-
ety of buildings and HVAC systems without a lengthy commissioning phase.
The main contributions in this project are within the four categories: Input
variable selection, reinforcement learning, plug and play control scheme and
experimental validation.

Input Variable Selection
A flow compensated input variable selection scheme was derived in [Paper
A]. The input variable selection was based on partial mutual information
to determine a subset of input variables holding largest mutual information
with respect to an estimation target. Due to the challenge of flow variable
delay a flow compensation was derived based first principle physical domain
knowledge.
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Reinforcement Learning
A reinforcement learning controller was proposed in [Paper B]. A generic
model of the mixing loop system was proposed to pre-train on to improve
initial performance of the reinforcement learning agent. To improve training
speed a Gaussian kernel backup for tabular methods was proposed. While
the control scheme was shown to improve performance over industrial con-
trollers the training speed was low. The period before reaching the perfor-
mance level of the industrial controller and thereafter improving was longer
than deemed feasible for the mixing loop application.

An improved reinforcement learning controller was proposed in [Paper
C]. This controller was implemented as a multi step agent using eligibility
trace to improve training speed. A flow variable eligibility trace was designed
an shown to improve performance on a mixing loop systems. The proposed
reinforcement learning scheme improved on training speed and reached the
performance level of the industrial controller within 50 days.

Plug and play control scheme
A plug and play control scheme was proposed in [Paper D]. This control
scheme utilized the input variable selection of [Paper A] to find a subset of
inputs to represent the state space of the reinforcement learning control pro-
posed in [Paper C]. In this control scheme an industrial controller controls
for an initial period while the reinforcement learning agents learns off policy.
It was shown that from the initial data the plug and play control scheme can
determine a suitable state space.

Experimental validation
Different experimental setups was used in this work. To test the input vari-
able selection data was gathered from an office building as described in [Ap-
pendix E]. The performance of the reinforcement learning algorithm pro-
posed in [Paper B] was tested via high fidelity simulation as described in
[Appendix G]. A hardware in the loop experimental setup [Appendix F] was
used to first test the reinforcement learning in [Paper C] and later the plug
and play control scheme in [Paper D]. For the final proposed plug and play
control scheme the experimental results showed that the after data has been
gathered and the reinforcement learning agent takes over control it takes
around 25 days for agent to achieve same performance level as the industrial
controller. After this initial period the control scheme improves further on
performance and measured from day 60 to 140 the temperature error was
reduced by 19% while saving 14% on operational cost.

The savings potential of the proposed plug and play control scheme is
dependent of the compared baseline control. In this work a commercial avail-
able industrial controller is tuned specifically for the tested building to pro-
vide a baseline. Such a well tuned controller is a challenging baseline since it
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requires that the controller is well commissioned. A less challenging baseline
as could be found in a building without proper commissioning would lead to
a higher savings potential and a shorter training period to reach same level
of performance.

8.2 Recommendations

This section presents some of the author’s recommendations for future re-
search directions within the field of plug and play control for mixing loops.
It also lists some of the practical challenges that arises with data driven self
learning control.

A challenge of reinforcement learning based controllers is the poor perfor-
mance before a certain amount of knowledge of the system has been gained
by the controlling agent. In this work pre-training on a generic model and
by data gathered using and industrial controller has been tried to give better
initial performance. While the initial performance in the experimental setup
is deemed within what may be considered tolerable for the occupants this
would still have to be tested further. Field test would have to be done to en-
sure that the level of the performance in the initial period does not cause so
much inconvenience for the occupants that it outweighs the later improved
performance.

Further research should also be done into improving initial performance
or increasing training speed. In this work a generic model based on first
principle physics was proposed to increase initial performance. Another idea
could be to create a library of models which is characterised by some hyper
parameters that are easily determinable by the installer. This could be area
of the building, build year, number of zones, ratio of windows etc. When the
installer has entered values for the hyper parameters the matching model is
then chosen and performed pre-training on to improve initial performance.

Another way of increasing training speed could be by finding a structure
for the value function of lower dimension that fits the mixing loop appli-
cation. If the structure does not fit variations of systems that the mixing
loop is installed into the increased training speed may come at the cost of
performance. One initial approach could be to derive the structure from al-
ready existing commercial available controllers which would then lead to an
self learning optimal scheme for finding the optimal parameters in already
proven control structures.

Another approach to increasing training speed could be by adding input
variables over time, often in the literature called curriculum learning. By
adding a small subset of inputs that holds most information first and let the
agent learn to control these first a good initial performance can quickly be
obtained. Then when this "curriculum" is learned further input variables are
added. In the proposed method a subset of inputs is found and added at
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once. It should be studied if breaking the selected inputs into smaller subsets
and adding over time could increase initial learning rate.

The self learning nature of reinforcement learning comes at the price of
exploration where actions are taken that may be random in nature or simply
non optimal by the current knowledge of the controlling agent. In the mixing
loop application this may lead to discomfort of the occupants of the building
zones. More research should be done on how exploration can be done in
a manner which causes a minimum of discomfort for the occupants. This
may be by constraining the exploration space of the actions or simply stop
all exploration for a while if some constraint on a state has been triggered.

The input variable selection scheme is such that it can choose to add more
delay measurements of the same variable. In higher order dynamic systems
more samples of an input variable may be needed to represent a state, such
as multiple position measurements for a velocity. Given the large dynamic
effects due to the thermal capacities in a building it was anticipated that
some input variables would hold a large amount of information at multiple
delays. This has however not been the case in the experimental setups where
only little information is left at other delays when an input variable has been
selected. This causes a discrepancy between the physical understanding of
the system and the results of the data driven analysis that gives cause for
further study. Maybe the delay is of much larger influence than the dynamical
effects in this system and therefore overshadows the effects of the dynamics.

In building heating multiple mixing loops are often used to control differ-
ent zones. These mixing loops will often be codependent. This could be due
to being supplied from the same pressure and thermal energy source or the
heating zones being adjacent. In such cases providing optimal control across
the different mixing loops either by distributed or global optimisation could
improve performance.

While a large number of reinforcement learning approaches has been tried
during this work the popularity of the research topic means that new varia-
tions are developed frequently. Especially a large amount of policy gradient
methods are being showcased in the literature with good results on various
applications. Continually study of new reinforcement learning methods ap-
plicable to the mixing loop application should be done.
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1. Introduction

Abstract

In hydronic heating systems for buildings a mixing loop is often used to control
the temperature and pressure. An important task of a mixing loop is to control
or constrain the return temperature since this leads to energy savings by reducing
heat loss and energy consumed by the pump. With increased access to data, it is
desirable to create a data driven model for control. Due to the abundance of data
available a method for input variable selection (IVS) is used called partial mutual
information (PMI). The paper introduces a method to include flow variable delay
into the PMI framework. Data from an office building in Bjerringbro, Denmark is
used for the analysis. It is shown that mutual information and performance of a
generalized regression neural network (GRNN) is improved by using flow variable
delay compared to constant delay.

1 Introduction

High energy savings can be achieved in district heating systems by proper
utilization of the heating water at the individual user. Return temperature
indicates if the heating water is properply utilized. It has been shown, for
a district heating system in Sweden, that given a reduction of 10 K on the
return temperature resulted in heat loss reduction of 9.2% and pump energy
consumption by 56% [11]. Mixing loops provides a way to ensure proper
utilization of the heating water. Classically control or constraint of the return
temperature is done with conservative feedback controllers, due to long flow
variable delays. With the increase in available building data the option for
better models of the return temperature arises, which in turn may be used in
a model predictive control scheme.

Work has been done into creating thermal models for buildings that can
be used in model predictive schemes, for a review on this topic see [1]. Differ-
ent approaches to modelling building thermal systems can be applied. One
approach is using grey box models with system identification as in [2]. An-
other approach is machine learning where the models take on a black box
formulation as in [10]. Mixing loops are installed in many different types of
buildings with different pipe networks and availability of sensor data. This
opens up for the interest in a machine learning approach. With a vast amount
of data available a question arises of which data points to use. Input vari-
able selection (IVS) covers the area of selecting the inputs from a large set
of inputs giving the optimal model and is covered in the review [8]. Partial
mutual information (PMI) is an IVS method proposed in [13] and has later
been used with success in e.g. [9] and [6].

As mentioned a challenge of mixing loop state estimation and control is
flow variable delay. In the framework of PMI it comes naturally to select
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the input at the delay that provides the highest mutual information, but this
gives a constant delay. In [7] time delay estimation was done for nonlinear
system using mutual information. This paper proposes a method for IVS for
return temperature estimation using PMI with variable flow delay.

The paper starts by, in Section II, representing the preliminaries, mainly
the PMI method. The concept of a mixing loops is provided in Section III. In
Section IV the proposed method introducing flow variable delay into the PMI
framework is described. Results based on experimental data are in Section V.
The paper ends with some concluding remarks in Section VI.

2 Preliminaries

IVS is a group of methods that deals with the problem of finding the optimal
set of input variables to give the best prediction.

Given the system

Y = h(X), (A.1)

where Y is the output of interest, X is a vector of stochastic variables, the in-
puts. As stated in [3]; If C is the full set of available input variables, choosing
the k input variables from C called X that leads to an optimal model h may
be done via IVS methods.

It has been argued [8] that various black-box models such as Artificial
Neural Networks (ANN) has the capability of only using inputs that are good
predictors and applying low weights to redundant or noisy input variables.
So why use IVS? In [8] multiple drawbacks of not using IVS are mentioned.
The obvious ones are computational effort, due to a large number of inputs,
and curse of dimensionality that increases the model domain exponentially
with the number of inputs [4].

Many methods for IVS have been developed. For a good review of these
see [8]. In this work the method PMI is used as it is a filter method appli-
cable to nonlinear systems. Filter method means finding the input variables
without an exhaustive or heuristic search through training of models.

PMI was proposed in [13]. The method is an iterative method where in
each step the input variable with highest mutual information to the output is
selected. The mutual information is then removed from the system and the
next input variable having highest mutual information with the residual is
chosen and so forth.

Mutual information between two continuous random variables is defined
as

I(x; y) =
∫ ∫

p(x, y) log
(

p(x, y)
p(x)p(y)

)
dxdy, (A.2)
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where p(x), p(y) is the marginal probability density functions and p(x, y) is
the joint probability density function. In the case of independent variables
p(x, y) = p(x)p(y), which means that the fraction p(x,y)

p(x)p(y) becomes 1 and
the mutual information 0. The mutual information is a measurement of how
much uncertainty about y is removed by knowing x. In many applications
the underlying probability density functions are not known, and they are
instead estimated from samples. The approximation of mutual information
used here is [5]:

I(x; y) ≈ 1
n

n

∑
i=1

log
(

f (xi, yi)

f (xi) f (yi)

)
(A.3)

Here f denotes the estimated probability density from n samples of x and y.
A kernel density estimation is used as in [12]. The Parzen window forms

an estimator, here given for the joint density estimation

f̂ (x, y) =
1
n

n

∑
i=1

KH

([
x
y

]
−
[

xi
yi

])
(A.4)

KH is a kernel function. Here the Gaussian kernel is often used ( [9], [6]). In
( [17], [12]) it is shown that the bandwidth has the largest impact on accuracy.
The Gaussian kernel used in this work is

KH(x) =
1√

(2π)m |H|
exp

(
−1

2
xTH−1x

)
(A.5)

Here m is the dimension of X and H is the bandwidth matrix. The off diag-
onal terms of the bandwidth matrix adjust the orientation of the joint prob-
ability density function while the diagonal terms determines the shape [16].
In the bivariate case the bandwidth matrix that is often used in the case of
standardised data is

H = h2
[

S2
x Sxy

Sxy S2
y

]
, (A.6)

where S2
x and S2

y is the sample variance of x and y [16]. Sxy is the covariance
between x and y. The bandwidth used in this work is the gaussian reference
bandwidth [14]

h =

(
1

m + 2

) 1
m+4

σn
−1

m+4 , (A.7)

where σ is the standard deviation of the sample data.
PMI can now be explained as the remaining mutual information between

x and y when z is already given. This gives the opportunity to iteratively find
the input with highest mutual information, select this input and then remove
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the information given by this input and start over until all inputs containing
information has been chosen.

To remove the information given by a chosen input from the output and
the remaining inputs an estimation is needed. This can be made in many
ways. A generalized regression neural network (GRNN) [15] is often used
( [9], [6]), in which the function that it is build around is

ŷ(x) =
∑n

i=1 yi exp
(
− D2

i
2σ2

)
∑n

i=1 exp
(
− D2

i
2σ2

) , (A.8)

where
D2

i = (x− xi)
T(x− xi) (A.9)

Here yi and xi are the sampled training data for one output and multiple
inputs. x is the input values the estimation of ŷ is desired at. σ is called
the spread variable and determines the smoothness of the estimated prob-
ability densities. This regression method is used to determine estimates of
the output and the other inputs given the chosen input. This information is
then removed from the data and the mutual information analysis can subse-
quently be done on the residuals.

u = y− E[y|z]
v = x− E[x|z]

(A.10)

Now the PMI can be found for the remaining inputs as

I(x; y|z) = I(v; u) (A.11)

Choosing the right input variable is not only a question of which variable,
but also the time delay

max
j,k

I
(

xj
i−k; yi

)
, (A.12)

where k is the delay and j is the index of the input in the full set of inputs.
At some point choosing further inputs will not improve the model. Here

cross validation is used as stop criteria.

3 Application

Heating water for space heating radiators, floor heating, heating coils etc. are
supplied via mixing loops, see Fig. A.1. Hereby the control of the pressure
and temperature of the heating water at the consumer is independent of the
supply. There are two control variables in the mixing loop. The pump speed
that controls the differential pressure (dp) and the opening of the control
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valve that controls the supply temperature (Ts). The control valve determines
how much of the supply water is allowed to mix with the return water, such
that the temperature of the water going forward is controllable. The differ-
ential pressure and temperature can control how much heat power that goes
into the system. If the heat power is too low, the heating needs of the build-
ing will not be met. If the heat power is too high the thermostatic valves will
close and excess pump energy will be used. Having a high return tempera-
ture is a problem due to pipe loss and unnecessary pump energy usage. In
this paper the return temperature is described as

Tr(t) = h (Ts, q, Tz) , (A.13)

where

Ts =

[
Ts

(
t− V1

q1

)
, ..., Ts

(
t− Vn

qn

)]
q = [q1, ..., qn]

Tz =

[
Tz1

(
t− V1

2q1

)
, ..., Tzn

(
t− Vn

2qn

)]
Here n is number of pipes routes the water can take. Ts is a vector of the

supply temperature at different times. q is a vector of the flow in the different
pipe routes. V is a vector of the volumes in the different pipe routes. Tz is the
temperature in the different zones supplied by the pipe routes. Notice that
the flow is here considered quasi static meaning that it is constant within
the variable time frame Vn/qn. The zone temperatures can described via the
differential equation

Ṫzn(t) = g
(

Tzn(t), Ts

(
t− Vn

2qn

)
, qn, Φ(t)

)
, (A.14)

where Φ is a set of all the disturbances that act on the zone temperature.
Some of these are outside temperature To, wind speed Ws, solar radiation So,
heat flow from adjacent zones, people located in the zone and the ventilation
system. The return temperature is notoriously hard to control due to the
following

• Multiple heat sources connected via multiple pipes acting on the return
temperature at different delays.

• Flow variable delay

• Unknown disturbances acting on the zone temperature determining the
cooling of the hot water.

The data used for proving the effect of the proposed method is gathered
from an office building located in Bjerringbro in Denmark during January
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Fig. A.1: Sketch of Mixing Loop

Fig. A.2: Office building used for gathering data. Heating supplied via single mixing loop.

2017, see Fig. A.2. The office building consists of 34 radiator zones divided
over 3 floors. There are multiple radiators in a zone, but they are being con-
trolled by a single controller from a single temperature sensor. The building
contains multiple sensors and 143 of these are logged and used for this work.
The sensors can be seen in table A.1 in the results section.

4 Methodology

In PMI the different inputs are analysed at a set of constant delays. How-
ever, in this application the delay depends heavily on the flow, which vary
over time. This paper propose a method for incorporating this into the PMI
framework.

Given a one pipe system with constant flow and no energy loss the rela-
tion between Ts and Tr can be written as

Tr(t) = Ts(t− d) (A.15)

Using mutual information the delay d may then be found as

max
k

I (Ts(i− k); Tr(i)) , (A.16)

where the k that gives highest mutual information would be the k that makes
δtk closest to the delay d.
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Since the flow varies, using a constant delay will result in an error which
increases the further the flow is from the design point. Introduce a flow de-
pendent delay makes it possible to follow the variations in the delay under a
quasi static flow assumption. Quasi static meaning that the flow only changes
a little during the delay time. Given one pipe the same relationship with flow
scaling delay is described as

Tr(t) = Ts

(
t− V

q

)
, (A.17)

where q is the quasi stationary flow and V is the volume of the pipe. Instead
of finding a constant delay a volume can now be found giving the highest
mutual information

max
V

I
(

Ts

(
i− V

q

)
; Tr(i)

)
(A.18)

For systems with more pipes the relation extends to

Tr(t) = h (Ts, q) , (A.19)

where

Ts =

[
Ts

(
t− V1

q1

)
, ..., Ts

(
t− Vn

qn

)]
q = [q1, ..., qn]

Only the total flow q is known and not how it is distributed into specific
pipe flows q1 and q2. To relate the specific pipe flows to the overall flows a
ratio β is introduced

β =
p

∑
n=1

βn = 1

qn = βnq

(A.20)

The following parameter α is now defined as

αn =
Vn

βn
, (A.21)

and inserting this into the vector of supply temperatures gives

Ts =

[
Ts

(
t− α1

q

)
, ..., Ts

(
t− αn

q

)]
(A.22)

Ts will not only act through different pipes impacting Tr at different de-
lays, but due to the heat consumption and flow being different in each pipe it
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will also have different impact in scale. Using the PMI method the different
αn can be found one at a time from highest impact to lowest.

max
α1

I
(

Ts

(
i− α1

q

)
; Tr(i)

)
(A.23)

u = Tr − E[Tr|Tsα1 ]

z = Ts − E[Ts|Tsα1 ],
(A.24)

where Tsα1 is the time series delayed by the flow variable delay using α1

max
α2

I
(

z
(

i− α2

q

)
; u(i)

)
(A.25)

To show that the PMI method with variable flow has the ability to find
the αn a numerical simulation of equation A.19 is done for a system with
(α1 = 0.02,α2 = 0.04,α3 = 0.12). The simulation is done for a week where the
flow changes in a quasi static manner, see Fig. A.3. The supply temperature
follows a pulse signal with a period of 4 hours going from 345 K to 330 K and
back up again. In Fig. A.4 one of the edges of this pulse and the response on
the return temperature is shown. Fig. A.5 shows that the maximum mutual
information for each iteration of the PMI with variable flow method peaks out
the correct α values one by one. In theory this continues until αn is found for
all the pipes. In practise the mutual information level becomes too small to
be used in the prediction model, meaning only some flow dependent delays
are used. The method can also be used for the other inputs that acts upon
the system. Take for example a zone temperature, which would affect the
system as seen in Equation A.13. In this case there would be no information
of which αn, found from Ts, that matches the specific zone. Instead a new
α that maximizes mutual information between zone temperature and return
temperature is found using the same method. This also has the added benefit
that the pipe length does not have to be the same for the supply and return
pipe.

It is important to recall that α contained the ratio of the total flow that
runs in the specific pipe. If the ratio changes α also changes which still poses
as a source of error. Another small approximation error occurs due to the
discretized sampling. This means that not all values for α/q can be chosen.
A quantization function is used

Q
(

α

q

)
∈ Z≥0, (A.26)

where Q : R→ Z

78



4. Methodology

0 50 100 150

Time [hours]

4

5

6

7

8

Fl
ow

 [m
3 /s

]

10-5

Fig. A.3: Flow input to simulation. Changes over whole simulation period, but is quasi static
within the delay times.
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Fig. A.4: One edge of the pulses given in the simulation. The delays are a function of the flow
given at that time.
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5 Results & discussion

The data which is used for the PMI with flow variable delay analysis is data
from 6 days with sampling interval of 1 minute. Many input variables are
searched for mutual information, but to give an example of the sampled data,
Ts and Tr during 5 hours is plotted in Fig. A.6.
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Fig. A.6: Ts and Tr plotted for 5 hours out of the 6 days of data.

To improve persistence of excitation the set point for the control of Ts is
set to a pulse with a period of 2 hours and amplitude of 10 K.

To illustrate mutual information of the system all inputs at the delays
which represents highest mutual information can be seen in Fig. A.7.
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Fig. A.7: Mutual Information as a function of input index. For each input, α is chosen giving
maximum mutual information. See Table A.1 for input indexes.

It is only the first iteration of the PMI with flow variable delay that is
plotted, so notice that other inputs can contain higher mutual information
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with the residuals in later iterations. In Table A.1 the index of the input
variables is given.

Index (j) Input Description Name

1 Supply Temperature (Ts)
2 Diff. pressure (dp)
3 Primary Flow (qp)
4 Mixing Valve Opening Degree (ODmv)
5 Heat Power Mixing Loop (Pm)
6 Outside Temperature (To)
7 Solar Radiation (So)
8 Wind Direction (Wd)
9 Wind Speed (Ws)
10-13 Heat Power Ventilation Systems (Hv1−4)
14-18 Ventilation Air Temperature (Tv1−5)
19-51 Ventilation Ducts Opening Degrees (ODd1−33)
52-56 Ventilation Fan Speeds (VAV1−5)
57-82 CO2 level in zones (C1−26)
83-116 Zone Temperatures (Ts1−34)
117-143 Radiator Valve Opening Degrees (ODr1−27)

Table A.1: Inputs indexes.

Fig. A.7, shows that the mutual information is highest at the control
variables Ts and dp. The maximum mutual information in Fig. A.7 for each
input is found as shown for three of the inputs in Fig. A.8.
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Fig. A.8: Mutual Information between Tr and the three inputs Ts,Tz1 and Tz11 as a function of α

Here a search of maximum mutual information as a function of α is done
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for Ts, Tz1 and Tz11. The dotted vertical lines indicate the maximum mu-
tual information for each input. Apart from the different value of mutual
information it is also interesting to observe the different α where maximum
appear at, which illustrates the different pipe lengths and flow ratio that the
zones are subject to. In regard to Ts the α giving the maximum mutual in-
formation is αTs = 0.16. The method uses flow variable delay which means
that each sample a new delay is calculated according to the flow. To give
an idea of the delay times the mean delay with αTs = 0.16 is calculated to
µ(α/q) = 18 minutes. In Table A.2 the mutual information is given for con-
stant delay and flow variable delay at the delays that gives highest mutual
information. It shows that flow variable delay gives highest mutual informa-
tion in the case of the three example inputs.

Model/Input Ts Tz1 Tz11]

Constant Delay 0.091 0.032 0.047
Flow Variable Delay 0.102 0.034 0.054

Improvement 12% 6% 15%

Table A.2: Max. Mutual Information using Constant or Variable Delay

To make a comparison between constant and flow variable delay the abil-
ity to model Tr for both methods is tested. The PMI method with the sug-
gested flow variable delay was used to pick a set of input variables. GRNN
models was made for different dimensions of the input set. Cross validation
was done on these models to choose the dimension of the input set use in
the final model. In Fig. A.9, the Root Mean Square Error (RMSE) of the cross
validation data is plotted as a function of used input variables.

1 4 7 10 13 16 19 22

m inputs

3

3.5

4

4.5

R
M

SE
 [K

]

Fig. A.9: Choosing number of inputs (m) by cross validation.
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From this, the number of inputs providing the lowest RMSE was chosen,
which is the first 15 inputs in the set. The chosen inputs can be seen in table
A.3.

Selected Input Selected Input Selected Input

1. Ts 6. Tz12 11. To
2. dp 7. ODd32 12. C15
3. ODr12 8. ODr11 13. Ws
4. Tz21 9. ODmv 14. Tz14
5. Pm 10. qp 15. Tz6

Table A.3: Chosen Inputs

In Fig. A.10, the estimation on cross validation data using a GRNN with
the chosen input dimension can be seen.
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Fig. A.10: Cross Validation.

In table A.4 the RMSE is compared between three models. The flow vari-
able delay model where the prediction horizon changes with flow according
to the chosen αTs . The next model is a constant delay model where the same
inputs are used, but at constant delays, giving a constant prediction horizon.
The prediction horizon is the delay at where Ts holds most mutual informa-
tion. This is chosen because it would be a natural control horizon in a model
predictive control scheme. The final model (baseline) is a simple first order
autoregressive model where the time delay is constant and the prediction
horizon is the same as the constant delay model. The baseline is added to
relate to the simplest model where the prediction is equal to the present mea-
surement. It is shown that the model containing variable flow delay performs
better than using constant delay.
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Model RMSE [K]

Flow Dependent Delay 3.09
Constant Delay 4.01
Baseline 5.69

Table A.4: Comparison of models

6 Conclusion

The motivation for this work is to improve the already existing PMI method
to improve IVS and thereby estimation of the return temperature in mixing
loops. This was achieved by adding a flow variable delay to the framework.
It is shown on measured data that this increases the mutual information be-
tween input and output variables compared to using constant delay. Us-
ing flow variable delay also leads to an increased performance in terms of
RMSE when applied to a GRNN model. Further work needs to be done into
analysing when persistence of excitation is reached in a given dataset. The
curse of dimensionality is also a concern, where the quantity of the data puts
a limit of the dimension of chosen inputs.
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1. Introduction

Abstract

In hydronic heating systems, a mixing loop is used to control the temperature and
pressure. The task of the mixing loop is to provide enough heat power for comfort
while minimizing the cost of heating the building. Control strategies for mixing
loops are often limited by the fact that they are installed in a wide range of different
buildings and locations without being properly tuned. To solve this problem the
reinforcement learning method known as Q-learning is investigated. To improve
the convergence rate this paper introduces a Gaussian kernel backup method and a
generic model for pre-simulation. The method is tested via high-fidelity simulation
of different types of residential buildings located in Copenhagen. It is shown that the
proposed method performs better than well tuned industrial controllers.

1 Introduction

In Europe buildings account for 40% of the total energy usage. In the res-
idential sector space heating accounts for 66% of the building energy con-
sumption [6]. It is predicted that scheduling and improved control can lead
to savings of 11-16% [2]. This huge savings potential is the reason that build-
ing control keeps being an active research area, see reviews [14] and [4]. In
this work the focus is on building heating via mixing loops. Mixing loops are
used to ensure proper comfort, heat power utilization and energy savings in
buildings. Low heat power utilization leads to low efficiency in the supply
coming from district heating. It has been shown that lowering the return
temperature by 10oC gave a heat loss reduction of 9.2% and pump energy re-
duction by 56% at the district heating plant [13]. So why is this important for
the end user? The district heating plants are starting to enforce proper heat
water cooling through added fees on a high return temperature. Ensuring
proper heat power utilization in the control of the mixing loop can therefore
also help reduce the end costumers cost of heating the building.

A lot of research has been done on optimal building thermal control, of-
ten in the form of Model Predictive Control (MPC). Examples of this are [11]
and [16]. Here large savings was shown by using an MPC compared to tradi-
tional control strategies. The disadvantage of MPC is the reliance on accurate
models of the building, especially when the product is installed into many
different buildings. Different methods for identifying models of the building
using data for MPC has been been explored. In [1] artificial neural networks
are used for building the model for MPC, while in [3] subspace methods
are used. In this work an alternative approach for learning optimal control
through data will be investigated by using reinforcement learning to control
a mixing loop. The result in [5] show that reinforcement learning is compet-
itive with an MPC on a power system even when a good model is available.
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Even though Reinforcement Learning has been around for a long time, recent
results have increased its popularity. This attention is mainly brought on by
the Reinforcement Learning algorithm AlphaGo’s ability to learn, tabula rasa,
how to beat the world champion of the game Go [15]. Reinforcement learn-
ing has also been tried on HVAC applications. In [8] reinforcement learning
was used to control passive and active thermal storage. Simulated reinforce-
ment learning was used where the controller is getting priori knowledge from
simulation. The result in [18] showed savings in heat-pump thermostat con-
trol by using reinforcement learning. In [12] a batch reinforcement learning
method was used to control a heat-pump.

In reinforcement learning the rate of convergence towards optimal control
is an issue, since it often requires a lot of training. In this work a Gaussian
kernel backup rule is suggested to improve initial convergence in tabular Q-
learning. Kernel based methods have been used in reinforcement learning,
but mostly in regards to function approximation methods such as in [9].

The paper starts with an introduction to Reinforcement Learning in Sec-
tion 2. The concept of building heat supply via a mixing loop is provided in
Section 3. In Section 4 the proposed method using Gaussian kernel backup
in Q-learning is presented. Section 5 explains the simulation setup. The
results are presented and discussed in Section 6. The paper ends with the
concluding remarks in Section 7.

2 Preliminaries

In this section reinforcement learning will be introduced. For a more thor-
ough description see [17]. In Fig. B.1 is a general reinforcement learning
setup where an agent interacts with an environment.

Fig. B.1: Agent-environment interaction [17].

The environment is in a state St at time t. "States" is here meant as all the
information the agent receives about the environment. The environment also
sends out a reward determining the instantaneous value of being in this state.
The agent seeks to maximize the cumulative reward called the return [17]

G=̇
T−t−1

∑
k=0

γkRt+k+1 (B.1)
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where γ is the discount factor that lies in the interval 0 ≤ γ ≤ 1. A higher
discount factor will cause the agent to strive for longer term return, but will
also increase the convergence rate of the learning agent. T is the final time
step. For episodic task this is the end time, but for continuing tasks T = ∞.
Having both γ = 1 and T = ∞ is not feasible as this would lead to infinite
return.

The agent uses a policy, πt, which goal is to maximize the return. The
policy maps the states to an action, hence it is similar to a control law. The
mapping can be of stochastic nature or deterministic.

The next element of Reinforcement learning is the value function [17]

Vπ(s)=̇E [Gt|St = s] (B.2)

The function describes that if starting in state s and continuing to follow
policy π, the expected return will be Gt.

By adding onto the value function we get the state-action value function

Qπ(s, a)=̇E [Gt|St = s, At = a] (B.3)

Which describes the expected return of being in state s, taking action a and
afterwards follow policy π.

The goal in reinforcement learning is to find the optimal policy. This
is often done through policy iteration by alternating between evaluating Vπ

using π and improving π using Vπ . A greedy policy is a policy that always
chooses the action which yields the highest return and is defined as

πg(s)=̇arg max
a

q (s, a) (B.4)

Such a policy fully exploits the current state-action value function, but the
downside is that it does not explore and perhaps updates the state-action
value function in such a way that the policy can be improved. This is the re-
curring problem of exploitation versus exploration. Proofs of convergence to-
wards optimality often relies on exploration for reinforcement learning meth-
ods. So both exploitation and exploration needs to be done. A simple way to
achieve that is the ε-greedy method. Here the greedy action is chosen with
probability 1− ε and the rest of the times a random action is taken to explore.

The last element introduced is the learning rate, α, chosen from 0 < α ≤ 1.
This determines how much the newly learned information will override older
information when updating the value function. In an environment that is
fully deterministic the best learning rate is simply 1. Introducing stochastic
behaviour such as noise or disturbances not contained in the states changes
this towards supporting a lower learning rate.
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3 Building Heat Supply via Mixing Loop

The Mixing Loop application is here described in short. This is done to get
an understanding of the system, which is necessary for describing a reward
function and choosing states and actions for the Q-learning. A simple model
of the application is here described by a building with only one zone with
one radiator as seen in Fig. B.2.
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Fig. B.2: Simple schematic of mixing loop application

The zone temperature is controlled by a thermostatic valve. The heat
power is supplied via a mixing loop from district heating. The change in
zone temperature is here described as the difference between heating, load
and disturbance powers

CzṪz = Φh + ΦL + Φd, (B.5)

where Cz is the heat capacity of the zone and Tz is the zone temperature.
Φh/L/d are the heating, load and disturbance powers. The load power is the
cooling acting on the zone from outside the building envelope. The distur-
bance power is all the remaining power acting on the system, also referred
to as free heat. The majority of the disturbance power is created by the occu-
pancy of the house and electric appliances.

The heat power is supplied by a radiator, which is here described as

Φh = Cr

(Tf + Tr

2
− Tz

)n

, (B.6)

where Cr is the thermal conductance of the radiator, Tf is the forward water
temperature, Tr is the return water temperature and n is a radiator constant.
The heat power can also be described via the heating water as

Φh = cwq
(

Tf − Tr

)
, (B.7)

where cw is the volumetric heat capacity of the heating water and q is the
volume flow rate.
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3. Building Heat Supply via Mixing Loop

Via these two equations for heat power, the return temperature can be
solved for, whereby the dependencies for heat power are

Φh = f
(

q, Tf , Tz

)
. (B.8)

The flow rate
q = g (u)

√
∆p, (B.9)

is a function of the thermostatic valve’s opening degree u and the differential
pressure ∆p.

Typically a P controller determines the opening degree of the valve

u = Kp

(
Tre f − Tz

)
, (B.10)

Where Kp is the proportional gain and Tre f is the reference temperature set
by the user.

The mixing loop controls Tf and ∆p. By opening the control valve and
mixing hot water at temperature Ts with return water having temperature
Tr in a ratio that gives the desired Tf , see Fig. B.2. ∆p is controlled solely
by the pump speed since the mixing loop hydraulically decouples the zone
from the supply. The objective is to supply enough heating power for the
system to keep the reference temperatures. By looking at (B.8) and (B.9) it
can be seen that while the thermostatic valve controls the heat power, Tf and
dp influences the gain of the controller. This means that by controlling Tf
and dp only the gain of the thermostatic control can be influenced, except
for saturation situations which is what is utilized for setback. The objective
providing enough heat power has to be kept without increasing the pump
pressure too much or increasing the return temperature leading to energy
losses in the heat distribution. By (B.5) knowing the load and disturbance
power heat power could be controlled as Φh = ΦL + Φd. The caveat of
controlling by balancing the heat load is that if any unaccounted disturbance
happens the thermostatic valve will be in saturation and will not be able to
reject the disturbance. In mixing loop control it is not desirable to control in
ways that eliminates the thermostatic valve’s disturbance rejection.

The reward defines the control objective. For heating systems two features
are important to optimize: comfort and cost. However, these two features
can be described in various ways. For cost it is chosen to include the cost for
the pump power, and the cost for the heat power. Other costs that could be
included could be the cost of wear and tear of components such as the pump,
pipes and valves or commissioning time when installing the HVAC system,
but these are not included in this work.

The pump power cost is calculated as

ψpump = ΦpumpΩe, (B.11)
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where ψpump is the pump power cost, Φpump is the pump power consump-
tion and Ωe is the price of electric power. In this work Ωe is kept constant at
0.27e/kWh. If e.g. load shift is desired this should of cause be changed to a
time dependant price. In this work the heat source is district heating, where
a high return temperature reduces the efficiency, mainly through added heat
losses in the distribution network. District heating companies often penalize
high return temperatures by increasing the heat power cost as a function of
cooling of the heating water. The additional cost is added differently depen-
dent on the district heating company. In this work it is done like the district
heating company in Copenhagen, "HOFOR", implements this [7].

ψheat = ΦheatΩheatη. (B.12)

Here ψheat is the heat power cost, Φheat is the heat power used, Ωheat is the
base price of the heat power at 88.9e/kWh, and η is a price correction for
cooling of the heating medium calculated as

η = 1−
(

1
125

(Ts − Tr) +
33
125

)
(B.13)

This means that the price of the heat power increases 0.8% per oC that the
cooling of the heating medium is lower than ∆33oC.

The heat comfort can be measured in different ways; here, the highest
zone temperature error is used

emax(t) = max
i∈{1,··· ,nz}

∣∣∣Tre f − Tz,i(t)
∣∣∣ , (B.14)

where nz is the number of zones. This ensures the lowest maximum error.
Other ways of describing comfort can be the number of times temperatures
exceeds a given bound. In this work only night setback is used, but other
setback periods can be used via calendar functions or leaning patterns of the
inhabitants. The difficult part about night setback is that it is dependent on
the specific building. Both how much and for how long the temperature can
be changed while ensuring comfort when setback ends varies. Not only from
building to building, but also as a function of other states such as outside
temperature. When reheating after a setback an optimal reheat "speed" is also
important otherwise high return temperature will be imposed due to high
flows and forward temperature. High return temperature during reheating
is costly since a high amount of heat power is being consumed. Doing this in
an optimal fashion should be learned by the reinforcement learning agent.

94



4. Q-learning with Gaussian Kernel Backup

4 Q-learning with Gaussian Kernel Backup

The reinforcement learning method used here is Q-learning. Q-learning was
first described in [19] and is defined by the backup

Q (St, At)← Q (St, At) + α
[

Rt+1 + γ max
a

Q (St+1, a)−Q (St, At)
]

(B.15)

A strength of Q-learning is that it directly finds the value of taking an action
in a given state and afterwards following an optimal policy. This makes it
model-free as no transition model of the environment is needed. A require-
ment for convergence towards the optimal policy is that all state-action pairs
continue to be visited and updated. The formal proof of convergence can
be found in [20]. To ensure convergence the ε-greedy method is used with
ε = 0.1.

Q-learning is here single-step, as seen by the term [maxa Q (St+1, a)], but
can be extended to multiple steps. The learning rate α is set to 0.2 and the
discount rate to 0.4.

In this work a tabular version of Q-learning is used to ensure convergence.
This is feasible when keeping a low dimensionality of the state-action space,
Q. The state action space used can be seen in Table I.

4.1 Choosing Reward

The reward function of a mixing loop is a multi goal reward system where it
seeks to supply the best heat comfort for the building while minimizing cost.
When it is deemed that setback can be used, the heat comfort goal vanishes
and only the cost remains. The cost that the agent should minimize is the
combined cost of the heat and pump power. Due to this multi objective re-
ward a weighting factor, β, is needed, which determines the scaling between
improving heat comfort and minimizing cost. In this work β = 0.5 unless
otherwise stated. The reward then becomes

R(t) =

{
−(emax(t)2 + β(ψheat(t) + ψpump(t))) 6 ≤ t mod(24h) ≤ 21
−β(ψheat(t) + ψpump(t)) otherwise

(B.16)
Here emax is the maximum temperature error out of all the zones, squared

to punish larger errors harder. Heat power cost ψheat and pump power cost
ψpump was described in (B.12) and (B.11). Additionally a soft constraint is
added such that low reward is given if any zone temperature goes below
16oC.

Recall that the reinforcement learning seeks to maximize the cumulative
reward. This ensures that an action that decreases power and therefore in-
creases the reward during setback is only good if the building can reach the
heat comfort giving high reward when setback is off.
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4.2 Choosing States and Actions

As seen in section 3 there are a lot of states that would give added infor-
mation for the agent. However in this work the focus is on making the
minimal state-action space due to working with tabular methods where the
state-action space and therefore learning rate suffers greatly from the curse
of dimensionality. Another reason for keeping the state space small is the
sensors needed for the information. Choosing the states is done by the defi-
nition given by [10]:

A state variable is the minimally dimensioned function of history that is necessary
and sufficient to compute the decision function, the transition function, and the con-
tribution (here the reward) function.

This selection is here done from the knowledge of the application, but
could also have been done via correlation investigation.

States Size of dimension Range

Outside Temperature 21 -20 to 20 [oC]
Time of day 24 1 to 24 [hours]

Actions Dimension Range

Pump Diff. Pressure 5 0 to 0.4 [bar]
Forward Temperature 31 15 to 75 [oC]

Table B.1: State-Action Space

To ensure the zone temperatures enough heat power should be available
for the thermostats. The needed heat power is a product of the load and the
free heat, where the load is given by the outside temperature and the free
heat given by multiple factors. Due to this To was chosen as a state. The free
heat is not added explicitly in states in this work to reduce dimensionality,
but later work could explore inclusion of indicators such as number of inhab-
itants present, solar radiation or electric appliances. Time is added as a state
as R(t) depends on it. Furthermore time of day can also capture periodic
phenomenons, for example if free heat contains daily patterns.

The actions for the mixing loop application are the forward temperature
and differential pressure, see section 3. Due to the nature of pumps the
pressure is limited at higher flows. In the situation where the set point from
the controlling agent is higher than the pump can supply it is set to max.
The minimum forward temperature is 15oC however due to the nature of a
mixing the lowest forward temperature that can be supplied is the same as
the return temperature at that given time. In the same way the maximum
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temperature is only as high as the supply temperature which in this case is
controlled to 75oC. So when choosing a forward temperature the agent can
only choose from Tr(t) <= Tf (t) <= Ts(t).

4.3 Gaussian Kernel Backup and pre-simulation

In tabular reinforcement learning using the Q-learning backup rule, the situ-
ation can occur where one specific state-action pair has been visited multiple
times, but one in vicinity has never been explored. In this case there would
be no knowledge of the state in the immediate vicinity since it has never
been visited. Due to the priori knowledge of the "smoothness" of the ap-
plication there must be knowledge to be gained about the optimal action in
S2 from the knowledge about S1. This comes naturally when using function
approximations such as kernel-based methods, but not in the tabular case.
To gain increased convergence rate a Gaussian kernel is therefore applied to
the backup process. Instead of only doing backup of the one state-action
pair, backup is done on all state-action pairs with decreased learning rate the
further the state is from the visited state. The learning rates are distributed
using a Gaussian kernel. First two indexing vectors are introduced. xt is the
vector describing the location in the state-action tabular Q(S, A) at time t. It
contains the index for each dimension. x is the vector describing the location
of the state-action pair that is being backlogged to. Both has the dimension
n× x, where n is the sum of states and actions, in this case 4.

Now the backup is done to all state-action pairs using the following
backup rule

Q (x)← Q (x) + αKσ (xt − x)
[

Rt+1 + γ max
a

Q (St+1, a)−Q (St, At)
]

(B.17)

Where Kσ is calculated using the Gaussian kernel

Kσ(xd) = exp
(
−|xd|2

2σ2

)
(B.18)

In this work σ = 1 and is lowered as time passes. As σ decreases the
method will converge to classical Q-learning. In Fig. B.3 an example of a
surface between a state and an action in a trained Q state space with and
without Gaussian kernel backup can be seen.

Besides adding a Gaussian kernel pre-simulation is done to increase the
initial performance of the controller. The pre-simulation is done via the
generic model described in Eq. (5) to (10). The reason that a simple generic
model is suitable for the initial guess, is that it should work for all the differ-
ent buildings the product is installed to. The generic model was tried on the
different buildings described in the next section and performed satisfactory.
An example of this can be seen in the results Fig. B.5.
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State Action

Q
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Q

Fig. B.3: Q surface compare without (left) and with (right) Gaussian kernel backup

5 Simulation Setup

The testing of the algorithm is done via simulation on high fidelity build-
ing models. The building model is made using the Modelica library "Build-
ings" [21]. To show the learning ability of the controller, it is used on three
different buildings; House from 2015, house from 1960, apartment from 2015
and apartment from 1960. Fig. B.4 shows the two floor plans of the house
(230m2) and the one of the apartment (68m2).

Free heat from metabolism, electronics and hot water usage is modelled
from typical daily, weekly and monthly patterns of usage. The difference be-
tween 2015 and 1960 buildings is the standard building materials of the time
and standards for insulation, where Danish buildings from 2015 has a higher
degree of insulation. Danish building code is used from each of the periods.
The three buildings are situated in Copenhagen Denmark. For comparison
some industrial standard controllers are used. There are typically four differ-
ent tuning parameters to be chosen for the industrial controls. All buildings
are supplied by 6 m head pumps. The industrial controllers are running pro-
portional pressure. This means that the pressure rises proportional to the
flow. The first parameter is the 3 different levels of proportional control that
can be chosen on the selected pump. The next parameter is the outdoor tem-
perature compensation. Here a saturated linear relation between outdoor -
and forward temperature is often used. Besides this relation there is often
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Fig. B.4: Floor plans of house and apartment.

a first order filter applied to the compensation with a time constant, that is
the third parameter. The time constant should be matched to compensate the
dynamics of the building. If the compared industrial controller is without
outdoor compensation then a notation of NW is used. The last parameter
is a constant temperature that is to be subtracted from the outdoor compen-
sated forward temperature during setback. Two setback temperatures are
used; 15oC and 30oC and will be noted as such in the comparison tables. The
pump curve, outdoor temperature compensation and filtering is tuned to the
specific buildings to give a comparison against well tuned controllers. The
tuned controller for modern house is C1, old house C2 and modern apart-
ment C3. For all setback controllers, the setback period is between 9 p.m.
and 6 a.m.

When comparing controllers the most important measure of the optimal-
ity of the controller is the returns, see (18). Normalized return is used which
is the cumulative reward measured every 5 min. over the heating season.
Here the heating season is chosen to be the 9 months September-May. For
comparison of the controls the discount rate for this return is 1 meaning that
all rewards during the heating season counts as equal. The return is normal-
ized by the number of samples for readability. To also be able to compare
the controllers directly on the comfort and cost two other measurements are
given in the results, the Root Mean Square Error (RMSE) and the cumulative
cost of running the system during the heating season.
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6 Results & Discussion

In this section results showing the improvement of adding Gaussian kernel
backup and pre-simulation will be shown. The results is a comparison with
the industrial standard controllers. It is important to emphasize, when eval-
uating these results, that the industrial benchmark controller such as e.g.
C1− 30 has been carefully tuned for the specific house, which rarely is the
case for real world buildings. This means that achieving performance as
good as C1− 30 via a self learning controller results in a much better per-
formance than what is experienced in worse tuned buildings. In Fig. B.5 the
convergence of the reinforcement learning controller is shown for standard
Q-learning backup, with Guassion Kernel backup, and finally adding pre-
simulation. For each training duration, in interval of 1 month, the controller
is run for a full heating season and the norm. return for that training duration
is calculated. In this way it can be seen how the controller agent improves
as a function of training duration. It can be seen that using the Gaussian
kernel backup improves the initial performance until approximately the 18th
month. Furthermore the Gaussian kernel backup improves the "stability" of
the convergence, where the classic Q-learning deteriorates in periods, e.g.
from 30-36 months. This graph also show the problem of learning Tabula
Rasa. It takes around 30 months before reaching a satisfactory performing
agent as the industrial controller C1-30, which is not feasible. Initialization
using a priori knowledge by pre-simulating on the generic model provides
a better initial controller. More work still needs to be done into increasing
convergence rate, since training time still takes too long. The next results are
comparisons of performance after 60 months.
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Fig. B.5: Norm. Returns as a function of training duration.
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In table II a comparison of the trained Q-learning agent with industrial
standard controllers is shown. In parenthesis is the relative improvement the
Q-learning provides compares with the industrial controller. The Q-learning
agent manages to save energy in all scenarios. Only in two scenarios does the
comfort decrease slightly, while gaining large savings. In the modern house
the C1− 30 is the best industrial controller measured in return. Compared
to this the improvement in comfort and cost from using the Q-learning agent
is 4.5% and 3.2%. Had the industrial controller been tuned worse for the

Modern House - Copenhagen

Controller Norm. Return RMSE [oC] Cost e

Q -1.06 1.27 971
C1-15 -1.25 1.31 (3.1%) 1056 (8.0%)
C1-30 -1.19 1.33 (4.5%) 1003 (3.2%)
C1-30-NW -1.29 1.39 (8.6%) 1018 (4.6%)

Old House - Copenhagen

Q -0.96 1.12 1920
C2-15 -1.25 1.11 (-0.9%) 2128 (9.8%)
C2-30 -3.24 1.20 (6.6%) 1985 (3.3%)
C2-30-NW -4.13 1.26 (11.1%) 2022 (5.0%)

Modern Apartment - Copenhagen

Q -0.61 0.96 492
C3-15 -0.72 0.94 (-2.1%) 539 (8.7%)
C3-30 -0.74 0.96 (0.0%) 512 (3.9%)
C3-30-NW -0.77 1.03 (6.8%) 521 (5.6%)

Table B.2: Comparison of Controllers With Setback.

modern house by choosing a setback constant of 15 the savings would instead
be 8%.

Fig. B.6 shows an example of the time series data of one of the zone
temperatures with the Q-learning agent and with the best tuned industrial
controller C1− 30 is shown. The Q-learning agent manages to increase en-
ergy savings by increasing the temperature reduction during setback. The
Q-learning does this without violating comfort requirements by starting the
reheating before leaving setback mode. If an increased comfort is desired the
tuning parameter β in the reward function can be adjusted. To see how tun-
ing β affects the performance, see Fig. B.7. Here it is shown that the the agent
with lower β starts to lower the temperature later to keep the comfort higher
before setback occurs. Likewise it raises the temperature earlier before leav-
ing setback to increase comfort. Recall that the agent is controlling forward
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temperatures and pressure, while a thermostat controls the zone tempera-
ture. It is by forcing the thermostat into saturation that the lowering of the
zone temperature is possible from the mixing loop. Since the thermostat is
a p-controller there will be a temperature error which is quite noticeable at
around 5 o’clock in Fig. B.7. If setback is disabled the Q-learning agent still
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Fig. B.6: Example of zone temperature during setback. Padded line is during setback the con-
straint and out of setback the set-point.
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Fig. B.7: Comparison of setback example with different β

manages to save cost while achieving comparable comfort compared to the
well tuned controller C1 in the modern house, which can be seen in table III.
By comparing cost of the Q-learning agent with and without setback it can be
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Modern House

Controller Norm. Return RMSE [oC] Cost e

Q -2.01 1.23 1029
C1 -2.12 1.21 1076 (4.4%)

Table B.3: Comparison of Controllers Without Setback

seen that a saving of 5.6% is achieved through setback in the modern house.
Comparing the industrial controller C1 without setback with the Q-learning
agent with setback leads to 9.8% savings.

7 Conclusion

The motivation for this work is to investigate the performance of the rein-
forcement learning method Q-learning on building heating through mixing
loops, while improving on the method by adding a Gaussian kernel backup
and pre-simulation on a suggested generic model. In this work it was shown
that even with the minimal information via a limited state-action space the
reinforcement learning converges to a better performance than industrial
standard controllers. Funnelling more information into the agent, such as
free heat indicators, should increase the performance even further. However
adding more information will decrease the convergence rate. To improve
the convergence rate of Q-learning a Gaussian kernel backup method was
added. Adding the Gaussian kernel added increased initial convergence rate,
but even with the added convergence rate it still took 30 months to reach a
satisfactory performance of the agent. By further adding pre-simulation on a
generic model the initial controllers performance was greatly enhanced. The
convergence rate however is still low, and need further improvement.
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1. Introduction

Abstract

Mixing Loops are often used for proper pressurization and temperature control in
building thermal systems. Optimal control of the mixing loop maximizes comfort
while minimizing cost. To ensure optimal control for mixing loops in a wide range
of different buildings with different load conditions, a self learning controller is here
proposed. The controller uses Reinforcement Learning with flow variable eligibility
trace. The controller is shown to improve performance of the mixing loop control
compared to state of the art reinforcement learning and industrial grade controllers.
The controller is tested on a hardware in the loop setup for rapid testing of mixing
loop control used in building heating.

1 Introduction

There is a lot of energy to be saved by improving building heating, ventilation
and air-conditioning (HVAC). In the United States 40% of energy consump-
tion is in buildings, with 50% of that being from HVAC systems [12]. It is
estimated in [2] that 11-16% can be saved by improving control. Due to this
huge savings potential multiple control schemes are being researched, where
Model Predictive Control [1] and Multi-Agent Systems [14] are two promis-
ing areas.

A major problem is improper or lack of commissioning of building. Only
around 5% of buildings get commissioned [9], leaving the remaining build-
ings without well tuned HVAC controls. By introducing self learning controls
the need for commissioning can be diminished. Reinforcement Learning as a
self learning controller has been studied for building HVAC in [3], [5] and [4].
Reinforcement learning was combined with deep learning function approxi-
mation for HVAC control in [13] and building energy optimization in [6].

In this paper the focus is on Mixing Loops which is part of the hydraulic
thermal distribution system in buildings. In [7] a method for taking into
account the flow variable delay in prediction of the return temperature was
shown to improve the prediction. In this work it is shown that adding flow
variable delay into a Reinforcement Learning controller improves the perfor-
mance leading to cost savings.

The paper starts with an introduction to Mixing Loops in Section II. Pre-
liminaries covering concepts of Reinforcement Learning is given in Section
III. In Section IV the proposed method using flow variable eligibility trace is
presented. Section V explains the hardware in the loop test setup. Section
VI explains how the hyper parameter for the controller is determined. The
results are presented and discussed in Section VII. The paper ends with the
concluding remarks in Section VIII.
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Fig. C.1: Schematic of simple mixing loop application

2 Building Heat Supply via Mixing Loop

Mixing loops are used in building heating and cooling systems to ensure
proper pressurization and thermal power utilization. In this work a heating
application is examined, but the same methods can be applied to cooling
systems. Fig. C.1 shows the a minimal example where a single terminal
unit is being supplied by the mixing loop. Here the terminal unit can be any
hydronic based heating, be it radiator, floor, or ventilation based, but all fitted
with a control valve having a local temperature controller.

By controlling the mixing valve the mixing loop can control the temper-
ature of the water going to the terminal unit. The mixing loop causes a
hydraulic decoupling from the heat supply, such that the pressurization is
controlled by the mixing loop pump. By changing temperature or pressure
the control gain for the terminal unit is changed. Furthermore it is possible
to drive the terminal unit into saturation, which can be desirable when e.g.
forcing a temperature setback.

The objective is to ensure enough heat power for the following terminal
units while minimizing pump and heat power consumption. Additionally
temperature setback can be used outside the operating hours of the building.

In this work the focus is on district heating as a heat source. In district
heating it is important that the return temperature is as low as possible to
increase the efficiency of the district heating system. This is in many places
enforced by increasing the heat power cost as a function of low ∆T.

3 Preliminaries

This work makes use of the Reinforcement Learning controller Q(σ, λ) in-
troduced in [15] which combines state of the art methods for dealing with
temporal difference and eligibility traces in a unified manner. In this section
some basic concepts of Reinforcement Learning are briefly summarized. For
a deeper look into Reinforcement Learning the reader is referred to [11].
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3. Preliminaries

3.1 Basics

The basic idea of Reinforcement Learning is training a controller via reinforc-
ing the desired behaviour by a reward as seen in Fig. C.2. At every time
step, t, a reward (Rt) is given. The controller seeks to choose an action that
optimizes the following series of rewards called the return (G)

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞

∑
k=0

γkRt+k+1. (C.1)

Here 0 ≤ γ ≤ 1 is a discount rate diminishing future rewards influence on
the return. In Reinforcement Learning the control law for the controller is
often called a policy π. A value function describes the expected return of
being in a state and following a policy

vπ(s)=̇E[Gt|S = s]. (C.2)

Another form is the action-value function describing the expected return of
being in a state S, taking action A and then follow the policy

qπ(s, a)=̇E[Gt|S = s, A = a]. (C.3)

A policy that given state, chooses the action that maximizes the expectation
of return is called a greedy policy

At = arg max
a

qπ(s, a). (C.4)

By taking actions and sampling rewards the controller can over time improve
the estimate of the value- or action-value function. To ensure exploration,
policies such as ε-greedy which takes random actions with ε probability may
be used.

3.2 Temporal Difference

Temporal difference is a central concept of Reinforcement Learning, where
ideas from both Monte Carlo and Dynamic Programming are used. Where
Monte Carlo waits until the episode is finished to update the estimate of the
value function, dynamic programming bootstraps using current estimates to
form a new estimate. A simplified representation of this is that Monte Carlo
uses an estimation of [11]

qπ(s, a) =̇ Eπ [Gt|St = s, At = a]. (C.5)

Since the expectation is not known a Monte Carlo method uses a sampled
return to estimate the value function. Evaluating the same problem using
dynamic programming leads to an estimate of

qπ(s) = Eπ [Rt+1 + γqπ(St+1, At+1)|St = s, At = a]. (C.6)
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Fig. C.2: Reinforcement Learning [11].

Here the problem is not the estimate which is provided by a model of the sys-
tem, but that qπ(St+1, At+1) is not known. Instead an estimate from current
knowledge is used Q(St+1, At+1) in bootstrapping.

Temporal difference combines the concepts of Monte Carlo methods and
dynamic programming and uses both the sampled values to give an estimate
of the expectation while using the current estimate Q of qπ .

The temporal difference error δ is the error between the former estimated
value Q(St, At) and the updated estimate Rt+1 + γQ(St+1, At+1) used in var-
ious forms throughout reinforcement learning.

In [11] the method Q(σ) was first introduced. Here σ is used as a weight
between two approaches to temporal difference error

δσ
t = σt+1δS

t + (1− σt+1)δ
Q
t . (C.7)

σ determines the amount of sampling with the method SARSA (σ = 1) being
in one end with temporal difference error using full sampling

δS
t = Rt+1 + γQ(St+1, At+1)−Q(St, At). (C.8)

And at the other end (σ = 0) is Expected SARSA using only expectation
where for the special case, the often used Q-learning, the temporal difference
error is

δQ
t = Rt+1 + γmax

a
Q(St+1, a)−Q(St, At). (C.9)

3.3 Eligibility Traces

Multi Step Reinforcement Learning learns from the return

Gt:t+n =̇ Rt+1 + γRt+2 + γn−1Rt+n + γnV(St+n), 0 ≤ t ≤ T − n (C.10)

In [10] the TD(λ) method was introduced where a trace decay of the returns
in implemented

Gλ
t = (1− λ)

T−t−1

∑
n=1

λn−1Gt:t+n + λT−t−1Gt (C.11)
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In one end at λ = 0 is the one step algorithms and at λ = 1 Monte Carlo. In
this way reinforcement learning can be tuned to work on different time hori-
zons. Eligibility traces is a smart way of implementing these traces where a
trace vector is used instead of saving all earlier steps. When using function
approximation the value function can be approximated as v̂(s, w) = vπ(s).
Eligibility trace is a vector z that changes when the corresponding w is
changed and afterwards fades, creating a short term memory.

zt =̇ γλzt−1 +∇v̂(St, wt) (C.12)

z is then used for weighing how much w is changed under the backup.

wt+1 =̇ wt + αδtzt (C.13)

3.4 The method Q(σ, λ)

By combining the ideas from Q(σ) and TD(λ) [15] developed Q(σ, λ), which
is the method that this work builds on. Q(σ, λ) uses the temporal differ-
ence error δσ

t in (C.7), the eligibility trace of (C.12) and the backup of C.13.
The proposed algorithm for reinforcement learning of mixing loops Qφ(σ, λ),
which builds on a variation of Q(σ, λ), is introduced in section 4.

3.5 Radial Basis Function Approximation

A linear function approximation is used where the state action value function
is approximated as

Q̂(s, a, w) = wTx(s, a) =
d

∑
i=1

wixi(s, a) (C.14)

The state vector, s has the dimension ns and the action vector, a has na. The
dimension d is the number of feature points and weights.

A radial basis function is used where the feature points c are in Rn=ns+na

xi(s, a) = exp

(
−

ns

∑
ks=1

(sks − cks ,i)
2

2ς2
ks ,i

−
na+ns

∑
ka=ns+1

(aka − cka ,i)
2

2ς2
ka ,i

)
(C.15)

4 Proposed Method

Here a Reinforcement Learning method for Mixing Loops taking into account
flow variable transport delays is proposed called Qφ(σ, λ).
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4.1 Flow Dependent Eligibility Trace

To ensure a high ∆T the time horizon over which the return (G) is found
needs to contain the return temperature that arises from changing mixing
temperature. This means determining λ such that the n − step return con-
taining the return temperature is weighted high. In a single pipe system
with volume Vpipe the transport delay between the mixing temperature and
the return temperature is a function of the flow

Tr(t) = Tm

(
t−

Vpipe

q(t)

)
. (C.16)

In a system containing multiple pipes, the water will flow in different "routes",
with different flow and volumes leading to various transport delays. For this
work only a single lumped volume Vl is considered. This lumped volume
should not be considered as the sum of volumes, but as the volume that
gives the most impact on the input output relation of the temperature. The
proposed method lets λ be dependent on the varying transport delay as

λ(t) =
φ

qn(t)
qn(t) ∈ [qn,min ≤ qn(t) ≤ 1] , (C.17)

It is here stated that the φ∗ giving optimal performance can be found as a
function

φ∗ = h(Vn, ts). (C.18)

A function, h, that gives the optimal φ as a function of Vn and qn that are the
lumped volume and flow. These are scaled by the max flow as

Vn =
V

qmax
, qn(t) =

q(t)
qmax

(C.19)

When the flow goes to zero the delay goes to infinity. To handle this a min-
imum flow qn,min is used. The function h(Vn, ts)/q(t) maps into a λt ∈ R :
0 ≤ λ ≤ 1. ts is the sampling time.

4.2 Flow dependent Qφ(σ, λ)

The proposed algorithm for online Qφ(σ, λ) with flow variable λ can be seen
in Algorithm 6. For the operation of finding solutions to problems such
as max

a
Q(wTx(s, a)) different solvers can be used. In this work a search

algorithm was made, which utilizes the knowledge of location of feature
points in the radial basis network to make multiple local gradient searches
for finding a global maximum. Due to scope of this paper, this solver will
not be further introduced.
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Result: Online Qφ(σ, λ)
Initialize : Weights w, trace vector z. Take action a′ according to
ε-greedy π(.|s0). Calculate feature state x = x(s0, a′). Qold = 0

Parameters : ε, α, γ, φ
repeat every sample

a← a′

Observe R and s′

Choose a′ according to ε-greedy π
x′ ← x(s′, a′)
Q← wTx
Q′S ← wTx′

Q′Q ← max
a′

(wTx(s′, a′))

δσ ← σ(R + γQ′s −Q) + (1− σ)(R + γQ′q −Q)
Observe flow q
if qmax ≤ q then

qn ← 1
else if q ≤ qmin then

qn ← qmin/qmax
else

qn ← q/qmax
end
λ← φ

qn

z← γλz + (1− αγλzTx)x
w← w + α(δσ + Q−Qold)z− α(Q−Qold)x
x = x′

Take action a′
until Mixing Loop Stop;

Algorithm 6: Algorithm Q(σ, φ)

5 Test

Testing on buildings is not a trivial task. It is very time-consuming due to
slow dynamics and there is often a desire to test performance over multiple
years. Furthermore benchmarking can be imprecise due to not having an
equal comparison due to different load conditions. This can pose a problem
for rapid development. A hardware in the loop approach is used here for
faster testing.

The test setup consists of two parts; A hydraulic mixing loop system and
a building model. The hydraulic dynamics of the mixing loop react much
faster than the thermal dynamics of the building. To increase testing speed,
the model of the building is run at accelerated speed in the loop together
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Fig. C.3: Hardware in the loop. Four parallel systems installed.

with the hardware hydraulics. The idea is to run the building model faster,
but still slower than the hydraulic dynamics to increase testing speed. This
allows for, in the specific test setup, to simulate 12 days in the time of 1 day.

5.1 Hydraulics

Fig. C.3 shows a simplified setup containing mixing loops, a boiler for heat
generation and a chiller for generating the chilled water used to simulate the
load. In Fig. C.3 V1 is the mixing valve that controls the mixing temperature
T2. The controller is a local PI controller with gain scheduling on the flow
q1 to compensate for the flow dependent gain. Pump P has local speed
controller. The set point for the mixing temperature and the pump speed
is controlled by the Reinforcement Learning algorithm.

To simulate the impact of the building on the hydraulics of the mixing
loop the valves V2 and V3 are temperature controlled via PI controllers. V2
controls the building temperature (Tb) in the building model to a constant
room temperature of 21oC. In this way the mixing loop will experience a
flow dictated by the building model. V3 controls the return temperature T1
according to the building model. In Fig. C.4 a picture showing part of the
test setup can be seen.
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Fig. C.4: Picture overlooking part of test setup.

5.2 Building Model

The structure used for the building model is a Nonlinear Autoregressive Ex-
ternal Input Neural Network (NARX net). The building model is trained on
data gathered on an office building located in Bjerringbro, Denmark. The
building is a 3 floor building with 34 radiator zones supplied by a single
mixing loop and controlled to the same set point. In the model the zones are
lumped into one by having the average of the 34 zone temperatures being
the building temperature Tb. Furthermore the flow data from the building is
scaled by a constant C such that C · qmax,building = qmax,testsetup. This is done
since the hydraulic network in the test is a smaller version of what the office
building contains.

Training was done on 12 months of data from the building and validation
on 3 separate months. Step variations was done on set points for mixing
temperature and pump speed for a period of the time, while the rest was
normal operation with industrial controller to improve model exploration.
In Fig. C.5 examples of the fit over 8 days can be seen from the validation
data. The Root Mean Square Error (RMSE) for the full validation set on Tb
and Tr is 0.28 K and 0.64 K respectively. By visual inspection of the fit and
evaluation of the low RMSE on the full validation data the model is deemed
a good representation of the office building.
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Fig. C.5: Validation of building- (Tb) and return temperature (Tr). Data shown is only 8 days
example out the full 3 months validation data.

5.3 Controllers

Qφ(σ, λ) is tested on this hardware in the loop setup with the following pa-
rameters: α = 0.8, γ = 1, σ = 0.8, ε = 0.1. The feature points are spread
evenly according to dimension over the ranges specified in TABLE C.1 giving
d = 3000 weights to be trained. The reward function is defined as

R(t) =

{
−(e(t)2 + β(ψheat(t, ∆T) + ψpump(t))) 5 ≤ t mod(24h) ≤ 21
−β(ψheat(t) + ψpump(t)) otherwise

(C.20)
Here e(t) is the building temperature error that is used when in heating
mode, but not in set back mode. β = 0.5 is a weight between comfort and
cost due to the multi objective nature of the reward. ψheat(t, ∆T) is the heating
power cost which is determined by the district heating company as a func-
tion of ∆T. The lower ∆T the higher price. ψpump(t) is the pump power cost.
See [8] for further description of the chosen reward function. To determine
the performance of the proposed algorithm it is compared with an industrial
standard controller for mixing loops. The controller that is being compared
with is the one installed in the office building from which the model was
derived. This controller is developed by a major Building Management Sys-
tem (BMS) supplier that is kept anonymous. The industrial controller also
performs night setback in the hours 21 to 5.
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Table C.1: Radial basis function dimension and range.

State-Action Dimension Width Range

Hour of Day 10 1.5 1-24 [h]
Outdoor Temperature 10 2.5 253-293 [K]
Mixing Temperature 10 3 293-343 [K]
Pump Speed 3 20 0-100 [%]
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Fig. C.6: Norm. yearly return for different values of constant λ and flow variable delay with
different α for physical model with Vn = 20.

5.4 Determining φ∗

A first principle physical model which was introduced in [8] is first used to
compare performance of Q(σ, λ) with the proposed flow dependent Qφ(σ, λ)
for different values of λ and φ. The controller was trained for a year and
afterwards evaluated running a second year. In Fig. C.6 it can be seen that the
highest yearly return occurs at φ∗ = 0.6. To determine the relation between
the lumped scaled volume and φ∗ a numerical approximation was done by
doing multiple test at different lumped volumes. The sampling time was
kept constant ts = 300s such that an approximation for φ∗ = hts=300(Vn)
was found as seen in Fig. C.7. From this relation φ∗ can be determined for
the building given Vn. Different ways can be used to get an estimate of the
lumped model, such as knowledge of piping. Here it was determined for the
office building in Bjerringbro via data analysis. A method for determining the
lumped volume through data analysis using Mutual Information was shown
in [7]. The lumped scaled volume (Vn) was for the tested building found to
be 1.15m3 which via the linear approximation hts=300(Vn) leads to φ∗ = 0.8.
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Fig. C.7: Relation between α and Vn. Used to determine C(Vn) from physical model.

6 Results & Discussion

The first results shows how the Qφ(σ, λ) controller performs over the first 5
months compared with the industrial controller. Using the rapid hardware
in the loop setup this test took 12.5 days to run. Fig. C.8 the mean absolute
value of the weights is shown to as a representation of how the 3000 weights
converge. If the system is time invariant and the system is fully explored the
weights will over time converge to a final value. There is a steep learning
curve the first 45 days with following slower convergence. The development
of the weights is an indication of stable convergence.
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Fig. C.8: mean absolute value of weights converging during training.
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6. Results & Discussion

Fig. C.9 shows the root mean square error (RMSE) of the building tem-
perature and the heating cost with a moving mean covering the last 14 days.
Here it can be seen that the RMSE is at first worse than the industrial con-
troller, but over time Qφ(σ, λ) learns to provide conditions for the local con-
troller to achieve low RMSE. In the cost plot it can be seen that after ap-
proximately 55 days Qφ(σ, λ) starts saving compared to the industrial con-
troller. In the last plot the return of the rewards over 14 is shown which is
the goal Qφ(σ, λ) optimizes towards. Here 55 days seems to be the point
where Qφ(σ, λ) overtakes the industrial controller in performance defined by
the reward function. Having worse performance for approximately 2 months
than a well tuned industrial controller and afterwards improving seems rea-
sonable, especially if some of the training can be done while commissioning
of the building is ongoing.
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Fig. C.9: Temperature error, cost, and return in a running 14 days window.

For the next results the different controllers are allowed to train for 5
months. Afterwards the controllers are run for 6 months on a different
weather data set than was used for training. Summation of normalized re-
turn, RMSE and Cost is done for all the controllers and compared in TABLE
C.2.
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7. Conclusion

Table C.2: Comparison of Controllers performance over 6 months after 5 months training.

Controller Norm. Return RMSE [K] Cost e

Q(φ*) -1 0.31 10076
Industrial -1.44 0.28 12146 (20.5%)
Q(φ∗ − 0.2) -1.16 0.25 10519 (4.4%)
Q(φ∗ + 0.2) -1.25 0.33 10690 (6.1%)
Q(λ = 0.5) -1.29 0.29 10751 (6.7%)

All the controllers provide conditions for the local temperature controller
to achieve similar low RMSE. On return and cost the proposed method with
the estimated φ∗ performs best. Compared to the industrial controller it saves
20.5% in costs over the 6 months period. The controllers with lower and
higher φ values perform worse, but still better than the industrial controller
and when using a constant eligibility trace λ.

7 Conclusion

A method for including flow variant eligibility traces into the state of the
art Reinforcement Learning controller Q(σ, λ) was introduced. The proposed
controller was tested on a hardware in the loop setup where a Mixing Loop
system is combined with a building model fitted to data from an office build-
ing in Bjerringbro, Denmark. The advantages of this is faster test and easier
comparison of multiple controllers since all parallel tests are on the same
building model exposed to the same conditions. The disadvantage of this is
that only the hydraulic part is real, such that shortcomings from incomplete
knowledge in the building model can not be tested for. The proposed method
improved performance over an industrial standard controller and Q(σ, λ)
without flow variable eligibility trace. The proposed controller reached same
performance as the tuned industrial controller after 50 days. After 5 months
of training the proposed controller operated with same level of comfort, while
saving 20.5% on cost.
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1. Introduction

Abstract

A plug and play control scheme for mixing loops in building heating systems is
proposed. Plug and play refers to achieving good control performance without any
need for tuning the mixing loop controllers to a specific building. The overall control
scheme consists of two components; A reinforcement learning controller to provide
self learning optimal control and a data driven input variable selection part to achieve
a good performance within a shorter training period. The approach is based on par-
tial mutual information such that only a subset of the input sensors providing most
relevant information is used. To account for the flow dependent delays present in the
mixing loop, flow compensation is used both in the state selection and in determina-
tion of the length of the eligibility trace. The proposed control scheme is tested on a
hardware-in-the-loop test setup where a mixing loop is supplying a heat exchanger
emulating an office building. The results show that the proposed control scheme of-
fers improved performance compared to a commercially available industrial controller
and to reinforcement learning controllers using other subsets of inputs.

1 Introduction

Mixing loops are often used in building heating and cooling systems to en-
sure proper pressurisation and heat power utilization. Proper control of pres-
sure and temperatures can ensure improved comfort, energy and monetary
savings. Space heating and cooling account for a large part of the worlds
energy consumption. With increased population and economic growth, cool-
ing energy use in buildings has risen from 3.6 EJ to 7 EJ since 2000 [8]. The
International Energy Agency predicts that without efficiency improvements
this number will double by 2040, but in their increased efficiency scenario
this can be kept to an increase of 19% [8].

Classically, mixing loops in industrial applications are controlled by a
mixture of feed forward compensation and slow feedback due to long flow
depenent delays. Optimal control has been studied in other HVAC appli-
cations, often in the form of Model Predictive Control (MPC) as described
in [1]. The main drawback of MPC is the need for good models. Mixing
loops are installed in a multitude of different buildings under different con-
ditions, which would require expensive commissioning to match the models
with the specific buildings in order to employ MPC in practice. In [12] 150
newly constructed buildings was tested with the conclusion that the average
energy savings that could be achieved by a proper recommissioning of the ex-
isting equipment was 18%. To deal with this challenge a self learning optimal
control scheme is sought. Model predictive control using methods such as
subspace identification [3] or using grey box models such as ARMAX [26] has
been considered. Reinforcement learning has been tried on different HVAC
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systems in [4], [6] and [5]. In [24] and [13], deep learning is applied as func-
tion approximation for Reinforcement Learning on HVAC systems. In [15]
mixing loop control using Reinforcement Learning with flow compensation
is introduced.

Where model predictive control needs good models, Reinforcement Learn-
ing needs training time. When dealing with many inputs that has informa-
tion about the system, training time is impacted by the curse of dimension-
ality. To avoid this and find a set of inputs giving good performance within
a feasible time frame Input variable selection (IVS) is used for state selection.
See [10] for a review of IVS techniques. Partial Mutual Information (PMI)
was proposed in [18] as a method for selecting inputs in nonlinear systems,
applying an iterative mutual information approach. This method was later
used and improved in [11] and [9]. In [14] PMI was used to estimate return
temperature in mixing loops with flow variable compensation.

In this work, the proposed method mainly consists of two components.
A reinforcement learning control scheme where a flow variable eligibility
scheme is proposed. The other component is an IVS scheme that chooses
the inputs that provide the most relevant information for the reinforcement
learning agent to increase training speed. This input variable selection is
based on partial mutual information with a proposed flow compensation.

The structure of the paper is as follows. A brief introduction into rein-
forcement learning and mutual information is given in Section 3. In Section
2 building heating via mixing loop is explained. This is followed in Section 4
where the proposed method is introduced. This section is divided into three
subjects; Reinforcement Learning Control of Mixing Loop, State Selection and
a Method Overview. To test the proposed plug and play control scheme, a
hardware-in-the-loop test setup was designed and is described in Section 5.
The most important results of the test are presented and discussed in Section
6. The paper is ended by some concluding remarks in Section 7.

The notation used in this work is calligraphic letters for random variables
X , standard letters for scalars x, bold letters for vectors x. Subscript t : T
means that it is a time series of the variable from time t to terminal time T.

2 Building Heat Supply via Mixing Loop

In hydraulic heating or cooling systems with multiple users or zones, mixing
loops can be used to meet the different pressure and thermal power demands
among consumers to improve performance and energy efficiency. In modern
buildings a multitude of sensors and prediction data are available for the
mixing loop control. Fig. D.1 illustrates a simplistic mixing loop system with
only one terminal unit and examples of different sensors that can be used
in buildings. The main objective of a building heating system is to keep the
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2. Building Heat Supply via Mixing Loop

Heat Power Supply

Mixing Loop
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Unit
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Tr

Fig. D.1: Schematic of a mixing loop application

users comfortable through proper zone temperatures. A simplified dynamic
model of zone temperature Tz is

CzṪz = Φh + ΦL + Φd, (D.1)

where Cz is the heat capacity of the zone, Φh is the heat power supplied from
the terminal units, ΦL is the heat load, which for building heating is negative.
This load mainly comes from the outside air cooling the building. Φd is the
disturbances which for building heating can arise from free heat generated
by human metabolism, electric appliances or solar radiation etc.

Heat power is generated at a heat power supply, which can be of various
types; District heating, heat pump, gas boiler, electrical boiler etc. With mul-
tiple consumers, such as different buildings in district heating or multiple
zones in the case of a large building, the optimal pressures and temperatures
are different. Optimal here meaning having maximum comfort in the build-
ing/zone at lowest cost. Furthermore the optimal temperature and pressure
changes with changing load conditions. To handle this a mixing loop can
be used to decouple the pressure and temperature from the supply system.
This is achieved by having a shunt such that the return water can be mixed
with the supply water. A pump controls the pressure for the zone by chang-
ing pump speed, ω, and a mixing valve controls the forward temperature
Tf in the range between the supply temperature Ts and the return temper-
ature Tr. A one way valve is used to eliminate direct flow from supply to
return. From the mixing loop the heating or cooling water runs to a terminal
unit: Radiator, air handling unit or floor heating etc. This terminal unit has
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a local control loop where a control valve controls the zone temperature to
a set point temperature. In a real system the mixing loop will often supply
multiple terminal units.

While the main objective of the building heating system is to keep a high
comfort for the user, it is also desired to minimise operational cost. The cost
of operating the system, Ψ(t), includes the cost of power for pumps and
valves, but also the cost of the heat power flowing through the mixing loop.
In non-operated hours of the building, e.g. at nights or during vacation time,
the temperature can be lowered without causing discomfort. This is called
setback and can be forced from the mixing loop control by lowering the pres-
sure and the forward temperature enough such that the control valves of
the terminal units are saturated and can therefore not deliver sufficient heat
power to keep the temperature at the set points. The cost of heat power from
different supplies varies with different parameters. In e.g. district heating
low return temperature is important to mitigate heat losses. The heat power
cost is often a function of ∆T at the consumer, thus at constant supply tem-
perature, high return temperature increases the heat power cost. For a local
electrical boiler with shorter pipes the return temperature matters little on
the price of heat power, but the varying electricity prices can perhaps enable
savings through load shifting. In load shifting the thermal storage of the
building can be utilized to heat at low electricity price ahead of a period with
high loads and high electricity prices.

Between the mixing loop system and the terminal units there will often
be a large pipe network to carry the heating water. This causes flow depen-
dent transport delays, which are fundamental to the mixing loop application.
Temperatures propagating with the flow from the mixing loop throughout
the pipe network to the terminal units and back again will be subject to a
long transport delay. Flow impacts the velocity of the water, causing the
transport delay to be a function of flow. This especially affects the relation
between the forward temperature and the return temperature from the mix-
ing loop which can be described as

Tr(t) = h
(

T f , q, Tz

)
, (D.2)

where

T f =

[
Tf

(
t− V1

q1

)
, ..., Tf

(
t− VN

qN

)]T

q = [q1, ..., qN ]
T

Tz =

[
Tz1

(
t− V1

2q1

)
, ..., TzN

(
t− VN

2qN

)]T
.

Here, h is a function that describes the power dissipation in the system and
N is number of transport routes the water can take through the pipes. T f is
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a vector of the forward temperature at varying flow dependent delay. q is a
vector of the flow in the different pipe routes. V is the volumes in the pipe
routes. Tz are the zone temperatures, which affects the power consumption,
here located at equal supply and return pipe volume. Notice that the flow
is quasi-static, meaning that it is assumed constant within the variable time
frame VN/qN .

The objective of the mixing loop is to ensure heat power available for the
terminal units to achieve high comfort, while minimizing cost. The mixing
loop has two control variables to influence this; the forward temperature, Tf ,
and the pump speed ω. High comfort is here limited to achieving the desired
zone temperature, but can be expanded to other comfort parameters, such as
humidity. There are a lot of variations of heating and cooling systems where
mixing loops can be used. It is important that the control can handle many
different scenarios, be it cooling via ventilation, heating via radiator etc. If
the control problem is defined as achieving the highest comfort at the lowest
cost, the problem is however the same for all variations of the system. The
control problem then becomes

minimize
Tf ,ω

∫ ∞

0
L(t)||Tz(t)− Tset||2 + WΨ(t) dt (D.3)

where L(t) is a setback parameter, Tz(t) is the zone temperature, Tset is a set
point temperature for the zone temperature, W is a weight between cost and
comfort, Ψ(t) is the cost of operating the system and ω is the speed of the
pump. In (D.1) a description of the zone temperature was given as a function
of Φh, ΦL and Φd. The heat power Φh can be influenced by the actions of
the mixing loop. In this work the control problem is solved by a self learning
optimal control scheme for mixing loops via reinforcement learning.

3 Preliminaries

Reinforcement Learning consists of a controlling agent that acts upon an en-
vironment. When acting upon the environment, a reward is given depending
on the achieved state. This is often modelled by a Markov decision process
where the probability of changing states from s to s′ while taking the action
a is

P a
ss′ = p(st+1 = s′|st = s, at = a). (D.4)

Taking action a and bringing the environment into state s′ yields the reward
rt+1. The expected reward of being in a state s and taking the action a can
then be described as

Ra
ss′ = E[rt+1|st = s, st+1 = s′, at = a]. (D.5)
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The agent seeks to act on the environment such that a cumulative n-step
reward is maximized. This sum is referred to as the return and is often used
on the form

Gt+n =
n−1

∑
k=0

γkrt+k+1, (D.6)

where the added discount rate 0 ≤ γ ≤ 1 ensures that the return is well
defined going to infinite time, while ensuring a higher importance of rewards
happening sooner. If a return is used that stretches to infinity Gt+∞. The
agent relies on a policy π to determine what action to take. To describe
the expected return, when being in a state, taking an action and afterwards
following a given policy the state action value function is used

Qπ(s, a) = E[Gt+∞|st = s, at = a] = E[
∞

∑
k=0

γkrt+k+1|st = s, at = a]. (D.7)

From (D.4), (D.5) and (D.7) the Bellman Equation for the state action value
function can be derived

Qπ(s, a) = ∑
s′
P a

ss′

[
Ra

ss′ + γ ∑
a′

π(s′, a′)Qπ(s′, a′)

]
(D.8)

For the optimal policy that maximises the return this becomes

Qπ∗(s, a) = ∑
s′
P a

ss′

[
Ra

ss′ + γmax
a′

Qπ∗(s′, a′)
]

(D.9)

This is what is approximated in Q-learning [23]. Here the optimal action
value function, no matter which policy is followed is found, with the condi-
tion that all state-action pairs needs to be continuously visited. The iterative
backup for Q-learning is

Q(s, a)← Q(s, a) + α

[
rt+1 + γmax

a′
Q(s′, a′)−Q(s, a)

]
. (D.10)

Here α ∈ [0, 1] is the learning rate. While one goal for the agent is to approx-
imate the value function another is for the agent to find the optimal policy
π∗ that maximises the return for every state. Since the value function and
the optimal policy are dependent upon each other they are often optimized
in an iterative fashion called the value-policy iteration.

A greedy policy is a policy that chooses the action that maximises the
return

at = arg max
a

Qπ(st, a). (D.11)

The problem of the greedy policy is that no new exploration into a poten-
tially more rewarding action is done. The trade-off between exploration and

132



3. Preliminaries

exploitation of current knowledge is central to reinforcement learning since
both optimality and adaptiveness is desired. Therefore, stochastic policies
where an amount of exploration can be achieved are often used. For a deeper
look into Reinforcement Learning the reader is referred to [21].

Temporal difference learning is a key concept in Reinforcement Learning.
It is often described as a mixture of Monte Carlo and Dynamic Programming.
In Monte Carlo the full episode of actions, state transitions and returns are
measured and then the estimate of the state-action value function is com-
puted purely from measurements. In dynamic programming a model of the
Markov Decision Process is already known, so an estimate from this knowl-
edge can be used for bootstrapping. This combines into temporal difference
where the bootstrap target is calculated, both from the sampled reward and
the system knowledge already acquired as seen in (D.10). The temporal dif-
ference error, δ is the error between the current estimation of the state-action
value function and the new estimate. In the on policy method SARSA the
temporal difference error is

δS
t = rt+1 + γQ(st+1, at+1)−Q(st, at). (D.12)

On policy means that the agent is learning the state-action value function
according to the same policy that is being followed. In off policy methods the
behaviour policy being used by the agent is different from the target policy
being learned. Q-learning in (D.10) is off policy since the target policy is the
optimal policy as seen by the bootstrapping using the maximising action

δQ
t = rt+1 + γmax

a
Q(st+1, a)−Q(st, at). (D.13)

Both temporal difference errors δS and δQ is here shown on one step form
since only one measurement of the reward was used in the bootstrap target.
Multi Step methods often perform better than single step by using more sam-
ples. In TD(λ) [20] this was parametrised using a trace decay λ of the returns
such that it can span from λ = 0 being the one step methods and up to λ = 1
where it becomes a Monte Carlo method

Gλ
t = (1− λ)

T−t−1

∑
n=1

λn−1Gt+n + λT−t−1Gt+∞. (D.14)

Multi step methods are almost always implemented as eligibility traces due
to the computational advantages. An eligibility trace utilizes a trace vector z
that changes according to the partial derivatives of the weights with respect
to the estimated value function and decays by γλ.

zt =̇ γλzt−1 +∇wQ̂(st, at, wt). (D.15)

The weights are then adjusted according to

wt+1 =̇ wt + αδtzt. (D.16)
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The trace z is often implemented as an accumulating trace or a Dutch trace
as proposed in [7].

As described by the value function (D.7) the state space used along with
the chosen actions has to provide information about the estimation of the re-
turn. Input Variable Selection is a group of methods that deals with finding
the set of input variables that gives the best prediction. In [10] several differ-
ent approaches to input variable selection is reviewed. Based on the ability to
handle nonlinear relations and fast computation the method Partial Mutual
Information [18] was chosen. This method is based on mutual information.
Mutual information between two continuous random variables X and Y is
defined as [17]

I(X ;Y) =
∫ ∫

p(X ,Y) log
(

p(X ,Y)
p(X )p(Y)

)
dX dY , (D.17)

where p(X ), p(Y) are the marginal probability density functions and p(X ,Y)
is the joint probability density function. If the two variables are independent
then p(X ,Y) = p(X )p(Y) and the fraction p(X ,Y)

p(X )p(Y) equals 1, meaning no
mutual information. Partial Mutual Information works in an iterative man-
ner by choosing the input variable with most information, then removing
that information from the prediction target leaving a new residual prediction
target. Then the input giving most information about the residual prediction
target is found and so forth until stopped or all input variables are sorted. A
data driven method for choosing a subset of available states to represent the
state space of the value function is proposed in Section 4.

4 Method

A plug and play control scheme is proposed in this section. This scheme
builds on two main components; Reinforcement Learning control of mixing
loops and data driven state selection.

4.1 Reinforcement Learning Control of Mixing Loop

Two major aspects of the plug and play control is that it can control the
temperature and pressure in an optimal sense, and that it can adapt to various
systems. Reinforcement Learning control fits these requirements by adapting
towards a control policy that is optimal in the sense of maximizing a return.

In the proposed method a linear function approximation is used to ap-
proximate the state-action value function. This is due to both guarantees of
convergence and ease of solving for the optimal action. This approximation
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has a weight for every feature point

Q̂(s, a, w) =
d

∑
i=1

wixi(s, a). (D.18)

Here the dimension d is the number of feature points and weights. The state
vector, s has the dimension ns and the action vector, a has na.

Radial basis functions are used for their smoothness and differentiabil-
ity. The basis functions are centred in the feature points located in c =
[cks ,1, ..., cks ,ns , cka ,1, ..., cka ,na ] with the
feature width ς = [ςks ,1, ..., ςks ,ns , ςka ,1, ..., ςka ,na ]

xi(s, a) = exp

(
−

ns

∑
ks=1

(sks − cks ,i)
2

2ς2
ks ,i

−
na+ns

∑
ka=ns+1

(aka − cka ,i)
2

2ς2
ka ,i

)
. (D.19)

The value function contains multiple states. Each state is divided into 10
points between minimum and maximum measured values smin and smax.
Where the points intersect a feature point is located. The leads to 10na+ns

feature points with c ∈ Rna+ns . All weights in the value function are initi-
ated to zero. Apprenticeship learning is used where a commercially available
industrial controller is used to control the mixing loop for an initial period
to gain some initial training of the reinforcement learning controller before
taking over. To achieve knowledge sharing a temporal difference error used
is based on a σ parametrisation, presented in [25], which provides a way of
shifting between on policy and off policy.

δσ
t = σtδ

S
t + (1− σt)δ

Q
t . (D.20)

By setting σ = 0 and letting the reinforcement learning algorithm train on
data logged in the initial period a transfer of knowledge can be done.

To implement the reinforcement learning as a multistep method a dutch
trace as proposed in [7] is used as can be seen in Algorithm 7. As described
in Section 2 the flow dependent delay changes the horizon of when actions
impact the reward, e.g. the return temperature response to a change in for-
ward temperature. The idea is to have the trace decay be proportional to
the flow. In (D.2) a multiple pipe system is described. Here a lumped pipe
volume approximation is used. This means that only the volume where the
impact on the input-output delay is highest is used. The trace decay is at
every sample computed as

λ(qη) =
φ

qη(t)
, (D.21)

Where φ ∈ [0, 1] is a constant that is empirically determined as a function
of lumped volume in the relation between forward temperature and return
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temperature. qη(t) ∈
[
qη,min, 1

]
is the flow normalized by the maximum flow.

φ = h(υη). (D.22)

A normalisation with respect to the maximum flow of the system is done on
the flow and the lumped volume

υη =
υ

qmax
, qη(t) =

q(t)
qmax

(D.23)

A description of the lumped volume υ is given here. Take an example of
a system with no terminal units and only pipe connections between supply
and return of the mixing loop. Here the return temperature is a function
of the forward temperature acting at different delays due to different pipe
routes

Tr(t) = h
(

T f , q
)

(D.24)

where

Ts =

[
Ts

(
t− V1

q1

)
, ..., Ts

(
t− VN

qN

)]T

q = [q1, ..., qN ]
T .

(D.25)

The individual flows in the different pipe routes are not known in this ap-
plication; only the total flow leaving the mixing loop is known. Therefore a
flow ratio β is introduced where the sum flow ratios for p pipe routes is

p

∑
N=1

βN = 1

qN(t) = βNq(t)

(D.26)

The ratio of flow β is assumed constant, which is a necessary assumption
due to only the main flow being known. The terminal units are controlled
by regulating valves which can change how the flow ratios are distributed.
Changes to outside temperature might change little in ratios due to affect-
ing all zones, were solar radiation only hitting one side of a building might
change the ratios more and make the approximation of the assumption less
accurate depending on the specific building. Now υN is defined as

υN =
VN
βN

, (D.27)

Applying this to the example in (D.25) gives

Ts =

[
Ts

(
t− υ1

q

)
, ..., Ts

(
t− υN

q

)]T
(D.28)
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The delay goes towards infinity as the flow goes to zero. Therefore a mini-
mum flow threshold is used. How the flow compensation variables υ and φ
are determined can be seen in the full overview of how the different methods
tie together in the proposed algorithm.

The reinforcement learning algorithm with added flow variable λ can be
seen in Algorithm 7.

Result: Online Qφ(σ, λ)
Initialize : Weights w, trace vector z. Take action a′ according to
ε-greedy π(.|s0). Calculate feature state x = x(s0, a′). Qold = 0

Parameters : ε, α, γ, φ, σ
repeat every sample

Observe r and s′

Choose a′ according to ε-greedy π
x′ ← x(s′, a′)
Q← wTx
Q′S ← wTx′

Q′Q ← max
a′

(wTx(s′, a′))

δσ ← σ(r + γQ′s −Q) + (1− σ)(r + γQ′Q −Q)
Observe flow q
if qmax ≤ q then

qn ← 1
else if q ≤ qmin then

qn ← qmin/qmax
else

qn ← q/qmax
end
λ← φ

qn

z← γλz + (1− αγλzTx)x
w← w + α(δσ + Q−Qold)z− α(Q−Qold)x
Qold ← σQ′S + (1− σ)Q′Q
x← x′

Take action a′
until Mixing Loop Stop;

Algorithm 7: Algorithm Qφ(σ, φ)

For the operation of finding solutions to problems such as max
a

Q(s, a, w)

different solvers can be used. Here a function approximation which is lin-
ear in the weights, differential and smooth is used. In this work a search
algorithm was designed, which utilizes the knowledge of location of feature
points in the radial basis network to make multiple local gradient searches
for finding a global maximum. Due to scope of this paper, this solver will
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not be further introduced.

4.2 State Selection

For the reinforcement agent to be able to learn it needs to be able to pre-
dict the future return from the states and actions. This means that the states
should hold enough information to be able to make a reasonable prediction
of the return (D.14). For building heating and cooling via mixing loop this
is dependent on the specific building in which the mixing loop is installed.
One building may have large windows where an observation of solar radi-
ation gives information of free heat as described in (D.1). Another building
might be poorly insulated and leaky, where observations of wind speeds has
more information. It can be argued that if all available inputs are fed into the
Reinforcement Learning agent it would still converge if the needed informa-
tion is available. However, using input variables that holds no information
or even redundant information would decrease the learning rate of the al-
gorithm due to the curse of dimensionality; where-as the dimension of the
input set rises linearly, the total volume of the model domain increases ex-
ponentially [2]. A data driven state selection is proposed such that they are
chosen according to the specific building. The problem of automatic state se-
lection is here handled as a prediction problem where a variable set is sought
that can predict the return.

The reinforcement learning method that is applied in this work uses the
action value function where a prediction of the expected return is done as a
function of the state that the system is in and the action that is taken. The
actions space is for the mixing loop the pump speed and the forward temper-
ature. Since these give information towards the prediction of the return, this
information is removed from the prediction target before choosing the input
variables.

Mutual information is here used to value if an input variable has infor-
mation about the future return.

A discrete approximation of mutual information is used with estimations
of the probability density functions f using m samples of the input variable
X and the return G

I(X ;G) ≈ 1
m

m

∑
i=1

log

 f (xi, Gλ(qi)
t,i )

f (xi) f (Gλ(qi)
t,i )

 . (D.29)

Using a kernel density estimator with the Parzen window [16] to estimate
the probability density functions

f̂ (X ,G) = 1
m

m

∑
i=1

KH

([
x f
G f

]
−
[

xi

Gλ(qi)
t,i

])
. (D.30)
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Where x f and G f are the center points.
The bivariate Gaussian kernel is used as the kernel function [11]

KH(k) =
1√

(2π)2 |H|
exp

(
−1

2
kTH−1k

)
. (D.31)

Where k contains the distances of the samples from the center points. In this
work an often used bandwidth matrix H for bivariate data is used

H = h2
[

S2
x SxG

SxG S2
G

]
. (D.32)

Here SxG holds the covariance between the input data and the return. S2
x and

S2
G are the variances of the samples [22]. A gaussian reference bandwidth [19]

is used that in the bivariate case is

h =

(
1
4

) 1
6

σm
−1
6 , (D.33)

where σ is the standard deviation of the sample data.
After having found the first input variable containing highest mutual in-

formation of the return a second input variable is sought that gives highest
mutual information after the first is already given. The information already
given by the first chosen input z is removed by making an estimation of the
return using only the chosen input and then subtracting that from the return
and the remaining inputs, leaving a set of residuals. Here an example of in-
put variable X1 being chosen first and then the input variable X2 is examined
for partial mutual information.

ut:T = Gλ(qt)
t:T −E[Gλ(qt)

t:T |x1,t:T ]

vt:T = x2,t:T −E[x2,t:T |x1,t:T ]
(D.34)

Where ut:T and vt:T are residuals of respectively the return and the second
explored input. While Gλ(qt)

t:T = [Gλ(qt)
t , Gλ(qt+1)

t+1 , ..., Gλ(qt+T)
t+T ] is a time series of

λ(qt) averaged returns, x1,t:T is a time series of the chosen input containing
highest mutual information and x2,t:T is a time series for the second explored
input. The estimators chosen as radial basis neural networks to match the
function approximation of the Reinforcement Learning agent. Finding the
second input variable with the now highest partial mutual information with
prior knowledge of the variable containing highest mutual information can
then be done as

I(X2;G|X1) ≈ I(vt:T ; ut:T) (D.35)

Due to the long delays of the mixing loop application, choosing the input
variable giving the highest mutual information is not only a question of
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which variable, but also what time delay holds most information.

max
j,d

I
(

xj
t−d:T−d; Gλ(qt)

t:T

)
, (D.36)

where j is the index of the input in the full set of inputs X and d is a delay
that the times series is shifted by. Due to the flow dependent delay the time
delays at which input variables hold information change with the flow. By
applying this flow dependent delay the highest mutual information is then
searched for at different υ.

max
j,υ

I
(

xj
t−υ/qt :T−υ/qt

; Gλ(qt)
t:T

)
, (D.37)

To avoid the delay going towards infinity as the flow goes to zero a minimum
flow is implemented.

After having gone through iterations of choosing inputs via flow depen-
dent partial mutual information at one point further inputs will not add any
new knowledge so the algorithm can be stopped. The stopping criteria used
for this work is based on cross validation of the estimation model. In Algo-
rithm 8 the state selection is done based on two sets of data, training data for
the input selection and validation data for stopping criteria.

4.3 Method overview

In Fig. D.2 an overview of the proposed plug and play control scheme di-
vided into submodules can be seen. The algorithm is represented on pseudo
code form in Algorithm 9.

Fig. D.2: Plug and play control scheme

First data is gathered for state selection as well as validation data for
the stopping criteria. For the flow compensation used in the reinforcement
learning agent the parameter φ is needed which is described as a function of υ
from the forward-return temperature relation. The υ that contains the highest
mutual information between forward temperature and return temperature,
here called υ∗, is used to determine φ. In [15] a linear relation between υ∗
and the φ giving the best performance was found empirically based on a
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Result: State Selection
Initialize : Load training data of all inputs xt:t+ms , return Gλ(q)

t:t+ms
and

flow qt:t+ms . Load validation data of n inputs xt:t+mv , return Gλ(q)
t:t+mv

and flow qt:t+mv .
Parameters : tol
repeat

Find input with highest mutual information as

zs,t:ms ← max
j,υ

I
(

xj
t−υ/q:t+ms−υ/q; Gλ(q)

t:t+ms

)
Generate estimators E[Gλ(q)

t:t+ms
|zs,t:ms ]

and E[xt:t+ms |zs,t:ms ]

Calculate residuals as

Gλ(q)
t:t+ms

← Gλ(q)
t:t+ms

−E[Gλ(q)
t:t+ms

|zs,t:ms ]

xt:t+ms ← xt:t+ms −E[xt:t+ms |zs,t:ms ]

Add z to set of selected inputs z

RMSE←

√√√√∑mv
t=1

(
Gλ(q)

t:t+mv
−E[Gλ(q)

t:t+mv
|zv,t:t+mv ]

)2

mv

RMSEprev ← RMSE

until tol >
RMSEprev − RMSE

RMSEprev
;

Algorithm 8: Algorithm for state selection

generic mixing loop system model. When φ has been determined, this can be
used to compute the returns with variable λ from the inputs logged during
the first month. During the state selection, all inputs are tested at different
flow dependent delays υ to determine the highest mutual information with
respect to the return Gλ(q)

t . The validation data is used to test if more inputs
should be added. Besides being used for the state selection, the data logged
during the first month is also used for pre-training of the Reinforcement
Learning agent. Since the data is gathered off policy σ = 0 during this pre-
training. Both due to the data being off policy and the industrial controller
not utilising any exploration this training is less effective than the later online
training. The final step is to let the reinforcement learning controller with
flow variable eligibility trace take over control of the mixing loop.
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Result: Plug and Play Control Scheme
Initialize : Industrial Controller
Parameters : ttrain, tvali
repeat

Industrial standard mixing loop control
Log input variables xs, actions as
and rewards rs

until Runtime = ttrain;
repeat

Industrial standard mixing loop control
Log input variables xv, actions av
and rewards rv

until Runtime = tvali;

Determine υ∗ as max
υ

I
(
Ts,t−υ/q:T−υ/q; Tr,t:T

)
Determine φ from υ∗

Use φ to compute Gλ(q)
t:T from logged data

Do state selection via Algorithm 2

Pretrain Reinforcement Learning agent with selected states off-policy
Qφ(0, λ) using data sets [xt:t+ms+mv , at:t+ms+mv , Gλ(q)

t:t+ms+mv
]

repeat
Reinforcement Learning Qφ(σ, λ) mixing loop control as in
Algorithm 1

until Runtime = ∞;
Algorithm 9: Reinforcement Learning with data driven state selection

5 Test Setup

Testing building HVAC systems is time consuming due to slow dynamics
and the need to test during multiple conditions such as changing weather or
usage patterns. When comparing two controllers’ performance on the same
building, the conditions should be the same for a good benchmark. This
can be nearly impossible to obtain due to many sources of disturbances. To
be able to test multiple controller settings in the same load scenario within
a feasible test time, a hardware-in-the-loop setup is designed. The setup
consists of a hardware part where a mixing loop system is supplying a heat
exchanger being cooled by a chiller. By controlling flows and temperature,
a software-based load model can emulate a building’s behaviour. The load
model is based on data logged from an actual office building as seen in Fig.
D.3. The playback speed of the load model is then increased such that the
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Fig. D.3: Office building used for gathering data. Heating supplied via single mixing loop.

dynamics of the building react faster, but still slow enough that the hydraulics
of the hardware part are accounted for. To further increase the speed of
testing and ease of comparison multiple parallel hardware in the loop test
are run under same load conditions, but with different controllers.

5.1 Building Model

The building model is made from data logged in the office building pictured
in Fig. D.3 situated in Bjerringbro in Denmark. The data points logged
can be seen in Table D.1. A nonlinear autoregressive external input neural
network with sigmoid basis functions was trained on one year of data and
then validated on 3 months of data. The model outputs zone temperatures,
return temperature and flow. The model flow was scaled to match the test
setup by the constant C = qmax,testsetup/qmax,building.

5.2 Hydraulics

In Fig. D.4 the schematic and a picture of the test setup can be seen. The load
emulation is achieved by controlling valve V2 such that the flow q1 matches
the flow of the building model. Valve V3 is controlled such that temperature
T1 matches the return temperature of the building model. A boiler supplies
the hot water for heating via the mixing loop and a chiller supplies the cold
water that is used to emulate the load. All valves and pumps are fitted with
local set point control. Set points for pump P speed and valve V1 forward
temperature are supplied by either the reinforcement learning agent or the
industrial controller.

5.3 Controllers

The proposed algorithm is implemented along with the building model on a
microprocessor that resembles what is used in mixing loop control to ensure
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Data points Description

td Time of day
TzN , TzE, TzS, TzW Zone temp.
Tf Forward temp.
Tr Return temp.
Np Pump Speed
q Flow
Tom Outside temp. measured
Top Outside temp. predicted
Sm Solar radiation measured
Sp Solar radiation predicted
Wm Wind speed measured
Wp Wind speed predicted
CzN , CzE, CzS, CzW CO2 levels in zones
OWN , OWE, OWS, OWW Windows open or closed
ODN , ODE, ODS, ODW Radiator Valves Opening Degree
FN , FE, FS, FW Air fan speeds
TaN , TaE, TaS, TaW Air supply temp.

Table D.1: Data points

the feasibility of implementation of the algorithms with regards to factors
such as memory and processor speed.

The algorithm is compared with an industrial grade controller for mix-
ing loops. The industrial controller used is the one installed in the Building
Management System (BMS) of the building, which is used in the model. The
control was made by a BMS manufacturing company that will be kept anony-
mous. To ensure a fair comparison, the parameters in the industrial controller
were tuned to achieve higher performance.

6 Results

The results of the test will be presented and discussed in the following. First
results from finding the flow compensation parameters are shown. In Fig.
D.5 the mutual information between the forward temperature and the return
temperature can be seen at different values of υ with the highest value being
at υ∗ = 0.16. When compensated by the maximum flow of the system this
leads to φ = 0.8 by using the empirecally found linear relation in [15]. By
using the determined φ, the return from the logged data can be calculated.
This return is used for the state selection. In Fig. D.6 the return prediction
error of the validation data is shown as a function of chosen inputs at the
lumped volume giving the highest mutual information. The prediction error
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q1T1

Boiler

Chiller

T2

V3

V2

V1

P

Building Model

Fig. D.4: Schematic and picture of 2 out of 4 mixing loop configurations.

for the first 15 inputs (including the two actions) are shown. The stopping
criteria, stopped the input selection such that the first 8 inputs are used in
the Reinforcement Learning agent. The first two inputs are the actions for-
ward temperature and pump speed. The next is zone temperature of the
eastern zone, then flow, return temperature, time of day, outdoor measured
temperature and the measured wind speed.

To see how the chosen state space performs compared to using more or
less states the test setup was run using different amounts of states. In the
first plot of Fig. D.7 the normalised sum of weights is shown, where ns is the
number of used states. The plot shows, that the lower the number of states
the faster the weights converge. In the second plot of Fig. D.7 the return of
using different state spaces can be seen for the same training period. The state
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Fig. D.5: Mutual information between forward temperature and return temperature as a function
of υ

space chosen by the plug and play control scheme (ns = 6) has the highest
return during this time period. It is expected that versions with larger state
spaces will in time converge and give same or higher return as the chosen
variation. However it is deemed that for an application such as a mixing loop
a convergence time that takes much longer than the 40 days is not practically
usable.
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Fig. D.6: Return prediction error as function on number of inputs from sorted list. The inputs
are shown at the lumped volume which leads to highest mutual information.
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Fig. D.7: Comparison of returns and weight convergence for different sets of states.

In Fig. D.8 the proposed method is compared to the industrial controller.
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In the first plot the root mean square temperature error of all the building
zones combined are shown. After the Reinforcement Learning agent takes
over the control after the initial 30 days the temperature error increases. This
time instant is when the reinforcement learning control has taken over from
the industrial controller and is beginning to learn the system. After 30 days
of training the temperature error improves over the industrial controller.

The second plot shows the running cost of 14 days of operation. Here sav-
ings are starting from the initialisation of the reinforcement learning agent,
but at the cost of comfort as can be seen in the first plot. The third plot shows
the return, which the reinforcement learning agent tries to maximise. Here
it can be seen that around day 55 the reinforcement learning agent overtakes
the industrial controller in regards to defined return. The last plot shows the
summation of the absolute values of the weights. Here it can be noticed that
the pre training done using the logged data from the first 30 days only brings
this summation of the absolute values of the weights a small step towards
the value it converges towards later. This makes sense since the industrial
controller only explores a small area of the state-action space.
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Fig. D.8: Comparison of Building Temperature RMSE with a 14 days running window. Operat-
ing cost for running 14 days. The return and the summation of absolute weights.

At day 60 (30 days data logging for state selection + 30 days of train-
ing) the reinforcement learning agent has reached a satisfactory performance.
From day 60 to day 140 the reinforcement learning agent saves 14% on cost,
while having 19% less temperature error.
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7 Conclusion

A plug and play control scheme was introduced for mixing loop control in
building heating. The two main components of the control scheme are state
selection and Reinforcement Learning.

Due to a large set of sensor inputs being available a state variable selection
method is employed to improve training speed of the self learning control.
The state selection is build using partial mutual information with flow com-
pensation due to the flow varying delays of the mixing loop application.

To achieve self learning optimal control a Reinforcement Learning agent
with flow dependent eligibility trace was proposed. By using the subset
of input variables as state information in the Reinforcement Learning agent
training a shorter training time is achieved.

A hardware-in-the-loop setup was used to test the proposed controller
against controllers utilizing another set of states and an industrial controller.

The results showed that the proposed method has the ability to chose a
set of states that has a good performance along a training speed which is
satisfactory for the mixing loop application.

The performance during the first 30 days of the algorithm is determined
by the industrial controller. After data has been gathered and the reinforce-
ment learning agent takes over control it takes around 25 days for agent to
achieve same performance level as the industrial controller. After this initial
period the reinforcement learning agent improves further on performance
and from day 60 to 140 the temperature error is reduced by 19% while saving
14% on operational cost.
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Abstract

This technical report outlines some of the considerations and highlights relating to
the data collection in an office building which is used throughout this PhD project.

1 Introduction

To get HVAC data from a real office building a data logger was installed in the
office building "Nord 2". A building management system (BMS) is already
installed in Nord 2 with access to multiple HVAC relevant sensors around
the building. By connecting to the already existing BUS network, installing
further sensors and getting external weather forecast from the internet a large
data foundation for analysing HVAC was gathered. This data has been used
for validating the input variable selection method in Paper A. The data has
been further used to create a load model for the hardware-in-the-loop test
setup described in [Appendix F].

2 Office Building

To gather data from an actual building the office building "Nord 2" located at
Grundfos in Bjerringbro Denmark is used, see Fig. E.1.

Fig. E.1: Picture from the front side of office building Nord 2.

The office building has approximately 8000m2 floorspace divided over 3
floors with windows mainly facing south. The floorspace is used for multiple
purposes with the main use being office space. Other uses in the building is
meeting rooms, canteen, showroom, tea kitchens, toilets and changing rooms.
The HVAC system consists mainly of radiator heating with a ventilation sys-
tem. The building HVAC is controlled by a Schneider Building Management
System (BMS). The building is divided into 33 different zones with local con-
trol for the comfort parameters temperature and CO2 level. Fig. E.2 shows
the control block visualisation in the BMS.
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Fig. E.2: Local control for zone temperature via radiator valves and CO2 level via air duct
dampers.

In the case of heating the local temperature control in the zones are done
by adjusting the electric radiator valves while the CO2 level is controlled by
air duct dampers in the ventilation system. In case of cooling, this is done by
the ventilation system. Five air handling units are used from where the air is
fed into the different zones via air ducts. Fig. E.3 shows an example a control
block for an air handling unit in the BMS.

Fig. E.3: Air handling unit control block in BMS

Two thermal power coils are present in the air handling unit. In the case
of heating, heat power is added to the inlet air to ensure a proper temperature
between 18oC and 25oC. If cooling is needed the cooling coil is used to cool
the inlet air. In case of cooling the air duct dampers take over temperature
control of the zones. Three mixing loops are used in this system. One for
the radiators, one for the heating coil in the air handling unit and one for the
cooling coil. In Fig. E.4 a control block for a mixing loop in the BMS can be
seen.
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Fig. E.4: Mixing Loop Control block in BMS

3 Data logger

The office building is already fitted with a Schneider BMS that has access to
various sensors around the building. To get access and log this data a data
logger was made which connects to the BMS via MODBUS and sends the
data to the Grundfos cloud solution SYSMON.

Fig. E.5: Electronics that collects the data and communicates with the cloud. Example of com-
ponents are microprocessor, MODBUS and Wifi modules.

[H] The data logger, see Fig. E.5, mainly consists of a BeagleBone mi-
croprossor, circuit protection, short term power, MODBUS and wifi modules.
The data is send to the SYSMON cloud where it can be accessed. Online
monitoring can also be done via SYSMON web interface as seen in Fig. E.6.
While the main functionality has been to log data the setup is also able to
send set point values for control of the different HVAC elements to the BMS
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Fig. E.6: Example of web interface for monitoring of the collected data.
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Fig. E.7: Example of fluctuation of input.

which then effectuates it to the local controllers. This is used to improve per-
sistence of excitation in the gathered data. Fig. E.7 shows an example of this
where the supply temperature from the radiator mixing loop was fluctuated
to see the delayed reaction on the return temperature.

4 Signals

The signals that the data logger gathers consists of the existing signals from
the BMS system, added sensors and data from the internet. Weather predic-
tion looking 3 hours ahead are gathered from the internet every hour. The
rest of the data is gathered with a sample rate of 10 s at 16 bit. The full list of
gathered data is seen in Table E.1.
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Logged Identifier Description

Zone Measurements

RF01 - RF33 Zone temperatures
CO01 - CO33 Zone CO2 levels
ZMV01 - ZMV33 Radiator valve opening degree
VAV01 - VAV33 Air duct dampener opening degree
PIR01 - PIR33 Zone PIR sensor
VK01 - VK33 Window open/closed

Mixing Loops Measurements

TF01 - TF03 Forward temperatures
TR01 - TR03 Return temperatures
MV01 - MV03 Mixing valve opening degree
P1 - P3 Differential pressure over the pump
CP01 - CP03 Pump on/off
AF01 - AF03 Pump flow
AE01 - AE03 Thermal power out of mixing loop
TFP01 - TFP03 Supply temperature primary side
TRP01 - TRP03 Return temperature primary side

Air Handling Units Measurements

KF01 - KF05 Inlet air temperature
VE01 - VE05 Fan speed

Weather sensors

SOL Solar radiation
WS Wind Speed
WD Wind direction
TO Outside dry bulb temperature

Data gathered from internet

DA Date
DOW Day of week
TOD Time of day
WSP Predicted wind speed
WDP Predicted wind direction
SOLR Predicted solar radiation
TOP Predicted outside dry bulb temperature

Total data points 246

Table E.1: Data points
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5 Conclusion

A data collecting system was installed in the office building "Nord 2" located
in Bjerringbro, Denmark. Data is collected from HVAC equipment, building
sensors and resources from the internet and stored in a cloud solution. In
total 246 data points are logged and used as the data foundation for various
analysis and model building.
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Abstract

This technical report outlines some of the considerations and highlights relating to the
hardware-in-the-loop experimental setup for test of mixing loop control. The setup is
used throughout this PhD project.

1 Introduction

A hardware-in-the-loop experimental test setup has been developed and used
to test and compare control methods. This approach has been used to in-
crease the test speed and comparison between control methods compared to
real building HVAC testing.

2 Hardware-in-the-loop

The objective of this setup is to run test of different mixing loop control
methods. A hardware-in-the-loop approach is used which is illustrated in
Fig. F.1.

q1T1

Boiler

Chiller

T2 ...

V3

V2

V1

P

Building Model TbTo

Fig. F.1: Illustration of hardware-in-the-loop test setup.

The setup consists of four mixing loops with a heat supply. The mixing
loops each supply a heat exchanger with hot water. Cold water is produced
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by a heat pump feeding the load side of the heat exchangers. The flow of the
cold water is controlled to emulate a load alike a building heating scenario.
The main advantages of this setup compared to testing on a real building
is an increased test speed. In mixing loop systems there is a large differ-
ence between the hydraulic dynamics and the building thermal dynamics.
In this setup the buildings thermal dynamics being emulated is sped up by
12 times compared to real time. At this speed the hydraulic dynamics still
runs unaffected due to being faster. When testing building HVAC control
another challenge is often creating proper benchmarks since load conditions
such as weather and usage of the building change over time. In this test
setup four parallel systems are build each having the same load conditions
for benchmarking. Another advantage of the setup is that the load model can
be change quickly. In this way the load model can contain a different build-
ing or the mixing loop feeding into a ventilation system instead of radiators.
While speed and easy of benchmarking is obtained by using the proposed
test setup it comes at the cost of accuracy and test of unmeasured distur-
bances. By using a load model to emulate the load the mixing loop system
is only tested against what is captured by the specific model. In this way
the hardware-in-the-loop setup is considered a good test of methods before
choosing one for time consuming field tests.

3 Hardware

In this section the hardware parts are described. In Fig. F.2 the hydraulic
schematic of the experimental setup can be seen.

Fig. F.2: Experimental setup.

The hydraulics can be divided into 3 parts: load, distribution and supply.
The load system consists of a booster pump and four load sides of heat ex-
changers. For each load side an electronic valve is placed along with sensors
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for flow, supply temperature and return temperature. The distribution sys-
tem consists of 4 mixing loops which can be changed between using valves
or pumps for mixing control. Flow sensors for primary and secondary side
flows are installed along with supply, mixing and return temperature sen-
sors. An electronic valve is inserted to control the flow of the heat side of
the heat exchanger, which is also used to emulate the load of the system. A
booster pump is installed to supply the four mixing loops. Pipe lengths are
installed in the system to emulate a building where the four mixing loops
serve different zones for test of multiple mixing loop control. In the supply
part the heat can be either generated from a heat pump of from an electrical
boiler with an accumulating tank. Cold water is generated from a heat pump.
In Fig. F.3 a picture overlooking part of the hardware can be seen.

Fig. F.3: Picture overlooking part of the test setup.

To control the different elements in the systems a controller is used for
each mixing loops, one for the load system and one for the supply system all
connected by CANbus. This controller is a beaglebone microprocessor with
various electronic interfaces for pump and valve control, sensor reading and
BUS communication as seen in Fig. F.4.
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Fig. F.4: Mixing loop control with beagle bone setup.

4 Building Model

Data for generating the load model is gathered from the office building as
described in [Appendix E]. The model is a non linear autoregressive neural
network structure. Depending on the desired extent of the model different
input sets can be used for training. In Fig. F.5 an example of the model with
the minimum amount of inputs can be seen.

Hidden Layers Output Layer

Tout

Time
qm (q1)
Tm (T2)

Tr (T1)

Tb

Fig. F.5: Example of neural network model for emulating load.

To validate the models the used data is divided into a training set and a
validation set. In Fig. F.6 an example of comparison between some of the
validation data and the models building - and return temperature can be
seen.
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Fig. F.6: Validation of building- and return temperature in the building model.

To emulate the load two different setups has been used. In both setups a
PI controller regulates the valve V3 in Fig. F.1 such that the return tempera-
ture T1 reacts according to the building model.

In the first setup valve V2 controls the building temperature in the build-
ing model which is the average of the 33 different zone temperatures. The
control of valve V2 tries to reach the setpoint of 21oC for the building tem-
perature in the building model. By utilizing a PI controller as the radiator
controllers in the real building the flow that the mixing loop experiences em-
ulates that of the building. In this setup the measured flow q1 and the mixing
temperature T2 is part of the input set for the load model that determines the
return temperature and the building temperature.

In the other setup the valve V2 controls the flow to equal that of the build-
ing model. In this setup the building model is trained to outbut zone tem-
peratures, flow and return temperature.

Since the load emulation is done by letting measured variables be con-
trolled to the values of the load model there will be a control error. The return
temperature controller acting on valve V3 proved to be the most challenging
local controller due to flow dependence of the gain, slow control valve and
fast dynamics. In Fig. F.7 an example of the measured return temperature T1
is compared with the return temperature from the load model.
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Fig. F.7: Control of the return temperature to match the output of the building model.

To emulate the cost of heat power, the cost structure of a typical district
heating supply of Copenhagen "HOFOR" is used. Here the base cost of heat
power is 72.28e/MWH and for each degree that ∆T is lower than 32oC and
added cost of 0.8% is added.

5 Conclusion

A hardware-in-the-loop experimental test setup was here introduced. The
setup allows for faster testing and easier benchmarking. It is however im-
portant to remember that since a building model that is build on data from
Nord 2 is used only characteristics captured in this model is tested. This
setup has been used to benchmark different control methods. In the further
development a natural next step would be testing a chosen solution on a real
building HVAC system.
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Abstract

This technical report outlines some of the aspects relating to the simulations of build-
ing HVAC which is used throughout this PhD project.

1 Introduction

Throughout the project simulation driven development of methods has been
used. This means that methods has been tested in simulation with various
levels of fidelity before being applied to the other test setups. Different forms
of models has been used, first smaller principle physical models and later
large, but also physical based numerical models. In this technical paper the
simulation setup with the highest fidelity will be described.

2 Dymola

Dymola is a modelling tool that can be used for simulation in multiple do-
mains. It is commercial, but uses the open platform Modelica modelling
language, such that many open source libraries are available. The simulation
tool uses both a visual interface and a code shell, such that a lot of the im-
plementation of a model can be done visually, while the finer details can be
coded directly in the modelica language. Behind the blocks the code is based
on object oriented programming, making it hierarchal. To solve the differ-
ential equation numerically there are numerous solvers that can be used in
Dymola. One of the solvers is DOPRI5, which is based on the explicit Runge-
Kutta method where the problem [2].

ẏ = f (t, y), y(t0) = y0. (G.1)

is approximated by

yn+1 = yn + h
s

∑
i=1

biki tn+1 = tn + h (G.2)

where h is the step size and

k1 = f (tn, yn),

k2 = f (tn + c2h, yn + h(a21k1)),

k3 = f (tn + c3h, yn + h(a31k1 + a32k2)),
...

ks = f (tn + csh, yn + h(as1k1 + as2k2 + · · ·+ as,s−1ks−1)).

The coefficients follow the Butcher tableau
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0
c2 a21
c3 a31 a32
...

...
...

cs as1 as2 · · · ass−1
b1 b2 · · · bs−1 bs

DOPRI5 uses variable step size, where the local error, previous step size
and the user-defined tolerance are used to calculate the step size. The output
interval can then be defined. This setup can handle very large models where
the amounts of differential equations to be solved can be in the hundred of
thousands.

3 Buildings Library

Models were created using components that was either developed during the
project or from the "Buildings" library. The buildings library is open source
and developed by Lawrence Berkeley National Labroatory [3]. It contains
models to simulate buildings, such as rooms, HVAC, controls, weather, fluids
and airflow. In Fig. G.1 an example of a model for a building zone build in
dymola can be seen.
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Fig. G.1: Dymola model example of a building zone.

In this example the zone is heated by a radiator, controlled by a thermo-
stat. The building block in the middle holds the description of the structure
such as dimensions, materials and windows etc. Many different facets of
building models can be implemented in this setup. As an example windows,
with different size, glazing and shade etc. Another example is leakage, which
is implemented as depending on wind and pressure as can be seen in the
four circles in the top. This zone can be connected to other zones such that
heat will be conducted between zones. This zone component is a high level
component build from multiple smaller components. The fundamental low
level components that are often used is in the HeatTransfer package which
contains models for conduction, convection and radiosity. An example of a
low level component is the "SingleLayer" model where heat conduction for a
single layer homogeneous material is computed. In between the ports of the
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"SingleLayer" the material is divided into a user defined number of states. In
the case of no phase change the SingleLayer numerically computes the heat
equation

ρc
∂T(x, t)

∂t
= λ

∂2T(x, t)
∂x2 (G.3)

where ρ is the mass density of the material, c is the specific heat capacity, T
is the temperature, x is the distance into the material, t is time and λ is the
heat conductivity.

4 Models

To test the control scheme in various systems multiple models was build.
Two of the types apartment, house and mansion was build with the one
following the Danish building standards from 1960 and the other following
the standards of 2015. Fig. G.2 shows examples of floor plans from the 2015
house (230m2) and apartment (68m2).

Bath

Kitchen

Hall

Livingroom

Livingroom

Bath

Room

Room

Bedroom

1. floor house 2. floor house

Bath

Bedroom

Kitchen +
Livingroom

Apartment

S

N

E W

Fig. G.2: Floor plans house and apartment

The difference between 2015 and 1960 buildings is the standard building
materials of the time and standards for insulation, where Danish buildings
from 2015 has a higher degree of insulation. Danish building code is used
from each of the periods.

For a simulation of a larger commercial building a model was build to re-
semble the School of Art, Design and Media at Nanyang Technological Uni-
versity Singapore. This building was used since good data from the HVAC
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system and the building structure was available from earlier work and could
be used in an early stage of the project.
The main components contained in the models are:

• Free heat from metabolism, electronics and hot water usage is modelled
from typical daily, weekly and monthly patterns of usage.

• Weather data such as dry bulb temperature, wet bulb temperature,
wind direction, wind speed, solar radiation, barometric pressure and
cloud cover.

• HVAC system components for heating and cooling such as heat sources,
distribution and terminal units.

• The building structure containing among other parts walls, floors, roof,
furniture and the opening of doors and windows.

5 Controls

Control schemes for the models have been done in three ways during this
work.

First method is by coding the control scheme in Modelica and used di-
rectly within the Dymola environment.

The second approach is using the interface between Dymola and Simulink.
In this way a block as seen in Fig. G.3 containing the Dymola model can be
used with input-output ports connecting the two environments. The solvers
in Simulink is then used to compute the numerical solution for both the
Dymola block and the rest of the Simulink code allowing for variable step
solvers.

Fig. G.3: Dymola-Simulink interface [1]

The third approach is to generate a functional mock-up unit (FMU) from
Dymola that follows the open standard functional mock-up interface (FMI).
Since FMU is a standardised model structure many tools interfaces with
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these. In this project the Python library PyFMI has been used to interface
to python coded control schemes. When using the FMU approach two ap-
proaches can be used; model exchange or co-simulation. With model ex-
change the FMU is solved by an external solver (such as in the Dymola-
Simulink interface). In co-simulation the solver is built into the FMU and
separate solvers can be used by the two interfacing environments. Since the
communication is done in discretized steps only constant step solvers can be
used in co-simulation.

6 Conclusion

A simulation setup using Dymola and building models in the modelica lan-
guage is used for multiple test throughout the project.
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