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Abstract

Security advancements of computer systems have caused adversaries to explore alterna-

tive entry points for their attacks. Instead of attacking the systems directly, attack vec-

tors that are initiated by social interactions have increased in popularity[45, 1]. �ese

types of attacks are known to exploit a variety of social in�uences to deceive victims

into performing a harmful action intended by the adversary [22, 12]. Typical defense

solutions attempt to detect these attacks usingmachine learning techniques. Numerous

of these solutions have reporting impressive detection rates for these types of attacks.

However, the existence of these seemingly e�ective solutions remain in strong contrast

to the high frequency of attacks in real-world settings [39].

Having this contradicting discrepancy, motivated the research of this thesis, that

seek to explore a fundamental property of such defenses, namely their performance

against an adaptive adversary. �is type of performance is adversarial robustness, and
is fundamentally di�erent from the ability to detect empirical attacks.�is stems from

the fact that adversarial robustness seeks to re�ect the expected performance against

attacks that actively attempt evade detection, which a solutionmight experience in real-

world settings.

In this thesis, I initially set out to explore the adversarial robustness of defenses

against a widely established type of deception attack, phishing attacks. In this process,

de�ne a set of axioms for the functional properties of attacks, that serve as guideline

for assessing detection strategies that in�uential and recent methods have adopted. A

part of this assessment, is a demonstration of relatively simple perturbation techniques

that emphasize the fragility of the detection solutions. Additionally, it is shown that a

detection solution that apply a deepmetricmodel [2], ismore vulnerable to known test-

time attacks than initially reported. Consequently, suggesting a fragility of deep metric

models similar to traditional classi�ers that rely on neural network architectures.

A prerequisite for the assessment, was to establish a dataset for the study of ma-

chine learning approaches. �is lead to the design a tool for gathering highly detailed

information about websites and their interconnected structure of content.

�e discovered fragility of deep metric models, motivated a formalization of a ro-

bust optimization for such models. �is formalization contributed to the design of a

powerful attack algorithm for test-time attacks, that account for previous uncertainties

of sampling method and perturbation target. With the established attack algorithm in

place, a proposed robust training objective enhance robustness among commonly used

datasets within the �eld.
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Overall, this research highlights that both in�uential and recent methods for de-

tecting deception attacks contain relatively simple failure modes, when exposed to an

adversary that seek evasion. Improvements to the underlying methods of recent so-

lutions, demonstrated that their robustness can be enhanced. However, these results

remain empirical thus further guarantees and proofs of attainable adversarial robust-

ness are still open problems.
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Resumé

Forbedringer af computersystemer har ført til at angribere er begyndt at afsøge nye

former for angreb. Det har gjort at, istedet for at angribe systemerne direkte, er angreb

som starter ved sociale interaktioner øget i popularitet[45, 1]. Disse typer angreb er

kendt for at anvende en række sociale mekanismer til at bedrage ofrene til at udføre en

række skadelige handlinger, som er ønsket af angriberen [22, 12]. Typiske forsvarsløs-

ninger forsøger at detektere angrebene ved brug af maskinlæring teknikker. En lang

række er disse løsninger har fremført imponerende detektionsrater for angreb. Dette

faktum for e�ektivitet står dog i stor kontrast til den stigende frekvens af angreb, set i

den virkelige verden [39].

Dennemodstrid dannermotivationsgrundlag for denne tese, som forsøger at afdække

en essentiel egenskab for disse forsvarsløsninger, deres evne til at detektere angreb

mod en adaptiv angriber. Denne evne kaldes adversarial robustness, og fundamentalt

forskellig fra evnen til at kunne detektere emperiske angreb. Det skyldes det faktum

at adversarial robustness forsøger at beskrive den forventlige detektionsevne mod an-

greb som aktivt prøver at undvige detektion, hvilket er realistisk scenarie den virkelige

verden.

Denne tese starter ud med at udforske etablerede forsvarsløsningers mod et velk-

endt form for bedragelsesangreb, phishing angreb. Dette gøres ved at de�nere enmængde

af aksiomer som omhandler de funktionsmæssige egenskaber som denne type angreb

besider. Disse aksiomer anvendes som en guideline til at evaluere detektionsstrategier

som har været betydningsrige eller afspejler nyere metoder. En del af denne evaluer-

ing er en demonstration af simple maskerings teknikker som udtrykker skrøbelighe-

den af forsvarsløsningerne. Udover dette, bliver det tydelige gjort at en nyere metode

som anvender en deep metric model [2] er mere sårbar overfor test-time attacks end
den oprindelig evaluering. Dette resultatet udtrykker en potentiel skrøbelighed af deep

metric modeller som er sammenlignlig med traditionelle klassi�kationsmodeller som

også anvender neurale netværk arkitekture.

Et krav for at kunne udføre denne evaluering var at etablere et datasæt til repro-

ducere den nævnte maskinlæringsmodel. Dette krav førte til design af et værktøj som

kan indsamle en detaljeret information omkring websites og deres interne struktur af

indhold.

Den fundne skrøbelighed af deep metric modeller motiverede en formalisering af

et robust optimerings mål for denne type af modeller. Denne formalisering førte til

design af en kra�fuld angrebsalgoritme, som tager højde for de tidligere usikkerheder
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omkring sampling metoder og input type. Med den etablerede angrebsalgoritme for-

muleres et robust training objective til af for højde robusthedenmod en række populære

datasæt indenfor problemområdet.

Forskningen fra denne tese fremhæver at både betydningsrige og nyere metoder til

detektion af bedragelsesangreb indeholder en række simple fejl, somkommer til udtryk

når en angriber aktivt prøver at undgå detektion. Ligeledes bliver der fremvist at nogle

af de underliggende metoder kan forbedres med højere robusthed. Disse resultater

forbliver dog empiriske, og e�erlader de omtalte metoder i en tilstand hvor garantier

og beviser for adversarial robustness stadig er et åbent problem.
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Preface

�is thesis came together at Aalborg University’s Department of Electronic Systems,

while under the kind supervision of Prof. Jens Myrup Pedersen and co-supervision

Assoc. Prof. René Rydhof Hansen (Aalborg University). Scienti�c contributions are

represented in the form of a collection of papers. �e selected papers are a mixture

of peer-reviewed publications and a preprint currently under review. Peer-reviewed

publications has had their layout revised to align with the thesis, however their content

remains unchanged.

Chapter 1 provides an introduction andmotivates the area of research of the thesis.

Following this, a more detailed outline of the thesis is presented, in addition to high-

lighted contributions of each individual paper. Part I covers preliminary concepts to

provide a background across topics central for the thesis. Part II contains the collection

of papers that form the scienti�c contributions covered within the scope of this thesis.

Lastly, Part III concludes on the research contributions of the thesis and discusses fu-

ture directions of research.

�omas Kobber Panum

Aalborg University, March 2021
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Chapter 1

Introduction

Humans have the ability to perceive theworld surrounding them and rely on this ability

for visual recognition to solve a diversity of tasks [35]. Certain of these tasks include us-

ing perception as a measure for distinguishing identities, such as persons recognizing

each other by their facial features and companies being identi�ed by their logo. Inher-

ently, this demand for distinction is o�en directly coupled with various levels of trust,

and thus certain identities being associated with di�erent privileges. As a measure to

advance privileges, adversaries might seek to deceive, i.e. exploit the recognition to

manipulate the identi�cation, in order to obtain unintended privileges. �ereby, es-

tablishing a direct link between the robustness of the visual recognition and levels of

security.

E�orts over the recent decades have sought out to automate visual recognition

tasks, thus driving the design of systems that attempt to mimic human perception in a

computational setting [32, 56, 21]. A popular technique for designing such systems is

machine learning, which seeks to learn the ability from empirical observations [62, 41,

10].

Concretely, this technique seeks to “learn” a solution to the perception problem by

formalizing it as an optimization problem.�e objective of this optimization problem

is to uncover a set of parameters for a mathematical model that yields a desired output

and ideally achieve a low error rate. Recent advancements have enabled for e�ectively

approximating parameter sets containing multi-millions parameters, as a measure to

solve more complex problems, and have served useful for a variety of tasks, e.g. visual

recognition [28].�ese advancements have been associated with the term “deep learn-

ing” [20], and have beenwidely used for visual recognition tasks and greatly increase in

the accuracy for these tasks [20]. �is includes applications of object recognition [56,

21, 67], object detection [47, 46, 48], or visual similarity [55, 66, 50].

Similarly to human perception, these applications are reliant on the underlying

models to achieve certain levels of robustness, as the inability thereof can have security

implications and cause harmful consequences [17]. In certain scenarios, adversaries

have incentive to actively explore how input can be perturbed such that the system out-

puts a desired outcome of the adversary. Concretely, the objective of the adversary is to
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alter benign input until the predictions become false, while the semantics of the input

remain unchanged. �is leads to new demands for robustness referred to as adversar-
ial robustness. One particular class of applications, for which adversarial robustness is

essential, is defense applications that infer whether a certain activity is adversarial or

benign [65, 2]. �ese solutions are expected to inspect some type of activity, with the

intent of intervening if it is considered malicious, as a measure to reduce or eliminate

its harmful consequences.�ese applications are naturally challenged by the desires of

adversaries, that seek to avoid intervention of their adversarial actions.

E�ectively this poses additional challenges for the learning system, captured byma-

chine learning, as it is continuously facedwith activities from the adversary that actively

change footprint in order to avoid intervention. From a statistical modeling perspec-

tive, this creates an out-of-distribution learning scenario where a model is desired to

perform on input of a di�erent distribution than input distribution during training.

�is is di�erent from the frequently applied i.i.d. assumption, which assumes input

distributions are independent and identical at training- and at test-time [43].

1 �esis Statement

�is thesis was established with the intent of investigating the robustness of defenses

against deception attacks and further clarify properties of the underlyingmethods used

for creating these defenses. Particularly, machine learning-based defenses that rely on

empirical observations as a measure to design and evaluate inference.

�is lead to the formulation of the following thesis statement:

Quantifying the e�ectiveness of defenses against deception attacks cannot
only rely on historical attacks, as these attacks might under-represent the
true attack surface. �is can cause defenses to adopt features for inference
which demonstrate useful for the under-representation of attacks, while be-
ing ine�ective for the true attack surface. For machine learning-based de-
fenses, which seek to automate the discovery of attack features, it can cause
the defense to adopt features that are unrelated to the functional properties of
attacks and thus let unseen attacks evade detection. Adversarial robustness
remains an open question for machine learning methods, a new proposed
technique improves this robustness for a model class that has seen use in re-
cent defenses.

2 Outline and Contributions

�is thesis is structured into three parts, Part I covers preliminary concepts to pro-

vide a background on deception attacks (Chapter 2) andmachine learning in a security

perspective (Chapter 3). Part II contains a two-fold collection of papers, and their re-

spective contributions.�e �rst group covers papers that investigate research problems

related to the thesis statement and serve as the core contributions, and are listed below
alongside highlighted contributions of each paper.

2



Chapter 1. Introduction

• Paper A (TMA 2019): Investigates the design of a sophisticated web crawler for

gathering extensive information of websites using the interactions performed by

highly complex parsers of browser engines. Concretely, the designedweb crawler

utilizes the Blink browser engine (found in Google Chrome), to crawl and gather

subsequent web requests (media content, AJAX, and more) performed by the

browser engine. Implementation of the crawler is open sourced and serves as

a tool to gather relevant data of an environment in which deception attacks are

known to be present.

• Paper B (ICML 2020): Proposes a method for the discovery of Granger causal-

ity among interdependent event sequences with multiple event types. Previous

work has o�en been limited by the �exibility or explainability of the underlying

models, which cause them to be unable to uncover Granger causality for cer-

tain variations of event sequences. Fundamentally the proposed method applies

a neural point process to an event sequence problem, and uncover the Granger

causality by applying axiomatic attribution methods. Experiments demonstrate

that the proposed method exceeds state-of-the-art methods across a variety of

commonly used datasets.

• Paper C (USENIX CSET 2020): Assesses the ability of an adversary to construct

attacks that evade detection across in�uential and recent phishing detection so-

lutions. Contributions of this work include de�ning a set of axioms for phish-

ing attacks, identi�cation of a series of common strategies used among selected

detection solutions, and demonstrating the receptiveness of simple attacks for

solutions of these strategies. �ese results suggest that previously stated perfor-

mances are not re�ecting the adversarial robustness, which is essential for these

solutions to be useful and applicable. Closingly, a set of design guidelines are

proposed to support future detection solutions to obtain higher adversarial ro-

bustness.

• Paper D (In review): Explores the adversarial robustness of deepmetric learning

models trained usingmetric losses. Contributions of this study includes a formu-

lation of the robust optimization objective for these types of models, and a pro-

posed attack algorithm. Popular models are demonstrated to be fragile towards

adversarial perturbations, similar to the traditional classi�cation setting, contra-

dicting results reported by other studies applying these techniques. Lastly, a pro-

posed robust training objective improves the adversarial robustness throughout

any of the applied models.

�e second group of papers relates to the design of a security education platform

named Haaukins. �ese papers cover research contributions related to the design and

implementation of a solution for hosting virtual security exercises, while being suited

for a higher education teaching environment, such as high schools and universities.

�ese contributions established preliminary knowledge of the adversarial mindset for

deception attacks. Papers of this group are listed below:
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• Paper E (ICALT 2019): Explores the design of a platform for teaching informa-

tion security to high schools students. �e work highlights how previous plat-

forms either lack realism or are designed for professional competitions, which

cause them to be un�t for education. Following this, the problem domain is an-

alyzed to derive a set of design goals.�ese design goals motivate design choices

and the implementation of the platform, which is free of use and provided as

open source. �e designed platform, named Haaukins, provides teachers with

great �exibility to design and implement various types of exercises. Notably for

our teaching at Aalborg University, we implemented a set of exercises that re-

quired the use of deception attacks for completion.

• Paper F (EDUCON 2021): �is work extends the previous platform to be ap-

plicable in higher degrees of education, particularly for a teaching environment

found across universities.�is extension covers an additional set of design goals

that are being adopted by new technical solutions.�ese changes enable the plat-

form to become more scalable, have more �exibility for user’s tools, and provide

a centralized method for obtaining complex exercises.

�e last part of the thesis, Part III, concludes on thesis statement (Chapter 10) and

provides perspectives on the future of the research �eld (Chapter 11).
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Chapter 2

Deception Attacks

Private information is information meant only to be shared with certain entities. For

this to be viable, one is implicitly expected to be able to distinguish entities by their

identity. In scenarios of valuable information, this can establish an incentive for ad-

versaries to explore the ability to fool the identi�cation mechanism to obtain a false

identity. �is false identity attempts to mimic some form of existing identity, such

that an entity with valuable private information is willing to exchange the informa-

tion. Attacks that rely on this mechanism are what we refer to as deception attacks.
Social engineering attacks is a class of attacks within computer security that have seen

practical use of this mechanism [22]. �ese attacks seek to exploit the users of a given

computer system, opposed to exploiting the computer system directly, by using social

in�uences [12]. A social engineering attack that has seen frequent use in recent decades

is phishing attacks [45, 1]. Phishing attacks have historically had varying de�nitions [3].
Lastdrager [31] performed ameta-analysis of literature on phishing attacks and reached

the following consensual de�nition of phishing attacks:

Phishing is a scalable act of deception whereby impersonation is used to ob-
tain information from a target.

�is de�nition, and the described attacks, serve as the presentation of deception

attacks throughout the research carried out in this thesis.
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Chapter 3

Machine Learning

For certain problems, it remains infeasible to explicitly formalize an algorithm capa-

ble of solving them. As an example, formalizing the functionality of human percep-

tion with manual labor and procedures found in a typical programming language is

simply too complex. A popular technique for addressing some of these complex prob-

lems is machine learning, a class of algorithms that learns from experience 1.�e phase

of learning in these algorithms is o�en referred to as training and involves solving a

mathematical optimization problem. For the sake of relevance of this thesis, the fo-

cus of machine learning methods will remain in the domain of supervised learning,
which involves training a model to perform prediction based on data that consist of

input-output pairs. Supervised learning have largely been in�uenced by the principles

of Empirical Risk Minimization [62], which formalize optimization objective as �nding

the set of model parameters θ ∈ Θ that minimizing some de�ned measure of error

(risk) with respect to some data (empirical evidence).

Given a model is a parameterized function fθ(x) 2 that outputs some prediction

for the datapoint x. �ese predictions is typically of the form of (i) a probability dis-

tributions over some �xed set of classes (probability of certain objects being present

in an input image [28]), (ii) numerical measure (price of stock in the future), or (iii)

some abstract representation (vectors useful for comparing similarity of words [40]).

Importantly, models are not strictly limited to these types of output.

�e training procedure, i.e. �nding a set of suitable model parameters θ, is then
formalized as solving the following optimization problem for over some data set S =
{(x1, y1), . . . , (xn, yn)} [62]:

arg min
θ∈Θ

E(x,y)∼S l(fθ(x), y) . (3.1)

1Mitchell [41] de�nes Machine Learning as: A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.”

2�e existence of non-parametric models is acknowledged (e.g. nearest neighbor), but these are con-

sidered out of scope due to their infrequent use in the application domain of this thesis.
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Here, l(fθ(x), y) ∈ R is a loss function that typically expresses the discrepancy of the

output with (khe risk), respect to some desired output y, through a numerical value.

Solving this optimization problem requires an algorithm, which is typically tied to the

class of the model undergoing training. A popular choice of model class is multilayer

perceptrons [51], frequently referred to as neural networks.�is type ofmodels typically

use stochastic gradient descent [25, 49] (or variations thereof [26, 36]) to approximate

the set of model parameters θ.

Following the training procedure, the trained model fθ(·) is evaluated on an dis-

joint and unseen test dataset.�is evaluation seeks to capture the trained model’s abil-

ity to perform on unseen data points, this performance is o�en denoted as the model’s

ability to generalize. As a motivating example, assume that we have trained a model for

classifying objects in images. A typical evaluation would then include measuring the

accuracy, percentage of correctly inferred objects across images from the test dataset.

Given that a trainedmodel demonstrates a desirable performance, it is typically applied

to a problem domain using a computer system that has integrated the respective model

and thus made its functionality available.

1 Security of Machine Learning

With machine learning models being integral components of certain computer sys-

tems, researchers have sought out to characterize properties of systems incorporating

them [7]. Papernot [43] connected the CIA triad [44](con�dentiality, integrity, and

availability) from information security to the attack surface of machine learning sys-

tems. Linking con�dentiality to information about the model (architecture, weights)

or the data used for training. Integrity is linked to attacks that allow the adversary ma-

nipulate the output of the underlying model, e.g. perform small perturbations to input

that yield unexpected and drastic changes to the output. While availability is associated
with inconsistency and reliability of the machine learning model. Following this, Pa-

pernot [42] also connected the security design principles of Saltzer and Schroder [53]

for computer systems to machine learning systems. Since then, a variety of security-

related failure models of machine learning systems have been covered [30, 29]. One

particular failure mode, with relevance to this thesis and implications beyond security

applications, is test-time attacks.

2 Test-time Attacks

Test-time attacks are based on the phenomenon that an adversary might seek to violate

the integrity of a machine learning model by perturbing a benign input, constrained

by some threat model, such that the output of the model for the perturbed data point is

altered to the adversary’s desire [9, 57]. �reat models within this application domain

needs to ensure that the perturbation does not alter the true semantic meaning of the

input. Exemplifying this for computer vision, an adversary seeks to perturb a benign

image input, such that the e�ect of perturbation remains imperceptible, while causing

the classi�er under attack to misclassify the perturbed image. In the �eld of computer

10
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vision, threat models (the set of allowed perturbations) are express as an ε-sized `p-
norm ball ∆ = {δ | ‖δ‖p ≤ ε}. Typically, adversarial perturbations for an input-

output pair (x, y) are found by solving the following optimization problem:

arg max
δ∈∆

l(fθ(x + δ), y) (3.2)

A classification model

(-ϵ,ϵ) (ϵ,ϵ)

(ϵ,-ϵ)(-ϵ,-ϵ)

x
"benign input"

δ
"perturbation"

"the epsilon ball"
ℓ∞(ϵ)

x+δ

"adversarial example"

Fig. 3.1: Visualization of the decision space for a binary classi�cation model for two classes of data points

(red and blue). Each data point is surrounded by dashed squares that indicate an `∞-norm threat model

of size ε, also referred to as an epsilon ball. Under the given threat model and a classi�cation model, the

objective of test-time attacks is to uncover some perturbation δ, such that the benign input x is misclassi�ed

(crosses the decision boundary).

Given that the loss function l(·, ·) express some numeric representation of error,

adversarial perturbations can e�ectively be viewed as an approximation of the noise

that maximizes the error during inference (i.e. violate training objective). Consider

the motivating example in Figure 3.1, which illustrates an abstract classi�cation model

and two sets of data points (red and blue). It can be seen that for certain data points, the

threat model `∞(ε) overlaps with the decision boundary of the opposing class, thereby
indicating that there exists some perturbation that causes the given data point to be

misclassi�ed. In practical applications with highly-parameterized non-convex models,

such as deep neural networks, providing similar proofs or guarantees through analysis

of the output space is currently infeasible.

�ereby in order tomeasure a givenmodel’s robustness towards adversarial pertur-

bations, a set of �rst-order attack algorithms [57, 14, 37] have been designed to approx-

imate solutions to the optimization objective in Equation 3.2. Projected Gradient De-

scent [37] is considered state-of-the-art within the class of �rst-order algorithms [64].
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�e e�ect of adversarial perturbations, in the context of highly-parameterized non-

convex neural networks, cause drops in accuracy by several orders of magnitude. Ad-

versarial perturbations have demonstrated the ability to become robust to physical

transformations, thus making them a potential threat to real-world systems [11, 6, 19].

A variety of defenses against these attacks have been proposed, however, only few de-

fenses are actually improving adversarial robustness [4, 59]. An establishedmethod for

improving adversarial robustness is adversarial training.

3 Adversarial Training

Wagner [63] describes adversarial trainingmetaphorically as vaccinatingmachine learn-
ing models, and serves as a measure to improve robustness towards adversarial pertur-

bations. Adversarial training is a training algorithm that attempts to solve the following

robust optimization problem, which is an adaptation of Equation 3.1:

arg min
θ∈Θ

E(x,y)∼S arg max
δ∈∆

l(fθ(x + δ), y) . (3.3)

�is min-max formulation is typically solved by e�ectively attacking each batch of

input-output pairs during training, using the described �rst-order methods [37, 64]

prior to running common optimizers, such as SGD or ADAM [25, 49, 26]. Conse-

quently, the models trained using this procedure demonstrates improved robustness

towards adversarial perturbations [5, 16]. However, there remains a performance gap

to the performance on benign input, and thus achieving adversarial robustness remains

an open problem.
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Kraaler: A User-Perspective Web Crawler
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Abstract. Adaption of technologies being used on the web is changing
frequently, requiring applications that interact with the web to continu-
ously change their ability to parse it. �is has led most web crawlers to
either inherent simplistic parsing capabilities, di�erentiating from web
browsers, or use a web browser with high-level interactions that restricts
observable information. We introduceKraaler, an open source universal
web crawler that uses the Chrome Debugging Protocol, enabling the use
of the Blink browser engine for parsing, while obtaining protocol-level
information. �e crawler stores information in a database and on the
�le system and the implementation has been evaluated in a predictable
environment to ensure correctness in the collected data. Additionally, it
has been evaluated in a real-world scenario, demonstrating the impact
of the parsing capabilities for data collection.

© 2019 International Federation for Information Processing (IFIP).
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A.1 Introduction

Information on the web has reached magnitudes and change at a rate which are infea-

sible for humans to structure and manage.�is has motivated the use of machines for

automated solutions capable of interpreting content on the web and represent the inter-

pretation in a structured form.�ese types of solutions are referred to as web crawlers

and consist of applications that systematically visit web servers and parse their content

[A15]. Web crawlers have been an active research topic within recent decades and were

initially motivated by the need for making the web searchable [A11]. However, they

are now being used in a wider variety of applications, such as gathering data sets for

statistical modeling [A24, A19].

�e typical retrieval process of web crawlers involves exploiting the interlinked

structure ofHypertextMarkup Language (HTML) documents being collected, by pars-

ing the collected documents for hyperlinks to other documents and consider the found

links as documents to be collected.�is process stems from a time when web pages in-

cluded fewer content types and relied less on externally linked dependencies.

However, the number of technologies and content types used on the web has in-

creased drastically over recent decades. �is has led to the end user client, the web

browser, to become a complex application and include parsers for a variety of con-

tent types. �e size of the code bases of the three most widely adopted parsers among

web browsers (Chromium Blink [A8], WebKit [A13], Mozilla Gecko [A17]) highlight

this complexity, and are respectively: 2.9M, 13.9M, and 20.7M lines of code, as of April

2019.�is complexity leaves most web crawlers unable to implement parsing capabili-

ties to the same extent, causing a de�cit in method web applications are being crawled

compared to the user’s perspective. �is de�cit stems from the fact that existing web

crawlers do not parse the crawled content to the same extent as a typical browser engine

would. Examples of crawlers using web browsers have been seen, but their interaction

with the web browsers leaves them unable to access detailed information about the un-

derlying request behavior, e.g. usage of the HTTP protocol and subsequent requests.

�is leads to information being lost or unavailable for analysis and is a continuous

problem as the capabilities of web browsers change over time.

In order to be able to enhance information gained throughout a crawling process,

and have it represent the user’s perspective, we introduce the universal web crawler,

Kraaler. It is a user-perspective web crawler that uses the browser engine of Google

Chrome (Chrome), Blink [A8], through the use of the Chrome Debugging Protocol

(CDP) while obtaining information about parsing andHTTP usage.�e contributions

of our work can be summarized as:

• Demonstrate a new method for user-perspective web crawling while observing

detailed protocol information.

• Present a data structure containing this information while making it e�ciently

available for behavioral analysis of web applications, such as phishing detection.

• Provide an open-source and extendable implementation.
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�e implemented crawler is evaluated by exposing it to a predictable environment

and a real-world environment, respectively. Each environment provides the ability to

validate the correctness of the obtained data and demonstrate the impact of the web

browser’s parser in a crawling setting. Lastly, examples of the applicability of obtained

data for behavioral analysis of web applications is shown.

A.2 RelatedWork

Information hosted onweb servers is accessed through theHypertext Transfer Protocol

(HTTP) or its encrypted variant Hypertext Transfer Protocol Secure (HTTPS). End

users typically use these protocols on a high-level through their own client, the web

browser. Machine-based approaches, in the form of web crawlers, tend to typically

interact with the protocol directly. Browsers abstract from the numerous underlying

requests being sent back and forth between the browser and the web server, when a

user interacts with a web page.�e order, and to which extent these requests are being

sent, are determined by the browser’s parsing component, the browser engine.

Browser engines contained within web browsers impact and de�ne the capabili-

ties of the applications hosted on the internet. �ey thereby serve both as a delimiter

and enabler of technologies used for web applications and a�ect their respective usage.

Namely, the programming language JavaScript was designed to be used for web appli-

cations and is now considered one of themost widely adopted programming languages

[A22, A7].

Two common web browsers, Chrome and Mozilla Firefox (with respective market

shares of ≈ 70% and ≈ 10% [A23]), are using their own respective browser engines:

Blink (a fork ofWebKit) and Gecko.�ese engines are able to interpret and display nu-

merous types of content, markup languages, and programming languages.�is ability

has developed over time and continues to do so, as the desire for richerweb applications

keeps persisting.

Web crawlers are applications for systematically gathering information from web

servers, and have been an active research topic for decades.�e research was initiated

by the Mercator web crawler, which went on to become the web crawler of the Alta

Vista search engine [A11]. Following this, Kumar et al. has surveyed existing work and

proposes a �ve type categorization of web crawlers: Preferential crawlers, hidden web

crawlers, mobile crawlers, continuous crawlers, and universal crawlers [A15].

Preferential crawlers are conditioning their crawling behavior, such as restricting

only gathering from a subset of sources or only gather selective information.

Hidden (or sometimes referred to as Deep) web crawlers focus on crawling infor-

mation that cannot be obtained by just following hyperlinks. Examples of this are web

applications that use dynamic input for presenting results, such as search engines that

require a search query in order to present a list of results. CrawlJax is a hidden web

crawler capable of crawlingweb applications that rely on JavaScript for creating user in-

teractions [A6]. In order to crawl such web applications, PhantomJS is used for instru-

menting a web browser to programmatically perform user actions within the browser

[A1].
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Mobileweb crawlers constitute a subset of crawlers that use an experimentalmethod

of crawling proposed by [A10]. �is method seeks out to avoid the iterative crawling

behavior, of obtaining information across multiple requests for one source, by expect-

ing remote web servers to be able to receive a data speci�cation. �e received data

speci�cation is then used to initiate a stream of actions locally on the remote server, in

order to reduce bandwidth usage in the crawling process.

Continuous crawlers constitute a subset of crawlers that addresses the problem of

prioritizing crawling targets, in the setting of restricted resources and crawling targets

continuously changing their content.

Universal crawlers are the counterpart to the previously described crawlers, as they

are designed for a broader and less speci�c use case.�ey are designed to visit any type

of content or hyperlink they observe and repeat this process continuously. An example

of a universal web crawler is BUbiNG, an open source high-performance distributed

web crawler that performs HTML parsing and can store results on distributed storage

systems [A3]. ApacheNutch is another universal web crawler that has amodular design

and has been actively developed formore than a decade.�emodular design of Apache

Nutch has led researchers to use it as a base, and extend it to new types of web crawlers

[A9].

A subset of web crawlers set out to extract exact information in a structuredmanner

from a web application, this method is known as web scraping. Scrapy is a widely pop-
ular web scraping framework developed in the programming language Python [A18].

�e framework requires the user to be familiar with Python in order to specify which

information to extract and the following method. An alternative solution is Portia, a

web scraping framework built on Scrapy requiring no competences in programming

[A21].�e user clicks on information on aweb page, and the framework attempts to ex-

trapolate the underlying HTML template, de�ning a strategy for crawling the desired

information. �is extrapolation can, however, lead to incorrect identi�cation of the

underlying HTML structure, leading to incorrect or false information being extracted.

Kraaler is a universal web crawler that uses the parser of a web browser for inter-

preting web applications, allowing it to observe HTTP requests initiated by the HTML

parser, the JavaScript interpreter, andmore. A similar abstract design has been patented

by Kra� et al., which describes the use a web browser for gathering dynamic content of

web applications andutilize for optical character recognition for interpreting text in im-

ages [A14]. However, certain design details are undocumented and, to our knowledge,

there exists no open source implementation of the described design nor a speci�cation

of the data it collects.

A.3 User-Perspective Crawling

HTTP is a protocol based upon requests that are answered by responses, and when a

user enters a URL in their browser, a request of the method GET with a couple of key-

value pairs in the header is sent towards the host speci�ed in the URL. Most of the

existing universal crawlers base their crawling behavior on this, so given a set of URLs,

the crawler will perform GET requests towards a givenURL and retrieve the body of the
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Fig. A.1: Series of subsequent requests being performed by a web browser, when visiting a page.

corresponding HTTP response.�is response body, which is o�en assumed to contain

HTML, is typically analyzed for the presence of hyperlinks or URLs that are then added

to the pool of known URLs.

Modern web applications consist of multiple content types, spread across multiple

URLs referenced to by an HTML document, acting as dependencies for the web appli-

cation.�e browser is expected to visit theHTMLdocument �rst, and then a process of

parsing it starts, leading the browser to perform asynchronous requests for resources

that the document references. �e parsing process repeats for every response that is

received by the browser, creating a recursive parsing process, causing the browser to

perform a series of subsequent requests from the initial request of the document.

�is recursive request behavior can be seen as an interlinked dependency graph of

distributed resources, rooting at an initial document, as illustrated in Figure A.1. �e

initial document is typically an HTML document and yields the browser to create a

Document Object Model (DOM), which is an application programming interface for

client-side programming languages to manipulate the received HTML and display the

parsedmodel to the user [A12]. Concretely, this allowsmodern web applications to use

JavaScript to manipulate the initial HTML tree of the received document.�is enables

additional methods of navigating and updating the information of web applications

without the user having to navigate to other HTML documents [A6]. �is is accom-

plished by allowing JavaScript to programmatically perform asynchronous HTTP re-

quests, Asynchronous JavaScript and XML (AJAX), in order to either send or retrieve

information following manipulation of the DOM [A2].

�ese features, in addition to other capabilities of modern browsers not described

in this article, havemade it increasingly di�cult to ensure the features are only available

in contexts that meet a minimum security level [A25]. Following this, the speci�cation

of Secure Contexts was introduced, which is a method for controlling the security level

of actions by the browser on behalf of the web application’s content. �is means that

certain aspects of the actions performed by the browser are conducted in an isolated

sandbox environment, and certain actions can be restricted. As an example, a docu-

ment served over a secure and encrypted connection is not allowed to reference other

resources served using an insecure and unencrypted protocol. Parsing content of the

web applications is an ever-changing process that evolves over time, causing modern

browsers and their underlying browser engines to become applications spanning mil-

lions of lines of code.�e implementation of new browsers engines for parsing content

is, therefore, a costly and o�en infeasible process in the design of a crawler.

20



Paper A. Kraaler

Historically, this le� designers with the choice of either partial parsing capabilities,

or to use high-level instrumentation of a web browser. High-level instrumentation of

a web browser typically involves using a web driver, such as Selenium Webdriver, for

programmatically controlling a subset of user-based features available in the browser

[A20]. �ese features typically include navigating the browser to a certain URL or

interacting with the JavaScript shell.

An alternative to the Selenium solution is PhantomJS, which is a headless browser

allowing for more information to be extracted from the underlying browser engine

[A1, A6]. In comparison, it allows for extracting request and response information

from HTTP.�e project has, however, been suspended, leaving the underlying engine

to become obsolete from modern standards of web browsers.

In the context of Kraaler, the web browser Chrome is used as an external com-

ponent for performing the HTTP requests and parsing of their respective responses

during crawling.�is choice stems from the fact that Chrome provides a remotely ac-

cessible application interface to its underlying browser engine, Blink, denoted Chrome

Debugging Protocol (CDP) [A5]. CDP allows for reading some of the data structures

present in the browser engine during runtime in a structured form, such as detailed

information about requests and responses, and sending instructions to the browser.

�us enabling the use of the complex parser contained within the browser engine with-

out missing information contained within the HTTP protocol and other types of low-

level information contained within the engine, which is di�cult or infeasible in other

widely-used browsers.

Information in CDP is exchanged through a series of subject-based channels, e.g.

the channel of networking is named Network, and subscribing to the same channel

allows for receiving events being published on the channel. �roughout this article,

events published by CDP will be following the notation of <channel>.<event>, so
in the case of Network.requestWillBeSent, Network refers to the channel which

sends requestWillBeSent events. �ese events are published to their channel as

JSON objects containing information related to the event, e.g. Network.requestWi-
llBeSent contains information about a request that Chrome is about to initiate. �e

entirety of events, across of all channels, can be seen as a structured log of the cap-

tured behavior in Chrome. Instructions pushed to channels follow the same notation,

e.g. Page.navigate will navigate the active window to a certain URL contained in

the payload. CDP de�nes the concept of a page, describing the situation of when the

browser navigates to aURLusing the address bar. As previously described, thiswill per-

form an HTTP request, for which the response is parsed and can lead to subsequent

requests being executed as a background activity. Kraaler inherits the concept of page,

as illustrated in Figure A.1, and de�nes a page to include: a series of HTTP requests and

responses, the appearance of the web application in the browser, the JavaScript shell of

the given web application, and other information described in Section A.5. In addition

to the concept of pages, the concept of action is introduced to group a request with its

respective response, or the connection error returned by the browser, when trying to

perform the request.
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Fig. A.2: Component overview of Kraaler.

A.4 Overview

Kraaler has been implemented in the programming language ofGo. Gowas chosen due

to its native support for parallelization primitives and its ability to compile statically-

linked binaries for multiple platforms. �e code is open-source with a GNU GPLv3

license and accessible in a git repository, hosted on GitHub1. Running the implemen-

tation depends on Chrome or Docker being available in order to either use or install

Chrome.

Internally, Kraaler consists of two components, controller and worker, that are re-

sponsible for interacting and orchestrating a set of external components, as illustrated

in Figure A.2. Controller is responsible for communicating and orchestrating the par-

allel crawling process, conducted by a pool of workers while publishing their results to

the external data stores. Each worker is responsible for conducting crawling tasks and

orchestrate their individual instance of Chrome.

Controller

�e primary role of the controller is to maintain the parallel crawling process. �e

controller will continuously push tasks to the next available worker in the pool and

keep the set of workers occupied with tasks until no new task is available. Tasks become

available as a sampler continuously samples URLs from a set of knownURLs. Initiating

a crawling process thereby requires the set of known URLs to be populated with some

amount of URLs. Populating this set is done by parsing a set of domains or URLs to

the controller, as it is being instantiated.

A sampler is a module for containing the mechanism for prioritizing which, and

when, known URLs should be transformed to tasks. In order for a sampler to con-

duct this prioritization, it is exposed to the current set of known URLs and timestamp

of their most recent crawl, at the time of sampling. Under these conditions, users of

Kraaler are capable of implementing new samplers that encapsulate a prioritization

1https://github.com/aau-network-security/kraaler
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strategy suitable for their respective use cases. Currently, there are two samplers im-

plemented in Kraaler, a uniform sampler, and a domain-pair sampler. As tasks are

being completed, pages are returned from the pool of workers to the controller, and it

starts two actions: storing the information of the page and pushing newly found URLs

to the pool of known URLs.

Apage’s textual andnumeric properties are by default stored in a relational database,

while the byte-based properties are stored on the �le system in a structured form and

referenced in the database. Schemes and data structures of the relational database are

covered in more detail in Section~A.5. �e byte-based properties include response

bodies and screenshots. For certain applications, storing all byte-based information

can be too extensive and unnecessary. To address this, Kraaler allows for restricting in-

formation stored, through a set of modules that modify a page received from a worker

before being stored. Currently, Kraaler only has one module, that deletes response

bodies of a certain content type for a page’s actions. �is leads to the functionality of

restricting byte-based information contained in the following data, as empty response

bodies are not stored. An example of a use case for this module is to restrict response

bodies stored to only be text-based by deleting response bodies for which their content

type is not pre�xed with text. Additional modules can be implemented by users of

Kraaler, for further controlling and restricting information being stored in the result-

ing data set of a crawl.

For obtaining a continuous crawling process, URLs found in the response bodies

are by default added to the pool of known URLs. However, if it is desired to have a

discrete crawling process or �lter certain URLs, it is possible to control which URLs

are added to the pool by assigning a URL �lter.

Worker

�e worker component is responsible for controlling the life cycle of a single Chrome

instance, while also interacting with its instance through CDP. Problems involved in

controlling the life cycle of Chrome is covered in more detail in Section A.6.�e inter-

action spans across three CDP channels: Page, Runtime, and Network.
Using the Page channel, a worker will use Page.navigate for sending instruc-

tions to navigate the browser window to a speci�c URL.�e worker will use the event

Page.domContentEventFired for determining when the initial document has been

parsed and loaded. When this event has been received, the worker attempts to cap-

ture one or more screenshots through the instruction Page.captureScreenshot,
for which each capture is conducted a con�gurable amount of seconds a�er the DOM

is loaded.

�e Runtime channel is used for the event Runtime.consoleAPICalled in order
to capture console output from the JavaScript shell of the given page, e.g. debugging

messages used by web developers.

Most of the information obtained by Kraaler is from the Network channel, which

covers a variety of network events. Network.requestWillBeSent is an event be-

ing published when a page is about to send a HTTP request. �e event covers a va-

riety of information, but Kraaler saves the HTTP request included in the event and
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the initiator of the given request. Initiators de�ned by CDP are parser, script, preload,
SignedExchange, and other. Kraaler inherits and expands upon this de�nition by in-

troducing additional initiators, determined by request information, namely: redirect
and user. �e redirect initiator stems from the fact that Kraaler expands a chain of

HTTP redirects to become a series of individual requests, while CDP assumes a re-

quest is tied to a response body. �is means that if a requested resource is located

on a certain URL, it will respond with one or more redirects before receiving a re-

sponse body, then CDP inherit these into the same request, except that by HTTP it

is a series of requests. Introduction of the user initiator was done to improve clar-

ity of the generic initiator other, by marking user-initiated requests, such as the ini-

tial HTTP request performed by a page navigating to an URL. For gathering the re-

sponse of a request, the Network.responseReceived event is published, containing
the HTTP response for the request.�e Network.responseReceived event just in-
clude the metadata of the response. In order to obtain the response body, the instruc-

tion Network.getResponseBody is sent.
�e events received across these channels are observed between the initial Page.n-

avigate instruction and a�er the Page.captureScreenshot instructions has com-

pleted. Lastly, the information from these events are saved in the internal data structure

of a page, being the result of a crawl.

A.5 Data Structure

Creating value from a crawling process requires information related to the crawled

content to be available for post-processing. In Kraaler, this is conducted by having the

controller store the pages it receives in a relational database and on the �le system.�e

choice of relational database in Kraaler is SQLite, which provides e�cient reads while

the data can be contained in a single �le. With data available in a single �le, it eases

data transfers to other computation environments.

Having two types of data stores allows for separating byte-intensive information,

such as screenshots and response bodies, from contextual information. Storing of

screenshots inKraaler is structured in a con�gurable directory structure usingscreen-
shots/<domain>/<id>.png, for which domain is the domain of hosting the page

visualized and id being a random unique identi�er. Response bodies are stored in a

separate directory with the structure of bodies/<hash>.<ext>, with hash being the
SHA256 hash of the body and ext being a determined �le extension based on the con-

tent type of the body. Storing every response body can yield to a substantial amount of

data, causing data sets to become overwhelmingly large in size. Kraaler provides a set

of modules that can �lter or change the behavior of storing response bodies, namely

a compression module and a �lter module. �e compression module allows for using

gzip to compress every stored response body to reduce the data set size. Additional

measures to reduce the size of the response bodies include using the �lter module to

reduce the set of saved response bodies to only a certain set of content types.

Contextual information being stored in the database can be seen in Table A.1. En-

tities are shown using the following notation:
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Some entity← 0..∗ Parent entity
In this example the notation reads as: Parent entity has zero or more (0..∗) Some

entity. In order to make the underlying database e�cient for analysis purposes, a set of

database design principles from online analytical processing (OLAP) has been adapted

in the design of the database scheme [A4]. In Kraaler, the OLAP snow-�ake scheme is

used and provides e�cient storage in terms of the size used by the database and reading

speeds for database operations.

A.6 Orchestration

Communication with external components, namely Chrome, is a fundamental part of

the crawling process of Kraaler. �e CDP service of Chrome is a central dependency

that would interrupt the crawling process, in case of its absence. Ensuring the avail-

ability of the service is inherently di�cult, as its presence can only be observed from

an operating system perspective or by interacting with it.

Experience gained from implementing Kraaler made it clear that the service could

become unavailable or unusable.�is led to a set of scenarios, that were di�cult to dif-

ferentiate from external observations, such as: external web servers being unrespon-

sive, web servers replying slowly, or the instance of Chrome being in an unexpected

state.

�ese scenarios could lead to a worker becoming unable to continue crawling, and

drove the design of increased fault tolerance. Measures for increasing the fault toler-

ance, and included in the orchestration of external components, are: adding timeouts

for crawls, release of unresponsive resources, isolation of Chrome instance and design-

ing for errors.

Timeouts are a time-based threshold measure for de�ning and reacting to unex-

pected behavior in an application. �ey are typically de�ned by having a time limit

that describes the maximum allowed time a certain process is allowed to be spending

for processing. For Kraaler this mechanism is used internally within each worker, tim-

ing the process responsible for sending instructions and receiving feedback from CDP.

In case of a timeout, a page with an internal connection timeout error is returned to

the controller.

Following the case of a timeout, the resources of the asynchronous process, that was

unable to complete on time, is not guaranteed to be freed and can be locking resources.

In Kraaler, we explicitly ensure to inherit an idiomatic design pattern for solving this,

while also restarting the instance of Chrome. �is restart is done to ensure that the

instance of Chrome is cleared from its potential faulty state, by returning it to the pre-

dictable initial state.

Our recommended method of running the external Chrome instances is by let-

ting Kraaler communicate with the Docker daemon.�is method allows for spawning

Chrome instances in an isolated run time scope while controlling the resources avail-

able to them. �e isolation ensures that the Chrome instances are unable to interfere

with each other, as their run time scope is independent. Kraaler will by default con-
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Table A.1: Properties of data structure

Property Description

Page Browser resolution Resolution used by the browser

Navigated time Unix time nanoseconds of when a page

is request

Loaded time Unix time nanoseconds of when a page’s

DOM is loaded

Terminated time Unix time nanoseconds of when a crawl

of page is complete

Page connection error Possible connection error of page

Console output← 0..∗ Page Sequence Index of the console.log message for

the page

Origin Position of JavaScript call using

console.log
Message Message printed by console.log

Screenshot← 1..∗ Page Time taken Unix time nanoseconds of when screen-

shot was captured

Path Filesystem path to screenshot file

Action← 0..∗ Page Parent of action Possible previous action causing this

action

Request method Method used for HTTP request of ac-

tion

Protocol Protocol used for the action

Initiator The type of initiator initating the action

Status code Status code of the action’s HTTP re-

sponse

Connection error Possible connection error of the action

Host← 1 Action Apex domain Domain without subdomains

Top-level domain Top-level domain

IPv4 IPv4 Address of domain being resolved

Name servers Authoritative name servers of domain

URL← 0..∗ Action Scheme Scheme used within the URL

User User field of URL

Host Host contained within the URL

Path Path of URL

Fragment Fragment used in URL

Query Query string of URL

Response Header← 0..∗ Action Key Key field of response header

Value Value field of response header

Request Header← 0..∗ Action Key Key field of request header

Value Value field of request header

Security Details← 0..1 Action Secure protocol Secure protocol used by the given action

Certificate key exchange Type of key exchange used by action

Certificate issuer Issuer of the certificate used in the ac-

tion

Certificate cipher Certificate cipher used for action

Certificate san list San list of certificate used by action

Certificate subject name Subject name of certificate used for ac-

tion

Certificate valid from Unix time nanoseconds of validation

start of cert. for action

Certificate valid to Unix time nanoseconds of validation

end of cert. for action

Response Body← 0..1 Action Browser MIME type MIME type of body, determined by the

browser

Worker MIME type MIME type of body, determined by the

worker

Hash SHA256 hash of the response body

Size Size, in bytes, of response body

Compressed size Gzip compressed response body size in

bytes

Path Path to file containing response body

strain the spawnedChrome instances to 756MB,which fromexperience has been found
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su�cient for single page browsing.

Restarting the Chrome instance of a worker can be costly in terms of wasted crawl-

ing time, and should only be considered a last resort. In order to reduce the number

of unnecessary restarts of the Chrome instance, a set of errors returned by CDP are

provided corresponding recover mechanisms. �is allows workers to cheaply recover

from errors such as CDP connections timeouts, Page.navigate timeouts, and more.

However, in the case of an error without a de�ned recover mechanism, the Chrome

instance is restarted to ensure no present side e�ects.

A.7 Evaluation

Correctness is an essential attribute for a data set in order to be used for future analy-

ses. In the setting of Kraaler, the data is collected by observing external web servers, for

which their underlying design and behavior is unknown.�ereby in order to increase

con�dence in collected data being correctly crawled and stored, this functionality is

evaluated against known web servers, for the sake of predictability. A set of automated

end-to-end tests are designed, for which each individual test hosts a web server with

distinct behavior.�e hosted web servers are then crawled by Kraaler, following obser-

vations of changes in the database and �le system. �ese changes are then compared

against an expected change, to ensure the expected behavior of the implementation.

�e set of test cases does, however, not validate the value of the browser engine’s

parsing capabilities in a real-world setting, as the tested web application might not be

representative of that population. In order to validate the value, Kraaler was set out

to crawl a uniform sample of Alexa Top 1M, while being restricted from pushing new

URLs to the pool of URLs. �is crawl was conducted on a single machine running

eight worker instances and resulted in 8156 pages and 331561 actions. �e in�uence

of the browser engine’s parsing capabilities, in terms of HTTP requests being initiated

by the browser engine, can be seen in Table A.2. User-oriented initiations, i.e. those

started by Page.navigate, are �ltered out to focus only on the ones conducted by the
browser engine.

Table A.2: Overview of non-user initiators of actions from Alexa Top 1M page crawls.

Initiator Page actions Body size (kB)

µ (σ) µ (σ)
parser (n = 266819) 34.34 (25.31) 41.04 (125.77)

script (n = 46131) 5.94 (6.39) 46.77 (96.53)

redirect (n = 4512) 0.58 (0.96) 107.00 (161.40)

other (n = 2399) 0.31 (1.62) 24.96 (83.15)

In comparison to a naive crawler, one which just fetches a given response body

without parsing it, a substantial amount of requests would not be conducted. �e ini-

tiators, parser (µ = 34.34) and script (µ = 5.94), account for a signi�cant amount of

additional requests compared to a naive crawler.�ese initiated requests are a represen-

tation of the sum of the parsing capabilities of the browser engine, and can be expressed
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as an upper bound measure for requests initiated by parsing for user-perspective web

crawling. �e total size of the response bodies for these subsequent HTTP requests

represent 95.8% of the total amount of bytes for response bodies in the crawl, leaving

the root documents to 4.2%.

Browsing the size of subsequent response bodies of pages, in relation to their con-

tent type, can indicate the amount of information being carried by certain technolo-

gies. �e amount of information being carried by certain types of technologies can

suggest the importance of certain language parsers in a crawler setting. �is informa-

tion, carried across pages, for the ten most frequently used MIME types across pages,

is illustrated using a cumulative distribution function in Figure A.3. JavaScript with its

three MIME types (application/x-javascript, application/javascript, text/javascript) is

responsible for a large degree of the bytes across the pages crawled. We suspect it might

be due to popular domains using complex user interfaces and relies on JavaScript-based

front-end frameworks, which take up a certain byte volume.

Fig. A.3: Cumulative distribution function of bytes per page for the ten most frequent content types.

�e usage of technologies, in terms of request frequency and byte volume, vary sig-

ni�cantly, e.g. parser actions σ = 25.31, and parser bytes σ = 125.77. �is might

suggest that pages rely on a distinct set of linked dependencies, due to the present vari-

ance in amount actions and their respective byte size for pages. �is variance could

also prove useful for identi�cation of segments that carry meaning for a given problem

domain that attempts to classify web applications. As an example, identi�cation of web

applications hosting malicious activities could be accomplished under the assumption

that malicious web applications di�erentiate in their interlinked structure and usage of

certain dependencies. However, this example and other applicabilities of the data set

are for future research to examine, in addition to exploring the protocol-based infor-
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mation also contained within the data set.

A.8 Conclusion

In this article, we have presented the design of a crawler, named Kraaler, that uses the

Chrome Debugging Protocol for parallelized crawling, using a modern browser en-

gine, while obtaining detailed information from theHTTP protocol usage. Follow this,

a design for storing this detailed information was covered, allowing the stored data ef-

�ciently read and available for data analysis.

�e challenges of interacting with external components, such as a web browser, was

presented in addition to themeasures we have taken in order to solve them and provide

orchestration. �roughout the implementation of our solution, the methods used for

determining its correctness has been described.

Following the impact of the obtained parsing capabilities, from the browser engine,

for the request frequency and size of the information collected throughout a crawling

process. Demonstrating that the HTML parser (µ = 34.34) and the JavaScript inter-

preter (µ = 5.94) accounted for a signi�cant amount subsequent HTTP requests for

a page visit, for a subset of crawled Alexa Top 1M domains. �e size of these response

bodies, in terms of bytes, accounted for 95.8% of the total size of response bodies that

was crawled.

We suggest that data sets collected using Kraaler could potentially be used for a

variety of applications that seek to conduct statistical analysis of web applications.
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Abstract. We study the problem of learning Granger causality between
event types from asynchronous, interdependent, multi-type event se-
quences. Existing work su�ers from either limited model �exibility or
poor model explainability and thus fails to uncover Granger causality
across a wide variety of event sequences with diverse event interdepen-
dency. To address these weaknesses, we propose CAUSE (Causality from
AttribUtions on Sequence of Events), a novel framework for the studied
task. �e key idea of CAUSE is to �rst implicitly capture the underlying
event interdependency by �tting a neural point process, and then ex-
tract from the process a Granger causality statistic using an axiomatic
attribution method. Across multiple datasets riddled with diverse event
interdependency, we demonstrate that CAUSE achieves superior per-
formance on correctly inferring the inter-type Granger causality over a
range of state-of-the-art methods.

�e layout has been revised.
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B.1 Introduction

Many real-world processes generate a massive number of asynchronous and interde-

pendent events in real time. Examples include the diagnosis and drug prescription

histories of patients in electronic health records, the posting and responding behaviors

of users on social media, and the purchase and selling orders executed by traders in

stock markets, among others. Such data can be generally viewed asmulti-type event se-
quences, in which each event consists of both a timestamp and a type label, indicating

when and what the event is, respectively.

In this paper, we focus on the fundamental problem of uncovering causal structure

among event types from multi-type event sequence data. Since the question of “true

causality” is deeply philosophical [B29], and there are still massive debates on its def-

inition [B28, B23], we consider a weaker notion of causality based on predictability—

Granger causality. While Granger causality was initially used for studying the depen-

dence structure for multivariate time series [B17, B10], it has also been extended to

multi-type event sequences [B12]. Intuitively, for event sequence data, an event type is

said to be (strongly) Granger causal for another event type if the inclusion of historical

events of the former type leads to better predictions of future events of the latter type.

Due to their asynchronous nature, in the literature, multi-type event sequences

are o�en modeled by multivariate point process (MPP), a class of stochastic processes

that characterize the random generation of points on the real line. Existing point pro-

cess models for inferring inter-type Granger causality frommulti-type event sequences

appear to be limited to a particular case of MPPs—Hawkes process [B16, B37, B1],

which assumes past events can only independently and additively excite the occur-

rence of future events according to a collection of pairwise kernel functions. While

these Hawkes process-based models are very interpretable and many include favor-

able statistical properties, the strong parametric assumptions inherent in Hawkes pro-

cesses render these models unsuitable for many real-world event sequences with po-

tentially abundant inhibitive e�ects or event interactions. For example, maintenance

events should reduce the chances of a system breaking down, and a patient who takes

multiple medicines at the same time is more likely to experience unexpected adverse

events.

Regarding event sequence modeling in general, a new class of MPPs, loosely re-

ferred to as neural point processes (NPPs), has recently emerged in the literature [B14,

B36, B27, B35]. NPPs use deep (mostly recurrent) neural networks to capture com-

plex event dependencies, and thus excel at predicting future events due to their model

�exibility. However, NPPs are uninterpretable and unable to provide insight into the

Granger causality between event types.

To address this tension betweenmodel explainability andmodel �exibility in exist-

ing point processmodels, we proposeCAUSE (Causality fromAttribUtions on Sequence

of Events), a framework for obtaining Granger causality from multi-type event se-

quences using information captured by a highly predictive NPP model. At the core

of CAUSE are two steps: �rst, it trains a �exible NPP model to capture the complex

event interdependency, then it computes a novel Granger causality statistic by inspect-

ing the trained NPP with an axiomatic attribution method. In this way, CAUSE is the
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�rst technique that brings model-agnostic explainability to NPPs and endows NPPs

with the ability to discover Granger causality frommulti-type event sequences exhibit-

ing various types of event interdependencies.

Contributions. Our contributions are:

• We bring model-agnostic explainability to NPPs and propose CAUSE, a novel

framework for learning Granger causality from multi-type event sequences ex-

hibiting various types of event interdependency.

• We design a two-level batching algorithm that enables e�cient computation of

Granger causality scalable to millions of events.

• We evaluate CAUSE on both synthetic and real-world datasets riddled with di-

verse event interdependency. Our experiments demonstrate that CAUSE out-

performs other state-of-the-art methods.

Reproducibility. We publish our data and our code at:

https://github.com/razhangwei/CAUSE.

B.2 Background

In this section, we �rst establish some notation and then brie�y introduce the back-

ground for several highly relevant topics.

Notations

Suppose there are S subjects and each subject s is associated with a multi-type event

sequence {(tsi , ksi )}
ns
i=1, where t

s
i ∈ R+ is the timestamp of the i-th event of the s-th

sequence, ksi ∈ [K] is the corresponding event type, and ns is the sequence length. We

denote by zsi ∈ {0, 1}K the one-hot representation of each event type ksi , and use [n]
to represent the set {1, . . . , n} for any positive integer n. To avoid clutter, we omit the

subscript/superscript of index swhen we are discussing a single event sequence and no
confusion arises.

Multivariate Point Process

Multivariate point processes (MPPs) [B11] are a particular class of stochastic processes
that characterize the dynamics of discrete events of multiple types in continuous time.

�e most common way to de�ne an MPP is through a set of conditional intensity func-
tions (CIFs), one for each event type. Speci�cally, let Nk(t) ,

∑∞
i=1 1(ti ≤ t ∧ ki =

k) be the number of events of type k that have occurred up to t, and let H(t) ,
{(ti, ki)|ti < t} be the history of all types of events before t. �e CIF for event type k
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is de�ned as the expected instantaneous event occurrence rate conditioned on history,

i.e.,

λ∗k(t) , lim
∆t↓0

E[Nk(t+ ∆t)−Nk(t)|H(t)]

∆t
,

where the use of the asterisk is a notational convention to emphasize that intensity is

conditioned uponH(t).
Di�erent parameterizations of CIFs lead to di�erent MPPs. One classic example of

MPP is the multivariate Hawkes process [B19, B20], which assumes each λ∗k(t) to be of
the following form:

λ∗k(t) = µk +
∑
i:ti<t

φk,ki(t− ti), (B.1)

whereµk ∈ R+ is the baseline rate for event type k, andφk,k′(·) for any k, k′ ∈ [K] is a
non-negative-valued function (usually referred to as kernel function) that characterizes
the excitation e�ect of event type k′ on type k.

More recently, a class of MPPs loosely referred to as neural point processes have
emerged in the literature [B14, B36, B27, B35]. �ese models parameterize CIFs with

deep neural networks and generally follow an encoder-decoder design: an encoder suc-
cessively embeds the event history {(tj , kj)}ij=1 into a vectorhi ∈ RNh for each i, and
a decoder then predicts with hi the future CIFs λ

∗
k(t) a�er time ti (until the next event

is generated).

Most MPPs are trained by minimizing the negative log-likelihood (NLL):

S∑
s=1

ns∑
i=1

[
− log λ∗sksi (t

s
i ) +

K∑
k=1

∫ tsi

tsi−1

λ∗sk (t′)dt′

]
, (B.2)

where λ∗sk (t) , λ∗k(t|Hs(t)) is the CIF of the s-th sequence for the type k. In (B.2),

the �rst term corresponds to the NLL of an event of type ksi being observed at t
s
i for the

s-th sequence, whereas the second term is the NLL of the observation that no events

of any type occurred during the window (tsi−1, t
s
i ). When there are no closed-form

expressions for the integrals
∫ tsi
tsi−1

λ∗sk (t′)dt′, Monte-Carlo approximation needs to be

used to approximate either the integrals themselves or their gradients with respect to

the parameters. However, these approximation techniques are ine�cient and generally

su�er from large variances, resulting in low convergence rate.

Granger Causality for Multi-Type Event Sequences

�e Granger causality de�nition formulti-type event sequences is established based on

point process theory [B11]. To proceed formally, for anyK ⊆ [K], we denote byHK(t)
the natural �ltration expanded by the sub-process {Nk(t)}k∈K; that is, the sequence of
smallest σ-algebra expanded by the past event history of any type k ∈ K and t ∈ R+,

i.e., HK(t) = σ({Nk(s)|k ∈ K, s < t}).1 We further write H−k(t) = H[K]\{k}(t)
for any k ∈ [K].

1Here, we abuse our previous notation H(t) that denotes the set of events that occurred prior to t.
Appendix B.IV includes a primier on measure and probability theory for readers who are less familiar with

some concepts in this subsection.
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De�nition 1. [B16] For aK-dimensional MPP, event type k is Granger non-causal for
event type k′ if λ∗k′(t) isH−k(t)-measurable for all t.

�e above de�nition amounts to saying that a type k is Granger non-causal for

another type k′ if, given the history of events other than type k, historical events of
type k do not further contribute to future λ∗k′(t) at any time. Otherwise, type k is said
to be Granger causal for type k.

Uncovering Granger causality from event sequences generally is a very challeng-

ing task, as the underlying MPP may have rather complex CIFs with abundant event

interaction and non-excitative e�ect. As a result, existing work tends to restrict con-

sideration to certain classes of parametric MPPs, such as Hawkes processes [B16, B37,

B1]. Speci�cally, for multivariate Hawkes process, it is straightforward from (B.1) that a

type k is Granger non-causal for another type k′ if and only if the corresponding kernel
function φk′,k(·) = 0.

Attribution Methods

We view an attribution method for black-box functions as another “black box”, which

takes in a function, an input, and a baseline, and outputs a set ofmeaningful attribution

scores, one per feature.�e following is a formal de�nition of attribution method.

De�nition 2 (Attribution Method). Suppose x ∈ X ⊆ Rd is a d-dimensional input

and x ∈ X a suitable baseline. LetFd be a class of functions fromX toR. A functional

A : Fd ×X ×X 7→ Rd is called an attribution method for Fd ifAi(f,x,x) measures

the contribution of xi to the prediction f(x) relative to x for any f ∈ Fd, x,x ∈ X ,
and i ∈ [d].

Since it is very challenging (and o�en subjective) to compare di�erent attribution

methods, Sundararajan, Taly, and Yan [B33] argue that attributionmethods should ide-

ally satisfy a number of axioms (i.e., desirable properties), which we re-state in De�ni-

tion 3.

De�nition 3. An attribution method A is said to satisfy the axiom of:

1. Linearity, if for any f, g ∈ Fd, x,x ∈ X , and c ∈ R,

A(f,x,x) +A(g,x,x) = A(f + g,x,x),

A(cf,x,x) = c ·A(f,x,x).
(A1)

2. Completeness/E�ciency, if for any f ∈ Fd and x,x ∈ X ,

f(x)− f(x) =

d∑
i=1

Ai(f,x,x). (A2)

3. Null player, if for any f ∈ Fd such that f does not mathematically depend on a

dimension i,
Ai(f,x,x) = 0, (A3)

for all x,x ∈ X .

38



Paper B. CAUSE

4. Implementation invariance, if for any x,x ∈ X , and any f, g ∈ Fd such that

f(x′) = g(x′) for all x′ ∈ X ,

A(f,x,x) = A(g,x,x). (A4)

Besides these four axioms, we also identify two other useful properties of attribu-

tion methods, which are less explicitly mentioned in the literature. We state these two

properties in De�nition 4.

De�nition 4. An attribution method A is said to satisfy

1. Fidelity-to-control, if for any f ∈ Fd, x,x ∈ X , and i ∈ [d],

xi = xi ⇒ Ai(f,x,x) = 0. (P1)

2. Batchability, if for any f ∈ Fd and any n input/baseline pairs {(xi,xi)}i∈[n],

there exists a function F : Xn 7→ R such that

A(F,X,X) = [A(f,x1,x1), . . . , A(f,xn,xn)], (P2)

whereX , [x1, . . . ,xn] andX , [x1, . . . ,xn].

Many popular attribution methods satisfy most of these six properties, as we show

in the Proposition 1 and 2.

Proposition 1. Integrated Gradients [B33] satis�es all four axioms (A1–A4) and two
properties (P1–P2), and DeepLIFT [B32] satis�es all but the implementation invariance
(A4). In particular, a choice ofF for bothmethods satisfying batchability (P2) isF (X) ,∑n
i=1 f(xi).

Proposition 2. For any U ⊆ [d], let Ū , [d] \ U and de�ne xU t xŪ to be the spliced
data point between x and x such that for any i ∈ [d]

[xU t xŪ ]i ,

{
xi i ∈ U,
xi i ∈ Ū .

(B.3)

�en Shapley values [B31] with a value function vf,x,x(U) , f(xU t xŪ ) satis�es all
four axioms (A1–A4) and the �delity-to-control (P1).

Proof. We include proofs for both propositions in Appendix B.II. �
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B.3 Method

In this section, we formally present CAUSE, a novel framework for learning Granger

causality from multi-type event sequences. Our framework consists of two steps: �rst,

it trains a neural point process (NPP) to �t the underlying event sequence data; then it

inspects the predictions of the trainedNPP to compute aGranger causality statisticwith

some “well-behaved” attributionmethodA(·), which we assume satis�es the following

properties: linearity (A1), completeness (A2), null player (A3), �delity-to-control (P1),

and batchability (P2).

In what follows, we �rst describe the architecture of the used NPP in Section B.3.

�en we elaborate the intuition and the de�nition of our Granger causality statistic

in Section B.3. Section B.3 explains the computational challenges and presents a highly

e�cient algorithm for computing such statistic. We conclude this section by discussing

the choice of attribution methods for CAUSE in Section 9.

A Semi-Parametric Neural Point Process

�e design of our NPP follows the general encoder-decoder architecture of existing

NPPs (Section B.2), but we innovate the decoder part to enable both modeling �exibil-

ity and computational feasibility.

Encoder. First, we convert each event i into an embedding vectorvi that summarizes

both the temporal and the type information for that event, as follows:

vi = [ϑ(ti − ti−1);VT zi], (B.4)

whereϑ(·) is a pre-speci�ed function that transforms the elapsed time into one ormore

temporal features (simply chosen to be identity function in our experiments),V is the

embedding matrix for event types, and recall that zi is the one-hot encoding of the

even type ki.

We then obtain the embedding of a history from event embedding sequences by

hi = Enc(v1,v2, . . . ,vi), (B.5)

where Enc(·) is a sequence encoder and chosen to be a Gated Recurrent Unit (GRU)

[B9] in our experiments.

Decoder. An ideal decoder should full�ll the following two desiderata: (a) it should

be �exible enough to produce from hi a wide variety of λ∗k(t) with complex time-

varying patterns; and (b) it should also be computationally manageable, particularly
in terms of computing the cumulative intensity

∫ ti+1

ti
λ∗k(t′)dt′, a key term in the log-

likelihood-based training given in (B.2) and the de�nition of our Granger causality

statistic in the subsequent subsections.

Wepropose a novel semi-parametric decoder that enjoys both the �exiblemodeling

of CIF and computational feasibility. Speci�cally, for each i ∈ [n], we de�ne the CIF
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λ∗k(t) on (ti, ti+1] to be a weighted sum of a set of basis functions, as follows:

λ∗k(t) =

R∑
r=1

αk,r(hi)ψr(t− ti), (B.6)

where {ψr(·)}Rr=1 is a set of pre-speci�ed positive-valued basis functions, and α :
RNh 7→ RK×R+ is a feedforward neural network that computes R positive weights for

each of the K event types. In this way, by choosing {ψr(·)}Rr=1 to be a rich-enough

function family, the CIFs de�ned in (B.6) are able to express a wide variety of time-

varying patterns. More importantly, since the parts relevant to neural networks—

α(·) and Enc(·)—are separated from the basis functions, we can evaluate the integral∫ ti+1

ti
λ∗k(t′)dt′ analytically, as follows:

∫ ti+1

ti

λ∗k(t′)dt′ =

R∑
r=1

αk,r(hi)Ψr(ti+1 − ti), (B.7)

where Ψr(∆t) ,
∫∆t

0
ψr(t) dt is generally available for many parametric basis func-

tions.

We choose the basis functions {ψr(·)}Rr=1 to be the densities of a Gaussian family

with increasing means and variances. �is design of basis functions re�ects a reason-

able inductive bias that the CIFs should vary more smoothly as the time increases.�e

details are given in Appendix B.II.

From Event Contributions to a Granger Causality Statistic

Now that we have trained a �exible NPP that can successively update the history em-

bedding a�er each event i occurrence and then predict the future CIFs λ∗k(t) a�er ti
until ti+1; we would like to ask: can we quantify the contribution of each past event to
each prediction? Since in our caseλ∗k(t)’s are instantiated by two potentially highly non-
linear neural networks (i.e., Enc(·) andα(·)), it is not as straightforward to obtain the

past event’s contribution to current event occurrence as in the case of some parametric

MPPs (e.g., Hawkes processes).

A natural idea for the aforementioned questionwould be applying some attribution

method to λ∗k(t)’s. To do so, however, there are two challenges. First, the predictions in
our case are time-varying functions rather than static quantities (e.g., the probability

of a class, as commonly seen in existing applications of attribution methods); thus it

is unclear which target should be attributed. Second, as the input to λ∗k(t)’s are multi-

type event sequences with asynchronous timestamps, it is also unclear which baseline

should be used.

We tackle the �rst challenge by setting the cumulative intensity
∫ ti+1

ti
λ∗k(t′) dt′ to

be the attribution target. �is is not only because the cumulative intensity re�ects the

overall e�ect of λ∗k(t′) on (ti, ti+1], but also because it has a clear meaning in the con-

text of point processes: it is the rate of the Poisson distribution that the number of

events of type k on (ti, ti+1] satis�es. More importantly, since the cumulative intensity
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has a closed form as in (B.7), its gradients with respect to its input can be computed

both precisely and e�ciently. Note that by adopting this target, the input now includes

not only {(ti, zj)}j≤i but also ti+1; thus we de�ne xi , [t1, z1, . . . , ti, zi, ti+1] and

write the target
∫ ti+1

ti
λ∗k(t′) dt′ as fk(xi).

As for the second challenge, we choose the baseline of an input xi to be xi ,
[t1,0, . . . , ti−1,0, ti+1]; that is, the one-hot encodings of all observed event types are

replaced with zero vectors. Since xi and xi only di�er in the dimensions correspond-

ing to the event types, i.e., {zj,kj}j≤i, by the �delity-to-control (P1), then only these

dimensions will have non-zero attributions. With completeness (A2), it further implies

that for every type k

fk(xi)− fk(xi) =

i∑
j=1

Aj(fk,xi,xi), (B.8)

where Aj(fk,xi,xi) is the attribution to zj,kj . �us, the term Aj(fk,xi,xi) can be

viewed as the event contribution of the j-th event to the cumulative intensity prediction

fk(xi) relative to the baseline fk(xi). Besides, event timestamps are identical in xi and
xi, thus this contribution comes only from the event type and denotes how type kj
contributes to the prediction of type k for a speci�c event history xi.

AGrangerCausality Statistic. Wehave establishedAj(fk,xi,xi)’s as the past events’
contribution to the cumulative intensity fk(xi) on interval (ti, ti+1]. A further ques-

tion is: canwe infer from these event contributions for individual predictions the population-
level Granger causality among event types?

To answer this question, we de�ne a novel statistic indicating the Granger causality

for type k′ to type k as follows:

Yk,k′ ,

∑S
s=1

∑ns
i=1

∑i
j=1 I(k

s
j = k′)Aj(fk,x

s
i ,x

s
i )∑S

s=1

∑ns
j=1 I(k

s
j = k′)

. (B.9)

Here the numerator aggregates the event contributions for all event occurrences over

the whole dataset, and denominator accounts for the fact that some event types may

occur far more frequently than other types, which can lead to unreasonally large scores

if used without such normalization. Note that an event contribution Aj(fk,x
s
i ,x

s
i )

may be negative when the event j exerts an inhibitive e�ect; thus Yk,k′ can also be

negative and characterize the Granger causality from type k′ to type k even when the

in�uence is inhibitive.

Attribution Regularization. One caveat in (B.8) and (B.9) is that our chosen base-

lines xi have never appeared in the training procedure, thus the value of f(xi) may be

meaningless or even misleading. Ideally, we would like fk(xi) to be the cumulative in-

tensity of type k given that history prior to ti consists of “null” events at t1, t2, . . . , ti.
�us a natural prior re�ecting this idea is to make fk(xi) nearly zero for any hand-

cra�ed baseline xi. Such an “invariance” property on f can be achieved by adding an
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Algorithm 1: Computation of the Granger causality statistic.

Input: Event sequences {{(tsi , ksi )}i∈[ns]}s∈[S], an attribution method A(·),
and a trained NPP

Output: Granger causality statisticY.

1 Initialize Ỹ = 0, I = [S] ;
2 while |I| > 0 do

3 Sample a batch of sequence indices B ⊂ I ;
4 for k = 1, . . . ,K do

5 ComputeC = A(
∑
s∈B

∑ns
i=1 F

s
k,i,X,X);

6 for k′ = 1, . . . ,K do

7 Ỹk,k′+=
∑
s∈B

∑ns
j=1 I(k

s
j = k′)Csj

8 I ← I \ B;
9 Compute Yk,k′ = Ỹk,k′/

∑S
s=1

∑n
j=1 I(k

s
j = k′), ∀k, k′ ∈ [K].

auxiliary l1 regularization for each xi in the NLL given in (B.2), leading to a training

objective

S∑
s=1

ns∑
i=1

{
− log λ∗ksi (t

s
i ) +

K∑
k=1

fk(xsi−1)︸ ︷︷ ︸
negative log-likelihood

+

K∑
k=1

ηfk(xsi−1)︸ ︷︷ ︸
regularization

}
, (B.10)

where η is a hyperparameter.

Computing the Granger Causality Statistic

While (B.9) de�nes Yk,k′ ’s analytically, it is rather challenging to compute them.�is is

because a naive implementation would require applyingA(·) at each event occurrence,
which is computationally prohibitive for a dataset of millions of events. Note that the

normalization in (B.9) can be easily calculated; so ifwewrite Ỹ sk,k′ ,
∑ns
i=1

∑i
j=1 I(k

s
j =

k′)Aj(fk,x
s
i ,x

s
i ), the problem is reduced to how to e�ciently compute

∑S
s=1 Ỹ

s
k,k′ .

We propose an e�cient algorithm to compute
∑S
s=1 Ỹ

s
k,k′ , which is summarized in

Algorithm 1. At the core of our algorithm are two levels of batching: (a) intra-sequence
batching, which allow the computation of Ỹ sk,k′ with only one call ofA(·); and (b) inter-
sequence batching, which enables batch computation of {Y sk,k′}s∈B for a mini-batch of

event sequences indexed by B. We explain the details of these two levels of batching as

follows.

Intra-Sequence Batching. As this part only deals with a particular event sequence,

to simplify the notation, we omit the sequence index s for now. Note that x1 ≺ x2 ≺
· · · ≺ xn and due to the recurrent nature of f , all f(xi) for i ∈ [n] can be computed

in a single forward pass with the shared input xn. Denote by F = {Fk,i(·)}k∈[K],i∈[n]

a matrix-valued function such that Fk,i(xn) = fk(xi) for any k ∈ [K], i ∈ [n].
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�e equivalence between f and F means that,

Aj(fk,xi,xi) = Aj(Fk,i,xn,xn),

which further implies that we can rewrite Ỹ sk,k′ as a weighted sum of attribution scores

for the same input xn and baseline xn. Since we are not interested in computing the

individual attribution scores but their sum, we can leverage the linearity property (A1)

to compute the attribution scores directly for the sum, as shown in the following propo-

sition.

Proposition 3. For an attribution method A(·) with the linearity (A1) and the null
player (A3), it holds that

Ỹ sk,k′ =

ns∑
j=1

I(ksj = k′)Aj

(
ns∑
i=1

Fi,ki ,x
s
n,x

s
n

)
. (B.11)

Proof. �e proof is in Appendix B.II. �

Inter-Sequence Batching. We now discuss how to e�ciently compute {Y sk,k′}s∈B
for a mini-batch of event sequences indexed by B. �e key idea for a signi�cant com-

putational speed-up here is that ifA(·) satis�es batchability (P2), we can then batch the
computation of di�erent sequences with a single call of A(·).

To simplify the discussion, we assumewithout loss of generality thatB = {1, . . . , |B|}
and ns ≡ n for all s ∈ B. LetX = [xs]s∈B and analogously the corresponding base-

linesX. We further override our previous notation anddenote byF = {F sk,i(·)}s∈[S],k∈[K],i∈[n]

a new tensor-valued function such as thatF sk,i(X) = fk(xsi ).�en with Proposition 1,

we have that

A(
∑
s∈B

ns∑
i=1

F sk,i,X,X) =

[
Aj(

ns∑
i=1

Fi,ki ,x
s
n,x

s
n)

]
s∈B
j∈[n]

.

Time Complexity Analysis. With our two-level batching scheme, Algorithm 1 only

requiresO(SK/B) invocations ofA(·), a signi�cant reduction from theO(SNK) in-
vocations required by a naive implementation that directly calculates Yk,k′ ’s, whereN
is the average sequence length. Since modern computation hardware (such as GPUs)

enables calling A(·) with a batch of inputs being almost as fast as calling it with a sin-

gle input, our algorithm can achieve up to three orders-of-magnitude speedup over a

naive implementation on datasets with relatively large N and B. (See Section B.4 for

empirical evaluations.)

Choice of Attribution Methods

In our experiments, we choose the attribution method A(·) to be the Integrated Gra-

dients, which is de�ned as follow:

IG(f,x,x) , (x− x)�
∫ 1

0

∂f(x̃)

∂x̃

∣∣∣∣
x̃=x+α(x−x)

dα, (B.12)
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where� is theHadamard product. Nevertheless, CAUSE does not depend on a speci�c

attribution method but a set of properties that we have stated upfront; this means that

any other attribution methods that satisfy these properties (e.g., DeepLIFT) should be

applicable to CAUSE. Also note that batchability (P2) is only used in the inter-sequence

batching for speeding up the computation; thus, if e�ciency is less of a concern, or the

computation of attributions for di�erent inputs can be accelerated in alternative ways,2

attribution methods that only violate batchability, such as Shapley values, should also

be applicable.

B.4 Experiments

In this section, we present the experiments that are designed to evaluate CAUSE and

answer the following three questions:

• Goodness-of-Fit: How good is CAUSE at �tting multi-type event sequences?

• Causality Discovery: How accurate is CAUSE at discovering Granger causality

between event types?

• Scalability: How scalable is CAUSE?

�e experimental results on �ve datasets show that CAUSE (a) outperforms state-

of-the-art methods in both �tting and discovering Granger causality from event se-

quences of diverse event interdependency, (b) can identify Granger causality on real-

world datasets that agrees with human intuition, and (c) can compute the Granger

causality statistic three orders-of-magnitude faster due to our optimization.

Experimental Setup

Datasets. We designed three synthetic datasets to re�ect various types of event inter-

actions and temporal e�ects.

• Excitation:�is dataset was generated by a multivariate Hawkes process, whose

CIFs are de�ned in (B.1).�e exponential decay kernelswere used, and aweighted

ground-truth causality matrix was constructed with the `1 norms of the kernel

functions φk,k′(·).

• Inhibition: �is dataset was generated by a multivariate self-correcting process

[B24], whose CIFs are of the form: λ∗k(t) = exp(αkt +
∑
i:ti<t

wk,ki), where
ak > 0 and wk,k′ ≤ 0. A weighted ground-truth causality matrix was formed

with the pairwise weights wk,k′ .

• Synergy: Generated by a proximal graphical event model (PGEM) [B8], this

dataset contains synergistic e�ects between a pair of event types to a third event

type. A binary ground-truth causality matrix was constructed from the depen-

dency graph of the PGEM.

2In fact, for almost all attribution methods, the attribution for di�erent inputs is embarrassingly paral-

lelizable.
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We also included two real-world datasets used in existing literature.

• IPTV [B26]: Each sequence records the history of TV watching behavior of a

user, and the event types are the TV program categories. �is dataset, however,

does not contain ground-truth causality between TV program categories.

• MemeTracker (MT):3 Each sequence represents how a phrase or quote appeared

on various online websites over time during the period of August 2008 to April

2009, and the event types are the domains of the top websites. Like previous

studies [B1, B35], a weighted ground-truth causality matrix was approximated by
whether one site contains any URLs linking to another site.

�e parameter settings for synthetic datasets, the preprocessing steps for real-world

datasets, and the dataset statistics are detailed in Appendix B.III.

Methods for Comparsison. We compared our method to the following baselines:

• HExp: Hawkes process with �xed exponential kernels.

• HSG andNHPC: Hawkes process with sum of Gaussian kernels [B37] and non-

parametric Hawkes process cumulant matching [B1]. �ese two methods rep-

resent the state-of-the-art parametric and nonparametric methods for learning

Granger causality for Hawkes process, respectively.

• RPPN: Recurrent point process network [B35], to the best of our knowledge, the

only NPP that can provide summary statistics for Granger causality, which is

enabled by its use of an attention mechanism.

�e implementation details and hyperparameter con�gurations for CAUSE and

various baselines are provided in Appendix B.III

Evaluation Metrics. �e hold-out negative log-likelihood (NLL) was used for eval-

uating the goodness-of-�t of each method on various datasets, and the Kendall’s τ
coe�cient and the area under the ROC curve (AUC) were used for evaluating the es-

timated Granger causality matrix against the ground truth. Non-binary ground-truth

causality matrices were binarized at zero in the evaluation of AUCs. We performed

�ve-fold cross-validation and report the average results.

Detailed Results

Goodness-of-�t

Westart by examining the goodness-of-�t of variousmethods on various datasets, since

if amethod fails to �t the data, it is unlikely to detect the trueGranger causality between

event types. As shown in Figure B.1, CAUSE attains smaller NLLs than all baselines on

3https://www.memetracker.org/data.html
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Fig. B.1: Hold-out NLLs of various methods, where horizontal lines denote the ground-truth NLLs. CAUSE

attains the best NLLs on all datasets.

Table B.1: Results for Granger causality discovery on the four datasets with ground-truth causality available.

�e best and the second best results on each dataset are emboldened and italicized, respectively.

Excitation Inhibition Synergy MT

Method AUC Kendall’s τ AUC Kendall’s τ AUC Kendall’s τ AUC Kendall’s τ

HExp 0.858±0.004 0.453±0.005 0.546±0.002 0.102±0.002 0.872±0.058 0.251±0.039 0.404±0.009 -0.061±0.005
HSG 0.997±0.001 0.635±0.002 0.490±0.002 -0.013±0.002 0.876±0.007 0.254±0.039 0.539±0.008 0.024±0.005
NPHC 0.782±0.007 0.337±0.010 0.400±0.054 -0.138±0.067 0.741±0.129 0.163±0.087 N/A N/A

RPPN 0.595±0.010 0.136±0.012 0.448±0.003 -0.066±0.002 0.891±0.043 0.264±0.029 0.492±0.004 -0.005±0.002
CAUSE 0.920±0.012 0.533±0.013 0.921±0.021 0.532±0.021 0.991±0.004 0.331±0.003 0.623±0.012 0.075±0.007

all datasets, suggesting that CAUSE consistently has a better �t than all baselines. No-

tably, on all three synthetic datasets, the NLLs of CAUSE nearly match those computed

by the ground-truthmodels.�ese results con�rm the �exibility of CAUSE in learning

the various types of event interactions and temporal e�ects.

Causality Discovery

We now examined the performance of CAUSE on Granger causality discovery, both

quantitatively and qualitatively.

Quantitative Analsyis. Table B.1 shows values of AUC and Kendall’s τ of various

methods on the four datasets that have ground-truth causality.�e results in the table

support the following conclusions.

First, CAUSE performs the best overall and is most robust to various types of event

interactions. It not only signi�cantly outperforms all baselines on three of the four

datasets (i.e., Inhibition, Synergy, and MT), but also achieves a close-second on Exci-
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tation, in which events were generated by a Hawkes process, and CAUSE is supposed

to have a disadvantage relative to Hawkes process-based baselines.

Second, once the underlying data generation process violates the assumptions of

Hawkes process and exhibits complex event interactions other than excitation, Hawkes

process-based methods tend to perform poorly, as seen from Inhibition and Synergy.

Finally, despite both beingNPP-basedmethods, RPPNperforms signi�cantlyworse

than CAUSE on all datasets. We suspect that this underperformance is caused by

two issues in RPPN’s construction of the Granger causality statistics with the atten-

tion weights. First, RPPN restricts all attention weights to be positive, thus cannot dis-

tinguish between excitative and inhibitive e�ects. Second, attention mechanism may

not correctly attribute the model’s prediction to its inputs, as shown in several recent

studies [B25, B30].

Qualitative Analysis. Figure B.2 shows the heat map for the Granger causality ma-

trix of IPTV dataset estimated by CAUSE. Almost all diagonal entries have large posi-

tive values, indicating that users, on average, exhibit strong tendencies to watch the TV

programs of the same category. Several positive associations between di�erent TV pro-

gram categories are also observed, such as from military, laws, �nance, and education

to news, and from kids and music to drama. �ese results agree with common sense

and are consistent with the �ndings of an existing study with HSG [B37]. Our method

also suggests several meaningful negative associations, including ads to drama and ed-

ucation to entertainment; such negative associations, however, can never be detected

by models that only consider the excitations between events, such as HSG.

Scalability

Finally, we investigate the scalability of CAUSE in computing the Granger causality

statistic byAlgorithm 1. Figure B.3 shows howmuch speedupAlgorithm 1 achieves over

a naive implementation with di�erent sequence lengths and batch sizes. �e results

demonstrate that with batch size and average sequence length both being relatively

large (i.e., greater or equal to 16 and 100, respectively), our algorithm can achieve over

three orders-of-magnitude speedup relative to a native implementation. Furthermore,

the speedup scales almost linearly with sequence length and batch size when they do

not exceed 150 and 16, respectively, which is consistent with our analysis in Section B.3.
Beyond this regime, only a sublinear relationship between the speedup and batch size

or sequence length is observed, which is because the GPU we tested on was reaching

its maximum utilization.

We have presented CAUSE, a novel framework for learning Granger causality be-

tween event types from multi-type event sequences. At the core of CAUSE are two

steps: �rst, it trains a �exible NPP model to capture the complex event interdepen-

dency, then it computes a novel Granger causality statistic by inspecting the trained

model with an axiomatic attribution method. A two-level batching algorithm is de-

rived to compute the statistic e�ciently. We evaluate CAUSE on both synthetic and

real-world datasets abundant with diverse event interactions and show the e�ective-

ness of CAUSE on identifying the Granger causality between event types.
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Fig. B.2: Visualization of the estimated Granger causality statistic matrices on IPTV.
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Fig. B.3: �e speedup achieved by Algorithm 1 relative to a naive implementation with di�erent average

sequence lengths and batch sizes.
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Appendix

B.I Additional RelatedWork

Event Sequence Modeling With the increasing availability of multi-type event se-

quences, there has been considerable interest in modeling such data for both predic-

tion and inference. �e majority of prior research in this direction has been based on

the theory of point processes [B11], a particular class of stochastic processes that char-

acterize the distribution of random points on the real line. Notably, Hawkes process

[B19, B20], a special class of point process, has been widely investigated, partly due to

its ability to capture mutual excitation among events and its mathematical tractabil-

ity. However, Hawkes process assumes that past events can only independently and

additively in�uence the occurrence of future events, and that in�uence can only be ex-

citative; these inherent limitations have restricted its modeling �exibility and render it

unable to capture complex event interaction in real-world data.

As such, other more �exible models have been proposed, including the piecewise-
constant conditional intensity model (PCIM) [B18] and its variants [B34, B8], and more

recently a class of models loosely referred to as neural point processes (NPPs) [B14,
B36, B27, B35].�ese models, particularly NPPs, generally enjoy better predictive per-

formance than parametric point processes, since they use more expressive machine

learning models (e.g., decision trees, random forests, or recurrent neural networks)

to sequentially compute the conditional intensity until next event is generated. A sig-

ni�cant weakness of these models, however, is that they are generally uninterpretable

and thus unable to provide summary statistics for determining the Granger causality

among event types.

Granger Causality Discovery In his seminal paper, Granger [B17] �rst proposed the

concept ofGranger causality for time series data. Many approaches have been proposed

for uncovering Granger causality for multivariate time series, including the Hiemstra-

Jones test [B21] and its improved variant [B13], Lasso-Granger method [B3], and ap-

proaches based on information-theoretic measures [B22]. However, as these methods

are designed for the synchronous multivariate time series, they are not directly ap-

plicable to asynchronous multi-type event sequence data, since otherwise one has to

discretize the continuous observation window.

Didelez [B12] �rst established the Granger causality for event types in event se-

quences under the framework ofmarked point processes. Later, Eichler, Dahlhaus, and

Dueck [B16] shows that Granger causality for Hawkes processes is entirely encoded in

the excitation kernel functions (also called impact function). To our best knowledge,

existing research for Granger causality discovery from event sequences appears to be

limited to the case of Hawkes process [B16, B37, B1], possibly because of this direct link

between the process parameterization and Granger causality.

Prediction Attribution for Black-BoxModels Prediction attribution, the task of as-

signing to each input feature a score for representing the feature’s contribution tomodel
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prediction, has been attracting considerable interest in the �eld due to its ability to pro-

vide insight into predictionsmade by black-boxmodels such as neural networks. While

various approaches have beenproposed, there are twoprominent groups of approaches:

perturbation-based and gradient-based approaches. Perturbation approaches [B39]

typically comprise, �rst, removing, masking, or altering a feature, and then measur-

ing the attribution score of that feature by the change of the model’s output. While

perturbation-based methods are simple, intuitive, and applicable to almost all black-

boxmodels, the quality of the resultant scores is o�en sensitive to how the perturbation

is performed. Moreover, as these methods scale linearly with the number of input fea-

tures, they become computationally una�ordable for high-dimensional inputs.

In contrast, backpropagation-basedmethods construct the attribution scores based

on the estimation of local gradients of the model around the input instance with back-

propagation. �e ordinary gradients, however, could su�er from a “saturation” prob-

lem for neural networks with activation functions that contain constant-valued regions

(e.g., recti�er linear unit (ReLUs)); that is, the gradient coming into a ReLU during the

backward pass is zero’d out if the input to the ReLU during the forward pass is in a

constant region. One valid solution to this issue is to replace gradients with discrete

gradients and use a modi�ed form of backpropagation to compose discrete gradients

into attributions, such as layer-wise relevance propagation (LRP) [B4] and DeepLIFT

[B32]. Another solution, proposed by Integrated Gradient (IG) [B33], is to use the line

integral of the gradients along the path from the input to a chosen baseline. Sundarara-

jan, Taly, and Yan [B33] show that IG satis�es many desirable properties, as detailed in

Proposition 1.

It is worth mentioning that much existing work o�en uses the intermediate results,

produced by certain intelligible neural network architecture, as the attribution scores

for an input. A most notable example of such an idea is the use of attention weights

induced by some attention mechanism as the importance of the input [B6, B38]. Re-

cently, however, there are growing concerns on the validity of attention weights being

used as the explanation of neural networks [B25, B30]. In particular, Jain and Wallace

[B25] show that across a variety of NLP tasks, the learned attention weights are fre-

quently uncorrelated with feature importance produced by gradient-based prediction

attribution methods, and random permutation of attention weights can nonetheless

yield equivalent predictions.

B.II Additional Technical Details

Proof of Proposition 1

Proof. �at both IG and DeepLIFT satisfy A1–A4 has been established in [B33]. P1

is straightforward from the de�nion of either method. �us, we only prove that both

methods satisfy batchability (P2) with F (X) ,
∑n
i=1 f(xi).
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To prove that IG satis�es batchability, we �rst rewrite the IG(F,X,X) as follows:

IG(F,X,X) = (X−X)�
∫ 1

0

∇XF [X + α(X−X)] dα

= (X−X)�
∫ 1

0

n∑
i=1

∇Xf [xi + α(x− xi)] dα

= (X−X)�
∫ 1

0

n∑
i=1

{∇xif [xi + α(x− xi)]}eTi dα

= (X−X)�
[∫ 1

0

∇xif [xi + α(x− xi)] dα

]
i=1,...,m

,

where the second step is due to that summation and gradients are swapable, and the

third step is because the gradients of di�erent terms are separable.�us, we have

[IG(F,X,X)]:,i = (xi − xi)�
∫ 1

0

∇xif [xi + α(x− xi)] dα = IG(f,xi,xi),

(B.13)

which establishes the formula.

�e proof of DeepLIFT satisfying batchability can be established in a similar way

as IG. �e key part, shown in the Proposition 2 of [B2], is that the attribution scores

produced byDeepLIFT for a neural-network-like function f , an inputx, and a baseline
x, i.e.,DeepLIFT(f,x,x) can be viewed as the Hadamard product between x−x and

a modi�ed gradient of f at all its internal nonlinear layers. Since the last layer of F is a

simple linear addition of all f(xi)’s, the modi�ed gradient ofF for input xi is the same

as the one of f for xi.�us, we have

[DeepLIFT(F,X,X)]:,i = DeepLIFT(f,xi,xi). (B.14)

�

Proof of Proposition 2

We �rst brie�y review Shapley values. Suppose there is a team of d players working

together to earn a certain amount of value. �e value that every coalition U ⊆ [d]
achieves is v(U), where v : 2d 7→ R is a value function. Shapley values, proposed

by Shapley [B31], provide a well-motivated way to decide how the total earning v([d])
should be distributed among such d players. Speci�cally, the Shapley value for each

player i ∈ [d] is de�ned as

φv(i) =
∑

U⊆[d]\{i}

(|U |!(d− |U | − 1)!)

d!
[v(U ∪ {i})− v(U)] . (B.15)

For any target function f ∈ Fd, input x ∈ X , and baseline x ∈ X , we de�ne a
value function vf,x,x(U) , f(xU txŪ ) for anyU ∈ [d], where xU txŪ is the spliced
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data point between x and x, de�ned in (B.3). �en the Shapley values [φvf,x,x(i)]i∈[d]

can be viewed as an attribution method that provides the attribute scores for any f , x,
and x.

Nowwe prove that this attributionmethod based on Shapley valeus satis�es all four

axioms (A1–A4) and the �delity-to-control (P1), as stated in Proposition 2.

Proof. First, it is clear from the de�nition of Shapley values in (B.15) that φvf,x,x(·)
satis�es linearity (A1) and implementation variance (A4). Since Shapley [B31] shows

that for any value function v, the Shapley values φv(·) satis�es that

φv([d])− φv(∅) =

d∑
i=1

φv(i),

substituting our de�nition of the value function φvf,x,x(·) into the above equation

yields

f(x)− f(x) =

d∑
i=1

φvf,x,x(i),

which establishes the completeness (A2). For any i ∈ [d] and U ⊆ [d] \ {i}, we have

vf,x,x(U ∪ {i})− vf,x,x(U) = f(xU∪{i} t xŪ\{i})− f(xU t xŪ )

Note that xU∪{i} txŪ\{i} and xU txŪ only potentially di�er on the i-th dimension.

If f does not depend on the i-th dimension of its input or xi = xi (which implies

xU∪{i} t xŪ\{i} = xU t xŪ ), then f(xU∪{i} t xŪ\{i}) = f(xU t xŪ ) and thereby

φvf,x,x(i) = 0.�us, φvf,x,x(·) satis�es null player (A3) and �delity-to-control (P1).

�

Dyadic Gaussian Basis

Inspired by the dyadic interval bases used by Bao et al. [B7], we choose the basis func-

tions {ψr(·)}Rr=1 to be the densities for a Gaussian family {N (µr, σ
2
r)}Rr=1, which we

term dyadic Gaussian basis.�e means of dyadic Gaussian basis are given by

µr =

{
0, r = 1,

L/2R−r, r = 2, . . . , R,
(B.16)

and the standard deviations byσr = max(µr/3, µ2/3) for r ∈ [R].�is design of basis

functions re�ects a reasonable inductive bias that the CIFs should vary more smoothly

as the time increases. As shown in Figure B.II.1 for an example of L = 100 andR = 5,
the �rst a few bases, due to their small means and variances, capture the short-term

e�ects, whereas the last several characterize the mid/long-term e�ects.
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Fig. B.II.1: An example of dyadic Gaussian bases for L = 100 and R = 5. �e �rst a few bases, due to

their small means and variances, can capture the short-term e�ects, whereas the last several characterize the

mid/long-term e�ects.

Proof of Proposition 3

Proof. We omit the index s in this proof for brevity. First, we rewrite Ỹk,k′ as

Ỹk,k′ =

n∑
i=1

i∑
j=1

I(kj = k′)Aj(fk,xi,xi)

=

n∑
j=1

I(kj = k′)

 n∑
i=j

Aj(fk,xi,xi)


=

n∑
j=1

I(kj = k′)

 n∑
i=j

Aj(Fk,i,xn,xn)

 ,
where in the step step, we replace f withF . SinceFk,i, i.e.,

∫ ti+1

ti
λk(t′)dt, does not de-

pendon the events before the i-th event, with null player (A3), we haveAj(Fk,i,xn,xn) =
0 for any j < i, which further implies that

Ỹk,k′ =

n∑
j=1

I(kj = k′)

[
n∑
i=1

Aj(Fk,i,xn,xn)

]
.

With linearity (A1), we have

Ỹk,k′ =

n∑
j=1

I(kj = k′)Aj

(
n∑
i=1

Fk,i,xn,xn

)
,

which establishes the formula.

�
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B.III Additional Experimental Details

�e settings for synthetic and real-world datasets.

We describe below the setup and preprocessing details for the �ve datasets that we

consider in this paper.�e statistics of these datasets are summarized in Table B.III.1.

• Excitation.�is dataset was generated by a multivariate Hawkes process, whose

CIFs are of the form:

λ∗k(t) = µk +
∑
i:ti<t

αk,k′βk,k′ exp[−βk,k′(t− ti)].

We set S = 1000, K = 10, ns ∼ Poisson(250), µk ∼ Uniform(0, 0.01),
and βk,k ∼ Exp(0.05). To generate a sparse excitation weight matrix A ,
[αk,k′ ]k,k′∈[K], we �rst selected all its diagonal entries andM = 16 random o�-

diagonal entries, then generated the values for these entries fromUniform(0, 1),
and �nally scaled the matrix to have a spectral radius of 0.8.

• Inhibition. �is dataset was generated by a multivariate self-correcting point

process, whose CIFs take the form:

λ∗k(t) = exp(αkt+
∑
i:ti<t

wk,ki).

WechoseS = 1000,K = 10,ns ∼ Poisson(250), andαk ∼ Uniform(0, 0.05).
To generated a sparse weight matrixW = [wk,k′ ]k,k′∈[K], we �rst selected all its

diagonal entries andM = 16 randomo�-diagonal entries and further generated

the values for these entries from Uniform(−0.5, 0).

• Synergy.�is datasetwas generated by a proximal graphical eventmodel (PGEM)

[B8]. PGEM assumes that the CIF of an event type depends only on whether or

not its parent event types (speci�ed by a dependency graph) have occurred in

the most recent history. We designed a local dependency structure that consists

of �ve event types labeled as A–E. Among these event types, type E is the out-

come and can be excited by the occurrence of type A, B, or C; type A and B, only

when both occurred in the most recent history, would incur a large synergistic

e�ect on type E; type C has an isolated excitative e�ect on type E and does not

interacts with other event types; and �nally, type D does not have any excitative

e�ect and is introduced to complicate the learning task.�e dependency graph,

together with the corresponding time windows and intensity tables, illustrated

in Figure B.III.1. To add more complexity to this dataset, we further replicated

this local structure for another copy, leading to a total ofK = 10 event types. We

generated S = 1000 event sequences with a maximum time span of T = 1000.

• IPTV. We obtained the dataset from4. We further normalized the timestamps

into the days and splitted long event sequences so that the length of each se-

quence is smaller or equal to 1000.

4https://github.com/HongtengXu/Hawkes-Process-Toolkit/tree/master/Data
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• MT. We downloaded the raw MemeTracker phrase data from5. We �ltered the

phrase data that occurred from 2008-08-01 to 2008-09-30 and from the top-

100 website domains. We further normalized the timestamps into hours and

�ltered out those event sequences (i.e., phrase cascades) whose lengths are not

in between 3 and 500.

Table B.III.1: Statistics for various datasets.

Dataset S K # of events Ground truth

Excitation 1,000 10 250,447 Weighted

Inhibition 1,000 10 250,442 Weighted

Synergy 1,000 10 178,338 Binary

IPTV 1,869 16 966,338 N/A

MT 382,014 100 3,419,399 Weighted

	𝐴 	𝐵 	𝐶

	𝐸 𝐷	

100 100 10

𝜆* = 𝜆, = 0.01
𝜆. = 𝜆/ = 0.1
𝜆0 = 0.01 + 𝜆0 𝑥*, 𝑥, + 𝜆0 𝑥.

𝜆0 𝑥*, 𝑥, ¬𝑥𝐴 𝑥𝐴
¬𝑥𝐵 0 0
𝑥𝐵 0 0.1

¬𝑥5 𝑥5
𝜆0 𝑥. 0 0.03

Fig. B.III.1:�e dependency graph, time windows, and intensity tables for the PGEMused in generating the

Synergy dataset.

Implementation Details and Hyperparameter Con�gurations for Various

Methods

For CAUSE, the Enc(·) and the α(·) were implemented by a single-layer GRU and a

two-layer fully connected network with skip connections, respectively.�e dimension

of event type embeddings was �xed to 64, and the number of hidden units for GRU

was set to be 64 for synthetic datasets and 128 for real-world datasets. �e number of

basis functionsR and the maximummeanLwere chosen by a rule of thumb such that

µ2 and µR are of the same scale as the 50th and the 99th percentiles of the inter-event

elapsed times, respectively. �e optimization was conducted by Adam with an initial

learning rate of 0.001. A hold-out validation set consisting of 10% of the sequences

of the training set was used for model selection; the model snapshot that attains the

smallest validation loss was chosen. As events sequence lengths vary greatly on two

real-world datasets, in constructing mini-batches for both training and inference, we

adopted the bucketing technique to reduce the amount of wasted computation caused

by padding. Finally, the line integral of IG, de�ned in (B.12), was approximated by

20 steps for MT and 50 steps for other datasets; a smaller number of steps, although

5https://www.memetracker.org/data.html#raw
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may result in certain lose of accuracy, allows for a larger batch size and thus shorter

execution time for attribution.

For the Hawkes process-based baselines—HExp, HSG, and NHPC—their imple-

mentation was provided by the package tick [B5].�emost relevant hyperparameters

for each method were tuned by cross-validation.

As there is no publicly available codes for RPPN, we implemented it with our best

e�ort. Its overall settings for architecture and optimization is similar to the ones for

CAUSE.

Platform and Runtime

All experiments were conducted on a server with a 16-core CPU, 512G memory, and

two Quadro P5000 GPUs. On the largest dataset, MT, the total runtime for CAUSE

was less than 3 hours, including both training and computing the Granger causality

statistic.

Qualitative Analysis on MT

Since there are too many event types in MT, instead of a heat map, we visualize the

causality matrix as a graph and show in Figure B.III.2a and Figure B.III.2b the top-two

communities of that graph, where the directed edges denote the estimated Granger

causality betweenpairs of domains.6 In Figure B.III.2a, the domainnews.google.com
centers in the middle and is pointed by many sites, which is unsurprising because

Google News aggregates articles from other publishers and websites. Our method also

correctly identi�es other major “information-consuming” domains such as boglehea
ds.org, an active forum for investment-related Q&A. In Figure B.III.2b, the then very

popular social networking website blog.myspace.com sits in the center of the com-

munity. Our method also identi�es credible excitative relationships between the sub-

domains of craigslist.org, a mega-website that hosts classi�ed, local advertise-

ments.

B.IV A Primer on Measure and Probability�eory

In this section, we review some of the basic de�nitions of in measure theory, which

may help the understanding of the de�nition ofGranger causality formultivariate point

processes. Most of the content in this section were adapted based on primarily based

on the Chapter 1 of [B15] and the Appendix 3 of [B11],

Let Ω be a set of “outcomes” and F a nonempty collection of subsets of Ω. �e set

F is σ-algebra of Ω, if it is closed under complement and countable unions; that is,

1. if A ∈ F , then Ω \A ∈ F , and

2. if Ai ∈ F is a countable sequence of sets, then ∪iAi ∈ F .

6�e graph visualization and community detection were performed using the so�ware Gephi.
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(a)MT (Community 1) (b)MT (Community 2)

Fig. B.III.2: �e top-two communities of the estimated Granger causality statistic matrices on MT (Fig-

ure B.III.2a & B.III.2b). Better viewed on screen.

With these two conditions, it’s easy to see that σ-algebra is also closed under arbitrary

(possibly uncountable) intersections. From this, it follows that given a nonempty set

Ω and a collection of A of subsets of Ω, there is a smallest σ-algebra containing A;
we denote such smallest σ-algebra by σ(A). One particular σ-algebra is of particular
interst—Borel σ-algebra; that is, the smallest σ-algebra containing all open sets inRd,
denoted byRd. Speci�cally, let Sd be the empty set plus all sets of the form (a1, b1]×
· · · (ad, bd] ⊂ Rd, where −∞ ≤ ai < bi ≤ ∞, thenRd = σ(Sd). �e superscript d
is dropped when d = 1.

A pair (Ω,F), in which Ω is a set andF is a σ-algebra of Ω, is called ameasurable

space. Ameasure de�ned on (Ω,F) is a nonnegative countably additive set function;
that is a function µ : F 7→ R with

1. µ(A) ≥ µ(∅) = 0 for all A ∈ F , and

2. if Ai ∈ F is a countable sequence of disjoint sets, then

µ(
⋃
i

Ai) =
∑
i

µ(Ai)

If µ(Ω) = 1, we call such a µ a probability measure. �e triplet (Ω,F , µ) is called a

measure space, and a probability space if µ is a probability measure.

Given a probability space (Ω,F , µ), a real-valued functionX de�ned on Ω is said

to be a randomvariable if for every Borel setB ∈ RwehaveX−1(B) , {ω : X(ω) ∈
B} ∈ F ; in another words, X is F-measuable. A stochastic process is a collection

of random variables {Xi}i∈I de�ned on a common probability space and indexed by

a index set I . In most cases, the index set can be positive numbers N+, or real line

R+. A �ltration is a sequence of σ-algebras, denoted by {Fi}i∈I , if Fj ⊆ Fi if j ≤ i
and i, j ∈ I . Given a stochastic process {Xi}i∈I de�ned on (Ω,F , µ), the natural
�ltration of F with respect to the process is given by

Hi , σ
(
{X−1

j (B)|j ∈ I, j ≤ i, B ∈ R}
)
. (B.17)
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It is in a sense that the simplest �ltration �ltration available for studying the given:

all information concerning the process, and only that information, is avaiable in the

natural �ltration.�us, the natural �ltrationHi can be o�en be viewed as the “history”
of the subprocess {Xj}j≤i,j∈I . Note that sometimes the de�nition in (B.17) is simply

written asHi , σ ({Xj |j ∈ I, j ≤ i}).
A point process {Ti}i≥1 is a real-valued stochastic process indexed on N+ such

that Ti ≤ Ti+1 almost surely. Each random variable is generally viewed as the arrival

timestamp of an event. For each point process, one can de�ne a continuously indexed

stochastic process associated with it called counting process, asN(t) ,
∑∞
i=1 1(Ti ≤

t). From this de�nition, it is easily seen that every realization of a counting process is a

càdlàg (i.e. right continuous with le� limits) step function, and that a counting process

N(t) equivalently de�nes a point process, as one can recover the event timestamp by

Ti = inf{t ≥ 0 : N(t) = i}. Due to this equivalence, the phrases point process

and counting process, as well as their notation, {Ti}i∈N+
andN(t), are o�en used in-

terchangably in the literature. AK-dimensionalmultivariate point process (MPP) is

a coupling of K point/counting process N(t) = [N1(t), N2(t), . . . , NK(t)]. A real-

ization of a multivariate point process is a multi-type event sequence, {(ti, ki)}i∈N+
,

where ti indicates the event timestmap of the i-th event, and the ki indicates which
dimension the i-th event comes from (o�en interpreted as event type).

�e most common way to de�ne an MPP is through a set of conditional intensity

functions (CIFs), one for each event type. Speci�cally, let H(t) , σ({Nk(s)|k ∈
[K], s < t}) for any t be the natural �ltration of MPP and let H(t−) , lims↑tH(s)
the CIF for event type k is de�ned as the expected instantaneous event occurrence rate
conditioned on natural �ltration, i.e.,

λ∗k(t) , lim
∆t↓0

E[Nk(t+ ∆t)−Nk(t)|H(t)]

∆t
,

where the use of the asterisk is a notational convention to emphasize that intensity

λ∗k(t) must beH(t)-measurable for every t.
Finally, for any K ⊆ [K], denote by HK(t) the natural �ltration expanded by the

sub-process {Nk(t)}k∈K, i.e.,HK(t) = σ({Nk(s)|k ∈ K, s < t}), and further write

H−k(t) = H[K]\{k}(t) for any k ∈ [K]. For a K-dimensional MPP, event type k is

Granger non-causal for event type k′ if λ∗k′(t) is H−k(t)-measurable for all t. �is

de�nition amounts to saying that a type k is Granger non-causal for another type k′

if, conditioned on the history of events other than type k, the future λ∗k′(t) does not
depend on the historical events of type k at any time. Otherwise, type k is said to be

Granger causal for type k.
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Abstract. Over the recent decades, numerous evaluations of automated
methods for detecting phishing attacks have been reporting stellar de-
tection performances based on empirical evidence. �ese performances
o�en neglect the adaptive behavior of an adversary seeking to evade
detection, yielding uncertainty about their adversarial robustness. �is
work explores the adversarial robustness of highly in�uential and recent
detection solutions, by assessing their common detection strategies. Fol-
lowing discussions of potential evasion techniques of these strategies, we
present examples of techniques that enable evasion through impercep-
tible perturbations. In order to enable and improve future evaluations
for adversarial robustness, a set of design guidelines is proposed.

�e layout has been revised.



Paper C. Towards Adversarial Phishing Detection

C.1 Introduction

Protecting digital infrastructure againstmalicious attacks has become essential as com-

putational systems increasingly store and exchange private information of interest.�is

has motivated the design of initiatives to make the systems under attack fundamentally

more secure, causing adversaries to adopt attacks that circumvent these initiatives by

exploiting the social behavior of users of the systems rather than the system itself. A

type of these attacks, phishing has had increased frequency in recent years [C35, C1],

and was described as the most widely adopted method for criminals to get unautho-

rized access to private networks in 2017.

Phishing attacks seek to exploit users by deceiving them, through some form of

non-physical interaction, to release sensitive information for the bene�t of the adver-

sary [C19]. Since their discovery, over two decades ago, numerous research initiatives

have tried to design solutions for automating identi�cation of these attacks, in order to

actively prevent them from reaching their targets [C36].�is has yielded solutions that

demonstrate high accuracy for detecting these attacks, yet it has been highlighted that

this performance is seemingly counter-intuitive and in contradicting to the observed

volume of attacks [C30].

Following this, it was deemed that the used evaluation methodologies in�uenced

this phenomenon, emphasizing that a very limited set of methods accounted for the

adaptive behavior of adversaries in their evaluation. �ereby, these solutions could

potentially be relying on attributions of phishing attacks that are exploitable, and po-

tentially enable adversaries to �nd attacks that evade detection. �e absence of these

considerations serves as the main motivation behind this work, as stated performance

might be causing a false sense of security, as evaluations are unable to re�ect the true

adversarial setting that a detection solution faces in practice.

Firstly, we cover related work that has addressed problems of evaluation meth-

ods for the non-adversarial setting, and address the situation of varying de�nitions

of phishing attacks (Section C.2). Following this, we introduce a new terminology for

phishing attacks, and their associated adversarial environment, that is independent of

implementations and applications (Section C.3). We then introduce a set of axioms for

phishing attacks, that encapsulate the functional properties of the attacks, and serve

as abstract guidelines for selecting information to use for inferring attacks in a given

context (Section C.4). Using the introduced terminology and axioms, we then assess

two groups of existing work, highly in�uential and recent, by presenting four common

strategies that the selected methods use for inferring attacks. �e robustness of these

strategies, to an adversary with an objective of creating phishing attacks that avoid de-

tection, is then discussed and examples of perturbations that enable evasion are pre-

sented (Section C.5). Based on the knowledge obtained throughout the assessment, we

present a set of design guidelines for designers of future detection solutions to adopt, in

order to enhance robustness to adaptive attacks and enable evaluations of their solution

(Section C.6).�e contributions provided by this work can be summarized as:

• Propose a set of axioms for phishing attacks using a terminology that is indepen-

dent of the application environment.
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• Demonstrate and discuss the adversarial robustness of commondetection strate-

gies among highly in�uential and recent detection solutions.

• Following the assessment, put forward a set of design guidelines to enable and

improve evaluations of adversarial robustness.

�e implementation of the experiments for the conducted assessment, including

reproductions of detection solutions and perturbation methods, is provided with open

access at:

https://github.com/tpanum/towards-adversarial-phishing-detection.

C.2 Background

In 1995 criminals performed a large scale attack on users of the chat service America

Online (AOL), that involved tricking users into sharing their passwords, as the crimi-

nals exploited so�ware to impersonate sta�members of AOL [C43, C37].�is incident

is o�en associated with the origin of phishing attacks, and despite numerous initiatives

to combat the attack, certain sources state that phishing attacks have never been more

frequent [C17, C1, C34, C40]

Marchal et al. highlighted that this fact is counter-intuitive to the the fact that exist-

ing phishing detection solutions are reporting detection accuracy of over 99.9% [C42,

C30].�ey suggested that the cause might be design limitations of the methods, mak-

ing them infeasible to deploy in real-world settings, or that evaluations of these meth-

ods are biased [C30].

Following this, they propose a systematic methodology with recommendations for

future designers of detection solutions, that covers the topics of: data usage, evaluation

metrics and temporal resilience. Within the scope of temporal resilience, they empha-

size that these solutions are likely to see active attempts of evasion over time and deem

that detection solutions should seek to become robust against these attempts. We refer

to the ability for the solutions to resist these evasion attempts as adversarial robustness

and cover it in greater detail in Section C.3. Marchal et al. �nds that a limited set of

methods have directly addressed their adversarial robustness, which could potentially

cause them to be open to evasion in the setting with an adversary.

While phishing attacks have been studied thoroughly, a recent meta-analysis of sci-

enti�c publications showed that a variety of de�nitions of phishing attacks exist across

the literature [C23]. �e cited analysis examined 536 publications containing 113 def-

initions, highlighting that de�nitions have varied globally across time and internally

among research groups. Taking all of these de�nitions and their variations into ac-

count, Lastdrager et al. arrived at the following de�nition of phishing:

De�nition 1 (from [C23]). Phishing is a scalable act of deception whereby imperson-

ation is used to obtain information from a target.

Here, it is essential to clarify that scalable refers to the relative e�ort for an adversary

to perform the attack. Lastdrager et al. states that this formulation encapsulates highly
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targeted attacks, o�en referred to as spear phishing, while disallowing face-to-face in-

teraction and phone calls as valid measures for conducting phishing attacks. Imper-

sonation as a measure for obtaining information can be exempli�ed by falsely claiming

to be a policeman in order to see an identity card with sensitive information.

Despite this de�nition being able to express commonalities among historical de�-

nitions for various environments, it does not cover the properties of the environments

hosting these attacks. We seek to establish more clarity of the problem of phishing

detecting and address this gap, de�ning terminology capable of expressing the shared

properties of these environments in conjunctions with elements of phishing detection.

Following this, we decompose De�nition 1 into a set of axioms of phishing attacks ex-

pressed using the established terminology.�is will serve as language for clarifying the

adversarial setting in which phishing detection solutions exist, and the challenges that

arise when seeking adversarial robustness.

C.3 Terminology

Phishing attacks are known to exist acrossmultiple environments, such as: instantmes-

saging, websites, and emails.�ese environments share commonproperties that enable

them to host phishing attacks. �roughout this section we seek to derive these prop-

erties, by establishing a terminology for phishing attacks, their related entities, and the

interference conducted by detection solutions.

De�nition 1 clearly states that the objective for the adversary conducting the phish-

ing attack, is to obtain information. In order for this to be feasible, the environment

must have some ability to exchange information across certain subjects. We denote the

exchanged information as messages and the method of exchange as a channel. Each
message has some content and a pair of subjects that re�ect the sender and the recipi-
ent. We refer to an environment with these abilities as amessaging environment, which
e�ectively serves as the foundation for phishing attacks to exist.

Attacks are carried by messages and are only functional when recipients receive

and read them. �is fact serves as the motivation for the design of phishing detection

solutions, that seek to e�ectively �lter outmessages being sent that contain attacks, such

that they never reach their recipient.�roughout this work we refer to these solutions

as detectors and detection solutions interchangeably.
Naturally, the objective for these detectors is to categorize messages as benign or

phishing with limited misclassi�cations. In order for a detector to categorize a mes-

sage as phishing, it relies on a set of attributes that messages with phishing attacks are

expected to have. We refer to these attributes as phishing attributes, for which each

detector has a set of phishing attributes that e�ectively serves as the requirements for a

message to be considered a phishing attack.

Let a detector be a function, that maps a messagem to a set of phishing attributes

from a set of candidate attributes AD , such that D(m) ⊆ AD . �e candidate set AD
serves as a speci�cation of features that a message must have to be considered phish-

ing for the respective detector. A message m is considered to be a phishing attack if,

and only if, the detector yields the entire set of phishing attributes from the candidate
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set, such thatD(m) ⊇ AD . Note that this discrete formalization does not directly en-

capsulate applications relying on probabilistic approaches. However, ultimately these

solutions are used for classi�cation, e�ectively forcing them to be discrete functions

as they predict discrete classes. See Section C.5. Importantly, this formulation intents

to emphasize the scope of information used for inferring attacks, thus excluding more

complex compositions of logic for simplicity purposes.

Given that detectors need to specify a candidate set of phishing attributes, the ex-

tent to which these de�nitions re�ect the ground-truth set of attributes is uncertain, as

obtaining completeness of this set is deeply philosophical. However, observations of

successful attacks can serve as samples of empirical evidence of messages that contain

the ground-truth set of attributes. Here we let the ability to obtain ground-truth cate-

gorizations of messages be expressed by an oracle function that maps a messagem, to

a set of phishing attributes from the ground-truth candidate set of phishing attributes

AGT , such thatO(m) ⊆ AGT . Similar to detectors, a messagem is a phishing attack

if the oracle yields the ground-truth set of phishing attributes in its entirety.

Using this formulation, the natural objective for adversaries is to �nd a messagem
that satis�es the constraint O(m) ⊇ AGT . When a detection solution is introduced

into a previously undefended environment, it challenges the adversaries by requiring

that the message must also be incorrectly classi�ed by the detector. �ereby, the given

message m must also satisfy D(m) ⊂ AD to be a valid attack. We refer to this con-

straint as circumvention.
Occurrences of messages that satisfy circumvention is caused by over-attribution.

Over-attribution is an inherit problem of the assumptions of phishing attacks adopted

by a given detector. Concretely, it occurs when the set of phishing attributes used by

the detector AD includes attributes that are unrelated to the ground-truth, such that

AD 6⊆ AGT .�ereby, the detector relies on attributes of themessage that are unrelated

to its ability to carry an attack.

Conversely, when the detector’s candidate set of attributes is a subset of the ground-

truth candidate set, AD ⊂ AGT , it can cause the detector to have overly defensive

behaviour. We refer to this behaviour as under-attribution, and it can cause benign

messages to falsely be considered attacks. Such situations are highly undesirable, as it

can cause the detectors to become inapplicable for practical settings.

C.4 Axioms

�e fact that the true attributes of phishing attacksAGT are not directly observable, re-

mains the core challenge for the process of designing detection solutions. Knowing this

has driven the community to create numerous de�nitions [C23], which is undesirable

for establishing common progress. As ameasure to improve upon this situation, and as

an attempt to establish a common perception of the problem of phishing, we propose

a set of axioms. �ese axioms serve as abstractions of phishing attributes, which de-

tection solutions should explicitly account for in their method of inference. We derive

these axioms by examining and decomposing De�nition 1.
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De�nition 1 initially states Phishing is a scalable act [...], emphasizing that the act
(of phishing) has to be scalable, giving name to the �rst decomposed axiom.

AxiomScalable. Being scalable in the context of phishing attacksmeans that themethod

of carrying out the attack should be inexpensive. Importantly, this axiom does not ad-

dress the volumes of attacks, and thereby the more targeted variations of email phish-

ing, such as spear phishing, that also satisfy this axiom [C23].

Remark. Cost is context dependent, and the boundary for inexpensive is largely deter-
mined by a threat model for the respective environment. Examples of scalable attacks

are phishing attacks conducted using inexpensive channels, such as email, as opposed

to face-to-face communication which is considered expensive. Formost practical envi-

ronments, the use of a certain channel is o�en associated with a foreseeable and invari-

ant cost. If such a cost is considered inexpensive, solutions acting in an environment,

that uses solely such a channel, can implicitly satisfy this axiom.

Following this, additional speci�cations of the mentioned act are covered by: [...]
of deception whereby impersonation is used [...]. Here, impersonation is described as a

method of deception, serving as a functional dependency of the mentioned act. We

decompose this functional dependency of impersonation into an axiom of the same

name.

Axiom Impersonating. An essential ability of phishing attacks, is the ability to deceive

victims into believing that the sender’s identity, of a message carrying an attack, is gen-

uine and benign. Adversaries exploit identities across various abstractions of subject

identities, varying from identities of speci�c subjects to mimicking a class of subjects.

Exemplifying this in a context of websites, an adversary might seek directly replicate

the appearance of a speci�c bank, e.g. Bank of America, or alternatively construct an

appearance that resemble a generic identity of banks as a class.

Remark. �is axiom implies that recipients of messages are to a certain degree respon-

sible for validating the identities of senders. Additionally, their ability to do this must

be imperfect in order for adversaries to exploit this axiom.

Lastly the de�nition states that the adversarial objective of the attack is: [...] to
obtain information from a target. �is objective suggests that the attack should induce

some action that leads to the exchange of information, we capture this by the following

axiom.

Axiom Inducive. As phishing attacks seek to exploit the users of a system rather than

the system itself, it is necessary for the recipient of the attack message to conduct some

action that allows for the attacker to ful�ll his objective of obtaining information.�is

axiom encapsulates the fact that usersmust act upon interpreting the receivedmessage,

that cause the adversary to obtain desired information.

C.5 Assessment of Existing Methods

Numerous initiatives from academia and industry have proposed methods for detect-

ing phishing attacks without human intervention [C22].�ese solutions have reported
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impressive performancemeasures based on historical observations of phishing attacks.

It is o�en implicit or unknown to which extent these observations re�ect the posterior

measures that adversaries are likely to adopt for evading a detection solution, while

maintaining functional attacks.�is naturally yields uncertainty about to which extent

the work accounts for evasion techniques. A study, that has analyzed lateral phishing

attacks at large-scale, suggests that adversaries are willing to invest additional time into

avoid being detected by their victims (opposed to a detection solution) 1 [C18].

�erefore, we seek to assess the ability of existing work to perform under these con-

ditions, through an assessment of their adversarial robustness. For the assessment, we

include methods of two categories, namely highly in�uential and recent. For highly in-
�uential methods, we aggregated the union of the ten most cited (or highest ranked)

publications among the search results from a series of well-established search engines

commonly used by the scienti�c community 2. �roughout these searches we used

search queries related to phishing detection 3. Most of the publications within this

group have impacted a network of succeeding solutions that either adopt a similar

methodology or directly extend the given method. As a measure to explore if adver-

sarial robustness has changed over time, and acknowledging that high citation counts

favors older publications, we furthermoremanually select a group of recently published

methods that use novel methodologies for inference. �e full list of methods selected

for the assessment can be seen in Table C.5.1.

�e selected methods are designed for a limited set of messaging environments,

suggesting that these environments, namely the web and email, remain of highest in-

terest. �e web is an environment in which websites are exchanged across publishers

and consumers, through servers and clients typically using the HTTP protocol as a

channel. Email is an environment for exchange of text-based messages sent across the

channels of SMTP, POP3 and IMAP.We speculate that this dominance of environments

is largely caused by the large volume of phishing attacks in these environments, serving

as a natural starting point for solutions seeking to detect attacks. Importantly, as sug-

gested by the proposed axioms in Section C.4, attacks are not strictly limited to only

exist in these environments.

Examining the selectedmethods is challenged by the fact that none of themprovide

a publicly accessible implementation. Additionally, reproducing an implementation of

these methods is challenged by the the fact they o�en rely on private datasets or third-

party components that are unrecoverable, such as older search engines.�is inherently

makes evaluations of adversarial robustness di�cult, as perturbations for evasion re-

quires access to the output of an implementation to validate their performance. Ad-

ditionally, most of the methods do not explicitly state the entire set of attributes that

their method relies on for classifying a message as a phishing attack. In respect to our

1Importantly, as more time is invested into individual attacks, ful�llment of the axiom of scalability

decreases.
2Search engines: Web of Science, Scopus, IEEE Xplore, Google Scholar.
3�e searches were conducted during September and October 2019 and used the queries “phishing de-

tection” and “phishing classi�cation”.
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notation, this e�ectively leaves the candidate set of phishing attributes, for a given de-

tector, AD to be unknown. We address this by only assessing common attributes and

methodologies that are thoroughly covered across multiple methods which expressed

core ideas of the inference design.

�ese common attributes and ideas are expressed as strategies, for which we iden-

ti�ed four among the selected methods: Visual Similarity (VS), Statistical Modelling

(SM), Reverse Search Credibility (RSC), Channel Meta-information (CI). We seek to

either show perturbations that enable evasions of the given strategy, or discuss funda-

mental problems that are likely to enable evasions.

Only two of the recently proposed methods [C10, C3] have been evaluated with

respect to adversarial robustness. We attempt to reproduce one of the solutions and �nd

evidence suggesting that the reported adversarial robustness is �awed. More details are

contained within Section C.5.

Visual Similarity

Human perception is o�en the centrepiece of impersonation, known to be an axiom of

phishing attacks, as it is exploited to deceive recipients intomisinterpreting the identity

of the sender. Certain solutions use a strategy that seeks to detect attacks by mimick-

ing human perception of messages’ visual identity and ideally is able to di�erentiate

between messages that appear to have similar and unique visual identities.�ese sim-

ilarity measures are then used in conjunction with appearances of known benign mes-

sages, to detect the visual similarity of future messages. If a message is similar to the

set of known benignmessages, while originating from a di�erent source, then it is con-

sidered to be impersonation and for some methods this is the only attribute required

to be considered a phishing attack. �is strategy is expressed in the following derived

attribute of phishing attacks:

PhishingAttribute 1. Sharing visual identity with an already observed benignmessage

while originating from a di�erent source.

Fu et al. implements this strategy bymeasuring the visual similarity using the Earth

Mover’s Distance for pixel intensity values of rendered websites [C14]. Chen et al. use

Normalized CompressionDistance for byte-representations of rendered websites’ pixel

intensities [C8, C9]. Mao et al. introduce a method that implements this attribute by

comparing aggregations of a page’s HTML elements, including respective CSS styles

for each element, thus assuming similarities across these aggregations are identical to

their rendered representations [C29, C28]. Corona et al. introduce a two-fold method

for detecting attacks, for which one component uses image descriptors, in the form of

HistogramofOrientedGradients, and color histograms tomeasure for visual similarity

among websites that host phishing attacks from phishing kits [C10].

We argue that Phishing Attribute 1 is a direct adoption of Axiom Impersonating,

thereby serving as a useful attribution for inferring attacks. However, measuring the

correctness of models, that seek to mimic human perception, is di�cult and the in-

ability to do so can lead to potential imperfections. �ese imperfections can poten-

tially serve as an opportunity for exploitation that would enable adversaries to create
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attacks that circumvent detection. For demonstrative purposes, we employ a perturba-

tion technique that yield seemingly imperceptible changes, and thereby are expected

not to a�ect Phishing Attribute 1. However, this perturbation technique signi�cantly

changes the similarity values of NCD [C8, C9].�e technique is based on the fact that

colors, in their binary representation, are completely distinct while color perceptions

of humans are more �uid [C12].

�ereby, conducting color perturbations that are small in the perception space of

humans still yield large distinctive changes in the binary changes. We exploit the HSL

(hue, saturation, light) color space, for which changes in its continuous values re�ect

human perception better than similar changes conducted in the frequently used RGB

(red, green, blue) color space. For the implementation of this color space, we use

HSLuv [C7], and perturb images of websites by increasing saturation values by 1% and

projecting the values to respective numerical limits. Let the similarity measure for two

websites xi and xj be speci�ed by NCD(xi, xj)→ R ∈ [0; 1], for which higher values
re�ect more similarity. Additionally, let a given appearance of a website be x, for which
x′ is the perturbed variant of x. �e experiments showed that the perturbation tech-

nique dropped the similarity scores signi�cantly, e�ectively causing NCD(x, x′) ≈ 0,
for the most popular websites of the Tranco list [C25]. Given that phishing attacks of-

ten impersonate popular websites, this suggests that this perturbation technique could

potentially lead to a consistent method for circumventing detection. Examples of per-

turbations, and the ability of the technique to in�uence the similarity score, can be seen

in Figure C.5.1.

While our perturbation technique for NCD illustrates that speci�cally NCD is not

adversarial robust, we argue that similar imperfections will exists for anymethod using

the VS strategy until human perception have been e�ectively veri�ed to be reproduced

in a computational setting.

google.com

Original

+

Perturbation (× 50)

× 0.02 =

HSL Perturbed

facebook.com + × 0.02 =

Fig. C.5.1: Visual appearances of the two most popular websites from the Tranco list [C25], being perturbed

by tiny shi�s in the HSL color space. For visualization purposes, the perturbations are enhanced by a mul-

titude. �ese perturbations cause signi�cant drops, NCD(x, x′) − NCD(x, x) = −0.96 ± 0.01, in the

visual similarity scores of NCD while being seemingly imperceptible.

Reverse Search Credibility

Search engines are a fundamental tool for �nding and ranking information from the

Internet using search queries of provided keywords. �is strategy is based on the as-
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sumption that search engines only display trustworthy and credible websites in their

search results. Consequently, the absence of given websites in search results can be

attributed to a website being a phishing attack, expressed in the following derived at-

tribute:

Phishing Attribute 2. Absence of a given website in the most relevant search results

returned by querying search engines with a signature derived from the given website.

Zhang et al. and Xiang et al. implement this attribute by using the term frequency

of infrequent words, from a corpus of websites, for creating signatures of individual

websites used for querying the Google search engine [C45, C44]. Dunlop et al. expand

upon this strategy by deriving the text of websites using Object Character Recognition

(OCR), in order to be more robust against imperceptible text to image transformations

of website content [C11]. Chiew et al. introduce a method extracting logos of websites,

using them as signatures for reverse image searches [C26].

�ese studies demonstrate promising empirical evaluations using real-world data.

However, we question their adversarial robustness as Phishing Attribute 2, su�er from

some fundamental assumptions that can be exploited by an adversary. Firstly, we argue

that the related attribute of the strategy does not align with any of the proposed axioms

in Section C.3, thereby causing over-attribution. Secondly, the strategy puts forward

strong assumptions on the algorithmic functionality of the search engines, which re-

main undocumented due to commercial interest, thus creating uncertainty about the

functionality of crucial components for the design.

�is uncertainty could potentially lead to exploits that allow for circumvention.

Concretely, the solutions relying on the text documents of websites could su�er from

injected rare words that would a�ect the extracted signature without altering the ren-

dered interpretation for the user in the browser [C11]. E�ectively this would cause the

appearance of the website to remain unchanged while the signature could be altered

to the desire of the adversary. Additionally, for solutions relying on OCR to extract

signatures, it has been shown that OCR systems are vulnerable to imperceptible noise

that gains the adversary some control of the set of recognized characters [C38].

For these reasons, we �nd this strategy insu�cient for achieving adversarial robust-

ness.

Channel Meta-information

Phishing attacks are carried bymessages and require that thesemessages are exchanged

in order to reach their target.�e channel responsible for this exchange typically relies

on user-controlled information that could potentially carry attributions of phishing at-

tacks.�is strategy is based on the assumption that attacks can be inferred purely based

on meta-information of messages, and thereby independently of message content. Ef-

fectively, this restricts the set of allowed attributes to be within a certain domain of

information that the channel exposes.

A common implementation of this strategy for websites, is to infer attacks solely

based on similarities across the Uniform Resource Locators (URLs) [C15, C24]. Un-

knownURLs are then compared to a set of URLs from known benignwebsites, in order
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to infer attacks, as resemblance is a sign of impersonation, as derived in the following

attribute.

Phishing Attribute 3. URLs resembling a URL from a known benign source.

Garera et al. implement this attribute by creating a statistical model that uses lexical

information contained inURLs, in conjunction with Google PageRank information, in

order to proactively prevent attacks prior to visiting websites [C15]. Le et al. propose a

method that uses lexical features of URLs while being resistant to common obfuscation

techniques used by adversaries for client-side inference of attacks [C24].

We argue that solutions adopting this strategy, using only content-independent-

attributes, are prone to under-attribution. �is stems from the inability to include at-

tributions that align with Axiom Inducive. Additionally, we question to which extent

Axiom Impersonating can be fully determined from content-independent attributes.

However, we acknowledge that content-independent attributes can in�uenceAxiom Im-

personating.

Statistical Modeling

Deriving a set of concrete phishing attributes for a given messaging environment that

prove to be useful and robust is the fundamental challenge of phishing detection.�is

di�culty has leadmany researchers to learn these attributes using data ofmessages and

statistical modeling. In particular, machine learning, a class of statistical modeling, has

a signi�cant presence in the selected methods. Machine learning is based on the pop-

ular approximation technique Empirical Risk Minimization [62], where the objective

is to learn some probability distribution by minimizing the risk, typically represented

as the weighted sum of some goodness of �t measure over the used data points. �e

learned probability distribution is then expressed as a model, that can be used for in-

ference.

For phishing detection it is desired to learn some probability distribution of a given

message containing a phishing attack, with respect to some set of information desired

for inferring attacks. �is information serves as a bound of information in which at-

tributes of phishing can be learned by solving the stochastic optimization problem of

minimizing the objective function. Naturally, the ability to approximate this probabil-

ity distribution in�uences the chances of �nding a distribution with low uncertainty to

be useful for inference. Additionally, even if the ideal probability distribution is found,

it might not even be useful for inference, if the information used for inference is seem-

ingly uncorrelated with phishing attacks.

For certainmodels, including information that is strongly uncorrelated to the learn-

ing objective can hinder the ability of uncovering a useful probability distribution,

thereby requiringmanual labor for removing them prior to the learning process. How-

ever, progress over the last decade has allowed formore �exiblemodels that are less sen-

sitive to inclusion of uncorrelated information, such asDeepNeuralNetworks (DNNs).

A�er the learning process is over for the statistical model, information that is associ-

ated with increased probability of the presence of attacks can e�ectively be addressed

as phishing attributes of phishing attacks.
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�is strategy does thereby not impose the of use a speci�c attribute of phishing,

it only expresses that attributes should be uncovered using patterns contained within

data points.

Whittaker et al. use a random forest classi�er that was trained using more than

3000 features in order to infer websites containing phishing attacks. Abdelnabi et al.

exploit the potential of DNNs, by using a model named WhiteNet that has more than

100M trainable parameters for translating pixel intensity values of websites’ appear-

ances into a set of visual metrics.

Despite these methods showing promising results during evaluation, the ability

to interpret the inference conducted by these models is di�cult, thereby challeng-

ing the ability to validate and uncover the underlying phishing attributes. Validating

these attributes is valuable, as the methods are prone to learn bias in high-dimensional

spaces [C20]. In addition, approaches such as DNNs also su�er from a fundamental

problem named adversarial examples, for which tiny perturbations of legitimate input

cause unexpected large changes in the predictions of the model [C6, C41]. A perturba-

tion is expressed as some noise δ ∈ RD for a given model input x ∈ RD , such that its

perturbed variant is given byx′ = x+δ. Typically a threatmodel for these attacks is de-

�ned by a perturbation bound ε, such that for any given noise δ it must satisfy ε ≤ ‖δ‖p
for some p-norm. To reduce this problem of these perturbations, and thereby making

models more robust, it was proposed to use a training technique named adversarial

training that includes perturbed input into the training process [38]. �is technique

has shown to reliably increase robustness.

WhiteNet uses a variation of this technique, to suit the training objective of met-

ric learning, and improve the robustness of the model. �e evaluation of the original

model reports an accuracy of 65% (closest match) against adversarial examples gen-

erated using the Fast Gradient Sign Method (FGSM) [C16] (ε ≤ 0.01). �is accuracy

is considered, in contrast to other applications being attacked by adversarial exam-

ples [C5], relatively high in relation to the 81% accuracy for the original data. Using

the adversarial training li�s this accuracy to 71% against adversarial examples.

�is decreased performance led us to hypothesize that the reported high robustness

could stem from two causes: the Siamese Neural Network (SSN) architecture used by

WhiteNet has some inherent robust properties or the evaluation was performed incor-

rectly. Importantly, SSNs use a fundamentally di�erent training procedure than typical

machine learning classi�ers, as the loss function takes triplets of data points as param-

eters.

As a measure to explore our hypotheses, we replicate the WhiteNet model using

a similar data set of 37043 websites across 2449 domains, gathered using the Kraaler

tool [C33]. Our implementation achieves a signi�cantly lower accuracy of 24.6% against

adversarial examples prior to adversarial training, with an increase to 30.8% a�er us-

ing adversarial training, as seen in Table C.5.2. During the generation of the attacks

we adopted a larger batch size for attacks, as it have previously been discovered that

the sampling of triplets can greatly in�uence the calculated loss during training [66].

Given that the loss function is also used for attacking, we hypothesize that a similar

importance should be accounted for during attacks. We speculate that the increase in

batch size, and thereby better sampling, enabled us to create substantially stronger at-
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Model Unperturbed ε = 0.005 ε = 0.01

Traditional Training

WhiteNet 81.0% 72.8% 62.5%

WhiteNet (replica) 87.8% 30.0% 24.6%

Adversarial Training

WhiteNet 81.0% 79.0% 73.1%

WhiteNet (replica) 90.3% 33.3% 30.8%

TableC.5.2: Precision (closestmatch) forWhiteNet and our replicamodel across perturbations created using

the FGSM attack for various threat models ε.

tacks. Following these results, we conclude that the reported robustness measures of

WhiteNet are not representative for actual robustness towards adversarial examples.

C.6 Design Guidelines

Assessing existing detection solutions in Section C.5 highlighted problems related to

the ability of evaluating adversarial robustness and attaining it, concretely: inaccessible

implementations, implicit attributes, and over-attribution. As a measure to prevent

future detection solutions from inheriting these problems, we propose three design

guidelines: Accessible, Explicit Attributes, and Axiom Alignment.

Accessible. Adversaries are adaptive by nature, this fact should be re�ected in the abil-

ity for the scienti�c community to be able to continuously evaluate solutions as new at-

tacks emerge. Currently, most of the methods we have assessed do not provide widely

available implementation, thus making it challenging to independently evaluate their

performance. For certain methods it is infeasible to even reproduce the results, namely

the data driven approaches that use private datasets in conjunction with not sharing

the trained model weights.

To combat this phenomenon, we encourage that more authors make their methods

easily accessible to the community. Ideally, this would be open access to the imple-

mentation, used throughout the original evaluations, or as a bare minimum ensure

reproducibility. For methods relying on statistical modeling, this would include either

making training data, or the found model weights, widely available. We deem that

higher accessibility of solutions could contribute to the establishment of a community

for perturbation techniques, that will prove useful for systematic evaluations of adver-

sarial robustness.

Explicit Attributes. De�ning phishing attacks has been shown to be di�cult, causing

a variety of de�nitions to exist [A16]. When designing a phishing detection solution,

the fundamental task is to design somemechanism capable of quantifying attacks, typ-

ically based on some intuition of attacks. If the adaption of the intuition of attacks into

concrete design decisions remain unclear, it can potentially disguise strong assump-

tions of attacks that can be violated and exploited in the adversarial setting.
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We suggest that designers of detection solutions explicitly state, to the best of their

ability, which information is considered as attribute(s) of a givenmessage being a phish-

ing attack for their respective domain. For statistical modeling, we suggest either us-

ing models for which causality can be directly studied at test-time or adopt methods

for exploring the underlying attributions during inference [C27, C39]. �is should be

conducted to reduce the risk of the model inheriting bias from the underlying train-

ing data, causing undesired e�ects for the generalization performance. �is guideline

seeks to ensure that assumptions adopted throughout the design, namely the phishing

attributes, become more explicit and thereby make the identi�cation of potential cases

of bias, over-attribution, or under-attribution, more e�ective.

Align with Axioms. �roughout the introduced terminology we have covered the

consequences of having phishing attributes that are unalignedwith true set of attributes,

namely over-attribution and under-attribution. Unfortunately, the assessment high-

lighted that some of the common strategies adopted by the selected methods could be

a�ected by these consequences. As a �rst measure for combating this phenomenon, we

introduced a set of axioms of phishing attacks in Section C.4. E�ectively, these axioms

serve as abstract phishing attributes, independent ofmessaging environments, that one

has to account for and transform into concrete information for inference in a given en-

vironment of application. �ereby, we suggest that designers explicitly document the

relationship between their phishing attributes used for inference and the proposed ax-

ioms. Additionally, it must be ensured that the used set of phishing attributes cover the

full set of axioms.

C.7 Conclusion

Detection solutions for identifying phishing attacks are continuously challenged by ad-

versaries trying to adapt their attacks to evade detection. Across the in�uential and

recent methods, most of these solutions do not account for this challenge in their eval-

uation, yielding uncertainty about their adversarial robustness. In order to clarify the

conditions of this adversarial setting, we introduced a terminology that is independent

of environment and application for respective methods. Based on a consensual de�-

nition of phishing, we presented three axioms of phishing attacks, that any detection

solution should account for to avoid using incorrect attributes for inference. Following

this, the adversarial robustness of highly in�uential and recent work were assessed by

decomposing their methods of inference into a set of strategies. �e ability to evade

detection for the respective strategies was then discussed, and examples of perturba-

tions that enabled evasions for certain methods were discovered. �ese �ndings let us

to de�ne a set of design guidelines for the community of phishing detection to adopt

to both enable and improve evaluations of adversarial robustness.
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Abstract. Deep Metric Learning (DML), a widely-used technique, in-
volves learning a distance metric between pairs of samples. DML uses
deep neural architectures to learn semantic embeddings of the input,
where the distance between similar examples is small while dissimilar
ones are far apart. Although the underlying neural networks produce
good accuracy on naturally occurring samples, they are vulnerable to
adversarially-perturbed samples that reduce performance. We take a
�rst step towards training robust DML models and tackle the primary
challenge of the metric losses being dependent on the samples in a mini-
batch, unlike standard losses that only depend on the speci�c input-
output pair. We analyze this dependence e�ect and contribute a robust
optimization formulation. Using experiments on three commonly-used
DML datasets, we demonstrate 5–76 fold increases in adversarial ac-
curacy, and outperform an existing DML model that sought out to be
robust.
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D.1 Introduction

Many machine learning (ML) tasks rely on ranking entities based on the similarities

of data points in the same class. Deep Metric Learning (DML) is a popular technique

for such tasks, particularly for applications involving test-time inference of classes that

are not present during training (e.g. zero-shot learning). Example applications of

DML include person re-identi�cation [D15], face veri�cation [D25, D8], phishing de-

tection [D1], and image retrieval [D38, D23]. At its core, DML relies on state-of-the-art

deep learning techniques for training models that output lower-dimensional seman-

tic feature embeddings from high-dimensional inputs. Points in this embedding space

cluster similar inputs together while dissimilar inputs are far apart.

Fig. D.1.1: Example of inference of a naturally-trained DML model and robustly trained variant on the

CUB200-2011 dataset. Each model infers the class of the natural data point x, and its perturbed x + δ
counterpart, using the class of the nearest anchornn(·). Green and red borders indicate correct- (same class)

and incorrect inference, respectively. Both models infer the natural input correctly, however, the naturally-

trained DML model fails to infer the adversarial perturbed input correctly.

Traditional deep learning classi�ers are vulnerable to adversarial examples [D30,

D3]— inconspicuous input changes that can cause themodel to output attacker-desired

values. Few studies have addressed whether DML models are similarly susceptible to-

wards these attacks, and the results are contradictory [D1, D22]. Given the wide usage

of DML models in diverse ML tasks, including security-oriented ones, it is important

to clarify their susceptibility towards attacks and ultimately address their lack of ro-

bustness. We investigate the vulnerability of DML towards these attacks and address

the open problem of training DML models using robust optimization techniques [D2,

D19].

A key challenge in robust training of DML models concerns the so-called metric
losses [D38, D35, D6, 55]. Unlike loss functions used in typical deep learning settings,

themetric loss for a single data point is interdependent on other data points. For exam-

ple, thewidely-used triplet loss requires three input points: an anchor, a positive sample

similar to the anchor, and a negative sample dissimilar to the anchor. For training, this

interdependence impacts the e�ectiveness of learning [D38].�us, several works have

identi�ed sampling strategies that turn mini-batches into tuples or triplets to ensure

that training remains e�ective [D25, D41, D40]

�is interdependence between data points of metric losses poses a challenge for cre-

ating e�ective adversarial perturbations, as these are typically computed by approx-

imating the inconspicuous noise that maximizes the loss for the speci�c data point.

87



Consequently, as adversarial training depends on this ability during training, it has

to remain e�cient in order to reduce the additional computation as natural training

procedures for certain DML models are already considered resource intensive [D24].

Additionally, metric losses are sensitive to samples with high levels of noise during

training, that can cause training to reach an undesired local minima [D38]. Adversar-

ial perturbations are e�ectively noise, and thus adversarial training procedure for DML

models has to account for this sensitivity.

We systematically approach the above challenges and contribute a robust train-

ing objective formulation for DMLmodels by considering the two widely-used metric

losses — contrastive and triplet loss. An example of the in�uence the robust train-

ing objective on inference is shown in Figure D.1.1. Our key insight is that during an

inference-time attack, adversaries seek to perturb data points such that the intra-class

distance maximize, and thus this behavior needs to be accounted for during training

to improve robustness. Recent work has attempted to train robust DML models but

has not considered the dependence and sensitivity to sampling [D1]. When we subject

these models to our attack techniques, we �nd that their robustness is actually less than

what is reported.

Prior work on traditional classi�ers have established a connection between Lips-

chitz constant and robustness [D14]. Our intuition is the adversarial training of lead to

a lower Lipschitz constant of the deep metric embedding. We explore this further in

supplementary materials.

Contributions.

• We contribute a principled robust training framework for DML models by con-

sidering the dependence of metric losses on the other data points in the mini-

batch and the sensitivity to sampling.

• We experiment with naturally-trained DML models across three commonly-

used datasets for DML (CUB200-2011, CARS196, SOP) and show that they have

poor robustness — their accuracy (R@1) drops from 59.1% (or more) to 4.0%
(or less) when subjected to PGD attacks of the proposed attack formulation.

• Using our formulation for adversarial training, DML models reliably increase

their adversarial robustness, outperforming prior work. For `∞(ε = 0.01), we
obtain an adversarial accuracy of 53.6% compared to the state-of-the-art nat-

ural accuracy baseline of 71.8% for the SOP dataset (in terms of R@1 score, a

commonmetric in DML to assess the accuracy of models). Furthermore, the re-

sulting robust model accuracies are largely una�ected for natural (unperturbed)

samples.

D.2 RelatedWork

Deep Metric Learning. DML is a popular technique to obtain semantic feature em-

beddings with the property that similar inputs are geometrically close to each other in

the embedding space while dissimilar inputs are far apart [D24]. DML losses involve

pairwise distances between embeddings [D4]. Examples include contrastive loss [D12],
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triplet loss [D25], Neighborhood Component Analysis [D10], and various extensions

of these losses [D27, D35, D42].�roughout this work, we refer to these types of losses

asmetric losses. Recent surveys [D24, D21] highlight that performance of newer metric

losses are lesser than previously reported.�us, we focus on the two establishedmetric

losses— contrastive and triplet — as they are widely used and have good performance.

Adversarial Robustness. Since early work in the ML community discovered adver-

sarial examples in deep learningmodels [D30, D3], a big focus has been to train adversarially-

robust models. We focus on robust optimization-based training that utilizes a saddle-

point formulation (min-max) [D2, 38]. To the best of our knowledge, training DML

models using robust-optimization techniques has not been thoroughly studied, and

only recently has work begun in this area [D1].

Using the Generative Adversarial Network architecture [D11], Duan et al. [D9] cre-

ate a framework that uses generative models during training to derive hard negative

samples from easy negatives. �ey focus on improving the e�ectiveness of naturally
training DMLmodels rather than obtaining adversarial robustness, which is our focus.

Recent studies have shown that metric losses can function as a supplementary reg-

ularization method that enhances adversarial robustness of deep neural network clas-

si�ers (e.g., CNNs) [D20, D18]. However, these studies are not applicable to training

robust DML models, as they do not solve the problem of dependence between data

points due to the use of metric losses. We propose a principled framework for robustly

training DML models that accounts for this problem.

D.3 Towards Robust Deep Metric Models

First, we describe some basic machine learning (ML) notation and concepts required

to describe our algorithm. We assume a data distribution D over X × Y , where X is

the sample space and Y = {y1, · · · , yL} is the �nite space of labels. Let DX be the

marginal distribution over X induced by D 1. Given Y ⊆ Y we de�ne DY to be the

measure of the subsets of X × Y induced by D. For y ∈ D, Dy and D−y denote the
measuresD{y} andDY\{y}, respectively.

In the empirical risk minimization (ERM) framework we wish to solve the following

optimization problem:

min
w∈H

E(x,y)∼D l(w,x, y) (D.1)

In the equation given above H is the hypothesis space and l is the loss function. We

will denote vectors in boldface (e.g. x, y). Since the distribution is usually unknown,

a learner solves the following problem over a data set S = {(x1, y1), · · · .(xn, yn)}
sampled from the distributionD.

min
w∈H

1

n

n∑
i=1

l(w,xi, yi) (D.2)

1�e measure of set Z ⊆ X in distributionDX is the measure of the set Z × Y in distributionD.
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Oncewe have solved the optimization problem given above, we obtain aw∗ ∈ Hwhich

yields a classi�er F : X → Y (the classi�er is usually parameterized byw∗, but we will
omit it for brevity).

Deep Metric Models

�e goal of deep metric learning (DML) is to create a deep metric model fθ is function
from X to Sd, where θ ∈ Θ is a parameter and Sd is an unit sphere in Rd (i.e. x ∈ Sd
i� ‖x‖2 = 1). Since deep metric models embed a spaceX (which can itself be a met-

ric space) in another metric space, we also sometimes refer to them deep embedding.

Frequently, deep metric models use very di�erent loss functions than typical classi�-

cation networks described previously. Next we discuss two kinds of loss functions –

contrastive and triplet. Let S = {(x1, y1), · · · , (xn, yn)} be a dataset drawn from D.
A contrastive loss function lc(θ, (x, y), (x1, y1)) of labeled samples fromX ×Y and is

de�ned as:

1y=y1 dθ(x,x1) + 1y 6=y1 [α− dθ(x,x1)] (D.3)

In the equation given above, 1E is an indicator function for eventE (1 if eventE is true

and 0 otherwise), and dθ(x,x1) is
√∑d

j=1(fθ(x)j − fθ(x1)j)2, the `2 distance in the

embedding space. �e goal of the contrastive loss function is to reduce the distance

in the embedding space between two samples with the same label, and analogously

increase the distance in the embedding space between the two samples with di�erent

labels. A triplet loss function lt is de�ned over three lt(θ, (x, y), (x1, y1), (x2, y2))
labeled samples and is de�ned as follows:

1y=y1 1y 6=y2 [dθ(x,x1)− dθ(x,x2) + α]+ (D.4)

In the equation given above [x]+ is max(x, 0). In order for the expression to be

non-zero (x1, y1) has to have the same label as (x, y), and (x2, y2) has to have a dif-

ferent label as (x, y).

Attacks on Deep Metric Models

Assume that we have learned a deep embedding network with parameter θ ∈ Θ us-

ing one of the loss functions described above. Next we describe how the network is

used. Let A = {(a1, c1), · · · , (am, cm)} be a reference or test dataset (e.g. a set of
faces along with their label). A is distinct from the dataset S used during training

time. Suppose we have a sample z and let k(A, z) be the index that corresponds to

arg minj∈{1,··· ,m} dθ(aj , z)2. We predict the label of z as lb(A, z) = ck(A,z)(we will

use the functions k(., .) and lb(., .) throughout this section).

Next we describe test-time attacks on a deep embedding with parameter θ. Let

z ∈ X . Untargeted attack on z can be described as follows (we want the perturbed

2In case one or more anchors share the minimal distance to z, the tie is broke by a random selection

among these anchors.
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point to have a di�erent label than before):

minδ∈X µ(δ)
such that lb(A, z) 6= lb(A, z + δ)

(D.5)

Targeted attack (with a target label t 6= lb(A, z)) can be described as follows (we

desire to the predicted label of the perturbed point to be a speci�c label):

minδ∈X µ(δ)
such that lb(A, z + δ) = t

(D.6)

In the formulations given above we assume thatX is a metric space with µ a metric on

X (e.g. X couldRn with usual norms, such as `∞, `1, or `p (for p ≥ 2)). Any algorithm
that solves the optimization problem described above leads to a speci�c attack on deep

metric models.

Robust Deep Metric Models

Let S = {(x1, y1), · · · , (xn, yn)} be a dataset drawn from distribution D. For
a sample (xi, yi) where 1 ≤ i ≤ n we de�ne the following surrogate loss function

l̂(θ, (xi, yi), S) for the contrastive loss function lc :

l̂(θ, (xi, yi), S) =
1

n

n∑
j=1

lc(θ, (xi, yi), (xj , yj)) (D.7)

Similarly, for the triplet loss function lt we can de�ne the following surrogate loss func-
tion l̂(θ, (xi, yi), S):

1

nyin
−
yi

nyi∑
j=1

n−yi∑
k=1

lt(θ, (xi, yi), (xj , yj), (xk, yk)) (D.8)

Let Sy and S−y be de�ned as the following sets: {(x, y) | (x, y) ∈ S} and {(x, y′) |
(x, y′) ∈ S and y′ 6= y}. In the equation given above the sizes of the sets Sy and S−y
are denoted by ny and n

−
y , respectively.

Having de�ned the surrogate loss function l̂ the learner’s problem can be de�ned

as:

min
θ∈Θ

1

n

n∑
i=1

l̂(θ, (xi, yi), S) (D.9)

Recall that the learner’s problem for the usual classi�cation case is:

min
w∈H

1

n

n∑
i=1

l(w,xi, yi) (D.10)
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Note that in the classi�cation case the loss function l(w,xi, yi) of a sample (xi, yi)
does not depend on the other samples in the dataset S. However, in the deep metric

model case the surrogate loss function l̂(θ, (xi, yi), S) for a sample (xi, yi) depends
on the rest of the data set S (see the equations for l̂)�is is themain di�erence between

the embedding and classi�cation scenarios.

Formulation 1. LetBp(x, ε) denote the ε-ball around the sample x using the `p-norm.

�e straightforward robust formulation is given in the equation below.

min
θ∈Θ

max
(z1,··· ,zn)∈

∏n
j=1 Bp(xj ,ε)

1

n

n∑
i=1

l̂(θ, (zi, yi), S) (D.11)

In the formulation given above, all samples are adversarially perturbed at the same

time (note that the max is outside the summation). �erefore, this formulation is not

convenient for current training algorithms, such as SGD and ADAM.�is is because

the entire dataset S has to be perturbed at the same time. Moreover, this formulation

is not conducive to various sampling strategies used in training of deep metric models.

Formulation 2. In this formulation we push the max inside the sum so that each term

can be individually processed.�is is especially useful for adversarial training because

each tuple or triple can be perturbed separately. Our formulation will be indexed by

r (r ∈ {1, 2} for contrastive loss and r ∈ {1, 2, 3} for triplet loss). Intuitively, r
denotes what component of the tuple of triple is being perturbed. We de�ne operator

max(r, ε, θ) which perturbs the r-th component in an ε ball to maximize the loss. For

example, max(r, ε, θ) for ((x, y), (x1, y1)) is de�ned as:

max
z∈Bp(x1,ε)

lc(θ, (x, y), (z, y1)) (D.12)

Now we can de�ne l̂r for the contrastive case as:

l̂r(θ, (xi, yi), S) =
1

n

n∑
j=1

max(r, ε, θ)((xi, yi), (xj , yj))

�e equation for the triplet loss is similar. Now the entire minimization problem be-

comes.

min
θ∈Θ

1

n

n∑
i=1

l̂r(θ, (z, yi), S) (D.13)

Formulation 3. Our third formulation adds a regularizer which enforces the following

informal constraint: if x changes a bit, the distance in the embedding space does not

change too much.

min
θ∈Θ

1

n

n∑
i=1

[l̂(θ, (xi, yi), S) + λ max
z∈Bp(xi,ε)

dθ(z,xi)] (D.14)

�ese robust optimization formulations follow the common notion of robustness

from robust optimization [D2], thus given an algorithm for solving one of the robust

optimization formulations, leads to a robust model.
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Attack Algorithm

We will focus on untargeted attacks because our main goal is to use these algo-

rithms to robustify embeddings using adversarial training. Recall that dθ(x,x1) is the
l2 distance between fθ(x) and fθ(x1). �e gradient ∇xdθ(x,x1) of dθ(x,x1) with-
respect-to (wrt) to x is given by:

1

dθ(x,x1)
(fθ(x)− fθ(x1))T · ∇xfθ(x) (D.15)

A similar expression can be written for∇x1dθ(x,x1).
Consider the contrastive loss lc on a tuple (x,x1).

1y=y1 dθ(x,x1) + 1y 6=y1 [α− dθ(x,x1)] (D.16)

�e gradient of the contrastive loss∇x1
lc(θ, (x, y), (x1, y1)) wrt x1 is shown below:

1y=y1 ∇x1
dθ(x,x1)− 1y 6=y1 ∇x1

dθ(x,x1) (D.17)

Similar to contrastive loss, we cande�ne gradients of lt(θ, (x, y), (x1, y1), (x2, y2))
wrt x, x1, or x2.

Once we can compute the gradients of the loss, we can readily adapt attack algo-

rithm, such as FGSM and PGD, to our context. Note that for formulation 3 we need

to only compute the gradient of In fact any attack algorithm that only relies on gradi-

ents of the loss function can be dθ(z,x1) with respect to x. adapted for our case. For

example the PGD attack can be adapted for contrastive loss lc as follows:

xt+1
1 = Πx1 +Bp(ε)(x

t
1 +α ∇x1 lc(θ, (x, y), (x1, y1)))

In the equationwe are showing one iteration of the PGDandBp(ε) is the ε ball centered
at the origin using the lp norm. For computational reasons, in our attack algorithms

we only perturb one of the components for the tuples of triples.

Adversarial Training

Once we have the attack algorithm, adversarial training for robustifying the model

is relatively straightforward. We assume that the attack algorithm only perturbs one

component of the tuple or triple. LetAcr(·, ·) (r ∈ {1, 2}) andAtr(·, ·, ·) (r ∈ {1, 2, 3})
be the attack algorithms for the contrastive and the triple losses, respectively. In the

attack algorithms given above r refers to the index of the component being perturbed

(e.g. A2((x, y), (x1, y1)) and returns ((x, y), (x1 +δ, y1)). Next we describe adversar-
ial training for contrasitive loss (the case for triple loss is similar). A(x) corresponds
to formulation 3 (attempts to solve maxz∈Bp(x,ε) dθ(z,x)).

As pointed before, formulation 1 is computationally prohibitive. We will focus on

formulations 2 and 3. Let S = {(x1, y1), · · · , (xn, yn)} be the dataset. At each itera-

tion, a tupleT = ((xi, yi), (xj , yj)) is sampled fromS. We construct the tupleT ′ from
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T using attack algorithm (i.e. T ′ = Acr(T ) or T ′ = Atr(T )), and run one step of the

learning algorithm, such as SGD or ADAM, on T ′.�is corresponds to formulation 2.

For formulation 3 we use attack algorithmA.

D.4 Experiments

Our experiments explore the following research questions:

Q1. How robust are naturally trained DML models towards established adversarial

example attacks?

Among commonly used datasets for visual similarity, we �nd that DML models,
trained with state-of-the-art parameter choices, are vulnerable to adversarial ex-
amples, similar to non-DML models (Table D.4.1). �is forms our baseline for ad-
versarial robustness.

Q2. What is the accuracy of DML models when they are trained using our robust

formulation?

We �nd that DML models can be trained to become more robust across a variety
of norms. For example, for a PGD attack with 5 iterations under `∞(ε = 0.01),
we increase the adversarial accuracy to 53.6% compared from the state-of-the-art
natural baseline of 0.2% for contrastive loss on the SOP dataset (Table D.4.1).

Q3. How does the robust training objective a�ect the learned embedding space?

Using a synthetic dataset, we demonstrate that the proposed adversarial training
reduces the amount of shi�ing that adversarial perturbations can cause in the em-
bedding space (Figure D.4.1).

We run all experiments on Nvidia Tesla V100 GPUs (32 GB) RAM. Our code is

available at

https://github.com/anonymous-koala-supporter/
adversarial-deep-metric-learning.

Experimental Setup

Datasets. We use the following four real-world image datasets for our experiments:

• CUB200-2011 [D36]: Images of birds across 200 species and have a total of

11 788 images.

• CARS196 [D17]: Dataset with images of cars spanning across 196 models, with

a total of 16 185 images.

• SOP [D28]: Product images from eBay listings 120 053 images of 22 634 di�er-

ent online products.
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• VisualPhish [D1]: Screenshots of benignwebsites, froma set of established brands,

and phishing websites that attempt to replicate the visual appearance of their be-

nign counterpart. It covers 146 brands across a total of 10 558 screenshots.

CUB200-2011, CARS196, and SOPare commonly usedwithin theDML literature [D21].

�ese three datasets are divided into a training and testing set of approximately the

same size by selecting the �rst half of classes for the training set, while having the re-

maining classes be in the testing set [D24]. �is setup re�ects an out-of-distribution

scenario — a common application of DML. VisualPhish is a newer dataset that under-

lies the robust phishing detection model, VisualPhishNet [D1]. For a fair comparison,

we adopt the train-test split from the VisualPhish implementation. �is yields a test

set of 717website screenshots. In addition to these real-world datasets, we also include
the following synthetic dataset:

Synth Dataset: A dataset with two classes a and b where data points x ∈ [0, 1]k and
k = 224 × 224 × 3 to maintain identical dimensionality of the real-world datasets.

Data points from each class are drawn fromN (µ, σ2I) st. σ = 0.075 while µ = 0.25
for class a and µ = 0.75 for class b.

Models & Training Parameters. We use default parameter choices from prior work

that yield state-of-the-art performance on natural samples [50]. Main parameters are

summarized in this section and provide a complete listing in Appendix D.I. Deviations

from the default parameter choices are discussed and emphasized.

All models are ResNet50 [D13] initialized with pre-trained weights from an Ima-

geNet classi�er. We replace the last fully connected layer with another that matches

the embedding space dimensionality. Embeddings are normalized to be on the n-
dimensional unit sphere, wheren = 128 throughout our experiments. WeuseADAM[D16]

with learning rate3 of 10−6, weight decay of 4 · 10−4. We use contrastive and triplet

losses during training, setting α = 1.0 and α = 0.2, respectively.
To the best of our knowledge, VisualPhishNet is the only previous attempt at cre-

ating an adversarially robust DML model trained using metric losses. At the core, the

model is a variant of the VGG16 [D26] architecture with an unnormalized embedding

layer of size 512. It was trained using the VisualPhish dataset and is expected to learn a

visual similarity metric between web sites of various origins.

Training on the real-world datasets is performed over 150 epochs, with the excep-

tion of SOP that is trained for 100 epochs due to its volume [D24]. Mini-batches are

of size 112 and sampled using the sampling technique SPC-2, which ensures that each

batch contains exactly two samples per class for the selected classes in the batch.

Adversarial Robustness. To establish a benchmark for adversarial robustness, we

employ the attack algorithm covered in Section D.3. For each data point being per-

turbed, we sample the nearest positive neighbor to re�ect the ideal attack setting for

an adversary. �e formulation uses Projected Gradient Decent (PGD) [D19] because

3�is learning rate di�ers from the one stated by Roth et al. [50] in their publication, 10−5, but re�ects

the actual learning rate used throughout their experiments. See the �eld “lr” within experiment con�gura-

tion: https://bit.ly/3a4FyHP.
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it is considered one of the strongest white-box attacks available [D37]. Each attack is

run for �ve iterations (i = 5) and has a step size given by 2ε 1
i , such that the step size

remains small while not hindering the optimization from reaching any point within

the ε-ball despite random initialization.�roughout the experiments we use the nota-

tion of `p(ε = 0.01) to indicate that for any data point x, its valid perturbations are

contained inBp(x, 0.01). We compute the adversarial robustness for `∞(ε = 0.01) to
accommodate VisualPhishNet [D1], and `2(ε = 4) to provide comparisons for an alter-

native norm. In addition to PGD, we also investigate adversarial robustness towards the

Carlini-Wagner (C&W) attack algorithm [D5], which can be found in Appendix D.II.

Adversarial Training. Given that natural training of DMLmodels is already consid-

ered an expensive procedure [D24], solving the inner-maximization of the proposed

robust formulations in Section D.3 can make the procedure even more expensive and

potentially infeasible for practical applications. As previously discussed, the inner-

maximization is solvable using traditional �rst-order attackmethods, e.g. FGSM, PGD,

and C&W.�is fact enables us to apply a training technique byWong, Rice, and Kolter

[D37], that involves adversarial training using the cheaper R+FGSM [D31] attack, in

conjunction with early-stopping. �is yields similar increases in robustness towards

stronger and more expensive attacks, such as PGD, despite not being directed trained

on these attacks. For this attack, we de�ne α = ε · 0.25 as we have empirically deter-

mined that it is e�ective and training DML models. Using the proposed attack algo-

rithm for adversarial training (Section D.3), we perturb the positive data points. �is

choice was to avoid a�ecting the relative distances to negative data points, which can

induce instabilities during the training of DMLmodels if they become too small [D38].

Evaluation Metrics. To evaluate the performance of the trained models, we employ

the followingDML-speci�c evaluationmetrics: Recall at One (R@1) andMeanAverage

Precision at R (mAP@R) [D21]. R@1 is e�ectively the accuracy of class inference using

the class of the nearest neighboring anchor within the embedding space produced by

the model. Given the test set S = {(x1, y1), · · · , (xn, yn)}, and the function Ik(i)
that outputs the indices of the k-nearest neighbors for a data point xi, such that

Ik(i) = arg min
|K|=k
i/∈K

∑
j∈K

dθ(xi,xj) , (D.18)

then R@1 given by:

R@1 =
1

n

∑
i∈{1,··· ,n}
j∈I1(i)

1yi=yj . (D.19)

mAP@R is metric for measuring a model’s ability to rank classes in the embedding

space; we adopted this metric for the reasons covered by Musgrave, Belongie, and Lim

[D21]. It is de�ned as
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mAP@R =
1

n

n∑
i=1

1

Ri

Ri∑
k=1

1

k

∑
j∈Ik(i)

1yi=yj , (D.20)

whereRi =
∑
j∈{1,··· ,n}\{i} 1yi=yj .

Experimental Results

Fig. D.4.1: Embedding spaces of two trainedmodels. (�rst row) Visualization of the embedding spaces of the

twomodels (natural and robust). E�ectively the embeddings are normalized to the unit circle, however, small

distortions are added to improve visual clarity. Circles mark embeddings of benign data points, while crosses

are data points with an adversarial perturbation (δ). (second row)Alternative visualization of the embedding

space, showing the point relative to their radian on isolated spheres. It can be seen that embeddings of the

robustly-trained model shi�s much less, when faced with adversarial perturbed input, and are thus more

robust.

Robustness of Natural Training (Q1) We establish a baseline of robustness against

adversarial perturbations for naturally-trained DML models across the covered met-

ric losses, `p-norms, and datasets. Results can be seen in Table D.4.1. Across any of

the common real-world datasets (CUB200-2011, CARS196, SOP) it can be seen that

both the model’s ability to infer the correct class from its nearest neighbor (R@1) and

its ability to rank classes (mAP@R) drops by several orders of magnitude. Exempli-

fying this, the naturally-trained model using triplet loss on CUB200-2011 drops from

59.3% accuracy (on benign data) down to 4.0% (on adversarially-perturbed data) for

`∞(ε = 0.01). Naturally-trained models on CARS196 and SOP yield comparable or

worse adversarial robustness. Notably, naturally-trained models on the VisualPhish
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dataset achieves a higher baseline for adversarial robustness. We suspect this devi-

ation, from the other common real-world datasets, is related to the underlying data

distribution of the dataset.

We conclude that naturally-trained DML models are not inherently robust, con-

trary towhat results of priorworkmight indicate [D1]. We suspect this di�erencemight

stem from the method of attack or the fact we use a stronger �rst-order attack.

Adversarial Training for Robustness (Q2) From Table D.4.1, it can be seen that the

proposed method for adversarial training increases adversarial robustness (accuracy

and ability to rank) across the chosen metric losses, norms, attacks and datasets. As

an example, the robust R@1 on SOP increases from 0.7% (naturally-trained) to 56.3%
for `(ε = 0.01). We also observe that the proposed method increases the adversarial

robustness (in terms of R@1) on the VisualPhish dataset to 56.7%, and thus outper-

forms the prior work of VisualPhishNet [D1], which achieves 42.8%. As shown in

Appendix D.II, it can be seen that the gained robustness also applies to alternative at-

tacks (C&W) for `2(ε = 4). Performance of the trained robust models on benign input

remains largely una�ected. Figure D.1.1 shows an example of inference under di�erent

training objectives, and we provide a publicly available gallery of other examples4.

E�ects on Embedding Space (Q3) Using the described synthetic dataset, we investi-

gate the e�ect of adversarial training on the learned embedding space.�e experiment

involves training a DML model to map data points of the high-dimensional synthetic

dataset, with the classes a and b, onto to a two-dimensional embedding space. We

choose to have the embedding space be two-dimensional to allow visualizations of the

learned embedding space. Each of the models, naturally-trained and robust, uses con-

trastive loss and is trained on approximately 15Kdata points. Adversarial perturbations

are derived using the proposed attack formulation with PGD under `∞(ε = 0.01).
Di�erences of the learned embedding spaces, and the in�uence of the adversarial per-

turbations, is shown in Figure D.4.1. We observe that the robust model is capable of

maintaining smaller inter-class distances between adversarially perturbed data points

and benign data points.

D.5 Conclusion

Deep Metric Learning (DML) creates feature embedding spaces where similar input

points are geometrically close to each other, while dissimilar points are far apart. How-

ever, the underlying DNNs are vulnerable to adversarial inputs, thus making the DML

models themselves vulnerable. We demonstrate that naturally-trained DML models

are vulnerable to strong attackers, similar to other types of deep learning models. To

create robust DML models, we contribute a robust training objective that can account

for the dependence of metric losses — the phenomenon that the loss at any point de-

pends on the other items in the mini-batch and the sampling process that was used to

derive themini-batch. Our robust training formulation yields robust DMLmodels that

4https://anonymous-koala-supporter.github.io/sample-gallery/
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can withstand PGD attacks without severely degrading their performance on benign

inputs.
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Appendix

D.I Training Parameters (Expanded)

�is section expands upon details and hyper-parameters used throughout the training

of the respective DML models.

Batches & Sampling. Recall, that the training process uses a mini-batch size of 112

data points. Each mini-batch is sampled such that it contains exactly two samples per

class [D24]. Following this, sets of tuples or triplets are derived (depended on loss) from

the mini-batch using distance weighted sampling [D38] for negatives, while positives

are given by pair-based sampling. Distance weighted sampling enhances the stability

of training using metric losses, that can su�er from becoming stuck at a local minima

early on in the training procedure [D38]. �e cardinality of the triplet-set is identical

to the mini-batch size. �e size of the tuple-set is double the size of the mini-batch,

thus balancing out the number of data points being compared relative to the triplet-

set. Furthermore, each data point within the tuple-set is used in a positive and negative

pair.

Data Augmentation. We augment the dataset using the following operations for

each input image: (1) random cropping to an image patch of size 60-100% of the origi-

nal image area; (2) scaling; (3) normalization of pixel intensities. One di�erence is that

our patch sizes di�er from Roth et al. [D24] that employs patches of size 8-100% of

original area. We change this parameter because recent work suggests that computer

vision models can be biased by backgrounds and textures during during [D39]. To

combat this, we use cropping and scaling values based on Szegedy et al. [D29].

D.II Alternative Attack (Carlini-Wagner)

�e Carlini-Wagner (C&W) attack is an unbounded attack, and thus constrains per-

turbations to lie within the given `p [D5]. We employ a clipping technique similar to

Tramèr and Boneh [D32], which projects the perturbation to the `p-ball at every step.
Additionally, as inference is costly for DML models (nearest neighbor search across

embedding space), the ability of providing early stopping mechanism has been dis-

abled. Results are presented in Table D.II.1. �is is our best e�ort on providing strong

hyper-parameters for the attack. It can be seen that the robustly trained model man-

ages to remain higher robustness towards C&W attacks than the stronger PGD attack.

�e impact of the mentioned alterations, and the used hyper-parameters could yield

the C&W attack to be non-optimal. �ereby, these results should be seen as an lower-

bound representation of robustness towards the C&W, despite PGD generally being

consider the state-of-the-art [D37].
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D.III �eoretical Analysis

Robustness and Lipschitzness of DML

In Section D.1, we pointed out that the Lipschitzness of the DML model also plays an

important role as in the traditional classi�er situation. Here we have a formal analysis.

Let the sample spaceX be
⋃
y∈Y X y , whereY = {y1, · · · , yL} is the space of labels

and X y ⊆ X is the set of samples with label y. Suppose we have a deep embedding

model fθ with parameter θ trained using one of the loss functions described earlier.

LetA = {(a1, c1), · · · , (am, cm)} be a reference dataset (e.g. a set of faces along with
their label), which we call anchors. Suppose we have a sample z and let k(A, z) be

the index that corresponds to arg minj∈{1,··· ,m} dθ(aj , z). We predict the label of z
as lb(A, z) = ck(A,z). Recall that dθ(x, z) is the distance metric in the embedding

space ‖ fθ(x)− fθ(z) ‖2.
We will assume that our sample space X is a metric space with metric µ. A point

z ∈ X is ε-robust w.r.t. A, µ and dθ i� for k(A, z) = arg min1≤i≤m dθ(ai, z), we have
that for all j 6= k(A, z) and µ(x, z) ≤ ε, dθ(aj ,x) > dθ(akµ(A,z),x). In other words,

perturbing z by ε in the sample space does not change the anchor it is close to in the

embedding space.

Apointz ∈ X is δ-separatedw.r.t. A anddθ i� fork(A, z) = arg min1≤i≤m dθ(ai, z)
we have that for all j 6= k(A, z), dθ(aj , z) > dθ(akµ(A,z), z)+δ. In other words, fθ(z)
is at least δ closer to its anchor than other anchors in the embedding space. As a result,

fθ correctly classi�es z.
We assume that dθ is L-Lipschitz, i.e., for all x and z in X :

dθ(x, z) ≤ Lµ(x, z)

Lemma 1. If L ≤ δ/(2ε), and z is δ-separated w.r.t. A and dθ , then z is ε-robust.

Proof. Let i = k(A,x), j 6= i, and µ(x, z) ≤ ε.

dθ(ai,x) ≤ dθ(x, z) + dθ(z, ai)

≤ Lµ(x, z) + dθ(z, ai)

< Lµ(x, z) + dθ(z, aj)− δ
≤ Lµ(x, z) + [dθ(z,x) + dθ(x, aj)]− δ
≤ Lµ(x, z) + Lµ(z,x) + dθ(x, aj)− δ

Because L ≤ δ/(2ε), µ(z,x) ≤ ε, we have

dθ(aj ,x) > dθ(ai,x) + (δ − 2Lε) ≥ dθ(ai,x),

so

dθ(ai,x) < dθ(aj ,x).

�
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DML with Gaussian Mixture Model

To further motivate the connection between robustness of an embedding and its Lips-

chitz constant, we consider aGaussianmixturemodel.�esemodels have been consid-

ered in the theoretical analysis of robustness in the classi�cation setting [D7, D33]. Our

synthetic dataset experiment (FigureD.4.1) illustrates this Gaussianmixturemodel set-

ting. LetN (µ,Σ) be the Gaussian distribution inRn withmean µ ∈ Rn andΣ a n×n
positive-de�nite matrix. We will consider Gaussian distributions of the formN (µ, In)
where In is the n× n identity matrix.

Let X ×Y (where Y = {−1, 1}) be generated from a distribution D as follows:

y ∈ Y is equally probable with probability 1
2 and given y, generate x according to

N (yµ, In).

We have the following concentration of measure result from�eorem 5.2.2 [D34].

�eorem 1. (Gaussian concentration) Consider a random vector x ∼ N (0, In) and a
Lipschitz function f : Rn → R. �en

‖ f(z)− Ef(x) ‖ψ2
≤ C ‖ f ‖Lip,

where ‖ f ‖Lip is the Lipschitz constant of f , and ‖ · ‖ψ2
is the sub-Gaussian metric.

Consider a DML model fθ : Rn → Sd, and let dθ be the associated distance

metric. Let a1 and a−1 be the anchors for labels 1 and −1 respectively. Consider the

two functions de�ned as follows: f1(x) = dθ(a1,x) and f−1(x) = dθ(a−1,x) (the
functions correspond to the distances from the two anchors).

β1 = Ex∼N (µ,In)f1(x)

β−1 = Ex∼N (−µ,In)f2(x)

We �rst show that f1 is L-Lipschitz if fθ is L-Lipschitz. Take x, z ∈ X ,

|f1(x)− f1(z)| = |dθ(a1,x)− dθ(a1, z)|
≤ dθ(x, z)

≤ Lµ(x, z)

As a result, ‖ f1 ‖Lip=‖ fθ ‖Lip. Intuitively, if the Lipschitz constant of f1 is

lower, the points drawn from N (µ, In) get closer to β1. In other words, as the Lips-

chitz constant of embedding gets smaller, the “point clouds” corresponding to the two

Gaussian distributions in the mixture get farther apart, because they are concentrated

more around their means.

Next we formalize this intuition. Let E(x, a1, a−1) represent the event that x is

closer to a−1 than a1. We prove the following:

Px∼N (µ,In)(1E(x,a1,a−1)) ≤ 2 exp

(
− C ′z2

‖ f1 ‖Lip

)
(D.21)
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In the equation given above,C ′ > 0 is a positive constant, and z is given by the follow-
ing expression:

dθ(a−1, a1)

2
− β1

Notice that Px∼N (µ,In)(1E(x,a1,a−1)) represents the probability that a point drawn

from N (µ, In) is closer to a−1 than a1, and hence represents an “undesirable event”.

Also note that the upper bound goes down as the Lipschitz constant ‖ f1 ‖Lip goes
down, and thus con�rming our intuition. Next we prove Equation D.21.

Let X be a sub-Gaussian random variable, then the following equation is well-

known:

P (| X |≥ t) ≤ 2 exp

(
−ct2

‖ X ‖2ψ2

)
(D.22)

To prove the Equation D.21, we use the following sequence of inequalities (let q =
Px∼N (µ,In)(1E(x,a1,a−1)))

q ≤ Px∼N (µ,In)

(
f1(x) ≥ dθ(a−1, a1)

2

)
≤ Px∼N (µ,In)

(
| f1(x)− β1 |≥

dθ(a−1, a1)

2
− β1

)
≤ 2 exp

(
− C ′z2

‖ f1 ‖Lip

)
�e �rst step follows from the following observation: if f1(x) is less than dθ(a−1,a1)

2

then x is closer to a1 than a−1.�e next two steps use�eorem 1 and Equation D.22.
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Abstract. Education of IT security can include a tedious and frus-
trating experience for novice students and organizers. We have sought
out to create an education platform that improves upon this experi-
ence, through automation, and individualized learning labs. �ese
learning labs hosts are isolated clusters of virtual computer instances,
representing real and insecure computer networks. �e platform,
named Haaukins, improves upon typical accessibility issues of students
and cumbersome con�guration management for organizers. In order
make the platform accessible for other organizations, it has been open
sourced.
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E.1 Introduction

On a global scale, there is an increasing demand for quali�ed personnel for information

security related positions. �e (ISC)2 estimates the shortage of security professionals

to be 2.93 million persons [E1]. �e Danish government has recognized this gap and

is increasing its funding of cyber security education and research in response [E6].

In parallel, Aalborg University (Denmark) has started to address this issue by adding

cyber security to the curriculum of relevant engineering educations.

�is e�ort is accompanied by the university’s ambassador programme, which en-

gages university students to reach out and teach high school students about their re-

spective �eld of education. For cyber security, this involves running introductorywork-

shops with subjects such as vulnerability scanning and exploitation. �e sessions are

typically short, between one and two hours of duration, and are initiated by a short

lecture followed by exercises where participants interact with a computer system, re-

ferred to as a lab. As an organizer, managing these labs is time-consuming and error-

prone, especially as participants o�en need assistance, e.g., to gain access to the lab.

Our collective experience from hosting sessions with existing solutions led to a series

of requirements for an education platform.

In order to have a solution that conforms to these requirements, we have developed

a new virtualization platform, Haaukins, which grew from the collaboration project

‘Danish Cyber Security Clusters’. �e platform di�ers from existing work by automat-

ing the tedious management of the labs, while also providing an individualized expe-

rience to improve learning and making labs accessible with no con�guration. It is de-

signed to support the common exercise format, Jeopardy capture-the-�ag (CTF) [E3],

in which participants must gain access to certain secret information contained within

a given computer system.

E.2 RelatedWork

Although there exist numerous platforms for deploying labs of connected, virtual in-

stances, none of these ful�ll the requirements of our speci�c use case in its entirety.

�e popularity of CTFs as a competition format has resulted in a range of commercial,

closed platforms to support running such events [E9, E8].�e fact that these platforms

are not open makes them unsuitable for an educational use, since the educator is com-

pletely reliant on the owner in both the access to the platform and the material hosted

on them.

A range of existing platforms places various teams in a single, shared virtual net-

work. �e motivations for doing so range from a performance consideration [E10] to

the desire to host attack and defense CTFs (ADCTFs) [E13, E11]. In ADCTFs, partici-

pants not only attempt to hack other machines, but actively have to protect their own

against others. Given the limited prior knowledge of our target audience, it is infeasible

for us to host ADCTFs.

PicoCTF is organized yearly and — similarly to Haaukins — aims to create an in-

terest for information security among high school students [E2]. �e platform is de-

veloped as an interactive game, and thereby does not re�ect a realistic scenario.
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In summary, the related work is either closed, not suitable for our CTF format or

does not represent the real world in a realistic fashion.

E.3 Design Goals

�e design of Haaukins has primarily been driven by four design goals: automation,

transparency, accessibility and realism. In the following subsections, we describe each

design goal in some detail.

Fully Automated (DGFA) In the process of preparing a CTF, numerous components

need to be instantiated, con�gured and connected correctly. Manual con�guration of

labs is time-consuming process and errors can have severe consequences, e.g. a vir-

tual instance being completely unreachable from one wrongly assigned IP address.

Haaukins reduces the preparation time for events through full automation of the con-

�guration of its labs.

Transparent (DGT ) Discovering and identifying a security vulnerability requires in-

vestigation and exploration.�is element of explorationmust be contained inHaaukins,

without causing participants to end up in dead ends that can hinder their learning [E7,

E4]. If the design of the exercises is the cause of these dead ends, it has be identi�-

able. Ideally a platform allows for gaining insight into this, by providing a method for

observing participants’ behavior and make them available for further analysis.

HighlyAccessible (DGHA) In the setting of a one- or two hour lecture, time is a valu-

able asset that should not be wasted on irrelevant aspects. Given the short timespan,

the overhead of accessing a virtual lab can take up a signi�cant fraction of the allocated

time. Beginners might �nd this non-trivial and it may be a hurdle for progressing. We

strive tominimize the overhead, and ideally want participants to access their virtual lab

in a matter of minutes, independently from their physical location and the operating

system they use.

Realistic (DGR) For skills learned through a simulated environment to be valuable,

they must be transferable to the real world setting. Haaukins strives to do so by ensur-

ing that the designed labs are realistic replicas of real vulnerable computers and their

networks. �e labs are interacted with using a professional toolkit, that continuously

evolves to remain relevant for trends in security vulnerabilities. Experiences gained

from the labs should indistinguishable from real world settings, and exercise develop-

ers should not be restricted by the limitations of the platform.

E.4 Overview

A key feature of Haaukins is the option for multiple organizers to host simultaneous

sessions (referred to as events) with one or more exercises for participants. For an

event, a group of participants registers as a team which is assigned an environment
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Fig. E.4.1: Levels of abstraction of a lab. Based on a selection of exercises and frontends (le�), Haaukins uses
their speci�cation (middle) to create an individualized lab of instances per team (right).

upon registration.�is environment is referred to as a lab and is represented by a net-

work of virtual instances. Teams are tasked to discover unique identi�ers (or flags),

that function as proof for solving a challenge, which can be checked through a web

application, and upon being valid, are counted as positive scores for the team.

A new event starts with any composition of exercises and frontends (see Fig-

ure E.4.1). A frontend is an instance that a team gets to control via a graphical user in-

terface. An exercise is composed of any number of images, which are templates from

which an instance is created. �e speci�cation of an image consists of: a virtual disk

image, any number of records, and any number of challenges. �e virtual disk image

can either be a Docker image or an Open Virtual Appliance (OVA) package, e.g. nginx
or kali.ova in Figure E.4.1.�e records are DNS records, which map domain names to

IP addresses per lab, and are necessary for the communication among instances.

�e instantiation of a lab consists of automatic creation and con�guration of in-

stances based on the collective speci�cation of exercises and frontends. In addition to

the associated instances, every lab also contains a set of core services to support connec-

tivity and service discovery for instances, these services are DHCP and DNS respec-

tively. �e instantiation process also involves inserting unique �ags in instances and

randomizing IP address ranges, thereby individualizing each lab and its challenges.

E.5 Design

Haaukins consists of a client and a server component, hkn and hknd respectively, en-

abling multiple organizers to interact with the same instance of hknd independently of
each other.

�e daemon process, hknd, controls the life cycle of internal data structures and the
orchestration of all components; it further serves as an application wide reverse HTTP

proxy acting as a single point of entry for all the web tra�c that comes in from the

participants of the platform, and redirects the tra�c to the correct virtual instances. On

an event-level, there are two third-party components being managed: CTFd [E5] and

Guacamole [E12]. CTFd is aweb application responsible for the graphical user interface

for the participants, which allows them to access their respective event through a web

browser. �rough this interface, the teams can view their respective exercises, �ll in
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the results for their respective challenges, and are directed to their respective frontends

which are accessible throughGuacamole. Guacamole is a web applicationwhich allows

for streaming remote desktops to a web browser, and is more thoroughly covered in

Section E.5.

�e client, hkn, provides a command-line interface (CLI) that allows organizers

to interact with hknd, e.g., to create events, listing exercises or resetting instances for

certain teams.

AutomatedOrchestration Haaukins uses Docker containers and Oracle VirtualBox

(VirtualBox) virtualmachines for deployingmultiple isolated serviceswithin labs.�ese

technologies are both used to allocate and isolate the resources (e.g. CPU and RAM)

of a physical machine into virtual instances, but their ability to do so di�ers in terms of

computation overhead and level of isolation.

All instances in a lab are connected to the same virtual network, to ensure that all

instances can communicate among each other. Concretely, DockerMacvlan is used for

the networks, resulting in a LAN network topology that allows for promiscuous net-

workmonitoring and gives participants the ability to observe the entire network tra�c.

External network access, such as the Internet, has been disabled to prevent participants

from abusing the instances.

Lab Individualization In highly competitive CTFs, the sought-a�er �ags are identi-

cal across participating teams, since the competitive nature is an incentive for keeping

found �ags private. From our experience this incentive does not transfer to an ed-

ucational setting, as students are more inclined to share solutions, causing cheating

that negatively in�uences DGT through false progress. To combat this issue, Haaukins

individualizes each lab through two techniques: dynamic �ags and dynamic subnets.

Creating dynamic �ags is the process of creating unique �ags on a per team basis in dy-

namic exercises, and thereby prevent the sharing of �ags. Implementing dynamic sub-

nets involves hosting labs on networks with randomized private IP ranges, which is a

signi�cant mutation in the setting of network analysis exercises.�is prevents students

from sharing information about IP addresses of instances, with only a few exceptions

of core services, i.e., DNS and DHCPD.

Accessible �rough a Web Browser Based on our experience, novice participants

o�en encounter problems with the use of a (desktop-)client for remote access, such

as VPN or RDP.�ese problems led to the choice of using Apache Guacamole within

Haaukins, which is a web application that allows for accessing remote desktop proto-

cols, e.g. RDP, through a modern web browser. Guacamole uses a backend daemon

for translating standardized protocols to WebSocket tra�c that is interpretable by a

JavaScript client in the user’s browser. Within Haaukins, the built-in capabilities of

VirtualBox is utilized for creating RDP access to frontends. �is access is then trans-

lated by Guacamole in order to be accessed from the participant’s browser, requiring

no installation process and being accessible from any physical location.
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MonitoringParticipants �e design of e�ective exercises is complicated, as the exer-

cises need to be open-ended in order to adhere to DGR, while ensuring the openness

does not cause participants to become stuck. In Haaukins, participants are initially

tasked with identifying vulnerabilities, before actively exploiting them. If the partici-

pants become stuck at this stage, it will hinder their ability to learn from the exercises.

To determine when and how this behavior occurs, Haaukins has the ability to moni-

tor and log participant interaction with the platform. Only if consent is granted, the

WebSocket tra�c of Guacamole is captured using the reverse proxy of hknd and trans-
formed to a stream of key presses.�ese streams can then be further analyzed in order

to determine participant behavior, e.g. programming activities and terminal usage, that

can potentially in�uence changes to the teaching material.

E.6 Conclusions

We present a novel education platform, Haaukins, that di�erentiates itself from ex-

isting CTF platforms by having improved accessibility, full automation, observability

of participant behavior and high degree of realism. �e platform presents itself as a

web application that provides highly accessible lab environments for participants, ac-

cessible withinminutes without prior experience. It completely automates the creation,

con�guration, teardown of all its components. Each lab is personalized through unique

mutations of �ags and IP addresses, which discourages cheating among participants.

Since the labs in Haaukins are designed to be a realistic representation of a realistic

network, learnings from the platform translate directly to real-world scenarios. In or-

der to support other education institutions in conducting short CTF workshops, the

platform is available as an open source project on GitHub1 with a GNUGPLv3 license.

1https://github.com/aau-network-security/haaukins
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Abstract. �e current supply of a highly specialized cyber security pro-
fessionals cannot meet the demands for societies seeking digitization. To
close the skill gap, there is a need for introducing students in higher ed-
ucation to cyber security, and to combine theoretical knowledge with
practical skills. �is paper presents how the cyber security training plat-
form Haaukins, initially developed to increase interest and knowledge
of cyber security among high school students, was further developed to
support the need for training in higher education. Based on the dif-
ferences between the existing and new target audiences, a set of design
principles were derivedwhich shaped the technical adjustments required
to provide a suitable platform - mainly related to dynamic tooling, cen-
tralized access to exercises, and scalability of the platform to support
courses running over longer periods of time. �e implementation of
these adjustments has led to a series of teaching sessions in various in-
stitutions of higher education, demonstrating the viability for Haaukins
for the new target audience.
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F.1 Introduction

�e demand for cyber security professionals has been increasing during the past years

and is expected to increase even more in the future [F17]. To meet this increased de-

mand, various higher education institutions globally have started to develop curricula

speci�cally to educate engineers in cyber security, while others have integrated cyber

security into their existing teaching curricula [F1, F16]. Practical exercises are an essen-

tial part in such curricula, and therefore several educational teaching platforms have

been designed over the past years [F4, F14, F10, F13] to help out the learning process of

students and encourage them to pursue a career in information security.

�ese platforms provide an environment that can be used for teaching and training

purposes in cyber security courses by simulating real vulnerable systems and support-

ing complex cyber scenarios, as well as training users in monitoring and defending cy-

ber infrastructure against malicious activities. �is allows students to execute attacks

on these systems without harming actual systems, and to obtain both an o�ensive and

defensive perspective of security practices.

Most of these platforms are designed to support a common exercise format, Jeop-

ardy Capture-�e-Flag (CTF) [E3] which nowadays is a well known format to demon-

strate the user skills in solving cyber security tasks and problems. In this format, the

participants are tasked to �nd �ags (i.e. a hidden string of text) by successfully ex-

ploiting vulnerable computer systems, being awarded points for each �ag they dis-

cover. CTF competition brings several advantages when applied in teaching environ-

ments [F10]. For example, these types of competitions allow students to legally hack

systems in a safe environment, by identifying vulnerabilities and trying to compromise

them, while also allowing them to learn to defend against attacks [F19]. CTFs have

also been shown to be e�ective in keeping the students engaged by their hands-on na-

ture and through the entertaining experience [F9]. When involved in a CTF, being

able to work as a group in a team is important for students to achieve their goals, lead-

ing the students to improve their communication skills, and to share, compare and

broaden their knowledge [F18]. Moreover, challenge based learning stimulates the de-

velopment of problem solving skills leading the students to be involved in �nding better

solutions [F5].

Although these existing educational teaching platforms contribute to the learning

process, none of them automate the process of creating custom vulnerable environ-

ments for teaching classes for high schools students.�is led Aalborg University, Den-

mark, to develop the �rst version of Haaukins [F11], an educational tool used for con-

ducting short training events at high schools. �ese events, usually running between

two hours up to a few days, were intended to engage students without prior informa-

tion security knowledge, in a new topic, and to generate interest in a future career into

the security �eld.

Since its launch, Haaukins has proven to be successful in high schools and attracted

attention from other Danish institutions within higher education. In order to increase

the usage of the platform, Aalborg University together with other educational institu-

tions has started to adapt Haaukins from both a technical and an education perspective

to accommodate IT and engineering students within higher education.�e main con-
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tributions of this paper are as follows:

• De�ne a formalization of the di�erences in teaching environment, across high

school and higher levels of education, for cyber security education.

• Present a set of design goals, based on the formalization, that the Haaukins plat-

form is required to adopt to address these di�erences.

• Develop a solution for these design goals, that have been integrated into the ex-

isting open source platform.

�e rest of this paper is organized as follows. A background of the initial design of

Haaukins is presented in Section F.2, followed by a comparison with the new target

audience in Section F.3. In order to adapt the platform to the new target audience, a

list of design principles is presented in Section F.4, which is followed by the ful�lment

of those principles in Section F.5.�e platform deployment is presented in Section F.6,

followed by the conclusion in Section F.7.

F.2 Background

Besides existing educational platforms there are a variety of commercial platformswhere

it is possible to practice cyber security in a CTF format, including ‘Hack the Box’ [F8]

and the more recently developed ‘Try Hack Me’ [F15]. Whereas ‘Hack the Box’ pro-

vides challenging scenarios �tting for a more experienced target audience, ‘Try Hack

Me’ provides several learning paths suitable for introducing beginners to the basics

of security. However, such commercial platforms generally have no option to expand

upon the training material and scenarios provided (such as adding more vulnerable

machines), which is a severe restriction when teaching courses according to speci�c

learning goals and objectives. An educational institution must have the opportunity

to tailor the teaching material to their curriculum, and as such cannot rely on closed

platforms.

‘PicoCTF’ [F3] is a platformdeveloped byCarnegieMellonUniversity that achieved

success during the past years. In order to encourage cyber security interest among high

school students, it provided an interactive game and a terminal user interface used to

interact with the exercises. Similar to Haaukins, it is open source and has it has been

created for high schools students. However, in contrast toHaaukins, it constraints itself

to exercise types which students can do on any computer systems, and without relying

on professional tooling.

Setting up an environment composed of computer systems, vulnerable hosts and

connections between them is time-consuming and errors can be hard to handle. Haaukins

aims to facilitate the learning process by helping teachers to automate the tedious setup

and management of those environments, by making them accessible with no prior,

complex con�guration.�is allows students to have their own virtual and isolated en-

vironment to practice cyber security skills, while having the convenience of accessing

it from their own devices simply through any web browser. High school students who,
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due to their limited amount of experience with cyber security and a limited under-

standing of underlying computer science topics in general, need an automated and

highly accessible way to access those environments. Moreover, in order to support

other educational institutions in conducting short CTF workshops, Haaukins has been

made available as an open-source project on GitHub1 with a GNU GPLv3 license.

Haaukins is implemented as a Jeopardy-style CTF platform, in which the teacher

can create an event and students access their own individual environments, referred to

as labs, created within the scope of that event. Each virtual lab, accessible through a

student’s laptop, consists of a computer network that has multiple computer systems,

which are under control of the student or student group. Within this lab, students have
to work towards solving a set of exercises, where each of them are related to a speci�c

concept within information security. Most of the exercises are designed with speci�c

learning objectives in mind. Exercises are solved by exploiting vulnerabilities of com-

puter systems in the virtual labs; vulnerabilities that are intentionally embedded in the

computer systems by the exercise developer. In order to exploit these vulnerabilities,

the students must understand the underlying problem with the so�ware, which makes

these exercises a valuable teaching tool. Each event can be composed of any set of exer-

cises that the teacher wishes to use in that session. Figure F.3.1 illustrates the interaction

between teacher, students and Haaukins itself. A website, which is automatically gen-

erated per event, provides both teacher and students with information about the event

and its exercises.

�e high school target audience required four main design goals to be ful�lled,

that shaped the development of Haaukins in the very early stage of its existence.�ose

design goals are described in [F11] and are summarized as follow:

Fully Automated Haaukins was designed to automate the lab con�guration process

completely, and to do so in a relatively short time, making the preparation of an event

painless.

�e automation process will start and connect the required instances and compo-

nents in order to have an environment available for the learning aspects. �is process

eliminates the need for manual con�guration and provide error handling of labs for

the teachers.

Transparent As students are more inclined to share solutions than in a competition

setup, potentially leading to cheating that negatively in�uences their learning experi-

ence, a unique way of creating labs has been provided in Haaukins. For each lab, the

�ags to be found are unique, reducing the possibility of sharing �ags. In addition, the

platform monitors all actions that students make within it, allowing for the analysis of

this a�erwards.

Highly Accessible Given the short nature of the training events at high schools, it

was considered imperative that students spend as little e�ort as possible on establishing

access to their labs. In this case, Haaukins allows participants to access their virtual

1https://github.com/aau-network-security/haaukins
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Fig. F.3.1: �e interaction between a teacher, a classroom full of students and the Haaukins components in

the �rst version of the platform

lab (1) quickly (i.e. in a matter of minutes), (2) without prior knowledge of accessing

a virtual platform and (3) independently of their physical location and the operating

system they use (i.e. access from anywhere via their Internet browser).

Realistic In order to teach students skills that are usable outside of the classroom,

the platform was required to re�ect a real world setting. �e existing pool of exercises

was thus designed to replicate real-life situations, and the platformhad to support these

types of exercises. In Haaukins all the exercises created are from real-life situations and

interaction’s realism is kept in order to ensure that students are gaining useful skills.

Additionally, the taught techniques and available tool kit are identical to those used by

security professionals.

F.3 Target audience

During the last year, the usage of Haaukins increased because of interest from new ed-

ucational institutions. From the feedback received a�er every event, we have realised

that the platform was able to satisfy the design goals allowing teachers to successfully

conduct cyber security courses. �e increase in usage has brought more visibility to

the platform, thus leading to new expectations and new plans for its continuous devel-

opment. Haaukins, could potentially be used in higher education as well, however due

to the di�erent target audience, it would need several improvements in order to make

the new users comfortable with the platform.
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�is section seeks to clarify details of the new target audience, and their distinct

traits, when compared to the traditional target audience for Haaukins. As previously

stated, the audience intending to use the adjusted platform is students in higher edu-
cation. To further clarify the expected skill set of this group, we de�ne it as students

who have attended at least one semester in computer science, computer engineering

or comparable educations at least at undergraduate level. Concretely, students within

this group should have a novice level of understanding of fundamental computer sci-

ence topics, such as: (1) networking, (2) operating systems, and (3) programming.�is

thereby puts this group of students, in terms of competences, ahead of the original

target audience of Haaukins (i.e. high school students).

Consequently, the established experience of the new target audience is re�ected in

their ability to interact with and understand computer systems.

Trait 1. Higher education students are expected to have preliminary knowledge of var-

ious tools, selected to their preference, to diagnose and interact with computer systems

and computer networks.

�is is an important trait that di�ers from the original high school setting, where

students are expected to have no or very limited technical understanding. �is addi-

tional knowledge is also re�ected in the type of teaching material to be used for the

new target audience.

Trait 2. With a deeper technical knowledge, students of higher education are able

to work on more complex exercises that involve understanding and attacking highly-

interconnected and complex multi-computer systems.

From a teacher perspective, designing such exercises can be challenging and time

consuming, as ensuring the interconnection of a multitude of computers correctly is

a complex task. �ese exercises typically encapsulate some intended-by-design vul-

nerabilities, to be found by the students, and the discovery of the given vulnerabilities

serve as an objective of the exercise. Students are typically expected to interact with

the computers of the systems, of the exercise, in an o�ensive and destructive man-

ner.�erefore exercise designers must avoid unexpected vulnerabilities in the systems

to be attacked, since such unexpected vulnerabilities can potentially halt the comple-

tion of the intended exercise. From a course point of view, the duration itself is o�en

longer than the high schools events, and a class might run just once per week through

a semester. As a consequence of this, reliability and availability must be provided even

for such long term events, so the users of the platform do not experience interruptions

and resets of events, users or exercise progress.

Trait 3. Given the multitude of attack vectors that a computer system can have, with

the typical length and size of a university course, keeping each students lab in a healthy

state (ability to complete exercises) is challenging.

�e identi�ed and distinct traits of the new target audience captures the challenges

sought out to be addressed by technical solutions that can be integrated into the existing

Haaukins platform, thus expanding its application domain. It is important that the
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application domain is expanded rather than changed, and that Haaukins still ful�ll the

requirements for the original target audience.�e improved platform thus also appeals

to the groups in-between, i.e. students in higher education without the competences

listed above.

F.4 Design Principles

�e three traits identi�ed in Section F.3, serve as the problems which have to be ad-

dressed in order for Haaukins to viable for the new teaching context. Prior to the tech-

nical design, we seek to put forward three design principles that will drive the changes

to the existing platform. �ese design principles have to coexist with existing ones

(covered in Section F.2), thus their compatibility to the existing ones are discussed.

Haaukins provides rapid access to students’ labs remotely (through a web browser)

to a computer with pre-installed tools, serving as a �xed toolbox, used for accessing

the lab environment and interacting with the exercises. �is design was implemented

in relation to the existing design principle of being highly accessible. However, the

design of having a �xed toolbox (static tooling) could potentially violate Trait 1, as the

desired set of tools might not match the provided set of tools. In order to address this

problem, and in contrast to the existing static tooling currently provided, we present

the following design principle:

Design Principle 1. [Dynamic Tooling] Students should be able to use their desired

set of tools within their lab of exercises.

Having dynamic tooling could potentially be an undesired feature for the original

teaching context (high schools), which includes more novice students that have less

preliminary competences in the �eld.�ereby, it is important to ensure that this prin-

ciple serves as an alternative, such that it can coexist with the current method of “static

tooling”. Knowing that the teaching context includes students with more preliminary

knowledge (Trait 2), forces the exercises containing computer systems to become larger

(groups of computers) and more inter-connected (network communication). �ese

types of exercises are naturally costly to design due to their complexity, and the current

architecture for Haaukins relies on teachers, on an individual level, to implementing

these. �ereby, as a measure to reduce this cost across, we propose the following de-

sign principle that is based on sharing resources:

Design Principle 2. [Centralization of Exercises] Complex exercises should be pro-

vided by a centralized source, such that teachers across various institutions can share

implementations of exercises, thus enabling future teachers to bene�t from existing

work.

Hosting and serving these exercises in individual labs for each student in a univer-

sity class is a vastly di�erent scale when compared to the high school setting (Trait 3).

Moreover the platform has to support a higher volume of concurrent students com-

ing from both the previous and new target audience. Scaling the platform to support a

teaching context of a university class (more than 100 students) and an increased amount
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of events running at the same time, is a two-fold challenge. Indeed, both the technical

capabilities (e�ciency, resources) and orchestration of labs (maintenance, restarts) are

required to scale to this new volume of students. Moreover teachers should have the

possibility to monitor and manage student labs from a highly user friendly interface

while the events are running.

Design Principle 3. [Scalability]�e platform should provide both computational ef-

�ciency (technical scaling) and orchestration features (teaching scaling) that ensure

exercises within labs remain healthy and available while several events are running

concurrently.

F.5 Evolved Haaukins platform

�e design principles de�ned in the previous section aim at improving Haaukins in

order to make the new target audience comfortable in using the platform.�e evolved

platform should address the requirements of students in higher education without im-

pacting the usability for high schools, which are still a core user group ofHaaukins.�is

chapter presents a list of improvements implemented based on each of the principles

de�ned in F.4.

Dynamic Tooling. In order to adhere to Design Principle 1, two alternatives were

considered; either to integrate more tools in the lab or to provide an alternative ac-

cess method to the lab. In the �rst approach, a more customizable lab environment

can be provided to the users, e.g. by giving the teachers or students themselves the

option to compose a toolkit from a curated list of tools and operating systems. �is

curated list would have to encompass all possible tools that students would like to use,

which in practise would be di�cult to accomplish.�e second alternative instead relies

on giving the students access to the lab through a di�erent method than the browser-

based method. Previously, students would remotely control a computer system pre-

pared speci�cally for this, and these systems were identical across all labs in an event,

leaving little room for customization. Instead, students could be given access to a net-
work connection to the lab, thereby opening the option for students to connect their

own computer systems to the labs, with their own custom tooling. In order to respect

all previous and newly de�ned design principles, the platform must allow the user to

still have a fully automated con�guration process and a highly accessible way to the

exercises.

From a technical point of view, the choice fell on the integration of a Virtual Private

Network (VPN) [F7], and speci�cally Wireguard [F6], in which a secure connection

to another network over the Internet is created, in our case to the lab. A VPN con-

nection can be established from any operating system from any geographic location,

merely requiring the students to con�gure their local Wireguard with a con�guration

�le provided by Haaukins. Similar to the previous web-based access method, a VPN

connection can generally be established from computer networks without requiring

changes to the IT infrastructure. As a result, this solution does not violate the origi-

nal highly-accessible design principle, but contributes to Design Principle 1. Although
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con�guring a VPN is considered a fairly simple setup step for an experienced student,

this it not the case for the traditional target audience, and therefore Haaukins supports

both (1) the web-based access method and (2) the VPN connection, and a teacher can

make a per-event decision as to what access method suits the target audience best.

Centralization of Exercises. �e �rst version of the platformhas been developed to al-

low teachers to run events using either custom exercises or readily-available exercises

provided by the platform itself through an exercise library. In the �rst case, teach-

ers could create speci�c exercises for their courses and use them in their events in or-

der to teach di�erent topics not already provided by the platform. Although this fea-

ture brought more �exibility to the platform when referring to high schools, university

teachers could not bene�t much of it.�is is largely due to the fact that di�erent target

audiences rely on di�erent exercises that di�er from each other in terms of both content

and complexity (Trait 2). Exercises for higher education students are not only harder

to solve compared to those for high school students, they are also more complex and

take longer more time and e�orts to create. �ese exercises, in fact, have to be created

either focusing on a speci�c topic and go into details or have a broad approach where

it covers several topics. In both cases, the teacher has to design and create several steps

of di�culty in order to let students improve their skills and time spent on the exercise.

Creating an exercise for a course is time-consuming, especially for the more ad-

vanced exercises which are to be used within higher education, and therefore is not

always an option. To support teachers, many exercises have been created and made

available to the use in their events, and a clear work�ow has been established for creat-

ing, testing and including exercises for those who want to create their own. �e main

goal was to provide a centralized pool of exercises with di�erent content and of di�erent

complexities where teachers can choose according to their courses (Design Principle 2).

Each exercise is accompanied by a description, and a list of prerequisites and outcomes

has been made in order to facilitate teachers in choosing a relevant composition of ex-

ercises for their courses. Finally, to facilitate an even better exercise selection phase,

the exercises have been grouped based on di�erent di�culty levels (e.g. the number of

steps needed to solve it and the topic covered) and divided into di�erent categories that

cover di�erent �elds of cyber security (e.g. web exploitation, forensics, binary, reverse

engineering and cryptography).

Scalability. Haaukins must also support managing a higher amount of events running

at the same time. In order to provide a reliable and fault tolerance platform, it has to

scale in two main directions (Design Principle 3) described as follows.

Teaching Scaling In order to maintain the labs healthy and available, a “reset func-

tionality” has been created, available to both teachers and students in order to restart

(i.e stop and start) labs as well as individual exercises in case of crashes, which can

happen if a student make mistakes when attempting to solve an exercise or when exer-

cises are not properly developed with the destructive behaviour of the teaching context

in mind (Trait 3). In such cases, one or more exercises in the lab are reverted back

to the initial state right a�er the lab was created. �e students lose their progressions
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towards this speci�c exercise, but it allows them to experiment with potential destruc-

tive o�ensive techniques that will break the exercise. In fact, as exercises largely focus

on breaking existing computer systems, those systems are brought to a high degree of

stress. As such, platform allows a graceful recovery from errors, instead of burdening

teachers with developing bulletproof exercises.�is functionality has beenmade avail-

able on the event website for the students while for teachers it has been implemented

in the web client.
In the previous version of Haaukins, the event creation and management controls

were provided via a command-line interface (or cli), that had to be downloaded and

installed on the computer of the teacher. �is command-line program could be used

to send some basic commands remotely to the physical server on which Haaukins was

running, thereby managing events. Prior to be able to use this program, a teacher had

to be granted access by another teacher as a security mechanism, which introduced

another barrier for quickly setting up an event. Feedback from high school organizers

showed that this approach was not user-friendly enough, and that it was too time-

consuming to use.

In order to overcome this issue a di�erent way to interact with the platform had

to be provided, and a user interface web client connected to the platform was created.

In detail, the web client is the web-application version of the cli which provides the

same functionalities of the cli along with a number of new functionalities designed to

improve scalability as well as the overall organisation experience. With this solution it

is no longer needed to download and install the cli on the teachers computer machine.

Teachers can access the web client upon request in order to create and manage their

own events no matters where they are - simply by their web browser of choice. From

an intuitive user interface, the teachers are able to choose the event con�guration (e.g.

event name, event capacity, exercises andVPNoption) and check the status of the teams

signed up in their events.

�e web client is linked to the centralized exercises pool thus allowing teachers to

insert new custom exercises and get all information about already existing and avail-

able exercises. �is connection aims to facilitate the teacher in choosing the relevant

exercises for his or her event.

Besides management of events and their respective labs, Haaukins has the ability to
monitor and log student’s interactions with the platform, which enables the ability to

identify if the participants become stuck while exploiting exercises. �is functionality

is only activated if consent is granted from individual students, and is implemented by

storing the stream of key presses to log �les, that serve as the basis of the analysis of

behavior.

Technical Scaling �e new target audience will bring with it not just more events

running simultaneously on the server, but also larger events due to the higher number

of students for each course, thus leading to a higher computation load on the platform.

A potential problem that might occur because of this higher demand, is that the plat-

formmight not have su�cient capacity to be able to manage all the events thus leading

to the rejection of some of them. A main goal is therefore to provide both target audi-
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ences with a platform that is able to support all the requested events without a�ecting

the performance of the platform or other events (Design Principle 3).

To meet this goal, two main approaches to make the platform more scalable have

been evaluated, and both horizontal and vertical methods have been taken into consid-

eration: the horizontal approach relies on replicating the platform on multiple servers,

thus leading to a distributed version where events can run in di�erent servers.�e ver-

tical approach instead consists of adding more resources (i.e. memory and hard disk)

to the current server in order to make it more powerful. From our point of view both

methods where suitable for the platform, the former being more expensive in terms of

time due to the refactoring the code base of the platform but cheaper in terms of the

monetary cost, while for the latter it is the other way around.

Also considering the possibility to make a platform cloud based, more e�ort has

been made in making the platform available in a distributed way without a�ecting the

usability for teachers and students. In this sense the platformhas been split inmicroser-

vices [F2] running on di�erent servers, which also allows for a more easier deployment

to the cloud in the future [F12]. �e vertical approach has been applied as well on the

main server, where more resources have been installed.

From previous experience with high school events, it was found that labs in events

that last longer than two weeks have a far lower resource utilization (i.e. the percent-

age of time that a lab is actively being used) than shorter events. In fact, some of the

labs were not used for several full days before being used again a�erwards, occupy-

ing resources of the host server and consequently potentially refraining other students

from using the platform. As described in Trait 3, this scenario might occur more o�en,

eventually denying requests for events due to the limited capacity of the server hosting

the platform. Although the technical scaling improvements aim to provide the oppor-

tunity to everyone to use the platform, those long events might thus cause a problem.

To overcome this issue, a ‘sleep mode’ feature has been developed, which automatically

suspends labs that have not been used for a while and resume them when the students

log into the event again. �is feature aims to save resources on the server - especially

for the new usage - and thus boosts the scalability of the platform.

F.6 Deployment in Higher Education

�roughout the development of the evolved Haaukins platform, it has been used in

various settings within higher education, and feedback has been collected as input to

the development process. �e usage includes courses within two universities and four

university colleges, as well as larger events in the framework of higher education, such

as summer schools and conferences. It was also used in university-facilitated events for

IT professionals in companies including sectors such as �nance, energy, IT andnational

authorities.

While di�erent events and courses were organised di�erently, in general three steps

were included: (1) In the preparation phase, the course or event was planned and set up.

�is includes choosing relevant exercises, determining whether VPN or web browser

access should be used. In the beginning, this was in most cases done in close collabo-
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ration with the Haaukins developers, but as more teachers gained experience in using

the platform and as the improvements described in this paper were developed - in par-

ticular the web client - this was increasingly done by the teachers independently. (2) In
the next phase, the event/course was held. Unless any problems arose, this was usually

done by the teachers. (3) Finally, in the evaluation phase, feedback was collected from

the teachers and/or the students.

�e feedback collected included the experience fromboth phase (1) and (2) together

with general feedback and suggestions about the platform.�ese collection of feedback

has served two purposes. One purpose was to use it for input to the overall platform

design and development, where the resulting changes would be of a more fundamental

character. Such changes would be incorporated to the overall development road map,

which was discussed among partner institutions of higher education at regular meet-

ings. Another purpose was to identify issues where smaller adjustments could improve

the user experience. In many cases, these were straightforward to implement, e.g. bet-

ter explanations of platform usage and exercises. By the time this paper was submitted,

Haaukins has been used by more than 1.000 students from di�erent target groups.

F.7 Conclusion and Future Work

In this work, we presented an evolved version of Haaukins, a cybersecurity training

platform that facilitates the learning process by helping teachers in creating cyberse-

curity training scenarios in a secure, closed and virtualized environment. Over the

last years, the platform has been used in several high schools with consistently positive

feedback and it was decided to improve the platform in a way that would support the

usage in higher education.

�e new target audience, compared to the previous one, has been identi�ed as a

more experienced student who is able to interact with computer systems and com-

puter networks using various tools, and who is able to address more complex exercises.

Due to those di�erences and the typical length and size of a university course, a list of

design principles, which have to coexist with the existing ones, have been de�ned and

a�erwards shaped into technical improvements on the platform.

Examples of such improvements include that a VPN connection has been provided

as an alternative way to connect the labs, thus enabling the students to use their own

tools. An exercises pool has been made available for teachers in order to let them ben-

e�t from already made exercises, thus avoiding the time invested in creating them.

Finally, the platform has been made more scalable in order to handle a higher amount

of students and longer events running at the same time.

�ese collective changes made Haaukins a platform for both students of higher ed-

ucation and high schools students, driven by an increased interest by schools in Den-

mark. �e platform is currently being under further development to widen its appeal

to even more target audiences and to be used on a larger scale, and additional research

studies are also being undertaken: In order to obtain a better understanding of the chal-

lenges of the game based learning experience, we are planning to conduct user studies

in the near future. Moreover an investigation of which exercises should be developed
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to ensure a good progression in the learning path of di�erent students will be carried

out.
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Chapter 10

Conclusion

Philosophically, one can claim that the strength of a defense is directly constrained by

the level of precision that expected attacks can be de�ned. �is links to the fact that

uncertainty of ground truth limits the true performance of separating attacks from be-

nign activities. Fundamentally, this dilemma remains a challenge for detecting certain

types of deception attacks, as these attacks are vaguely de�ned [31] and dependent on

social in�uences of individuals [12].

An established form of deception attacks, phishing, is actively performed using

web applications that are expected to be accessed through a victim’s web browser. Web

browsers, and the web as a whole, are reliant on variety protocols and parsers for dis-

playing web pages to users. �is challenges the ability to obtain detailed information

of web pages, as it largely requires to mimic the behavior of a web browser. We present

a tool for gathering detailed information of web pages, Kraaler (Paper A).�is enabled

the ability to gather a data set with extensive information of web pages, which served

as a foundation for the following research.

Assessing in�uential and recent detection methods of phishing attacks, it has been

demonstrated that strategies adopted by these methods typically rely on properties

which are likely to be associated with symptoms of attack, opposed to properties that

cause the attack to be functional. �e set of properties is typically derived using some

form of analysis, or learned from empirical observations using statistical modeling

techniques, such as machine learning. Consequently, it have been shown that ad-

versaries are able to search for (and �nd) modi�cations of existing phishing attacks,

that maintains the attack’s true functional properties (such that the attack remain un-

changed for the victim), while obtaining properties that enable the ability to circum-

vent detection.�is led to the speci�cation of a series of axioms, as an e�ort to describe

abstract classes of properties that are desirable for the detection techniques to incorpo-

rate. Additionally, a set of design guidelines were proposed to ensure better evaluations

and design of detection techniques that seek to become robust.

During this assessment, there were indications of that a state-of-the-art method,

VisualPhishNet [2], that relied on highly-parameterized neural networks, that sought

out to improve adversarial robustness, were seemingly less robust than originally re-
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ported. VisualPhishNet were designed using a machine learning technique for out-of-

distribution classi�cation named Deep Metric Learning (DML), which e�ectively seek

to use highly parameterized neural networks models to yield abstract representations

that are suitable for comparing visual appearance of web pages. �e authors acknowl-

edge that similar neural networks have, in other contexts such as a traditional classi�-

cation, been demonstrated to be vulnerable to attacks of imperceptible perturbations

that drastically alter the output of the model for a given input. Following this, a mea-

sure of robustness towards such an attack was presented using an adaptation of existing

attacks. �is adaptation did not account for certain properties of DML models, most

notably that common loss functions (used for training and the adapted attack) have

an interdependence between data points unlike loss functions used in the domain of

existing attacks.

�us we sought out to explore the ability to create e�ective attacks and obtainmod-

els robust to potential attacks for deepmetric learning, while accounting for the unique

properties of deep metric learning.�is led to a formalization of attacks and three ro-

bust optimization objectives for DML models, that are usable across any commonly

used `p-norm.�e proposedmethod of attack enables the use of existing �rst-order at-

tack methods, and demonstrates that previous methods (VisualPhishNet) maintained

lower robustness than initially reported. To address this fact, using one of the proposed

robust optimization objectives to train robust DMLmodels across three common data

sets and the application of VisualPhishNet, yields an improvement in robustness that

exceeds prior methods.

Having deception attacks that are di�cult to express with high precision, it remains

natural to select solution methods that seek to automate the characterization of attacks

using statistical patterns from empirical observations. However, as researchers or engi-

neers adopt highly parameterizedmodels (to providemodel �exibility), they also adopt

the established potential issues of such methods. �ese potential issues can be exem-

pli�ed by presence of bias, violations of assumptions of distributions at test-time time,

and mentioned lack of robustness. Ensuring the absence of these potential issues can

be infeasible, and their presence can cause detection methods for deception attacks to

misclassify true attacks.

Haaukins (Security Education Platform) Platforms for hosting computer systems

to be deliberately victims of attacks have typically been guided by competitions for

professionals. During expansion of information security related courses, we discovered

that these existing solutions were un�t for an educational setting and that alternative

educational platforms had poor realism. Since the �rst implementation of Haaukins

more than 1000 students have been using the platform, it has attracted more than €3M

of external funding, and have been presented at prominent venues such as Black Hat

Europe.�is suggests that the initial identi�ed needs were genuine and that the design

of platforms for security education remain an open problem.
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With deception attacks being dominated by informal de�nitions, (i) one can seek to

formalize their characteristics or (ii) improve upon methods that seek to character-

ize the attacks from empirical observations. Given that the existence of attacks have

been known for multiple decades, and certain types of deception attacks [31] achieved

numerous informal de�nitions within this time, it remains unlikely that stronger for-

malism is a plausible solution. For problems that remain di�cult to formalize, ma-

chine learning techniques have in recent years been a highly dominant solution.�ese

techniques, particularly the highly parameterized models, remain susceptible to small

adversarial perturbations that cause undesired predictions. Numerous e�orts to ad-

dress this problems have been proposed, however, most fail to achieve reliable improve-

ments [4, 58]

Adversarial training has shown to e�ectively enhance the robustness towards these

adversarial perturbations, that comes with the cost of lower benign accuracy [38]. Im-

portantly, models trained using adversarial training does not achieve desirable robust-

ness that is comparable to performance on benign input. However, the e�ect of ad-

versarial training has been demonstrated to in�uence fundamental properties of the

learned models, namely: (i) more e�ective transfer learning [52, 61], (ii) more inter-

pretable gradients [60, 24], (iii) presentations that are more aligned with human per-

ception [18], (iiii) and better generalization [67, 68].

Considering these e�ects, it could suggest that the learning paradigm (Empirical

Risk Minimization [62]) might contain undiscovered e�ects that hinders robust learn-

ing.�us improvement in robustness is achieved by addressing fundamental properties

of the current paradigm, or through the design of training procedures for an alternate

learning paradigm.

Another promising area of research to improve robustness is randomized smooth-
ing, which involves exploiting the fact that models tend to perform well over certain

types of noise [13, 34, 15]. E�ectively this approach seeks to smooth decision boundaries

using some form of noise (e.g. Gaussian noise), such that adversarial perturbations that

exploit “spikes” in the non-smoothed decision boundary reside on the correct side of

the decision boundary under smoothed conditions.
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Schott et al. [54] have demonstrated that using conditional generative models dur-

ing inference can signi�cantly improve the robustness for the particular application

of MNIST [33]. �e methodology has since then been extended to other application

domains [23], and reaches state-of-the-art performance in those settings.

Despite the covered fragility of modern machine learning techniques having been

known for over a decade [8], the progress on obtaining robustness have been limited

and in certain occasions false [4, 58]. �e covered recent research directions seems to

yield reliable progress on this topic, despite being far from a solved problem. Nicholas

Carlini, an in�uential research within the �eld of adversarial robustness, have at nu-

merous occasions referred to the state of adversarial robustness as an analogy to the

state of cryptography prior to Shannon’s introduction of information theory 1. �is

analogy emphasize his perception of adversarial robustness (for machine learning) is

in its early stages, and fundamental theorems are yet to be uncovered. Given that these

methods are a corner stone for future detection solutions, the ability to obtain robust

detection remain uncertain and likely not to be designed within the near future.

Google claims to have e�ectively eliminated the e�ectiveness of certain deception

attacks (phishing) by enforcing two-factor authentication [27]. �is solution does ef-

fectively prevent attacks, in respect to Lastdrager’s de�nition [31], but ensure the value

of the information exchanged during an attack to be short-lived. Despite the demon-

stration of e�ectiveness, it could indicate that adversaries have not adopted to the new

enforced deadlines required to exploit the information, which still remain possible with

the use of automation.

Deception attackswillmost likely remain an e�cient attack for adversaries for years

to come, as defenses struggle to become robust. Accepting this fact, one can seek lower

the value of the information exchanged during an attack to reduce the incentive of

adversaries.

1Talks listed on Nicholas Carlini’s own website: https://nicholas.carlini.com/talks
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