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Abstract

Waves occur in many real world phenomena and much of the scientific lit-
erature concerns the study of waves. Different types of waves are described
by different wave equations, for example Schrödinger’s equation describing
the time evolution of the wave function in a quantum mechanical system,
or the Euler-Bernoulli equation describing bending waves in beams. This
dissertation mainly considers these two types of waves and related topics.
However, the dissertation also has a secondary focus unrelated to the topic
of wave equations, which is the study of random variables with stationary
digits. The dissertation consists of two parts. The first gives an introduction
to the subjects listed above and an overview of the papers included in the
second part. The second part consists of 6 papers, labeled A–F, concerning
the aforementioned subjects.

Paper A and B deal with topics related Schrödinger’s equation. Specifi-
cally, in Paper A spectral results for the magnetic Weyl quantization of S0

0,0
symbols are obtained. A decomposition for the magnetic Weyl quantiza-
tion is established, and from this the 1

2 -Hölder continuity of the spectrum
with respect to the magnetic field strength is shown, when the operator is
self-adjoint. If additionally the magnetic field is constant, then spectral gaps
are shown to be Lipschitz continuous in the magnetic field strength. Paper
B presents results on the regularity of powers of the resolvent of magnetic
Schrödinger operators in the half plane. In particular, it is shown that the reg-
ularity of the range of powers of the resolvent increases with the exponent.
These results are obtained using ideas from the magnetic perturbation the-
ory. Using the regularity results for the resolvent, it is shown that Schwartz
functions of the magnetic Schrödinger operator have smooth integral kernels.
Furthermore, the asymptotic behavior of the particle current density corre-
sponding to the magnetic Schrödinger operator is analyzed using geometric
perturbation theory.

Paper C and D concern the acoustic black hole effect related to bending
waves. Both papers concern the same results, as Paper D is a conference pa-
per, which was extended to the journal paper, Paper C. In these papers, an
optimal height profile h for the edge of a plate is sought in order to mini-
mize the reflection of bending waves from the edge. This is done using the
usual first order WKB approximation to Euler-Bernoulli’s equation. Explicit
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optimal solutions are found using methods from variational calculus. These
solutions generalize the commonly considered profile h(x) = εx2.

Paper E and F concern the topic of random variables X ∈ [0, 1] with sta-
tionary digits {Xn}n≥1. Note that this topic is not related to the overarching
theme of wave equations in the papers A–D. In Paper E a functional equation
is established for the cumulative distribution function F of X. From this func-
tional equation further characterizations of stationarity of the digits {Xn}n≥1
are given in terms of the CDF F. In Paper F specific models for stationary
digits are considered, specifically stationary Markov chains and stationary
renewal processes. A law of pure type is established for F in these cases;
either F(x) = x for x ∈ [0, 1] or F is singular, i.e. F′(x) = 0 for almost all
x ∈ [0, 1]. Mixtures of stationary Markov chains, or stationary renewal pro-
cesses are also treated in Paper F, where the normal number theorem plays a
crucial role in the analysis.



Resumé

Bølgefænomener fremkommer inden for mange grene af videnskaben, og en
stor del af den videnskabelige litteratur omhandler netop bølgefænomener.
Forskellige typer af bølger bliver beskrevet af forskellige bølgeligninger, for
eksempel Schrödingers ligning, der beskriver tidsudviklingen af bølgefunk-
tionen for et kvantemekanisk system, eller Euler-Bernoullis ligning der be-
skriver bøjningsbølger i bjælker. Denne afhandling beskæftiger sig hoved-
sageligt med emner relateret til disse to bølgeligninger. Dog har afhandlin-
gen også et sekundært fokus på stokastiske variable, hvis cifre er givet ved
en stationær stokastisk proces. Afhandlingen består af to dele. Første del
består af en introduktion til de ovenstående emner og en sammenfatning af
indholdet af de artikler, som er inkluderet i afhandlingens anden del. I an-
den del af denne afhandling findes seks artikler nummereret A til F, som
omhandler ovenstående emner.

Artikel A og B vedrører begge emner relateret til Schrödingers ligning.
Artikel A omhandler spektralanalyse af den magnetiske Weyl-kvantisering
af symboler af klassen S0

0,0. Et dekompositionsresultat bevises for den mag-
netiske Weyl-kvantisering og dette resultat bruges efterfølgende til at vise
1
2 -Hölder-kontinuitet af spektret med hensyn til styrken af det magnetiske
felt, når operatoren er selvadjungeret. Når det yderligere antages at det mag-
netiske felt er konstant, så er huller i spektret Lipschitz-kontinuerte med hen-
syn til styrken af det magnetiske felt. I Artikel B vises resultater angående
regularitet af resolventen for magnetiske Schrödinger-operatorer i halvpla-
nen. Et vigtigt værktøj for at opnå disse resultater er den magnetiske pertur-
bationsteori. Ved at anvende de førnævnte regularitetsresultater vises det
også, at Schwartz-funktioner af den magnetiske Schrödinger-operator har
glatte integralkerner. Ved anvendelse af geometrisk perturbationsteori vises
endvidere asymptotiske resultater for strømtætheden defineret ud fra den
magnetiske Schrödinger-operator.

Artikel C og D vedrører den akustiske sorthuls-effekt i relation til bøj-
ningsbølger. Begge artikler omhandler samme resultater, da Artikel D er
en konferenceartikel, der er blevet videreudviklet til tidsskriftsartiklen Ar-
tikel C. I disse artikler bestemmes en optimal højdeprofil h nær kanten af
en plade, således at reflektion af bøjningsbølger minimeres. Dette gøres for
førsteordens WKB approksimationen til Euler-Bernoullis ligning. Den opti-
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male profil h bestemmes ved at anvende metoder fra variationsregningen, og
det vises, at det optimale højdeprofil h er en generalisering af højdeprofilen
h(x) = εx2, der har fået meget opmærksomhed i litteraturen.

Artikel E og F omhandler emner relateret til stokastiske variabler X ∈
[0, 1], hvis cifre {Xn}n≥1 udgør en stationær stokastisk proces. Bemærk at
dette emne ikke har nogen direkte sammenhæng med de foregående emner
relateret til bølgefænomener. I Artikel E bevises en funktionalligning for
den kumulative fordelingsfunktion F tilhørende X. Fra funktionalligningen
bevises yderligere karakteriseringer af stationaritet af cifrene {Xn}n≥1 ud fra
egenskaberne ved funktionen F. I Artikel F betragtes bestemte stationære
stokastiske modeller for cifrene. Konkret betragtes stationære Markovkæder
og stationære fornyelsesprocesser. Det vises, at for sådanne processer vil
F enten være givet ved F(x) = x for x ∈ [0, 1], eller være singulær, dvs.
F′(x) = 0 for næsten alle x ∈ [0, 1]. Miksturer af stationære Markovkæder
eller stationære fornyelsesprocesser behandles ligeledes i Artikel F, og helt
fundamentalt for denne analyse er egenskaberne ved normale tal.
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Preface

This dissertation is the final product of my studies as a PhD student at Aal-
borg University. My time as a PhD student has been shared between the
Department of Mathematical Sciences and the Department of Materials and
Production both at Aalborg University.

The initial objective of this dissertation was to study various aspects of
certain wave equations from both a theoretical and an applied perspective.
From a mathematical point of view, the aim was to study properties of mag-
netic Schrödinger operators. From an engineering point of view, the focus
was on dampening of bending waves through the so-called “acoustic black
hole effect”.

Furthermore, during my time as a PhD student I got involved in a col-
laboration with Professor Jesper Møller, who was supported by the “Centre
for Stochastic Geometry and Advanced Bioimaging”. This collaboration con-
cerns characterization of random variables with digits given by stationary
stochastic processes. This work, although unrelated to aforementioned top-
ics, is interesting in its own right and of an extent which calls for inclusion in
this dissertation.

This dissertation is a collection of papers and is comprised of two parts.
Part II contains the scientific papers produced by me and my co-authors
during my time as a PhD student, whereas Part I presents the necessary
background for the papers in Part II and briefly discusses the main result of
these papers. The papers included in Part II are:

Paper A : H. D. Cornean, H. Garde, B. B. Støttrup, and K. S. Sørensen, “Mag-
netic pseudodifferential operators represented as generalized Hofstadt-
er-like matrices,” J. Pseudodiffer. Oper. Appl., vol. 10, pp. 307–336, 2019.

Paper B : M. Moscolari and B. B. Støttrup, “Regularity properties of bulk and
edge current densities at positive temperature,” 2022, [arXiv preprint
arXiv:2201.08803]

Paper C : B. B. Støttrup, S. Sorokin, and H. D. Cornean, “A rigorous ap-
proach to optimal profile design for acoustic black holes,” J. Acoust.
Soc. Am., vol. 149, no. 1, pp. 447–456, 2021.
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Paper D : H. D. Cornean, S. Sorokin, and B. B. Støttrup, “Acoustic black hole
profile optimization,” in EURODYN 2020 - 11th International Confer-
ence on Structural Dynamics, Proceedings, M. Papadrakakis, M. Fra-
giadakis, and C. Papadimitriou, Eds., vol. 2. European Association for
Structural Dynamics (EASD), 2020, pp. 2482–2488.

Paper E : H. D. Cornean, I. W. Herbst, J. Møller, B. B. Støttrup, and K. S.
Sørensen, “Characterization of random variables with stationary dig-
its,” 2021, [arXiv preprint arXiv:2001.08492], Accepted for publication in J.
Appl. Probab.

Paper F : H. D. Cornean, I. W. Herbst, J. Møller, B. B. Støttrup, and K. S.
Sørensen, “Singular distribution functions for random variables with
stationary digits,” 2022, [arXiv preprint arXiv:2201.01521].

In order to adhere to copyright law and avoid cross-publication of submitted
but not yet published results, the above papers are not available in full text in
this dissertation. In Part II a title page is presented for each paper with links
to either a preprint or full paper.
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Background

1 Introduction

The papers included in this dissertation can be divided into two groups. The
papers A–D deal with topics related to wave propagation in various ways
which will be clarified in Sections 2–4 below. Paper E and F concern char-
acterizations of random variables with digits given by stationary stochastic
processes. This topic is “orthogonal” to those treated in papers A–D, but still
interesting in its own right. A brief introduction to this subject is given in
Section 5. Lastly, in Section 6 the main results of each paper in Part II will be
briefly discussed.

2 Some wave equations

Waves occur in many different areas within science, engineering, and mathe-
matics. For example, in quantum mechanics the state of a quantum system is
represented by a unit vector ψ in some Hilbert space and the time-evolution
of the system is governed by the Schrödinger equation given (in appropriate
units) by

i
∂

∂t
ψ = Hψ, (2.1)

where H is the Hamiltonian of the system. Another example, which is rel-
evant for this dissertation, comes from the theory of thin plates. Bending
waves (often also referred to as flexural waves) in a thin plate of variable
height h extending infinitely in both the y direction and the positive x direc-
tion are described by the differential equation

∂2

∂x2

(
ρc2h3(x)

12
∂2

∂x2 w(x, ω)

)
−ω2ρh(x)w(x, ω) = 0, (2.2)

where w denotes the displacement of the midsurface, ω denotes the angular
frequency, ρ denotes the density of the material, and c is the speed of quasi-
longitudinal waves in thin plates.
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Although these two equations look different, their solutions exhibit wave-
like behavior and can, in some sense, be treated with similar methods. In
this dissertation various aspects relating to these two of wave equations are
considered.

3 Quantum mechanics

The following section presents a brief introduction to the theory of quan-
tum mechanics necessary to motivate and understand the content of Paper A
and B in Part II. It is assumed that the reader is somewhat familiar with the
subjects covered, and therefore many arguments are done formally to not ob-
fuscate the exposition. The unfamiliar reader is urged to consult [37] or [76]
for a more detailed introduction, suitable for mathematicians with minimal
physics background. In general, units will be chosen in a way which simpli-
fies expressions as much as possible.

In quantum mechanics, the state of a particle moving in Rn can be de-
scribed by unit vectors in the Hilbert space L2(Rn). As briefly mentioned
in Section 2, the time-evolution of the system is governed by Schrödinger’s
equation (2.1), and the Hamiltonian H (often called a Schrödinger operator) is
given by

H = −∆ + V

where ∆ = ∑n
j=1 ∂2

j is the Laplace operator (which is essentially self-adjoint on
C∞

c (Rn)) and V is called a potential. As described in Subsection 3.1 below, H is
a quantum observable which corresponds to the energy function of a classical
particle and therefore should be self-adjoint. Then, by the functional calculus
for self-adjoint operators, the Schrödinger equation (2.1) is solved by setting
ψ(t) = e−itHψ. Thus it is of interest to know for which potentials V the
operator H is self-adjoint. The key condition is that V should be symmetric
and relatively bounded with respect to ∆ with bound strictly less than 1, as
established by the well-known Kato-Rellich theorem [50, 74]. However, in the
following sections we are interested in particles moving in magnetic fields.
Then question of self-adjointness becomes more intricate, cf. Subsection 3.2.

A general question concerning Schrödinger operators is how the spec-
trum of the operator −∆ is affected when it is perturbed by a potential V.
More precisely, how does the spectrum of −∆ + λV vary with λ ∈ R? For
the aforementioned relatively bounded potential, analytic perturbation the-
ory applies [50, 75]. For example it is not hard to establish that the Hausdorff
distance between σ(−∆) and σ(−∆ + λV) goes like |λ|. In Paper A simi-
lar results are addressed, but in the more advanced context of the magnetic
Weyl quantization cf. Subsection 3.4. Perturbation theoretical results are also
obtained in Paper B for magnetic Schrödinger operators, cf. Subsection 3.3.
Therefore, this dissertation does not go further into the analytic perturba-
tion theory as it will mostly concern what happens when a magnetic field is
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3. Quantum mechanics

turned on, cf. Subsection 3.2.

3.1 Weyl Quantization

The correspondence principle of quantum mechanics states that a classical
observable a (i.e. a function a(x, ξ) defined on the phase space R2n with
x ∈ Rn being the position of the particle and ξ ∈ Rn being the momen-
tum) should correspond to a self-adjoint operator Op(a) on L2(Rn) [37, 76].
The map a 7→ Op(a) is often called the quantization of a. This correspondence
should satisfy that the classical observables for position, i.e. a(x, ξ) = xj,
correspond to the position operator Xj (i.e. multiplication by xj on L2(Rn)).
Likewise, the classical observable for momentum, i.e. a(x, ξ) = ξ j, should
correspond to the momentum operator Pj = −i∂j. The classical Hamiltonian
(energy function) is given by the function h(x, ξ) = |ξ|2 + V(x) with V be-
ing the potential energy of the particle. The obvious quantization of h is to
replace xj with Xj and ξ j with Pj leading to the (quantum) Hamiltonian (cf.
(2.1))

H = Op(h) = −∆ + V,

where V is the operator defined by multiplication by V(x) (defined on a suit-
able dense subset of L2(Rn)). For more complicated observables the choice
of quantization is not obvious due to the canonical commutator relations

[Xj, Pk] = −iδjk,

where δjk = 0 for j 6= k and δjk = I for j = k. This suggests that the straight-
forward strategy of replacing xj with Xj and ξ j with Pj might not be the
“best” choice of quantization in general. For this reason, finding a reasonable
map Op which quantizes classical observables is often also referred to as the
quantization problem [31].

Although there exist a number of different quantization schemes, the most
commonly used is known as the Weyl quantization (often also referred to as
the Weyl correspondence or Weyl calculus) [31, 37]. The Weyl quantization
is established by defining the quantization of a(x, ξ) = ei(px+qξ) as Op(a) =
ei(pX+qP), for any p, q ∈ Rn. Note that we here write the dot product of
x, y ∈ Rn simply as xy. Other “functions” a(x, ξ) are quantized through the
Fourier transform by making suitable sense of the expression

Op(a) =
1

(2π)2n

∫
R2n

â(p, q)ei(pX+qP) dp dq. (3.1)

Often the notation a(X, P) is used for Op(a). This can be done in general for
temperate distributions a ∈ S ′(R2n) [31] by constructing an explicit integral
kernel for sufficiently nice a and then extending to a Schwartz kernel in the
general case. Let us formally manipulate (3.1) to obtain a formula for this
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integral kernel. By the functional calculus for self-adjoint operators

[ei(pX+qP)ψ](x) = eipq/2eipxψ(x + q), (3.2)

and since (at least formally)

1
(2π)n

∫
Rn

eip(x−w+
q
2 ) dp = [F−1(1)]

(
x− w +

q
2

)
= δ

(
x− w +

q
2

)
,

where F denotes the Fourier transform and x, w, p, q ∈ Rn, it follows that

[Op(a) f ](x) =
1

(2π)2n

∫
R4n

a(w, ξ)e−i(pw+qξ)eipq/2eipx f (x + q)dw dξ dp dq

=
1

(2π)n

∫
R2n

a
(

x +
q
2

, ξ
)

e−iqξ f (x + q)dξ dq

=
1

(2π)n

∫
R2n

a
( x + y

2
, ξ
)

eiξ(x−y) f (y)dξ dy.

The integral kernel above extends to all temperate distributions a ∈ S ′(R2n)
[31]. However, when a particle is moving in Rn with a magnetic field turned
on, then the above quantization is no longer the right choice. We consider the
quantization problem in the presence of magnetic fields in Subsection 3.4.

3.2 Magnetic fields

In this subsection, we will consider a magnetic field in Rn described by
a closed 2-form B(x) = ∑n

i,j=1 Bij(x)dxi ∧ dxj with Bij = −Bji and Bij ∈
BC∞(Rn). Then, B = dA for some 1-form A, called a magnetic potential or
gauge. A particular choice of A is the transverse gauge, defined for any x′ ∈ Rn

as (cf. Paper A)

Aj(x, x′) := −
n

∑
k=1

∫ 1

0
s(xk − x′k)Bjk(x′ + s(x− x′)) ds. (3.3)

For any x′ ∈ Rn, explicit calculations show that B = dA(·, x′) and that
Aj ∈ C∞(Rn ×Rn) with all derivatives bounded linearly in 〈x − x′〉. Here
〈x〉 := (1 + |x|2)1/2. Note that even a constant magnetic field has a magnetic
potential which grows towards infinity.

To describe observables of a quantum system in the presence of a mag-
netic field, the momentum operators Pj are replaced by the magnetic momen-
tum operators ΠAj = Pj −Aj [64]. Here Aj is the operator in L2(Rn) given by
multiplication with the j’th component of the magnetic potential A. Hence,
quantizing the Hamiltonian of the system using the same principles as in
Subsection 3.1 gives

H = (−i∇−A)2 + V. (3.4)

6



3. Quantum mechanics

Operators of the form in (3.4) are often referred to as magnetic Schrödinger
operators and have been the focus of much study in the literature (see e.g. the
general references [2, 20, 32] and references therein).

Two immediate issues should be addressed. The first issue is that the
choice of magnetic potential is not unique. Specifically, d(dϕ) = 0 for any
smooth function ϕ, and thus B = d(A + dϕ). However, from a physical
standpoint, choosing another magnetic potential A satisfying B = dA should
not change the quantum system, as B is unchanged. In particular, we should
choose a quantization scheme OpA, depending on A, that is gauge covariant,
i.e. if A satisfies dA = dA then OpA(a) and OpA(a) are unitarily equivalent.
For certain operators such as ΠA (and hence also H) this is indeed the case.
For example, if dϕ = A −A, then a simple (formal) calculation shows ΠAj
and ΠA

j are unitary equivalent, specifically

eiϕΠAj e−iϕ = ΠA
j .

In the presence of a magnetic field the quantization problem becomes more
complicated as the quantization should be gauge covariant. As for the usual
Weyl quantization in Subsection 3.1, simply replacing the classical position xj

and momentum ξ j with their (magnetic) quantum counterparts Xj and ΠAj is
not the “right” approach. The quantization problem when a magnetic field is
present will be considered in Subsection 3.4 and is of central interest in Paper
A.

The second issue is that, A can grow towards infinity. Thus, H is not
necessarily a relatively bounded perturbation of −∆. However, there exist
general conditions on V which ensure essentially self-adjointness of H [43,
74], but one can no longer apply the analytic perturbation theory to analyze
“magnetic perturbations” of the form

Hb = (−i∇− bA−A)2 + V, (3.5)

where b ∈ R and A is some magnetic potential.

3.3 Magnetic Perturbation Theory

The following section presents various results related to the magnetic per-
turbation theory, i.e. the study of how the spectrum of Hb in (3.5) depends
on b. For convenience, assume that A and A are smooth and polynomially
bounded. The papers A and B in Part II both concern topics related to mag-
netic perturbation theory. In addition to the continuous models considered
in both Paper A and B, it is also relevant to look at some related discrete
models. Note that some of the results described below hold for more general
magnetic fields than considered in this dissertation. However, to be consis-
tent with Paper A and B, we stick to the assumptions on A and A above.
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Define the function
ϕ(x, x′) =

∫
[x′ ,x]

A,

where [x′, x] is the oriented line segment from x′ to x. It is not hard to see
that ϕ is anti-symmetric and that for all α, β ∈Nn

0

|∂α
x∂
′β
x ϕ(x, x′)| ≤ Cαβ|x||x′|. (3.6)

Next we consider discrete models. The generalized Harper operators (see
[67]) are bounded operators hb on `2(Z2) defined by

[hbψ](γ) = ∑
γ′∈Z

eibϕ(γ,γ′)h(γ, γ′)ψ(γ′), γ ∈ Z (3.7)

where the infinite matrix h decays sufficiently fast in 〈γ − γ′〉 and is Her-
mitian, i.e. h(γ, γ′) = h(γ′, γ). Such operators have been treated numerous
times in the literature, see e.g. [11, 67] and references therein. For instance
when h(γ, γ′) depends only on γ− γ′ and the magnetic field is constant, Bel-
lissard [5] proved Lipschitz continuity of spectral gap edges. For a general
hb in (3.7) and a smooth and bounded magnetic field it has been shown that
the gap edges goes like |b− b0| |ln(|b− b0|)| [67]. Furthermore, in [67] it also
established that σ(hb) is 1

2 -Hölder continuous in the Hausdorff distance with
respect to b. Later regularity of spectral gap edges was show to be Lipschitz,
but only for constant magnetic fields [11]. It should be noted that various au-
thors have gradually pushed the Hölder exponent up to 1

2 (see the discussion
in [11]).

A reason to consider the discrete case is that the spectral regularity of the
magnetic Schrödinger operator Hb can be reduced to “continuous general-
ized Harper operators” (i.e. where the sum is replaced with an integral and
`2(Z2) is replaced by L2(Rn)) [11, 16, 17]. Therefore many of the results ob-
tained in the discrete setting transfer directly to the continuous setting using
similar proofs.

This paragraph will discuss the development of the spectral regularity
for the continuous model, that is Hb. The stability of spectral gaps for Hb
was first established independently in [65] and [3], in the sense that gaps in
the spectrum of H0 persist for sufficiently small b. In fact, the result of [65]
implicitly gives 1

2 -Hölder continuity σ(Hb) in the Hausdorff distance with
respect to b [11]. In [66] Nenciu proved that the phase eibϕ(x,x′) could be
factored out of the integral kernel of the resolvent (Hb − z)−1 for z ∈ ρ(Hb),
leaving an integral operator Kb(z) which has a norm convergent expansion
in b for b ∈ [0, ε] where ε > 0 is sufficiently small, i.e.

(Hb − z)−1(x, x′) = eibϕ(x,x′)Kb(z)(x, x′). (3.8)

8



3. Quantum mechanics

Specifically, expanding Kb(z) in a power series gives a norm convergent per-
turbation formula

(Hb − z)−1 = Sb(z)
∞

∑
n=0

bnTb(z)n = Sb(z)(1− bTb(z))−1 (3.9)

for z ∈ ρ(Hb) and b sufficiently small. Here Sb(z) is an integral operator with
kernel given by

Sb(z)(x, y) = eibϕ(x,y)(H0 − z)−1(x, y),

and Tb(z) is an operator which is bounded uniformly for b ∈ [0, ε].
From this, one can proceed as in the analytic perturbation theory [66]. By

constructing an explicit pseudo-inverse Sb(z) for (Hb− z)−1, (similar to (3.9))
it has been shown that spectral gap edges are 2

3 -Hölder continuous in the
Hausdorff distance with respect to b for smooth magnetic potentials [9]. In
two dimension and for a constant magnetic field, the spectral gap edges has
been shown to be Lipschitz continuous in b [11]. This replicates the result of
Bellissard for the discrete setting [5]. The regularity results for spectral gap
edges of the generalized Harper operator obtained in [67] (cf. the discussion
above) have also been extended in the continuous case [17].

3.4 Magnetic Weyl quantization

As mentioned in Subsection 3.2, a natural question is how to set up a gauge
covariant quantization scheme OpA when a magnetic field B = dA is present.
Interestingly, the naive quantization of a given by Op(aA) where aA(x, ξ) =
a(x, ξ− A(x)) is not necessarily gauge covariant. In particular, if A = A+dϕ
for some smooth ϕ, then for α ∈N2

0 with |α| ≤ 2, the polynomial a(x, ξ) = ξα

satisfies eiϕOp(aA)e−iϕ = Op(aA), but there exists some α of order 3 for
which Op(aA) and Op(aA) are not unitarily equivalent [41].

A gauge covariant quantization, now known as the magnetic Weyl quan-
tization, has been proposed independently in [47] and [64] although with
different motives. It is obtained similar to the Weyl quantization in Subsec-
tion 3.1 by setting OpA(a) = ei(pX+qΠA) for a(x, ξ) = ei(px+qξ) with p, q ∈ Rn

and extending to other “functions” a(x, ξ) by making suitable sense of the
expression

OpA(a) =
1

(2π)2n

∫
R2n

â(p, q)ei(pX+qΠ) dp dq. (3.10)

Note that in [64] a symplectic Fourier transform was used in the definition,
but it leads to the same operator (3.10) (see also the remark in [31, p. 80]).

Arguing formally as in Subsection 3.1 and using an explicit expression for
ei(pX+qΠ) (cf. [64, Equation (2.17)]) it is not hard to obtain the formula

[OpA(a) f ](x) =
1

(2π)n

∫
R2n

eiξ(x−x′)eiϕ(x,x′)a
( x + x′

2
, ξ
)

f (x′)dx′ dξ.
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Since A is assumed to be smooth with polynomially bounded derivatives of
all orders, the above expression can be defined for all a ∈ S ′(R2n) and it can
be shown that OpA(a) is gauge covariant [64, Proposition 3.6]. A key point
here is that under these assumptions, multiplication by the components of A
map S (Rn) to S (Rn). It should be noted that when B is constant and A
is linear then OpA(a) = Op(aA) [64, Lemma 3.11]. When B is not constant
the same result holds for any A when a is a polynomial in ξ of order at most
2 [64, Proposition 3.12]

Going forward only functions a in the symbol classes Sm
ρ,δ(R

2n) of Hör-

mander [39, 40] are considered, i.e. a ∈ C∞(R2n) such that for all α, β ∈Nn
0 ,

|∂α
x∂

β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|β|+δ|α|, (3.11)

where m, ρ, δ are real numbers. Of special interest is the class S0
0,0(R

2n) which
is (with minor adjustments) considered in Paper A. For a ∈ Sm

ρ,δ(R
2n) with

δ < 1 we can write OpA(a) explicitly as a map from S (Rn) to S ′(Rn) by
the formula

〈OpA(a) f , g〉 :=
1

(2π)n

∫
R3n

eiξ(x−x′)eiϕ(x,x′)a
( x + x′

2
, ξ
)

f (x′)g(x)dx′ dx dξ,

(3.12)

where f , g ∈ S (Rn). To see that this formula is indeed well-defined one
uses Green’s formulas to introduce 〈ξ〉−k in the integral for some large k ∈
N. This happens at the expense of also introducing polynomially increasing
functions in x and x′ but since both f and g are Schwartz functions OpA(a)
is well-defined. Note that when the magnetic field B is 0, then OpA reduces
to the usual Weyl quantization discussed in Subsection 3.1. Note also that
taking a(x, ξ) = |ξ|2 + V(x) for a smooth and bounded function V gives
OpA(a) = (−i∇− A)2 + V = H, cf. (3.4).

Extending the known results for the usual Weyl quantization of S0
0,0(R

n)
symbols to the magnetic setting is not trivial, since by (3.6) the function
eiϕ(x,x′)a((x + x′)/2, ξ) does not have bounded derivatives of all orders with
respect to x and x′. The first efforts to consider the magnetic Weyl quanti-
zation for Hörmander symbols goes back to [41] where many of the “non-
magnetic” properties of the Weyl quantization is extended to the magnetic
setting.

The following paragraph highlights some of the developments in the
study of the magnetic Weyl quantization OpA(a) for a ∈ Sm

ρ,δ(R
2n). It has

been shown [41, Proposition 6.7, Proposition 6.9] that there exist unique func-
tions a1, a2 ∈ Sm

ρ,δ(R
2n) such that

OpA(a) = Op(aA
1 ), and OpA(a2) = Op(aA).

10



4. Acoustic black holes

Hence, the magnetic Weyl calculus can be obtained from the usual Weyl cal-
culus. In fact, if B is constant and A is linear then a = a1 = a2 [64, Lemma
3.11]. Furthermore, in the paper [41] a Calderón-Vaillancourt type result
was obtained for a ∈ S0

ρ,ρ(R
2n) with ρ ∈ [0, 1), i.e. for such symbols the

corresponding operator OpA(a) extends to a bounded operator on L2(Rn).
The Beals criterion [4] has been generalized to the magnetic Weyl quantiza-
tion [13, 42] for symbols of type S0

0,0(R
2n).

Next, spectral results related to OpA(a) for a ∈ Sm
ρ,δ(R

2n) are summa-
rized. Recall that such symbols are called elliptic if |a(x, ξ)| ≥ C〈ξ〉m for some
C > 0 and all ξ with |ξ| sufficiently large. In [59], the essential spectrum
of OpA(a) was characterized for elliptic symbols a ∈ Sm

ρ,0(R
2n) with m > 0

and ρ ∈ [0, 1] using C∗ algebra methods. When considering elliptic symbols
in Sm

1,0(R
2n) with m > 0, stability of spectral gaps and spectral islands has

been established in [1]. In [17] the results of [67] (cf. the discussion in Subsec-
tion 3.3) was extended from the discrete case to OpA(a) where a ∈ Sm

1,0(R
2n)

for m < 0. The magnetic Weyl quantization has also played a role in further
spectral analysis of magnetic Schrödinger operators [12, 14].

4 Acoustic black holes

This section considers the equation of bending waves in (2.2) and the behavior
of its (approximate) solutions in relation to the theory of acoustic black holes.
This subject is the focus of Paper C and D in Part II of this dissertation.

Consider a thin plate of variable height h with its midsurface contained
in the xy-plane. Furthermore, suppose that the plate is extending infinitely
in the y direction and in the positive x direction starting at x = x0, see also
Fig. 1 in Paper C. Note that under these assumptions, the plate is essentially
one-dimensional. The plate is considered in an Euler-Bernoulli setting, mean-
ing that the cross sections of the plate are assumed to be perpendicular to the
midsurface, even when the plate is bending. Hence, if w denotes the dis-
placement of the midsurface, then a bending wave in the plate is described
by (2.2), which is recalled here (see also [48, 52, 57]):

∂2

∂x2

(
ρc2h3(x)

12
∂2

∂x2 w(x, ω)

)
−ω2ρh(x)w(x, ω) = 0. (4.1)

Here ω denotes the angular frequency, ρ denotes the density of the material,
and c is the speed of quasi-longitudinal waves in thin plates.

A key objective in mechanical engineering is to dampen or absorb bending
waves [18, 51] and different ways of doing so exists in the literature [51,
54, 87]. In this section a method utilizing the so-called acoustic black hole
effect is discussed. Put loosely, one manipulates the plate (its height and loss
factor) in an interval [x0, x1] near the edge to achieve less reflection of the
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bending waves from the edge. In theory it is possible to choose h such that
no reflection occurs from the edge [63]. During the last two decades, this
method of dampening bending waves in plates has received much attention
in the literature [19, 23, 29, 30, 34, 35, 48, 54, 54, 55, 71, 81].

The theory behind the acoustic black hole effect is often based on finding
approximate solutions of (4.1) using the WKB approximation [48, 52]. The use
of the WKB approximation in the context of the acoustic black hole effect is
very well explained in the paper [48]. For completeness, a short summary is
given in the following paragraphs. It should be noted that other approaches
have been used [23, 34]. The WKB method [6, 37] is in general used to obtain
approximate solutions to differential equations of the form

ε
dn

dxn y(x) + an−1(x)
dn−1

dxn−1 y(x) + · · ·+ a1(x)
d

dx
y(x) + a0(x)y(x) = 0, (4.2)

when ε is small. In the WKB method, one looks for a solution which is of the
asymptotic form

y(x) ∼ A(x) exp
(

δ−1
∞

∑
n=0

δnSn(x)
)

, (4.3)

when δ goes to 0. This method originates from quantum mechanics where it
is used to find solve the eigenvalue problem for one-dimensional Schrödinger
operators (cf. Section 3) [37, 49]. In practice the right hand side of (4.3) is
inserted in (4.2). Then by the method of dominant balance, the asymptotic
behavior of δ with respect to ε is determined, and equations for Sn are found
by comparing terms of the same order. Often the series in (4.3) is truncated
at some N ∈ N, and the function obtained is referred to as the N’th order
WKB approximation.

When applying the WKB approximation to “solve” (4.1) one uses ε = ω−2.
In the literature concerning the acoustic black hole effect, often only the first
order WKB approximation (also called the geometrical acoustics approxima-
tion) is used, see e.g. [29, 30, 52, 54, 63, 81]. This approximation is of the
form [48]

w(x, ω) = A0

( h0

h(x)

)3/4
exp

( ∫ x

x0

k(s)ds
)

, (4.4)

where h(x0) = h0, A0 ∈ R and k is the wave number defined as a solution to

(k(x))4 =
12ω2

c2h2(x)
. (4.5)

In this dissertation the higher order expansions will not be described further
as Paper C and D in Part II only considers the first order WKB approximation.
The reflection coefficient is then defined as the ratio of amplitudes of the
bending wave travelling from x1 towards the edge at x0 and the wave which

12



4. Acoustic black holes

is reflected from the edge. When using the first order WKB approximation,
the reflection coefficient is given by [52]

R = exp
(
− 2

∫ x1

x0

Im(k(x)) dx
)

. (4.6)

The quantity R is used as measure for the effectiveness of an acoustic black
hole. Theoretically R can equal 0 but in practice this is not possible, cf. the
discussion in Subsection 4.1

Of course, since the expansion in (4.3) is asymptotic one needs to ensure
that it is valid (see [6] for a discussion of general conditions). In the theory
of the acoustic black hole effect, the condition that∣∣∣∣ 1

k2
dk
dx

∣∣∣∣� 1, (4.7)

is generally the only condition imposed to ensure the validity of the approx-
imation in (4.4) [30, 52, 63].

4.1 The acoustic black hole effect

In this subsection, a short review of the history of the acoustic black hole
effect is given. The acoustic black hole effect was first demonstrated in the
paper [63] by Mironov where it was realized that if h(x) = εxm for x ∈ [0, x1],
m ≥ 2, and ε > 0 is sufficiently small, then no bending wave is reflected
from the edge at x0 = 0, i.e. the reflection coefficient is 0. This vanishing of
the reflected wave means that the incoming wave is simply absorbed. This
behavior is the motivation behind the name “acoustic black hole effect”. An
immediate conclusion is that the lack of reflection from the edge leads to
vibration dampening in the plate. However, in the same paper [63] Mironov
argued that in a practical setting the edge will always have a certain minimal
height, i.e. h(x0) > 0 (see Fig. 1 (b) in Paper C) and further showed that for
such truncated edges the reflection coefficient could be too large for practical
applications. In the papers [52, 54] it has been proposed to add additional
dampening material to the wedge shaped edges of [63]. This increases the
loss factor of the material and hence leads to a lower reflection coefficient.
Note that this method is easy to apply in practice. Furthermore, the paper
[52] also considered other functions h than the power-law profile h(x) = εxm

in [63]. Further study of the height profile h was conducted in [81] where an
optimal h of the form h(x) = εxm + h0 was sought by means of numerical
multiobjective methods. The objectives of the optimization was to keep R
low while not violating the condition (4.7).

It is worth mentioning that the acoustic black hole effect has also been
investigated in a two-dimensional setting [34, 35, 53].
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5 Numbers with random digits

The exposition in this section deviates from Sections 2–4 in the sense that the
focus is no longer on subjects motivated by waves. However, the mathematics
covered in this section is interesting in its own right.

This section treats real stochastic variables X ∈ [0, 1] where the digits are
given by a stochastic process {Xn}n≥1 taking values in {0, 1, . . . , q − 1} for
some integer q ≥ 2. Hence, X is defined by its base-q expansion

X =
∞

∑
n=1

Xnq−n, (5.1)

and F(x) = P(X ≤ x) denotes the cumulative distribution function (CDF) of X.
In Paper E and F this setting is considered, under the additional assump-

tion that {Xn}n≥1 is stationary, i.e. {Xn}n≥1 and {Xn}n≥2 are identically dis-
tributed. The motivation behind Paper E and F was to investigate if any
relation between F and {Xn}n≥1 could be established and exploited to con-
struct new point processes with interesting properties from known CDFs.

The idea of considering a stochastic variable X as in (5.1) goes back to at
least the paper [61] by Borel. In this paper, Borel established the strong law of
large numbers by noting that X is uniformly distributed on [0, 1] if and only if
the digits Xn are independent and uniformly distributed on {0, 1, . . . , q− 1}.
In this case, the CDF of X is just the uniform CDF on [0, 1] given by F(x) = x
for x ∈ [0, 1]. From the strong law of large numbers Borel proved his famous
normal number theorem [8, 61] which states loosely that for (Lebesgue) al-
most all numbers in R and any integer q ≥ 2, every finite string of numbers
x1, . . . , xn ∈ {0, 1, . . . , q− 1} occurs in the base-q expansion of x with asymp-
totic frequency q−n.

A natural question is then what happens when {Xn}n≥1 is not a sequence
of independent and uniformly distributed random variables on {0, 1, . . . , q−
1}. The simplest generalization is to assume that the Xn’s are independent and
identically distributed (IID) but with a distribution π = (π0, . . . , πq−1) which is
not uniform on {0, 1, . . . , q− 1}. When this is the case it is well known that F
is a singular function, i.e. F′(x) exists and equals 0 for almost all x ∈ [0, 1] [8].
Note that since F is non-decreasing, it is a classic result of Lebesgue that
F is differentiable almost everywhere [58]. The term “singular” is used to
describe such functions as the corresponding measure dF (uniquely deter-
mined by dF((a, b]) = F(b) − F(a) for any real numbers a < b) is singular
with respect to the Lebesgue measure. The first paper to loosen the assump-
tion of independence seems to be [38]. In this paper, Harris shows that when
{Xn}n≥1 is stationary and satisfies a mixing condition then F is one of three
distinct types: 1) either F is the uniform CDF on [0, 1]. 2) F is a discrete CDF
(i.e. step function) with a unit step at k

q−1 for some k ∈ {0, 1, . . . , q− 1}. 3) F
is singular continuous. A similar result is obtained by Dym [28] under the as-
sumption that {Xn}n≥1 is stationary and ergodic. Under these assumptions,
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5. Numbers with random digits

the only difference from Harris’s result is that when F is a discrete CDF, it
can have m jumps of height 1/m. The jumps occurs at the “purely repeating
base-q fractions” described in detail in Paper E.

For the sake of illustration, consider F in the IID case with a distribution
π = (π0, . . . , πq−1) where πk < 1 for all k ∈ {0, 1, . . . , q− 1}. Let {Xn}n≥1
be a stochastic process of IID random variables such that P(Xn = k) = πk.
Since no πk equals 1, it follows that P(X1 = x1, X2 = x2, . . . ) = 0 for all
{xn}n≥1 ⊂ {0, 1, . . . , q− 1}N. Hence P(X = x) = 0 for all x ∈ [0, 1], and thus
it does not matter which representation of x is chosen in the case that x has
two different base-q representations. The numbers x ∈ [0, 1] which have a
non-unique base-q expansion are referred to as base-q fractions.

In the following, the notation x = (0.x1 . . . xn)q := ∑n
k=1 xkq−k will be

used. A straightforward calculation using (2.2) in Paper F and the inde-
pendence of the Xn’s shows that for any x = (0.x1 . . . xn)q, where xk ∈
{0, 1, . . . , q− 1}, and any j ∈ {0, 1, . . . , q− 1}, we have

F((0.x1 . . . xn j)q) = F(x) + (F(x + 1/qn)− F(x))
j−1

∑
k=0

P(X1 = k), (5.2)

where the sum is defined as 0 when j = 0. This formula implies that F
is obtained from a simple generalization of the geometric construction ap-
pearing in [78, 80] which is presented in the following. First, let F0 be
the uniform CDF on [0, 1]. Then, define F1(0) = F0(0), F1(1) = F0(1) and
F1(j/q) = ∑

j−1
k=0 P(X1 = k) for j ∈ {1, 2, . . . , q− 1}. Between these points F1

is defined by linear interpolation. Next, continuing in the same way, define
F2(j/q) = F1(j/q) for all j ∈ {0, 1, . . . , q− 1} and set

F2((0.x1 j)q) = F1((0.x1)q) + [F1((0.x1)q + 1/q)− F1((0.x1)q)]
j−1

∑
k=0

P(X1 = k),

for all x1, j ∈ {0, 1, . . . , q− 1}. For all other points in [0, 1], F2 is defined by lin-
ear interpolation. Continuing this recursive construction gives a sequence Fn
of continuous non-decreasing functions, which converge uniformly to some
continuous function F∞. See Fig. 1 below for an illustration of this construc-
tion. By construction F∞(x) = F(x) on a dense set and hence by (right) con-
tinuity F∞ = F. As previously noted this construction can not be considered
novel. However, it is still worth mentioning as recent papers have presented
special cases of this construction without realizing the simple probabilistic
nature behind it [56, 68, 84].

5.1 Singular functions

Singular functions are by no means hard to come by. For example [89] showed
that “most” monotone functions are singular. In this context the word “most”
means that all continuous monotone functions on [0, 1] are singular, except
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Fig. 1: Left: From bottom to top: F0, . . . , F2 for q = 3 and π = (0.6, 0.3, 0.1) Right: F10 for the
same parameters.

for a set of the first Baire category. In a similar Baire category sense Si-
mon’s “Wonderland theorem” proved that most Schrödinger operators (cf.
Section 3) have singular continuous spectra [82]. For any singular continu-
ous measure µ the function x 7→ µ((−∞, x]) is a singular continuous func-
tion [79]. Hence, the construction of singular functions are in principle easy,
but obtaining explicit formulas for such functions is often harder.

The first example of a singular continuous non-decreasing function goes
back to the well-known Cantor function [10]. The Cantor function can be
obtained from the construction in Section 5 by choosing q = 3 and π0 = π2 =
1
2 [8, 26]. In [62], Minkowski defined his question mark function denoted ?(x)
(see Paper E for a definition) which was proven to be singular by Denjoy [24,
25]. In the paper [80] Salem gave a elegant geometric construction of a class
of strictly increasing singular functions. This is the construction presented
in Section 5 when q = 2. In the same paper, Salem showed that unless
F is the uniform CDF on [0, 1], the Fourier transform of dF does not go
to 0 at infinity, i.e. dF is not a so-called Rajchmann measure [60]. In the
textbook [78] by Riesz and Nágy the construction of Salem appeared again,
which has given the resulting functions the name “Riesz-Nágy functions” in
the literature [69]. In fact these functions have been treated multiple times in
the literature [7, 8, 77, 86].

The above mentioned singular functions are the most well-known and
studied in the literature. Interestingly, these functions can also be described
as solutions to various functional equations. The paper [46] gives an excellent
exposition of this subject. For example in [46] it is shown that the Cantor
function is the unique bounded function on [0, 1] which solves the functional
equations

f (x/3) =
1
2

f (x), f ((x + 1)/3) = 1/2, f ((x + 2)/3) =
1
2

f (x) +
1
2

.
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Likewise it is shown in [22, 46] that each Riesz-Nágy function solves

f (x/2) = α f (x), f ((x + 1)/2) = (1− α) f (x) + α

for some α ∈ (0, 1).
More recently numerous constructions of singular functions and gener-

alizations of the previously discussed functions have appeared in the litera-
ture [21, 56, 68–70, 83–85, 88].

6 Overview

This section briefly discusses the papers included in Part II of this dissertation
in relation to the background presented in the previous sections. The notation
is kept consistent with the notation used in Section 2–5 and not necessarily
the papers in Part II.

6.1 Paper A

In Paper A, a variation of the magnetic Weyl quantization (cf. Subsection 3.4)
is considered with a magnetic field of class BC∞(Rd; Rd). The transverse
gauge (3.3) is used to define the magnetic potential A and the magnetic
field strength is represented by the parameter b ∈ R. The aforementioned
variation consists of writing the magnetic field strength b explicitly in front
of ϕ and then replacing eibϕ(x,x′)a((x + x′)/2, ξ) in (3.12) with a so-called
magnetic symbol ab(x, x′, ξ). A magnetic symbol is defined as a function
ab(x, x′, ξ) = eibϕ(x,x′)a(x, x′, ξ) where a ∈ C∞(R3n) such that there exists
a constant Ma with the property that for all α, α′, β ∈Nn

0 :∣∣∣∂α
x∂α′

x′∂
β
ξ a(x, x′, ξ)

∣∣∣ ≤ Cα,α′ ,β〈x− x′〉Ma .

The set of all such symbols is denoted by Mϕ(R3n). Note that since the phase
factor eibϕ(x,x′) is included in the symbol ab, the growth in x− x′ on the right
hand side above does not complicate the calculations much.

To summarize, Paper A concerns operators defined weakly by

〈Op(ab) f , g〉 :=
1

(2π)n

∫
R3n

eiξ(x−x′)ab(x, x′, ξ) f (x′)g(x)dx′ dx dξ, (6.1)

where f , g ∈ S (Rn) and ab ∈ Mϕ(R3n). A priori (6.1) might seem like a
generalization of (3.12) for a ∈ S0

0,0(R
2n). However this is not the case, since

an application of the magnetic Beals criterion [13, 42] shows that for every
symbol in Mϕ(R3n) there is a corresponding symbol ã ∈ S0

0,0(R
2n) such that

Op(ab) = Op(ã) (cf. Remark 2.3 in Paper A).
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The main result of Paper A can be divided into thee parts. Firstly, by dis-
cretizing L2(Rn) into to the space H :=

⊕
γ∈Zn L2(Ω), where Ω = (− 1

2 , 1
2 )

n,
it is established that Op(ab) in (6.1) is unitary equivalent to an infinite oper-
ator valued matrix of the form{

eibϕ(x,x′)Aγ,γ′ ,b

}
γ,γ′∈Zn

∈ B(H ), (6.2)

where Aγ,γ′ ,b ∈ B(L2(Ω)) and ‖Aγ,γ′ ,b‖ decay faster than any inverse poly-
nomial in 〈γ − γ′〉. Essentially this result calculates the operator kernel of
Op(ab), see also [36]. Then, an obvious modification to Schur’s test [40] im-
mediately gives a Calderón-Vaillancourt type result, namely that Op(ab) ∈
B(L2(Rn)). This is not a novel result for the magnetic Weyl quantization [41].
However, the formula (6.2) is crucial when extending some of the known
spectral results for Harper operators and magnetic Schrödinger operators
listed in Subsection 3.3. For this, an important point is that the operator in
(6.2) is a generalization of (3.7). In light of this it should maybe not be sur-
prising that some of the results detailed in Subsection 3.3 generalizes to the
setting discussed here. Indeed, the second result of Paper A establishes that
when Op(ab) is self-adjoint, i.e. when a(x, x′, ξ) = a(x′, x, ξ), then σ(Op(ab))

is 1
2 -Hölder continuous with respect to b in the Hausdorff distance. Due to

the similarity between (6.2) and (3.7) this is shown by adapting the methods
used in [16]. The third and final main result of Paper A establishes Lips-
chitz continuity of spectral gap edges, when Op(ab) is self-adjoint and the
magnetic field is constant. This is also an extension of well-known results
for Harper operators and magnetic Schrödinger operators, as discussed in
Subsection 3.3. As in [11], an important technique is to use the heat kernel to
rewrite the phase factor eibϕ(x,x′).

6.2 Paper B

Paper B concerns two related magnetic Schrödinger operators. The first op-
erator is of the form in (3.5), i.e. Hb = (−i∇ − bA − A)2 + V, acting on
L2(R2). Here A is a magnetic potential given in the Landau gauge, i.e.
A(x) = (−x2, 0), A ∈ BC∞(R2, R2) is some other magnetic potential, and
V ∈ BC∞(R2; R) is a scalar potential. The parameter b represents the strength
of the constant magnetic field bdA. The second operator is the Dirichlet real-
ization of Hb in the half-space E = {x ∈ R2 | x2 > 0} and is denoted by HE

b .
This setting is motivated by the study of the bulk-edge correspondence in the
field of topological insulators, and in particular the recent paper [15] giving
a very general bulk-edge correspondence. For this reason Hb is referred to as
the bulk Hamiltonian and HE

b is referred to as the edge Hamiltonian. The aim
of Paper B is to extend certain regularity properties of the edge Hamiltonian
HE

b established in [15]. In particular, it is shown in [15] that if F : σ(HE
b )→ R

is a function which can be extended to a function in S (R), then for any
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6. Overview

g1, g2 ∈ C∞
c (E) the operators g1F(HE

b )g2 and g1i[HE
b , Xj]F(HE

b )g2 have con-
tinuous integral kernels. In Paper B we establish that these kernels are not
merely continuous but in fact smooth. For the bulk Hamiltonian Hb this can
be done using the Beals criterion for the magnetic Weyl quantization [15], but
for the edge Hamiltonian this type of argument no longer works. From this
regularity result, it is then established that the bulk and edge particle current
densities J1,b and J E

1,b defined as

J /E
1,b (x1, x2) :=

(
i[H /E

b , X1]F(H /E
b )

)
((x1, x2), (x1, x2))

are smooth and that

sup
x1∈R

∣∣∣J E
1,b(x1, x2)−J1,b(x1, x2)

∣∣∣ = O(x−∞
2 ) for x2 → +∞.

The basic idea for obtaining these results is to first define HE
b := (−i∇−

bA)2 on the set of functions f ∈ C∞(E) for which all partial derivatives
extend continuously to ∂E and which satisfy f (x) = 0 for x ∈ ∂E. Following
the magnetic perturbation theory, a norm convergent resolvent expansion is
established for hE

b := HE
b ,

(hE
b + λ)−1 = Sb(−λ)

∞

∑
n=0

(−Tb(−λ))n, (6.3)

whenever λ > 0 is sufficiently large (compare with (3.9)). Here Sb(−λ) is an
integral operator with kernel

Sb(−λ)(x, y) = eibϕ(x,y)[(−∆ + λ)−1(x, y)− (−∆ + λ)−1(x, y∗)],

where (−∆ + λ)−1(x, y) is the integral kernel of the resolvent for the usual
Laplacian defined on L2(R2) and y∗ = (y1,−y2). Furthermore, Tb(−λ) =
(hE

b + λ)Sb(−λ) − I is also an integral operator with a kernel that can be
determined explicitly. Then, using the Kato-Rellich theorem, HE

b is defined
as a relatively bounded perturbation of hE

b . This definition is shown to give
the same operator as the usual definition using the Friedrichs extension.

The resolvent expansion (6.3) and the properties of the kernels of Sb(−λ)
and Tb(−λ) are crucial for results obtained in Paper B. Combining these with
the second resolvent identity it is possible to show that for b in some compact
set Ω ⊂ R and λ > 0 sufficiently large we have that

(HE
b + λ)−1(x, y) = eibϕ(x,y)Kb(−λ)(x, y),

where the operator corresponding to the kernel Kb(−λ)(x, y) is smooth with
respect to b ∈ Ω in the operator norm topology. Note that this is similar
to (3.8) but for the edge Hamiltonian. A central technical result, which is
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used to establish the smoothness of g1F(HE
b )g2 and g1i[HE

b , Xj]F(HE
b )g2, is

that when λ is sufficiently large, then for all m ∈N one can find N ∈N and
ε > 0 such that (i[HE

b , Xj])
k(HE

b + λ)−Neε|X| map L2(E) continuously into
Cm(E) for j ∈ {1, 2} and k ∈ {0, 1}. This result is established from (6.3) and
a detailed analysis of the integral kernels of Sb(−λ) and Tb(−λ).

6.3 Paper C and D

Paper C and D both concern the theory of acoustic black holes, cf. Section 4.
Paper D is a conference paper made to present our results prior to the cre-
ation of the full journal paper, Paper C. As such the two papers present
essentially the same results, but both are included in this dissertation for
completeness.

The main idea behind these papers is inspired by the paper [81] where a
plate with a height profile of the form h(x) = εxm + h0 is considered in an in-
terval [x0, x1]. Numeric optimization methods are used determine “optimal”
values for the power m, length x1 − x0, initial height h(x0), and final height
h(x1). In this paper optimality was defined as minimizing the reflection co-
efficient R in (4.6) subject to the constraint that

∣∣k′/k2
∣∣ < 0.4, cf. (4.7). The

specific number 0.4 was established numerically in [30] as a reasonable upper
bound for the validity condition (4.7). However in the literature other func-
tions h have been considered as the height profile, e.g. h(x) = ε sinm(x) [52]
which is not much different from εxm for small x. Yet, this choice of h leads
to closed form expressions for R. A natural question is then if it is possible
to minimize R subject to the constraint (4.7) over all C1 functions. Of course
some suitable interpretation of the constraint (4.7) is required. This vaguely
formulated optimization problem is what Paper C and D try to formulate
precisely and then solve. Note also that by (4.5) it is clear that (4.7) is not
satisfied for all frequencies ω. The starting point for Paper C and D (as well
as the other papers cited in this paragraph) is to use the first order WKB
approximation outlined in Section 4. Thus the word “optimal” should be
interpreted in this context and the work should be seen as a step towards
maturing the theory of the acoustic black hole effect and pushing it towards
more advanced models. In this regard an obvious extension of the theory
would be to consider more general bending wave equations (e.g. Timoshenko
theory [27]).

The basic assumption of Paper C and D is to consider a plate as described
in Section 4 with a height profile h which varies in an interval [x0, x1] and
satisfies the boundary conditions h(x0) = h0 > 0 and h(x1) = h1 > h0. A
key point of our approach is the observation that the integral in (4.6) can be
considered as a functional of h. Then, by approximating the pointwise bound
in (4.7) by an Lp norm for some large p we arrive at a variational problem
where R is minimized with respect to h subject to the boundary conditions
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6. Overview

above and the additional constraint∫ x1

x0

∣∣∣∣ 1
k2

dk
dx

∣∣∣∣p dx = L, (6.4)

where L is some number which is chosen small. This problem is similar to
the well-known isoperimetric problem [33] and can be solved by the method
of Lagrange multipliers. Solving this problem shows that if the additional
constraint (6.4) is not taken into account, then h is given by a quadratic poly-
nomial, generalizing the much studied choice h(x) = εx2. Furthermore, it is
shown that when the constraint (6.4) is taken into account the optimal profile
is of the form

h(x) =

{
h0, x ∈ [x0, x̃],
h̃(x), x ∈ (x̃, x1],

where h̃ is a quadratic polynomial satisfying h̃(x̃) = h0 and x̃ is some number
in [x0, x1).

6.4 Paper E and F

The aim of Paper E is to completely characterize stationarity of the digits
{Xn}n≥1 in terms of properties of the CDF F (cf. Section 5). Three differ-
ent equivalences are given. All three generalize some known results in the
literature.

A basic result is that when assuming stationarity of {Xn}n≥1, then the
ambiguity of the base-q expansion plays no role as P(X = x) = 0 for all base-
q fractions x ∈ (0, 1). From this the most fundamental result of the paper
is obtained, namely that stationarity of {Xn}n≥1 is equivalent to F being a
solution to the functional equation

F(x) = F(0) +
q−1

∑
j=0

[
F
( x + j

q

)
− F

( j
q

)]
, x ∈ [0, 1]. (6.5)

This functional equation immediately gives an equation for the measure dF,
which is used to show the second characterization of stationarity of {Xn}n≥1.
Specifically, it is established that {Xn}n≥1 is stationary if and only if the
characteristic function f of X (i.e. the Fourier transform of the measure dF)
satisfies f (2πkq) = f (2πk) for all k ∈ Z. Interestingly, this implies that
limt→∞ f (t) = 0 if and only if F is the uniform CDF on [0, 1]. Note that this
is an extension of the results obtained in [80] for the Riesz-Nágy functions.
Interestingly, as the Fourier transform of d? goes to 0 at infinity [45, 73], it
follows that ? is not the CDF of a random variable X given by (5.1) with
stationary digits {Xn}n≥1. The functional equation in (6.5) also leads directly
to a generalization of the decomposition results of Harris and Dym, [28, 38].
Specifically it is shown that the Lebesgue decomposition of F is a mixture
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(convex combination) of the uniform CDF on [0, 1], step functions with m ∈
N jumps of height m−1 and a singular continuous CDF satisfying (6.5). Note
that under the assumptions in [28, 38] F could only be either one of the
aforementioned cases. The only case not completely described in Paper E is
when F is singular continuous and satisfies (6.5).

In an effort to gain an understanding of the singular continuous part of
F, Paper F considers specific stationary stochastic processes {Xn}n≥1. In par-
ticular, stationary Markov chains of arbitrary orders, stationary renewal pro-
cesses, and mixtures of such models are considered. The well-known case
when the Xn’s are IID (cf. Section 5) is considered as a 0’th order Markov
chain for completeness. When {Xn}n≥1 is a stationary Markov chain, it is
shown that F is either the uniform CDF on [0, 1] or a singular (not nec-
essarily continuous) function. Borrowing the terminology of the field of
Bernoulli convolutions we say that F is of pure type [44, 72]. The same law
of pure type is established when {Xn}n≥1 corresponds to a stationary re-
newal process. In fact, more is shown in the case when F is not the uniform
CDF on [0, 1], namely that F′(x) = 0 for all x ∈ [0, 1] where the deriva-
tive exists. This is stronger than F being merely singular since there exist
examples of singular functions with non-zero derivatives [83–85]. A key in-
gredient in the proof of these “pure type” results is the observation that if
x = (0.x1x2 . . . )q ∈ [0, 1] is a non-base-q fraction where F′(x) exists, then for
any m ∈N and ξ1, . . . , ξm ∈ {0, 1, . . . , q− 1},

F′(x) = lim
n→∞

qn+mP(X1 = x1, . . . , Xn = xn, Xn+1 = ξ1, . . . , Xn+m = ξm).

(6.6)
When considering mixtures of either stationary Markov chains or stationary
renewal processes, it is assumed that Π is a random variable that determines
the distribution of {Xn}n≥1. Thus the conditional CDF is given by FΠ(x) =
P(X ≤ x | Π) and the CDF of X is then obtained by averaging, i.e. F =
EFΠ. It is then shown that for almost all x ∈ [0, 1], F′(x) = P(FΠ = F1)
where F1 denotes the uniform CDF on [0, 1]. The proof of this requires that
x is a normal number and detailed analysis of the probabilities occurring on
the right hand side of (6.6) using specific formulas for Markov chains and
renewal processes. Note that in this case F is of pure type if and only if
P(FΠ = F1) = 0.
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