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Abstract

Building control, which covers the control of the Heating, Ventilation and Air
Conditioning (HVAC) installations in a building, is an important research
area to reach climate targets. The potential for energy savings within build-
ings is immense and the ability to unlock it using control is cost-effective.
Furthermore, building control can enable and expose the inherent energy
flexibility and support the further penetration of renewable energy gener-
ation in the grid. Model Predictive Control, which has been the pinnacle
within process control, is widely treated in the building control literature
and it has been proven capable of both reducing energy consumption and in-
troducing energy flexibility. However, with the majority of the building stock
being old, building control has to be considered in the context of retrofitting.
As research has shown, Model Predictive Control may not be well-suited in
this context – which may also be indicated by the industry not adopting the
method.

This thesis is concerned with alternative tractable control methods and
feasible implementations of building control. These topics are treated in the
context of shopping centers, which poses further constraints on tractability
due to their complex HVAC systems. The research has been carried out
under the Smart Energy Shopping Centers EUDP project. The main contri-
butions is the formalization of a general low-complexity hierarchical control
methodology to complex HVAC systems and the inclusion of Iterative Learn-
ing Control, to provide both energy savings and maintained thermal comfort.
The methodology intentionally focuses on information available by interfac-
ing directly with existing Building Management Systems to maximize the
retrofit compatibility.

The proposed method is applied to two Danish shopping centers exhibit-
ing different consumption characteristics and with different HVAC architec-
tures. The two case studies have been thoroughly analyzed in terms of how
it is possible to interface with them through the existing Building Manage-
ment System infrastructure and a piggybacking-method was proposed and
evaluated through different control experiments – this is concluded a highly
feasible way of introducing new building control in the existing building
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stock.
Simulation studies show promising results in both cases, with energy sav-

ings in the range 10-22%. In a comparison with Model Predictive Control, the
proposed method is very close to providing the same performance in terms
of both energy savings and maintaining thermal comfort – with significantly
less complexity and modeling overhead. Furthermore, a control experiment
over 3 months in one of the case studies showed energy savings as high as
30-40%.



Resumé

Bygningskontrol, som dækker styring af varme, ventilation og aircondition
(HVAC) i en bygning, er et vigtigt forskningsområde for at nå klimamål. Der
er et umådeligt stort potentiale for energibesparelser indenfor bygninger, og
muligheden for at indfri det igennem bygningskontrol er omkostningseffek-
tivt. Ydermere kan bygningskontrol aktivere og eksponere energifleksibilitet
for videre at understøtte en højere grad af vedvarende energi i forsyningen.
Model Prædiktiv Kontrol (MPC), som har været højdepunktet indenfor pro-
ces kontrol, er i et stort omfang også behandlet i bygningskontrol litteraturen
og har vist sig egnet til både at reducere energiforbruget og til at introducere
energifleksibilitet. Eftersom hovedparten af den eksisterende bygningsmasse
er gammel skal ny bygningskontrol tænkes ind i en eftermonterings-kontekst.
Forskning har vist, at MPC ikke nødvendigvis er velegnet i denne kontekst –
hvilket muligvis også kan ses i den manglenden anvendelse af MPC i bygn-
ingskontrol industrien.

Denne afhandling undersøger alternative medgørlige metoder og gen-
nemførlige implementeringer af bygningskontrol. Disse emner er behandlet
indenfor shopping centre, som sætter yderlige begrænsninger til metoderne
grundet shopping centres komplekse HVAC systemer. Forskningen er tilblevet
under Smart Energy Butikscentre EUDP projektet. Hovedbidraget er en for-
malisering af en generel og simpel hierarkisk og iterativ lærings kontrol (ILC)
metode til at varetage kontrol af komplekse HVAC systemer, for både at
sænke energiforbruget og bibeholde termisk komfort. Metoden fokuserer be-
vidst på information der allerede er tilgængeligt ved at interface direkte med
eksisterende bygningsautomatik (CTS) for at maksimere kompatibiliteten i
en eftermonterings-situation.

Den foreslåede metode er anvendt på to danske shopping centre med
meget forskellig køle- og varmeforbrug og med forskellige HVAC systemer.
De to casestudier er blevet analyseret i forhold til hvordan det er muligt at in-
terface med deres eksisterende bygningsautomatik og en ’piggyback’-metode
blev foreslået og evalueret gennem forskellige kontrol eksperimenter. Der
konkluderes at denne tilgang bestemt er en mulighed når der skal introduces
ny bygningskontrol i den eksisterende bygningsmasse.
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Simuleringsstudier har vist meget lovende resultater i begge casestudier,
med energibesparelser mellem 10% og 22%. I en sammenligning med MPC
viser den foreslåede metode at denne kan opnå næsten de samme resul-
tater når der er tale om energibesparelser uden at gå på kompromis med
termisk komfort – og dette med signifikant lavere kompleksitetet og uden
at være afhængig af en tidskrævende dynamisk model. Ydermere har et
kontrol eksperiment kørt over 3 måneder i et af de to shopping centre vist
energibesparelser mellem 30% og 40%.
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1 | Introduction

1.1 Buildings and their energy consumption

With the current pace and extent of the global energy transition, climate tar-
gets can not be met. Energy-related CO2 emissions need to peak in 2020
and then enter a very steep descent to succeed in reaching goals – in 2018
emissions went up by 1.7 % and in 2017 they went up by 1.6 %[1].

Fig. 1.1: Energy-related CO2 emissions in Gt for all sectors and for buildings. Direct consumption
is without emissions from consumption of electricity and e.g. district heating. The New Policies
Scenario (NPS) is the expectation given the current policies, measures and announcements. The
Faster Transition Scenario (FTS) is an ambitious scenario aligned with the long-term goals of the
Paris Agreement[1].

Buildings are, globally, responsible for approximately one third of the to-
tal energy consumption. This has buildings playing a critical role in reducing
emissions. While measures are being taken, and the consumption per square
meter has been reduced, it has not been able to keep up with the massive
increase in floor area, leaving energy-related CO2 emissions from buildings
25 % higher than in 2000[1].

When it comes to increasing energy efficiency of buildings, this is either
done by increasing the efficiency of the building envelope or the efficiency of
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Chapter 1. Introduction

the Heating Ventilation and Air Conditioning (HVAC) equipment. Denmark
and Germany have been progressive within making energy efficiency policies
for the building envelope – where e.g. Korea and Japan are focusing more on
HVAC equipment. In order to meet climate targets, both areas are highly crit-
ical, as very efficient envelopes also enable the use of even higher-efficiency
(e.g. low temperature) HVAC equipment[2].

As the majority of the existing building stock is old, an important con-
sideration is retrofitting. Updating the building envelope can in a retrofit
situation be very expensive, making investments in energy refurbishment
unattractive. With HVAC equipment responsible for 50 % of energy spent in
buildings[3], it can be more attractive to update old installations. One way
is by replacing old equipment with new more efficient equipment. Another
way is to consider that a majority of the energy consumption is due to how
the equipment is operated, making it a control problem.

Another aspect of buildings and their large energy consumption, is the
role they are going to play in a progressively different energy system. To
combat the energy-related CO2 emissions, renewable energy is penetrating
the electricity supply. In 2019, renewables accounted for 26 % of global elec-
tricity generation and have been growing steadily since 2000, where it was
18 %[4]. The penetration of renewable energy entails an increasingly stochas-
tic electricity generation, which poses new requirements to balancing the pro-
duction and consumption. One way to balance production and consumption
is to have the consumers actively participate, providing demand response; e.g.
load-shifting, peak-shaving or ramping. This is possible in buildings by al-
lowing temperatures to vary within a comfort band, exploiting the thermal
capacity. Unlocking this energy flexibility in buildings is also a control prob-
lem.

These two control problems are the topics of this thesis.

1.2 Building control – state-of-the-art

In single family housing, HVAC control is often reduced to the control of
a single heating or cooling solution, depending on the climate. The control
problem is then boiled down to operating a single piece of equipment as ef-
ficiently as possible. In larger buildings – both commercial and residential
– the complexity of the HVAC setup increases with the scale of the build-
ing. To manage this complexity (together with a myriad of other building
installations), a Building Management System (BMS) or Building Automa-
tion System (BAS) is employed.

The BMS is the over-arching control system of a building, connecting all
relevant installations (HVAC, lighting, windows, etc.) and providing a build-
ing operator with a single interface to supervise, schedule and operate these
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1.2. Building control – state-of-the-art

installations. A conceptual drawing is presented in Figure 1.2a. The building
operator is tasked with setting schedules, setpoints, operating modes and
supervising the operation of the underlying installations. With the recent
availability of both data storage, processing power and cheaper sensors, BMS
suppliers have been pushed to deliver on e.g. predictive maintenance and
predictive control. This is however not the standard to be expected. Looking
at Figure 1.2a, it is natural to look at building control from a hierarchical
control point-of-view. This is depicted in Figure 1.2b.

The existing building stock is mainly controlled by means of decentral-
ized PID controllers (Automation level in Figure 1.2a, Local controllers in Fig-
ure 1.2b) for temperature control[5, 6]. Supervisory control is mostly in the
form of scheduling ON/OFF, night-setback[5] and setpoint curves for ambi-
ent temperature compensation[7].

Chiller AHU

Sensors Actuators  Room
controllers

Lighting Cooling and ventilation plants
(e.g. with their own control)

Operator
interface

Database 
(logging, alerts, time series)

Management level

Automation level

Field devices

e.g TCP/IP

e.g BACNET, MODBUS,
proprietary

Controller

(a)

Supervisory control

Local controller

Plant

Local controller

Plant

Local controller

Plant

(b)

Fig. 1.2: (a) BMS (or BAS); the overarching control solution in larger buildings.
(b) Inferred hierarchical control perspective on BMS.

The main drawback of relying on PID control in building automation is
due to changing non-linear building dynamics. With PID controllers com-
missioned with constant parameters, their performance will degrade if they
are not re-tuned. This can lead to instabilities, under- and overshoots, at the
cost of both thermal comfort and energy consumption. This has been known
since the 1980s with a significant amount on research within adaptive, pre-
dictive and optimal control as a reaction[8]. But even with several decades of
research in building control, there has been very little industry adoption.
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Chapter 1. Introduction

1.2.1 Model Predictive Control

Over the last decade, the majority of building control literature has been fo-
cused on Model Predictive Control (MPC) as reported in both [8] and [9].
There are several reasons why research into the application of MPC is attrac-
tive. Using MPC in a building control application naturally allows for:

• posing a cost to minimized; e.g. thermal comfort and or energy con-
sumption

• including predictions of ambient conditions, occupancy, electricity prices,
etc.

• enforcing constraints on e.g. room air temperatures and actuator limits

• guaranteeing stability and robustness[10]

• enabling demand response applications

On top of this, MPC is a success story in process control and the drawbacks
in terms of computational complexity have with both research into compu-
tational efficiency and the growing availability of processing power been sig-
nificantly diminished[11].

In the works treated in both [8] and [12] the results of using MPC are very
promising in terms of reductions in energy consumption. The most con-
vincing results are experimental studies, showing the results from an actual
implementation of MPC.

Energy savings of 15 % to 28 % were reported in [13], where the authors
applied MPC in the buildings of the Czech Technical University, from January
2010 to March 2010. The MPC was compared to the performance of the
heating curve otherwise used.

In [14] the authors present a multi-objective MPC, optimizing both energy
consumption, operating cost and occupancy comfort – with online occupancy
feedback. The controller was demonstrated in two office buildings in Aus-
tralia, in a trial during two winter months. Comparing with the performance
of using the existing BMS, energy savings were reported as 19 % and 32 %,
and with no degradation of comfort.

In [15] the authors present an MPC design, minimizing energy consump-
tion and thermal discomfort. From an implementation and trial in an office
building in Belgium, the authors report energy savings of 30 % during winter,
while providing similar or better thermal comfort. Another office building in
Belgium has been the case study in the work presented in [16]. Here a cloud-
based MPC solution is presented and results from five months of operation
are reported. Savings were reported as high as 53 % and with significant
improvements of thermal comfort.
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A larger academic building (10 000 m2) in Canada is treated in [17], where
MPC is implemented and tested during four months. The results showed
reducing HVAC energy consumption by 30 %. The authors conclude that this
exceeds expectations, given that several measures had already been taken to
improve energy efficiency in the building.

In [18] a seven month long MPC experiment in a Swiss office-building was
conducted. While the results in terms of energy savings are indeed promis-
ing, the authors conclude through a cost-benefit analysis that initial costs
may simply be too large to justify the use of MPC. One very significant cost
being the modeling tasks involved, given the time effort. The authors of [18]
conclude that this is especially the case for older buildings with very sparse
information on the building available. This is a major issue for the applica-
tion of MPC, as the largest potential for energy savings through control is in
older buildings. In [19], [20] and [21] the authors also regard the modeling
effort as the largest cost to unlock the benefits.

Many works treat the different approaches to modeling building dynam-
ics, as there is no silver bullet[19]. When the goal is a control-oriented model,
there are three main modeling paradigms:

• White-box models

• Grey-box models

• Black-box models

The distinction between these is in how much one relies on first-principles
and how much one relies on statistics. A white-box model is a purely physics-
based first-principle analytical model. A black-box model is a purely statistics-
or data-driven model. The grey-box model is the hybrid of the two. Often the
grey-box models are Resistor Capacitor (RC)-equivalent models which lends
themselves well to large multi-zone buildings[20]. Looking at the experi-
mental MPC studies cited above (all of them considering larger multi-zone
buildings), they all use grey-box models – except for [16], where the authors
use a white-box model. The compromise of using a grey-box approach lends
itself well to a retrofit situation; maybe not enough data is available to pursue
a purely data-driven approach, while at the same time, not enough informa-
tion about the construction is known to construct a white-box model.

In the case that there is an abundance of data available, data-driven meth-
ods (black-box) can be very attractive, especially in a retrofit situation, with
limited information on the building[22]. But quantity of the data is not
enough; the measurements used in the identification of a black-box model
has to cover input-output data in all operating conditions. There have been
experimental studies of using black-box models[23, 24], but not as elaborate
and complete as in the previously mentioned grey-box and white-box cases.
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Chapter 1. Introduction

1.2.2 Tractable methods

The authors of [19] conclude that the main barriers to MPC adoption are:

• Added engineering effort

• Required engineering qualifications

• Risk mitigation

• Industry reluctant to adopt

Together with the barriers of interfacing with legacy automation systems and
a lacking instrumentation level, this severely hinders the widespread adop-
tion of more advanced control methods – especially considering retrofit ap-
plications[25]. With these boundary conditions, there is room for alternative
building control methods, with a focus on being tractable.

In [26] the authors focus on low-complexity methods to improve im-
plementability. The work investigates using different steady-state setpoint
optimization schemes to lower energy consumption in different HVAC case
studies. The authors conclude that simple methods are sufficient drastically
reduce energy consumption. In [27] another alternative control strategy is
proposed, which is a model-based design that has gone through several sim-
plification steps.

The authors of [28] also respond to the slow adoption of MPC, and pro-
pose a method to learn a Rule-Based Control (RBC) scheme from simula-
tions with MPC. In a comparison study it was shown that the learned RBC
performed adequately well in six different case studies with different build-
ings – without having to relearn the controller for each building. While the
method still relies on learning from an initial MPC, the prospect of moving
the learned control to different buildings is very attractive. To some extent,
the same approach is taken in [29]. Here the author produces look-up tables
of MPC response, by pre-computing the results for a grid of disturbances.
This is a computationally intense task, but this effort only has to be done
once before implementation – the author does however conclude that dimen-
sionality is an issue which limits application of this approach.

In [30] the authors investigate MPC to the effects of several uncertainties
(measurement errors, occupancy and model-mismatch) on energy consump-
tion and occupancy comfort. The authors conclude that implementation costs
can be reduced by not including prediction of ambient temperature and ther-
mal load – and this without compromising the controller performance. In
[31] the authors compare a simple feedback controller using occupancy in-
formation to MPC. Results show that the feedback controller performs almost
as good as MPC.

These alternative methods, while easier to implement and commission,
are still lacking compared to all the features of MPC; prediction being one of
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them. Given a forecast of a disturbance, e.g. ambient temperature, predictive
capabilities can be included using feed-forward control, which is relatively
simple. Furthermore, buildings are often subjected to disturbances that ex-
hibit repetitive patterns; both outside weather, occupancy and HVAC opera-
tion. Using past recorded information to iteratively update the feed-forward
control is called Iterative Learning Control (ILC). Historically, ILC was intro-
duced for manufacturing and robotics applications where the same task is
repeated over and over again[32]. The method has however also appeared
in the building control literature. In [33] ILC (or Repetitive Control) is used
to improve temperature regulation in a simulation of an office building. The
authors show a tracking performance improvement of 50 % without any in-
crease in energy consumption. In [34] and [35] the authors also present the
use of ILC for temperature regulation; but instead of a classical ILC approach
looking one iteration/trial back, the authors propose methods to find a day in
historical data that best matches the upcoming day – and use this in the ap-
plication of feed-forward. In [36] the authors propose a combination of MPC
and a database-driven ILC, showing through simulations that the addition of
ILC improved the performance over using only MPC. The authors conclude
that it is a promising combination. In [37, 38, 38] the authors investigate
optimization-based ILC for large-scale building temperature regulation, de-
termining optimal learning gains by solving a convex optimization problem
which takes into account, among others, thermal comfort constraints and in-
put saturation constraints. The topic of large-scale buildings is also treated
together with ILC in [39], where the authors propose decentralized ILC for
building temperature control showing performance benefits when compared
to a distributed consensus approach. Such a distributed approach is consid-
ered in [40].

While ILC has been investigated in terms of building control, the area is
by no means well-explored and the results reported in the litterature show
that it is a promising approach to exploit the inherent repetitive behavior in
buildings.

1.2.3 Energy flexibility

Energy flexibility (or demand response) within the domain of building con-
trol has been studied extensively, and the classification of different energy
flexibility measures has been discussed in several works[41, 42]. In general,
there are two major categories within energy flexible control; indirect control
and direct control.

Indirect control considers price-signals, and lets the consumer (building)
decide how to act on this. This can be electricity pricing 24 h ahead as avail-
able in the NordPool day-ahead market or it can be peak-tariffs/critical peak
pricing. By having the building adjust their consumption to low-price hours,
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the building has a possibility to save on their electricity bill – and as low-
price hours on the day-ahead market are correlated with excess production,
this will help to balance the grid.

Indirect control through a price-signal can be achieved using methods of
lower-complexity (e.g. RBC), as indicated in [43] and demonstrated in [44].
However, to exploit storage possibilities due to thermal mass in buildings,
MPC is an obvious choice as also indicated by the literature[45].

For direct control, the consumer (building) has to meet a specified con-
sumption profile in a given time-slot[46]. This requires the utility company
requesting the power curtailment, to have a certain level of control over
equipment in the building. Direct control allows for deterministic load-
shifting and peak-shaving services. Direct control for commercial building
HVAC is demonstrated in [47] using a method that does not depend on mod-
eling the building dynamics, showing over 15 % peak-demand reduction in a
building with four roof-top Air Handling Units (AHUs).

Direct control is especially interesting, as it can allow for ramping, which
has been identified as an important demand response service to alleviate
standby coal, oil and gas fuelled electricity production in grid systems with
high Photovoltaic (PV) penetration[48]. The problem is coined the "duck
curve" problem[49] due to the shape of the net load curve (Figure 1.3); the
difference between total actual electricity load and production by renewable
energy. In [50] the authors investigate the ramping rate of HVAC loads and
conclude that aggregated HVAC units can provide a fast regulating reserve
service to support in alleviating the "duck curve" problem.

Fig. 1.3: The now famous "duck curve" of CAISO; California Independent System Operator.
Showing net load: the difference between actual total electricity load and renewable energy
generation.[49]
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1.3. Smart Energy Shopping Centers

The above sections have introduced the energy efficiency and energy flex-
ibility control problems and the associated state-of-the-art within building
control. In this thesis the topic has been a specific class of buildings, namely
shopping centers.

1.3 Smart Energy Shopping Centers

The work in this thesis has been carried out under the Danish joint research
project, Smart Energy Shopping Centers (SEBUT)1. As shopping centers (or
shopping malls, see Figure 1.6) use 25 % to 30 % of the total energy consump-
tion of the Danish retail sector, the impact of improving energy efficiency and
potentially introducing energy flexibility is large. The goal of the project is
to develop intelligent building control, knowledge services, guidelines and
tools for energy refurbishments of shopping centers in Denmark. The in-
volved project partners (Figure 1.4) are:

Fig. 1.4: Project partners in the joint research project SEBUT.

Danish Technological Institute Private research institute (project manager)

Neogrid Technologies Intelligent building control and services

DEAS Building administrator

Bitzer Supplier of ventilation and cooling controls

Exhausto AHU manufacturer

A Comfort Cooling supplier

New Nordic Engineering Indoor air quality sensors

Aalborg University Automation and Control section

1Smart Energy Butikscentre
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The project work is divided into the Work Packages (WP) presented in Fig-
ure 1.5, highlighting the parts (green) that were central to the work in this
thesis: WP 2 and 3 deal with defining control problems and models. WP 5
is on the practicalities of making demonstrations a possibility, while demon-
strations are carried out in WP 6.

WP 1
Analysis of shopping

centers and their energy
consumption 

WP 2
Intelligent indoor climate 

WP 3
Energy flexibility

WP 5
Adaptions and interfacing 

WP 6
Demonstrations 

WP 4
Tools 

WP 7
Dissemination 

Fig. 1.5: Work packages in SEBUT, highlighting the ones directly involved in the work of this
thesis (green).

From a research point of view, building control within a shopping center
context has only received limited attention in the literature. But as a large
commercial building, there is plenty of previous work to draw on, as pre-
sented in Section 1.2. Shopping centers do, however, possess some salient
characteristics.

Fig. 1.6: Kolding Storcenter entrance. A Danish shopping center treated in the SEBUT project.

There can be some confusion on the term shopping centers. In the SEBUT
project, a shopping center is a large commercial building, complete with com-
mon area and shops. On average, 40 % common area to 60 % shops. The
shops are mainly retail shop, but there will often also be supermarkets and
restaurants – and in larger shopping centers perhaps a cinema. Shops are
leased to holders by the shopping center administrators. The lease holders
are responsible for the interior of the shops, this also includes lighting. The
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lease holders are billed for their own consumption of electricity.
An acceptable indoor climate is ensured by the operation of HVAC, sup-

plying e.g. ventilated air to the shops, that is either cooled or heated. This is
the responsibility of the shopping center administrators – or more specifically
the building operators. The HVAC expenses will often be divided among the
lease holders by the size of their shop.

There are some key characteristics that make shopping centers stand out
from being classified as generic commercial buildings. First of all, as shops
are leases, the lease can change holder with a relatively high frequency; shops
close down and new shops open up. When this happens, the interior of the
shops change, complete with appliances and specifically lighting. This means
that heating and/or cooling demand for shops can change drastically. It may
also happen, that larger shop areas are divided into smaller separate shops
– or the other way around. These changes to the floor plan has a significant
impact on the control, as zones have to be redefined.

Generally, retail shops feature excessive display lighting to showcase what
they are selling. In the cases where lighting has not been fully, or at all,
converted to LED, this generates a significant amount of heat. This added
heat gain means that shopping centers often feature large cooling demands –
even in colder climate[51].

1.4 Research objectives

As emphasized in Section 1.1, buildings have a responsibility in chang-
ing their energy consumption to reach desired global climate targets. This
change has to be both in terms of energy efficiency and energy flexibility. The
building control literature has already shown methods and experiments that
demonstrate the benefits. The industry has still not adopted these methods,
however. Hence, the goal of this Ph.D. study is to investigate the potential
of alternative tractable methods. As the Ph.D. study is carried out under the
SEBUT project, this will be in the context of shopping centers. The following
objectives have been defined:

–F–

Investigate feasibility of interfacing with existing building control
The majority of the existing building stock is old. To facilitate new control,
a method to interface with existing building control is needed. This is a
significant part of the demonstration effort in the SEBUT project and will
be investigated in the setting of shopping centers, which feature large and
complex building control setups.
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–F–

Formulate a model for both simulation and control purposes
A simulation model will allow fast evaluation of new control algorithms, and
for reproducing results under different ambient conditions. Besides simula-
tions, a model is an integral part in any model-based control design.

–F–

Investigate the use of Model Predictive Control
MPC is the state-of-the-art within building control and is also the most note-
worthy control methodology when it comes to providing energy flexibility. In
order to propose alternative methods it was found necessary to first attempt
the most complex approach with the most promising results to establish a
performance bound.

–F–

Propose an alternative method to introduce energy efficiency
Based on experience and results of using MPC this Ph.D. study will attempt
to formulate a general control methodology, applicable to shopping centers
in general. This control methodology should stand as an alternative to MPC
in order to provide a practitioner with options, when it comes to a building
control retrofit situation.

–F–

Investigate potential for energy flexibility in shopping centers
To accommodate flexible electricity production, electricity consumers need to
be flexible as well. This Ph.D. study will investigate the potential for energy
flexibility in shopping centers.

1.5 Preview and contributions

This section presents the contributions to the state-of-the-art in the form of
the associated papers. For each paper, a brief introduction is given together
with a highlight of the specific contributions. The papers are presented in
full in Part II.
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Paper A
J. B. Petersen, J. Dimon Bendtsen, and J. Stoustrup, “Multi-Zone Modeling
and Energy Efficient Control of Shopping Center Cooling,” in 2018 IEEE Con-
ference on Control Technology and Applications (CCTA), Copenhagen,
Aug. 2018, pp. 533–538.

Paper A presents a dynamical model that captures the multi-zone layout of
a shopping center. The model is a grey-box RC-equivalent model suitable
for both simulation experiments and model-based control designs. The pa-
per presents the HVAC specifics of a section of Kolding Storcenter, a Danish
mall, to which the model is fitted. Parameters for the model are estimated
based on a combination of measurement data extracted from live operation
of the shopping center and table-lookup. Paper A furthermore presents a
preliminary high-level control design to minimize energy consumption spent
on cooling, feeding back cooling valve opening degrees. The controller ma-
nipulates the forward temperature of a chiller to as high a temperature as
possible, without saturating the valves.

Paper B
J. B. Petersen, J. D. Bendtsen, P. Vogler-Finck, and J. Stoustrup, “En-
ergy Flexibility for Systems with large Thermal Masses with Applications to
Shopping Centers,” in 2018 IEEE International Conference on Communi-
cations, Control, and Computing Technologies for Smart Grids (Smart-
GridComm), Aalborg, Oct. 2018, pp. 1–6.

Paper B builds on the work of Paper A, by using the proposed model in
an MPC design to introduce energy flexibility using direct control. Paper B
considers the same shopping center as in Paper A. The model is linearized
and a standard MPC formulation is presented, where the cost is given as
deviation from the chosen operating point. Energy flexibility is introduced
as time-dependent constraints, dictating a specific energy consumption or
power consumption, in a given time interval. The controller is evaluated in
a simulation experiment, showing that a constraint on energy consumption
over power consumption is better, as it infers integral action. The simulation
results also show, that scaling up the results could provide power curtail-
ments in the order of 100 kW for the entire shopping center, for a period of
1 h.
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Paper C
J. B. Petersen, J. D. Bendtsen, and J. Stoustrup, “Nonlinear Model Predictive
Control for Energy Efficient Cooling in Shopping Center HVAC,” in 2019 IEEE
Conference on Control Technology and Applications (CCTA), Aug. 2019,
pp. 611–616.

Paper C builds on Paper A, by using an extended version of the model in
a Nonlinear Model Predictive Control (NMPC) design for more energy effi-
cient operation of shopping center HVAC. The nonlinear model of the shop
temperature dynamics is used directly in an optimal control problem that
seeks to minimize cooling effort by manipulating with the operation of both
an AHU and a chiller. The intention is to better coordinate the operation
to avoid situations where the same air is both heated and cooled. This is
achieved by moving cooling capacity from the chiller to the AHU, when free
cooling is available through a low ambient temperature. The performance of
the controller is evaluated in simulations and shows that significant energy
savings can be obtained with no degradation of thermal comfort.

Paper D
J. B. Petersen, J. D. Bendtsen, A. G. Alleyne and J. Stoustrup, “Low-
Complexity Hierarchical Control for Distributed Shopping Center HVAC,” in
21st IFAC World Congress, Jul. 2020.

Paper D presents an alternative control methodology for shopping center
HVAC control. It presents a low-complexity hierarchical control approach
that is less model-dependent than MPC, providing increased reusability and
operator transparency. By applying the method to the same section of a
shopping center as considered in Paper A, Paper B and Paper C, the method
showed significant energy savings. The method was compared to a similar
NMPC scheme as presented in Paper C. The comparison showed NMPC to be
superior, which was expected – but that the lower-complexity method could
recover 66 % of the performance.
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Paper E
J. B. Petersen, J. D. Bendtsen, A. G. Alleyne and J. Stoustrup, “A Simplified
Hierarchical Approach to Distributed HVAC Control – a shopping center case
study,”, submitted for journal publication.

Paper E builds on the low-complexity hierarchical control approach in Pa-
per D. It presents the steps taken to apply the method to a section of Kolding
Storcenter, where it is used to control both an AHU and a chiller, coordinating
production to meet the demand of the shops they supply. An experimental
study is conducted, where the new controller is evaluated over a period from
9. November 2019 to 22. January 2020 – switching between the new controller
and the baseline to allow for comparison in similar ambient conditions. Sig-
nificant energy savings of 30 % to 40 % are demonstrated while not sacrificing
thermal comfort.

Paper F
J. B. Petersen, J. D. Bendtsen, A. G. Alleyne and J. Stoustrup, “Low-
Complexity Hierarchical and Iterative Learning Control for Distributed HVAC,”,
submitted for journal publication.

Paper F generalizes the method presented in Paper E (originating in Paper D)
and further enhances it by introducing ILC. An elaborate evaluation of both
generality and performance is conducted, by investigating two case studies
(shopping centers); CITY2 and Kolding Storcenter. For both case studies the
generalized method is applied, ILC contribution is evaluated and overall per-
formance is compared with MPC. For both case studies, the MPC is given
ideal conditions as no model-mismatch is considered and perfect prediction
is used. Results from using ILC show noticeable better tracking performance
than when not using ILC in both case studies. Overall performance is com-
pared on both energy consumption and thermal comfort, where the results
show that MPC is best (as expected). However, the proposed method shows
very similar results, recovering on average over 90 % of the MPC performance
for both case studies. This makes it a viable alternative when considering
building control retrofitting.
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2 | Shopping center overview

The SEBUT project was introduced in Section 1.3, together with salient char-
acteristics of shopping centers. This chapter further investigates shopping
centers; both in terms of their energy consumption and their HVAC layout.
This is done by looking at two Danish shopping centers involved in the SE-
BUT project.

2.1 Kolding Storcenter

Kolding Storcenter is a 51 388 m2 large shopping center located in Kolding,
Denmark. It was built in 1993 and expanded in 1999. A total of 120 shops
occupy 38 358 m2 (≈75 %) – besides shops, the shopping center houses 17
restaurants and a cinema. The floor plan is presented in Figure 2.1. The
energy consumption is summarized in Table 2.1.

The cooling consumption is large, compared to the heating consumption.
This is largely due to display lighting. It has been estimated that the heat gain
from lighting is in the range 40 W/m2 to 70 W/m2 for the shops; this gives
an internal heat gain when lights are on, in the range 1.5 MW to 2.7 MW.

Table 2.1: Kolding Storcenter energy consumption (2015)

Heating Cooling (electricity)
Annual (total) 2455 MW h 964 MW h

Annual (per m2) 47.8 kW h/m2 18.8 kW h/m2

2.1.1 HVAC

The HVAC in Kolding Storcenter is inherently decentralized. Looking at
Figure 2.1, each color coded area is supplied by its own rooftop AHU. In total,
17 rooftop AHUs supply the shops, 13 supply the common area, 3 supply the
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Common area

Entrance
Entrance

Entrance

Entrance

Entrance

Entrance

Entrance

Demo − zone

Cinema

Fig. 2.1: Floor plan of Kolding Storcenter. Common area comprises hallways, center circle,
around the large right-most entrance and around the two top entrances – near the cinema.
Outlined in red is the demo-zone used in the SEBUT project.

cinema and 1 supplies office space. No shops feature natural ventilation (e.g.
using windows), only the common area has natural ventilation. The annual
electricity consumption spent on ventilation is 1300 MW h. The AHUs can
both heat and cool the supply air. Different types are installed; the newest
14 (6 supplying shops) can heat and cool using a built-in heat pump and a
rotary heat exchanger. The oldest provide cooling using direct expansion.

Cooling is equally decentralized with 18 rooftop chillers, of which 17 sup-
ply shops and 1 supplies the cinema. Groups of shops, color coded in Fig-
ure 2.1 are thus supplied by their own rooftop AHU and their own rooftop
chiller. The combined cooling capacity of the rooftop chillers is 3.5 MW. With
cooling capacity available through the AHUs as-well, this should be plenty
when considering the lighting heat gains. Heating is by district heating and
through the AHUs by heating the supply air using the rotary heat exchanger,
or in rare cases the heat pump. The heating consumption in Table 2.1 is only
district heating.

Ventilation, cooling and heating is supplied through ceiling mounted
Fan Coil Units (FCU) in each shop. The same FCUs are used in all shops,
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AHU Chiller

Shop 1 Shop 2 Shop N

District
Heating

Fig. 2.2: Decentralized HVAC layout for cluster of shops in Kolding Storcenter. Shops are clus-
tered by which AHU and chiller pair that supplies them.

with on average 0.8 FCU per 100 m2. FCUs and AHUs are operated in a Con-
stant Air Volume (CAV) manner; the flow is constant when ventilation is ON.
Each FCU has both a cooling and a heating coil with valves governing the
flow through the coils. The valves are controlled by a zone (or shop) temper-
ature control scheme. The FCUs feature recirculation of the air, so that not
100% of the supply flow is from the AHU, but a ratio is extract air from the
shops.

The HVAC layout in Kolding Storcenter is depicted in Figure 2.2. This
corresponds to the HVAC layout for one of the colored areas in Figure 2.1.

2.1.2 Operation and control

The HVAC operates according to a schedule set by the building operators.
The schedule determines when the AHUs are ON, when the chiller is ON,
when the FCUs are ON. The schedule is depicted in Figure 2.3 and also
shows shop opening hours.

When ON, the AHUs are operated using extract air temperature con-
trol, where the extract air is the air extracted from the shops (return air). A
building operator can specify an extract air temperature setpoint and the in-
ternal control in the AHU will attempt to regulate the amount of heating and
cooling to achieve the desired extract air. The extract air control is further
discussed in Section 3.2.2.

The chiller forward temperature is controlled internally and a setpoint is
not exposed to the BMS. Instead, an operator chooses an operating mode,
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either ON, OFF or AUTO. Where AUTO is following the set operator given
time schedule. A circulation pump maintains a constant pressure differential.
Heating from district heating is only enabled when the outside temperature
drops below 16 °C.

The FCU control is a cascade controller, depicted in Figure 2.4. An outer-
loop shop temperature controller, measuring shop temperature and deciding
a desired supply temperature controller. An inner-loop supply temperature
controller, measuring FCU supply temperature (into shops) and determining
valve opening degrees for heating and cooling coils. Both controllers have
been identified as PI controllers. The shop temperature setpoint is a combi-
nation of a setpoint specified by a building operator and an adjustment value,
specified in the shops using a physical dial/knob.

Very few shops are directly adjacent to the ambient and none of the shops
feature windows. Hence, shop temperature is not very dependent on either
ambient temperature or solar load – but mainly dependent on internal heat
gain (lighting) and the temperature of the common areas.
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Fig. 2.3: HVAC operation schedule and shop opening hours in Kolding Storcenter.
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Fig. 2.4: Shop temperature control in Kolding Storcenter.

2.1.3 Demo-zone

During the SEBUT project a demo-zone was established. This demo-zone is
depicted in Figure 2.1. The demo-zone is chosen as the shops supplied by
a specific AHU and chiller pair. In total, six shop leases are covered by this
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AHU and chiller pair. Of these six, three were more thoroughly investigated
in the SEBUT project. Section 3.2 gives an account of how instrumentation
in the demo-zone was made available.

2.2 CITY2

CITY2 is a 94 888 m2 large shopping center located in Høje Taastrup, Den-
mark. It was built in 1974 and houses 80 shops on 55 000 m2 (≈60 %), leaving
approximately 40 000 m2 for common area. Compared to Kolding Storcenter,
CITY2 is larger and in three stories but with fewer larger leases and more
common area. A floorplan is presented in Figure 2.5 and the energy con-
sumption is summarized in Table 2.2.

Compared to Kolding Storcenter, the heating consumption is significantly
higher and the cooling consumption significantly lower. With the same esti-
mated heat gains in shops, the large difference is most likely attributed to a
lower level of insulation, given that CITY2 is approximately 20 years older.

Table 2.2: CITY2 energy consumption (2013)

Heating Cooling (electricity)
Annual (total) 5946 MW h 274 MW h

Annual (per m2) 62.7 kW h/m2 2.9 kW h/m2

2.2.1 HVAC

The HVAC in CITY2 can also be described as decentralized, but is very dif-
ferent than in Kolding Storcenter. The common area is supplied by 6 large
AHUs while the shops are supplied by 18 AHUs in different sizes; some sup-
plying up to 11 shops while others only supply a single shop. Only the com-
mon area features natural ventilation (by opening windows). All the AHUs
are placed in the basement of the building, where they are grouped into dif-
ferent rooms. Some rooms with up to 4 AHUs others with only a single one.
The rooms make it out as a mixing chamber, mixing fresh air with extract air
for recirculation. The AHUs supplying the common area have both a heating
coil and a cooling coil while it varies for the AHUs supplying shops – some
have both a heating and a cooling coil, some have only a cooling coil and
others only a heating coil. This setup is depicted in Figure 2.6 which shows
the HVAC diagram for one mixing chamber and the AHUs placed in it.

Cooling is, compared to Kolding Storcenter, central, with one large cool-
ing plant made up of two large cooling units. This cooling plant serves all the

23



Chapter 2. Shopping center overview

Fig. 2.5: Floor plan of CITY2, only showing the main floor. The uppermost floor has shops as
well, while the bottom floor features a fun center.

AHUs. A newer (2016), smaller unit with a cooling capacity of 900 kW and
a larger older (2000) unit with a cooling capacity of 1800 kW for a combined
cooling capacity of 2.7 MW. Heating is by district heating, through a heat
exchanger, which feeds all the AHUs.

The terminal units in CITY2 are very different to the FCUs in Kolding
Storcenter. They are also CAV, but compared to Kolding Storcenter they only
feature limited possibility for local heating or cooling of the supply air. Many
different types have been recorded in the different shops, as they have been
replaced over the years. This means that the shop-local temperature control
is highly dependent on the supply temperature from the AHUs, as there is
limited capacity for changing it.

Very few shops are directly adjacent to the ambient and they do not fea-
ture windows. This means that shop temperature is not very dependent on
either ambient temperature or solar load. Instead shop temperature is highly
dependent on internal heat gain and the temperature of the common area.
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Cooling
plantMIX

District
Heating

Fig. 2.6: Decentralized HVAC in CITY2, showing AHUs and their shared mixing chamber (the
room in which they are placed). Cooling is supplied from a central cooling plant and heating
from district heating. Not all AHUs have both heating and cooling coils as depicted here.

2.2.2 Operation and control

The HVAC operates according to a schedule set by the building operators,
determining when AHUs are ON and when the cooling plant is ON. The
schedule is depicted in Figure 2.7 which also shows shop opening hours.

The AHUs are operated using supply air temperature control. Some
AHUs have been identified to also use extract air (return air) temperature
control, but this controller will just be governing the underlying supply air
temperature control. Setpoints are specified by the building operators. The
controllers then manipulate valve openings for cooling and heating coils to
achieve desired temperature.

Cooling is released when the ambient temperature, Tamb, is above 16 °C.
The forward temperature control is shared between the two cooling units,
regulating to the same forward temperature, Tfwd,cool. The setpoint, Tfwd,cool,r
is determined by a setpoint curve:

Tfwd,cool,r(Tamb) = −0.55 Tamb + 23.3 °C (2.1)

Heating is also controlled by a setpoint curve, determining forward temper-
ature, Tfwd,heat based on ambient temperature:

Tfwd,heat,r(Tamb) = −2.55 Tamb + 67.5 °C (2.2)
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Fig. 2.7: HVAC operation schedule and shop opening hours in CITY2. Note that the cooling
plant is not ON in all of the given hours, but that it is allowed to be ON in those hours.

2.2.3 Demo-zone

Just as for Kolding Storcenter, a demo-zone was established in CITY2. The
CITY2 demo-zone was selected by focusing on one mixing chamber and the
AHUs that share this mixing chamber. The specific mixing chamber has four
AHUs; one AHU supplying 3 shops, one AHU supplying 4 shops, one AHU
supplying 2 shops and the last AHU only supplying 1 shop.
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3 | Facilitating control of buildings

As introduced in Section 1.2, the climate control of larger buildings is han-
dled by a BMS; the equivalent of a Supervisory Control and Data Acquisi-
tion (SCADA) for buildings. To implement new building control for existing
buildings there are two options. The BMS can be replaced with a new BMS.
This can be a relatively expensive option, as replacing a BMS is typically not
limited to a simple software upgrade. A BMS is a complete hardware and
software system, potentially involving both proprietary control units, sen-
sors and actuators. The other option is by interfacing with the existing BMS.
This chapter treats how it is possible to interface with an existing BMS by
introducing the BMS landscape and presenting a case study on how this was
achieved in the SEBUT project. The chapter concludes with a discussion and
outlook.

3.1 Interfacing with Building Management Systems

Interfacing with an existing BMS is only possible if said BMS communicates
using an open protocol. This can be a hit-and-miss endeavor, as the building
communication protocol landscape is fragmented and historically dominated
by proprietary solutions[52]. In [52] (2005), the authors discuss how open
systems and standards play a key role in the building automation domain.
They introduce the three main open standards for BMS-wide communication:

BACnet The Building Automation and Control Networking Protocol. De-
veloped to meet needs within building control. First published as an
ASHRAE/ANSI standard in 1995.[53]

LonWorks is designed as a generic control network. Published as a standard
in 1999.[54]

KNX is coined as a home and building electronic system standard. Originated
as the European Installation Bus (a fieldbus), later KNX (2002).[55]
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While these three are the main open standard for BMS-level, it is worth men-
tioning, that Modbus also plays a significant role in building control net-
works, especially within the control of e.g. Rooftop Units (RTUs). While
never standardized, Modbus is definitely characterized as open.

The landscape has however changed since the authors of [52] did their
review of communication systems for building automation and control. As
of 2018 it was estimated that BACnet global market share had exceeded 60 %
and is still growing[56].

If a BMS relies on open standards for its communication, it enables pig-
gybacking as a way to undertake building control retrofitting. The concept is
depicted in Figure 3.1. Looking at the conceptual BMS network in Figure 3.1
there are two levels where it is possible to intervene, given the communica-
tion is open. Either at the management level or at the automation level – or
a combination. If a new controller was placed at the management level, one
could imagine the possibility of manipulating with schedules and setpoints
in the same manner as a human operator. Placing a controller on the automa-
tion level might allow for more fine-grained control in the case that e.g. not
all setpoints and sensor measurements are propagated to the management
level.

Doing a building control retrofit using piggybacking is on the premise of
the existing infrastructure. As a control engineer, one does not get to pick and
choose; one has to adapt to what is already available and perhaps has to rely
on re-programming parts of the BMS in the case of sparse/limited options for
control inputs and available measurements. Where a regular control design
may carefully select which sensors and actuators to include, in a retrofit case
this has already been done and one has to figure out whether it is possible
to improve the building control significantly using just what is available.
Additional BMS programming efforts may also be needed in the case of e.g.
conflicting writes to a setpoint.

One common issue, which is not specific to building control retrofitting
but also prominent in process control in general, is that of tagging. A tag
refers to the name of a signal/entity. This tag, often the only description of
the signal, has to encapsulate information about function, type, position etc.
Depending on the scale of the application, tagging conventions can be quite
sophisticated and consistent. But they can equally be inadequate, making it
a labor intensive manual effort for a trained professional to retrieve neces-
sary metadata from an existing BMS installation. This can potentially make
a retrofit application intractable[57]. Effective metadata schemas is an active
research topic within building control as presented in [58], but this does not
solve the tagging issues for the existing building stock. Instead, automated
mapping could be a solution as treated in [59, 60]. But as concluded in [59],
a practical solution to automated mapping, which handles both type classifi-
cation (e.g. temperature sensor, fan speed), location identification (e.g. spe-
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cific AHU, specific fan-coil unit), identification of functional relationship (e.g.
AHU 3 supplying fan-coil unit 23) and identification of spatial relationship
(e.g. temperature sensor in room 22) does not exist yet.

In [13] the specifics of how the authors interface with the BMS are not
given, but they state that they retrieve measurements from the BMS and ap-
ply new setpoints into the BMS. In [14] the authors installed a commercial
embedded devices, acting as a gateway between the BMS network and the
author’s control software. In [15] the authors rely on a File Transfer Protocol
(FTP) server for pushing and pulling data to the BMS. This FTP server was
setup by the BMS provider. In [16] the authors install a parallel commer-
cial SCADA solution, communicating with the existing BMS using Modbus.
The installed SCADA exposes an internet-accessible Application Program-
ming Interface (API) for retrieving and setting setpoints. In [18] the authors
install a new PC in the building, with their control software. The PC is con-
nected to the BACnet BMS network at management level.

All of the examples from the literature use some form of piggybacking
on the existing BMS, but there is no standard way of doing building control
retrofitting.

Chiller AHU

Sensors Actuators  Room
controllers

Lighting Cooling and ventilation plants
(e.g. with their own control)

Operator
interface

Database 
(logging, alerts, time series)

Management level

Automation level

Field devices

e.g TCP/IP

e.g BACNET, MODBUS,
proprietary

Controller

New controller

New controller

Fig. 3.1: Depicting potential BMS piggybacking. Either the addition of a new controller at
management level or at automation level.
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3.2 Case study

This section presents how interfacing with an existing BMS was handled
within the work of this thesis and the SEBUT project. The case studied is
Kolding Storcenter, which is presented in Section 2.1. The section includes
an account of a proof-of-concept control demonstration.

The whole shopping center is not considered, but only a group of shops
and the AHU and chiller supplying these are considered. The reduced BMS
network for this case is depicted in Figure 3.2 – together with the practical
control interventions made. Looking at Figure 3.2 the BMS network is di-
vided into two branches; one for shops and one for AHUs and chillers. The
shop-branch is communicating using BACnet (Master-Slave, Twisted-Pair).
The communication is relayed to the management level (TCP/IP) through a
single controller (shop controller) unit that is connected to both to the twisted-
pair network and to the TCP/IP network. The HVAC branch (AHU and
chiller) is communicating using a proprietary protocol; Trend LAN[61]. The
communication is relayed to the management level using a single controller
(HVAC controller).

Chiller AHU

Operator
interface

TCP/IP

BACnet MSTP

Shop 1 Shop 2 Shop N

Proprietary

Internet (encrypted)

Shops controller HVAC controller

REST API

Fig. 3.2: The BMS communication layout for a part of Kolding Storcenter. Also depicted is
how a Neogrid Technologies gateway is used to interface with the existing BMS, allowing for
developing and testing control solutions on hardware located off-site; as in this case at Aalborg
University.
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3.2.1 Interventions

Neogrid Technologies is a project partner in the SEBUT project. They provide
intelligent buildings control relying on a piggyback approach. They provide
a gateway unit; a piece of hardware that can be connected to an existing build-
ing control network (BACnet, Modbus) and facilitate instrumentation using
a cloud solution. They allow logging available measurements to their cloud
infrastructure and expose both measurements and the possibility of applying
new controls (e.g. new setpoints) through a REpresentational State Transfer
(REST) API.

A Neogrid Technologies gateway is connected as depicted in Figure 3.2.
The actual physical gateway placed in Kolding Storcenter is shown in Fig-
ure 3.3a. For the AHU and chiller, it required reprogramming of the HVAC
controller to expose signals using BACnet instead, as it was currently only
communicating using the proprietary Trend LAN. It was a non-issue to es-
tablish the possibility of logging measurements from the shops, given that
this branch of the network uses BACnet. Mapping available signals was pos-
sible using their tags and using metadata information encoded in the BMS
Graphical User Interface (GUI) – see example in Figure 3.3b.

(a) (b)

Fig. 3.3: a Neogrid Technologies gateway connected to BMS network in Kolding Storcenter.
b Example of tags and metadata available through BACnet and BMS GUI.

3.2.2 Proof-of-concept control

To demonstrate the potential of BMS control interventions, a proof-of-concept
controller was developed and tested. As is, the AHUs in Kolding Storcenter
are controlled by setting a constant air flow setpoint and an extract air tem-
perature setpoint, Textract,r. Disregarding the air flow aspect, a simplified con-
trol diagram of the system is given in Figure 3.4. The AHU features extract
air temperature control, actuating available heating and cooling to manipu-
late AHU supply temperature, Tvent. This changes shop temperatures, and
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hence also the extract air temperature, over time. Extract air temperature
control is a common control option for AHUs and can be a good option if
the AHU is the only unit responsible for space heating/cooling. In a more
complex HVAC configuration, it can be more attractive to directly command
supply air temperature.

Therefor, the goals of the proof-of-concept controller is to reconfigure the
AHU controls from extract air temperature control to supply temperature
control. This is thought possible by decoupling the existing controls through
a new controller in parallel (see Figure 3.4). The new controller interfacing
with the existing BMS. The stability and robustness of this reconfiguration
depends highly on the complexity of the extract temperature control – if it is
riddled with rule-based control and logic expressions this is non-trivial.

In this proof-of-concept, the new controller was chosen as a proportional
controller for simplicity. This new controller was implemented on a PC at
Aalborg University, using the API provided by Neogrid Technologies to fa-
cilitate extraction of measurements and applying new control signals. The
sampling time is 5 min, a constraint set by the Neogrid Technologies infras-
tructure.

+
Shops

-
AHU Shops

Shop

+
Shops

-
AHU Shops

Shop

+
-

Control
retrofit

Fig. 3.4: Simplified control diagram of AHU control in Kolding Storcenter, disregarding air flow.
Top is existing control, bottom is after retrofit, interfacing with the existing BMS.

An experiment was conducted to show the feasibility of this control retrofit.
In the experiment, different supply temperature setpoints are commanded
over the course of one day. The extract air temperature setpoints are ma-
nipulated, as this is now the control input. The existing control logic drives
the rotary heat exchanger in response to the new extract air temperature set-
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points, which changes the heat input. The results from the experiment are
shown in Figure 3.5. The results show, that it is possible to introduce sup-
ply temperature control on top of existing extract air temperature control, as
setpoints are successfully met.
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Fig. 3.5: Experimental results showing how an extract air temperature controlled AHU can be
retrofitted to do supply temperature control, by interfacing with the existing BMS, manipulating
the setpoint to the extract air temperature controller. The supply temperature follows the given
setpoints.

3.3 Discussion

The case study (Kolding Storcenter) together with the control example pre-
sented in this chapter demonstrates both pros and cons of the approach. The
pros being reduced cost by recycling existing infrastructure and plug-n-play
properties. The cons being that not all existing BMS installation feature open
protocols, which is a significant barrier. The pros are however further em-
phasized in Paper E. Here a hierarchical controller is demonstrated in Kold-
ing Storcenter through a control experiment from November 2019 to January
2020, seamlessly switching between using the new hierarchical controller and
the already existing control. Manipulating with only three setpoints, savings
of 30 % to 40 % are achieved, simply by limiting over-ventilation and intro-
ducing coordination between supply and demand of heating and cooling.

Even with the known barriers, the author of this thesis highly encour-
ages the pursuit of a piggybacking-approach to improve energy efficiency
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in the existing building stock, including shopping centers. The author also
highly encourages the choice of both BMS and general HVAC equipment that
support open protocols, as this will be the limiting factor when considering
energy refurbishments through control applications in the future.
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4 | Modeling shopping center tem-
perature dynamics

This chapter introduces the work done to establish a model of temperature
dynamics in a shopping center. A model of the dynamics of a system is a key
part in modern control engineering. It serves the purpose of allowing sim-
ulations to not only rely on experimental tests; this is very important given
the difficulty of emulating the specifics of a shopping centers dynamics in an
existing laboratory setup, reducing options for test to be either simulation or
a full-scale experiment. A model of the dynamics is also an integral part in
a model-based control design. In an MPC design, an accurate model is a ne-
cessity and often the most time-consuming part, as discussed in Section 1.2.

Often a distinction is made between a simulation model and a control-
oriented model. As the main purpose of the simulation model is to mimic
the real-world system, the main requirement is accuracy – the model has to
fit so well, that when evaluating a new control design in simulations, conclu-
sions can be drawn for the real-world case as well. As accuracy increases, so
does complexity – if the system itself is complex. This is a non-issue for a
simulation model of a building, given the amount of computational resources
available today. It is only limited by the cost of engineering effort.

The main purpose of the control-oriented model, is to exhibit dynamics
similar enough to the real-world system, so that a model-based control design
will benefit. The accuracy requirement is thus less strict, and merely has
to be good enough. From the literature introduced in Section 1.2, the most
prominent control-oriented model approach for multi-zone building control
is an RC-equivalent grey-box modeling approach[20]. The benefit being that
the approach is a hybrid between first-principles physics-based analytical
models (white-box) and purely statistics/data-driven models (black-box).

Given the scope of the project, only effort towards RC-equivalent grey-box
control-oriented models has been made and these models have been used for
both simulations and model-based control designs. One important caveat
is, that the models have been posed on the basis of what information was
available by interfacing with the BMS as treated in Chapter 3.
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Chapter 4. Modeling shopping center temperature dynamics

Given the aim of posing models usable for both simulation and model-
based control designs, a simulation environment based on CasADi[62] was
built. CasADi is a tool for algorithmic differentiation and nonlinear opti-
mization. It allows posing symbolic equations from which both gradients,
Jacobians and Hessians can be extracted. Encompassing the idea of using
the same models for simulation and control, CasADi allows posing the dy-
namics once and then perform both simulation studies of the pure dynamics
– or incorporate the dynamics in an optimal control problem for e.g. MPC
applications. The control part is covered in Chapter 5.

4.1 Multi-zone model

A shopping center is a multi-zone commercial building. The multi-zone char-
acteristics means that multiple thermal zones are interacting with each other.
A natural choice is that each zone is a shop. This choice may not always be
suitable if a shop is so large, so that different temperature dynamics can be
observed in different areas within the shop. This could be the case if air flow
is blocked by the interior design (different sections in a shop) or if one part of
the display lighting has been exchanged to LED while another is halogen or
incandescent light bulbs. However, the i-th zone temperature is denoted as
Tshop,i as it is assumed that most shops can be described by a single thermal
zone.

The thermal dynamics of a single shop is given by:

Cshop,i Ṫshop,i = Q̇HVAC,i + Q̇adjacent,i + Q̇int,i (4.1)

where Cshop,i is the lumped thermal capacitance, covering the thermal capac-
ity of the air, walls, interior, etc. The heat balance is governed by three heat
flows; Q̇HVAC,i which is heat flow due to HVAC, Q̇adjacent,i which is heat flow
to adjacent thermal zones and Q̇int,i, which is internal heat gain. The internal
heat gain is occupancy, appliances and especially lighting. As made apparent
in Chapter 2, shops are often not exposed to direct sunlight and they often
do not have walls in direct contact with the ambient. This means that shop
temperatures are largely independent of the ambient conditions. This does
not mean, that shop temperatures are not influenced by seasonal weather
changes. The shop temperatures are dependent on the overall shopping cen-
ter temperature (e.g. common area), which will have an influence through
Q̇adjacent,i. Weather effects are thus low-pass filtered through the common
area and other thermal zones. The common area can equally be considered
as made up of different thermal zones with temperature Tcommon,i, e.g. dif-
ferent sections of hallway area. The difference to Tshop,i is that Tcommon,i will
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often be influenced more greatly by the ambient conditions:

Ccommon,i Ṫcommon,i = Q̇HVAC,i + Q̇adjacent,i + Q̇int,i + Q̇amb,i (4.2)

where Q̇amb,i is heat flow to/from the ambient. As a general notation, Ti
is zone temperature of either a shop thermal zone (Tshop,i) or common area
thermal zone (Tcommon,i).

Heat exchange between adjacent zones can be assumed to only be resis-
tive, given that inner walls are often very thin and thus do not store appre-
ciable amounts of heat:

Q̇adjacent,i = ∑
j∈Ni

Tj − Ti

Ri,j
(4.3)

where Ni is the set of zones adjacent to i, Ti is either Tshop,i or Tcommon,i and
Ri,j is the thermal resistance between the two zones.

For both shopping centers presented in Chapter 2, the main HVAC contri-
bution to shops and common area is through the supply of heated or cooled
air, letting Q̇HVAC,i be described as:

Q̇HVAC,i = ṁair,i cp,air (Tsupply,i − Ti) (4.4)

where ṁair,i is the mass flow of air, cp,air is specific heat capacity of air and
Tsupply,i is the supply air temperature.

To potentially encompass an entire shopping center with hundreds of
thermal zones, the expressions have been formulated using a graph-theoretical
view. Collecting all thermal zones as nodes in the graph G = (N , E), where
N is the set of all nodes and E the set of all edges. An edge in the graph
describes that two zones are physically adjacent. If the edge is weighted by
Gi,j = 1/Ri,j (thermal conductance), the adjacency matrix is given by:

A(G) = [ai,j] = [Gi,j] ∈ RNzones×Nzones (4.5)

Letting d(i) = ∑j Gi,j be the degree of node i and D(G) = diag(d(i)), the
Laplacian matrix of G can be computed as:

Q(G) = D(G)−A(G) (4.6)

The heat exchange between adjacent zones can now be collected in a vector:

Q̇adjacent = −Q(G) T (4.7)

T =
[
Ti
]T

=
[
Tshop

T Tcommon
T
]T

(4.8)

where Tshop ∈ R
Nshops and Tcommon ∈ RNcommon are the column vectors col-

lecting all the shop zone temperatures and common area zone temperatures,
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respectively. With this result, we can reduce our state equations to:

C Ṫ = −Q(G) T + Q̇HVAC + Q̇int (4.9)

Q̇HVAC = Ṁair cp,air (Tsupply − T) (4.10)

where C ∈ RNzones×Nzones is a diagonal matrix with Cshop,i and Ccommon,i in
the diagonal and Ṁair ∈ RNzones×Nzones is a diagonal matrix with ṁair,i in the
diagonal.

The multi-zone model is in Paper A successfully applied to a section of the
SEBUT demo-zone in Kolding Storcenter, depicted in Figure 4.1. One thing
to note is, that applying the multi-zone model revealed that heat exchange
between adjacent zones may be disregarded. As internal heat gain dominates
the heat balance, the adjacency term can become negligible. The internal
heat gain due to lighting is in Kolding Storcenter estimated as 40 W/m2 to
70 W/m2, giving 10.0 kW to 17.5 kW for a shop that is 250 m2. In Paper A
the thermal conductance between zones is, by table-lookup[20], determined
to be in the range 50 W/K to 100 W/K. For a (relatively high) temperature
difference of 5 K, this is 250 W to 500 W. Had the lighting been LED, the heat
gain would instead be in the order 5 W/m2 to 10 W/m2, giving 1.25 kW to
2.50 kW – which would no longer render the adjacency term negligible.

Shop 1

Shop 2 Shop 3

Hall

Fig. 4.1: Section of Kolding Storcenter demo-zone where multi-zone model is applied. The
graph is depicted as an overlay on the floor plan of the section. Different color edges determine
different thermal resistances; green indicates no wall and yellow indicates a wall/barrier[63].
© 2018 IEEE

4.2 Decentralized HVAC and Fan Coil Units

One example of a shopping center HVAC system is Kolding Storcenter, which
features both decentralized ventilation and cooling, delivered to all shops
through FCUs. A significant effort has through the project been put into
posing a model that captures the main dynamics of such a HVAC system.
Models of the HVAC system in Kolding Storcenter originates in Paper A
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(only cooling) and have been presented in slightly different editions through
Paper B (cooling and heating), Paper C (ventilation, cooling and heating),
Paper D (ventilation, cooling and heating) and Paper F (ventilation, cooling
and heating). This section summarizes the work.

The model relates to the HVAC diagram depicted in Figure 4.2.

AHU Chiller

Shop 1 Shop 2 Shop N

District
Heating

Fig. 4.2: HVAC layout in Kolding Storcenter. Decentralized AHUs and chillers feed FCUs in
shops. FCUs allow for temperature regulation of the shops.

A simplification is made, so that each shop zone can only have one FCU in
the model. In reality, each shop has several FCUs – but in the BMS, they are
seen and controlled as a single large FCU. Hence, the index i always relates
to the same shop, whether the index is used for the FCU dynamics or the
shop temperature dynamics.

The supply temperature dynamics for the i-th shop and FCU are modeled
as:

Csupply,i Ṫsupply,i = Q̇AHU,i + Q̇FC−amb,i + Q̇cool,i + Q̇heat,i − Q̇FC,i (4.11)

where Csupply,i is a lumped thermal capacitance for the FCU, Q̇AHU,i is heat
flow from AHU to FCU and Q̇FC−amb,i is loss from FCU to the surroundings.
The terms Q̇cool,i and Q̇heat,i are heat flows from cooling and heating coils in
the FCU to the supply air. The final term, Q̇FC,i, is heat flow from FCU to the
shop.

Heat flow from AHU to FCU is given by:

Q̇AHU,i = ṁFC,i cp,air (Tvent − Tsupply,i) (4.12)
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with ṁFC,i being mass flow of air from AHU to FCU – and consequently from
FCU to the shop. Temperature of the supply air from the AHU is denoted
Tvent.

Heat flow from FCU to surroundings, Q̇FC−amb,i, is given by:

Q̇FC−amb,i =
1

RFC−amb,i
(Tcenter − Tsupply,i) (4.13)

where RFC−amb,i a thermal resistance. The surroundings are given the general
shopping center temperature, Tcenter.

Heat flow from cooling and heating coils are modeled as:

Q̇cool,i = ucool αcool,i uvalve,cool,i cp,water (Tfwd,cool − Tsupply,i) (4.14)

Q̇heat,i = uheat αheat,i uvalve,heat,i cp,water (Tfwd,heat − Tsupply,i) (4.15)

Here ucool and uheat are activation signals, in principle determining whether
the circulation pumps are ON (1) or OFF (0). The parameters, αcool,i and αheat,i
cover both coil efficiency and valve characteristics. The valve opening degrees
are given by uvalve,cool,i and uvalve,heat,i. The forward temperature from the
chiller is given by Tfwd,cool and the forward temperature from district heating
by Tfwd,heat.

As described in Section 2.1, the valve openings are governed by cascaded
PI controllers (Figure 2.4). A shop temperature PI controller which manipu-
lates a setpoint to supply temperature, Tsupply,r,i, and a supply temperature
PI controller which manipulates valve openings, uvalve,cool,i and uvalve,heat,i.
These are modeled as:

Ṫsupply,r,i = −Kp,shop,i Ṫshop,i + Ki,shop,i (Tshop,r,i − Tshop,i) (4.16)

u̇valve,i = −Kp,supply,i Ṫsupply,i + Ki,supply,i (Tsupply,r,i − Tsupply,i) (4.17)

uvalve,cool,i = max{−uvalve,i, 0} (4.18)

uvalve,heat,i = max{uvalve,i, 0} (4.19)

where Kp is the proportional gain and Ki the integral gain. The combined
valve opening signal, uvalve,i, is negative for an open cooling valve and posi-
tive for an open heating valve.

For the AHU, the temperature dynamics of Tvent are modeled, by letting
a PI controller govern the heat balance:

CAHU Ṫvent = uAHU Q̇AHU + Q̇AHU−amb (4.20)

V̇AHU = −Kp,AHU Ṫvent + Ki,AHU (Tvent,r − Tvent) (4.21)

VAHU = Q̇AHU (4.22)
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where uAHU determines whether the AHU is ON (1) or OFF (2). The heat
loss to ambient, Q̇AHU−amb, is modeled as:

Q̇AHU−amb =
1

RAHU−amb
(Tamb − Tvent) (4.23)

Hence, the specifics of the AHU are not modeled but covered by an abstrac-
tion.

The general shopping center temperature, Tcenter is modeled as:

Ṫcenter = τextract (Textract − Tcenter) + τamb (Tamb − Tcenter) (4.24)

with Textract being the extract air temperature for the AHU.
The model is summarized in Figure 4.3, showing the classification of the

above model variables in states and inputs. The classification of controllable
inputs is in the context of Kolding Storcenter – knowing what can be manip-
ulated through the BMS.

Endogenous  Controllable

Exogenous

Exogenous

Fig. 4.3: Diagram depicting model states and inputs. Endogenous are the inputs that are driven
by a schedule. The exogenous inputs are external and not controllable. This is in the context of
the BMS in Kolding Storcenter.

4.2.1 Identification of model parameters

Parameter estimation, especially for models of large buildings, is a very com-
plex problem to solve. The method used for the majority of the works in
this thesis has to a large extent been based on table-lookup and manual flow
measurements to determine steady-state heat flows. The most difficult pa-
rameters to estimate have been thermal capacities and thermal resistances.
Closing down shops for parameter estimation experiments is not a feasible
solution. This leaves a closed-loop parameter estimation problem with mul-
tiple uncertainties.
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In Table 4.1 parameters are shown (for a single shop) and Figure 4.4
shows a comparison between model and measurements. The comparison is
based on consecutive data of 30 days from mid-September to mid-October
(2019). The results shown in Figure 4.4 are quite promising, with a Root-
Mean-Square Error (RMSE) for the shop temperature of 0.46 K. Especially
also considering how well the model captures the PI controller states; Tsupply,r,i
and the valve openings. The valve openings do no feature great RMSE val-
ues, but qualitatively the model captures whether the system is trying to heat
or cool and to a great extent also the magnitude. Notice however that the
cooling valve opening saturates, which is not desirable, and reveals capacity
issues or misconfiguration.

More fitting results are presented in Paper A, Paper C and Paper D in
particular.
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Fig. 4.4: Comparing simulation of Kolding Storcenter to measurement data. The following
goodness-of-fit (RMSE) measures were obtained; Tshop: 0.46 K, Tsupply: 0.70 K, uvalve,cool: 0.32,
uvalve,heat: 0.04.
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Table 4.1: Kolding Storcenter model parameters (single shop)

Area Cshop CAHU,0,i Q̇int Rshop−amb RAHU,0,i−amb
250 m2 5.0 MJ/K 2.0 MJ/K 5.0 kW 0.001 K/W 0.001 K/W

αcool αheat Kp,shop Ki,shop Kp,supply Ki,supply
0.03 kg/s 0.2 kg/s 5 0.0025 0.5 0.02

CAHU,0 RAHU,0,i−amb Kp,AHU,0 Ki,AHU,0 ki Tfwd,hot
2.0 MJ/K 0.001 K/W 30 0.2 0.2 55 °C

τextract τextract
1 h 10 h

4.3 Decentralized AHUs and central cooling

Another example of a shopping center HVAC system is CITY2, which fea-
tures ventilation through decentralized AHUs and cooling through one cen-
tral cooling plant. A model of the HVAC system is presented in Paper E,
which captures the main dynamics of the AHUs in the SEBUT demo-zone.
This section summarizes the work.

The model relates to the HVAC diagram depicted in Figure 4.5.

Cooling
plantMIX

District
Heating

Fig. 4.5: HVAC layout in CITY2. Decentralized AHUs sharing mixing chambers. Central cooling
plant delivering cooling to all AHUs.

The supply temperature dynamics for the i-th AHU are modeled as:

CAHU,i Tsupply,i = Q̇cool,i + Q̇heat,i + Q̇AHU−amb,i − Q̇AHU,i (4.25)

where CAHU,i is a lumped thermal capacitance for the AHU, Q̇cool,i and Q̇heat,i
are heat flows from cooling and heating coils to the supply air, Q̇AHU−amb,i
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is heat loss to the ambient (the mixing chamber) and Q̇AHU,i is the heat flow
supplied to the shops.

The heat flows from cooling and heating coils are given by:

Q̇cool,i = ucool αcool,i uvalve,cool,i cp,water (Tfwd,cool − Tsupply,i) (4.26)

Q̇heat,i = uheat αheat,i uvalve,heat,i cp,water (Tfwd,heat − Tsupply,i) (4.27)

with ucool and uheat indicating whether cooling and heating is ON (1) or
OFF (0). The parameters, αcool,i and αheat,i, cover both coil efficiency and
valve characteristics. The valve opening degrees are given by uvalve,cool,i and
uvalve,heat,i. Forward temperature from the cooling plant is given by Tfwd,cool
and forward temperature from district heating is given by Tfwd,heat.

As noted in Section 2.2, the AHUs are grouped together and share the
same mixing chamber – which they are placed inside. The heat loss from
AHU to the surroundings is therefor the loss to the mixing chamber:

Q̇AHU−amb,i =
1

RAHU−amb,i
(Tmix − Tsupply,i) (4.28)

where RAHU−amb,i is the thermal resistance and Tmix is the temperature of
the mixing chamber. The heat flow supplied to the shops is given by:

Q̇AHU,i = ṁAHU,i cp,air (Tmix − Tsupply,i) (4.29)

ṁAHU,i = uAHU,i ¯̇mAHU,i (4.30)

where uAHU,i determines whether the AHU is ON (1) or OFF (0) and ¯̇mAHU,i
is a constant flow parameter, as the AHUs are operated in a CAV manner.

As noted in Section 2.2, the AHUs rely on supply air temperature control.
This controller then manipulate with the valve openings. This controller is
modeled as a PI controller:

u̇valve,i = −Kp,i Ṫsupply,i + Ki,i (Tsupply,r,i − Tsupply,i) (4.31)

uvalve,cool,i = max{−uvalve,i, 0} (4.32)

uvalve,heat,i = max{uvalve,i, 0} (4.33)

where uvalve,i is a combined valve opening signal covering both cooling (neg-
ative for open) and heating valve (positive for open). Controller proportional
gain is Kp and integral gain is Ki.

The model is summarized in Figure 4.6, showing the classification of the
above model variables in states and inputs. The classification of controllable
inputs is in the context of CITY2 – knowing what can be manipulated through
the BMS.
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Endogenous 

Controllable

Exogenous

Fig. 4.6: Diagram depicting model states and inputs. Endogenous are the inputs that are driven
by a schedule. The exogenous inputs are external and not controllable. This is in the context of
the BMS in CITY2.

4.3.1 Identification of model parameters

Model parameters have been identified in a similar way as described in Sec-
tion 4.2.1, using table-lookup and the known specifications for the AHUs. In
Table 4.2 parameters are shown (for a single AHU) and Figure 4.7 shows a
comparison between model and measurements. The comparison is based on
consecutive data of 26 days from mid-July to mid-August (2020). Looking at
Figure 4.7, the majority of the important dynamics of the supply tempera-
ture and also to a large degree the behavior of the controller is captured. A
RMSE of 1.55 K is obtained for the supply temperature, which is worse than
the fit on temperature dynamics in Kolding Storcenter. The fit is especially
not good when the AHUs are OFF. A remedy to this has not been found, as
the behaviour of the supply temperature when OFF is not reflected in any of
the signals exposed by the BMS. However, since control authority is limited
to when the AHUs are ON, this is a non-issue for a control-oriented model.
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Fig. 4.7: Comparing simulation of CITY2 to measurement data. The following goodness-of-fit
(RMSE) measures were obtained; Tsupply: 1.55 K, uvalve,cool: 0.26.
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Chapter 4. Modeling shopping center temperature dynamics

Table 4.2: CITY2 model parameters (single AHU)

CAHU,i Ramb−AHU,i αcool αheat Kp,i Ki,i ¯̇mAHU,i
40.0 MJ/K 0.001 K/W 12 kg/s - kg/s 0.5 0.001 12 kg/s
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5 | Energy-efficient control

This chapter summarizes the work in developing energy-efficient control al-
gorithms for shopping center HVAC. The primary objective is to maintain or
improve thermal comfort in the shops while improving energy-efficiency of
the HVAC system. While general occupant comfort is not limited to tempera-
ture, it was found to be the most dominating factor for the level of ventilation
in the SEBUT project[64].

As indicated in Section 1.2, state-of-the-art within building control is
MPC. The application of MPC to shopping centers has been a big focus area
for this thesis, as the promises set forth are not to be neglected – the method
is all-encompassing to the control problems in this project. The first part of
this chapter will treat MPC within the goal of energy-efficiency.

There are drawbacks to MPC, however. These were pointed out in Sec-
tion 1.2 and have also been encountered in this project: the dependency on
an accurate dynamical model of the system. In a retrofit situation, this de-
pendency can potentially hinder the application of MPC. By investigating the
benefits and the behavior of using MPC in terms of energy-efficiency, which
were first pointed out in Paper C, it was concluded that a similar response
could be achieved using something less complex. This led to the first steps
to a new control architecture as an alternative and less-involved approach to
MPC. Paper D presents these steps together with a comparison to MPC. In
continuation, Paper E presents experimental results from using the proposed
architecture in Kolding Storcenter and Paper F further generalizes and en-
hances the method, applies it to two case studies and presents comparison
results to MPC for both case studies. The second part of this chapter presents
the final version of this new control architecture.

5.1 Model Predictive Control

The goal of designing a stabilizing feedback which also minimizes a per-
formance criteria while not violating given constraints is common between
many control problems. Closed solutions to these problems are often not ob-
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tainable[65]. One approach is instead to formulate an open-loop finite hori-
zon optimal control problem and solve it in a receding horizon fashion. This
is popularized as MPC. Summarized, at each sample instant, k, the following
steps are undertaken:

1. Obtain state, x(k) (or state estimate)

2. Solve optimal control problem (initial state = x(k)), yielding control u

3. Apply control input u(k) (or part of u)

4. Repeat

Letting x ∈ Rnx denote the state, u ∈ Rnu the control input, uex ∈ Rne the
disturbances and y ∈ Rny the output, a general continuous-time optimal
control problem can be formulated as:

min
u

J =
∫ t f

t0

g(x, u, uex, y) dt (5.1)

subject to:

ẋ = f(x(t), u(t), uex(t)) (dynamics)

y = h(x(t), u(t), uex(t)) (output)

and subject to e.g. state, input and output box constraints:

xmin ≤ x ≤ xmax (5.2)

umin ≤ u ≤ umax

ymin ≤ y ≤ ymax

with ≤ taken element-wise.
The objective function, g, maps states, inputs and outputs to R. System

dynamics are given by f, not limiting the formulation to linear systems. Only
box constraints are shown in Eq. (5.2), but constraints on boundary conditions
can also be posed, e.g. on final time (t f ), value of state or output at final time.

If the objective function, g, is linear or quadratic and if the constraints are
all linear (including the system dynamics), a solution is obtainable using ei-
ther Linear Programming (LP) or Quadratic Programming (QP) – if it exists.
Using either LP or QP, the benefit is guaranteed efficient global solutions
using a myriad of available solvers. If not imposing this restriction, a solu-
tion is obtainable using Nonlinear Programming (NLP). While this ensures
that no model information is lost in a potential linearization of the system
dynamics, it does not guarantee global solutions and has significant higher
computational complexity. However, the popularization of tools such as aca-
dos[66], ICLOCS[67] and CasADi[62] has made nonlinear optimal control
significantly more accessible for all kinds of control problems.
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5.1. Model Predictive Control

All these tools take the same approach to solving nonlinear optimal con-
trol problems such as Eq. (5.1). First the infinite dimensional (continuous-
time) problem is transcribed: the problem is discretized to a finite dimen-
sional NLP. The most common methods for transcription are either multiple-
shooting or direct collocation. The NLP can then be solved using available
solvers, e.g. IPOPT[68].

In this project, CasADi has been used extensively. This allows posing the
model dynamics once and using that formulation for both simulations and to
pose and solve optimal control problems subject to those dynamics. The go-
to method has been multiple-shooting using a standard 4th-order Runge-Kutta
integrator.

5.1.1 Energy-efficient cooling in Kolding Storcenter

In Paper C, MPC is employed to reduce cooling consumption in the heat-
ing season in Kolding Storcenter. As indicated in Section 2.1, there is a very
large cooling consumption in Kolding Storcenter, which originates from large
heat gains in shops. In Figure 5.1, this cooling consumption is visualized by
showing BMS data from three days in December 2018. The data reveals both a
heating and cooling demand from the three shops investigated. Furthermore,
the data reveals that the associated AHU heats the supply air (Tvent > Tamb)
while the also associated chiller is also operational (seen by low and oscil-
lating Tfwd,cool) – thus both heating and cooling at the same time. This is
not desirable. One approach to minimizing the cooling consumption, would
be to simply not allow the chiller to turn on. Given the HVAC as described
in Section 2.1, this would lead to a loss in control authority in the shops.
The necessary coordination to avoid heating and cooling at the same time, is
achievable with MPC, which is demonstrated through simulations. The MPC
is designed by formulating a nonlinear optimal control problem as Eq. (5.1),
where the objective function is the combined cooling effort by both AHU and
chiller:

Q̇cool,tot =

Nshops

∑
i=1

Q̇−AHU,i + Q̇cool,i (5.3)

where Q̇AHU,i and Q̇cool,i are presented in Section 4.2 and Q̇−AHU,i is only the
negative part of Q̇AHU,i (only cooling). The optimal problem considered:

min
u

J =
∫ t f

t0

Q̇2
cool,tot dt (5.4)

subject to similar nonlinear dynamics as presented in Section 4.2.
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Fig. 5.1: Measurement data extracted from BMS in Kolding Storcenter. The three shops shown
behave differently; Shop 1 features large heating demand (heating valve saturating at 100 % all
the time). Shop 2 and Shop 3 features both cooling and heating demand. The AHU uses heating
sometimes, as indicated by Tvent > Tamb during operational hours[69]. © 2019 IEEE

The control inputs considered are supply air temperature from AHU (set-
point), Tvent,r, and the forward temperature for the chiller (setpoint), Tfwd,cool,r.
Suitable constraints were enforced on both shop temperatures, supply tem-
peratures and forward temperature. All states in the model are measurable
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5.1. Model Predictive Control

(a direct consequence of formulating the model based on the available mea-
surements) and so no state estimation is required. No prediction model of
the disturbances was used – instead, the fact that the system is close to being
periodic is used, by applying yesterday’s inputs delayed 24 h for prediction.
The control diagram is depicted in Figure 5.2.

Using this MPC, it was possible to shift cooling capacity from the chiller
to the AHU instead. Eliminating the need to use the chiller in the simulation
results and instead driving the AHU with a lower supply air temperature –
this is more reasonable, as passive cooling is available through the low am-
bient temperature. Results showing the lowered cooling effort are presented
in Figure 5.3. Total energy savings during the simulation were 21 %. This
was calculated taking into account additional heating in the FCUs, as a lower
supply temperature of the air from the AHU would potentially have the FCU
supply temperature control open the heating valves more.

Mall dynamics
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(CasADi) Mall simulator
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Fig. 5.2: Diagram depicting MPC simulation setup as studied in Paper C.
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Fig. 5.3: Simulation result showing how MPC lowers the total cooling effort by not heating
supply air in the AHU and not using the chiller[69]. © 2019 IEEE
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5.1.2 Energy-efficient cooling in CITY2

In Paper F, MPC is employed to reduce cooling consumption during summer
in CITY2. As described in Section 2.2, the cooling consumption is signifi-
cantly lower than Kolding Storcenter and is limited to May, June, July and
August. The MPC draws on results from a preliminary control design pre-
sented in Paper A, which introduces feedback on the cooling valve opening
signals and manipulates forward temperature to drive the most open valve
towards fully open. A higher forward temperature is desirable to increase the
Coefficient of Performance (COP) of the system. The theoretical COP limit is
determined by the COP of a Carnot cycle1:

COPmax =
Tfwd,cool

Tamb − Tfwd,cool
(5.5)

This means that efficiency increases when driving the forward temperature
closer to the ambient temperature. With feedback on valve openings, the
forward temperature can be increased while ensuring that demand is still
met, by not allowing the valves to saturate completely. In Paper A this is
done using a PI controller:

e = uvalve,cool,r −max(uvalve,cool) (5.6)

Tfwd,cool,r = Kp e + Ki

∫
e dt (5.7)

where uvalve,cool,r could be selected as 90 % open, to allow for a saturation
margin. In Paper F the same principle is realized using MPC, by considering
the following optimal control problem:

min
u

J =
∫ t f

t0

qe eT
supplyesupply + (uvalve,cool,r −max(uvalve,cool))

2 dt (5.8)

where esupply is the vector of error signals from the AHU supply tempera-
ture control which is modeled in Section 4.3. The objective both considers
minimizing controller error (thermal comfort) and driving valve opening to-
wards uvalve,cool,r. The benefit of using MPC in this setting lies in both the
ability to handle constraints and in predictions, which allows for foresight-
edly lowering Tfwd,cool for peak cooling demand. However, the cost is still the
requirement of a dynamical model – which makes the PI controller version
very attractive.

In Paper F the MPC is compared to a nominal control situation, where
the forward temperature is controlled through a setpoint curve, which is
very common practice and what is already implemented in CITY2. Simula-
tions of all the summer months are conducted and it is estimated that energy

1This expression is only valid for cooling in summer, where Tamb is higher than what is being
cooled.
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savings of 11 % are achievable when comparing to the nominal controller.
In the SEBUT project[64], it is estimated that the energy consumption of the
cooling plant in CITY2 can be reduced with 3 % for every degree the forward
temperature is increased. This is on par with the results of the simulation.

5.2 Low-complexity Hierarchical Control

HVAC systems can be divided into consumers and producers, and as has also
been identified through the SEBUT project, many control related issues lie in
the coordination between these two groups. In HVAC systems, it can be nat-
ural to characterize thermal zones as the consumers – for shopping centers,
the shops. In the following, a consumer has to have a temperature controller,
which will regulate how much heating/cooling of the HVAC system capac-
ity is used. A producer delivers heating/cooling capacity, determined by an
actuator that can be manipulated.

To balance production and demand of the consumers, a hierarchical con-
trol approach is proposed and presented in Figure 5.4.

Letting Q̇demand be the total heat demand2 of all consumers and Q̇produced
the heat delivered to the consumers by the producers, the following energy
balance is considered:

Q̇demand = Q̇produced + ∆Q̇demand (5.9)

The desire is to control Q̇produced to match Q̇demand; in this situation the
consumers have just enough heating/cooling capacity to meet their demand.
When they do not match, a discrepancy, ∆Q̇demand, appears:

∆Q̇demand =
N

∑
i

∆Q̇demand = Q̇demand − Q̇produced (5.10)

The control problem of balancing production and consumption can therefor
be re-stated as a desire to have ∆Q̇demand go to zero. Assuming ∆Q̇demand
unknown, ∆Q̇demand known and Q̇produced controllable through the reference,
Q̇produced,r, the control problem can be solved by letting:

Q̇produced,r = Q̇produced + ∆Q̇demand (5.11)

2Heating (positive) or cooling (negative).
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Consumer Consumer

Producer Producer

Consumer

Controller
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Demand

ILC

Fig. 5.4: The final generalized hierarchical control approach as it is presented in Paper F –
developed through Paper D, Paper E and Paper F.[70]
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With the further assumptions of no dynamics in the producers and perfect
tracking of this reference, one has:

Q̇produced,r(t) =
∫ t f

t0

∆Q̇demand(t) dt + Q̇produced(t0) (5.12)

Since ∆Q̇demand can be considered the error and Q̇produced,r the control in-
put, this is a pure integral controller, which will drive Q̇produced,r (and hence
Q̇produced) to a point where ∆Q̇demand is zero – as long as the system does not
saturate.

The method requires knowing ∆Q̇demand. Here, an estimate, ∆ ˆ̇Qdemand, is
proposed:

∆ ˆ̇Qdemand =
N

∑
i

∆ ˆ̇Qdemand,i (5.13)

∆ ˆ̇Qdemand,i = ṁnom,i cp ei (5.14)

This estimated is based on knowing nominal flow, ṁnom,i, and the error sig-
nal, ei, of the temperature regulator in the consumers – these are assumed
obtainable in most HVAC systems. The estimate has a drawback, as it aggre-
gates the individual demand terms using a summation. As the demand terms
can be both positive and negative, this means that they can cancel each other
out. With N/2 consumers demanding extra heating and N/2 consumers
demanding extra cooling, it would lead to ∆ ˆ̇Qdemand = 0. It is possible to
treat heating and cooling separately to handle mixed-mode situations, but
this would be at a cost of total system efficiency – allowing both heating and
cooling at the same time.

Now, knowing what Q̇produced,r to use, another control problem arises in
tracking this reference and dividing the load among the producers. This is
the job of the block marked Controller in Figure 5.4. Let u be the control input
to all the producers:

u =
[
uproducer,1, uproducer,2, ..., uproducer,Np

]T
(5.15)

and let y denote the vector of available measurements. It is assumed that a
static model, Q̇produced(u, y) ∈ R, of the produced heat is known. It is also
assumed that a static model, κ(u, y), of cost of Q̇produced is known. Here cost
can be e.g. monetary cost or power consumption. The following optimization
problem is posed:

min
u

J = qd

(
Q̇produced,r − Q̇produced(u, y)

)2
+ qc κ(u, y) (5.16)

subject to:

umin ≤ u ≤ umax
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Here qd and qc are tunable weights and ≤ is taken element-wise. Solving
this problem finds the producer control inputs that balances production with
consumption while minimizing the cost of using those control inputs.

This problem is a steady-state optimization problem that only requires
static models of the heat produced and the cost of producing it. Impact-wise
this is important, as this method does not rely on an accurate dynamical
model as is the case for MPC. Furthermore, a steady-state optimization prob-
lem can potentially be sampled in a grid and converted to a look-up table.
This is an important trait when considering commissioning.

The final addition, as was introduced in Paper F, is ILC. The prospect of
exploiting inherent periodic behavior in the examined HVAC systems was
first treated in Paper D, but the periodic behavior was first quantified in Pa-
per F. A frequency analysis (Fast Fourier Transform (FFT)) on error signals
from shop temperature controllers in Kolding Storcenter made a 1-day pe-
riodicity very clear. The frequency analysis is shown in Figure 5.5. Besides
the 1-day periodic behavior, Figure 5.5 also shows some weekly periodicity,
which is in line with different opening hours and HVAC operation schedule
during the weekend.
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Fig. 5.5: Frequency analysis (FFT) of shop temperature controller error signals, ei . For three
shops in Kolding Storcenter. Data used is hourly data from August 2019 to August 2020.[71]

The addition of ILC is also depicted in Figure 5.4, where it sits in parallel
to the aggregated demand, ∆Q̇demand. Considering the discrete-time version
of Eq. (5.11) and adding the ILC contribution:

Q̇produced,r,j(k) = Q̇produced,j(k) + ∆Q̇demand,j(k) + ∆Q̇ILC,j(k) (5.17)

where j is the trial index (or iteration index) and k is the time index (or sample
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index). The ILC contribution, ∆Q̇ILC,j(k), is calculated according to a simple
proportional ILC update law:

∆Q̇?
ILC,j+1(k) = α∆Q̇ILC,j(k) + L ∆Q̇demand,j(k + 1) (5.18)

where α is a forgetting factor (0 < α ≤ 1) and L is the ILC learning gain. The
forgetting factor is used to ensure stability of ∆Q̇ILC,j(k) when considering
seasonal effects. One example; going from cold weather to warm weather
back to cold. Going from cold weather to warm weather has the ILC learn
a need for extra cooling capacity. Going from the warm weather to cold
weather again does not necessarily unlearn the effect if the consumers are
perfectly capable of maintaining the temperature with the added cooling ca-
pacity available but not used. This has to be unlearned again, hence the
forgetting factor.

Furthermore, anti-windup is introduced by saturating the ILC contribu-
tion:

∆Q̇ILC,j+1(k) =
∆Q̇ILC,min, for ∆Q̇?

ILC,j+1(k) ≤ ∆Q̇ILC,min

∆Q̇ILC,max, for ∆Q̇?
ILC,j+1(k) ≥ ∆Q̇ILC,max

∆Q̇?
ILC,j+1(k), otherwise

(5.19)

This is to avoid wind-up caused by capacity constraints, e.g. during peak
weather conditions.

5.2.1 Experimental results from Kolding Storcenter

In Paper E the hierarchical approach, without ILC, is applied to the demo-
zone in Kolding Storcenter. The desire is to minimize the cooling load, which
exists even during winter as described in Section 2.1. The application con-
siders controlling both the AHU and the chiller. The AHU by manipulating
with supply air temperature (Tvent) and flow (ṁvent). The chiller by turning
it ON/OFF.

Simple models for Q̇produced (heating/cooling produced) are derived based
on available flow and temperature measurements for both AHU and chiller.
Cost, κ, is selected as power consumption, which is modeled by fitting poly-
nomials to measurement data of power consumption and control inputs. The
controller is implemented equivalent to Figure 3.2.

The controller was evaluated in the period from 9. November 2019 to
22. January 2020 – switching between the new controller and the base-
line/nominal control for a fair comparison with similar ambient conditions.
In Figure 5.6 the results are summarized, with the new controller denoted
HCTRL and the baseline/nominal controller denoted Nominal. The results
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are very promising, showing on average 40 % savings for the chiller and on
average 31 % for the AHU.
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Fig. 5.6: Summarized energy savings from hierarchical control experiment in Kolding Stor-
center[72].

5.2.2 ILC results

In Paper F the addition of ILC is evaluated in two case studies; both in Kold-
ing Storcenter and CITY2. In both cases by comparing a simulation with and
without the ILC. For Kolding Storcenter, the simulation is of five months,
covering seasonal change (June to December). For CITY2 the simulation is
three months (June, July, August). The metric compared on is an aggregated
RMSE, averaged for each day in the simulation. The results for Kolding Stor-
center are given in Figure 5.7 and for CITY2 in Figure 5.8, where the RMSE
is plotted against ambient temperature.

For Kolding Storcenter, the ILC provides on average 40 % reduction in the
RMSE metric. The effect is higher for lower ambient temperatures, where
there is more control authority – this is visible as RMSE is only kept close
to zero until around Tamb = 15 °C. For higher ambient temperatures, it gets
increasingly difficult to maintain the desired temperature.

In CITY2 there is plenty of control authority, with the very low RMSE.
Only for ambient temperatures above 22 °C the control struggles in the case
of no ILC. When using ILC the performance is relatively constant over all
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ambient temperatures considered.
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Fig. 5.7: Comparing simulation of using proposed hierarchical control approach, with and with-
out ILC, in Kolding Storcenter[71].
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Fig. 5.8: Comparing simulation of using proposed hierarchical control approach, with and with-
out ILC, in CITY2[71].

5.2.3 Comparison to MPC

In both Paper D and Paper F the proposed hierarchical control approach has
been compared to MPC. Instead of attempting to do a realistic comparison
between these methods, the MPC is treated as an upper-bound for achiev-
able performance and has been provided ideal conditions; e.g. no model-
mismatch (same nonlinear system dynamics in both simulation and MPC)
and perfect prediction of exogenous disturbances.

The comparison for both Kolding Storcenter and CITY2 in Paper F shows
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that the hierarchical control approach with ILC can recover up to 90 % of the
equivalent MPC performance, while the transient response of control inputs
can be significantly different. The comparison is on both thermal comfort
and energy consumption and both controllers were evaluated for different
sets of parameters (e.g. weights). The results are shown in Figure 5.9 and
Figure 5.10.
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Fig. 5.9: Comparing simulation of using proposed hierarchical control approach (HILC) with
ILC to MPC, in Kolding Storcenter[71].
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Fig. 5.10: Comparing simulation of using proposed hierarchical control approach (HILC) with
ILC to MPC, in CITY2[71].
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This chapter summarizes the work within investigating the potential for en-
ergy flexibility in shopping centers. As presented in Section 1.2.3, energy
flexibility in the domain of building control has many forms; indirect con-
trol through incentive signals (e.g. price) and direct control for deterministic
power curtailment. Both indirect and direct control can provide peak-shaving
and load-shifting. Besides this, energy flexibility can be both within electric-
ity consumption and within heat consumption (district heating).

This chapter will seek to investigate the flexibility potential of shopping
centers, through an investigation of the energy consumption in the two case
studies; Kolding Storcenter and CITY2 – and through a simulation study in
direct control as presented in Paper B.

6.1 Kolding Storcenter

As described in Section 2.1, Kolding Storcenter has a relatively high electric-
ity consumption, given the large electricity consumption for cooling. There-
for, flexibility is investigated in terms of the electricity consumption. As
Kolding Storcenter was outfitted with additional meters for power measure-
ment in the SEBUT demo-zone, data collected here is used. Power measure-
ments are collected for both the AHU and the chiller in the demo-zone; see
Figure 6.1.

Of the total consumption in the demo-zone, the chiller is responsible for
36 %. Note that this is not all the cooling. The AHU has, as described in
Section 2.1, a built-in heat pump, making it able to cool the air. The effect of
this is visisble in Figure 6.1 as roughly all AHU power consumption above
10 kW. Using power consumption models from Paper E and Paper F, the
consumption can be split into what is cooling (28 %) and what is ventilation
(72 %) for the AHU. That means, that cooling is 53 % and ventilation is 47 %
of the total power consumption, for the demo-zone.

To investigate the potential for flexibility through indirect control, a cor-
relation analysis is conducted. Calculating correlation between power con-

61



Chapter 6. Energy flexibility

sumption and SPOT prices from the Danish electricity market on a daily
basis (24 h window). The consumption data from the COVID19 lock-down,
visible in Figure 6.1, is removed, leaving a dataset of 8 months of data. The
distribution of correlation coefficients calculated are given in Figure 6.2. No-
tice that data has been limited to hours between 06:00 and 23:55.
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Fig. 6.1: Kolding Storcenter demo-zone power consumption (AHU and chiller), from Nov. 2019
to Sep. 2020 (daily average). Notice the 2 month long shut down due to COVID19.
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Fig. 6.2: Correlations coefficient between power consumption and SPOT prices of electricity
(DK1), for (1) AHU (only ventilation/fans), (2) AHU (only cooling/heat pump), (3) chiller.

Looking at Figure 6.2, there is a clear potential to introduce indirect con-
trol using SPOT prices as incentive signal for especially ventilation and the
chiller. As the ventilation is running constantly, at maximum capacity with
measured low CO2 levels in shops, there is a clear potential to introduce flow
control including a SPOT price incentive signal. The same goes for the chiller.
The correlation coefficients are also shown in Figure 6.3, as time series data.
This reveals how the correlation shifts from heating season to cooling sea-
son. During the winter months there is a higher correlation with high SPOT
prices, showing more potential.

Besides looking at the correlation between consumption and SPOT prices,
the peak-shaving potential can be investigated by aggregating power con-
sumption and SPOT price over the year and plotting an average day. The
average day, considering power consumption spent on ventilation and the
chiller (disregarding cooling in the AHU) is given in Figure 6.4. For the SPOT
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6.1. Kolding Storcenter

price, this clearly identifies the two main peaks at 8:00 and at 19:00. There
is a clear potential to reduce the load at the morning peak, as the AHU is
started before 5:00 and reaches 8 kW (≈ 80 % load) before 8:00. This is unnec-
essary given that shops do not open up until 10:00. Disregarding the chiller
base load of 2 kW all day, the chiller’s peak load as it starts in the morning is
very close to the 8:00 peak, which also leaves potential for peak-shaving (or
load-shifting).
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Fig. 6.3: Correlations coefficient between power consumption and SPOT price of electricity
(DK1), for (1) AHU (only ventilation/fans), (2) AHU (only cooling/heat pump), (3) chiller. Time
series, showing how the correlation changes.
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Fig. 6.4: Aggregated power consumption and SPOT price to visualize average day. Average
SPOT price identifies the two peak loads of the electricity grid, at 8:00 and 19:00. Potential for
load-shifting (or even reduction) is identified in the morning.

Another way to visualize the possibility of peak-shaving is through a
Load Duration Curve (LDC), showing power consumption in descending or-
der of magnitude instead of chronologically. An LDC is presented in Fig-
ure 6.5 for both the AHU and the chiller. The potential for the AHU seems
low given the LDC, in the sense that it does not exhibit a varying consump-
tion with a strong peak that can be shifted. However, this is due to the fact
that Kolding Storcenter operates the AHU in a CAV manner, and the potential
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might be high if the AHU would instead be operated in a Variable Air Vol-
ume (VAV) manner, adjusting the flow to the demand of the shops.

For the chiller, the LDC indicates a strong peak. By low-pass filtering (cut-
off frequency 1/4 h) the power consumption data and producing the LDC
again, the comparison between the two show, that the peak is not reduced,
indicating that this large peak is in fact consecutive high consumption. Look-
ing at Figure 6.1 it is peak summer consumption, only happening in August
where ambient temperatures reach 30 °C.
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Fig. 6.5: Load Duration Curve for power consumption in Kolding Storcenter. For AHU (only
ventilation) and for the chiller. For the chiller, the data is also low-pass filtered.

6.1.1 Load-shifting potential from exploiting thermal mass

While the previous analysis has been based in historical consumption data,
this can not conclude on the load-shifting potential by exploiting thermal
mass. This has been investigated in a deactivation experiment and through a
simulation study using MPC in Paper B.

In the deactivation experiment, the power consumption of the AHU and
chiller are directly manipulated for 1 h by introducing a step in air flow and
by simply turning off the chiller entirely. The AHU air flow is reduced to
50 % of the nominal flow. The resulting shop temperatures and CO2 level is
shown in Figure 6.6. During this hour with limited air flow and the chiller
not running, the shop temperature of Shop 1 increases from ≈22 °C to 22.5 °C
while the temperature of Shop 2 remains largely unchanged. The CO2 level in
Shop 2 increases slightly, from ≈ 465 ppm to ≈ 480 ppm. Given these small
changes, it can be concluded that it is a non-issue to significantly reduce air
flow and turn off cooling, in order to limit power consumption in a given
hour. Lowering the air flow from the AHU by 50 % lowers the power con-
sumption by 5 kW and turning off the chiller lowers the power consumption
by 4 kW for a total 9 kW. Scaling this to the entire shopping center by num-
ber of AHUs and chillers provides for a total of 157 kW. The load-shifting
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Fig. 6.6: Deactivation experiment in Kolding Storcenter, where the AHU air flow is reduced
to 50 % and the chiller is turned off, for 1 h during opening hours, to investigate potential for
load-shifting. This experiment was conducted with an ambient of 10 °C.

potential was also evaluated in Paper B. In Paper B, the multi-zone dynam-
ical model described in Section 4.1 is used as the basis for a MPC design
to introduce load-shifting through direct control of the power consumption,
without violating thermal comfort constraints.

The direct control of power consumption is included in the MPC formu-
lation as time-dependent constraints on the energy consumption:∫ toff

ton
P(t) dt = Pref(toff − ton) (6.1)

where Pref is the desired consumption in the interval between ton and toff.
In Paper B, simulation studies on a model instantiated for Kolding Stor-

center are conducted. The simulations considered the possibility of control-
ling chiller power consumption through manipulating with the forward tem-
perature, Tfwd,cool and by manipulating with the fan-coil supply temperature
setpoints, Tsupply,r. The power consumption model was based on modeled
cooling capacity and a COP model from statistical data on heat pumps, as no
power consumption data was collected for the chiller at this point.

The results from the simulation show a potential for load curtailment by
restricting power (or energy) consumption in a specific interval through di-
rect control – without violating thermal comfort constraints. The aggregated
power curtailment for Kolding Storcenter is through this method estimated
to be on the order of 100 kW for a period of 1 h – when only considering the
chillers.

6.1.2 Unlocking the flexibility

Given the HVAC setup described for Kolding Storcenter in Section 2.1 and
Section 4.2, multiple ways of unlocking energy flexibility have been identi-
fied. These include:
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• Turn off/on chiller(s) in given time slot

• Decrease/increase AHU(s) flow in given time slot

• Turn off/on fan coils units in given time slot

• Decrease/increase shop temperature setpoints in given time slot

Manipulating with individual fan coil units and shop temperature setpoints
would allow for the highest level of granularity, and could allow for the
shop owners to actively decide whether they would want to participate in
flexibility aggregation and could potentially be rewarded for this. However
it is the author’s opinion, that while indeed possible, there are numerous
lower hanging fruits ripe for plucking before such an elaborate demand-side
flexibility scheme makes sense.

Manipulating with the operation of the chillers and the AHUs is the most
feasible option, given the less intrusive control needed. For scale, this would
still require interfacing with all chillers and all AHUs. The benefit of the
decentralized HVAC is that it provides more granularity in the flexibility
aggregation, e.g. not all chillers have to be turned on/off, thus not necessarily
influencing the entire shopping center.

One way to introduce energy flexibility through control is achievable as an
addition to the hierarchical control scheme described in Section 5.2. As the
hierarchical control involves setpoint optimization through an optimization
problem that can e.g. include the power consumption as cost, constraints
could be introduced to limit power consumption in given hours. This would
allow for direct control of the power consumption and could therefor market-
wise be offered as regulating power sold on the Nordic regulating power
market[46]. Evaluating this approach is future work.

6.2 CITY2

As described in Section 2.2, CITY2 has a very high heating consumption.
Therefor, it is interesting to investigate the potentials for demand-side energy
flexible heat consumption. While energy flexibility within district heating has
not been as thoroughly treated in the literature as within electricity, it is still
important given the desire to introduce renewables in the heat generation[73,
74, 75, 76]. One of the main benefits of demand-side flexibility in district
heating systems is the possibility of peak-shaving. By peak-shaving it is pos-
sible for district heating suppliers to decrease the use of peak load plants and
instead increase the load on base load plants. Reducing peak load can also
set new lower requirements to dimensions in the district heating network.
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In Figure 6.7 the heat consumption from district heating in CITY2 for
2019 is shown together with the ambient temperature. In Figure 6.8 the con-
sumption is aggregated to show the median consumption over 24 h. From
Figure 6.8 it is possible to identify the morning peak at 8:00. This is undesir-
able from a district heating supplier point-of-view.

The peak-shaving potential is investigated in Figure 6.9, showing an LDC.
In Figure 6.9 a peak is identified and zooming in shows that for just 300 h
(≈3 % of the time) the consumption is above 2 MW, up to 3 MW.
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Fig. 6.7: District heating consumption in CITY2 for 2019 together with ambient temperature
(daily average).
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Fig. 6.8: District heating consumption in CITY2 for 2019. Plotting the median day (black) and
the [25;75] and [1;99] percentile brackets.

6.2.1 Load-shifting potential from exploiting thermal mass

No deactivation experiment has been conducted in CITY2 in order to inves-
tigate the load-shifting potential. While CITY2 and Kolding Storcenter are
very different in both HVAC layout and consumption profile, the results from
Kolding Storcenter can still provide hints as to what is potentially achievable
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Fig. 6.9: Load Duration Curve of district heating consumption in CITY2 for 2019.

in CITY2. In Kolding Storcenter, the shop temperature and CO2 levels only
increased slightly over 1 h with limited ventilation and no cooling on a day
with an ambient temperature of 10 °C. It should therefor be equally possible
to do load-shifting on an hourly basis in CITY2.

For heating consumption this would amount to load curtailment in the
order of 1 MW to 2 MW. This could be a relevant load-shifting service in
the time span between 17:00 and 20:00, where the district heating network is
loaded due to extra hot water and heating consumption in residential build-
ings.

In CITY2, cooling is supplied by one central cooling plant. While the
power consumption has not been measured on an hourly basis, a model of
the power consumption was estimated based on knowing the total cooling
capacity and the fitted model for the chiller in Kolding Storcenter (see Pa-
per F). The model proved adequate when integrating power consumption to
evaluate energy consumption on a monthly basis. Knowing this model and
the assumption of load-shifting on an hourly basis, it is possible to calculate
an equivalent potential for load-shifting as:

Q̇cool,CITY2,cap.

Q̇cool,chiller,cap.
=

2700 kW
185 kW

= 14.5

14.5 · 4 kW = 58 kW

Or by first calculating the total load-shifting potential by the chillers in Kold-
ing Storcenter (scaling by number of chillers) as 18 · 4 kW = 72 kW and then
scaling this by Q̇cool,CITY2,cap./Q̇cool,KSC,cap. = 2700 kW/3500 kW ≈ 0.75, giv-
ing 0.75 · 72 kW = 54 kW.

In both cases giving a potential on the order of 50 kW.
For ventilation, a monthly consumption of ≈90 MW h is known. Know-

ing the operating hours of the AHUs (see Section 2.2) the average power
consumption is estimated to be 300 kW. Thus potentially providing a curtail-
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ment in this order of magnitude.

6.2.2 Unlocking the flexibility

Given the HVAC setup described for CITY2 in Section 2.2 and Section 4.3,
multiple ways of unlocking energy flexibility have been identified. These
include for heat demand:

• Limit flow in given time slot

• Manipulate forward temperature and/or flow in given time slot

And for electricity demand:

• Turn off/on cooling plant in given time slot

• Manipulate forward temperature setpoint for cooling plant in given
time slot

• Turn off/on AHUs in given time slot

• Manipulate with flow of AHUs in given time slot

Compared to Kolding Storcenter, there is limited options for manipulating
with flexibility on a shop-level, as there is not the same level of control au-
thority in CITY2. The implementation barrier for unlocking flexibility is,
compared to Kolding Storcenter, lower as both cooling and heating is cen-
tral to the entire shopping center. This allows for easily introducing a large
amount of flexibility with a minimum implementation surface through a
piggybacking-approach as described in Chapter 3. To unlock flexibility from
the AHUs, all relevant AHUs setpoints need to be exposed in the BMS. How-
ever, this also provides a higher level of granularity, as not all shops need be
affected.
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7 | Conclusion

The research results of this Ph.D. study have been presented in the previous
chapters, along with the details in the six papers. In this chapter, a discussion
and conclusion on the results is presented. Following, suggestions for future
work are given.

7.1 Discussion and conclusions

In the following, discussions and conclusions based on each of the research
objectives is presented.

–F–

Investigate feasibility of interfacing with existing building control
A major part of the SEBUT project and hence also a major part of this Ph.D.
study was dedidcated to this research objective. To introduce new building
control in the existing building stock, a practical and low-effort method for
interfacing with existing buildings has to be available. This was treated in
Chapter 3, showing how open communication protocols within BMS allow
for third parties to interface using the existing infrastructure. While pro-
prietary solutions still exist and are being implemented, open protocols and
initiatives such as BACnet have gained the majority of the market share.

It is therefor not guaranteed that it is possible to directly interface with
an arbitrary building’s BMS, but a large share of the existing building stock
feature open protocols and here piggybacking on the existing infrastructure
is directly applicable. As several control experiments have shown, both in
Chapter 3 and the results from Paper E (summarized in Section 5.2.1), this is
a feasible way of introducing new control algorithms.

–F–

Formulate a model for both simulation and control purposes
The modeling effort was treated in Chapter 4, presenting a graph-based
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multi-zone model, capable of capturing the important zone temperature dy-
namics, e.g. shop temperature dynamics in the context of shopping centers.
This multi-zone model was the main contribution of Paper A. One impor-
tant observation in the context of shopping centers is how dominant display
lighting is. As display lighting in the case studies – at the time of writing
– is not LED, the resulting internal heat gains observed are immense. This
has the effect, that terms such as thermal interaction between zones and oc-
cupancy becomes insignificant in the temperature dynamics. However, with
the anticipated future shift to LED lighting these terms can not simply be
neglected.

Besides modeling the zone (or shop) temperature dynamics, models of
(among other) supply temperature dynamics for two very different HVAC
systems have been presented. Both models have been posed using the knowl-
edge that could be extracted from the existing BMS. This approach can severely
lower the performance of a fit to measurements, but as this would be the
case in a retrofit situation it is an important consideration. As no open-loop
system identification experiments were conducted, the parameter estimation
was difficult and had to rely a great deal on table look-up and knowing the
dimensions of e.g. shops. The fit to measurements obtained were deemed
adequate for the control purposes of this thesis, as the purpose was not a
perfect simulation model but a model "good enough" for evaluation of po-
tential control strategies and for the basis of model-based control designs.

–F–

Investigate the use of Model Predictive Control
To propose alternative methods to the state-of-the-art, MPC, it was necessary
to investigate the use of MPC. This was treated in both Chapter 5 in terms of
energy-efficient control and in Chapter 6 in terms of exposing energy flexi-
bility. The simulation results from using MPC have been very promising in
both cases, but it is the author’s opinion that the modeling work required
highly defeats the application. It may deliver the best performance, but as
concluded in Paper F simpler methods can recover 90 % of the performance
– avoiding the time-consuming modeling work and providing more operator
transparency, considering a method with less complexity. One could argue,
that the remaining 10 % are important, but another important takeaway is,
that these comparisons are based on simulation results. Factoring in reality,
the likelihood that this gap is narrowed down even further is worth consid-
ering. It is not unrealistic for a more simple solution to demonstrate better
results in reality where the benefits of e.g. MPC could be diminished.

One caveat is, that evaluation of simpler methods to expose energy flex-
ibility has not been done, and hence it can not here be concluded whether
these can be as attractive.
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–F–

Propose an alternative method to introduce energy efficiency
This objective is treated in Section 5.2, summarizing the work in Paper D,
Paper E and Paper F. An alternative method has been proposed, the bulk
of the method being a hierarchical control architecture suitable for complex
HVAC systems such as the ones seen in the two shopping center case studies.
The method has shown promising results, especially through the inclusion of
ILC, which was specifically treated in Paper F and through the experimental
study conducted and reported on in Paper E. However, the most important
result from this research is the fact that an alternative method can recover
90 % of the performance of a close-to-ideal MPC in simulations – making it
very likely that this gap could be even smaller in a real-world case.

–F–

Investigate potential for energy flexibility in shopping centers
The potential for energy flexibility in shopping centers was treated in Chap-
ter 6. The potential was investigated based on historical consumption data, a
deactivation experiment and simulation studies of an MPC to directly control
power consumption in a given time-slot without violating thermal comfort
constraints. The MPC study was specifically reported on in Paper B.

From historical consumption data it seems very likely, that it is possible
to shift consumption from expensive morning hours. Generally, both heating
and cooling is for both case studies turned on very early in the morning,
aligning with a morning peak in SPOT price of electricity. It could be very
beneficial to shift the load closer to opening hours. Besides this, there is a
general potential for introducing control based on SPOT prices, as seen from
correlation analysis between consumption and SPOT price data.

From a deactivation experiment and from the results in Paper B, it seems
very likely that a load-shifting service in the order of 2 W/m2 to 3 W/m2 for
a period of 1 h can be provided. This is ≈100 kW to 150 kW for Kolding Stor-
center and ≈190 kW to 280 kW for CITY2. However, it is important to note
that the implementation of energy-efficient control will lower the potential
for energy flexibility, as the consumption will be decreased. This will on the
other hand open up to not provide a curtailment service, but instead increase
the consumption in a given hour to alleviate over-generation in the grid.
Whether these magnitudes are large, is difficult to conclude on, but given a
combined area of all Danish shopping centers estimated as 2 000 000 m2, the
scale is 4 MW to 6 MW, which is significant. While it is technically possible
to unlock this flexibility, the market is still not ready and further regulations
are needed.
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7.2 Conclusion

Summarizing the above, the main contribution of this thesis has been to
bridge the gap between building control research and industry adoption,
by constraining the work conducted to realistic conditions met in a building
control retrofit. This constraint has been successfully applied through both
the practical research of this thesis, in how to actually interface with exist-
ing buildings, in the modeling work undertaken and in the proposed control
methodology. While research into the application of complex control meth-
ods is important to tackle increasingly complex problems, in the author’s
opinion it is equally valuable that research is conducted within tractable
methods.

To tackle the climate crisis, it is important not to get caught up in chasing
the last 10 %. One can not stress enough how important it is that measures
are taken to reduce the energy consumption of buildings and equally, that
measures are taken to make sure that buildings can adapt to the increasingly
stochastic energy generation. Both of these problems are control problems for
which a myriad of solutions exist. This thesis has sought to strike a blow for
the tractable solutions.

7.3 Suggestions for future work

The overall vision that has been considered in this thesis is the formulation
of an overarching control methodology, that is capable of controlling all the
integrated energy systems in existing buildings, simply by interfacing with
the existing infrastructure. This includes the control of heating, cooling and
ventilation units in an energy optimal way, while at the same time aggregat-
ing and exposing available energy flexibility – both in terms of electricity and
district heating. The method should be general enough to be re-used – this
including the practicalities of how it is applied to a specific building – and
it has to be cost-effective, to deliver on the promise that application of new
control algorithms is a key enabler to deliver on climate targets.

7.3.1 Tangible suggestions for future work

While experimental validation was conducted in Kolding Storcenter as re-
ported in Paper E, the experiment still only covers part of the shopping cen-
ter and was only operating during winter. Thus, future work would include
more elaborate experimental validation that potentially could embrace an en-
tire shopping center and with more varied ambient conditions. To properly
demonstrate the general application of the proposed control methodology, it
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would require also doing experimental validation in another shopping cen-
ter – or another building. This could to some extent also be covered by e.g.
a Hardware-in-the-Loop laboratory setup. Furthermore, Paper F introduces
ILC, which is only evaluated in simulation studies. As the literature is sparse
when considering experimental evaluation of ILC within building control this
would be a natural step for future work.

In line with experimental validation of ILC, it should be researched whether
a simple ILC with a forgetting factor is good enough – or whether e.g. a
database-driven approach as in [35] should be considered. There could also
be a potential for higher-order ILC which would weight e.g. yesterday’s con-
tribution and the contribution from a week ago, to take into account weekly
dynamics; different loads and opening hours in the weekend. A more theo-
retical line of research would be to grasp the stability and robustness when
coupling ILC and an integral controller.

Regarding energy flexibility, it would be interesting to research how this
could be included in the proposed control methodology. Both in terms of in-
direct control, taking a price signal into consideration, but equally interesting
as direct control, to explicitly manipulate the power consumption – or district
heat consumption – in a given time slot.
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1.1. Introduction

Abstract

In this paper we consider the problem of constructing a dynamical model for shop-
ping center HVAC systems, suitable for proposing new high-level control designs
to minimize energy consumption for the entire shopping center. We also propose a
preliminary control design, to increase energy efficiency. The specific system consid-
ered in this paper, is a small section of a Danish shopping center, including three
shops and their joint cooling system. The current control solution is investigated and
described.

A dynamical model is constructed as a grey-box RC-equivalent model, a suitable
modeling paradigm for control-oriented models that also have to be scalable. Param-
eters for the model have been identified through a combination of measurement data
from several days of live operation and table-lookup, calculating thermal properties
based on shop dimensions.

The resulting model is used to propose a preliminary control solution, to increase
efficiency by utilizing a higher forward temperature. This is achieved through a
control design that seeks to drive valve openings closer to fully open, while still
allowing headroom for disturbance rejection. One of the main benefits of this design,
is the low implementation barrier, as it does not require alterations to shop-local
temperature controllers.

Simulations show that the proposed control solution works as intended, without
degrading the performance of the existing shop temperature control.

1.1 Introduction

In Denmark, buildings are responsible for approximately one third of the
total energy consumption[1]. Even though energy efficiency continues to im-
prove, the main focus is typically on the building envelope itself, rather than
e.g. heating and cooling equipment[2]. The problem with this focus is that
energy renovation considering the envelope itself is expensive, in compari-
son to replacing/updating heating and cooling equipment. There is thus an
untapped potential in improving heating and cooling equipment, especially
considering older buildings, where an investment in energy renovation of the
building envelope can be unattractive from the owner’s/operator’s point of
view.[3][4]

Control applications to reduce energy consumption have been considered
in several works, using different approaches, with the majority utilizing pre-
dictive control[2]. Given the multi-zone characteristics of many commercial
buildings, decentralized and distributed control schemes have been investi-
gated in relatively recent works. In [5], distributed model predictive control
is employed to maintain zone temperatures within given comfort require-
ments, utilizing predictive knowledge of weather and occupancy. Distributed
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model predictive control is also used in [6]. A decentralized token-based ap-
proach to control and scheduling of Heating Ventilation and Air Condition-
ing (HVAC) systems in multi-zone buildings is examined in [7].

Generally, the distributed/decentralized solutions suffer a performance
loss compared to centralized solutions, but they are scalable, and as such
offer numerical robustness when the number of zones considered is rel-
atively large. Another important aspect regarding centralized versus dis-
tributed/decentralized is implementation, as it greatly affects the investment
size for the owners/operators. A centralized solution could potentially be
cheaper given the lower implementation barrier, as no alterations to the indi-
vidual zones are required.

The work presented in this paper is part of the Energy Technology De-
velopment and Demonstration Program (EUDP) project denoted Smart En-
ergy Shopping Centers (SEBUT). SEBUT develops intelligent control systems,
knowledge services and tools for energy refurbishment and energy flexibility
upgrades of shopping centers in Denmark. Shopping centers are responsible
for approximately 25% of the combined energy consumption in the Danish
retail trade sector. The approach to energy flexibility is holistic, considering
indoor air quality, advanced control of indoor climate and lighting, energy
consumption and supply, energy storage, use of waste heat and also user
requirements, behavior and potential barriers.[8]

The main aim of this paper is to lay the ground work for a dynamic
control-oriented model of a shopping center and to propose a preliminary
control design in order to reduce energy consumption. Choosing a control-
oriented modeling paradigm depends on the characteristics of the building in
question, but for large-scale multi-zone buildings, a grey-box RC-equivalent
approach is often applicable[9]. This is the approach taken in this paper.

The multi-zone model proposed in this paper, is applied to a small section
of a Danish shopping center; this is done using both measurement data and
table look-up of thermal parameters. With a model in place, a preliminary
control design is proposed. The design seeks to increase energy efficiency,
by utilizing a higher forward temperature in the shopping center cooling
system. The design is evaluated through simulations.

92



1.2. System description

In Section 1.2, the shopping center in question is accounted for and following,
in Section 1.3, the model equations are introduced. With model equations intro-
duced, the model is applied and parameters are identified in Section 1.4. Section 1.5
describes the preliminary control design and Section 1.6 presents results from a
simulation experiment using the proposed controller. Conclusions are given in Sec-
tion 1.7.

Notation-wise, matrices are denoted in uppercase bold, e.g. A, vectors are de-
noted in lowercase bold, e.g. x. Dependence of variables on time t, x(t), is implied
and will not be written explicitly.

1.2 System description

As a case for this paper, Kolding Storcenter in Jutland, Denmark, is considered. In
Kolding Storcenter, a demo-area has been established for the SEBUT project. The
demo-area considers a small cluster of three shops and the Central Cooling Unit
(CCU) responsible for these shops. In Kolding Storcenter, cooling is delivered through
a fan coil unit in the shops. The CCU delivers its cooling capacity through cooled
water supplied to the fan coils. A shop-local controller regulates the supply air tem-
perature to the shop, by actuating a valve that determines the flow of cold water
through the fan coil. A block diagram depicting the demo-area setup is shown in
Figure A.1. For each shop, the room temperature, Tshop, and the supply temperature,
Tsupply, are measurable and the valve control signal, uvalve is available as input.

The current control solution consists of a shop-local controller, manipulating
valve opening to regulate room temperature. This is done through the cascade PI
configuration depicted in Figure A.2. The temperature of the cooled water supplied
to the fan coil, Tfwd, is controlled independently of the cooling requirements of the
shops. This was concluded by investigating the Supervisory Control and Data Ac-
quisition (SCADA) system in Kolding Storcenter.

Measurements were collected directly from the SCADA system. In Figure A.3,
shop temperature, supply temperature and valve opening is depicted, for one of
the shops in the demo-area, over two days in May 2018 with summer-like weather
conditions. Opening hours are from 10:00 to 20:00 and night-setback is implemented
for the shop-local controllers.

From the measurements, it is clear that shop temperature rises throughout the
day, indicating that there may be capacity problems in the system. Looking at the
supply temperature; it is maintained at 14 °C without saturating the valve opening
(for the most parts). From the SCADA system it was identified, that 14 °C is the
minimum allowable supply temperature.
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Fig. A.1: System layout of demo-area, depicting the three shops and the CCU. Shop 1 is intentionally
not adjacent to Shop 2 and Shop 3, as a hallway separates them. The return flow is not depicted in this
diagram.

Fig. A.2: The shop-local controller is two PI regulators in a cascade configuration. The FC block is the fan
coil unit.
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Fig. A.3: Initial measurements from the demo-area in Kolding Storcenter. Shop temperature, supply
temperature and valve opening for Shop 1 in the demo-area.
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1.3 Model

The purpose of the model is to capture the most important dynamics in order to
design control strategies that can significantly improve energy efficiency. Since the
potential is to consider entire shopping malls, the model also has to be scalable.
The model will consider the central cooling, the fan coil units, the shops and hall-
ways/common area separating the shops. Heat flows into a thermal zone are posi-
tive, while heat flows leaving a thermal zone are negative. The system is structurally
very similar to the one in [10], which has served as inpiration.

1.3.1 Shop temperature model

At first we consider the thermal dynamics of a single shop:

Cshop,i Ṫshop,i = Q̇adjacent,i − Q̇fancoil,i + Q̇int,i (A.1)

where Cshop,i is the lumped thermal capacitance of the shop, Tshop,i is the room
temperature of the shop and Q̇adjacent,i is the heat flow to/from surrounding shops
and or hallways/common area – commonly denoted zones. Q̇fancoil,i is the heat flow
removed by the fan coil unit and Q̇int,i models the internal heat gain, e.g. heat gain
from occupancy, lighting and appliances.

Similarly, we consider the thermal dynamics of hallways/common area:

Chall,i Ṫhall,i = Q̇adjacent,i + Q̇int,i (A.2)

where Chall,i is the lumped thermal capacitance of the hallway and Thall,i is the room
temperature in the hallway. Equivalently to the shop dynamics, there is a term
for heat flow to/from the adjacent zones and from internal heat gain. The main
difference is that for hallways we do not model cooling, as the focus is on the shops.

The thermal dynamics of the fan coils are governed by the following state equa-
tion:

Cfancoil,i Ṫsupply,i = Q̇fancoil,i − Q̇CCU,i (A.3)

where Cfancoil,i is the lumped thermal capacitance of the fan coil unit and Tsupply,i is
the temperature of the supply air to the shop, in which the fan coil unit is mounted.
The heat flow to the fan coil is equivalent to the heat flow removed from the shop,
Q̇fancoil,i, and Q̇CCU,i is the heat flow removed from the fan coil, by the supplied cold
water from the CCU.

To model the heat exchange between adjacent zones, we consider a thermal resis-
tance between the zones. This lets us write Q̇adjacent,i as:

Q̇adjacent,i = ∑
j∈Ni

Tj − Ti

Ri,j
(A.4)

whereNi is the set of all neighboring zones and Ri,j is the thermal resistance between
the zone in question, i, and its j-th adjacent neighbor.
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We model the remaining heat flows as:

Q̇fancoil,i = ṁair,i cp,air(Tsupply,i − Tshop,i) (A.5)

Q̇CCU,i = ṁwater,i cp,water(Tfwd − Tsupply,i) (A.6)

where ṁair,i is a fixed parameter, as the fan speed is not controllable. Specific heat
capacity for air and water is given by cp,medium. The flow of water, ṁwater,i is con-
trollable through a valve. The pressure difference is assumed constant, together with
the density of the refrigerant (water, no phase change). The valve characteristics are
modeled to be linear:

ṁwater,i = K uvalve,i (A.7)

Assuming a linear valve characteristic is for this model acceptable for two apparent
reasons; (1) we have no information on the actual characteristics and (2) the valve
opening is controlled by a regulator.

The dynamics of Tfwd are not modeled, it is simply left as an input.

1.3.2 Scalability considerations

Now, the above state equations are in a suitable form when considering a low num-
ber of zones, but not for modeling an entire shopping mall, with the potential of
hundreds of zones. Thus, the equations have been simplified through a graph the-
oretical view. We collect all the thermal zones, shops and hallways, as nodes in the
graph G = (N , E). An edge between two zones exists if they are physically ad-
jacent. Furthermore, we let the edges be weighted by Gi,j = 1/Ri,j – the thermal
conductance between the zones. Now, we form the adjacency matrix:

A(G) = [ai,j] = [Gi,j] ∈ RNzones×Nzones (A.8)

where Gi,j 6= 0 if zone i and j are adjacent. Furthermore, let d(i) = ∑j Gi,j denote the
degree of the i-th node and let D(G) = diag(d(i)), then we can form the Laplacian
matrix of G as:

Q(G) = D(G)−A(G) (A.9)

We can now express the vector of heat flows between zones as:

Q̇adjacent = −Q(G) T (A.10)

T =
[
Tshop Thall

]T (A.11)

where Tshop ∈ R
Nshops and Thall ∈ RNhalls are the vectors collecting all the shop

temperatures and hall temperatures, respectively. With this result, we can reduce
our state equations to:

C Ṫ = −Q(G) T− Q̇cool + Q̇int (A.12)

Q̇cool =
[
Q̇fancoil 0

]T (A.13)

Q̇fancoil = ṁair cp,air(Tsupply − Tshop) (A.14)

Cfancoil Ṫsupply = Q̇fancoil − Q̇CCU (A.15)
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where C is a diagonal matrix with Cshop,i and Chall,i in the diagonal. Q̇cool encap-
sulates Q̇fancoil, which also handles potential cooling of the hallway. This is not
considered in this model, however.

1.4 Model applied to demo-area

Parameters have been estimated using table-lookup[9] and measurement data through
manual fitting, comparing temperature responses from simulations1 to the measured
temperatures. The simulations are closed loop simulations, simulating the supply
temperature control implemented in Kolding Storcenter. The resulting comparison
between simulated model and measurements is given in Figure A.5.

The desire is not a very accurate high-fidelity model, and as such the goal has
simply been to find a parameter set which lies within the correct order of magnitude.
The process was completed for a single shop, Shop 1, until a satisfactory fit was
obtained. These parameters have then been scaled for Shop 2 and Shop 3, given the
shop sizes.

The floor plan for the demo-area is depicted in Figure A.4, with the graph G
of thermal zones imposed on top. As Shop 1 is large, it has been divided into two
thermal zones. Shop 2 and Shop 3 are given a single thermal zone. The hallway
area, separating Shop 1 from Shop 2 and Shop 3 has been discretized to include seven
thermal zones. Shop 1 measures approximately 1000 m2, divided equally in the two
thermal zones. Shop 2 and Shop 3 both measure approximately 250 m2.

Flow measurements of fan coils have been conducted, giving an approximate
total mass flow for Shop 1 of 3 kg/s; ṁair = 1.5 kg/s for each zone in Shop 1. Under
peak cooling conditions with a supply temperature of 14 °C and a shop temperature
of 23 °C, this gives a cooling capacity of 27 kW. This indicates, that the internal heat
gain, Q̇int, lies within this size. The shop temperature is, given the measurements
obtained (Figure A.3), largely dominated by Q̇int which based on observations at
Kolding Storcenter, is due to lighting. Thus, for simulations Q̇int is introduced as a
step from 0 W to 27 kW; 13.5 kW for each of the two zones.

To be able to deliver this cooling capacity, the valve characteristic constant has
been chosen as K = 1.125; this balances the system in peak cooling conditions, deliv-
ering 14 °C supply temperature at a valve opening of 0.5, assuming a CCU forward
temperature reference of ≈ 8 °C, which was identified from the SCADA system at
Kolding Storcenter. No data of the forward temperature is however available from
the same period as the rest of the measurements.

Thermal capacitances were obtained using table lookup and an estimate of shop
volume. Thermal resistances were obtained through estimating the area of either
open facades or interior walls between adjacent zones. The thermal conductance
between the hallway zones and shop zones was set as 100 W/K, as was the thermal
conductance between hallway zones in-between. This is justified by the large open
facades of the shops. The conductance between Shop 2 and Shop 3 was set as 50 W/K.

1A simulation environment has been built in Python using SciPy[11].
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Given the results in Figure A.5, the model fits measurements to an acceptable
degree, given the limited information and the simplified parameter identification
process.

Fig. A.4: Demo-area in Kolding Storcenter, with a graph of thermal zones imposed on top. The edges
between the nodes (zones) determine the thermal interaction. The edges are colored to distinguish inter-
action between shops and hallway (orange) and hallways/shops in-between (green).

08:00 10:00 12:00 14:00 16:00
0.0

0.5

1.0

u
va

lv
e

Day 1

08:00 10:00 12:00 14:00 16:00
0.0

0.5

1.0
Day 2

08:00 10:00 12:00 14:00 16:00
0.0

0.5

1.0
Day 3

08:00 10:00 12:00 14:00 16:00

15

20

T
su

p
p

ly

08:00 10:00 12:00 14:00 16:00

15

20

08:00 10:00 12:00 14:00 16:00

15

20

08:00 10:00 12:00 14:00 16:00
22

23

T
sh

o
p

08:00 10:00 12:00 14:00 16:00
22

23

08:00 10:00 12:00 14:00 16:00

22

23

simulation
measurement

Fig. A.5: Comparison between simulated model with identified parameters and measured data, across
three different days (2018-05-17, 2018-05-18, 2018-05-23) with summer conditions. Generally a good fit.
The biggest uncertainty lies in shop temperature; since this is not actively controlled as the supply tem-
perature and given the many disturbances not known in e.g. Q̇int.

1.5 Energy optimization through control

A key aspect of the SEBUT project, is that the designed control solutions have to
be applicable to already existing building setups, re-using as much as possible, in
an attempt to keep the implementation minimal and the impact maximal. As such,
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this paper introduces a preliminary control solution, that does not alter the shop-
local controllers. Instead, it is desirable to investigate the introduction of forward
temperature setpoint scheduling.

One metric for energy efficiency in refrigeration systems is the Coefficient of Per-
formance (COP), which can be expressed as:

COP =
Q̇refrig

Pc
(A.16)

where Q̇refrig is the heat removed from the system by the refrigeration system and Pc
is the power consumed by the refrigeration system. In our case:

Q̇refrig = ∑
i

Q̇CCU,i = ṁtotcp,water(Tfwd − Tret) (A.17)

ṁtot = ∑
i

ṁi (A.18)

Tret =
∑i ṁiTsupply,i

∑i ṁi
(A.19)

The theoretical COP of the CCU is dependent on forward temperature and ambient
temperature (heat reservoir), as given by the COP for a Carnot cycle:

COPmax =
Tfwd

Tamb − Tfwd
(A.20)

Thus, the efficiency increases, as the forward temperature approaches the ambient
temperature. This is a crude simplification for a chiller, but it reveals a desire to let
the forward temperature be as close to the ambient temperature, while still enabling
the cooling capacity demand by the fan coil units. This expression for COPmax is
however only valid in the case where ambient temperature is higher than the tem-
perature inside, limiting it to cooling of the shops during the summer. In the case
where the ambient temperature is lower than the inside temperature, there is no
theoretical limit on COPmax. This implies that Eq. (A.20) will eventually have to be
replaced by a combined expression that takes both cooling and heating into account.
That is beyond the scope of the preliminary work in the present paper, however.

This paper proposes a centralized control solution, regulating the forward tem-
perature such that the fan coil unit with the highest cooling demand, has its valve
opening almost saturate (90% open), leaving some headroom for disturbance rejec-
tion. This approach is similar to the one taken in [12]. The control solution is depicted
in Figure A.6.
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Fig. A.6: Control solution to drive valve opening close to saturation, through regulation of forward tem-
perature.

The benefits of this control solution is especially the low barriers to implementa-
tion, as the shop-local controllers remain untouched. The controller is in this paper
a regular PI controller, giving rise to the control law:

e = ūvalve,max −max(uvalve) (A.21)

Tfwd,ref = Kp e + Ki

∫
e dt (A.22)

where max is the operation that picks out the maximum element in the vector given,
and ūvalve,max = 0.9. The max operation introduces switching-behavior to the system.
Stability-wise, this can be analyzed using standard hybrid system analysis[13], but
such an analysis is not within the scope of this paper.

1.6 Simulation studies

A simulation has been carried out to investigate the difference between a constant
forward temperature and controlling the forward temperature, through the sug-
gested control strategy. The simulation mimics the daily behavior of the system,
just as for the parameter estimation simulations. The only two differences being that
at 11:00, the otherwise constant forward temperature of cold water is instead reg-
ulated using the scheme described in Section 1.5 – and that measurement noise is
modeled for the supply temperature, to introduce a stochastic element in the simula-
tion. The measurement noise is sampled from a normal distribution with µ = 0 and
σ = 0.05, which is the approximate noise level identified in the measurement data.
The results of the simulation are depicted in Figure A.7.

It should be noted, that the local PI controllers maintain the shop temperatures
at the references, even with the central forward temperature control enabled. The
forward temperature is raised from the 8 °C to around 10 °C, which could be a sig-
nificant efficiency increase, especially given the peak cooling conditions – this is also
indicated by the increase in the maximum COP.
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Fig. A.7: Simulation comparing the effects of a constant forward temperature with the proposed control
solution, driving valve opening towards (almost) full opening. The purple line shows the valve opening
reference of 0.9. COPmax is calculated assuming Tamb of 25 °C.
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1.7 Conclusions

This paper has laid the ground work for a dynamical model of a shopping center. It
has proposed a scalable multi-zone model and applied it to a demo area in a danish
shopping center; estimating parameters through measurement data and table-lookup
with acceptable results.

Using the model, a preliminary control design was proposed to allow the sys-
tem to run using higher forward temperatures, for better energy efficiency. Through
simulations, the design shows promising results; most importantly given the low
implementation barriers. The simulation presented in this paper showed, that the
introduction of this central controller would not degrade the performance of the
shop-local controllers, allowing a gain in energy efficiency through a relatively sim-
ple central implementation.

Future work includes collecting data on power consumption, to pose an opera-
tional model of COP. This will allow conclusions to be drawn on the energy efficiency
improvements of the control scheme proposed. Also, it is necessary to further inves-
tigate both scalability of the model – especially in regards to the inclusion of hallway
zones – but also flexibility, as the desire is to reuse the framework for different shop-
ping centers.

Acknowledgement

This reseach is funded by the SEBUT project under ForskEl/EUDP grant no. 2016-1-
12555.

References

[1] International Energy Agency. Energy Policies of IEA Countries - Denmark 2017
Review. Tech. rep. 2017.

[2] Pervez Hameed Shaikh, Nursyarizal Bin Mohd Nor, Perumal Nallagownden,
Irraivan Elamvazuthi, and Taib Ibrahim. “A review on optimized control sys-
tems for building energy and comfort management of smart sustainable build-
ings”. In: Renewable and Sustainable Energy Reviews 34 (2014), pp. 409–429.

[3] Vikas Chandan and Andrew G. Alleyne. “Decentralized predictive thermal
control for buildings”. In: Journal of Process Control 24.6 (2014), pp. 820–835.
issn: 09591524. doi: 10.1016/j.jprocont.2014.02.015.

[4] Jie Cai, Donghun Kim, Rita Jaramillo, James E. Braun, and Jianghai Hu. “A
general multi-agent control approach for building energy system optimiza-
tion”. In: Energy and Buildings 127 (2016), pp. 337–351. issn: 03787788. doi:
10.1016/j.enbuild.2016.05.040.

103

https://doi.org/10.1016/j.jprocont.2014.02.015
https://doi.org/10.1016/j.enbuild.2016.05.040


References

[5] Yudong Ma, Garrett Anderson, and Francesco Borrelli. “A Distributed Pre-
dictive Control Approach to Building Temperature Regulation”. In: American
Control Conference. 2011, pp. 2089–2094. isbn: 9781457700811. doi: 10.1109/
ACC.2011.5991549.

[6] Petru Daniel Morosan, Romain Bourdais, Didier Dumur, and Jean Buisson.
Distributed MPC for multi-zone temperature regulation with coupled constraints.
Vol. 18. PART 1. IFAC, 2011, pp. 1552–1557. isbn: 9783902661937. doi: 10 .
3182/20110828-6-IT-1002.00516.

[7] Nikitha Radhakrishnan, Yang Su, Rong Su, and Kameshwar Poolla. “Token
based scheduling for energy management in building HVAC systems”. In: Ap-
plied Energy 173 (2016), pp. 67–79. issn: 03062619. doi: 10.1016/j.apenergy.
2016.04.023.

[8] SEBUT. SEBUT. url: http://sebut.teknologisk.dk/ (visited on Jan. 2, 2018).

[9] Ercan Atam and Lieve Helsen. “Control-Oriented Thermal Modeling of Mul-
tizone Buildings: Methods and Issues: Intelligent Control of a Building Sys-
tem”. In: IEEE Control Systems 36.3 (2016), pp. 86–111. issn: 1066033X. doi:
10.1109/MCS.2016.2535913.

[10] Michael Hansen, Jakob Stoustrup, and Jan Dimon Bendtsen. Modeling of non-
linear marine cooling systems with closed circuit flow. Vol. 18. PART 1. IFAC, 2011,
pp. 5537–5542. isbn: 9783902661937. doi: 10.3182/20110828- 6- IT- 1002.
01947.

[11] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. 2018. url: http://www.scipy.org/ (visited on Jan. 2, 2018).

[12] Fatemeh Tahersima, Jakob Stoustrup, Henrik Rasmussen, and Soroush a. Mey-
bodi. “Economic COP optimization of a heat pump with hierarchical model
predictive control”. In: 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC) (2012), pp. 7583–7588. issn: 01912216. doi: 10.1109/CDC.2012.6425810.

[13] M.S. Branicky. “Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems”. In: IEEE Transactions on Automatic Control 43.4 (1998),
pp. 475–482. issn: 00189286. doi: 10.1109/9.664150. url: http://ieeexplore.
ieee.org/document/664150/.

104

https://doi.org/10.1109/ACC.2011.5991549
https://doi.org/10.1109/ACC.2011.5991549
https://doi.org/10.3182/20110828-6-IT-1002.00516
https://doi.org/10.3182/20110828-6-IT-1002.00516
https://doi.org/10.1016/j.apenergy.2016.04.023
https://doi.org/10.1016/j.apenergy.2016.04.023
http://sebut.teknologisk.dk/
https://doi.org/10.1109/MCS.2016.2535913
https://doi.org/10.3182/20110828-6-IT-1002.01947
https://doi.org/10.3182/20110828-6-IT-1002.01947
http://www.scipy.org/
https://doi.org/10.1109/CDC.2012.6425810
https://doi.org/10.1109/9.664150
http://ieeexplore.ieee.org/document/664150/
http://ieeexplore.ieee.org/document/664150/


Paper B

Energy Flexibility for Systems with large
Thermal Masses with Applications to

Shopping Centers

Joakim Børlum Petersen, Jan Dimon Bendtsen,
Pierre Vogler-Finck, Jakob Stoustrup

The paper has been published in the
2018 IEEE International Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm) Aalborg, pp. 1–6, 2018.



© 2018 IEEE
The layout has been revised.



2.1. Introduction

Abstract

In this paper we propose a scheme for managing energy flexibility in buildings with
significant thermal masses and centralized climate control, such as commercial build-
ings, which can be used to provide ancillary services to the local electrical system
(demand response). The scheme relies on being able to manipulate the forward flow
temperature in the climate control system along with heating/cooling of zones of the
building, and thereby controlling the electrical power consumption of the system. A
Model Predictive Control law is formulated to provide pre-storage of thermal energy
in the manipulated zones without violating comfort requirements.

The scheme is illustrated on a case study of a Danish shopping center, from which
actual heating/cooling data have been collected for identification of thermal dynamics.
The Coefficient of Performance of the system’s chiller is assumed to have a known
dependence on flow and temperature, which is exploited to relate electrical power
consumption to forward flow temperature. Simulation studies indicate potentials for
significant power curtailment, in the order of 100 kW for one hour for the shopping
center as a whole.

2.1 Introduction

The increasingly stochastic electricity production in Denmark[1] imposes new
requirements for balancing the production and consumption of energy. As
conventional power production is replaced with renewables, so is to a large
extent the possibility of providing grid balancing ancillary services. This
can, however, be countered by using flexible consumption to provide the
necessary grid balancing.

Buildings comprise approximately 2/3 of the total electricy consumption
in Denmark [1] and can provide potential load-shifting grid balancing ancil-
lary services, by exploiting thermal comfort requirements, allowing e.g. air
temperatures to vary within a certain band. The duration and load mag-
nitude of a load-shifting service is dependent on the allowable temperature
fluctuations and on the time constant of the temperature dynamics. The time
constant is largely dictated by the thermal capacitances.

The survey papers [2], [3] and [4] give a broad overview of the benefits of
deploying thermal storages and other demand side entities for ancillary ser-
vices, along with insight into various techniques for achieving that purpose.

One of the most prominent of these techniques consists of shifting electric
load in time via predictive control. In [5] a control system is demonstrated
that allows a pool of household heat pumps to track a power reference; pro-
viding flexible consumption while still adhering to consumer comfort re-
quirements. In [6], a Model Predictive Control (MPC) scheme is proposed
and tested in a commercial building, manipulating fan speeds to provide
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flexibility. In [7] and [8] the energy flexibility of a supermarket refrigera-
tion system and a HVAC chiller for office buildings is aggregated through a
predictive control strategy that allows direct control of their combined power
consumption; the work in [7] presents experimental verification where power
consumption is constrained to be below a certain level.

In this paper we propose a control scheme for managing and exposing
energy flexibility, in a certain class of multi-zone buildings with centralized
climate control. The approach is based on an RC-equivalent dynamical model
of zone temperatures, utilizing MPC with time-dependent constraints to di-
rectly manage either power or energy consumption.

The work is part of the Danish Energy Technology Development and Demon-
stration Program (EUDP) project denoted Smart Energy Shopping Centers (SE-
BUT). The goal of SEBUT is to design intelligent control systems, achieving
energy efficient and flexible operations of Danish shopping centers[9]. Given
this premise, this paper examines a Danish shopping center and the proposed
scheme for managing and exposing flexibility is applied to a small section of
this shopping center – including implementation considerations. Simulation
experiments are conducted to evaluate the scheme.

In Section 2.2 the approach is described, including a description of the
class of systems considered and how their temperature dynamics are mod-
eled. Then, Section 2.3 describes the specifics of how energy flexibility can be
introduced using time-dependent constraints in an optimal control problem.
A case-study of a Danish shopping center is presented in Section 2.4 and
case-study simulations evaluating the proposed control scheme are shown in
Section 2.5. Conclusions are given in Section 2.6.

2.2 System Model

The class of systems considered, share the Heating Ventilation and Air Con-
ditioning (HVAC) architecture depicted in Figure B.1; with central hydronic
cooling, hydronic heating and central ventilation. Each thermal zone is equipped
with local heating and cooling actuators for control of the temperature of the
supplied ventilated air, enabling control of zone temperatures.
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Tfwd,cold

Local heating
+ cooling

Tzone,i

Tsupply,i

Zone 1

Valves

Zone 2

Zone N

CCU

Tfwd,hot

CVU

m˙ vent

Tvent

Fig. B.1: HVAC architecture for the class of systems treated. Heating and cooling enabled at
zone level through distribution of both chilled and heated water to local coils. CCU (Central
Cooling Unit) denotes a centralized chiller, supplying several zones with chilled water. CVU
denotes a Centralized Ventilation Unit, supplying several zones with ventilated air.

2.2.1 Model of temperature dynamics

A grey-box RC-equivalent modeling paradigm is employed, treating each
thermal zone as a lumped thermal capacitance. Let N be the number of
thermal zones. The temperature of the i-th thermal zone is given by the
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following differential equation:

Czone,i Ṫzone,i = Q̇adjacent,i − Q̇act,i + Q̇int,i (B.1)

where Czone,i is the lumped thermal capacitance of thermal zone i, Tzone,i is
the temperature of the zone and Q̇adjacent,i is the heat flow to/from adjacent
zones. Q̇act,i is the heat flow supplied by the local heating/cooling actuator
and Q̇int,i models the internal heat gain, e.g. heat gain from occupancy, light-
ing and appliances. A thorough description of the details of the models is
given in [10], which systematically introduces the dynamics.

The actuator heat flow, Q̇act,i, is dependent on the flow of air into a zone
and the temperature of that air, Tsupply,i. The dynamics of Tsupply,i are mod-
eled as:

Cact,i Ṫsupply,i = Q̇act,i + Q̇CCU,i + Q̇CHU,i + Q̇CVU,i (B.2)

where Cact,i is the lumped thermal capacitance of the actuator and Tsupply,i is
the temperature of the supply air to the zone. Q̇CCU,i is heat flow from central
cooling, Q̇CCU,i is heat flow from central heating and Q̇CVU,i is heat flow from
central ventilation. Equations for all zones are collected, by looking at the
system as a graph. We collect all the thermal zones as nodes in the graph
G. An edge between two zones exists if they are physically adjacent. The
edges are weighted by the thermal conductance between the zones. We now
describe the dynamics in matrix/vector form as:

Q̇adjacent = −Q(G) T (B.3)

T =
[
Tzone,1, Tzone,2, ..., Tzone,N

]T (B.4)

where Q(G) is the Laplacian matrix[11] of G and vT denotes v transposed.
Summarizing the model as:

C Ṫ = −Q(G) T− Q̇act + Q̇int (B.5)

Cact Ṫsupply = Q̇act + Q̇CCU + Q̇CHU + Q̇CVU (B.6)

Q̇act = ṁair cp,air(Tsupply − T) (B.7)

where ṁair is the mass flow of air supplied to the zones. The combined
cooling and heating loads are given by:

Q̇cool =
N

∑
i=0

Q̇CCU,i (B.8)

Q̇heat =
N

∑
i=0

Q̇CHU,i (B.9)
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As such, the power consumption in each case can be calculated as:

Pcool =
Q̇cool

ηcool COPcool
(B.10)

Pheat =
Q̇heat

ηheat COPheat
(B.11)

where COP is the Coefficient of Performance (COP) and η is a general effi-
ciency factor, covering e.g. transport loss and coil efficiencies.

It is as such possible to manipulate power consumption through changes
in cooling and heating load; e.g. through forward temperature manipulation
(Tfwd,cold, Tfwd,hot) or through the manipulation of zone local cooling/heating
(Q̇act).

2.3 Direct Control using MPC

Methods for controlling flexible consumption are often classified as either di-
rect or indirect. For direct control, it is required by the consumer to meet a
specified energy consumption in a specified time-slot[12]; this can be posed
in the form of a power consumption reference signal, Pref(t), which the con-
sumer has to track. Indirect control is based on an incentive signal, e.g. a
price signal, where the intent is to provide motivation to shift loads to peri-
ods with e.g. low price.

We consider how we can employ optimal control to enable direct control
of power consumption, in order to provide a general load-shifting flexibility
service. Market-wise, such a service could as an example be traded intra-
day in the Nordic regulating power market; selling upwards or downwards
regulating power for a specific hour[12] up to 45 min before the delivery
hour.

In posing an optimal control problem, it is possible to include equal-
ity constraints on certain variables. Thus, it is possible to include time-
dependent equality constraints on power consumption, for load-shifting through
direct control. One common form of employing optimal control, is by solv-
ing an optimal control problem with a receding horizon, resulting in Model
Predictive Control.
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2.3.1 Model Predictive Control

For discretized and linear system dynamics, a general MPC problem can be
formulated as:

min
u

J =
n+H

∑
k=n

l(k, x(k), u(k), y(k)) (B.12)

subject to:

x(k + 1) = A x(k) + B u(k) (dynamics)

y(k) = C x(k) + D u(k) (output)

state, input and output constraints:

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

ymin ≤ y(k) ≤ ymax

where n is the current sample number / iteration number, l is a function
mapping from states (x ∈ Rnx ), inputs (u ∈ Rnu ) and outputs (y ∈ Rny ) to R.
We choose l depending on the objective of the control law.

We include our time-dependent power consumption constraint, including
time-shifting to compensate for the receding horizon:

P(k) = Pref(k− n) for non ≤ k + n ≤ noff (B.13)

Or in the form of an energy constraint:

noff−n

∑
k=non−n

P(k) =
noff−n

∑
k=non−n

Pref(k) (B.14)

Given linear model dynamics, linear constraints, l convex and assuming a
feasible solution exists, the solution found via Linear Programming methods
is guaranteed to be optimal. To adhere to the power/energy constraints, the
prediction horizon, H, has to be set long enough for the controller to act on
the constraints and shift the load.

2.4 Case Study: Kolding Storcenter

Kolding Storcenter is one of two Danish shopping centers investigated in the
SEBUT project [9].

2.4.1 HVAC setup

The HVAC system in Kolding Storcenter is made up of several HVAC hubs,
with a layout similar to the one described in Section 2.2. Each hub supplies
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a number of shops with cooling or heating, through temperature regulated
air blown into the shops through fan coil units. The air is delivered from a
central ventilation unit at an almost constant temperature and flow, during
opening hours.

The fan coil units contain both a cooling and a heating coil, supplied with
cold and hot water. Water flows through the coils are determined by elec-
tronically controlled valves. Valve opening is determined by local tempera-
ture controllers. The local temperature controllers receive setpoints through
a central Building Management System (BMS) system. Local temperature
controllers run with a sample time of 1 min.

For demonstration purposes, a single hub consisting of a ventilation unit
and a chiller is considered – together with three of the shops they supply.
The shop layout, together with their division in thermal zones is given in
Figure B.3.

2.4.2 System Integration

To facilitate sensor and actuator needs, we piggyback on the BMS by interfac-
ing with the existing BMS network through the use of a gateway unit. Using
this approach, already existing measurements and actuator signals are made
available. The gateway unit allows for remote access through an Internet
connection, allowing the more advanced control algorithms to be executed
in e.g. a cloud-environment. The gateway unit operates with a sample time
of 5 min while the BMS operates with a sample time of 1 min. A diagram
sketching the approach, is given in Figure B.2.

Possible input signals for manipulation through the BMS include (not
exclusively) setpoints for supply temperature, Tsupply,r, and setpoints for the
forward temperature to the chiller (CCU), Tfwd,cold,r. Measurements available
include Tshop, Tsupply and Tfwd,cold. It is not possible to manipulate fan speed
for the shop fan coil units, given that the HVAC setup in Kolding Storcenter
is Constant Air Volume (CAV)-based and not Variable Air Volume (VAV).
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Shop 1

Shop 2 Shop 3

Hall

Fig. B.3: The demo-zone in Kolding Storcenter, consisting of three shops. Black dots denote ther-
mal zones. The hallway area has been discretized into several thermal zones, to model thermal
interaction across hallways. The different edge colors exemplify different thermal resistances
between thermal zones.

2.4.3 Model instantiation

Generation of a model instance for the demo-zone in Kolding Storcenter con-
sists of constructing the graph-representation of the thermal zones, as over-
layed in Figure B.3 – and selecting suitable parameters for the dynamical
model. A parameter set consists of thermal capacitances, thermal resistances
and parameters specific to the fan coils (valves, coils). These can be obtained
to a large extent through air flow measurements, shop dimensions and table-
lookup – this process and the resulting parameters are described in [10]. Se-
lected parameters are given in Table B.1. The large internal heat gains, Q̇int,
are dominated by display lighting; characteristic to shopping centers. The
state, input and output vectors are given as:

x =
[
Tshop, Tsupply, Thall, Tfwd,cold, xaux

]T (B.15)

u =
[
Tsupply,r, Tfwd,cold,r

]T (B.16)

y =
[
Q̇cool, COP, Pcool

]T (B.17)

where xaux denotes auxiliary states in connection to local temperature con-
trollers.

Note that this particular model instance of Kolding Storcenter only con-
siders cooling, given that parameters have been identified using measure-
ments obtained under summer-like conditions. Also specific to this model
instance is the added power consumption aspects, given in Eq. (B.10). For
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this paper ηcool = 0.6 has been selected, to model the efficiency from Cen-
tral Cooling Unit (CCU) to cooling capacity available at the shops. Also, a
COP model is introduced, to model a dependency on ambient temperature
and forward temperature:

COP(∆T) = 6.66− 0.36 K−1 ∆T + 0.007 K−2 ∆T2 (B.18)

∆T = Tamb − Tfwd,cold (B.19)

This particular COP model is based on data from the CCU product catalog
and COP relationship with temperature difference as described in [13]. Power
measurements are needed to obtain a more realistic model.

Table B.1: Selected model parameters

Shop Area [m2] Czone [kJ/K] Cact [kJ/K] Q̇int [kW]
Shop 1 (1) 500 3× 103 0.75× 103 13.0
Shop 1 (2) 500 3× 103 0.75× 103 13.5
Shop 2 250 1.5× 103 0.375× 103 5.75
Shop 3 250 1.5× 103 0.375× 103 6.75

2.4.4 MPC

We formulate the case-specific MPC as follows:

min
Tsupply,r,Tfwd,cold,r

J =
n+H

∑
k=n
‖x(k)‖2 + ‖u(k)‖2 (B.20)

subject to:

x(k + 1) = A x(k) + B u(k) (dynamics)

y(k) = C x(k) + D u(k) (output)

state constraints:

20 °C ≤ Tshop(k) ≤ 25 °C

10 °C ≤ Tsupply(k) ≤ 20 °C

input constraints:

10 °C ≤ Tsupply,r(k) ≤ 20 °C

5 °C ≤ Tfwd,cold,r(k) ≤ 25 °C

output constraints:

P(k) = Pref(k− n) for non ≤ k + n ≤ noff (B.21)

We choose a cost function, which is quadratic in the states and inputs, to min-
imize deviations from the operating point in which our model is linearized;
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thereby minimizing discrepancies between our nonlinear and linear model.
Other options could include terms to either also minimize power consump-
tion or maximize COP, but this is not within the scope of this paper.

Sample time for MPC has been chosen as 5 min and the prediction horizon
has been chosen as 5 h; giving H = 60. The nonlinear model of the temper-
ature dynamics for the Kolding Storcenter demo-zone has been linearized
around an operating point corresponding to nominal values with summer
weather conditions. Furthermore, the linear model has been discretized with
the MPC sample time of 5 min.

2.5 Case Study Simulations

Simulations of the proposed direct control solution for load-shifting has been
conducted, simulating 5 h, during opening hours of shops in Kolding Stor-
center. Given the relatively short time-frame, ambient temperature is as-
sumed constant.

The nonlinear model is used for simulations, holding the control inputs
constant for each MPC sample. Simulations have been done using Python
and SciPy[14], employing CVXPY[15] for MPC.

For a first simulation, the following continuous-time power constraint is
employed:

Pcool(t) = 12.5 kW for 12 h ≤ t ≤ 13 h (B.22)

Given a nominal power consumption, Pnominal of ≈ 19.5 kW, the intended
behavior is that load is shifted to before this interval, by pre-cooling the
shops. This will allow the shop temperatures to drift towards their upper
limit within the interval of restricted power consumption. This is exactly
what happens, as can be seen from the simulation response in Figure B.4a.

As seen, the use of forward temperature reference as control input, means
that a higher COP is achieved during the interval of low power consumption.
This in principle allows for larger power curtailments, as more cooling capac-
ity is obtainable from the same power input. This does, however, also mean
that there is room left for energy efficiency improvements during nominal
operations.

Some drawbacks are apparent. First, the power consumption constraint is
violated, by using more power than given in the constraints; approximately
1 kW more. This is due to the discrepancy between the linear model em-
ployed in MPC and the nonlinear model used for simulations. Second, the
load-shifting induces a large spike in power consumption, just before the pe-
riod of low power consumption. This spike is not desirable, given exactly the
reasons why load-shifting is investigated – to avoid strain on the power grid.
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For a second simulation, the following continuous-time energy constraint
is employed: ∫ 13 h

12 h
Pcool(t)− Pnominal dt = −7 kW h (B.23)

where Pnominal(t) is the nominal power consumption. The intent of this con-
straint is to shift the consumption of 7 kW h energy.

To pose this constraint, we augment our model with a new state, E:

∆Ė = Pcool(t)− Pnominal (B.24)

The constraint can then be formulated as:

∆E(13 h)− ∆E(12 h) = −7 kW h (B.25)

The simulation results with this constraint is given in Figure B.4b. The most
notable take-away, comparing the use of a power constraint to the use of
an energy constraint, is that using the energy constraint introduces integral-
action to the MPC that eliminates the discrepancy in energy consumption
between linear and nonlinear model – and so the constraint is not violated
when simulating with the nonlinear model.

In the simulations, it is possible to shift a load of approximately 7 kW for
1 h, without violating specified comfort constraints, as the shop temperatures
are kept above 21 °C and below 24.5 °C. Knowing that the CCU responsible
for supplying demo-zone is rated with a cooling capacity of 186 kW and that
the total cooling capacity for Kolding Storcenter as 3500 kW, the results can
be extrapolated as:

Pcurtail,1h,total = 7 kW
3500 kW
186 kW

= 131 kW (B.26)

Considering that the example simulations do not exploit the entire comfort
band, the potential power curtailment for Kolding Storcenter is thus on the
order of 100 kW for 1 h, using the approach outlined in this paper.

2.6 Conclusions

This paper has introduced a general control scheme for providing energy
flexibility in the form of general load-shifting, by considering time-dependent
constraints on either power consumption or energy consumption in MPC.
The control scheme applies to buildings with centralized climate control and
is applicable to a Danish shopping center, as demonstrated in the presented
case-study.
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References

The scheme considers direct control of power/energy consumption, through
a reference signal. Employing a constraint on power consumption suffered
steady-state errors, given discrepancies between the linear prediction model
and nonlinear simulation model. Several methods are available to deal with
such steady-state errors – but a possibility is also to employ nonlinear mod-
els for prediction. The steady-state errors were however avoided using con-
straints on energy consumption.

The approach shows a significant potential power curtailment on the or-
der of 100 kW, for the shopping center considered, for a period of 1 h. A
more thorough flexibility characterization is however needed to further ver-
ify these results – also, models for power consumption require measurements
to be verified. This is scheduled as future work in the present project, where
also a practical demonstration is planned.
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3.1. Introduction

Abstract

In this paper we present a novel approach to control a shopping center HVAC system
which significantly reduces the amount of energy spent on cooling. The HVAC system
considered is for a section of a Danish shopping center, including central ventilation,
fan coil units and a chiller delivering cooling.

The system is modeled using a grey-box RC-equivalent approach and identified
parameters using measurement data extracted directly from the Building Manage-
ment System from several days of live operation. From a comparison with measure-
ments it has been concluded that the model is usable for the purpose of control design.

An optimal control problem to minimize total cooling effort by manipulating cen-
tral ventilation supply temperature and chiller forward temperature has been posed.
The intention being to shift cooling from the chiller to the ventilation unit when
cooling is available through a low ambient temperature – avoiding both heating and
cooling the same air. This optimal control problem has been used as the basis for a
Model Predictive Controller. For prediction purposes, input signals from the previous
days have been used, exploiting the fairly periodic behaviour of the system.

Simulation studies show that during heating seasons the Model Predictive Con-
troller is capable of shifting the entire cooling load to the ventilation unit and still
maintain the same performance as the nominal controller. This amounts to energy
savings of 21 %.

3.1 Introduction

Buildings are responsible for one third of the total energy consumption in
Denmark [1]. Energy refurbishments of older buildings typically consider
the building envelope itself which can be an expensive and cumbersome task.
Instead, replacing or updating the heating and or cooling equipment can
with less effort amount to larger energy savings [2] and can prove to be a
more attractive investment in energy renovations from an owner’s/operator’s
point of view.[3, 4]

One approach to reductions in energy consumption for buildings is through
control applications. This has been extensively studied with the majority of
recent work within predictive control [5, 2]. With many buildings featuring
multi-zone characteristics and with the inherent scale of some commercial
systems, both distributed [4], decentralized [3] and hierarchical [6] solutions
have previously been investigated. Considering implementation costs, a cen-
tralized solution may still be more attractive for the owners/operators, which
is a necessity for wider adoption and hence energy savings on a larger scale.
In [7], a novel central Nonlinear Model Predictive Control (NMPC) is de-
signed and implemented for a Constant Air Volume (CAV) Heating Ventila-
tion and Air Conditioning (HVAC) system with large energy savings.
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This paper presents work that is part of a project named Smart Energy Shop-
ping Centers (SEBUT)[8] . SEBUT aims at developing control systems, knowl-
edge services and tools for energy refurbishments of shopping centers in
Denmark. SEBUT takes a holistic approach to both energy efficiency and
flexibility [9]; touching upon indoor air quality, advanced control of indoor
climate and lighting, energy storage, user requirements, behavior and poten-
tial barriers.[8]

The work presented in this paper is a continuation of the work done in
[10], in which we presented a control-oriented multi-zone model suitable for
modeling the temperature dynamics in a shopping center; the model was
then used in a preliminary control design to increase energy efficiency of a
chiller supplying shop-level cooling. In this paper we focus on the same sys-
tem but extend it to include the central ventilation unit – this adds to the
complexity of producing the required cooling capacity as efficiently as possi-
ble, given that both the ventilation unit and chiller can produce and deliver
cooling. This complexity is not handled in the current control configuration,
which amounts to energy wasted through a lack of coordination between pro-
duction and consumption. We consider how we can manage the complexity
through a control design that seeks to efficiently meet the shop-level cooling
demands.

In Section 3.2, the shopping center and HVAC system in question is ac-
counted for, together with issues in the current control solution. Following,
in Section 3.3, the model equations are introduced together with parame-
terization. Section 3.4 describes the control design with simulation results
presented in Section 3.5. Conclusions are given in Section 3.6.

Notation-wise, matrices are denoted in uppercase bold, e.g. A, vectors are
denoted in lowercase bold, e.g. x. Dependence of variables on time t, x(t), is
implied and will not necessarily be written explicitly.

3.2 System overview

In this paper we consider a typical HVAC layout exemplified by Kolding Stor-
center, a mall in Denmark. The shops in Kolding Storcenter are ventilated
using a CAV scheme, featuring fan coil units that enables heating and cool-
ing at shop-level; allowing for local control of the supply temperature to
each shop. Each shop is, depending on size, outfitted with several fan coil
units – they are however controlled as a single unit. The shops are divided
into clusters, where each cluster is supplied with ventilated air from a Cen-
tral Ventilation Unit (CVU) and chilled water for shop-level cooling from a
Central Cooling Unit (CCU). For heating, hot water from District Heating
(DH) is supplied to all fan coils. This general HVAC layout is depicted in
Figure C.2. In Kolding Storcenter, a demo-area has been established for the
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3.2. System overview

SEBUT project. The demo-area consists of three shops supplied by the same
CVU and the same CCU.

Each fan coil has two heat exchangers, one for cold and one for hot wa-
ter, to which the flow is controllable with motor-controlled valves. Each
shop features a temperature controller; manipulating valve openings to con-
trol shop supply temperature (Tsupply) – the shop-local control is depicted in
Figure C.1. Reference signals for shop-local control are given by the Build-
ing Management System (BMS); in which the central HVAC control is imple-
mented.

The CCU, a heat pump, is controlled independently of the cooling re-
quirements of the shops; the forward temperature (Tfwd,cool) is typically kept
constant around 10 °C.

The CVU delivers ventilated air at a controlled supply temperature (Tvent)
and an almost constant flow (ṁvent). There is no recirculation in the CVU; air
is drawn in at ambient temperature (Tamb) and then either cooled or heated
(using its own heat pump, not the CCU), depending on the setpoint for the
supply temperature. The setpoint for supply temperature is determined by a
controller acting on extract temperature from the shops.

One issue with the current control architecture lies in the lack of coordi-
nation between the shop-local temperature control, the control of the CVU
and the CCU. This lack of coordination shows as cases where energy is spent
on e.g. heating air up in the CVU and then more energy is spent on cool-
ing it down again in some of the fan coils. This specific issue is depicted in
Figure C.3.

In order to obtain measurements and manipulate with the HVAC system
we ’piggyback’ on the central control by interfacing with the existing BMS
network through the use of a gateway unit [11]. This provides us with the
same measurements and ways of actuation as the BMS. The gateway unit
features an Internet connection, allowing new control algorithms to run on
a device/platform that is not physically in the mall in question; e.g. in a
cloud-environment.

Fig. C.1: The shop-local temperature control is implemented as two PI regulators in a cascade
configuration. The FC block is a fan coil unit.
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Fig. C.2: The HVAC layout of Kolding Storcenter; depicting a cluster of shops supplied by shared
central ventilation; CVU. A central chiller, CCU, supplies chilled water to each fan coil, for local
cooling. Heating is through DH. No return pipes/ducts are depicted.
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3.3 Model

The model presented in this section builds upon the work in [10], where we
employ a grey-box RC-equivalent modeling paradigm, treating each shop as
a thermal zone with a lumped thermal capacitance.

3.3.1 Temperature dynamics

With N being the number of shops considered, the temperature dynamics of
the i-th shop is given by:

Cshop,i Ṫshop,i = Q̇FC,i + Q̇center,i + Q̇int,i (C.1)

where Cshop,i is the lumped thermal capacitance of shop i, Tshop,i is the shop
temperature and Q̇center,i is the heat flow to/from the surroundings. Q̇FC,i is
the heat flow supplied by fan coils and Q̇int,i models the internal heat gain,
e.g. heat gain from occupancy, lighting and appliances. No heat exchange
between the shops is considered as Q̇int,i dominates the energy balance, given
the amount of display lighting. Also, no heat gain from solar load is included,
as the shops are not exposed to direct sunlight.

The supply temperature dynamics for the i-th shop is given by:

Csupply,i Ṫsupply,i = Q̇vent,i + Q̇recirc,i + (C.2)

Q̇cool,i + Q̇heat,i − Q̇FC,i (C.3)

where Csupply,i is the lumped thermal capacitance for the fan coils and Tsupply,i

is the temperature of the supply air to the shop. Q̇cool,i is heat flow from
central cooling, Q̇heat,i is heat flow from heating and Q̇vent,i is heat flow from
central ventilation. Also, for the fan coils, some air is recirculated from the
shops giving the heat flow Q̇recirc,i.

Collected as matrix/vector expressions, we consider the temperature dy-
namics in the following form:

Cshop Ṫshop = Q̇FC + Q̇center + Q̇int (C.4)

Csupply Ṫsupply = Q̇vent + Q̇recirc + (C.5)

Q̇cool + Q̇heat − Q̇FC

with all vectors belonging to RN and the C-matrices being square and invert-
ible.

3.3.2 Heat flows

The heat flow supplied by the fan coils is given by:

Q̇FC = ṀFC cp,air (Tsupply − Tshop) (C.6)
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where ṀFC ∈ RN×N is a diagonal matrix with ṁFC,i – the air flow to the i-th
shop – in the diagonal. The specific heat capacity is denoted cp,air.

Each fan coil supplies air at a rate of µ kg/s constantly during operation
(CAV), where β is from ventilation and (1− β) is recirculated. Scaling with
number of fan coils in a given shop:

ṀFC = µ NFC kg/s (C.7)

where NFC ∈ RN×N is a diagonal matrix with number of fan coils, NFC,i, in
the diagonal.

Heat flows from CVU and recirculation are given as:

Q̇vent = β ṀFC cp,air (Tvent 1− Tsupply) (C.8)

Q̇recirc = (1− β) ṀFC cp,air (Tshop − Tsupply) (C.9)

where 1 is a vector of all ones.
The heating/cooling heat flows are given as:

Q̇cool = α uvalve,cool cp,water (Tfwd,cool1− Tsupply) (C.10)

Q̇heat = α uvalve,heat cp,water (Tfwd,heat1− Tsupply) (C.11)

where α is a combined term for coil efficiency and valve characteristics; it is
assumed constant. The valve openings, uvalve, are determined by the govern-
ing PI regulators also included in the model.

The CVU is controlled through a setpoint for Tvent. This control is mod-
elled with some first order dynamics – equivalently for the CCU:

τCVU Ṫvent = Tvent,r − Tvent (C.12)

τCCU Ṫfwd,cool = Tfwd,cool,r − Tfwd,cool (C.13)

The total combined cooling capacity of the CVU and the CCU, Q̇cool,tot, is
modelled as:

Q̇cool,CCU =
N

∑
1

Q̇cool,i (C.14)

Q̇vent,cap = β
N

∑
1

ṁFC,i cp,air (Tvent − Tamb) (C.15)

Q̇cool,tot = Q̇cool,CCU + Q̇−vent,cap (C.16)

where Q̇−vent,cap is the negative part of Q̇vent,cap, thus only taking cooling into
account.
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3.3.3 Parameterization

Model parameters have been identified using a combination of manual air
flow measurements, measurements taken from the BMS and shop dimen-
sions. Steady-state data has been used to determine magnitudes of heat flows
and shop dimensions have been used to determine thermal capacitances. In-
ternal heat gains are assumed constant throughout shop opening hours; this
assumption is to a large extent valid given that display lighting dominates
the term.

Parameters used are given in Table C.1 and Figure C.4 compares model
simulation with measurements obtained from the BMS in order to validate
the use of the model for control purposes.
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Table C.1: Selected model parameters

Shop Area [m2] Cshop [kJ/K] Csupply [kJ/K] Q̇int [kW]

Shop 1 650 7.0× 103 2.3× 103 8.0
Shop 2 250 2.7× 103 0.9× 103 4.8
Shop 3 250 2.7× 103 0.9× 103 3.2

α = 0.05 kg/s, µ = 0.36 kg/s, β = 1/3
Tfwd,heat = 55 °C, τCVU = 15 min, τCCU = 5 min

3.4 Minimizing energy spent on cooling through
control
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Fig. C.5: Simulation where the CCU is turned off (CCU off ) compared with a simulation with
nominal/historical inputs, showing the supply temperature response for Shop 3. Turning the
CCU off introduces a loss in regulation power for the shop-local supply temperature control,
visible as as a degradation in tracking performance.

As described in Section 3.2, there are two ways of heating the air and two
ways of cooling it; either centrally at the CVU or locally at the fan coils. One
issue is the apparent use of the CCU for cooling, even during the heating
season. The issue is rooted in the control configuration lacking coordination
– but just as much in the large internal heat gains in the shops. One attempt
at minimizing energy spent on cooling, would be to simply turn off the CCU
during heating season. However, given the current control architecture, this
can pose problems with lack of regulation power for the control of shop-local
supply temperature. This is exemplified with a simulation where the CCU is
turned off. The supply temperature for Shop 2 is for this simulation depicted
in Figure C.5.
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3.4.1 Optimal Control Problem

In order to avoid the loss of regulation power by turning off the CCU, we
consider Model Predictive Control (MPC) to shift the cooling capacity from
the CCU to the CVU instead. This seems sensible, especially during the
heating season, as the ambient temperature is typically lower than the desired
supply temperature – giving a free source of cooling.

We consider Tvent,r and Tfwd,cool,r as our control inputs – and use historical
input data for the exogenous inputs, including references for shop-local sup-
ply temperature control. No observer is necessary since measurements are
available for all states. The state, control input, exogenous input and output
is given as:

x =
[
TT

shop, TT
supply, Tvent, Tfwd,cold, xT

aux

]T
(C.17)

u =
[
Tvent,r, Tfwd,cold,r

]T (C.18)

uex =
[
TT

supply,r, Tamb

]T
(C.19)

y =
[
Q̇cool,tot

]
(C.20)

where xaux denotes auxiliary states related to the supply temperature PI reg-
ulators. We then formulate our optimal control problem as:

min
u

J =
∫ t f

t0

yTy dt (C.21)

subject to:

ẋ = f(t, x(t), u(t), uex(t)) (dynamics)

y = h(t, x(t), u(t), uex(t)) (output)

and subject to state and input constraints:

Tshop,min ≤ Tshop ≤ Tshop,max

Tsupply,min ≤ Tsupply ≤ Tsupply,max

Tvent,r,min ≤ Tvent,r ≤ Tvent,r,max

Tfwd,cool,r,min ≤ Tfwd,cool,r ≤ Tfwd,cool,r,max

where ≤ should be taken element-wise in the vector case. This optimal con-
trol problem seeks to minimize ‖Q̇cool,tot‖2, which effectively means mini-
mizing the total cooling effort described by Eq. (C.16). Note that the objective
function does not directly penalize the control signal. Usually this would
let MPC exhibit a ’bang-bang’ behavior. In our case, however, the output
contains a (practically) static contribution from the control signal via the ex-
pression for total cooling effort, as can be seen in Eq. (C.15). This prevents
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adverse control behavior consistent with the simulation response presented
in Section 3.5. It should also be noted, that constraints on the relationship
between state and input are to be considered, e.g. Tfwd,cool,r < Tsupply,i when
cooling – however, simulation results without (see Section 3.5) give feasible
solutions.

3.5 Simulation studies

We have used CasADi[12] through Python to model the nonlinear system
dynamics and to pose, discretize and solve the optimal control problem using
a multiple-shooting approach.

We let the prediction horizon be equal to tpredict = 5 h and the sampling
time of both measurements and our MPC is fixed to 5 min. Given that we
do not know the exogenous inputs 5 h in advance, we utilize the fact that the
system is fairly periodic and employ inputs from the previous day (delayed
24 h) for prediction purposes.

The state and inputs constraints have been set to:

17 °C ≤ Tshop,i ≤ 25 °C

10 °C ≤ Tsupply,i ≤ 35 °C

5 °C ≤ Tvent,r ≤ 25 °C

5 °C ≤ Tfwd,cool,r ≤ 25 °C

We have conducted simulation experiments of 4 consecutive days in Decem-
ber 2018. Given the operational hours of the HVAC system in Kolding Stor-
center, the simulation has been limited to the hours between 08:00 and 18:00
during these days, for a total simulation time of 40 h. The results are shown
in Figure C.6.

The results show noticeable less degradation of regulation power for the
shop-local supply temperature control (for Shop 2), as compared to Figure C.5
where the CCU was simply turned off. This is to a large extent achieved
by letting the CVU run with a supply temperature closer to the ambient
temperature, hereby delivering more base cooling to the fan coils. This lowers
the need to actuate the valves for cooling from the CCU. Also, Tfwd,cool is set
significantly higher than for nominal control, which decreases cooling when
exercising the cooling valves. From both input signals, it is possible to see
the correlation with the previous day’s cooling load by comparing with the
shown Tsupply.

Looking at the response for Q̇cool,CCU it is very clear that the reduction
in cooling supplied by the CCU when using MPC is equivalent to simply
turning off the CCU – as desired. This does not necessarily mean that net
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energy spent is lower, however, as it could simply be that energy spent on
heating is equally higher.

Therefore we investigate the sum of heat flows responsible for both active
heating and active cooling in the fan coils:

Q̇tot,cap = Q̇vent,cap + Q̇cool,CCU +
N

∑
1

Q̇heat,i (C.22)

From Figure C.6 it is shown that Q̇tot,cap is generally lower when using the
designed MPC than when using the nominal control; we calculate the differ-
ence in energy consumption:

Esaved =
∫ 40 h

0
Q̇tot,cap,nom − Q̇tot,cap,MPC dt (C.23)

≈ 230 kW h

which is equivalent to a 21 % decrease.

3.6 Conclusions

This paper has through simulation studies demonstrated a control design
which effectively minimizes energy spent on cooling during heating season,
in the HVAC system of a Danish shopping center. A problem that stems from
the control configuration which lacks coordination between supply and con-
sumption of heating and cooling. By minimizing the energy spent on cooling
in the heating season, it was found that energy savings of approximately 21 %
are achievable. The design and simulations were carried out for a small sec-
tion of the mall, but given the decentralized HVAC architecture described, it
should be scalable to the entire mall.

From the simulation studies it can also be concluded, that it is probably
not necessary to use MPC to achieve the same effect. To a large extent, the
savings can be achieved by simply turning off the chiller and letting the venti-
lation unit run with a supply temperature closer to the ambient temperature.
This can be achieved with a much simpler and less involved implementation,
than for the case of MPC; hereby moving the solution from simple via com-
plex to lucid[13] and avoiding stability and robustness considerations for a
complex solution. This does not undermine the applications of MPC, but in
this case MPC is used in an exploratory approach to first discover the desired
behavior of a more simple solution.

As such, these results form the basis of a control design which will be
implemented and tested through the SEBUT project.
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4.1. Introduction

Abstract

In this paper we present a low-complexity hierarchical control approach to fan-coil-
based HVAC systems, applicable to shopping centers as exemplified through a case
study of a Danish shopping center. Although Model Predictive Control remains
the optimal approach performance-wise, we show that we can recover 66 % of the
performance with the proposed approach, when considering no model-mismatch for
the Model Predictive Controller. The recovered performance comes with the added
benefits of increased reusablity and operator transparency, given no dependence on
an accurate dynamical model and lower complexity.

4.1 Introduction

Buildings constitute one third of the energy consumption in Denmark ([1])
and while energy refurbishments of older buildings often consider the build-
ing envelop itself, there is a large potential for energy savings through up-
dating Heating Ventilation and Air Conditioning (HVAC) equipment which
– given an assumed lesser effort – can prove a better investment for building
owners/operators. One way of going about this is through control applica-
tions.

Energy savings within building control have been studied extensively,
with the majority of work revolving around Model Predictive Control (MPC)
([2, 3]) and with buildings exhibiting multi-zone characteristics, both dis-
tributed ([4]) and decentralized ([5]) predictive control have been investi-
gated.

In [6] a setpoint-manipulating MPC for minimizing energy consumption,
in a fan-coil-based shopping center HVAC system (see Figure D.1), was de-
signed and evaluated through simulations. It was compared to a simulation
with historical input data, in which setpoints were set manually by building
operators. The general issue with manually setting setpoints is that in a large
scale system, it can be difficult for operators to balance production and de-
mand of cooling, leading to situations such as cooling air in fan coils, where
energy has already been spent heating it in an Air Handling Unit (AHU).
In [6], the MPC introduced the necessary coordination, but it was concluded
that the problem could be solved using a simpler control method; i.e. with
less complexity. The desire to consider less complexity is not rooted in com-
putational issues, especially when considering building systems with large
time constants, rather, the reasoning lies in control reusability and operator
transparency. Control reusability is key, considering impact on energy sav-
ings when one control approach can be deployed among multiple buildings.
However, using MPC requires an accurate system model, which severely di-
minishes the reusability and induces a high initial investment, as also demon-
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Fig. D.1: From left; AHU, chiller unit and Building Management System (BMS) gateway for
remote data acquisition and control, situated at Kolding Storcenter, a Danish shopping center.

strated in [7]. This, together with availability of both data and processing
power has sparked a significant interest in data-based and learning-based
methods; both considering learning the model, as highlighted in the refer-
ences treated in [8] and learning the control itself, e.g. using reinforcement
learning ([9]). This does not, however, cater to the issue of operator trans-
parency.

This work investigates the use of hierarchical control. In [10] and [11],
which deal with experimental validation of hierarchical control for thermal
management, it is concluded that hierarchical control is especially suitable
in complex thermal management systems, where a decentralized approach
can result in poor performance, due to the general difficulty of managing
couplings between subsystems.

We propose a low-complexity hierarchical control architecture to coordi-
nate production and demand in a fan-coil-based HVAC system – avoiding
heavy-use of a model in an effort to provide reusability and operator trans-
parency. To the knowledge of the authors, this type of architecture does not
appear in the academic literature.

In Section 4.2 we present the class of HVAC systems considered, the pro-
posed hierarchical control framework, and MPC as a reference approach.
Following that, in Section 4.3, we present a Danish shopping center as a
case study and in Section 4.4 we present simulation studies, comparing the
proposed hierarchical control to MPC. Conclusions are given in Section 4.5.

Notation-wise, vectors are denoted in lowercase bold, e.g. x. Time-
dependence of variables, x(t), is implied and will not necessarily be written
explicitly. Derivative with respect to time is written as ẋ.
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4.2. Methods

4.2 Methods

4.2.1 Shopping Center HVAC

Fig. D.2: Fan-coil-based shopping center HVAC layout. No return ducts/pipes are depicted to
simplify the diagram.

In this paper we focus on shopping centers that employ fan coils for shop
temperature control. The general HVAC system considered is depicted in
Figure D.2. The system consists of:

• AHU supplying ventilated air with flow ṁvent and at temperature Tvent.

• Chiller supplying chilled water at temperature Tfwd,cold for cooling coils
in fan coils.

• N shops with fan coils.

Hot water to heating coils in fan coils is supplied at temperature Tfwd,hot
by, e.g., district heating. Shop temperature, Tshop,i, for the i-th shop can be
regulated by manipulating shop supply temperature, Tsupply,i. This is done
through heating and cooling valves in the fan coils. We consider a Con-
stant Air Volume (CAV) setup for the fan coils; they are either ON or OFF.

We assume a decentralized control configuration, where each shop has its
own temperature controller, manipulating valve openings to reach desired
shop temperature, Tshop,r,i. The AHU is controlled through operator-given
setpoints, Tvent,r and ṁvent,r, and the chiller through the setpoint Tfwd,cold,r.
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4.2.2 System dynamics

We present the main dynamics considered for the system described in Sec-
tion 4.2.1. The model is based on the previous work done in both [12] and
[6] where we employ a grey-box RC-equivalent modeling paradigm, treating
each shop as a thermal zone with a lumped thermal capacitance.

Temperature dynamics

Letting N denote the number of shops, the shop temperature dynamics of
the i-th shop is given by:

Cshop,i Ṫshop,i = Q̇FC,i + Q̇center,i + Q̇int,i (D.1)

where Cshop,i is the lumped thermal capacitance of shop i, Q̇center,i is the heat
flow to/from the surroundings, Q̇FC,i is the fan-coil-supplied heat flow and
Q̇int,i models internal heat gain, e.g. from occupancy, lighting and appliances.

The supply temperature dynamics are modeled as:

Csupply,i Ṫsupply,i = Q̇AHU,i + Q̇cool,i + (D.2)

Q̇heat,i + Q̇recirc,i − Q̇FC,i

where Csupply,i is a lumped thermal capacitance for the fan coils. Q̇AHU,i is
the heat flow supplied by the AHU, Q̇cool,i is the heat flow supplied by the
chiller and Q̇heat,i is heat flow from heating. Some air is recirculated in the
fan coils, modeled by the heat flow Q̇recirc,i.

Heat flows

The heat flow supplied by fan coils to shops is given by:

Q̇FC,i = ṁFC,i cp,air (Tsupply,i − Tshop,i) (D.3)

where ṁFC,i is flow of air and cp is specific heat capacity. Heat exchange with
the surroundings, Q̇center,i, is given as:

Q̇center,i = UAcenter (Tcenter − Tshop,i) (D.4)

where UA is a heat transfer coefficient and Tcenter is a lumped shopping
center temperature, modelling the temperature in the shopping center as a
whole:

Ṫcenter = τextract (Textract − Tcenter) (D.5)

+ τamb (Tamb − Tcenter)
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where τ is a time-constant, Textract is temperature of air extracted from shops
by the AHU (return air) and Tamb is ambient temperature (outside). The heat
flow supplied by the AHU to the fan-coils is modeled as:

Q̇AHU,i = ṁFC,i cp,air (Tvent − Tsupply,i) (D.6)

Q̇AHU =
N

∑
i

Q̇AHU,i (D.7)

For heating and cooling, the heat flows are modeled as:

Q̇cool,i = αcool uvalve,cool,i cp,w (Tfwd,cold − Tsupply,i) (D.8)

Q̇heat,i = αheat uvalve,heat,i cp,w (Tfwd,hot − Tsupply,i) (D.9)

Q̇chiller =
N

∑
i

Q̇cool,i (D.10)

where α is a constant modeling both coil efficiency and valve characteristics
and uvalve,i is valve opening degree. Given the assumption that each shop has
its own temperature controller, the valve openings are controlled by PI reg-
ulators included in the model. Q̇recirc,i is modeled as a heat exchange with
extract air:

Q̇recirc,i = UAFC (Textract − Tsupply,i) (D.11)

Finally, first order dynamics govern the control of both AHU and chiller:

Ṫvent = τAHU (Tvent,r − Tvent) (D.12)

Ṫfwd,cold = τchiller (Tfwd,cold,r − Tfwd,cold) (D.13)

4.2.3 Hierarchical control framework

To introduce the necessary coordination we consider a hierarchical control
framework, depicted in Figure D.3.

Where:

• Q̇AHU is the heat flow from AHU to the shops1.

• Q̇chiller is the heat flow from chiller to the shops.

• uAHU ∈ Rnu,AHU is control input affecting Q̇AHU.

• uchiller ∈ Rnu,chiller is control input affecting Q̇chiller.

1Or more specifically, the fan coils.
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Fig. D.3: Hierarchical control framework; separating production (AHU, chiller) from demand
(shops).

and where:

Q̇produced = Q̇AHU + Q̇chiller (D.14)

Q̇demand = Q̇produced + ∆Q̇shop (D.15)

Here, Q̇demand = ∑N
i Q̇demand,i, denotes the total demand for all the shops

considered. When Q̇produced = Q̇demand, the system is balanced and the shops
have enough heating/cooling capacity to meet the heating/cooling demand.
In case Q̇produced 6= Q̇demand, then there is a discrepancy, given as:

∆Q̇shop =
N

∑
i

∆Q̇shop,i = Q̇demand − Q̇produced (D.16)
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Note that ∆Q̇shop can be both positive and negative; positive in case of a
heating demand and negative in the case of a cooling demand.

We can now formulate our primary control objective as minimizing ∆Q̇shop,
or equivalently as:

Q̇produced,r = Q̇produced + ∆Q̇shop (D.17)

Q̇produced → Q̇produced,r for t→ ∞ (D.18)

Assuming we have perfect tracking of Q̇produced,r:

Q̇produced,r(t) =
∫ t

t0

∆Q̇shop(t) dt + Q̇produced(t0) (D.19)

Revealing, that this approach is in fact an integral controller – integrating the
demand to form the reference production.

The primary control objective can be met in many different ways if not
considering the characteristics of either AHU or chiller – and can also be met
by manually operating the setpoints of the AHU and chiller, as the capaci-
ties just have to be large enough to not saturate the fan coil valves for longer
durations. Instead, it is more interesting to introduce a secondary control
objective, to also minimize the cost of Q̇produced.

4.2.4 Hierarchical Controller

We propose a controller with the objectives presented in Section 4.2.3 that
does not require a dynamical model of the system; instead we only consider
static model equations for the heat flows taken into account, namely Q̇AHU
and Q̇chiller, which in this case are given by Eq. (D.7) and Eq. (D.10) in Sec-
tion 4.2.2.

For ∆Q̇shop, we could let it be based on the heat flows considered for
the shop temperature dynamics. This choice will however be very model-
dependent. Instead, we propose to estimate ∆Q̇shop as:

∆Q̇shop = ṁvent,nom cp,air

N

∑
i

ei (D.20)

where ṁvent,nom is the nominal air flow from the AHU and ei is the error
signal for the i-th shop temperature controller. If we let C be the cost (e.g.
power consumption) of supplying Q̇produced, we can formulate an optimiza-
tion problem, which seeks to minimize ∆Q̇shop and Cproduced:

u =
[
uAHU, uchiller

]T (D.21)

min
u

J = qd (Q̇produced,r − Q̇produced)
2 + qc C (D.22)
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subject to:

umin ≤ u ≤ umax

where Q̇produced is given as a function of u, qd and qc are tuneable weights
and ≤ is taken element-wise.

In Figure D.3 we only consider an AHU and a chiller. The method would
however also handle any other given cooling unit or heating unit, as the pro-
duction is abstracted away behind Q̇produced,r, which can potentially be both
positive when considering heating and negative when considering cooling.
In the case of an economizer – or any passive cooling or heating unit – its
contribution could be directly handled as a disturbance added to Q̇produced.
Due to the proposed demand estimate being based on error signals it is how-
ever handled transparently, as we only act on deviations.

4.2.5 Reference Controller: MPC

For comparison purposes, we present a MPC with the same objectives as
for the hierarchical controller in Section 4.2.4. This reference controller will
require a dynamical model and here we use the model described in Sec-
tion 4.2.2. We let the dynamics be given by:

ẋ = f(x, u, uex, p) (D.23)

where x ∈ Rnx is the state, u ∈ Rnu is controllable inputs, uex ∈ Rnu,ex is
exogenous inputs and p ∈ Rnp are parameters. Then we pose an optimal
control problem to be solved with a receding horizon:

min
u

JMPC =
∫ t f

t0

J dt (D.24)

subject to:

ẋ = f(x(t), u(t), uex(t), p) (dynamics)

umin ≤ u ≤ umax

and subject to constraints on states as well.

4.3 Case Study: Kolding Storcenter

As a case study, we consider Kolding Storcenter, a Danish shopping center.
Kolding Storcenter is divided up into clusters of shops; each cluster featur-
ing a fan-coil-based HVAC layout as described in Section 4.2.1. A demo-area
has been established for the Smart Energy Shopping Centers (SEBUT) project,
consisting of one cluster of shops – and the rooftop AHU and chiller supply-
ing the fan coils of these shops. The AHU can both heat and cool, using a
built-in heat pump and direct expansion coils.
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Instrumentation has been established for the demo-area using a ’piggyback’-
approach, by interfacing with the existing BMS through a communication gate-
way unit2. This allows extraction of measurement data and allows for manip-
ulation with exposed setpoints. Table D.1 presents an overview of the, for
this paper, considered inputs and outputs of the BMS, which can be manip-
ulated and measured.

Table D.1: BMS I/O

Name Description Type
AHU

Tvent Supply temperature Output
Tvent,r Supply temperature setpoint Input
Textract Extract temperature Output
ṁvent Supply air flow Output

PAHU,cool AHU power consumption (cooling only) Output
Chiller

Tfwd,cold Forward temperature Output
Tfwd,cold,r Forward temperature setpoint Input

Pchiller Chiller power consumption Output
Shops

Tshop,i Shop temperature Output
Tshop,r,i Shop temperature setpoint Output
Tsupply,i Fan coil supply temperature Output

4.3.1 Model parameterization

Parameters for the model described in Section 4.2.2 have been identified us-
ing a combination of:

• Manual flow measurements from fan coils

• Measurements from BMS

• Shop dimensions and table-lookup

The parameters that could not be identified directly (e.g. lumped time con-
stants) were identified by posing and solving a Least Squares Estimation
problem. No heat interaction between shops is considered as internal heat
gains have been found to dominate the energy balance, given the quantity
of display lighting. We can therefor consider Q̇int,i constant during opening

2Neogrid Technologies. URL: https://neogrid.dk

151



Paper D.

hours. Note that shops are not exposed directly to sunlight and thus no heat
gain from solar load is considered.

Parameters (for a single shop) are given in Table D.2 and a comparison
of shop temperature between a simulation and measurements is presented in
Figure D.4, simulating 8 days; 4. September to 12. September – the model is
deemed accurate enough for both control purposes and simulation studies.

Table D.2: Model parameters (single shop)

Area Cshop Csupply Q̇int

250 m2 2.0 MJ/K 1.0 MJ/K 4.0 kW

UAcenter UAFC αcool αheat
2.0 kW/K 2.0 kW/K 0.1 kg/s 0.1 kg/s

τAHU τchiller τextract τamb
1 h 1 h 1 h 6 h

ṁvent,nom Tfwd,hot
3.3 kg/s 55 °C
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Fig. D.4: Comparing simulation of model to measurements extracted from BMS. Shop tempera-
ture for a single shop. Shaded areas indicate that the shop is closed.

4.3.2 Estimating power consumption

In order to not only balance production and demand but also meet the objec-
tive of minimizing cost, a measure for cost is needed; here we consider power
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consumption for both AHU and chiller.
For the chiller, we estimate power consumption as a function of ∆T =

Tamb − Tfwd,cold, where Tamb is the ambient temperature. The best fit was
found by assuming the function to be a 3rd degree polynomial. The results
are given in Figure D.5.

In the case of the AHU, we have measurements of power consumption
for cooling. As such, the power consumption of the fans is not included and,
given the ambient conditions, active heating is not present for the time period
under consideration. A naïve approach would be equivalent to that of the
chiller, estimating power consumption as only dependent on a ∆T = Tamb −
Tvent. However, recirculation and heat recovery plays a significant role for the
AHU introducing a dependence on Textract. Thus, for the AHU we formulate
a 2nd degree polynomial dependence on both ∆Tamb = Tamb − Tvent and on
∆Textract = Textract − Tvent, yielding:

P̂AHU,cool(∆Tamb, ∆Textract) = (D.25)

a0 ∆T2
amb + b0 ∆Tamb +

a1 ∆T2
extract + b1 ∆Textract + c

Results are given in Figure D.5, as both a time series comparison and a his-
togram of the error between measurement and estimation. There are im-
provements to be made in the case of the AHU, as either filtering, the inclu-
sion of dynamics or perhaps a faster sampling time of the data will provide
better results. Both fits are deemed convincing enough to be used in a control
setting.

4.4 Simulation studies

Simulation studies have been conducted to evaluate the performance of the
proposed hierarchical controller, compared to both a reference controller,
MPC, and to a simulation with historical inputs – a nominal case. All simu-
lations have been done using CasADi ([13]) through Python, where the non-
linear system dynamics have been formulated. Given that measurements
from the BMS are obtained with a sampling time of 5 min, this has also been
chosen as sampling time for all simulations.

As a measure of cost, C, we use the power consumption estimates given
in Section 4.3.2:

C = P̂tot = P̂AHU,cool + P̂chiller (D.26)

and as controllable inputs we choose:

u =
[
Tvent,r, Tfwd,cool,r

]T (D.27)

We use qd = 2 and qc = 1 in all cases.

153



Paper D.

0 5 10 15 20 25 30

[d]

0

5

10

15

[k
W

]

PAHU,cool (measured)

P̂AHU,cool(∆Tamb,∆Textract)

−6 −4 −2 0 2 4 6 8

[kW]

0

50

100

150

PAHU,cool − P̂AHU,cool

−15 −10 −5 0 5 10 15 20 25

∆T [K]

5

10

15

20

25

30

[k
W

]

Pchiller (measured)

P̂chiller(∆T ) = 0.62 ∆T 3 + 16.0 ∆T 2 + 160 ∆T + 5485 [W]

Fig. D.5: Power consumption estimation for both AHU and chiller, for demo-area
in Kolding Storcenter. Coefficients for the AHU fit found as: (a0, b0, a1, b1, c) =
(131.0, 1741,−69.85, 114.0, 5750). Data used was from 15. August to 8. October, with Tamb
from 2 °C to 30 °C and Tfwd,cold from 11 °C to 14 °C.
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4.4.1 Hierarchical Controller setup

We employ the hierarchical controller outlined in Section 4.2.4 and in the
expression for Q̇produced we assume steady-state, letting Tvent = Tvent,r and
Tfwd,cold = Tfwd,cold,r. In calculating Q̇produced,r, we consider two approaches:

Mean over last hour

Let ∆t = 1 h; then:

Q̇produced,r(t) = (D.28)

1
∆t

∫ t

t−∆t
Q̇produced(t) + ∆Q̇shop(t) dt

We denote this version H-1h

Mean over next hour

Exploiting the inherent periodic behavior, with period time Td = 24 h (see
Figure D.4), we use yesterdays data to predict and calculate the next refer-
ence, again with ∆t = 1 h:

Q̇produced,r(t) = (D.29)

1
∆t

∫ t−Td+∆t

t−Td

Q̇produced(t) + ∆Q̇shop(t) dt

We denote this version H-23h.

4.4.2 Reference Controller (MPC) setup

Using CasADi allows for also posing, discretizing and solving optimal con-
trol problems using (in this case) a multiple-shooting approach; this has been
applied for the reference MPC design. The sample time is as for the simu-
lation, 5 min and the prediction horizon chosen to be 2.5 h. Given that we
do not know exogenous inputs in advance, we also here exploit the periodic
behavior and use inputs from the previous day (delayed 24 h). Note that we
consider u̇ as our control input.

4.4.3 Simulation setup and results

We only consider 2 shops for this simulation, with slightly different con-
sumption profiles, given by their different shop temperature references:

Tshop,r =
[
21.5 °C, 22.0 °C

]T (D.30)
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Simulating 8 days, 4. September to 12. September, using historical data we
compare the four cases:

• Nominal (Purely historical inputs)

• Hierarchical Controller (H-1h)

• Hierarchical Controller (H-23h)

• MPC

Given that actuation (fan coils ON) is limited to operator set schedules, con-
trol authorithy is limited to these schedules; not exactly opening hours but
resembling working hours of staff. The results are presented in Figure D.6,
with shaded regions depicting when fan coils are turned OFF. Common be-
tween the three control strategies attempted, is that they all use the chiller to
a lesser extent than in the nominal case, as visible in the response of Tfwd,cold.
The main difference lies in the use of the AHU, where the MPC almost avoids
using it, the H-23h uses it to some extent and the H-1h even more. Tracking
performance is very similar, as visible from both the response of ∆Q̇shop and
Tshop. The results also show, from looking at the excitation of the valve open-
ings, how both hierarchical control and MPC end up using the heating valve
to a lesser extent, as air from the AHU is delivered at a higher temperature;
avoiding first spending energy cooling the air in the AHU and the heating it
up again in the fan coils. Performance-wise, we compare the four cases on
three metrics:

1. Root-Mean-Square Error (RMSE)

ē = T̄shop,r − T̄shop (D.31)

where ā denotes mean value.

2. Energy consumption

Etot =
∫ t=8 d

t=0 d
P̂tot dt (D.32)

3. Simulation time

as a measure of complexity; this is time taken for the entire simulation to run,
for each case considered. Measured on the same hardware.

Note that we only consider RMSE and energy consumption for the times
when the fan coils are ON.
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These results are presented in Table D.3. Comparing RMSE values, the
MPC is best and H-23h worst; but the difference is 0.004 K – and, as such,
a fair conclusion is that the comfort performance is almost identical. Com-
paring energy consumption, the MPC is again best with H-23h second; the
MPC amounting to a 44 % reduction compared to the nominal case, where
H-23h reduces energy consumption by 29 %. As such, the MPC wins on per-
formance. However, comparing simulation time the MPC falls short of the
other methods. Here, the proposed hierarchical controllers are 17 times faster
– and this is when only considering N = 2 shops.

Table D.3: Performance metrics

Metric Nominal H-1h H-23h MPC
RMSE 0.481 K 0.480 K 0.483 K 0.479 K

Etot 918 kW h 754 kW h 649 kW h 520 kW h
tsim 2 s 20 s 20 s 340 s

4.5 Conclusions

We have proposed a low-complexity hierarchical control approach to fan-coil-
based HVAC systems, exemplified by the case study of a Danish shopping
center. The hierarchical controller is designed to avoid the dependence on
a dynamical model, while still introducing the necessary coordination for
energy efficient operation, by balancing production and demand using only
steady-state model information and an empirically-based model for power
consumption.

Through simulation studies the proposed hierarchical controller was com-
pared to MPC; using the same cost function but having the benefits of ac-
curate model dynamics, as no model-mismatch is considered. Using MPC
would amount to a 44 % reduction in energy consumption compared to a
simulation with historical inputs (no advanced control). Using the hierar-
chical controller and relying only on measurements from the last hour of
operation, the reduction was only 18 %; a significant reduction but not com-
parable to the MPC. However, exploiting the periodic behavior of the HVAC
system and allowing the system to use yesterdays data to predict consump-
tion for the next hour, the reduction was increased to 29 % – recovering 66 %
of the MPC performance.

This is a promising reduction in energy consumption when considering
that the hierarchical controller does not rely on model dynamics. Without
the dependence on model dynamics and with the demonstrated lower com-
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putational overhead, it is concluded that this low-complexity method has the
potential to provide both less initial costs, less operator training overhead
and thus higher reusability. This is key for energy savings, when considering
the deployment among multiple buildings.
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