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PREFACE 

This PhD thesis provides an extended summary of work performed at the Center for 

Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg 

University, Denmark, in the period from February 2017 to August 2020. It has been financially 

supported by Aalborg University and the Danish National Research Foundation (DNRF121).  

The purpose of the thesis was to investigate temporal changes in pain processing mechanisms, 

specifically pressure pain sensitivity, temporal summation of pain and conditioned pain 

modulation, in relation to the experience of low back pain. This was achieved through the 

combined use of meta-analytic, experimental, observational, and interventional approaches. 

The thesis is organised primarily as an overview and discussion of the background, 

methodology, and findings for each of the measures investigated. It synthesises content from 

four journal articles, three of which are already published in international peer-reviewed journals 

and the fourth of which has been submitted. 

Throughout the thesis, these articles are referred to as:  

Systematic Review: ME McPhee, HB Vaegter & T Graven-Nielsen. (2020) Alterations in pro-

nociceptive and anti-nociceptive mechanisms in patients with low back pain: A systematic 

review with meta-analysis. PAIN, 161: 464-475. DOI: 10.1097/j.pain.0000000000001737 

Study I: ME McPhee & T Graven-Nielsen. (2019) Alterations in Temporal Summation of Pain 

and Conditioned Pain Modulation across an Episode of Experimental Exercise-Induced Low 

Back Pain. The Journal of Pain, 20(3):264-276. DOI: 10.1016/j.jpain.2018.08.010 

Study II:  ME McPhee & T Graven-Nielsen. (2019) Recurrent low back pain patients 

demonstrate facilitated pro-nociceptive mechanisms when in pain, and impaired anti-

nociceptive mechanisms with and without pain. PAIN, 160: 2866-2876. DOI: 

10.1097/j.pain.0000000000001679 

Study III: ME McPhee & T Graven-Nielsen. (Submitted) Medial Prefrontal High-Definition 

Transcranial Direct Current Stimulation to Improve Pain Modulation in Chronic Low Back Pain: 

A Pilot Randomized Double-blind Crossover Trial
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ENGLISH SUMMARY 

Low back pain (LBP) has afflicted humans for thousands of years and today remains a leading 

cause of disability globally. The vast majority of LBP cases are classified as non-specific, 

meaning no clear pathophysiology has been identified. With this in mind, increased focus has 

been on illuminating some of the underlying mechanisms and drivers of LBP. During the past 

decades, measures of pain sensitivity, such as local and widespread hypersensitivity to 

pressure, temporal summation of pain (TSP), and conditioned pain modulation (CPM), have 

gained special interest and may reflect mechanisms that are now commonly acknowledged to 

play an important role in LBP. On this basis, a plethora of studies have been published in the 

past two decades looking either at cross-sectional differences in pain sensitivity measures 

between LBP patients and controls, or at the utility of these measures in predicting longer-term 

prognosis. Unfortunately, results of such studies have been highly inconsistent, hence it has 

remained unclear to what extent alterations in these mechanisms are present among LBP 

populations. In addition, many existing studies have reported pain sensitivity measures at only 

one timepoint, when patients were already in pain, making it unclear as to how these measures 

change over time in relation to the development and/or resolution of LBP.  

The present thesis set out to further investigate this temporal relationship between central pain 

processing mechanisms and LBP experience. To do so, a systematic review and meta-analysis 

along with three experimental studies were planned and conducted to approach this 

relationship from four different angles. A meta-analysis of existing studies was performed to 

quantify the magnitude of alterations in TSP and CPM among LBP patients compared to 

controls, as well as to explore potential associations between these measures and pain 

severity/duration. Study I took healthy pain-free individuals and induced experimental LBP, by 

having participants perform fatiguing exercise, allowing for investigation of both pain-free 

baseline predictors of LBP development and changes in pressure pain sensitivity, TSP and 

CPM across a short-lasting experimental episode of LBP. Study II recruited patients with 

recurrent LBP, along with matched controls, and assessed pressure pain sensitivity, CPM and 

TSP both during a painful episode and when naturally recovered to pain-free. Finally, Study III 

took patients with chronic LBP and used a transcranial direct current stimulation (tDCS) 

paradigm to target cortical regions involved in pain-modulatory circuitry, and sham comparator, 

allowing for assessment of changes in pressure pain sensitivity, TSP and CPM in relation to 

changes in pain.  

In addition to the primary outcomes, various factors that could influence both pain experience 

and central pain processing, namely age, gender, body mass index, sleep, mood, menstruation, 

anxiety, pain catastrophizing and physical activity, were captured across experimental studies 

(I-III). However, these factors rarely differed significantly between patient and control groups or 

between painful and pain-free sessions. A range of clinical variables were also recorded for 

LBP patient groups over the study periods, including the intensity, unpleasantness, duration, 

quality, and distribution of pain, as well as related disability (Study I-III). Of course, pain 

durations and disability levels were higher in LBP patients with increasing duration of pain than 
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for participants with experimental LBP, but the intensity, unpleasantness, and distribution of 

LBP was similar between experimental, recurrent, and chronic LBP groups during painful 

testing sessions (Study I-III).  

The meta-analysis demonstrated that clear differences in TSP and CPM exist overall between 

LBP patients and controls, though the magnitude of these differences was small. Further, 

alterations in TSP were weakly related to pain severity, while CPM impairment showed relation 

to both pain duration and severity. Study I highlighted that mild experimental LBP provoked 

reductions in local and distant hypersensitivity to pressure but was not sufficient in intensity or 

duration to significantly affect TSP or CPM. Baseline pain-free TSP did, however, show some 

relation to the severity of LBP developed. Study II showed that, during a recurrent LBP episode, 

patients demonstrated local and widespread pressure hyperalgesia and facilitated TSP 

compared to controls, but this resolved when pain-free. On the contrary, CPM was impaired in 

recurrent LBP patients compared to controls overall regardless of pain status. Finally, Study III 

demonstrated similar patterns of change in pressure pain sensitivity and TSP in relation to pain 

status as Study I-II, though CPM did not appear to be impaired in this group and remained 

unchanged across the study period. Unfortunately, the tDCS paradigm selected was largely 

ineffective though, perhaps due to the already functioning descending inhibition in this group. 

When taken together, findings from the present work would suggest that local and widespread 

hyperalgesia to pressure is primarily a consequence of the presence of LBP. Similarly, though 

TSP may have a small degree of predictive value for prognosis when assessed in a pain-free 

state, it seems that the facilitation observed in patients is also consequential to ongoing pain. 

CPM, on the other hand, seemed less impacted by pain presence per se and instead may 

deteriorate over time in LBP patients. The strength and generalisability of these conclusions 

are, however, limited by the considerable inter- and intra-individual variation in pain sensitivity 

measures, the selectivity of recruitment and the small experimental samples included. 

Nonetheless, this work has provided a comprehensive approach to understanding the influence 

of LBP presence on pain sensitivity measures, which can easily be applied to various other 

outcomes and conditions. This work has also clarified certain aspects of the relationship 

between measures of pain sensitivity and LBP presence, suggesting these measures may be 

important in tracking fluctuations in LBP conditions and/or predicting pain and treatment 

prognosis, though future work is required to explore these potential utilities.    
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DANSK RESUME 

Lænderygsmerter har plaget mennesker i tusinde år og er i dag fortsat den største grund til nedsat 

funktionsevne blandt den globale befolkning. Den største andel af lænderygsmerter er kategoriseret 

som uspecifikke, dvs. at der ikke er en tydelig forklaring på hvorfor at smerterne opstår. På grund af 

dette har der været et øget fokus på at belyse nogle af de underliggende mekanismer, der om muligt 

kan bidrage til at lænderygsmerter udvikles. Gennem de seneste årtier har målinger af 

smertesensitivitet, såsom lokalt og udbredt smerteoverfølsomhed over for tryk 

(trykhypersensitivitet), ændringer i opfattelsen af faciliteret smertepåvirkning (Temporal summation 

of pain/TSP) og konditioneret smertemodulering (Conditioned pain modulation/CPM), fået særlig 

opmærksomhed, da disse afspejler mekanismer, der nu anderkendes at spille en vigtig rolle i 

lænderygsmerter. Et væld af studier er blevet offentliggjort inden for de sidste to årtier. Disse 

undersøger enten forskelle i smertemekanismerne mellem patienter med lænderygsmerter og 

kontrol deltagere eller hvorvidt, disse målinger kan bruges til at forudse en prognose på længere 

sigt. Desværre har resultaterne af disse studier været modstridende, og det er dermed fortsat uklart 

i hvilken grad sådanne ændringer i disse mekanismer er til stede hos patienter med 

lænderygsmerter. Desuden, rapporterer mange af studierne kun målinger af smertemekanismer på 

et enkelt tidspunkt når deltagerne allerede har smerte, hvilket gør det uklart, om målingerne ændrer 

sig over tid i forhold til udviklingen og/eller forbedringen af rygsmerten.  

Formålet med denne tese er derfor yderligere at undersøge den tidsmæssige sammenhæng mellem 

de central-medierede smertemekanismer og lænderygsmerter. Til dette formål blev der planlagt en 

systematisk litteraturgennemgang med tilhørende meta-analyse samt tre eksperimentelle studier 

planlagt og udført for netop at belyse denne sammenhæng ud fra fire forskellige vinkler. Meta-

analysen af eksisterende studier var udført for at identificere forskelle i ændringer af TSP- og CPM-

målinger blandt patienter med lænderygsmerter i forhold til kontrol deltagere, samt for at udforske 

potentielle sammenhænge mellem disse smertemekanismer og smerteintensitet eller varighed. I 

studie I blev lænderygsmerter induceret i raske og smertefrie deltagere via hjælp af en trænings-

induceret smertemodel, der fremkaldte træningsømhed i lænden. Dette gjorde det muligt at 

undersøge både hvordan smertefrie målinger kunne bruges til at forudse lænderygsmerternes 

udvikling og hvordan tryksmertetærskler (PPTs), TSP og CPM ændrer sig over en kortvarigt 

eksperimentel episode af lænderygsmerter. I studie II blev patienter med tilbagevendende 

lænderygsmerter rekrutteret sammen med matchede kontrol-deltagere. PPTs, CPM og TSP blev 

derefter målt både under en smertefuld episode og når de naturligt blev smertefrie igen. Endeligt, 

studie III involverede patienter med kroniske lænderygsmerter og her blev det forsøgt at mindske 

deres smerter ved hjælp af et trans-kranie jævnstrømsstimulerings protokol (tDCS), der var målrettet 

de hjerneregioner, der er involveret i smertemodulering og derved gør det muligt at vurdere 

ændringer i PPTs, TSP og CPM i forbindelse med ændringer i smerten. 

Foruden de primære udfald blev en række faktorer, der kunne påvirke både smerte oplevelsen og 

målingen af smertemekanismer (heraf alder, køn, kropsmasse indeks (BMI), søvn, humør, 

menstruation, angst, smertekatastrofetænkning og fysisk aktivitet) registreret over tid i alle 

eksperimentelle studier (I-III). Disse faktorer viste dog sjældent signifikante forskelle mellem de to 



X 

grupper (patient og kontrol) eller mellem de smertefulde og smertefrie episoder. En række kliniske 

variabler blev også registreret for patienterne med lænderygsmerter over studieperioderne. Disse 

inkluderede intensiteter, ubehagelighed, varighed, kvalitet, og område af smerte og relateret 

funktionsniveau (Studier I-III). Som forventet varede smerter over længere tid og forårsagede en 

større grad af funktionsnedsættelse blandt patienterne med kliniske lænderygsmerter i forhold til de 

kontrol-deltagere med eksperimentelt-induceret lænderygsmerter. Dog var smerte-intensitet, -

ubehag og -område forholdsvis sammenlignelige mellem grupperne under de smertefulde episoder 

(Studie I-III).  

Meta-analysen demonstrerede overordnede tydelige forskelle i TSP og CPM mellem patienter med 

lænderygsmerter og kontrol deltagere, selvom størrelsen af disse forskelle var forholdsvis små. 

Desuden var ændringer i TSP svagt relateret til smerteintensitet, mens reduceret var relateret til 

både smertevarighed og smerteintensitet. Studie I viste, at mild eksperimentelt-induceret 

lænderygsmerter fremkaldte både en lokal og udbredt trykhypersensitivitet, men disse var ikke 

intense eller langvarige nok til at forårsage væsentlige ændringer i TSP eller CPM væsentlig. Dog 

viste TSP ved start, uden smerte, nogen sammenhæng med intensiteten af de udviklede 

lænderygsmerter. Studie II viste, at patienter under en episode af tilbagevendende lænderygsmerter 

også udviste lokalt og udbredt trykhypersensitivitet samt øget TSP sammenlignet med kontrol-

deltagerne, men at dette normaliseret i en smertefri periode. I modsætning til dette var CPM generelt 

reduceret hos dem med tilbagevendende lænderygsmerter uanset smertestatus når disse blev 

sammenlignet med kontrol-deltagere. Endeligt, viste studie III lignende ændringsmønstrer i både 

tryksensitivitet og TSP i forhold til smerte status som i studier I-II. Dog forblev CPM uændret blandt 

denne patientgruppe under hele undersøgelsesperioden. Desværre var den valgte tDCS protokol 

ineffektiv, hvilket måske kan skyldes en allerede fungerende smerteinhiberende mekanisme (CPM) 

blandt denne gruppe. 

Samlet set antyder resultaterne fra denne tese, at både en lokal og udbredt trykhypersensitivitet 

primært er en konsekvens af lænderygsmerternes tilstedeværelse. På trods af at TSP, til en vis 

grad, kan bruges som prædiktiv faktor i forhold til prognosen, når denne måles/vurderes under en 

smertefri tilstand/episode, ser det ud til, at den observerede facilitering hos patienterne er en følge 

af de vedvarende smerter. CPM virkede derimod mindre påvirket af smerternes tilstedeværelse og 

syntes i stedet at forværres over tid hos patienterne med lænderygsmerter. Styrken og 

generaliserbarheden af disse konklusioner er dog begrænset af den betydelige inter- og intra-

individuelle variation i målingerne, selektiviteten af rekruttering og de få deltagere inkluderet. Ikke 

desto mindre har dette arbejde betydeligt øget forståelse af, hvordan lænderygsmerters 

tilstedeværelse kan påvirke eller influere på forskellige målinger, der på lignede vis let kan overføres 

og anvendes til at undersøge andre målinger eller andre sygdomstilstande. Denne tese har således 

afklaret visse aspekter af forholdet mellem forskellige målinger af smertemekanismer og det 

tidsmæssige perspektiv af lænderygsmerternes tilstedeværelse, hvilket tyder på, at disse målinger 

kan være vigtige for at spore ændringer og/eller forudsige smerte og behandlingsprognose. 

Yderligere forskning er dog nødvendigt for netop at undersøge disse potentielle anvendelser. 
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CHAPTER 1. A BRIEF INTRODUCTION TO 

PAIN SENSITIVITY IN LOW BACK PAIN 

Low back pain (LBP) has been plaguing humans for thousands of years, with back pain 

management guidelines being discovered in Ancient Egypt from as early as 1600BC336. 

However, it is only in relatively recent times that a concerted research effort has been made to 

quantify the extent and impact of this condition. In 2017, the Global Burden of Diseases 

study67,359 estimated the global point prevalence of disabling LBP at 8.5%, making it the world’s 

leading cause of Years Lived with Disability. As a condition, it represents a significant source 

of economic burden, on the basis of increased health-care utilisation and lost productivity186,189, 

even when best-practice guidelines are followed177, not to mention obvious negative personal 

consequences.  

1.1. DEFINING & CLASSIFYING LOW BACK PAIN 

For many years, researchers have debated how to best define and classify the heterogeneous 

population reporting pain in the lower back region35,66,167,244. In its simplest form, one defines 

LBP as the presence of pain in the lower portion of the posterior trunk, demarcated superiorly 

by the inferior costal margin and inferiorly by the gluteal fold66. However, LBP can often be 

accompanied by pain radiating down into the legs, by pain from the thoracic and cervical 

regions, or by widespread pain symptoms. Beyond spatial extent, LBP conditions are also often 

classified based on their temporal pattern. Like most painful disorders, the usual distinction 

between acute and chronic LBP is three months, but the commonly recurring nature of LBP123 

has led to more nuanced classifications on the basis of episode frequency, severity, duration 

and care-seeking behaviour135,227,306.  

LBP may also be classified on the basis of presumed source or cause, potential underlying 

mechanisms, or symptom clustering210,238,261,264,285. However, even with the advent of advanced 

imaging techniques and diagnostic testing, there is often unclear correlation between 

symptomatology and identified structural and biochemical abnormalities40. In rare cases (<1%), 

a serious underlying pathology exists119, and LBP is thus attributed to a diagnosis of cancer, 

vertebral fracture, infection or neurological compromise. The majority of remaining cases, 

however, are generally termed non-specific, meaning that a definite source or 

pathophysiological mechanism remains elusive187; and hence, classification is instead based 

on movement patterns, patient history or other clinical testing.  

1.2. UNDERSTANDING THE ROLE OF HYPERSENSITIVITY 

One avenue of interest among pain researchers in recent decades, following the discovery of 

a ‘plastic’ central component in pain163,357, has been the quantification of sensitisation, 

especially in central pain processing mechanisms in patients with painful conditions. This 

sensitisation is often used to explain the discordance between clinical pain reports and 
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observable injury severity, especially in chronic pain conditions. As a result of the lack of clear 

pathophysiological explanation for most patients with LBP, researchers in this field have also 

moved focus away from biomechanical or structural explanations and instead started exploring 

the role of sensitisation, by way of sensory testing. As such, alterations in central pain 

processing mechanisms underlying hypersensitivity, in conjunction with psychosocial factors, 

are now commonly speculated to contribute to LBP development and/or maintenance114, 

though empirical support for this is lacking. 

Sensory testing has been implemented for over a century now326. Nonetheless, the advent of 

standardised testing batteries and development of measures to assess ‘dynamic’ central pain 

processing mechanisms (e.g. temporal summation of pain (TSP) and conditioned pain 

modulation (CPM)) have produced a surge in publications looking at potential diagnostic, 

discriminative and prognostic value. In particular, many cross-sectional studies have been 

performed, generally showing some degree of hypersensitivity (enhanced TSP or impaired 

CPM) in patients with pain when compared to pain-free control participants173,230. At the outset 

of this thesis, however, there was little consensus on whether these mechanisms were actually 

altered in LBP patients specifically. As well, the temporal relationship between LBP experiences 

and possible alterations observed in TSP and CPM was not established. It could be that some 

individuals are at greater susceptibility to developing recurring or persisting LBP due to inherent 

differences in these mechanisms, opening up for predictive and preventative utility, or it could 

be that the alterations observed are a consequence of ongoing pain. 

1.3. AIMS AND HYPOTHESES OF THIS THESIS 

This thesis aimed to clarify the relationship between LBP presence and alterations in pain 

sensitivity measures, with the hope of elucidating whether these alterations are consequential 

to LBP or are maintained despite pain recovery or reduction. More specific objectives were to: 

I) Clarify the existence and magnitude of alterations in pain sensitivity (i.e. TSP 

and CPM) among LBP patient populations in comparison to pain-free controls 

or reference data (Systematic Review & Study II). 

II) Examine the effect of inducing LBP experimentally on pain sensitivity measures 

(i.e. pressure pain thresholds, TSP and CPM) within-individuals (Study I). 

III) Examine the impact of clinical LBP resolution (Study II) or reduction (Study III) 

on pain sensitivity measures within-individuals. 

IV) Compare pain sensitivity between LBP patients and control participants when 

clinical pain is absent (Study II).  

It was hypothesised that when LBP of any kind was present and/or more severe, patients would 

show hypersensitivity to pressure, enhanced TSP and impaired CPM compared to measures 

taken when individuals were pain-free, as well as compared to pain-free control participants.   
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Figure 1-1 Conceptual schematic of the work contained in the present thesis. A systematic review 
and meta-analyses was used to identify if alterations in central pain processing measures were present 
in patients with LBP, then the temporal relation of these alterations to the presence of LBP was probed 
using experimental provocation of LBP (Study I), observation of naturally fluctuating recurrent LBP 
(Study II) and experimental modulation of chronic LBP (Study III). Note: *indicates that these outcomes 
were only included in experimental studies, not the Systematic Review.  
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CHAPTER 2. PROBING TEMPORAL 

ASPECTS OF HYPERSENSITIVITY  

2.1. APPROACHING TEMPORAL RELATIONSHIPS BETWEEN 
PAIN AND HYPERSENSITIVITY 

The current thesis takes four different approaches to investigating how pain sensitivity 

measures and the experience of LBP relate over time. This includes cross-sectional, forward 

provocatory, observational, and backward modulatory methods (Fig 1-1). In theory, this should 

then provide a comprehensive depiction of how alterations in pain processing mechanisms 

relate to state (the presence and characteristics of pain during testing) and/or trait (the clinical 

characteristics of the condition) features of LBP.  

2.1.1. COMPARING CROSS-SECTIONAL DATA  

In the past decade, many studies have emerged comparing patients with LBP to pain-free 

individuals across various measures of pain sensitivity. Surprisingly, however, prior to 2019 no 

large-scale collation and comparison of these studies had been performed. In the first instance, 

meta-analysis of case-control data can provide an indication as to whether pain sensitivity 

measures are altered in patients with LBP and to what extent. Further, when data is available 

for patients in different temporal classifications (i.e. acute, recurrent, chronic) or with differing 

pain durations, the existing literature provides the possibility to perform sub-group and 

correlational analysis, allowing greater insight into theoretical temporal alterations. Although 

this type of analysis comes with many limitations, such as: differing methodologies and 

definitions used between studies, the need to transform variables for comparison, missing or 

unavailable data, and use of group-level outcomes; it still allows broad conclusions to be drawn. 

This approach was used in this thesis as part of a systematic review and meta-analysis on TSP 

and CPM in LBP patients.  

2.1.2. INDUCING EXPERIMENTAL LOW BACK PAIN  

Without large-scale long-term prospective cohort studies of initially pain-free individuals, it is 

challenging to capture patients before they develop a painful condition. However, gaining 

insight into how patients appeared before they had pain is critical to understanding what 

aspects of altered pain sensitivity may precede, coincide with and/or be a consequence of the 

condition. In this way, experimental models of pain offer a unique possibility to track individuals 

before, during and following an ‘episode’, allowing one to test both the impact of pain presence 

on different measures of pain sensitivity, as well as the impact of baseline variation in sensitivity 

on the extent of pain developed.  
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A number of experimental pain models exist, some of which involve injection or application of 

different chemical substances18,102,115,209,342 like hypertonic saline, serotonin, bradykinin, 

capsaicin cream or nerve-growth factor, and some of which involve endogenous production of 

noxious substances through ischemia or over-exertion9,98,104,272,325. Each model has 

advantages and disadvantages in terms of administration complexity, location and/or tissue 

specificity, duration of pain induced, and concurrent elicitation of clinical features. In the present 

work, the desire was to mimic an episode of acute LBP, thus the model needed to produce 

deep-tissue pain, preferably exacerbated by movement, that could be maintained for several 

days. For this reason, delayed onset muscle soreness/pain (DOMS) as is induced by 

performing unaccustomed eccentric exercise to fatigue, was the obvious choice. Prior studies 

have used this approach to produce DOMS in the lower back162,180 and have shown it to mimic 

mild LBP producing some degree of LBP-related disability30. This was employed in Study I of 

this thesis (Fig 2-1, summarised in Appendix A). 

 
Figure 2-1 
Illustration of 
Study I design 
with fatiguing 
exercise 
performed on Day 
0 aiming to induce 
experimental LBP 
(shown as yellow 
curve) by the 
session on Day 2 
and full recovery 
by Day 7 
 

 

2.1.3. USING RECURRENCE AS A PAIN MODEL 

Another way to probe temporal relations between LBP and pain sensitivity, or at least to probe 

the impact of pain presence on measures of pain sensitivity, is to select patients who present 

with defined painful and pain-free periods. This allows one to study the effect of clinical pain 

within-individuals over time. Naturally, recurrent LBP patients represent a perfect population for 

this type of investigation, with these patients commonly experiencing pain lasting for several 

days to weeks, followed by weeks to months of near-complete recovery. Several challenges 

with this approach are apparent; namely the difficulty of standardising testing intervals due to 

varying painful episode lengths, the inability to randomise painful and pain-free sessions due 

to the unpredictable nature of recurrent pain, and the general heterogeneity of LBP conditions. 

However, in part these challenges can be overcome by highly selective recruitment of patients 

with estimable pain episode trajectory and the use of age- and gender-matched control 

participants over a comparable time interval. As such, this study design is clearly advantageous 

in allowing for both within- and between-individual comparisons to determine the effect of an 

authentic clinical pain experience on measures of pain sensitivity. This approach was used in 

Study II of the current work (Fig 2-2, summarised in Appendix A).  
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Figure 2-2 Illustration of 
Study II design with 
control participants 
(top) compared to 
RLBP patients (bottom) 
during a painful 
episode (Day 0, pain 
represented by orange 
curve) and once 
recovered to pain-free 
(Day 28) 
 

 

2.1.4. MODULATING CHRONIC PAIN 

Another approach to investigating temporal relationships between LBP and pain sensitivity is 

to take a relatively stable chronic pain condition and attempt to modulate it. This would allow 

one to track changes in both pain and hypersensitivity simultaneously over time, and thus 

gain insight into their possible co-variation. As such, in Study III of the current work, CLBP 

patients were recruited and tracked over an extended period during the application of an 

active and a sham high-definition transcranial direct current stimulation (HD-tDCS) paradigm, 

aimed at improving anti-nociceptive pain mechanisms and thus potentially reducing pain. By 

using a crossover design, sample size requirements are minimised and changes in clinical 

and pain sensitivity measures between conditions and over time can be compared without the 

added influence of between-group variation (Fig 2-3, summarised in Appendix A).  

 

Figure 2-3 
Illustration of 
Study III with 
CLBP patients  
receiving both 
Active and Sham 
tDCS targeted to 
the PFC/ACC, 
with the aim to 
improve pain 
modulation (Day 
1-21 repeated in 
randomised 
cross-over) 
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2.2. SUMMARY 

The present thesis details four approaches to understanding the effect of LBP on measures of 

pain sensitivity, including: meta-analysis of existing cross-sectional data, induction of 

experimental LBP in pain-free individuals, comparing painful and pain-free periods in RLBP 

patients and modulating CLBP symptomatology. In order to have an overview of these 

approaches and see the broader effect of present LBP on clinical and pain sensitivity measures 

across the experimental studies (I-III), throughout the thesis, a representative painful and pain-

free or pain-reduced session has been selected for each LBP group. This is summarised in 

Figure 2-4, where an overall visual depiction of the different experimental timelines is shown, 

and the representative sessions included in the primary outcome analyses throughout the 

remainder of the thesis are highlighted.  

 

 

Figure 2-4 Study designs, split into participant groups, are overlayed to indicate temporal 
differences in painful and pain-free (Studies I-II) or pain-reduced (Study III) assessment sessions, 
as used for comparison throughout the present thesis. Note: Coloured curves represent pain profiles, 
coloured dots represent painful sessions, black dots indicate pain-free sessions, grey dots with dashed 
borders indicate sessions in which a full assessment was conducted, for which data can be seen in the 
individual study manuscripts and/or their supplementary materials.  
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CHAPTER 3. INDIVIDUAL & CLINICAL 

CHARACTERISTICS AND CONFOUNDERS 

To accurately interpret the findings from the present experimental studies, it is imperative to 

understand both the characteristics of the included participants and the features of the LBP 

conditions being assessed. Hence, demographic information was collected from all included 

participants, and various measures were used to capture the severity, distribution and type of 

pain, as well as the impact it had on participants, both in terms of disability and care-seeking 

behaviour, among those with LBP conditions. As several contextual factors have also been 

shown to influence both LBP and pain sensitivity, these potential confounders were captured 

using various questionnaires. This chapter presents an overview of these characteristics.   

 

3.1. GENERAL SAMPLE CHARACTERISTICS 

3.1.1. PARTICIPANT SCREENING  

To be able to draw conclusions about the relationship between pain sensitivity and LBP, it is 

essential to select suitable experimental participants both with and without clinical pain. 

Although seemingly simple, the quality assessment of the Systematic Review highlighted that 

many prior cross-sectional studies did not use adequate screening procedures to exclude 

individuals with prior histories of LBP in control groups, nor provide complete definitions or 

characterisations of LBP on testing in LBP groups. For this reason, strict inclusion and 

exclusion criteria were used in all present experimental studies (I-III, Table 3-1). All criteria were 

screened on recruitment and reconfirmed via clinical anamnesis and physical exam in the first 

session. While these strict criteria aid the strength of conclusions on effects of pain presence 

for the studied populations, they do notably also introduce potential generalisability issues.  

Table 3-1 Inclusion and exclusion criteria for Studies I-III 

 Study I & Study II (Healthy) Study II (Recurrent LBP) Study III (Chronic LBP) 

General Aged 18-60 years; Able to read, write and understand English 

Location No history of significant LBP 

No history of chronic or 
recurrent pain conditions  

No recent acute lower limb pain  

Primary complaint of pain in low back (defined as between 
inferior costal margin and inferior gluteal fold) 

No history of other chronic or recurrent pain conditions 
No recent acute lower limb pain  

Duration No LBP lasting >24 hours not 
due to unaccustomed exercise 
No other injuries past 6 months 

LBP for >24 hours, <3 months 
Present in first session but 
expected to resolve <4 weeks  
>1 previous episode past year 

LBP for >3 months 
Continuously present (>3 
days/week) since onset 

Present in first session 

Intensity VAS = 0 VAS>1/10 on testing VAS>3/10 on average  

Impact No activity limitation Pain sufficient to impact daily activity 

Other  No neurological, musculoskeletal, cardiorespiratory or mental disorders; Not currently or planning to 
be pregnant; No substance abuse; No regular medication use (Inclusive analgesics, exclusive 
contraceptives); No analgesic use in 24 hours prior to testing; Not currently seeking treatment for 
any condition (Inclusive LBP) 



TEMPORAL CHANGES IN PRO-NOCICEPTIVE AND ANTI-NOCICEPTIVE MECHANISMS IN RELATION TO THE 
EXPERIENCE OF LOW BACK PAIN 

10
 

3.1.2. DEMOGRAPHIC DETAILS 

Much of the literature reports variation in pain sensitivity measures and incidence of pain 

conditions based on inherent individual factors, such as age, gender and body mass index. 

Typically advancing age173,215, female gender276,289,299 and high BMI124,311,360 are associated 

with increased rates of pain complaints and altered pain sensitivity. As a result, it seemed 

pertinent to record and report these factors in all studies and to try to control for them in Study 

II as potential between-group confounders (Table 3-2). It is noteworthy, however, that in the 

present experimental studies all participants were relatively young (18-45 years). Perhaps even 

younger than expected for typical RLBP and/or CLBP patient populations, which may suggest 

this sample represents an earlier stage of LBP with milder symptomatology than much of the 

existing literature. As well, despite slightly higher average weight in LBP groups, BMI was within 

normal limits in most participants with no statistical group differences observed (Appendix C).  

Table 3-2 Demographic Characteristics of All Participants in Experimental Studies 

 Study I (Healthy) Study II (Healthy) Study II (RLBP) Study III (CLBP) 

Recruited & tested 30 30 30 12 

Age 24.5  4.5 27.3  5.5 27.3  5.4 28.6  5.9 

Height 173.8  11.8 170.9  9.9 175.6  11.2 172.6  9.4 

Weight 72.1  15.6 68.1  12.3 75.2  16.3 75.4  16.1 

Gender 14 men: 16 women 16 men: 14 women 16 men: 14 women 3 men: 9 women 

Included in main 
analysis (reason 
for exclusions) 

24 (excl. 6 due to 
no pain on Day-2) 

30 26 (1 drop-out, 
excl. 3 with 

ongoing pain at 
Day-28) 

12 (1 missing final 
follow-up session) 

 

3.2. LOW BACK PAIN CHARACTERISTICS 

3.2.1. PAIN RATINGS 

The International Association for the Study of Pain (IASP) definition of pain states that it is both 

a “sensory and emotional experience…” As such, many have used subscales of intensity and 

unpleasantness, to capture and quantify these distinct aspects of the pain experience. In the 

present work, participants were instructed using a sound analogy adapted from Price258, in 

which pain intensity is analogous with volume, whereas unpleasantness becomes dependent 

on other personal or preferential and evaluative factors. These features were evaluated on two 

separate Visual Analogue Scales (VAS) anchored at 0cm as ‘no pain/unpleasantness’ and 

10cm as the ‘worst pain/most unpleasant sensation imaginable’. The VAS as a numerically 

anchored ratio scale was initially validated in both healthy and chronic pain populations45,256,258, 

and has since been used extensively to quickly capture pain severity. In Studies I-III, current 

pain intensity and unpleasantness ratings were recorded at every assessment session, while 

an overall pain severity score was collected in home diary measures. Interestingly, when 

comparing LBP rating data across studies (Appendix C), mean current pain intensity ratings 

were surprisingly similar, at around 2.5-3/10, though considerable inter- and intra-individual 

variability in LBP over time was observed in pain diaries (Studies I-III, Figure 3-1, Table 3-3). 
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3.2.2. PAIN DISTRIBUTION 

Body schematics from the Navigate Pain application (Algance Solutions & Aalborg University) 

were used to capture the spatial extent of LBP. Participants were instructed to draw in different 

ways depending on the study purpose. In study I, participants were instructed to draw the areas 

in which they felt pain or soreness during tasks involving back muscle activity, such as forward 

bending and lifting (as DOMS rarely causes resting pain). In study II, RLBP patients were asked 

to draw their pain area both relaxed at rest and during provocative back movement. In study 

III, CLBP patients were asked to draw their pain area sitting at rest in a chair during each 

session. Due to these slight variations in instruction, direct comparison of pain areas between 

studies is not possible, though overlays of individual participants’ pain areas for each study are 

shown in Figure 3-1. From these diagrams, it is readily apparent that pain in the DOMS model 

extended beyond the lower back, with some participants also reporting pain in e.g. the 

hamstrings and calves, which was rarely the case in the clinical populations. This is 

unsurprising given that the movement performed to fatigue also places a large amount of strain 

on the gluteal and posterior leg muscles. On the contrary, especially female participants in the 

RLBP and CLBP groups commonly drew pain extending upward into the shoulders and neck, 

which may be a protective consequence of clinical LBP, due to stiffening of the trunk in order 

to reduce movement128.  

 

Figure 3-1 Pain diaries from each experimental study (I-III) illustrating individual participant 
reports (grey) and group mean ( SEM, black) data over the study period, mean (+SEM) pain 
intensity and unpleasantness ratings for each LBP group in a selected painful and pain-free 
session, and overlays of all participant’s pain distributions from the first painful session for each 
LBP group (colour-coded). Note: Painful session data is from Study I Day 2, Study II Day 0, and Study 
III Day 1; non-painful or pain-reduced data is from Study I Day 1, Study II Day 28, and Study III Day 24. 
Not all participants represented at all time-points due to missing or partially completed diaries.  
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3.2.3. PAIN QUALITY  

As pain is a highly individual and thus variable experience, in all studies, the 72-word table of 

the McGill Pain Questionnaire was used to record a depiction of each individual’s pain. Among 

these words are descriptors of sensory (e.g. pulsing, hot, sharp), affective (e.g. tiring, terrifying), 

and evaluative features (e.g. annoying). Developed in 1975, the McGill Pain questionnaire199 

has been widely used both to capture pain types among different patient groups and to monitor 

changes in pain in response to intervention. In the present work, overall scores were similar 

between clinical LBP groups, though much lower in experimental LBP and generally highly 

variable between individuals. Interestingly, ‘annoying’ came out as one of the most common 

descriptors in all LBP conditions, despite being from the evaluative subdomain which is typically 

more associated with persistent pain states270. Other common descriptors across LBP 

conditions were primarily for sensory features of pain (e.g. tight, pressing), with only CLBP 

patients commonly using affective descriptors (i.e. tiring, Table 3-3).  

Pain quality assessment is thought to be able to give an indication of potential underlying 

mechanisms. As such, in 2006 the Pain-DETECT questionnaire83 was developed as a quick 

screening tool to identify neuropathic pain components among LBP patients. Based on the 

initial validation, this questionnaire was deemed to be reliable with high specificity, sensitivity, 

and positive predictive value in identifying these features, and was hence quickly adopted in 

further research. In studies II and III, the Pain-DETECT questionnaire was used to characterise 

neuropathic features among patients with RLBP and CLBP. The original cut-off values were 

used to interpret Pain-DETECT responses, with scores above or equal to 19 indicating 

predominantly neuropathic pain features and scores below or equal to 12 indicating 

predominantly nociceptive components. In the present studies, most participants had scores 

suggesting primarily nociceptive components, with only two RLBP patients and one CLBP 

patient scoring above the threshold to indicate presence of neuropathic features (Table 3-3).  

3.2.4. PAIN-RELATED DISABILITY 

The Roland-Morris Disability Questionnaire was originally developed and deemed reliable to 

assess LBP-related disability in 1983280. It consists of 24 statements that describe daily 

activities or functions that may be negatively impacted by LBP. Generally, participants included 

in the present work demonstrated very low levels of disability on this scale, suggesting they 

may represent a mild patient group. Disability was, however, slightly higher in RLBP patients 

than that provoked by the DOMS model, and slightly higher again in CLBP patients than RLBP 

patients (Table 3-3, Appendix C). It should be noted that it was intended only to include LBP 

patients who did not have comorbidities or concurrent pain conditions in other body regions, 

which may explain why the present sample were only mildly disabled by their pain.  

The STarT-Back Screening Questionnaire (Short form) was developed as a prognostic 

screening tool to be used in primary care decision-making126. It has since had cut-off scores 

validated in external LBP populations126 and has shown similar utility to other prognostic 

screening questionnaires127. In the present work, this measure indicated mild trajectories 

among the included LBP populations with majority low risk categorisations (Table 3-3).  
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3.2.5. CARE-SEEKING BEHAVIOURS 

Participants with clinical LBP were asked a range of typical medical history questions regarding 

aggravating and easing factors, along with prior care sought (Table 3-3). All patients displayed 

mechanical aggravation of LBP on either specific movements or prolonged positioning, and 

most reported improvement with rest. Every participant with CLBP had sought some form of 

care previously (either medical or allied health), whereas only half of RLBP patients had done 

so. Further, a greater proportion of CLBP patients had obtained medical imaging of the spine 

(typically with plain x-ray or MRI) and trialled analgesic medication than RLBP patients. 

Although quality of life was not assessed in the current work, these reports naturally suggest a 

greater negative impact of pain and higher medicalisation of CLBP than RLBP.  

Table 3-3 Clinical Characterisation of Low Back Pain in Experimental Studies based on Patient History 
and Questionnaire data collected in First Painful Session 

  Study I (DOMS) 
Day 2 (n = 24) 

Study II (RLBP) 
Day 0 (n = 26) 

Study III (CLBP) 
Day 0 (n = 12) 

P
A

IN
 R

A
T

IN
G

S
 Pain Intensity (VAS, cm): 

- Current at time of testing 
- Maximum* 

 

2.9  1.8 

4.1  2.0 

 

2.7  1.5 

5.8  2.2 

 

2.6  2.0 

3.8  1.3 

Pain Unpleasantness (VAS, cm): 
- Current at time of testing 
- Maximum* 

 

2.9  2.4 
- 

 

4.0  1.8 

6.6  2.0 

 

3.2  2.3 

4.0  1.6 

C
L

IN
IC

A
L

 F
E

A
T

U
R

E
S

 

Pain Duration: 
- Current episode duration 
- Age at initial onset (years) 

 

3.3  1.2 days 
NA 

 

12.3  15.9# days 

19.7  5.4 

 

5.3  2.6#¤ years 

23.3  6.6 

Aggravating Factors: 
- Prolonged sitting/standing 
- Flexion 
- Extension 

 
- 

 
73% (19) 
23% (6) 
58% (15) 

 
50% (6) 
50% (6) 
50% (6) 

Easing Factors: 
- Exercise 
- Rest 
- Simple analgesics 

 
- 

 
46% (12) 
100% (26) 
19% (5) 

 
40% (5) 
67% (8) 
33% (4) 

Prior Care/Treatment: 
- General Practitioner 
- Physiotherapist/Chiropractor 
- Imaging 
- Massage 
- Medication 

 
- 

 
23% (6) 
46% (12) 
19% (5) 
12% (3) 
23% (6) 

 
67% (8) 
50% (6) 
58% (7) 
25% (3) 
50% (6) 

STarT-Back Screening Tool: 
- Total Score (/9)  
- Categorisation (Low/Med/High) 

 
1 (2) 

23 / 1 / 0 

 
2 (2) 

22 / 4 / 0 

 
3 (2) 

7 / 4 / 1 

McGill Pain Quality Descriptors: 
- Total score 
- Most common descriptors (n) 

 

9.1  6.4 
Annoying (13), sore 

(11), tight (9) 

 

20.2  10.3# 
Annoying (13), sharp / 

shooting / pressing (10) 

 

18.2  8.7# 
Tight (7), annoying / 

tiring (6) 

Pain-DETECT: 
- Total score 
- Category (Noci/Unclear/Neuro) 

 
- 

 
10.5 (9) 
15 / 9 / 2 

 
9 (2.5) 

10 / 1 / 1 

Roland-Morris Disability 
Questionnaire: 

1.5 (1.5) 3.5 (3.5) 5 (3) 

*DOMS and RLBP current episode, CLBP in past 24 hours; Difference between-groups to DOMS# or RLBP¤ (P<0.05)  
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3.3. CAPTURING CONFOUNDERS 

All observations of psychophysical outcomes, including pain sensitivity measures, come with a 

range of possible confounding influences. It is well-known that various factors, such as 

sleep77,116,143,269,296, hormonal cycles117,273,277,350, mood72,339, anxiety96,202,331, pain 

catastrophizing353 and physical activity levels118,216,275, can impact an individual’s experience of 

pain. As such, it was not the intention of the present thesis to explore neither the effect of these 

factors on clinical pain, nor their association to pain sensitivity, hence the individual studies are 

not appropriately powered for this type of analysis. Instead, these factors were captured 

primarily to allow for better attribution of observed pain sensitivity findings to changes in LBP 

condition; i.e. to exclude the possibility that differences in pain sensitivity measures between 

sessions were due to changes in these factors and not to pain. A brief summary of relevant 

findings is provided here for context, but more detailed descriptions of the rationale for 

assessing these factors, the specific measures used, an overview of the validity of those 

measures and the general findings are provided in Appendix B. In addition, details of analyses 

conducted between studies are provided in Appendix C.  

Generally, no differences were noted for mood between sessions or groups, and females were 

approximately randomly distributed between menstrual phases in each session. For CLBP 

patients, slightly shorter sleep duration was reported prior to the reduced pain session (Table 

3-4) but no differences were noted overall between groups. Although no significant group 

differences were noted in number of nightly awakenings, a greater proportion of RLBP patients 

reported at least one awakening (Table 3-4). Sleep disturbance is commonly reported among 

LBP populations116,143,192 and may even be a risk factor for LBP development341, though 

objective sleep measures (e.g. actigraphy) have shown less clear differences233,335. 

For RLBP patients (Study II), positive affect, state anxiety and pain catastrophizing were slightly 

higher during the first painful session compared to when pain-free, though not different to 

control participants in either session (Table 3-4). On the contrary, for experimental LBP (Study 

I) pain catastrophizing scores were lower during the painful session compared to when pain-

free (Table 3-4). As pain catastrophizing scores were not different between controls and the 

different clinical LBP populations overall, this contrasting finding between LBP conditions might 

indicate that participants, who had temporary pain present at the time of testing, related 

cognitions directly to that specific pain (i.e. experimental or recurrent LBP) rather than to pain 

in general, as the scale instructs. These findings would then aptly reflect that RLBP episodes 

are unpredictable and threatening by nature, whereas DOMS is familiar (to most) and thus of 

predictable severity, provocation (i.e. on movement), and time course.  

Of note, healthy participants in Studies I and II tended to report lower physical activity levels 

than RLBP and CLBP patients from Studies II & III, and RLBP patients had higher mean activity 

prior to the painful session than the pain-free session (Table 3-4). This could reflect two 

scenarios: firstly, it could indicate that LBP was present and/or exacerbated by periods of high 

physical activity and resolved with reductions in this factor. However, this seems unlikely given 

most patients did not report exercise or activity as an aggravating factor (on the contrary many 
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reported prolonged static postures to be most aggravating), and when interviewing patients 

very few described undertaking laborious work or frequent exercise training. Alternatively, this 

could be an overestimation reflective of perceptual differences about effort when in pain versus 

not, whereby patients categorise more activities as more vigorous when in pain. The latter 

would be consistent with prior studies showing LBP patients to be more inaccurate at reporting 

physical behaviour286, and showing associations between subjective, but not objective, physical 

activity levels and musculoskeletal pain220.   

Table 3-4 Baseline Questionnaire Characterisation of Participants across all experimental studies from 
one painful and one pain-free (or less painful) session presented as mean  standard deviation or 
median (interquartile range).  

Note: NP = no pain, LP = less pain, NA = not assessed. *denotes significant between-sessions difference, #denotes 

difference from DOMS group, details of outcome measures provided in Appendix B and analysis in Appendix C. 

 

  Study I (Healthy) Study II (Healthy) Study II (RLBP) Study III (CLBP) 

  N = 24 N = 30 N = 26 N = 12 

  Pain  
(Day2) 

NP 
(Day0) 

NP 
(Day0) 

NP 
(Day28) 

Pain  
(Day-0) 

NP 
 (Day28) 

Pain 
(Day1) 

LP 
(Day24) 

S
L

E
E

P
 

Sleep time (Hours 
slept on night prior 
to testing) 

6.71.4 7.21.0 7.30.9 6.90.8 7.51.2 7.31.6 6.71.2 7.71.1* 

Awakenings 
(Number of nightly 
awakenings on night 
prior to testing, and 
%>0) 

0 (1.25) 
42% 

0 (1) 
42% 

0 (1) 
43% 

0 (1) 
40% 

1 (1) 
62% 

1 (2) 
70% 

1 (1.25) 
58% 

0 (1) 
33% 

M
O

O
D

 

Face scale (Mood at 
time of testing) 

3 (4) 2.5 (3) 3 (2.75) 4 (4) 4 (3.75) 3.5 (3.75) 3.5 (4.25) 5.5 (4) 

Faces scale (Mood 
week prior to test 
session) 

3.5 (4) 3 (4) 4 (4) 3 (5) 3.5 (4.75) 3.5 (4.75) 5 (3.5) 4.5 (3.25) 

PANAS (Positive 
affect score) 

NA NA 30.16.4 29.17.2 30.85.9* 27.77.7 26.57.8 22.810.4 

PANAS (Negative 
affect score) 

NA NA 12.7  3.2 13.0  3.2 14.2  4.9 12.9  2.8 12.9  3.1 11.9  2.5 

BDI (Total Score) NA NA NA NA NA NA 8.1  3.8 NA 

A
N

X
IE

T
Y

 

STAI (State anxiety 
score) 

NA NA 30.87.9 32.49.6 34.28.6* 31.37.2 34.98.4 39.711.2 

STAI (Trait anxiety 
score) 

NA NA 36.68.3 36.27.9 37.98.2 37.38.7 41.26.1 41.67.8 

PCS (Total score) 8.87.3 13.58.8* 12.98.6 13.59.6 
15.5 

9.0*# 
11.88.0 13.98.2 13.510.7 

A
C

T
IV

IT
Y

 

IPAQ (Sitting time, 
estimated on a 
normal weekday) 

NA 
387.5  
143.7 

451.2  
182.1 

454.2  
167.5 

360.2  
207.3 

405.4  
224.5 

385.0  
206.6 

NA 

IPAQ (Activity, MET-
minutes/ week, 
estimated for week 
prior to testing) 

NA 
3985 
3438 

4218  
3885 

4002  
3667 

5996  
5494 

4908  
5095 

6100  
4399 

NA 
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3.4. SUMMARY 

Clinical characteristics, including pain intensity, unpleasantness, duration, related disability, 

quality, and distribution, were captured among both experimental and clinical LBP groups using 

validated self-report scales and applications. All LBP groups reported similar pain intensity and 

unpleasantness within the painful session, with pain mostly localised to the lower back region. 

Pain duration was obviously different between LBP conditions, as would be expected from 

inclusion requirements, and pain quality scores were higher for clinical LBP groups. Disability 

levels were generally very low but followed the expected trend with experimental LBP less 

impactful than RLBP, and CLBP patients showing most impact. Similarly, care-seeking 

behaviour, along with prior imaging and analgesic use, was higher in CLBP than RLBP patients.  

Various factors could potentially contribute to the differences seen in the primary outcomes of 

this thesis. Individual characteristics, including age, gender, BMI, sleep, menstruation, mood, 

anxiety, pain catastrophizing, and physical activity, were captured in the present work using 

common validated self-report measures. All participants, including patients with LBP, were 

young with predominantly normal BMI. Most factors did not differ significantly between 

experimental groups, suggesting they are unlikely to confound between-group findings 

presented throughout the thesis. Small differences were noted, between sessions for the RLBP 

group, in positive affect, state anxiety and pain-related catastrophizing, indicating that this may 

play some role in identified between-session differences, which is discussed where relevant in 

subsequent chapters.
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CHAPTER 4. LOCAL AND WIDESPREAD 

PRESSURE PAIN SENSITIVITY 

To assess whether experimental LBP (Study I), RLBP (Study II) and CLBP (Study III) presence 

was associated with local and widespread hypersensitivity to pressure, the present work 

assessed pressure pain thresholds using both handheld and computerised-cuff methods at an 

array of body locations. This chapter discusses conceptual aspects of pain threshold 

assessment, methodological considerations, and findings from the experimental studies (I-III) 

for these measures.  

4.1. ASSESSING BASAL PRESSURE PAIN SENSITIVITY 

Pain thresholds have long been used as a probe to investigate sensitivity to sensory stimuli, 

allowing for comparison between body sites and tissues, between individuals and over time in 

response to interventions. As early as 1959 researchers were questioning whether such pain 

thresholds would ever be of clinical value218. Despite this, investigations have continued for 

more than six decades now across a broad range of stimuli and are beginning to show 

potential11,92. In chronic pain populations, reduced pain thresholds at both local and remote 

sites to the painful region, i.e. local and widespread pressure hypersensitivity, are commonly 

demonstrated in cross-sectional studies11. In patients with LBP190,235 and other painful 

conditions42,300, these alterations have generally been considered consequential to ongoing 

pain, though there is also evidence that high pain sensitivity may have predictive110,291,348 and 

prognostic value92 in some circumstances.  

With regard to stimulus type, mechanical stimuli have been of particular interest in LBP 

populations, with pressure hypersensitivity consistently demonstrated in comparison to pain-

free populations at both local and remote sites62. In fact, in this thesis, the focus has been 

exclusively on sensitivity to painful pressure for several reasons. Firstly, this was deemed to be 

the most relevant to LBP, as both handheld and cuff pressure algometry can better assess 

sensitivity of the deep musculoskeletal structures78,188 thought to be involved in pain generation. 

Especially cuff compression has been shown to produce considerable strain in deep tissues, 

and evoke pain even in the absence of cutaneous nociception255. Pressure pain thresholds 

have also previously been reported to have high discriminative ability for identifying 

hypersensitivity in CLBP patients221.   

4.1.1. PAIN DETECTION VERSUS PAIN TOLERANCE 

Pain detection thresholds, in this thesis, were defined as the lowest intensity at which a stimulus 

was first perceived to be painful. Pain tolerance thresholds, on the contrary, were defined as 

the intensity at which the participant could no longer tolerate further increases in stimulus 

intensity.  These perceptual thresholds are well-known to be influenced by a range of individual 

state and trait factors149,194,198. They also intuitively seem to represent different constructs, 
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whereby detection thresholds may be more reflective of nociception and sensory factors, and 

tolerance thresholds more reflective of cognitive and evaluative processes87. In the present 

work, detection thresholds were assessed using handheld algometry bilaterally at five sites and 

using cuff algometry bilaterally on the lower legs. Tolerance thresholds were then only 

assessed with cuff algometry on the lower legs.  

4.1.2. METHODOLOGICAL CONSIDERATIONS 

When assessing pressure pain sensitivity, the main methodological considerations are body 

site and thus underlying tissues assessed, application characteristics (such as rate of stimulus 

increase, contact area, manual versus automated application), and instructions to participants. 

In the present work these features were standardised, as per the overview in Table 4-1, across 

all experimental studies. Such parameters were selected to be consistent with prior work105. 

Table 4-1 Overview of pressure pain sensitivity methods used in all studies 

Method Device Body Location/s Application Instruction 

Pressure 
Pain 

Thresholds 
(PPTs) 

Handheld 
pressure 
algometer 
(Somedic, 

Sösdala, Sweden) 
with 1cm2 

rounded rubber 
tipped probe 

Extensor Carpi Radialis Brevis 
(ECR): 3cm distal to lateral 

epicondyle; Upper Trapezius 
(UT): halfway between 
acromion & 7th cervical 

spinous process; L1/5: 3.5cm 
lateral to 1st/5th lumbar spinous 

processes; Gastrocnemius 
(GAS): halfway between 
popliteal line & calcaneus 

Manually applied 
perpendicular to 

target muscle 
belly at 30kPa/s 
until participant 
pressed ‘stop’ 

button. Repeated 
two (Study III) or 
three (Study I-II) 

times. 

Press the stop button as 
soon as the pressure first 

becomes uncomfortable or 
painful 

Cuff Pain 
Detection 
Threshold 

(cPDT) 

Computer-
controlled cuff 

algometer system 
(NociTech & AAU, 

Aalborg, 
Denmark) paired 
with 2 x 10cm-
wide tourniquet 

cuffs (VBM 
Medizintechnik 
GmbH, Sulz am 

Neckar, 
Germany) and an 
electronic Visual 
Analogue Scale 

(eVAS). 

Cuffs positioned bilaterally 
over the widest portion of each 
lower leg, roughly 5cm below 
the tibial tuberosity. Sensitivity 
assessed separately for each 

leg. 

Increased at 
1kPa/s to a 
maximum of 

100kPa (device 
safety limit) or 
until tolerance 

threshold 
obtained. 

As soon as the pressure 
becomes uncomfortable or 

painful, start sliding the 
electronic Visual Analogue 
Scale (eVAS) dial to rate 

pain intensity (eVAS=1cm). 

Cuff Pain 
Tolerance 
Threshold 

(cPTT) 

When the pressure is so 
painful that you cannot 
tolerate anymore, press 
the button to stop (peak 

pressure). 

Cuff 
Supra-

Threshold 
Rating 
(cSTR) 

As above but only assessed 
on dominant leg. 

Increased at 
100kPa/s to cPTT 

pressure, 
maintained for 1s, 
then released for 

10s, repeated 
three times. 

Immediately following each 
stimulus rate how painful it 
was by sliding the eVAS 
up, then return it to zero. 

 

4.1.3. VALIDITY & RELIABILITY OF ASSESSMENT 

Pressure pain sensitivity was of interest due to the ability to assess deep structures. Combined 

computer modelling with experimental and MRI approaches have shown handheld78 and 

especially cuff188 algometry to increase strain in muscle and deep tissues and cause pain, even 
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when cutaneous nociceptive fibers are anaesthetized153,255, suggesting that these modalities 

are valid to assess deep tissue sensitivity.  

In the supplementary material of Study II, the reliability of all measures was assessed within- 

and between-sessions where possible. Control participants from Study II provide a clean 

estimate of test-retest reliability for the measures included in the present thesis, as precisely 

the same methodology was repeated in each session with no intermediary provocations and 

no expected change in condition. Results of this reliability analysis can be seen in Table 4-2 

(adapted from Study II supplementary material). Generally, pressure pain thresholds (PPTs), 

cuff detection and tolerance thresholds, and supra-threshold ratings were highly reliable 

(ICC>0.9) within a session. Reliability was lower between-sessions, but still high (ICC>0.8) for 

PPTs and cuff tolerance, and moderate (ICC>0.6) for cuff detection thresholds and supra-

threshold ratings (Table 4-2). This is consistent with prior work in which both handheld20,228,347 

and cuff103,105 pressure algometry have shown very good reliability.  

Table 4-2 Intra-class correlation coefficients (ICC3,k) with 95% confidence intervals [95%CI] for handheld 
and cuff pressure pain thresholds within and between sessions for control participants in Study II 

 Within-session 1  Within-session 2 Between-sessions 

PPT – ECR 
0.969 

[0.948, 0.984] 
0.970 

[0.950, 0.984] 
0.849 

[0.682, 0.928] 

PPT – UT 
0.977 

[0.962, 0.988] 
0.979 

[0.964, 0.989] 
0.864 

[0.714, 0.935] 

PPT – L1 
0.971 

[0.951, 0.984] 
0.985 

[0.975, 0.992] 
0.863 

[0.712, 0.935] 

PPT – L5 
0.979 

[0.965, 0.989] 
0.987 

[0.979, 0.993] 
0.891 

[0.771, 0.948] 

PPT – GAS 
0.985 

[0.975, 0.992] 
0.987 

[0.978, 0.993] 
0.876 

[0.740, 0.941] 

cPDT 
0.946 

[0.909, 0.971] 
0.975 

[0.958, 0.987] 
0.716 

[0.403, 0.865] 

cPTT 
0.980 

[0.966, 0.989] 
0.989 

[0.981, 0.994] 
0.865 

[0.716, 0.936] 

Supra-threshold 
Ratings (eVAS) 

0.952 
[0.913, 0.976] 

0.945 
[0.894, 0.973] 

0.616 
[0.194, 0.817] 

 

4.2. PRESSURE HYPERSENSITIVITY IN LOW BACK PAIN 

4.2.1. HANDHELD PRESSURE ALGOMETRY 

Pressure pain thresholds were very clearly affected by the presence of pain in the region being 

tested (L1 and L5 sites), indicating that local hypersensitivity to pressure was a feature of both 

experimental and clinical LBP (Figure 4-1). This was true both when PPTs were compared 

between-groups to an independent control population (Study II) and when compared within-

groups to the same individuals when not in pain (Study I and II). Albeit not the main purpose of 

Study III, when looking at data from CLBP patients, the same trend is observed with higher 

PPTs in the least than most painful session. Further, on re-analysis across all studies, PPTs, 

especially at the L1 site, were reduced when LBP was present across all experimental studies 
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(Study I-III, Fig 4-1, Appendix C). No differences were noted, however, between LBP groups. 

This fits with much of the existing literature on the topic showing lowered PPTs, likely reflective 

of peripheral sensitisation, to be maintained by ongoing nociception302,309 and to fluctuate with 

clinical pain intensity62,190,235,300. Thus, local pressure hypersensitivity observed here seems 

merely consequential to experimental and clinical LBP.  

Intriguingly, remote assessment sites were also impacted by the presence of LBP, with reduced 

PPTs demonstrated both between RLBP and control participants (Study II) and within-groups 

between painful and pain-free sessions in participants with DOMS (Study I) and RLBP (Study 

II). This was also reflected when data were reanalysed across all studies (Figure 4-1, Appendix 

C), with increased PPTs observed during pain-free sessions for DOMS and CLBP participants, 

and reduced PPTs during painful sessions compared to controls for at least one external site 

in all LBP groups. For CLBP patients, there appears to be no change in remote sites between 

more and less painful sessions, though given the design of Study III, it is difficult to attribute 

changes or lack thereof to pain alone.  

 
Figure 4-1 Mean (+SEM) pressure pain thresholds across all sites for all experimental studies 
from a representative session with low back pain present and absent. Note: *denotes within-group 
difference between-sessions, #denotes difference from controls in painful session, ¤denotes difference 
from controls in pain-free/pain-reduced session. Details of analysis are shown in Appendix C.    
 

The Systematic Review conducted as part of this thesis did not include PPTs as an outcome. 

However, a recent meta-analysis62 showed overall enhanced sensitivity to pressure at local 

sites (gluteal), regionally-related sites (scapula), and some remote sites (leg and arm, though 

not hand) in patients with LBP, suggesting pressure pain hypersensitivity to be present at both 
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local and distant sites. It should be noted though, that the magnitude of difference was variable 

across sites like that observed here, and conclusions from individual studies were often 

contradictory possibly due to differences in sample characteristics. Although widespread 

hyperalgesia has been reported among some LBP populations6,205,221,236, it is not commonly 

reported in experimental pain models like DOMS. In this case, it is possible that widespread 

differences instead result from: peripheral sensitisation due to repeated testing over relatively 

short intervals228,301, recruitment of additional muscles beyond the agonists at sufficient 

intensities to cause discrete muscle soreness, low-grade systemic inflammatory responses 

elicited by the intense and exhausting exercise315, or perceptual alterations due to present pain 

state; though this requires further investigation.  

4.2.2. CUFF PRESSURE ALGOMETRY 

Cuff thresholds were not consistently altered by LBP presence. As shown in Figure 4-2 below, 

cPDT was significantly higher in RLBP patients when pain-free than when in pain (Study II). 

However, cPTT was unchanged by RLBP presence (Study II), and neither cPDT nor cPTT were 

altered by the presence of experimental LBP (Study I). In CLBP patients, both cPDT and cPTT 

were clearly increased in the less painful session, but due to the study design and repeated 

stimulus exposure (see Chapter 7, Figure 7-3) this cannot be solely attributed to changes in 

LBP severity and may more so reflect temporal habituation. On reanalysis of cPDTs and cPTTs 

across studies, no differences were observed between LBP groups and controls regardless of 

LBP presence (Appendix C).  

 

Figure 4-2 Mean (+SEM) Cuff pain detection (cPDT) and tolerance (cPTT) thresholds for the 
dominant and non-dominant legs of participants in each of the experimental studies. Note: Data 
is presented from one painful and one pain-free (Studies I & II) or pain-reduced (Study III) session. 
*denotes a significant difference between-session within the RLBP or CLBP group (P<0.05) 
 

Cuff compression was theorised to provide a better characterisation of pain sensitivity in more 

relevant deeper structures than even handheld algometry, hence it is odd that few differences 

were observed. However, this was also the case for handheld algometry at the gastrocnemius 

site. The lower leg was deemed to be the best location for the cuffs as it: is easy to access, 
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allows for concurrent intensity rating with the upper limbs, provides reliable results while 

reducing ceiling effects due to the cuff device’s safety limit178, and is innervated by spinal levels 

that also innervate some regions of the lower back (L4-S2)219. However, deep tissue pressure 

hypersensitivity may remain localised, especially in the experimental LBP condition, making 

this remote assessment site inadequate to capture changes in muscle sensitivity.  

In terms of tolerance thresholds, it is interesting that no differences were observed with regard 

to present LBP state (with the exception of in CLBP patients where effects are more likely time 

and/or exposure related) nor on reanalysis between groups. Generally, cuff pain tolerance 

thresholds have been less well studied among LBP populations. Prior studies using handheld 

algometry in CLBP patients have demonstrated lowered tolerance thresholds over the lower 

back2,221 and other344 assessment sites, but a single study using cuff algometry observed 

reduced tolerance only in those with severe CLBP100. The lack of findings here may, in part, be 

due to the remote assessment site or due to the mild symptomatology of the patients included.  

4.2.3. SUPRA-THRESHOLD PRESSURE STIMULATION 

In all studies, pain intensity ratings of three brief stimuli applied at cPTT intensity were collected. 

This was primarily as a manipulation check to make sure that this pressure level and thus TSP 

stimuli were considered painful. Nevertheless, as tolerance threshold assessment was based 

on a button press and not anchored to the eVAS ratings (i.e. participants did not need to reach 

10/10 prior to stopping), it is interesting to look at these results alongside those ratings at 

tolerance. On reanalysis across studies, ratings of suprathreshold stimuli were lower overall in 

the pain-free or pain-reduced sessions, which seems to be an effect driven by the clinical LBP 

groups (Figure 4-3, Appendix C). As neither pressure nor perceived pain intensity at cPTT was 

different between sessions in most cases, this would imply that participant’s appraisal of this 

stimulus may have changed144. This could be due to decreases in both stimulus and contextual 

novelty and hence increased predictability which is known to interfere with pain perception247.  

 

Figure 4-3 Mean (+SEM) pain intensity ratings at cPTT on threshold assessment (left) and of 
three 1-second stimuli at cPTT intensity (STR, right) in each of the studied populations for one 
painful and one pain-free or pain-reduced session. Note: *denotes significant difference between-
sessions within RLBP group (P<0.05). Details of between-studies analysis presented in Appendix C. 
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4.3. SUMMARY 

The present work evaluated pressure pain sensitivity using reliable methods at standardised 

assessment sites across all experimental studies. Local hypersensitivity to pressure was clearly 

present in all LBP populations compared to pain-free controls, but this largely resolved when 

LBP was not present. Widespread reductions in PPTs were also noted in both experimental 

and clinical LBP conditions, though reasons for this apparent widespread pressure 

hypersensitivity may differ between the DOMS model and clinical LBP. In experimental and 

RLBP, these widespread changes were not present when pain-free, but no significant 

differences between sessions were noted in CLBP patients. Pain detection and tolerance 

thresholds, along with ratings of supra-threshold stimuli, were also evaluated in all experimental 

groups using valid and reliable user-independent cuff algometry. This was theorised to provide 

better characterisation of deep tissue sensitivity but did not capture many differences between 

groups or sessions, with the exception of higher pain detection thresholds and lower supra-

threshold ratings shown in Study II within RLBP patients when pain-free, and higher pain 

tolerance thresholds in CLBP patients when pain was reduced. The lack of between-group 

findings for cuff algometry was attributed to the remote assessment site and mild 

symptomatology of included LBP patients. Overall, the present findings would suggest pressure 

hypersensitivity to be a consequence of ongoing LBP.
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CHAPTER 5. PRO-NOCICEPTIVE 

ASCENDING PATHWAYS 

This chapter describes the conceptual underpinnings of dorsal horn wind-up, methodological 

considerations of TSP assessment in humans, and discusses findings from the present work 

on the impact of LBP on this measure (Systematic Review, and Studies I-III).   

5.1. ASSESSING ASCENDING FACILITATORY PATHWAYS 

5.1.1. MECHANISMS BEHIND TEMPORAL SUMMATION OF PAIN 

Temporal summation of pain (TSP) is thought to measure 
at least the initial phase of ‘wind-up’; a frequency-
dependent C-fibre mediated enhancement of neuronal 
excitability in response to repeated noxious stimulation, 
first described in 1965200,268. Mechanistically, noxious 
stimulation at 0.5-2Hz297 leads to release of various 
peptides from C-fibres, producing prolonged membrane 
depolarisation, removal of magnesium ion plugs, and 
activation of NMDA receptor channels in the dorsal horn64. 
This means that the same peripheral noxious stimuli and 
C-fibre activation will result in enhanced and prolonged 
activity in ascending nociceptive pathways; a mechanism 
which can potentially explain disparities between objective 
injury and perceived pain358. As direct recordings from 
dorsal horn neurones, like those performed in animals, are 
not possible in humans, TSP measures instead rely on 
perceived pain reports or spinal reflex assessment. 
Although these surrogate measures result in the same 
phenomenon of frequency-dependent increases in pain 
and reflex activity following repeated noxious stimulation, 
further validation and confirmation of precise mechanisms 
underlying TSP in humans is needed.  

 
5.1.2. METHODOLOGICAL CONSIDERATIONS 

Methods of assessing TSP vary considerably, with identified studies in LBP populations alone 

(as per the Systematic Review and updated searches) using everything from sural nerve 

stimulation to evoke withdrawal reflexes, von Frey hairs or pin prick devices to evoke 

mechanical pain, automated thermodes to evoke heat pain and handheld or cuff algometry 

systems to evoke deep tissue pain. Stimulation frequency and duration also varies 

considerably, not to mention stimulus intensity and location of testing. An overview of the 

various paradigms used in papers investigating LBP patients can be seen in Figure 5-2.  

Figure 5-1 Diagram of ascending 
nociceptive pathways with illustration 
showing frequency-dependent 
increase in dorsal horn excitability 
and thus enhanced and prolonged 
neuronal firing after repeated C-fibre 
stimulation 
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Figure 5-2 Variation in Temporal Summation of Pain Paradigms applied in studies of LBP 
patients16,28,32-34,53,55,65,71,74,84,88,91,93,100,137,142,148,169-171,190,196,197,203,211,221,222,243,260,263,265,287,295,307,308,319,320,327,328,332,334,344,345 
(Updated from Systematic Review Supplementary Material to include present studies, articles without 
healthy comparators in LBP populations and articles published after meta-analysis searches were 
complete). Note: depictions are based on manuscript descriptions and hence accuracy is dependent on 
reporting quality, *denotes that study contains more than 1 method, bold indicates inclusion in the 
Systematic Review and Meta-analysis. 

 

As yet, it is not entirely clear what relevance the modality has to findings, though mechanical 

stimuli have previously been suggested to be most convincingly affected in LBP243. It is further 

well established that the frequency and duration of stimuli can influence the magnitude of 

facilitation observed223,224,257. Another important consideration is how TSP is quantified, with 

different calculation methods (i.e. ratios, raw changes or normalized values) producing different 

results4,313. Typically, TSP should be reported as a relative measure to remove between-group 

differences in initial thresholds or painfulness of single stimuli, but as there are no consensus 

statements on best-practice of this measure, this is not performed uniformly across studies.  
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Theoretically, the wind-up mechanism TSP intends to assess is a segmental phenomenon, 

meaning the body site tested in relation to the location of pain or injury should also be 

considered highly influential. In the case of some modalities, such as the pin-prick, it is common 

practice to assess both the site of most pain and an unaffected hand or foot281. However, with 

other approaches, including spinal reflexes and cuff algometry, assessment sites are limited by 

practical accessibility. One could argue that testing a non-painful site, innervated by the same 

spinal segments as the painful site (such as the leg in LBP or the arm in neck pain conditions), 

would provide the cleanest measure of TSP by avoiding influences of peripherally sensitized 

tissues; however, this remains purely speculation.  

5.1.3. VALIDITY & RELIABILITY OF TSP 

In terms of validity, early human studies used heat stimuli and showed frequency-dependent 

summation of ‘second pain’ responses, assumed to be from C-fibre activation, consistent with 

animal models of wind-up257. Further, parallel use of simultaneous electrophysiological and 

psychophysical outcomes has shown concurrent summation of pain and reflex withdrawals, 

suggesting perceptual ratings do reflect the spinal component to some extent8. Beyond these 

parallel perceptual and reflex findings, the understanding of precise chemical mechanisms 

underlying wind-up from animal work has allowed for further validation of the perceptual 

correlate in humans. Namely, NMDA-antagonists have been shown to reduce TSP in several 

human trials13,109,158. More recently, studies using fMRI in the cervical spinal cord and brainstem 

have demonstrated increased activity in dorsal horn regions following repeated stimulation36,37, 

consistent with observations of wind-up in animals. However, these studies also naturally 

observed activation in regions involved in descending inhibitory pathways during the TSP 

paradigm. In combination, these findings suggest that TSP paradigms may reflect changes in 

dorsal horn excitability to some extent, though should be interpreted as a net facilitatory 

response in humans due to the inseparable effect of cognitive-evaluative factors and 

descending controls. Further validation of precise mechanisms in humans is needed, especially 

for TSP from deep structures, which may be achieved with more direct comparisons of methods 

and modalities between animal and human models.  

As in Chapter 4, the control participants in Study II allowed for analysis of reliability between-

sessions. For TSP, this gave an ICC3,k of 0.652 [0.268, 0.834], meaning the method was 

moderately reliable over the study timeframe, and of similar reliability to that reported over 

shorter-intervals in the literature105.  

5.2. FINDINGS ON THE RELATIONSHIP BETWEEN LOW BACK 
PAIN & TSP 

5.2.1. PAIN VERSUS PAIN-FREE 

Temporal summation of pain seemed to be impacted by the presence a RLBP episode at the 

time of testing, both compared between-groups to controls and within-group to the pain-free 

session (Study II, Figure 5-3). This parallels findings from two prior small prospective cohort 

studies, showing trends for TSP to increase in LBP patients with ongoing pain at 2-4 months, 
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compared to either those whose pain reduced251 or to pain-free control data190. However, pain-

related fluctuation in TSP was unable to be replicated in the DOMS model (Study I) with no 

significant differences noted between sessions, nor in the CLBP group (Study III) where no 

changes in TSP were observed throughout the entire study period. On statistical comparison 

across all studies (I-III), no significant group differences were observed (Appendix C). This may, 

however, be due to the small magnitude of these differences, higher inter-individual variability 

in outcomes and mild LBP symptomatology; as in the Systematic Review, TSP was significantly 

facilitated in both acute and chronic LBP patients compared to controls (Fig 5-3). In addition, 

differences between the present and previous findings may also be due to the remote 

assessment site used here, as wind-up is considered a segmental phenomenon and thus 

greater alterations may have been seen if TSP was assessed over the lower back. This is, 

however, difficult to perform reliably using a deep-tissue stimulus, and in the Systematic Review 

no differences in effect size were observed dependent on test site using other modalities.  

It was suggested in the Systematic Review and Study II, that facilitation of TSP was likely to be 

the product of ongoing nociception, consistent with the measure’s theoretical underpinnings. 

However, as discussed in Study II, the apparent effect of LBP on TSP may also reflect 

differences in perceptual or evaluative processes when individuals are in pain. Perceptually 

rated TSP has previously been reported to relate to anxiety278, fear-avoidance beliefs89 and 

pain catastrophizing46,90,274, and given both anxiety and PCS scores were higher in RLBP 

patients when pain was present, it is difficult to disentangle which factor is driving these effects.  

 

Figure 5-3 Pain intensity across TSP stimulation series as normalized VAS-epochs (i.e. 
normalized by subtraction to first stimulus rating, then presented as mean (+/-SEM) of stimuli 2-
4, 5-7, and 8-10) for controls (Study II) and from a painful (P) and non-painful (NP, Study I-II) or 
less painful (LP, Study III) session for each LBP group. Standardised mean difference (SMD) and 
confidence intervals (CI) from Systematic Review (SR) presented as expected effect size from 
control groups 3rd VAS-epoch (dotted line). Note: *denotes significant between-sessions difference 
within the RLBP group in Study II; Meta-analysis results from the Systematic Review shown as yellow 
(acute/recurrent; SMD = 0.51 [95% CI: 0.16, 0.85]) and red (chronic; SMD = 0.55 [95%CI: 0.30, 0.81]) 
diamonds; illustration of paradigm in top left corner.  
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5.2.2. EFFECTS OF PAIN SEVERITY ON TSP 

In the Systematic Review, a weak but significant positive correlation was found between pain 

severity and the standardized mean difference in TSP between-groups. Such a relationship 

was also replicated in Study I, whereby participants with increased TSP at baseline developed 

more severe pain following the fatiguing exercise. Further, when TSP data from the most painful 

session of all LBP conditions (Studies I-III) was collated, a weak positive correlation was also 

found between TSP (represented by VAS-epoch III) and maximum pain intensity (R=0.258, 

P<0.05). From a theoretical perspective, this makes sense, as increased excitability of dorsal 

horn neurons and thus enhanced transmission of nociceptive input, would lead to greater pain 

perception. In line with these findings, prior work has identified relationships between TSP and 

both chronic post-operative (e.g. post-arthroplasty141,250 and post-thoracotomy352) pain severity 

and analgesic responses108,253, though relationships among patients with spinal pain have been 

less clear136. There is some evidence from prior studies that TSP may co-vary with LBP 

intensity, both on experimental induction29 and with changes in response to interventions28, 

though these were relatively minor effects observed in small samples. However, it is also 

possible that this relationship between LBP and TSP is present instead due to concomitant 

effects of perceptual features, such as pain-related fear or pain catastrophizing, as these 

factors are not commonly accounted for in analyses. Nevertheless, the present work seems to 

suggest both that facilitated TSP co-occurs with pain and presumed nociception, possibly in a 

severity dependent manner (Study II), but also that variation in TSP among pain-free individuals 

may be predictive of future pain experiences (Study I). These suggestions require further study 

to refine and confirm, especially in idiopathic musculoskeletal pain conditions.  

5.2.3.   INSIGHTS FROM COMPARISON TO ‘THE STANDARD’ 

Considerable variation in methodology was noted in the Systematic Review, however the pin-

prick approach from the German Neuropathic Pain Network’s (DFNS) QST battery was the 

modality reported most frequently. Although not a primary outcome, and thus not reported in 

the main analyses, this outcome was also assessed in Study II of the present work at both the 

spinal level of most LBP and at the ipsilateral hand dorsum. A problem was encountered, 

however, with this approach, as despite performing the assessment in accordance with the 

DFNS protocol281 (i.e. 1 vs 10 stimuli at 1Hz with a 256mN pin-prick stimulator), there were 

106/448 instances where participants reported an NRS of 0 that needed replacement for ratio 

calculations. Further, these ratios then showed no clear relation to cuff TSP, with within-

session, group and site correlations varying from -0.3 to 0.6. This is not unprecedented, as 

DNRF reference papers also report considerable between-subject variability in pin-prick TSP 

making it difficult to demonstrate abnormalities in patients281. However, there is also reason to 

believe that true differences exist in the extent of hyperexcitability elicitable by muscle and 

cutaneous nociceptors; for example, on the basis of seminal animal works showing prolonged 

dorsal horn discharge after muscle versus cutaneous afferent stimulation132,346. These different 

modalities may offer insight into distinct phenomena related to the different tissue-types 

assessed, though this requires further investigation to establish. On this note, the Systematic 

Review highlighted differences between modalities, with reflex withdrawals to electrical stimuli 

showing the largest between-group alterations, consistent with claims that this modality may 
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have discriminative value for chronic LBP221. Different modalities may, therefore, also be best 

suited for differing purposes, for example these electrical approaches may be most useful in 

diagnostics, whereas mechanical modalities including cuff pressure algometry, with their 

increased inter-individual variation, may have more utility in prognostics. 

5.3. SUMMARY 

There is substantial variation in TSP methodology, and as yet, the relevance of different 

paradigms to outcome and condition remains poorly studied. Nevertheless, meta-analysis 

showed differences in TSP between LBP patients and pain-free controls, with greater 

facilitation of TSP being associated with higher pain severity. The effect of LBP on TSP was, 

however, not consistent between the present experimental studies, with facilitation only shown 

in the presence of a RLBP episode and not from experimental nor mild chronic LBP in the small 

sample studied here. It was suggested that TSP may reflect current pain status to some degree, 

but also that variation among pain-free individuals may be of predictive value in determining 

the severity of future pain experiences. 
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CHAPTER 6. ANTI-NOCICEPTIVE 

DESCENDING PATHWAYS 

In this chapter, conceptual development of conditioned pain modulation (CPM) assessment in 

humans, methodological considerations, and findings from the present work on the impact of 

LBP on this measure (Systematic Review and Studies I-III) are presented and discussed.    

6.1. ASSESSING DESCENDING INHIBITORY PATHWAYS 

6.1.1. DIFFUSE NOXIOUS INHIBITORY CONTROL 

‘Diffuse noxious inhibitory control’ (DNIC) was first coined by Le Bars and colleagues165 in 1979 

to describe an inhibitory spino-bulbar-spinal loop. This was originally established in animals as 

a global inhibitory mechanism activated by strong noxious stimulation of an extremity site 

(typically nose or tail), leading to dramatically reduced firing in wide-dynamic range neurons of 

the dorsal horn in response to concurrent stimulation of heterotopic sites165,166. A significant 

amount of work has been done to 

corroborate this DNIC mechanism in 

humans355 and elaborate on the precise 

descending pathways involved38,61,279,338,354. 

At present, it is understood that these 

descending pathways originate in the locus 

coeruleus (inhibitory) and rostral 

ventromedial medulla (inhibitory and 

excitatory) and project downward to the 

dorsal horn, with noradrenaline being the 

primary neurotransmitter involved in 

generating inhibition21-23. The periaqueductal 

gray (PAG) in the midbrain is also considered 

an important origin of descending inhibitory 

pathways, though more so in inhibition due 

to cortical influences (as this region 

integrates input from e.g. hypothalamus, 

amygdala, rostral anterior cingulate cortex) 

rather than specifically due to 

counterirritation22,242,339. 

6.1.2. CPM – THE PERCEPTUAL CORRELATE OF DNIC  

Initial papers in humans used much the same stimulation methodology as in animals; meaning 

a test stimulus (e.g. pain threshold) was applied before and during a painful heterotopic 

conditioning stimulus (e.g. cold water bath or nasal septum clamp)355. Similar to TSP, this had 

to be done sans invasive recordings, which again meant adopting outcomes of nociceptive 

Figure 6-1 Illustration of DNIC/CPM paradigm 
including ascending nociceptive and descending 
inhibitory pathways, along with relevant cortical 
and subcortical regions involved 
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withdrawal reflexes, perceptual ratings, or both. In fact, early studies using both measures 

demonstrated highly consistent results355, and subsequent work has confirmed good 

correlations between reflex and perceptual pain thresholds204; so many human test paradigms 

now rely on perceptual outcomes alone361. In exploratory studies, CPM measurement has 

shown some value in predicting future disability in LBP patients68, and predicting prognostic 

and treatment outcomes in other painful musculoskeletal conditions69,92,234. 

6.1.3. METHODOLOGICAL CONSIDERATIONS 

The use of non-invasive testing methods in a conscious person introduces several 

methodological issues, due to the involvement of pain evaluative cortical processes. This 

means the measure is no longer likely to be a sole reflection of the classic ‘DNIC’ spino-bulbar-

spinal loop. Especially for methods using pain ratings or thresholds, CPM may be more 

representative of perceptual features than spinal nociception176; though even reflex responses 

are not immune to cognitive interference63, and, as mentioned, have previously been shown to 

correlate with perception anyway355. Prior studies have demonstrated expectation82, 

distraction131,207,208, pain catastrophizing52,324,353 and affective state70,213 to impact the 

magnitude of CPM recorded. Mechanistically, these psychological influences are unsurprising 

due to ongoing communication between cortical regions and brainstem origins of descending 

controls181. Other personal factors, such as age112, gender299, menstrual cycles273, sleep303,305, 

alcohol consumption149 and physical activity95,217,293,330 have also been purported to be 

influential121,201; which seems rational mechanistically given the central role of monoamines 

(e.g. dopamine, noradrenaline, serotonin) in these modulatory pathways22. In the present work, 

most of these factors were either recorded and shown to be consistent between sessions 

(Appendix C) or were controlled for with standardised instructions and use of within-participant 

or matched-control designs. Nevertheless, it is important to remember that psychophysical 

CPM assessment reflects a net response of the whole system, not just that of the intended 

descending pathways.    

Beyond these influences, another general issue with CPM testing is that precise test 

methodology varies considerably between research groups and studies75,145. As demonstrated 

in Figure 6-2 below (updated from supplementary material of Systematic Review), in papers 

looking at LBP alone there are at least 23 different test paradigms using combinations of 8 

different test modalities with 6 different conditioning modalities. This is not to mention additional 

variation in test and conditioning stimulus intensities, stimulus timing and application sites 

between studies, which can also influence outcomes. Although consensus papers have 

emerged recommending ways to standardise testing, few articles follow these 

recommendations361, not least because there is ongoing debate on the relevance of stimulus 

combination and temporo-spatial array to outcome139,214. As a result, methodology selection in 

the present work was based on prior studies showing good reliability with cuff 

measures105,140,252, available equipment and theoretical rationales of modality relevance to 

LBP. In addition, the CPM method used here was extended, compared to prior work using cuff 

algometry, to include an extra ramp to assess pain thresholds prior to conditioning, to observe 

habituation to repeated cuff stimuli. As well, ramped assessments both during and following 
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conditioning were collected to look at both parallel and sequential CPM effects, as there is still 

debate around which is most reflective of descending inhibitory function (Fig 6-2).   

 

 
Figure 6-2 Variation in Conditioned Pain Modulation Paradigms applied in studies of LBP 
patients6,54,55,68,71,79,82,94,100,101,149,150,155,157,160,161,169-171,190,193,196,205,206,211,222,237,243,262,263,265,267,287,314,333,334,344,345,349 
(Updated from Systematic Review Supplementary Material to include present studies, articles without 
healthy comparators in LBP populations and articles published after meta-analysis searches were 
complete). Note: depictions are based on manuscript descriptions and hence accuracy is dependent on 
reporting quality, *denotes that study contains more than 1 method, bold indicates inclusion in 
Systematic Review and Meta-analysis, Red rectangle indicates paradigm used in Study I-III. 
 

6.1.4. VALIDITY & RELIABILITY 

In the present work, a computerized cuff algometer was used to assess CPM. This system is 

user-independent and hence allows for standardisation of stimulus application and timing, as 

well as allowing for individualisation of test and conditioning stimulus intensities based on 

participant pain thresholds or ratings103. It was again assumed that this stimulation type is of 

most relevance to musculoskeletal pain, due to the compression of deep tissues, though this 

remains speculative.  
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Recently, this cuff methodology was back-translated and validated as an appropriate stimulus 

type and configuration to activate DNIC, with findings in rodents paralleling psychophysical 

responses in humans58. Prior human studies have also shown this or similar cuff methodology 

to be able to produce consistent CPM responses when repeated in quick succession130, along 

with being highly reliable over short retest intervals (hours)50 and moderately reliable when 

repeated over longer intervals (weeks)103. Although not yet a diagnostic or discriminative tool, 

this method has also demonstrated some relation to clinical features332 including prognosis. It 

can be debated whether applying both the test stimulus and the conditioning stimulus within 

the same spinal segmental innervation is wise, as this may introduce additional intra-spinal 

inhibitory processes. However, such an approach has recently been shown to produce some 

of the most reliable results229 and generally CPM magnitude does not vary significantly 

regardless of test stimulus site, so long as it is not immediately adjacent to conditioning140,151.  

As for all prior measures, CPM reliability across the study timeframe in the present work was 

tested in control participants from Study II. This demonstrated an ICC (3, k) of 0.567 [0.091, 

0.794] for the parallel-CPM measure, and 0.605 [0.170, 0.812] for the sequential-CPM 

measure, which is consistent with prior reports of reliability for this modality103. Among other 

CPM reliability studies, reports have varied dependent on the testing timeframe, CPM paradigm 

and statistical methodology used140,145, with some reporting good to excellent reliability7,31,50,172 

and others poor reliability239,356. As is evident from the literature, presented statistics, and the 

later findings (Figure 6-3), reliability with the present methodology is acceptable, but inter- and 

intra-individual variability in CPM is generally high. This remains a critical issue for researchers 

and clinicians looking to use CPM for diagnostic and/or prognostic purposes.    

6.2. FINDINGS ON THE RELATIONSHIP BETWEEN LOW BACK 
PAIN & CPM 

6.2.1. EFFECTS OF PAIN PRESENCE & SEVERITY 

The Systematic Review identified impaired CPM in patients with LBP compared to control 

participants overall. Similarly, an overall group difference in CPM between RLBP patients and 

controls was demonstrated in Study II. However, no statistically significant alterations in CPM 

were identified between-sessions within experimental (Study I) or clinical (Study II & III) LBP 

groups, suggesting pain presence on the day of testing did not have a clear impact on CPM 

magnitude. To some extent, this would support the concept of CPM efficacy as a trait measure, 

potentially reflecting a mechanism that contributes to, or enhances susceptibility to pain 

maintenance and thus allowing for predictive value in prognostics. In line, CPM has been 

reported as a predictor of prognosis and treatment response in numerous studies69,92,108,133,284, 

though the degree of relation between CPM and outcome is variable. As well, prognostic 

capacity in spinal pain conditions specifically has so far been lacking, with most large-scale 

prospective cohort studies showing limited to no utility in predicting treatment response or long-

term changes in pain68,79,161,171,206,211,287, though a possible relation to disability68. Difficulties in 

demonstrating prognostic utility could, however, be a result of methodological issues like high 

variability and the confounding influences of various individual and contextual characteristics.
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A relationship between pain severity and CPM impairment was also observed in the Systematic 

Review. As there was a lack of effect of pain presence in the present experimental studies 

(Study I-II), this may instead suggest that the intensity of LBP was simply not sufficient here to 

acutely impair CPM, but that more severe LBP could have. In line, prior experimental work 

using more painful provocations, such as hypertonic saline14 and capsaicin129, have been able 

to demonstrate acute impairment of CPM, and clinical studies in populations with more severe 

pain have also shown normalization of CPM following pain-relieving procedures106,154. 

Interestingly, a relationship between LBP severity and impaired CPM has also been evident 

within some individual studies100,332, though more commonly reported is a relationship between 

CPM impairment and the spatial extent of pain6,94,101,334. The present work did not investigate 

this question, as included patients primarily reported localized LBP. However, as widespread 

pain is often associated with greater disability, this warrants further study to determine whether 

impaired CPM prior to or soon after pain-onset can predict spread of LBP, or alternatively if the 

mechanism becomes more impaired with expanding pain areas. 

 
 

Figure 6-3 Mean (+SEM) CPM effect, as increase in cuff pain detection (cPDT) and tolerance 
(cPTT) thresholds from the first ramp to the 2nd (faded, prior to conditioning), 3rd (during 
conditioning) and 4th (immediately following conditioning) ramps, for controls (Study II) and from 
a painful (P) and non-painful (NP, Study I-II) or less painful (LP, Study III) session for each LBP 
group. Standardised mean difference (SMD) and confidence intervals (CI) from Systematic 
Review (SR) are presented as expected effect size from control group mean of ramps 3-4 (dotted 
line). Note: *denotes significant main effect of Group within Study II where RLBP patients showed 
reduced CPM compared to controls. Meta-analysis results from the Systematic Review shown as yellow 
(acute or recurrent; SMD = -0.11 [95%CI: -0.30, 0.08]) and red (chronic; SMD = -0.57 [95%CI: -0.82, -
0.33]) diamonds; illustration of paradigm provided in top left corner. 
 

6.2.2. RELATIONSHIPS BETWEEN PAIN DURATION & CPM 

When data in the Systematic Review was sub-grouped into acute and chronic, only chronic 

LBP patients showed significantly lower CPM compared to controls (Figure 6-3). On a group 

level, mean pain duration also significantly correlated with CPM. Such a relationship was not 

clearly demonstrable in the experimental studies of this thesis, though this may have been due 

to the small samples of comparatively mild recurrent and chronic LBP patients included. Some 

prior studies have shown a relationship between pain duration and CPM impairment in patients 

with knee osteoarthritis10,81, though not consistently12,298, and this relationship has not been 

replicable in various other painful musculoskeletal conditions107,120,240,323. Nevertheless, if this 
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relationship truly exists in LBP, it suggests either that there is a temporal degradation in pain 

inhibitory mechanisms due to ongoing nociception and pain, or that inefficient CPM prior to or 

in the acute phase of pain contributes to pain recurrence and/or persistence. Consistent with 

the former, a recent small longitudinal study following patients after spinal cord injury showed 

reductions in CPM over time as neuropathic pain was maintained85. However, this was not the 

case for musculoskeletal pain in this patient group, suggesting interactions between CPM 

efficacy and pain persistence may depend on underlying mechanisms. When instead looking 

at musculoskeletal pain populations, there is some preliminary evidence to suggest impaired 

CPM may precede development of chronic neck pain290, but this requires replication in larger 

samples and other painful musculoskeletal conditions.   

6.2.3. INSIGHTS FROM CPM TESTING  

The reason for the lack of differences observed between painful and pain-free sessions in the 

present work could very well be primarily due to variability. As well, based on the present 

studies, pain detection thresholds do not appear to be an ideal test stimulus, despite their 

frequent use (Figure 6-2). This is because some degree of habituation occurs on repetition of 

the stimulus alone (i.e. Ramp 2 in Figure 6-3) especially in control participants, followed by 

highly variable findings for the two subsequent ramps (i.e. ramps during and following 

conditioning, though these do correlate significantly). On the contrary, pain tolerance thresholds 

appear to be more stable, showing less habituation on reapplication and more consistent 

inhibition during and following conditioning. This is in line with the initial papers on CPM in 

humans, where intolerable pain was demonstrated to be more sensitive to the conditioning 

stimuli tested than threshold pain355. It also parallels recent animal findings showing the 

direction of modulation to be dependent on test stimulus intensity, with only the more noxious 

test stimuli demonstrating inhibition316. 

On the matter of habituation to repeated threshold testing, it is noteworthy that this was most 

problematic in controls and less evident in LBP populations (Studies I-III). It was also the case 

that experimental LBP appeared to reduce habituation in controls, albeit non-significantly on 

post-hoc testing (Study I). Early QST studies in LBP patients highlighted this phenomenon of 

lacking habituation to repeated stimuli as a discriminative feature of chronic LBP248,249, and 

posited that it may be mechanistically linked to chronic LBP development and/or LBP 

persistence39. Recent work has further shown lacking habituation in cortical responses to 

painful stimuli among CLBP patients compared to controls, again suggesting this to underlie 

pain persistence343. The present work would instead tend to support this being a consequence 

of LBP presence (Study I), but it is still open for further investigation. In reality, the results seen 

here are probably explained by a combination of: lacking capacity to habituate due to 

hyperexcitability e.g. in ascending nociceptive pathways, reduced descending inhibitory 

function, hyperawareness of sensory stimuli producing more accurate and thus consistent 

ratings, and persistent anxious or catastrophic thoughts despite lack of stimulus novelty; though 

this is merely speculation.  

Although this was not the focus of the present work, two alternative CPM paradigms were tested 

in some of the study populations (Study I-II). This was primarily to develop test methodology 
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that was able to be used concurrently with affective and attentional manipulations (unpublished 

supplementary work), but also to develop a cuff pressure-based approach that was more 

consistent in timing and outcome with typical thermal paradigms (i.e. where a brief noxious test 

stimulus is applied and evaluated with pain ratings before and following a period of 

conditioning259). Unfortunately, the first of these approaches using two 5-second test stimuli 

prior to and following conditioning was ineffective (Study I), producing no measurable inhibition 

in healthy controls. However, the second approach using three 1-second test stimuli prior to 

and after 75-seconds with ongoing conditioning seemed to produce inhibition and demonstrate 

results consistent with the ramped approach for RLBP patients and controls (Study II). Further 

work is needed to elaborate on these findings and determine the relevance of different stimulus 

arrangements; but, perhaps with significant methodological refinement, and open publication 

of large normative datasets for reference, CPM may eventually be of clinical use. 

6.3. SUMMARY  

In papers on LBP alone, there is considerable variation in stimulus parameters used to assess 

CPM. Even when using the same paradigm, there is high inter- and intra-individual variability, 

which greatly hinders the comparability and interpretation of results. Nevertheless, impaired 

CPM was shown on meta-analysis, driven by changes observed in CLBP patients. In the 

present experimental studies, a recently back translated and validated method was used. This 

method identified impaired CPM among RLBP patients compared to controls within Study II but 

could not elucidate other differences between groups or sessions. Additional relationships 

between CPM degradation and both pain duration and severity were observed in the meta-

analysis but could not directly be replicated in the present experimental work. It remains unclear 

as to whether impairments in CPM are consequential or contributory to pain persistence, as 

there is evidence consistent with both possibilities. 
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CHAPTER 7. ATTEMPTS TO MODULATE 

PAIN SENSITIVITY 

From the present work, there appeared to be a relationship between LBP and impaired CPM 

(Systematic Review & Study II). In the Systematic Review, this manifested as an overall group 

impairment in especially chronic LBP patients compared to controls, the magnitude of which 

was moderately correlated to pain duration. Then in Study II, a similar group level impairment 

was observed without normalisation in the pain-free period, unlike the other measures. If CPM 

impairment were to represent a relevant pathophysiological feature of LBP, it would seem 

pertinent to attempt to modulate this mechanism and examine the resultant impact on the pain 

experience. In clinical populations showing impaired CPM, such as patients with painful diabetic 

neuropathy, duloxetine (a serotonin and noradrenaline reuptake inhibitor) and Tapentadol (a 

combined opioid and noradrenaline reuptake inhibitor) have shown some efficacy in restoring 

inhibitory function225,362. This has been mechanistically corroborated in animals25,363 though has 

proven difficult to reliably replicate in other patient groups147. Other strategies addressing 

known influential factors (such as attempting to increase physical activity, improve sleep or 

enhance mood), could also improve CPM in patients with those specific factor-related 

problems. However, this introduces difficulties in disentangling effects, as these factors also 

interplay heavily with both one another and the clinical pain experience. An arguably cleaner 

and/or simpler approach would be to intervene by stimulating cortical or sub-cortical regions 

involved in controlling descending noxious inhibitory pathways, which also allows for a sham 

comparison to check efficacy. This approach was used in Study III and is also currently being 

trialled in larger scale work elsewhere49,317.  

7.1. NON-INVASIVE BRAIN STIMULATION  

7.1.1. TRANSCRANIAL DIRECT CURRENT STIMULATION 

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation, where 

weak electrical direct currents are applied to the scalp through specifically placed electrodes in 

order to alter cortical excitability in particular brain regions. Over the years, tDCS has been 

studied as a way to cure numerous ailments5,366, including pain. In contrast to other forms of 

stimulation and pharmacological management, the technique offers the advantages of being 

non-invasive, more tolerable, accessible, relatively low cost and easy to apply. Thus far, 

efficacy has been shown among patients with post-surgical and chronic neuropathic pain 

conditions59,152,232,254, though effects on experimental pain sensitivity are inconsistent97,212.  

7.1.2. TARGETING STIMULATION  

Various stimulation targets have been trialled with tDCS to address pain and related symptoms 

in patients152,254. The motor cortex is most commonly used184, perhaps foremost because of its 

definitive localisation, along with the promise shown in studies of repetitive transcranial 

magnetic stimulation applied to this region. Motor cortex tDCS has also been used to acutely 
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improve descending inhibitory processes in healthy individuals80; however, no acute changes 

in QST parameters were provoked after a single session in CLBP patients183.   

Regarding descending inhibitory processes, various cortical regions are thought to have 

influential connections with descending inhibitory pathways, allowing for the pain-modulating 

effects of cognitive engagement and affective manipulation339. As the main source of cortical 

projections to the periaqueductal gray (PAG) are from the medial prefrontal cortex (mPFC)24,364, 

and as this region is also heavily involved in affective processing266, this was considered an 

ideal location to target159. This region was additionally of interest since both impaired CPM and 

affective symptoms are commonly present in LBP patients and are suggested to influence pain 

progression. As well, fMRI and electrophysiological investigations in LBP patients have shown: 

altered functional connectivity within and between the mPFC and PAG during LBP 

exacerbation195,329,365, altered activity in these same regions in response to noxious 

experimental stimuli65,99,175,195 and morphological alterations generally in prefrontal areas156.  

Stimulation targeting was based on a previous HD-tDCS study, which had used a high-

definition array to target an mPFC subregion, namely the anterior cingulate cortex (ACC)322. 

Based on the computer modelling in this study, the HD-tDCS array appeared to generally target 

the medial prefrontal region, so was deemed appropriate for use here. The electrode 

arrangement (see Figure 7-1 below) includes with one central anode over the frontal vertex 

(Fz) and four surrounding cathodes at FP1, FP2, F7 and F8. Modelling was independently 

repeated in MatLab using SimNIBS software321 (Figure 7-1) with appropriate tissue 

impedances, electrode properties (i.e. as specified by Neuroelectrics®) and stimulation 

parameters (2mA anodal direct current) for the present work, again showing current flow 

generally through the mPFC. 

Figure 7-1 
Electrical field 
modelling of 
active 2mA 
mPFC HD-tDCS 
used in Study III. 
Note: images 
generated with 
SimNIBS321 using 
‘Ernie’ dataset and 
Study III electrode 
parameters).   

 

7.1.3. CONTROLLING FOR CONTEXT VIA SHAM TDCS 

To attribute changes in symptomatology and pain sensitivity measures to active tDCS, a sham-

comparator was essential. Much debate has arisen regarding sham paradigms, especially 

regarding their efficacy in crossover trials, as there are perceptible differences in the sensations 

produced146,231,283. In the present work, a long (60s) ramp on and off was used in both conditions 

to better mimic the duration of sensations at the beginning of the active paradigm. Participants 

were also given no specific details regarding differences in timing or intensity between 
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paradigms. Instead, they were informed of the expected sensations from stimulation, such as 

that they may feel itching, tingling and warmth, and were told that these sensations would be 

strongest in the first few minutes, then slowly fade away irrespective of the paradigm. These 

decisions were based on recommendations from prior literature suggesting that longer sham 

stimulation duration and managing expectations could improve blinding success41,245,271.  

Despite the fact this was a crossover trial, with participants acting as their own controls, blinding 

failure did not appear to be a major issue in the present work. Only 58.3% of participants 

correctly guessed which protocol they received, which was not statistically different from 

chance, and only reported a median certainty of 2-3 (on a 5 point-Likert scale from not at all to 

completely certain, Study III). Participants typically reported guessing the active protocol based 

on either more intense sensation during stimulation or reduced back pain, but these guesses 

were frequently wrong. Side effects were also commonly reported in both conditions further 

aiding blinding maintenance for both participants and experimenter. This strengthens study 

conclusions, and suggests that cross-over designs are appropriate, at least for pilot testing. In 

future studies with larger samples, it would be interesting to look at differential effects based 

on believed treatment, but this was not possible in the present work.  

7.2. FINDINGS ON THE EFFECTS OF TDCS 

An overview of the design of Study III can be seen in Figure 2-3 and a summary in Appendix 

A. In short, Active and Sham tDCS were applied to the mPFC of CLBP patients each on three 

consecutive days, separated by at least two weeks. Self-report data was collected at the start 

of each session and pre- and post-stimulation, while pain sensitivity measures were assessed 

pre- and post the first day of stimulation, immediately and 24-hours following the third day of 

stimulation, and on Day 21 in each phase. Overall, the active and sham tDCS both reduced 

current pain intensity in the immediate post-stimulation period of the first session, but no long-

term changes (on Day 4 or 21) in pain ratings were noted (Figure 7-2).  

Figure 7-2 Intensity (left) and unpleasantness (right) of pain both on average over the preceding 
24 hours (Day 1, 4, 21) and immediately prior to and following tDCS (Day 1-3) for the active 
(yellow) and sham (blue) HD-tDCS paradigms. Note: *denotes a significantly larger reduction in pain 
ratings on Day 1 than Day 2-3 as demonstrated on normalised data in Study III Supplementary Material. 
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In terms of pain sensitivity measures, cuff pain tolerance thresholds were increased over time 

in both paradigms (Fig 7-3), suggesting general temporal habituation rather than a tDCS-

related effect. Normal TSP and CPM responses were present (Fig 7-3) and of similar magnitude 

to healthy controls in Study I-II (Fig 5-3, 6-3, Appendix C), and these were unchanged by either 

tDCS paradigm. In the supplementary material of Study III, immediate effects of tDCS were 

also explored (greyed bars in Fig 7-3), in which there was a reduction in ECR PPTs following 

active compared to sham tDCS, likely related to generally higher PPTs on Day 1 in the active 

phase, but otherwise no differential effects were observed between tDCS paradigms.  

 

Figure 7-3 Overview of results for main psychophysical outcomes across testing sessions on 
Day 1 pre and post stimulation, Day 3 post stimulation, Day 4 and Day 21, for Active (yellow) and 
Sham (blue) HD-tDCS conditions. Note: §denotes overall higher cuff thresholds at Day 21 than Day 1 
Pre (pain tolerance), *denotes significant main effect of Epoch / Ramp showing TSP and CPM (on cPTT 
only) effects to be present overall. 
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7.3. COMPLEXITIES OF MODULATING ANTI-NOCICEPTION 

Although this HD-tDCS paradigm intended to target cortical projections to descending inhibitory 

pathways, and thus alter pain modulatory efficacy, it is safe to say that it did not produce major 

effects. There are many features of the present work that could explain this lack of efficacy, for 

example: (1) CLBP patients already demonstrated efficient CPM at baseline; (2) the modelling 

of penetration depth is based on an ideal situation with little electrode to scalp impedance, 

whereas in reality, some participants in the present study had long and/or thick hair making it 

difficult to achieve a low impedance; (3) A-priori sample size calculations were conducted but 

the sample remains small and heterogeneous; (4) included patients generally demonstrated 

mild LBP features at the time of testing and no clear affective disturbances; and (5) stimulation 

targets were based on functional connectivity findings, which may be problematic if these 

regions are not actually involved in the functions posited, or if their involvement is in processing 

present pain state rather than representing a feature relevant to the LBP condition51,60. In 

addition, a prior study aiming to intervene with affective features of CLBP by targeting the ACC 

(albeit with a different electrode type and array) showed greater promise in improving pain and 

disability191, but also used many more sessions (10 versus 3 here) and did not assess CPM.    

Generally, there has been ongoing debate about the efficacy of tDCS, with a recent review 

questioning whether it can produce any neurophysiological effects at all134. This large-scale 

meta-analysis showed significant effects on only 1/30 neurophysiological outcomes (motor-

evoked potentials) and even that effect had been declining over the preceding decade134. In 

clinical trials, systematic review conclusions also vary widely with some suggesting great 

potential in pain management97,179,254, and others suggesting limited to no efficacy184,232, 

including for CLBP3. For QST measures, a recent review97 was positive, showing ‘homogenous’ 

improvements in CPM across studies (following motor cortex stimulation), but effect sizes were 

still small. It may be the case that combined strategies (i.e. tDCS with concurrent exercise, 

psychological or pharmacological intervention) produce greater effects44, by capitalizing on the 

post-tDCS window of enhanced excitability254, but this requires further investigation in large-

scale, well-controlled clinical trials.  

Based on findings from the Systematic Review and Study II, the hope was that taking a group 

of CLBP patients would mean having a population with deficient CPM, which tDCS could then 

help to restore. It was thus problematic that the small sample of CLBP patients recruited here 

did not demonstrate deficiencies in CPM at baseline, as exploratory correlations within the 

study did actually support an improved effect of tDCS in those with most impaired CPM at 

baseline. The normal CPM responses observed in this sample may result from their relatively 

mild LBP symptoms, low disability, young age and high physical activity levels; suggesting that 

recruiting an older and more severely impacted CLBP population, or screening participants 

prior to inclusion, may have resulted in a different outcome. As also highlighted in a recent 

review254, strict screening should be considered in future work. Beyond variation in CPM, it is 

important to consider that individual differences in brain state prior to stimulation226, anatomical 

variation in brain architecture174, and differences in pathophysiological mechanisms underlying 

an individuals’ pain condition may all also contribute to differences in stimulation efficacy. 





 

45 

CHAPTER 8. CONCLUSIONS, 

IMPLICATIONS & FUTURE DIRECTIONS 

8.1. SUMMARY OF MAIN FINDINGS 

The present work has suggested that alterations in pressure pain sensitivity and TSP may be 

primarily reflective of present LBP state (Systematic Review, Studies I-III), while CPM may be 

prone to progressive impairment over time as pain transitions from acute to chronic (Systematic 

Review, Study II) and/or mild to severe. A summary of these findings is provided in Figure 8-1. 

 

Figure 8-1 Brief summary of individual study conclusions, as well as summary of findings across studies 
for primary outcome measures overlayed onto conceptual schematic of thesis. 
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In response to the objectives described in Chapter 1, the present work has (I) clarified that 

alterations in both TSP and CPM do indeed exist among patients with LBP, at least on group 

level comparison with pain-free populations. The magnitude of these alterations was small, but 

showed some relation to pain severity and, in the case of CPM, to pain duration. (II) The effect 

of experimental LBP on pain sensitivity measures within-individuals (Study I) was examined; 

demonstrating that the DOMS model reduced PPTs over both local lower back and some 

remote sites, though was unable to alter TSP nor CPM. (III) The impact of clinical LBP 

resolution (Study II) or reduction (Study III) on pain sensitivity measures within-individuals was 

investigated; demonstrating that the presence of pain was associated with hypersensitivity to 

pressure and facilitated TSP at least for RLBP patients (Study II), though CPM remained 

unchanged between sessions (Study II & III). (IV) Pain sensitivity was compared between LBP 

patients and control participants when clinical pain was absent (Study II); showing that RLBP 

patients in remission do not appear different from controls in terms of pressure pain sensitivity 

nor TSP, though do continue to show impaired CPM. 

8.2. CONCEPTUAL CONSIDERATIONS 

Disentangling the effects of present LBP (state), versus having a LBP condition (trait), on pain 

sensitivity measures, and inevitably on other outcomes, is clearly a challenging endeavour. In 

Figure 8-2, a conceptual illustration of the overarching thesis design is shown, indicating the 

comparison possibilities that such an approach gives. This includes: Cross-sectional 

differences between participants with experimental or clinical pain and control participants, as 

performed in much of the existing literature (Fig 8-2, C); Reliability of measures in control 

participants, as is essential to understand if measures are to be of individual predictive utility 

(Fig 8-2, E); Stability of measures in populations with clinical pain to understand the influence 

of present pain state (Fig 8-2, G); And, the effect of having a clinical LBP diagnosis without 

present pain, potentially allowing for elucidation of pathophysiological mechanisms underlying 

the development or maintenance of the condition that could be highly relevant interventional or 

preventative targets (Fig 8-2, F). Each comparison is integral to the understanding of the 

relationship between LBP experience and pain sensitivity measures, and hence the potential 

utility of these measures. However, it is also important to note that attempts to disentangle state 

and trait effects of pain are limited by the variability of both the measures used and the LBP 

experience. It is clear from the present and prior work that significant variation exists between 

pain-free individuals alone, and it is possible that this variation could be useful in predicting 

future pain development, maintenance, or severity, but only if the measures used are valid and 

reliable (Fig 8-2, A). There is also significant variation in the experience of LBP both within- and 

between-individuals, and assessment sessions capture only a snapshot of this experience 

which may or may not accurately reflect the individual or their LBP more generally (Fig 8-2, B). 

As well, if pain presence and/or severity has a major confounding impact on outcome 

measures, then this variation in present pain experience will have ramifications for the 

measures’ prognostic and diagnostic utility, as they may just become a reflection of pain state. 

In addition, various psychosocial and contextual factors can influence both pain perception and 

pain sensitivity, and while these can be assessed through questionnaires or activity trackers, it 

remains challenging to properly separate and control for their effects (Fig 8-2, D). 
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8.3. IMPLICATIONS OF FINDINGS 

Conceptual difficulties aside, the present work has made several observations that could have 

implications both for clinicians treating LBP patients and for future research. Firstly, pressure 

hypersensitivity was heavily impacted by fluctuations in present pain state. Hence pressure 

pain sensitivity measures may be useful to track changes in LBP condition over time and in 

response to treatment, as a supplement to self-reported and other clinical outcome measures. 

Thus far, the prognostic value of pressure pain thresholds has been limited92,234, but it remains 

possible that they may be useful in informing treatment selection and/or understanding variation 

in treatment response. It may also be useful for clinicians to consider that enhanced sensitivity 

to pressure, observed in patients as diffuse tenderness on palpation or general soreness, may 

be more reflective of the present state of the patient (i.e. that they currently have acute pain 

from the presenting condition or other injuries, or maybe even simply because they are currently 

stressed, anxious or sleep deprived, etc.) rather than being indicative of either the severity of 

their pain condition or that there is tissue damage.  

Figure 8-2 Illustration of comparison possibilities and interpretations from the present 
combination of study designs, and sources of variation within pain and pain sensitivity 
measures, demonstrated using excerpts of data from the present experimental works, that 
require elaboration in future work. Note: A. Represents considerable inter-individual variation in 
TSP and CPM when pain-free, B. Shows high variability in pain perception across LBP conditions, C. 
Indicates cross-sectional comparison of pain-free population to patients with present LBP, D. Indicates 
potential influential individual and contextual factors which could be sources of additional variation, E. 
Indicates control comparisons over time provide valuable insight into reliability of outcome measures, 
F. Indicates comparison in which trait features of the LBP condition can be seen without confounding 
effects of present pain, and G. Indicates comparisons within LBP conditions over time provide 
valuable insight into the stability of outcome measures. 
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As with pressure pain sensitivity, it may be the case that TSP proves useful in tracking changes 

in pain state over time, as well as having potential for predicting prognosis or aiding treatment 

selection. On this note, this thesis brings an interesting conundrum to light, namely that TSP in 

a pain-free state predicted future pain severity but TSP itself was also altered in the presence 

of clinical pain, suggesting both trait and state properties. It therefore seems imperative to 

consider present pain state during TSP assessment in future work, as the variation observed 

in single homogeneous populations (i.e. patients with the same pain severity, or healthy 

individuals with no pain) may be highly informative of prognostic features, but this natural or 

inherent variance in TSP could be masked by the presence of pain. This is seemingly important 

to consider regardless of whether present pain is related to the condition being studied or not, 

as TSP over an unaffected site (the lower leg) was altered by LBP presence here (albeit within 

similar segmental innervation). As such, ongoing trials are investigating the utility of these 

measures in patient selection for more mechanism-based intervention, which, if successful, 

could improve treatment efficacy in clinical practice. From the present work, however, perhaps 

the key positive takeaway is that these features, especially pressure hypersensitivity and TSP, 

are not ‘fixed’ and should resolve with pain.  

CPM showed some level of impairment generally among LBP patients that increased with pain 

duration. The present thesis could not disentangle whether this was a time-related reduction in 

descending inhibitory capacity, or a change in the proportion of people with dysfunctional CPM 

represented in more chronic populations. Nevertheless, it would seem that CPM impairments 

may reflect a trait feature of LBP conditions, becoming increasingly pronounced with greater 

chronicity. If this is the case, and CPM is actually a relevant feature with a role in LBP 

maintenance, then developing and refining methods to improve or restore CPM could be of 

great benefit in treating LBP conditions or even preventing the recurrence and/or persistence 

of LBP in the first place. This remains to be further explored. However, it is also important to 

remember that, although not significantly affected by pain presence in these studies, CPM is 

often greatly influenced by a range of other state and contextual factors, and has previously 

been acutely altered by more severe pain states, meaning on an individual level it still may not 

be an ideal trait-measure unless suitable control procedures are developed and implemented.  

8.4. FUTURE DIRECTIONS 

This thesis has highlighted methodological inconsistencies in TSP and CPM assessment that 

need to be addressed before significant progress can be made. In particular, understanding 

the relevance of stimulus modality and arrangement in TSP and CPM assessments to specific 

pain conditions, and how these factors affect the test outcome, is essential, both in obtaining a 

valid and useful measure and in allowing for meaningful comparison between trials. 

Fortunately, there are now ongoing global efforts to: compare methodologies from different 

research groups, create standardised testing batteries and generate large normative datasets, 

at least for CPM; which will no-doubt aid our understanding of this measure and its utility. 

Similar global efforts on TSP would also be highly valuable in refining and validating this 

measure and furthering the understanding of its potential predictive capabilities. Once better 

refined, standardised, and understood, if these measures continue to show predictive capacity, 
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future studies should attempt to define cut-off values and develop clinical prediction rules in the 

progression toward truly personalised mechanism-based treatment. 

From a conceptual standpoint, it seems necessary to highlight that the measures of pain 

sensitivity investigated in the present thesis are all ultimately reflective of a net response from 

the individual participant. Although not explored in the present thesis, and while theoretically 

the different pain sensitivity measures intend to assess distinct mechanisms, there are also 

undeniably interactions and relationships between these measures. Prior literature has 

attempted to use this advantageously, by creating indices or phenotypic groups based on 

specific combinations of pain sensitivity measures, which may increase their diagnostic or 

prognostic value. However, much work remains to understand, refine, and forward validate 

these combined approaches.  

The present work has provided a comprehensive approach to understanding the impact of LBP 

presence on pressure pain detection and tolerance thresholds, TSP and CPM. This strategy of 

using cross-sectional (Systematic Review), observational (Study II), forward (Study I) and 

backward (Study III) manipulations could be equally useful in assessing the impact of pain 

presence on other measures and in other disorders, both painful and otherwise, to help 

disentangle state and trait features of pain conditions as highlighted in recent work60. As only 

mild variants of LBP were investigated in this thesis, it is unclear if findings are replicable in 

other subgroups, for example, with greater severity of pain and disability, widespread pain 

features, comorbid conditions, or with neuropathic or radicular symptomatology. It is further 

unclear if the present findings are specific to LBP or musculoskeletal pain alone, or if pain in 

any location from any source could produce some of the same results. Future work is needed 

to expand upon the present studies, both specifically in LBP conditions and otherwise, by 

tracking patients over longer time spans, using more homogenous patient groups (e.g. with 

regard to pain onset and history, temporal profile of pain, disability level, and/or mechanistic 

classifications), and using different experimental pain provocations and clinical interventions 

with stronger effects. It is hoped that with continued work in this direction, a better 

understanding of both the effects of present pain state on measures of pain sensitivity and trait 

features that underlie LBP development and maintenance can be obtained.  
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Appendix A. Article Overview 

Overview of the three primary articles included in this thesis 
 STUDY I STUDY II STUDY III 

Title 

Alterations in Temporal 
Summation of Pain and 

Conditioned Pain Modulation 
Across an Episode of 

Experimental Exercise-
Induced Low Back Pain 

Recurrent Low Back Pain 
Patients demonstrate 

Facilitated Pro-nociceptive 
Mechanisms when in Pain, 

and Impaired Anti-nociceptive 
Mechanisms with and without 

Pain 

Medial Prefrontal High-
Definition Transcranial Direct 

Current Stimulation to 
Improve Pain Modulation in 
Chronic Low Back Pain: A 
Pilot Randomized Double-

blind Crossover Trial 

Objective 

To investigate predictive 
value of pain sensitivity for 

LBP development and 
changes in pain sensitivity 

consequential to LBP 

To investigate whether pain 
sensitivity alterations are a 

consequence of LBP presence 

To investigate changes in 
clinical pain and pain 

sensitivity induced by mPFC 
tDCS 

Sample 
30 Pain-free participants 
(6 excluded, no DOMS at 

Day-2) 

30 Recurrent LBP patients 
(4 excluded, 1 withdrew and 3 
with ongoing pain at Day-28) 

30 Pain-free controls 

12 Chronic LBP patients 
(1 missing final follow-up 

session) 

Design 

Data collected at baseline 
(Day-0), post-exercise (Day-

0), with LBP (Day-2) and 
post-resolution (Day-7) 

Data collected with RLBP 
present (Day-0) and resolved 

(Day-28), and over same 
timeframe in controls 

Active/sham tDCS for 3 days 
separated by >2 weeks. Data 
collected pre/post 1st (Day-1) 
and post 3rd session (Day-3), 

at Day-4 and Day-21 

Model 

Delayed onset muscle 
soreness in lumbar erector 

spinae/gluteal muscles, 
induced by repeated prone 
trunk extensions to fatigue 

Subclinical recurrent LBP 
present for >24 hours at time 

of recruitment and testing, that 
is expected to resolve 

completely in less than 4 
weeks 

Chronic LBP with average 
pain score ≥3/10. Stimulation 
applied using HD-tDCS with 
anode at Fz and cathodes at 

F7, F8, FP1 and FP2. 

Materials 
History, physical exam, sleep, menstruation, mood, IPAQ, PCS, Pain VAS intensity and 

unpleasantness, RMDQ, STarT-Back Screening Tool, (Pain-DETECT, BDI) 

Measures 
Handheld pressure pain thresholds (PPTs), cuff pain detection (cPDT) and tolerance (cPTT) 

thresholds, supra-threshold ratings (STR), temporal summation of pain (TSP) and conditioned 
pain modulation (CPM) 

Results 

Mild pain and disability 
provoked. PPTs reduced at 

L1, L5 and ECR compared to 
pain-free, UT and GAS 
reduced to Day-7. Cuff 

thresholds increased at Day-
7. No significant changes 
over time in TSP or CPM. 
Baseline TSP (along with 
lumbar PPTs, number of 

exercise repetitions, mood, 
and gender) associated with 

peak LBP severity 

Mild LBP and disability 
reported. PCS scores higher 

on Day-0 than Day-28 for 
RLBP patients. PPTs reduced 

at L1, L5, ECR and UT on 
Day-0 compared to Day-28 

and controls. cPDT increased 
on Day-28 compared to Day-0 

in RLBP. TSP increased on 
Day-0 compared to Day-28 

and to controls. CPM reduced 
in RLBP patients compared to 

controls overall. 

Mild LBP and disability 
reported. Immediate 

reduction in pain intensity 
observed after first tDCS 
session. No differences 

between Active and Sham for 
pain or questionnaire 

outcomes. No differences in 
pain sensitivity between 

Active and Sham protocols at 
Day-4 or Day-21. Negative 

correlation between baseline 
CPM and response to Active 

tDCS. 

Conclusion 

TSP assessed in a pain-free 
state may help explain 
variation in future pain 

severity. The DOMS LBP 
model produced local and 

widespread pressure 
hypersensitivity but was not 
sufficient to alter central pain 

processing mechanisms. 

A RLBP episode was 
associated with increased pain 

catastrophizing, local and 
widespread pressure 

hypersensitivity and facilitated 
TSP, compared to when pain 
resolved and to controls. CPM 
was reduced overall and may 
represent a relevant feature 

contributing to RLBP 
development or maintenance. 

This mPFC tDCS paradigm 
was unable to produce 

specific changes in pain, 
disability, PPTs, cuff 

thresholds, TSP or CPM, 
possibly due to issues with 

sample characteristics. 
Exploratory correlations may 

indicate potentially better 
effects in a selected sample 

with very inefficient CPM. 
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Appendix B. Confounding Factors 

Additional details on material used to capture potential confounders 

 
Factor: Rationale: Measures used: Description and validity: 

Sleep Sleep is increasingly 
acknowledged to play a key role 
in painful disorders, with many 
studies implying close links 
between poor sleep and pain 
exacerbation77,116,143,269,296. In LBP 
patients specifically, sleep 
disturbance is 
common17,116,143,192,233,335, with 
more than half of chronic patients 
in recent studies reporting 
insomnia symptoms233,335. 
Further, it has been shown 
previously that both reduced total 
sleep time and interruptions to 
sleep have a detrimental effect 
on pain thresholds282,288,296, TSP 
and CPM73,305.  

- Number of hours 
slept night prior to 
testing session 
(Study I-III) 

- Number of 
awakenings in 
night prior to 
testing session 
(Study I-III) 

These questions are asked in 
validated sleep quality 
questionnaires43 and have adequate 
face validity. Participants tend to 
overestimate sleep duration, but this 
is done so systematically and reports 
still show moderate correlation to 
objective measures164.  

Menstruation There is debate as to the 
influence of female hormonal 
cycles on pain sensitivity 
measures, with some studies 
showing differences between 
menstrual phases273 and others 
showing no significant 
impact26,138,356. As all studies (I-
III) involved more than one 
session, data was collected from 
female participants about 
menstruation in an effort to 
ensure avoidance of systematic 
bias. 

- Current day of 
menstrual cycle 
(Study I-III) 

- Average cycle 
length (Study I-III) 

- Contraceptive 
use (yes/no, 
Study I-III) 

These particular questions have not 
been validated but reflect factors that 
individuals can estimate based on 
their last menstrual period. Without 
hormone testing, it is not possible to 
determine precisely which phase 
females were in, but the present 
measures were deemed adequate to 
understand if female participants had 
normal cycles and were roughly 
evenly distributed between phases to 
exclude clear systematic bias. 

Mood Both experimental manipulation 
of affect and the presence of 
affective disorders have been 
shown to influence pain 
experiences72,339, as well as pain 
sensitivity122,318,340. Hence, 
affective state during the session 
was thought to be important to 
assess, both to identify potential 
basal differences in affect 
between patients and controls, 
and to capture potentially 
influential changes between 
sessions. 

- Face Scale182 
(Study I-III) 

- Positive and 
Negative Affective 
Schedule 
(PANAS351, Study 
II-III) 

- Beck 
Depression 
Inventory-II 
(BDI27, Study III) 

The Face Scale provides a 
unidimensional 20-point picture scale 
of facial images ranging from very 
positive (1) to very negative (20) 
expressions. It is a simple measure 
that provides a quick unidimensional 
assessment of mood. The PANAS 
was used as a more nuanced 
classification of affect, as it asks 
participants to rate the extent to 
which they currently feel each of the 
20-affective states listed. The PANAS 
has been validated to reliably capture 
two distinct affective components48,57. 
The BDI has been validated and used 
as a tool to screen for possible 
affective disorders in various 
settings27,310.  
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Factor (cont.) Rationale (cont.) Measures (cont.) Description and validity (cont.) 

Anxiety Similar to affective disorders, 
anxiety disorders also well known 
to commonly co-occur with pain 
conditions15, and artificial 
manipulation of anxiety202 or 
stress96,331 can impact pain 
experiences. 

- Spielberger 
State and Trait 
Anxiety Inventory 
(STAI304, Study II-
III) 

The STAI is a 40-item scale, where 
participants rate the extent to which 
statements describe them now (state) 
or in general (trait), and which has 
been widely used in psychological 
research. It has been translated and 
validated into many 
languages1,19,76,111,185 and provides 
useful distinct characterisation of 
state and trait anxiety86.  

Pain 
Catastrophizing 

Along with anxiety and affective 
disorders, patients with chronic 
pain often have catastrophic 
thoughts about their condition. 
Such thoughts have been 
increasingly captured in 
research, for example, by using 
the Pain Catastrophizing Scale 
(PCS)312. 

- The Pain 
Catastrophizing 
Scale312 (PCS, 
Study I-III)  

The PCS is a 13-item scale of 
cognitions that may arise when one is 
in pain, on which participants rate 
how frequently they have such 
catastrophic thoughts. It has been 
used extensively in pain research and 
has been shown to have high 
construct validity. 

Physical 
Activity 

A u-shaped relationship is 
purported to exist between 
physical activity and clinical pain, 
suggesting that both too much 
and too little activity can be 
problematic118. Within normal 
limits, however, physical activity 
seems protective against LBP 
development125,292. In relation to 
pain sensitivity, physical activity 
also often seems protective and it 
is well-established that exercise 
can have acute positive effects 
on pain threshold measures216,275. 
Physical activity was thus 
captured to identify between-
group differences.  

- International 
Physical Activity 
Questionnaire56 
Short Form 
(IPAQ, Study I-III) 

The IPAQ has been widely used and 
translated into several languages, 
offering a quick estimate of weekly 
exertion and daily sitting time337. 
Unfortunately, attempts to validate 
the IPAQ against objective activity 
data (e.g. with accelerometer or 
pedometer) have proven difficult, with 
very poor correlation between these 
measures, and studies commonly 
demonstrating over-estimation of 
activity levels by participants168. 
Reports of reliability for the IPAQ 
have also been variable with 
excellent reliability reported in healthy 
controls294 but poor reliability in CLBP 
patients47. Despite this, IPAQ 
responses have previously been 
shown to correlate with TSP and 
CPM217,241, along with LBP113,246. 
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Appendix C. Additional Analyses 
Between-Studies  

For the sake of completeness, an additional overall analysis was conducted to compare 

between study groups for the main outcomes, and where the same methodology was used in 

all participants. In some cases, these findings contradict the individual study findings, likely due 

to the small effect sizes and addition of variability. Nevertheless, they serve as an indication of 

potential differences and similarities between the populations and LBP models investigated.  

Details of analytical methods and results for comparisons made on 

questionnaire data pooled from all studies 

 
Characteristic Model Omnibus Test Post-hoc Comparisons 

Age 
One-way 
ANOVA with: 
Group (4) 

No difference 
between groups 
(P>0.25) 

- 

Body Mass Index 
(BMI) 

One-way 
ANOVA with: 
Group (4)  

No difference 
between groups 
(P>0.38) 

No differences were noted for height or 
weight either using the same analysis.  

Mood (Faces Scale, 
Past week / Now) 

2-way ANOVA 
with: Group (4), 
Session (2) for 
each variable 

No differences 
observed for either 
past week or now 
(P>0.05) 

- 

Sleep (Hours) 

2-way ANOVA 
with: Group (4), 
Session (2) 

Significant 
Group*Session 
interaction: 
F3,88=3.73, P=0.014, 
η2=0.11 

No differences between groups. CLBP 
patients slept more hours prior to the 
representative less painful session than 
the more painful session (P=0.016). 

Sleep (Awakenings) 

Kruskal-Wallis 
Test with: 
Group (4) 
Wilcoxon with: 
Session (2) 

No differences 
between Groups 
(P>0.09) or 
Sessions (P>0.74) 

- 

Pain Catastrophizing 
(PCS) 

2-way ANOVA 
with: Group (4), 
Session (2) 

Significant 
Group*Session 
interaction: 
F3,88=9.25, P<0.001, 
η2=0.24 

In RLBP, PCS score was higher during 
the painful session than the non-painful 
session (P=0.001). In DOMS, PCS score 
was lower during the painful session than 
the non-painful session (P<0.001). In the 
painful session, RLBP patients showed 
higher PCS scores than participants with 
DOMS (P=0.035).  

International 
Physical Activity 
Questionnaire 
(Sitting time / Score) 

One-way 
ANOVA with: 
Group (4) for 
each variable 

No difference 
between groups for 
either sitting time or 
activity (P>0.20) 

- 
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Details of analytical methods and results for comparisons made on 

clinical characteristic data pooled from all studies 

 
Characteristic Model Omnibus Test Post-hoc Comparisons 

Pain Intensity (VAS) 
One-way 
ANOVA with: 
Group (3) 

No differences 
between groups 
(P>0.84) 

- 

Pain Unpleasantness 
(VAS) 

One-way 
ANOVA with: 
Group (3) 

No differences 
between groups 
(P>0.16) 

- 

Pain Duration (years) 
One-way 
ANOVA with: 
Group (3) 

Significant main 
effect of Group: 
F2,59=17.36, P<0.001 

Pain duration was greater in RLBP 
(P<0.001) and CLBP (P=0.001) patients 
than provoked in the DOMS model. 

McGill Pain Score 
One-way 
ANOVA with: 
Group (3) 

Significant main 
effect of Group: 
F2,59=10.33, P<0.001 

McGill scores were higher in RLBP 
(P<0.001) and CLBP (P=0.017) patients 
than provoked in the DOMS model. 

Roland-Morris 
Disability 
Questionnaire 
(RMDQ) 

One-way 
ANOVA with: 
Group (3) 

Significant main 
effect of Group: 
F2,59=4.43, P=0.016 

Disability was higher in RLBP (P=0.049) 
and CLBP (P=0.042) patients than 
provoked in the DOMS model. 

STarT-Back Screening 
Questionnaire (SBSQ) 

Kruskal-Wallace 
H test with: 
Group (3) 

Significant main 
effect of Group: 
H2=17.18, P<0.001 

STarT-Back Scores were higher in 
RLBP than DOMS (P=0.008) and in 
CLBP than both RLBP and DOMS 
(P<0.03) 
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Details of analytical methods and results for comparisons made on 

primary outcome data pooled from all studies  

 
Outcome Model Omnibus Test Post-hoc Comparisons 

Pressure Pain 
Thresholds 
(PPTs) 
 

RM-ANOVA with 
between-subjects 
factor: Group (4); and 
within-subject factors: 
Site (5) and Session 
(2) 

Significant 3-way 
Group*Site*Session 
interaction: 
F12,352=2.97, 
P=0.001, η2=0.092 

Compared to control group: ↓ ECR & UT 
in DOMS (P<0.03), ↓ L1 & L5 in CLBP 
(P<0.04) in painful session; no significant 
differences between-groups in pain-free 
session 
Compared between sessions: no 
differences in controls (P>0.06), ↓ during 
DOMS at ECR, L1 & L5 (P<0.02), ↓ 
during RLBP at ECR, UT, L1 & L5 
(P<0.04); ↓ in more painful CLBP session 
at L1 (P<0.02) 

Cuff Pain 
Detection 
Threshold 
(cPDT) 

ANOVA with between-
subjects factor: Group 
(4); and within-
subjects factor: 
Session (2) 

Significant 
Session*Group 
interaction: 
F3,88=2.83, P=0.043, 
η2=0.088 

No differences between groups in either 
session 
Compared between sessions: ↓ cPDT 
during RLBP (P=0.04) and during more 
painful session in CLBP (P=0.001) 

Cuff Pain 
Tolerance 
Threshold 
(cPTT) 

ANOVA with between-
subjects factor: Group 
(4); and within-
subjects factor: 
Session (2) 

Significant 
Session*Group 
interaction: 
F3,88=3.02, P=0.034, 
η2=0.094 

No differences between groups in either 
session 
Compared between sessions: ↓ cPTT 
during more painful session in CLBP 
(P=0.001) 

Supra-
threshold 
Pressure 
Stimulation 

ANOVA with between-
subjects factor: Group 
(4); and within-
subjects factor: 
Session (2) 

Main effect of 
Session: F3,88=12.52, 
P=0.001, η2=0.125 

Pain ratings of supra-threshold pressure 
were generally higher in the more painful 
session (P=0.001) 

Temporal 
Summation of 
Pain (TSP) 

RM-ANOVA with 
between-subjects 
factor: Group (4); and 
within-subjects factors: 
Epoch (3) and Session 
(2) 

Main effect of 
Epoch: F2,176=64.79, 
P<0.001, η2=0.424 

All epochs significantly different (first < 
second < third) indicating significant TSP 
demonstrated, but no differences 
observable between groups or sessions 

Conditioned 
Pain 
Modulation 
(CPM) 

RM-ANOVA with 
between-subjects 
factor: Group (4); and 
within-subjects factors: 
Ramp (3), Threshold 
(2) and Session (2) 

Main effect of Ramp: 
F2,176=17.72, 
P<0.001, η2=0.168 

Normalized change in cPDT and cPTT on 
ramps during and post conditioning 
stimulation were significantly higher 
overall than the repeated ramp prior to 
conditioning (P<0.001) indicating a 
normal inhibitory response to 
conditioning, but no differences 
observable between groups or sessions 
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