

Aalborg Universitet

Privacy in Optimization Algorithms based on Secure Multiparty Computation

Tjell, Katrine

DOI (link to publication from Publisher):
10.54337/aau466211893

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Tjell, K. (2021). Privacy in Optimization Algorithms based on Secure Multiparty Computation. Aalborg
Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://doi.org/10.54337/aau466211893
https://vbn.aau.dk/en/publications/e96104a2-075b-4540-909c-7720e7289ac4

K
atr

in
e tjell

Pr
iva

c
y in

 O
Ptim

izatiO
n

 a
lg

O
r

ith
m

s b
a

sed
 O

n
 sec

u
r

e m
u

ltiPa
r

ty c
O

m
Pu

tatiO
n

Privacy in OPtimizatiOn
algOrithms based On secure

multiParty cOmPutatiOn

by
Katrine tjell

Dissertation submitteD 2021

Privacy in Optimization
Algorithms based on Secure

Multiparty Computation

Ph.D. Dissertation
Katrine Tjell

Dissertation submitted October, 2021

Dissertation submitted: October, 2021

PhD supervisor: Prof. Rafael Wisniewski
 Aalborg University

PhD committee: Associate Professor Rasmus Løvenstein Olsen (chair)
 Aalborg University

 Professor Richard Heusdens
 Delft University of Technology

 Associate Professor Claudio Orlandi
 Aarhus University

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Electronic Systems

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-984-4

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Katrine Tjell

Printed in Denmark by Rosendahls, 2021

Abstract

The privacy of individuals is an increasing concern in a time where a large
amount of data is recorded and stored by different actors all around us. The
collected data is for instance electricity and water consumption from indi-
vidual households, the GPS location of smart phones, public transportation
routines, and shopping from digital payment methods. Thus, it is not a won-
der why people may start to feel monitored. Nonetheless, the recorded data
is extremely valuable for instance in the efforts of reducing pollution and CO2
emissions and increasing user experiences and living standards. It is there-
fore highly relevant to study how privacy sensitive data can be recorded and
included in computations without violating the privacy of individuals.

This thesis is one such study. The angle of investigation is how crypto-
graphic methods can be used to keep data private (or hidden) even when it
is desired to perform computations on it. Said more straight forward, the
thesis is concerned with how computations can be made on encrypted data,
without needing to decrypt or in other ways reveal the data. The applied
methods to protect the data are based on secure multiparty computation and
secret sharing, while the objective is to apply optimization algorithms on the
secret data.

The main contribution of the work is insights into the challenges of using
cipher texts in algorithms and a novel real number secret sharing scheme that
proposes a trade-off between privacy and usability of the scheme. The latter
contribution challenges the generally accepted idea that the cryptographic
techniques should ensure 100 percent privacy also when applied to real world
problems.

iii

Resumé

I en tid hvor data opsamles overalt i samfundet af forskellige aktører, er
mange bekymret for den enkeltes privatliv. Det opsamlede data kan eksem-
pelvis være elektricitet og vand forbrug, GPS lokationen af smartphones, of-
fentlig transport rutiner og shopping ved brug af digitale betalings metoder.
Det er derfor ikke mærkeligt, at mange kan føle sig overvåget. På den anden
side er det opsamlede data yderst værdifuldt i udviklingen af teknologier, der
reducerer forurening og udledning af CO2 og forbedrer bruger oplevelser og
levevilkår. Det er derfor relevant at undersøge, hvordan data sikkerhed og
privatliv kan forenes med opsamling og brug af sensitivt data.

Denne afhandling er netop sådan en undersøgelse. Udgangspunktet for
studiet er brugen af kryptografiske metoder til at holde data hemmeligt,
selv når beregninger skal laves på dataet. Sagt med andre ord undersøger
afhandlingen, hvordan beregninger kan udføres på krypteret data uden at
dekryptere eller på andre måder afsløre dataet. De anvendte metoder til
at beskytte data er baseret på secure multiparty computation og secret sharing,
mens formålet er at anvende optimerings algoritmer på det hemmelige data.

Resultatet af arbejdet er hovedsageligt en større forståelse af udfordringerne
ved at bruge krypteret data i algoritmer og en ny secret sharing metode til
reelle tal som giver en afvejning mellem privathed og praktisk brug af meto-
den. Det sidste resultat udfordrer den generelle accept af at kryptografiske
metoder skal sikre privatliv 100 procent selv når de anvendes i praktiske
problemstillinger.

v

Contents

Abstract iii

Resumé v

Preface ix

I Summary 1

Introduction 3
1 Motivation . 3
2 Background and State-of-the-Art 5

2.1 Finite fields and modular arithmetic 10
2.2 Secret sharing . 11
2.3 SMPC based on secret sharing 12
2.4 SMPC based on garbling 13
2.5 Adversary model . 14
2.6 Privacy model . 15

3 Research questions . 15
4 Papers and Outline . 16

Secure Summation in Graphs 19
5 Aggregation of private data without fully connected commu-

nication . 19
6 Summary of paper A ("Privacy Preserving Distributed Sum-

mation in a Connected Graph") 20
6.1 Discussion . 23

7 Summary of paper B ("Private Aggregation with Application
to Distributed Optimization") . 24

8 Discussion and Comparison . 27

vii

Contents

Secure Optimization Algorithms 29
9 Applying cryptographic methods in optimization algorithms . 29
10 Summary of paper C "Privacy Preserving Recursive Least Squares

Solutions" . 29
10.1 Results . 33

11 Summary of paper D "Privacy Preservation in Distributed Op-
timization via Dual Decomposition and ADMM" 34
11.1 Results . 36

12 Summary of paper E "Secure learning-based MPC via garbled
circuit" . 37
12.1 Results . 40

13 Discussion . 41

Real Number Secret Sharing 43
14 Secret sharing without finite field arithmetic 43
15 Summary of paper F "Privacy in Distributed Computations

based on Real Number Secret Sharing" 44
15.1 Results . 47

16 Discussion . 50

Conclusion and Outlook 51

References 53

II Papers 59

A Privacy Preserving Distributed Summation in a Connected Graph 61

B Private Aggregation with Application to Distributed Optimization 77

C Privacy Preserving Recursive Least Squares Solutions 95

D Privacy Preservation in Distributed Optimization
via Dual Decomposition and ADMM 113

E Secure learning-based MPC via garbled circuit 131

F Privacy in Distributed Computations based on Real Number Secret
Sharing 153

viii

Preface

This thesis is submitted as a collection of papers in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at the Department of
Electronic Systems, Automation and Control, Aalborg University, Denmark. The
work has been carried out in the period from August 2018 to October 2021
under the Secure Estimation and Control Using Recursion and Estimation
(SECURE) project funded by AAU.

The thesis is structured in two parts where the first part serves as an in-
troduction and the second part consists of six published or submitted papers.
The first part is divided into 4 chapters, where the first is a broad introduc-
tion to the subject followed by the background and specific methods used
throughout the thesis. The following three chapters each presents an overall
problem and suggestions for solutions. The solutions are presented as sum-
maries of the papers. The summaries are meant as an overview of each paper,
stating the specific problem of the paper and a high level introduction to the
proposed solution.

I would like to thank Professor Rafael Wisniewski for not only delivering
superb supervision throughout my studies, but also for being my mentor and
trusted ally. It is for sure that I would not have managed all the challenges,
both technical and personal, without your support and guidance.

I also want to thank Professor Moritz Schulze Darup, for opening the
doors at TU Dortmund, Regelungstechnik und cyberphysische Systeme, for
me even at the challenging times under the COVID-19 pandemic. I very
much admire your ability and will to make me feel completely as a part of
your excellent team from day one, and I greatly appreciate our talks about
everything from technical challenges to career decisions.

Additionally, I would like to thank my colleagues in the SECURE project
for broadening my knowledge about other fields than my own and for their
great ideas for research and solutions.

Katrine Tjell
Aalborg University, October 29, 2021

ix

Preface

x

Part I

Summary

1

Introduction

1 Motivation

In this digitized era of time, an enormous amount of data is recorded and
stored by many different actors. For instance,

– credit card companies keep track of time and place of transactions,

– public transportation services record the number of passengers and
where people are traveling to and from,

– smart phone providers monitor the GPS location of their smart phones,

– water, heat, and electricity consumption of households are monitored
by providers,

– search engines (like Google) keep records of searches,

– and many more examples could be added to the list.

This recording is made possible by the fast developing sensor technology
and also the extremely efficient storage technology enabling huge amounts
of data to be stored at a low cost. In addition, the internet makes it very easy
to collect and share data.

Beginning in the last decade or so, there has been an increasing concern
about the privacy of individuals and how the collection of data might violate
their privacy. This concern was manifested in 2018 by the "General Data
Protection Regulation" law enacted by the European Union (EU) [1] which
gives clear rules on how data is to be managed and the rights of EU-citizens
to be in control of their own private data.

Some of the recorded data like time and place of credit card transactions
and electricity consumption of a household might seem harmless. So why
this concern about privacy and what are people afraid of? It turns out that
even if a data set does not immediately pose a privacy threat (for instance if
it is anonymous), combining the data with other available information may

3

be enough to identify individuals and thus constitute a huge violation of
privacy. For instance, [2] uses publicly available data to de-anonymize dis-
posable 10-ride tickets for public transportation. Buying such an anonymous
10-ride ticket, the user assumes her privacy stays intact, when in fact holding
the information from the ticket (date and time of fares, geographical zone,
and so on) together with other public data (such as phone-book records and
university enrollment lists) identifies the user and the travel history of the
individual.

Perhaps even more surprising, anonymous data from databases such as
movie ratings or statistical facts about diseases may also lead to identification
of the individuals in the database. For instance, in 2007 Netflix published
their "Prize dataset", which contains anonymous movie ratings of 500,000
Netflix users, and those users of course expect their privacy to be preserved.
However, [3] shows how to perform a de-anonymization attack on the dataset
using information from the Internet Movie Database (IMDb), which is pub-
lic. Thus, Netflix users were identified and there apparent political belief
amongst other private information was revealed.

In conclusion, recorded data potentially hold a lot of sensitive informa-
tion. Especially, if combined with other data sources. To this end, companies
might collect seemingly non-senstive data, which individuals are not reluc-
tant to hand over. Nonetheless, the data may allow sensitive information to
be extracted when combined with other data sources.

The straightforward solution to the problem would be to stop recording
data. However, in many cases such data are key to improve solutions to be
greener, cheaper, and of better quality. For instance, Google uses the GPS
location of smartphones to predict traffic congestion, which means that users
of Google Maps gets directions that avoids tailbacks. In turn, this helps uti-
lizing the already exiting roads and makes traffic more smooth for everyone.
Transportation services can use recorded data about their passengers to make
more efficient routes taking into account the needs of its costumers, which
is beneficial both for the costumers in improved service and also helps make
public transport greener and cheaper. Many more examples could be made,
for instance if district water providers had detailed information about the
consumption profiles of end-users, the pressure in the water grid could be
much more adapted to the consumption. This would extend the lives of the
pumps and reduce the electricity consumption. In conclusion, the data is in-
deed key to drive development of greener and better solutions forward and
thus the answer is not to stop recording data. Yet, the privacy issue cannot
be ignored either.

What this thesis explores is using methods to "hide" data using cipher-
texts before the data leave the hands of its owner. Many applications already
use encryption of data before transferring the data using a communication
channel. Usually, the receiver then decrypts and obtains the plain text data

4

2. Background and State-of-the-Art

in order to perform calculations and processing. This thesis explores the pos-
sibilities of not allowing the receiver to decrypt, but instead allow him to do
computations directly on the cipher texts, ensuring that he stays oblivious
to the plain text data. Cryptographers have been working on these kinds
of problems since the 1980’s under the name of secure multiparty computation
using techniques such as homomorphic encryption and secret sharing. Only re-
cently the engineering communities have looked into using them in engineer-
ing applications. In the following section, the background and state-of-the-art
of these methods are presented.

2 Background and State-of-the-Art

The underlining problem in this thesis is the one of secure multiparty com-
putation (SMPC). Namely, assume n mutually distrustfully parties each has
an input xi, and they would like to compute f (x1, . . . , xn), where f is some
function. As the parties do not trust each other, no party i wants to reveal
their input xi. Furthermore, the parties cannot agree on any trusted third
party to whom everyone could hand over their input. To this end, the idea
is that the parties run a secure protocol through communications with each
other, which lets them compute the function f , while at all times remaining in
control of their own data. This setup is referred to as SMPC, and is illustrated
in Fig. 1.

Fig. 1: Illustration of SMPC. Note that no trusted third party exists, hence computation is per-
formed by the participants communicating with each other using a secure protocol.

The problem of SMPC is usually solved using cryptographic methods
such as secret sharing, homomorphic encryption, and garbling. Yet, the no-
tion of differential privacy is probably even more associated with privacy con-
cerns, especially in the engineering communities. This thesis is mainly occu-
pied with secret sharing based approaches; nonetheless, this section provides

5

Encryption

∼ 1900 BC

Privacy homomorphisms
(Homomorphic encryption)

1978

Secret sharing

1979

Yao’s SMPC

1982 1990

Garbling

Differential privacy

2006

First practical

use of SMPC

2009

Fig. 2: Approximate timeline (starting from "encryption") showing when the different methods
approximately appeared.

a bit of background to all four techniques to put them in relation to each
other. As an overview, Fig. 2 depicts a timeline placing the approximate
appearance of the methods.

The art of encryption has existed since even before Christ, and has been
used in every thing from love letters to hiding orders from a war general
to his soldiers, [4]. In the beginning, encryption was mainly carried out
by replacing each letter with another according to some fixed table. These
schemes were however relatively easy to break using the frequencies of the
letters.

Fig. 3: Typical use of encryption. The sender encrypts the
messages, x, sends the cipher text version, [x], and the
receiver decrypts to get the plain text.

Only in the 1920s and
1930s the more complex
schemes were invented us-
ing machines (notably the
Hebern machine and the
Enigma), probably due to
the world wars, [4]. Af-
ter that it was not until
the introduction of the pro-
grammable computer that
the development of cryptog-
raphy again took a huge
step starting with Diffie and Hellman introducing public key cryptography
in 1976, [5]. As evident, until around this point in time, cryptography (or en-
cryption) was used to keep a message secret between sender and receiver, see
Fig. 3. In other words, the sender encrypted the message and the receiver
would decrypt to get the plain text.

In 1978, Rivest, Adleman, and Dertouzos proposed that the use of cryp-
tography could be expanded. Namely, they considered an information sys-
tem handling encrypted data and noticed that all it could do was storage and

6

2. Background and State-of-the-Art

PC

Fig. 4: Expanded use of encryption. Computations can
be done directly on the cipher texts [a], [b], [c]. This was
first called privacy homomorphisms, but is today known
as homomorphic encryption.

retrieval of data. For any
other operation, it was nec-
essary to decrypt the data
first.

In [6], they therefore ad-
dressed this limitation and
suggested the existence of
special encryption functions
that allow cipher texts to be
operated on, see Fig. 4.

They referred to these
special functions as "pri-
vacy homomorphisms" and
already then, they mentioned the limitations, that a large set of operations
could not be performed on the encrypted data, in general. Today the concept
is known as homormorphic encryption, and even though it has been about forty
years since the first contribution, most homomorphic encryption schemes can
handle either addition or multiplication (and only rarely both), so Rivest et
al. were indeed right in their observation about the limitations.

Fig. 5: Secret sharing. A secret is divided into
shares that are distributed among n participants.
No single party has enough information to re-
construct the secret.

Around the same time, namely
in 1979, Shamir gave an introduction
to the concept of secret sharing with
his work "How to Share a Secret",
[7].

The idea behind secret sharing
was (opposed to encryption) not
about the transmission of secret
data. In fact, Shamir assumed that
private communication channels be-
tween parties existed. Rather, the
idea was that one entity keeping
a secret was vulnerable to single-
point of failure or single-point at-
tack. Thus, Shamir proposed to
share a secret between n parties so
that no single party (or coalition of
t parties) would have enough infor-
mation to reconstruct the data, see

Fig. 5. Namely, at least t + 1 parties need to collaborate to learn the secret.
The work of Shamir would later prove to be significant to the development
of SMPC, [8].

7

Fig. 6: SMPC. The participants communicate
with each other using a secure protocol to per-
form computations on the private data of each
party.

The problem of SMPC has been
studied by cryptographers since
1982, where Yao made the first con-
tribution to solve it, [9]. This work
mainly focuses on protocols for se-
cure two party computation (n = 2),
where Yao for instance solves the so-
called "millionaires problem", where
two millionaires seek to learn which
of them are the richest without hav-
ing to disclose the size of each for-
tune. This work was followed up by
Goldreich, Micali and Wigderson in
1987 [10], where they present an al-
gorithm for producing a secure pro-
tocol for playing any "mental game"
for any number of players, see Fig.
6. By mental game, they refer to
communications that does not take
place physically, for instance, coin tossing over the phone.

A year before that, in 1986, Benaloh noticed the homomorphism of many
of the secret sharing schemes developed at the time. Particularly, he describes
how Shamir’s secret sharing scheme allows computations to be performed
directly on the shares, [11]. After the work was published, several ideas on
how to solve the problem of SMPC using secret sharing approaches appeared,
[12–14].

Also, the so-called garbling is a method to solve the problem of SMPC,
even though it is usually applied for 2-party secure computation. The method
is based on boolean circuits, and the private evaluation of it comes from
(loosely speaking) encrypting the wires in the circuit. To this end, the output
of each gate is meaningless and only by applying the decrypt-information to
the (encrypted) result of the last gate will the plain text result be revealed.
The idea of representing the function as a boolean circuit was also considered
by Goldreich et al. in [10], but it was not until the work of Beaver, Micali and
Rogaway [15] in 1990 that the term "garbled circuit" was introduced.

The first contributions to the research of SMCP were primarily of theoreti-
cal nature and it was not until around the millennium that researchers started
considering real world SMPC problems. In fact, in 1997 Goldwasser said that
the field of multiparty computation is "an extremely powerful tool and rich
theory whose real-life usage is at this time only beginning but will become
in the future an integral part of our computing reality" [8]. This statement
underlines the fact that this field is still quite new, and research on how to
apply the methods to real world scenarios is far from done.

8

2. Background and State-of-the-Art

The first actual real world application of SMCP was in 2009, where it was
used to trade contracts for sugar beet production, [16]. The SMPC scheme
ensured that bids stayed completely hidden under the auction while still be-
ing able to compute the right prices for the trades. Since then, other real
world usage of SMPC has not been reported. Nonetheless, there has been
much research in applying the SMPC methods to various algorithms used in
engineering communities. To name a few, privacy preserving graph filtering
is presented in [17], privacy preserving distributed consensus based on addi-
tive secret sharing is presented in [18], in [19] privacy preserving distributed
optimization is proposed, [20, 21] solves regression problems while preserv-
ing the privacy of the involved data, and in [22] deep learning is performed
on secret shared data. The mentioned work appeared between 2013 and 2021.

As a kind of alternative to these cryptographic techniques, the notion
of the so-called differential privacy was in 2006 introduced by Dwork in [23].

DP

Database

design

da
ta

data

data

Fig. 7: Differential privacy (DP). A scientist de-
signs a differential privacy mechanism and a set
of individuals provides data to a database. Be-
fore the data enters the database it is obfuscated
by the DP mechanism which guarantees with a
high probability that the data cannot be traced
back to the individual.

Dwork is occupied with the pri-
vacy of individuals participating in
a database, see Fig. 7. The work
starts by showing that it is impossi-
ble to guarantee that nothing about
an individual can be learned from a
database if it could not be learned
without the database, which was
the aim of previous works. On the
contrary, Dwork suggests a privacy
measure which describes the risk of
participating in the database com-
pared to not participating. The pri-
vacy measure is referred to as differ-
ential privacy. The underlining idea
is very simple; private data is obfus-
cated by random noise. Obviously,
the noise must be carefully designed
to ensure that sufficient privacy is

achieved and that sufficiently accurate information about the database can
still be provided.

The main use of differential privacy was in the beginning about ensur-
ing that publishing statistical results could not lead to the identification of
individuals, [24, 25]. Since then, the differential privacy approach has found
several applications like privacy in machine learning [26], signal processing
[27], and control and optimization [28].

In conclusion, Table 1 gives a brief and general comparison of the crypto-
graphic techniques mentioned above. Note that there are on-going research
on how to improve the weaknesses of the techniques, thus the comparison

9

Scheme
Trade-off
in privacy
and utility

Parties
Comp.
heavy

Comm.
heavy

Homomorphic encryption No n ≥ 2 Yes No
Secret sharing No n ≥ 2 No Yes
Garbling No n = 2 Yes No
Differential privacy Yes - No No

Table 1: Quick comparison of the cryptographic methods. Note that this is true for most schemes
in each category and only for the time being since research on how to improve the weaknesses
of the techniques is ongoing.

table holds in general and for the time being.
In this thesis, the use of secret sharing techniques in distributed algo-

rithms are explored and the use of garbling is investigated in a minor degree.
Therefore, the following provides a more elaborate introduction to these two
techniques. To set the scene, finite field arithmetic is introduced first.

2.1 Finite fields and modular arithmetic

The (mathematical) finite field is impossible to ignore when discussing data
privacy and computations on private data. Many encryption, homomorphic
encryption and secret sharing schemes are based on finite field arithmetic.
Here, the focus is on finite fields defined as integers modular q, where q is a
prime, in this thesis denoted as Fq. To this end, Fq is a finite set of elements
on which addition, subtraction, multiplication, and division is defined. In
this context, these operations are defined using modular arithmetic. To illus-
trate this, Fig. 8 shows each operator in F3. For a more elaborate introduction
to finite fields and finite field arithmetic, refer to [29]. Throughout the thesis,
notation is misused in they way that "equality" is used to denote the case,
where two numbers are congruent modular q. That is, x = y mod q carries
the same meaning as x ≡ y mod q. Moreover, be aware that any modu-
lar equation is to be understood using modular arithmetic, unless otherwise
stated.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

(a) Addition in F3.

- 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

(b) Subtraction in F3.

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

(c) Multiplication in F3.

/ 0 1 2

0 0 0 0

1 - 1 2

2 - 2 1

(d) Division in F3.

Fig. 8: Illustration of the operators in Fq, which effectively is modular q arithmetic.

10

2. Background and State-of-the-Art

2.2 Secret sharing

The method of secret sharing is about generating so-called shares of a secret
which can be distributed among a set of n participants. Each participant
has a unique label p ∈ P , where P ⊂ Fq with |P| = n. The shares are
usually constructed in such a way that any coalition of t < n shares reveals
nothing about the secret, and it takes a set of more than t participants to
again reconstruct the secret.

A more formal definition of a secret sharing scheme is given in Definition
1, (from paper C, [30]).

Definition 1 (Secret Sharing Scheme)
A secret sharing scheme for n parties is defined by two algorithms share

and recon. share takes a secret s and creates n values s[1], ..., s[n], called
shares. recon takes a set of at least t+ 1 shares and outputs the correspond-
ing secret s. Moreover, any set of t or fewer shares reveals no information
about the secret.

The p’th share of a secret s is denoted s[p] and s[] is used when referring to
all n shares. Note that this notation is used regardless of the share algorithm.
This is because for most cases in this thesis, any share algorithm can be used
as long as it permits addition and multiplication to be perform directly on
shares, see section 2.3.

Here, two share algorithms are introduced. The first is the additive scheme
[31], where the shares are constructed such that

s =

(
∑
p

s[p]

)
mod q, (1)

and each share is uniformly distributed on Fq. To reconstruct the secret, all
n shares are needed.

The second considered scheme is Shamir’s secret sharing scheme. In this
scheme, the secret is hidden in the constant term of a random t degree poly-
nomial and the shares of the secret are the polynomial evaluated in known
points (usually the labels of the participants). That is, the random polynomial

f (x) =
(

s + r1x + r2x2 + · · ·+ rtxt
)

mod q, (2)

is generated by choosing r1, . . . , rt uniformly from Fq, and the secret s is the
constant term.

Fig. 9 depicts 50 shares of the secret s = 5 using a 10 degree random
polynomial and as seen, the shares are uniformly random.

11

5 10 15 20 25 30 35 40 45 50

20

40

60

80

p

F
97

Fig. 9: 50 shares of a secret s = 5 created using Shamir’s secret sharing scheme with t = 10 and
q = 97.

Note that both in the additive scheme and in Shamir’s secret sharing
scheme, the generated shares are uniformly distributed on Fq. Since the
uniform distribution holds no information about the secret, no information
is leaked. This is often referred to as perfect privacy, since the adversary gets
no more information about the secret than he could by drawing uniformly
random numbers himself.

2.3 SMPC based on secret sharing

Solving the problem of SMPC can be achieved using secret sharing. That is,
computations can be done directly on shares without the need to reconstruct
the secrets first. For the additive secret sharing scheme, addition (and sub-
traction) can easily be performed on shares of secrets. To see this, consider
the addition of three secrets, s1, s2, s3 computed on the shares of the secrets.

s1 = (s1[1] + s1[2] + s1[3]) mod q

s2 = (s2[1] + s2[2] + s2[3]) mod q

s3 = (s3[1] + s3[2] + s3[3]) mod q

s1 + s2 + s3 = ((s1[1] + s2[1] + s3[1])

+ (s1[2] + s2[2] + s3[2])

+ (s1[3] + s2[3] + s3[3])) mod q,

(3)

where the idea is that the sum of the p’th shares are computed by the p’th
participant. Similarly, it is easy to see that a secret multiplied with a public
constant can be computed by each participant multiplying their respective
share by the constant.

Also shares generated using Shamir’s secret sharing scheme support ad-
dition (and subtraction) and multiplication with a public constant directly on

12

2. Background and State-of-the-Art

a[p] = s1[p]− α[p],
b[p] = s2[p]− β[p].

Broadcast
a[p] and b[p].

a = recon(a[]),
b = recon(b[]).

y[p] = ab + aβ[p] +
bα[p] + γ[p].

Communication

Fig. 10: Block diagram of multiplying two secrets, s1 and s2, using Beavers trick and a Beaver
triplet, [α, β, γ], from the view of participant p. The product of the secrets is denoted y = s1s2.

shares. The former follows from the fact that adding two t degree polyno-
mials yields a new t degree polynomial with constant term being the sum of
the constant terms of the summed polynomials. The latter holds since mul-
tiplying a polynomial by a constant simply scales the coefficients leading to
the desired result.

When it comes to multiplication, things get more complicated. In case of
Shamir shares, a participant can multiply its respective shares of two secrets,
however, the resulting polynomial is then of degree 2t. The growing degree
of the resulting polynomial is a disadvantage since t + 1 shares are necessary
to reconstruct the secret. To circumvent this situation, Beaver came up with
a trick in the work [32] which is known as Beavers trick. It uses a so-called
Beavers triplet, which is a set of three random numbers α, β, γ, where γ = αβ.
The idea is that no party knows the actual value of the triplet, but each
party has a share of each number. Generation of the triplets can be done
by the participants themselves in a rather straight forward way when t < n

2 .
Beavers trick also works for additive shares, however, there is no obvious way
the participants can generate a triplet based on additive shares. To this end,
research in efficient ways for generating Beavers triplets for instance using
homomorphic encryption, [33, 34], is ongoing.

The algorithm for multiplying two secrets, s1 and s2, directly on the shares
using Beavers trick is sketched in the block diagram in Fig. 10 from the view
of the p’th participant.

2.4 SMPC based on garbling

For private two party computations, functions that can be stated as a binary
circuit can be quite efficiently computed using a garbled circuit. To construct
and evaluate the garbled circuit, four algorithms are used; Gb, En, Ev and De.
Gb is the garbling algorithm that takes as input the binary circuit and outputs
the garbled circuit, the encoding, and decoding information. En and De are
the encoding and decoding algorithms, respectively, where En takes a binary

13

f Gb

d

e
F

x En
X Ev

Y

De y

Fig. 11: The algorithms in a garbling scheme and their inputs and outputs. The figure is from
[35].

string and the encoding information and outputs a garbled string, De takes a
garbled string and the decoding information and outputs the binary output
of the circuit. Ev is the evaluation algorithm that takes as input the garbled
circuit and the garbled inputs and outputs the garbled output of the circuit.
An overview of the algorithms is depicted in Fig. 11.

When applying the technique in the two party setup, one party is assigned
to be the so-called garbler, and will be in charge of generating the garbled cir-
cuit from the binary circuit and encoding the binary inputs. The other party,
the evaluator, evaluates the garbled circuit using Ev and the garbled inputs.
To this end, there is one caveat; usually the input to the circuit is divided
between the two parties, thus the evaluator needs to learn the garbled ver-
sion of its input without the garbler learning the plain text version. To solve
this, usually the so-called oblivious transfer (OT) is employed. In short, the
garbler generates all possible garbled inputs (can only be 0 or 1 for each in-
put wire) and the evaluator then "chooses" the garbled inputs corresponding
to its inputs while staying oblivious to the other generated encodings, and
the garbler stays oblivious to the plain text input of the evaluator. For the
interested reader, details about OT can be found in [36] and its references.

Since the garbling technique is only sparsely used in this thesis, this high-
level introduction suffices. For further details, see [35] and paper F, [37].

2.5 Adversary model

In the literature, the most common models for the adversary is; passive, ac-
tive, adaptive, and eavesdropping, [38]. The models are almost self explana-
tory; the active adversary can instruct the corrupted participants to deviate
from the protocol, while the passive adversary follows the protocol. The
eavesdropper can listen to all communication while the adaptive adversary
can corrupt new parties along the way.

In this thesis, the adversary is modeled as passive, such that the protocol
is followed by both honest and corrupt participants. Thus, it is assumed that
the adversary decides which parties to corrupt before protocol execution and
that it cannot eavesdrop on the communication. Moreover, the adversary is
assumed to be able to attack up to a maximum of t participants.

14

3. Research questions

Choosing the more simple model for the adversary (the passive), makes
sense since protocols developed in this thesis (if ever used in a real world
scenario) are most likely to be used by companies that would completely
loose their reputation if caught cheating. Nonetheless, we note that with only
minor modifications, the presented protocols could be made secure against
an active adversary by exchanging the secret sharing scheme, [39].

2.6 Privacy model

Privacy is viewed from two perspectives in this thesis. In the first part, pri-
vacy of the methods are viewed in terms of the so-called simulation paradigm,
[38]. Following this paradigm, a scheme is privacy preserving if the data
revealed to each party (or coalition of t parties) during protocol execution
could be generated form its own input and the output of the protocol. The
intuition is that in an ideal world, each party learns the output of the com-
putation and any additional information that can be generated based on this
data will therefore also be learned in the ideal world. Since the ideal world is
by definition ideal, there is no aim to do better than what can be done here.
Moreover, when the revealed data is uniformly distributed, the protocol is
said to enjoy perfect privacy. This is due to the uniform distribution con-
taining no information about the secret and that each element has an equal
probability of occurring.

In the last part of the thesis, a more unconventional view of privacy is
taken. Here, privacy is viewed in terms of how much (or little) information is
leaked during a protocol execution. This means that perfect privacy is sacri-
ficed, and a setup where privacy can be traded to gain for instance efficiency
or accuracy is introduced.

3 Research questions

The aim of this thesis is to investigate whether privacy of data can be pre-
served when used in control and optimization algorithms. The challenge
with algorithms used in the field of control is the usual strict requirement
for the speed and accuracy of computations since a controller potentially
becomes unstable otherwise. Consider for instance an inverted pendulum,
desired to be balanced in the up-right position by a motor. If the controller
for the motor is too slow or inaccurate, it is impossible to reach the steady
state and instead the motor will alternate between turning to the right and to
the left.

The initial goal is first of all to investigate, whether data privacy can
be achieved in distributed algorithms (used in control) using cryptographic
methods such as secret sharing. Thus, part of the thesis is a proof-of-concept.

15

The approach is to start out by crawling, and thus already the problem state-
ment is reduced to focus on optimization (or estimation) methods which of-
ten is the main part of a control algorithm. Specifically, the focus is on privacy
preserving optimization, which in the end can be used to preserve privacy in
control.

The thesis builds on the following hypothesis;

- secret sharing approaches are applicable to distributed optimization al-
gorithms used in control to achieve data privacy.

In continuation, a few concerns arise. Namely, SMPC methods based on
secret sharing require that each participant can communicate privately with
each of the other participants, i.e. a fully connected communication network is
necessary. Moreover, the methods are known to be heavy in communication
complexity and it is a requirement that the secret data can be stated as finite
field elements. Since data used in control and optimization typically are real
numbers, a conversion to integers is necessary, entailing quantization errors.
To this end, privacy comes at a cost. To sum up, the following research
questions are stated;

1. How can secret sharing approaches be used in networks that does not
support fully-connected communication between nodes?

2. What is the cost of privacy preserving algorithms in distributed opti-
mization compared to non-private solutions?

3. How could a trade-off be introduced, where perfect privacy is sacrificed
in order to lower the cost of privacy preserving computations?

(a) How can privacy be quantified?

The hypothesis is validated by developing privacy preserving distributed
optimization algorithms using secret sharing techniques. The research ques-
tions are answered by evaluating the performance of the developed privacy
preserving algorithms and investigating how improvements can be made.

4 Papers and Outline

The research questions are investigated in the following papers:

A Tjell, K., & Wisniewski, R., "Privacy Preserving Distributed Summation
in a Connected Graph", in IFAC-PapersOnLine, 53(2), pp. 3445-3450,
2020.

16

4. Papers and Outline

B Tjell, K., & Wisniewski, R., "Private Aggregation with Application to
Distributed Optimization", in IEEE Control Systems Letters, 5(5), 1591-
1596, 2021.

C Tjell, K., Cascudo, I., & Wisniewski, R., "Privacy Preserving Recur-
sive Least Squares Solutions", in Proc. 18th European Control Conference
(ECC), pp. 3490-3495, 2019.

D Tjell, K., & Wisniewski, R., "Privacy Preservation in Distributed Op-
timization via Dual Decomposition and ADMM", in Proc. IEEE 58th
Conference on Decision and Control (CDC), pp. 7203-7208, 2019.

E Tjell, K., Schlüter, N., Binfet, P., & Darup, M. S., (Accepted/In press).
"Secure learning-based MPC via garbled circuit", in Proc. IEEE 60th
Conference on Decision and Control (CDC), 2021.

F Tjell, K., & Wisniewski, R., "Privacy in Distributed Computations based
on Real Number Secret Sharing", submitted to Information Sciences, 2021.

The papers are found in full in the second part of the thesis. The re-
maining of the first part of the thesis is divided into 3 chapters that each is
concerned with a subject and presents a number of the papers. Specifically,

- Chapter 2 deals with the problem of secure summation in node net-
works, where a fully connected communication network between the
nodes is not assumed. Two privacy preserving solutions are presented
as summaries of paper A and B.

- Chapter 3 investigates how to translate specific algorithms into privacy
preserving versions. To this end, three privacy preserving algorithms
are presented in the form of summaries of paper C, D, and E.

- Chapter 4 is concerned with how to introduce a trade-off between pri-
vacy and efficiency of privacy preserving algorithms. The outcome is a
real number secret sharing scheme presented as a summary of paper F.

17

18

Secure Summation in Graphs

5 Aggregation of private data without fully con-
nected communication

Computing shares of the sum of secrets using only shares of the secrets is
easily achieved using either the additive or Shamir’s secret sharing scheme
with the limitation that each party must be able to privately communicate
with each of the other n participants. In a real world scenario, setups where
this assumption is not met appears; for instance, sensor networks scattered
over a large area where each sensor can only communicate with its neighbors
(e.i. the sensors that are within some physical distance from itself), see Fig.
12. This chapter addresses this issue and proposes how to extend SMPC
based on secret sharing to setups, where a fully connected communication
network is not assumed. Specifically, the research question addressed in this
chapter is;

- how can secret sharing approaches be used in networks that does not
support fully-connected communication between nodes?

Many distributed algorithms are built to communication networks that
can be modeled as a connected (and not fully connected) graph, hence, these
algorithms assume only neighbor to neighbor communication. Simultane-

Fig. 12: Illustration of a network of sensors, where each sensor can only communicate with
immediate neighbors. Thus, the communication network is not fully connected.

19

ously, a majority of these distributed algorithms are built on aggregation of
data in each neighborhood. In other words, to perform local computations
in the distributed algorithms, each node needs the sum of its neighbors data.
Interestingly, each node does not need to know the individual data points
of its neighbors, but rather the sum of all neighbors data. To this end, com-
puting the aggregate of private data in each neighborhood without reveal-
ing individual data points, the whole distributed algorithm becomes privacy
preserving. To distinguish this problem from the one where there is a fully
connected communication network, the ’participants’ are referred to as nodes
in this case.

To formulate the problem precisely, consider n nodes having some com-
munication network, for instance as depicted in Fig. 12. Assume that each
node i has some private value xi (for instance a measurement) and that it is
preferred not to hand over raw data from node to node. Let Ni denote the
neighborhood of node i, such that j ∈ Ni if node i can communicate with
node j. We consider then the problem of computing the sum, yi, of private
values in each neighborhood Ni, namely,

yi = ∑
j∈Ni

xj. (4)

In the remaining part of this chapter, two methods to solve the above
problem are presented. The methods are published in paper A and paper B,
respectively. To this end, the following two sections can be read as a summary
of the two papers.

6 Summary of paper A ("Privacy Preserving Dis-
tributed Summation in a Connected Graph")

The setup in paper A includes many details which has resulted in a some-
what heavy notation, entailing that a fairly simple method appears unnec-
essarily complicated. To circumvent this situation, the summarized solution
presented here is an overview with much lighter notation than the detailed
solution presented in paper A. To this end, all details are not included here,
merely the most important ones are mentioned.

The particular setup of the problem addressed in the paper is illustrated
in Fig. 13. Particularly, a network of nodes is considered where for each node
i the aim is to compute yi in (4). The communication network of the nodes is
assumed to be such that each node has at least 2 neighbors. This is mainly
because if a node has only one neighbor, then the node learns the private
value of that neighbor as a consequence of learning (4). The method of the
paper utilizes so-called cliques in the communication network. However, as

20

6. Summary of paper A ("Privacy Preserving Distributed Summation in a Connected
Graph")

Fig. 13: Illustration of a clique and a virtual clique in a network.

evident from Fig. 13, not all nodes are necessarily part of a clique. Therefore,
so-called virtual cliques (VCs) are introduced. The proposed method is, apart
from cliques and VC’s, based on additive secret sharing. In the following, a
short introduction to cliques, VCs and the particular sharings, is given.

- Clique. A clique is a fully connected subgraph. In Fig. 13, a clique
is illustrated between node 0,1, and 2. Cliques in the network are par-
ticularly useful for secret sharing since every node in the clique can
communicate with each of the other nodes in the clique.

- Virtual Clique. In Fig. 13, node 0 has two neighbors, node 3 and 4,
who cannot communicate with any of the other neighbors of node 0.
To use the proposed privacy preserving method also for node 3 and 4,
a virtual clique between them and their common neighbor (node 0) is
defined. To this end, whenever node 3 and 4 communicate, they encrypt
their messages and transmit the cipher texts to node 0 who forwards.
For the encryption scheme, we use a public key crypto system, which
could for instance be ElGamals scheme [40] where key distribution is
easily obtained using Diffie-Hellmans key exchange [5]. Thus, in a VC,
the nodes exchange keys which leads to a secret key that nodes 3 and
4 use for encrypting their messages, such that node 0 does not learn
the communicated texts. Apart from that, the actions taking in a VC
is (more or less) the same as those taking in a fully connected clique,
thus, no distinction is made between the two types of cliques in the
following. Assume there is a total of M cliques (both virtual and fully
connected cliques) in the network and let each clique have a unique
label k ∈ {1, . . . , M}. Furthermore, define Ck for k ∈ {1, . . . , M} as a set
containing the indices of the nodes in the clique. That is, i ∈ Ck if node
i is in the k’th clique.

21

Choose ri,j ∀ j ∈
Ck such that

∑j∈Ck
ri,j = 0.

Send ri,j to
node j ∈ Ck.

Receive rj,i from
all nodes j ∈ Ck.

Define
0k[i] = ∑j∈Ck

rj,i.

Communication

Fig. 14: Block diagram of the generation of a sharing of zero in the k’th clique, from the view of
node i.

- Sharings. In the proposed solution, additive secret sharing (see section
2.2 and 2.3) is used. In the solution, sharings of a zero in the k’th clique
and sharings of the sum sk in each clique k are used. The i’th share in
the k’th clique is denoted as 0k[i] and sk[i], respectively. Moreover, the
sharing of zero is created in each clique k by the nodes in clique k. The
nodes do this using the method illustrated in the block diagram in Fig.
14, which is from the view of node i ∈ Ck.

It is now straight forward to explain the proposed method. Since the
method is completely parallel, meaning each node performs the same actions,
the method is presented from the view of node i. To this end, consider ζi to
denote the set of cliques node i is part of. That is, k ∈ ζi if node i is part
of clique k. The method is divided into 3 parts, namely a preprocessing,
execution and postprocessing phase (and two communication rounds). The
advantage is that the preprocessing phase can be run at any time prior to the
execution phase since the private data is not involved in this step. Moreover,
the communication phases are in this way limited to two rounds, where each
party before hand make their messages ready for transmission, which should
minimize the time each node needs to be online.

A block diagram of the method is given in Fig. 15. As seen, the nodes
start by creating shares of zero in each clique, such that node i ends up with
having its share 0k[i] for each clique k ∈ ζi. In the execution phase, node i
creates a share of the sum of secret data, sk[i], in each clique k by adding its
own secret data, xi, to its share of zero, 0k[i]. Then one communication round
is executed, where node i sends sk[i] to each node j ∈ Ck for each clique
k ∈ ζi. In the postprocessing phase, node i reconstructs the sum, sk, of each
clique, k ∈ ζi, from the received shares sk[j] for j ∈ Ck. Node i computes the
sum of its neighbors values by yi = ∑k∈ζi

sk.
The privacy of the method follows from each node adding their private

value to their share of zero. Each share is essentially a uniformly random
value and thus functions as a mask for the private data. Moreover, as long as
each honest node has at least one honest neighbor in each clique, privacy is

22

6. Summary of paper A ("Privacy Preserving Distributed Summation in a Connected
Graph")

Preprocessing:
Create sharings
of zero for each
clique k ∈ ζi.

Execution:
Compute sk[i] =

xi + 0k[i] for
each k ∈ ζi.

Send sk[i] to each
neighboring node
j in the k’th clique

(j ∈ Ni ∩ Ck).

Postprocessing:
Reconstruct

sk, k ∈ ζi from the
received shares.
yi = ∑k∈ζi

sk.

Communication

Fig. 15: Block diagram of the proposed method of paper A from the view of node i.

guaranteed. In other words, two honest nodes in each clique is necessary and
sufficient to ensure the privacy of the honest nodes. Correctness follows from
the fact that since a sharing of zero is used, the private values are added to
zero, which obviously disappears in the final computation, leaving only the
desired sum.

A detail that was skipped in this presentation of the method, is that if
two nodes are part of multiple cliques, then each of them have to account
for that. To see the problem, consider Fig. 16, where node 0 and 1 are
both part of two cliques; one including node 2 and another including node
3. Thus, when node 0 calculates yi by summing the results from the cliques,
the calculation would yield (x0 + x1 + x2) + (x0 + x1 + x3) 6= y0. Node 0 can
of course subtract x0, but not x1 since it does not know that value. However,
this is easily adjusted for by node 1 transmitting only half its value each time
it communicates with node 0; specifically, (x0 +

1
2 x1 + x2) + (x0 +

1
2 x1 + x3)−

x0 = y0.

Fig. 16: Example of two nodes being part of multiple cliques.

6.1 Discussion

The disadvantage of the proposed method, is that it requires each node to
have extensive knowledge of the communication network. The nodes both

23

need to know their neighbors and also which cliques they are part of, and
if they are part of multiple cliques with any of their neighbors. Moreover,
the virtual cliques make computations time consuming due to the extra en-
crypted communication link. However, we see the method as a first step in
the direction of using SMPC based on secret sharing in networks which are
not fully connected.

The paper also rise a new question. Namely, the problem in (4) is that
each node should learn the sum of all their neighbors private data. Instead,
the method presented here lets each neighbor learn the sum of private data
in each clique it is part of, and afterwards the node sum these intermediate
results to learn yi in (4). The question is, whether these intermediate results
leak information.

7 Summary of paper B ("Private Aggregation with
Application to Distributed Optimization")

In this paper, some of the disadvantages of the method in paper A are ad-
dressed. In particular, both the cliques and the virtual cliques are disregarded
with the purpose of limiting the knowledge each node must have of the com-
munication network and also as an attempt to cut down on communication.
Moreover, each node i learns nothing more than yi in (4), hence, no temporary
results leak information. Furthermore, to address the question risen by paper
A, a privacy analysis is performed in paper B, where the leaked information
about individual terms in a sum from the sum itself is quantified.

The setup in paper B is more or less the same as in paper A, with the dis-
tinction that no cliques are considered now. To present the proposed method
with clarity, we consider a subset of a graph, specifically 5 nodes, where node
1-4 constitute the neighborhood of node 0, see Fig. 17. To improve readabil-
ity, the method is presented from the view of node 0 and subsequently, the

Fig. 17: A subset of a graph.

24

7. Summary of paper B ("Private Aggregation with Application to Distributed
Optimization")

view of the neighbors of node 0. To solve (4) for all nodes in the network,
the method is run in parallel by each node. The method is a further develop-
ment of the method from paper A, hence, secret sharing, encryption and key
exchange are also used here.

- Sharings. Sharings of random numbers are used in the method. These
sharings are made using Shamir’s secret sharing scheme. This is mainly
because it permits nodes to drop-out in the middle of the protocol,
without the protocol having to be run over again. Regarding notation,
ri[j] denotes the j’th share of the random number ri.

- Communication. As illustrated in Fig. 17, there is no assumption that
the neighbors of a node can communicate. In fact, the only assumption
on the communication network is that each node has at least 2 neigh-
bors. It is, however, necessary for the neighbors to communicate and
this will be accommodated for by node 0. The term distribution (for in-
stance key-distribution) is used to denote the actions when each node
in N0 sends a message to node 0 and node 0 forwards these messages
to each of its neighbors.

- Encryption. Obviously, privacy will be broken if node 0 were to learn
all messages between its neighbors. Therefore, the neighbors use en-
cryption to protect the messages. Any public key crypto system can be
used, for instance ElGamal encryption and DiffieHellman key exchange
system as in the previous paper. The public key system is important,
since the neighbors need to generate the keys by sending un-protected
messages to node 0 (which exactly is what a public key system per-
mits). To denote the encryption algorithm, the notation enc(m, pk) is
used, where m is the message and pk is the public encryption key. The
decryption algorithm is denoted by dec(m, sk), where sk is the secret
decryption key. After the key generation and key distribution, each
node i ∈ N0 has a unique secret key, ski, and unique public keys, pk j,
for privately communicating with each of the other nodes j ∈ N0.

The idea in the method is simple; each node i ∈ N0 masks their private
value xi with a uniformly random number ri ∈ Fq, then

y0 =

(
(∑

i∈N0

xi + ri)− R

)
mod q, (5)

where R =
(
∑i∈N0

ri
)

mod q.
The neighbors of node 0 computes (without node 0 learning anything)

shares of R, such that each node i ∈ N0 learns only one share, R[i]. The
shares of R are computed in a preprocessing phase, which does not depend

25

Key
generation

Key-
distribution.

Choose ri ∼
U (0, q) and

generate ri[].

Encrypt
shares: r̂i[j] =
enc(ri[j], pk j)
for j ∈ N0\i.

Share-
distribution.

Decrypt
shares: rj[i] =

dec(r̂j[i], ski)
for j ∈ N0\i.

R[i] =
(

∑j∈N0
rj[i]

)
mod q.

Communication

Fig. 18: Block diagram of the preprocessing phase from the view of node i ∈ N0. Partly repro-
duced from paper B, [41].

Preprocessing:
See Fig. 18.

Execution:
Each node

i ∈ N0 computes
mi = xi + ri.

Each node
i ∈ N0 sends
(mi, R[i])

to node 0.

Postprecessing: Node 0
reconstructs R from the
received shares. y0 =(
(∑i∈N0

mi)− R
)

mod q.

Communication

Fig. 19: Block diagram of the proposed method of paper B.

26

8. Discussion and Comparison

on any secret values and can thus take place at any time prior to the actual
execution. The preprocessing phase is illustrated in the block diagram in Fig.
18.

In the execution phase, each node i ∈ N0 sends its secret value masked
by the chosen random number along with its share R[i]. Node 0 then recon-
structs R from the received shares and computes (5). The proposed method
is seen in the block diagram in Fig. 19.

Privacy follows from the execution phase, where the private data of each
node i is masked with the uniformly random number ri chosen by i. Calcu-
lating R (the sum of the random numbers of each node in the neighborhood)
is performed using only shares of the individual random numbers, which
ensures that none other than node i learns ri. Regarding corruptions, the
protocol tolerates t passively colluding nodes in each neighborhood, where t
is the degree of the polynomial used in Shamir’s secret sharing scheme.

Correctness is easy to see from (5).

8 Discussion and Comparison

The solutions proposed in paper B was an attempt to address the disadvan-
tages of paper A. The approach to do this, was mainly to avoid basing the
solution on cliques or virtual cliques (VC). The hypothesis is that this has the
following effects;

- the knowledge each node needs to have on the communication network
is limited,

- the overhead in communication should be reduced since the expensive
virtual cliques are avoided,

- and the intermediate results from the cliques are avoided.

The first point is true since in paper B, each node only needs to know
its neighbors. Regarding the second point, it is not clear that the solution
in paper B reduces communications compared to paper A. In fact, it turns
out that the solution in paper B is basically based on one big VC linking
the neighbors of each node. To count the number of communications in the
solution proposed in paper A, it is necessary (for each node i) to distinguish
between fully connected cliques, VCs where node i is a neighbor to each node
in the VC and the VCs where node i is only neighbor to one other node in
the VC. Denote the set of fully connected cliques node i is part of as ζC

i , the
former VCs as ζV

i (also referred to as node i’s "own" VCs) and the later VCs as
ζVn

i (also referred to as the VCs of the neighbors of node i). It is then possible
to count the number of communications and communication rounds used

27

in the solutions proposed in paper A and paper B, respectively. The term
communication round, covers multiple communications that can happen in
parallel. That is, if a node sends some value (or different values) to each of
its neighbors at the same time, this counts as one round.

Paper A

Communications:

Cliques︷ ︸︸ ︷
2 ∑

k∈ζC
i

|ck|

︸ ︷︷ ︸
+

"Own" VC︷ ︸︸ ︷
2 ∑

k∈ζ
V0
i

|ck|

︸ ︷︷ ︸
+

"Neighbors" VC︷ ︸︸ ︷
3|ζVn

i |

︸ ︷︷ ︸
Rounds: 2 + 2 + 3

Paper B

 Communications:

Key exchange︷ ︸︸ ︷
2|Ni|︸ ︷︷ ︸ +

Share exchange︷ ︸︸ ︷
2|Ni|︸ ︷︷ ︸ +

Execution︷︸︸︷
|Ni|︸︷︷︸

Rounds: 2 + 2 + 1

As seen, paper B reduces the number of communication rounds by two
compared to the solution in paper A. However, if the communication net-
work contains so many connections between nodes that it consists solely of
cliques (and no VCs), then the solution in paper A can be executed in only 2
communication rounds, which will be much faster than the solution in paper
B.

Finally, in paper B, the question raised by paper A concerning the leak of
the intermediate sums, is addressed. Namely, in paper B, a privacy analysis
concerning the leak about an individual value in a sum from the sum itself,
is conducted. This analysis, shows that (not surprisingly) there is indeed a
leak of information about the terms in a sum from the sum itself. Also, it is
determined that increasing the terms in the sum, decreases the leak about the
individual terms. To this end, it is clear that the solution proposed in paper
A leaks more information about the private data than the solution in paper
B.

In conclusion, paper B does address and improve on the weaknesses of
paper A. Only the point about reducing communication overhead is still not
significantly improved in paper B.

28

Secure Optimization
Algorithms

9 Applying cryptographic methods in optimization
algorithms

In the previous chapter, distributed algorithms based on sums in neighbor-
hoods were considered, and two algorithms for computing such sums were
proposed. Obviously, not all algorithms are based on the computation of only
sums. Therefore, this chapter investigates how algorithms using also other
operations than the sum can be made privacy preserving. Specifically, two
optimization algorithms and one control method are considered; namely, the
recursive least squares (RLS), the alternating direction method of multipliers
(ADMM), and model predictive control.

The aim of this chapter is to investigate the research question;

- what is the cost of privacy preserving algorithms in distributed opti-
mization compared to non-private solutions?

The approach is straight forward; a privacy preserving version of the
considered algorithms are proposed, and afterwards simulation is used to
evaluate the accuracy compared to the none-private versions.

10 Summary of paper C "Privacy Preserving Re-
cursive Least Squares Solutions"

The least squares are usually used when input and output to an assumed lin-
ear system are observed, and it is desired to find a set of parameters, w,
describing the relation between input and output. The least squares solution is
the parameters, which minimize the sum of squared residuals between the
observed output and the output computed from the inputs and the estimated

29

parameters. It is assumed that input, xi, and output, yi, are observed at dis-
tinct times i, and therefore, the recursive least squares (RLS) equations are used
to update the previous estimate of the parameters. The RLS equations yields
the parameter estimate at time i given as (reproduced from paper C, [30]),

Pi = Pi−1 −
(

1 + x>i Pi−1xi

)−1
Pi−1xix>i Pi−1, (6a)

gi = Pixi, (6b)

ei = yi − x>i ŵi−1, (6c)

ŵi = ŵi−1 + giei, (6d)

where P0 is usually initialized as the identity matrix, and w0 is initialized as
the vector of zeros.

The purpose of a privacy preserving version of the RLS equations is to
keep the observations of xi and yi secret at all times during computations.
That is, the observations are secret shared and the computations in (6) are
performed directly on the shares. The main difficulty is that the computa-
tions in (6) then take place in a finite field. The challenges with a privacy
preserving version of the RLS equations are the following:

- Division. In the finite field, the division in (6a) has to be integer di-
vision for the result to be representable in the finite field. To compute
integer division in the finite field, a solution is proposed in [42]. To
denote integer division, \ is used and .\ denotes elementwise integer
division. Clearly, if the nominator is smaller than the denominator,
the result of integer division is zero entailing that each variable in (6)
will maintain their initialized values and the algorithm will not con-
verge. Another problem arising from the division is the "wrap-around-
zero". Namely, if either of the nominator or denominator has "wrapped
around zero", the result of the integer division will not be correct. To
see this issue, consider the computation of −2

2 = −1 in the finite field
F23; 21\2 = 10 6= −1 mod 23 = 22. To solve the two challenges, the
following solutions are proposed.

- Scaling. To solve the problem of the nominator being smaller
than the denominator, the denominator is scaled by a public in-
teger constant, 2C, before the division. At some point, it will
be necessary to rescale again, for which a protocol referred to as
rescale(x, 2C) is used, where x ∈ Fq is the term to be rescaled.

- Comparison. For solving the problem concerning wrap around
zero of the nominator (the denominator is always positive due to
P being positive semidefinite), the idea is to check every entry in

30

10. Summary of paper C "Privacy Preserving Recursive Least Squares Solutions"

the nominator for being "smaller than zero". Smaller than zero is
written in quotation marks, since in a finite field there is no order
and as such every element (and no element) are smaller than zero.
To account for that, the elements of the finite field are defined as
follows

{0, 1, . . . ,
⌊ p

2

⌋
︸ ︷︷ ︸

positive

,
⌊ p

2

⌋
+ 1, . . . , p− 1︸ ︷︷ ︸

negative

}.

The result of −a < p
2 coincides with a < 0, and can be privately

evaluated by the protocol proposed in [43]. This protocol is re-
ferred to as comp().

Implementing scaling in (6) is done by multiplying 2C on nearly all terms
in the equations. To illustrate this, let the notation ·∗ denote ·2C and consider
the following rewrite of (6).

P∗i = P∗i−1 −
((

P∗i−1xix>i P∗i−1

)
.\
(

1∗ + x>i P∗i−1xi

))
(7a)

g∗i = P∗i xi, (7b)

ei = yi − x>i ŵ∗i−1\1∗, (7c)

ŵ∗i = ŵ∗i−1 + g∗i ei. (7d)

The proposed privacy preserving implementation of (7) is sketched as
a block diagram in Fig. 20. Since all variables in (7) must be treated as
secrets, the notation of shares is disregarded in the block diagram in Fig.
20. Thus, the block diagram is to be read in the way that the participants
receive shares of the observed xi and yi and of the initialized variables P0, ŵ0.
The only operations used in the block diagram are addition, subtraction,
multiplication, the integer division, the comparison and the rescale protocol.
Thus, the parties can compute these operations directly on the shares.

The privacy of the privacy preserving RLS equations follows from the
privacy of performing addition, subtraction, and multiplication directly on
shares. The privacy of the protocol for integer division is proved in [42] and
the privacy of comp is proved in [43]. The protocol rescale is build only on
addition, subtraction, multiplication, and bit decomposition, which is proved
privacy preserving in [31, p. 189].

31

d∗ = 1∗+ x>i P∗i−1xi

num∗∗ =(
P∗i−1xix>i P∗i−1

) comp(num∗∗) |num∗∗|

| f ∗| = |num∗∗|.\d∗ f ∗

P∗i = P∗i−1 − f ∗

g∗i = P∗i xi

ei = yi − rescale(x>i ŵ∗i−1, 1∗)

ŵ∗i = ŵ∗i−1 + eig∗i

i = i + 1

Fig. 20: Block diagram of the proposed method of paper C.

32

10. Summary of paper C "Privacy Preserving Recursive Least Squares Solutions"

10.1 Results

The work proposes a privacy preserving RLS algorithm that performs each
computation directly on the shares of the variables. All data used in the
privacy preserving algorithm must be integers, and thus any real numbers
must be scaled and truncated before being used. This effects the accuracy and
in turn the convergence of the algorithm. To see this, simulations comparing
the result of the RLS equations in (6) to the result of the privacy preserving
protocol in Fig. 20, are conducted. To compare the results, the mean squared
error between the true parameters w and the estimate ŵ is computed at each
time i;

eMSEi =
1
q

q

∑
j=1

(wj − ŵj)
2, for i = 1, 2,

The simulation is reproduced from paper C, [30]. To recap, the test data is
described by

y = 3x1 + 2x2 + 2x3 + 4x4 + 4x5 + 1x6, (8)

and the observations of {xi}i=1,...,6 are uniformly distributed numbers on
the interval [0, 5]. The observations of y are given by (8) and are afterward
corrupted by Gaussian noise with mean value zero and variance two. Fig.
21 depicts the MSE of the parameters estimated with the RLS equations, ŵ,
and the MSE of the parameters estimated with the privacy preserving RLS
equations, ŵpriv.

0 10 20 30 40 50 60

2

4

6

i

e M
SE

ŵ
ŵpriv

Fig. 21: The MSE of the parameters estimated with the RLS equations, ŵ, and the MSE of the
parameters estimated with the privacy preserving RLS equations, ŵpriv. Reproduced from paper
C, [30].

33

11 Summary of paper D "Privacy Preservation in
Distributed Optimization via Dual Decomposi-
tion and ADMM"

This work aims to solve a distributed optimization problem while keeping the
privacy of the involved parties intact. The setup is illustrated in Fig. 22 and
consists of N agents and n computing parties. The latter could for instance
be independent cloud servers or other computing service providers and their
purpose is to relieve the agents from computations and communication. The
agents are those that have a problem they seek to solve. In this case, the
problem is stated as

minimize
x

N

∑
i=1

fi(xi)

subject to
N

∑
i=1

Bixi − c = 0,

(9)

where fi(xi) is known solely to agent i and x = [x1, . . . , xN]. It is further
assumed that the constraints in (9) are unknown to everyone except for a
superintendent, who demand the solution to satisfy these certain conditions.

Solving (9) is done in [45] and is based on the ADMM algorithm [46].

Fig. 22: N agents connected to n computing parties. Reproduced from paper D, [44].

34

11. Summary of paper D "Privacy Preservation in Distributed Optimization via Dual
Decomposition and ADMM"

Their solution can be written the following way for each iteration k;

x̃k+1
i = min

xi
Lρ(xk

1, . . . , xi, . . . , xk
N , λk) for i = 1, . . . , N (10a)

λ̃
k+1

= λk + ρ

(
N

∑
i=1

Bi x̃k+1
i − c

)
. (10b)

xk+1
i = xk

i −
1

N + 1
(xk − x̃k+1

i) (10c)

λk+1 = λk − 1
N + 1

(λk − λ̃
k+1

), (10d)

where Lρ is the augmented Lagrangian which for (9) is

Lρ(x, λ) =
N

∑
i=1

(fi(xi)) + λ>(Bx− c) +
1
2

ρ||Bx− c||22. (11)

Note that the minimization over xi (for a fixed i) of the Lagrangian in (11)
can be written as

min
xi

fi(xi) + αix2
i + βixi, (12)

where αi and βi are two constants covering the terms to be multiplied
with x2

i and xi, respectively. For a derivation, see paper D, [44], and to easily
see that (12) is true, consider the following example.

Example 1 (Minimizing the augmented Lagrangian)
Consider the following minimization problem

minimize
x

(x1 − 1)2︸ ︷︷ ︸
agent 1

+ (x2 − 2)2︸ ︷︷ ︸
agent 2

+ (x3 − 3)2︸ ︷︷ ︸
agent 3

subject to 2 = −5x1 + 5x2 + 3x3,

5 = 2x1 + x2 + 5x3.

(13)

Let i = 1, then (10a) can be written as

min
x1

Lρ(x, λ) = min
x1

(f1(x1)) + λ>(Bxk − c) +
1
2

ρ||Bxk − c||22

= min
x1

f1(x1)

−λ1(−5x1 + 5xk
2 + 3xk

3 − 2) + λ2(2x1 + xk
2 + 5xk

3 − 5)

+
ρ

2
((−5x1 + 5xk

2 + 3xk
3 − 2)2 + (2x1 + xk

2 + 5xk
3 − 5)2)

35

= min
x1

f1(x1) +
ρ

2
(25 + 4)︸ ︷︷ ︸

αk
1

x2
1

+ (−5λ1 + 2λ2 +
ρ

2
(−46xk

2 − 10xk
3 + 40))︸ ︷︷ ︸

βk
1

x1

= min
x1

f1(x1) + αk
1x2

1 + βk
1x1 = min

x1
Lρ(α

k
1, βk

1)

To this end, the minimization of the Lagrangian with respect to xi, can be
written as a function of αi and βi. In continuation, each agent i minimizes the
Lagrangian with respect to xi (since agent i is the only one knowing fi(xi))
and in turn, the computing parties compute at time k, αk

i and βk
i (for each i)

upon receiving shares of x̃k+1
i from each agent i. In Fig. 23, a block diagram

of the proposed method of paper D is given.

Each agent i computes
x̃k+1

i = min
xi

Lρ(αk
i , βk

i)

and generate x̃k+1
i [].

Distribute shares
of x̃k+1

i between
computing parties.

Computing parties
compute αk+1

i and βk+1
i

directly on shares.

Send αk+1
i and

βk+1
i to agent i.

k = k + 1.

Communication

Fig. 23: Block diagram of the proposed method of paper D.

11.1 Results

To evaluate the performance of the proposed method, simulation results of
it are compared to simulations of (10) which has no privacy properties. Both
algorithms solve the problem in (9) where N = 3, fi(xi) = (xi − i)2 and Bi
and c are chosen randomly. Refer to the estimate of xi at each iteration k as
x̂k

i .
As seen in Fig. 24, the privacy preserving estimates deviates slightly from

the estimates of (10) when k is small. This is due to the rounding of reals to in-
tegers, which occurs after the agents has performed their local minimization.

36

12. Summary of paper E "Secure learning-based MPC via garbled circuit"

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

1

k

R

x̂k
1 x̂k

2 x̂k
3

Fig. 24: Comparison between simulation results of the proposed method in Fig. 23 (marked
with a solid line) and the non-private solution in (10) (marked with a dotted line).

Before the rounding, the value is scaled by 103 in this simulation. Clearly,
the chosen scaling constant is sufficient to ensure that the privacy preserving
solution eventually agrees with the solution from (10).

12 Summary of paper E "Secure learning-based MPC
via garbled circuit"

The final algorithm considered in this chapter consists solely of addition,
multiplication and maximum operators. Since it is not trivial to perform
comparisons using secret sharing, the idea in the work is to investigate if
secret sharing and garbling can be combined to create an efficient solution.

The setup of this work is similar to the setup of the previous papers, with
the distinction that in this work, there is only one input provider and only 2
computing parties. Nonetheless, the proposed method is somewhat flexible,
so there could in principle be multiple input providers.

The paper considers a control problem were an actuator aims to control
a system and uses a concept known as model predictive control to calculate
the control input. Here, this control theory will not be introduced since it is
somewhat besides the topic of the thesis. Moreover, the control problem is
rewritten into local computations and computations that are to be performed
privately by the computing parties. Skipping the details of the control prob-
lem and the local computations, the problem to be solved privately is com-
puting

y = max{Hx + b} −max{Kx + c} (14)

where max{x} of the vector x ∈Np is max{x1, x2, . . . xp}.

37

A privacy preserving solution to (14) is achieved with a combination of
secret sharing and garbling. For this problem, the two techniques comple-
ment each other well since comparison is intractable to perform with secret
sharing, while garbling does it efficiently. On the other hand, multiplication
is a quite inefficient operation for a garbling scheme, while secret sharing
combined with Beavers trick does it well. The big picture overview of the
solution is as follows,

1. v = Hx + b and w = Kx + c, are computed using additive secret shar-
ing and Beavers trick.

2. Each computing party generates a garbled circuit for computing max{v}
and max{w} respectively and afterwards they exchange circuits such
that each computing party evaluates a garbled circuit.

In section 2.2 and 2.3, additive secret sharing and Beavers trick was intro-
duced, thus this step hardly needs further explanation. The only thing worth
mentioning is that in the finite field used for secret sharing, a field of 2l ele-
ments is considered where l is a positive integer. The reason for choosing a
field of size 2l instead of a prime number, will become clear later.

For finding max{v} and max{w} it is necessary to define a boolean circuit
for use in the garbled circuit. The computation of max{v} and max{w}
will be identical, thus it is sufficient to focus on max{v}. From the secret
sharing part of the solution, each computing party has one additive share of
v, thus computing party i holds v[i]. The boolean circuit starts by adding
elementwise v[1] and v[2] to reconstruct v. To this end, it holds that

ṽ = (v[1] + v[2]) mod 2l , (15)

and consequently,

v =

{
ṽ− 2l if v ≥ 2l

2

ṽ otherwise,
(16)

assuming that v ∈ [− 2l

2 , 2l

2 − 1].
Afterwards, the circuit computes in log2(p) rounds the maximum element

of v. Fig. 25 illustrates the circuit.
To consider the circuit as boolean, v[1] and v[2] are represented with l

bits and the additions are standard carry-ripple full adders. The maximum
operation is implemented by considering the following,

M = max{v1, v2} =
{

v1 if v1 ≥ v2,
v2 otherwise,

=

{
v1 if v1 − v2 ≥ 0,
v2 otherwise.

(17)

To this end, by defining σ as the sign bit of v1 − v2,

M = (1− σ)v1 + σv2. (18)

38

12. Summary of paper E "Secure learning-based MPC via garbled circuit"

v1[1] v1[2] v2[1] v2[2] v3[1] v3[2] · · · vp[1] vp[2]

+ + + +

v1 v2 v3 vp

max max

max

max{v}

Fig. 25: Illustration of the max-out circuit for evaluating max{v} based on additive shares v[1]
and v[2].

(18) can be efficiently evaluated in the boolean circuit by expressing the j’th
bit of M as

Mj = XOR(AND(v1j, NOT(σ), AND(v2j, σ). (19)

Immediately, several obstacles arise in the garbled circuit concerning the
reconstruction of v in (15) and (16);

- The addition of the l bits using carry-ripple full adders may require one
additional bit to represent the result (so the garbled circuit should be
extended to represent 2l + 1 bit numbers).

- The addition of the l bits should be modular 2l as seen in (15).

- After applying the addition and modular operators, ṽ in (15) is achieved.
To reconstruct v, (16) must be computed.

However, it turns out that the additive secret sharing scheme and the bi-
nary circuit fits nicely together. Namely, the first two obstacles cancel each
other out; it is not necessary to add an additional bit to the circuit as this
action immediately would be cancelled by the modular 2l operation. Or the
other way around, the modular 2l operation is carried out by simply con-
sidering only the 2l least significant bits of ṽ. Even more remarkably, the
representation of v ∈ F2l , (corresponding to v ∈ [− 2l

2 , 2l

2 − 1]) translates per-
fectly into the two’s complement representation of 2l bit numbers, where the
most significant bit is the sign bit. More precisely, it is not necessary to carry
out (16) after the addition, since if v is negative its most significant bit is set

39

corresponding to how a negative number is represented in the binary for-
mat. To this end, the garbled circuit can be constructed based on the circuit
illustrated in Fig. 25 without further modifications. The output of comput-
ing party 1 is the garbled result of max{v} and the decode information to
max{w} and from computing party 2, the garbled result of max{w} and the
decode information to max{v}. To this end, the input providing party can
decode the garbled outputs and perform the subtraction to reach the solution
to (14).

12.1 Results

As already mentioned, when the finite field consists of 2l elements and the
binary circuit takes l-bit numbers, there is a quite nice fit between additive se-
cret sharing and garbling. For instance, performing modular 2l in the binary
circuit, is achieved simply by keeping the 2l least significant bits and discard-
ing the rest. Also, representing negative numbers in a finite field is usually
done by defining the interval [| q2 |, q− 1] as the negative numbers. When the
finite field consists of 2l elements, a negative number is thus defined by the
most significant bit being set, which is also how negative numbers are repre-
sented in the binary two’s complement format. To this end, shares based on
F2l translates effortlessly into binary inputs to a garbling scheme.

To evaluate the computation time, the solution is simulated and the ex-
ecution time is measured. The data used in the simulation can be seen in
paper E. For comparison, experiments are done for both p = 8 and p = 16
(where p is the number of entries in the vectors v and w) and for both cases,
l = 16 and l = 32 is used. In table 2, the number of AND gates in the garbled
circuit is seen as well as the average execution time for computing (14) with
the privacy preserving solution.

p l #AND tavg

8
16 480 79 ms
32 960 167 ms

16
16 992 170 ms
32 1984 348 ms

Table 2: The number of AND gates and average computing time for computing (14) using the
proposed privacy preserving method.

As seen from table 2, the execution times increase as the garbled circuit
expands, which was expected. For reference, computing the control input in
approximately 0.1 second should be sufficient to ensure the stability of the
controller. Thus, sacrificing a bit of accuracy by choosing p = 8 and l = 16,

40

13. Discussion

the proposed solution is a nice first step in the direction of privacy preserving
model predictive control.

13 Discussion

The presented problem and solutions are all dependent on finite field arith-
metic and consequently, are restricted to using only integers in all compu-
tations. Usually, the numbers involved in computations like least squares
estimation, optimization and control calculations are real numbers and not
integers. Mostly, this is not a crucial matter, since the real numbers can be
scaled before rounding to an integer.

In paper E, it is shown that the error induced by scaling can be bounded
and be made almost arbitrarily small. Yet, since computations take place
in a finite field, the scaled numbers should be represented without "wrap
around". Thus, the larger the scaling constant the larger the finite field has
to be, which in the end might not be practical. Thus, there are limits to the
precision of the scaled integers.

Another concern is that only finite field arithmetic can be used when op-
erating in the finite field. This works nicely for addition, subtraction and
multiplication, at least when discounting "wrap arounds". However, division
in the finite field does not really translate well to real number division as
shown in section 2.1 and 10. These 4 operations are the only operators de-
fined on a finite field, thus any other operation (square root, exponentiation,
and so on) cannot trivially be performed in the finite field.

In this thesis, the problems regarding the finite field is most clearly present
in paper C, regarding privacy preserving recursive least squares (RLS). The
proposed algorithm illustrates both problems; its convergence rate is irregu-
lar due to the rounding of reals to integers, and its computation and commu-
nication complexities are quite heavy due to the need for division. Moreover,
our preliminary investigation suggests that some algorithms are very chal-
lenging to implement in this privacy preserving framework. For instance,
the Kalman filter involves a fraction between zero and one, and represent-
ing this fraction as either zero or one does not provide convergence of the
algorithm.

In conclusion, privacy preserving algorithms not based on finite field
arithmetic would eliminate many of these problems. As nothing comes for
free, it is interesting to investigate the costs of such a framework. This ques-
tion is what the last part of this thesis is concerned with.

41

42

Real Number Secret Sharing

14 Secret sharing without finite field arithmetic

As already shown in this thesis, many privacy preserving works deal with
rounding reals to integers before being able to perform privacy preserving
calculations on the data, [47, 48]. The reason is that most of the established
cryptographic techniques for privacy preserving computations rely on finite
fields and finite field arithmetic, making it necessary to represent secrets as
integers. However, there are not many examples of applying the privacy pre-
serving methods in real world scenarios, perhaps due to their usual heavy
overhead in computation and/or communication, or perhaps because it is
difficult to restrict computations in real world scenarios to finite field compu-
tations. To this end, there is a need for considering trade-offs that potentially
lead to more suitable algorithms for real world applications. In this chapter,
the tradition that privacy preserving computations must rely on finite field
arithmetic is challenged. The problem studied in this chapter is how to state
a real number secret sharing scheme that is usable for SMPC and does not
rely on finite fields. To achieve this, the approach is to sacrifice perfect pri-
vacy to hopefully gain a more efficient and practical scheme. Consequently,
part of the question to be answered is how to quantify the privacy of such a
scheme.

This chapter aims to investigate the following research question.

- How could a trade-off be introduced, where perfect privacy is sacrificed
in order to lower the cost of privacy preserving computations?

- How can privacy be quantified?

43

15 Summary of paper F "Privacy in Distributed
Computations based on Real Number Secret Shar-
ing"

This work proposes a real number secret sharing scheme, which does not
rely on finite field arithmetic. The scheme is much related to Shamir’s se-
cret sharing scheme, with a few adaptions making it more suitable for real
numbers. The reason for basing the real number scheme on the idea of
Shamir’s scheme, is due to its great properties for making calculations di-
rectly on the shares. To this end, with the real number secret sharing scheme
follows straight forward implementations of addition, subtraction, multipli-
cation and division of the shares. As already touched upon, the price to pay
for all this is a lack of perfect privacy of the secret data. In the remaining part
of this summary, the proposed scheme is presented, and the algorithms for
the computations on the shares are sketched. Conclusively, the key points of
the privacy analysis are given.

The proposed real number secret sharing scheme consists of a share al-
gorithm that generates shares of the secret s, which can be distributed among
n participants. The participants are labeled with distinct elements from some
set of numbers P , for instance 1, 2, . . . , n or n values in the interval [2, 4].
The algorithm takes a secret s, the threshold t (which has the same role as in
Shamirs scheme) and the labels of the participants, P . The output of share
is a share s[i] for each participant i. The share algorithm is sketched as a
block diagram in Fig. 26. As seen, the algorithm uses two parameters, µY
and σ2

Y, which can be seen as privacy parameters of the scheme. µY does not
significantly affect the privacy assuming it is unknown to the adversary. The
role of σ2

Y will become clear in the privacy analysis.
The reconstruct algorithm, recon, takes at least t + 1 shares and outputs

the reconstructed secret. The algorithm is nothing more than Lagrange inter-

Draw x1, . . . , xt
as distinct

values from P .

Draw y1, . . . yt nor-
mally distributed

with mean µY
and variance σ2

Y.

Define fs(x) as the
degree t Lagrange poly-
nomial interpolating the
points (0, s) and (xi, yi).

Define the shares
as s[p] = fs(p).

Fig. 26: Block diagram of the share algorithm of paper F.

44

15. Summary of paper F "Privacy in Distributed Computations based on Real
Number Secret Sharing"

Collect at least t + 1
shares of s and denote

them as {(p, s[p])},
where p ∈ P .

Define fr(x) as the poly-
nomial interpolating the
points {(p, s[p])} using
Lagrange interpolation.

s = fr(0).

Fig. 27: Block diagram of the recon algorithm of paper F.

polation, and it is sketched in the block diagram in Fig. 27.
Performing computations on the shares is straight forward; addition, sub-

traction and multiplication are performed similarly as in Shamir’s scheme,
and division is performed using only three local computations and one broad-
cast. The block diagram for the division algorithm is in Fig. 28, seen from
the view of participant p ∈ P .

x[p] = s[p]r[p].

Broadcast x[p].

x = recon(x[]). y[p] = x−1r[p].

Communication

Fig. 28: Block diagram of the algorithm for the inversion of a secret performed on shares from
the view of participant p ∈ P .

Privacy analysis

In the privacy analysis, the view of the adversary is considered. That is, the
secret, s, is considered as a random variable having some distribution that
reflects the prior knowledge the adversary may have about the secret. To
this end, s is here modeled as the outcome of a random variable S, and the
uncertainty the adversary has about s can be expressed as the differential
entropy of S, h(S).

Assuming t participants are corrupted, the adversary has access to t shares
of s. Each share s[p], p ∈ P , is also the outcome of a random variable S[p].

Intuitively, the privacy of the scheme is expressed as the reduction in
uncertainty, the adversary has about the secret after he learns the shares of
the corrupted parties. This reduction is optimally zero (which is the case
for Shamir’s scheme and the additive scheme for instance), but as discussed
previously, here we cannot do better than to make it as small as possible
which will still be larger than zero. To state this result, consider first the
following description of a share (reproduced from paper F, [49]).

45

s[p] = sL0(p) + ∑
j∈T

yj
p
xj

Lj(p)︸ ︷︷ ︸
b(p)

= sL0(p) + b(p),
(20)

where T = {1, . . . , t} and Lj(x) are Lagrange basis polynomials (see Paper F
for the details).

Note that, (20) yields that

S[p] = SL0(p) + B(p). (21)

The reduction in uncertainty is quantified using the mutual information
between S and a set of t shares, yielding;

I(S; S[1], . . . , S[t]) = h(S[1], . . . , S[t])− h(B(1), . . . , B(t)) (22)

To make the notation more concise, let XS, XB denote (S[1], . . . , S[t]) and
(B(1), . . . , B(t)), respectively and remark the following:

1. the distribution of Xs is "unknown" in this analysis as it depends on the
knowledge of the adversary,

2. increasing the value of h(XS) increases I(S; XS) in (22),

3. the distribution of XB is t-variate Gaussian when considering the Lj(p)
(in (20)) as known constants.

Following the first two remarks, the mutual information I(S, XS) can be up-
per bounded by considering the maximum entropy distribution, (which on
the real number line is the Gaussian distribution) as the distribution for XS.
In continuation, a N-variate Gaussian distributed variable X has the follow-
ing entropy [50, p.249];

h(X) =
1
2

log
(
(2πe)N det(CX)

)
, (23)

where CX is the covariance matrix for X. Using this in (22) yields

I(S; XS) ≤
1
2

log
(
(2πe)tdet(CXS)

)
− 1

2
log
(
(2πe)t det(CXB)

)
=

1
2

log
det(CXS)

det(CXB)

(24)

To this end, the main result of the privacy analysis is an upper bound on
the mutual information and equivalently the leaked information about the
secret from a set of t shares. The upper bound is dependent on σ2

Y in Fig. 26,
since the determinant of CXB is affected by σ2

Y. Consequently, increasing σ2
Y

46

15. Summary of paper F "Privacy in Distributed Computations based on Real
Number Secret Sharing"

100 200 300 400 500 600 700 800 900

10−5

10−4

10−3

10−2

10−1

σ2
Y

M
I

[b
it

s]

I(S; S[1])
I(S; S[1], . . . , S[t])

Fig. 29: Estimated mutual information (MI) between a standard normal distributed secret S and
one share of s and t shares of s, respectively. Partly reproduced from paper F, [49].

decreases the mutual information. This result is validated numerically in Fig.
29 by estimating the privacy loss caused by one share, S[1], and t shares,
S[1], . . . , S[t]. That is, a large sample size of each variable is simulated for
each estimation and the mutual information is estimated using the python
package NPEET [51]. For each estimation, the secret, S, follows a standard
normal distribution, and the shares are computed based on the secret and
a varying σ2

Y. As seen, the mutual information (and hence the privacy loss)
decreases as σ2

Y increases.

15.1 Results

The paper puts forward a real number secret sharing scheme, which can
generate shares of decimal secrets and reconstruct them again. Also, addi-
tion, multiplication and division can be performed directly on the shares.
All this is shown theoretically. To evaluate how the scheme performs prac-
tically, the reconstruct algorithm, and the protocols for addition, multiplica-
tion, and inversion is simulated. The chosen parameters are; 11 participants,
the threshold t = 5, the secret s1 = 5.5, and the second secret s2 = 34.7 for
the multiplication protocol. The share algorithm is used to generate shares
of the secrets, where the value of σ2

Y is varied. That is, the accuracy of the
algorithms is evaluated in terms of the variance of the yj values in share in
Fig. 26. The root square error (RSE) between the expected result, v, and the
outcome of the algorithms v̂ is depicted in Fig. 30 (reproduced from paper

47

100 200 300 400 500 600 700 800 900

10−10

10−9

10−8

10−7

10−6

10−5

σ2
Y

R
SE

recon add mult inv

Fig. 30: RSE between the expected result and the reconstructed result for the algorithms
recon, add, mult, and inv in terms of σ2

Y . Reproduced from paper F, [49].

F, [49]), where the RSE is defined as

RSE =
√
(v− v̂)2.

As seen in Fig. 30, the accuracy decreases as σ2
Y increases. Theoretically,

there should be no issue with an arbitrarily large σ2
Y. However, as σ2

Y grows,
the numerical value of the shares grows, at least generally speaking. Con-
sequently, precision is lost due to the floating point representation of reals
used by computer systems. The reason why mult performs the worst is be-
cause in that protocol, shares are multiplied and becomes even larger, which
decreases precision. On the other hand, in the inversion protocol, shares are
scaled by a number between 0 and 1 as seen in Fig. 28. This makes the
shares numerically small, which is why this protocol performs the best. To
this end, when it comes to practical usage of the real number secret sharing
scheme, there is in fact a trade off between output utility and privacy.

Finally, it is interesting to compare the performance of the real number
secret sharing scheme in computing the recursive least squares equations to
the performance of the solution in paper C based on Shamir’s scheme. It is
not even necessary to illustrate the solution based on the real number secret
sharing scheme in a block diagram, since it is straight forward to perform all
computations in the RLS equations (see (6)) using the scheme.

48

15. Summary of paper F "Privacy in Distributed Computations based on Real
Number Secret Sharing"

To compare the two solutions, simulations of both methods are performed,
when solving the same problem. To evaluate their performances, the mean
squared error (MSE) between the estimate of the parameters and the true
parameters is used. The MSE is at time k defined as

MSEk =
1
m

m

∑
j=1

(wj − ŵj)
2,

where m is the number of parameters to be estimated. The MSE of the solu-
tion in paper C is referred to as MSEShamir

k and the MSE of the solution based
on the real number secret sharing scheme is referred to as MSERealNumber

k .
For the simulation, the test data is described by

y = 3.5x1 + 1.2x2 + 2.8x3 + 4.1x4 + 2.9x5 + 3.3x6, (25)

and the observations of {xi}i=1,...,6 are simulated as uniformly distributed on
the interval [0, 5]. The observations of y are given by (25) and afterwards
corrupted by Gaussian noise with mean value zero and variance one.

Fig. 31 shows MSEShamir
k and MSERealNumber

k . Note that the observations
of y are real numbers, which can be directly used in the solution based on the
real number secret sharing scheme, but they are scaled and truncated before
used in the solution based on Shamir’s scheme. As seen by the figure, the so-
lution based on the real number secret sharing scheme delivers a much more
smooth and fast convergence, thus outperforming its counterpart perfectly
secure version.

0 10 20 30 40 50 60

2

4

k

M
SE

ŵShamir

ŵRealNumber

Fig. 31: MSE of the parameters estimated with the privacy preserving RLS equations based on
the real number secret sharing scheme, ŵRealNumber and the MSE of the parameters estimated
with the privacy preserving RLS equations proposed in paper C, [30].

49

16 Discussion

The paper proposes a real number secret sharing scheme that handles dec-
imal numbers and computes both addition, subtraction, multiplication, and
division effectively directly on shares. The scheme is easy to implement and
straight forward to use in algorithms that are based on addition, subtraction,
multiplication and division. However, nonlinear operations are non-trivial to
perform directly on shares using the scheme.

The disadvantages of the scheme is that in practice, a trade-off between
accuracy and privacy emerges, which is due to the finite precision of com-
puter systems. Additionally, the scheme is not perfectly secure, meaning that
private information is leaked about the secrets from the shares. However, the
leak can be upper bounded, which makes it possible to before hand calculate
in average how many bits of information are leaked when sharing a secret
using the scheme.

In conclusion, the real number secret sharing scheme as presented in pa-
per F, is a good first step towards more practically useful schemes for solving
the problem of SMPC in real world scenarios.

50

Conclusion and Outlook

This thesis is concerned with the privacy of data in distributed computa-
tions. That is, performing joint computations on a distributed dataset with-
out revealing the individual datasets is investigated. To this end, multiple
privacy preserving distributed algorithms with different network setups are
proposed. Conclusively, a real number secret sharing scheme is introduced
that addresses some of the disadvantages of the previously used methods.
Based on the research, the following main conclusions are drawn.

- Using public key encryption together with secret sharing expands the
use of SMPC techniques to networks that does not support fully con-
nected communication between nodes. Exploiting the properties of
the communication network can reduce execution time, assuming the
nodes themselves have the knowledge about the network.

- The price to pay for privacy preservation in distributed computations
using SMPC methods are generally an overhead in computation and
communication complexity as well as a minor degradation in output ac-
curacy. The latter comes from the (usual) need to round real numbers to
integers as a part of the privacy preserving protocol. Additionally, us-
ing SMPC methods for other operations than addition, subtraction and
multiplication is intractable. Thus, yet there is no all-purpose privacy
preserving framework that allows all algorithms to be translated into
an equivalent privacy preserving one and consequently, each algorithm
desired to be privacy preserving (if even possible) must be translated
one at time.

- Perfect privacy can be traded to lower the cost of privacy in algorithms,
e.i. reducing computations and communication, improving output ac-
curacy, and extending applicability. This trade-off can be introduced
by the real number secret sharing scheme presented in paper F that
bypasses the requirement to round real numbers to integers (and thus
increases output accuracy) and computes addition, subtraction, mul-
tiplication, and division directly on cipher texts, thus expands on the

51

number of operations that can be done effectively while preserving pri-
vacy, at the cost of a degradation in privacy.

- Privacy can be quantified using information theoretic measures. Partic-
ularly, entropy and mutual information are candidates for measuring
privacy in bits. That is, privacy can be measured by considering the
prior uncertainty one has about the private data (the entropy of the
data) and the posterior uncertainty one has after the execution of the
privacy aware algorithm. The difference between the two is the on av-
erage privacy loss expressed in bits.

Even though this thesis deals with algorithms that are applied in real
world settings, the work is of theoretical nature and is more a theoretical
proof-of-concept. The question of how well the privacy preserving algo-
rithms perform in practical settings is therefore unanswered. To this end,
the actual computation time of the proposed methods and the scalability of
them, is still to be determined.

To address, the most likely quite heavy increase in execute time (com-
pared to a non-private solution), a trade-off between privacy and efficiency is
introduced with the real number secret sharing scheme in paper F. However,
there are still some open questions related to this work. Namely, the privacy
of the real number secret sharing scheme is analyzed first of all by consider-
ing a set of shares and quantifying the average leak from shares. To produce
those results, the information theoretic measure called entropy and mutual
information is used. It is still an open question whether there exists (or can
be made) a more suiting measure, since for some calculations the mutual in-
formation measure becomes intractable. Also, it is not clear how to interpret
the mutual information measure and it is difficult to get intuition about what
it means that 0.5 bits are leaked for instance.

The work in this thesis takes the approach of combining cryptographic
methods into already existing optimization algorithms. The advantage is
that privacy of the cryptographic methods has already been proved and con-
vergence of the algorithms has also already been established. The disadvan-
tage is that the privacy preserving techniques are not designed to be used
in distributed algorithms. To this end, another interesting approach is to
investigate the possibility of embedding privacy preservation directly into
distributed algorithms. This work is in fact already begun by Li et al. in
[17, 52] where careful noise insertion is used to achieve privacy in distributed
convex optimization and in distributed graph filtering, respectively.

52

References

[1] “Regulation (eu) 2016/679 of the european parliament and of the council of 27
april 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46/ec (general data protection regulation),” Official Journal of the European
Union, vol. L 119, pp. 1–89, 2016.

[2] G. Avoine, L. Calderoni, J. Delvaux, D. Maio, and P. Palmieri, “Passengers infor-
mation in public transport and privacy: Can anonymous tickets prevent track-
ing?” International Journal of Information Management, vol. 34, p. 682–688, 10 2014.

[3] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse
datasets,” in 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008, pp.
111–125.

[4] D. Davies, “A brief history of cryptography,” Information Security Technical Report,
vol. 2, no. 2, pp. 14–17, 1997.

[5] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[6] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy
homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–180,
1978.

[7] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[8] S. Goldwasser, “Multi party computations: past and present,” in Proceedings of
the sixteenth annual ACM symposium on Principles of distributed computing, 1997,
pp. 1–6.

[9] A. C. Yao, “Protocols for secure computations,” in 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982), 1982, pp. 160–164.

[10] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, ser.
STOC ’87. New York, NY, USA: Association for Computing Machinery, 1987,
p. 218–229. [Online]. Available: https://doi.org/10.1145/28395.28420

53

https://doi.org/10.1145/28395.28420

[11] J. C. Benaloh, “Secret sharing homomorphisms: Keeping shares of a secret secret
(extended abstract),” in Advances in Cryptology — CRYPTO’ 86, A. M. Odlyzko,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 251–260.

[12] D. Chaum, C. Crépeau, and I. Damgard, “Multiparty unconditionally
secure protocols,” in Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, ser. STOC ’88. New York, NY, USA: Association
for Computing Machinery, 1988, p. 11–19. [Online]. Available: https:
//doi.org/10.1145/62212.62214

[13] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty protocols
with honest majority,” in Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, ser. STOC ’89. New York, NY, USA:
Association for Computing Machinery, 1989, p. 73–85. [Online]. Available:
https://doi.org/10.1145/73007.73014

[14] D. Chaum, “The spymasters double-agent problem,” in Advances in Cryptology —
CRYPTO’ 89 Proceedings, G. Brassard, Ed. New York, NY: Springer New York,
1990, pp. 591–602.

[15] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, ser. STOC ’90. New York, NY, USA: Association
for Computing Machinery, 1990, p. 503–513. [Online]. Available: https:
//doi.org/10.1145/100216.100287

[16] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft,
“Secure multiparty computation goes live,” in Financial Cryptography and Data
Security, R. Dingledine and P. Golle, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 325–343.

[17] Q. Li, M. Coutino, G. Leus, and M. G. Christensen, “Privacy-preserving dis-
tributed graph filtering,” in 2020 28th European Signal Processing Conference (EU-
SIPCO), 2021, pp. 2155–2159.

[18] Q. Li, I. Cascudo, and M. G. Christensen, “Privacy-preserving distributed av-
erage consensus based on additive secret sharing,” in 2019 27th European Signal
Processing Conference (EUSIPCO), 2019, pp. 1–5.

[19] C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving decentral-
ized optimization,” IEEE Transactions on Information Forensics and Security, vol. 14,
no. 3, pp. 565–580, March 2019.

[20] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and
D. Evans, “Privacy-preserving distributed linear regression on high-dimensional
data,” PoPETs, vol. 2017, pp. 345–364, 2017.

[21] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,
“Privacy-preserving ridge regression on hundreds of millions of records,” in
2013 IEEE Symposium on Security and Privacy, May 2013, pp. 334–348.

54

https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287

16. Discussion

[22] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. Bach, “Ariann: Low-interaction
privacy-preserving deep learning via function secret sharing,” 2021.

[23] C. Dwork, “Differential privacy,” in Automata, Languages and Programming,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 1–12.

[24] C. Dwork and A. Smith, “Differential privacy for statistics: What we know and
what we want to learn,” Journal of Privacy and Confidentiality, vol. 1, pp. 135–154,
01 2009.

[25] J. Lee and C. Clifton, “How much is enough? choosing ε for differential privacy,”
in Information Security, X. Lai, J. Zhou, and H. Li, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 325–340.

[26] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p. 308–318.
[Online]. Available: https://doi.org/10.1145/2976749.2978318

[27] A. D. Sarwate and K. Chaudhuri, “Signal processing and machine learning with
differential privacy: Algorithms and challenges for continuous data,” IEEE Signal
Processing Magazine, vol. 30, no. 5, pp. 86–94, 2013.

[28] J. Cortés, G. E. Dullerud, S. Han, J. Le Ny, S. Mitra, and G. J. Pappas, “Differential
privacy in control and network systems,” in 2016 IEEE 55th Conference on Decision
and Control (CDC), 2016, pp. 4252–4272.

[29] J. Justesen and T. Hoholdt, A Course in Error-Correcting Codes (EMS Textbooks in
Mathematics). European Mathematical Society, 2004.

[30] K. Tjell, I. Cascudo, and R. Wisniewski, “Privacy preserving recursive least
squares solutions,” in 2019 18th European Control Conference (ECC). United States:
IEEE, Aug. 2019, pp. 3490–3495, null ; Conference date: 25-06-2019 Through 28-
06-2019.

[31] R. Cramer, I. B. Damgrd, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing, 1st ed. New York, NY, USA: Cambridge University Press, 2015.

[32] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Ad-
vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1991, Proceedings, ser. Lecture Notes
in Computer Science, vol. 576. Springer, 1991, pp. 420–432.

[33] K. Yang, X. Wang, and J. Zhang, “More efficient mpc from improved triple
generation and authenticated garbling,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1627–1646. [Online].
Available: https://doi.org/10.1145/3372297.3417285

55

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/3372297.3417285

[34] D. Rathee, T. Schneider, and K. K. Shukla, “Improved multiplication triple gen-
eration over rings via rlwe-based ahe,” in Cryptology and Network Security, Y. Mu,
R. H. Deng, and X. Huang, Eds. Cham: Springer International Publishing, 2019,
pp. 347–359.

[35] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,” in
Proceedings of the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 784–796. [Online]. Available: https://doi.org/10.1145/2382196.2382279

[36] B. Schoenmakers, Oblivious Transfer. Boston, MA: Springer US, 2011, pp.
884–885. [Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5_9

[37] K. Tjell, N. Schlüter, P. Binfet, and M. Darup, “Secure learning-based mpc via
garbled circuit,” in 2021 IEEE 60th Conference on Decision and Control (CDC), Aug.
2021.

[38] C. Orlandi, “Is multiparty computation any good in practice?” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011,
pp. 5848–5851.

[39] I. Damgård, C. Orlandi, and M. Simkin, “Yet another compiler for active security
or: Efficient mpc over arbitrary rings,” in Advances in Cryptology – CRYPTO 2018,
H. Shacham and A. Boldyreva, Eds. Cham: Springer International Publishing,
2018, pp. 799–829.

[40] T. ElGamal, “A public key cryptosystem and a signature scheme based on dis-
crete logarithms,” IEEE transactions on information theory, vol. 31, no. 4, pp. 469–
472, 1985.

[41] K. Tjell and R. Wisniewski, “Private aggregation with application to distributed
optimization,” IEEE Control Systems Letters, vol. 5, pp. 1591 – 1596, 2021.

[42] M. Dahl, C. Ning, and T. Toft, “On secure two-party integer division,” in Finan-
cial Cryptography and Data Security, A. D. Keromytis, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 164–178.

[43] T. Nishide and K. Ohta, “Multiparty computation for interval, equality, and com-
parison without bit-decomposition protocol,” in Public Key Cryptography – PKC
2007, T. Okamoto and X. Wang, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 343–360.

[44] K. Tjell and R. Wisniewski, “Privacy preservation in distributed optimization via
dual decomposition and admm,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), ser. I E E E Conference on Decision and Control. Proceedings.
United States: IEEE, Mar. 2020, pp. 7203–7208, 2019 IEEE 58th Conference on
Decision and Control (CDC), CDC ; Conference date: 11-12-2019 Through 13-12-
2019.

56

https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/978-1-4419-5906-5_9

16. Discussion

[45] B. He, L. Hou, and X. Yuan, “On full jacobian decomposition of the
augmented lagrangian method for separable convex programming,” SIAM
Journal on Optimization, vol. 25, no. 4, pp. 2274–2312, 2015. [Online]. Available:
https://doi.org/10.1137/130922793

[46] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011. [Online]. Available:
http://dx.doi.org/10.1561/2200000016

[47] Y. Lu and M. Zhu, “Privacy preserving distributed optimization using homo-
morphic encryption,” Automatica, vol. 96, pp. 314 – 325, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109818303510

[48] Q. Li and M. G. Christensen, “A privacy-preserving asynchronous averaging al-
gorithm based on shamir’s secret sharing,” in 2019 27th European Signal Processing
Conference (EUSIPCO), 2019, pp. 1–5.

[49] K. Tjell and R. Wisniewski, “Privacy in distributed computations based on real
number secret sharing,” 2021, submitted to Information Sciences.

[50] T. M. Cover and J. A. Thomas, Elements of Information Theory. USA: Wiley-
Interscience, 1991.

[51] G. V. Steeg, “Npeet,” https://github.com/gregversteeg/NPEET, 2019.

[52] Q. Li, R. Heusdens, and M. Christensen, “Privacy-preserving distributed opti-
mization via subspace perturbation: A general framework,” I E E E Transactions
on Signal Processing, vol. 68, pp. 5983 – 5996, 2020.

57

https://doi.org/10.1137/130922793
http://dx.doi.org/10.1561/2200000016
http://www.sciencedirect.com/science/article/pii/S0005109818303510
https://github.com/gregversteeg/NPEET

58

Part II

Papers

59

Paper A

Privacy Preserving Distributed Summation in a
Connected Graph

Katrine Tjell, Rafael Wisniewski

The paper has been published in the
1st Virtual IFAC World Congress, 2020.

© 2020, IFAC (International Federation of Automatic Control) Hosting by
Elsevier Ltd. Reprinted, with permission, from [1].
The layout has been revised.

1. Introduction

Abstract

Most decentralized algorithms for multi-agent systems used in control, signal pro-
cessing and machine learning for example, are designed to fit the problem where
agents can only communicate with immediate neighbors in the network. For in-
stance, decentralized and distributed optimization algorithms are based on the fact
that every agent in a network will be able to influence every other agent in the net-
work even if each agent only communicates with its immediate neighbors (given
that the network is connected). That is, a distributed optimization problem can be
solved in a decentralized manner by letting the agents exchange messages with their
neighbors iteratively. In many algorithms that solve this kind of problem, agents in
the network does not need individual values from their neighbors, rather they need
a function of the values from its neighbors. This observation makes it interesting
to consider privacy preservation in such algorithms. By privacy preservation, we
mean that raw data from individual agents will not be exposed at any time during
calculations.

1 Introduction

Multi-agent systems with a decentralized graph topology appear in many
areas such as; formation control, distributed resource allocation, workload
balancing and energy optimization. Thus, many decentralized algorithms
for solving different problems in a distributed and decentralized fashion has
been proposed. For some of these algorithms, each agent are only required to
communicate with immediate neighbors and moreover; each agent does not
necessarily need to learn individual values from neighboring agents, rather
they need to learn the sum of neighboring agents values. Such algorithms
can for instance be seen in the work by [2], [3], and [4]. Other examples
include the work by [5] that considers decentralized estimation of Lapla-
cian eigenvalues in multi-agent systems and the work by [6] that proposes
a communication efficient algorithm for resource-aware exact decentralized
optimization.

This paper considers privacy preservation of agents in a multi-agent net-
work where each agent needs to learn the sum of its neighboring agents
values in order to carry out required local computations. Specifically, we are
interested in the case where agents are unwilling to share raw data, perhaps
because the data is sensitive from a business perspective or because it leaks
personal information. Motivated by the many decentralized algorithms only
requiring agents to learn the sum of neighboring agents values, we investi-
gate the privacy preserving calculation of

∑
j∈Ni

xj, (A.1)

63

Paper A.

where Ni is the set of indices of neighbors to agent ai and xj is a value known
only to agent aj.

To give thorough motivation for the problem, consider the minimization
problem

minimize
x

N

∑
i=1

fi(xi)

subject to
N

∑
i=1

Bixi − c = 0,

(A.2)

where x = [x1, . . . , xN], xi is a local variable, fi is a local objective and Bi and
c are constraints. For solving the problem distributed and decentralized, [3]
proposes the following steps:

p(k)
i = p(k−1)

i + ρ ∑
j∈Ni

(
v(k−1)

i − v(k−1)
j

)
, (A.3)

x(k)i = arg min
xi

{
fi(xi) +

ρ

4|Ni|

∥∥∥1
ρ
(Bixi −

1
N

c)

− 1
ρ

p(k)
i + ∑

j∈Ni

(
v(k−1)

i + v(k−1)
j

) ∥∥∥2

2

}
, (A.4)

v(k)
i =

1
2|Ni|

(
∑

j∈Ni

(
v(k−1)

i + v(k−1)
j

)

− 1
ρ

p(k)
i +

1
ρ

(
Bixi −

1
N

c
))

, (A.5)

that are performed locally by each agent. As can be seen, values of neighbor-
ing agents appear in all three equations. In (A.3), the values appear as

∑
j∈Ni

(
v(k−1)

i − v(k−1)
j

)
= |Ni|v

(k−1)
i − ∑

j∈Ni

v(k−1)
j , (A.6)

and in (A.4) and (A.5) as

∑
j∈Ni

(
v(k−1)

i + v(k−1)
j

)
= |Ni|v

(k−1)
i + ∑

j∈Ni

v(k−1)
j . (A.7)

Evidently, if ∑j∈Ni
v(k−1)

j can be computed without leaking individual vj

values, the algorithm is privacy preserving. Hence, the aim of this paper is to,
for each agent in a multi-agent system, compute the sum of its neighboring
agents values without individual terms of the sum being exposed.

Related work. Computing the sum of private values among a set of partici-
pants, without leaking the private values, is a well-known problem within the

64

2. Problem Formulation

field of cryptography. Most secret sharing schemes (see the work by [7]) such
as Shamir’s secret sharing scheme and the additive secret sharing scheme are
able to compute shares of the sum of secret input values from shares of the in-
put values. The same goes for more or less all the homomorphic encryption
schemes, see [8]. All though our proposed solution is based both on secret
sharing and encryption, the paper distinguishes it self by being applied to
agents in a graph network. Thus, we do not assume that all agents can com-
municate or that there exist a central node which all agents can communicate
with, which is the general assumption in this kind of work. Our work also
distances it self from traditional secret sharing and homomorphic encryp-
tion based approaches, as it includes a preprocessing phase which speed up
efficiency at the actual execution time.

Many works (also outside cryptography) are occupied with the privacy
preserving summation of values, for instance [9], [10] and [11]. The work by
[9] proposes a secure sum protocol for computing a sum of N private values
among N participants. Their solution relies on an (untrusted) moderator to
ensure privacy. Our proposed method does not require a moderator and
for the setup considered in this paper, it is not a viable solution to adopt
moderators in the network.

Structure. Section 2 states the problem of the paper in detail and gives the
necessary preliminaries. The main content of the paper is in sections 3 and
4, where the problem is solved with two different assumptions on the graph
topology. Section 5 gives an illustration of the scale-ability of the proposed
method and finally, section 6 concludes the paper.

2 Problem Formulation

Consider a multi-agent network consisting of N agents, a1, . . . , aN , with a
certain communication network linking them. Fig. A.1 depicts such a multi-
agent network, where the vertices are the agents and the edges illustrates the
communication network. We define Ni as the neighbors to agent ai; that is,
Ni is the set of indices j of agents aj where there is an edge between ai and
aj. Note that we consider ai to be a neighbor to itself.

Furthermore, each agent ai has a private value xi. The aim is to compute
the sum

yi = ∑
j∈Ni

xj, (A.8)

for each agent ai in the multi-agent network. As each agent can communicate
with all of their neighbors, the problem is trivially solved be letting all agents
aj for j ∈ Ni send their value xj to agent ai, who can then compute the
sum. However, in this paper we are interested in the case where agents are
unwilling to hand over raw data, for instance because the data is considered

65

Paper A.

Fig. A.1: A multi-agent network, where agents are depicted as vertices and the communication
channels are depicted as edges.

corporate secrets or simply because it leaks private information. Thus, the
goal is that agent ai learns only yi and not the individual terms xj in the sum.
For this to be possible, we assume that all agents has at least two neighbors
besides from itself, that is |Ni| ≥ 3 ∀ i. Furthermore, we assume that agents
will follow the protocol, however they may collude in attempting to disclose
the secret values of other agents. To this end, we assume that a majority of
an agents neighbors are not colluding, which will ensure the privacy of the
honest agents.

We consider two different scenarios with respect to graph topology, we
will refer to these as problem 1 (P1) and problem 2 (P2). The difference
between P1 and P2 is that in P1, we assume that in each neighborhood Ni,
the agents {aj}j∈Ni form one or more cliques. A clique is a fully connected
subset of a graph, thus in other words, we assume in P1, that each aj, j ∈ Ni
is connected to at least one other agent aj′ , j′ ∈ Ni, where j 6= {i, j′}. On the
other hand, in P2, we make no assumptions on cliques in the neighborhood
of ai. In the following, P1 and P2 are more formally presented.

Problem A.1 (P1)
Let a1, . . . , aN be agents in a multi-agent network and assume that the agents in Ni
form one or more cliques with cardinality at least three, with all of them including
ai. Then, the problem is to calculate (A.8) for all agents ai.

Fig. A.2 is a simple example of the graph topology P1 is investigating. As
seen, all agents has at least two neighbors (besides itself) and the neighbors
of each agent forms at least one clique. For instance, for agent a1, (a1, a2, a3)
forms a clique and so does (a1, a2, a4).

For P2, we relax the constraint on the graph topology and accepts the case
where not all neighbors to an agent is part of a clique.

Problem A.2 (P2)
For all agents, ai, in an arbitrary connected multi-agent network, the problem is to
calculate (A.8).

66

3. Privacy Preserving solution to P1

Fig. A.2: An example of a multi-agent net-
work considered in P1.

Fig. A.3: An example of a multi-agent net-
work considered in P2.

Fig. A.3 is a simple example of the graph topology P2 is investigating. It can
be seen that agent a4 does not form a clique with other agents that are in the
neighborhood of either a1 or a3.

The aim of the paper is to solve P1 and P2 without leaking the agents
private values. For P1, we propose to use secret-sharing and two rounds of
communication. This approach is evident under the assumption of cliques
in the neighborhood. In the case of P2, where cliques in the graph are not
assumed, we introduce a so-called virtual clique between agents in the same
neighborhood, which is done with the use of encryption. In this way, we use
the same method in P2 as in P1 but with the cost of additional communication
rounds. This we see as a generalization of the proposed method, making it
independent of the graph topology. Remark, P1 is a special case of P2, and is
as such covered by the solution to P2. However, we believe that solving them
one at a time will improve readability.

Notation

Let Ni denote the neighbors of agent ai and C1, . . . , Cm are the cliques in
the multi-agent network, specifically, Ck is a set consisting of the indices j of
agents aj in the k’th clique. Moreover, Ci is the cliques agent ai is part of; that
is, k ∈ Ci iff ai ∈ Ck. Lastly, for each agent ai, we will need to define the sets
Ci,j, j ∈ Ni, where for all k ∈ Ci, k ∈ Ci,j iff aj ∈ Ck. Note that Ci,j = Cj,i.

3 Privacy Preserving solution to P1

For solving P1 without leaking data, the idea is to compute the sum of values
in each clique in the neighborhood of each agent. The sum is computed
using secret sharing techniques, which will be key to preserve privacy in the
protocol.

67

Paper A.

3.1 Secret Sharing

The aim of secret sharing is to share a secret among a set of participants
such that none of the participants learn the secret and only by recombining
the information of each participant, can the secret be reconstructed. In this
way, an adversary attempting to learn the secret has to attack several entities
instead of just one.

Dividing a secret into shares can be done in many ways. A simple scheme
is called additive secret sharing and it has the property that the shares s1, . . . , sn
of the secret s satisfies

s = s1 + · · ·+ sn mod p,

where p is a prime large enough that the probability of guessing si is negli-
gible.

The modulo operator is used to make sure that each individual share
does not leak information about s. Specifically, the shares are uniformly
distributed on 0, . . . , p− 1 and p > s. In our method, we will use a sharing
of zero to achieve privacy.

3.2 Proposed method: Solution to P1

To present the idea in the method, consider a clique Ck, k ∈ {1, . . . , m}. The
approach is for each agent aj for j ∈ Ck to add a uniformly random number
rj to xj before sending it to the other agents in the k’th clique. In this way,
xj is not revealed to the neighbors of aj, since xj + rj is a uniformly random
number. Designing the random rj values such that ∑j∈Ck

rj = 0, ensures that
the sum of the values in the cliques can still be learned by the agents in the
clique.

To improve efficiency, we introduce a two-phase algorithm. The first
phase is a preprocessing phase where the described uniformly random num-
bers are chosen; hence, this phase can be carried out in advance of the actual
execution which boost efficiency at run-time. The second phase is the execu-
tion phase, where the private values are involved.

We explain the preprocessing phase with a numerical example, see Exam-
ple A.1.

Example A.1
Let a clique consist of the agents a1, a2 and a3 and let p = 23. Table A.1 illustrates
the steps in the preprocessing phase. The first step is that each agent chooses 3
random numbers which must sum to zero; this is shown in the first column. Then
each agent sends one random number to each agent (including itself), the random
number received by each agent is shown in the second column. The last column

68

3. Privacy Preserving solution to P1

shows for each agent the sum of received numbers modulo 23, which is the result
of the preprocessing phase. Note that the sum of the last column modulo 23 is zero.

Choose uniformly
random numbers

Recieved
numbers

Sum of rec.
numbers

Agent 1 0 = 15+5+3 mod 23 15,10,8 15+10+8 mod 23 = 10
Agent 2 0=10+6+7 mod 23 5,6,9 5+6+9 mod 23 = 20
Agent 3 0=8+9+6 mod 23 3,7,6 3+7+6 mod 23 = 16

Table A.1: Overview of the steps each agent take per clique in the preprocessing phase. In
this example there is one clique consisting of three agents.

Example A.2 continues Example A.1, and shows the steps the agents take
in the execution phase. As seen, all agents learn the sum of private values
without exposing them.

Example A.2
This example is a continuation of Example A.1. Assume the agents have secret
values, x1 = 5, x2 = 2, x3 = 10. The goal is to find the sum of secret values
in the clique, thus all agents should end up with learning the number 17, as
5 + 2 + 10 = 17. Table A.2 illustrates the execution phase that would follow the
preprocessing phase in Example A.1. The first step is for each agent to add their
secret value to the random number generated in the preprocessing phase; this is
shown in the first column. Then each agent sends this sum to all other agents; the
second column shows the numbers each agent receives. The last colunmn shows
the computed sum, which is the result of the execution phase.

Add xi to si1
Received
numbers

Sum of rec.
numbers % 23

Agent 1
x1 = 5

5+10 mod 23 = 15 15,22,3 17

Agent 2
x2 = 2

2 +20 mod 23 = 22 15,22,3 17

Agent 3
x3 = 10

10 + 16 mod 23 = 3 15,22,3 17

Table A.2: Overview of the steps each agent take per clique in the execution phase, which
would follow the steps in the preprocessing phase shown in Example A.1.

There is still one thing that must be taken into account in the algorithm. If
agent aj, j ∈ Ni is part of more than one clique that includes ai, then xj would

69

Paper A.

Algorithm A.1: Privacy Preserving Solution to P1

p > max
i

(∑j∈Ni
xj) is a public prime and D = {0, . . . , p− 1}.

1: For each aj, j ∈ Ni, ai chooses λi,j,k, k ∈ Ci,j such that
(

∑k∈Ci,j
λi,j,k

)
mod p = 1.
Preprocessing

2: For each k ∈ Ci, ai draws from D a uniformly distributed number ri,j,k for
each agent j ∈ Ck (including itself), such that(

∑
j∈Ck

ri,j,k

)
mod p = 0, k ∈ Ci.

3: ai sends ri,j,k to agent aj for j ∈ Ck and k ∈ Ci.

4: Upon receiving rj,i,k from each agent aj, j ∈ Ck, k ∈ Ci, agent ai computes
the following sum for each clique Ck, k ∈ Ci,

si,k =

(
∑

j∈Ck

rj,i,k

)
mod p, k ∈ Ci.

Execution
5: For each k ∈ Ci, and each j ∈ Ck, ai computes

pi,j,k =
(

λi,j,kxi + si,k

)
mod p.

6: ai sends pi,j,k to each agent aj, j ∈ Ck for each k ∈ Ci.
7: Upon receiving pj,i,k for each j ∈ Ck, k ∈ Ci, ai computes

y′k = ∑
j∈Ck

pj,i,k mod p, k ∈ Ci.

8: ai computes

yi =

(
∑

k∈Ci
y′k

)
mod p. (A.9)

70

3. Privacy Preserving solution to P1

be added to the sum, (A.8), more than one time. To see this, consider the
graph depicted in Fig. A.2. Attempting to compute y1 = x1 + x2 + x3 + x4
by the described method would result in the computation of (x1 + x2 + x3) +
(x1 + x2 + x4) 6= y1. As seen, x1 and x2 are added twice. x1 can be subtracted
since a1 knows this value, however, a1 cannot subtract x2. To circumvent this,
a2 must add only half of x2 in each of the two cliques.

In Algorithm A.1, the privacy preserving solution to P1 is formally pre-
sented from the view of agent ai, where we use the notation introduced in
section 2.

We now provide a sketch of the proof of correctness and privacy of Algo-
rithm A.1.

Sketch of Proof. Correctness. The protocol gives the correct result if ai learns(
∑

j∈Ni

xj

)
mod p, (A.10)

which is equal to the sum in (A.8), since we choose p > ∑j∈Ni
xj. Consider

the following rewrite of (A.9), where each equation is modular p even though
we omit it to improve notation;

yi =

(
∑

k∈Ci
y′k

)
= ∑

k∈Ci
∑

j∈Ck

pj,i,k

= ∑
k∈Ci

∑
j∈Ck

(λj,i,kxj + sj,k)

= ∑
k∈Ci

(
∑

j∈Ck

λj,i,kxj + ∑
j∈Ck

∑
i∈Ck

ri,j,k

)

= ∑
k∈Ci

(
∑

j∈Ck

λj,i,kxj + ∑
i∈Ck

∑
j∈Ck

ri,j,k︸ ︷︷ ︸
=0

)

(∗)
= ∑

j∈Ni

∑
k∈Ci,j

λj,i,kxj

= ∑
j∈Ni

xj ∑
k∈Ci,j

λj,i,k︸ ︷︷ ︸
=1

= ∑
j∈Ni

xj,

(A.11)

where (∗) is because summing over the cliques ai is in (k ∈ Ci) and all the
agents in each of those cliques (j ∈ Ck) is equivalent to summing over all the
neighbors aj of ai (j ∈ Ni) and the cliques both ai and aj are in (k ∈ Ci,j) since
we assume that all neighbors to ai is part of a clique that includes ai. This
proves the correctness of the protocol.

71

Paper A.

Privacy. We consider the execution phase as the preprocessing phase does
not involve any private values. For each k ∈ Ci, ai sends (λi,j,kxi + si,k) mod p
to each aj, j ∈ Ck. This communication is privacy preserving since si,k =

∑j∈Ck
rj,i,k mod p, is a uniformly random number, known only by ai. For aj

receiving v = (λj,i,kxi + si,k) mod p, the information aj gets is

λj,i,k︸︷︷︸
known to aj

xi = v︸︷︷︸
known to aj

− rj,i,k︸︷︷︸
known to aj

− ∑
j′∈Ck ,j′ 6=j

rj′ ,i,k︸ ︷︷ ︸
unknown to aj

, (A.12)

Since |Ck| ≥ 3, ∑j′∈Ck ,j′ 6=j rj′ ,i,k will at least consist of two uniformly random
numbers each of a probability of 1

p . Hence, by choosing p large, the proba-
bility of aj guessing the last term in (A.12) is negligible.

4 Privacy Preserving Solution to P2

The algorithm for solving P2 without leaking private data is based on Algo-
rithm A.1. Actually, the only difference is for agents that are not part of a
clique in a given neighborhood. To clarify, consider Fig. A.3, where a4 is a
neighbor to a1 but a4 does not form a clique with a1 and another agent in N1.
For a1 to learn x2 + x5 + x4 without learning individual values in the sum,
we need to extend Algorithm A.1. Our propose is to create a so-called virtual
clique between aj, ai and one other agent, aj′ , in Ni. In Definition A.1, we
define what is meant by a virtual clique.

Definition A.1 (Virtual Clique)
Let a1, a2 and a3 be agents in a multi-agent network and let there be a communi-
cation link between a1 and a2 and between a1 and a3. A virtual clique between
a1, a2 and a3 is made by letting a2 encrypt its messages to a3 such that only a3
can decrypt them. a2 sends the encrypted messages to a1 who forwards to a3 and
vice versa for messages from a3 to a2.

In continuation, let Vm, . . . , Vv, be the virtual cliques in the multi-agent
network, where m is the number of cliques, thus the indices of the virtual
cliques starts from the last index of the regular cliques. Let Vi be defined
similarly to Ci and define for each agent, ai, the set Vi,j, j ∈ Ni, such that
for all k ∈ Ci ∪ Vi, k ∈ Vi,j iff aj ∈ Ck ∪ Vk. For encrypting messages, one
can chose among many schemes, see for instance the study of encryption
algorithms by [12].

72

4. Privacy Preserving Solution to P2

Algorithm A.2: Privacy Preserving Solution to P2

p and D are as in Algorithm A.1.

1: ai determines, for each aj, j ∈ Ni, the values {λi,j,k}, k ∈ Vi,j such that

∑
k∈Vi,j

λi,j,k mod p = 1, j ∈ Ni. (A.13)

2: ai executes Algorithm A.1 to compute the sum, r1i = ∑k∈Ci ∑j∈Ck
xj, us-

ing the λi,j,k values in (A.13).

Preprocessing
3: Through a secret key generation process, ai determines the secret keys gk

for k ∈ Vi for encrypted communication in the virtual cliques.

4: For each k ∈ Vi, ai chooses two uniformly distributed random numbers
ri,k,0 and ri,k,1 from D such that
(ri,k,0 + ri,k,1) mod p = 0.

5: For each k ∈ Vi, ai encrypts ri,k,1 using gk and sends enc(ri,k,1)gk to agent
aj, j ∈ Vk ∩Ni.

6: Upon receiving enc(rj,k,1)gk , ai decrypts and computes the sum

si,k =
(

ri,k,0 + rj,k,1

)
mod p.

Execution
7: For each k ∈ Vi, ai computes pi,j,k = λi,j,kxi + si,k mod p, j ∈ Vk ∩
Ni, j 6= i.

8: ai sends pi,j,k to aj, j ∈ Vk ∩Ni, j 6= i, k ∈ Vi.

9: Upon receiving pj,i,k ai computes y′i,k = ∑j∈Vk ,j 6=i pj,i,k mod p, k ∈ Vi.

10: Finally, ai adds the result from the cliques with the result from the virtual
cliques,

yi = r1i + ∑
k∈Vi

y′i,k mod p. (A.14)

73

Paper A.

The protocol for solving P2 is formally written in Algorithm A.2 from the
perspective of agent ai.

The correctness of Algorithm A.2 follows from the correctness of Algo-
rithm A.1. Considering only the execution phase, showing the privacy of
Algorithm A.2 is equivalent to showing the privacy of Algorithm A.1. The
distinction lies in the creation of the random numbers in the preprocessing
phase since in Algorithm A.2 agents in a virtual clique with no comunication
link between them need to send messages through their common neighbor.
However, since we encrypt these messages, we make sure that the common
neighbor cannot learn the messages which would otherwise break the pri-
vacy.

5 Scalability

To illustrate the scalability of Algorithm A.2, we have conducted simulations
showing execution time as a function of a specific graph constellation. The
simulations are carried out on a 2.70 GHz laptop, where one thread is cre-
ated for each agent in the simulated network. For this reason, the absolute
execution times may be misleading, as one would expect the execution time
to be lower if each agent were given individual machines. However, the ex-
ecution times are comparable to each other, thus providing an illustration of
scalability.

Fig. A.4 shows how the execution time is affected by the number of edges

1 2 3 4 5 6 7 8 9 10 11 12 13

·N

10

20

number of edges

ex
ec

ut
io

n
ti

m
e

in
se

co
nd

s

N = 20 N = 60 N = 100

Fig. A.4: Execution time versus number of edges in the graph. Note that the x-axis is scaled by
N.

74

6. Conclusion

in the graph. The orange line shows an average simulation of the protocol,
where the number of agents N = 20 and the execution time is measured with
the number of edges in the graph being equal to k ·N for k = 1, . . . , 13. It may
be counter-intuitive, that the execution time decreases as edges are added to
the network. However, this is explained by the fact that as edges are added,
the number of virtual cliques in the graph is decreasing, resulting in a faster
computation time.

The same goes for the blue line, where the number of agents is 60 and the
green line where the number of agents is 100.

6 Conclusion

The paper presents privacy preserving protocols for calculating a sum func-
tion among neighbors in a connected graph where each agent can only com-
municate with their immediate neighbors. The result of the paper can be
directly applied in existing decentralized protocols (where agents need the
sum of its neighbors values) for achieving privacy. The protocols has a con-
stant number of communication rounds and simulations show great scala-
bility. For future work, it will be interesting to consider other functions of
neighbors values than the sum function. To this end, the simple additive
secret sharing protocol can be substituted by Shamir’s secret sharing scheme.

References

[1] K. Tjell and R. Wisniewski, “Privacy preserving distributed summation in a con-
nected graph,” vol. 53, no. 2. Elsevier, 2020, pp. 3445–3450, 21th IFAC World
Congress ; Conference date: 12-07-2020 Through 17-07-2020.

[2] G. Banjac, F. Rey, P. Goulart, and J. Lygeros, “Decentralized resource allocation
via dual consensus admm,” 2019 American Control Conference (ACC), Jul 2019.

[3] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via
inexact consensus admm,” IEEE Transactions on Signal Processing, vol. 63, no. 2,
pp. 482–497, Jan 2015.

[4] M. Ma, A. N. Nikolakopoulos, and G. B. Giannakis, “Hybrid admm: a unifying
and fast approach to decentralized optimization,” EURASIP Journal on Advances
in Signal Processing, vol. 2018, no. 1, p. 73, Dec 2018.

[5] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized laplacian
eigenvalues estimation for networked multi-agent systems,” in Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chi-
nese Control Conference, Dec 2009, pp. 2717–2722.

75

References

[6] C. Liu, H. Li, and Y. Shi, “Resource-aware exact decentralized optimization
using event-triggered broadcasting,” 2019, in press. [Online]. Available:
https://arxiv.org/abs/1907.10179v2

[7] R. Cramer, I. B. Damgaard, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing, 1st ed. Cambridge University Press, 2015, iSBN: 978-1-107-04305-
3.

[8] M. A. Will and R. K. Ko, “Chapter 5 - a guide to homomorphic
encryption,” in The Cloud Security Ecosystem, R. Ko and K.-K. R. Choo,
Eds. Boston: Syngress, 2015, pp. 101 – 127. [Online]. Available: https:
//doi.org/10.1016/B978-0-12-801595-7.00005-7

[9] S. Mehnaz, G. Bellala, and E. Bertino, “A secure sum protocol and its application
to privacy-preserving multi-party analytics,” in Proceedings of the 22Nd ACM
on Symposium on Access Control Models and Technologies, ser. SACMAT ’17
Abstracts. New York, NY, USA: ACM, 2017, pp. 219–230. [Online]. Available:
http://doi.acm.org/10.1145/3078861.3078869

[10] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, “Tools for privacy pre-
serving distributed data mining,” ACM SIGKDD Explorations Newsletter, vol. 4,
12 2002.

[11] R. Sheikh, K. Beerendra, and D. Mishra, “Privacy-preserving k-secure sum pro-
tocol,” International Journal of Computer Science and Information Security, vol. 6, 12
2009.

[12] G. Singh and Supriya, “Article: A study of encryption algorithms (rsa, des, 3des
and aes) for information security,” International Journal of Computer Applications,
vol. 67, no. 19, pp. 33–38, April 2013.

76

https://arxiv.org/abs/1907.10179v2
https://doi.org/10.1016/B978-0-12-801595-7.00005-7
https://doi.org/10.1016/B978-0-12-801595-7.00005-7
http://doi.acm.org/10.1145/3078861.3078869

Paper B

Private Aggregation with Application to Distributed
Optimization

Katrine Tjell, Rafael Wisniewski

The paper has been published in the
IEEE Control Systems Letters Vol. 5(5), pp. 1591–1596, 2021.

© 2021 IEEE. Reprinted, with permission, from [1].
The layout has been revised.

1. Introduction

Abstract

The paper presents a fully distributed private aggregation protocol that can be em-
ployed in dynamical networks where communication is only assumed on a neighbor-
to-neighbor basis. The novelty of the scheme is its low overhead in communication
and computation due to a pre-processing phase that can be executed even before the
participants know their input to aggregation. Moreover, the scheme is resilient to
node drop-outs, and it is defined without introducing any trusted or untrusted third
parties. We prove the privacy of the scheme itself and subsequently, we discuss the
privacy leakage caused by the output of the scheme. Finally, we discuss implemen-
tation of the proposed protocol to solve distributed optimization problems using two
versions of the alternating direction method of multipliers (ADMM).

1 Introduction

Distributed computing is emerging everywhere in fields such as signal pro-
cessing, control, and machine learning. Concerns about privacy in such dis-
tributed systems are arising since typically lots of data are collected and sen-
sitive information is held at the network’s nodes. Several works have shown
how collected data can be used to identify individuals, and how private in-
formation can be inferred from it. For instance, [2] discusses how private
information can be derived even though data is randomized.

In this work, we seek to circumvent these privacy issues by proposing a
computation framework where data is only used indirectly and will not be
exposed. Typically, the price to pay for privacy is an increase in computa-
tional complexity and a communication overhead. However, we introduce
a pre-processing phase that only involves none-private data and can be exe-
cuted before or in-between the actual processing phases, resulting in only a
minimal increase in computations and no communication overhead.

Considering already existing distributed algorithms, commonly, the nodes
exchange certain values and in preceding computations, the sum of these val-
ues is used. That is, the algorithms rely on the sum of communicated values
and not the individual values, see for instance [3–5].

Our proposed method solves the problem of privately computing the sum
of values belonging to individual users while not revealing the values. We
prove that the protocol itself does not leak information and moreover; we
study the information leakage caused by the output of the protocol (the sum).
We note that differential privacy techniques could be added on top of our
method, to avoid the leakage caused by the output, at the cost of loosing
precision of the solution.

We explore the use of our proposed method to achieve privacy in dis-
tributed optimization. That is, for nodes i ∈ N = {0, 1, . . . , N} we assume

79

Paper B.

that node i has a private convex cost function fi(xi), and we consider the
following minimization problem:

minimize
x1,...,xN

∑
i∈N

fi(xi)

subject to ∑
i∈N

Bixi − ci = 0,

xi ∈ Xi, i ∈ N

(B.1)

where xi ∈ Rq, Bi ∈ RM×q, and ci ∈ RM×1 are assumed to be known to
node i, and Xi ⊂ Rq is a convex and compact set. This problem is often
seen in resource allocation or load balancing problems. In section 6, we use
our proposed protocol to achieve privacy in two already existing ADMM-
like algorithms which solve (B.1) in two different scenarios: 1) each node i
can communicate only with its neighboring nodes, and 2) each node i can
communicate with a (untrusted) central unit.

1.1 Related Work

In the literature, there are three main approaches for privacy preservation in
distributed computation tasks; secret sharing based secure multiparty com-
putation (SMPC) [6], homomorphic encryption techniques [7], and differen-
tial privacy [8]. For the problem in this paper, namely secure aggregation of
private data, both SMPC and homomorphic encryption based approaches are
evident methods as both can compute a cipher text version of a sum based on
cipher text versions of the terms in the sum, [9–12]. The drawback in SMPC
is that the schemes typically require all participating parties to be connected
by private channels. Regarding homomorphic encryption, the disadvantage
is that usually a trusted third party needs to generate and distribute encryp-
tion keys. [13] is closely related to our work as they also consider private
aggregation in a peer-to-peer network. In their solution, each node needs
to communicate with the neighbors of its neighbors, which is in contrast to
the assumption in this paper where each node can communicate with its im-
mediate neighbors only. Also, the solution in [13] requires the presence of a
trusted third party, which our solution does not.

1.2 Contribution

The paper puts forth a novel private aggregation scheme which bypasses the
strict communication requirements in SMPC and the engagement of a trusted
third party in homomorphic encryption approaches. The main contribution
of the paper can be summarized as:

• The proposed scheme comes with an efficient pre-processing phase re-
quiring only 2 communication rounds. This phase can be executed

80

2. Problem Statement

prior to the actual computations, even before the nodes have access to
their individual inputs. This partitioning makes the scheme extremely
light weight at computation time, compared with state-of-the-art SMPC
methods.

• In contrast to SMPC and homomorphic encryption based approaches
the proposed scheme can be employed in distributed settings where a
fully connected communication network cannot be assumed and where
an (un)trusted third party does not exist.

• Unlike most of the existing private aggregation schemes, the proposed
method in this paper is resilient to node-dropouts.

1.3 Outline

In section 2, we formally state the problem of the paper. A few cryptographic
primitives are presented in section 3, while the main contribution is in section
4. Section 5 gives the privacy analysis of the proposed method and section 6
applies the method to distributed optimization.

1.4 Notation

We model the network of nodes as an undirected graph with the nodes
N = {1, . . . , N} and the set of edges E ⊂ N ×N where (i, j) ∈ E iff node i
can communicate with node j. The notation Ni is used to denote the neigh-
borhood of i, that is j ∈ Ni iff (i, j) ∈ E . Note that we do not consider node i
to be a neighbor to itself, i.e. i /∈ Ni. Moreover, we use Fq to denote the finite
field of p elements, where p is a prime.

2 Problem Statement

At the outset, we state the problem formally.

Problem B.1
Let i ∈ N denote the index of nodes in a network and assume that each node has a
private value si ∈ Fq which it would like to keep secret. Moreover, each node has a
set of neighbors, Ni, and each node are interested in learning the sum of its neighbors
secret value:

yi = ∑
j∈Ni

sj. (B.2)

The problem is to compute (B.2) without exposing any secret value to any node in the
network with the assumption that node i can only communicate with its neighbors
Ni.

81

Paper B.

Defining the attacker model, we consider the case where up to t − 1 < n
nodes may collude in attempting to learn private information of the remain-
ing nodes. However, we assume that all nodes follow the protocol, which is
often referred to as the honest-but-curious adversary 1.

3 Cryptographic Tools

To put forth a privacy preserving solution to Problem 1, we use a few cryp-
tographic primitives which are introduced in this section.

3.1 Secret Sharing Scheme

In this section, we give a very brief introduction to secret sharing and we
refer to [6] for more elaborate explanation. Suppose a node i has a secret si
which it would like to share with n other nodes (hereafter called participants)
such that at least t ≤ n of the nodes need to cooperate in order to learn
the value of si. The scheme is defined over a finite field Fq, where p is a
large prime and it uses a set P of distinct elements in Fq to identify the
participants, e.g. P = {1, 2, . . . , n} and |P| = n. The scheme is comprised of
two algorithms, and the first is share(si, t,P) = {si(j)}j∈P which outputs a
share si(j) for each participant j ∈ P upon receiving a secret si, the threshold
t ≤ |P|, and P . Note that we use si(j) to denote the j’th share of the secret
si. The second algorithm is denoted by reconstruct({si(j)}j∈P ′ , t) = si,
and produces the secret si based on the threshold t and the shares from a set
P ′ ⊆ P of participants, where |P ′| ≥ t. Note that P ′ can be any combination
of at least t elements from P .

We have the following requirements for the secret sharing scheme. Let
{si(j)}j∈P = share(si, t,P), {s̄i(j)}j∈P = share(s̄i, t,P) for arbitrary si, s̄i ∈
Fq, t ≤ |P|, and P ⊆ Fq.

1. For all P ′ ⊆ P , with |P ′| ≥ t,

reconstruct
(
{si(j)}j∈P ′ , t

)
= si.

2. For all P ′ ⊆ P with |P ′| < t:

{si(j)}j∈P ′ ∼ {s̄i(j)}j∈P ′ , (B.3)

where ∼ means identically distributed.

1An honest-but-curious adversary is also sometimes referred to as a passive adversary, see [6]

82

4. Proposed Method

3. Finally, we require that

reconstruct({si(j)}j∈P ′ + {s̄i(j)}j∈P ′ , t)

= si + s̄i,
(B.4)

for all P ′ ⊆ P with |P ′| ≥ t.

3.2 Encryption

For the privacy preserving computations, it will be necessary to encrypt cer-
tain values (messages), such that these values cannot be learned by unautho-
rized nodes. The encryption scheme encompasses three algorithms, where
the first is denoted keys = (ski, pki). It generates a secret- and public key
pair, (ski, pki) for a participant i ∈ P . The third algorithm is the encryption
algorithm enc(x, pki) = [x]. It takes a message x and a public key and out-
puts a cipher-text version [x] of the message. The decryption algorithm takes
a cipher-text message [x] and a secret key and outputs the plain text ver-
sion of the message. This algorithm is denoted by dec([x], ski) = x. For all
x, x̄ ∈ Fq, we have the following requirements for the scheme, where (ski, pki)
are any secret- and public key pair:

1.
dec(enc(x, pki), ski) = x (B.5)

2.
enc(x, pki) ∼ enc(x̄, pki), (B.6)

see details in [11].

4 Proposed Method

Note that both the secret sharing scheme and the encryption scheme is de-
fined over a finite field Fq. Consequently, modular arithmetic is used in the
proposed method. Choosing p > yi and assuming that each secret si is an
element of Fq, the modular arithmetic will not affect the precision. In case
si ∈ R, si can be scaled before rounding to the nearest element in Fq , under
which circumstance the precision of the method will depend on the scaling
factor.

To introduce the proposed method, consider a central node C and k nodes
i ∈ NC that are all neighbors to C but not necessarily neighbors to each other.

We present our method by focusing only on node C and the nodes i ∈ NC.
Solving Problem 1 can be achieved by executing the method in parallel for
all nodes j ∈ N .

83

Paper B.

Key
generation

(1.)

Key distri-
bution (2.)

Choose
ri (3.)

Create
shares

of ri (4.)

Encrypt
shares
using

keys, send
to C (5.)

Share distri-
bution (6.)

Decrypt
received

shares (7.)

Compute
R(i) as
sum of

received
shares (8.)

Communication

Fig. B.1: Block diagram illustrating the pre-processing phase of the proposed method from the
view of node i ∈ NC . The numbers in parenthesis refer to the corresponding step in Algo-
rithm B.1.

The idea is to solve (B.2) in Problem B.1 by computing(
∑

i∈NC

si + ri

)
mod p =

(
∑

i∈NC

si + R

)
mod p, (B.7)

where R =
(
∑i∈NC

ri
)

mod p and {ri ∈ Fq}i∈NC are uniformly chosen by
node i. In this way, si is masked by the random ri. We propose a pre-
processing phase where each node i ∈ NC computes a share, R(i), of R. At
the execution time, node i sends (si + ri) mod p and R(i) to node C, that
can use R = reconstruct({R(i)}i∈NC ,t) to compute R and (B.7) to compute
yC = ∑i∈NC

si.
In Fig. B.1, we give an overview of the pre-processing phase, where

each communication block covers the steps where each node i ∈ NC sends
a vector of values to C who forwards the vectors to all nodes j ∈ NC. As
seen, each node i ∈ NC starts by generating the keys (ski, pki) = keys, and
distributes the public key pki. Then each node i ∈ NC chooses ri uniformly
from Fq and creates shares, {ri(j)}j∈NC , of ri. The shares are encrypted using
the public key of the corresponding node j ∈ NC and the encrypted shares
are distributed. Upon receiving encrypted shares from the other nodes, each
node i ∈ NC decrypts the shares using its own secret key, ski. Node i then
computes its share of R by R(i) = ∑j∈NC

rj(i), which holds under the third re-
quirement for the secret sharing scheme. The outcome of the pre-processing
phase is that node i ∈ NC learns R(i).

84

4. Proposed Method

We state the proposed method formally in Algorithm B.1 from the view
of node i ∈ NC.

Algorithm B.1: Private Sum in Graphs

Input: Fq with p > ∑j∈NC
sj, and the threshold t < |NC| are publicly

available.
Output: node C learns yC = ∑j∈NC

sj, where sj is the secret known only
to node j.
Pre-processing:

1: (ski, pki) = keys

2: Send public key pki to C who forwards to j ∈ NC\{i}.
3: Draw ri ∈ Fq uniformly.
4: {ri(j)}j∈NC = share(ri, t,Nc) .
5: [ri(j)] = enc(ri(j), pk j) for j ∈ NC\{i}.
6: Send [ri(j)] to node C who forwards to node j ∈ NC\{i}.
7: {rj(i)}j∈NC\{i} = {dec([rj(i)], ski)}j∈NC\{i}.
8: R(i) = ∑j∈NC

rj(i).
Execution:

9: mi = (si + ri) mod p. (B.8)
10: Send {mi, R(i)} to node C.

Node C does:

1. R = reconstruct({R(i)}i∈NC , t).

2. yC = ((∑i∈P mi)− R) mod p. (B.9)

4.1 Handling dropped nodes

The proposed protocol is inherently able to handle nodes dropping out as
long as there is at least t remaining nodes. To elaborate, we use P to de-
note the nodes participating from the beginning and P ′ to denote the nodes
remaining after some nodes have dropped out. Specifically, P ′ ⊂ P and
|P ′| ≥ t. If nodes drop out in the pre-processing phase, the remaining
nodes can carry on without any modification. If nodes drop out in the
execution phase and fail to perform step 10, each node i ∈ P ′ computes
Rnew(i) = ∑j∈P ′ rj(i) and sends Rnew to node C. Node C can then compute
∑i∈P ′ si. The advantage is that the pre-processing does not have to be run
again.

85

Paper B.

5 Privacy Analysis

We use the standard simulation-based proof to prove that in executing Algo-
rithm B.1, any set of fewer than t colluding nodes will not be able to infer the
private values of the honest nodes. To this end, we introduce the term view
of a node, which is the information known to it during protocol execution.

Definition B.1 (View)
The view of a node i ∈ NC is a vector, VIEWi, consisting of the values i
knows and receives. For a subset A ⊂ NC of nodes, VIEWA denotes the
vector containing the view of each node i ∈ A.

Note that, VIEWi is a random variable since it is based on random choices
made by the nodes. What will be shown, is the existence of a simulator
which essentially is an algorithm with the ability to simulate a view that is
indistinguishable from the view of a set of nodes.

We use SA = {si}i∈A to denote the set of private values of the nodes
i ∈ A.

Theorem B.1 (Honest-but-curious privacy)
Consider a set NC ⊆ Fq. For all integers t ≤ |NC| and any set A ⊂ NC with
|A| < t and the central node C ∈ A, there exist a probabilistic polynomial-
time (PPT) simulator SIM which upon the inputs; SA, Fq , the threshold t, and
the output of Algorithm B.1, yC, outputs a vector perfectly indistinguishable
from VIEWA, namely

VIEWA ∼ SIMA(SA, Fq, t, yC). (B.10)

Proof. The simulator must simulate each element in the view. We list the
elements and discuss how the simulated equivalent to each element is cho-
sen. Each simulated equivalent is marked by a {·}s. VIEWA consists of the
following values:

si, ri, ski, {rj(i)}j∈NC , i ∈ A
{mi, R(i)}, pki, {[rj(i)]}j∈NC , i ∈ NC

R, yC = ∑
i∈NC

si

(B.11)

The simulator starts by choosing Rs uniformly from Fq since R (from (B.7))
is distributed in this way. Then it uses {Rs(i)}i∈NC = share(Rs, t,NC).
{mi}i∈NC (from (B.8)) are uniformly distributed on Fq with the condition that
∑i∈NC

mi = yC + R, thus {ms
i }i∈NC are simulated according to this. {rs

i }i∈NC

86

5. Privacy Analysis

are simulated by drawing uniformly random values from Fq , with the condi-
tion that ∑i∈NC

rs
i = R, see (B.7). Based on {rs

i }i∈NC , the simulator can use the
steps in the pre-processing phase of Algorithm B.1 to simulate the remaining
elements of SIMA(SA, Fq, t, yC).

5.1 Leakage of Information from Output

As noted earlier, information can be gained from the output of the protocol.To
study this in detail, we consider the sum,

zN =
N

∑
i=1

si, (B.12)

where si ∈ [0, K] for K ∈ Fq corresponds to the secret value of node i, and
N > 1 is the number of terms in the sum. Particularly, we will investi-
gate the amount of information zN leaks about a particular si, say s1. To do
this, zN and {si}i∈N are viewed as outcomes of the random variable ZN and
uniformly distributed variables {Si}i∈N , respectively. We use the uniform
distribution for each Si since this will be true from the view of the adversary
given that he has no prior knowledge.

We start the discussion by considering the mutual information between
S1 and ZN , given as

I(S1, ZN) = ∑
s1,zN

p(s1, zN) log2

(
p(s1, zN)

p(s1)p(zN)

)
, (B.13)

where p(x) is the probability mass function of the random variable X, and
p(x, y) is the joint probability mass function of the random variables X and
Y. Intuitively, I(S1, ZN) is the reduction in uncertainty about S1 gained from
ZN . By the data processing inequality (see for instance [14]),

I(S1, ZN−1) ≥ I (S1, ZN) . (B.14)

Hence, the mutual information is non-increasing as N is increased. To explore
this result further, consider the conditional entropy of S1 conditioned on ZN ,
which is given as

H(S1|ZN) = H(S1)− I(S1, ZN). (B.15)

This is a measure of the uncertainty about S1 after ZN is given. The uncer-
tainty is measured in bits and the more bits, the more uncertainty there is
about the variable.

Finding a closed form expression for H(S1|ZN) is still an open question.
Hence, to illustrate it, we calculate H(S1|ZN) numerically for small values of
N and K since the combinatorics starts to be intractable for larger values. Fig.
B.2 depicts H(S1) and H(S1|ZN) for N = 2, . . . , 13 and K = 4. The figure

87

Paper B.

2 3 4 5 6 7 8 9 10 11 12 13

1.4

1.6

1.8

2

n

en
tr

op
y

[b
it

s]

H(S1|ZN) H(S1)

Fig. B.2: Comparison between the entropy of S1 (red dashed line) with the entropy of S1 condi-
tioned on ZN (green line).

compares the uncertainty of S1 to the uncertainty of S1 conditioned on ZN .
As seen, increasing N decreases the leakage about S1. This means that the
more neighbors a node has, the less information it will gain on the private
values of its neighbors.

We conclude this section, by studying the probability of the adversary
guessing S1 = s1 after learning ZN = zN or in other words; the probability of
leaking the secret. To establish a closed form expression for this probability,
we assume that each Si is uniformly distributed on [0, zN].

Proposition B.1
Let S1, . . . , Sn be independent uniformly distributed on [0, K] and let ZN =

∑N
i=1 Si. Then the conditional probability of S1 conditioned on ZN is given by

P(S1|ZN) =
(zN − s1 + N − 2)!zN !(N − 1)!

((zN − s1)!(N − 2)!(zN + (N − 1))!
(B.16)

for zN ∈ {0, 1, . . . , K}.

Proof. The conditional probability can be written as

P(S1|ZN) =
P(S1, ZN)

P(ZN)
. (B.17)

By counting the number of combinations of s1, . . . , sN that satisfies (B.12)
with given zN , where each sj can take values in the interval [0, zN], the prob-
ability mass function of ZN yields

P(ZN) =
(zN + N − 1)!
zN !(N − 1)!

1
T

, (B.18)

where T is the total number of outcomes of ZN .

88

6. Application to Dist. Optimization

Similarly, by counting the number of combinations of s2, . . . , sN that satis-
fies (B.12) with given zN and s1, where each sj can take values in the interval
[0, zN], the joint probability mass function between S1 and ZN , yields

P(S1, ZN) =
(zN − s1 + N − 2)!
(zN − s1)!(N − 2)!

1
T

, (B.19)

which concludes the proof.

6 Application to Dist. Optimization

In the following, we consider the minimization problem in equation (B.1) as-
suming: 1) a centralized setting, and 2) a decentralized setting. We study two
already existing distributed optimization algorithms and use Algorithm B.1
to achieve privacy in each of them.

6.1 Centralized Optimization

Solving (B.1) in the scenario where each node communicates with an un-
trusted central unit, can be achieved by using a modified version of the
ADMM algorithm. Such an algorithm is presented in [15] by the following
steps in each iteration k ≥ 0:

dk+1 =
1
N

N

∑
j=1

Bjxk
j − cj (B.20a)

xk+1
i ∈ argmin

xi∈Xi

{
fi(xi) + λk>Bi xi

+
ρ

2
||Bixi − Bixk

i + dk+1||2
}

(B.20b)

λk+1 = λk + ρdk+1, (B.20c)

using the initial values x0
i ∈ Xi, and λ0 ∈ Rm. Since the nodes cannot com-

municate with each other, (B.20a) will be computed by the central unit. The
algorithm in (B.20) is related to the traditional ADMM algorithm presented
in [16], where the steps (B.20b) and (B.20c) can be identified as the primal and
dual updates, respectively. However, there is an important distinction which
accounts for the differences; in the traditional ADMM, the primal update
is separated into two parts that are updated sequentially, while the primal
update here is separated into N parts that are updated simultaneously. [17]
proves convergence of (B.20) given that the solution set to the problem in (B.1)
is nonempty. To preserve privacy, we propose to compute ∑N

i=1 Bixk
i − ci us-

ing Protocol B.1. We refer to the following two steps as privacy preserving
(PP) parallel ADMM:

89

Paper B.

1. The nodes uses Protocol B.1 to compute dk+1 = ∑N
i=1 Bixk

i − ci, where
the nodes j ∈ N takes the roles of nodes i ∈ NC and the central unit
takes the role of node C. The central unit returns dk+1 to the nodes
i ∈ N .

2. Each node i ∈ N computes (B.20b) and (B.20c) in parallel.

6.2 Decentralized Optimization

For solving (B.1) under the assumption that each node i can only commu-
nicate with its neighboring nodes j ∈ Ni, [18] presents a fully decentral-
ized variant of the ADMM algorithm referred to as tracking-ADMM. It uses
a consensus matrix, w ∈ Rn×n, which is a semidefinite doubly stochastic
and symmetric matrix, see [18] for details. Given, x0

i ∈ Xi, λ0
i ∈ RM and

d0
i = Bix0

i − ci, the following steps computed by each node i ∈ N in parallel
solves (B.1);

δk
i = wi,id

k
i + ∑

j∈Ni

wi,jd
k
j (B.21a)

lk
i = wi,iλ

k
i + ∑

j∈Ni

wi,jλ
k
j (B.21b)

xk+1
i ∈ argmin

xi∈Xi

{ fi(xi) + lk>
i Bixi +

ρ

2
||Bixi − Bixk

i + δk
i ||2} (B.21c)

dk+1
i = δk

i + Bixk+1
i − Bixk

i (B.21d)

λk+1
i = lk

i + ρdk+1
i , (B.21e)

where ρ > 0 is a penalty parameter. The algorithm in (B.21) is quite dif-
ferent from the standard ADMM due to the fully decentralized setting. The
information ∑N

i=1 Bixk+1
i − ci is not available to the nodes, since each node

can only communicate with its neighbors. Thus, as explained in [18], steps
(B.21a), (B.21b) and (B.21d) roughly acts as a dynamic average consensus
mechanism for estimating this term. [18] proves that this algorithm con-
verges given that each fi(xi) is convex and that (B.1) and the dual problem
of (B.1) admits optimal solutions. To preserve privacy, we propose to use
Protocol B.1 to compute δk

i and lk
i for each node i. That is, (B.21a) and (B.21b)

is substituted with the following steps;

1. Protocol B.1 is utilized to compute δk
i , where node i takes the role of

the central node C and the nodes j ∈ Ni takes the role of the nodes
j ∈ NC. The nodes j ∈ Ni inputs wi,jd

k
j to the protocol and node i

learns δ̄
k
i = ∑j∈Ni

wi,jd
k
j and computes δk

i = wi,id
k
i + δ̄

k
i .

90

6. Application to Dist. Optimization

0 50 100 150 200 250 300 350 400
0

20

40

60

k

M
SE

Tracking ADMM
Parallel ADMM

Fig. B.3: Convergence of PP tracking ADMM and PP parallel ADMM with N = 30 nodes. After
k = 200 iterations, 10 randomly selected nodes drop out.

2. Protocol B.1 is utilized to compute lk
i . The nodes j ∈ Ni inputs wi,jλ

k
j

to the protocol and node i learns l̄k
i = ∑j∈Ni

wi,jλ
k
j and computes lk

i =

wi,iλ
k
i + l̄k

i .

3. Each node i ∈ N compute in parallel the remaining steps; (B.21c),
(B.21d), (B.21e).

We refer to these three steps as PP tracking ADMM.

6.3 Numerical Experiments

We simulate privacy preserving (PP) parallel ADMM and PP tracking ADMM
solving the same optimization problem of the form of (B.1) with q = 1,
M = 2, fi(xi) = (xi − i)2, and randomly generated B and c matrices. This
problem is solved with N = 30 nodes and in the case of PP tracking ADMM,
each node has on average 20 neighbors. After 200 iterations, we simulate the
dropout of 10 randomly selected nodes. To compare the performance of PP
parallel ADMM and PP tracking ADMM, Fig. B.3 shows the mean squared
error (MSE) of the estimate from both methods at each iteration k. As seen
in Fig. B.3, PP tracking ADMM has a slower convergence rate compared
to PP parallel ADMM which is due to information being distributed in the
network much slower. In fact, the convergence rate of PP tracking ADMM is
dependent on the number of neighbors of each node. This can be observed
in Fig. B.4 that shows the convergence rate of PP tracking ADMM when the
numerical problem is solved and each node has n = 5, 10, 15, 20, 29 neighbors,
respectively. Note that in the case n = 29, the network is fully connected and
the convergence rate matches with the rate of the PP parallel ADMM. That PP
tracking ADMM converges faster the more neighbors each node has matches
nicely with the result from section 5.1 stating that the more neighbors a node
has, the less information is revealed by the output of the method.

91

References

0 20 40 60 80 100 120 140 160 180
0

20

40

60

k

M
SE

n = 29 n = 20
n = 15 n = 10
n = 5 PP parallel ADMM

Fig. B.4: Comparison of the convergence of PP tracking ADMM where each node has respec-
tively 29, 20, 15, 10, and 5 neighbors.

7 Conclusion

The paper presents a privacy preserving fully distributed and parallel aggre-
gation scheme for computing the sum of private values held by individual
nodes. Two straight forward applications of the proposed protocol are given
in the paper, namely privacy preserving distributed optimization. We note
that the protocol can be applied in many other distributed control algorithms
to preserve privacy, see for instance [19].

References

[1] K. Tjell and R. Wisniewski, “Private aggregation with application to distributed
optimization,” IEEE Control Systems Letters, vol. 5, pp. 1591 – 1596, 2021.

[2] Z. Huang, W. Du, and B. Chen, “Deriving private information from random-
ized data,” in Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’05. NY, USA: ACM, 2005, pp. 37–48.

[3] D. Yuan, A. Proutiere, and G. Shi, “Distributed online linear regression,” 2019.

[4] G. Chen and J. Li, “A fully distributed admm-based dispatch approach for virtual
power plant problems,” Applied Mathematical Modelling, vol. 58, pp. 300 – 312,
2018.

[5] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized laplacian
eigenvalues estimation for networked multi-agent systems,” in Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chi-
nese Control Conference, Dec 2009, pp. 2717–2722.

92

References

[6] R. Cramer, I. B. Damgaard, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing, 1st ed. Cambridge University Press, 2015.

[7] M. A. Will and R. K. Ko, “Chapter 5 - a guide to homomorphic encryption,” in
The Cloud Security Ecosystem, R. Ko and K.-K. R. Choo, Eds. Boston: Syngress,
2015, pp. 101 – 127.

[8] C. Dwork, “Differential privacy,” in Automata, Languages and Programming,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 1–12.

[9] E. Shi, T.-H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-preserving aggre-
gation of time-series data,” vol. 2, 01 2011.

[10] G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin, “Smart meter ag-
gregation via secret-sharing,” in Proceedings of the First ACM Workshop on Smart
Energy Grid Security, ser. SEGS ’13. NY, USA: Association for Computing Ma-
chinery, 2013, p. 75–80.

[11] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. NY, USA: Association
for Computing Machinery, 2017, p. 1175–1191.

[12] M. Joye and B. Libert, “A scalable scheme for privacy-preserving aggregation of
time-series data,” in Financial Cryptography and Data Security, A.-R. Sadeghi, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 111–125.

[13] D. Bickson, T. Reinman, D. Dolev, and B. Pinkas, “Peer-to-peer secure multi-
party numerical computation facing malicious adversaries,” Peer-to-Peer Network-
ing and Applications, vol. 3, 01 2009.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory. USA: Wiley-
Interscience, 1991.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods. USA: Prentice-Hall, Inc., 1989.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.

[17] B. He, L. Hou, and X. Yuan, “On full jacobian decomposition of the augmented
lagrangian method for separable convex programming,” SIAM Journal on Opti-
mization, vol. 25, no. 4, pp. 2274–2312, 2015.

[18] A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini, “Tracking-admm
for distributed constraint-coupled optimization,” 2019, submitted to Automatica,
eprint: arXiv:1907.10860.

93

References

[19] Y. Wang, Z. Huang, S. Mitra, and G. E. Dullerud, “Differential privacy in linear
distributed control systems: Entropy minimizing mechanisms and performance
tradeoffs,” IEEE Transactions on Control of Network Systems, vol. 4, no. 1, pp. 118–
130, March 2017.

94

Paper C

Privacy Preserving Recursive Least Squares
Solutions

Katrine Tjell, Ignacio Cascudo and Rafael Wisniewski

The paper has been published in the
2019 18th European Control Conference (ECC), pp. 3490-3495, 2019.

© 2019 IEEE. Reprinted, with permission, from [1].
The layout has been revised.

1. Introduction

Abstract

Individual privacy is becoming a more prioritized issue in the modern world, because
the world is becoming increasingly more digitized and citizens are starting to feel
monitored. Private information could furthermore be misused in the wrong hands.

Many control systems rely on data that often contain privacy sensitive informa-
tion. These are systems such as the power grid, water network, and smart house
where data contain individual consumption profiles and daily schedules. The sys-
tems use the data to compute optimized solutions; hence, the data is valuable but it
contains private information. To this end, it is desirable to achieve algorithms able to
calculate optimized solutions while keeping the data secret.

As a step towards this goal, we propose a privacy preserving recursive least
squares protocol that computes a least squares estimate of the parameters of a lin-
ear system based on observations of input and outputs. This estimate is calculated
while ensuring no leakage of information about observations.

1 Introduction

The tendency in modern and upcoming infrastructures such as smart-grids
and smart-transportation systems is that control and monitoring depend on
exchange of data. This data is used to calculate estimations and optimized
solutions that adapt to individual users and subsequently lead to decisions
made by the system. More often than not, the data contains privacy sensitive
information that can lead to inferences about individuals. Consider for in-
stance a smart meter that collects fine-grained measurements of the electricity
consumption of a household. Using data mining methods with other publicly
available data, these measurements reveal information about the activities of
the occupants of the household, [2]; moreover [3] show that even an anony-
mous 10-ride bus ticket reveals information that can lead to identification of
a specific bus passenger.

These privacy issues are resolved by the application of secure communi-
cation channels or differential privacy in most of the literature, [4], [5], [6].
While these methods may be useful, ultimately they rely on trust since data
owners are required to handover raw data. As there is no guarantee that the
receiver is not corrupt, data owners may be reluctant to share their data.

This paper proposes a method for calculating estimations based on private
data that does not rely on trusted parties. The aim is that raw data will
not leave the data owner, and any computations from the data will not leak
information. To achieve this goal, both distributed computing and recent
results from the research field of secure multiparty computation (SMPC) are
employed.

97

Paper C.

To provide concrete results, the paper has its focus on a privacy preserv-
ing recursive least squares (RLS) protocol. The particular choice of the least
squares algorithm is due to its general applicability and because it is the
foundation of many other estimation techniques. We choose to investigate its
recursive form, since it is used in many control systems. We see this privacy
preserving RLS protocol as a first step toward secure control computations.

Related work. As mentioned, much of the privacy involved literature is
occupied with differential security. To name a few: [7] is concerned with dif-
ferentially private and robust statistics, hereunder differentially private linear
regression and [8] presents differentially private Kalman filtering. Another
noticeable work is [9], that proposes an optimal distributed estimation algo-
rithm, that uses added noise to preserve privacy.

Within the field of SMPC there are a number of works concerned with
solving regression problems, some of which are in the context of machine
learning, such as [10], [11] and [12]. Moreover, it should be noted that re-
cently practical secure computation frameworks have been proposed, which
are specifically tailored to situations where the computation is delegated on
a small number of computing parties. Usually such frameworks only tolerate
one corrupted party, i.e., there are no collusions. In particular, of interest for
our problem are the general framework Sharemind[13], upon which the suit
of statistical algorithms Rmind[14] has been built; and the frameworks ABY3
and SecureML for efficient machine-learning related secure multiparty com-
putation protocols introduced by Mohassel and Rindal in [15] and Mohassel
and Zhang in [16] respectively, based on the ABY framework for practical
secure computation introduced in [17].

In this work, we focus on a privacy preserving recursive least squares
algorithm and adopt the more general approach where we can base our pro-
tocol on any linear secret sharing scheme that assumes there is a sub-protocol
for secure multiplication of shared secrets. This is a flexible approach that in
particular allows for an arbitrary number of computing servers (which in
particular could be the input-providing parties themselves).

The structure of this paper. Section 2 gives a brief introduction to secure
multiparty computation while section 3 presents the main content of the pa-
per, i.e., a privacy preserving protocol for solving the RLS equations. There-
after, section 4 evaluates the performance of the proposed protocol by pro-
viding simulation results that compare the privacy preserving protocol to the
traditional (non-secure) computation of the RLS equations. Finally, section 5
gives a conclusion on the findings.

98

2. Secure Multiparty Computation

2 Secure Multiparty Computation

SMPC is concerned with the development of protocols that allow a set of par-
ties to jointly and privately compute a function taking an input from each of
the parties. In particular, the goal is that a set of parties, P1, . . . , Pm, each hav-
ing a value, respectively x1, . . . , xm, compute some function y = f (x1, . . . , xm)
without any party obtaining more information about other parties’ inputs
than is implied by its own input and the output of the function. This should
hold even if up to a certain number t of parties are corrupted (meaning
that they collude and pool together all information they have seen during
the execution of the protocol). SMPC assumes that communication between
each pair of parties is already realised over secure authenticated channels
(for which encryption and digital signatures can be used) and focuses on
the information that may be leaked to other parties participating in the com-
putation (by the interaction with them) rather than being concerned about
external eavesdroppers. In this article we only consider passive corruption,
meaning that corrupted parties do not deviate from the established protocol.
Security of SMPC protocols is formally defined via a simulation paradigm,
where roughly speaking it is shown that the views of the parties during the
protocol could in fact be simulated in a world where parties only have access
to their inputs and the output of the function. Based on this paradigm, the
notion of universal composability ensures that SMPC protocols can be com-
posed securely. For the interested reader, [18] gives a formal presentation of
this topic, while [19] gives a more concise introduction to SMPC.

The SMPC protocols proposed in this paper are based on secret sharing.
Secret sharing allows a party (dealer) to distribute a secret among a set of
parties without revealing the secret to any individual party or small coalition.

Definition C.1 provides a definition of a secret sharing scheme.

Definition C.1 (Secret Sharing Scheme)
A t-threshold secret sharing scheme for m parties is a pair of algorithms
Share and Reconstruct. Share takes a secret s and creates m values s1, ..., sm,
called shares. Reconstruct is an algorithm that given any set of more than
t shares outputs the corresponding secret s. In addition it is satisfied that
any set of t shares or less gives no information about the secret.

We represent the secret sharing scheme with [·]. That is, given a secret s,
[s] represents a set of shares of s, (s1, ..., sm).

The idea of secret-sharing based SMPC is that the inputs of the compu-
tation are shared among the computing parties in the first phase, and sub-
sequently these parties can compute on the shared values until the last step,

99

Paper C.

where only the sharing corresponding to the output of the computation is
reconstructed.

Most secure secret-sharing based SMPC protocols are built upon a secret
sharing scheme where both the secret and each of the shares are elements
of a sufficiently large finite field Fq = {0, 1, . . . , p− 1} where p is a prime
number, and operations are modulo p. Moreover, the secret sharing scheme
satisfies that given [a], [b], the set of parties can compute shares of the sum
[a + b] and of the product [ab] modulo p. The first of these properties (called
linearity) is achieved by most secret-sharing schemes, and it does not re-
quire any communication among the parties: each party just needs to sum
the shares they have received. An example of such linear secret sharing is
additive sharing, where the dealer chooses the m− 1 first shares s1, ..., sm−1
uniformly at random in Fq, and chooses sm such that s = s1 + ... + sm. In
this case t = m− 1. When we write [c] = [a] + [b] we mean that each party Pi
does the local operation ci = ai + bi mod p, and therefore the secrets satisfy
c = a + b.

Multiplication is more involved and requires communication between the
parties. A common strategy to alleviate this is to push the communication
intensive part to a preprocessing phase (which can occur before even the in-
puts of the computation are known). This is done by means of the so-called
Beaver’s circuit randomization technique, where sharings of correlated ran-
dom data are created in that preprocessing phase. Given that preprocessed
data, the computation of a multiplication in the actual computing phase con-
sists only on local operations and the opening of two sharings, which can be
done by broadcasting shares. There are several ways of creating the prepro-
cessed data, using tools such as semi-homomorphic encryption or oblivious
transfer, but this is out of the scope here. For a recent comparison of these
alternatives see for example [20].

We will assume that parties have access to a multiplication protocol. We
write [c] = [a][b] when parties execute this protocol, where c = ab mod p.

In addition, some of the protocols stated in this paper take as input [r],
where r is a uniform random number in Fq unknown to all parties. This can
be also obtained in a pre-processing phase. The interested reader is referred
to [18], to learn about pre-processing phases and random number generation
in SMPC.

Secret sharing based SMPC also allows to delegate the computation on a
small set of computing parties (or servers) that do not need to be the same as
the input-providers. Indeed the input-providers can share the inputs among
the servers, and these can carry the rest of the computation, operating on the
secret shared values. In the last step, the servers reconstruct the output of the
computation.

We will need some additional notation: we will write [a] and [A] to denote
the fact that each party has one share per entry in the vector a, respectively

100

3. A Privacy Preserving Recursive Least Squares Protocol

the matrix A. In addition, we write [a]B to denote the situation where each
party has one share per bit in a, i.e., the parties hold [a0], [a1], . . . , [al−1], where
a0, . . . , al−1 are the bits of a with a0 being the least significant bit.

3 A Privacy Preserving Recursive Least Squares Pro-
tocol

3.1 The Recursive Least Squares Equations

To motivate the recursive least squares algorithm, consider the problem of
recursive linear regression.

Suppose that an unknown linear system takes a vector of inputs and out-
puts a linear combination of these. To be precise, the output, yi ∈ R, at time
i is modeled as

yi = x>i wi, (C.1)

where xi ∈ Rq×1 is a vector of input observations at time i and wi ∈ Rq×1

is the vector of unknown parameters at time i. Assuming the observations
arrive one at a time, the idea is to recursively estimate the parameter vector
wi, such that at each time i, it minimizes the sum of squared residuals,

ŵi = min
wi
||yi − x>i wi||2. (C.2)

The solution, at time i, to this minimization problem is known as the
recursive least squares equations, and can be formulated as

Pi = Pi−1 −
(

1 + x>i Pi−1xi

)−1
Pi−1xix>i Pi−1, (C.3)

gi = Pixi, (C.4)

ei = yi − x>i ŵi−1, (C.5)

ŵi = ŵi−1 + giei, (C.6)

where P0 is usually initialized as the q × q identity matrix, Iq, and w0 is
initialized as the q× 1 vector of zeros, 0q. For a more elaborate introduction
to the recursive least squares equations refer to [21, p. 454].

3.2 Scenario and challenges

Our aim is to develop a protocol for the privacy preserving recursive least
squares algorithm where we think of the following scenario: the computation
will be carried out by a (small) number of computing servers P1, ..., Pm. Every
sensor making an observation xi or yi will secret share that value among

101

Paper C.

P1, ..., Pm. By using additive secret sharing we can assume that up to m− 1 of
these servers are passively corrupted, by doing the preprocessing in the way
described in the previous section.

Developing a privacy preserving multiparty protocol for computing (C.3),
(C.4), (C.5), and (C.6), entails a few challenges. The first one is the division
in (C.3). Since the protocol can apply solely finite field arithmetic, division
must be replaced with integer division. Remark, that integer division is not
the same as division in Fq , since this would lead to an entirely different
result. In this regard, a definition of integer division is given in Definition
C.2.

Definition C.2 (Integer Division)
The term integer division refers to the operation of dividing two integers and
afterwards truncating the result, such that the output is also an integer. The
operation is denoted by the symbol \, such that

a\z =
⌊ a

z

⌋
.

Furthermore, let .\ denote the element-wise integer division operation such
that a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n

 .\z =

⌊

a1,1
z

⌋
. . .

⌊
a1,n

z

⌋
...

. . .
...⌊

an,1
z

⌋
. . .

⌊ an,n
z
⌋
 .

To carry out secure integer division of two secrets, we use a sub protocol,
divSec([d], [n]), that takes as input two shared l-bit integers, [d] and [n], and
outputs [n\d].

Since we use integer division, scaling is introduced to minimize the trun-
cation error. This is achieved simply by multiplying the nominator by 2C

before the division, where C is an appropriately chosen integer.
To rescale, we will use a sub protocol, reScale([a], 2C), that takes as input

a shared integer [a] and a public constant 2C and outputs [a\2C].
The final issue to be aware of is that, because we map all integers to

{0, ..., p− 1} in order to use that finite field for secure computation, the di-
vision protocol will not produce the correct result if either or both of the
nominator and denominator are negative. To see the problem, consider the
quotient −2\2 = −1. Abusing notation, we define (a mod p) to be the in-
teger in {0, ..., p − 1} which equals a modulo p. Let for example p = 23.
Computing the above integer division naively yields

(−2 mod 23)\(2 mod 23) = 21\2 = 10

102

3. A Privacy Preserving Recursive Least Squares Protocol

On the other hand (−1 mod 23) = 22, which is different than 10. To get a
correct result, the sign of the nominator and denominator must be checked
before performing the division. For this we will use a sub protocol for com-
parison, comp([a]), that takes as input the shared integer, [a], and outputs a
shared integer [c], where c = 1 if a < 0 and c = 0 otherwise.

To sum up the modifications of (C.3), (C.4), (C.5), and (C.6) necessary to
turn them into a SMPC protocol, they are rewritten into the following equa-
tions, which could be referred to as the integer recursive least squares equations.

Pi = Pi−1 −
((

Pi−1xix>i Pi−1

)
.\
(

2C + x>i Pi−1xi

))
(C.7)

gi = Pixi, (C.8)

ei = yi − x>i ŵi−1\2C, (C.9)

ŵi = ŵi−1 + giei. (C.10)

3.3 SMPC Protocol for Solving the RLS

Now the initial problem has been reduced to creating a SMPC protocol for
computing (C.7), (C.8), (C.9), and (C.10). This protocol is referred to as
RLS(([y1], [y2], . . .), ([x1], [x2], . . .), 2C) and is stated in Protocol C.1.

3.4 Sub-protocols

In this section, the sub protocols used in Protocol C.1 are formally presented.

comp([a])

The first sub protocol is comp([a]), which evaluates the truth of the relation
a < 0, for a ∈ Fq. To see how this can be performed, define the field elements
as

{0, 1, . . . , b p
2
c︸ ︷︷ ︸

positive

, b p
2
c+ 1, . . . , p− 1︸ ︷︷ ︸

negative

}.

Following this definition, if a secret number is smaller than p
2 it is positive

and if the opposite is true it is negative. Thus, the desired result can be ob-
tained from evaluating the truth of [−a] < p

2 . In [22], a protocol for this
exact computation is proposed, so this will be used as the comp([a]) pro-
tocol in this paper. It should be noted that the comparison protocol uses
bit-decomposition and is thus expensive in communication.

103

Paper C.

Protocol C.1:
([2CŵN])← RLS(([y1], [y2], . . .), ([x1], [x2], . . .), 2C)

Input: ([y1], [y2], . . .), where y1, y2, . . . ∈ Fq, ([x1], [x2], . . .), where x1, x2, . . . ∈
Fq

q×1, and 2C ∈ Fq.
Output: [2CŵN] where wn ∈ Fq

q×1.
1: [P0] = 2C[Iq]
2: [ŵ0] = [0q]
3: for all N = 1, . . . do
4: [d] = 2C + [xN]

>[PN−1][xN].
5: [K] = [PN−1][xN][xN]

>[PN−1].
6: for all entries {i, j} in [K] do
7: [Hi,j] = comp([Ki,j]).
8: end for
9: for all entries {i, j} in [H] do

10: [Gi,j] = [Ki,j]− 2[Hi,j][Ki,j]
11: end for
12: for all entries {i, j} in [G] do
13: [Qi,j] = divSec([Gi,j], [d]).
14: end for
15: for all entries {i, j} in [Q] do
16: [Zi,j] = [Qi,j]− 2[Hi,j][Qi,j]
17: end for
18: [PN] = [PN−1]− [Z]
19: [gN] = [PN][xN]
20: [eN] = [yN]− reScale([xN]

>[ŵN−1], 2C)
21: [ŵN] = ([ŵN−1] + [e][g])
22: end for

Correctness. In steps 4 and 5, the nominator and denominator in (C.7) are cal-
culated. Since P is a positive semidefinite matrix, the denominator cannot be
negative; thus, we only need to check which entries in the matrix nominator
are negative. This is done in steps 6 and 7. Then, steps 9 and 10 multiply
the negative entries in the nominator matrix with -1. Steps 12 and 13 integer
divides the nominator matrix with the denominator, and afterwards, steps 15
and 16 adds the sign to the appropriate entries again. Steps 18 to 21 calculate
(C.8) to (C.10).

104

3. A Privacy Preserving Recursive Least Squares Protocol

divSec([n], [d])

The next sub protocol is divSec([n], [d]), that outputs the integer quotient,
n\d for two l- bit integers n, d ∈ Fq. This protocol itself consists of several
sub protocols which will be described in the following.

The idea in divSec([n], [d]) is borrowed from the work [23], but the pro-
posed protocols are for secure two-party computation, so to use them for
SMPC they must be adjusted.

The idea presented in [23] is to compute the integer division, n\d by first
computing a = 2k\d and then computing c = n · a\2k, where k is a public
constant. The first division, a = 2k\d, can be calculated using the Taylor
series;

a = 2k−ld
w

∑
i=0

(
(2ld − d)2−ld

)i
, (C.11)

where ld is the bit length of d, i.e. ld = blog2(d) + 1c, k = l2 + l and w = l.
The derivation of (C.11) can be found in [23].

Thus, the sub protocols needed are those to calculate [2ld] and [2−ld].
Calculating [2ld], is done in [23] by decomposing d into bits, even though

they note that it can also be done without bit decomposition. For the simu-
lations in 4 we implement the protocol that does not use bit decomposition,
but here the other choice is presented, since it is more intuitive and readable.

Referring to d0, . . . , dl−1 as the bits of d, where d0 is the least significant
bit, and letting ui = ∨l−1

j=i [dj] for i = 0, . . . , l − 1, 2ld can be written as

[2ld] = 1 +
l−1

∑
i=0

ui2i. (C.12)

To use this, a protocol for bit decomposing a secret is needed, this protocol
is referred to as bitDec([a]) and returns [a]B. Here, we use the one presented
in [18, p. 189], which we do not introduce further here. Now, bitLen([x]) that
returns information about the bit length of the input is stated in Protocol C.2.

After [2ld] is calculated, 2−ld can be calculated by using a protocol, in-
verse([x]), that returns the inverse field element [x−1]. This protocol uses the
Reconstruct algorithm defined in Definition C.1 that, using communication,
allows the parties to recreate a secret from its shares. inverse([x]) is stated in
Protocol C.3.

Now, divSec([n], [d]) is stated in Protocol C.4.

reScale([x], 2k)

The final sub protocol, reScale([x], 2k), securely computes [2−kx], with x, 2k ∈ Fq.
The protocol is a combination of a public integer division protocol proposed
by [24] and a public modulo reduction protocol proposed by [25]. The idea

105

Paper C.

Protocol C.2: ([2c])← bitLen([x])

Input: [x], where x ∈ Fq.
Output: [2c], where c = blog2(x) + 1c.

1: [x]B = bitDec([x]).
2: for all i = 0, . . . , l − 1 do
3: [ui] = 1−∏l−1

j=i (1− [xi]).
4: end for
5: [2c] = 1 + ∑l−1

i=0[ui]2i.

Correctness. Step 1 extracts the bitwise representation of [x]. Then, steps 3
and 5, calculates the so-called prefix-OR of [x], which means that ui = ∨l−1

j=i xj.
Finally, step 5 calculates the integer representation of u, which added with
one, constitutes the result.

Protocol C.3: ([c])← inverse([x], [r])

Input: [x], where x ∈ Fq, and [r], where r is a random number.
Output: [c], where c = x−1 ∈ Fq.

1: [w] = [x][r]
2: w = Reconstruct([w]).
3: [c] = w−1[r].

Correctness. Step 1 securely multiplies [x] with [r], and opens it to all parties.
Since r is a uniformly random integer unknown to all parties, xr is uniformly
random and thus does not leak information about x. (rx)−1 can then be
computed in the open and in step 3 it is securely multiplied with [r], which
gives the desired result.

Protocol C.4: ([c])← divSec([n], [d])

Input: [n] and [d], where n, d ∈ Fq are l-bit integers.
Output: [c], where c = n\d.

1: [2ld] = bitLen([d])
2: [2−ld] = inverse([2ld])
3: [d′] = ([2ld]− [d])[2−ld]

4: [a] = 2l2+l [2ld]∑l
i=0[d

′]i.
5: [q] = [n][a]
6: [c] = reScale([q], 2l2+l)

Correctness. The protocol performs the necessary steps to securely compute
(C.11).

106

4. Simulations and Results

in the protocol is to first subtract x mod 2k from the nominator and then
multiply this with 2−k. The protocol is stated in Protocol C.5.

Protocol C.5: ([c])← reScale([x], [r>], 2k)

Input: [x], where x ∈ Fq, [r], where r> ∈ Fq is random, and a public constant
2k ∈ Fq.
Output: [c], where c = x\2k.

1: [x]B ← bitDec([x]).
2: [x̄] = ∑k−1

i=0 [xi]2i.
3: [x̂] = [x]− [x̄].
4: kinv = 2−k mod p
5: [c] = kinv[x̂].

Correctness. Step 1 extracts the bit decomposition of [x], which is used in
step 2 to compute [x̄] = [x mod 2k]. [x̂] is obtained in step 3 by subtracting
[x̄] from [x], which ensures that 2k divides [x̂]. [c] is achieved in step 5 by
multiplying the inverse field element of 2k with [x̂].

4 Simulations and Results

In this section, we compare simulation results of Protocol C.1, with the cor-
responding results of solving the RLS equations in a traditional (non-secure)
manner. This serves both as an evaluation of the accuracy of the proposed
protocol, but also as an illustration of the developed concept. To compare
results from both methods, the mean squared error (MSE) between the esti-
mations and true parameters is used. The MSE of the parameter estimate at
time i is defined as

eMSEi =
1
q

q

∑
j=1

(wj − ŵj)
2, for i = 1, 2,

The simulation results are obtained from the implementations we have
published in [26].

In the sequel, we have estimated parameters of a six dimensional sys-
tem, and similar results were obtained independent of the dimension of the
system.

To estimate the parameters of a six dimensional linear system, we use the
test data described by

y = 3x1 + 2x2 + 2x3 + 4x4 + 4x5 + 1x6, (C.13)

107

Paper C.

0 10 20 30 40 50 60

2

4

6

N

e M
SE

ŵ
ŵMPC

Fig. C.1: Estimating w = [3, 2, 2, 4, 4, 1], using the described observations. ŵ is the estimate
obtained with the RLS equations and ŵMSE is the estimate obtained with Protocol C.1.

thus the true parameter vector is w = [3, 2, 2, 4, 4, 1].
The observations of {xi}i=1,...,6 are uniformly distributed on the interval

[0, 5] and the observations of y are given by (C.13). To each observation of y
we have added a Gaussian distributed noise term with mean value zero and
variance two.

The estimates of w obtained with the RLS equations (ŵ) and Protocol C.1
(ŵMPC) gives the eMSEN for both estimates respectively, as seen in Fig. C.1.
It should be pointed out that the observations of y are real numbers, but to
use them in Protocol C.1 they are truncated. This, together with the integer
division used in Protocol C.1 explains the differences between the two curves
in Fig. C.1.

4.1 Communication Complexity

Protocol C.1 consist of O(lq2) multiplications. When the preprocessing phase
is not counted, each multiplication results in each party broadcasting shares.
While the communication complexity therefore is heavy, many local opera-
tions can be done in parallel, meaning that we can talk about rounds of commu-
nication, in which a number of values are broadcasted at once. For instance, a
matrix-vector product can be computed in parallel, requiring only one round
of communication. The round complexity of Protocol C.1 is O(l).

5 Conclusions

The paper proposes a secure multiparty protocol for a privacy preserving
recursive least squares solution. As simulation shows, results of the secure
protocol is similar to results of a non-secure evaluation of the recursive least

108

References

squares equations. The downside is that the proposed protocol is heavy in
terms of communication, perhaps even so heavy that practical usage is in-
feasible. In some cases, we believe that further research can lead to efficient
protocols, that are useful in practice.

Acknowledgement

This work was supported by SECURE at AAU.

References

[1] K. Tjell, I. Cascudo, and R. Wisniewski, “Privacy preserving recursive least
squares solutions,” in 2019 18th European Control Conference (ECC), (United
States), pp. 3490–3495, IEEE, Aug. 2019. null ; Conference date: 25-06-2019
Through 28-06-2019.

[2] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker, “Inferring personal information
from demand-response systems,” IEEE Security Privacy, vol. 8, pp. 11–20, Jan
2010.

[3] G. Avoine, L. Calderoni, J. Delvaux, D. Maio, and P. Palmieri, “Passengers infor-
mation in public transport and privacy: Can anonymous tickets prevent track-
ing?,” International Journal of Information Management, vol. 34, pp. 682–688, oct
2014.

[4] S. Han and G. J. Pappas, “Privacy in control and dynamical systems,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 309–332,
2018.

[5] Y. Wang, S. Mitra, and G. E. Dullerud, “Differential privacy and
minimum-variance unbiased estimation in multi-agent control systems,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 9521 – 9526, 2017. 20th IFAC World Congress.

[6] Y. Wang, Z. Huang, S. Mitra, and G. E. Dullerud, “Differential privacy in linear
distributed control systems: Entropy minimizing mechanisms and performance
tradeoffs,” IEEE Transactions on Control of Network Systems, vol. 4, pp. 118–130,
March 2017.

[7] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, (New
York, NY, USA), pp. 371–380, ACM, 2009.

[8] K. H. Degue and J. L. Ny, “On differentially private kalman filtering,” in 2017
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 487–
491, Nov 2017.

109

References

[9] J. He, L. Cai, and X. Guan, “Preserving data-privacy with added noises: Optimal
estimation and privacy analysis,” IEEE Transactions on Information Theory, vol. 64,
pp. 5677–5690, Aug 2018.

[10] I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon, “Privacy-preserving ridge
regression with only linearly-homomorphic encryption,” in Applied Cryptography
and Network Security (B. Preneel and F. Vercauteren, eds.), (Cham), pp. 243–261,
Springer International Publishing, 2018.

[11] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and
D. Evans, “Privacy-preserving distributed linear regression on high-dimensional
data,” PoPETs, vol. 2017, pp. 345–364, 2017.

[12] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,
“Privacy-preserving ridge regression on hundreds of millions of records,” in
2013 IEEE Symposium on Security and Privacy, pp. 334–348, May 2013.

[13] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast
privacy-preserving computations,” in Proceedings of the 13th European Symposium
on Research in Computer Security: Computer Security, ESORICS ’08, (Berlin, Heidel-
berg), pp. 192–206, Springer-Verlag, 2008.

[14] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk, “Rmind: A tool for cryptographi-
cally secure statistical analysis,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 15, pp. 481–495, May 2018.

[15] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine
learning,” IACR Cryptology ePrint Archive, vol. 2018, p. 403, 2018.

[16] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–
38, May 2017.

[17] D. Demmler, T. Schneider, and M. Zohner, “Aby - a framework for efficient
mixed-protocol secure two-party computation,” in NDSS, 2015.

[18] R. Cramer, I. B. Damgaard, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 1 ed., 2015.

[19] C. Orlandi, “Is multiparty computation any good in practice?,” I E E E Interna-
tional Conference on Acoustics, Speech and Signal Processing. Proceedings, pp. 5848–
5851, 2011. Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE Inter-
national Conference.

[20] M. Keller, V. Pastro, and D. Rotaru, Overdrive: Making SPDZ Great Again, pp. 158–
189. 01 2018.

[21] S. Haykin, Adaptive Filter Theory. Pearson, 5 ed., 2014.

110

References

[22] T. Nishide and K. Ohta, “Multiparty computation for interval, equality, and com-
parison without bit-decomposition protocol,” in Public Key Cryptography – PKC
2007 (T. Okamoto and X. Wang, eds.), (Berlin, Heidelberg), pp. 343–360, Springer
Berlin Heidelberg, 2007.

[23] M. Dahl, C. Ning, and T. Toft, “On secure two-party integer division,” in Finan-
cial Cryptography and Data Security (A. D. Keromytis, ed.), (Berlin, Heidelberg),
pp. 164–178, Springer Berlin Heidelberg, 2012.

[24] C. Ning and Q. Xu, “Multiparty computation for modulo reduction without
bit-decomposition and a generalization to bit-decomposition,” in Advances in
Cryptology - ASIACRYPT 2010 (M. Abe, ed.), (Berlin, Heidelberg), pp. 483–500,
Springer Berlin Heidelberg, 2010.

[25] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation,” in Theory of Cryptography (S. Halevi and T. Rabin, eds.), (Berlin,
Heidelberg), pp. 285–304, Springer Berlin Heidelberg, 2006.

[26] K. Tjell, “Protocol and algorithm implementations.” goo.gl/9ddxL4.

111

goo.gl/9ddxL4

References

112

Paper D

Privacy Preservation in Distributed Optimization
via Dual Decomposition and ADMM

Katrine Tjell and Rafael Wisniewski

The paper has been published in the
2019 IEEE 58th Conference on Decision and Control (CDC), pp. 7203-7208, 2019.

© 2019 IEEE. Reprinted, with permission, from [1].
The layout has been revised.

1. Introduction

Abstract

In this work, we explore distributed optimization problems, as they are often stated
in energy and resource optimization. More precisely, we consider systems consisting
of a number of subsystems that are solely connected through linear constraints on the
optimized solutions. The focus is put on two approaches; namely dual decomposition
and alternating direction method of multipliers (ADMM), and we are interested in
the case where it is desired to keep information about subsystems secret. To this end,
we propose a privacy preserving algorithm based on secure multiparty computation
(SMPC) and secret sharing that ensures privacy of the subsystems while converging
to the optimal solution. To gain efficiency in our method, we modify the traditional
ADMM algorithm.

1 Introduction

Developments in technology have enabled efficient collection of data and en-
sured powerful signal transmissions. This is beneficial in many cases since
collected data has the potential of aiding accurate estimations and predic-
tions as well as the calculation of solutions customized to individuals. Take
for instance electricity production and pressure control in water networks as
examples of control systems with a potential of reducing resource losses by
accurately predicting the consumption through fine grained measurements.
Another example could be the future smart house that will adapt more and
more to the occupants in pace with the more data it collects. To this end,
collected data is valuable, however, more often than not it contains privacy
sensitive information. For instance, the activities of occupants in a household
can be inferred from electricity consumption measurements as showed in [2].
Most people are cautious to share this kind of information; hence, they will
also be reluctant to share their consumption data. The idea, thus, is to de-
velop methods that can exploit the benefits of the data without risking the
privacy of individuals.

The focus in this paper is on distributed optimization where several agents
each hold a part of the optimization problem. This kind of problem ap-
pears in many applications, take for instance resource allocation between
subsystems, formation control of autonomous vehicles and distributed re-
source generation.

The problem in focus can be described as a system containing N agents
that each have a private objective. Moreover, the overall system describes a
set of linear constraints that couples the N individual optimization problems.
To exemplify, the agents could be power production units and a constraint
could be that the sum of produced power meet a certain requirement or that
the sum of resources used may not exceed a given limit. Each agent is unwill-

115

Paper D.

ing to share information concerning their system, so the individual objectives
as well as optimized solutions must be kept private. Furthermore, the con-
straints must also remain secret as they may reveal information about the
individual systems. Specifically, we assume that the constraints are designed
by a superintendent and will only be used in encrypted form.

We study distributed optimization via dual decomposition and Alternat-
ing Direction Method of Multipliers (ADMM) and propose privacy preserv-
ing solutions. In particular, we put forward a method based on Secure Multi-
party Computation (SMPC) and cloud computing, that minimizes the objec-
tive while leaking no information about the system.

Related work. The number of papers focusing on privacy preserving con-
trol and optimization is increasing. Zhang et al.’s work [3] is closely related
to ours as they also consider an ADMM based privacy preserving distributed
optimization solution. However, they allow every agent to communicate with
their neighbour using homomorphic encryption, which is in contrast to our
solution, where the agents communicate only with a number of so-called
computing parties using secure multiparty computation. We believe that this
solution scales better with the number of agents and is computationally less
demanding. Many recent papers within this subject are based on homomor-
phic encryption, for instance [4] and [5]. There is also a substantial amount of
work, basing the privacy preservation on differential privacy, for instance [6],
[7], and [8]. This approach requires at least some trust in the system, which
our solution does not exhibit.

Also of interest to our work is [9] and [10] that investigates how to pre-
serve privacy and integrity in cloud computations.

Structure. In Section 2, the specific problem studied throughout the paper
is presented. Subsequently, Section 3 gives an introduction to the two build-
ing blocks of the paper, namely SMPC and secret sharing. In the Sections
4 and 5, we introduce the main contribution, which is privacy preserving
distributed optimization. In Section 4, our ideas are presented using a dual
decomposition approach. The main purpose of this section is to provide in-
tuition about the methods, since the ADMM based approach presented in
Section 5 is more likely to have a practical relevance. Finally, a discussion is
provided in Section 6.

2 Problem formulation

In the paper, we consider the setup consisting of N agents, A1, . . . , AN , each
having a local objective function f1(x1), . . . , fN(xN) and a superintendent hav-
ing requirements for the agents. Remark, we assume that fi(xi) is known
only to agent i and that the constraints are known only to the superinten-
dent. The agents want to minimize their individual objective function, while

116

3. Secure Multiparty Computation based on Secret Sharing

the superintendent wants the result achieved by the agents to fulfill certain
requirements. These requirements are formulated as M linear constraints on
the form

N

∑
i=1

Bixi = c, (D.1)

where xi ∈ Rq, Bi ∈ RM×q , and c ∈ RM×1. The overall problem can thus be
stated as

minimize
x

N

∑
i=1

fi(xi)

subject to
N

∑
i=1

Bixi − c = 0,

(D.2)

where x = [x1, . . . , xN].
Concerning the approach to solving (D.2), we are interested in the case

where each agent are not willing to share information about their system
with the other agents or the public in general. A reason for this could for
instance be that the system information is considered corporate secrets. At
the same time, we assume that the agents are honest in the sense that they
will follow computational instructions and not tamper with any intermediate
results. Nonetheless, they may attempt to disclose the secret information of
other participants and our methods must prevent this.

The goal in the paper is to solve (D.2), without leaking any private infor-
mation. We base the methods on SMPC and secret sharing. However, one
could exchange SMPC with homomorphic encryption in our protocols. This
would entail less communication but more computation, thus the choice is
application dependent. A short introduction to SMPC and secret sharing is
provided in the following section, and the reader is referred to [11] for a more
elaborate explanation.

3 Secure Multiparty Computation based on Secret
Sharing

Consider the evaluation of a function f (x1, . . . , xn), where each of the inputs
are provided by a distinct party, say P1, . . . , Pn. The parties want to learn
the output of the function, nonetheless, they are not willing to reveal their
individual inputs.

This scenario is the central problem in SMPC, that has the aim of de-
veloping protocols that allow the parties to evaluate the function without
disclosing their private information. This is achieved by applying encryption
techniques to hide the secret data. In particular, secret sharing methods are

117

Paper D.

popular to use as the encryption technique in SMPC, since this usually entails
protocols with a low computational complexity.

Secret sharing aims to avoid the situation where one entity holds a secret,
since in case of an attack, the adversary then has to attack multiple entities
to learn the secret. The secret is "chunked" into pieces that can be distributed
among several parties. One piece of information is referred to as a share and
by itself it reveals nothing about the secret. Specifically, it takes some or all
shares to recreate the secret. In Definition D.1, we give a definition of a secret
sharing scheme.

Definition D.1 (Secret Sharing Scheme)
A secret sharing scheme consists of two algorithms namely Share and Re-
construct. The first one takes a secret s and creates the shares, which are
values s1, . . . , sn, where n is the number of parties. The latter one outputs
s upon given any set of at least t shares, where t is the threshold for the
scheme. Additionally, it holds that no information about the secret can be
gained from a set of fewer than t shares.

Since a set of fewer than t shares reveals nothing about the secret, the
threshold can be used to adopt the protocol to the expectation of so-called
corrupted parties. If a set of parties collude in inferring information about pri-
vate values of other parties they are referred to as corrupted parties. More-
over, we distinguish between corrupted parties that follow the protocol and
ones that do not. The former is referred to passive corruption, while the latter
is referred to as active.

We use [·] to denote the secret sharing scheme, i.e., [s] is the shares
(s1, . . . , sn) of the secret s.

The particular choice of the algorithm Share in the SMPC protocol, deter-
mines the computations that can be done on the secrets. In this paper, one
can use any linear secret sharing scheme that takes an integer secret mod-
ulo some prime p and outputs integer shares also modulo p. Moreover, the
scheme should satisfy that a shared version of the sum [x + y] and product
[xy] modulo p, can be computed given [x] and [y]. One can for instance use
Shamir’s secret sharing scheme, for which the above mentioned properties hold
when the threshold t < n

2 .
To give an overview, the privacy preserving protocols proposed in this pa-

per works by hiding secret values using the Share algorithm. A caveat is that,
as mentioned, secret values are integers modulo a prime p. We can choose p
large enough, so that we do not have wrap-arounds, but eventually the val-
ues x, B and c needs to be truncated before Share can be used to create shares
of them. Scaling can be used to minimize the truncation error, however, it

118

3. Secure Multiparty Computation based on Secret Sharing

is unavoidable not to induce quatization errors. We will not touch upon this
issue any further.

The desired output is computed as each party alternately distributes the
shares among the parties and performs local operations on the shares. At the
end, all parties can use the Reconstruct algorithm to learn the output.

In our case, the aforementioned parties can be the agents themselves or to
reduce communication, independent computing parties (for instance cloud
servers), can be applied to perform the calculations. For the latter choice, ef-
ficient frameworks such as ABY3 and SecureML introduced by Mohassel and
Rindal in [12] and Mohassel and Zhang in [13] respectively, can be employed.
The number of computing parties are three in the case of ABY3 and two in
the case of SecureML, and security is achieved against one actively corrupted
server.

For this work, we consider the case where n computing parties perform
the SMPC, but one can adapt the protocols to the other case as well. That is,
only the computing parties will do computations on shares, and the agents
and superintendent will only provide inputs to the protocol. Fig. D.1 gives
an illustration of how the agents are connected to the computing parties while
the computing parties are all connected to each other.

Fig. D.1: The N agents connected to the n computing parties.

119

Paper D.

3.1 Preliminaries

As already mentioned, we will use [x] to denote the shares of the value x.
When we say that a number of parties hold [x], we mean that each party
has one share of x. In continuation, when a number of parties hold [x] and
[X], it means that each party has a share of each of the entries in the vector
x, respectively the matrix X. Furthermore, the following is a recap of the
assumptions we make.

• The agents are honest but curious. That is, they will follow instruc-
tions but may attempt to disclose information. However, we assume
the agents do not collude.

• A majority of the computing parties are honest and not colluding. If
active attacks on the computing parties are expected, one can for in-
stance use the techniques presented in [14] to prevent this, otherwise
one can use for instance Shamir’s Secret sharing scheme to ensure pri-
vacy against a passive adversary.

• The superintendent is honest and not colluding with any other entity.

• Only Ai knows fi.

• Only the superintendent knows the constraints.

4 Dual Decomposition based Privacy Preserving
Optimization

In this section, we use the idea in dual decomposition to solve (D.2). In the
following, we merely present the standard dual decomposition algorithm,
thus the interested reader is referred to [15] for a more thorough introduction
to the subject.

For (D.2), the Lagrangian is

L(x, λ) =
N

∑
i=1

(fi(xi)) + λ>(Bx− c), (D.3)

where B = [B1, . . . , BN]. However, it can equivalently be written as

L(x, λ) =
N

∑
i=1

(
fi(xi) + λ>Bixi

)
− λc. (D.4)

The idea in dual decomposition is then to minimize the Lagrangian by solv-
ing N sub problems, one for each xi. This is done in iterations, where sub-
sequently the dual variables are updated. The algorithm can be described by

120

4. Dual Decomposition based Privacy Preserving Optimization

the following to steps, where the first is performed in parallel by each agent
i:

xk+1
i = min

xi
fi(xi) + λk>Bixi

λk+1 = λk + α(Bxk+1 − c),
(D.5)

where α > 0 is a step size and xk = [xk>
1 , . . . , xk>

N]>. In the following section,
SMPC and cloud computing are employed to introduce a privacy preserv-
ing version of dual decomposition, where xk, B and c remain secret during
protocol execution.

4.1 Privacy Preserving Optimization using Dual Decomposi-
tion

We start by make a couple of remarks. The first one is that by sampling a
uniform random matrix T and applying it on the constraints, i.e.,

TBx− Tc = 0,

yields the same constraints, but they are now masked by a random matrix.
This will only work if T is non-singular. A singular T can almost always be
avoided by constructing it in a special way. This result is stated in Lemma
D.1, which follows from application of Theorem 2 in [16].

Lemma D.1
Let K be a finite field with cardinality |K|. Suppose T = UL, where

U =

1 u2 u3 . . . un
0 u1 u2 . . . un−1

. . .
0 0 0 . . . u2
0 0 0 . . . 1

 , L =

1 0 0 . . . 0
v2 1 0 . . . 0
v3 v2 1 . . . 0
. . .
vn vn−1 vn−2 . . . 1

are Kn×n Toeplitz matrices with independent uniformly distributed random
entries. Then

P[det(T) 6= 0] ≥ 1− n(n + 1)
|K| .

We propose to create T using Lemma D.1 and a preprocessing phase that
the computing parties will run before protocol execution, i.e., each party will
obtain a share of each entry in T and no party will know the actual T . For
details about how T is created in a preprocessing phase, we refer to [11]. After
T is created, the computing parties must securely check the determinant of T ,
which can be done directly on the shares as shown in [17]. If the determinant

121

Paper D.

is zero they will start over, thus ensuring a non-singular T at the beginning
of protocol execution.

The second remark is that the minimization of agent i can be written as

xk+1
i = min

xi
fi(xi) + vk>

i xi, (D.6)

where
vk>

i = λk>TBi. (D.7)

The privacy preserving algorithm will then alternate between the agents solv-
ing their individual minimization problem in parallel and the computing
parties doing SMPC. When each agent has solved its problem, it will create
shares of the result and send one share to each of the computing parties. Each
computing party will also receive a share of B and c from the superinten-
dent, meaning that the parties can compute vk

i , by performing computations
directly on shares. In order to avoid having the computing parties working
with α, which is not an integer, we introduce an integer d > 1 and let α = 1

d .
The computing parties will then compute ṽk

i = dvk
i .

Each agent i will receive ṽk
i from the computing parties where after it can

compute vk
i = 1

d ṽk
i . It is of course vital that vk

i does not leak information
allowing agent i to learn either B, c, or xj for j 6= i. We provide a proof that
vk

i does not leak information in the following.

Lemma D.2
Disclosing vk

i to agent i at time k does not leak information.

Proof. Because T is applied on B, each entry in vk
i is a sum of uniformly

distributed random variables. Thus, agent i does not learn more from vk
i

than he could from drawing numbers from a uniform distribution.

The protocol is written formally in Algorithm D.1.
We now expand the solution presented in this section, to a solution based

on the ADMM algorithm.

5 Alternating Direction Method of Multipliers

The ADMM method is based on the augmented Lagrangian, which entails that
the ADMM has convergence advantages over dual decomposition. We refer
the reader to [15] for an introduction to ADMM; here, we merely present the
algorithm. In regards to this, we note that the standard ADMM problem is
on the form

minimize
x

f (x) + g(z)

subject to A1x + A2z = b,
(D.11)

122

5. Alternating Direction Method of Multipliers

Algorithm D.1: Privacy Preserving Dual Decomposition Method

1: The computing parties hold [T], where [T] is a uniformly random M×M
matrix obtained in a preprocessing phase.

2: The computing parties hold [B] and [c], received from the super intended.
3: d > 1 is an integer.
4: α = 1

d , v0 = 0, λ0 = 0.
5: for all k = 0, . . . do
6: Each agent i computes

vk
i =

1
d

ṽk
i . (D.8)

after receiving all shares of ṽk
i from the computing parties.

7: Each agent i computes xk+1
i by solving (D.6).

8: Each agent i creates shares of xk+1
i and send one share to each of the

computing parties.
9: The computing parties compute jointly:

[λk+1] = [λk] + ([T][B]− [T][c])[xk+1], (D.9)

and
[ṽk+1>

i] = [λk+1>][T][Bi]. (D.10)

for i = 1, . . . , N.
10: The computing parties send all shares of [ṽi] to agent i for i = 1, . . . , N.
11: end for

123

Paper D.

and the augmented Lagrangian for this problem is

Lρ(x, z, λ) = f (x) + g(z) + λ>(A1x + A2z− b)

+
1
2

ρ||A1x + A2z− b||22.
(D.12)

Consequently, the ADMM algorithm consists of the following steps

xk+1 = min
x

Lρ(x, zk, λk)

zk+1 = min
z

Lρ(xk+1, z, λk)

λk+1 = λk + ρ(A1xk+1 + A2zk+1 − b),

(D.13)

where ρ > 0.
The problem in (D.2) is almost on the standard ADMM form, the main

difference is that instead of two blocks in (D.11), there are N blocks in (D.2).
This modification is important to avoid communication among agents. The
augmented Lagrangian for (D.2) is

Lρ(x, λ) =
N

∑
i=1

(fi(xi)) + λ>(Bx− c) +
1
2

ρ||Bx− c||22. (D.14)

Depending on the size of N, performing the sub optimizations sequen-
tially may take a long time. Therefore, we propose that each agent solve their
individual minimization in parallel, i.e., we propose the modified ADMM
algorithm

xk+1
i = min

xi
Lρ(xk

1, . . . , xi, . . . , xk
N , λk) for i = 1, . . . , N

λk+1 = λk + ρ

(
N

∑
i=1

Bixk+1
i − c

)
.

(D.15)

Unfortunately, this approximation of the ADMM algorithm is likely to
diverge unless precautions are taken. One approach is proposed (and proved)
by [18] and involves adding an underrelaxation step, such that the algorithm
becomes the following;

x̃k+1
i = min

xi
Lρ(xk

1, . . . , xi, . . . , xk
N , λk) for i = 1, . . . , N

λ̃
k+1

= λk + ρ

(
N

∑
i=1

Bi x̃k+1
i − c

)
.

xk+1
i = xk

i −
1

N + 1
(xk − x̃k+1

i)

λk+1 = λk − 1
N + 1

(λk − λ̃
k+1

).

(D.16)

124

5. Alternating Direction Method of Multipliers

5.1 Privacy Preserving ADMM

For obtaining a privacy preserving ADMM protocol, we use the same princi-
ples as we did in the privacy preserving dual decomposition method. Namely,
we mask B and c with a uniformly random matrix T , such that the masked
constraints yields

TBx = Tc. (D.17)

Next, we rewrite the minimization problem of each agent. To do this, con-
sider the minimization of (D.14), where we focus on λ>(Bx− c) + ρ

2 ||Bx−
c||22 since these terms cannot be computed locally. We consider the minimiza-
tion with respect to only one element, xe, in the vector x.

min
xe

λBx +
ρ

2

(
M

∑
j=1

(
bjx− cj

)2
)

=min
xe

M

∑
j=1

λjbj,exe +
ρ

2

(
M

∑
j=1

bjxx>b>
j − 2bjxcj

)

=min
xe

M

∑
j=1

λjbj,exe +
ρ

2

M

∑
j=1

b2
j,exe

2

+
ρ

2
xe

M

∑
j=1

N

∑
k=1,k 6=e

2bj,ebj,kxk −
ρ

2
xe

M

∑
j=1

2bj,ecj

=min
xe

xe
2 ρ

2

M

∑
j=1

b2
j,e+

xe

M

∑
j=1

bj,e

(
λj − ρcj + ρ

N

∑
k=1,k 6=e

bj,kxk

)
=min

xe
β1,exe

2 + β2,exe,

(D.18)

where bj is the j’th row of B, bj,e is the j, e’th element of B and

β1,e =
ρ

2

M

∑
j=1

b2
j,e

β2,e =
M

∑
j=1

bj,e

(
λj − ρcj + ρ

N

∑
k=1,k 6=e

bj,kxk

)
.

(D.19)

Most of the reductions in (D.18) are because terms that are constant with
respect to xe does not affect the minimization and can be disregarded.

Define st,j = [βt,(j−1)q+1, βt,(j−1)q+2, . . . , βt,(j−1)q+q] for j = 1, . . . , N and
t = 1, 2. To improve readability, s1,j and s2,j are illustrated in the following.

125

Paper D.

β1,1

...
β1,q

 s1,1

β2,1

...
β2,q

 s2,1

β1q+1

...
β12q

 s12

β2q+1

...
β22q

 s22

...
...

β1,(N−1)q+1

...
β1,Nq

 s1,N

β2,(N−1)q+1

...
β2,Nq

 s2,N

(D.20)

The optimization problem of node i is now formulated as;

x̃k
i = min

xi
fi(xi) + diag({s1,i})x2

i + diag({s2,i})xi, (D.21)

where diag(x) is a matrix with x on the diagonal and 0 everywhere else.
The privacy preserving algorithm will then operate by at each time k, each

agent i will calculate x̃k
i by solving (D.21) upon receiving sk

1,i and sk
2,i from the

computing parties. The agents then create shares of x̃k
i and sends one share to

each computing party. The computing parties will calculate sk+1
1i

and sk+1
2,i for

i = 1, . . . , n by operating directly on the shares. The algorithm will obviously
only be privacy preserving if sk+1

1,i and sk+1
2,i does not leak information. We

provide a proof of this immediately.

Lemma D.3
Disclosing sk

1,i and sk
2,i to agent i does not disclose information.

Proof. Since T is a uniformly random matrix, and the sum and product of
two uniform random variables are uniformly distributed, [11] page 254, it
can be verified that all terms in sk

1,i and sk
2,i are uniformly distributed ran-

dom variables. Thus, that agent i learns these two values does not reveal
information.

In Algorithm D.2, the privacy preserving protocol for the modified ADMM
algorithm is stated formally.

Remark, in (D.23) we have assumed that there exist SMCP protocols for
dividing a secret with a public integer, see [19] for more on this topic.

126

5. Alternating Direction Method of Multipliers

Algorithm D.2: Privacy Preserving ADMM

1: The computing parties hold [T], where [T] is a uniformly random M×M
matrix obtained in a preprocessing phase.

2: The computing parties hold [B] and [c], received from the super intended.
3: ρ > 1 is an integer.
4: B̂ = TB, ĉ = Tc, λ0 = λ̃

0
= 0, x = x̃ = 0.

5: s0
1,i = 0 and s0

2,i = 0 for i = 1, . . . , N.
6: for all k = 0, . . . do
7: Each agent i receives sk

1i
and s̃k

2,i.

8: Each agent i computes sk
2,i =

1
d s̃k

2,i and x̃k+1
i by solving (D.21).

9: Each agent i creates shares of x̃k+1
i and send one share to each com-

puting party.
10: The computing parties compute jointly:

[λ̃
k+1

] = [λk] + ρ([B̂][x̃k+1]− [ĉ]). (D.22)

11: The computing parties compute

[xk+1
i] = [xk

i]−
([xk]− [x̃k+1

i])

N + 1

[λk+1] = [λk]− ([λk]− [λ̃
k+1

])

N + 1
.

(D.23)

and [sk+1
1,i] and [sk+1

2,i] by using (D.20) and

[β1,e] =
⌊ρ

2

⌋ M

∑
j=1

[b̂j,e][b̂j,e]

[β2,e] =
M

∑
j=1

[b̂j,e](
[λk+1

j]− ρ[ĉj] + ρ
N

∑
t=1,t 6=e

[b̂j,t][xk+1
t]

)
,

(D.24)

for e = 1, . . . , Nq.
12: Each of the computing parties sends their share of [sk+1

1i
] and [sk+1

2i
] to

agent i for i = 1, . . . , N.
13: end for

127

References

6 Discussion

The paper presents a privacy preserving dual decomposition protocol as well
as a privacy preserving ADMM protocol. The former serves mostly as a more
gentle introduction to the ideas in the paper, while the main contribution is
the latter protocol.

Our proposed methods enjoy a decentralized setting, all though a number
of so-called computing parties are employed to avoid communication between
sub-systems. The computing parties are feed exclusively with encrypted val-
ues and only by attacking all parties (which we assume is infeasible) can
information be learned.

7 Acknowledgment

This work is supported by SECURE project at Aalborg University.

References

[1] K. Tjell and R. Wisniewski, “Privacy preservation in distributed optimization
via dual decomposition and admm,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), I E E E Conference on Decision and Control. Proceedings, (United
States), pp. 7203–7208, IEEE, Mar. 2020. 2019 IEEE 58th Conference on Decision
and Control (CDC), CDC ; Conference date: 11-12-2019 Through 13-12-2019.

[2] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin, “Private mem-
oirs of a smart meter,” in Proceedings of the 2Nd ACM Workshop on Embedded Sens-
ing Systems for Energy-Efficiency in Building, BuildSys ’10, (New York, NY, USA),
pp. 61–66, ACM, 2010.

[3] C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving decentral-
ized optimization,” IEEE Transactions on Information Forensics and Security, vol. 14,
pp. 565–580, March 2019.

[4] Y. Lu and M. Zhu, “Privacy preserving distributed optimization using homo-
morphic encryption,” Automatica, vol. 96, pp. 314 – 325, 2018.

[5] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Srivastava, and
P. Tabuada, “Privacy-aware quadratic optimization using partially homomorphic
encryption,” in 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 5053–
5058, Dec 2016.

[6] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed optimiza-
tion,” in Proceedings of the 2015 International Conference on Distributed Computing
and Networking, ICDCN ’15, (New York, NY, USA), pp. 4:1–4:10, ACM, 2015.

128

References

[7] V. Rostampour, R. Ferrari, A. M. Teixeira, and T. Keviczky, “Differentially-private
distributed fault diagnosis for large-scale nonlinear uncertain systems,” IFAC-
PapersOnLine, vol. 51, no. 24, pp. 975 – 982, 2018. 10th IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2018.

[8] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private distributed con-
vex optimization via objective perturbation,” in 2016 American Control Conference
(ACC), pp. 2061–2066, July 2016.

[9] Z. Xu and Q. Zhu, “Secure and resilient control design for cloud enabled net-
worked control systems,” in Proceedings of the First ACM Workshop on Cyber-
Physical Systems-Security and/or PrivaCy, CPS-SPC ’15, (New York, NY, USA),
pp. 31–42, ACM, 2015.

[10] N. Drucker, S. Gueron, and B. Pinkas, “Faster secure cloud computations with a
trusted proxy,” IEEE Security Privacy, vol. 15, pp. 61–67, November 2017.

[11] R. Cramer, I. B. Damgaard, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 1 ed., 2015.

[12] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine
learning,” IACR Cryptology ePrint Archive, vol. 2018, p. 403, 2018.

[13] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–
38, May 2017.

[14] M. Pettai and P. Laud, “Automatic proofs of privacy of secure multi-party com-
putation protocols against active adversaries,” in 2015 IEEE 28th Computer Secu-
rity Foundations Symposium, pp. 75–89, July 2015.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, pp. 1–122, Jan. 2011.

[16] E. Kaltofen and B. D. Saunders, “On wiedemann’s method of solving sparse lin-
ear systems,” in Proceedings of the 9th International Symposium, on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, AAECC-9, (London, UK, UK),
pp. 29–38, Springer-Verlag, 1991.

[17] R. Cramer and I. Damgård, “Secure distributed linear algebra in a constant num-
ber of rounds,” in Proceedings of the 21st Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’01, (London, UK, UK), pp. 119–136,
Springer-Verlag, 2001.

[18] B. He, L. Hou, and X. Yuan, “On full jacobian decomposition of the augmented
lagrangian method for separable convex programming,” SIAM Journal on Opti-
mization, vol. 25, no. 4, pp. 2274–2312, 2015.

129

References

[19] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty in-
teger computation,” in Security and Cryptography for Networks (J. A. Garay and
R. De Prisco, eds.), (Berlin, Heidelberg), pp. 182–199, Springer Berlin Heidelberg,
2010.

130

Paper E

Secure learning-based MPC via garbled circuit

Katrine Tjell, Nils Schlüter, Philipp Binfet, and Moritz Schulze
Darup

The paper is accepted for publication in the
2021 IEEE 60th Conference on Decision and Control (CDC) 2021.

© 2021 IEEE. Reprinted, with permission, from [23].
The layout has been revised.

1. Introduction

Abstract

Encrypted control seeks confidential controller evaluation in cloud-based or net-
worked systems. Many existing approaches build on homomorphic encryption (HE)
that allow simple mathematical operations to be carried out on encrypted data. Un-
fortunately, HE is computationally demanding and many control laws (in particular
non-polynomial ones) cannot be efficiently implemented with this technology.

We show in this paper that secure two-party computation using garbled circuits
provides a powerful alternative to HE for encrypted control. More precisely, we
present a novel scheme that allows to efficiently implement (non-polynomial) max-
out neural networks with one hidden layer in a secure fashion. These networks are
of special interest for control since they allow, in principle, to exactly describe piece-
wise affine control laws resulting from, e.g., linear model predictive control (MPC).
However, exact fits require high-dimensional preactivations of the neurons. Fortu-
nately, we illustrate that even low-dimensional learning-based approximations are
sufficiently accurate for linear MPC. In addition, these approximations can be se-
curely evaluated using garbled circuit in less than 100 ms for our numerical example.
Hence, our approach opens new opportunities for applying encrypted control.

1 Introduction

Cloud computing and distributed computing are omnipresent in modern
control systems such as smart grids, robot swarms, or intelligent transporta-
tion systems. While networked control offers exciting features, it also in-
volves privacy and security concerns. Cybersecurity thus becomes an im-
portant part of the controller design [11]. Encrypted control addresses this
challenge by providing modified controllers that are able to run on encrypted
data [20].

Encrypted controllers have already been realized for various control schemes.
For instance, encrypted implementations of (static or dynamic) linear feed-
back have been proposed in [5, 7, 12]. Encrypted distributed controllers can,
e.g., be found in [7, 21]. Finally, encrypted MPC schemes have been presented
in, e.g., [1, 18, 22].

For practical applications, secure MPC is of particular interest since net-
worked control systems are often subject to input or state constraints and
since optimization-based control can benefit from cloud-based implementa-
tions. Hence, encrypted MPC is also in the focus of this paper. More specifi-
cally, we propose a substantial extension to the scheme in [18] that enhances
security, performance, and applicability.

In order to specify our contributions, we briefly summarize the underly-
ing scheme next and point out its weaknesses. The approach in [18] builds on
the observation that linear MPC can be exactly represented by tailored max-

133

Paper E.

out neural networks. These networks then build the basis for a (partially)
secure two-party implementation. The main weaknesses of the approach
are twofold: First, the exact representation of the MPC control law requires
high-dimensional preactivations that significantly limit performance and ap-
plicability. Second, the scheme requires decryption of some data to evaluate
the max-out neurons, which results in a security flaw.

We overcome the weaknesses in [18] with two central improvements. In-
stead of a computationally demanding exact MPC representations, we con-
sider learning-based approximations that allow us to significantly reduce the
size of the considered neural networks. Furthermore, we use garbled cir-
cuits [3] in combination with secret sharing [6] and show that the resulting
architecture enables secure and efficient evaluations of max-out networks.

The remaining paper is organized as follows. Section 2 provides back-
ground on MPC, secret sharing, and garbled circuits. Our main result, i.e.,
a novel secure implementation of max-out neural networks, is presented in
Section 3. Finally, Section 4 illustrates our method with a numerical example
and Section 5 states conclusions and an outlook.

Notation. We denote the sets of real, integer, and natural numbers (includ-
ing 0) by R, Zp, and N , respectively. We further denote positive integers
by N+ and define Nq as {0, . . . , q − 1} for some q ∈ N+. Moreover, we
frequently use the modulo operation z mod q := z − qbz/qc and we state
congruence modulo q as z1 ≡ z2 mod q. In this context, b·c, d·e, and b·e refer
to the floor function, the ceiling function, and rounding to the nearest integer,
respectively. Next, for a vector v ∈ Rq, max{v} stands for max{v1, . . . , vq}.
Finally, let n ∈ N+ and consider the matrices K ∈ Rq×n and P ∈ Rq×q. Then,
‖K‖max := maxi,j

∣∣Kij
∣∣ and ‖v‖2

P := v>Pv.

2 Preliminaries and background

2.1 Model predictive control via max-out networks

MPC. Classical MPC builds on solving an optimal control problem of the
form

V(x) := min
x̂(0),...,x̂(N)

û(0),...,û(N−1)

‖x̂(N)‖2
P+

N−1

∑
κ=0
‖x̂(κ)‖2

Q+‖û(κ)‖2
R (E.1)

s.t. x̂(0) = x,

x̂(κ + 1) = A x̂(κ) + Bû(κ), ∀κ ∈ NN ,

(x̂(κ), û(κ)) ∈ X × U , ∀κ ∈ NN ,

x̂(N) ∈ T

134

2. Preliminaries and background

in every time step k ∈ N for the current state x = x(k). Here, N ∈ N+

refers to the prediction horizon and P, Q, and R are positive (semi-) def-
inite weighting matrices. The dynamics of the linear prediction model are
described by A ∈ Rn×n and B ∈ Rn×m. State and input constraints can be
incorporated via the polyhedral sets X and U . Finally, the terminal set T
allows to enforce closed-loop stability (see [15] for details). The resulting
control law g : F → U is defined as

g(x) := û∗(0), (E.2)

where F denotes the feasible set of (E.1) and where û∗(0) refers to the first
element of the optimal input sequence. We briefly note that one could re-
place (E.1) by robust tube-based MPC (as done in [18, 22]) in order to account
for occurring approximation errors (see Prop. E.1) and to ensure robust con-
straint satisfaction. We here omit this step for ease of presentation.

Max-out networks. In this paper, we exploit learning-based approxima-
tions of g(x) in order to realize secure cloud-based MPC. More specifically,
we approximate g(x) based on max-out neural networks [9]. For ease of pre-
sentation, we will focus on scalar inputs, i.e., m = 1, throughout the paper
although our approach is not limited to this special case. Hence, we only
consider scalar-valued g(x) that we denote by g(x). Moreover, we restrict
ourselves to max-out networks of the form

ĝ(x) := max{Kx + b} −max{Lx + c} (E.3)

with K, L ∈ Rp×n and b, c ∈ Rp, i.e., to a single hidden layer with two
neurons that each pool p ∈ N+ affine preactivations.

The restriction to networks of the form (E.3) is due to three observations.
First, according to [9, Thm. 4.3], (E.3) allows to approximate any continuous
function g̃ : Rn → R arbitrarily well and (E.2) is well-known to be contin-
uous. Second, by exploiting the piecewise affine structure of linear MPC
[4], (E.3) even allows to exactly describe (E.2) as specified in [19]. Third, as
recently noted in [18], the form (E.3) is beneficial for encrypted implementa-
tions.

2.2 Secret sharing and secure two-party computation

As mentioned in the introduction, we will use secret sharing [6] in combi-
nation with garbled circuits [3] to overcome the security flaws in [18] and to
derive a fully encrypted implementation of (E.3). In the following, we briefly
summarize these cryptographic tools.

Secret Sharing. The central idea of secret sharing is quite simple. Assume
we intend to perform cloud-based computations on a secret number z ∈ Zp.
Then, we can simply divide z into two (or more) random shares and perform

135

Paper E.

the upcoming computations via two (or more) non-colluding clouds. Here,
we focus on the special case of two clouds, i.e., two-party computation, that
has also been considered in [18]. Slightly more formally, the essentials of
secret sharing and two-party computation can be summarized as follows.
Two shares of z are constructed by randomly choosing z(1) from Nq and
subsequently selecting z(2) ∈ Nq such that

z ≡ z(1) + z(2) mod q, (E.4)

where q ∈ N+ defines the size of the message space. It can easily be verified
that neither z(1) nor z(2) leak information about z and that z can only be
reconstructed by combining both shares (as detailed below).

Two-party computations. Remarkably, the shares allow to carry out com-
putations. To see this, we introduce the shorthand notation [z] := [z(1), z(2)]
for shared values. Now, consider two secret numbers z1, z2 ∈ Zp and the
corresponding shares [z1] and [z2]. Then, the number z3 associated with

[z3] = [z1] + [z2] :=
[
z(1)1 + z(1)2 , z(2)1 + z(2)2

]
mod q (E.5)

satisfies z3 ≡ z1 + z2 mod q. In other words, the shares allow to carry out
secure additions. Analogously, secure multiplications and additions with
public constants a, b ∈ Zp can be performed. In fact,

[z4] = a[z1] + b :=
[
az(1)1 + b, az(2)1

]
mod q (E.6)

is such that z4 ≡ az1 + b mod q. Finally, even secure multiplications of two
secret numbers can be realized. However, this requires the utilization of so-
called Beaver triples [2]. A Beaver triple consists of shares [α], [β], and [γ]
from Nq that satisfy αβ ≡ γ mod q. Moreover, the shares are generated by
randomly choosing [α] and [β] without revealing both shares of α, β, or γ
to any of the computing parties. Without giving details, we briefly note that
various protocols for two-party generation of Beaver triples exist [8, 17]. Now,
given a Beaver triple, secure multiplications of the form z1z2 can be carried
out as follows. First, the shares [δ] := [z1] − [α] and [ε] := [z2] − [β] are
computed, where subtractions are defined analogously to additions. Since
[α] and [β] have been randomly chosen, [δ] and [ε] contain no information
on [z1] or [z2]. Hence, the two parties can exchange their shares and reveal δ
and ε. Afterwards, the shares

[z5] := [γ] + δ[β] + ε[α] + δε (E.7)

can be computed in a distributed and secure fashion. One can easily verify
that these shares satisfy the desired multiplicative relation z5 ≡ z1z2 mod q.

Reconstruction. Obviously, being able to perform secure computations
on shared values is useful for encrypted control. However, we eventually

136

2. Preliminaries and background

Table E.1: Garbled AND-gate with labelled data.

labelled inputs outputs encrypted outputs

`v
0 `w

0 `
y
0 Enc{`v

0 ,`w
0 }(`

y
0)

`v
0 `w

1 `
y
0 Enc{`v

0 ,`w
1 }(`

y
0)

`v
1 `w

0 `
y
0 Enc{`v

1 ,`w
0 }(`

y
0)

`v
1 `w

1 `
y
1 Enc{`v

1 ,`w
1 }(`

y
1)

need to reconstruct the actual control input and not only a congruent value
modulo q. To this end, we exploit that the function µ : Zp → Zp

µ(z) :=
{

z− q if z ≥ q/2,
z otherwise

(E.8)

is a partial inverse of the modulo operation in the sense that the relation
z = µ(z mod q) holds for every

z ∈ Zpq := {−bq/2c, . . . , dq/2e − 1} .

2.3 Secure circuit evaluations using garbled circuits

As specified in Section 3.3 further below, relations analogous to (E.5)–(E.7) al-
low to securely evaluate the arguments of the max-operations in (E.3). How-
ever, we do not have a procedure to securely evaluate the max-operations
yet.

To overcome this issue, we consider so-called garbled circuits [3], which
enable secure two-party evaluation of arbitrary Boolean circuits. In the fol-
lowing, we give a brief but intuitive introduction to garbling by considering
a Boolean circuit consisting of one AND-gate only. This circuit takes the in-
put bits v and w and returns the output bit y = AND(v, w). Now, assume
v belongs to the first cloud and w to the second one. Then, a garbled cir-
cuit allows to compute y without revealing any information on v or w to the
other cloud (apart from what can be inferred from y). The corresponding
procedure can be summarized as follows.

Garbling. The first cloud is the so-called Garbler. The Garbler randomly
picks two labels (that are associated with 0 and 1, respectively) for every in-
put and output in the circuit. Thus, for our simplistic example, the Garbler
picks the labels `v

0, `v
1, `w

0 , `w
1 , `y

0, and `
y
1, where the indices are purely for pre-

sentation. The Garbler then creates a truth table for the AND-gate based on
the generated labels (see Tab. E.1). Next, the Garbler encrypts the output col-
umn using the corresponding input labels as secret keys leading to, e.g., the
ciphertext Enc{`v

0 ,`w
0 }(`

y
0). The garbled circuit is finally generated by randomly

137

Paper E.

ordering the rows of the encrypted truth table (or by using sophisticated or-
dering techniques such as point-and-permute [14]).

Communication. The Garbler sends the garbled circuit to the second
party who acts as the Evaluator. Clearly, in order to evaluate the circuit,
the Evaluator also needs the garbled inputs in terms of the corresponding
labels. Since the labels do not reveal any information on the actual inputs,
the Garbler simply sends its labelled input along with the circuit.

For instance, in our example, the Garbler sends `x
0 if its input is 0. Since

only the Garbler holds the labels and since the Evaluator intends to keep its
input secret, it is slightly more complicated to provide the label correspond-
ing to the Evaluator’s input. Fortunately, there exist efficient cryptographic
protocols that allow to solve this issue. In fact, the Evaluator can infer `w

w
without revealing w to the Garbler by using a so-called oblivious transfer
(OT, [16]).

Evaluation. Based on the labels `v
v and `w

w and the garbled circuit, the
Evaluator can decrypt the related output label (and none of the others).

For instance, under the assumption that v = 0 and w = 1, the Evaluator
obtains `v

0 and `w
1 and is hence able to decrypt `y

0. Importantly, the Evaluator
does not yet know y since the label is a random number.

Revealing. After evaluating the garbled circuit, the Evaluator holds the
resulting output label `y

y but, so far, only the Garbler would be able to in-
terpret it. Depending on the application, these pieces of information can be
(re)combined in three different ways. In fact, the plaintext y can either be re-
vealed to the Evaluator, the Garbler, or a third party. We later exploit the first
case and therefore comment on this one only. In this scenario, the Garbler
simply sends the output labels with the corresponding plaintexts to the Eval-
uator (which can be done together with the garbled circuit) and the Evaluator
uses this information to obtain y.

3 Secure evaluation of max-out networks

Our main contribution is a secure and efficient two-party implementation of
max-out networks as in (E.3) based on a tailored combination of secret shar-
ing and garbled circuits. Before presenting our implementation, we specify
the goals of the approach and outline the main concept.

3.1 Goals and concept

We initially assume that a suitable controller (E.3) has been identified by
the system operator in terms of K, b, L, and c. Our goal then is to realize
a cloud-based evaluation of ĝ without revealing the system’s state x(k), the
control actions ĝ(x(k)), or the controller parameters K, b, L, and c to any

138

3. Secure evaluation of max-out networks

of the two clouds. To this end, we will use both secret sharing and gar-
bling and try to combine their strengths while avoiding their weaknesses.
Namely, as apparent from Section 2.2, secret sharing is efficient in securely
evaluating additions and multiplications while comparisons (as required for
max-operations) are intractable. In contrast, garbled circuits can efficiently
handle comparisons and additions while being very inefficient for multipli-
cations. As a consequence, we aim for secret sharing-based evaluations of
the affine operations in (E.3) while we will exploit garbled circuits for the
max-operations.

3.2 Integer-based reformulation of max-out networks

In order to apply secret sharing, we need to reformulate (E.3) based on inte-
gers. To this end, we simply choose some positive scaling factors s1, s2 ∈ R+,
define s3 := s1s2, and construct the integers ξ := bs1xe, K := bs2Ke, β :=
bs3be, L := bs2Le, and γ := bs3ce. Then, the integer-based approximation

max{Kξ + β} −max{Lξ + γ} ≈ s3 ĝ(x) (E.9)

holds for sufficiently large scaling factors. More precisely, the following
proposition provides an upper bound for possible approximation errors. As
a preparation, we introduce the vectors

v := Kξ + β and w := Lξ + γ (E.10)

that express the results of the affine preactivations in terms of integers.

Proposition E.1
Let ĝ(x), the scaling factors si, and v and w be defined as above. Further, let
η ∈ R+ and assume that

‖x‖∞ ≤
η

2s1
, ‖K‖max ≤

η

2s2
, and ‖L‖max ≤

η

2s2
. (E.11)

Then, deviations between ĝ and its integer-based reformulation are bounded
above by ∣∣∣∣ ĝ(x)− 1

s3
(max{v}−max{w})

∣∣∣∣ ≤ 1
s3

(
nη +

n
2
+ 1
)

. (E.12)

Proof. We first note that the derivation of the upper bound in (E.12) is similar
to the one in [18, Prop. 2]. Hence, we can shorten this proof to its essentials.
For instance, the corresponding proof in [18] shows that the max-operations
in (E.12) are irrelevant for the desired error bound. As a consequence, the
left-hand side of (E.12) is upper bounded by∥∥∥∥Kx + b− 1

s3
v
∥∥∥∥

∞
+

∥∥∥∥Lx + c− 1
s3

w
∥∥∥∥

∞
. (E.13)

139

Paper E.

We will use the same strategy to evaluate upper bounds for the two terms
in (E.13).

Therefore, we only consider the first term in the following and multiply
the resulting bound by 2 to obtain (E.12). To this end, we define the deviations

∆x := x− 1
s1

ξ, ∆K := K − 1
s2
K, and ∆b := b− 1

s3
β,

and note that these are bounded by

‖∆x‖∞ ≤
1

2s1
, ‖∆K‖max ≤

1
2s2

, and ‖∆b‖∞ ≤
1

2s3
(E.14)

due to the nearest integer rounding. Based on these deviations, we can
rewrite the first expression in (E.13) as∥∥∥∥Kx + b− 1

s3
v
∥∥∥∥

∞
= ‖∆Kx + K∆x− ∆K∆x + ∆b‖∞ .

Using subadditivity, we can overestimate the right-hand side by upper bound-
ing the individual terms according to

‖∆Kx‖∞ ≤ ‖∆K‖∞‖x‖∞ ≤ n‖∆K‖max‖x‖∞ ≤
nη

4s1s2
,

where the two latter relations hold due to (E.11) and (E.14). Proceeding anal-
ogously with the three remaining terms, summing up the individual bounds,
and multiplying the result by 2 finally leads to the bound in (E.12).

Remarkably, the error bound (E.12) can be made arbitrarily small by in-
creasing s1 and s2 and hence s3.

3.3 Secret sharing for affine preactivations

Next, we exploit secret sharing and two-party computation to securely evalu-
ate the integer-based preactivations (E.10). To this end, we assume that each
of the two clouds holds one share of the matrices K and L as well as the
vectors β and γ that have been uploaded before runtime of the controller.
As above, we summarize these shares with [K], [L], [β], and [γ]. Addition-
ally, we assume that the sensor computes ξ and related shares [ξ] in every
time-step based on the current state x. With these quantities at hand, we
intend to securely compute shares for v and w as in (E.10). In the following,
our focus is on the computation of suitable shares [v] since [w] is computed
analogously.

Clearly, computing v requires only scalar-valued multiplications and ad-
ditions. Therefore, a secure computation based on shares can be carried out

140

3. Secure evaluation of max-out networks

according to the procedures in Section 2.2. In the interest of a compact nota-
tion, we extend some of these procedures to matrices next. For instance, we
assume that each cloud holds a share of a matrix-valued Beaver triplet [A],
[B], and [C], where A and B have been randomly picked from N p×n

q and
where C is such that

A ◦B ≡ C mod q

with “◦” denoting the Hadamard (or elementwise) product. Then, the shares
[v] can be computed as follows.

Proposition E.2
Let the shares [K], [β], and [ξ] and the Beaver triplet [A], [B], and [C] be
defined as above and let

[Ξ] :=

[ξ>]
...

[ξ>]

 , [D] := [K]− [A], and [E] := [Ξ]− [B].

Then, shares for v as in (E.10) can be computed via

[v] := ([C] +D ◦ [B] + E ◦ [A] +D ◦ E) 1 + [β]. (E.15)

Proof. We first note that the Hadamard product allows to separate multipli-
cations and additions in the computation of v. In fact, we obviously have
v ≡ (K ◦ Ξ)1 + β mod q, where Ξ refers to the recombination of [Ξ]. Now,
a shared computation of K ◦ Ξ can be carried out analogously to (E.7) using
Beaver’s procedure. Clearly, this leads to the expression in the round brack-
ets in (E.15). The remaining operations in (E.15) exploit the procedures in
(E.5) and (E.6).

3.4 Boolean circuit for max-out

After evaluating the affine preactivations using secret sharing, the first cloud
holds v(1) and w(1) and the second cloud holds v(2) and w(2). All shares
are, by construction, contained in Nq and, hence, non-negative. However, the
vectors v and w may also contain negative numbers. Thus, before evaluating
the max-operations, we need to reconstruct v and w. Because [v] (and [w])
represent proper shares of v (and w) according to Proposition E.2, we can
easily derive the following statement.

Corollary E.1
Assume Kξ + β ∈ Zp

p
q . Then,

vi = µ
(
v(1)

i + v(2)
i mod q

)
(E.16)

for every i ∈ {1, . . . , p}.

141

Paper E.

AND

XOR
v

w

XOR

XORXORcin

y

cout

Fig. E.1: A Boolean circuit realizing a full adder (FA).

Clearly, the reconstructed vectors v and w should not be revealed to any
of the two clouds. Therefore, the reconstruction (E.16) has to be included in
the Boolean circuit, which is later garbled. More precisely, we will design two
garbled circuits for ν := max{v}+ r1 mod q and ω := max{w}+ r2 mod q,
where the role of the random numbers r1, r2 ∈ Nq will be clarified further
below in Section 3.6. Since the functionality of both circuits is equivalent, we
only discuss the design of the ν-circuit. Obviously, a Boolean circuit requires
Boolean input data and we thus need bit-wise representations of v(1), v(2),
and r1 here. In order to provide this data, the following assumption is made.

Assumption E.1
The modulus q is of the form q = 2l for some l ∈ N+.

Bit-wise representation. Due to this assumption, the vectors v(1), v(2) ∈
N p

q and the scalar r1 ∈ Nq can be represented in terms of l-bit unsigned
numbers. In order to formalize this observation, we note that there exist
unique matrices V (1), V (2) ∈ {0, 1}p×l such that the relations

v(1)
i =

l

∑
j=1

2l−jV (1)
ij and v(2)

i =
l

∑
j=1

2l−jV (2)
ij

hold for every i ∈ {1, . . . , p}. Since V (1) and V (2) are Boolean and since
they uniquely represent v(1) and v(2), we use them as inputs for our Boolean
circuit. Analogous observations hold for r1 but are not required for the fol-
lowing discussion. Now, the first task of the circuit is to compute v(1)

i + v(2)
i

based on the corresponding entries in V (1) and V (2) and, subsequently, to
evaluate (E.16).

Bit-wise addition and reconstruction. In principle, the addition can eas-
ily be carried out using standard ripple-carry adders based on l full adders
(FA) as illustrated in Figures E.1 and E.2. However, one has to take into ac-
count that properly representing v(1)

i + v(2)
i might require an additional bit.

In fact, this case arises if the last carry bit (ci,l+1 in Fig. E.2) evaluates to 1. At
this point, one might be tempted to extend the bit-wise representation of the

142

3. Secure evaluation of max-out networks

FA

Y i1

0FA

Y il

ci,l+1 FA

Y i2

V (2)
i1 V (1)

i1V (2)
i2 V (1)

i2V (2)
il V (1)

il

Fig. E.2: A ripple-carry adder for adding l-bit numbers.

computed sum by this carry bit. Yet, as apparent from (E.16), the addition is
followed by a modulo operation with q = 2l . Clearly, whenever we enter this
operation with an unsigned number with at least l bits, it will simply return
the l least significant bits and cut off all remaining bits.

Hence, a possible extension by the mentioned carry bit would immedi-
ately be undone by the modulo operation and is thus meaningless. More
precisely, let the i-th row of the matrix Y ∈ {0, 1}p×l reflect the l least signifi-
cant bits of the sum v(1)

i + v(2)
i . Then,

l

∑
j=1

2l−jY ij = v(1)
i + v(2)

i mod q.

Now, in order to reconstruct vi according to (E.16), it remains to apply µ
as in (E.8). Interestingly, for q = 2l and z ∈ Nq, the bit-wise interpretation
of (E.8) simply reflects the conversion from unsigned to signed numbers.
Therefore, we obtain

−2l−1Y i1 +
l

∑
j=2

2l−jY ij = µ

(
l

∑
j=1

2l−jY ij

)
using the two’s complement convention. In other words, evaluating (E.8)
within the circuit does not require any computations but just a reinterpreta-
tion of the bit-wise number format. We study two trivial numerical examples
in Table E.2 to illustrate the computations up to this point.

Max-operations. Having reconstructed all vi, it remains to compute max{v}.
This can be done by successively evaluating max-of-two-operations in a tournament-
like fashion with dlog2(p)e rounds (i.e., quarterfinals, semifinals, etc.). We
illustrate the bit-wise evaluation of these operations by exemplarily investi-
gating max{v1, v2}. Obviously,

max{v1, v2} =
{

v1 if v1 ≥ v2,
v2 otherwise.

(E.17)

Now, the two cases in (E.17) can also be identified based on the sign-bit σ of
v1 − v2. In fact, the first case refers to σ = 0 and the second to σ = 1. Thus,

143

Paper E.

Table E.2: Bit-wise evaluation of addition, modulo q, and µ for two numerical examples with
l = 3 and ci,l+1 ∈ {0, 1}.

var./op. val. bit-wise

+v(1)
1 3 0 1 1

+v(2)
1 6 1 1 0

= 9 (1) 0 0 1
mod q 1 0 0 1
µ(·) 1 0 0 1

var./op. val. bit-wise

+v(1)
2 +5 1 0 1

+v(2)
2 +2 0 1 0

= +7 (0) 1 1 1
mod q +7 1 1 1
µ(·) −1 1 1 1

the maximum can be expressed as (1− σ)v1 + σv2. Fortunately, this sum can
be computed without relying on full-adders. In fact, the j-th bit of this sum
simply results from

XOR
(
AND

(
Y1j, NOT(σ)

)
, AND

(
Y2j, σ

))
. (E.18)

Repeating the previous steps for the remaining entries of v and the remain-
ing rounds of the “tournament” completes the circuit-based evaluation of
max{v}.

Randomization. It only remains to add the random number r1 modulo q.
To this end, we note that

ν = (max{v} mod q) + r1 mod q.

As above, the bit-wise evaluation of max{v} mod q simply reflects a con-
version from signed to unsigned numbers. Adding r1 can finally be realized
analogously to Figure E.2, where we can (again) ignore the (l + 1)-th carry
bit since the modulo q operation follows.

3.5 Garbling and reconstruction of control actions

Garbled circuits. In order to securely evaluate the designed circuit, we use
garbling as briefly introduced in Section 2.3. We note, in this context, that
the presented circuit only contains AND-, XOR-, and NOT-gates. Now, with-
out giving details, securely evaluating XOR- and NOT-gates does not require
any garbling [13]. Hence, garbling as in Table E.1 is only required for one
AND-gate per FA and two AND-gates per operation (E.18). Zooming out,
we require l FAs per addition (and per subtraction). Further, each max-of-
two-operation requires one subtraction and l operations of the form (E.18).
Finally, by assuming that p is likewise a power of 2, carrying out the “tourna-
ment” requires p− 1 max-of-two-operations. Thus, the whole circuit contains

pl + 3(p− 1)l + l = (4p− 2)l (E.19)

144

3. Secure evaluation of max-out networks

AND-gates, where the three summands on the left-hand side reflect the com-
putations of (E.16), the evaluation of max{v}, and the addition of r1, re-
spectively. Remarkably, the size of the garbled circuit solely depends on the
dimension p of the max-out network and the chosen bit-length l.

The clouds use the garbled circuits to securely compute ν := max{v}+
r1 mod q and ω := max{w} + r2 mod q, respectively. More precisely, the
first cloud acts as a Garbler for the ν-circuit, which is subsequently evaluated
by the second cloud. The roles are inverted for the ω-circuit. As a result, the
overall computations are symmetrically allocated between both clouds.

Reconstructing control actions. After evaluating the garbled circuits, the
first cloud holds ω and the second one ν. We show next how to use this
data to reconstruct (an approximation of) ĝ(x) at the actuator. To this end,
the first cloud sends ∆ω := ω + r1 mod q and the second cloud transmits
∆ν := ν + r2 mod q. The actuator then computes and applies

u(k) =
1
s3

µ (∆ν− ∆ω mod q) , (E.20)

where we note that both random values ri cancel out. Formally, we require
max{v}−max{w} ∈ Zpq for a correct evaluation of this final step. However,
this condition is typically significantly less restrictive than the one in Corol-
lary E.1 since the resulting control inputs are restricted to U anyway (apart
from approximation errors).

3.6 Overall architecture and security guarantees

After having introduced all building blocks of our scheme, we briefly com-
ment on their interplay and resulting security guarantees. In this context, the
secure evaluation of the controller can be subdivided in an offline and online
phase.

Offline. In the offline phase, the system operator first selects p and then
obtains K, L, b, and c by training the max-out network (E.3). Afterwards,
K,L, β, and γ are formed by choosing suitable scaling factors s1 and s2. Fi-
nally, q = 2l is specified and the shares K(i), L(i), β(i), and γ(i) are generated
and transmitted to the i-th cloud.

Online. The online procedure is illustrated in Figure E.3. In every time
step, the sensor measures x(k) and computes ξ. It then generates the shares
ξ(i) and sends them to cloud i. Now, the two clouds first exploit (E.15) (and
the analogue for [w]) to securely compute shares of v and w. To this end,
they generate two sets of matrix-valued Beaver triples [A], [B], and [C] using,
e.g., the procedure in [8]. Next, each cloud generates a random number
ri, garbles the circuit for one max-out neuron and labels its own inputs to
the circuit (i.e., v(1) and r1 for the first cloud). After that, it transmits the

145

Paper E.

Actuator
u = 1/s3 µ (∆ν− ∆ω mod q)

u
System

x Sensor
bs1xe ≡ ξ(1)+ ξ(2)mod q

ξ
(1
)

(Generate Beaver triples)

Compute v(1), w(1) via (E.15)

Garble ν-circuit and

inputs v(1), r1

Evaluate ω-circuit and

transmit ∆ω := ω + r1 mod q

∆
ω

ξ
(2
)

(Generate Beaver triples)

Compute v(2), w(2) via (E.15)

Reveal D,E , . . .

Garble ω-circuit and

inputs w(2), r2

OT to garble

v(2), w(1)

Garbled circuits,

inputs, outputs

Evaluate ν-circuit and

transmit ∆ν := ν + r2 mod q

∆
ν

Fig. E.3: Overall architecture of the proposed scheme based on secret sharing and garbled cir-
cuits.

circuit together with the output table to the other cloud. Simultaneously, the
remaining input labels (i.e., for v(2) in the ν-circuit) are obtained through
OT. Afterwards, each cloud evaluates the received garbled circuit, derives its
output, and transmits the result masked by the random ri to the actuator.
Finally, the actuator reconstructs u(k) according to (E.20) and applies it.

Security. To specify security guarantees, we make the (realistic) assump-
tion that the two clouds are non-colluding and honest but curious. In other
words, the two clouds will strictly follow the specified protocols without in-
terchanging further data but they may try to infer information from the given
data. Clearly, our security goal is to prevent the latter. In this context, we first
note that the evaluation of the affine preactivations is perfectly secure (i.e, in-
formation theoretically secure) by the use of secret sharing [6]. Next, garbled
circuits are proven to be secure against semi-honest adversary [10] which fits
our assumption about the clouds. Finally, we mask the computed outputs
of the max-out neurons by the random numbers ri, which is equivalent to
secret sharing and, therefore, enjoys perfect security. In summary, the clouds
cannot obtain any information about ξ, K, L, β, γ, v, w, max{v}, max{w},
or the resulting u. We note, however, that generating new Beaver triples and
garbled circuits for each evaluation of u(k) is essential for security.

4 Numerical benchmark

We illustrate our approach for the standard double integrator example with
the system matrices

A =

(
1 1
0 1

)
and B =

(
0.5
1

)
146

4. Numerical benchmark

and the constraints X = {x ∈ R2 | |x1| ≤ 25, |x2| ≤ 5} and U = {u ∈
R | |u| ≤ 1}. The predictive controller associated with (E.1) is specified as
follows. We set N = 15, Q = I, and R = 0.01 and choose P as the solution of
the discrete-time algebraic matrix Riccati equation

A>(P− P B (R + B>P B)−1B>P) A− P + Q = 0.

Finally, T is chosen as the largest subset of X for which the linear quadratic
regulator can be applied without violating the state or input constraints.

Next, in order to train the neural network, we sampled M = 6000 states
x(i) in the feasible set F , evaluated g(x(i)), and solved the nonlinear program

min
K,b,L,c

M

∑
i=1

∥∥∥max{Kx(i)+ b} −max{Lx(i)+ c} − g(x(i))
∥∥∥2

2

locally, where we fixed the size p to either 8 or 16.
The resulting mean squared errors (MSE) with respect to (E.2) are listed

in Table E.3.
For p = 8, the local optimizers (rounded to two digits after the decimal

point) are given by

K>=
(
−0.07−0.31−0.01−0.01−0.31−0.01−0.07−0.31
−0.52−0.32−0.30−0.40−0.68−0.52−0.41−0.64

)
,

L>=
(
−0.31−0.12−0.07−0.31−0.31−0.08−0.01−0.08
−0.68−0.03−0.52−0.36−0.64−0.48−0.52−0.01

)
,

b>=
(
−0.37−4.60−0.50−0.54−0.60−1.67−1.14−0.39

)
,

c>=
(
−0.40−0.88−1.37−4.61−0.61−1.39−0.67−0.40

)
.

An illustration of the corresponding function ĝ(x) is depicted in Figure E.4.
Now, in order to prepare the secure two-party implementation of the

learned controller, we require a suitable integer-based representation of ĝ(x).
In this context, we mainly need to choose the scaling factors s1 and s2 as
well as the size of the message space q. A suitable choice should preclude
overflow. Hence, the assumption in Corollary E.1 needs to be satisfied for all
x ∈ F . For practical applications, it is useful to start with the choice of q = 2l

since l determines the number format in terms of bits. Here, we consider
l ∈ {16, 32}. Interestingly, fixing l leads to an upper bound for s3, i.e., for the
product s1s2. To see this, we initially note that the proof of Proposition E.1
implies ∥∥∥∥Kx + b− 1

s3
(Kξ + β)

∥∥∥∥
∞
≤ 1

2s3

(
nη +

n
2
+ 1
)

:= ∆.

Based on this bound, one can show that the implication

‖Kx + b‖∞ <
q

2s3
− ∆ =⇒ Kξ + β ∈ Zp

p
q

147

Paper E.

Fig. E.4: Illustration of the trained max-out neural network (blue) and a few sample points(
x(i), g(x(i))

)
(white) over the partition (gray) induced by (E.3).

holds. Hence, the assumption in Corollary E.1 is satisfied if

s3 <
2l−1

maxx∈F ‖Kx + b‖∞ + ∆
, (E.21)

where we used q = 2l . Now, we can easily evaluate maxx∈F ‖Kx + b‖∞ (and
maxx∈F ‖Lx + c‖∞) based on linear programming. However, precisely com-
puting ∆ is difficult, at this point, since it depends on s3 and η. Fortunately,
we will usually be able to realize a small error bound ∆. Therefore, we can
simply choose a reasonable overestimation for ∆ and justify (or discard) this
choice afterwards.

Here, we assume ∆ ≤ 1. The resulting upper bounds s3,max in dependence
of p and l are listed in Table E.3. Subsequently, we can freely choose s1 and
s2 as long as s3 = s1s2 satisfies the corresponding bound. For instance, we
choose s1 = 20 and s2 = 100 for p = 8 and l = 16, where the “asymmetric”
choice reflects the fact that s2 applies to a matrix. Having fixed the scaling
factors, we choose the smallest η such that (E.11) holds (for every x ∈ F).
Finally, we can easily verify ∆ � 1 for all considered combinations of p and
l. Further, we can quantify the actual quantization errors, i.e., the left-hand
side in (E.12), by computing the MSE based on the sampled states. The results
are given in Table E.3.

Now, regarding the secure controller evaluation according to Figure E.3,
we note that the quantization, the secret sharing, and the garbled circuits are

148

5. Conclusions and Outlook

Table E.3: Error estimations and key data for the example.

p MSE† l s3,max MSE‡ #AND tavg

08 18.57 · 10−6 16 2.23 · 103 4.37 · 10−5 1480 179 ms
32 1.51 · 108 5.06 · 10−9 1960 167 ms

16 01.99 · 10−6 16 2.21 · 103 6.45 · 10−5 1992 170 ms
32 1.49 · 108 2.46 · 10−6 1984 348 ms

†
mean squared error of the max-out approximation
w.r.t. (E.2)

‡
mean squared error of the quantization w.r.t. (E.3)

determined by the scaling factors si, the size of the message space q, and the
quantities p and l. In particular, the latter quantities determine the size of the
garbled circuit according to (E.19) and the corresponding numbers of AND-
gates are listed in Table E.3. For the actual garbling, we use 128-bit numbers
for each label in the circuit. Further, output labels for each gate are encrypted
by the hash of the sum of the associated inputs using SHA-256.

Finally, 1-out-of-2 OT is implemented based on ElGamal encryption. With
this setup, a single evaluation of the encrypted controller on an Intel Core i5
with 2.50GHz leads, on average, to the computation times in Table E.3. We
note, in this context, that the generation of random numbers (including the
Beaver triples) and latency has not been taken into account yet.

5 Conclusions and Outlook

We presented a novel secure implementation of linear MPC over a two-cloud
architecture. The key insight that led to our work is that max-out neural net-
works are well-suited to approximate piecewise affine control laws while pro-
viding a structure that allows for an efficient secure implementation. More
precisely, the affine preactivations can be evaluated by additive secret sharing
and the subsequent evaluation of the max-operations is realized with garbled
circuits. Due to this tailored setup, we avoid inefficient multiplications within
the garbled circuits. Improvements compared to existing schemes lie in the
significantly reduced evaluation times, and the more efficient use of the in-
volved clouds. More precisely, [18] does not approximate (E.3), which results
in large values for p, and [22] evaluates the control law partially at the sensor.

Future research may address two aspects. First, max-out networks of the
form (E.3) can, in principle, approximate arbitrary (continuous) functions and
they consequently may support secure implementations of (some) nonlinear
MPC schemes.

Second, our numerical results are obtained from a laptop running unop-

149

References

timized python code. Therefore, a more realistic setup with optimized code,
a two-cloud network including latency, and a more complex control law will
be of interest.

References

[1] A. B. Alexandru, M. Morari, and G. J. Pappas. Cloud-based MPC with encrypted
data. In Proc. of the 57th Conference on Decision and Control, pages 5014–5019, 2018.

[2] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In Annual
International Cryptology Conference, pages 420–432. Springer, 1991.

[3] M. Bellare, V.T. Hoang, and P. Rogaway. Foundations of Garbled Circuits. In
Proc. of the Conference on Computer and Communications Security, pages 784–796,
2012.

[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

[5] J. H. Cheon, K. Han, H. Kim, J. Kim, and H. Shim. Need for controllers having
integer coefficients in homomorphically encrypted dynamic system. In Proc. of
57th Conference on Decision and Control, pages 5020–5025. IEEE, 2018.

[6] R. Cramer, I. B. Damgård, and J. B. Nielsen. Secure multiparty computation and
secret sharing. Cambridge University Press, 2015.

[7] F. Farokhi, I. Shames, and N. Batterham. Secure and private control using semi-
homomorphic encryption. Control Engineering Practice, 67:13–20, 2017.

[8] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A Unified Approach to
MPC with Preprocessing using OT. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 711–735. Springer, 2015.

[9] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Max-
out Networks. In Proc. of the 30th International Conference on Machine Learning,
volume 28, pages 1319–1327, 2013.

[10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and Con-
structions. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

[11] W. Knowles, D. Prince, D. Hutchiso, J. F. P. Disso, and K. Jones. A survey of
cyber security management in industrial control systems. Intl. Journal of Critical
Infrastructure Protection, 9:52–80, 2015.

[12] K. Kogiso and T. Fujita. Cyber-security enhancement of networked control sys-
tems using homomorphic encryption. In Proc. of the 54th Conference on Decision
and Control, pages 6836–6843, 2015.

150

References

[13] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and
Applications. In International Colloquium on Automata, Languages, and Program-
ming, pages 486–498. Springer, 2008.

[14] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay-Secure Two-Party Compu-
tation System. In USENIX Security Symposium, volume 4, page 9. San Diego, CA,
USA, 2004.

[15] D. Q. Mayne, J. B. Rawlings, C.V. Rao, and P. O. M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

[16] M. O. Rabin. How To Exchange Secrets with Oblivious Transfer, 2005. Harvard
University Technical Report 81.

[17] D. Rathee, T. Schneider, and K. K. Shukla. Improved Multiplication Triple Gen-
eration over Rings via RLWE-based AHE. In Cryptology and Network Security,
pages 347–359, Cham, 2019. Springer International Publishing.

[18] N. Schlüter and M. Schulze Darup. Encrypted explicit MPC based on two-party
computation and convex controller decomposition. In Proc. of the 59th Conference
on Decision and Control, pages 5469–5476, 2020.

[19] N. Schlüter and M. Schulze Darup. Novel convex decomposition of piecewise
affine functions. In Proc. of the 21st IFAC World Congress, 2020.

[20] M. Schulze Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas. En-
crypted control for networked systems–an illustrative introduction and current
challenges. arXiv preprint arXiv:2010.00268, 2020.

[21] M. Schulze Darup, A. Redder, and D. E. Quevedo. Encrypted cooperative control
based on structured feedback. IEEE Control Systems Letters, 3(1):37–42, 2019.

[22] M. Schulze Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo. Towards
encrypted MPC for linear constrained systems. IEEE Control Systems Letters,
2(2):195–200, 2018.

[23] Katrine Tjell, Nils Schlüter, Philipp Binfet, and Moritz Schulze Darup. Secure
learning-based mpc via garbled circuit. In 2021 IEEE 60th Conference on Decision
and Control (CDC), August 2021.

151

References

152

Paper F

Privacy in Distributed Computations based on Real
Number Secret Sharing

Katrine Tjell and Rafael Wisniewski

The paper has been submitted to
Information Sciences, 2021.

The layout has been revised.

1. Introduction

Abstract

Privacy preservation in distributed computations is an important subject as digiti-
zation and new technologies enable collection and storage of vast amounts of data,
including private data belonging to individuals. To this end, there is a need for a
privacy preserving computation framework that minimises the leak of private infor-
mation during computations while being efficient enough for practical usage. This
paper presents a step towards such a framework with the proposal of a real num-
ber secret sharing scheme that works directly on real numbers without the need for
conversion to integers which is the case in related schemes. The scheme offers compu-
tations like addition, multiplication, and division to be performed directly on secret
shared data (the cipher text version of the data). Simulations show that the scheme
is much more efficient in terms of accuracy than its counterpart version based on
integers and finite field arithmetic. The drawback with the proposed scheme is that it
is not perfectly secure. However, we provide a privacy analysis of the scheme, where
we show that the leaked information can be upper bounded and asymptotically goes
to zero. To demonstrate the scheme, we use it to perform Kalman filtering directly on
secret shared data.

1 Introduction

In recent years, there has been a rapid development of technologies for digi-
tization and collection and storage of data. Consequently, various distributed
algorithms for the efficient processing of the collected data are being devel-
oped in many research communities like signal processing, control, machine
learning, and optimization. Simultaneously, concerns about privacy and the
possible misuse of the data means a sudden big interest in embedding cryp-
tographic methods into the distributed algorithms to achieve privacy pre-
serving data processing, [1–3].

So far, efficient data processing and privacy preservation are two terms
that seems difficult to combine since the cryptographic methods tend to bring
a substantial overhead in either communication, computation or both. More-
over, security of cryptographic methods such as secret sharing and homomor-
phic encryption relies on modular arithmetic, which entails that all data to
be protected must be integers and computations on this data must be trans-
lated into equivalent computations using finite field arithmetic, [4–6]. The
drawbacks of this are, for instance, loss of precision in the solution (because
of rounding decimal numbers to integers) and that many operations such as
division becomes very intractable.

For some applications, efficient processing, that is not constrained to finite
field arithmetic, is crucial. Thus, it becomes relevant to consider a trade-off
between privacy and efficiency since after all; limited privacy is better than

155

Paper F.

none. To this end, we explore distributed computations in the secure multi-
party computation [7] setup, where only cipher texts travel between partici-
pants and plain texts stay hidden throughout computations. Essentially, what
we propose is a real number secret sharing scheme that circumvents the disad-
vantages of using only integers and modular arithmetic and consequently
achieves improved performance compared to state-of-the-art methods. The
scheme works directly on real numbers and we show straight forward im-
plementations of addition, multiplication and division performed directly on
the secret shared data. The shortcoming to our proposed scheme is that it
does not guarantee perfect security like its counterpart version based on in-
tegers and modular arithmetic. However, we carefully control the amount of
leaked information and provide information theoretic results to support our
claims.

As a motivating example, we demonstrate the use of the proposed scheme
to perform privacy preserving Kalman filtering. That is, we consider a lin-
ear dynamical system with state-transition matrix A, control input matrix B,
control input uk, process noise wk and state vector xk:

xk = Axk−1 + Buk + wk. (F.1)

Observations (or measurements) of the state vector, zk are modeled as

zk = Hxk + vk, (F.2)

where H is the observation matrix and vk is the measurement noise. The
objective is to estimate the true state of the system from the noisy observa-
tions, which is optimally done using the Kalman filter. The privacy concern
emerges from the measurements which could be private data that potentially
leaks private information. Scenarios where a problem of this form appears,
could for instance be traffic monitoring [8], medical monitoring [9], and con-
sumption forecasting [10]. The problem of privacy preserving Kalman fil-
tering has already been studied for instance in [11] that uses a form of data
compression to preserve privacy of measurements, [12] that base the pri-
vacy on a combination of homomorphic encryption and secure multiparty
computation techniques, and [13] that relies on differential privacy. These
existing works all suffer from a degradation in output utility compared to
the none-privacy preserving solution due to noise insertion or to the previ-
ously mentioned rounding of reals to integers. We will show that a privacy
aware Kalman filter based on our real number secret sharing scheme achieves
significantly improved output utility. Furthermore, we compare our privacy
preserving Kalman filter to the one proposed in [12] and show that ours has
a reduction in computation and communication overhead.

156

1. Introduction

1.1 State of the art

The typical way of preserving privacy of real numbers is to simply discard
the decimals and keep the integer part which is the suitable representation
for most cryptographic methods, [14–16] . The induced error bounds caused
by the truncation, can be made small by introducing scaling constants prior
to truncation. However, the size of the modular field, in which the crypto-
graphic calculations take place, increases according to the size of the scaling
factors and thus cannot be made arbitrarily big.

One of the first more direct ways to deal with non-integers in crypto-
graphic computations, was made in 2010 by Catrina et al. in [17]. Their pro-
posed solution builds on a fixed-point representation of real numbers that
allows the use of Shamir’s secret sharing scheme as the underlying crypto-
graphic technique. In [18] this solution was applied to privacy preserving
linear programming. Along this line of research, [19] proposed in 2013 a sim-
ilar secure floating-point computation scheme also based on a linear secret
sharing framework. In 2016, [20] proposed other techniques for represent-
ing secure real numbers suitable for a secret sharing framework with their
so-called golden-section and logarithmic number formats.

Apart from secret sharing based secure computation frameworks, there
has also been several attempts to secure real number computations in ho-
momorphic encryption based frameworks, [21–23]. Analog to the approach
based on secret sharing, the main idea here is to convert the real number into
a multi-bit binary integer to achieve a fixed precision presentation of a real
number. The drawback with these approaches is the time consuming compu-
tational overhead with homomorphic encryption and also that the proposed
schemes only offer addition and in some cases multiplication of cipher-texts.
This is in contrast to our scheme that allows addition, multiplication and
division to be performed efficiently on the cipher-text data.

Finally, our work is closely related to [24] that considers secret sharing
schemes (SSS) over infinite domains, e.g. the real number line. Among others,
they propose a scheme very similar to ours which is based on polynomials
and Lagrange interpolation. However, they consider a game between a dealer
and an adversary, which is for the dealer to chose a scheme and a secret such
that the adversary has the least probability of guessing the secret. On the
contrary, our work assumes that a group of parties would like to perform
computations without exposing data belonging to the individual parties. In
this sense, the secret is the data, and not something we can chose to our
liking. Also, we provide a quantification of the privacy loss of the scheme and
propose how to use the scheme for secure multiparty computation (SMPC),
which [24] does not.

157

Paper F.

Table F.1: Comparison of interactive operations (IO) of state-of-the-art protocols, where lt is the
bit-length of the truncated secret and l and k is, respectively, the bit-length of the significant and
exponent of the fixed point represented secret.

IO addition IO multiplication IO division Precision
Shamir’s SSS with truncation [14] 0 2 220lt + log 2lt + 238lt + 3 Up to scaling
Shamir’s SSS with fixed point
representation [19]

14l + 9k + (log l) log log l
+(l + 9) log l + 4 log k + 37

8l + 10 2 log l(l + 2) + 3l + 8 Up to scaling

Real numbers SSS 0 2 3 Machine precision

1.2 Contribution

The paper puts forth a real number secret sharing scheme which bypasses the
usual restrictions to integer secrets and finite field computations. This makes
the scheme very practical as solutions can be calculated with high precision
and without the need for computations being performed with modular arith-
metic. The scheme performs the same or with significant less computation
and communication complexity compared to state-of-the-art methods. In Ta-
ble F.1 the number of interactive operations (IO) are given for a selected num-
ber of state-of-the-art protocols. IO’s are those that require communication
between the participants, and since the time spent on local computations van-
ishes compared to time spent on IO’s, this measure gives both an indication
of communication and computation complexity.

The main contribution of the paper can be summarized as:

• To the best of our knowledge, this is the first attempt for a SMPC
scheme that works directly on the real number line and consequently
offers a trade-off between privacy and practicality.

• The proposed scheme bypasses the requirements for modular arith-
metic and integer secrets which is in contrast to state-of-the-art SMPC
techniques.

• The scheme allows addition, multiplication and division to be per-
formed directly on shares (ciphertext version of the data), opposed to
related schemes that typically only allow addition and in some cases
multiplication.

• The paper provides an in-depth analysis of the privacy guaranties of
the scheme as well as a quantification of leaked data.

1.3 Outline

The paper proceeds in section 2 by introducing the preliminaries and giving
motivation for the work. Section 3 states formally the problem of the paper,
while section 4 presents the proposed scheme and the privacy analysis. In
section 5 we give a numerical evaluation of the proposed scheme, while sec-
tion 6 provides simulations of the scheme for Kalman filtering and finally,
section 7 concludes the paper.

158

2. Preliminaries and Motivation

(a) n participants that can communicate privately
with each other.

(b) n participants and computing parties (the grey
squares).

Fig. F.1: Illustration of two scenarios of the communication network. The first scenario (a), each
participant can communicate privately with each of the other participant, and all computations
are performed by the participants themselves. In (b) each participant can communicate privately
with a number of computing parties (the grey squares) and each of the computing parties can
communicate privately with each of the other computing parties. The computing parties receives
shares of the input data from the participants and perform all computations without learning
the secret data.

2 Preliminaries and Motivation

In this section, we clarify our notation and terminology and afterwards we
give a brief introduction to the concept of secret sharing and SMPC, while
subsequently discussing their shortcomings which motivates the work in this
paper.

2.1 Notation and Terminology

Let P be an index set of n > 2 participants. We assume that each participant
p ∈ P can communicate privately with each of the other participants j ∈ P
or alternatively that there exists a number of computing parties that each par-
ticipant can communicate with. Each of these scenarios is illustrated in Fig.
F.1. The advantage of the second scenario is that the computing parties do
most of the computations and hence the participants do not have to possess
large computation capabilities. Furthermore, the participants need only to
communicate with a number of computing parties (which can be as low as
3). In the remaining of the paper we do not make a distinction between these
two scenarios, but remark that any presented method can straightforward be
used in both.

Concerning notation, let s be a secret value belonging either to a partic-
ipant or to an external entity providing secret data. We use {s[p]}p∈P to
denote the set of so-called shares of s. In other words, each share s[p] is
a cipher-text version of s. Combining a set {s[p]}p∈T of shares, for T ⊆ P

159

Paper F.

where t < |T | ≤ n and t is an integer threshold, the shares can be deciphered
and s recreated.

2.2 Secret Sharing, SMPC and their shortcomings

Secret sharing in general lets a party "share" a secret among n participants,
such that at least t + 1 ≤ n of the participants must cooperate to learn the
secret and opposite; no subset of less than t + 1 participants gets information
about the secret. There are many different secret sharing schemes, each tai-
lored to different use cases. Perhaps the most simple (and intuitive) secret
sharing scheme is the additive one [7], where t = n meaning that all shares
are needed to reconstruct the secret. In this scheme, the shares {s[p]}p∈P of
the secret s satisfy that

s =

(
∑

p∈P
s[p]

)
mod q, (F.3)

where q is a large prime number. When choosing n − 1 of the shares uni-
formly on [0, q − 1] and the last share such that (F.3) holds, the modular
arithmetic ensures that all shares are uniformly distributed. This means that
the scheme is perfectly secure since the uniform distribution holds no infor-
mation about the secret. The disadvantage is that s must be an element of Fq,
where Fq is a finite field of q elements.

Many secret sharing schemes, like the additive one and Shamirs scheme
[25], are very useful in SMPC protocols. These protocols, lets n participants
compute a function, that takes as input a private value from each participant,
while keeping the private values secret. For instance, for secrets s1, s2 ∈ Fq,
the sum s1 + s2 can be calculated directly on additive shares of each of the
secrets;

s1 + s2 =

(
∑

p∈P
s1[p] + s2[p]

)
mod q, (F.4)

where s1[p] + s2[p] is computed by the p’th participant.
The drawback is that q must be bigger than s1 + s2 in order to get the

correct result and if no information about the secret data is available, it can
be difficult to choose q.

More advanced schemes like Shamir’s scheme, also allows multiplication
of secrets directly on the shares and in principle also division. However,
the division will be finite field division [26] and not real number division. As
introduced in [14], there are complicated tricks, which usually involve bit-
decomposition of the secrets, that will enable the computation of real num-
ber division performed on the shares. However, say that the secret to be
divided is −3 (which would be represented as q− 3 in Fq), what effectively

160

3. Problem Statement

would happen is the division of q− 3 and not −3, which would lead to in-
correct results. This is an example of how finite field arithmetic complicates
the computations which leads to part of our motivation to introduce a real
number secret sharing scheme that does not depend on finite field arithmetic.

3 Problem Statement

Upon the discussion in section 2.2, we conclude that the problem of preserv-
ing privacy of real numbers without being limited to finite field arithmetic is
indeed a relevant topic in privacy preserving computations. To address this
problem, we will propose a real number secret sharing scheme. To this end,
we start with the following definition.

Definition F.1 (Real Number Secret Sharing Scheme)
A real number secret sharing scheme consists of two algorithms; share and
recon. share(s, t,P) = {s[p]}p∈P takes a secret s ∈ R, the threshold t ∈N

with t < n and the indices of n participants P and outputs a share s[p] ∈ R

for each participant p ∈ P . The algorithm recon({s[p]}p∈T) = s outputs
the secret s upon inputting at least t + 1 shares from any set of participants
p ∈ T , where T ⊆ P with |T | > t.

We have the following requirements for the real number secret sharing
scheme.

• Correctness. A reconstructed secret should be equal to the original
secret, that is s− recon({s[p]}p∈T = 0.

• Privacy. Only by combining at least t shares of s should it be possible to
reconstruct s. A set of fewer than t shares should reveal only very little
information about s. We state this formally by using the information
theoretic measure called mutual information [27, p.250];

I(X; Y) = h(X)− h(X|Y), (F.5)

where h(X) is the entropy of the random variable X and h(X|Y) is the
conditional entropy of X given the random variable Y. The mutual
information I(X; Y) can be interpreted as the reduction in uncertainty
about X one has after learning the outcome of Y (and vice versa since
mutual information is symmetric). To this end, we use S and S[p] to
denote the random variables that has s and s[p] as outcomes, and we
require that for any δ > 0 there exists {S[p]}p∈T ′ such that

I(S; {S[p]}p∈T ′) ≤ δ, (F.6)

161

Paper F.

where T ′ ⊂ P with |T ′| ≤ t.

• Computations directly on shares. At least the operations addition,
multiplication, and division, should be applicable directly on shares.
That is, for any secrets s1, s2 ∈ R and properly defined protocols add, mult,
and inv, the following should hold

recon({add(s1[p], s2[p])}p∈T) = s1 + s2 (F.7)

recon({mult(s1[p], s2[p])}p∈T) = s1s2 (F.8)

recon({inv(s1[p])}p∈T) =
1
s1

(F.9)

The problem of the paper is to define a real number secret sharing scheme
which satisfies the listed requirements assuming that each participant follows
the protocol.

4 Proposed Method

As mentioned already, we take great inspiration from Shamir’s SSS [25],
when proposing our real number SSS. To give some intuition, we explain
the derivation of the proposed scheme in comparison to Shamir’s scheme.

The approach in Shamir’s scheme is to start by choosing t coefficients
{cj}j∈T , where T = {1, . . . , t}, from Fq uniformly and afterwards defining
the polynomial

fs(x) =

(
s + ∑

j∈T
cjxj

)
mod q, (F.10)

where s ∈ Fq as usual is the secret. The shares of s are then defined as

{s[p]}p∈P = { f (p)}p∈P . (F.11)

For the real number SSS we want to avoid modular arithmetic and have
s ∈ R and therefore one idea is to write each share s[p] as

s[p] = s + ∑
j∈T

cj pj, (F.12)

where each cj is Gaussian distributed. We choose the Gaussian distribution
because this is the maximum entropy distribution for a random variable on
the real number line having a finite mean and variance, [27, p. 413].

Fig. F.2 depicts the shares of a secret s = 5.0 for n = 11 participants
with t = 5 (and for comparison also t = 10). For the Gaussian distributed
coefficients, we use mean value zero and variance 100. As seen, the shares
seem quite systematic which is not advantageous from a privacy point of

162

4. Proposed Method

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

500

1,000

1,500

2,000

p

R

s[p]

(a) t = 5.

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2
0

2

4

6

8

·104

p

R

(b) t = 10.

Fig. F.2: n = 11 shares of the secret s = 5.0 with the threshold t = 5 for (a) and t = 10 for (b),
where s[p] = f (i), with f (x) being a polynomial with t coefficients normally distributed with
mean value zero and variance 100.

view. Specifically, as seen in (F.12) the random numbers (the coefficients) are
scaled according to p ∈ P . Consequently, less weight are given to the random
numbers of the shares constructed with the lower p values. Therefore, the
shares tend to be in numerical order as observed in Fig. F.2.

We can information theoretically verify that the information leak caused
by a share decreases as the numerical value of p ∈ P increases. Consider for
instance P = {1, 2, 3} and t = 2, then according to (F.12), the shares of s are

s[1] = s + c1 + c2

s[2] = s + 2c1 + 4c2

s[3] = s + 3c1 + 9c2.

(F.13)

Then, assuming s, c1, and c2 are independent and Gaussian distributed with

163

Paper F.

mean value zero and variance σ2
s , σ2

c1
, and σ2

c2
, respectively, then

I(S, S[1]) =
1
2

log

(
1 +

σS
2

σ2
c1
+ σ2

c2

)

I(S, S[2]) =
1
2

log

(
1 +

σS
2

4σ2
c1
+ 16σ2

c2

)

I(S, S[3]) =
1
2

log

(
1 +

σS
2

9σ2
c1
+ 81σ2

c2

)
.

(F.14)

(F.14) clearly shows that the mutual information, and hence, information
leakage about the secret, decreases as p increases. This does not happen
in Shamir’s SSS because of the modular arithmetic. We therefore need to
adjust the method for it to work in a real number SSS.

To make sure each random number carry the same weight across shares,
we propose to construct the shares based on Lagrange interpolation [7] and
we briefly state this method in our notation.

Consider the points (α1, β1), . . . , (αt, βt) on the plane R2. A polynomial
f (x) of at most degree t− 1, that passes through the points, can be found by

f (x) = ∑
j∈T

β jLj(x), (F.15)

where T = {1, . . . , t} and Lk(x) are Lagrange basis polynomials given by

Lj(x) = ∏
k∈T\{j}

x− αk
αj − αk

. (F.16)

To create shares of a secret, we choose t shares at random and interpolate
these shares to a degree (at most) t polynomial fs(x), by also using that
fs(0) = s. Using Lagrange basis polynomials stated above, fs(x) is written as

fs(x) = s
t

∏
k=1

x− xk
x0 − xk︸ ︷︷ ︸
L0(x)

+y1

t

∏
k=0,k 6=1

x− xk
x1 − xk

+ · · ·+ yt

t−1

∏
k=0

x− xk
xt − xk

= sL0(x) + y1
x
x1

t

∏
k=2

x− xk
x1 − xk

+ · · ·+ yt
x
xt

t−1

∏
k=1

x− xk
xt − xk

= sL0(x) + y1
x
x1

L1(x) + · · ·+ yt
x
xt

Lt(x)

= sL0(x) + ∑
j∈T

yj
x
xj

Lj(x),

(F.17)

164

4. Proposed Method

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

0

500

p

R

s[p] (xj, yj)j∈T

(a) t = 5.

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

−2,000

−1,000

0

1,000

2,000

p

R

(b) t = 10.

Fig. F.3: n = 11 shares of the secret s = 5 with the threshold t = 5 for (a) and t = 10 for
(b), where s[p] = f (i), with f (x) being a polynomial. t points of f (x) (marked with a �) are
normally distributed with mean value zero and variance 100.

where we use that x0 = 0. The shares are then defined as

{s[p]}p∈P = { fs(p)}p∈P .

As seen in (F.17), the random numbers (yj) are normalized and thus have
the same weight across shares. Therefore, the shares are much less pre-
dictable (especially as t increase) as observed in Fig. F.3.

Moreover, we can information theoretically show that the information
leakage of the shares constructed by (F.17) does not depend on the numerical
value of p. Consider, P = {1, 2, 3}, t = 2 and x1 = 1 and x2 = 3. Remark that
xj are chosen each time shares of a secret are constructed and their value is

165

Paper F.

unknown to any adversary. According to (F.17), the shares of s are written as

s[1] = s
1− 1
0− 1

1− 3
0− 3

+ y1
1− 0
1− 0

1− 3
1− 3

+ y2
1− 0
3− 0

1− 1
3− 1

= y1

s[2] = s
2− 1
0− 1

2− 3
0− 3

+ y1
2− 0
1− 0

2− 3
1− 3

+ y2
2− 0
3− 0

2− 1
3− 1

=
1
3

s− y1 +
1
3

y2

s[3] = s
3− 1
0− 1

3− 3
0− 3

+ y1
3− 0
1− 0

3− 3
1− 3

+ y2
3− 0
3− 0

3− 1
3− 1

= y2.

(F.18)

Assuming s and yi are independent and Gaussian distributed with mean zero
and variance σ2

s , σ2
Y1

, and σ2
Y2

, respectively, the mutual information yields

I(S, S[1]) = 0

I(S, S[2]) =
1
2

log(1 +
1
9 σ2

S

σ2
Y1

+ 1
9 σ2

Y2

)

I(S, S[3]) = 0.

(F.19)

Thus, (F.19) shows that the information leakage caused by the shares are
independent of the numerical value of p, which is of course important from a
privacy perspective. More precisely, the difference between (F.14) and (F.19),
is that in the former each participant p knows that you gain most information
about the secrets the lower the value of p you have. In the latter, it is unknown
to the participants which shares have zero mutual information and which
does not, and it is different for each secret.

We state the share algorithm of the real number SSS formally in Algo-
rithm F.1 and expand on the privacy analysis of it in section 4.1.

Algorithm F.1: share(s, t,P) = {s[p]}p∈P

Input: s is the secret, t is the threshold and P , with |P| = n is the index
set of the participants.
Output: {s[p]}p∈P is the set of shares of s.

1: Draw distinct {xj}j∈T from P , where T = {1, . . . , t}.
2: yj

iid∼ N (µY, σ2
Y) for j ∈ T, where µY and σ2

Y are chosen privacy parame-
ters.

3: fs(x) = sL0 + ∑j∈T yj
x
xj

Lj(x).

4: {s[p]}p∈P = { fs(p)}p∈P .

Remark, that Algorithm F.1 has two privacy parameters µY and σ2
Y which

can be chosen by the party constructing shares of its secret. The mean value
does not have a significant effect on the privacy and could in principle be
chosen randomly (or as zero as we do throughout the paper). In section 4.1
the impact of σ2

Y becomes clear.

166

4. Proposed Method

The reconstruct algorithm of the proposed real number secret sharing
scheme, is almost identical to the one of Shamir’s scheme (the only difference
is the lacking of modular arithmetic). Since the algorithm consist solely of
Lagrange interpolation, we state it without further introduction.

Algorithm F.2: recon({s[p]}p∈T) = ŝ

Input: {s[p]}p∈T , with |T | > t, is a set of at least t + 1 shares of s.
Output: ŝ, the reconstructed secret.

1: Define {(p, s[p])}p∈T as the set of points to interpolate.
2: fr(x) = ∑p∈T s[p]Lp(x).
3: ŝ = fr(0).

To be clear, our proposed real number secret sharing scheme, consists of
the algorithms share and recon stated in Algorithm F.1 and Algorithm F.2,
respectively. To give intuition about the proposed method, Example F.1 gives
an example of using it.

Example F.1 (Real number secret sharing)
Let s = 5.0 be a secret and P={0.5,0.65,0.8,0.95,1.1,1.25,1.4,1.55,1.7,1.85,2} the index of
the participants. Consider share(s, t,P) in Algorithm F.1 to create shares
of s for n = 11 participants. We perform the following steps with t = 5:

1. {xj}j∈T = {0.5, 0.65, 0.95, 1.4, 2}.

2. {yj}j∈T ={−466.506,393.646,602.653,−457.489,340.160}. See (xj, yj)j∈T in Fig.
F.3a marked with �.

3. Define f (x) = sL0 + ∑j∈T yj
x
xj

Lj(x).

4. Define {s[p]}p∈P = { f (p)}p∈P . See {s[p]}p∈P in Fig. F.3a marked
with .

For comparison, we perform the same steps for t = 10, where (xj, yj)j∈T
are seen in Fig. F.3b marked with � and {s[p]}p∈P are seen in Fig. F.3b
marked with .

We will now show that the scheme satisfies the requirements listed in
section 3. We start by noting that the proof of Lagrange interpolation also
proves the correctness of the scheme. Therefore, we immediately analyse the
privacy of the scheme in the following section.

167

Paper F.

4.1 Privacy Analysis

We start out the analysis by considering one participant p ∈ P , who does not
know s, but learns s[p]. That is, from the view of p, s can be modeled as the
outcome of the random variable S having some distribution. The uncertainty
p has about s can be stated as the differential entropy h(S) of S. Also s[p]
is the outcome of a random variable S[p]. To see the relation between S and
S[p], consider the rewrite of s[p]

s[p] = sL0(p) + ∑
j∈T

yj
p
xj

Lj(p)︸ ︷︷ ︸
b(p)

= sL0(p) + b(p),
(F.20)

To this end, we have that

S[p] = SL0(p) + B(p). (F.21)

We choose to model the Lj values as constants even though it can be argued
that they are indeed random variables because each xk from step 1. of Al-
gorithm F.1 are randomly chosen. However, since t is generally close to n
and P is public, there is not an insignificant probability of guessing the xk
values. Consider for instance P given in Example F.1 and let t = 10. Then
we know that x1 ∈ {0.5, 0.65} because the 9 remaining xk values must also
be distinct elements of P . Consequently, for each xk there are generally only
a few possible values it can take and thus in our analysis we choose to treat
each Lj value as a constant. To this end, B(p) is normally distributed with
mean tµY and variance

σ2
B(p) = σ2

Y ∑
j∈T

(
p
xj

Lj(p)

)2

. (F.22)

Consider now the mutual information I(S; S[p]) between S and S[p];

I(S; S[p]) = h(S[p])− h(S[p]|S)
= h(SL0(p) + B(p))− h(SL0(p) + B(p)|S)
= h(SL0(p) + B(p))− h(B(p)),

(F.23)

where we use that I(X, Y) is symmetric, that L0 is a constant, and that S
and B(p) are independent. Before we proceed, we remark that when fs(x)
given in step 3. of Algorithm F.1, is evaluated in one of the xk values chosen
in step 1., yk is outputted. That is, fs(xk) = yk, see (F.18). Recall that each
yk is Gaussian distributed and since xk ∈ P , we have that exactly t shares
are completely independent of the secret s. Thus, in this best case scenario,
which is true for t shares, I(S; S[p]) = 0 and there is no leak of information.

168

4. Proposed Method

To analyse the information leakage of the remaining n− t shares, we take the
same approach as in [28] and consider again (F.23). As discussed, B(p) are
Gaussian distributed and according to [27, p. 244], the differential entropy of
a Gaussian distributed variable X can be written as

h(X) =
1
2

log2(2πeσ2
X), (F.24)

where e is the Euler number. On the other hand, we do not make an assump-
tion of the distribution of SL0(p) + B(p), since this can vary from application
to application. Instead, we note that a high entropy of SL0(p) + B(p), results
in a higher I(S; S[p]) in equation (F.23). Thus, by using the maximum en-
tropy distribution (which is the Gaussian distribution) as the distribution of
SL0(p) + B(p), we establish an upper bound on the mutual information.

I(S; S[p]) = h(SL0(p) + B(p))− h(B(p))

≤ 1
2

log(2πe(σ2
SL0(p)

+ σ2
B(p)))−

1
2

log(2πeσ2
B(p))

=
1
2

log

(
1 +

σ2
SL0(p)

σ2
B(p)

)
,

(F.25)

where we use that since S and B(p) are independent, the variance of S[p] can
be written as

σ2
S[p] = σ2

SL0(p) + σ2
B(p). (F.26)

In conclusion, choosing for instance σ2
B(p) 100 times larger than the vari-

ance of σ2
SL0(p), the leaked information is at most 0.0072 bits (no matter the

real distribution of SL0(p) + B(p)), which is to be read in the way that on the
average one share of s leaks 0.0072 bits. For comparison, if the secret indeed
is Gaussian distributed with variance 10, the uncertainty about it is 3.7080
bits and after learning s[p], the uncertainty is 3.7008 bits. Hence, each share
s[p] leaks only very little information about s, when choosing the variance σ2

Y
large enough.

To continue this analysis, note that in the problem statement, we require
that a set of at most t shares should reveal very little information about the
secret. Thus, we now address the mutual information between s and a set of
t shares. That is,

I(S; S[1], . . . , S[t]) = h(S[1], . . . , S[t])− h(B(1), . . . , B(t)) (F.27)

Again, we notice that in the best case scenario, the set of t shares is exactly
the set of normally distributed values yj chosen in step 2. of Algorithm F.1,
i.e. {s[p]}p∈T ′ = {yj}j∈T , where T = 1, . . . , t. In this case, all t shares are
independent of the secret s and thus we have no leak of information. This

169

Paper F.

case happens with a high probability if t is close to n. However, due to prop-
erties of the scheme, which we will explore in the following section, t might
be chosen less than b n

2 c. In this case, we may have that none of the t shares
are independent of the secret. This would be the worst case scenario, which
we address now by establishing an upper bound for I(S; S[1], . . . , S[t]) by us-
ing the same trick as previously. Namely, we choose the t-variate Gaussian
distribution for XS = (S[1], . . . , S[t]), which is the maximum entropy distri-
bution. Since the sum of two Gaussian distributions is still Gaussian, we have
that XB = (B(1), . . . , B(t)) also follows a t-variate Gaussian distribution. The
entropy of a N-variate Gaussian distributed variable X is given as [27, p.249]

h(X) =
1
2

log
(
(2πe)N det(CX)

)
, (F.28)

where CX is the covariance matrix for X. This expression can be used directly
in (F.27), yielding

I(S; XS) ≤
1
2

log
(
(2πe)tdet(CXS)

)
− 1

2
log
(
(2πe)t det(CXB)

)
=

1
2

log
(

det(CXS)

det(CXB)

) (F.29)

Using (F.21), we can write the (i, j)’th term of the covariance matrix CXS , as

cXS(i, j) = cov (SL0(i) + B(i); SL0(j) + B(j))
= cov (SL0(i); SL0(j) + B(j)) + cov (B(i); SL0(j) + B(j))
= cov (SL0(i); SL0(j)) + cov (SL0(i); B(j))
+ cov (B(i); SL0(j)) + cov (B(i); B(j))
= cov (SL0(i); SL0(j)) + cov (B(i); B(j)) ,

(F.30)

where we use that SL0(i) and B(i) are independent. Therefore, we have

CXS = CXSL0
+ CXB , (F.31)

where XSL0 = (SL0(1), . . . , SL0(t)).
Thus, analogue to the previous result, the leaked information is controlled

by the relation between the variance of S and the variance of Y. By choosing
σ2

Y large compared to the variance of S, the determinant of CXS will be only
slightly larger than the determinant of CXB and we have that asymptotically,
the leaked information goes to zero bits.

We can therefore make the following proposition, stating that the scheme
fulfills the privacy requirement.

170

4. Proposed Method

Proposition F.1
The real number secret sharing scheme comprised of the algorithms share

and recon stated in Algorithm F.1 and Algorithm F.2, respectively, satisfy
that for any δ > 0 there exists the covariance matrix CXB such that

I(S; {S[p]}p∈T ′) ≤ δ, (F.32)

for a secret s being the outcome a random variable S and shares {s[p]}p∈T ′
being the outcome of the random variables {S[p]}p∈T ′ .

Proof. We use (F.29) and (F.31). For short, we write A = CXSL0
, and B =

CXB . Since A and B are symmetric, in fact positive semi-definite, they can be
simultaneously diagonalizable. We denote the eigenvalues of A by λi

A, and
B by λi

B. Let λA, λB be the maximal eigenvalue of A, B respectively, and λB
be the minimal eigenvalue of B. Specifically,

det(CXS)

det(CXB)
=

∏N
i=1(λ

i
A + λi

B)

∏N
i=1 λi

B
≤ λA + λB

λB
=

λA
λB

+
λB
λB

.

Hence, by rescaling det(CXB) by sufficiently large coefficient, the mutual
information I(S; S(1), . . . , S(t)) can be made arbitrarily small.

In the next section, we will show that the real number secret sharing
scheme also satisfies that final requirement.

4.2 Computations on Shares

In this section, we will define the algorithms add, mult, and inv, which per-
form addition, multiplication and inverse of secrets directly on the shares
and, thus, does not leak any secrets. To improve readability and intuition, we
present the operations using scalars, however the methods are easily extend-
able to matrices as well. To this end, we start by defining what we mean by
shares of a matrix (and equivalent; a vector).

Definition F.2 (Secret shared matrix)
Let A ∈ Rm1×m2 be a matrix and let each entry of A be secret shared using
share. To this end, A[p] denotes the matrix consisting of the p’th share of
each element in A, respectively.

For the rest of this section, assume that s, a ∈ R are secrets and that each
participant p ∈ P holds the shares s[p] and a[p], respectively.

171

Paper F.

Addition

We start out with the simplest operation, which is addition. The output of
the addition algorithm is that each participant p holds a share c[p], where
c = s + a. Note that since each share is a point on a polynomial, it can be
written as

s[p] = s + α1 p + α2 p2 + · · ·+ αt pt, (F.33)

and
a[p] = a + β1 p + β2 p2 + · · ·+ βt pt, (F.34)

where αj, β j ∈ R are coefficients. Adding the above expressions yields

c[p] = s[p] + a[p] = (s + a) + (α1 + β1)p + · · ·+ (αt + βt)pt. (F.35)

Hence, by participant p performing s[p] + a[p], it now holds a share c[p],
where c = s + a. To denote the computation of adding shares we simply
use the ’+’ sign or we write add(s[p], a[p]) = c[p]. Note that subtraction is
performed on the shares equivalently, which we simply denote by ’−’.

Multiplication

Multiplying shares is somewhat more complicated. If we attempted to simply
multiply the polynomials like we added them previously, we would find that
the degree of the resulting polynomial is 2t. In this case we need 2t + 1 shares
to reconstruct the secret. To avoid the growing degree of the polynomial, we
use a well-know trick called Beavers’ trick, [29]. It uses so-called triplets,
{r1[p], r2[p], r1r2[p]}p∈P of shares of (unknown) random numbers r1 and r2,
and their product r1r2. To create the triplets, it is typically required that t <
b n

2 c, however there are ongoing research in efficient methods of generating
Beaver triplets for larger values of t, [30].

We state formally mult in Algorithm F.3.

Algorithm F.3: mult(s[p], a[p]) = sa[p]

Input: {s[p]}p∈P ,{a[p]}p∈P shares of the secrets and
{r1[p], r2[p], r1r2[p]}p∈P shares of the unknown Beavers triplet.
Output: {sa[p]}p∈P , shares of the product of the secrets.

1:

d = recon({s[p]− r1[p]}p∈T) (F.36)

e = recon({a[p]− r2[p]}p∈T), (F.37)

2:

sa[p] = de + dr2[p] + r1[p]e + r1r2[p], (F.38)

172

4. Proposed Method

To see that the multiplication protocol in Algorithm F.3 is correct, perform
the following rewrite

s = d + r1

a = e + r2,
(F.39)

to see that
sa[p] = (d + r1[p])(e + r2[p]). (F.40)

Note that a public constant (like e and d in this case) can be directly multiplied
on the shares by each participant. This can easily be verified by using the
same approach as showing that the add protocol is correct.

We also remark that d = s + r1 and e = a + r2 are revealed in plain text in
Algorithm F.3. Since r1 and r2 are Gaussian distributed, d and e does not leak
more than a share of the secrets. However, we give here the upper bound of
the information leak of knowing both t shares of s and also d.

I(S; {S[p]}p∈T ′ , S + R1)

= h({S[p]}p∈T ′ , S + R1)− h({S[p]}p∈T ′ , S + R1|S)
= h({S[p]}p∈T ′ , S + R1)

− h({SL0(p) + B(p)}p∈T ′ , S + R1|S)
= h({S[p]}p∈T ′ , S + R1)− h({B(p)}p∈T ′ , R1)

(F.41)

To find an upper bound on the information leakage we use the maximal
entropy distribution for the distribution of XSR1 = ({S[p]}p∈T ′ , S + R1). By
design, XBR1 = ({B(p)}p∈P , R1) are distributed according to a multivariate
Gaussian distribution. To this end we have,

I(S; XSR1) ≤
1
2

log

(
(2πe)t

det(CXSR1
)

det(CXBR1
)

)
, (F.42)

where CXSR1
, CXBR1

are the covariance matrices of XSR1 and XBR1 , respec-
tively. As seen, the result in (F.42) is very similar to the one obtained in (F.29).
To demonstrate the (at most) revealed data using mult, Example F.2 demon-
strates the multiplication of two secrets. Note that in section 5 we numerically
estimate the leak of information caused by the multiplication protocol.

Example F.2 (Multiplication of shares)
Let the number of participants n = 7, P = {1, 2, . . . , 7}, and the threshold
t = 3. Consider two secret s1 = 34.5 and s2 = 3.42 and the multiplication
of them performed on their shares. To demonstrate the (small) information
leak caused by mult, Fig. F.4 depicts t = 3 shares of each secret and the
values d and e revealed by the algorithm. As seen, it is very hard to deduce
the true values of the secrets using the revealed information.

173

Paper F.

1 2 3 d e

−1,000

0

1,000
R

s1[p] s2[p] d e

Fig. F.4: Example of the information known about two secrets s1 and s2 after executing the mult

algorithm. In the worst case, the adversary knows t = 3 shares of each of the secrets and the
values d and e revealed by mult. In this example s1 = 34.5 and s2 = 3.42, which is very hard to
deduce from the revealed information.

We use mult(s[p], a[p]) = sa[p]) to denote the computation of multiplying
shares using Beaver’s trick. In continuation, we note that mult can easily
take two matrices as input, for instance A[p] with A ∈ Rm1×m2 and B[p] with
B ∈ Rm2×m3 . In this case the Beavers triplet is also matrices; R1 ∈ Rm1×m2 ,
R2 ∈ Rm2×m3 and R1R2 is the matrix-matrix product. The rest of algorithm
F.3 remains unchanged.

Division

We consider the inversion s−1 and note that one could afterwards use mult

to compute a secret divided by another secret. We propose to compute this
operation efficiently on the shares, by noting that

s−1 =
1
sr

r, (F.43)

where r ∈ R is a random number. To this end, we propose to use a normally
distributed random variable r which is unknown to the participants. This r
can be constructed in the following way; each participant p chooses a Gaus-
sian distributed value rp and distributes the shares rp[j] to participant j ∈ P .
Each participant p then computes its share of r by r[p] = ∑j∈P rj[p].

To calculate (F.43), the participants use recon(mult(s[p], r[p])) = sr to
learn in plain text the product sr. Subsequently, they each compute s−1[p] =
1
sr r[p] to learn individual shares of s−1. To improve readability, we state the
division algorithm in Algorithm F.4.

174

5. Numerical Evaluation

Algorithm F.4: inv(s[p]) = s−1[p]

Input: {s[p]}p∈P shares of the secret and {r[p]}p∈P shares of an unknown
random value r ∈ R.
Output: {s−1[p]}p∈P , shares of the inverse secret.

1: sr = recon(mult(s[p], r[p]).
2: s−1[p] = (sr)−1r[p].

We remark that the plain text sr does reveal some information about s.
However, this information leak can be upper bounded. We here compute the
maximal information leak about s from a set of t shares of s joint with sr.

I(S; {S[p]}p∈T ′ , SR) = h({S[p]}p∈T ′ , SR)− h({S[p]}p∈T ′ , SR|S)
= h({S[p]}p∈T ′ , SR)− h({SL0(p) + B(p)}p∈T ′ , SR|S)
= h({S[p]}p∈T ′ , SR)− h({B(p)}p∈T ′ , R)

(F.44)
No assumptions on the joint distribution of XSR = ({S[p]}p∈P , SR) is made,
thus we make an upper bound for the mutual information by choosing the
maximal entropy distribution. By design, XBR = ({B(p)}p∈P , R) are dis-
tributed according to a multivariate Gaussian distribution. To this end, we
have

I(S; XSR) ≤
1
2

log
(
(2πe)t det(CXSR)

det(CXBR)

)
, (F.45)

which is a very similar to the result obtained in (F.29).
We denote the computation of s−1[p] as inv(s[p]) = s−1[p] and note that

also inv can take a matrix as input. In this case, the random value r is simply
a random matrix of suitable dimension and the rest of the algorithm remains
the same.

5 Numerical Evaluation

In this section, we evaluate the numerical performance of the proposed real
number secret sharing scheme. To this end, we have implemented the scheme
on a laptop PC in the programming language Python that uses the IEEE 754
floating point standard. We start by evaluating the accuracy of the scheme in
terms of the variance of the Gaussian distributed yj values in Algorithm F.1.
The parameters we have chosen are n = 11 participants, t = 5, and the secrets
s1 = 5.5 and s2 = 34.7. We simulate both recon (Algorithm F.2), add, mult
(Algorithm F.3), and inv (Algorithm F.4), where we start by generating shares
of the secrets using Algorithm F.1. Afterwards, we either directly reconstruct
the secret using recon in Algorithm F.2 or use respectively, add, mult, or div

175

Paper F.

100 200 300 400 500 600 700 800 900

10−10

10−9

10−8

10−7

10−6

10−5

σ2
Y

R
SE

recon add mult inv

Fig. F.5: Accuracy of the algorithms recon, add, mult, and inv in terms of the variance of the
Gaussian distributed yj values in share (Algorithm F.1). The loss of accuracy is due to numerical
errors.

on the shares before reconstruction. To evaluate the accuracy, we use the root
square error (RSE) between the expected result v and the reconstructed result
v̂, which is defined as

RSE =
√
(v− v̂)2.

Fig. F.5 depicts the RSE between v and v̂ as a function of σ2
Y, for all four

algorithms. As seen, as σ2
Y is increased, the accuracy slowly decreases. This

is purely due to numerical errors, because as the yj values in Algorithm F.1
increases, the shares grow exponentially large and consequently loose preci-
sion due to the floating point representation. The reason why inv achieves
such high precision, is because the outputted shares are relatively small due
to the reciprocal operation of the algorithm.

Finally, we numerically evaluate the privacy properties of the scheme.
That is, we estimate the privacy loss of the secret from one share, from
t shares and from performing multiplication. In particular, we estimate
I(S; S[1]) in (F.25), I(S; S[1], . . . , S[t]) in (F.27) , and I(S; S[1], . . . , S[t], S + R1)
in (F.41), based on simulated data. These estimations are a product of statis-
tical analysis, thus we generate a large sample size of each relevant variable
for each estimation. We simulate in each case the secret S ∼ N (0, 1) and the
remaining variables are computed based on the secret. Fig. F.6 depicts all

176

6. Application to Kalman filtering

100 200 300 400 500 600 700 800 900

10−5

10−4

10−3

10−2

10−1

σ2
Y

M
I

[b
it

s]

I(S; S[1])
I(S; S[1], . . . , S[t])

I(S; S[1], . . . , S[t], S + R1)

Fig. F.6: Mutual information (MI) between a standard normal distributed secret, S and, respec-
tively, one share of S, t shares of S, and t shares of S joint with S + R1 for a normal distributed
variable R1 (see Algorithm F.3).

three estimations and as expected, one share of the secret leaks very little in-
formation while t shares clearly has a greater leak. As seen, these numerical
results validate the theoretical results.

6 Application to Kalman filtering

To demonstrate our proposed privacy preserving computation framework,
we use the Kalman filter [31] to estimate x̂k of (C.1) when given only real
number secret shared versions of the observations in (F.2). The Kalman filter
consists of the following 5 equations, where P is the covariance matrix of the
estimate, K is the Kalman gain and Q and R are covariance matrices of the
process and measurement noise respectively,

x̃k = Ax̂k−1 + Buk

P̃k = APk−1 A> + Qk

Kk = P̃k H>(HkP̃k H> + Rk)
−1

x̂k = x̃k + Kk(zk − Hx̃k)

Pk = P̃k − Kk HkP̃k.

(F.46)

We consider the following scenario. Assume that n none-colluding enti-
ties are used as computing units, hereafter referred to as computing parties.
That is, the computing parties perform all computations given only shares of

177

Paper F.

the data. Each time the computing parties receive shares of a new measure-
ment, they compute a new update of the state estimate. We do not specify
who delivers these measurements, but it could likely be from a collection
of nodes or from a set of other participants. The computing parties are not
allowed to learn any clear text data and they only output shares (which can
afterwards be reconstruct to the clear text output).

In Algorithm F.5, we state a privacy preserving Kalman filter based on the
proposed real number secret sharing scheme, from the view of computing
party p ∈ P .

Algorithm F.5: privKalman()

Input: uk[p] for all k, are shares of the observations, P0 and K0 can be
initialized as identity matrices.
Output: x̂k[p]; the estimate of the k’th state of the system.

1: for all k do
2: x̃k[p] = mult(A[p], x̂k−1[p]) + mult(B[p], uk[p])
3: V k[p] = mult(Pk−1[p], A>[p])
4: P̃k[p] = mult(A[p], V k[p]) + Qk[p]
5: Sk[p] = mult(H[p], mult(P̃k[p], H>[p])) + Rk[p]
6: Kk[p] = mult(mult(P̃k[p], H>[p]), inv(Sk[p]))
7: yk[p] = zk[p]− mult(Hk[p], x̃k[p])
8: x̂k[p] = x̃k[p] + mult(Kk[p], yk[p])
9: Pk[p] = P̃k[p]− mult(Kk[p], mult(Hk[p], P̃k[p]))

10: end for

Remark that Algorithm F.5 does not reveal the result or any intermediate
results.

6.1 Simulation

We have simulated Algorithm F.5 and compared its estimation performance
to the algorithm in (F.46) which does not provide any privacy. Thus, we want
to evaluate the sacrifice in output utility when using the privacy preserving
algorithm. We thus simulate both algorithms solving the same problem and
compare the results. We conduct the simulation on a laptop PC based on a
Python implementation of the algorithms. We use n = 3 computing parties
and t = 1. For the sharing algorithm we use mean value zero and variance
1000 for the Gaussian distributed shares.

We use the RSE between the result from Algorithm F.5, x̂(priv)
k , and (F.46),

x̂k, which at time k is defined as

RSEk =

√
(x̂(priv)

k − x̂k)2, for k = 1, 2,

178

7. Conclusion

0 5 10 15 20 25 30 35 40 45

0.5

1

1.5

·10−3

k

R
SE

Fig. F.7: RSE between simulated result from Algorithm F.5 and (F.46).

In Fig. F.7 it is seen that the difference in result from the privacy pre-
serving solution and the non-private solution lies around the third decimal.
In comparison, the difference for the solution in [12] lies before the decimal
point.

Regarding the complexities, as seen, Algorithm F.5 uses 12 multiplications
and one inversion, which amounts to 27 interactive operations, independent
of the dimension of the matrices. [12] does not provide the complexity for
their solution, thus, we provide here an underestimation of the number of
interactive operations which lies around 10M + l + 1, where M is the dimen-
sion of the matrix R in (F.46) and l is the number of bits used to represent the
numbers (which in the simulations by [12] is at least 24 bits).

7 Conclusion

The paper presents a real number secret sharing scheme that bypasses the re-
quirements on integer shares and modular arithmetic which is used in state-
of-the-art secure multiparty computation schemes. That the scheme does not
use modular arithmetic, makes it very useful for computations directly on
shares including division. The trade-off is that the proposed scheme is not
perfectly secure, however, we show that the information leak can be upper
bounded and demonstrate with examples how small the leak is. We see the
proposed scheme with its high level accuracy and privacy properties and its
low communication complexity as offering a relevant trade-off between be-
tween privacy of the distributed computations and practicality of the scheme.
Numerical evaluations of the proposed scheme as well as simulations of the
scheme to perform Kalman filtering with privacy preservation verify the the-
oretic results.

179

References

Acknowledgement

This work was supported by SECURE research project at Aalborg University.

References

[1] F. Farokhi, I. Shames, and N. Batterham, “Secure and private control using semi-
homomorphic encryption,” Control Engineering Practice, vol. 67, pp. pp. 13 – 20,
2017.

[2] Q. Li, I. Cascudo, and M. G. Christensen, “Privacy-preserving distributed av-
erage consensus based on additive secret sharing,” in 2019 27th European Signal
Processing Conference (EUSIPCO), 2019, pp. 1–5.

[3] K. Tjell and R. Wisniewski, “Private aggregation with application to distributed
optimization,” IEEE Control Systems Letters, vol. 5, pp. pp. 1591–1596, 2021.

[4] Y. Lu and M. Zhu, “Privacy preserving distributed optimization using homo-
morphic encryption,” Automatica, vol. 96, pp. pp. 314 – 325, 2018.

[5] Q. Li and M. G. Christensen, “A privacy-preserving asynchronous averaging al-
gorithm based on shamir’s secret sharing,” in 2019 27th European Signal Processing
Conference (EUSIPCO), 2019, pp. 1–5.

[6] K. Tjell and R. Wisniewski, “Privacy preservation in distributed optimization via
dual decomposition and admm,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), 2019, pp. 7203–7208.

[7] R. Cramer, I. B. Damgaard, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing, 1st ed. Cambridge University Press, 2015.

[8] J. Lint and T. Djukic, Applications of Kalman Filtering in Traffic Management and
Control, 10 2012, pp. 59–91.

[9] K. Gordon, “The multi-state kalman filter in medical monitoring,” Computer
Methods and Programs in Biomedicine, vol. 23, no. 2, pp. pp. 147–154, 1986.

[10] M. Nasseri, A. Moeini, and M. Tabesh, “Forecasting monthly urban water de-
mand using extended kalman filter and genetic programming,” Expert Syst.
Appl., vol. 38, no. 6, p. pp. 7387–7395, Jun. 2011.

[11] Y. Song, C. X. Wang, and W. P. Tay, “Privacy-aware kalman filtering,” in 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 4434–4438.

[12] F. J. Gonzalez-Serrano, A. Amor-Martın, and J. Casamayon-Anton, “State estima-
tion using an extended kalman filter with privacy-protected observed inputs,”
in 2014 IEEE International Workshop on Information Forensics and Security (WIFS),
2014, pp. 54–59.

180

References

[13] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on
Automatic Control, vol. 59, no. 2, pp. pp. 341–354, 2014.

[14] K. Tjell, I. Cascudo, and R. Wisniewski, “Privacy preserving recursive least
squares solutions,” in 2019 18th European Control Conference (ECC), 2019, pp.
3490–3495.

[15] M. Schulze Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo, “Towards
encrypted mpc for linear constrained systems,” IEEE Control Systems Letters,
vol. 2, no. 2, pp. pp. 195–200, 2018.

[16] Q. Li, I. Cascudo, and M. Christensen, “Privacy-preserving distributed average
consensus based on additive secret sharing,” in EUSIPCO 2019 - 27th European
Signal Processing Conference, ser. Proceedings of the European Signal Processing
Conference. IEEE Signal Processing Society, Sep. 2019.

[17] O. Catrina and A. Saxena, “Secure computation with fixed-point numbers,” in Fi-
nancial Cryptography and Data Security, R. Sion, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 35–50.

[18] O. Catrina and S. de Hoogh, “Secure multiparty linear programming using fixed-
point arithmetic,” in Computer Security – ESORICS 2010, D. Gritzalis, B. Preneel,
and M. Theoharidou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 134–150.

[19] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steel, “Secure computation on floating
point numbers,” in In NDSS, 2013.

[20] V. Dimitrov, L. Kerik, T. Krips, J. Randmets, and J. Willemson, “Alternative im-
plementations of secure real numbers,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 553–564.

[21] L. Bai and Y. Lan, “A homomorphic arithmetic scheme on real number with fixed
precision,” AIP Conference Proceedings, vol. 1839, no. 1, 2017.

[22] K. Gai, M. Qiu, Y. Li, and X. Liu, “Advanced fully homomorphic encryption
scheme over real numbers,” in 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud), 2017, pp. 64–69.

[23] J. Basilakis and B. Javadi, “Efficient parallel binary operations on homomor-
phic encrypted real numbers,” IEEE Transactions on Emerging Topics in Computing,
vol. 9, no. 1, pp. pp. 507–519, 2021.

[24] A. Dibert and L. Csirmaz, “Infinite secret sharing – examples,” Journal of Mathe-
matical Cryptology, vol. 8, no. 2, pp. pp. 141 – 168, 2014.

[25] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p. pp. 612–613,
Nov. 1979.

181

References

[26] J. Justesen and T. Hoholdt, A Course in Error-Correcting Codes (EMS Textbooks in
Mathematics). European Mathematical Society, 2004.

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. USA: Wiley-
Interscience, 1991.

[28] Q. Li, R. Heusdens, and M. G. Christensen, “Privacy-preserving distributed op-
timization via subspace perturbation: A general framework,” IEEE Transactions
on Signal Processing, vol. 68, p. pp. 5983–5996, 2020.

[29] D. Beaver, “Efficient multiparty protocols using circuit randomization,” vol. 576,
08 1991, pp. 420–432.

[30] A. Ben-Efraim, M. Nielsen, and E. Omri, “Turbospeedz: Double your online
spdz! improving spdz using function dependent preprocessing,” in Applied Cryp-
tography and Network Security, R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and
M. Yung, Eds. Cham: Springer International Publishing, 2019, pp. 530–549.

[31] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”
Journal of Basic Engineering, vol. 82, no. 1, pp. pp. 35–45, 03 1960.

182

K
atr

in
e tjell

Pr
iva

c
y in

 O
Ptim

izatiO
n

 a
lg

O
r

ith
m

s b
a

sed
 O

n
 sec

u
r

e m
u

ltiPa
r

ty c
O

m
Pu

tatiO
n

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-984-4

	Omslag_KT.pdf
	PHD_KT_TRYK.pdf
	Kolofon_KT.pdf
	KatrineTjellPhDThesisA.pdf
	Front page
	Abstract
	Resumé
	Contents
	Preface
	I Summary
	Introduction
	Secure Summation in Graphs
	Secure Optimization Algorithms
	Real Number Secret Sharing
	Conclusion and Outlook
	References

	II Papers
	A Privacy Preserving Distributed Summation in a Connected Graph
	B Private Aggregation with Application to Distributed Optimization
	C Privacy Preserving Recursive Least Squares Solutions
	D Privacy Preservation in Distributed Optimization via Dual Decomposition and ADMM
	E Secure learning-based MPC via garbled circuit
	F Privacy in Distributed Computations based on Real Number Secret Sharing

	Omslag_KT
	Blank Page
	Blank Page
	Blank Page

