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Abstract

Privacy has become a primary concern in modern world. Addressing the pri-
vacy issue is particularly challenging in the context of distributed processing
due to many constraints such as absence of centralized coordination, limited
computational resources and inevitable information exchange between differ-
ent computing units. This thesis discusses on how to conduct signal processing
over a network in a distributed manner without violating privacy. In particu-
lar, we focus on practical privacy-preserving solutions that are lightweight in
terms of communication and computational cost. We first investigate exist-
ing privacy-preserving approaches which apply well-established cryptographic
techniques into distributed processing tools. Secondly, we propose a new
subspace perturbation based method that, instead of applying existing cryp-
tographic techniques, directly exploits the potential of distributed processing
tools such as distributed optimization for privacy-preservation. The proposed
method is able to alleviate two fundamental limitations in existing approaches:
the privacy-accuracy trade-off of differential privacy approaches and expensive
communication cost incurred in secret sharing based approaches, respectively.
Thirdly, based on the observation that all the above-discussed algorithms use
the idea of inserting noise to mask the private data for privacy-preservation, we
propose a new information-theoretical metric that is able to relate and compare
all of them in a unified framework. Fourthly, we observe that there is typically
a trade-off between the communication cost and privacy in noise insertion ap-
proaches and propose to address this trade-off, by making use of a quantiza-
tion scheme in a particular way that the accuracy of the algorithm output is
not deteriorated. Finally, continuing with the idea of exploring the potential
of existing distributed processing tools for privacy-preservation, we take the
first step to investigate the emerging graph signal processing tool and propose
a privacy-preserving distributed graph filtering solution using noise insertion.
This proposed solution has comparative performance compared with the above
proposed subspace perturbation based distributed optimization approaches.
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Resumé

Beskyttelse af privat information er blevet en stadig større udfordring i den
moderne verden. Det er i særdeleshed vanskeligt at beskytte privat information
i distribueret signalbehandling pga. de mange begrænsninger såsom fraværet
af central koordination, begrænsede beregningsmæssige ressourcer samt den
uundgåelige deling af information mellem forskellige enheder. Denne afhan-
dling søger at svare på, hvordan signalbehandling kan blive udført i et netværk
på en distribueret alt imens privat information beskyttes. Der fokuseres her på
simple løsninger, der beskytter privat information, som kan bruges i forskellige
anvendelser såsom i ressource-begrænsede trådløse sensornetværk. Først un-
dersøges eksisterende informations-beskyttende tilgange, som anvender kendte
kryptografiske metoder i værktøjer til distribuerede beregeninger. Dernæst
forslås en ny metode baseret på underrums-perturbationer, som, i stedet for
at anvende kryptografiske metoder, direkte udnytter potentialet i distribuerede
beregningsværktøjer, såsom distribueret optimering, til at beskytte privat in-
formation. Den foreslåede underrums-pertuberingsmetode er i stand til at
to grundlæggende begrænsninger i eksisterende metoder, nemlig afvegningen
mellem beskyttelse of privat information og præcision i differential privacy-
metoder og de store kommunikationsomkostninger i secret sharing-metoder.
Baseret på oberservationen at alle de nævnte metoder er baseret på indsættelse
af støj for at maskere og beskytte privat information forelås en ny information-
steoretisk metrik som tillader sammenligning af de eksisterende metoder. End-
videre observeres det, at der typisk er en afvegning mellem kommunikation-
somkostningerne og beskyttelsen af privat information i metoder baseret på
indsættelse af støj, men vha. en ny kvantiserigsmetode kan dette undgås. En-
deling, i tråd med ideen om at udnytte potentialet i eksisterende distribuerede
beregningsbærktøjer til beskyttelse af privat information, undersøges det hvor-
dan privat information kan beskyttes i signalbehandling på grafer, som er et
spirende felt, vha. støjindsættelse. Den foreslåede løsning har en ydelelse, der
er sammenlignelig med den førnævnte optimerings-metode baseret på underrums-
pertubering.

vii



Resumé

viii



List of Papers

The main body of this thesis consists of the following papers:

[A] Q. Li, I. Cascudo, and M. G. Christensen, “Privacy-Preserving Distributed
Average Consensus based on Additive Secret Sharing,” in Proc. Eur. Sig-
nal Process. Conf., pp. 1-5, 2019.

[B] Q. Li, and M. G. Christensen, “A Privacy-Preserving Asynchronous Aver-
aging Algorithm based on Shamir’s Secret Sharing,” in Proc. Eur. Signal
Process. Conf., pp. 1-5, 2019.

[C] Q. Li, R. Heusdens, and M. G. Christensen, “Convex Optimisation-based
Privacy-Preserving Distributed Average Consensus in Wireless Sensor
Networks,” in Proc. Int. Conf. Acoust., Speech, Signal Process., pp. 5895-
5899, 2020.

[D] Q. Li, R. Heusdens, and M. G. Christensen, “Convex Optimization-based
Privacy-Preserving Distributed Least Squares via Subspace Perturbation,”
in Proc. Eur. Signal Process. Conf., pp. 2110-2114, 2021.

[E] Q. Li, R. Heusdens, and M. G. Christensen, “Privacy-Preserving Dis-
tributed Optimization via Subspace Perturbation: A General Framework,”
in IEEE Trans. Signal Process., vol. 68, pp. 5983 - 5996, 2020.

[F] Q. Li, R. Heusdens, and M. G. Christensen, “Communication Efficient
Privacy-Preserving Distributed Optimization using Adaptive Quantiza-
tion,” in Signal Process. Lett. (submitted), 2021.

[G] Q. Li, M. Coutino, G. Leus and M. G. Christensen, “Privacy-Preserving
Distributed Graph Filtering,” in Proc. Eur. Signal Process. Conf., pp. 2155-
2159, 2021.

[H] Q. Li, J.S. Gundersen, R. Heusdens, and M. G. Christensen, “Privacy-
Preserving Distributed Processing: Metrics, Bounds, and Algorithms,” in
IEEE Trans. Inf. Forensics Security., 2021.

ix



List of Papers

x



Contents

Curriculum Vitae iii

Abstract v

Resumé vii

List of Papers ix

Preface xvii

I Summary 1

3
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Research questions and structures . . . . . . . . . . . . . 4
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Network setup . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Distributed processing . . . . . . . . . . . . . . . . . . . 6
2.3 Privacy definition . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Adversary model . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Security model . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Problem formulation . . . . . . . . . . . . . . . . . . . . 10

3 Secure multiparty computation based approaches . . . . . . . . 10
3.1 Fundamentals of secret sharing . . . . . . . . . . . . . . 12
3.2 Secret sharing over a network . . . . . . . . . . . . . . . 13
3.3 Privacy-preserving summation as an example . . . . . . 13
3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Differential privacy based approaches . . . . . . . . . . . . . . . 15
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Privacy-preserving summation as an example . . . . . . 17
4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



Contents

5.2 Future research . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II Papers 29

A Privacy-Preserving Distributed Average Consensus based on Addi-
tive Secret Sharing 31
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2 Preliminaries and Problem Setup . . . . . . . . . . . . . . . . . 34

2.1 Privacy-preserving distributed average consensus problem 35
2.2 Privacy concern and adversary model . . . . . . . . . . . 35

3 Additive secret sharing . . . . . . . . . . . . . . . . . . . . . . . 36
4 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Experimental results and analysis . . . . . . . . . . . . . . . . . 39

5.1 Experimental results . . . . . . . . . . . . . . . . . . . . 39
5.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Security guarantee . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions and future work . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B A Privacy-Preserving Asynchronous Averaging Algorithm based on
Shamir’s Secret Sharing 45
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2 Preliminaries and Problem Setup . . . . . . . . . . . . . . . . . 48

2.1 Privacy-preserving distributed average consensus problem 48
2.2 Privacy concern and adversary model . . . . . . . . . . . 49

3 Shamir’s Secret Sharing scheme . . . . . . . . . . . . . . . . . . 49
4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 51
5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Security analysis under passive and active attack . . . . 54
5.2 Security analysis under dynamic participation . . . . . . 54

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C Convex Optimisation-based Privacy-Preserving Distributed Average
Consensus in Wireless Sensor Networks 59
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2 Preliminaries and Problem Definition . . . . . . . . . . . . . . . 63

2.1 Distributed average consensus . . . . . . . . . . . . . . . 63
2.2 Privacy concern and adversary model . . . . . . . . . . . 63
2.3 Problem definition . . . . . . . . . . . . . . . . . . . . . 63

3 Primal-dual method of multipliers . . . . . . . . . . . . . . . . . 64
4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



Contents

4.2 Individual privacy . . . . . . . . . . . . . . . . . . . . . 66
5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D Convex optimization-based Privacy-Preserving Distributed Least
Squares via Subspace Perturbation 75
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2 Fundamentals and problem Setup . . . . . . . . . . . . . . . . . 78

2.1 Distributed least squares . . . . . . . . . . . . . . . . . . 78
2.2 Privacy concerns . . . . . . . . . . . . . . . . . . . . . . 79
2.3 Adversary model . . . . . . . . . . . . . . . . . . . . . . 79
2.4 Privacy-preserving distributed least squares . . . . . . . 80

3 Primal-dual method of multipliers . . . . . . . . . . . . . . . . . 80
4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Output correctness . . . . . . . . . . . . . . . . . . . . . 82
4.2 Individual privacy . . . . . . . . . . . . . . . . . . . . . 82

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

E Privacy-Preserving Distributed Optimization via Subspace Perturba-
tion: A General Framework 89
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . 92
1.2 Paper contributions . . . . . . . . . . . . . . . . . . . . . 93
1.3 Outline and notation . . . . . . . . . . . . . . . . . . . . 94

2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.1 Distributed convex optimization . . . . . . . . . . . . . 94
2.2 Privacy concerns . . . . . . . . . . . . . . . . . . . . . . 95
2.3 Adversary model . . . . . . . . . . . . . . . . . . . . . . 96

3 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.1 Output correctness metric . . . . . . . . . . . . . . . . . 97
3.2 Individual privacy metric . . . . . . . . . . . . . . . . . 97
3.3 Lower bound of information leakage . . . . . . . . . . . 97

4 Primal-dual method of multipliers . . . . . . . . . . . . . . . . . 98
4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Broadcast PDMM . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Convergence of dual variables . . . . . . . . . . . . . . . 99

5 Proposed approach using PDMM . . . . . . . . . . . . . . . . . 100
5.1 Privacy preservation using noise insertion . . . . . . . . 100
5.2 Subspace perturbation . . . . . . . . . . . . . . . . . . . 101
5.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Proposed approach using other optimizers . . . . . . . . . . . . 105
6.1 ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xiii



Contents

6.2 Dual ascent method . . . . . . . . . . . . . . . . . . . . 107
6.3 Linking graph topologies and subspaces . . . . . . . . . 108

7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1 Privacy-preserving distributed average consensus . . . . 109
7.2 Privacy-preserving distributed least squares . . . . . . . 110
7.3 Privacy-preserving distributed LASSO . . . . . . . . . . 110

8 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.1 General applicability . . . . . . . . . . . . . . . . . . . . 113
8.2 Privacy level-invariant convergence rate . . . . . . . . . 113
8.3 Comparison with differential privacy . . . . . . . . . . . 114
8.4 Information loss over the iterative process . . . . . . . . 114

9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.1 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . 116
10.2 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . 116

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

F Communication Efficient Privacy-Preserving Distributed Optimiza-
tion using Adaptive Quantization 123
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2.1 Distributed optimization over networks . . . . . . . . . 126
2.2 Distributed optimizers . . . . . . . . . . . . . . . . . . . 127

3 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.1 Privacy concern and adversary models . . . . . . . . . . 127
3.2 Main requirements and related metrics . . . . . . . . . . 127

4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1 Privacy analysis . . . . . . . . . . . . . . . . . . . . . . . 129
4.2 Individual privacy guarantee . . . . . . . . . . . . . . . 131
4.3 Output correctness and communication cost . . . . . . . 132

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

G Privacy-Preserving Distributed Graph Filtering 137
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2 Distributed Processing Over Networks . . . . . . . . . . . . . . 140
3 Privacy-Preserving Processing . . . . . . . . . . . . . . . . . . . 142

3.1 Privacy concern . . . . . . . . . . . . . . . . . . . . . . . 142
3.2 Adversary model . . . . . . . . . . . . . . . . . . . . . . 142
3.3 Problem formulation . . . . . . . . . . . . . . . . . . . . 142

4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.1 Encryption function design . . . . . . . . . . . . . . . . 143
4.2 Encrypted operator design . . . . . . . . . . . . . . . . . 144
4.3 Privacy analysis under adversary models . . . . . . . . . 145

xiv



Contents

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

H Privacy-Preserving Distributed Processing:
Metrics, Bounds and Algorithms 153
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . 156
1.2 Paper contributions . . . . . . . . . . . . . . . . . . . . . 157
1.3 Outline and notation . . . . . . . . . . . . . . . . . . . . 157

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
2.1 Privacy-preserving distributed processing over networks 158
2.2 Adversary models . . . . . . . . . . . . . . . . . . . . . . 158
2.3 Key aspects for algorithm evaluation . . . . . . . . . . . 159

3 Proposed metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.1 Motivation of using mutual information . . . . . . . . . 160
3.2 Definition of mutual information . . . . . . . . . . . . . 160
3.3 Output utility ui . . . . . . . . . . . . . . . . . . . . . . 161
3.4 Individual privacy ρi . . . . . . . . . . . . . . . . . . . . 161

4 Linking the proposed metrics to SMPC and DP . . . . . . . . . . 162
4.1 Secure multiparty computation . . . . . . . . . . . . . . 162
4.2 Differential privacy . . . . . . . . . . . . . . . . . . . . . 163
4.3 Proposed metrics for SMPC and DP . . . . . . . . . . . . 164

5 Example I: Distributed average consensus . . . . . . . . . . . . 164
5.1 Problem definition . . . . . . . . . . . . . . . . . . . . . 165
5.2 Distributed linear iteration approaches . . . . . . . . . . 165
5.3 Distributed optimization approaches . . . . . . . . . . . 166

6 Example II: Privacy-preserving distributed average consensus . 167
6.1 Noise insertion for privacy preservation . . . . . . . . . 168
6.2 Statistical zero-sum noise insertion using DP . . . . . . . 168
6.3 Exact zero-sum noise insertion using SMPC . . . . . . . 171
6.4 Subspace noise insertion using DOSP . . . . . . . . . . . 174
6.5 Comparisons of existing approaches . . . . . . . . . . . 176

7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1 Convergence behavior . . . . . . . . . . . . . . . . . . . 177
7.2 Utility and privacy . . . . . . . . . . . . . . . . . . . . . 178

8 Suggestions for algorithm design . . . . . . . . . . . . . . . . . 180
8.1 Applications for which ρi,min = I(Si;Si) . . . . . . . . . 180
8.2 Applications for which ρi,min < I(Si;Si) . . . . . . . . . 181

9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.1 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . 181
10.2 Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . 183
10.3 Proof of equation (H.53) . . . . . . . . . . . . . . . . . . 183

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xv



Contents

xvi



Preface

This thesis is submitted to the Technical Faculty of IT and Design at Aalborg
University in partial fulfillment of the requirements for the Degree of Doctor
of Philosophy. The thesis is constituted by two parts: a summary and a collec-
tion of papers. The summary consists of an introduction to the research project
privacy-preserving distributed processing over networks, a background chapter
introducing fundamentals, an overview of different solutions and the conclu-
sions. After the summary, a collection of papers that have been published or
submitted in peer-reviewed conferences or journals will be presented.

The work was carried out from March 2018 to March 2021 in the Audio
Analysis Lab at the Department of Architecture, Design, and Media Technology
(CREATE) at Aalborg University. First of all, I would like to thank my supervisor
Mads Græsbøll Christensen for his guidance and endless support throughout
my Ph.D life. He always trusted me and gave me the freedom to do what I am
motivated for, such as choosing which research directions to explore. Another
person I would like to thank is my co-supervisor Richard Heusdens who has
influenced me a lot especially on what standard should a scientist hold and
insist. I always admire his idealistic thinking and really appreciate his endless
patience and the precious time he spent for discussing every single detail with
me. Next, I would like to thank all my co-authors, Ignacio Cascudo, Mario
Coutino, Geert Leus and Jaron Skovsted Gundersen, on the wonderful research
we have done together. I also thank all my colleagues in Audio Analysis Lab
and CAS group in TU Delft, and my friends for all the precious time we spent
together. In addition, I would like to thank all members in SECURE project for
the interesting discussions and cross-disciplined collaborations we have had
together. Finally, I would like to thank my parents and my siblings Qiongyao
Li, Qiongling Li and Hongyang Li who always stand in my back and support
me through all ups and downs.

Qiongxiu Li
Aalborg University, May 24, 2021

xvii



Preface

xviii



Part I

Summary

1





1 Introduction

As the modern world is becoming increasingly digitized and interconnected,
there has been a huge growth in the availability of information/datasets. In
addition, these datasets are often located or collected in different computing
units. Therefore, it is of great importance to allow inference over the sheer
amount of heterogeneous datasets over different devices. It also brings new
challenges as traditional centralized algorithms are too expensive and not prac-
tical, which solely rely on the so-called centralized authority/server to first col-
lect data from different units and then process the collected data together at
the centralized server. As a consequence, it requires novel tools that are able to
collect, store and process the massive amount of datasets in a fully decentral-
ized (or distributed) fashion. Compared to traditional centralized algorithms,
distributed processing tools eliminate the dependence of a single centralized
coordination by making use of the network nature. More specifically, each
unit/node is allowed to carry out certain, usually simple, local computations
by communicating only the necessary information with its neighboring nodes.
Such distributed processing has many advantages, e.g., (1) it is more flexible
and scalable to the number of nodes; (2) it is very commercial-friendly as it
does not require an expensive centralized server to take care of all data col-
lection and computations, instead it distributes the computational power and
resources to different units; (3) it is more robust to the single point of fail-
ure because it is able to function properly even if a few nodes are missing or
dropping out. The whole centralized system would, however, not work if the
centralized server is being hacked or broken.

With the increasing concern of individual rights for data privacy, the pri-
vacy concern has become a key challenge that hinders the wide adaptation
of distributed processing tools, or collaborative learning over multiple par-
ties/nodes [1–6]. In particular, due to the fact that the primary computing
devices for many people are phones and tablets [7, 8], these devices are em-
bedded with many different sensors such as microphones and cameras. Data
processing over these sensors would require data exchange between them and
the exchanged data is usually very sensitive regarding individuals’ privacy. The
data collected from these sensors often contain sensitive personal information
such as location, voice recordings and personal profiles. Therefore, such data
processing are restricted by privacy concerns as it might cause the loss of pri-
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vacy. For example, assume a scenario where a number of hospitals would like to
learn a machine learning model to predict cancer at an early stage. A better and
more accurate model which has higher predicting accuracy can be achieved,
if these hospitals are able to collaborate together to allow learning over all
datasets available to them. However, the dataset collected at each hospital is
very sensitive as it contains patients’ health records etc. Without addressing
this privacy concern, such collaborations are not possible, or even not legally
allowed according to the regulations like the EU General Data Protection Reg-
ulation [9].

To summarize, it is very important to develop privacy-preserving distributed
processing tools that are able to conduct signal processing or data learning over
networks in a distributed manner without violating privacy. It is quite challeng-
ing to develop such tools as it is an interdisciplinary research field that requires
knowledge from different fields such as information theory, statistics, cryptog-
raphy, differential privacy, distributed signal processing, machine learning and
more.

1.1 Research questions and structures

In this thesis we focus on studying and proposing new methods to address
the privacy issues in distributed processing over networks under different as-
sumptions and constraints. In particular, we attempt to answer the following
research questions.

1. In various applications such as wireless sensor networks, there are many
practical constrains like low computational power and limited memory.
How can we develop effective privacy-preserving distributed processing
tools that are lightweight in terms of both communication cost and com-
putational complexity?

2. One typical way to address the privacy issue is to apply well-established
cryptographic techniques such as secure multiparty computation (SMPC)
and differential privacy (DP), into different distributed processing tools
for privacy-preservation. However, these techniques are not originally de-
fined in the context of distributed processing over networks and thereby
each of them has its own limitations. An important question that should
be addressed is: can we instead develop new privacy-preserving meth-
ods that are able to address these limitations other than directly applying
these cryptographic tools?

3. Given various privacy-preserving algorithms that are derived from differ-
ent contexts and with different assumptions, how to choose an appropri-
ate algorithm for a specific problem at hand? That is, how to relate these
algorithms to each other and compare them?

Accordingly, we structure the summary of the thesis in the following way. An in-
troduction of privacy-preserving distributed processing over networks is given
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2. Background

first. After that, the necessary background and fundamentals for understanding
remaining contents of the thesis will be introduced in Section 2. An overview
of the existing cryptographic tools for achieving privacy-preservation will be
given in Section 3 and 4. Finally, the conclusions of the thesis will be given in
Section 5, including both a paper-wise contribution summary and a discussion
of future research directions.

2 Background

In order to facilitate the understanding the fundamental concepts in privacy-
preserving distributed processing over networks, we demonstrate a toy exam-
ple in Fig. 1. We assume three smart speaker companies/institutions, each of
which has a local dataset collected from its end users. These companies would
like to increase the performance of its own smart speakers by improving the
speech recognition accuracy. The goal of them is to cooperate together to learn
a global speech recognition model based on all their datasets. However, none
of them would like to reveal it own dataset to others as it would lose its end
users’ data privacy. We remark that there are several important questions to
be considered before proposing solutions. (1) How to model the relationship
between different parties in the network? As an example shown in the figure,
not all companies in the network can talk/communicate with each other di-
rectly, e.g., company 2 and 3. How would this be modelled? (2) What does
distributed processing mean? How is it defined? (3) What does privacy mean
or how is privacy defined?; (4) What if there are some security attacks in the
network? For example, if there are some non-trustworthy/ malicious parties in
the network, will they compromise the privacy of the other ones? E.g., how to
model the case that company 1 and 2 are from the same institution and they
pretend to participate in this computation but their goal is to infer the local
dataset of company 3 or to manipulate the learning model to be inaccurate for
company 3. (5) How strong is the malicious party assumed? Do they have
infinite computational power and resources?

In what follows, we will answer the above questions one by one. Section
2.1 explains how to model the network as a graph with a number of nodes and
edges, which represent the relationship between different parties. Section 2.2
and 2.3 explain what distributed processing is and defines privacy, respectively.
Section 2.4 introduces the so-called adversary model, which is used to simulate
different security attacks. Section 2.5 introduces different assumptions for the
adversary. Finally, in Section 2.6 we summarize the main requirements that a
privacy-preserving distributed solution should satisfy.

2.1 Network setup

A distributed network can be modelled as a graph G = {N , E}, where N =
{1, . . . , n} denotes the set of n nodes/parties/agents and E ⊆ N × N denotes
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Fig. 1: Example

the set of m edges. Two nodes i, j are connected with each other if there is an
edge between them, i.e., (i, j) ∈ E . Let Ni = {j | (i, j) ∈ E} denote the set of
neighboring nodes of node i and di = |Ni| denotes the degree of node i. Define
matrix B ∈ Rm×n based on the edge set, for each edge (i, j) ∈ E we set

Bi|j =

 1, if (i, j) ∈ E and i < j,
−1, if (i, j) ∈ E and i > j,
0, if (i, j) /∈ E .

(1)

2.2 Distributed processing

Let si denote the local data held by node i, we denote s = [s1, . . . , sn]> by
stacking all local data together, where (·)> denotes matrix transpose. Similarly,
we denote yi as the desired output of node i and thus y = [y1, . . . , yn]>. The
main goal of distributed processing over a network is to jointly compute a
function, i.e.,

f : Rn 7→ Rn,y = f(s), (2)

without any centralized coordination. That is, each node i is only allowed to
communicate or exchange information with its neighbors j ∈ Ni. For example,
many applications require a distributed data aggregation protocol such as those
used in average consensus algorithms [10, 11], graph filtering methods [12,
13], probabilistic inference algorithms [14, 15], gossip algorithms [16, 17] or
convex optimization algorithms (ADMM [18], PDMM [19–21]).
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2. Background

Fig. 2: Passive/Active adversary

2.3 Privacy definition

In this context, we define the private data to be protected as the local data si
held by each node, which often contains individual’s sensitive personal infor-
mation that can lead to severe privacy leakage like identity, health condition
and personal behavior. For example, with voice signals, health condition such
as Parkinson’s disease [22, 23] can be diagnosed. Power consumption data can
reveal the activities of the householders [24]. Sensitive information such as
the identity of an individual can be revealed using only an anonymous 10-ride
bus ticket [25].

2.4 Adversary model

When considering privacy, the so-called adversary model should be specified
as it evaluates the algorithm robustness when dealing with different security
attacks. We now introduce a few adversary models which are relevant in this
context.

Passive adversary

The passive adversary model is also called a semi-honest or honest-but-curious
adversary model. All nodes in the network are classified into two types based
on whether they are colluded by the adversary. The colluded nodes are referred
to as corrupted nodes and the rest of non-colluded nodes are called honest
nodes. See Fig.2 for a toy example. The corrupted nodes will follow the
instructions of the algorithm but they can share information together like their
own private data and the messages transmitted from and to them. The goal
of the passive adversary is to infer the private data of the honest nodes by
collecting information from all the corrupted nodes. Note that as long as there
is one corrupted node at either end of an edge, all information transmitted
along this edge will be revealed to this corrupted node, thereby to the passive
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Fig. 3: Eavesdropping adversary

adversary. An algorithm is more robust against a passive adversary if it can
tolerate a higher number of corrupted nodes without revealing the private data
of the honest nodes.

Active adversary

The active adversary works similarly as the passive adversary by colluding a
number of nodes. The main difference is that the actively corrupted nodes are
allowed to deviate from the algorithm instructions. For example, they can lie
to their neighbors by sharing wrong data with them. Therefore, in addition to
infer the private data of the honest nodes, they are able to make more damage
like manipulating the result of the algorithm to be incorrect. As a consequence,
dealing with the active adversary is more challenging than the above passive
adversary. That is, if an algorithm is robust to an active adversary implies that
it is also robust to the passive adversary. The reverse is, however, not true.

Eavesdropping adversary

Compared to the passive and active adversaries, the eavesdropping adversary
does not work by colluding some nodes in the network but by listening to the
messages transmitted between each pair of neighboring nodes. The goal of
the eavesdropping adversary is to infer the private data of the nodes by col-
lecting the eavesdropped information from the communication channels, i.e.,
the edges, between nodes (see Fig.3 for an example). Compared to the above
passive adversary, the eavesdropping adversary model has received very lit-
tle attention in the literature since it can be addressed by assuming securely
encrypted channels [26] such that no information can be eavesdropped. How-
ever, we argue that the eavesdropping adversary is indeed very relevant for the
context of distributed processing. The reason is that, due to its decentralized
nature, distributed processing solutions are iterative and thus require the com-
munication channels to be used many times. It is thus too expensive to assume
that all communication channels over all iterations are securely encrypted. As
a consequence, when designing algorithms it is very important to minimize the
expense of secure channel encryption.
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2. Background

Having introduced different adversary models, we note that compared to
the active adversary model, the passive adversary model has been more widely
investigated in a distributed setting [27]. In addition, for algorithms which
consider multiple adversaries models, we assume that these adversaries can
cooperate together. For example, if both the passive and eavesdropping adver-
saries are considered, they may be able to share information together to infer
the private data of the honest nodes.

2.5 Security model

The security model is classified into two categories based on the assump-
tion of the adversaries’ computation power, i.e., whether it is computationally
bounded or not. If the adversary is assumed computationally bounded, the
constructed security model is called computational (also called conditional)
security. The privacy is guaranteed by assuming that the adversary cannot
decrypt the private data efficiently, e.g., in polynomial time. On the other
hand, information-theoretical (also called unconditional) security model is
constructed if the adversary is assumed to have unbounded computation power
but can not infer the private data with the amount of available information.

In general, an information-theoretical security model is preferred over a
computational security model in the context of distributed setting as it consid-
ers a stronger, i.e., computationally unbounded, adversary and is often more
lightweight in both computational complexity and communication costs [28].
Therefore, in this study we will focus on information-theoretic security ap-
proaches.

Noise insertion for information theoretical security

A typical way to achieve information theoretical security is to design certain
noise insertion methods that are able to obfuscate the private data

∀i ∈ N : sri = Fr(si, ri), (3)

where Fr denotes the designed noise insertion function and ri denotes the
inserted noise for node i. After the noise insertion, how well is the private data
si protected depends on how much information can be inferred from knowing
sri . Denote si and sri as realizations of random variables Si and Sri , respectively.
One natural metric to quantify how much information about Si can be revealed
given the knowledge of Sri , or vice versa, is mutual information [29].

I(Si;S
r
i ) ≤ δ, (4)

where δ denotes the threshold of privacy leakage, the smaller it is, the better
the privacy is being protected.
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A simple yet effective way to design the noise insertion function Fr is to
add noise to the private data to mask it, i.e.,

∀i ∈ N : sri = si + ri. (5)

How to design the inserted noise ri depends on several factors such as the
distribution of the private data. In the coming two sections we will come back
to this in more detail.

2.6 Problem formulation

Given a privacy-preserving distributed processing algorithm, denote ŷi as the
algorithm output for node i and denote V as the set of information collected
by the considered adversaries throughout the whole algorithm for the purpose
of inferring the private data of the honest nodes. Let Nh and Nc denote the set
of honest and corrupted nodes, respectively. We conclude that there are two
main requirements to be considered when evaluating the performance of a
privacy-preserving distributed signal processing algorithm: output correctness
and individual privacy.

Output correctness

Each node i would like its estimated output ŷi to be as close as possible to
its desired output yi. One widely adopted metric for quantifying the output
correctness is the squared error ‖y − ŷ‖2.

Individual privacy

Throughout the execution of the algorithm, each honest node i ∈ Nh would
like to protect its private data si from being revealed to the adversaries. That
is, from an information-theoretic point of view, with the knowledge V available
to the adversaries it is insufficient to infer what is Si. We will use the mutual
information I(Si;V) to quantify how much information about Si is revealed
given the knowledge of V.

3 Secure multiparty computation based ap-
proaches

The main concept of secure multiparty computation (SMPC) [30] is to securely
compute a function over multiple parties/nodes in a network without revealing
each node’s private data to others. Consider a scenario that there are n nodes
each with private data si, i ∈ N , they would like to collaborate together to
compute a function over their private data, i.e., f(s1, s2, . . . , sn) but each of
them would not like to reveal its own private data. In SMPC, it defines that
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3. Secure multiparty computation based approaches

Fig. 4: Ideal world v.s. Real world in SMPC

the perfect solution to solve this problem requires a trusted third party (TTP),
which collects the private data from all nodes and then computes the function
output, after that send the output to each node. Such scenario is defined as the
so-called ideal world (see the left-hand plot in Fig. 4 for a toy example) because
it assumes the TTP can not be corrupted, thus the private data is protected and
in the meantime each node realizes the goal of knowing the function output.
However, in real world applications, a TTP might not be available. Therefore,
the goal of SMPC is to design a protocol to replace the TTP, by relying only on
the information exchange between all nodes in the network (see the right-hand
plot in Fig. 4).

This goal of SMPC fits well with the purpose of privacy-preserving dis-
tributed processing approaches. Therefore, many existing approaches make
use of techniques from SMPC for privacy-preservation, for example in ma-
chine learning applications [31–38]. There are mainly three kinds of privacy-
preserving approaches using different SMPC techniques. The first type of tech-
niques is homomorphic encryption (HE) [39–41], which is able to allow all
computations in the encrypted domain. As shown in Fig. 5, all private data
are first encrypted and then computation is conducted on the encrypted data,
after that each node receives the encrypted output and then decrypt it. Over-
all, HE techniques establish a computational security model for protecting the
private data. HE has been applied in various problems such as distributed
average consensus [42–44], convex optimization [45–49] and machine learn-
ing [11, 50–53]. The second technique is garbled circuits (GC) [54, 55] which
allows to compare inputs of two nodes without knowing each node’s input.
GC is thus adopted in the cases when secure comparison is involved [56]. Fi-
nally, the last technique is called secret sharing [41]. Its main idea is to first
split each private data into pieces and distribute them to different nodes in the
network. The private data is protected because it can only be reconstructed if
and only if a large number (specified by a threshold) of nodes are corrupted.
Various secret sharing schemes such as additive secret sharing and Shamir’s
secret sharing have been widely adopted in recent studies [57–62]. Note that
among these three types of approaches, both HE and GC based approaches
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Fig. 5: Homomorphic encryption

Fig. 6: Secret sharing

are based on computational security model and thus are very computationally
demanding. Secret sharing based approaches, on the other hand, are based
on an information-theoretic security model which is very lightweight in terms
of computational complexity. Since this study mainly focuses on information-
theoretic security, in what follows we will introduce more details about secret
sharing techniques.

3.1 Fundamentals of secret sharing

Imagine a scenario that a number of scientists cooperate together to work on a
confidential project [63], the confidential documents are locked up in a cabi-
net. The cabinet can only be unlocked if the majority of scientists agree. Secret
sharing schemes [30] can provide a perfect solution to this problem.

That is, assume a secret holder i would like to share his or her secret si
among a group of n nodes. By adopting a secret sharing scheme, it guarantees
that the secret si can be reconstructed if and only if a sufficient amount of
nodes agree to collaborate, otherwise no information regarding the secret si
will be revealed. A secret sharing scheme mainly comprises two parts, see
Fig.6 for a toy example.

• Share construction: The secret share algorithm takes both secret si and
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3. Secure multiparty computation based approaches

Fig. 7: Secret sharing over a network

some randomness ri as inputs and then outputs n shares, i.e.,

FS(si, ri) = (si,1, si,2, ..., si,n), (6)

where si,j denotes the jth share of secret si.

• Secret reconstruction: By collecting a sufficient number (denoted by
a threshold t) of shares from some subset of the nodes {l1, . . . , lt}, the
secret si can be reconstructed, i.e.,

FR(si,l1 , si,l2 , ..., si,lt) = si, (7)

3.2 Secret sharing over a network

Assume the case that each node in the network has a secret, denoted as
s1, s2, . . . , sn and they would like to cooperate together to compute a func-
tion f(s1, s2, . . . , sn) with their secrets as inputs. In this case, each node is
both a secret holder and a share receiver in the network. In order to conduct
secret sharing over the network, each node will first construct n shares based
on its own secret, after that it will send n − 1 shares to every other node in
the network and receive shares from others as well. See Fig. 7 for an example
with n = 4 nodes in the network. To guarantee that the function output can
be computed without revealing each node’s secret, a new function should be
defined, which takes all the shares as inputs and outputs the same result as the
original function, i.e.,

f ′(s1,1, s1,2, . . . , s2,1, s2,2, . . . , sn,n) = f(s1, s2, . . . , sn).

3.3 Privacy-preserving summation as an example

To explain how to apply secret sharing in detail, we will use the privacy-
preserving summation as an example. The goal is to compute the sum of all
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private data over the network, i.e.,

∀j ∈ N : yj = f(s1, s2, . . . , sn) =
∑
i∈N

si, (8)

To relate to the idea of using noise insertion to achieve information theoretic
security, we now show how to design the noise insertion method using additive
secret sharing. Define Zp as a group of integers modulo p and p is sufficiently
large such that such that

∑
i∈N si < p. The reason of working with modulo

operation is to achieve perfect security, which we will explain later. Let each
node i select n−1 shares {si,j ∈ Zp}j∈N ,j 6=i uniformly at random and set share
si,i = (si−

∑
j∈N ,j 6=i si,j) mod p. Note that si can only be reconstructed if and

only if all n shares are given. Based on (5), we can design the noise insertion
function as

∀i ∈ N : sri = (si + ri) mod p (9)

where the inserted noise is constructed using the shares:

∀i ∈ N : ri =
( ∑
j∈Ni

(si,j − sj,i)
)

mod p. (10)

The sum is guaranteed to be preserved, i.e.,∑
i∈N

sri mod p =
(∑
i∈N

(si + ri)
)

mod p

=
∑
i∈N

si +
(∑
i∈N

∑
j∈Ni

(si,j − sj,i)
)

mod p

=
∑
i∈N

si, (11)

since
(∑

i∈N
∑
j∈Ni

(si,j−sj,i)
)

mod p = 0. Note that with the help of modular
arithmetic, Sri is uniformly distributed on Zp and thus statistically independent
of Si (see [30, Section 1.3.1] for further details). Consequently, no information
about Si can be revealed by observing Sri , i.e., perfect security is achieved:

I(Si;S
r
i ) = 0. (12)

3.4 Limitations

By inspecting the example shown in Fig. 7, we note that there are several limi-
tations in adopting secret sharing techniques into distributed signal processing
for privacy-preservation.

• Assumption of fully-connected graph: Secret sharing often requires a
fully-connected graph topology, i.e., each node is connected with every
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other node, to guarantee that the shares can be distributed and the out-
put of the function is correct. However, in practical applications fully-
connected graphs may not be available as they does not scale with the
number of nodes in the network.

• High communication cost: Due to the fact that secret sharing usually re-
quires to distribute shares over a fully-connected network, the amount
of communication times will increase quadratically with the number of
nodes in the networks. This makes it impractical for large sensor net-
works.

• Computationally demanding when dealing with an eavesdropping adver-
sary: Secret sharing approaches usually assume that the communication
channels are securely encrypted such that no eavesdropping can be con-
ducted. However, as mentioned before, distributed processing algorithms
often require a large number of iterations for converging to the optimum
result. This makes it very expensive to assume all communication chan-
nels over all iterations are securely encrypted.

• Requirement of honest neighboring nodes when dealing with a passive
adversary: It requires each honest node to have at least one honest neigh-
boring node to ensure that at least one share is not known to the passive
adversary such that the private data can not reconstructed. That is, secret
sharing is not robust to n− 1 passive corruptions.

One way to deal with above three limitations is to construct several servers in
the networks [64, 65], such that each node only needs to send shares to these
servers. Therefore, the communication cost will only increase linearly with the
number of nodes. The fully-connected graph assumption is also relaxed to the
case that only these servers need to form a fully-connected graph. Finally, the
expense of secure channel encryption will also be reduced. However, assum-
ing a number of servers in the network might be expensive and sometimes is
not available in many applications. Another way to deal with the limitation
of graph topology is to establish virtual edges between nodes to form a virtual
graph which is fully-connected, however, it require expensive encryption tech-
nique to construct the virtual edges and thereby increasing the computational
complexity.

4 Differential privacy based approaches

Differential privacy (DP) based approaches, as the name suggested, adopt dif-
ferential privacy techniques [66–70] to achieve privacy-preservation. The main
idea is to, instead of sharing the private data directly, add careful noise to the
private data to achieve a noisy version and then share the noisy one to oth-
ers. The more noise inserted, the better the private data is being protected.
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Fig. 8: Differential privacy

Note that DP considers an extreme scenario where even if there is only one
honest node in the network, its privacy can still be protected. Such strong pri-
vacy guarantee makes DP very popular and has been widely adopted in many
applications such as distributed average consensus [71–75], distributed opti-
mization [76–82] and distributed machine learning [83].

4.1 Fundamentals

Consider a scenario where you are asked to participate in a survey which re-
quires you input your sensitive data like political preference. You would be
reluctant to participate in this survey as there is a risk to reveal your sensitive
data. Differential privacy is a perfect solution to address your concern. In fact,
it guarantees your privacy under an extreme case that even though all other
participants except you are corrupted by the adversary, your personal data can
still be guaranteed to be protected from being revealing to others. That is,
based on the two results of the two surveys, one with and one without your
participation, the adversary would not be able to infer out what is your private
data. In Fig. 8 we show a toy example to illustrate the main idea. From an
information-theoretic point of view, it means that the posterior guess of the
adversary about your personal data with your participation is only slightly bet-
ter than the prior guess when your participation is absent. This fact can be
mathematically described as follows:

Denote s−i ∈ Rn−1 as a so-called adjacent vector of s by removing si from
the vector s. Let Ωi denote the range of si. Assume a randomized algorithm
F which protects its input from being revealed to others. Let Y denote the
range of output of algorithm F . Given ε ≥ 0, the algorithm F is called ε-
differentially private if it satisfies, for all pairs of adjacent vectors s and s−i,
and all sets Ys ⊆ Y,

∀si ∈ Ωi :
P (F (s) ∈ Ys)
P (F (s−i) ∈ Ys)

≤ eε. (13)

By inspecting the above equation, we can see that it require for any si ∈ Ωi,
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the posterior guess of the private data where si is included in the input is
only slightly better (eε times of) the prior guess when si is not included. We
note that differential privacy has the following advantages: (1) it does not
depend on the distribution of the private data; (2) ε measures the privacy
in the worst-case scenario as it is the maximum among all input ranges, i.e.,
∀i ∈ N ,∀si ∈ Ωi,; (3) compared to secret sharing based approaches, it has no
assumption on the graph topology and the communication cost is lightweight;
(4) it does not require any honest neighboring node for privacy-preservation,
i.e., it is robust to n− 1 passive corruptions.

4.2 Privacy-preserving summation as an example

To achieve differential privacy, each node can choose to insert independent
zero-mean noise using certain distributions such as Laplacian [66]. Hence, the
private data si of node i is protected even though all other n − 1 nodes are
passively corrupted, as the inserted noise ri is independent to all other noise
and thus is unknown. According to the law of large number, the sum will be
preserved if and only if n = |N | → ∞. That is,∑

i∈N
sri =

∑
i∈N

(si + ri) =
∑
i∈N

si, (14)

as limn → ∞
∑
i∈N ri = 0. Here we can see that as the assumption of n → ∞

is not realistic in practice, so there is always a trade-off between the privacy
and the accuracy of the sum result.

4.3 Limitations

The strong privacy guarantee ensured by differential privacy is both a feature
and a weak point of itself. Its main limitations are listed below:

• Difficulty in realization: Since differential privacy considers a worst case
and privacy should be guaranteed in any situation, for example scenarios
for all prior distribution of the private data, such strong privacy guarantee
is very difficult, sometimes impossible, to realize in practical applications
[84–86].

• Privacy-accuracy trade-off: To realize differential privacy, it often requires
to design the noise to obfuscate each private data in a way such that
(13) can be satisfied. However, there is a price to pay: the inserted
noise often affects the algorithm output to be inaccurate. The more noise
inserted, the less privacy leakage the node has, but the output will be
more inaccurate. Therefore, there is a fundamental trade-off between
privacy and accuracy.
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• Sensitivity to noise insertion: Proceeding with the privacy-accuracy
trade-off, one follow-up challenge is to design a proper budget for dif-
ferential privacy, i.e., how to control the ε in a way that the algorithm ac-
curacy is not severely compromised. To address this problem we need to
investigate how sensitive is the algorithm output in terms of the inserted
noise. However, except for very simple problems such as the summation
mentioned above, it is very difficult to analytically track the sensitivity.

Many studies are focusing on relaxing the differential privacy to make it more
practically achievable [68, 69, 87, 88]. For example [87, Theorem 1] showed
that for the right hand side of (13) if we consider to compute the expected
value instead of the maximum over all si ∈ Ωi, it will reduce to the Kullback-
Leibler divergence

DKL(P (F (s)‖P (F (s−i)) ≤ ε, (15)

and can further be relaxed to the following conditional mutual information:

I(Si;Y |{Sj}j∈N\{i}) ≤ ε. (16)

5 Conclusions

The main body of this thesis consists of a collection of papers: A-H. In what
follows we will first summarize each paper’s contribution and give discussions
on future research directions.

5.1 Contributions

Paper A This paper proposes a privacy-preserving distributed average con-
sensus algorithm using the additive secret sharing technique. The main idea is
to add one pre-processing step to obfuscate first each private data and then use
the obfuscated data for further processing. Such pre-processing only requires
one time additive secret sharing and is conducted only between neighboring
nodes, i.e., no fully-connected graph is required. In addition, due to the fact
that the average result remains identical if the sum of the private data over the
network is preserved, the result of the proposed method is accurate because
the sum of all the shares is constructed to be equal as the sum of all private
data. As a consequence, the proposed approach is very lightweight and allevi-
ates the privacy-accuracy trade-off incurred in differential privacy approaches.
Moreover, the proposed approach is able to protect the private data of a honest
node against a passive adversary as long as it has at least one honest neighbor-
ing node.

Paper B In addition to the passive adversary model considered in Paper A, we
would like to consider a more malicious model for the distributed average con-
sensus application, i.e., the active adversary model which allows the corrupted
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nodes to deviate from the instructions of the algorithm instructions. In SMPC,
Shamir’s secret sharing is a typical technique for addressing the active adver-
sary model. However, it requires a fully-connected graph for share distribution.
In order to address this limitation, in this paper we propose to relax such as-
sumption by requiring only clique-based graph. That is, we only assume that
each node and at least two of its neighboring nodes can form a fully-connected
subgraph, i.e., clique, such that Shamir’s secret sharing can be applied. Overall,
we propose a new privacy-preserving distributed average consensus algorithm
which considers an active adversary model.

Paper C Instead of directly applying existing cryptographic techniques for
privacy-preservation, in this paper we propose to directly explore the poten-
tial of distributed signal processing tools for protecting privacy. In particu-
lar for distributed optimization, we observe that the updating of the so-called
primal-dual method of multipliers (PDMM) is conducted in a so-called conver-
gent subspace determined by the graph topology. By exploiting this subspace
property, we propose a novel subspace perturbation idea, which achieves a
privacy-preserving distributed average consensus solution by inserting noise
into the non-convergent subspace, which is orthogonal to the convergent sub-
space. Due to the orthogonal property, the average result is not affected and
in the meantime the privacy is protected by the inserted noise. That is, the
proposed solution circumvents the privacy-accuracy trade-off incurred in dif-
ferential privacy approaches, and it considers two adversary models: passive
and eavesdropping. For a passive adversary, each honest node’s privacy is guar-
anteed as long as there is one honest neighboring node. Additionally, it is very
lightweight when dealing with the eavesdropping adversary because it requires
that only the communication channels in the initialization step are encrypted.

Paper D Continuing with the idea showed in Paper C, in this paper we ex-
tend extend this subspace perturbation idea for the application of distributed
least squares. As the data involved in distributed least squares are often vec-
tors/metrics but not the scalars, we then extend the information theoretic pri-
vacy guarantee in distributed average consensus to the high dimension case.
In addition, we verify the proposed idea using not only PDMM but also ADMM,
which demonstrates its general applicability. Overall, a subspace based privacy-
preserving distributed least squares approach is proposed. It has superior per-
formance compared with SMPC based approaches in terms of computational
complexity and communication cost.

Paper E The subspace perturbation idea is not only applicable to both dis-
tributed average consensus and distributed least squares, it is indeed generally
applicable to all distributed convex optimization problems. In addition, we
prove that the subspace property is not only true for PDMM and ADMM but
for many distributed optimizers like dual ascent, based on the fact that the
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incidence matrix of a connected graph is always rank deficient. Overall, in
this paper we summarize things together and propose a general distributed
optimization framework using subspace perturbation which is able to protect
privacy by inserting noise in the non-convergent subspace.

Paper F The above idea of using noise insertion to achieve privacy-
preservation is widely adopted in the literature. However, there is a funda-
mental trade-off between privacy and communication bandwidth in such tech-
niques. This is because the more noise inserted, the better privacy level can be
achieved, which will inevitably increase the entropy of the inserted noise and
thereby its bitrate. In this paper, we propose to make use of an adaptive quanti-
zation scheme [89, 90] to alleviate such trade-off for distributed optimization.
The proposed approach is very advantageous as it does not compromise the
accuracy of the optimization output by considering both privacy and quantiza-
tion. That is, the proposed approach is able to achieve a high privacy level in
distributed optimization with very low computational costs without compro-
mising the algorithm accuracy.

Paper G In the above papers we mainly propose privacy-preserving solutions
using distributed optimization tools. However, the potential of many other sig-
nal processing tools like graph signal processing [91–96], which is an emerging
field, has not been fully explored yet. In this paper, we take the first step to
propose a novel privacy-preserving distributed graph filtering algorithm by de-
signing a noise insertion method. In order to ensure that the inserted noise
does not severely degrade the accuracy of the filtering output, we calibrate
the effects of the inserted noise into the target graph filter. The proposed ap-
proach is very lightweight in terms of both communication cost and computa-
tional complexity as it allows a distributed implementation [13, 97]. However,
the approximated graph filtering output might not be as accurate as its non-
privacy-preserving counterpart.

Paper H As we discussed above, there are many ways to address the privacy
issue in distributed processing over network. One typical way is to integrate
existing well-established cryptographic techniques for privacy-preservation, for
example the SMPC and differential privacy techniques. Another way is to es-
tablish new privacy-preserving solutions by directly exploring the potential of
different distributed signal processing tools like distributed optimization and
graph signal processing. However, it raises questions like ’which method is the
optimum and how are they related to each other?’. In this paper we would like
to answer these questions. The main challenge comes from the fact that these
methods are developed from different contexts and thus have different metrics.
In order to be able to quantify these algorithms in a consistent manner, we pro-
pose a mutual information based metric, which is able to relate all metrics in
these approaches, to quantify both privacy and utility. By utility we mean how
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close is the privacy-preserving output and the non-privacy-preserving output
from an information-theoretic point of view. Moreover, we analyze the bounds
of both privacy and utility and discover that the lower bound of privacy is
the key to link these approaches. We use a concrete example application, dis-
tributed average consensus, to verify the effectiveness of the proposed metrics.
Finally, we provide some principles to help to choose an appropriate algorithm
given a specific problem at hand.

To conclude, the papers answered the research questions listed in Section
1.1. Papers A-G are related to the first question where all the proposed privacy-
preserving solutions are lightweight in terms of both communication and com-
putation complexity. Moreover, among them, Papers C-G answer the second
research question by proposing novel privacy-preserving solutions without re-
lying existing cryptographic techniques like SMPC and differential privacy, but
exploring the potential of distributed processing tools such as distributed op-
timization and graph signal processing for protecting privacy. In particular,
the proposed subspace perturbation-based distributed optimization approach is
very general and can be applied in a very broad context for example distributed
machine learning. Finally, paper H answers the last research question by ex-
plicitly comparing and relating different privacy-preserving solutions including
SMPC, differential privacy and subspace perturbation based approaches. Over-
all we conclude that there is no universally optimum solution for all problems
and it depends on the properties of each specific problem and the available
assumptions. By analyzing the bounds of privacy and utility, we provide some
suggestions and principles on how to design a proper algorithm.

5.2 Future research

Privacy-preserving distributed processing is a relatively new research area,
there are many exciting research directions to further explore. In what follows
we will briefly mention a few of them.

Hybrid approaches for privacy-preserving distributed processing

In this thesis, we studied and proposed a number of privacy-preserving solu-
tions for different contexts. In paper H we related and compared three different
types of approaches together including secure multiparty computation, differ-
ential privacy and subspace perturbation algorithms. There we showed that
these algorithms are not mutually exclusive and can be combined together.
This leads to a potential direction of future research, i.e, develop hybrid ap-
proaches by adopting different principles together to achieve a superior perfor-
mance.
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Bounds of privacy-preserving solutions when considering graph topology

In Paper H we derived the lower bound of privacy and explained how to achieve
it. There we found that in the case of distributed average consensus, such lower
bound can be achieved if and only if the passive adversary does not disconnect
the honest nodes, i.e., after removing all corrupted nodes the honest nodes can
still form a connected graph. This assumption can only be guaranteed if the
graph is fully-connected. However, in practical applications, a fully-connected
graph might not be available as it scales up poorly with the number of nodes.
Therefore, a new definition of the lower bound of privacy which considers the
graph topology is of sufficient interest to be explored.

Quantization effects in SMPC and differential privacy approaches

In paper F we explore the quantization effects of subspace perturbation based
distributed optimization approaches to achieve both privacy-preservation and
a lightweight communication cost. It would be very interesting to see how to
extend similar idea to other privacy-preserving approaches such as SMPC and
differential privacy approaches. In other words, to verify whether the adap-
tive quantization idea is general to resolve the trade-off between privacy and
communication cost for all kinds of privacy-preserving distributed processing
algorithms.

Explore the potential of graph signal processing for privacy-preservation

From the work presented in Paper G, we can see that there is very little in-
vestigation in privacy-preserving graph signal processing. As graph signal pro-
cessing has proven to be very advantageous in solving large-scale data learning
problems by exploiting the inherent structure of the underlying data, it is cer-
tainly a promising future research direction to optimize graph signal processing
with privacy constraints.
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1. Introduction

Abstract

One major concern of distributed computation in networks is the privacy of the
individual nodes. To address this privacy issue in the context of the distributed av-
erage consensus problem, we propose a general, yet simple solution that achieves
privacy using additive secret sharing, a tool from secure multiparty computation.
This method enables each node to reach the consensus accurately and obtains per-
fect security at the same time. Unlike differential privacy based approaches, there
is no trade-off between privacy and accuracy. Moreover, the proposed method is
computationally simple compared to other techniques in secure multiparty com-
putation, and it is able to achieve perfect security of any honest node as long
as it has one honest neighbour under the honest-but-curious model, without any
trusted third party.

1 Introduction

The consensus problem has received a lot of attention from researchers over
the past decades since it has many practical uses, such as distributed data fu-
sion [1] and group coordination [2]. To solve the average consensus problem
in arbitrary random connected distributed networks (e.g., in wireless sensor
networks), many distributed averaging algorithms have been proposed, such
as basic average consensus algorithms [3], gossip algorithms [4, 5], ADMM [6]
and PDMM [7] algorithms based on convex optimization and graph filter meth-
ods [8, 9]. These iterative approaches require to exchange information among
participants to compute the average result. However, the information exchange
is a cause for concerns with respect to the privacy of the data, as private infor-
mation may be revealed.

To compute the average in arbitrary random connected distributed net-
works while preserving the privacy of the data, two categories of algorithms
have been proposed. The first type of algorithms [10–14] implements aver-
age consensus by modifying the basic average consensus algorithm [3] based
on the concept of differential privacy [15]. If there are two databases that
differ only in one single element, it is easy to get the information of this el-
ement by comparing the query results of two databases. Differential privacy
aims at protecting the privacy of this single element by introducing random-
ness in query results. The underlying idea is to maintain a balance between
the individual privacy and output accuracy by inserting noise to obfuscate the
function output in a random manner. Many algorithms [10–14] applied this
idea to achieve privacy-preserving average consensus with a careful zero-sum
noise insertion process. A detailed analysis of the trade-off between maximum
information disclosure and estimation accuracy is performed in [16]. How-
ever, as proven in [14], exact accuracy and differential privacy cannot be ob-
tained at the same time. Thus, [17] refers to differential privacy methods as
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consensus-perturbing algorithms and proposed a new consensus-preserving al-
gorithm that, with the help of a trusted third party, assigns to each node a
single noise value the sum of which equals zero. Unfortunately, the trusted
third party assumption is not practical in many real-world applications. An-
other type of algorithms [18–21] applies garbled circuits (GC) [22, 23] and
homomorphic encryption (HE) [24, 25] techniques, as known from secure mul-
tiparty computation [26], to general gossip algorithms [4] to preserve privacy.
Secure multiparty computation allows all nodes in a network to jointly com-
pute a function and keep their inputs private. Two GC based gossip algorithms
were proposed in [18] to iteratively compare the state values of two nodes and
update the state values with a step-size while keeping each state value secret.
However, the computational complexity is big and only asymptotic consensus is
achieved. The HE technique was applied in [20, 21] to compute the consensus
in the encrypted domain. The initial state value of each node is kept private
because only encrypted values are accessed by other nodes. Unfortunately, the
computational complexity of the HE technique is big and a trusted third party
is also required.

In this paper, we propose a general, yet simple algorithm to solve the
privacy-preserving distributed average consensus problem using the principle
of additive secret sharing. Note that additive secret sharing has been applied
in various applications such as smart grids [27] to address privacy concerns
under a strong assumption of network topology (e.g., fully connected). This
differs significantly from the proposed algorithm, since we here assume a more
practical and general network topology (i.e., arbitrarily connected). In a de-
centralized network, the average consensus is usually computed by iterative
distributed averaging algorithms such as [3–7]. Thus, the question of how to
achieve the privacy concern during all iterations is the main challenge.

The proposed approach is lightweight compared to the above mentioned
HE and GC approaches in [18–21], as only additions are involved. The under-
lying idea of additive secret sharing is to replace each initial state value with
another obfuscated value by subtracting and adding random numbers. Unlike
the differential privacy approaches [10–14], there is no trade-off between pri-
vacy and estimated accuracy. The main properties of the proposed approach
can be summarized as follows: 1) the proposed approach achieves perfect se-
curity and exact accuracy at the same time; 2) it is computationally simple; 3)
individual privacy is guaranteed as long as it has one honest neighbour under
the honest-but-curious model without any trusted third party; 4) it is conve-
nient since only an additive randomization step is needed; and 5) it is very
general since it can be applied in any distributed averaging algorithm.

2 Preliminaries and Problem Setup
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2.1 Privacy-preserving distributed average consensus prob-
lem

A distributed system composed of a set of nodes can be modelled as an undi-
rected connected graph G = (N , E). The node set of the graph is denoted
as N = {1, 2, ..., n} and E ⊆ N × N denotes the communication links be-
tween nodes. The communication of two nodes is enabled if there is one edge
connecting two nodes, i.e., (i, j) ∈ E , and ni = {j|(i, j) ∈ E , j 6= i} denotes
the neighbours of node i. The initial state value held by node i is denoted
as ai, and the initial state values in the network can be written as a vector
a = [a1, a2, ..., an]T . The main goal is to address the following two challenges
at the same time:

1. Compute the average result of the private values

aave =
1

n

n∑
i=1

ai, (A.1)

in a distributed network without having any centralized coordinator, an
iterative algorithm is usually adopted.

2. Protect the private value ai of each node throughout the algorithm exe-
cution.

2.2 Privacy concern and adversary model

An important aspect of this work is the definition of privacy. Our goal here is
to protect the initial state value ai of each node, which constitutes the private
information, during the execution of the algorithm. The reason is that it may
represent an individual’s opinion [28] or private information [20, 21].

In this paper, a general honest-but-curious (also called "passive" or "semi-
honest") model is considered. It means that all nodes in the network follow the
designed protocol, but some of them might be curious about the other nodes’
private information. Such curious nodes are said to be passively corrupted, and
they can cooperate to share their received information with the aim of infer-
ring other honest nodes’ private information, here the initial state values. We
assume the worst case situation within this model, where passively corrupted
nodes know the following:

• The whole graph topology.

• The initial state values of all passively corrupted nodes.

• The transmitted information over the communication links involving the
corrupted nodes.

Thus, the corrupted nodes will know all the information except the information
kept by the honest nodes themselves and exchanged between every two honest
nodes, as long as it cannot be deduced from the above.

35



Paper A.

3 Additive secret sharing

A secret sharing scheme is a cryptographic tool that splits a secret into a number
of shares, where each node in a group will receive one share. The secret can be
reconstructed only if a sufficient number of shares are collected, otherwise no
information about the hidden secret will be revealed. General secret sharing
schemes usually consist of two parts:

• The secret sharing algorithm takes a secret s as input and some random-
ness r, and outputs n shares of this secret:

FS(s, r) = (s1, s2, ..., sn). (A.2)

• The secret reconstruction function (which technically is a family of func-
tions, one for each subset of shares that can reconstruct the secret) takes
the shares of some subset of the nodes {Λ1, . . . ,Λt} as inputs to recon-
struct the secret s:

FR(sΛ1
, sΛ2

, ..., sΛt
) = s, (A.3)

where si denotes the ith share of secret s. If we have a reconstruction function
for any set of at least t shares, but no set with less than t shares provides any
information about the secret, then the secret sharing scheme can be referred to
as (n, t) threshold secret sharing scheme.

One of the simplest secret sharing schemes is the additive secret sharing
where t = n. This is defined over an algebraic group F , usually given by the
integers {0, . . . , p − 1} together with the additive operation modulo p. While
p is a prime number in many applications (so that the group is also a finite
field), this is not required here. The additive secret sharing scheme is defined
as follows: choose n − 1 integers r1, ..., rn−1 in F uniformly at random. Then
the output of the function (A.2) consists of si = ri for i = 1, . . . , n − 1 and
sn = (s −∑n−1

i=1 ri) mod p. Given the full set of n shares, the secret can be
reconstructed by

s = (

n∑
i=1

si) mod p. (A.4)

It is easy to see that the secret s cannot be reconstructed even if only one share
is missing, and the secret is, in fact, uniformly distributed over the integers
within F even though the knowledge of n − 1 shares is given. Additive secret
sharing has the following property, which enables secure computation of addi-
tions: if two secrets s, s′ ∈ F are shared among some set of nodes, then the
nodes can reconstruct the sum of the secrets, without needing to reconstruct
the individual secrets, as follows: each node i locally add the received shares
si, s′i and reveal only this sum of shares hi = si+ s′i mod p to the other nodes.
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Then applying the reconstruction function (A.4) to these share sums hi will
give the sum of the original secrets s + s′ = (

∑n
i=1 hi) mod p, without reveal-

ing anything else. This can be extended to summing an arbitrary number of
secrets, and it can be turned into a secure computation protocol to compute
the sum of the secrets of a set of n nodes in a fully connected network, where
every node first sends shares of its secret among the full set of nodes, and the
process described above is used to reconstruct only the sum. This is secure
against an arbitrary number of passive corruptions (see [26, Section 1.3.1] for
further details).

4 Proposed algorithm

In this section, the details of the proposed algorithm will be described. The
algorithm itself is shown in Algorithm 0, where di denotes the total number of
elements in ni and T denotes the maximum iteration number, F is the set of
integers modulo p for a large enough number p (p >

∑n
i=1 ai), c denotes the

penalty parameter in PDMM algorithm [7].
The first stage of the algorithm is additive randomization, where each node

uses additive secret sharing for distributing shares of its private value ai to
its neighbours. We remark that the difference between this use of additive
secret sharing and the one described at the end of the previous section is
the assumption of the graph topology. The scheme described in the previous
section assumes a fully connected network where each node sends shares to
all other nodes. However, a fully connected graph scales poorly in the num-
ber of connections. In this paper, we assume an arbitrarily connected graph,
which is much more practical and scalable in real-life applications. Each node
only sends shares to its neighbours and an iterative distributed averaging al-
gorithm is used afterwards. The main goal of additive randomization is to
address the privacy challenge in Section 2.1 by replacing the private value ai
of each node with an obfuscated value ui, which can then be revealed. In
Section 5.3 we show exactly how much information this provides to the cor-
rupted nodes. An important observation is that by construction we have that∑n
i=1 ai = (

∑n
i=1 ui) mod p.

After additive randomization, we take the obfuscated values ui as inputs to
a distributed averaging algorithm [3–7] to compute the average, which meets
the requirements described in Section 2.1. Here we apply the asynchronous
PDMM algorithm as an example. After convergence, the primal variable xTi
for all nodes i ∈ N will reach the average of obfuscated values, i.e., xTi =
1
n

∑n
i=1 ui.

The last part of the proposed algorithm is to compute the final average
result by (A.9) with an assumption of knowing the total number of nodes n.
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Algorithm 1 Proposed algorithm

Additive randomization:
1: Each node i ∈ N extract di random numbers as shares rki with uniform

probability in F .
2: Node i sends shares rki to its neighbours k ∈ ni and keep the share ri as.

ri = (ai −
∑
k∈ni

rki ) mod p. (A.5)

3: Node i receives shares rik from its neighbours k ∈ ni.
4: Node i updates ai as the obfuscated value

ui = (ri +
∑
k∈ni

rik) mod p. (A.6)

Distributed averaging (e.g., PDMM):

5: Each node initializes the primal variable x0
i and dual variable ξ0

i|j as zeros,
i, j ∈ N .

6: For iteration t = 1, 2, 3, ..., T
7: Activate node i ∈ N randomly with uniform probability.
8: Node i updates xti and broadcasts to its neighbours

xti =
ui +

∑
k∈ni

(cxt−1
k + ξt−1

k|i )

1 + cdi
. (A.7)

9: After receiving xti updates, all neighbouring nodes k ∈ ni update the dual
variable as

ξti|k = −ξt−1
k|i + c(xti − xt−1

k ). (A.8)

10: Repeat until the primal variable xti converges

Average consensus computation
11: Each node obtains the average as

xave =
1

n
(xTi × n mod p). (A.9)
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Fig. A.1: Experimental results

The average result xave of the proposed algorithm is identical to aave since

aave =
1

n

n∑
i=1

ai =
1

n
((

n∑
i=1

ui) mod p) = xave. (A.10)

Concerning data representation, we remark that the values in the additive
randomization process should be integers within the modular domain {0, ...p−
1} due to the additive secret sharing. Floating point numbers can be scaled up
as integers and negative numbers can be represented using modular additive
inverse. Note that integers are not required afterwards because additive secret
sharing scheme is no longer applied in the distributed averaging step, which is
also why the division operation can be used in (A.7).

5 Experimental results and analysis

5.1 Experimental results

Simulations are conducted here to investigate the performance of the proposed
approach. A random geometric graph [29] with n = 100 nodes is simulated
and the connectivity of nodes is enabled if their distance is within a radius√

logn
n to have a connected graph with high probability [29]. Based on the

same initial state values over the network and additive randomization proce-
dure, the simulation results are demonstrated in Fig. A.1, where the solid blue,
green, red lines denote the conventional non-privacy concerned random gos-
sip [4], asynchronous ADMM [6] and PDMM [7] algorithms, respectively, and
the related dashed lines represent the proposed secure approaches which add
additive randomization before the above mentioned conventional algorithms,
and the penalty parameters in both ADMM and PDMM are set as 0.4.
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As demonstrated in Fig. A.1, we can see that the estimated accuracy of
all the proposed secure approaches is identical to conventional non-secure ap-
proaches. The convergence rate of the proposed approaches will be slightly
slower than the traditional approaches as the initial mean square error be-
comes higher after additive randomization. We remark that the extra additive
randomization will not affect the convergence speed but only cause higher ini-
tial errors.

5.2 Comparisons

A comparison of the proposed approach with existing methods is shown in
Table A.1, where β denotes the number of bits needed to represent transmit-
ted message [30]. The same passive adversary model is considered in all ap-
proaches. We can see that HE and GC based approaches both require expen-
sive computational function as encryption is involved, and the communication
bandwidth is also big since the cipher text after encryption usually require
much longer bit lengths than plain text, and a trusted third party is also re-
quired in HE. Moreover, the proposed approach is able to achieve identical
accuracy and perfect security with same communication bandwidth and com-
putational function as differential privacy approaches. Note that the maximum
number of corruptions for algorithms without an accuracy trade-off is n − 2,
because the corrupted nodes can always know the initial state value of the only
honest node given the knowledge of the exact consensus result and the initial
state values of the corrupted n−1 nodes. For differential privacy and GC based
approaches, the maximum number of corruptions can be n− 1, as the average
result is inexact. Furthermore, the proposed algorithm can protect the privacy
of any honest node only if it has at least one honest neighbour, which is not
required in the other approaches, e.g., in differential privacy approaches.

Table A.1: Privacy-preserving distributed average consensus approaches under arbitrary connected
graphs

Proposed HE [20, 21] GC [18] Differential privacy [10–14]
Accuracy Identical Identical Dependent on step size Degraded with noise
Security Perfect Computational Computational Differential privacy

Involved function Linear Exponential Exponential Linear
Trusted Third Party No Yes No No
Adversary model Passive Passive Passive Passive

Communication bandwidth per round O(1) O(β) O(β) O(1)
Maximum number of corruptions n-2 n-2 n-1 n-1

5.3 Security guarantee

In this section, we analyze the security of the proposed algorithm in more
detail. The statement we will argue is as follows: Let C ⊆ N be the subset
of passively corrupted nodes, and let H = N \ C be the set of honest nodes.
If the subgraph H is connected, then the only information about the honest
nodes’ initial state values can be learned by the corrupted nodes is

∑
k∈H ak,
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but nothing more than that. And we remark that learning this information
is logically unavoidable if we have exact accuracy, since this information can
always be deduced from the average result and the initial state values of the
corrupted nodes: ∑

k∈H

ak = n× aave −
∑
k∈C

ak.

This implies the following: The individual privacy of the honest nodes is
protected as long as it has some honest neighbours, even in the case where
there are only two honest nodes. If the two honest nodes i, j are neighbours,
the corrupted nodes do not learn the individual private value ai and aj , but
only their sum.

The proof is as follows: adopting a pessimistic view, the information set
obtained by C, also known as the information view, after reaching consensus is
in the worst case the union V = V1 ∪ V2 ∪ V3 of the information sets

V1 = {uk|k ∈ N},
V2 = {aave, ak|k ∈ C},
V3 = {rmk , rkm|k ∈ C,m ∈ dk} ∪ {rk, k ∈ C}.

Note that all the obfuscated values ui in the distributed averaging step are
included in V1 as the primal and dual variables are initialized as zeros in (A.7),
these values ui can therefore be considered non-private.

Now suppose a "real" instance

I = {ak, k ∈ N},

has produced the above view V with real initial state values and randomness
r`, ` ∈ N and rm` , (`,m) ∈ E .

Let i,j be two honest nodes which are neighbours of each other. We now
produce a "fake" instance

I ′ = {a′k, k ∈ N},
having the view V ′ with all a′k = ak, k ∈ N , k 6= i, j and a′j = aj−d, a′i = ai+d
for some d. Note that

∑
k∈H ak =

∑
k∈H a

′
k by setting the randomness as

r′i = ri + d, rij
′

= rij − d, and leave all other random values r`, rm` unchanged.
Thus, the information view V ′ produced by the fake instance I

′
will be

exactly the same with V produced by the real instance I, which means that
the corrupted nodes cannot distinguish the "real" from the "fake". Since H
is connected, we can repeat the argument to modify the initial state values
of H in any way that we want, as long as this modification does not change
the sum of the honest initial state values, and still produce the same view for
corrupted nodes. The corrupted nodes can only learn the sum of honest nodes’
initial state values

∑
k∈H ak, but no other information. Hence, the proposed

algorithm is perfectly secure in the sense of secure computation, as it protects
all information that is not implied by the average result and corrupted nodes’
initial state values.
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We remark that if the subgraph of the honest nodes is not connected, then
the corrupted nodes can infer the partial sums of the initial state values held by
the connected subsets in H, but nothing else beyond that. In an extreme case,
if a honest node has only one honest neighbour, then the leaked information
is only the sum of the initial state values held by these two honest nodes, we
emphasize that the privacy of the individual node is always protected, which is
our goal here. Hence the privacy of individual node is guaranteed as long as it
has one honest neighbour.

6 Conclusions and future work

In this paper, we have proposed a general and simple solution to address the
privacy concern in distributed average consensus problems with the help of the
additive secret sharing scheme. An additive randomization step is applied be-
fore distributed averaging to replace the initial state value of each node with
a non-private obfuscated value for privacy-preserving. The proposed solution
outperforms differential privacy based approaches, as it obtains perfect security
and accurate consensus at the same time. Moreover, it is computationally less
complex compared to HE and GC based approaches. The proposed algorithm
is general and can be used with arbitrary distributed averaging algorithms.
Moreover, it does not require any trusted third party, and the privacy of each
individual honest node is protected as long as it has one honest neighbour.
Future work will focus on how to maintain privacy under more challenging
adversary models (i.e., active attacks) where the corrupted nodes may not fol-
low the protocol correctly but deviate from it to interfere with the computation
result.
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1. Introduction

Abstract

Average consensus is widely used in information fusion, and it requires informa-
tion exchange between a set of nodes to achieve an agreement. Unfortunately,
the information exchange may disclose the individual’s private information, and
this raises serious concerns for individual privacy in some applications. Hence,
a privacy-preserving asynchronous averaging algorithm is proposed in this paper
to maintain the privacy of each individual using Shamir’s secret sharing scheme,
as known from secure multiparty computation. The proposed algorithm is based
on a lightweight cryptographic technique. It gives identical accuracy solution as
the non-privacy concerned algorithm and achieves perfect security in clique-based
networks without the use of a trusted third party. In each iteration of the algo-
rithm, each individual’s privacy in the selected clique is protected under a passive
attack where the adversary controls some of the nodes. Finally, it also achieves
robustness of up to one third transmission error.

1 Introduction

Consensus has been intensively investigated over the past decades since it is
useful to solve problems in information fusion, especially in distributed sys-
tems. Distributed average consensus has been adopted in various applica-
tions such as group coordination [1] and dynamic load balancing [2]. There
are many approaches to iteratively achieve consensus without centralized co-
ordination: average consensus algorithms [3], general-purpose gossip algo-
rithms [4, 5], methods based on convex optimization such as the ADMM [6]
and the PDMM [7] algorithms and graph filter methods [8, 9]. All the algo-
rithms above require information exchange between certain entities. However,
this exchange may disclose the individual’s privacy. In a distributed network,
such as a sensor network, the nodes of the network are interested in reaching
an agreement but they may also have concerns about protecting the privacy of
their data. For example, a group of individuals may want to achieve a common
opinion using a consensus algorithm; at the same time, each individual is un-
willing to trust the others by revealing his/her own opinion [10]. This makes
privacy-preserving in consensus problem a crucial topic to address.

Two types of methods have been deployed to obtain privacy-preserving so-
lutions in distributed average consensus: differential privacy [11] approaches,
which try to maintain the maximum accuracy from statistical database queries
while minimizing the chances of identifying its records; and secure multiparty
computation [12] approaches, which aim at jointly computing a function over
the inputs of a set of nodes while keeping their inputs private. The underlying
idea in most existing differential privacy algorithms [13–17] is to mask the se-
cret values with zero-sum random noise during the information exchange. This
protects privacy without any trusted third party while the average consensus is
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still achieved by carefully design the noise insertion process. A statistical anal-
ysis of maximum disclosure probability and estimation accuracy is performed
in [18]. However, Nozari et al. [15] proved that exact average consensus and
differential privacy cannot be achieved simultaneously. Differential privacy
based algorithms are thus referred to as consensus perturbing approaches [19].
A new consensus preserving approach was proposed in [19] that guarantees an
exact average by employing obfuscation via a single noise sample for each node
while ensuring that the allocated noise sum to zero. However, the obfuscation
noise samples have to be generated by a trusted third party, something that is
not always practical.

Other algorithms [20–23] obtain secure average consensus based on tech-
niques from secure multiparty computation, such as homomorphic encryption
(HE) schemes [24, 25] and the garbled circuit (GC) technique [26, 27]. Ho-
momorphic encryption enables computation on the encrypted data. HE was
adopted in [22, 23] to guarantee that each node can only access the encrypted
values of other nodes. However, HE requires a high computational complexity
for encryption and a trusted third party. Two GC based algorithms were pro-
posed in [20] to securely compare the state value of two nodes. However, these
are also computational expensive and requires global information beforehand,
and only asymptotic consensus is obtained.

In this paper, Shamir’s secret sharing scheme, as known from secure mul-
tiparty computation, is adopted in a distributed asynchronous averaging algo-
rithm reminiscent of [3] to solve the problem of privacy-preserving distributed
average consensus. The main idea is to divide a secret into a number of shares
and distribute a share to each node in the network. The secret can be recon-
structed if and only if a sufficient amount of shares are collected, otherwise no
information of secret will be disclosed. Compared to differential privacy based
approaches [13–17], the proposed algorithm is able to achieve perfect security
and exact accuracy at the same time. Since only computations on polynomi-
als are involved in Shamir’s scheme, it has lower computational complexity
compared to encryption approaches such as the HE and GC of [20–23] and no
trusted third party is required. Moreover, the proposed method considers both
a general passive attack model and a weak active attack model.

2 Preliminaries and Problem Setup

2.1 Privacy-preserving distributed average consensus prob-
lem

In a distributed system, we assume an undirect connected graph G = (V, E)
composed by the node set V = {1, 2, ..., n}, where E ⊆ V × V denotes the set
of undirected edges. Every two nodes can communicate with each other if and
only if they are connected neighbours, i.e., (i, j) ∈ E . The neighbourhood of
node i is denoted as di = {j|(i, j) ∈ E , j 6= i}. Each node i holds an initial state
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value ai(0), which is its private information, and the vector of the initial state
values on the network is denoted as a(0) = [a1(0), a2(0), ..., an(0)]T . The main
goal is to solve the following two challenges at the same time:

1. Compute the average result of the private information

aave =
1

n

n∑
i=1

ai(0) (B.1)

in a distributed network without having any centralized coordinator, here
using an iterative average consensus algorithm.

2. The private information of each node, ai(0), in the network should be
protected during the iterations of the algorithm, hence preserving the
privacy of the node.

2.2 Privacy concern and adversary model

The privacy concern addressed in this paper here pertains to the initial state
value held by each node in the network, as it may be sensitive and undesir-
able for each node if this is revealed to others. The adversary models adopted
here include a passive and a very weak kind of active attack model that is
interesting from a practical point of view. In the passive attack model, also
named honest-but-curious model, each node follows the protocol correctly but
so-called passively corrupted nodes try to infer the honest nodes’ privacy. A
number of passively corrupted nodes may cooperate to increase the chance of
inferring the other’s initial state value by sharing information. In contrast, in
an active attack model the corrupted nodes may not follow the defined pro-
tocol and attempt to manipulate the computation result by lying about the
exchanged information or refuse to act according to the protocol. In that case,
we would need to deal with these active attacks, and this can be done in a
number of ways: one possibility is to settle for a solution that detects the errors
and aborts the process in time; but a more ambitious possibility would be to
find a protocol that does not only detect errors but is also able to correct the
errors automatically without aborting, a property usually referred to as robust-
ness. In what follows, we consider a weaker model that is sufficient to achieve
robustness towards transmission errors.

3 Shamir’s Secret Sharing scheme

In this section, a technique from secure multiparty computation called Shamir’s
secret sharing is introduced. Before exploring the algorithm in detail, we illus-
trate the concept of secret sharing with the following example [28]: several
scientists are working on a secret project where some confidential documents
are in a cabinet locked up with a pass-code. The cabinet can be unlocked if
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(and only if) half or more of the scientists are present. Shamir’s secret sharing
scheme [29], first proposed by Shamir in 1979, provides a powerful solution to
this problem. The principle of Shamir’s secret sharing is Lagrange polynomial
interpolation. It is based on the fact that a prior unknown polynomial with
degree at most t can be reconstructed if its value at t + 1 or more points are
given, but any number strictly smaller than t+1 will give no information about
the polynomial in other points.

Shamir’s secret sharing is defined as follows. Assume there are n nodes,
referred to as p1, p2, . . . , pn. The indices of these nodes are denoted as N =
{1, 2, ..., n}. Take a finite field F of cardinality more than n, for example we
take the field of integers modulo a prime number p with p > n. In addition we
select an integer t < n. In order to share a secret s ∈ F , the dealer (the node
who knows the secret) proceeds as follows:

1. Polynomial construction: Selects coefficients {ci|i = 1, 2, . . . , t} uni-
formly at random in F and constructs the polynomial f(x) = s + c1x +
c2x

2 + · · ·+ ctx
t mod p. Note that the secret is f(0).

2. Share distribution: Compute and distribute the secret shares si related
to pi as si = f(i) mod p, i ∈ N Note that since the dealer is also one
of the pi’s, this also includes sending a share to itself. This share will be
needed when aggregating the information with the shared secrets from
other nodes later on.

3. Secret reconstruction: If a set of t + 1 nodes, indexed by Λ ⊆ N agree
to reconstruct the secret, they can use Lagrange interpolation

s =
∑
i∈Λ

risi. (B.2)

where ri is the Lagrange basis computed by

ri =
∏

j∈Λ\{i}

−j
i− j . (B.3)

This Shamir’s secret sharing scheme divides the secret s into several shares
si, i ∈ N and distributes them to n different nodes, and all shares and the
secret are evaluations of a polynomial of degree t. The privacy guarantee of
Shamir’s scheme is based on interpolation properties, implying that a set of t or
less shares gives no more information about the secret than what was known
a priori. Moreover, Shamir’s scheme is also linear: it allows to “add secrets”. If
two secrets s and s′ are shared, possibly by different dealers, among the same
network of users by using polynomials f and f ′, then the nodes can obtain a
sharing of s + s′ by simply adding their two shares. This works well because
f + f ′ is still of degree ≤ t and f(i) + f ′(i) = (f + f ′)(i) mod p.

Finally Shamir’s scheme has certain error correction properties that can be
used to detect errors, and in some cases, correct them. This allows to correct
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certain types of active malicious behaviour. More precisely it is a robust secret
sharing scheme: if t < n/3, then given the set of all n shares, if at most t
are erroneous then the Berlekamp-Welch algorithm [30] can output the correct
secret. This prevents a set of t < n/3 nodes to cheat when reconstructing the
secret. Following the above description, the correct polynomial constructed
by secret holder is f(x), and the received share set is denoted by {(i, si), i ∈
N}. Since there might be some inconsistent shares in the share set, instead of
directly constructing f(x) based on Lagrange interpolation, we set to find two
other polynomials e(x) with degree t and q(x) with degree 2t satisfying the
following equality

q(x) = e(x)f(x),

and where in addition e(x) (referred to as error locator polynomial) satisfies
that e(i) = 0 whenever f(i) 6= si. Under the two conditions above, e(x) and
q(x) satisfy the following system of linear equations, in which the unknowns
are the coefficients of e and q:

sie(i) = q(i), i ∈ N . (B.4)

If we can solve the system and find e and q, then f(x) can be constructed
correctly as f(x) = q(x)/e(x). As there are n equalities available with 3t + 1
coefficients (the coefficient et in e(x) = e0 + e1x + . . . + etx

t can be set as 1)
in (B.4), the degree t of the polynomial should be smaller than n/3 in order
to solve the equation. Thus, the Berlekamp-Welch algorithm allows to correct
the secret even in the presence of t invalid shares in secret construction step
as long as t < n/3. However, it does not prevent malicious behaviour (by
even one malicious node) when creating the shares, as this node could create
more than n/3 errors in the sharing process. This can be detected by the use
of verifiable secret sharing [31]. We will not be concerned about this in this
paper.

It is important to note that Shamir’s secret sharing scheme is only applicable
to fully connected graphs due to the fact that each node has to distribute shares
to all other nodes. This affects the choice of distributed averaging algorithm
and the possibility of graph topology relaxation. We will address these issue in
the next section.

4 Proposed Approach

To approach the challenges of having an algorithm that is both distributed and
privacy-preserving, we adopt a distributed asynchronous averaging algorithm
based on [3] to compute the average iteratively, and Shamir’s secret sharing
scheme is then applied in each iteration of this algorithm to guarantee that
the privacy of each node is protected. The detailed algorithm is described in
Algorithm 0.
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As previously mentioned, the application of Shamir’s secret sharing scheme
requires a fully connected graph, something that was also observed in [32].
However, such graphs are not always practical or scalable since they require a
huge number of connections. Therefore, we adopt a distributed asynchronous
averaging algorithm to relax the network topology requirement: as shown in
step 4 of Algorithm 0, Shamir’s secret sharing scheme is applied in a fully
connected subset of nodes in each iteration. Thereby, we relax the impractical
topology requirement, from a fully connected to a clique-based graph, and a
preprocessing step named clique detection is added. The clique Ci of node i
should satisfy {

Ci ⊆ {di ∪ i}, ni > 2,

∀j, k ∈ Ci, j 6= k, (j, k) ∈ E , (B.5)

where ni denotes the total node number in clique Ci. We can see that Ci need
not be unique. The requirement ni > 2 is simply due to the fact that one
can always infer the other’s initial state value with the final addition result if
there are only two nodes [33]. The clique-based graph topology is required
to guarantee that each node should have at least two neighbour nodes and all
these three nodes are interconnected. In practice, the clique based graph is
quite normal in distributed system (e.g., in wireless sensor networks) since the
connectivity between certain nodes is typically enabled for nodes within a fixed
distance of each other.

Algorithm 2 Proposed approach

Clique selection:
1: For all the nodes i ∈ V in the whole network, find all possible cliques Ci

satisfy (B.5).

2: Distributed asynchronous averaging [3]:
3: Randomly activate one node i with uniform probability.
4: Node i choose one clique Ci and set the polynomial degree t based on

adversary model, compute the addition result y(k) =
∑
j∈Ci

aj(k) securely
in selected clique based on Algorithm 0.

5: Update the node values as aj(k + 1) = y(k)
ni
, j ∈ Ci.

6: Repeat step 3-4 till convergence.
7: End

Algorithm 0 describes a solution to securely compute addition in the se-
lected clique Ci based on the linearity of Shamir’s secret sharing. The attack
model is defined by parameter flag in the algorithm description. If it is equal
to 1, the algorithm is robust to one third errors in share distribution, otherwise
only passive attack is considered. Concerning data representation, Shamir’s
secret sharing schemes works with integer numbers modulo a prime. Thus, a
sufficiently large finite field F is selected to represent all the values in the mod-
ular domain [0, p − 1]. Floating point numbers can be encoded as integers by
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simply multiplying them with same scale factor and the negative numbers can
be represented with modular additive inverse. A rounding operation is needed
in step 5 of Algorithm 0 to make sure all the input values in Shamir’s secret
sharing are integers.

Algorithm 3 Secure addition using Shamir’s secret sharing

Polynomial construction:
1: All nodes i ∈ Ci agree a polynomial degree t based on adversary model

(active or passive).
2: Each node pi randomly choose coefficients c1i , c

2
i , ..., c

t
i on F , construct poly-

nomial
fi(x) = ai + c1ix+ c2ix

2 + ...+ ctix
t mod p.

3: Input sharing:
4: Each node pi computes shares fi(j) and distributes shares fi(j) to all other

nodes {j | j ∈ Ci, j 6= i}, respectively.
5: Each node pi receives shares fj(i) from all other nodes j ∈ Ci, j 6= i},

respectively.
6: Each node pi computes sum li based on received shares li =

∑n
j=1 fj(i).

7: Each node pi broadcasts li.

8: Output construction:
9: If flag = 1 (active attack model)

10: Each node pi defines q(x) and e(x) (see Section 3).
11: Each node pi computes q(x) and e(x) based on share set {(i, li), i ∈ Ci}

with (B.4) and the desired polynomial f(x) is determined by q(x)/e(x).
12: Each node pi computes the result y = f(0).
13: Else (passive attack model)
14: Each node pi computes ri using (B.3).
15: Each node pi computes the result y =

∑
i∈Ci

rili.
16: End

5 Analysis

A comprehensive comparison of the proposed approach with existing ap-
proaches is shown in Table B.1, where β denotes the number of bits needed
to represent encrypted cipher text [34]. We can see that the HE and GC
approaches are computationally expensive and require high communication
bandwidths, as the cipher texts after encryption usually require much longer
bit length than plain texts. With the application of Shamir’s secret sharing,
the proposed algorithm outperforms differential privacy based approaches by
having perfect security and identical accuracy with the non-privacy concerned
algorithms [3–7]. Moreover, the involved functions are simpler than HE and
GC based approaches and no trusted third party is required. The proposed
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approach also addresses a more challenging adversary model than the other
approaches. For each iteration, where a node i is activated with ni nodes in its
clique, the proposed approach needs extra communication times compared to
the other approaches because of the share distribution process.

Table B.1: Comparisons with existing approaches

Proposed HE [22, 23] GC [20] Differential privacy [13–17]
Accuracy Identical Identical Dependent on step size Degraded with noise
Security Perfect Computational Computational Differential privacy

Attack model Passive/Active Passive Passive Passive
Involved function Polynomial Exponential Exponential Linear

Trusted Third Party No Yes No No
Communication bandwidth per time O(1) O(β) O(β) O(1)
Communication times per iteration O(n2

i ) O(ni) O(ni) O(ni)

5.1 Security analysis under passive and active attack

There is a difference between the privacy concern from a cryptographic point
of view and a practical point of view. From the cryptographic point of view,
the security definition imposes a very strong demand, namely, that a protocol
is only secure if the adversary does not learn more information about the in-
puts of the honest nodes than what is implied by the output and the inputs of
the corrupted nodes. From this point of view, the computation in each clique
(see Algorithm 0), when considered in isolation, is information-theoretic (i.e.,
perfect) secure [29], but the full computation in Algorithm 0 would not be
considered secure, since the adversary can learn the partial sums of the honest
nodes’ initial state values in some cliques, and this is not implied by the av-
erage result of the full network and the corrupted nodes’ initial state values.
However, from a practical point of view, as already stated in Section 2.2, we are
trying to protect the individual node’s private information, and each individual
node’s initial state value is not revealed even if the sum of them are known.

For passive attacks, the privacy of the honest node will be protected as long
as it has one honest neighbour in its clique. In a weaker model of active at-
tacks, where the nodes act honestly when distributing the shares, but errors
(either intentionally or unintentionally) can occur later on, the proposed al-
gorithm can successfully reconstruct the correct result as long as at most one
third of the shares are erroneous. This model captures cases such as unin-
tentional errors produced when exchanging information. To the best of our
knowledge, this is the first algorithm that obtains robustness against active
attack in privacy-preserving distributed average consensus computation with
both error detection and correction.

5.2 Security analysis under dynamic participation

One possible concern here is whether a clever combination of the information
obtained in successive iterations can help to infer the privacy of the individual
honest nodes, similarly to the privacy analysis in a dynamic setting [35] where
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nodes may come and leave between executions. This is, however, difficult to
analyze. Note that since the inputs of the nodes involved in different iterations
are dynamically updated, this is different from the case considered in [35]
wherein inputs are static. We remark that it is difficult (without additional
knowledge) for a passive adversary to ascertain whether any two iterations are
successively related due to the random nature of the node activation and the
clique selection in Algorithm 0. It is, however, possible that such situations can
occur, and future research should investigate this further.

6 Conclusions and Future Work

In this paper, we proposed a privacy-preserving distributed averaging consen-
sus algorithm based on Shamir’s secret sharing to compute the consensus in a
distributed manner over a clique based network while protecting the individ-
ual privacy. The proposed algorithm is able to achieve both accurate consen-
sus and perfect security at the same time, it does not depend on any trusted
third party, and the computational complexity is lightweight. The adoption of
Shamir’s secret sharing allows to maintain the privacy of each individual node,
i.e., as long as the clique selected in an iteration has at least 2 honest nodes.
Moreover, robustness against up to one third errors is obtained under an active
attack model. A drawback of the proposed approach is the higher commu-
nication times required by Shamir’s secret sharing compared to, for example,
differential privacy based methods. Future work will focus on how to reduce
the overall communication times.
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[20] F. Hanzely, J. Konečnỳ, N. Loizou, P. Richtárik, and D. Grishchenko,
“Privacy preserving randomized gossip algorithms,” arXiv preprint
arXiv:1706.07636, 2017.

[21] R. Lazzeretti, S. Horn, P. Braca, and P. Willett, “Secure multi-party con-
sensus gossip algorithms,” ICASSP, pp. 7406–7410, 2014.

[22] R. C. Hendriks, Z. Erkin, and T. Gerkmann, “Privacy preserving dis-
tributed beamforming based on homomorphic encryption,” EUSIPCO, pp.
1–5, 2013.

[23] R. C. Hendriks, Z. Erkin, and T. Gerkmann, “Privacy-preserving dis-
tributed speech enhancement forwireless sensor networks by processing
in the encrypted domain,” ICASSP, pp. 7005–7009, 2013.

[24] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” EUROCRYPT, pp. 223–238, 1999.

[25] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” Advances in Cryptology–
CRYPTO, pp. 643–662, 2012.

[26] A. C. Yao, “Protocols for secure computations,” FOCS, pp. 160–164, 1982.

[27] A. C. Yao, “How to generate and exchange secrets,” FOCS, pp. 162–167,
1986.

[28] C. Liu, “Introduction to combinatorial mathematics,” 1968.

57



References

[29] A. Shamir, “How to share a secret,” Comm. Assoc. Comput. Mach., vol.
22, no. 11, pp. 612–613, 1979.

[30] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block
codes,” Dec. 1986.

[31] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret
sharing and achieving simultaneity in the presence of faults,” FOCS, pp.
383–395, 1985.

[32] S. Goryczka and L. Xiong, “A comprehensive comparison of multiparty
secure additions with differential privacy,” IEEE Trans. Dependable Secure
Comput., vol. 14, no. 5, pp. 463–477, 2017.

[33] S. C. S. Cheung and T. Nguyen, “Secure multiparty computation between
distrusted networks terminals,” EURASIP J. Inf. Security, vol. 2007, no. 1,
pp. 051368, 2007.

[34] R. L. Lagendijk, Z. Erkin, and M. Barni, “Encrypted signal processing for
privacy protection: Conveying the utility of homomorphic encryption and
multiparty computation,” IEEE Signal Process. Magazine, vol. 30, no. 1,
pp. 82–105, 2013.

[35] D. Kononchuk, Z. Erkin, J. C. van der Lubbe, and R. L. Lagendijk,
“Privacy-preserving user data oriented services for groups with dynamic
participation,” in ESORICS. pp. 418–442, 2013.

58



Paper C

Convex Optimisation-based Privacy-Preserving
Distributed Average Consensus in Wireless Sensor

Networks

Qiongxiu Li, Richard Heusdens, and Mads Græsbøll Christensen

The paper has been published in the
Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2020



© 2010 IEEE
The layout has been revised.



1. Introduction

Abstract

In many applications of wireless sensor networks, it is important that the privacy
of the nodes of the network be protected. Therefore, privacy-preserving algorithms
have received quite some attention recently. In this paper, we propose a novel con-
vex optimization-based solution to the problem of privacy-preserving distributed
average consensus. The proposed method is based on the primal-dual method
of multipliers (PDMM), and we show that the introduced dual variables of the
PDMM will only converge in a certain subspace determined by the graph topology
and will not converge in the orthogonal complement. These properties are ex-
ploited to protect the private data from being revealed to others. More specifically,
the proposed algorithm is proven to be secure for both passive and eavesdropping
adversary models. Finally, the convergence properties and accuracy of the pro-
posed approach are demonstrated by simulations which show that the method is
superior to the state-of-the-art.

1 Introduction

Advances in wireless communication technology and embedded microproces-
sor design have enabled a huge growth of distributed computing systems, in-
cluding also wireless sensor networks (WSNs). Average consensus, which is an
essential building block of such distributed systems, has been intensively inves-
tigated for decades, and it has been applied in various fields such as automatic
control, signal processing, robotics and optimisation [1]. To solve the average
consensus problem in distributed networks, many (iterative) algorithms have
been proposed [2–10]. The methods work by iteratively exchanging informa-
tion between computational units (i.e., nodes/agents), whereby the network
eventually reaches a consensus. The data exchange required in these algo-
rithms can lead to privacy problems, as it is becoming clear that there is no
real separation between the identity of individuals and their data [11]. There-
fore, it is crucial to protect the data held by each node as the private data for
being revealed to others.

An algorithm is called secure or privacy-preserving if it is able to protect
the private data during the algorithm execution. Existing privacy-preserving
distributed average consensus algorithms can be classified into two classes:
computationally secure algorithms and information-theoretically secure algo-
rithms. Computational security is defined in terms of computational hardness:
secrets cannot be reconstructed efficiently under the condition that so-called
malicious adversaries are computationally limited. Computationally secure al-
gorithms [12–16] usually apply techniques from secure multiparty computa-
tion [17] such as homomorphic encryption (HE) [18, 19] and garbled circuit
(GC) [20, 21], where computations are performed in the encrypted domain.
However, these algorithms are computationally demanding and have high a

61



Paper C.

communication bandwidth. This makes it difficult to apply them in resource
constrained applications like WSNs.

In contrast to the aforementioned computationally expensive algorithms,
the information-theoretically secure algorithms are quite lightweight by com-
parison, as they simply insert noise to obfuscate the private data. Moreover,
information-theoretic security has a stronger security guarantee than compu-
tational security as it is robust against a computationally unlimited adversary.
Depending on the amount of information about the private data obtained by
the adversary, information-theoretically secure algorithms can be further clas-
sified into two classes. The first class contains algorithms using secret sharing,
whereby perfect security is achieved [22]. It possesses the strongest security
guarantees. No information regarding the private data is revealed as the in-
formation obtained by the adversary is statistically independent of the private
data. However, it requires prior knowledge about the network. The second
class of algorithms achieves a weaker form of security, called ε-statistical secu-
rity, which implies that the information obtained by the adversary is not totally
independent of the private data but only results in a slightly better posterior
guessing probability than the prior probability. Most ε-statistical security algo-
rithms [23–25] adopt differential privacy [26, 27] to obfuscate the private data
with independent noise. However, as shown in [25], differential privacy-based
approaches cannot obtain the exact average and privacy at the same time. One
way to circumvent the trade-off between accuracy and privacy is to guarantee
that the inserted noise adds up to zero. Some algorithms [28–30] insert noise
having a geometrically decreasing variance over iterations and guarantee that
the inserted noise adds up to zero. Some other algorithms [31–33] rely on a
trusted third party to obtain the zero-sum property. However, a trusted third
party is hard to implement in ad hoc networks including also many WSNs.

As discussed above, the existing information-theoretically secure algorithms
have some limitations, such as requiring prior knowledge of the network, the
zero-sum property of the inserted noise, or the existence of a trusted third
party. To address these limitations, we propose a convex optimisation-based
method. To explain the basic concept, we show how it can be applied in the
primal-dual method of multipliers (PDMM) [10, 34] which is an iterative algo-
rithm for solving constrained convex optimisation problems. The concept can,
however, also be applied to other convex optimisation methods, for example
ADMM-based algorithms. As we shall see, the proposed method has a num-
ber of attractive properties: 1) the proposed algorithm obtains asymptotically
perfect security and requires no trusted party nor prior knowledge about the
network; 2) exact consensus and privacy can be obtained simultaneously; 3)
the algorithm does not need zero-sum noise insertion but only a proper ini-
tialisation of the dual variables; 4) the convergence rate is independent of the
privacy level; 5) the algorithm is secure under both passive and eavesdropping
adversaries; and 6) the privacy of any honest node is guaranteed as long as it
has one honest neighbour.
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2 Preliminaries and Problem Definition

In this section, we will define the problem at hand and introduce some impor-
tant definitions and concepts.

2.1 Distributed average consensus

Let G = (V,E) denote a simple graph, where V = {1, 2, ..., n} and E =
{e1, . . . , em} ⊆ V × V denote the set of nodes and edges, respectively. The
neighbourhood of node i is denoted as Ni = {j ∈ V | (i, j) ∈ E} and the de-
gree of node i is denoted by di = |Ni|. Finally, let A ∈ Rn×n denote the
adjacency matrix of the graph defined as Aij = 1 if and only if (i, j) ∈ E, and
let B ∈ Rm×n denote the incidence matrix defined as Bli = Bi|j = 1 if and only
if el = (i, j) ∈ E and i < j and Bli = Bi|j = −1 if and only if el = (i, j) ∈ E
and i > j. Distributed average consensus aims to estimate the average of all
the initial state values given by

save = n−1
∑
i∈V

si, (C.1)

with si the initial state value of node i, without any centralised coordination.
For simplicity, we will assume that si is a scalar but the results can easily be
generalised to arbitrary dimensions.

2.2 Privacy concern and adversary model

In this work, the initial state value of each node is the private data to be pro-
tected. Most algorithms consider a passive adversary model (also known as
the honest-but-curious model) where the instructions of the protocol are fol-
lowed, but the so-called corrupted nodes might collude and attempt to deduce
information about the initial state values of the other honest nodes from the
messages they receive. The eavesdropping adversary is usually neglected in
existing approaches since eavesdropping can be prevented by using channel
encryption [35]. However, channel encryption is computationally expensive.
For iterative algorithms where the communication channels between nodes are
used many times, channel encryption is, therefore, less attractive. We thus as-
sume that the communication in the network is performed through non-secure
channels, except for the communication during the initialisation of the net-
work.

2.3 Problem definition

The goal of privacy-preserving distributed average consensus algorithms is to
design a protocol that jointly computes the average of all initial state values
while protecting them from being revealed in the process. We thus have the
following two requirements which need to be satisfied simultaneously:
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1) Correctness: at the end of the algorithm, each node has obtained the
average result save = n−1

∑
i∈V si.

2) Individual privacy: throughout the execution of the algorithm, the initial
state value held by each honest node is protected against both passive
and eavesdropping adversaries.

Some remarks are in order here. The adversary always knows the sum of the
initial state values of the honest nodes, as it can be deduced from the average
result and the initial states values of the corrupted nodes. Therefore, revealing
this sum is unavoidable [17]. Furthermore, for incomplete (i.e., not fully con-
nected) networks, as in the case in many practical networks, the partial sums
of the honest nodes in each (connected) subgraph will be revealed as well,
something that is also unavoidable for any information-theoretically private
protocol [36, 37].

The corrupted nodes aim to infer the initial state value si of node i. Let si
denote a realisation of a random variable Si having differential entropy h(Si),
assuming it exists1, and let g(k)(Si) denote the information sent out at iteration
k by node i. We will measure the amount of privacy by

I(Si; g
(k)(Si)) = h(Si)− h(Si | g(k)(Si)), (C.2)

where I(· ; ·) denotes mutual information [38]. Note that I(Si; g
(k)(Si)) = 0

corresponds to perfect security in the sense that h(Si | g(k)(Si)) = h(Si) so that
Si and g(k)(Si) are statistically independent, while I(Si; g

(k)(Si)) < ε, where
ε > 0, corresponds to ε-statistical security. Again, having perfect security at
every iteration does not necessarily imply that I(Si; g

(k)(Si), . . . , g
(0)(Si)) = 0

since in the end the adversary is able to compute partial sums of connected
subgraphs, but nothing else beyond that.

3 Primal-dual method of multipliers

The proposed approach is based on the primal-dual method of multipliers
(PDMM), an instance of Peaceman-Rachford splitting of the extended dual
problem (see [34] for details). PDMM can, like ADMM, be used for itera-
tively solving constrained convex optimisation problems. The PDMM update
equations are given by

x(k+1) = arg min
x

(
f(x) + λ(k)TPCx+

c

2
‖Cx+ PCx(k)‖22

)
,

λ(k+1) = Pλ(k) + c(Cx(k+1) + PCx(k)), (C.3)

where k denotes the iteration index, x(k) ∈ Rn is the primal variable, λ(k) ∈
R2m the dual variable, f(x) the objective function to be minimised, C ∈ R2m×n

1In the case that Si is a discrete random variable, the conditions are given in terms of the
Shannon entropy H(Si).
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a matrix related to the graph’s incidence matrix B, and P ∈ R2m×2m a sym-
metric permutation matrix exchanging the first m with the last m rows. The
c > 0 is a constant controlling the convergence rate. The vector λ contains
the dual variables controlling the constraints; for each edge (i, j) ∈ E there
are two node variables λi|j and λj|i, one for each node i and j, respectively,
where λ(l) = λi|j and Cli = Bi|j if and only if el = (i, j) ∈ E and i < j, and
λ(l + m) = λi|j , C(l+m)i = Bi|j if and only if el = (i, j) ∈ E and i > j. Note
that C + PC = [BT BT ]T and ∀(i, j) ∈ E : λj|i = (Pλ)i|j .

Consider the update of two successive λ-updates, given by

λ(k+2) = λ(k) + c(Cx(k+2) + 2PCx(k+1) + Cx(k)), (C.4)

since P 2 = I. Let H = ran(C) + ran(PC) where ran(·) denotes the range, and
let ΠH denote the orthogonal projection onto H. By inspection of (C.4), we
conclude that every two PDMM updates only affect ΠHλ ∈ H and leave (I −
ΠH)λ ∈ H⊥, H⊥ = null(CT ) ∩ null((PC)T ) unchanged, where null(·) denotes
the null space. Moreover, by inspecting (C.3), we conclude that the x-update
is independent of (I − ΠH)λ since λT (I − ΠH)PC = 0. As a consequence,
the component (I −ΠH)λ will only be permuted every iteration and therefore
not converge. We will refer to ΠHλ and (I − ΠH)λ as the converging and
non-converging component of the dual variable, respectively.

4 Proposed approach

The distributed average consensus problem can be formulated as an optimisa-
tion problem where we minimise the objective function

f(x) =
1

2
‖x− s‖22, (C.5)

where s = (s1, . . . , sn)T , subject to the constraint that xi = xj for all (i, j) ∈
E. The solution is given by x∗ = save(1, . . . , 1)T . That is, all nodes in the
network eventually know the average. The PDMM update equation (C.3) for
this problem is then given by

x(k+1) = (I + cD)
−1
(
s+ cAx(k) − CTPλ(k)

)
, (C.6)

where D = CTC is the degree matrix of the underlying graph and CTPC =
−A. The update equations for node i then become

x
(k+1)
i =

si +
∑
j∈Ni

(
cx

(k)
j −Bi|jλ

(k)
j|i

)
1 + cdi

, (C.7)

∀j ∈ Ni : λ
(k+1)
i|j = λ

(k)
j|i + cBi|j

(
x

(k+1)
i − x(k)

j

)
. (C.8)
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From (C.8) we can see that the update of the dual variables only depends on
λ

(k)
j|i , x

(k)
j and x

(k+1)
i , of which λ

(k)
j|i and x

(k)
j are already available at node

j. Therefore, after broadcasting x(k+1)
i , all neighbouring nodes can construct

λ
(k+1)
i|j and the dual variables do not need to be transmitted at all, except for

the initialisation, as all λ(0)
j|i s need to be known at the first iteration.

As mentioned before, the non-converging component (I−ΠH)λ(k) will only
be permuted every iteration so that

λ(k) → λ∗ +

{
(I −ΠH)λ(0), k even,
P (I −ΠH)λ(0), k odd,

(C.9)

where λ∗ is given by

λ∗ = −
(

CT

(PC)T

)†( ∇f(x∗) + cCTCx∗

∇f(x∗) + cCTPCx∗

)
+ cCx∗, (C.10)

where (·)† denotes the Moore-Penrose pseudo inverse. As a consequence, if we
initialise the dual variable λ in such a way that the non-converging component
(I −ΠH)λ(0) sufficiently obfuscates the initial state value, the primal variables
will converge to save while the initial state value itself cannot be inferred, as-
suming there is at least one honest neighbour. We will prove this claim more
formally in what follows.

4.1 Correctness

As shown in [34], the primal variable x(k) will converge geometrically to x∗

for arbitrary initialisation x(0) and λ(0), thereby proving the correctness of the
algorithm.

4.2 Individual privacy

We will now proceed to prove that the proposed algorithm protects the individ-
ual privacy under both passive and eavesdropping adversaries. As we can see,
each node transmits only the primal variable x(k+1)

i to all of its neighbours and
does not reveal its initial state value si directly. To analyse the privacy proper-
ties of the proposed algorithm, let Vc and Vh denote the set of corrupted and
honest nodes, respectively. With this, the numerator of (C.7) can be expressed
as

si +
∑
j∈Ni

(
cx

(k)
j −Bi|jλ

(k)
j|i

)
=

si +
∑
j∈Ni

cx
(k)
j −

∑
j∈Ni∩Vh

Bi|jλ
(k)
j|i −

∑
j∈Ni∩Vc

Bi|jλ
(k)
j|i . (C.11)
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At convergence, x∗ is known and λ∗ can be calculated through (C.10). Hence,
by inspection of (C.9) and (C.11), we conclude that the adversary can infer
about the initial state value si from observing x(k+1)

i is the term given by

si −
∑

j∈Ni∩Vh

Bi|j

(
P k(I −ΠH)λ(0)

)
j|i
, (C.12)

and we conclude that, as long as Ni ∩ Vh 6= ∅, we can obfuscate the initial sate
value by introducing uncertainty in (I −ΠH)λ(0).

To quantitatively measure the amount of information carried by x(k)
i about

si, consider both x
(k)
i and si as realisations of the random variables X(k)

i and
Si, respectively. We will analyse the mutual information I(Si;X

(k)
i ) between

Si and X(k)
i for which we need the following result.

Proposition 1. Let X and Y be independent continuous random variables with
var(X), var(Y ) <∞ and let Z = X + Y . Then

lim
var(Y)→∞

I(X;Z) = 0,

assuming I(X;Z) exists.

Proof. Let γ = 1/(var(Y ))
1
2 and define Y ′ = γY . Hence, Y ′ has unit vari-

ance. Since mutual information is invariant under scaling, we have I(X;Z) =
I(X;X + Y ) = I (γX; γX + Y ′) . As a consequence, we have

lim
var(Y )→∞

I(X;Z) = lim
γ→0

I (γX; γX + Y ′)

= I (0;Y ′) = 0.

By applying Proposition 1, we can conclude that the mutual information
I(Si;X

(k)
i ) can be made arbitrarily small by increasing the variance of the ran-

dom variable representing the λ-contribution in (C.12). That is, let λ(0) be a
realisation of the random variable Λ(0). Then we have I(Si;X

(k)
i ) = 0 if

∃j ∈ Ni ∩ Vh : var
(

((I −ΠH)Λ(0))j|i

)
→∞. (C.13)

Hence, the proposed algorithm obtains asymptotically perfect security. A sum-
mary of the complete privacy-preserving PDMM algorithm is given in Algo-
rithm 4.

Some remarks are in order here. Firstly, since the dual variables are not
transmitted at all, except during initialisation for which we need secure com-
munication, no encryption is needed during the execution of the algorithm.
Secondly, a necessary condition for achieving privacy is that Ni ∩ Vh 6= ∅. That
is, node i requires at least one honest neighbour. In the case the graph is com-
plete, this means that the algorithm is secure up to n − 2 malicious nodes in
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Algorithm 4 Privacy-preserving PDMM

1: Each node i ∈ V initialises its primal and dual variables. The dual variables
are initialised with random numbers having sufficiently large variance (de-
pending on the required privacy level), whereas the primal variables can
be initialised arbitrarily.

2: Each node i ∈ V communicates its dual variables λ(0)
i|j to its neighbour

j ∈ Ni through secure channels [35].
3: while ‖x(k) − x∗‖2 < threshold do
4: Activate a node uniformly at random, say node i, updates its primal

variable x(k+1)
i according to (C.7).

5: Node i broadcasts x(k+1)
i to all of its neighbours j ∈ Ni (through non-

secure channels).
6: After receiving x

(k+1)
i by the neighbours, the dual variables λ(k+1)

i|j are
updated using (C.8).

7: end while

the network. Thirdly, although we proved that the mutual information is zero
under the condition of (C.13), the variance of the dual variables cannot be
made infinitely large. Therefore, information about the initial state variables
will be leaked upon receiving the primal variables. To have an indication of the
amount of leakage in practice, consider the following example of two indepen-
dent Gaussian distributed random variablesX and Y and their sum Z = X+Y .
The differential entropy of a Gaussian random variable with variance σ2 is
given by 1

2 log(2πeσ2), so that I(X;Z) = h(Z) − h(Y ) = 1
2 log(1 + σ2

X/σ
2
Y ).

Hence, if we have σ2
Y /σ

2
X = 100 (the range of Y is approximately 10 times the

range of X), the information leakage is only 0.007 bits. Fourthly, in order to
satisfy (C.13), a necessary condition is that λ(0) ∩H⊥ 6= ∅. By inspection of the
matrix C, we conclude that the matrix [C,PC] ∈ R2m×2n can be considered as
the incidence matrix of a bipartite graph having 2n nodes. As a consequence,
we have that rank([C,PC]) ≤ 2n−1 and we conclude that dim(H) ≤ 2n−1 and
thus H⊥ 6= ∅. Hence, if we randomly initialise λ(0), we have (I − ΠH)λ(0) 6= 0
with probability one. Last but not least, the proposed algorithm can also be
applied to other convex optimisation methods such as ADMM and related al-
gorithms where the update equations have a similar structure.

5 Experimental results

Now we proceed to evaluate the performance of the proposed algorithm by
simulations in terms of the mean square error (MSE) of primal and dual vari-
ables as a function of transmission number. We generated a random geometric
network with n = 10 nodes where two nodes can communicate if their distance
is within a radius r satisfying r2 = 2 logn

n , thereby guaranteeing a connected
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Fig. C.1: Convergence of the primal variable, the converging component and non-converging
component of the dual variable in PDMM with two different initialisations.

graph with probability at least 1 − 1
n2 [39]. For simplicity, we use uniform

distribution as an example to demonstrate the results, where the initial state
values si are uniformly distributed in the interval [0, 1].

Figure C.1 shows the convergence behavior of PDMM for different initial-
isations. The red lines show the proposed PDMM algorithm in which x(0) is
initialised with all zeros and λ(0) is randomly initialised with uniformly dis-
tributed noise in the interval [0, 100]. The green lines show results where the
dual variable is initialised in H such that λ(0) ∩H⊥ = ∅, which implies that the
initial state values are not protected. The star, square, and circle marker show
the convergence of x(k), (I − ΠH)λ(k) and ΠHλ

(k), respectively. We see that
for both initialisations x(k) and ΠHλ

(k) converge to the optimal solutions x∗

and λ∗, respectively. The magnitude of (I −ΠH)λ(k), on the other hand, does
not converge. As a consequence, the proposed algorithm protects the initial
state value by obfuscating it with a high-variance non-converging component
(I −ΠH)λ(k). Note that the green line with square marker is not visible since
(I −ΠH)λ(k) = 0 for all k.

Figure C.2 shows a comparison of the proposed PDMM approach with pop-
ular state-of-the-art information-theoretically secure algorithms including dif-
ferential privacy (DP) [25] and the correlated noise insertion approach (CNI)
[30], where we compare the effect of adding noise on the convergence rate
of the algorithm. We considered three different noise levels: Γ = 0, 102, and
104, where Γ denotes the ratio of noise variance to the variance of initial state
value. The case Γ = 0 corresponds to the situation where no noise is added so
that the initial state values are not protected. In the other cases we inserted
noise having an initial range approximately 10 and 100 times the range of ini-
tial state values, therefore we have Γ = 102 and 104, respectively. We observe,
as expected, that the accuracy of the differential privacy approach (black lines)
decreases with increasing noise variance and that for Γ 6= 0 the algorithm does
not converge anymore. That is, with differential privacy, there is a trade-off
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Fig. C.2: Convergence of the proposed PDMM and state-of-the-art algorithms under three different
noise levels.

between privacy and accuracy. As for correlated noise insertion (blue lines),
high accuracy is obtained in the end (the algorithm is guaranteed to converge)
but the convergence rate slows down with increasing noise variance. The con-
vergence rate of the proposed PDMM-based algorithm (red lines), on the other
hand, is independent of the noise level since the convergence rate of PDMM
depends on the graph topology and not on the initialisation; increasing the
noise variance will only result in a higher initial error.

6 Conclusions

In this paper, we proposed a novel lightweight privacy-preserving distributed
average consensus algorithm for WSNs based on PDMM, a convex optimisa-
tion algorithm. By simply initialising the dual variable with random numbers,
the non-converging component of the dual variable will obfuscate the initial
state values, thereby protecting them from being revealed. We showed that the
proposed algorithm achieves asymptotically perfect security under a passive
adversary, where the privacy is guaranteed as long as there is at least one hon-
est neighbour. For an eavesdropping adversary, the proposed algorithm does
not require secure channel encryption in the network except for the initialisa-
tion step. Compared to existing information-theoretically secure algorithms,
the proposed algorithm has no trade-off between accuracy and privacy, and
converges at a rate independent of the amount of inserted noise and, thus, of
the level of privacy.
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1. Introduction

Abstract

Over the past decades, privacy-preservation has received considerable attention,
not only as a consequence of regulations such as the General Data Protection Reg-
ulation in the EU, but also from the fact that people are more concerned about data
abuse as the world is becoming increasingly digitized. In this paper we propose
a convex optimization-based subspace perturbation approach to solve privacy-
preserving distributed least squares problems. Based on the primal-dual method of
multipliers, the introduced dual variables will only converge in a subspace deter-
mined by the graph topology and do not converge in its orthogonal complement.
We, therefore, propose to exploit this property for privacy-preservation by using
the non-converging part of the dual variables to perturb the private data, thereby
protecting it from being revealed. Moreover, we prove that the proposed approach
is secure under both eavesdropping and passive adversaries. Computer simula-
tions are conducted to demonstrate the benefits of the proposed approach through
its convergence properties and accuracy.

1 Introduction

In modern systems, such as smart grids and smart internet-of-things, the trend
is to have collaborations between different parties. This distributed process-
ing has a number of advantages over centralised processing, like avoiding a
single point of failure and being robust against changes in the network topol-
ogy. Such distributed systems usually require data exchange among the parties.
These data, more often than not, contain sensitive information about individual
parties/agents. For example, it was shown in [1] that even electricity consump-
tion data can reveal sensitive information about the consumers’ privacy such as
whether the consumer has illnesses/disabilities or not. To address such privacy
issues in distributed processing, in this paper we focus on privacy-preserving
distributed least squares as it is a fundamental problem and serves as a build-
ing block to many other problems such as robust signal de-noising and linear
regression in machine learning.

The privacy issue in distributed processing has been addressed in the lit-
erature by either protecting the private data using secure multiparty compu-
tation (SMPC) techniques or by perturbing it with noise insertion. SMPC [2]
aims to jointly compute a function among a group of parties while keeping
each party’s input private. Popular SMPC protocols like secret sharing, homo-
morphic encryption, garbled circuits and hybrid methods have been applied in
linear regression problems in machine learning [3–6]. However, these SMPC-
based frameworks usually assume either a non-colluding trusted third party
(TTP) or a small network with only a few computing parties. Consequently,
they are quite far from being applied in large scale networks such as wireless
sensor networks and many other applications where a TTP is hard to imple-
ment. To alleviate these problems, both distributed computation and SMPC
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were employed in [7] for solving the privacy-preserving recursive least squares
problems. Unfortunately, it comes at the cost of high communication complex-
ity.

Noise insertion can be an attractive alternative as it is lightweight and usu-
ally does not require a TTP. A noise insertion framework for perturbing private
data by balancing the privacy level with the output accuracy (referred to as dif-
ferential privacy (DP) [8]), has been applied in many applications like robust
statistic [9], Kalman filtering [10] and distributed average consensus [11], etc.
In principle, it can also be applied to the distributed least squares problem.
However, as stated in [11], there is an inherent trade-off between privacy and
accuracy, and they can not be achieved simultaneously.

To address the above mentioned limitations, we here propose a novel con-
vex optimization-based subspace perturbation approach which protects the pri-
vate data by adding noise in a particular subspace. We use the primal-dual
method of multipliers (PDMM) [12, 13], a distributed algorithm for solving
constrained convex optimization problems, to illustrate the main idea of sub-
space perturbation, but the approach will work with other algorithms, like
ADMM, as well. A number of attractive properties of the proposed approach
are: 1) it is fundamentally different from the DP approaches as it is able to
achieve both privacy and accuracy at the same time; 2) it requires no TTP
and has a low computational complexity; 3) it converges at a rate independent
of the privacy level and 4)it is secure under both passive and eavesdropping
adversaries.

2 Fundamentals and problem Setup

In this section, we will first recall the fundamentals of the distributed least
squares and explain the motivation for privacy-preservation. Next, we intro-
duce the so-called adversary models, an essential concept when considering
privacy, and then state the problem setup.

2.1 Distributed least squares

Given a distributed network G = (V, E) with V = {1, . . . , n} the set of nodes
and E = {e1, . . . , em} the set of edges. The neighbourhood of node i is denoted
as Ni = {j|(i, j) ∈ E} and di = |Ni|. Let B ∈ Rm×n denote the incidence
matrix defined as Bli = Bi|j = 1 if and only if el = (i, j) ∈ E and i < j,
Bli = Bi|j = −1 if and only if el = (i, j) ∈ E and i > j.

The goal of distributed least squares is to find a solution of an overdeter-
mined system (set of equations in which there are more equations than un-
knowns), where each node only knows part of the equations and is only able
to exchange information with its neighbours. Let Qi ∈ RNi×u, Ni > u, de-
note a matrix containing the input observations of node i. That is, each node
i has Ni observations and each observation contains an u-dimensional feature
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vector. Moreover, let yi ∈ RNi denote the decision vector observed by node i.
Stacking all the local information such that Q = [QT1 , . . . , Q

T
n ]T ∈ RN×u and

y = [yT1 , . . . , y
T
n ]T ∈ RN where N =

∑
i∈V Ni, the least-squares problem is

given by

min
x

1

2
‖y −Qx‖22.

We can formulate the least-squares problem as a distributed linearly-
constrained convex optimization problem given by

min
{xi}

f(x) =
∑
i∈V

1

2
‖yi −Qixi‖22

s.t. xi − xj = 0,∀(i, j) ∈ E , (D.1)

where xi ∈ Ru denotes the local estimated least-squares solution at node i.
A number of distributed optimizers (e.g., ADMM, PDMM) has been proposed
to solve the above problem by only exchanging information in the local neigh-
bourhood. At every iteration k, each node i updates its local estimate x(k)

i based
on a certain local updating function and then sends it to its neighbours. Gen-
erally, this local updating function requires local information of node i (that
is, Qi, yi) to guarantee that x(k)

i converges to the global optimum solution
x∗ = arg minx

1
2‖y −Qx‖22.

2.2 Privacy concerns

The local information (input observations Qi and decision vector yi) of each
node is considered as private data and should be protected from being re-
vealed. This is because it usually contains sensitive private information about
individuals. For example, assume a number of hospitals participate in a re-
search project with the aim of obtaining a predictive model by collaboratively
learning all the data in their medical data sets. However, releasing this med-
ical data violates the privacy regulation as it contains sensitive information of
the patients such as their health conditions and insurance records. As men-
tioned earlier, at each iteration of the distributed computation, each node will
send out the updated x

(k)
i where the related updating function usually takes

the private data Qi and yi as inputs. As a consequence, the updated x
(k)
i car-

ries information about the concerned private data and thus revealing it will
inevitably cause loss of privacy. Such privacy issues will be investigated and
addressed in the rest of the paper.

2.3 Adversary model

The adversary model qualifies the robustness of a privacy-preserving algorithm
under security attacks. An adversary usually works by colluding a number of
nodes to conduct certain malicious behaviours, such as learning the private
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data and manipulating the outputs of the computations. These colluded nodes
will be referred to as corrupted nodes and while the others will be referred
to as honest nodes. Here we consider two general adversary models that are
often encountered in real applications: passive and eavesdropping. In the for-
mer case, all nodes follow the instructions of the algorithm but they are curious
about knowing the private data held by other honest nodes. The eavesdropping
adversary, either internal or external, aims to infer the private data by eaves-
dropping the communication channels between honest nodes. This adversary
has not received much attention in privacy-preserving distributed computation
as it is commonly solved by assuming securely encrypted communication chan-
nels [14]. Encryption, however, incurs high computational complexity which is
particularly cumbersome using iterative algorithms such as the ones we are us-
ing here, because communication channels are used many times. In this paper,
we alleviate this problem and assume all the communication is done through
non-secure channels except for the initialization.

2.4 Privacy-preserving distributed least squares

Combining things together, we conclude that there are two key requirements
to be satisfied simultaneously:

1. Output correctness: all nodes are able to obtain the optimum solution
x∗ = arg minx

1
2‖y −Qx‖22 when the algorithm converges.

2. Individual privacy: the concerned private data (Qi, yi) held by each node
is protected from being revealed to others against both passive and eaves-
dropping adversaries, throughout the whole algorithm execution.

3 Primal-dual method of multipliers

We use PDMM as an example to explain the main idea of subspace perturba-
tion. PDMM, like ADMM, is a distributed optimizer for solving constrained
convex optimization problems. As an instance of Peaceman-Rachford splitting
of the extended dual problem (see [13] for details), PDMM is characterised by
a faster convergence rate compared to ADMM. The update equations of PDMM
are given by

x(k+1) = arg min
x

(
f(x) + λ(k)TPCx+

c

2
‖Cx+ PCx(k)‖22

)
,

λ(k+1) = Pλ(k) + c(Cx(k+1) + PCx(k)), (D.2)

where f(x) denotes the objective function to be minimised, k the iteration
index, x(k) ∈ Rn is the primal variable, λ(k) ∈ R2m the dual variable, P ∈
R2m×2m a symmetric permutation matrix which exchanges the first m with the
last m rows and C ∈ R2m×n a matrix related to the incidence matrix B. The
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constant c > 0 controls the convergence rate. The vector λ contains the dual
variables for the constraints; there are two dual variables λi|j and λj|i, one for
each node i and j, for each edge (i, j) ∈ E; where λ(l) = λi|j and Cli = Bi|j
if and only if el = (i, j) ∈ E and i < j, and λ(l + m) = λi|j , C(l+m)i = Bi|j
if and only if el = (i, j) ∈ E and i > j. Note that C + PC = [BT BT ]T and
∀(i, j) ∈ E : λj|i =

(
Pλ
)
i|j .

The λ-updates of two successive iterations is given by

λ(k+2) = λ(k) + c(Cx(k+2) + 2PCx(k+1) + Cx(k)), (D.3)

as P 2 = I. Let H = ran(C) + ran(PC) and H⊥ = null(CT ) ∩ null((PC)T )
where ran(·) and null(·) denote the range and nullspace, respectively. Note
that [C,PC] ∈ R2m×2n can be viewed as an incidence matrix of a new graph
having 2n nodes and 2m edges. Therefore, we have dim(H) ≤ 2n − 1 and
thus H⊥ is always non-empty. Let ΠH denote the orthogonal projection onto
H. From (D.3) we can see that every two λ-updates only affect ΠHλ ∈ H and
leave (I−ΠH)λ ∈ H⊥unchanged. As a consequence, the component (I−ΠH)λ
will not converge and only be permuted every iteration. We can thus divide the
dual variable λ(k) into two parts given by

λ(k) = ΠHλ
(k) +

{
(I −ΠH)λ(0), k even,
P (I −ΠH)λ(0), k odd.

(D.4)

It is proven in [13] that ΠHλ
(k) converges to the optimum λ∗ given by

λ∗ = −
(

CT

(PC)T

)†( ∇f(x∗) + cCTCx∗

∇f(x∗) + cCTPCx∗

)
+ cCx∗, (D.5)

where (·)† denotes the Moore-Penrose pseudo inverse. We thus denote ΠHλ
and (I − ΠH)λ as the converging and non-converging component of the dual
variable, respectively. Similarly, H and H⊥ are referred to as the converging
subspace and non-converging subspace of PDMM. It is worthy to mention that
this non-converging component (I − ΠH)λ would not affect the x-update in
(D.2) since λT (I −ΠH)PC = 0.

4 Proposed approach

Having introduced PDMM, we will now proceed to describe the proposed ap-
proach. For the problem at hand, the PDMM updating functions for node i
become

x
(k+1)
i = (QTi Qi + cdiI)−1(QTi yi +

∑
j∈Ni

(cx
(k)
j −Bi|jλ

(k)
j|i ))

∀j ∈ Ni : λ
(k+1)
i|j = λ

(k)
j|i + cBi|j

(
x

(k+1)
i − x(k)

j

)
, (D.6)
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whereas the update of dual variable λ
(k+1)
i|j only depends on λ

(k)
j|i , x

(k)
j and

x
(k+1)
i , of which λ(k)

j|i and x(k)
j are local information held by node j. Therefore,

x
(k+1)
i is the only information needs to be transmitted by node i to its neigh-

bours. After broadcasting x(k+1)
i , all neighbouring nodes can construct λ(k+1)

i|j
themselves and the dual variables do not need to be transmitted at all, except
for the first iteration where the initialized λ(0)

j|i s need to be transmitted.

Since x(k+1)
i is the only revealed information, by inspecting the x-update in

(D.6) we can see that x(k+1)
i is dependent of node i’s private data Qi, yi and

the data x(k)
j , λ

(k)
j|i from its neighbours. We therefore propose to initialize the

dual variables in a way such that the non-converging component (I − ΠH)λ
sufficiently perturbs the private data Qi, yi. Thus the private data cannot be
inferred and meanwhile the primal variable will still converge to x∗, as long as
there is at least one honest neighbouring node. In what follows we will give a
formal proof of this claim.

4.1 Output correctness

As proved in [13], the primal variable x(k+1) is guaranteed to converge to x∗

geometrically given arbitrary initialization x(0) and λ(0), thereby guaranteeing
the output correctness.

4.2 Individual privacy

Now we turn to analyse the individual privacy under both passive and eaves-
dropping adversaries. Under the passive adversary model, let Vc and Vh denote
the set of corrupted and honest nodes, respectively. Without loss of generality,
assume the passive adversary attempts to infer the private data of honest node
i ∈ Vh. As mentioned earlier, as the only information transmitted from node i
after initialization is the primal variable x(k+1)

i , the problem thus becomes to
analyse how much information about Qi and yi would the passive adversary
obtain by observing x(k+1)

i . Using (D.4) we can express x(k+1)
i as

(QTi Qi + cdiI)−1

 ∑
j∈Ni∩Vh

(
cx

(k)
j −Bi|j

(
P kΠHλ

(k)
)
j|i

)

−
∑

j∈Ni∩Vh

Bi|j
(
P k(I −ΠH)λ(0)

)
j|i +QTi yi + cp

 , (D.7)

where cp =
∑
j∈Ni∩Vc

(
cx

(k)
j − Bi|jλ

(k)
j|i
)

can be considered constant as it is

known by the passive adversary. As k → ∞, x∗ will be known and ΠHλ
(k) →

λ∗ given by (D.5). Thus we conclude that, as long as Ni ∩ Vh 6= ∅, we can
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perturb the private data by introduce noise in (I − ΠH)λ(0). More specifically,
let sqi = (QTi Qi+cdiI)−1, syi = QTi yi and λ(0) denote realizations of the random
variables S̄qi , S̄yi and Λ̄(0), respectively. Note that Λ̄(0) is independent of both S̄qi
and S̄yi as the initialization of dual variables is independent of the inputs. From
(D.7), we can see that the information leakage regarding to Qi and yi can be
represented by the mutual information [15] I(S̄qi , X̄

(k+1)
i ) and I(S̄yi , X̄

(k+1)
i ).

To analyse both of them we need the following result.

Proposition 2. Consider the continuous random variables {X̄1, . . . , X̄n} having
mean and variance µX̄i

and σ2
X̄i

, respectively. Let {Ȳ1, . . . , Ȳn} be independent
random variables independent of {X̄1, . . . , X̄n}. That is, I(X̄i, Ȳj) = 0 for all
(i, j) ∈ V. Let Z̄i = X̄i + Ȳi and W̄i = X̄iȲi, and let Z̄ ′i = Z̄i/σZ̄i

and W̄ ′i =
W̄i/σW̄i

be the normalised variables having unit variance. We then have

lim
σ2
Ȳi
→∞

I(X̄1, . . . , X̄n; Z̄1, . . . , Z̄n) = 0,

lim
σ2
Ȳi
→∞

I(X̄1, . . . , X̄n; W̄1, . . . , W̄n) = 0.

Proof.

I(X̄1, . . . , X̄n; Z̄1, . . . , Z̄n)

= h(Z̄1, . . . , Z̄n)− h(Z̄1, . . . , Z̄n|X̄1, . . . , Xn)

(a)
= h(Z̄1, . . . , Z̄n)− h(Ȳ1, . . . , Ȳn)

(b)
=

n∑
i=1

h
(
Z̄i|Z̄1, . . . , Z̄i−1

)
−

n∑
i=1

h
(
Ȳi
)

(c)
≤

n∑
i=1

h
(
Z̄i)−

n∑
i=1

h(Ȳi)

(d)
=

n∑
i=1

I(X̄i; Z̄i)

(e)
=

n∑
i=1

I(X̄i/σZ̄i
; Z̄ ′i),

where h(·) denotes the differential entropy of the random variable, assuming
it exists. Step (a) follows from h(Z̄i|X̄i) = h(Ȳi), (b) follows from the chain
rule for differential entropy and the fact that the Ȳi’s are independent random
variables, (c) follows from the fact that conditioning decreases entropy, (d)
follows from h

(
Z̄i) − h(Ȳi) = h(Z̄i) − h(Z̄i|X̄i) = I(X̄i; Z̄i) and (e) holds as
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mutual information is invariant under scaling. As a consequence

lim
σ2
Ȳi
→∞

n∑
i=1

I(X̄i; Z̄i) = lim
σZ̄i
→∞

n∑
i=1

I(X̄i/σZ̄i
; Z̄ ′i)

=

n∑
i=1

I(0; Z̄ ′i) = 0.

For the case W̄i = X̄iȲi, we have

h(W̄i|X̄i) =

∫
p(x̄i)h(W̄i|X̄i = x̄i)dx̄i

=

∫
p(x̄i)h(x̄iȲi|X̄i = x̄i)dx̄i

(a)
=

∫
p(x̄i)h(Ȳi)dx̄i = h(Ȳi),

where (a) holds since the probability measure of the event X̄i = 0 is zero.
Hence, the proof of our second claim goes along the same lines as the one
presented above, and we conclude that

lim
σ2
Ȳi
→∞

I(X̄1, . . . , X̄n; W̄1, . . . , W̄n)

≤ lim
σW̄i
→∞

n∑
i=1

I(X̄i/σW̄i
; W̄ ′i ) = 0,

thereby proving our claims.

By applying Proposition 2 to I(S̄qi , X̄
(k+1)
i ) and I(S̄yi , X̄

(k+1)
i ), we conclude that

both mutual information can be made arbitrarily small by increasing the vari-
ance of the random variable (I−ΠH)Λ(0). We thus have both I(S̄qi , X̄

(k+1)
i ) = 0

and I(S̄yi , X̄
(k+1)
i ) = 0 if

∃j ∈ Ni ∩ Vh : var
(
((I −ΠH)Λ(0))j|i

)
→∞. (D.8)

Hence, the proposed approach is able to achieve asymptotically perfect security.
Now we consider an eavesdropping adversary. As we already proved that

the transmitted primal variable does not contain information about the private
data, the proposed method is also secure against eavesdropping. The com-
munications can therefore be conducted in non-secure channels except for the
first iteration where the initialized dual variables λ(0) should be communicated
through secure channels. The details of the proposed approach are summarised
in Algorithm 0.

Several remarks are in place here. Firstly, (D.8) requires λ(0) ∩ H⊥ 6= ∅.
Recall that the non-converging subspace H⊥ is non-empty, so that by ran-
domly initializing the dual variables λ(0), we have λ(0) ∩ H⊥ 6= ∅ with prob-
ability 1. Secondly, it is important to note that the adversary does not have
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Algorithm 5 Privacy-preserving distributed least squares based on PDMM

1: Every node i ∈ V initializes its primal variable arbitrarily, and initializes
the dual variables with random numbers having sufficiently large variance
(specified by the required privacy level).

2: Every node i sends the initialized dual variables λ(0)
i|j to its neighbours

j ∈ Ni through securely encrypted channels.
3: while ‖x(k) − x∗‖2 < threshold do
4: Randomly activate a node, say node i, update its primal variable x(k+1)

i

using the x-update in (D.6).
5: Node i broadcasts x(k+1)

i to its neighbours j ∈ Ni through non-secure
channels.

6: Each neighbour uses x(k+1)
i to update the dual variable λ(k+1)

i|j based on
the λ-update in (D.6).

7: end while

(a) (b) (c)

Fig. D.1: Convergence of the primal variable, the converging component and non-converging com-
ponent of the dual variable for two initializations of (a) PDMM and (b) ADMM. (c) Convergence
of the primal variable of the proposed algorithm for ADMM and PDMM for three different privacy
levels.

the knowledge of the subspace noise (I − ΠH)λ(0) as it does not know the
converging subspace H, due to the fact that both the total number of nodes
and the connectivity between the honest nodes are unknown to the adver-
sary. Thirdly, although we proved that both I(S̄qi , X̄

(k+1)
i ) and I(S̄yi , X̄

(k+1)
i )

are zero if the inserted noise has infinitely large variance, in practical situ-
ation the noise variance will be finite. To quantify the amount of informa-
tion leakage when dealing with finite variance noise, we consider the sim-
ple case of a random variable Z̄ = X̄ + Ȳ , where X̄ and Ȳ are indepen-
dent Gaussian distributed random variables. For a Gaussian random variable
with variance σ2, the differential entropy is given by 1

2 log(2πeσ2), so that
I(X̄; Z̄) = h(Z̄) − h(Ȳ ) = 1

2 log(1 + σ2
X̄
/σ2

Ȳ
). Hence, the information loss

is only 0.007 bits if σ2
Ȳ
/σ2

X̄
= 100 (the range of Ȳ is approximately 10 times

the range of X̄). Lastly, we note that the proposed approach is also applica-
ble to other distributed optimizers, e.g. ADMM, where the update equations
of the dual variables have a similar structure as (D.2) and there also exists a
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non-converging subspace. To demonstrate this general applicability, in what
follows we will show numerical results for both PDMM and ADMM.

5 Numerical results

We now evaluate the performance of the proposed algorithm by computer sim-
ulations. We simulated a random geometric graph with n = 20 nodes, and set

the wireless transmission radius as
√

2 logn
n to obtain a connected graph with

probability at least 1−1/n2 [16]. We set Ni = 20, u = 10 and generated all the
entries of Q and y randomly according to a zero-mean, unit-variance Gaussian
distribution.

Fig. D.1a and D.1b show the convergence behaviour of PDMM and ADMM,
respectively (mean-squared error versus number of transmissions). The blue
lines denote the proposed privacy-preserving approaches (p-PDMM and p-
ADMM) where the dual variables are randomly initialized from a Gaussian
distribution with variance 1000, while the red lines denote the non-private
approaches (n-PDMM and n-ADMM) where the dual variables are initialized
within the converging subspace, that is λ(0) ∈ H. We can see that both x(k)

and ΠHλ
(k) converge to the optimum solution while

(
I − ΠH

)
λ(k) does not.

Note that the lines with red triangle markers are not shown as
(
I−ΠH

)
λ(k) = 0

in this case. Hence, the proposed approach is able to obfuscate the private data
while not affecting the output correctness.

To inspect the performance of the proposed approach under different pri-
vacy levels, we considered three cases where the variances of the associated
dual variables were set at 10, 100, and 1000, which corresponds to an approx-
imated privacy loss of 7 × 10−3, 7 × 10−5, and 7 × 10−7 bits, respectively. As
shown in Fig. D.1c, for both PDMM and ADMM, the convergence rate is in-
dependent of the privacy level (note that the x-axis is on a log scale). This is
because the convergence rate of these algorithms only depends on the graph
topology and not on the initialization (the initial error does). Therefore, in-
creasing the amount of noise will not affect the convergence rate but only
results in a higher initial error.

6 Conclusions

In this paper, we proposed a lightweight yet general convex optimization-based
subspace perturbation method to achieve privacy-preserving distributed least
squares. In particular, we show that the concerned private data can be pro-
tected by inserting noise in a particular subspace determined by the graph
topology. The proposed approach is proven secure under both eavesdropping
and passive adversaries. More specifically, the individual privacy of any honest
node is protected as long as it has one honest neighbour and no securely en-
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crypted channels are required except the initialization step. Additionally, it is
able to achieve both privacy and accuracy simultaneously, and its convergence
rate is independent of the privacy level.
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1. Introduction

Abstract

As the modern world becomes increasingly digitized and interconnected, dis-
tributed signal processing has proven to be effective in processing its large volume
of data. However, a main challenge limiting the broad use of distributed signal
processing techniques is the issue of privacy in handling sensitive data. To address
this privacy issue, we propose a novel yet general subspace perturbation method
for privacy-preserving distributed optimization, which allows each node to obtain
the desired solution while protecting its private data. In particular, we show that
the dual variable introduced in each distributed optimizer will not converge in a
certain subspace determined by the graph topology. Additionally, the optimiza-
tion variable is ensured to converge to the desired solution, because it is orthog-
onal to this non-convergent subspace. We therefore propose to insert noise in the
non-convergent subspace through the dual variable such that the private data are
protected, and the accuracy of the desired solution is completely unaffected. More-
over, the proposed method is shown to be secure under two widely-used adversary
models: passive and eavesdropping. Furthermore, we consider several distributed
optimizers such as ADMM and PDMM to demonstrate the general applicability of
the proposed method. Finally, we test the performance through a set of applica-
tions. Numerical tests indicate that the proposed method is superior to existing
methods in terms of several parameters like estimated accuracy, privacy level,
communication cost and convergence rate.

1 Introduction

In a world of interconnected and digitized systems, new and innovative signal
processing tools are needed to take advantage of the sheer scale of informa-
tion/data. Such systems are often characterized by “big data”. Another central
aspect of such systems is their distributed nature, in which the data are usually
located in different computational units that form a network. In contrast to the
traditional centralized systems, in which all the data must be firstly collected
from different units and then processed at a central server, distributed signal
processing circumvents this limitation by utilizing the network nature. That is,
instead of relying on a single centralized coordination, each node/unit is able
to collect information from its neighbors and also to conduct computation on
a subset of the overall networked data. This distributed processing has many
advantages, such as allowing for flexible scalability of the number of nodes
and robustness to dynamical changes in the graph topology. Currently, the
computational unit/node in distributed systems is usually limited in resources,
as tablets and phones become the primary computing devices used by many
people [1, 2]. These devices often contain sensors that can use wireless com-
munication to form so-called ad-hoc networks. Therefore, these devices can
collaborate in solving problems by sharing computational resources and sensor
data. However, the information collected from sensors such as GPS, cameras
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and microphones often includes personal data, thus posing a major concern,
because such data are private in nature.

There has been a considerable growth of optimization techniques in the
field of distributed signal processing, as many traditional signal processing
problems in distributed systems can be equivalently formed as convex opti-
mization problems. Owing to the general applicability and flexibility of dis-
tributed optimization, optimization has emerged in a wide range of applica-
tions such as acoustic signal processing [3, 4], control theory [5] and image
processing [6]. Typically, the paradigm of distributed optimization is to sep-
arate the global objective function over the network into several local objec-
tive functions, which can be solved for each node through exchanging data
only with its neighbors. This data exchange is a major concern regarding pri-
vacy, because the exchanged data usually contain sensitive information, and
traditional distributed optimization schemes do not address this privacy issue.
Therefore, how to design a distributed optimizer for processing sensitive data,
is a challenge to be overcome in the field.

1.1 Related works

To address the privacy issues in distributed optimization, the literature has
mainly used techniques from differential privacy [7, 8] and secure multiparty
computation (SMPC) [9]. Differential privacy is one of the most commonly
used non-cryptographic techniques for privacy preservation, because it is com-
putationally lightweight, and it also uses a strict privacy metric to quantify that
the posterior guess of the private data is only slightly better than the prior
(quantified by a small positive number ε). This method of protecting private
data has been applied in [10–16] through carefully adding noise to the ex-
changed states or objective functions. However, this noise insertion mecha-
nism involves an inherent trade-off between the privacy and the accuracy of
the optimization outputs. Additionally, some approaches [17–19] have ap-
plied differential privacy with the help of a trusted third party (TTP) like a
server/cloud. However, requiring a TTP for coordination makes the protocol
not completely decentralized (i.e., peer-to-peer setting). Consequently, it thus
hinders use in many applications such as wireless sensor networks in which
centralized coordinations are unavailable.

SMPC, in contrast, has been widely used in distributed processing, because
it provides cryptographic techniques to ensure privacy in a distributed network.
More specifically, it aims to compute the result of a function of a number of par-
ties’ private data while protecting each party’s private data from being revealed
to others. Examples of how to preserve privacy by using SMPC have been ap-
plied in [20–24], in which partially homomorphic encryption (PHE) [25] was
used to conduct computations in the encrypted domain. However, PHE requires
the assistance of a TTP and thus cannot be directly applied in a fully decentral-
ized setting. Additionally, although PHE is more computationally lightweight
than other encryption techniques, such as fully homomorphic encryption [26]
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and Yao’s garbled circuit [27, 28], it is more computationally demanding than
the noise insertion techniques, such as differential privacy, because it relies on
the computational hardness assumption. To alleviate the bottleneck of com-
putational complexity, another technique in SMPC, called secret sharing [29],
has become a popular alternative for distributed processing, because its com-
putational cost is comparable to that of differential privacy. It has been applied
in [30] to preserve privacy by splitting sensitive data into pieces and sending
them to the so-called computing parties afterward. However, secret sharing
generally is expensive in terms of communication cost, because it requires mul-
tiple communication rounds for each splitting process.

1.2 Paper contributions

The main contribution of this paper is that we propose a novel subspace per-
turbation method, which circumvents the limitations of both the differential
privacy and SMPC approaches for distributed signal processing. We propose
to insert noise in the subspace such that not only the private data is protected
from being revealed to others but also the accuracy of results is not affected.
The proposed subspace perturbation method has several attractive properties:

• Compared to differential privacy based approaches, the proposed ap-
proach is ensured to converge to the optimum results without compro-
mising privacy. Additionally, it is defined in a completely decentralized
setting, because no central aggregator is required.

• In contrast to SMPC based approaches, the proposed approach is efficient
in both computation and communication. Because it does not require
complex encryption functions (such as those involved in PHE), and it
does not have high communication costs (such as those required in the
secret sharing approaches).

• The proposed subspace perturbation method is generally applicable to
many distributed optimization algorithms like ADMM, PDMM or the dual
ascent method.

• The convergence rate of the proposed method is invariant with respect to
the amount of inserted noise and thus to the privacy level.

We published preliminary results in [31, 32] where the main concept of sub-
space perturbation was introduced using PDMM based on a specific applica-
tion. Here we give a more complete analysis of the proposed subspace pertur-
bation in a broader context, i.e., for all convex problems, and further generalize
it into other optimizers such as ADMM and dual ascent.
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1.3 Outline and notation

The remainder of this paper is organized as follows: Section 2 reviews dis-
tributed convex optimization and some important concepts for privacy preser-
vation. Section 3 defines the problem to be solved and provides qualitative
metrics to evaluate the performance. Section 4 introduces the primal-dual
method of multipliers (PDMM), explaining its key properties used in the pro-
posed approach. Section 5 introduces the proposed subspace perturbation
method based on the PDMM. Section 6 shows the general applicability of the
proposed method by considering other types of distributed optimizers, such as
ADMM and the dual ascent method. In Section 7 the proposed approach is
applied to a wide range of applications including distributed average consen-
sus, distributed least squares and distributed LASSO. Section 8 demonstrates
the numerical results for each application and compares the proposed method
with existing approaches. Finally, Section 9 concludes the paper.

The following notations are used in this paper. Lowercase letters (x), lower-
case boldface letters (x), uppercase boldface letters (X), overlined uppercase
letters (X̄) and calligraphic letters (X ) denote scalars, vectors, matrices, sub-
spaces and sets, respectively. An uppercase letter (X) denotes the random
variable of its lowercase argument, which means that the lowercase letter x is
assumed to be a realization of random variable X. null{·} and span{·} denote
the nullspace and span of their argument, respectively. (X)† and (X)> denote
the Moore-Penrose pseudo inverse and transpose ofX, respectively. xi denotes
the i-th entry of the vector x, and Xij denotes the (i, j)-th entry of the matrix
X. 0, 1 and I denote the vectors with all zeros and all ones, and the identity
matrix of appropriate size, respectively.

2 Fundamentals

In this section, we review the fundamentals and some important concepts re-
lated to privacy preservation. We first review the distributed convex optimiza-
tion and highlight its privacy concerns. Then we describe the adversary models
that will be addressed later in this paper.

2.1 Distributed convex optimization

A distributed network is usually modeled as a graph G = (N , E), where N =
{1, 2, ..., n} is the set of nodes, and E ⊆ N ×N is the set of edges. Let n = |N |
and m = |E| denote the numbers of nodes and edges, respectively. Ni =
{j | (i, j) ∈ E} denotes the neighborhood of node i, and di = |Ni| denotes the
degree of node i.

Let xi ∈ Rui denote the local optimization variable at node i. A stan-
dard constrained convex optimization problem over the network can then be
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expressed as
min
xi

∑
i∈N

fi(xi)

s.t. Bi|jxi +Bj|ixj = bi,j ∀(i, j) ∈ E
(E.1)

where fi : Rui 7→ R∪ {∞} denote the local objective function at node i, which
we assume to be convex for all nodes i ∈ N . Additionally, let vi,j denote the
dimension of constraints at each edge (i, j) ∈ E , Bi|j ∈ Rvi,j×ui , bi,j ∈ Rvi,j
are defined for the constraints. Note that we distinct the subscripts i|j and i, j,
where the former is a directed identifier that denotes the directed edge from
node i to j and the later i, j is an undirected identifier. Stacking all the local
information and let Nn =

∑
i∈N ui and Mm =

∑
(i,j)∈E vi,j , we can compactly

express (E.1) as
min
x

f(x)

s.t. Bx = b
, (E.2)

where f : RNn 7→ R ∪ {∞}, x ∈ RNn , B ∈ RMm×Nn , b ∈ RMm . For simplicity,
we assume the dimension of xi of all nodes are the same and set it as u, i.e.,
u = ui,∀i ∈ N , all Bi|j be square matrices, i.e., vi,j = ui = u,∀(i, j) ∈ E ,
and the constraints be zeros, i.e., b = 0. We thus have Mm = m × u and
Nn = n × u. We further define matrix B based on the incidence matrix of the
graph: Bi|j = I , Bj|i = −I if and only if (i, j) ∈ E and i < j and Bi|j = −I
, Bj|i = I if and only if (i, j) ∈ E and i > j. Note that B reduces to the graph
incidence matrix if u = 1.

To solve the above problem without any centralized coordination, several
distributed optimizers have been proposed, such as ADMM [33] and PDMM
[34, 35], to iteratively solve the problem by communicating only with the local
neighborhood. That is, at each iteration (denoted by index k), each node i

updates its optimization variable x(k)
i by exchanging data only with its neigh-

bors. The goal of distributed optimizers is to design certain updating functions
to ensure that x(k)

i → x∗i , where x∗i denotes the optimum solution for node i.

2.2 Privacy concerns

As mentioned in the introduction, the sensor data captured by an individual’s
device are usually private in nature. For example, health conditions like Parkin-
son’s disease can be detected by voice signals [36, 37], and activities of house-
holders can be revealed by power consumption data [38]. In the context of
distributed optimization, such private information regarding each node i is
contained in its local objective function fi(xi) [12]. Recall that after each it-
eration, node i will send the updated optimization variable x(k+1)

i to all of its
neighbors. Since this variable is related to fi(xi), the revealed x(k+1)

i leaks in-
formation about fi(xi), e.g., its subgradient ∂fi(xi), thereby violating privacy.
This privacy concern, however, has not been addressed in existing distributed
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optimizers. Therefore, in this paper, we attempt to investigate this privacy is-
sue and propose a general solution to achieve privacy-preserving distributed
optimization.

2.3 Adversary model

When designing a privacy-preserving algorithm, it is important to determine
the adversary model that qualifies its robustness under various types of se-
curity attack. By colluding with a number of nodes, the adversary aims to
conduct certain malicious behaviors, such as learning private data or manipu-
lating the function result to be incorrect. These colluding and non-colluding
nodes are referred to as corrupted nodes and honest nodes, respectively. Most
of the literature has considered only a passive (also called honest-but-curious
or semi-honest) adversary, where the corrupted nodes are assumed to follow
the instructions of the designed protocol, but are curious about the honest
nodes’ private data. Another common adversary is the external eavesdropping
adversary, which is assumed to infer the private data of the honest nodes by
eavesdropping all the communication channels in the network. The eavesdrop-
ping adversary in the context of privacy-preserving distributed optimization is
relatively unexplored. In fact, many SMPC based approaches, such as secret
sharing [30, 39, 40], assume that all messages are transmitted through se-
curely encrypted channels [41], such that the communication channels cannot
be eavesdropped upon. However, channel encryption is computationally de-
manding and is therefore very expensive for iterative algorithms, such as those
used here, because they require use of communication channels between nodes
many times. In this paper, we design the privacy-preserving distributed opti-
mizers in an efficient way, such that the channel encryption needs to be used
only once.

3 Problem definition

Given the above-mentioned fundamentals, we thus conclude that the goal of
privacy-preserving distributed convex optimization is to jointly optimize the
constrained convex problem while protecting the private data of each node
from being revealed under defined adversary models. More specifically, there
are two requirements that should be satisfied simultaneously:

1) Output correctness: at the end of the algorithm, each node i obtains its
optimum solution x∗i and its correct function result fi(x∗i ), which implies
that the global function result f(x∗) has been also achieved.

2) Individual privacy: throughout the execution of the algorithm, the pri-
vate data, i.e., the information regarding fi(xi), held by each honest
node should be protected against both passive and eavesdropping adver-
saries; except for the information that can be directly inferred from the
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knowledge of the function output and the private data of the corrupted
nodes (in Section 7 we will explain this in detail).

To quantify the above requirements, two metrics must be defined.

3.1 Output correctness metric

For each node i, achieving the optimum solution x∗i implies obtaining the cor-
rect function output fi(x∗i ) as well. To measure the output correctness for the
whole network in terms of the amount of communication, we thus use the
mean squared error ‖x(k) −x∗‖22 over all the nodes as a function of number of
transmission: one transmission denotes that one message package is transmit-
ted from one node to another.

3.2 Individual privacy metric

In the literature, information-theoretic measures like mutual information and
ε-differential privacy are often adopted as the privacy metric (see [42] for de-
tails). In this paper, we deploy mutual information as the metric for quanti-
fying the individual privacy. The reason of choosing mutual information over
ε-differential privacy is because ε-differential privacy corresponds to a worst-
case metric and the worst-case privacy leakage can in practice be quite far from
the typical leakage of the average user [43]. Notably, mutual information and
ε-differential privacy are closely related with each other and it is shown in [44]
that Bayesian mutual information is a relaxation of ε-differential privacy.

Given a continuous random variable X with a probability density function
fX , the differential entropy of X is defined as h(X) = −

∫
f(x) log f(x)dx.

Let Y be another random variable, the conditional entropy h(X|Y ) quantifies
the uncertainty of X after knowing Y . The mutual information I(X;Y ) [45]
measures the amount of information learned about X by observing Y , or vice
versa, which is given by1

I(X;Y ) = h(X)− h(X|Y ). (E.3)

3.3 Lower bound of information leakage

When defining the individual privacy, we explicitly exclude the information
that can be deduced from the function output and the private data of the cor-
rupted nodes, because each node will eventually obtain its function output
from the algorithm, and in some cases, this output may contain certain in-
formation regarding the private data held by the individual honest node. To
explain this scenario more explicitly, take the distributed average consensus as
an example. Let Nc and Nh denote the set of corrupted and honest nodes,

1In the case of discrete random variables, the condition is expressed in terms of the Shannon
entropy H(·)
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respectively. A group of n people would like to compute their average salary,
denoted by save, while keeping each person’s salary si unknown to the others.
If the average result is accurate, the salary sum of the honest people can al-
ways be computed by

∑
i∈Nh

si = n× save −
∑
i∈Nc

si assuming the adversary
knows n, regardless of the underlying algorithms. With the mutual informa-
tion metric, the salary sum will leak I(Si;

∑
j∈Nh

Sj) amount of information
about the salary of the honest node i. Provided that this information leakage
is unavoidable, we therefore refer to it as the lower bound of information leak-
age. We now give a definition of perfect security in the context of distributed
processing.

Definition 1. (Perfect privacy-preserving algorithms.) Given a specific applica-
tion, let δ ≥ 0 denote its lower bound of information leakage. A privacy-preserving
algorithm is considered perfect (or achieves perfect security) as long as it reveals
no more information than this lower bound δ.

4 Primal-dual method of multipliers

To introduce the main idea of subspace perturbation, we first use PDMM as
an example and then generalize it to other distributed optimizers in Section
6, like ADMM or dual ascent. The main reasons for choosing PDMM over
other optimizers are its general applicability and its broadcasting property (see
Section 4.2) which allows for simplification of the individual privacy analysis.
In this section, we first provide a review of the fundamentals of the PDMM
and introduce its main properties, which will be used later in the proposed
approach.

4.1 Fundamentals

PDMM is an instance of Peaceman-Rachford splitting of the extended dual
problem (refer to [35] for details). It is an alternative distributed optimiza-
tion tool to ADMM for solving constrained convex optimization problems and
is often characterized by a faster convergence rate [34]. For the distributed
optimization problem stated in (E.1), the extended augmented Lagrangian of
PDMM is given by

L(x,λ) = f(x) + (Pλ(k))>Cx+
c

2
‖Cx+ PCx(k)‖22, (E.4)

and the updating equations of PDMM are given by

x(k+1) = arg min
x
L
(
x,x(k),λ(k)

)
, (E.5)

λ(k+1) = Pλ(k) + c(Cx(k+1) + PCx(k)), (E.6)
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where P ∈ R2Mm×2Mm is a symmetric permutation matrix exchanging the first
Mm with the last Mm rows of the matrix it applies, c > 0 is a constant control-
ling the convergence rate. λ(k) ∈ R2Mm denotes the dual variable at iteration
k, introduced for controlling the constraints. Each edge (i, j) ∈ E is related to
two dual variables λi|j ,λj|i ∈ Ru, controlled by node i and j, respectively. Ad-
ditionally, C ∈ R2Mm×Nn is a matrix related to B: C = [B>+ B

>
− ]>, where B+

and B− are the matrices containing only the positive and negative entries of
B, respectively. Of note,C+PC = [B> B>]> and ∀(i, j) ∈ E : λj|i = (Pλ)i|j .

4.2 Broadcast PDMM

On the basis of (E.5), the local updating function at each node i is given by

x
(k+1)
i = arg min

xi

fi(xi) +
∑
j∈Ni

λ
(k)>

j|i Bi|jxi

+
c

2

∑
j∈Ni

‖Bi|jxi +Bj|ix
(k)
j ‖22

 (E.7)

∀j ∈ Ni :λ
(k+1)
i|j = λ

(k)
j|i + c

(
Bi|jx

(k+1)
i +Bj|ix

(k)
j

)
. (E.8)

We can see that updating λ(k+1)
i|j requires only λ(k)

j|i ,x
(k)
j and x(k+1)

i , of which

λ
(k)
j|i and x(k)

j are already available at node j. Thus, node i needs to broadcast

only x(k+1)
i after which the neighboring nodes can update λ(k+1)

i|j themselves.
As a consequence, the dual variables do not need to be transmitted at all,
except for the initialization step.

More specifically, each node i, regarding each iteration k, has the following
knowledge:

{x(k)
i ,λ

(k)
i|j }j∈Ni

∪ {x(k)
j ,λ

(k)
j|i }j∈Ni

, (E.9)

where the first term represents the local variables of node i, and the latter is the
variables of its neighbors that are related to node i. Note that the optimization
variables {x(k)

j }j∈Ni are sent by the neighbouring nodes during the (iterative)

optimization process whereas the dual variables {λ(k)
j|i }j∈Ni

are computed and
kept locally at node i, except for the initialization step (k = 0) where these
variables need to be exchanged through securely encrypted channels.

4.3 Convergence of dual variables

Consider two successive λ-updates in (E.6), in which we have

λ(k+2) = λ(k) + c(Cx(k+2) + 2PCx(k+1) +Cx(k)), (E.10)

99



Paper E.

as P 2 = I. Let H̄p = span(C)+span(PC) and H̄⊥p = null(C>)∩null((PC)>).
Denote ΠH̄p

as the orthogonal projection onto H̄p. From (E.10), we conclude
that every two λ-updates affect only ΠH̄p

λ ∈ H̄p, and (I − ΠH̄p
)λ ∈ H̄⊥p

remains the same. Moreover, as shown in [35],
(
I −ΠH̄p

)
λ will only be

permuted in each iteration and ΠH̄p
λ will eventually converge to λ∗ given by

λ∗ = −
(

C>

(PC)>

)†(
∂f(x∗) + cC>Cx∗

∂f(x∗) + cC>PCx∗

)
+ cCx∗. (E.11)

We thus can separate the dual variable into two parts:

λ(k) = ΠH̄p
λ(k) + (I −ΠH̄p

)λ(k),

→ λ∗ + P k
(
I −ΠH̄p

)
λ(0) (E.12)

since P 2 = I. Below, H̄p and H̄⊥p are respectively referred to as the convergent
subspace and non-convergent subspace associated with PDMM, and similarly
ΠH̄p

λ and
(
I −ΠH̄p

)
λ are called the convergent and non-convergent compo-

nent of the dual variable, respectively.

5 Proposed approach using PDMM

Having introduced the PDMM algorithm, we now introduce the proposed ap-
proach. To achieve a computationally and communicationally efficient solu-
tion for privacy preservation, one of the most used techniques is obfuscation
by inserting noise, such as those used in differential privacy based approaches.
However, inserting noise usually compromises the function accuracy, because
the updates are disturbed by noise. To alleviate this trade-off, we propose
to insert noise in the non-convergent subspace only so that the accuracy of
the optimization solution is not affected (see also Remark 4), thus achieving
both privacy and accuracy at the same time. The proposed noise insertion
method is referred to as subspace perturbation. Below, we first present some
information-theoretic results regarding privacy, after which we explain the pro-
posed subspace perturbation in detail and prove that it satisfies both the output
correctness and individual privacy requirements stated in Section 3.

5.1 Privacy preservation using noise insertion

We first present the following information theoretic results regarding privacy,
which serve as fundamentals for the proposed approach.

Proposition 3. Let {Xi}i=1,...,n denote a set of continuous random variables
with mean and variance µXi

and σ2
Xi

, respectively, assuming they exist. Let
{Yi}i=1,...,n be a set of mutually independent random variables, i.e., I(Yi, Yj) =
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0, i 6= j, which is independent of {Xi}i=1,...,n, i.e., I(Xi, Yj) = 0 for all i, j ∈ N .
Let Zi = Xi + Yi and let Z ′i = Zi/σZi

be the normalized random variable with
unit variance. We have

lim
σ2
Yi
→∞

I(X1, . . . , Xn;Z1, . . . , Zn) = 0, (E.13)

Proof. See Appendix 10.1.

Proposition 3 states that, if the lower bound of information leakage δ = 0,
we have perfect security if the variance of the inserted noise goes to infinity.
That is, the system is asymptotically optimal. In the context of distributed sig-
nal processing, however, δ is usually positive as the optimum solution is often
an aggregation of the local information of all nodes. In these cases, perfect
security can be achieved through finite noise insertion. The following result
gives a lower bound on the noise variance for guaranteeing perfect security.

Proposition 4. Consider two independent random variables X and Y with vari-
ance σ2

X and σ2
Y , where X denotes the private data and Y denotes the inserted

noise for protecting X. Let Z = X + Y . Given δ > 0, if we choose to insert
Gaussian noise, we can obtain

I(X;Z) ≤ δ

as long as

σ2
Y ≥

σ2
X

22δ − 1
, (E.14)

Proof. See Appendix 10.2.

Proposition 4 provides a simple way to set the noise variance for achieving
perfect security. As an example, if δ = 7 × 10−2 bits, then perfect security can
be guaranteed by setting the variance of the inserted Gaussian noise to be 10
times that of the variance of the private data.

5.2 Subspace perturbation

We first give the following assumption.

Assumption 1. The communication channels in the network are securely en-
crypted when transmitting the initialized dual variable λ(0).

Because of the broadcasting property of the PDMM, after transmission of the
initialized dual variables, the updated optimization variable x(k+1)

i is the only
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information transmitted in the network at each iteration. Based on (E.7),
x

(k+1)
i is computed by 2

0 ∈∂fi(x(k+1)
i ) +

∑
j∈Ni

Bi|jλ
(k)
j|i + c

∑
j∈Ni

(x
(k+1)
i − x(k)

j ). (E.15)

We can see that the information about the local objective function fi(x
(k+1)
i ) is

contained in the subgradient ∂fi(x
(k+1)
i ). The main goal of privacy preserva-

tion thus becomes minimizing the information loss about ∂fi(x
(k+1)
i ) given the

information known by the adversary. To do so, we first need to analyze how
much knowledge the adversary knows regarding (E.15). Based on the defined
adversary models, there are two ways for the adversary to collect information.
The first way is to eavesdrop the communication channels. By doing so, the
adversary is able to collect, at every iteration k ≥ 0, all optimization vari-
ables {x(k)

i }i∈N in the network. The dual variables {λ(k)}, on the other hand,
cannot be eavesdropped because they are only transmitted during the initial-
ization phase (k = 0) through securely encrypted channels (see Assumption 1).
The second way is to collect the information of all corrupted nodes (a passive
adversary model), which is given by (E.9) for every i ∈ Nc. Combining the
above information together, we conclude that the adversary has the following
knowledge regarding x and λ:

{x(k)
i }i∈N ∪ {λ

(k)
i|j }(i,j)∈Ec , (E.16)

where Ec = {(i, j) : (i, j) ∈ E , (i, j) /∈ Nh × Nh} denotes the corrupted
edge set. Let Ni,c = Ni ∩ Nc and Ni,h = Ni ∩ Nh denote the corrupted
and honest neighborhood of node i, respectively. By inspecting (E.15), we
can see that with the knowledge (E.16), the adversary is able to compute both
c
∑
j∈Ni

(x
(k+1)
i −x(k)

j ) and the partial sum contributed by the corrupted neigh-

borhood of node i, i.e.,
∑
j∈Ni,c

Bi|jλ
(k)
j|i . Therefore, after deducing the known

terms from (E.15), what the adversary observes is

∂fi(x
(k+1)
i ) +

∑
j∈Ni,h

Bi|jλ
(k)
j|i . (E.17)

In order to achieve perfect security (see Definition 1), the information loss at
every iteration should not exceed δ, i.e.,

I

∂fi(X(k+1)
i ) ; ∂fi(X

(k+1)
i ) +

∑
j∈Ni,h

Bi|jΛ
(k)
j|i

 ≤ δ. (E.18)

Note that the lower bound δ is given by the application. The only freedom
we have, in order to obtain perfect security, is to control the variance of∑
j∈Ni,h

Bi|jΛ
(k)
j|i .

2Note that B>
i|j = Bi|j , Bi|jBj|i = −I, and Bi|jBi|j = I.

102



5. Proposed approach using PDMM

Using (E.12), we can express (E.17) as

∂fi(x
(k+1)
i ) +

∑
j∈Ni,h

Bi|j

(
ΠH̄p

λ(k)
)
j|i

+
∑

j∈Ni,h

Bi|j

(
P k
(
I −ΠH̄p

)
λ(0)

)
j|i
, (E.19)

from which we conclude that the variance of the convergent term∑
j∈Ni,h

Bi|j

(
ΠH̄p

λ(k)
)
j|i

can not be manipulated to be large as it will al-

ways converge since ΠH̄p
λ(k) → λ∗. On the contrary, the variance of the

non-convergent term
∑
j∈Ni,h

Bi|j

(
P k
(
I −ΠH̄p

)
λ(0)

)
j|i

can be made arbi-

trarily large as it only depends on the initialization of the dual variable. As
a consequence, we propose to exploit this non-convergent term to guarantee
perfect security. That is, given an arbitrary δ > 0, we can adjust the variance
of
∑
j∈Ni,h

Bi|j

(
P k
(
I −ΠH̄p

)
λ(0)

)
j|i

such that (E.18) is satisfied. In par-

ticular, by applying Proposition 4 to the problem at hand, we conclude that a
sufficient condition to guarantee perfect security (E.18) is to initialize the dual
variable with Gaussian distributed noise with

∃j ∈ Ni,h : var
(

((I −ΠH̄p
)Λ(0))j|i

)
≥ var(∂fi(X

(k+1)
i ))

22δ − 1
. (E.20)

By inspecting the above condition, we have the following remarks.

Remark 1. (
(
I −ΠH̄p

)
λ(0) 6= 0 can be realized by randomly initializing λ(0)).

Of note, [C PC] ∈ R2Mm×2Nn can be viewed as a new graph incidence matrix
with 2Nn nodes and 2Mm edges (see (c) in Fig. E.1 for an example); we thus
have dim(H̄p) ≤ 2Nn − 1, and H̄⊥p is non-empty. For a connected graph with the
number of edges not less than the number of nodes (i.e., Mm ≥ Nn), we conclude
that a randomly initialized λ(0) ∈ R2Mm will achieve

(
I −ΠH̄p

)
λ(0) 6= 0 with

probability 1.

Remark 2. (The privacy is still guaranteed if the adversary has full knowledge
of the subspace H̄p). If the network topology, i.e., B, is known to the adversary,
it is able to construct the subspace H̄p by using C and PC. However, knowing
H̄p will not compromise the privacy because the term

∑
j∈Ni,h

Bi|jλ
(k)
j|i in (E.17)

can not be determined by the adversary. The reason is that as long as λ(0) /∈ H̄p,
the adversary is not able to reconstruct the dual variables transmitted between the
honest nodes.

Remark 3. (The privacy will not be compromised even though the adversary col-
lects information over iterations). Since the updates are only conducted in the
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convergent subspace, even if the adversary collects information over iterations,
it can only know the difference λ(k+2) − λ(k) ∈ H̄p. With the knowledge of
the dual variables associated with the corrupted nodes only, again the adversary
is not able to determine the dual variables related to the honest nodes. Hence,∑
j∈Ni,h

Bi|jλ
(k)
j|i in (E.17) can not be determined and the privacy is thus guar-

anteed.

Remark 4. (No trade-off between privacy and accuracy). No matter how much
noise is inserted in the non-convergent subspace, the convergence of the optimiza-
tion variable x → x∗ is guaranteed. By inspecting (E.4), we can see that the
x-update is independent of (I −ΠH̄p

)λ as λ>
(
I −ΠH̄p

)
PC = 0.

Details of the proposed approach using PDMM are shown in algorithm 0.
And the analysis of both output correctness and individual privacy is summa-
rized below.

Output correctness

As proven in [35], with strictly convex f(xi), the optimization variable x(k)
i of

each node i of the PDMM is guaranteed to converge geometrically (linearly on
a logarithmic scale) to the optimum solution x∗i , regardless of the initialization
of both x(0) and λ(0), thereby ensuring the correctness. Moreover, for convex
functions that are not strictly convex, a slightly modified version called aver-
aged PDMM (see Section 7.3 for an example) can be used to guarantee the
convergence.

Individual privacy

From (E.20), we conclude that the proposed algorithm is able to achieve per-
fect security, against both passive and eavesdropping adversaries as long as the
honest node has at least one honest neighbor, i.e., Ni,h 6= ∅ and Assumption 1
holds.

Overall, the proposed subspace perturbation approach is able to achieve
perfect security without compromising the accuracy.

5.3 Discussions

In Remark 4 we mentioned that the proposed approach has no trade-off be-
tween privacy and accuracy. When considering practical signal processing tasks
that require quantization, the above claim still holds if the quantizer has a fixed
resolution (cell width), but there will be a trade-off between privacy and bit
rate as an increase in variance will require a higher bit rate. On the other
hand, there will be a trade-off between privacy and accuracy if the quantizer
has a fixed bit rate, since increasing the noise will end up with a lower reso-
lution. These quantization related trade-offs, however, exist in all approaches
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Algorithm 6 Privacy-preserving distributed optimization via subspace pertur-
bation using PDMM

1: Each node i ∈ N initializes its optimization variable x(0)
i arbitrarily, and its

dual variables λ(0)
i|j , j ∈ Ni are randomly initialized with a certain distribu-

tion with large variance (specified by the required privacy level).
2: Node i broadcasts x(0)

i and sends the initialized {λ(0)
i|j } to its neighbor j

through secure channels [41].
3: while ‖x(k) − x∗‖2 < threshold do
4: Activated a node uniformly at random, e.g., node i, updates x(k+1)

i using
(E.5).

5: Node i broadcasts x(k+1)
i to its neighbors j ∈ Ni (through non-secure

channels).
6: After receiving x(k+1)

i , each neighbor j ∈ Ni updates λ(k+1)
i|j using (E.6).

7: end while

using noise insertion for example the differential privacy approaches. One way
to circumvent these trade-offs is to adopt a fixed-rate quantizer that change the
cell width adaptively during the iterations [46, 47].

In connection to the above quantization effects, we note that the lower
bound of information leakage is very important in reducing these trade-offs,
i.e., minimizing the communication bandwidth (bit rate) or the error in the
algorithm output, because it helps to specify the minimum noise variance that
needs to be added for perfect security; it is not necessary to set the noise vari-
ance to be large if the lower bound is not low enough.

6 Proposed approach using other optimizers

In this section, we demonstrate the general applicability of the proposed sub-
space perturbation method. In fact, the proposed method can be generally
applied to any distributed optimizer if the introduced dual variables converge
only in a subspace (i.e., there is a non-empty nullspace), which is indeed usu-
ally true, because these optimizers often work in a subspace determined by the
incidence matrix of a graph. To substantiate this claim, we will show that the
subspace perturbation also applies to ADMM and the dual ascent method. We
then illustrate their differences by linking the convergent subspaces to their
graph topologies.
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6.1 ADMM

Given a standard distributed optimization problem stated in (E.1), the aug-
mented Lagrangian function of ADMM [33] is given by

L(x,v, z) = f(x) + v>(Mx+Wz) +
c

2
‖Mx+Wz‖2, (E.21)

where M ∈ R2Mm×Nn , like PDMM, is a matrix related to the graph incidence
matrix, and M =

[
B>+ −B>−

]>
, W =

[
−I> − I>

]> ∈ R2Mm×Mm . v ∈
R2Mm and z ∈ R2Mm are the introduced dual variables and auxiliary variable
for constraints, respectively. The updating functions of ADMM are given by

x(k+1) = arg min
x
L
(
x, z(k),v(k)

)
(E.22)

z(k+1) = arg min
z
L
(
x(k+1), z,v(k)

)
(E.23)

v(k+1) = v(k) + c
(
Mx(k+1) +Wz(k+1)

)
. (E.24)

By inspecting the v-update in (E.24), we can see that it has a similar structure
to that of the λ-update in (E.10) in PDMM. Let H̄a = span(M) + span(W )
and the matrix [M W ] can also be seen as an incidence matrix of an ex-
tended bipartite graph (see (b) in Fig. E.1 for an example). Therefore, we
have dim(H̄a) ≤ Mm + Nn − 1 and every v-update only effects

(
ΠH̄a

)
v ∈ H̄a

and leaves (I − ΠH̄a
)v ∈ H̄⊥a , H̄

⊥
a = null(M>) ∩ null(W>), unchanged. In

addition to this, similar as (E.15) in PDMM, the local optimization variable
x

(k+1)
i of node i is computed by

0 ∈∂fi(x(k+1)
i ) +

∑
j∈Ni

v
(k)
i|j + c

∑
j∈Ni

(x
(k+1)
i − z(k)

i,j ). (E.25)

Note that ADMM is not a broadcasting protocol, i.e., it requires pairwise com-
munications for the auxiliary variable. The individual privacy is thus depen-
dent on both x and z. To simplify the analysis, we remark that revealing the
auxiliary variable z will not disclose more information than revealing x by the
data processing inequality [45]. As a consequence, it is sufficient to analyze
the individual privacy through (E.25). As for the knowledge of the adversary,
we note that, in addition to the optimization variable and the dual variable, all
the auxiliary variables {z(k)

i,j }(i,j)∈E are assumed to be known by the adversary
as they can be eavesdropped. We then conclude that after deducing all the
known terms, i.e.,

∑
j∈Ni,c

v
(k)
i|j and c

∑
j∈Ni

(x
(k+1)
i − z(k)

i,j ), from (E.25), what
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the adversary observes is

∂fi(x
(k+1)
i ) +

∑
j∈Ni,h

v
(k)
i|j

= ∂fi(x
(k+1)
i ) +

∑
j∈Ni,h

(
ΠH̄a

v(k)
)
i|j

+
∑

j∈Ni,h

(
(I −ΠH̄a

)v(0)
)
i|j
. (E.26)

The proof for both the output correctness and individual privacy using ADMM
follows a similar structure as that of PDMM. The sufficient condition for perfect
security using ADMM becomes

∃j ∈ Ni,h : var
(

((I −ΠH̄a
)v(0))i|j

)
≥ var(∂fi(X

(k+1)
i ))

22δ − 1
. (E.27)

We thus conclude that perfect security can be achieved using ADMM via sub-
space perturbation.

Of note, there are variations in ADMM. For example, [48] showed that
the auxiliary variable can be eliminated and the dual variable update can be
simplified by proper initialization; it requires that the dual variable should
be initialized properly such that it is in the column space of [(B)> (−B)>]>.
However, such initialization ensures (I − ΠH̄a

)v(0) = 0 and thus there is no
subspace noise for protecting the private data. Instead, we need to randomly
initialize the dual variable v(0) such that (E.27) can be satisfied.

6.2 Dual ascent method

The Lagrangian of the dual ascent method for solving (E.1) is given by

L(x,u) = f(x) + u>Bx, (E.28)

where u ∈ RMm is the introduced dual variable. The updating function is given
by

x(k+1) = arg min
x
L
(
x,u(k)

)
(E.29)

u(k+1) = u(k) + t(k)Bx(k+1), (E.30)

where t(k) denotes the step size at iteration k. Likewise, the u-update in (E.30)
has a similar structure as the λ-update of PDMM and the v-update of ADMM.
Here the convergent subspace is H̄d = span(B) and B is also rank deficient
as it is related to the graph incidence matrix. Hence, we conclude that the
proposed subspace perturbation method also works for the dual ascent method.
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Fig. E.1: An example of graph topologies associated with dual ascent, ADMM and PDMM with
u = 1: (a) A graph with n = 5 nodes and m = 6 edges. (b) The bipartite graph constructed by
ADMM with n +m nodes and 2m edges. (c) The bipartite graph constructed by PDMM with 2n
nodes and 2m edges.

6.3 Linking graph topologies and subspaces

Thus far, we have shown that the dual variable updates of PDMM, ADMM and
the dual ascent method are dependent only on their corresponding subspaces:
H̄p = span(C) + span(PC), H̄a = span(M) + span(W ) and H̄d = span(B).
As mentioned before, each of the matrices [C PC], [M W ] andB can be seen
as an incidence matrix of a graph, therefore they all have a non-empty left
nullspace for subspace perturbation as long as m ≥ n (Remark 1). To examine
the appearance of these constructed graphs, in Fig. E.1 we give an example of
these graphs and provide illustrative insights into the differences among these
optimizers.

7 Applications

To demonstrate the potential of the proposed approach to be used in a wide
range of applications, we now present the application of the proposed subspace
perturbation to three fundamental problems: distributed average consensus,
distributed least squares and distributed LASSO, because they serve as building
blocks for many other signal processing tasks, such as denoising [49], interpo-
lation [50], machine learning [51, 52] and compressed sensing [53, 54]. We
first introduce the application and then perform the individual privacy analysis.
We will continue using PDMM to introduce the details, but the numerical re-
sults of using all the discussed optimizers will be presented in the next section.
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7.1 Privacy-preserving distributed average consensus

The optimization problem setup (E.1) for distributed average consensus be-
comes

min
xi

∑
i∈N

1

2
‖xi − si‖22

s.t. xi = xj ,∀(i, j) ∈ E ,
(E.31)

where si denotes the initial state value held by node i. The optimum solution
for each optimization variable is x∗i = n−1

∑
i∈N si and x∗ = (x∗1, . . . ,x

∗
n)>.

Privacy-preserving distributed average consensus is widely investigated in the
literature [55–63] and it aims estimate the average of all the nodes’ initial state
values over a network and keep each node’s initial state value unknown to oth-
ers. Such privacy-preserving solutions are highly desired in practice. For exam-
ple, in face recognition applications, computing mean faces is usually required,
thus prompting privacy concerns. Here, a group of people may cooperate to
compute the mean face, but none of them would like to reveal their own facial
images during the computation.

Individual privacy

Note that in distributed average consensus, the requirement of protecting the
initial state value si is equivalent to protecting ∂fi(x

(k+1)
i ) = x

(k+1)
i −si, since

the optimization variable x(k+1)
i is known to the adversary and can thus be seen

as a constant. To comply with existing approaches, in what follows we will an-
alyze the privacy in terms of the initial state value si. Substitute ∂fi(x

(k+1)
i ) =

x
(k+1)
i − si in (E.17) and remove the known term x

(k+1)
i , we then have

− si +
∑

j∈Ni,h

Bi|jλ
(k)
j|i . (E.32)

As shown in [31, 55], the only revealed information here would be the par-
tial sums of all the honest components (connected subgraphs consist of honest
nodes only) after removal of all the corrupted nodes. Let H denote the node
set of the component that the honest node i belongs to, the lower bound of in-
formation leakage for node i is thus given by I(Si;

∑
j∈H Sj) = δ. We conclude

that, given δ, the proposed approach is able to achieve perfect security, i.e.,

I

Si ; Si +
∑

j∈Ni,h

Bi|jΛ
(k)
j|i

 ≤ δ, (E.33)

by satisfying (E.20) in which var(∂fi(X
(k+1)
i )) is replaced by var(Si).
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7.2 Privacy-preserving distributed least squares

Privacy-preserving distributed least squares aims to find a solution for a linear
system (here we consider an overdetermined system in which there are more
equations than unknowns) over a network in which each node has only partial
knowledge of the system and is only able to communicate with its neighbors,
and in the meantime the local information held by each node should not be
revealed to others. More specifically, here the local information of node imeans
both the input observations, denoted by Qi ∈ Rpi×u, pi > u and decision
vector, denoted by yi ∈ Rpi . That is, each node i has pi observations, and each
contains an u-dimensional feature vector. Collecting all the local information,
we thus have Q = [Q>1 , . . . ,Q

>
n ]> ∈ RPn×u and y = [y>1 , . . . ,y

>
n ]> ∈ RPn ,

where Pn =
∑
i∈N pi.

The least-squares problem in a distributed network can be formulated as a
distributed linearly constrained convex optimization problem, and the problem
setup in (E.1) becomes

min
xi

∑
i∈N

1
2‖yi −Qixi‖22

s.t. xi = xj ,∀(i, j) ∈ E ,
(E.34)

where the optimum solution is given by x∗i = (Q>Q)−1Q>y ∈ Ru,∀i ∈ N .

Individual privacy

Note that the local information yi and Qi usually contain users’ sensitive in-
formation [24]. Take the distributed linear regression as an example, which is
widely used in the field of machine learning, and consider the case that sev-
eral hospitals want to collaboratively learn a predictive model by exploring all
the data in their datasets. However, such collaborations are limited because
they must comply with policies such as the general data protection regulation
(GDPR) and because individual patients/customers may feel uncomfortable
with revealing their private information to others, such as insurance data and
health condition. In this context, since ∂fi(x

(k+1)
i ) = Q>i (Qix

(k+1)
i − yi) con-

tains sensitive information regarding the local informationQi and yi of node i,
it is thus important to protect it from being revealed. We can see that at the end
each node obtains the optimum solution ∀i ∈ N : x∗i = (Q>Q)−1Q>y. The
lower bound δ is thus the amount of information learned about ∂fi(xi) of hon-
est node i ∈ Nh by knowing x∗i given the knowledge of the corrupted nodes,
i.e., {fi(xi)}i∈Nc

. Hence, the propose approach is able to achieve privacy-
preserving distributed least squares, i.e., perfect security (E.18) is guaranteed
as long as (E.20) is satisfied.

7.3 Privacy-preserving distributed LASSO

Privacy-preserving distributed LASSO aims to securely find a sparse solution
when solving an underdetermined system (in which the number of equations
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(a) (a) (b) (b) (c) (c)

Fig. E.2: Distributed average consensus with two different initializations of the dual variable with
a variance of 106: convergence of the optimization variable, the convergent and non-convergent
component of the dual variable, using (a) dual ascent, (b) ADMM and (c) PDMM.

(a) (a) (b) (b) (c) (c)

Fig. E.3: Distributed least squares with two different initializations of the dual variable with a
variance of 106: convergence of the optimization variable, the convergent and non-convergent
component of the dual variable of (a) dual ascent, (b) ADMM and (c) PDMM.

is less than number of unknowns). We thus have a network similar to the pre-
vious least squares section but with the dimension Pn < u to ensure an under-
determined system. The distributed LASSO is formulated as a `1-regularized
distributed least squares problem given by

min
xi

∑
i∈N

(
1

2
‖yi −Qixi‖22 + α|xi|

)
s.t. xi = xj ,∀(i, j) ∈ E (E.35)

where α the constant controlling the sparsity of the solution. Because the
objective function is convex but not strictly convex, we use averaged PDMM
to ensure convergence, the x-updating function remains the same, and the
λ-updating function in (E.6) is replaced with a weighted average by

λ(k+1) = θ(λ(k) + cC(x(k+1) − x(k)))

+ (1− θ)
(
Pλ(k) + c(Cx(k+1) + PCx(k))

)
, (E.36)

where 0 < θ < 1 is the constant controlling the average weight. The output
correctness is ensured by simply replacing the equation (E.6) in step 6 of al-
gorithm 0 with the above equation. The rest analysis follows similarly as the
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(a) (a) (b) (b) (c) (c)

Fig. E.4: Distributed LASSO with two different initializations of the dual variable with a variance
of 106: convergence of the optimization variable, the convergent and non-convergent component
of the dual variable of (a) dual ascent, (b) ADMM and (c) PDMM.

example for distributed least squares described above. Hence, with (E.20), we
are able to achieve perfect security in distributed LASSO.

(a) (a) (b) (b) (c) (c)

Fig. E.5: Convergence of the optimization variable in terms of three different privacy levels, i.e.,
approximately 7 × 10−3, 7 × 10−5 and 7 × 10−7 bits, for (a) proposed dual ascent (p-Dual),
(b) proposed ADMM (p-ADMM) and (c) proposed PDMM (p-PDMM) in a distributed least squares
application.

8 Numerical results

In this section, several numerical tests3 are conducted to demonstrate both the
generally applicability and the benefits of the proposed subspace perturbation
in terms of several important parameters including accuracy, convergence rate,
communication cost and privacy level.

We simulated a distributed network by generating a random graph with
n = 20 nodes and the communication radius r was set at r2 = 2 logn

n so ensure
that the graph is connected with high probability [64]. For simplicity, all the
local data regarding f(xi) in each application, i.e., si in distributed average
consensus, Qi and yi in distributed least squares and LASSO, are randomly

3The code for reproducing these results is available at
https://github.com/qiongxiu/PrivacyOptimizationSubspace
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generated from a Gaussian distribution with unit variance, and the optimiza-
tion variables are initialized with zeros. Additionally, we initialize all the dual
variables with a Gaussian distribution with different variances.

8.1 General applicability

In Fig. E.2, E.3 and E.4, we compare the convergence behavior of the proposed
subspace perturbation methods (blue lines) with traditional non-private ap-
proaches (red lines) by using three distributed optimizers in three applications:
distributed average consensus, least squares and LASSO. More specifically, the
blue lines indicate that the dual variables are randomly initialized with a vari-
ance of 106, such that the non-convergent component (blue line with triangle
markers) can protect the private data, whereas the red lines mean that the dual
variables are initialized within the convergent subspace, and the private data
are therefore not protected, because the non-convergent component is zero
(the red lines with triangle markers are not shown in the plots). We can see
that the proposed approach has no effect on the accuracy, because all the opti-
mization variables converge to the same optimum solution as the non-private
counterparts. Overall, we can conclude that

1. the proposed approach is able to achieve both accuracy and privacy si-
multaneously;

2. it is able to solve a variety of convex problems;

3. it is generally applicable to a broad range of distributed convex optimiza-
tion methods.

8.2 Privacy level-invariant convergence rate

Another important aspect to quantify the performance is the influence on the
convergence rate when considering privacy. Because the convergence rates
of the discussed distributed optimizers depend only on the underlying graph
topologies rather than the initializations, initializing the dual variables with
greater variance will therefore not change the convergence rate; and it will
only result in only a larger offset in the initial error. To validate these results,
in Fig. E.5 we show the convergence behavior of the proposed approaches
in the distributed least squares problem under three different privacy levels:
δ = 7× 10−3, 7× 10−5, and 7× 10−7 bits. In order to achieve perfect security,
based on Proposition 4, the variance of each dual variable is set as 102, 104 and
106, respectively. As expected, in all optimizers, the convergence rate remains
identical regardless of the privacy level.
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Fig. E.6: Performance comparison: convergence behavior under three different noise variances
using the proposed p-PDMM, p-ADMM and an existing differential privacy (DP) approach.

8.3 Comparison with differential privacy

To demonstrate the benefits of the proposed method, in Fig. E.6, we compare
the proposed approaches (both p-PDMM and p-ADMM) with a differential pri-
vacy approach [60] by using the distributed average consensus application.
We consider three cases in which the variance of each dual variable is set as
0, 102, 104. We can see that the accuracy of the differential privacy approach
decreases with increasing privacy level. Hence, there is a trade-off between pri-
vacy and accuracy. Additionally, the convergence rates of differential privacy
approaches will also be affected when increasing the level of privacy, because
noise is inserted at every iteration, and a higher privacy level will also result in
a slower convergence rate.

8.4 Information loss over the iterative process

To visualize how the information loss behaves during the iterative process,
we perform 105 Monte Carlo simulations and estimate the normalized mutual

information (NMI) I(Si;X
(k)
i )

I(Si;Si)
of distributed average consensus using the non-

parametric entropy estimation toolbox (npeet) [65]. In Fig. E.7, we show
the estimated normalized mutual information of the proposed p-PDMM with a
noise variance of 106 and traditional non-private PDMM, in which the dual vari-
ables are initialized with zeros. Since both approaches converge to the same
average result x∗i = n−1

∑
i∈N si, they ultimately have the same information

loss I(Si;X
∗
i ), which corresponds to the lower bound of information leakage

under the condition that there is no passively corrupted nodes. As expected,
the information loss of the proposed p-PDMM never exceeds the lower bound;
hence, the proposed approach achieves perfect security. However, the n-PDMM
reveals all the information about si at the first iteration as no noise is inserted;
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Fig. E.7: Normalized mutual information of an arbitrary node i (i.e.,
I(Si;X

(k)
i )

I(Si;Si)
) using the pro-

posed p-PDMM and non-private PDMM (n-PDMM) for each iteration.

thus the privacy is not protected at all.

9 Conclusions

In this paper, a novel and general subspace perturbation method was proposed
for privacy-preserving distributed optimization. As a noise insertion approach,
this method is more practical than SMPC based approaches in terms of both
computation and communication costs. Additionally, by inserting noise in sub-
space, it circumvents the trade-off between privacy and accuracy in traditional
noise insertion approaches such as differential privacy. Moreover, the proposed
method guarantees perfect security and is generally applicable to various op-
timizers and all convex problems. Furthermore, we consider both passive and
eavesdropping adversary models; in which the private data of each honest node
are protected as long as the node has one honest neighbor, and only secure
channel encryption in the initialization is required.

10 Appendix
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10.1 Proof of Proposition 3

Proof.

I(X1, . . . , Xn;Z1, . . . , Zn)

= h(Z1, . . . , Zn)− h(Z1, . . . , Zn|X1, . . . , Xn)

(a)
= h(Z1, . . . , Zn)− h(Y1, . . . , Yn)

(b)
=

n∑
i=1

h
(
Zi|Z1, . . . , Zi−1

)
−

n∑
i=1

h
(
Yi
)

(c)
≤

n∑
i=1

h
(
Zi)−

n∑
i=1

h(Yi)

(d)
=

n∑
i=1

I(Xi;Zi)

(e)
=

n∑
i=1

I(Xi/σZi
;Z ′i).

Step (a) holds, as h(Zi|Xi) = h(Yi), (b) holds from the chain rule of differential
entropy and the condition that the Yi’s are independent random variables, (c)
holds, as conditioning decreases entropy, (d) holds, as h

(
Zi)−h(Yi) = h(Zi)−

h(Zi|Xi) = I(Xi;Zi), and (e) holds from the fact that mutual information is
scaling invariant. As a consequence,

lim
σ2
Yi
→∞

n∑
i=1

I(Xi;Zi) = lim
σZi
→∞

n∑
i=1

I(Xi/σZi ;Z
′
i)

=

n∑
i=1

I(0;Z ′i) = 0,

thereby proving our claims.

10.2 Proof of Proposition 4

Proof. As X and Y are independent, we have σ2
Z = σ2

X + σ2
Y . For a Gaus-

sian random variable with variance σ2, the differential entropy is given by
1
2 log(2πeσ2), so that

δ = I(X;Z) = h(Z)− h(Z|X)

= h(Z)− h(Y )

(a)
≤ 1

2
log(2πeσ2

Z)− 1

2
log(2πeσ2

Y )

=
1

2
log(1 + σ2

X/σ
2
Y ), (E.37)
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where (a) holds, because the maximum entropy of a random variable with
fixed variance is achieved by a Gaussian distribution; and equality holds if X
is also Gaussian distributed.
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1. Introduction

Abstract

Privacy issues and communication cost are both major concerns in distributed op-
timization. There is often a trade-off between them because the encryption meth-
ods required in privacy-preservation often incur expensive communication band-
width. To address this issue, we, in this paper, propose a quantization-based ap-
proach to achieve both communication efficient and privacy-preserving solutions
in the context of distributed optimization. By deploying an adaptive quantization
scheme, we allow each node in the network to achieve its optimum solution with a
low communication cost while keeping its private data unrevealed. Additionally,
the proposed approach is general and can be applied in various distributed opti-
mization methods, such as the primal-dual method of multipliers (PDMM) and the
alternating direction method of multipliers (ADMM). Moveover, we consider two
widely used adversary models: honest-but-curious and eavesdropping. Finally, we
investigate the properties of the proposed approach using different applications
and demonstrate its superior performance in terms of several parameters includ-
ing accuracy, privacy, and communication cost.

1 Introduction

With the emergence of interconnected or networked systems, distributed opti-
mization is widely used to process its massive amount of data. As the primary
computation units in these distributed networks are often personal devices,
such as mobile phones and tablets [1, 2], the underlying networked data are
private in nature. Furthermore, the available computational resources are also
limited by the hardware and energy consumption. As a consequence, novel
distributed optimization tools are required that are able to address the privacy
concern in a way that is efficient in terms of communication and computational
resources.

Existing approaches mostly address the above challenges only partially.
To achieve computationally lightweight solutions, noise insertion approaches,
which add noise to obfuscate the private data, are widely used in the litera-
ture. These methods can be broadly classified into three classes. The first one
is the class of differentially private distributed optimization approaches [3–9].
A drawback of these algorithms is that they compromise the algorithm accu-
racy, as they have an inherent trade-off between privacy and accuracy. The sec-
ond class is that of secret-sharing based distributed optimization approaches
[10, 11] which deploy secret sharing to prevent privacy leakage, a technique
used in secure multiparty computation [12, 13]. This, however, comes with ad-
ditional communication costs as secret sharing requires extra communication
for transmitting the shares. The third class is the class of subspace perturba-
tion based distributed optimization approaches [14–16] which, by inserting
noise in a subspace determined by the graph topology, alleviates the privacy-
accuracy trade-off without severely increasing the communication costs. Note
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that when considering the communication cost, aside from the number of times
the communication channel is used, there is another critical parameter, namely
the communication bandwidth or the corresponding bit-rate. The communica-
tion bandwidth is often omitted in the privacy related approaches by assuming
infinite precision. However, there is often a fundamental trade-off between
privacy and communication bandwidth in noise insertion type methods. The
reason for this is that a higher privacy level usually requires a larger amount
of noise insertion, which, in turn, increases the noise entropy and thereby the
bit-rate.

In this paper we propose to exploit an adaptive quantization scheme to mit-
igate the aforementioned trade-off between privacy and communication band-
width. We show that the accuracy of the proposed approach is not compro-
mised by considering both privacy and quantization. To the best of our knowl-
edge, this is the first approach which provides information theoretical privacy
guarantee for distributed optimization with quantization.

We use the following notations throughout this paper. Lowercase letters x
denote scalars, lowercase boldface letters x denote vectors, uppercase boldface
letters X denote matrices. xi and Xij denote the i-th and (i, j)-th entry of the
vector x and the matrix X, respectively. Denote calligraphic letters X as sets
and uppercase letters X denote random variables having realizations x.

2 Fundamentals

2.1 Distributed optimization over networks

We model a distributed network as a graph G = (N , E) where N = {1, 2, ..., n}
is the set of nodes and E ⊆ N × N is the set of edges. Moreover, let
Ni = {j | (i, j) ∈ E} denote the set of neighboring nodes and di = |Ni| the
degree (number of neighboring nodes) of node i. A standard distributed con-
vex optimization problem with constraints over the network can be formulated
as

min
xi,∀i∈N

∑
i∈N

fi(xi)

s.t. ∀(i, j) ∈ E : Bi|jxi +Bj|ixj = bi,j

(F.1)

where xi ∈ Ru denotes the optimization variable of node i, fi : Ru 7→ R∪{∞}
denotes the local objective function which is assumed to be convex, Bi|j and
Bj|i are edge-related matrices (weights) and bi,j ∈ Ru denotes the constraint
imposed at edge (i, j) ∈ E . For simplicity, we assume u = 1 and bi,j = 0, but
the results can easily be generalized to arbitrary dimension and cases where
bi,j 6= 0. With this, Bi|j and Bj|i are related to entries of the incidence matrix
B ∈ Rm×n,m = |E|, of the graph: Bli = Bi|j = 1, Blj = Bj|i = −1 if and
only if el = (i, j) ∈ E and i < j,
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2.2 Distributed optimizers

To solve the problem in (F.1) in a decentralized manner, i.e., where each node
is only allowed to exchange information with its neighboring nodes, a number
of distributed, iterative optimizers have been proposed, including ADMM [17]
and PDMM [18–20]. It has been shown using monotone operator theory and
operator splitting techniques that ADMM and PDMM are closely related [20]
(see [21] for details on monotone operator theory). For both methods, the
update equations at iteration t = 0, 1, . . . are given by

x
(t+1)
i = arg min

xi

(
fi(xi) +

∑
j∈Ni

z
(t)
i|jBi|jxi +

cdi
2
x2
i

)
∀j ∈ Ni : z

(t+1)
j|i = θz

(t)
j|i + (1− θ)(z(t)

i|j + 2cBj|ix
(t+1)
i ),

where c is a constant for controlling the convergence rate. Each el = (i, j) ∈ E
is associated to two auxiliary variables zl = zi|j and zl+m = zj|i. Stacking
all auxiliary variables together we have z ∈ R2m. θ ∈ [0, 1) is a constant for
controlling the averaging weight of Peaceman-Rachford splitting. For example,
θ = 0 corresponds to PDMM and θ = 0.5 corresponds to ADMM. For simplicity,
in what follows we will use θ = 0, i.e., PDMM, as an example to explain the
main idea but the conclusions hold for all θ ∈ [0, 1).

3 Problem definition

3.1 Privacy concern and adversary models

In distributed optimization, sensitive personal information is often embedded
in each node’s local objective function fi(xi). Therefore, fi(xi) is considered
as private data to be protected from being revealed in the process of solving
the optimization problem. To analyze the privacy an ”adversary model” must
be specified. The purpose of such a model is to quantify the system robustness
in dealing with different security attacks. In addition to the well-known exter-
nal eavesdropping adversary that attacks the system by listening to the mes-
sages transmitted along the communication links, there is another commonly
considered adversary model in distributed networks, namely the passive (also
called honest-but-curious) adversary. It controls a number of so-called cor-
rupted nodes who are assumed to follow the algorithm instructions but can
collect information together. The passive adversary will then use the collected
information to infer the private data of the non-corrupted nodes, which we will
refer to as honest nodes.

3.2 Main requirements and related metrics

Putting things together, we now state the main requirements that communi-
cation efficient privacy-preserving distributed optimization should satisfy and
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introduce the related metrics.

1. Output correctness: each node i should obtain the optimal solution
to (F.1), denoted by x∗i , at the end of the algorithm. The overall
mean square error (MSE) is used to quantify the output correctness, i.e.,∥∥x(t) − x∗

∥∥2
.

2. Individual privacy: each node’s private information, embedded in
fi(xi), should be protected under both eavesdropping and passive adver-
saries throughout the algorithm. In this paper mutual information [22] is
adopted to quantify the individual privacy as it has been widely accepted
in the literature and is closely related to other metrics like differential
privacy [23–26].

3. Communication cost: the algorithm should have low communication
cost. This cost can be quantified using the total number of bits required
for transmitting all messages incurred in the algorithm.

4 Proposed approach

As previously mentioned, noise insertion approaches achieve privacy by insert-
ing noise to obfuscate the private data first and then share the obfuscated data.
We will elaborate on this with the following result.

Proposition 5. (Privacy guarantee using noise insertion) Let R and S be contin-
uous random variables with variance σ2

R, σ
2
S < ∞, denoting inserted noise and

private data, respectively, and assume that R and S are statistically independent.
Given an arbitrarily small δ > 0, there exists β > 0 such that for σ2

R ≥ β

I(S;S +R) ≤ δ. (F.2)

In the case that the noise R is Gaussian distributed, we have

β =
σ2
S

22δ − 1
. (F.3)

Proof. See [24, Proof of Proposition 1].

Hence, the more noise is inserted, the higher privacy level can be obtained.
However, more noise will inevitably increase the noise entropy and thus re-
quires a higher communication bandwidth (i.e., bit-rate). In this paper, we
propose to use the adaptive quantization scheme of [27, 28] to circumvent
this.

For fixed point iterations, the difference of every two successive iterations
will converge to zero (i.e, it is a Cauchy sequence), which implies that the
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entropy of the difference of successive iterations will decrease to zero as the
number of iteration increases. Motivated by this, the idea behind the adaptive
quantization scheme of [27, 28] is to quantize the difference of two successive
iterations with an adaptive cell-width decreasing with increasing iterations. By
doing so, low data rate transmission between nodes can be achieved without
compromising the accuracy of the algorithm.

We now proceed to describe the details of the adaptive quantization
scheme. Let ẑ denote the quantized version of z. At iteration t ∈ T =

{0, 1, . . . , T}, each node i first updates the local variables x(t+1)
i and z(t+1)

j|i

using the quantized ẑ(t)
i|j from the previous iteration, i.e.,

x
(t+1)
i = arg min

xi

(
fi(xi) +

∑
j∈Ni

ẑ
(t)
i|jBi|jxi +

cdi
2
x2
i

)
(F.4)

∀j ∈ Ni : z
(t+1)
j|i = ẑ

(t)
i|j + 2cBj|ix

(t+1)
i (F.5)

After that, instead of sending out the unquantized z(t+1)
j|i to node j directly,

node i shares the quantized ẑ(t+1)
j|i . In order to do so, we first define the differ-

ence variable v as

v(t+1) , z(t+1) − ẑ(t). (F.6)

Let Q(·) denote the quantization operation, we have

v̂(t+1) = Q(z(t+1) − ẑ(t)) = z(t+1) − ẑ(t) + nq,v(t+1) , (F.7)

where nq,v(t+1) denotes the noise introduced by quantizing v(t+1). The adopted
quantizer has a geometrically decreasing cell-width ∆(t) = γt∆(0) with initial
cell-width ∆(0) and rate of growth γ ∈ (0, 1). After computing v̂(t+1), the
quantized value, ẑ(t+1), is obtained by

ẑ(t+1) = z(t+1) + nq,v(t+1) (F.8)

= ẑ(t) + v̂(t+1) (F.9)

= z(0) +

t+1∑
τ=1

v̂(τ). (F.10)

Note that we assume that the initialized z(0) is not quantized, i.e., z(0) is
assumed to be transmitted with very high precision (see the following privacy
analysis for details).

4.1 Privacy analysis

By inspection of (F.4), the updated x(t+1)
i satisfies

∂fi(x
(t+1)
i ) +

∑
j∈Ni

Bi|j ẑ
(t)
i|j + cdix

(t+1)
i = 0, (F.11)
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Algorithm 7 Proposed appproach
[1]
For each node i ∈ N , initialize {z(0)

j|i }j∈Ni
based on the desired privacy level

(where x(0)
i can be initialized arbitrarily)

Input : x(0)
i , {z(0)

j|i }j∈Ni

Output: x∗i
if ‖x(t)

i − x∗i ‖2 < threshold then
Receive {v̂(t)

i|j }j∈Ni
from all neighbors through non-secure channels (if t =

0, receive z(0)
i|j through secure channels), update {ẑ(t)

i|j }j∈Ni
using (F.9).

x
(t+1)
i ← (F.4), {z(t+1)

j|i }j∈Ni
← (F.5), {v(t+1)

j|i }j∈Ni
← (F.6). Quantize

{v(t+1)
j|i }j∈Ni

→ {v̂(t+1)
j|i }j∈Ni

.

Send v̂(t+1)
j|i to each neighbour j ∈ Ni.

end

which shows that the private data is only contained in the subgradient
∂fi(x

(t+1)
i ). As a consequence, the goal of the privacy analysis is to see what

information regarding ∂fi(x
(t+1)
i ) is revealed during the iterations.

For simplicity, assume Bi|j = 1 for all j ∈ Ni, and thus Bj|i = −1. Denote
by Ni,c = Ni ∩ Nc and Ni,h = Ni ∩ Nh the set of the corrupted and honest
neighbors of node i, respectively, and assume that Ni,c 6= ∅. For node k ∈ Ni,c,
using (F.5) and (F.8), we can express the left-hand side of (F.11) as

∂fi(x
(t+1)
i )+

∑
j∈Ni

ẑ
(t)
i|j −

di(ẑ
(t+1)
k|i − n

q,v
(t+1)

k|i
− ẑ(t)

i|k

2
). (F.12)

To quantify the amount of information about the private data ∂fi(x
(t+1)
i )

learned by the adversaries, we must first inspect what information is avail-
able to them. We first consider the passive adversary. As it can collect all the
information available to the corrupted nodes, it has the following knowledge:

{x(t)
i }i∈Nc,t∈T ∪ {z(0)

i|j , v̂
(t+1)
i|j }(i,j)∈Ec,t∈T ,

where Ec = {(i, j) ∈ E , (i, j) /∈ Nh × Nh} denotes the set of corrupted edges.
With the above knowledge, the passive adversary is able to compute both∑
j∈Ni,c

ẑ
(t)
i|j using (F.10) and 1

2di(ẑ
(t+1)
k|i − ẑ(t)

i|k) in (F.12). After computing
these known terms, the unknown terms in (F.12) are given by

{∂fi(x(t+1)
i ) +

∑
j∈Ni,h

ẑ
(t)
i|j +

di
2
n
q,v

(t+1)

k|i
}k∈Ni,c

. (F.13)
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(a) Output correctness (b) Individual Privacy (c) Communication cost

Fig. F.1: (a) Output correctness (MSE) in terms of iteration numbers using the proposed privacy-
preserving quantized PDMM and ADMM algorithm (QPDMM and QADMM, respectively) for the
distributed average consensus (top) and distributed least-squares problem (bottom), (b) individual
privacy (normalized mutual information (NMI)) of QPDMM in terms of iteration numbers for
three different noise levels σ2

z(0) of the auxiliary variables, and (c) the communication cost (bits)
comparison of the proposed QPDMM algorithm and the existing subspace perturbation approach
[16] under the same noise level σ2

z(0) = 104. Fig. (b) and (c) only show results for the distributed
average consensus problem.

Next, we consider the eavesdropping adversary. In the literature eavesdropping
is usually tackled by assuming that the communication channels are securely
encrypted [29] such that no eavesdropping can be conducted. This assumption
is particularly expensive to realize in distributed optimization, as a large num-
ber of iterations is often required. To address this problem, we propose that no
channel encryption is used, except for transmitting z(0) during the initializa-
tion. As a consequence, the eavesdropping adversary can listen to all transmit-
ted messages after initialization, i.e., {v̂(t+1)

i|j }(i,j)∈E,t∈T but it does not have

knowledge about z(0)
i|j . Based on (F.10), we can, therefore, deduce

∑t
τ=1 v̂

(τ)
i|j

from ẑ
(t)
i|j in (F.13) as it is known to the eavesdropping adversary. Consequently,

we conclude that all what the passive and eavesdropping adversaries observe
about the honest node i is given by

{∂fi(x(t+1)
i ) +

∑
j∈Ni,h

z
(0)
i|j −

di
2
n
q,v

(t+1)

k|i
}k∈Ni,c

(F.14)

where the last term {n
q,v

(t+1)

k|i
}j∈Ni,c will converge to the all-zero vector as the

iterations proceed. By applying Proposition 5 to (F.14), the term
∑
j∈Ni,h

z
(0)
i|j

can be seen as noise, which can be made arbitrarily large at the initialization
step to protect the private data ∂fi(x

(t+1)
i ) from being revealed. Therefore,

arbitrarily small information leakage regarding ∂fi(x
(t+1)
i ) can be achieved at

every iteration.

4.2 Individual privacy guarantee

We conclude that the conditions to guarantee the privacy of the data of honest
node i ∈ Nh for both eavesdropping and passive adversaries are given by:
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• There is at least one honest neighbor. That is, Ni,h 6= ∅.

• The communication channels are encrypted in the initialization phase
when transmitting z(0) .

4.3 Output correctness and communication cost

In [28] it has been shown that if the sequence {nq,v(t)}t∈T is finitely summable,
then Douglas-Rachford splitting will convergence to a fixed point x∗ which is
the solution to (F.1). However, due to the quantization, the communication
cost of the proposed approach is substantially reduced. The details of the pro-
posed algorithm are summarized in Algorithm 7.

5 Numerical results

To demonstrate the desirable properties of the proposed approach, we sim-
ulated a geometric network with n = 30 nodes where every two nodes are

allowed to transmit messages if their distance is within a radius of
√

log(n)
n ,

as this condition ensures that the corresponding graph is connected with high
probability [30]. For the proposed quantized approach, a one-bit (mid-rise)
quantizer is used with step-size ∆(t), which means that we only transmit the
signs of the zi|js which will be reconstructed at the receiver by ±∆(t)/2. In
all experiments, we randomly draw the private data from a zero-mean Gaus-
sian distribution with unit variance. In addition, we set c = γ = 0.9 and the
auxiliary variable z(0) is initialized with zero-mean Gaussian distributed noise
having a variance σ2

z(0) = ∆(0)2
, where ∆(0) is the initial quantization step-size.

We demonstrate the performance in terms of the three requirements men-
tioned in Section 3.2:

(1) Output correctness: Fig.F.1 (a) shows simulation results for both
ADMM and PDMM for two applications, distributed average consensus (top
plot) and distributed least squares (bottom plot). We see that both PDMM and
ADMM x(t) converge to the optimum x∗. Hence, the proposed approaches sat-
isfy the output correctness requirement, i.e., accuracy is not compromised by
considering both quantization and privacy.

(2) Individual privacy: Fig.F.1 (b) shows the individual privacy over it-
erations, i.e., the information loss in (F.10), of the proposed approach when
applied to the distributed average consensus problem. We can see that the
larger σ2

z(0) , the less individual privacy is revealed. Hence, the desired individ-
ual privacy can be guaranteed by the proposed approach.

(3) Communication cost: Fig. F.1 (c) demonstrates that the proposed
approach circumvents the trade-off between privacy and communication cost
incurred in privacy-preserving distributed optimization, e.g., the subspace per-
turbation approach [16], in which we compare their communication costs for
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distributed average consensus under the same noise level, thus also the pri-
vacy level. The communication cost of the latter algorithm is given by T (2m)b,
where T is the total number of iterations, 2m is the total amount of messages
transmitted at each iteration (di per node) and b = 64 the number of bits
needed to represent each message (MATLAB double precision floating-point
format). Note that b = 1 for the proposed algorithm. As expected, the proposed
approach significantly reduces the communication costs without compromising
both accuracy and privacy.

One remark is placed here. Other than the subspace perturbation approach,
there are also other noise insertion approaches like secret sharing [10, 11,
31–33] and differential privacy algorithms [3–9]. In future work it would be
interesting to investigate how quantization affects their performances in terms
of privacy and accuracy.

6 Conclusion

In this paper, we proposed a novel yet general communication efficient privacy-
preserving distributed optimization approach using adaptive quantization. By
adopting an adaptive quantizer that dynamically decreases its cell-width for
each iteration, we are able to alleviate the trade-off between privacy and com-
munication cost without compromising the algorithm accuracy. The algorithm
is able to protect privacy of any honest node against the passive adversary re-
quiring only one honest neighboring node. Moreover, the proposed method is
computationally very lightweight in its way of dealing with an eavesdropping
adversary as no secure encryption is needed, except for in the initialization
step. Numerical results were conducted, which confirm the desirable proper-
ties of the proposed approach in terms of accuracy, privacy and communication
cost.
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1. Introduction

Abstract

With an increasingly interconnected and digitized world, distributed signal pro-
cessing and graph signal processing have been proposed to process its big amount
of data. However, privacy has become one of the biggest challenges holding back
the widespread adoption of these tools for processing sensitive data. As a step to-
wards a solution, we demonstrate the privacy-preserving capabilities of variants
of the so-called distributed graph filters. Such implementations allow each node
to compute a desired linear transformation of the networked data while protect-
ing its own private data. In particular, the proposed approach eliminates the risk
of possible privacy abuse by ensuring that the private data is only available to
its owner. Moreover, it preserves the distributed implementation and keeps the
same communication and computational cost as its non-secure counterparts. Fur-
thermore, we show that this computational model is secure under both passive
and eavesdropping adversary models. Finally, its performance is demonstrated by
numerical tests and it is shown to be a valid and competitive privacy-preserving
alternative to traditional distributed optimization techniques.

1 Introduction

Modern systems routinely gather large-scale data from different individuals
and then draw inferences from these data. To this end, graph signal processing
(GSP) has been put forth and proven effective for processing large amounts of
networked data by exploiting their inherent structural information [1]. How-
ever, to process these networked data in a distributed manner, data exchange
among different nodes is required. As the underlying data usually contains sen-
sitive information about each individual node/agent in the network, the data
exchanges may raise privacy concerns for example: 1) insecure communica-
tion channels which expose the data to eavesdroppers; 2) the trust issues that
appear when individuals agree to participate in a distributed computation but
are reluctant to reveal their own data to others. In fact, as shown in [2], the
identities of individuals and their data are inseparable. For example, with only
an anonymous 10-ride bus ticket, the identity of a specific bus passenger can
be revealed [3]. Therefore, developing efficient techniques for processing large
volumes of data in a privacy-friendly manner is nowadays required, posing new
challenges that need to be overcome.

The insecure communication channel concern is usually resolved by assum-
ing securely encrypted channels [4]. The trust issue, on the other hand, is par-
ticularly challenging as inferences on the exchanged data are required and clas-
sical channel encryption is insufficient. Existing privacy-preserving algorithms
for solving such trust issues can be broadly classified into two classes based on
established security models: computational and information-theoretical. The
first type comprises computationally secure algorithms which ensure privacy
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through the assumption of computational hardness; that is, the malicious ad-
versary is assumed to be computationally limited thus the secrets cannot be
reconstructed efficiently. These algorithms usually adopt popular techniques
like homomorphic encryption (HE) [5] and garbled circuit (GC) [6] from se-
cure multiparty computation (SMPC) [7] to achieve privacy-preserving data
aggregation [8, 9]. The privacy of the nodes/agents is protected as all the data
are first encrypted and then the computations are conducted in the encrypted
domain. However, these techniques are usually computationally demanding,
and are thus hard to apply in practice.

On the other hand, the information-theoretical security model addresses
the privacy issues through an information theory point of view. Distinctly from
the computational hardness assumption, it assumes a computationally unlim-
ited adversary and that privacy is achieved only if the information obtained by
the adversary just leads to a slightly better (or the same) posterior guess of the
private data compared to the prior. Information-theoretical security is usually
achieved by obfuscating the private data through noise insertion, it is thus com-
putationally lightweight and has been used in various fields through different
noise insertion methods, e.g., zero-sum noise insertion for distributed average
consensus [10–12]; differentially private Kalman filtering [13]; secret sharing
based recursive least squares [14]; subspace noise insertion using distributed
optimization [15, 16]. However, these algorithms suffer from a heavy commu-
nication overhead as a large number of iterations is required for convergence.

As a first step towards providing both computational and communication
efficient privacy-preserving networked data processing, in this paper, we focus
on addressing the privacy issues in the context of distributed graph filtering,
the building block of GSP. As the conventional distributed graph filtering con-
tains mainly two parts: offline learning conducted by a trusted third party
(TTP) and online distributed computation by network nodes, we, therefore,
propose a complete framework to avoid possible privacy abuse in both the
offline and online steps. In the offline step, the TTP receives only the encryp-
tion seeds from the nodes and not their private data; while in the online step,
an information-theoretical security model is achieved through noise insertion,
which protects the private data of each node from being revealed to others in
the network.

2 Distributed Processing Over Networks

Consider an N -dimensional signal x residing on a graph G = {V, E}, where
N = {1, . . . , N} denotes the set of N nodes and E ⊆ N × N denotes the set
of M edges. Further, let Ni = {j|(i, j) ∈ E} denote the neighbourhood of the
i-th node. The goal of distributed processing over networks is to compute a
transformation, H, of the networked data, x, i.e.,

y = H(x), (G.1)
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in a distributed manner; that is, only employing local data exchanges, i.e., data
exchanges among neighboring nodes.

Although H can take many forms, e.g., optimization problems [17], lin-
ear or non-linear transforms [18], here, we focus on transformations that are
linear, or that can be properly approximated by a linear transformation, i.e.,

y = Hx (G.2)

such as the consensus operation, i.e., H = 11> , which are pervasive in typical
network processing tasks, e.g., denoising [19], interpolation [20]. A popular
way to implement (or approximate) H is to express it as a K-th order polyno-
mial of a matrix representation of G, i.e.,

Hc ,
K∑
k=0

φkS
k, (G.3)

where {φk ∈ R}Kk=0 are the filter coefficients; and S is the so-called graph shift
operator in GSP [1]. Common choices of S are the weighted graph adjacency
matrix W and the graph Laplacian matrix L. By construction, S is an N ×N -
symmetric matrix for undirected graphs and carries the notion of frequency in
the graph setting through its eigen decomposition [1, 21]. The matrix polyno-
mial in (G.3) is typically referred to as a classical (node-invariant) FIR graph
filters. Note that by making use of the local structure of S, the computation
of (G.3) can be implemented in a distributed way [22, 23], where each node
can locally compute the k-th shift of x by exchanging its previous shifted ver-
sions within its neighbourhood, i.e., Skx = S(Sk−1x). This distributed imple-
mentation is particularly beneficial in saving the communication overhead and
computational complexity because a FIR graph filter of order K incurs in a cost
of O(MK).

Though the computational and communication cost scales linearly with K,
a large K is usually required to obtain a high approximation accuracy. To
alleviate this issue, the constrained edge-variant (CEV) FIR graph filters [24]
were proposed to approximate the desired graph filter with a lower order K by
endowing it with more degrees of freedom, i.e.,

Hcev ,
K∑
k=0

ΦkS
k, (G.4)

where the coefficient matrices {Φk ∈ RN×N}Kk=0 denote the weights that each
node assigns to its edges at shift k, and they share the support with S + IN ,
where IN is the N × N -identity matrix. It is easy to see that (G.4) reduces
to the classical FIR graph filter if Φk = φkIN . And it also reduces to the
node-variant FIR graph filter [23] if {Φk}Kk=0 are diagonal matrices. Note that
while the CEV FIR filters (G.4) still enjoy a distributed implementation and
the communication and computational cost remains O(MK), they allow for
a richer family of linear operators that can be approximated as they are not
restricted to linear operators that commute with the graph shift operator.
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3 Privacy-Preserving Processing

In this section, we first highlight the privacy concerns of distributed data pro-
cessing using current FIR graph filters and introduce the adversary models. The
latter is an important issue when designing privacy-preserving protocols. We
then formally state the problem addressed in this work.

3.1 Privacy concern

Generally, privacy is associated with individuals and their personal data. Thus,
we identify the privacy concern in graph filtering is to protect the input graph
signal xi of each node from being revealed. This is motivated by the fact
that this data usually contains sensitive information about the individual like
health condition or political views. Unfortunately, this privacy concern is not
addressed in current distributed FIR graph filters, since the private data xi is
propagated through the network and exposed to neighbors and eavesdroppers.

3.2 Adversary model

To evaluate the robustness of a system under different security attacks, we con-
sider the so-call adversary model. An adversary can be both external or internal
to the network, and aims to conduct certain malicious activities such as infer-
ring the private data by controlling a number of nodes. These controlled nodes
are referred to as corrupted nodes and the others are called non-corrupted or
honest nodes. In this paper we will address two widely-used adversary models:
eavesdropping and passive. The eavesdropping adversary attempts to infer the
private data by eavesdropping the communication channels in the network.
The passive adversary, on the other hand, assumes that all the nodes follow the
protocol instructions and aims also to infer the private data of honest nodes
through the information collected by all the corrupted nodes.

3.3 Problem formulation

Putting things together, we conclude that a privacy-preserving distributed
graph filter should be able to protect private data while computing the filter
output. To this end, we formulate the problem as follows; given a linear trans-
formH, design an encryption function E(x) and related operatorHe that satisfy
the following two requirements simultaneously:

• Output correctness: all nodes should be able to achieve the correct filter-
ing output, i.e.,

y = Hx = Hexe, (G.5)

where xe = E(x) denotes the encrypted input data.
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• Individual privacy: after encryption, each node uses the encrypted data
xei as its input. In addition, the information theoretic security criterion

I(Xi;X
e
i ) < εi,∀i ∈ N , (G.6)

must be met. Here, I(·) denotes mutual information [25]; xei and xi are
assumed to be a realization of random variables Xe

i and Xi, respectively,
and εi is the desired privacy level of node i. Hence, (G.6) guarantees that
the encrypted xei reveals asymptotically no information about the private
data xi,

4 Proposed approach

Before moving to our proposed method, let us first consider the following
straightforward design for both E(x) and He. The privacy of each node can
be preserved by considering the following rendition of the edge-variant graph
filter [c.f. (G.4)], i.e.,

Hrev =

K∑
k=0

SkΦk. (G.7)

Here, each node exploits the graph filter coefficients as encryption seeds to
mask its private data and sends the masked data to its neighbours. Note
that (G.4) and (G.7) are equivalent when ΦkS = SΦk ∀k and that the graph
filter (G.7) can also be implemented distributively. However, there is a price to
pay: instead of having a communication costO(KM), the implementation now
has an overall communication cost of O(K2M). Unfortunately, for this case,
although the above-mentioned requirements can be achieved, there seems to
be no free lunch and communication complexity has to be sacrificed.

To alleviate the communication overhead, we now proceed to introduce
another choice for both E(x) and He meeting the above-mentioned require-
ments. We further analyze their performance in two widely-used adversary
models.

4.1 Encryption function design

One typical way to maintain privacy is to obfuscate the private data by inserting
noise since it is computationally lightweight. We, therefore, propose to design
the encryption function using multiplicative noises as

E(x) = diag(e)x, (G.8)

where e = [e1, . . . , eN ]
T ∈ RN is the encryption vector. Thus the encrypted

data of node i is given by xei = eixi. Let ei denote a realization of random vari-
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able Ei having differential entropy h(Ei), assuming it exists1. The concerned
individual privacy for node i is thus I(Xi;XiEi) = h(Xi) − h(Xi|XiEi). To
guarantee privacy, we need the following result.

Proposition 6. Consider X and Y as independent continuous random variables
with mean µ(X), µ(Y ) < ∞ and variance 0 < var(X) < var(Y ) < ∞, and let
Z = XY . Then

lim
var(Y)→∞

I(X;Z) = 0,

assuming I(X;Z) exists.

Proof. As X is independent with Y , we have var(Z) = var(X)var(Y ) +

var(X)µ2(Y )+var(Y )µ2(X). Let γ = 1/(var(Z))
1
2 and define Z ′ = γZ. Hence,

Z ′ has unit variance. We have I(X;Z) = I(γX;Z ′) as mutual information is
scale-invariant. Thus,

lim
var(Y)→∞

I(X;Z) = lim
γ→0

I(γX;Z ′) = I(0;Z ′) = 0.

So, applying Proposition 6 to the problem at hand, we have

lim
var(Ei)→∞

I(Xi;XiEi) = 0. (G.9)

We conclude that each node is able to achieve arbitrary small information loss
by increasing the variance of its encryption seed. Hence, the privacy require-
ment in (G.6) is satisfied.

4.2 Encrypted operator design

To fullfil the output correctness requirement, we should design the encrypted
operator He satisfying He = H diag(e)−1. To this end, we then further ap-
proximate the desired encrypted operatorHe using standard distributed graph
filters. Here, we use the constrained edge-variant graph filter as an example,
which in turn leads to the following convex optimization problem

min
{Φk}

∥∥∥∥∥He −
(

K∑
k=0

ΦkS
k

)∥∥∥∥∥
2

F

s.t. supp {Φk} = supp{S + IN} ∀k ∈ [K], (G.10)

where ‖·‖F is Frobenius norm and supp{·} denotes the support of its argument.
To solve the above-mentioned problem, we assume a TTP (cloud/server) to
learn the filter coefficients offline. In order to avoid possible data abuse, we
have the following assumptions which minimize the amount of information
available to each node while still guaranteeing the distributed implementation,
i.e.,

1If Ei is a discrete random variable, the conditions are given in terms of the Shannon entropy
H(Ei).
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Algorithm 8 Privacy-preserving distributed FIR graph filters

1: Offine learning (secure channels)
2: Each node i ∈ N chooses its encryption seed ei based on its desired privacy

level εi, and sends it to the TTP.
3: The TTP first computes He = H diag(e)−1 and solves the

problem (G.10), and then sends the corresponding information
[S]i,j∈Ni∪{i}, {[Φk]i,j∈Ni∪{i}}Kk=0 to node i.

4: Online distributed computation (non-secure channels)
5: Each node i initializes x(0)

i = xei .
6: while k = 0, . . . ,K do
7: Collect x(k)

j from all neighbours j ∈ Ni
8: Store locally z(k)

i =
∑
j∈Ni∪{i}[Φk]ijx

(k)
j

9: Compute x(k+1)
i =

∑
j∈Ni∪{i}[S]ijx

(k)
j

10: Send x(k+1)
i to all neighbours j ∈ Ni

11: end while
12: Set yi =

∑K
k=0 z

(k)
i

Assumption 2. (Knowledge of the TTP) The TTP has the knowledge of the desired
data transformation H, the encryption seeds e, the graph shift operator S and
the filter coefficients {Φk}Kk=0.

Assumption 3. (Knowledge of the nodes) Each node i only has knowledge of its
private data xi, and its corresponding entries of both S and filter coefficients, i.e.,
[S]i,j∈Ni∪{i}, {[Φk]i,j∈Ni∪{i}}Kk=0.

Note that Assumptions 3 is motivated similarly as the distributed signal pro-
cessing [17, 26] that each node only has local knowledge of its neighbourhood.
That is, each node does not have the knowledge of the desired data transfor-
mationH. For example, for the distributed average consensus application, i.e.,
H = 1

N 11T , all the nodes would like to reach an agreement over the network
but they do not know the size of the network, i.e., N . In the distributed recur-
sive least squares application [14], each node only has its local observations
but not the full knowledge of the whole system. After the offline learning, the
filter output can be computed distributedly. It is worth to note that the com-
munication and computational cost remains O(KM). The proposed approach
is summarized in Algorithm 0.

4.3 Privacy analysis under adversary models

We now analyze the individual privacy concern under both an eavesdropping
and a passive adversary. For an eavesdropping adversary, we assume that the
communication required in offline learning is conducted through secure chan-
nels. That is, the channels should be securely encrypted [4] when transmitting
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the encryption seeds to the TTP and receiving the associated filter coefficients
and graph shift operator. As a consequence, the secure channel encryption cost
is 2N . The online distributed computation step, as it is an iterative process,
we remark that ∀k > 0 : Xi → X(0) → X(k) forms a Markov chain where
vector X(k) = [X

(k)
1 , . . . , X

(k)
N ]> denotes all random variables over the network

at iteration k. By the data processing inequality [25] we have

I(Xi;X
(0)) ≥ I(Xi;X

(k)), ∀k > 0, (G.11)

which implies that all the information transmitted in the online step will not re-
veal additional information. As a consequence, the online step is secure against
eavesdropping adversaries without requiring secure channel encryption at all.
For the case of a passive adversary, recall Assumptions 2-3, we can see that
the corrupted nodes cannot reconstruct the encryption seeds e as H is only
known to the TTP. We then conclude that the private data of an honest node
is guaranteed even if all other nodes are corrupted (assuming the TTP is not
corrupted).

5 Numerical results

We now proceed to present the performance of the proposed approach for ap-
proximating user-provided frequency responses and compare it with the dis-
tributed optimization technique. We randomly generate a community graph
using the GSP toolbox [27] with N = 40 nodes and choose the normalized
Laplacian as the graph shift operator S. Here, we consider as maximum filter
order K = 15. To show the performance of approximating different frequency
responses, we consider two cases commonly used in the GSP community:

1. the exponential kernel
h(λ) := e−γ(λ−µ)2

,

where γ denotes the spectrum decaying factor and µ is the central pa-
rameter;

2. the ideal low pass filter

h(λ) =

{
1 0 ≤ λ ≤ λc

0 otherwise ,

where λc denotes the cutoff frequency.

In Fig. G.1, we demonstrate the normalized approximation error in terms
of Frobenius norm between the desired, H, and the fitted, Hfit , frequency
response, i.e., ‖H−Hfit‖2F /‖H‖2F , of the proposed privacy-preserving CEV (p-
CEV) filter with the non-private CEV (n-CEV) filter for both scenarios. As we
can see, both filters saturate at an order of K = 7 but the proposed p-CEV has

146



5. Numerical results

Fig. G.1: Approximation error comparison between the p-CEV and the n-CEV graph filter for
different orders. (Top) Results for the exponential kernel. (Bottom) Results for an ideal low-pass
filter

a higher error floor for the case of the exponential kernel. And the proposed p-
CEV requires a few orders more to achieve the same error floor as the n-CEV for
approximating the ideal low pass filter. Overall, we conclude that the proposed
approach is able to approximate the desired frequency responses and keeps its
private data protected.

In Fig. G.2, we compare the normalized error as a function of iteration
number between desired filter output y = Hx and the approximated one
yfit = Hfitx of the proposed p-CEV graph filter and the privacy-preserving
alternative using distributed optimization in the average consensus applica-
tion. In particular, we choose to compare with the privacy-preserving primal-
dual method of multipliers (p-PDMM) proposed in [15] as it also achieves
information-theoretical security by noise insertion. In both algorithms, we set
the noise variance as 100 times the variance of the associated private data,
thereby guaranteeing a similar amount of noise perturbation. As we can see,
the noise insertion will lead to a high initial error for p-PDMM therefore re-
quiring more iterations to converge. To provide insights into the question on
what is the difference between GSP and distributed optimization from the privacy-
preserving perspective, we compare these two approaches in terms of several
important parameters in Table G.1:

1. Both approaches obtain the information-theoretical security model and
consider the same adversary models: passive and eavesdropping.

2. Perfect approximation is not possible and thus the proposed approach is
not as accurate as the p-PDMM, while the price to pay for the accuracy
is the communication cost. The iteration number T of the p-PDMM is
usually far larger than the filter order K of the proposed approach, i.e.,
T � K.
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Fig. G.2: Normalized output error versus the number of iterations of the proposed p-CEV filter and
the p-PDMM for the average consensus problem

3. Both approaches require secure channels in the initialization step to guar-
antee the inserted noise cannot be eavesdropped, but the complexity of
the proposed approach is usually lower, i.e., M > N .

4. The proposed approach assumes that the trusted third party is not cor-
rupted to guarantee the privacy of each node while the p-PDMM requires
each honest node has one honest neighbour.

We conclude that the proposed approach is beneficial in solving distributed sig-
nal processing tasks in terms of both communication and computational cost.
More specifically, the proposed approach is preferred if the required accuracy
is not very strict, while the p-PDMM is more attractive if the system requires
strictly accurate solution, but with a price of a higher communication cost.

Table G.1: Comparison with distributed optimization

Proposed p-PDMM
Security model Information-theoretic Information-theoretic

Adversary model Passive/Eavesdropping Passive/Eavesdropping
Accuracy Approximate Accurate

Communication complexity O(MK) O(MT )
Secure channels O(N) O(M)

Honest neighbour No Yes
Trusted Third Party Yes No

6 Conclusions

In this paper, we proposed a communication and computationally efficient so-
lution to achieve privacy-preserving distributed graph filters which allow each
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node to compute its desired output and protect its own private data simultane-
ously. To protect the privacy, each node first inserts noise to obfuscate its pri-
vate data and sends the obfuscated data to its neighborhood. Numerical tests
demonstrated that the proposed approach is able to approximate some desired
graph frequency responses with a small filter order and that it is a compet-
itive alternative compared to the privacy-preserving distributed optimization
approach in the distributed average consensus problem.
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1. Introduction

Abstract

Privacy-preserving distributed processing has recently attracted considerable at-
tention. It aims to design solutions for conducting signal processing tasks over
networks in a decentralized fashion without violating privacy. Many existing al-
gorithms can be adopted to solve this problem such as differential privacy, secure
multiparty computation, and the recently proposed distributed optimization based
subspace perturbation algorithms. However, since each of them is derived from a
different context and has different metrics and assumptions, it is hard to choose
or design an appropriate algorithm in the context of distributed processing. In
order to address this problem, we first propose general mutual information based
information-theoretical metrics that are able to compare and relate these existing
algorithms in terms of two key aspects: output utility and individual privacy. We
consider two widely-used adversary models, the passive and eavesdropping adver-
sary. Moreover, we derive a lower bound on individual privacy which helps to
understand the nature of the problem and provides insights on which algorithm is
preferred given different conditions. To validate the above claims, we investigate a
concrete example and compare a number of state-of-the-art approaches in terms
of the concerned aspects using not only theoretical analysis but also numerical
validation. Finally, we discuss and provide principles for designing appropriate
algorithms for different applications.

1 Introduction

Big data is accompanied by big challenges. Currently, data are collected and
simultaneously stored on various local devices, such as phones, tablets and
wearable devices [1, 2]. In these cases, three critical challenges exist in pro-
cessing such large amounts of data: (1) the emerging demand for distributed
signal processing tools, as these devices are distributed in nature and often
rely on wireless communication to form a network that allows devices to coop-
erate for solving a problem; (2) the requirement for both computational and
communication efficient solutions, due to the fact that these devices are usu-
ally resource-constrained, for example in wireless sensor networks; and (3)
privacy concerns, as sensors from these devices, such as GPS and cameras,
usually contain sensitive personal information. Consequently, having efficient
privacy-preserving distributed processing solutions, which are able to address
the privacy concerns, is highly important and usually requires interdisciplinary
research across fields such as distributed signal processing, information theory
and cryptography.

There are two primary types of security models: (1) computational secu-
rity, in which the adversary is assumed to be computationally bounded such
that it cannot decrypt a secret efficiently (i.e., in polynomial time) and (2)
information-theoretic security, in which the adversary is assumed to be compu-
tationally unbounded but does not have sufficient information for inferring the
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secret. In this paper we focus on information-theoretic security since it assumes
a stronger adversary and is more efficient in terms of both communication and
computational demands [3].

1.1 Related works

Many information-theoretic approaches have been proposed for addressing pri-
vacy issues in various distributed processing problems like distributed average
consensus [4–16], distributed least squares [17, 18], distributed optimization
[19–27] and distributed graph filtering [28]. These approaches can be broadly
classified into three classes. The first two classes combine distributed signal
processing with commonly used cryptographic tools, such as secure multiparty
computation (SMPC) [29, 30], and privacy primitives, such as differential pri-
vacy (DP) [31, 32], respectively. The third class directly explores the potential
of existing distributed signal processing tools for privacy preservation, such
as distributed optimization based subspace perturbation (DOSP) [7, 18, 27].
Among these approaches, SMPC aims to securely compute a function over a
number of parties’ private data without revealing it. DP, on the other hand,
is defined to add noise to ensure that the posterior guess relating to the pri-
vate data is only slightly better (quantified by the parameter ε) than the prior
guess. DOSP protects the private data by inserting noise in a specific subspace
depending on the graph topology.

Even though all the above mentioned algorithms can in principle be applied
in distributed processing, it is still very challenging to design an appropriate al-
gorithm given a specific application at hand. For example, whether choosing
one single algorithm is good enough or if we should combine them to have a
hybrid approach. The main difficulty comes from the fact that the metrics of
these approaches are different and are defined based on different motivations
and contexts. There are cases where these approaches are mutually exclusive.
For example, it has been shown that, in distributed average consensus appli-
cations, the exact average result and differential privacy cannot be achieved
simultaneously [10]. This implies that a DOSP or a perfect SMPC protocol,
which guarantees accurate results, can never be differentially private in dis-
tributed average consensus. Another issue is that the privacy defined by these
approaches might not be the same as the individual privacy defined in the con-
text of distributed processing. For example, a perfect SMPC protocol does not
necessarily guarantee that no private information is revealed (see Section 4.1).
In addition, a perfect DP based approach (ε = 0) also does not guarantee that
no private information is revealed if the private data are correlated [33] (see
Section 4.2). Therefore, it is highly desired to have general metrics that are
able to compare and relate these algorithms in a consistent fashion, so that ap-
propriate privacy-preserving distributed algorithms can be designed based on
their performance and underlying assumptions.

In addition to the above mentioned challenges in algorithm design, another
challenge lies in how to analyze the algorithm performance in a distributed
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setting. Due to the fact that distributed processing algorithms are usually iter-
ative, it is complex to analytically track the privacy analysis over the iterations.

1.2 Paper contributions

In this paper, we attempt to solve the above mentioned problems. The main
contributions of this paper can be summarized as follows:

• To the best of our knowledge, this is the first paper proposing formal and
general information-theoretic metrics for quantifying privacy-preserving
distributed processing algorithms in terms of output utility and individual
privacy. Additionally, we prove that existing well-known metrics in SMPC
and DP can be considered special cases of the proposed metrics under
certain assumptions/conditions. Moreover, by analyzing the lower bound
on individual privacy which provides insights on the nature of a problem,
we give suggestions and discuss principles on how to design appropriate
algorithms.

• We demonstrate how to analyze, quantify, compare, and understand the
nature of a number of existing privacy-preserving distributed processing
algorithms including DP, SMPC and DOSP.

1.3 Outline and notation

This paper is organized as follows. Section 2 introduces fundamentals and
states the problem to be solved. Section 3 introduces the proposed metrics.
Section 4 relates the well-known SMPC and DP to the proposed metrics. Sec-
tions 5 and 6 describe a concrete example of distributed average consensus.
The former section defines the problem and shows that traditional approaches
leak privacy, while the latter section first presents a theoretical result for
achieving privacy-preservation and then analyzes existing privacy-preserving
distributed average consensus algorithms using the proposed metrics. Numeri-
cal validations are given in Section 7. Section 8 gives suggestions on algorithm
design and Section 9 concludes the paper.

The following notations are used in this paper. We will use lowercase
letters (x) for scalars, lowercase boldface letters (x) for vectors, uppercase
boldface letters (X) for matrices, overlined uppercase letters (X̄) for sub-
spaces, calligraphic letters (X ) for arbitrary sets and | · | for the cardinality
of a set. Uppercase letters (X) denote random variables having realizations x.
span{·} and null{·} denote the span and nullspace of their argument, respec-
tively. (X)> denotes the transpose ofX. xi denotes the i-th entry of the vector
x and Xij denotes the (i, j)-th entry of the matrix X. 0, 1 and I denote the
vectors with all zeros and all ones, and the identity matrix of appropriate size,
respectively.
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2 Preliminaries

In this section, we first introduce the problem setup and the adversary models.
After that we summarize the key aspects to be considered when evaluating an
algorithm.

2.1 Privacy-preserving distributed processing over networks

A network can be modelled as a graph G = {N , E} where N = {1, . . . , n}
denotes the set of n nodes and E ⊆ N × N denotes the set of m (undirected)
edges. Note that node i and j can communicate with each other only if there
is an edge between them, i.e., (i, j) ∈ E . Let Ni = {j | (i, j) ∈ E} denote the
neighborhood of node i and di = |Ni|, called the degree of node i. Assume each
node i has private data si and let s = [s1, . . . , sn]>. Note that for simplicity,
si is assumed to be scalar but the results can easily be generalized to arbitrary
dimensions.

The goal of privacy-preserving distributed processing over a network is to
compute a function

f : Rn 7→ Rn,y = f(s), (H.1)

in a distributed manner without revealing each node’s private data si to other
nodes, where yi denotes the desired output of node i. By a distributed manner
we mean that only data exchange between neighboring nodes is allowed.

2.2 Adversary models

Adversary models are used to evaluate the robustness of the system under dif-
ferent security attacks. In this paper, we consider two types of adversary mod-
els: the passive and eavesdropping model.

Passive adversary

The passive adversary model is a typical model to be addressed in distributed
networks [34]. It works by colluding a number of nodes to infer the private
data of the other nodes. These colluding nodes are referred to as corrupted
nodes, and the others are called honest nodes. The corrupted nodes are as-
sumed to follow the algorithm instructions (called the protocol) but will share
information together to infer the private data of the honest nodes. We call an
edge in the graph corrupted when there is one corrupted node at its ends, see
Fig. H.1 for a toy example. Hence, all the messages transmitted along such an
edge will be known to the passive adversary. In the following, we will denote
Nc and Nh as the set of corrupted nodes and honest nodes, respectively. Ad-
ditionally, we will denote Ec = {(i, j) ∈ E : (i, j) /∈ Nh × Nh} as the set of
corrupted edges. An algorithm is more robust if it can tolerate more corrupted
nodes without revealing the private data of the honest nodes.
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Fig. H.1: System setup and adversary models.

Eavesdropping adversary

The eavesdropping adversary, on the other hand, is assumed to listen to all
communication channels, i.e., edges, between nodes with the purpose of in-
ferring the private data. This model is relatively unexplored in the context of
privacy-preserving distributed processing. The main reason is that many SMPC
based approaches, such as those based on secret sharing [17, 19, 35], assume
that all messages are transmitted through securely encrypted channels [36]
so that the transmitted messages cannot be eavesdropped. However, channel
encryption is computationally demanding for iterative approaches like the dis-
tributed processing algorithms considered here, since the channels are used
many times before the algorithm converges. As a consequence, the cost for
channel encryption is also an important factor to be considered when design-
ing privacy-preserving algorithms.

Throughout this paper we will assume that these two adversaries cooperate.
That is, they will share information together to increase the chance of inferring
the private data of the honest nodes.

2.3 Key aspects for algorithm evaluation

We will evaluate the performance of privacy-preserving distributed processing
algorithms in terms of the following two aspects: output utility and individual
privacy.

Output utility

Let ŷ ∈ Rn denote the estimated output of a privacy-preserving distributed
processing algorithm. For each node i, the output utility should measure how
close the estimate ŷi is to its desired output yi.
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Individual privacy

Based on the definition of the adversary models, the corrupted nodes are will-
ing to share their private data to the passive adversary. Therefore, privacy
is only relevant for the honest nodes. The individual privacy of honest node
i ∈ Nh should measure how much information regarding its private data si
is revealed to the adversaries, both passive and eavesdropping, given all the
information available to them.

In next section we will introduce the proposed metrics for quantifying the
output utility and individual privacy.

3 Proposed metrics

In this section we will introduce the proposed metrics. We first motivate why
we adopt mutual information for defining these metrics and then give details
on how to quantify both the output utility and individual privacy stated above.

3.1 Motivation of using mutual information

To quantify the privacy for information-theoretic approaches, a natural lan-
guage is to use information theory. For an overview of information-theoretic
metrics the reader is referred to [37]. In the context of privacy-preserving
distributed processing, two types of metrics are widely adopted: mutual infor-
mation and ε-DP (their definitions will be given later in Section 3.2 and 4.2,
respectively). The reasons for choosing mutual information over ε-DP are:

(1) ε-DP is very difficult to realize in practice as it is a worst-case metric
that provides strong privacy assurance in any situation, e.g., for all prior distri-
butions of the private data [38–40]. Mutual information is easier to implement
in practice as it can be seen as a relaxed version of ε-DP [41].

(2) The privacy measured by ε-DP only reflects the privacy in the worst-case
scenario which can be very far from the typical privacy of the average users;
mutual information, on the other hand, is more preferred in quantifying the
privacy of the average users [42].

(3) ε-DP has problems in working with correlated data [33].
To quantify the output utility, we also adopt mutual information as the met-

ric because it has been widely used in the literature [43, 44].

3.2 Definition of mutual information

Let X denote a continuous random variable with probability density function
fX(x) and differential entropy h(X) = −

∫
fX(x) log fX(x)dx, assuming it ex-

ists. Given a random variable Y , the conditional entropy h(X|Y ) quantifies
how much uncertainty is remained in X after knowing Y . The mutual infor-
mation I(X;Y ) [45] measures the dependence between X and Y . It quantifies
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how much information can be learned about X after knowing Y , or vice versa,
which is given by1

I(X;Y ) = h(X)− h(X|Y ). (H.2)

3.3 Output utility ui
We quantify the output utility as:

∀i ∈ N : ui = I(Yi; Ŷi). (H.3)

Hence 0 ≤ ui ≤ I(Yi;Yi) where ui = I(Yi;Yi) implies prefect output utility.

3.4 Individual privacy ρi
Let V denote the set of random variables containing all the information col-
lected by the adversaries throughout the whole algorithm. The individual pri-
vacy of honest node i quantifies the amount of information about the private
data si learned by the adversaries, which we define as

∀i ∈ Nh : ρi = I(Si,V), (H.4)

and we conclude that 0 ≤ ρi ≤ I(Si;Si). The smaller ρi, the more private the
data is. Given the definition of the adversary models, we conclude that the
adversaries always have knowledge of the private data {sj}j∈Nc

and estimated
outputs {ŷj}j∈Nc , regardless of the algorithm used. Therefore, we conclude
that {Sj , Ŷj}j∈Nc

⊆ V which give rise to the following lower bound.

lower bound on individual privacy

The individual privacy ρi is lower bounded by

ρi,min = I(Si; {Sj , Ŷj}j∈Nc
). (H.5)

Hence, we have ρi,min ≤ ρi ≤ I(Si;Si).
There are two more parameters to consider regarding the individual pri-

vacy, namely the maximum number of corrupted nodes, giving information
about the robustness of the algorithm, and the cost for channel encryption.

Maximum number of corrupted nodes under a passive adversary

The maximum number of corrupted nodes allowed in the network under a
passive adversary will be denoted by ki ∈ {0, . . . , n− 1}. That is, the algorithm
is guaranteed to achieve individual privacy ρi for honest node i if there are at
most ki corrupted nodes in the network.

1For the case of discrete random variables, the condition is given in terms of the Shannon
entropy H(·)
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Cost for channel encryption under an eavesdropping adversary

Let T = {0, . . . , T}, where T is the maximum number of iterations. The cost
ci ∈ T indicates how many iterations require channel encryption to guarantee
individual privacy ρi.

We propose a new definition of perfect individual privacy in the context
of distributed processing. Intuitively, perfect individual privacy means ρi = 0.
However, due to the fact that in many cases the lower bound ρi,min > 0, it is in
general impossible to achieve zero individual privacy. In addition, we assume
ρi,min 6= I(Si;Si), otherwise there is no privacy at all. We have the following
definition of perfect individual privacy.

Definition 1. (Perfect individual privacy in the context of privacy-preserving dis-
tributed processing.) Given ρi,min, 0 ≤ ρi,min < I(Si;Si), a privacy-preserving
algorithm achieves perfect individual privacy if and only if ρi = ρi,min.

4 Linking the proposed metrics to SMPC and DP

In this section, we will show that the well-known SMPC and DP can be consid-
ered special cases of the proposed metrics based on different setups or assump-
tions.

4.1 Secure multiparty computation

An important concept in SMPC is the definition of an ideal world, in which a
trusted third party (TTP) is assumed to be available. A TTP first collects all
private data from the nodes and computes the output y = f(s) after which the
outputs yi are transmitted to each and every node. This scenario is considered
secure since a TTP is assumed to be non-corrupted. However, there is a distinc-
tion between security and privacy. In the ideal scenario, each node obtains its
desired output yi directly from the TTP. As a consequence, the set of random
variables containing the information collected by the adversaries is given by
V = {Sj , Yj}j∈Nc . Therefore, the individual privacy in the ideal world is given
by

∀i ∈ Nh : ρi,ideal = I(Si; {Sj , Yj}j∈Nc). (H.6)

Apparently, ρi,ideal is not necessarily zero and it depends on several factors such
as the output function and whether the private data are correlated or not.

The motivation for using SMPC comes from the fact that in practice a third
party might not be available or trustworthy. The goal of SMPC is thus to design
a protocol that can replace a TTP, i.e., simulates an ideal world. To do so,
SMPC has to exchange information between nodes in the network and could,
therefore, reveal some information about the private data. Let ρi,smpc denote
the individual privacy when using SMPC. An SMPC protocol is considered to
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be perfect when (1) it achieves perfect output utility and (2) the adversaries
do not learn more about each honest node’s private data than what will be
revealed in an ideal world. That is, SMPC is perfect if

∀i ∈ N : ui = I(Yi;Yi),

∀i ∈ Nh : ρi,smpc = ρi,ideal.
(H.7)

As mentioned before, there is a distinction between security and privacy. As
an example in which an SMPC protocol is perfect according to (H.7) but reveals
maximum individual privacy, i.e., ρi,smpc = I(Si;Si), consider the situation in
which y is a permuted version of the private data s. That is, yi = si− 1 modn.
Assume that node i + 1 is corrupted. Using (H.6) we conclude that ρi,ideal =
I(Si; {Si+1, Yi+1 = Si} = I(Si;Si). As ρi,ideal is already maximum, any SMPC
protocol giving perfect output utility will be considered perfect as ρi,smpc =
I(Si;Si) = ρi,ideal. Hence, (H.7) is satisfied but there is no privacy at all.

We remark that ρi,smpc and ρi,ideal in SMPC correspond to the individual
privacy ρi and its lower bound ρi,min under the condition of achieving full
output utility in the proposed metrics, respectively. In the above example,
in order to achieve meaningful individual privacy ρi < I(Si;Si), we have to
compromise the output utility to decrease the lower bound ρi,min. That is,
perfect output utility and individual privacy are not achievable simultaneously
in this example.

4.2 Differential privacy

DP assumes an extreme scenario in which all nodes in the network are cor-
rupted (ki = n − 1) except for node i [31, 32]. Let s−i ∈ Rn−1 be a so-called
adjacent vector of s, obtained by excluding the private data si from s. Denote
Ωi as the range of si. Let F̂ be a randomized algorithm that protects the privacy
of its input and Y denotes its output range. Given ε ≥ 0, algorithm F̂ achieves
ε-DP if for any pair of adjacent vectors s and s−i, and for all sets Ys ⊆ Y, we
have

∀si ∈ Ωi :
P (F̂ (s) ∈ Ys)
P (F̂ (s−i) ∈ Ys)

≤ eε. (H.8)

It has been shown [41, Theorem 1] that by relaxing the right-hand side of
(H.8) to an expected value rather than a statement about all si ∈ Ωi, (H.8)
is related to the Kullback-Leibler divergence and can be further relaxed to the
following conditional mutual information (also called mutual information dif-
ferential privacy):

I(Si;Y |{Sj}j∈N\{i}) ≤ ε. (H.9)

The upper bound ε in (H.9) can be interpreted as the difference of the posterior
and prior individual privacy. The prior individual privacy, in which the adver-
saries have the knowledge of s−i and the related output y′ = F̂ (s−i), can be
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quantified as

ρi,prior = I(Si; {Sj}j∈N\{i}, Y ′)
= I(Si; {Sj}j∈N\{i}), (H.10)

where the last equality holds because Y ′ is redundant information as
{Sj}j∈N\{i} can determine Y ′. The posterior individual privacy on the other
hand, where the adversaries have the knowledge of the algorithm output
y = F̂ (s), is given by

ρi,post = I(Si; {Sj}j∈N\{i}, Y ). (H.11)

Based on the definition of conditional mutual information, we can rewrite
(H.9) as

ε ≥ I(Si; {Sj}j∈N\{i}, Y )− I(Si; {Sj}j∈N\{i})
= ρi,post − ρi,prior, (H.12)

showing the interpretation mentioned above.
We can see that the above ρi,post and ρi,prior are related to the individual

privacy ρi and its lower bound ρi,min, respectively, in the context of distributed
processing when we assume that there are ki = n− 1 corrupted nodes. Again,
similar to SMPC, ε = 0 does not imply zero individual privacy but only means
that no additional information is leaked.

4.3 Proposed metrics for SMPC and DP

We end this section by concluding that both the SMPC and DP metrics can
be considered as special cases of the proposed metrics under certain assump-
tions/requirements. For example, a privacy-preserving distributed processing
algorithm can be considered as a perfect SMPC protocol if ui = I(Yi;Yi) and
ρi = ρi,min, and as an ε-DP protocol if ui = I(Yi; Ŷi), ρi ≤ ε + ρi,min, and
ki = n− 1.

5 Example I: Distributed average consensus

To demonstrate the benefits using the proposed metrics, we use the distributed
average consensus as a canonical example. The two main reasons for choos-
ing this problem are that it has general applicability in many signal process-
ing tasks, such as denoising [46] and interpolation [47], and that its privacy-
preserving solutions have been widely investigated in the literature [4–16].

In this section, we first define the problem. After that, we introduce tra-
ditional distributed average consensus approaches and show that they are not
privacy-preserving; maximum individual privacy is revealed as ∀i ∈ Nh : ρi =
I(Si;Si).
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5.1 Problem definition

The goal of the distributed average consensus algorithm is to compute the
global average of all the private data over the network, i.e.,

y = save1, (H.13)

where save = n−1
∑
i∈N si. Hence, we have that y = n−111>s. As the nodes in

the network can only communicate with the neighboring nodes, the solution is
obtained iteratively. Many distributed average consensus algorithms have been
proposed to achieve this goal. Below, we introduce two types of approaches
that serve as baselines for the coming sections.

Before describing the details, we will make the following assumptions.

Assumption 4. The private data are statistically independent, i.e., ∀i, j ∈ N , i 6=
j : I(Si;Sj) = 0.

Assumption 5. The passive adversary has knowledge of the number of nodes n
in the network and the degree di of all nodes.

Let Ni,c = Ni ∩ Nc and Ni,h = Ni ∩ Nh denote the set of corrupted and
honest neighbors of node i, respectively. In order to consider the worst-case
scenario in which all information transmitted by honest nodes is known to the
passive adversary, we have the following additional assumption.

Assumption 6. Every honest node has a non-empty corrupted neighborhood, i.e.,
∀i ∈ Nh : Ni,c 6= ∅.

5.2 Distributed linear iteration approaches

Distributed average consensus can be obtained by applying, at every iteration
t ∈ T a linear transformation W ∈ W where

W =
{
W ∈ Rn×n |Wij = 0 if (i, j) /∈ E and i 6= j

}
, (H.14)

such that the state vector x is updated as

x(t+1) = Wx(t), (H.15)

and it is initialized with the private data, i.e.,

x(0) = s. (H.16)

The structure of W reflects the connectivity of the network2. In order to
correctly compute the average, that is, x(t) → y = n−111>s as t → ∞, neces-
sary and sufficient conditions forW are given by (i) 1>W = 1>, (ii)W1 = 1,

2For simplicity, we assume that W is constant for every iteration, which corresponds to a syn-
chronous implementation of the algorithm. In the case of an asynchronous implementation, the
transformation depends on which node will update. The results shown here are easily generalized
to asynchronous systems by working with expected values.
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(iii) α
(
W − 11>

n

)
< 1, where α(·) denotes the spectral radius [48].

Individual privacy: By inspecting (H.15), we can see that each node i needs
to send its state values x(t)

i to all of its neighbours for updating {x(t+1)
j }j∈Ni .

Hence, we have X(0)
i = Si ∈ V and we conclude that

ρi = I(Si,V) ≥ I(Si, X
(0)
i ) = I(Si, Si). (H.17)

The algorithm is not private in the sense that it reveals all private information.

5.3 Distributed optimization approaches

The average consensus problem can also be stated as a linear-constrained con-
vex optimization problem given by

min
xi

∑
i∈N

1

2
‖xi − si‖22

s.t. ∀(i, j) ∈ E : xi = xj .

(H.18)

Many distributed optimizers have been proposed to solve the above problem,
such as ADMM [49] and PDMM [50, 51]. Here, we provide an example using
PDMM. The corresponding (extended) augmented Lagrangian function is given
by:

1

2
‖x− s‖22 + (Pλ(t))TCx+

c

2
‖Cx+ PCx(t)‖22, (H.19)

and the updating equations are

x(t+1) =
(
I + cC>C

)−1
(
s− cC>PCx(t) −C>Pλ(t)

)
, (H.20)

λ(t+1) = Pλ(t) + c(Cx(t+1) + PCx(t)), (H.21)

where c > 0 is a constant for controlling the convergence rate and λ ∈ R2m

is a dual variable. Let the subscript i|j be a directed identifier that denotes
the directed edge from node i to j. We first denote B ∈ Rm×n as the graph
incidence matrix defined asBli = 1,Blj = −1 if and only if (i, j) ∈ E and i < j.
Denote el = (i, j) ∈ E , where l ∈ {1, . . . ,m}, as the l-th edge. The dual variable
λ is defined as λl = λi|j and λl+m = λj|i. Hence, with PDMM, each edge is
associated with two dual variables, λi|j and λj|i. The matrix C ∈ R2m×n is
related to the graph incidence matrix and defined as Cli = Bi|j = 1 and
C(l+m)j = Bj|i = −1 if and only if i < j. Of note, P ∈ R2m×2m denotes
a symmetric permutation matrix exchanging the first m with the last m rows.
Thus, ∀(i, j) ∈ E : λj|i = (Pλ)i|j . and C + PC = [B>B>]>.
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The local updating functions for each node become

x
(t+1)
i =

si +
∑
j∈Ni

(
cx

(t)
j −Bi|jλ

(t)
j|i

)
1 + cdi

, (H.22)

λ
(t+1)
i|j = λ

(t)
j|i + cBi|j

(
x

(t+1)
i − x(t)

j

)
. (H.23)

It has been shown that x(t) converges geometrically (linearly on a logarithmic
scale) to the global optimum x∗ = save1, given arbitrary initialization of both
x and λ [50].

Individual privacy: Note that traditional distributed optimization algorithms
generally initialize both x(0) and λ(0) with all zeros as it gives the smallest
initial error resulting in the smallest number of iterations to converge. As a
consequence, by inspecting (H.22) we have

x
(1)
i =

si
1 + cdi

. (H.24)

As the constant c is globally known to all nodes and the degree di is known to
the adversaries based on Assumption 5, the private data si can be reconstructed
by the adversaries from x

(1)
i . Since X(1)

i ∈ V we conclude that

ρi = I(Si,V) ≥ I(Si, X
(1)
i ) = I(Si, Si). (H.25)

Based on (H.17) and (H.25), we conclude that traditional distributed aver-
age consensus algorithms, including distributed linear iteration and distributed
optimization algorithms, are not privacy-preserving at all; they reveal all pri-
vate data.

6 Example II: Privacy-preserving distributed aver-
age consensus

From the previous section, we can see that the reason why the traditional dis-
tributed average consensus algorithms are not privacy-preserving is because
the private data, either itself or a scaled version, is directly sent to the neighbor-
ing nodes during the data exchange step. As a consequence, one way to protect
privacy is to not exchange the private data directly, but to first insert noise to
obtain an obfuscated version of it and then exchange the obfuscated data with
the neighboring nodes. In what follows, we will first present an information-
theoretic result regarding noise insertion to achieve privacy-preservation. After
that, we will introduce existing privacy-preserving distributed average consen-
sus approaches and quantify their performances using the proposed metrics.
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6.1 Noise insertion for privacy preservation

Proposition 7. (Arbitrary small information loss can be achieved through noise
insertion.) Let private data s and inserted noise r denote realizations of inde-
pendent random variables S and R with variance σ2

S , σ
2
R < ∞, respectively. Let

Z = S +R. Given arbitrary small δ > 0, there exists β > 0 such that for σ2
R ≥ β

I(S;Z) ≤ δ. (H.26)

In the case of Gaussian distributed noise, we have

β =
σ2
S

22δ − 1
. (H.27)

Proof. See Appendix 13.

Proposition 7 shows that the mutual information I(S;Z), where Z is a noisy
version of S obtained by adding independent noise, can be made arbitrarily
small by making the noise variance sufficiently large.

Based on the design of the noise insertion process, we will classify exist-
ing approaches into two classes: zero-sum noise insertion and subspace noise
insertion. We first introduce the former case.

The main idea of zero-sum noise insertion comes from the nature of the
distributed average consensus. Let ri denote the noise added by node i to its
private data si. The estimated output is then given by

ŷi =
1

n

∑
j∈N

(sj + rj) = save +
1

n

∑
j∈N

rj . (H.28)

Clearly, if the sum of all inserted noise is zero, perfect output utility will be
achieved as ŷi = save = yi in that case. Next we will proceed to introduce two
different approaches, including DP and SMPC, which aim to insert zero-sum
noise in a distributed manner.

6.2 Statistical zero-sum noise insertion using DP

DP-based approaches [8–10] mostly apply zero-mean noise insertion to achieve
zero-sum in a statistical sense. That is, according to the law of the large num-
bers, the average of a large number of noise realizations should be close to
the expected value, which is zero in this case, and will tend to become closer
to the expected value as more realizations are involved. As a consequence,
these algorithms only obtain asymptotically perfect output utility as n → ∞.
Variants exist in designing the noise insertion process, but here we will focus
on one simple example to illustrate the main idea, which was proposed in [8]
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and [10]. Each node i initializes its state value by adding zero-mean noise ri
to its private data. That is, the state value initialization (H.16) becomes

∀i ∈ N : x
(0)
i = si + ri, (H.29)

and then arbitrary distributed average consensus algorithms (e.g., linear iter-
ations [48] or distributed optimization [49–51]) can be adopted to compute
the average.

Output utility analysis

Assume that all inserted noise are realizations of independent and identically
distributed random variables with zero-mean and variance σ2. Denote rtot =∑
i∈N ri and rave = rtot/n as the sum of all inserted noise realizations and

its average, respectively. As a consequence, Rtot and Rave are also zero-mean,
and their variances are nσ2 and σ2/n, respectively. Based on (H.28) the output
utility of node i is

∀i ∈ N : ui = I(Yi;Yi +Rave). (H.30)

Indeed, as mention before, we obtain perfect output utility only when n → ∞
since limn→∞Rave = 0.

Individual privacy analysis

DP based approaches do not require any channel encryption and assume n− 1

corrupted nodes, i.e., Nc = N \ {i}. Collecting all state random variables X(t)
i

in the vector X(t) = [X
(t)
1 , . . . , X

(t)
n ]>, we conclude that all information seen

by the adversaries throughout the algorithm is

V = {Ŷj , Sj , Rj , X(t)}j∈Nc,t∈T

= {Sj , Rj , X(t)}j∈Nc,t∈T , (H.31)

since Ŷj = X
(T )
j . Note that we assume that all messages {X(t)}t∈T transmitted

through the communication channels can be eavesdropped and are thus known
to the adversaries. We see that computing I(Si;V) requires to analyze the
information flow over the whole iterative process. This imposes challenges as
keeping track of information loss throughout all iterations is difficult. We can,
however, simplify the privacy analysis through the following result.

Lemma 1. (Information release of successive iterations.)

I(Si;X
(0), . . . , X(T )) = I(Si;X

(0)).
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Proof. The sequence Si → X(0) → X(t) forms a Markov chain in that order. As
a consequence, by the chain rule of mutual information, we have

I(Si;X
(0), . . . , X(T )) =

T∑
t=0

I(Si;X
(t)|X(t−1), . . . , X(0))

= I(Si;X
(0)).

Lemma 1 states that it is sufficient to analyze the privacy leakage of the initial
state vector only as successive iterations will not reveal additional information
about the private data. Given this result, we conclude that

I(Si;V) = I(Si; {Sj , Rj , X(0)}j∈Nc
)

(a)
= I(Si;X

(0)
i )

+ I(Si; {Sj , Rj , X(0)
j }j∈Nc |X(0)

i )

(b)
= I(Si;X

(0)
i ), (H.32)

where (a) follows from the chain rule of mutual information, and (b) holds as
{Sj , Rj , X(0)

j }j∈Nc
is independent of both Si and X(0)

i . The individual privacy
thus becomes

ρi = I(Si;X
(0)
i ) = I(Si;Si +Ri). (H.33)

Lower bound analysis. The lower bound on individual privacy is given by

ρi,min = I(Si; {Ŷj , Sj}j∈Nc
)

(a)
= I(Si;

∑
j∈N

Sj +Rtot, {Sj}j∈Nc
)

= I(Si;Si +Rtot, {Sj}j∈Nc
)

(b)
= I(Si;Si +Rtot), (H.34)

where (a) follows from (H.28) and the fact that n is known to the adversaries
(Assumption 5) and (b) from the fact that {Sj}j∈Nc is independent of Si+Rtot.
By inspection of (H.33) and (H.34) we conclude that for n > 1 we have ρi,min <
ρi, except for ri = 0, so that DP does not achieve perfect individual privacy for
the average consensus problem.

Maximum number of corrupted nodes and cost for channel encryption.
Since Nc = N \ {i}, we have ki = |Nc| = n− 1 being the maximum number of
corrupted nodes. As no channel encryption is needed, we have ci = 0.

Summarizing, with the proposed metrics, DP-based approaches achieve

ui = I(Yi;Yi +Rave),
ρi = I(Si;Si +Ri),
ρi,min = I(Si;Si +Rtot),
ki = n− 1,
ci = 0.

(H.35)
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We have the following remark.

Remark 5. (In the distributed average consensus, DP always has a trade-off be-
tween the output utility and individual privacy.) As both output utility (H.30)
and individual privacy (H.33) are dependent on the inserted noise, we conclude,
using Proposition 7, that

σ2 →∞ ⇒ ui = 0, ρi = 0, (H.36)

σ2 = 0 ⇒ ui = I(Yi;Yi), ρi = I(Si;Si). (H.37)

Hence DP has a trade-off between privacy and utility. Of note, the conclusion
that DP based approaches cannot achieve perfect full utility has been shown
before in [10]. Here, we provide a simpler proof in terms of mutual informa-
tion.

6.3 Exact zero-sum noise insertion using SMPC

Unlike DP based approaches, which have a privacy-utility trade-off, SMPC
based approaches can obtain full utility without compromising privacy. How-
ever, there is no “free lunch”; the price to be paid is that the robustness over
n − 1 corrupted nodes is no longer achievable. Existing SMPC based ap-
proaches [4–6] have applied additive secret sharing [30] to construct exact
zero-sum noise through coordinated noise insertion. To do so, at the initializa-
tion phase, each node i first sends each neighbor j ∈ Ni a random number rji
and receives a random number rij from each of its neighbors. After that node i
constructs its noise realization as

ri =
∑
j∈Ni

ri|j , (H.38)

where

ri|j = rij − rji . (H.39)

Of note, all the random numbers {rji }(i,j)∈E are independent of each other.
After constructing the noise realizations, similar as DP based approaches, each
node initializes its state value using (H.29) after which an arbitrary distributed
average consensus algorithm can be used.

Output utility analysis

In SMPC the noise is constructed such that it sums to zero:∑
i∈N

ri =
∑
i∈N

∑
j∈Ni

ri|j =
∑

(i,j)∈E

(
ri|j + rj|i

)
= 0, (H.40)

as ri|j = −rj|i by (H.39). Full utility is thus obtained as ŷi = yi:

∀i ∈ N : ui = I(Yi;Yi). (H.41)
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Individual privacy analysis

SMPC based approaches assume that the communication channels are not se-
curely encrypted except for transmitting the random numbers {rji }(i,j)∈E (ini-
tialization phase). As a consequence, all information that the adversaries see
throughout the algorithm is given by

V = {{Yj , Sj}j∈Nc , {Rji}(i,j)∈Ec , {X(t)}t∈T }
= {{Sj}j∈Nc

, {Rji}(i,j)∈Ec , {X(t)}t∈T }, (H.42)

since Yj = X
(T )
j and X(t) is known by Assumption 6.

Let Gh ⊆ G denote the graph obtained by removing all corrupted nodes from
G. Moreover, let Gh = ∪qCq, where Cq is a component or connected subgraph
of Gh. The set of nodes in Cq is denoted by Nhq

so that Nh = ∪qNhq
. We have

the following result which simplifies the individual privacy analysis.

Proposition 8.

∀i ∈ Nhq
: I(Si;V) = I(Si; {Sj +

∑
k∈Nj,h

Rj|k}j∈Nhq
).

Proof. See Appendix 14.

We conclude from Proposition 8 that node i should have at least one honest
neighbor. If not, Si will be revealed as in that case Nhq

= {i} and Nj,h = ∅.
Moreover, the adversaries can compute the partial sum of the private data in
each component Cq since∑

j∈Nhq

(Sj +
∑

k∈Nj,h

Rj|k) =
∑
j∈Nhq

Sj , (H.43)

as Rj|k = −Rk|j . Since this partial sum can always be determined regardless
of the amount of noise insertion, we have

ρi = I(Si;V) ≥ I(Si;
∑

j∈Nhq

Sj). (H.44)

We have equality in (H.44) when the partial sum (H.43) is all the adversaries
know and no additional information can be inferred from the individual noisy
observations. That is, we have equality if ∀j ∈ Nhq

: I(Si;Sj+
∑
k∈Nj,h

Rj|k) =

0, which can, by Proposition 7, be achieved asymptotically by adding inde-
pendent noise to the private data. Therefore, the privacy level SMPC based
approaches can achieve is given by

ρi = I(Si;
∑

j∈Nhq

Sj). (H.45)
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Lower bound analysis. With perfect output utility, the lower bound (H.5)
becomes

ρi,min = I(Si; {Yj , Sj}j∈Nc
)

(a)
= I(Si;

∑
j∈N

Sj , {Sj}j∈Nc)

(b)
= I(Si;

∑
j∈Nh

Sj , {Sj}j∈Nc
)

(c)
= I(Si;

∑
j∈Nh

Sj), (H.46)

where (a) holds as ∀j ∈ N : yj = n−1
∑
j∈N Sj and n is known by Assumption

5, (b) holds as
∑
j∈N Sj , {Sj}j∈Nc can be determined by

∑
j∈Nh

Sj , {Sj}j∈Nc

as Sj , j ∈ Nc, are known to the adversaries, and (c) holds as {Sj}j∈Nc
is

independent of both Si and
∑
j∈Nh

Sj by Assumption 4.

Maximum number of corrupted nodes and cost for channel encryption.
As mentioned before, to guarantee the individual privacy ρi < I(Si;Si), node i
should have at least one honest neighbor, i.e., Ni,h 6= ∅. The maximum number
of corrupted nodes is therefore ki = di − 1 and only depends on the degree di.
For a fully connected graph we have ki = n − 2. The amount of channel
encryption is ci = 1 as only the communication channels in the initialization
phase need to be securely encrypted.

In conclusion, with the proposed metrics, SMPC based approaches achieve

ui = I(Yi;Yi),
ρi = I(Si;

∑
j∈Nhq

Sj),

ρi,min = I(Si;
∑
j∈Nh

Sj),

ki = di − 1,
ci = 1.

(H.47)

We can see that ui is independent of ρi. Hence, SMPC has no trade-off be-
tween privacy and utility in distributed average consensus. Hence, we have
the following remark.

Remark 6. (Conditions for achieving perfect individual privacy and perfect out-
put utility using the SMPC based approaches in the distributed average consen-
sus.) By inspection of (H.45) and (H.46), if Gh is connected and |Nh| ≥ 2, we
have only one component so that Nhq = Nh and thus ρi = ρi,min; the algorithm
achieves both perfect individual privacy (Definition 1) and perfect output utility.

The main limitation of the above zero-sum noise insertion approaches is
that it is hard to be generalized to problems other than distributed average
consensus. To mitigate this problem, recently subspace noise-insertion based
algorithms have been proposed which are able to solve more general (con-
vex) optimization problems. In the next subsection we will introduce such an
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approach referred to as distributed optimization based subspace perturbation
(DOSP).

6.4 Subspace noise insertion using DOSP

The DOSP algorithm [7, 27] differentiates from the DP and SMPC based ap-
proaches in the sense that it can ensure full output utility without compro-
mising privacy and does not require coordinated noise insertion. In particular,
DOSP does not introduce zero-sum noise but exploits the fact that the dual
variables, if properly initialized, can obfuscate the private data throughout the
algorithm. As a consequence, in order to analyze privacy, we have to consider
the convergence behavior of the dual variable λ.

To do so, consider two successive λ-update in (H.21). We have

λ(t+2) = λ(t) + c(Cx(t+2) + 2PCx(t+1) +Cx(t)), (H.48)

as P 2 = I. Let H̄ = span(C) + span(PC) and H̄⊥ = null(C>)∩null((PC)>).
We can see that every two λ-updates affect only ΠH̄λ ∈ H̄ where ΠH̄ denotes
the orthogonal projection onto H̄. As shown in [27], the dual variable λ(t)

composites of two parts: a so-called convergent component ΠH̄λ
(t) which will

converge to a fixed point λ∗, and a so-called non-convergent component (I −
ΠH̄)λ(t) = P t (I −ΠH̄)λ(0) which will not converge (P t = P for t odd and
P t = I for t even) and only depends on the initialization λ(0).

By inspecting (H.22), the noise for protecting si of honest node i is con-
structed as

∀t ∈ T : r
(t)
i =

∑
j∈Ni

(Bi|jλ
(t)
j|i)

=
∑
j∈Ni,c

(Bi|jλ
(t)
j|i) +

∑
j∈Ni,h

(Bi|jλ
(t)
j|i), (H.49)

where the dual variables {λ(t)
j|i}j∈Ni,c of the corrupted neighbors are known to

the adversaries. As a consequence, only
∑
j∈Ni,h

(Bi|jλ
(t)
j|i) is unknown to the

adversaries. Separating the convergent and non-convergent component of λ(t),
we have ∑

j∈Ni,h

(Bi|jλ
(t)
j|i) =

∑
j∈Ni,h

(Bi|j(ΠH̄λ
(t))j|i)

+
∑

j∈Ni,h

(
Bi|j(P

t(I −ΠH̄)λ(0))j|i

)
. (H.50)

The main idea of subspace noise insertion is to exploit the non-convergent
component of the dual variables as subspace noise for guaranteeing the pri-
vacy. That is,

∑
j∈Ni,h

(
Bi|j(P

t(I −ΠH̄)λ(0))j|i
)

protects the private data si
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from being revealed to others. By controlling λ(0), the variance of the above
subspace noise can be made arbitrarily large so that, by Proposition 7, we can
achieve an arbitrarily small information loss.

Before discussing how to implement the subspace noise, we first state the
following remark.

Remark 7. (There is always a non-empty subspace for noise insertion as long as
m ≥ n.) Since [C PC] ∈ R2m×2n can be viewed as a new graph incidence matrix
with 2n nodes and 2m edges [27], we thus have dim(H̄) ≤ 2n − 1, and H̄⊥ is
non-empty if m ≥ n.

In DOSP, each node only needs to randomly initialize its own dual variables
{λ(0)

i|j }j∈Ni
as in that case we have (I −ΠH̄)λ(0) 6= 0 with probability 1 as long

as m ≥ n. Hence, DOSP does not require any coordination between nodes
for noise construction. In the remainder of this section we will investigate the
output utility and individual privacy of DOSP.

Output utility analysis

As mentioned before, x(t) converges geometrically to the global optimum x∗ =
save1, given arbitrary initialization of both x and λ, even though λ(t) does not
necessarily converge. Indeed, by inspection of (H.20), we see that the non-
converging component of λ(t) does not affect the x-update since

C>P (I −ΠH̄)λ(t) = (PC)
>

(I −ΠH̄)λ(t) = 0. (H.51)

Hence, DOSP achieves perfect output utility.

Individual privacy analysis

Similar as the above SMPC based approaches, DOSP assumes that the commu-
nication channels are not securely encrypted except for the initialization phase
where the initialized λ(0)

i|j are transmitted to all neighboring nodes. Therefore,
the information collected by the adversaries throughout the course of the algo-
rithm is given by

V = {{Yj , Sj}j∈Nc , {Λ(0)
i|j , X

(t)}(i,j)∈Ec,t∈T }

= {{Sj}j∈Nc
, {Λ(0)

i|j , X
(t)}(i,j)∈Ec,t∈T }, (H.52)

since Yj = X
(T )
j . Note that all the {Λ(t)

i|j}(i,j)∈Ec,t>0 are not included here
because they are not transmitted through the network, and they can be de-
termined by {X(t)}t∈T and {Λ(0)

i|j }(i,j)∈Ec from (H.21). We have the following
result which simplifies the privacy analysis of DOSP.
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Proposition 9.

I(Si;V) =I(Si; {Sj −
∑

k∈Nj,h

Bj|kΛ
(t)
k|j}j∈Nh,t=0,1

|{Sj}j∈Nc
, {Λ(0)

i|j }(i,j)∈Ec). (H.53)

Proof. See Appendix 15.

We note that, similar to the SMPC based approach, the partial sum∑
j∈Nhq

Sj can be computed by the adversaries. Indeed, the partial sum can
be constructed as

∑
j∈Nhq

Sj =
1

2

( ∑
t=0,1

∑
j∈Nhq

(
Sj −

∑
k∈Nj,h

Bj|kΛ
(t)
k|j
)

+
∑
t=0,1

∑
j∈Nhq

∑
k∈Nj,h

Bj|kΛ
(t)
k|j

)
. (H.54)

The first term of the right-hand side of (H.54) is the addition of terms that
are known by the adversaries, as shown by (H.53). Let Ehq

= {(i, j) ∈
E : (i, j) ∈ Nhq ×Nhq} denote the set of all edges between the honest nodes
in component Cq. With this, the second term of (H.54) can be expressed as∑

t=0,1

∑
j∈Nhq

∑
k∈Nj,h

Bj|kΛ
(t)
k|j

=
∑
t=0,1

∑
(i,j)∈Ehq

(
Bj|kΛ

(t)
k|j +Bk|jΛ

(t)
j|k

)
=
∑
t=0,1

∑
(i,j)∈Ehq

Bj|k

(
Λ

(t)
k|j − Λ

(t)
j|k

)
=

∑
(i,j)∈Ehq

Bj|k

((
Λ

(1)
k|j − Λ

(0)
j|k

)
−
(

Λ
(1)
j|k − Λ

(0)
k|j

))
,

which can be determined by the adversaries since, by inspection of (H.23), the
difference Λ

(1)
i|j −Λ

(0)
j|i only depends on x(1)

i and x(0)
j , all of which are known by

the adversaries (based on (H.52)).
As the partial sum can be computed, the analysis of DOSP follows along the

same line as the one presented for SMPC and we conclude that the performance
indicators for DOSP, as measured by the proposed metrics, are also given by
(H.47). In addition, Remark 6 also holds for DOSP.

6.5 Comparisons of existing approaches

In Table H.1 we summarize the performances of the discussed DP, SMPC and
DOSP approaches for distributed average consensus. We can see that SMPC

176



7. Numerical results

and DOSP achieve exactly the same performances, except the fact that SMPC
requires coordination between nodes to construct zero-sum noise. Moreover,
DP is robust against n − 1 corrupted nodes and does not require channel en-
cryption at all but suffers from a privacy-utility trade-off. On the other hand,
SMPC and DOSP do not have privacy-utility trade-off but are only robust to
di − 1 corrupted nodes and require channel encryption for the first iteration.

7 Numerical results

In this section we compare DP, SMPC and DOSP using computer simulations.
The comparisons are conducted in terms of (1) convergence behavior and (2)
utility/privacy behavior. Their metrics are given below.

• Convergence behavior: mean square error to measure the distance be-
tween the state value x(t) and the desired average result x∗ = save1 for
each iteration t, i.e., ‖x(t) − x∗‖2.

• Privacy/utility behavior: normalized mutual information (NMI)3 to mea-
sure the information-theoretical performances, i.e., ui/I(Yi;Yi) for the
output utility, ρi/I(Si;Si) for the individual privacy and ρi,min/I(Si;Si)
for the lower bound on individual privacy.

We simulated a geometrical graph with n = 10 nodes, and set the radius as r2 =
2 logn

n to ensure a connected graph with high probability [52]. For simplicity, all
private data have a zero-mean unit variance Gaussian distribution, and all the
noise used in the DP, SMPC and DOSP approaches follow a zero-mean Gaussian
distribution with variance σ2.

7.1 Convergence behavior

In Fig. H.2 we present the convergence behavior of the algorithms under dif-
ferent amounts of noise insertion, i.e., different noise variances. We can see
that all algorithms achieve the correct average value in the absence of noise,

3Since the experiments are done using discrete data, the mutual information I(X;X) is
bounded by H(X) <∞.

Table H.1: Comparisons of existing information-theoretic solutions for the distributed average
consensus

DP [8–10] SMPC [4–6] DOSP [7, 27]
Adversary models Passive, Eavesdropping

Coordinated noise insertion No Yes No
Output utility ui = I(Yi;Yi +Rave) ui = I(Yi;Yi)

Individual privacy ρi = I(Si;Si +Ri) ρi = I(Si;
∑
j∈Nhq

Sj)

Lower bound on individual privacy ρi,min = I(Si;Si +Rtot) ρi,min = I(Si;
∑
j∈Nh

Sj)

Maximum number of corrupted nodes ki = n− 1 out of n ki = di − 1 out of di
Cost of channel encryption ci = 0 ci = 1
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Fig. H.2: Convergence behaviors of DOSP, SMPC and DP based approaches under three different
amounts of noise insertion.

(a) (a) (b) (b) (c) (c)

Fig. H.3: (a) Two sample graphs in which G′ and G differ in only one edge. Normalized mutual
information of output utility, individual privacy, and its lower bound for honest node 1 in terms
of the amount of noise insertion by using SMPC and DOSP approaches under (b) graph G and (c)
graph G′.

i.e., σ2 = 0. For nonzero noise variance, however, only the DOSP and SMPC
based approaches achieve the correct average value, regardless of the amount
of noise inserted, whereas the accuracy of the DP based approach is compro-
mised by increasing the amount of noise insertion.

7.2 Utility and privacy

To validate the output utility, individual privacy, and its lower bound, we ran
104 Monte Carlo simulations and used the non-parametric entropy estimation
toolbox (npeet) [53] to estimate the normalized mutual information.

Privacy-utility results of the DOSP and SMPC based approaches under dif-
ferent graph topologies

As shown in Table H.1, the performances of SMPC and DOSP are dependent on
the number of corrupted nodes in the neighborhood and the graph topology.
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Fig. H.4: NMI of output utility, individual privacy, and its lower bound for honest node i in terms
of the amount of noise insertion using DP, SMPC and DOSP approaches.

Note that we do not consider DP here because its performance is not depen-
dent on graph topology as it assumes n − 1 corrupted nodes. To demonstrate
the effects of graph topology, Fig. H.3(a) shows a graph G satisfying Assump-
tion 6; i.e., every honest node is connected to at least one corrupted node. In
addition, we consider the graph G′ which is obtained from G by removing edge
(3, 4). The main difference between graph G and G′ is that, after removing all
corrupted nodes, in the former all the honest nodes are connected and in the
latter they are separated in two connected subgraphs. The privacy-utility re-
sults of the DOSP and SMPC based approaches over graph G and G′ are shown
in Fig. H.3(b) and H.3(c), respectively. We validate the following theoretical
results regarding utility and privacy:

• SMPC and DOSP both ensure full utility regardless of the amount of
noise, and thus the privacy level;

• The optimum individual privacy of node i ∈ Cq is only related to the
partial sum of the private data in subgraph Cq, i.e, ρi = I(Si;

∑
j∈Nhq

Sj);

• For graph G both approaches are able to obtain perfect individual privacy,
i.e., the result in Remark 6 is validated.

Privacy-utility comparisons of the DP, SMPC and DOSP approaches

In Fig. H.4 we compare DP, SMPC and DOSP in terms of the amount of noise
insertion using graph G. We show the performance of SMPC and DOSP together
because they have identical performances as shown in Fig. H.3(b). Fig. H.4
shows that, in contrast to SMPC and DOSP which guarantee perfect output
utility and a fixed individual privacy, DP can achieve a lower individual privacy
by increasing the noise variance. However, the price to pay is a deterioration
of output utility, validating the fact that DP trades-off privacy versus utility.
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8 Suggestions for algorithm design

We now provide some suggestions on how to design appropriate privacy-
preserving algorithms for different applications. Typical ways to design a
privacy-preserving solution are (1) choose one of the off-the-shelf tools such
as DP, SMPC or DOSP; (2) combine them to obtain a hybrid approach. We
concluded that the performances indicator of privacy-preserving distributed
processing algorithms were bounded by ui ≤ I(Yi;Yi) (perfect output utility),
I(Si;Si) > ρi ≥ ρi,min (perfect individual privacy), ki ≤ n−1 (maximum num-
ber of corrupted nodes being), and ci ≥ 0 (minimum (zero) cost for channel
encryption). To provide insight on when it is possible to achieve these optimum
performances simultaneously, we have the following result.

Remark 8. (For any application satisfies I(Si; {Sj , Yj}j∈N\{i}) = I(Si;Si),
it is impossible to protect privacy under the conditions of both perfect output
utility and ki = n − 1 being the maximum number of corrupted nodes. )
The reason is simply because the lower bound under such conditions ρi,min =
I(Si; {Sj , Yj}j∈N\{i}) = I(Si;Si) is already the maximum; there is no privacy at
all. An immediate implication of this result is that a SMPC/DOSP, which achieves
perfect output utility, can never be differentially private for such applications. In
other words, DP and SMPC/DOSP are mutually exclusive for such applications.

One conclusion for algorithm design can be drawn from the above result:
given an application at hand, the first thing to do is to compute the lower
bound under the condition of perfect output utility and ki = n−1, i.e., ρi,min =
I(Si; {Sj , Yj}j∈N\{i}). Based on this lower bound, we then classify applications
into two classes and give related suggestions on how to design algorithms.

8.1 Applications for which ρi,min = I(Si;Si)

One example of such applications is the distributed average consensus. For
applications where ρi,min = I(Si;Si) (Remark 8), we should be aware that it
is impossible to design privacy-preserving algorithms with all optimum perfor-
mances. Therefore, we have to prioritize different performances, compromise
one to achieve another. Here are some suggestions for algorithm designs:

1. If the application is in an extreme distrust scenario, i.e., ki = n − 1 is
required, then adopt DP based approaches. But be aware that there is a
trade-off between privacy and utility.

2. If the application is very sensitive in terms of the accuracy of function
output, e.g., perfect output utility is a must, then both SMPC and DOSP
are options. But be aware that ki < n− 1 and that the individual privacy
depends on the graph topology.
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8.2 Applications for which ρi,min < I(Si;Si)

One such example is the application where the objective function is a func-
tion of the `1-norm, like f(s) =

∑
i∈N |si|1. For applications where ρi,min <

I(Si;Si), we have the following suggestions:

1. If ρi,min is tolerable, it is possible to achieve perfect individual pri-
vacy ρi = ρi,min under the condition of both perfect output utility and
ki = n − 1. Try to use either SMPC or DOSP to achieve such optimum
performances.

2. If the above cannot be achieved, one option is to compromise the require-
ment of ki = n − 1, i.e., decrease ki, and try to use SMPC or DOSP to
obtain both perfect individual privacy and perfect output utility only.

3. If ρi,min is not tolerable, one option is to combine SMPC or DOSP with
DP to decrease this lower bound by compromising the output utility.

9 Conclusions

In this paper, we first proposed information-theoretic metrics for quantifying
the algorithm performance in terms of output utility and individual privacy.
The proposed metrics are general and can reduce to well-known frameworks
including SMPC and DP under certain conditions. We derived several theoret-
ical results in terms of mutual information. We explicitly analyzed, compared
and related the state-of-the-art algorithms including DP, SMPC and DOSP for
the distributed average consensus problem, and validated the theoretical re-
sults by computer simulations. Given the lower bound on individual privacy,
we gave suggestions on how to design privacy-preserving algorithms given dif-
ferent conditions/assumptions.

10 Appendix

10.1 Proof of Proposition 7

Proof. As the private data S is independent of the noise R, we have σ2
Z =

σ2
S + σ2

R. Let γ = 1/σZ and define Z ′ = γZ as the normalized random variable
with unit variance. Since mutual information is invariant under scaling, we
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have

lim
σ2
R→∞

I(S;Z) = lim
σ2
R→∞

I(γS; γZ)

= lim
γ→0

I(γS;Z ′)

= I(0;Z ′)

= 0.

Hence we conclude that given arbitrary small δ > 0, there exists β > 0 such
that for σ2

R ≥ β we have I(S;Z) ≤ δ. In the case of Gaussian distributed noise,
we find

I(S;Z) = h(Z)− h(Z|S)

= h(Z)− h(R)

(a)
= h(Z)− 1

2
log(2πeσ2

R)

(b)
≤ 1

2
log(2πeσ2

Z)− 1

2
log(2πeσ2

R)

=
1

2
log(1 + σ2

S/σ
2
R),

where (a) holds as the differential entropy of a Gaussian random variable with
variance σ2 is given by 1

2 log(2πeσ2), and (b) holds because the maximum en-
tropy of a random variable with fixed variance is achieved by a Gaussian dis-
tribution. Hence

δ =
1

2
log(1 + σ2

S/σ
2
R) ⇔ σ2

R =
σ2
S

22δ − 1
= β.
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10. Appendix

10.2 Proof of Proposition 8

Proof.

I(Si;V) = I(Si; {Sj}j∈Nc , {Rji}(i,j)∈Ec , {X(t)}t∈T )

(a)
= I(Si; {Sj}j∈Nc

, {Rji}(i,j)∈Ec , X(0))

(b)
= I(Si; {Sj}j∈Nc

, {Rji}(i,j)∈Ec , {X
(0)
j }j∈Nh

)

(c)
= I(Si; {Rji}(i,j)∈Ec , {X

(0)
j }j∈Nh

)

(d)
= I(Si; {Rji}(i,j)∈Ec , {Sj +

∑
k∈Nj

Rj|k}j∈Nh
)

(e)
= I(Si; {Rji}(i,j)∈Ec , {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh
)

(f)
= I(Si; {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh
)

(g)
= I(Si; {Sj +

∑
k∈Nj,h

Rj|k}j∈Nhq
),

where (a) holds by Lemma 1, as ∀t ≥ 1 : Si → X(0) → X(t) forms a Markov
chain; (b) holds, as {X(0)

j }j∈Nc
can be determined from {Sj}j∈Nc

, {Rji}(i,j)∈Ec
using (H.29), (H.39) and (H.38); (c) holds because {Sj}j∈Nc

is independent of
{Rji}(i,j)∈Ec , {X

(0)
j }j∈Nh

and Si; (d) holds by representing {X(0)
j }j∈Nh

by using
(H.29) and (H.38); (e) follows as {∑k∈Nj,c

Rj|k}j∈Nh
can be determined from

{Rji}(i,j)∈Ec by using (H.39); (f) holds as {Rji}(i,j)∈Ec is independent of both Si
and {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh
; and (g) holds as {Sj +

∑
k∈Nj,h

Rj|k}j∈Nh\Nhq

is independent of both Si and {Sj +
∑
k∈Nj,h

Rj|k}j∈Nhq
.

10.3 Proof of equation (H.53)

Proof. By combining (H.48) and two successive x-updates (H.20), it can be
shown that

x(t+1) − x(t−1) =
(
I + cC>C

)−1(
−2cC>PCx(t) − 2cC>Cx(t−1)

)
. (H.55)
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We have

I(Si;V) = I(Si; {Sj}j∈Nc , {Λ(0)
i|j }(i,j)∈Ec , {X(t)}t∈T )

(a)
= I(Si; {Sj}j∈Nc

, {Λ(0)
i|j }(i,j)∈Ec , {X(1), X(2)})

(b)
= I(Si; {Sj}j∈Nc

, {Λ(0)
i|j }(i,j)∈Ec , {X

(1)
j , X

(2)
j }j∈Nh

)

(c)
= I(Si; {Sj}j∈Nc , {Λ(0)

i|j }(i,j)∈Ec
, {Sj −

∑
k∈Nj,h

Bj|kΛ
(t)
k|j}j∈Nh,t=0,1)

(d)
= I(Si; {Sj −

∑
k∈Nj,h

Bj|kΛ
(t)
k|j}j∈Nh,t=0,1

|{Sj}j∈Nc
, {Λ(0)

i|j }(i,j)∈Ec)

where (a) holds, as all {X(t)}t>2 can be determined by X(1) and
X(2) using (H.55) (note that we omit X(0) by assuming x is initial-
ized with all zeros); (b) holds, as {X(1)

j }j∈Nc can be constructed by

{Sj}j∈Nc , {Λ(0)
i|j }(i,j)∈Ec ; and similarly {X(2)

j }j∈Nc can be constructed by us-

ing {Sj}j∈Nc , X
(1), {Λ(1)

i|j }(i,j)∈Ec based on (H.22), in which the last set can be

determined using {Sj}j∈Nc
, {Λ(0)

i|j }(i,j)∈Ec ; (c) also follows from (H.22); and
(d) follows from the definition of conditional mutual information and Si being
independent of both {Sj}j∈Nc

and {Λ(0)
i|j }(i,j)∈Ec .
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