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Abstract/Resumé

English

Internet Service Providers (ISPs) can access their subscribers’ IP traffic and
various other data, such as information about the device type used, the ap-
proximate geographical location of a subscriber, and contact information for
the subscriber. This data seems attractive to use for a number of use cases,
such as malware and cyber attack detection, as a significant part of a coun-
try’s Internet traffic is available, and as customers can be contacted for attack
mitigation purposes. Although this is a use case with a desirable outcome
for both subscribers, ISPs and the society as a whole, ISP data can also be
used for much less honourable purposes. Therefore, the use of ISP data is
subject to strict regulatory requirements in certain world regions such as the
European Union.

In a collection of papers, this thesis expands the current state of the art
by describing which data is technically and legally available to ISPs in the
European Union, how the regulatory requirements on anonymization can be
implemented, and by presenting a number of novel use cases for anonymized
NetFlow and DNS data. The thesis presents a method that allows ISPs to use
NetFlow data to estimate the amount of DNS traffic that is directed at 3rd
party DNS resolvers compared to the amount of traffic towards the ISP’s de-
fault DNS resolvers. The method is expanded in order to assess whether
the 3rd party resolvers were chosen because they offer malware/parental fil-
tering capabilities, or because they offer an uncensored service. A separate
contribution presents a method to evaluate the impact of applying blacklists
on an ISP’s DNS resolvers. The method uses NetFlow records to assess which
flows towards blacklisted domains and servers would never have been cre-
ated if DNS based blocking was activated for all customers. This measure
of impact is found to be an improvement to existing impact measurement
methods, such as counting the number of blocked DNS requests. Another
contribution presents a new botnet Command and Control (CnC) scheme
that uses format-preserving encryption of IP addresses to provide an alter-
native to existing Fast Flux techniques. Although a DNS and NetFlow based
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detection method is also presented (and no botnets of this type are detected
in the wild), such a CnC scheme could potentially raise the bar for defenders
in the future. Finally, a method is presented that use NetFlow features to
classify DNS resolvers in use as malicious or benign. Existing methods either
rely on access to application layer data, which would not be legal to apply
by ISPs in the EU, or rely on excessive Internet scanning, which may raise
attacker awareness. Data from Telenor, a national ISP in Denmark, is used
to validate and provide results for the theories and methods presented in the
thesis.

The overall thesis statement claims that using the multitude of data types
available from ISPs is advantageous for malware and cyber attack detection
as compared to only using IP traffic data. In general, this claim is refuted,
as the data technically and legally available to an ISP in the EU can be de-
rived by deep inspection of the IP traffic. However, through the examples
provided by the papers included in this thesis, it is shown that ISP data can
be valuable when more specific use cases that are primarily applicable in an
ISP context are considered, even despite anonymization being applied. While
this conclusion is positive from a privacy point of view, it can still be debated
whether the legislation provides the right balance between privacy and cyber
security.

Dansk

Internetudbydere har adgang til deres abonnenters IP-trafik og forskellige
andre data, f.eks. oplysninger om den anvendte enhedstype, abonnentens
omtrentlige geografiske placering og abonnentens kontaktoplysninger. Disse
data kan være attraktive at bruge til en række formål, såsom detektering
af malware og cyberangreb, da en væsentlig del af et lands internettrafik
er tilgængelig, og da kunder kan kontaktes så konsekvenserne af et angreb
kan afbødes. Selvom dette giver et ønskeligt resultat for både abonnenter,
internetudbydere og samfundet som helhed, kan internetudbyderdata også
bruges til langt mindre prisværdige formål. Derfor er brugen af data fra
internetudbydere underlagt strenge lovgivningsmæssige krav i visse verden-
sregioner som f.eks. den Europæiske Union.

I en samling af artikler udvider denne afhandling den aktuelle state of
the art ved at beskrive, hvilke data der er teknisk og juridisk tilgængelige for
internetudbydere i den Europæiske Union, hvordan de lovgivningsmæssige
krav til anonymisering kan implementeres, og ved at præsentere en række
nye brugsformål til anonymiserede NetFlow- og DNS-data.

Afhandlingen præsenterer en metode, der gør det muligt for interne-
tudbydere at bruge NetFlow-data til at estimere mængden af DNS-trafik ret-
tet mod tredjeparts DNS-resolver til sammenligning med mængden af trafik



mod internetudbyderens standard DNS-resolvere. Metoden udvides til at
vurdere, om tredjeparts-resolverne blev valgt, fordi de tilbyder malware-
/forældre-filtreringsfunktioner, eller fordi de tilbyder en ucensureret service.
Et andet bidrag præsenterer en metode til at evaluere virkningen af at an-
vende blacklists i en internetudbyders DNS-resolvere. Metoden bruger Net-
Flow-data til at vurdere, hvilke flows mod blacklistede domæner og ser-
vere, der aldrig ville være blevet oprettet, hvis DNS-blokeringen var ak-
tiveret for alle kunder. Denne måling af indvirkning viser sig at være en
forbedring af eksisterende målemetoder, såsom måling af antallet af blok-
erede DNS-forespørgsler. Et andet bidrag præsenterer en ny metode til bot-
net Command and Control (CnC), der bruger formatbevarende kryptering
af IP-adresser som et alternativ til eksisterende Fast-Flux-teknikker. Selvom
en DNS- og NetFlow-baseret detektionsmetode også præsenteres (og ingen
eksisterende botnets af denne type opdages), kan metoden potentielt hæve
barren for forsvarere i fremtiden. Derudover præsenteres en metode, der
bruger NetFlow-features til klassificere DNS-resolver som ondsindede eller
godartede. Eksisterende metoder er enten afhængige af adgang til applika-
tionslagsdata, som ikke ville være lovlige at anvende af internetudbydere
i EU, eller er afhængige af storstilet internetscanning, som kan advare an-
griberen. NetFlow- og DNS-data fra Telenor, en national internetudbyder i
Danmark, bruges til at validere og levere resultater for de teorier og metoder,
der præsenteres i afhandlingen.

Afhandlingens overordnede påstand er, at det til afsløring af malware og
cyberangreb er fordelagtigt at bruge de mange datatyper, der er til rådighed
for internetudbydere, fremfor kun at bruge IP trafikdata. Generelt tilbagevises
denne påstand, da de data, der teknisk og juridisk er tilgængelige for en in-
ternetudbyder i EU, kan udledes fra en dybere inspektion af af IP-trafikken.
Gennem eksempler præsenteret i afhandlingens artikler, viser det sig imi-
dlertid, at internetudbyderdata kan være værdifulde selv om anonymiser-
ing anvendes, når mere specifikke brugsformål, der primært gælder i en
internetudbyder-sammenhæng, overvejes. Selv om denne konklusion er pos-
itiv ud fra et privatlivssynspunkt, kan det stadig diskuteres, om lovgivningen
skaber den rette balance mellem privatlivets fred og cybersikkerhed.





Preface

This thesis presents the research output of my three-year Industrial PhD
study project at Telenor A/S, a national Internet Service Provider in Den-
mark, and the Department of Electronic Systems at Aalborg University in
Denmark. The project was launched with the overall goal to develop meth-
ods to use Internet and mobile telephony providers’ knowledge of customers
and data traffic to identify cyber-attacks and malware infections. The thesis
is submitted as partial fulfilment of the requirements for obtaining the degree
of Doctor of Philosophy (PhD) from Aalborg University.

The thesis is written in the format of a collection of papers, and therefore
the bulk of the thesis consists of 5 scientific papers published in, or submit-
ted to, peer-reviewed conferences. I am the main author and contributor to
the papers, and statements from each co-author detailing their contribution
to each paper have been approved by the The Technical Doctoral School of
IT and Design prior to the submission of this thesis. These statements are
also presented to the PhD committee as part of the assessment. The 5 pa-
pers considered part of the thesis are listed below in chronological order of
writing.

Paper A : Martin Fejrskov, Jens Myrup Pedersen, Emmanouil Vasilomanolakis:
"Cyber-security research by ISPs: A NetFlow and DNS Anonymization
Policy", published and presented at the International Conference on Cy-
ber Security And Protection Of Digital Services (Cyber Security) 2020
(Chapter 2 on page 5)

Paper B : Martin Fejrskov, Jens Myrup Pedersen, Emmanouil Vasilomanolakis:
"Using NetFlow to measure the impact of deploying DNS-based black-
lists", published and presented at the EAI International Conference on
Security and Privacy in Communication Networks (SecureComm) 2021
(Chapter 5 on page 41)

Paper C : Martin Fejrskov, Jens Myrup Pedersen, Leon Böck, Emmanouil
Vasilomanolakis: "An uneven game of hide and seek: Hiding botnet
CnC by encrypting IPs in DNS records", published and presented at
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the IEEE Conference on Communications and Network Security (CNS)
2021 (Chapter 6 on page 63)

Paper D : Martin Fejrskov, Emmanouil Vasilomanolakis, Jens Myrup Peder-
sen: "A study on the use of 3rd party DNS resolvers for malware filter-
ing or censorship circumvention", accepted at the International Confer-
ence on ICT Systems Security and Privacy Protection (IFIP SEC) 2022
(Chapter 7 on page 85)

Paper E : Martin Fejrskov, Jens Myrup Pedersen, Emmanouil Vasilomanolakis:
"Detecting DNS hijacking by using NetFlow data", submitted for review
to the International Workshop on Security (IWSEC) 2022 (Chapter 8 on
page 103)

In addition to the papers listed above, the following article is co-authored
during the PhD studies. As this article is of more legal than technical nature,
it is not considered a part of the thesis, and is not included in print.

Paper F : Leon Böck, Martin Fejrskov, Katerina Demetzou, Shankar Karup-
payah, Max Mühlhäuser, Emmanouil Vasilomanolakis: "Processing of
Botnet Tracking Data under the GDPR", published in the Journal of
Computer Law & Security Review 2022 [3]

The PhD project is fully funded by Telenor A/S and Innovation Fund Den-
mark. I would therefore like to thank both organizations for giving me the
opportunity and support to pursue a PhD study. In particular, I would like to
thank Peter Nødbak, my former manager at Telenor, for initiating the project,
and Per Olsen, Head of Security at Telenor, and Brian Jørgensen, Department
Manager at Telenor, for their role as company supervisors. At Aalborg Uni-
versity, thanks goes to the Cyber Security Group including my supervisors
Professor Jens Myrup Pedersen and Assistant Professor Emmanouil Vasilo-
manolakis, my fellow PhD student Kaspar David Hageman and the rest of
the Cyber Security Group.

Martin Fejrskov Andersen
2nd of May, 2022
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CHAPTER 1
Introduction

There is a growing cyber threat from both criminal actors and nation states
that targets both public authorities and private companies [4]. This calls
for an increased security posture throughout the society, and a majority of
businesses expect to increase investments in cyber security in 2022 [5]. This
does, however, not only apply to authorities and business. The majority of
consumers are also willing to pay Internet Service Providers (ISPs) to provide
increased cyber security protection [6] [7].

It varies how and if ISPs seize this opportunity, and the efforts fall into
three main categories. Some products inspect or modify Internet traffic at end
user devices, such as traditional anti-virus products for personal computers.
Other products take advantage of the ISP’s ownership of the network infras-
tructure and processes the same Internet traffic on equipment deployed in
the ISP’s network, such as firewalls or Distributed Denial of Service (DDoS)
protection systems. A third category of products does not process the con-
sumers’ Internet traffic at all, such as cyber attack insurance plans, backup
services, mobile device management, or similar. Although the first and third
categories of products can be offered by any company, the second option can
only be provided by ISPs. As the second option could also represent an eas-
ier adoption path for a consumer (as no apps need to be installed etc.), this
provides ISPs with a unique value proposition.

ISPs have access to the traffic to all customers, and ISPs know which IP
addresses are assigned to which customers. This knowledge could be used
to identify attacks and warn the customers, even if they do not subscribe to
any security products. Being able to deploy such a detection and warning
mechanism is also a value proposition that is unique to ISPs.

Having an ISP inspect the traffic of all customers to provide a broad threat
overview and early warning of unprotected subscribers does, in spite of the
good intentions, come with a significant privacy threat. The European Union
ePrivacy Directive therefore clearly forbids ISPs to inspect data that is not
relevant to process in order to deliver a specific product [8]. As the payload
of Internet packets do not need to be inspected when delivering an Internet
access product, it is not legal to inspect the payload for malware detection
purposes either.
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A tempting solution to this problem is to bundle all Internet access prod-
ucts with a security product that requires each customer’s traffic to be in-
spected so that malware can be detected and blocked. Introducing such a
product into all existing subscriptions as an opt-out solution is, however, not
legal in the European Union either, due to the Net Neutrality Regulation [9].
On the other hand, an opt-in solution is unlikely to have sufficient adoption
to provide the desired overview of threats to (nearly) all customers.

Network-wide malware detection at an ISP in the EU will therefore need
to operate on the set of data that is permitted by the ePrivacy Directive with-
out additional opt-ins. At the first glance, this seems to limit the malware
detection options at ISPs. However, as ISPs are in the unique position that
they have access to other sources of data than just the IP traffic, the limitation
imposed by the ePrivacy Directive may be offset by opportunities derived
from the availability of these data sources. Examples of such data sources
include information about which customers are assigned which IP address,
which Radio Access Technology is used by a mobile phone, which cell a
phone is attached to, which DNS lookups are performed by that customer,
and which device brand and model is used by a subscriber. This leads to the
following thesis statement:

Compared to only using IP traffic data, it is advantageous to use data from ISPs
to identify cyber attacks against customers and to identify customers infected with
malware.

1.1 Thesis outline

This thesis consists of 10 chapters, of which 5 contain papers that are pub-
lished or in review. Paper A and Paper D focus on anonymization and data
quantification rather than on malware. Paper B, Paper C and Paper E nar-
row the focus to different aspects of detection of malware and cyber attacks.
The remaining chapters provide background information, discussion etc. as
outlined below. Paper A is mostly qualitative of nature, but the proposed
method is applied in the remaining papers. These papers primarily use a
quantitative approach to evaluate proposed methods and prototypes.

Given the thesis statement presented above, it is natural to start out by
asking the following initial question: Which kind of data is available to an
ISP, and under which conditions can it be used? The contribution of Paper A
in Chapter 2 is to answer this question by providing an overview of the data
available from both a technical and legal perspective. The paper concludes
that anonymized DNS data from the ISP’s own resolvers and NetFlow data
from the ISP’s routers are the only data sources that are both available and
relevant for malware detection. By considering related works on privacy, the
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paper proposes an anonymization policy for the two data sources.
Chapter 3 follows up on the conclusion of Chapter 2 by surveying the

state of the art of using DNS or NetFlow data for malware detection pur-
poses. Both of these data types have individually been the subject of many
academic papers, and they are also actively used in commercial products.
However, no commercially available products and only a few academic pa-
pers rely on the combined feature set of DNS and NetFlow data. Neither
academic papers or commercial products address the anonymization require-
ment. Using a combination of anonymized DNS and NetFlow data to detect
malicious traffic therefore represents a relatively unexplored niche from both
an academic and commercial perspective.

Combining and making conclusions based on NetFlow and DNS data is a
more complex process than it seems to be at the first glance. To address this,
Chapter 4 provides a brief introduction to this topic, as well as an overview
of the properties of the data used for this thesis.

When performing the survey in Chapter 3 it was clear that a common
security measure is to let DNS resolvers block responses containing domain
names and IP addresses that are known to host malicious content. The im-
pact of such blacklists are often measured by the number of blocked DNS
responses. As not all DNS queries are followed by a connection towards the
IP address in the response, measuring the number of blocked DNS responses
could overestimate the impact significantly. The contribution of Paper B in
Chapter 5 is to use NetFlow records to measure the impact instead. The
method also makes it possible to assess the amount of web vs. non-web traffic
being blocked, how many flows are created towards blacklisted IP addresses
that host multiple (benign and/or malicious) domains, how many flows are
created towards spam hosts vs. phishing/malware/botnet hosts, etc. The
method is applied to data from Telenor DK to show that an approach that
includes both DNS and NetFlow data represents an improvement to existing
impact measurement methods.

It is a common assumption that when an application receives a DNS re-
sponse containing a particular IP address, it will create a connection to this
specific address (if a connection is created at all). It is, however, interesting to
consider what could happen, if this assumption is intentionally violated by a
malicious actor. For example, what if a bot-master does not want to divulge
the IP address in clear-text in a public directory? Such a botnet scheme is the
contribution of Paper C in Chapter 6, where the main idea is to encrypt the IP
address using semantic- and format-preserving encryption, create an DNS A
record containing the encrypted IP address, and let the client application per-
form the decryption before making a connection to the CnC infrastructure.
As the scheme does not divulge the clear-text IP address in DNS records, and
as the use of Fast Flux (FF) is not necessary, use of the proposed scheme raises
the bar for the defender, as the scheme makes it possible for a botnet to avoid
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existing FF detection mechanisms (by not using FF), and make it impossible
for a defender to create IP address based blacklists derived from DNS data.
Paper C also contributes with a DNS and NetFlow based detection method
that is validated using an emulated bot deployed in Telenor DK’s network.

Applying blacklists on ISP resolvers as described in Chapter 5 will only
increase the security posture of a user if the user uses the ISP’s resolvers.
Furthermore, the detection method outlined in Chapter 6 requires that the
ISP has access to DNS application layer logs. A natural question is therefore
if sufficiently many users are using the ISP’s resolvers for the DNS logs to be
considered representative for the entire user population. The answer to this
question is one of the contributions of Paper D in Chapter 7. In the paper,
a method is presented that uses anonymized and sampled NetFlow records
to estimate how many DNS responses are returned from 3rd party DNS re-
solvers compared to the default ISP owned resolvers. Both UDP, TCP, DNS-
over-TLS and DNS-over-HTTPS based queries are considered. The method is
applied to data from Telenor DK to show that less than 10% of the total DNS
traffic is from 3rd party resolvers. The second contribution of Paper D is to
outline the reasons users can have for not choosing ISP owned resolvers. Two
reasons are explored in depth, namely the availability of malware and/or
parental filtering on the resolver, and the desire to circumvent censorship
performed by the ISP’s DNS resolvers. Applying the method to data from
Telenor DK suggests that 3rd party resolvers are not to a great extent chosen
because of their malware filtering capabilities, but they are chosen in order
to circumvent censorship.

As elaborated above, users have the freedom to choose which DNS re-
solver should be used. However, in some cases malware will make this de-
cision on behalf of the unwitting user and select a malicious resolver. When
using a malicious resolver, DNS based security measures such as DNSSEC or
DNS-over-TLS can no longer be trusted, and a large number of redirection
attacks become easier. In Paper E in Chapter 8 it is assumed that a user will
never actively choose to use a resolver that is not being advertised on the web
as being a public resolver. The contribution of the paper is a Random Forest
based method that uses NetFlow features to classify the resolvers actually
being used as either well-known or malicious. This approach has a number
of advantages to existing methods, such as avoiding excessive Internet-wide
scanning, not relying on features controllable by a malicious actor, and that
access to the application layer data (such as the domain names or IP addresses
in the responses) is not needed.

A discussion of selected topics that relate to more than a single paper, such
as the applicability of the anonymization policy proposed in Paper A and
the business value of the research field from an ISP perspective, is the topic
of Chapter 9. Chapter 10 concludes on the thesis statement and provides
perspectives on the future use of ISP data for malware detection.
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Abstract

Internet Service Providers (ISPs) have an economic and operational interest in detect-
ing malicious network activity relating to their subscribers. However, it is unclear
what kind of traffic data an ISP has available for cyber-security research, and under
which legal conditions it can be used. This paper gives an overview of the chal-
lenges posed by legislation and of the data sources available to a European ISP. DNS
and NetFlow logs are identified as relevant data sources and the state of the art in
anonymization and fingerprinting techniques is discussed. Based on legislation, data
availability and privacy considerations, a practically applicable anonymization policy
is presented.

Keywords: ISP · privacy · DNS · NetFlow · IPFIX · cyber-security · anonymization

2.1 Introduction

Research in cyber-security is highly dependent on the availability of real-
life traffic traces for a number of different purposes. When collecting these
traffic traces, researchers and practitioners should consider aspects like legal
requirements and the privacy risk involved. However, these topics may not
be within the researchers’ area of knowledge. This can have a number of
undesirable consequences like increased project lead time, legal problems
when sharing project data, or spending time on research that is irrelevant
because it cannot be applied in practice. The purpose of this paper is to help
researchers and practitioners avoid some of these pitfalls when collecting
data at an ISP level.

To protect the privacy of the subscribers, European ISP legislation forbids
the use of certain data, and sets anonymization requirements on data usage,
requirements that also apply to positive use cases like cyber-security research.
However, the legislation does not present which specific anonymization tech-
niques must be used for specific data sources. Some studies of anonymization
techniques and privacy risks focus broadly rather than on giving practical
guidelines for specific use cases. Other studies investigate how specific data
sources can present a privacy problem in different use cases, but do not con-
sider if the data is already unavailable from a legal perspective or how to
mitigate the privacy risk.

In this paper, we firstly identify the ISP data sources legally and techni-
cally available for research. Furthermore, we present a practically applicable
and privacy-preserving anonymization policy, for NetFlow and DNS logs,
that complies with the relevant ISP legislation. This allows researchers and
developers to start with a focus on implementation rather than legislation
when creating solutions targeted for ISP deployments.
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This paper is organised in seven sections. Section 2.2 gives an introduc-
tion to the relevant legislation and anonymization requirements, and Section
2.3 on page 9 provides an overview of the data sources often technically avail-
able to an ISP. Having limited the relevant scope to two data sources, Section
2.4 on page 12 presents related work on anonymization techniques and on
subscriber fingerprinting based on anonymized DNS and NetFlow logs. Sec-
tions 2.5 on page 14 and 2.6 on page 20, build upon the knowledge derived
from all previous sections to propose and discuss concrete anonymization
policies for individual fields in NetFlow and DNS logs, thus providing the
primary contribution of the paper. Lastly, Section 2.7 on page 23 summarizes
and concludes the paper.

2.2 Legislation

To identify the legal opportunities and challenges, an overview of relevant
legislation is needed, which will be the topic of this section.

2.2.1 ePrivacy Directive

The ePrivacy Directive [8] from 2002 and the related national implementa-
tions, regulate among other things how ISPs are allowed to handle data re-
lated to the subscribers data traffic. The 2009 update of the ePrivacy Directive
does not contain any changes relevant to this paper.

Although the General Data Protection Regulation (GDPR) [10] is newer
than the ePrivacy Directive, the latter is considered lex specialis to the GDPR.
This means that the ePrivacy Directive overrides the GDPR in any situation
that is specifically described in the ePrivacy Directive. Furthermore, as the
ePrivacy Directive specifically regulates ISPs and their handling of subscriber
data traffic, the GDPR is considered out of the scope of this paper.

Articles 5, 6 and 9 in the ePrivacy Directive set the following limitations
relevant to this paper on processing a subscribers traffic or location data:

• Data already being processed for the purpose of transmission must be
made anonymous before additional processing.

• Data not being processed for the purpose of transmission or as part of
a value added service cannot be processed.

• Data can be processed for a specific value added service but only if
consent is available.

In the context of this paper, "processing" means any form of storage, ma-
nipulation, forwarding etc. of customer IP traffic, location data etc. [10] In
addition, "processing for the purpose of transmission" refers to processing
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needed to transfer IP packets (routing, switching), performing DNS lookups
(caching, recursing), authenticating the subscribers, routing packets to the
correct cell tower and similar operations [8].

As it is practically impossible to have all subscribers sign up to a value
added service relating to cyber-security research (and thereby providing con-
sent), using anonymized data is the only viable strategy.

2.2.2 Opinion on Anonymization Techniques

Various anonymization and pseudonymization techniques and their relation
to the legal framework are described in "Opinion 05/2014 on Anonymization
Techniques" [11]. "Opinion" documents contain the elaboration of a specific
directive or regulation, and are considered recommendations, not legislation.
This specific opinion is written to elaborate on the anonymization require-
ments in the Data Protection Directive, a predecessor to the GDPR, but is still
applicable and relevant.

Both the Opinion and recital 26 in the GDPR make a clear distinction
between pseudonymization and anonymization, and makes it explicit that
a requirement from the ePrivacy Directive to anonymize certain data is not
fulfilled by the use of pseudonymization.

Two main anonymization techniques are described:

• Randomization including noise addition and permutation techniques
"alter the veracity of the data in order to remove the strong link between
the data and the individual". As an example, an IP address (A) in a
specific data record can be substituted with a random IP address (B),
and the same IP address (A) in another data record can be substituted
with a different random IP address (C).

• Generalization including aggregation (k-anonymity), L-diversity and
T-closeness techniques "generalize, or dilute, the attributes of data sub-
jects by modifying the respective scale or order of magnitude". As
an example, the IP addresses in all data records can be replaced by
a smaller IP prefix.

The differential privacy technique is also described, but as this technique
requires the original data to be retained, this technique is not compliant with
the anonymization requirement of the ePrivacy Directive.

The Opinion concludes that in most cases it is not possible to give min-
imum recommendations for parameters to use as each data set needs to be
considered on a case-by-case basis.
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2.2.3 Summary

The ePrivacy Directive mandates that only data already being processed by
the ISP for the purpose of transmission can be used for cyber-security re-
search, and the data can only be retained in an anonymized form. The Opin-
ion on Anonymization Techniques details which anonymization techniques
are considered compliant. The specific data sources to be used for cyber-
security research must therefore be determined before further anonymization
considerations can be made.

2.3 Data sources

The restrictions posed by legislation depends on the type of data that is to
be processed. In this section, the data sources available to Telenor Denmark
will be described as a representative example of data sources being generally
available to an ISP. Table 2.1 on the next page summarizes the data sources,
their content and their usage restrictions based on the presentation of legis-
lation in section 2.2 on page 7. This will provide an overview of which data
sources are both legally and technically available for cyber-security research,
which can help researchers determine if their research can be applied legally
in practice.

The data sources that require anonymization are described in more de-
tail in the following sections. Note that all data sources containing personal
identifiable information like IP addresses require anonymization or consent
to be used. Omitted are those that are not relevant in relation to Internet
cyber-security research, thus excluding for example the SMS/MMS service
and non-Internet based telephony services. Section 2.3.4 on page 12 summa-
rizes and discusses possible use cases for the available logs.

2.3.1 Identity of the subscriber

IP assignment log Assigning an IP address to a subscriber is handled by
different components depending on the access type (DSL/fiber/coax/mo-
bile). Each component can, however, create an accounting log entry contain-
ing the subscriber identity (DSL-number or IMSI) and the assigned/revoked
IP address. In a Telenor Denmark context, the DSL-number is a 4-6 digit
broadband customer identifier that (despite the name) enumerates both coax,
fiber and DSL customers.

CGNAT log If mobile subscribers are assigned private IP addresses, Car-
rier Grade Network Address Translation (CGNAT) functionality is used. CG-
NAT can operate just like regular Network Address Translation (NAT) except
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Name Usage restriction Contents
IP assignment log Anonymized IP address,

IMSI/IMEI/DSL-
number

CGNAT log Anonymized Private/public IP
address, port block

Customer database Contract/consent Person name,
geographical address,
IMSI/DSL-number

Modem/router at customer Contract/consent Attached device name,
MAC and IP

EPDG CDR log Anonymized IP address, IMSI, RAT
type (WiFi)

Cell database None Geographical address,
gain/height/tilt etc.

Mobility event log Anonymized IMSI/IMEI, RAT type,
cell ID

NetFlow log Anonymized TCP/UDP/IP session
information

DNS log Anonymized Source IP address and
port, queried domain
name and response

Layer 3-7 DPI Contract/consent IP address, malware
type

PGW application log Contract/consent IMSI/IMEI, IP
address, layer 7
specific information

PGW flow log Contract/consent IMSI/IMEI,
TCP/UDP/IP session
and layer 7 application
enumeration

Table 2.1: ISP data sources relevant for cyber-security research
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that the NAT is performed at the ISP premises rather than at the customer
premises. Multiple customers thereby share the same public IP. The Telenor
Denmark CGNAT device reserves a range of 64 ports (a "port block") to each
private IP address. Upon assigning/revoking this port block, a CGNAT log
entry is created containing private IP address, public IP address and port
block. Notice that a log entry is not created for each TCP/UDP session, it
is only created for each port block allocation. The use of NAT logs can be
relevant when distinguishing between different mobile subscribers sharing
the same IP address.

EPDG CDR log In order to use Voice-over-WiFi service the mobile phone
must create an IpSec tunnel towards the Evolved Packet Data Gateway (EPDG).
The EPDG can create a log line containing the IMSI and the source IP address
of the IpSec tunnel. This log is known as a Call Data Record (CDR), de-
spite the fact that it is not the phone call, but the tunnel establishment that is
logged. This provides two interesting pieces of information: First the fact that
a phone is attached to WiFi rather than being completely offline. Second, it
shows which broadband subscription the mobile phone is connecting from.
This can be used to distinguish between an infected broadband subscriber
and an infected mobile subscriber using a broadband subscriber’s WiFi.

2.3.2 Mobile location

Cell Database Information about the geographical location, frequency, an-
tenna gain/height/tilt, topography etc. of all cells is available in a central
database. This can be used to estimate the coverage area of a specific cell.

Mobility event log Phone mobility on 4G is handled by the Mobility Man-
agement Entity (MME) component, and this component can create a log line
for each mobility event containing the subscriber identity (IMSI/IMEI), the
destination cell identity (a 5-6 digit number) and the destination Radio Access
Technology (RAT, 2G/3G/4G).

2.3.3 Internet activity

NetFlow log The routers of the backbone network can emit NetFlow/IPFIX
records. Most ISPs have equipment capable of doing this, but the specific
implementation varies. ISPs may emit NetFlow logs from all routers or no
routers, and may use varying levels of sampling/aggregation.

DNS log Most subscribers (both mobile and broadband) use the ISP’s DNS
resolvers for name resolution. A log entry can, depending on the logging
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method, contain the client source IP/port, the query and the response. The
authoritative DNS servers are considered less relevant for the topic of this
paper, as traffic from ISP subscribers will in most cases be visible at the DNS
resolvers as well.

2.3.4 Summary

This section outlines the different data sources available to Telenor Denmark
as an example of a typical ISP, and identifies if consent or anonymization is
required for data usage. Specifically for cyber-security research, the point
of focus is the Internet activity (described by DNS and NetFlow logs) rather
than the location or the subscriber identity. The DNS and NetFlow logs must
be anonymized before use, and this is the topic of the rest of the paper.

2.4 Related work

The previous sections argue that of the data sources technically and legally
available to an ISP, NetFlow and DNS logs are the most interesting to cyber-
security research. Having limited the scope, it is now relevant to identify
existing, related work on DNS and NetFlow anonymization and fingerprint-
ing. First, we provide a few notes on terminology and a general overview of
related work. Afterwards, we discuss relevant papers in NetFlow and DNS
respectively.

2.4.1 Terminology and overview

Many papers describe topics relating to anonymization, privacy and finger-
printing, so in order to discern which papers are the most relevant, an intro-
ductory note on terminology and preconditions is needed:

• Aggregation vs. generalization: Some papers use the terms generaliza-
tion and aggregation interchangeably or with different definitions. For
this paper, the terminology applied in RFC6235 will be used [12], and
only generalization approaches are considered to preserve utility.

• Anonymization vs. pseudonymization: A brief look at existing liter-
ature, including taxonomy papers, shows that the distinction between
anonymization and pseudonymization required by legislation is not of-
ten used, as typically the term "anonymization" is used for pseudonymi-
zation techniques as well.

• Anonymization must be applied before data analysis: Some techniques
such as (k,j)-obfuscation [13] are based on a statistical analysis of the
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Related Work
Aspect 11 12,14 15 16,17,18,19 20 21 22 23
NetFlow or DNS X X X X X X
Anon. techniques X X X X X
Protocol fields X X X X
Privacy risk X X X X X
Legislation X X

Table 2.2: Notable related work and aspects in focus

entire data set to be obfuscated, thus requiring all data to be stored in
a non-anonymized form prior to release, which is not in line with legal
requirements.

The goal of this paper is to provide a DNS and NetFlow anonymization
policy stating which anonymization technique should be applied for individ-
ual protocol fields, while taking the privacy risk and ISP related legislation into
consideration when focusing on the cyber-security research use case. Related
works cover some but not all of these aspects, as illustrated by Table 2.2.

2.4.2 NetFlow

A good introduction to the topic of passive internet measurement in general,
including many aspects ranging from a legal overview to lessons learned on
various practical deployment work is written by the authors of [15]. One of
the lessons learned is that considering legislative aspects is a time consuming
and complicated process, a problem that this paper attempts to address.

RFC 6235 provides a thorough walk-through of anonymization and pseu-
donymization options for the individual fields of the IPFIX protocol [12]. The
paper categorizes various anonymization techniques into different classes,
however, only the classes named "generalization" (such as truncation) or
"set substitution" (such as noise addition) can be considered anonymization
rather than pseudonymization techniques [11]. The paper does not provide
any specific suggestions such as the length to be used for IP address trunca-
tion or on how much the precision of a timestamp should be degraded.

A comprehensive survey of anonymization techniques and 25 tools is
written by the authors of [14]. The paper also discusses the relevance of
anonymizing different fields in the different protocol layers in a network
packet capture. The paper concludes with a number of statements like "The
port number should not be anonymized as it will have a big impact on the
usefulness of a network capture and cannot be directly used for identifi-
cation" [14] and "Currently, in an environment without completely trusted
parties, it is not recommended to share complete anonymized datasets. The
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current protection against re-identification is still inadequate." (due to the
large amount of context available in complete datasets) [14]

2.4.3 DNS

Two papers show that it is possible to perform user fingerprinting based on
the domain name part of DNS logs [16, 17]. However, no suggestions on
how to anonymize the DNS logs in data storage / mining environments are
provided.

The authors of [19] describe the best privacy practices for DNS operators.
Authenticity and confidentiality mechanisms like DNSSEC and DNS-over-
TLS are described, but the section detailing how to protect data at rest fo-
cuses mainly on data minimization, IP address anonymization and TCP/TLS
related features.

The implications of using only requests for the top n most popular host
names for identity fingerprinting, as well as using only requests for anything
but the n most popular host names is discussed by the authors of [16]. This
is relevant in the context of cyber-security research as this idea can be used
for data minimization, thus decreasing the privacy risk.

Bloom filters [24] rely on hash functions to store domain names in an
irreversible way. While this provides good privacy, it also reduces the utility
of the stored data, as data can then only be used to search for already known
malware related domain names. This excludes for example domain names
created by a Domain Generation Algorithm. While this can be sufficient from
an operational perspective, it is less interesting to a cyber-security researcher,
and therefore Bloom filters will not be considered further in this paper.

2.4.4 Summary

Related work does not provide a concrete answer on how an anonymization
policy could be implemented, but does provide some good directions. The
most specific input to an anonymization policy is provided by RFC 6235,
which suggests specific techniques like truncation, but not directions on the
truncation length. Based on these directions, section 2.5 and 2.6 on page 20
will provide a suggestion for a legally compliant anonymization policy suit-
able for ISP cyber-security research.

2.5 NetFlow anonymization policy

Based on the directions offered by legislation and related work on anonymiza-
tion of NetFlow described in the previous sections, this section will provide
a suggestion for a legally compliant anonymization policy suitable for ISP
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Field Technique Specifics
Bytes/packets Precision degradation NetFlow 1:n sampling
Start/end time Reverse truncation Remove AM/PM info
IP addr.(no NAT) Truncation Truncate to /24 prefix
IP addr.(CGNAT) None -
IP addr.(Infrastr.) None -
IP addr.(external) Truncation Truncate to /16 prefix
IP protocol Binning TCP+UDP+ICMP/"other"
ICMP type+code None -
Port (no NAT) None -
Port (CGNAT) Truncation Truncate to /2 prefix
Port (Infrastr.) None -
Port (external) None -
TCP flags None -

Table 2.3: NetFlow anonymization policy assuming 64 port block based CGNAT

cyber-security research. The section describes the choice of protocol field-
/features, elaborates on the choice of anonymization technique for the in-
dividual fields, and concludes by providing the pseudo-code implementing
such a policy.

2.5.1 Choice of features

The IPFIX features most typically used for cyber-security research [25] are
listed in Table 2.3 along with the suggested anonymization policy. ICMP
type/code and TCP flags are also added to table. The following paragraphs
describe the considerations for each field noted in the table.

2.5.2 Feature anonymization details

Total bytes and packets The total count of bytes and packets in a TCP/UDP
session can be used for user profiling and for attacks against other anonymiza-
tion techniques [12]. Moreover, it can under some circumstances be used as
part of an algorithm to determine which web sites are visited [23].

The discussion may, however, be less important in practice, as NetFlows
are typically sampled 1:n when collected by an ISP for performance reasons.
The sampling also automatically provides a precision degradation of packet
and byte counts, which is considered a valid method of anonymization for
that field [12]. From a performance perspective, network equipment vendors
consider n <= 512 a very low sample rate. This order of magnitude for
sampling seems likely to be sufficient for anonymization purposes although
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to the best of our knowledge, no research has been conducted on quantifying
this.

IP addresses The authors of [18] conclude that if any other type of IP ad-
dress anonymization technique than truncation is applied, re-identification
of a host in NetFlow traffic is possible when active fingerprinting techniques
are applied. If IP address truncation is applied, other fields may still be able
to identify the host, though.

Fig. 2.1: Classification of IP addresses

From the perspective of an ISP capturing NetFlow at the border routers,
4 different categories of IP addresses are relevant to describe separately, as
illustrated in Figure 2.1: Some Provider Assigned (PA) IP addresses are al-
located directly to subscriber equipment (typically broadband routers at cus-
tomer premises), some PA IP addresses are allocated for use on the outside
of the CGNAT device and some PA IP addresses are allocated to ISP in-
frastructure, including the DNS servers, content caches, routers etc. IP ad-
dresses outside the ISP/provider realm (more specifically IP addresses not
announced through Border Gateway Protocol (BGP) by the ISP outside the
ISPs Autonomous System (AS)) will simply be referred to as "external" IP
addresses.

Whether PA and external IP addresses should be subjected to the same
truncation length is discussed in [20] based on a "risk vs. utility" analysis.
Choosing the "sweet spot" with the most utility preserved, this would be
equivalent to truncating PA IP addresses to their /24 prefix and external IP
addresses to their /16 prefix.

Truncation of prefixes is considered an implementation of k-anonymity
[11]. Extensions to k-anonymity like l-diversity and t-closeness require an
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analysis of the data distribution before anonymization. These extensions are
therefore not immediately implementable in practice.

Timestamps Several papers discuss host fingerprinting based on ICMP Ti-
mestamp Requests/Replies and the TCP Timestamp option, as these contain
a timestamp that originates from the host. However, neither DNS or NetFlow
logs contain a host originated timestamp, as only the timestamps from the
NetFlow/DNS log capture devices are logged. This timestamp can be used
in an injection attack to identify a host in a traffic trace with pseudonymized
(permuted) IP addresses [21].

In the case where only one subscriber in a truncated IP prefix is actively
generating traffic at a specific period of time (e.g., during nighttime), this sub-
scriber does not benefit from IP address truncation. To preserve anonymity,
the precision of the timestamp could be reduced to for example an hour or a
minute. These approaches are typically infeasible for research, as the order
of events is not preserved. An approach not described by the authors of [12]
or other known sources is to simply remove AM/PM information from the
timestamp. This approach has the advantage compared to traditional preci-
sion reduction that the order of all interrelated NetFlow/DNS events that do
not cross the AM/PM time boundary is preserved.

IP protocol The IP header protocol field is not considered privacy sensitive
by any known papers, the authors of [14] even omit the discussion of the field
entirely. RFC 6235 suggests using the binning technique such that 4 bins are
used: TCP, UDP, ICMP and "all other protocols", an approach which seems
suitable for cyber-security research as well.

ICMP type/code ICMP messages and their payload are widely used for
OS fingerprinting by tools such as Nmap. The methods typically involve
differentiating using TTL or some other IP field, however a specific method
creates ICMP requests using illegal combinations of type and code values,
and the ICMP response code can then in some cases reveal the OS family [26].
To anonymize this, the code field could be omitted from the logs. However,
doing so comes with a significant drawback, as it will obviously also hide
any malware using the technique for OS detection.

Note that when using NetFlow logs from an ISP, the OS family revealed
will typically not reveal the end users’ operating system. Instead, it will
reveal either the OS family of the subscribers’ modem/router/firewall or the
CGNAT device deployed by the ISP. Therefore, the reasonable compromise
for cyber-security research seems to be not to anonymize this field.
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Ports The authors of [22] conclude that anonymizing ports or IP addresses,
as opposed to anonymizing other individual fields, have the biggest impact
on the utility of the data. However, the risk and the risk/utility trade-off
is not discussed in the paper. Not much research was found that quantifies
the risk of host fingerprinting based on port numbers when IP addresses are
truncated in practice. The authors of [21] provide a short note describing that
injected flow patterns are no longer recognizable under certain anonymiza-
tion policies. However, they do not describe a systematic approach or conclu-
sion for this. This is likely caused by the fact that much attention has already
been given to properly randomizing TCP port numbers to avoid Denial-Of-
Service and Man-In-The-Middle attacks [27]. The authors of [14] conclude
that the port number should not be anonymized as it will have a big impact
on the usefulness of a network capture.

TCP flags TCP flags can be used for OS fingerprinting using a technique
similar to the one described for fingerprinting using ICMP type and codes:
Specific flags in a request can trigger an OS-specific flag combination in the
response. Analyzing TCP flags is key in detecting malware employing DDoS
SYN attacks and other attack types.

As with the ICMP type and code, the OS family revealed by TCP flags will
typically not reveal the type of CGNAT device deployed by the ISP. Therefore,
the reasonable compromise seems to be not to anonymize this field.

NAT Most ISPs implement CGNAT for at least a subset of their subscribers,
so that one IP address contains traffic from more than one subscriber. Many
port allocation schemes exist, and it is beyond the scope of this paper to de-
scribe all. However, from an anonymization perspective, two different con-
sequences of introducing CGNAT can be relevant: decreasing the truncation
length of the IP address and increasing the truncation length of the port.

In a CGNAT scheme where a single RFC6598 IP address is shared by for
example 32 subscribers (5 bits) by random port assignment, the PA IP address
truncation length could be reduced from a /24 (256 addresses,8 bits) to a /29
(4 addresses,32+5-8=29 prefix) to preserve utility as the expected amount of
hosts grouped will then be the same.

In a scheme where the port allocation is not random, but based on a range
of ports being reserved for a particular host, or where initially randomly as-
signed ports are heavily reused for the same subscriber, the port information
must be truncated using the same methodology as the IP addresses. For
example, if a port block of 64 ports (6 bits) are reserved for each user, and
anonymization equivalent to a /24 IP prefix (256 addresses, 8 bits) is de-
sired, the port number must be reduced to 16-6-8=2 bits. However, the PA IP
address truncation can then be reduced to a 32+16-6-8=34 prefix, effectively
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Listing 2.1: NetFlow anonymization policy.

1 def anontimestamp ( timestamp t )
2 i f t . hour >= 1 2 :
3 t . hour = t . hour −12
4 return t
5
6 def anonipport ( i n t 3 2 ip , i n t 1 6 port )
7 i f ip in l i s t O f S u b s c r i b e r A s s i g n e d P r e f i x e s :
8 ip = ip & 0xFFFFFF00
9 e lse i f ip in l i s tOfCGNatPref ixes :

10 port = port & 0xC000
11 e lse i f ip in l i s t O f I n f r a s t r u c t P r e f i x e s :
12 // do nothing
13 e lse : // e x t e r n a l
14 ip = ip & 0xFFFF0000
15 return ip , port
16
17 s t a r t t i m e = anontimestamp ( s t a r t t i m e )
18 endtime = anontimestamp ( endtime )
19 src ip , s r c p o r t = anonipport ( s rc ip , s r c p o r t )
20 dst ip , ds tpor t = anonipport ( dst ip , ds tpor t )
21
22 i f protoco l != (ICMP or TCP or UDP) :
23 protoco l = 0

making the anonymization of the PA IP address unneeded.

2.5.3 Pseudo-code: a NetFlow anonymization policy

The pseudo-code listed in Listing 2.1 implements the anonymization pol-
icy summarized in Table 2.3 on page 15 assuming sampling by the NetFlow
emitter. Lines 2-3 remove AM/PM information, lines 8 and 14 truncate IP
addresses to /8 and /16 prefixes, line 10 truncates the port number to a /2
prefix for customers with NAT (assuming 64 port range based CGNAT). It is
noteworthy that the implementation can be made with basic operations. This
allows a high level of performance, which is required for ISP deployments.
Searching for an IP address in a list of prefixes (lines 7, 9 and 11) should
also be implemented effectively. This is considered trivial, assuming a small
amount of non-overlapping prefixes is used, and therefore it is omitted for
readability. Finally, lines 22-23 implement binning of protocol information
into 4 different bins.
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Field Anonymization tech. Specifics
Timestamp Reverse truncation As NetFlow
Client IP address As Netflow As NetFlow
Client TCP/UDP port As Netflow As NetFlow
DNS header None -
DNS response TTL Binning 5 predefined bins

Table 2.4: Content independent DNS anonymization policy

2.6 DNS anonymization policy

Similar to the previous section but focusing on DNS rather than NetFlow,
this section will provide a suggestion for a DNS anonymization policy, and
provide the pseudo-code implementing such a policy.

2.6.1 Choice of features

The choice of features for DNS based cyber-security research is very di-
verse [28]. Moreover, whereas NetFlow is only a format for logging passively
collected flow properties, DNS is a service used (and potentially attacked)
by subscribers. This calls for a more full-featured approach to logging than
focusing on a few specific fields. One example is that a protocol violation
could be made intentionally by a client to attack the DNS service, and this
can only be discovered if the specific field containing the violation is logged.

A DNS packet typically consists of a header section and a query section,
and response packets also include one or more sections containing the answer
to the query. The answer sections can contain a number of different resource
records (RRs). The content, typically an IP address or domain name, and the
interpretation of the query and answer RRs depend on flags in the header as
well as on which specific type of information is queried.

The increased field diversity and inter-dependency makes DNS log anony-
mization more complicated than NetFlow log anonymization: Table 2.4 lists
a number of fields for which an anonymization policy can be directly de-
scribed, whereas Table 2.5 on the next page lists the type dependent anony-
mization techniques. The lines of the tables are elaborated in the following.

2.6.2 Feature anonymization details

Timestamp, Client IP address and TCP/UDP port For these fields, the
anonymization policy also used for the similar fields NetFlow packets is cho-
sen. To the best of our knowledge, no research is made that indicates that
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Opcode Class Type Domain anon. technique
Not Query - - None
Query Not IN - None
Query IN Common types Minimization
Query IN Uncommon types None

Table 2.5: Content based DNS anonymization policy

DNS and NetFlow logs should be subject to different anonymization require-
ments relating to these fields.

DNS header The DNS header consists of a number of identifiers, response
codes and flags. Many of these are needed to parse the non-header compo-
nents, and no fields contain directly personal identifying information. The
randomness of the Message ID has, like the randomness of the TCP/UDP
source port number, been subject to scrutiny to prevent Man-in-the-Middle
attacks, so this field is expected to be properly randomized to not represent
a privacy risk.

TTL The TTL value found in the answer sections of a DNS packet could,
together with the timestamp, be used to determine that two clients requested
the same RR, as these would have the same TTL. Nevertheless, it is unknown
whether this can be practically exploited for subscriber fingerprinting. The
bins [0, 1), [1, 100), [100, 300), [300, 900), [900, ∞) are found to be relevant for
cyber-security research [29], and therefore this technique is chosen.

Uncommon opcodes, classes and types Request and response messages
containing an Opcode of any other value than "query" (such as "status" or
"update"), query messages of any other class than IN (such as Chaos and
Hesiod) and IN class query messages of any other type than the 15 most
common types (see below) are represented by the first two lines and the last
lines in Table 2.5. A smaller data sample collected at Telenor Denmark sug-
gests that traffic in these three categories represent misconfigured equipment,
malformed packets and spurious requests with an empty response. This type
of traffic does not seem to be the result of human Internet usage behavior and
is therefore not likely to represent any privacy risk. However, as mentioned
initially, the traffic may represent an attack initiated by malware, and there-
fore the data is still relevant to retain.

Common types On Telenor Denmark’s resolvers, the 15 most common query
types in the IN class are A, AAAA, A6, CNAME, PTR, MX, TXT, SRV, NAPTR,
NS, SOA, DS, RRSIG, DNSKEY and NSEC3. Resource records of these types
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typically consist of a QNAME component (the name queried) and an RDATA
component (the response to the queried name). Either of these components
can contain an IP address, a domain name or a string of text containing either
of the two, such as SRV or TXT records. It is clear that any anonymization
policy applied to an RR must be applied to both the QNAME and RDATA
components, as one component can typically be derived from the other by
issuing a new DNS request, thus breaking the anonymization.

Domain name As described in Section 2.4 on page 12, the queried domain
name can be used to fingerprint subscribers, and the only known anonymiza-
tion strategy is data minimization. The authors of [16] suggest two minimiza-
tion strategies: Omitting the most or least popular hostnames. From a cyber-
security research perspective, omitting the least popular hostnames severely
decreases data utility. As an example, botnets based on Domain Generation
Algorithms (DGAs) are likely to be rendered undetectable.

The authors of [16] argue that omitting the most popular hostnames would
have only a limited effect on fingerprinting risk, though the effect increases
when the 500-1000 most popular hostnames are omitted. However, it is ques-
tionable if this result applies on an ISP network in 2020. The paper analyses
data from approximately 3600 users on a campus network in 2010, where
removing the 1000 most popular hostnames is equivalent to removing 51,2%
of all queries. Nevertheless, on Telenor Denmark’s network having around
1.7 million subscribers in 2020, the same percentage of queries relates only to
15 domains and associated subdomains1. This suggests that significant data
minimization (removing > 50%) could decrease the fingerprinting risk. If
the omitted domain names represent domains that are less interesting from
a cyber-security research perspective, the utility of the data can be preserved
while decreasing the fingerprinting risk.

OS fingerprinting can be avoided using the same technique, by simply
adding known OS-specific domain names and IP addresses to the list of omit-
ted domains. This includes for example captive portal detection mechanisms
(such as resolving "connectivitycheck.gstatic.com"), proxy detection (resolv-
ing the "wpad" hostname), etc.

2.6.3 Pseudo-code: a DNS anonymization policy

The pseudo-code listed in Listing 2.2 on the facing page implements the
anonymization policy summarized in Tables 2.5 on the previous page and
2.4 on page 20. The anonymization functions for timestamps and client IP
address/port (lines 1 and 2) can be found in Listing 2.1 on page 19. Line

1Specifically: apple.com, facebook.com, akadns.net, google.com, googleapis.com,
snapchat.com, akamaiedge.net, fbcdn.net, icloud.com, apple-dns.net, doubleclick.net,
gstatic.com, netflix.com, microsoft.com and googlevideo.com.
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Listing 2.2: DNS anonymization policy.

1 timestamp = anontimestamp ( timestamp )
2 ip , port = anonipport ( ip , port )
3
4 i f header . opcode == Query :
5 i f query . c l a s s ==IN and query . type in commonTypes :
6 i f any in commonDomainList in query . name :
7 query . name = " "
8
9 foreach r r in answerSectionsOfPayload :

10 i f r r . c l a s s ==IN and r r . type in commonTypes :
11 r r . t t l = integerBinning ( l i s t O f I n t e r v a l s )
12 i f any in commonDomainList in r r . name :
13 r r . name = " "
14 r r . data = " "
15 i f any in commonDomainList in r r . data :
16 r r . name = " "
17 r r . data = " "

11 represents the binning of the TTL value, but the implementation of the
function itself is left out for brevity. Lines 5-7 clear the queried domain name
if it matches or is a sub-domain of the domain names listed in commonDo-
mainList. Lines 12-17 perform the same operation on the Answer RRs, which
includes searching for the domain name in both the question (rr.name) and
response (rr.data) part of the RR. For brevity, the Answer payload section is
considered to also include the Additional and Authoritative sections.

The DNS anonymization pseudo-code is clearly more computationally
heavy than the NetFlow anonymization pseudo-code due to the use of string
operations. This is to some extent mitigated by the list of common domains
being short.

2.7 Conclusion

It has previously been unclear what traffic data an ISP has available for cyber-
security research, and under which legal conditions it can be used. This paper
attempts to address this by presenting relevant legislation and data sources,
and by presenting an anonymization policy for the relevant data.

The EU ePrivacy Directive puts strict requirements on which data can be
used by ISPs. Only data that is already used for the purpose of transmission
can be used for other purposes, and then only when anonymized. If use
of other data and/or use of data in a non-anonymized form is desired, an
explicit consent from the subscriber is required. We present the relevant
data sources available to a typical ISP, using Telenor Denmark as example,
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and argue that DNS and NetFlow data are identified as relevant to cyber-
security research and as technically and legally available data sources under
the condition that the data is anonymized before further processing. We
elaborate by proposing anonymization policies (in the form of pseudo-code)
for DNS and NetFlow log data.

The proposed anonymization policies make use of various techniques for
generalization, such as truncation of IP addresses, precision degradation of
timestamps, data minimization on collected DNS logs etc. as mandated by
legislation and suggested and inferred by best practices and related work.
The pseudo-code implements the anonymization in a computationally inex-
pensive way such that application at ISP-scale traffic rates is possible. The
anonymization policies and related pseudo-code are considered the primary
contribution of this paper, giving researchers and developers a concrete and
technically focused starting point when creating solutions targeted for de-
ployment in ISPs.
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CHAPTER 3
State of the art

This chapter contains a survey of the state of the art on DNS and NetFlow
based malware detection in both commercial offerings and academic papers.
This serves as an general introduction to existing research and current prod-
uct capabilities, but also as a means to identify unexplored topics for the
thesis.

3.1 Commercial

Some of the commercially available products treat DNS as a high-value source
of information, some just threat it like any other user application. However,
each product typically has one primary focus, and to identify the state of the
art within NetFlow and DNS analysis, it is therefore only interesting to iden-
tify market leaders in these two areas and describe their products capabilities.
This will be the topic of the next two sections.

3.1.1 NetFlow

Many commercially available solutions for detecting and blocking malicious
network traffic use a mix of different methods to do so: Traditional firewalls
only rely on IP addresses and ports (OSI layer 3-4) information, whereas
Next-Generation firewalls allow or block specific (OSI layer 5-7) applications.
Intrusion Detection and Prevention Systems (IDPS) do not necessarily have
application awareness, but rely on signatures or fingerprints for detection of
known threats. These solutions are typically deployed in-line in the traffic
stream, so that all packet layers are available for analysis, and so that any
malicious traffic can be blocked. Therefore, these products rarely focus on
ingesting NetFlow data, and are therefore of less interest in to this thesis.

Conversely, Network Behaviour Analysis (NBA) or Network Behaviour
Anomaly Detection (NBAD) products traditionally focus on detecting anoma-
lies by measuring volumes from NetFlow data, and comparing those to ex-
pected threshold values, to detect unknown threats. NBA vendors have lately
started to employ machine learning techniques rather than simple preset
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thresholds, and some also look at the entire network packet. Therefore, this
product category is interesting to elaborate further.

An NBA vendor overview is available from general, open sources like
Wikipedia [30], but more detailed vendor/product analyses are provided by
companies like Gartner [31]. To find the market leader(s) relevant to this
thesis, the following criteria are used to shortlist the available products:

• Products must focus on detecting malicious activities, rather than focus
on network device capacity/bandwidth and performance monitoring
(an NPMD system like Paessler PRTG or SolarWinds).

• Products must not exclusively focus on DDoS protection, thus exclud-
ing for example NetScout (formerly Arbor Networks).

• Products must focus on behavioural analysis of network traffic (an NBA
system), rather than signature matching of network traffic (an IDPS
system like Snort and Suricata)

• Products must clearly state support for NetFlow input. This excludes
many popular NBA vendors, for example Darktrace, Vectra and Core-
light (including Zeek/Bro).

• Products must focus on NetFlow rather than focus on parsing of logs
in general (such as a SIEM system like SolarWinds SEM, IBM QRadar
and Splunk).

• Products must use NetFlow as a primary basis for behavioural analy-
sis. This excludes ExtraHop Reveal(x), Plixer Scrutinizer, LogRhythm
Netmon, Palo Alto Cortex XDR and HPE-Aruba Introspect, as these
primarily use NetFlow for simple or secondary/supporting purposes.

Products satisfying these criteria are: Cisco StealthWatch [32], McAfee
Network Threat Behaviour Analysis [33], ManageEngine NetFlow Analyzer
[34], Bitdefender NTSA (previously known as Redsocks MTD) [35], River-
bed Flowtraq [36], Solana Networks SmartFlow [37] and FlowMon Anomaly
Detection System [38]. The three first products provide a good use case
overview. The remaining four provide only outdated or no real use case
overview, making it hard to asses the products based on publicly available
material. However, as a curiosity, the capabilities of the company Redsocks
(later Bitdefender) may be described indirectly by the state of the art of the
academic research in section 3.2 on page 30, as their former product manager
has also been active in the academic community [39] [40].

The most thorough documentation of methods and capabilities is pro-
vided by Cisco Stealthwatch [41] [42], and this is also the only vendor that
in any detail describes how machine learning is used in the product [43],
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Table 3.1: Netflow based detection categories
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whereas the other products only mention using machine learning as part of
the marketing material.

Based on the documentation from various vendors, malicious behaviour
is detected using several methods as summarized in table 3.1. Notice that this
analysis is completely based on publicly available product manuals and/or
promotional material, not actual product usage or technical implementation
documentation.

3.1.2 DNS

In order to find the state-of-the art in DNS analysis tools, three different
tool categories must be surveyed: The DNS resolver service itself (either on-
premises or cloud based), SIEM tools operating on DNS logs originating from
the DNS resolver, and IDS/NBA tools operating on the DNS traffic toward-
s/from the DNS resolver. Unlike NetFlow NBA tools, no publicly available
overview or comparison of DNS analytics tools that focus solely on detecting
malicious activity could be found. To find the market leader(s) relevant to
this thesis, the following criteria are used to shortlist the available products:

• Products that focus on protecting the DNS resolver itself from being the
victim of attacks (like DDoS, software exploits, cache poisoning etc.)
are considered out of scope, whereas detecting attacks that use DNS
resolvers as the weapon (for example reflection attacks) is in scope.

• Products that focus only on authoritative servers are out of scope.

• Products must put a strong focus on detection of malicious activity.
This excludes for example Bind, Djbdns and Unbound.

• Products must implement and focus on more features than domain
blocking based on threat intelligence or content category feeds. This
excludes the vast majority of cloud DNS providers like ns1, Quad9,
Cloudflare, Google, Neustar/Verisign, Watchguard DNSWatch, Con-
stellix, Verigio Proxywall, ThreatSTOP DnsDefence, Microsoft DNS an-
alytics and EonScope DNSSense, but of course also threat intelligence
providers like Deteque/Spamhaus, Surbl and malwaredomainlist.com.

• Products must focus on DNS as the primary area, rather than be a
smaller feature as part of another product (for example an IDS or SIEM
product, or LogRythm NetMon)

The remaining products fall roughly into three different categories: Some
products like those available from NexusGuard, CSIS, EfficientIP, BlueCat
and Netsurion document some advanced features, but not at any depth or
breadth to be considered market leading. A larger feature set documented
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Table 3.2: DNS based detection categories
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to a larger extent can be found at PowerDNS [45], PaloAlto DNS Security
Service [46], Akamai ThreatAvert (formerly Nominum) [47], Plixer FlowPro
Defender [44], AlphaSOC Analytics Engine [48] and F5 DNS Security [49].

The market leaders, from both a feature and documentation perspective
seems to be Cisco Umbrella (formerly OpenDNS) [50] that publish for ex-
ample how DGA algorithms are investigated [51], Infoblox Advanced DNS
protection [52] that publish for example entire books on DNS security [53]
and HP Arcsight DNS Malware Analytics (formerly Damballa) [54] that pub-
lish for example detailed tech reports about scalability [55].

As with the Netflow product survey, only publicly available product man-
uals and/or promotional material is used. Commercial products for detect-
ing malicious behaviour based on DNS traffic use some or all of the methods
summarized in table 3.2.

3.1.3 Discussion

It is clear that commercial solutions exist with great potential for detecting
malicious traffic based on both NetFlow and DNS. However, some caveats ex-
ist: None of the products described above document the ability to anonymize
or operate on pre-anonymized NetFlow data. In particular, this presents the
problem of being unable to distinguish between two different subscribers us-
ing CGNAT, and the ability to correlate the cleartext IP addresses from threat
intelligence feeds (including black/white lists) with the anonymized IP ad-
dresses when a subscribers IP is listed in threat intelligence or otherwise
considered a bad host.

Interestingly, none of the products in the survey appear able to perform
behavioural analysis on the combination of DNS and NetFlow features. Anal-
ysis is performed on DNS data to provide a reputation score, which is then
added to the with the reputation score derived from NetFlow data. And
NetFlow information is augmented with information from the relevant PTR
record to identify the related domain. However, no public documentation
could be found that shows that the products combine DNS and NetFlow
data such as described in Chapter 4 on page 35 in this thesis.

3.2 Academic

Many different surveys and state of knowledge articles are available in the
academic literature for both NetFlow and DNS based detection systems. This
thesis will for brevity reference these rather than present a new survey. A
good and contemporary introduction to the area of intrusion detection sys-
tems in general and an overview of the various techniques in use (Neural
networks, univariate models, finite state machines, Hidden Markov Model,
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k-means etc.) and typically used training data sets is provided by Khraisat et
al. [56].

3.2.1 NetFlow

Detecting malicious activity based on NetFlow has been the topic of exten-
sive research, and several, very different surveys of the state of knowledge
are available. A larger part focus specifically on botnet CnC infrastructure
and associated application layer based detection, however a few focus on
network/transport layer detection. Garcia et al. outline a wide range of
botnet detection methods along with a list of desired properties of the de-
tection methods and the evaluation thereof [57]. Next, an in-depth survey of
10 papers is performed, highlighting the assumed bot, botnet, temporal, and
protocol behaviour in the various papers, providing an equivalent to Table
3.1 on page 27. Feature selection is often emphasized as an important param-
eter and Ferreira et al. provide an overview of the IPFIX feature selection by
71 papers [25]. Some papers address how to protect the DNS server against
volume based attacks as detected solely through NetFlow information, but as
previously argued, protection of the DNS server itself is out of scope of this
survey.

3.2.2 DNS

Detecting malicious activity based on DNS has, like NetFlow, also been the
topic of extensive research, and several different surveys of the state of knowl-
edge are also available. Zhauniarovich et al. cover topics like how to enrich
DNS data with for example GeoIP, different ground truth bases and algo-
rithm performance evaluation metrics [58]. Alieyan et al. focus mostly on
giving a more in-depth summary of the various detection methods [59]. The
survey by Torabi et al. does not focus on papers but on specific systems
created for passively detecting various DNS related anomalies as those refer-
enced in 3.2 on page 29 [60]. A key finding is that most systems are not near
real-time, mostly due to the application of supervised machine learning, and
the paper therefore presents a new system with near real-time capabilities.
Most recently, the survey by Singh et al. focus on using DNS data to detect
botnets [28].

3.2.3 Combining DNS and Netflow

The surveys mentioned above reveal that detection methods typically focus
either on the NetFlow perspective or the DNS perspective. Few include both
Netflow and DNS based approaches, like Stevanovic et al., that presents the
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prevalent methods and strategies for detecting botnets using machine learn-
ing algorithms, and summarizes the methods and strategies used by 20 pa-
pers [61]. The survey by Lashkari et al. proposes a taxonomy framework
and lists papers based on the used traffic features (NetFlow as well as DNS
related), dataset features and other properties [62]. Most surveys use "flow
anomaly based", "signature based" and "DNS based" as the primary classi-
fiers. This makes sense from the perspective that papers typically have a
relative narrow focus, on a specific botnet, some specific machine learning
algorithms or similar.

Abnormal amounts of DNS traffic is detected through analysis of NetFlow
packets by Huistra [63]. Similarly Grill et al. detects DGA based malware
simply by looking at the ratio of flows towards the DNS resolver vs. flows
towards any other host [64]. As only general DNS protocol knowledge is
used, and no layer 7 information, these approaches should still be considered
NetFlow-only approaches.

However, some papers do use both NetFlow and application-layer DNS
features:

• Hananto et al. derive source IP address entropy from NetFlow logs and
use DNS logs to measure the ration of NXDOMAIN responses [65]. It
is, however, unclear if these methods are used independently, or if DNS
and NetFlow data are correlated before analysis.

• A supervised machine learning model on TLS, DNS and HTTP features
to detect encrypted malware in TLS flows is used by Anderson [66].
The main focus is on determining whether a TLS flow is malicious or
not, therefore the paper also assumes knowledge about the TLS and
HTTP layers not available in regular NetFlow packets.

• Fuzzy pattern recognition is applied by Wang et al. in a two-stage ap-
proach to network flows and DNS data, arguing that any botnet CnC
activity will start with a DNS phase (finding the IP of the CnC infras-
tructure) followed by a network flow phase (exchanging information
with the CnC infrastructure) [67]. The pattern recognition is then ap-
plied on the flow inter-arrival time in either of these phases. The specific
domain queried is not used is not used as a part of the analysis, how-
ever, only the information about whether the query was successful or
not.

• The thesis by Janbeglou introduces the concept of unnamed traffic [68],
but focuses on traffic classification rather than malware detection.

• Hageman et al. complements the work by Janbeglou and attempts to
identify the origin of all unnamed traffic [69]. It is concluded that un-
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named traffic is ubiquitous, and that it cannot be assumed to be mali-
cious.

It is therefore an interesting research gap that only Janbeglou and Hage-
man (and possibly Hananto) seem to be the only authors that consider com-
bining DNS and NetFlow data to the extent described in Chapter 4 on page 35.

3.3 Summary

Market leading, commercially available products use a large variety of tech-
niques to identify malicious activities in a broad threat landscape, including
some advanced behavioural techniques involving machine learning. Aca-
demic research papers typically focus on comparing, optimizing or improv-
ing specific detection techniques, but do not provide tools that cover the
broad threat landscape. Given the strong focus on machine learning tech-
niques in the commercial products, it seems inevitable that academic research
will be absorbed into the market leading commercially available products
over time. From the operational perspective of an ISP, a commercial solution
should therefore be chosen to detect malicious traffic.

However, the survey of both the commercial products and the academic
research has shown that a behavioural analysis of the combination of Net-
Flow and DNS features is a relatively unexplored area that may be interesting
from both an operational and an academic perspective.
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CHAPTER 4
NetFlow and DNS data

As outlined in the previous chapter, combining features from DNS and Net-
Flow data is a relatively unexplored approach. Combining DNS data and
NetFlow records could at first glance be seen as a trivial task. A task that can
be completed by comparing timestamps, client IPs, and the server IP address
found in the NetFlow record to the IP address found in the A record in the
DNS response packet. However, various mechanisms, such as the use of DNS
prefetching and response caching in client applications, sampling of flows in
routers, the topological location of the data observation point etc. makes the
correlation of DNS and NetFlow data much more complicated, thus affect-
ing the trustworthiness of the conclusions that can be made on the data. As
this is a reoccurring topic in this thesis, the topic deserves an introduction
from a more general perspective than the use-case specific descriptions in the
individual papers, and this will therefore be the topic of this chapter.

One approach to systematically describe the challenges in correlating Net-
Flow and DNS data is to first consider the set of all IP flows within and
to/from a specific network under consideration, for example the IP network
owned by an ISP or a company. These IP flows can be described in terms
of whether they are observed or not and in terms of whether the IP flows
carry DNS data or not, which is elaborated in Section 4.1. The purpose of
this classification is to clearly define which data is considered for correlation.
As elaborated in Section 4.2, this makes it easier to assess which conclusions
can and cannot be made from the correlated data.

A flow can be represented in several NetFlow records, as NetFlow records
are emitted periodically during the lifetime of a flow. The process of merging
NetFlow records into flows is described in more details in Paper B. For the
purpose of the more conceptual discussion in this chapter, only the flows and
not the individual records are interesting.

4.1 Flow type and observability

The IP flows within a network can be considered members of different sub-
sets as illustrated in the model in Figure 4.1. An key property highlighted by
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the model is that only a subset of the flows are observable in either DNS logs
or NetFlow records. The main sets are as follows :

Fig. 4.1: Classification of IP flows

• I is the set of all IP flows with source and/or destination at some end-
point inside the network under consideration.

• IL is the subset of I that are logged in NetFlow records. If Netflow logs
are not collected, IL = ∅.

• D contains the subset of the IP flows that carry DNS traffic.

• DL is the subset of D that is captured in DNS application layer logs. If
no such logs are captured, DL = ∅.

• R contains the flows to/from IP addresses that can be found in a pre-
ceding DNS query (elaborated further in Section 4.2).

The sets D and DL could be considered to only include either traffic between
clients and resolvers, or traffic between resolvers and authoritatives servers,
depending on what is relevant for a particular analysis. The model reveals
the existence of a number of subsets that must be considered as well, notably:

• I \ IL (all flows in I that are not in IL) represents ip flows that are not
represented in NetFlow records, for example due to NetFlow sampling,
or because the flow is not routed through any equipment that emits
NetFlow records.

• D \ DL contains DNS traffic not being logged at application level. This
could represent application layer logging based on sampling, or it could
represent traffic towards third-party resolvers outside of the network,
for which no application layer data is available.
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• I \D contains flows that are not DNS traffic. It is worth noting that this
set includes non-DNS traffic towards DNS servers.

Using this model, both the network itself as well as the collected data
can be characterized. As an example, clients in a company network can be
prevented from using anything but the company’s own resolvers, on which
all entries are logged at the application layer. In this case, D = DL. Fur-
thermore, the company may employ non-sampled NetFlow collection on all
of their routers, such that I = IL. This obviously reduces the number of
subsets, and therefore also reduces the number of special cases that must be
considered before concluding anything on the data.

The data and network used for this thesis are not that simple, and are in-
stead characterized as follows. In this thesis, only DNS data between clients
and resolvers are considered, thus defining D. Application layer DNS data,
DL, is only available from Telenor’s own resolvers, not from 3rd party re-
solvers, and therefore D 6= DL. As all DNS traffic towards Telenor’s resolvers
is available in application layer logs, the set D \ DL therefore only represents
traffic towards 3rd party DNS resolvers. NetFlow records are only available
from Telenor DKs border routers in sampled form, so only some of the traffic
entering or exiting the network is logged, and therefore I 6= IL. DNS traf-
fic from customers to Telenor DK’s resolvers are not represented in NetFlow
records, and therefore DL ∩ IL = ∅.

As the two examples above illustrate, different data sets can have very
different properties. These properties can be important to clarify before using
a data set to ensure that the results obtained by using the data are valid.

As a useful side effect, the model can make it easier to clarify terminology.
In this thesis, DNS data refers to the application layer log data from the flows
in DL, and NetFlow data refers to the records derived from the set IL.

4.2 Correlation of DNS and NetFlow data

The description of the model presented Figure 4.1 is not complete, as a key
component is missing: The relation between the IP address found in the
DNS response packet and the flow(s) created towards that IP address. For
this purpose, the set R is defined to contain the flows to/from IPs found in
a preceding DNS query. In other words, R contains flows where the source
or destination IP of the flow is directly or indirectly referred to in the DNS
application layer payload of a flow in DL, and where the other address of the
flow is the same as the source address of the DNS flow. By definition it is true
that if DL = ∅ (no application layer logs are available) then R = ∅. Extending
with R adds several notable intersections and complements, including:

• R ∩ I contains the flows that are created in order to connect to the IP
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For each... map it to... within a...

DNS response
next succeeding NetFlow flow

fixed interval
TTL interval

all succeeding NetFlow flows
fixed interval
TTL interval

NetFlow flow
first preceeding DNS response

fixed interval
TTL interval

all preceeding DNS responses
fixed interval
TTL interval

Table 4.1: Overview of the different methods to correlate DNS and NetFlow data.

address returned in a preceding DNS response. These flows can be
associated with a DNS query, and are denoted named flows.

• R ∩ IL contains the named flows that are observed in NetFlow records.

• I \ R contains flows for which no related DNS log entry exists. This is
referred to as unnamed traffic. Examples include flows related to appli-
cations that do not use the DNS infrastructure to establish connections,
flows that are not nameable because the DNS query is found in D but
not in DL (e.g. DNS traffic towards 3rd party resolvers), and flows for
which the related DNS query was issued before initiating DNS logging.

• R \ I represents potential, but non-existent flows. The purpose of this
set is to illustrate that not all DNS response records are used by clients
to create new connections. This can be caused for example by DNS
responses that contain several, different response records of which only
one is used, or by DNS prefetching by browsers.

The attempt of adding the set R to the model reveals a number of caveats
that must be considered when correlating DNS and NetFlow data: It cannot
be expected that a flow can be found that correlates to all the IP addresses in
a DNS record, either because such a flow is never created (R \ I) or because
the flow may not be observed in NetFlow records (R ∩ I \ IL). Conversely, it
cannot be expected that a DNS record can be found that relates to each flow
either, both because not all DNS records are observed (D 6= DL), and because
not all flows are preceded by DNS requests (I 6= R).

The specific method to use for correlating DNS and NetFlow data will
therefore necessarily depend on the properties of the collected data and the
use case, and two main approaches exist. Either, a number of NetFlow flows
are identified that map to each DNS response, or a number of DNS responses
are identified that map to each NetFlow flow. As outlined above, these two
approaches should be expected to yield different results. For each approach,
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it should also be considered whether a one-to-one or one-to-many mapping is
interesting (in case there is a match at all). Furthermore, the maximum time
interval between the DNS response and flow start could either be a fixed time
interval or a variable time interval determined by the TTL value in the DNS
response. These methods can be listed as in Table 4.1.

The data used for this thesis includes an unsampled DNS log and a sam-
pled NetFlow log. Furthermore, the TTL values are binned for anonymiza-
tion purposes. Therefore, the 5th method listed in Table 4.1 is the main ap-
proach used in this thesis. Other works focusing on named/unnamed flows
use the 6th method, thus taking advantage of the TTL value being avail-
able [68] [69].
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Abstract

To prevent user exposure to a wide range of cyber security threats, organizations and
companies often resort to deploying blacklists in DNS resolvers or DNS firewalls.
The impact of such a deployment is often measured by comparing the coverage of in-
dividual blacklists, by counting the number of blocked DNS requests, or by counting
the number of flows redirected to a benign web page that contains a warning to the
user. This paper suggests an alternative to this by using NetFlow data to measure the
effect of a DNS-based blacklist deployment. Our findings suggest that only 38-40%
of blacklisted flows are web traffic. Furthermore, the paper analyzes the flows black-
listed by IP address, and it is shown that the majority of these are potentially benign,
such as flows towards a web server hosting both benign and malicious sites. Finally,
the flows blacklisted by domain name are categorized as either spam or malware, and
it is shown that less than 6% are considered malicious.

Keywords: Blacklist · DNS · NetFlow · Ipfix · ISP · RBL · Threat Intelligence

5.1 Introduction

Threat Intelligence (TI) in the form of reputation-based blacklists of IP ad-
dresses and domain names have been made available by non-profit and com-
mercial organisations for decades [70], and has later been the subject of aca-
demic research as well [71]. Improving the accuracy and completeness of the
blacklists by the careful selection of entries to maximize the amount of true
positives and minimize the amount of false negatives remains a continuous
struggle. These metrics describe the blacklist itself, however they do not de-
scribe the actual impact of deploying a blacklist in practice. If there is not
impact, the time and money spent by the user deploying the blacklist can
be considered wasted. Therefore, we argue that the impact is an important
metric from a practical perspective.

How to describe and measure the impact will naturally depend on the
specific use case in which the blacklist is applied1. The most prevalent use
cases for blacklists fall in two categories, offering protection to either the orig-
inating end of a connection (in antivirus software, in a web browser plugin, in
a company firewall, in an Internet Service Providers (ISPs) DNS server, etc.)
or the terminating end of a connection (a mail server, at a firewall protecting
a web site, etc.). This paper focuses on the impact of deploying blacklists
in DNS resolvers at ISPs. Deploying blacklists at ISPs is attractive as it can
increase the security posture of all devices that default to use the ISP’s DNS
resolvers.

1The elaborated definition of impact used in this paper is presented in Section 5.4.3.
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Informal conversations with blacklist vendors suggest that a common
method for assessing the impact is to let the DNS resolver count the number
of performed DNS queries that match an entry on a blacklist. Some ISPs
and DNS security vendors even refer to this number directly as the number
of blocked threats [72, 73]. This is similar to counting the number of emails
flagged as phishing by an email server, or counting the number of requests
towards a web server originating from an IP address known to be malicious.
However a DNS request in itself is only a threat indicator. In order for a
user to be at risk, an IP connection towards the malicious host is a mini-
mum precondition, and we therefore consider an IP connection as a stronger
threat indicator than a DNS resolution. In this paper, we propose a method
based on NetFlow/IPFIX measurements to evaluate the impact of deploying
blacklists at an ISP DNS resolver.

Assessing the network-level impact of applying a blacklist at a DNS server
will, however, not in itself tell anything about the user-level impact perceived
by the user. For instance, blocking a user’s connection attempt towards a
shared web hosting environment that incidentally also hosts a known spam
sender, is likely to be perceived as a nuisance rather than as protection against
a threat. On the other hand, connecting to a web server known to solely host
malicious payloads represents a high risk to the user. To supplement the
measured network-level impact, it is necessary both to identify the cause for
the entry to be blacklisted in order to assess the risk level of connecting to
the blacklisted entity, and to assess the risk that a connection is in fact made
towards the malicious entity.

The contributions of this paper are twofold:

• We show how existing methods for measuring the impact of deploying
domain and IP address blacklists in DNS resolvers can be improved by
including NetFlow measurements.

• Using the NetFlow method, we quantify the number of malicious and
non-malicious flows, and we quantify the number of flows blacklisted
by IP address that may be benign.

The paper is organised in 7 sections: Section 5.2 gives an overview of
related work. Section 5.3 describes the concept of blacklisted flows and the
method for merging DNS, NetFlow and blacklist data to identify blacklisted
flows. Section 5.4 describes the 3 data sources used in the paper and the ap-
plication of the previously described merging method. Section 5.5 categorizes
the blacklisted flows by the type of maliciousness and Section 5.6 identifies
IP addresses that may contain multiple (and possibly both malicious and
benign) endpoints. Section 5.7 combines the results from the previous sec-
tions to describe the network-level and user-level impact. Lastly, Section 5.8
summarizes and concludes the paper.
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Focus area

Author Year
Impact

Resolver BL

DNS data

NetFlow data

Endpoint

Maliciousness
Sheng et al. [77] 2009 X X X
Bermudez et al. [78] 2012 X X
Connery [79] 2012 X X X
Zhang et al. [80] 2013 X X X X
Kührer et al. [81] 2014 X X X X
Foremski et al. [82] 2014 X X
Satoh et al. [83] 2019 X
Spacek et al. [84] 2019 X X X
Wilde et al. [85] 2019 X X X
Li et al. [86] 2019 X X X
Telenor Norway [87] 2020 X X X
Griffioen et al. [88] 2020 X X X X X

Table 5.1: Related work and their focus areas

5.2 Related work

As outlined in the introduction, the contribution of this paper is to show
that existing measurement methods that measure the impact of implement-
ing domain and IP address blacklisting in DNS resolvers can be improved by
including NetFlow data based measurements in addition to DNS data based
measurements. We use the proposed measurement method together with
information about the type of maliciousness and knowledge about the type of
endpoint to identify if the endpoint may host both benign and malicious sites
simultaneously. The columns of table 5.1 represent each of the aspects high-
lighted in the above paragraph, and this section elaborates how related works
cover some, but not all, of the aspects.

Many papers such as [58] focus on the creation, quality, accuracy or com-
parison of blacklists. Bouwman et al. focus on the differences between paid
and free lists, and investigate the reasons (price, coverage, false positive rate,
etc.) provided by operators/enterprises for choosing specific lists [74]. These
topics are considered complementary to this paper, and such efforts will
therefore not be the topic of this section. Similarly, papers such as [75, 76]
focusing on using blacklists for spam filtering in mail servers are also consid-
ered complementary.
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5.2.1 Network-level impact of blacklisting

Although not focusing on malware and blacklists, the authors of [78] observe
that around 50% of DNS responses have an associated flow. This suggests
that a flow cannot be assumed to be associated with all blacklisted DNS re-
sponses either. This forms a motivation for focusing on flows rather than
DNS responses.

Zhang et al. measure the impact of applying several (IP address) blacklists
on NetFlow records obtained from the routers of a large regional ISP [80]. The
paper differentiates between different types of maliciousness and endpoints,
and concludes that up to 17% of the traffic measured by volume could be
considered tainted. Although this work blacklists NetFlow entries rather than
DNS entries, we consider it to be one of the works that are most closely
related to our paper.

Sheng et al. evaluate blacklists in browser plugins to protect against
phishing websites [77]. This approach represents several advantages to DNS-
based filtering, as lists of URLs rather than lists of domain names or IP ad-
dresses can be used. The approach is, however, by nature very application
and browser specific, thus representing a disadvantage in relation to a DNS-
based approach.

Li et al. use telescopes of scanning activities to determine list coverage,
thus including some flow level data [86]. Furthermore, the paper uses IP
ranges of known CDNs as a source to determine list accuracy. However, the
focus is still on assessing the quality of the lists, rather than on the impact of
applying them.

Spacek et al. describe many practical considerations in deploying DNS
based blacklisting, and elaborates on some of the consequences to the user
[84]. These consequences focus on feedback about the blocked site, difficul-
ties in relation to the use of TLS, etc., and does not quantify the impact of the
blacklist itself.

Deploying blacklists at an ISP or company DNS server is becoming a com-
mon security measure. Public statements such as [87] and [79] with limited
descriptions of the impact of such measures exist. Both of these statements
measure the impact in terms of visits to a website, to which a user is redi-
rected instead of being blocked. Similarly, DNS firewall/resolver vendors,
TI providers, etc. provide use case descriptions focusing on DNS-level mea-
surements only. Furthermore, Wilde et al. examine the blocking behaviour
of several publicly available resolvers and conclude that none of them block
for security purposes [85]. They also use lists of URLs to quantify to which
extent an RPZ enabled DNS resolver would block the list entries. However,
no real world traffic is used in the quantification.

Academic papers describe the impact of blacklisting at the router and
browser level, and to a certain extent at the DNS level, as outlined above.
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However, we are not aware of any work that quantifies the impact at the
NetFlow level.

5.2.2 User-level impact of blacklisting

Kuhrer et al. categorize both commercial and public blacklists entries to
identify if an endpoint is a sinkhole or a parked domain [81]. The purpose
of performing the categorization therefore relates more to the validity of a
blacklist entry than to the impact experienced by the user. Furthermore, the
paper evaluates the ability of blacklists deployed at a DNS server to detect
known botnets.

Using DNS and flow information to determine the used application is
the topic of [82]. The application of named flows (flows to which a DNS
response can be associated) such as HTTP, Roblox and Skype is identified.
This classification, however, focuses solely on the application rather than the
type of endpoint.

Determining the type of maliciousness is the main focus of [83]. The
authors use Word2Vec to group 388 malicious queries into three clusters,
each comprising queries with a common cause. The study focus solely on
DNS TXT records, which does not extend well to the majority of queries that
do not have TXT records.

Some blacklist vendors and tools such as [89] provide the cause for an
entry to be listed. This is in many cases directly related to the type of mali-
ciousness.

Griffioen et al. present several aspects related to our paper [88]. Their
main emphasis is to compare open source blacklists, including the impact
metric. NetFlow information from a Tier 1 provider is used to assess the
timeliness of entries on the lists, but is not used to assess the impact of de-
ploying the lists, which is the main topic of our paper. Instead, information
from authoritative DNS servers is used to evaluate the impact of deploying
the lists, by analyzing how many domain names were pointing to a partic-
ular IP address on the day it was marked as malicious. We will extend this
by including other aspects, beyond a high domain name to IP address ratio,
and by analysing the domain names and IP addresses to identify different
scenarios like shared web hosting.

Both [80] and [88] consider blacklisting on the IP level, for example in
firewalls. In our paper, the focus is on invoking the blacklisting in a DNS
server, thus considering both domain name and IP address based blacklists.
Despite this conceptual difference, we consider these the most closely related
to our paper.

46



5.2.3 Summary

Although related work exists, the idea of using NetFlow measurements for
evaluating a DNS-based blacklist deployment seems to be unexplored, and
this will therefore be the topic of Section 5.3-5.4. Categorizing existing black-
list entries by type of maliciousness does not seem to be receiving a lot of
academic attention, maybe because the categorization can be available as a
supplement to the blacklists. Using knowledge about the type of malicious-
ness and endpoint to provide a risk based view of the blacklisted flows will
be the topic of Section 5.5 on page 55-5.6 on page 57.

5.3 Method for identifying blacklisted flows

Fig. 5.1: The overall dataflow to identify blacklisted flows.

The concept of blacklisted flows is central to the flow based measurement
method proposed in this paper. The method to identify blacklisted flows
requires three data sources and is comprised of several steps, as illustrated in
Figure 5.1. The three data sources are NetFlow data, DNS data and blacklists
containing domain names and IP addresses. The first steps, relating to the
practical collection and pre-processing of the three individual data sources
are illustrated in blue in Figure 5.1 and elaborated in Section 5.4. Combining
the three data sources involves two additional processing steps, elaborated
in the following subsections. First, all blacklisted DNS records are identified
(green in Figure 5.1). Then, all flows relating to the blacklisted DNS records
are identified (red in Figure 5.1).
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5.3.1 Blacklisted DNS data

All DNS records associated with a specific DNS response are considered
blacklisted if any of these conditions are satisfied for any of the records:

• The Qname or Rname of the DNS record matches a blacklisted domain
name

• The Rdata of the DNS record matches a blacklisted IP address or a
blacklisted IP prefix

The result of this is that Dblack blacklisted DNS responses are identified.

5.3.2 Blacklisted flows

A flow is considered blacklisted by a specific, blacklisted DNS record if all of
the following conditions are satisfied:

• The DNS record has rtype = A

• The DNS record and flow timestamps are less than 30 minutes apart (as
elaborated below), tDNS ≤ tNetFlow < tDNS + 30m

• The blacklisted DNS record is the temporally closest DNS record where
the two conditions below are satisfied

• The blacklisted DNS record client IP matches the flow source IP

• The blacklisted DNS record rdata matches the flow destination IP

This yields a number of blacklisted flows, Fblack.
Both the use of temporal correlation and anonymized IP addresses can

cause a number of false positives and false negatives that are not immediately
quantifiable as no ground truth exists for verification. The limit of 30 minutes
is based on an analysis of the time difference between the DNS record and the
flow. This analysis suggests that the number of matched DNS records and
flows converge towards 0 as a function of the time difference between the
records, with few matches with a time difference of more than 15 minutes.

In case a flow matches two different DNS records where the only differ-
ence is the TTL, the DNS record with the highest TTL is considered a match.

The merging of NetFlow records into flows is described in Section 5.4.1.
However, a NetFlow emitter may view a single, actual flow as two or more
flows due to the use of aggressive timeouts for detection of flow end, espe-
cially for UDP traffic. Often this is referred to as flow splitting in related
works. The effect is illustrated in Figure 5.2, where light blue represents the
lifespan of actual flows and dark blue represents packets transmitted in the
flow. Green represents the lifespan of flows as perceived and reported by
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Fig. 5.2: Flow aggregation illustration. In this example, D=3, R=10, Dblack=1, N=11, F=7, Fblack=5,
Cblack=2 and Cblack,DNS=1

the NetFlow emitter in successive flow records. Due to timeouts, the Net-
Flow emitter perceives the two actual flows as 5 different flows. Therefore, a
further aggregation of flows is desirable.

We choose to aggregate all blacklisted flows that are blacklisted by the
same DNS record (considered unique by the qname, timestamp and clientip)
and that have the same 5-tuple into a single flow, producing Cblack flows. This
aggregated entity is named an aggregated flow to distinguish it from the flow
defined by the NetFlow emitter. The aggregated flows are represented in
red in Figure 5.2, where two aggregated, blacklisted flows (red) related to 5
different NetFlows (green), related to 2 actual flows (blue), and related to the
same (blacklisted) DNS response (white) are depicted. The aggregated flow
record has a cumulative bytes/packet count and the flow start timestamp
that is the earliest timestamp found in the related flows.

5.4 Data sources and processing

This section will provide details on the selection and pre-processing of the
three data sources illustrated in blue in Figure 5.1 using data from Telenor
Denmark’s network (Sections 5.4.1 to 5.4.3). Furthermore, the section will
describe the results of performing the steps described in Section 5.3 on the
data (Sections 5.4.4 to 5.4.6).

The three data sources are all collected during two separate weeks for the
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Metric Symbol Week 1 Week 2
Total DNS responses D 2, 15 · 1010 2, 25 · 1010

Total relevant DNS records R 1, 85 · 1010 1, 88 · 1010

Blacklisted DNS responses Dblack 6, 81 · 106 4, 56 · 106

Total NetFlow records N 4, 63 · 109 4, 60 · 109

Total relevant flows F 3, 92 · 108 3, 94 · 108

Blacklisted flows Fblack 185460 191923
Blacklisted, aggregated flows Cblack 90796 86854
Unique DNS responses in Cblack Cblack,DNS 78312 70134
Blacklisted DNS response ratio Dblack

D 0,000317 0,000203
Entries in Cblack matched by IP Cip 68045 62683
Entries in Cblack matched by dom. Cdom 22842 24486

Table 5.2: DNS and NetFlow data metrics

1,5M mobile and 100k broadband subscriptions of Telenor Denmark. Notice
that multiple users can use the same subscription, such as a household where
all members are the users of a single broadband subscription. The data set
for week 1 represent 7 full days from 2020-10-29 to 2020-11-04, and the data
set for week 2 represent 7 full days of from 2020-11-26 to 2020-12-02. Table
5.2 lists the key properties for data in these time periods and the following
sections will elaborate on these numbers. The following sections will for
readability refer to the data from week 1, unless explicitly stated otherwise.

5.4.1 NetFlow data

NetFlow data is collected at Telenor Denmark’s Border Gateway Protocol
(BGP) Autonomous System (AS) border routers, representing all Internet traf-
fic entering and exiting Telenor’s network, as depicted in Figure 5.3 on the
facing page. As indicated in the figure, two primary types of internal traffic
not crossing the border routers exist:

• User-to-user traffic: The amount of user-to-user traffic is considered
negligible compared to the amount of traffic crossing the border router
and is therefore similarly considered negligible for the purpose of this
paper.

• User-to-CDN traffic: A number of Content Delivery Network (CDN)
nodes are deployed internally, and these serve a significant volume of
traffic. However the types of data hosted on these nodes (Netflix/Y-
outube videos and similar static content etc.) are considered irrelevant
to this paper from a user threat and blacklist perspective.
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Fig. 5.3: A conceptual view of the Telenor network indicating the sources of DNS and NetFlow data.

srcip srcport dstip dstport proto packets bytes
129.142.227.0 56065 2.17.0.0 443 TCP 512 32768
83.73.228.0 49906 193.28.147.0 443 TCP 512 32768
85.80.228.0 45820 8.8.0.0 53 TCP 512 30720

Table 5.3: Example NetFlow records. Timestamps are omitted for brevity.

A (unidirectional) NetFlow record is created by the border routers at least
every 60 seconds for each active 5-tuple flow in each flow direction. A sam-
ple rate of Q=512 is used, therefore NetFlow records represent data from 1

Q
packets. The collected data contains N = 4, 63 · 109 NetFlow records.

For the purpose of this paper, only connections initiated by users as a
result of a DNS lookup are relevant. Therefore, only NetFlow records with an
internal source address are considered, and for TCP connections only flows
in which a SYN packet is seen are considered, as this will make sure that
the flow start time actually represents the beginning of the flow. Multiple
NetFlow records belonging to the same flow (defined by similar start-time
and 5-tuple) are aggregated. As a result of this data reduction, F = 3, 92 ·
108 flows are available for comparison with blacklisted DNS records. No
application layer proxies are deployed.

NetFlow data is anonymized for legal reasons by truncating the internal
(user) IP address to a /24 prefix for non-NAT’ed users (or truncating the
port for NAT’ed users), truncating the external IP address to a /16 prefix,
reverse truncating the timestamp, as well as a number of other measures
less relevant to this paper. The anonymization policy applied follows the
guidelines of [90]. Table 5.3 contains a number of example NetFlow records.
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5.4.2 DNS data

DNS data is collected at Telenor Denmark’s DNS resolvers, as depicted in
Figure 5.3 on the previous page. As the queried domain name is also a part
of the DNS response packet, and as this study only focuses on syntactically
valid DNS requests for which a response is always issued, only the response
packets are collected (including for example NXDOMAIN responses). The
resolvers are only accessible from Telenor Denmarks network, and are the
default choice for all users. The collected data contains D = 215 · 108 DNS
responses. As a response can contain many Resource Records (RRs), the data
is stored such that one record represents a unique RR augmented with the
information common to all RRs in the same response.

There are no mechanisms preventing the use of 3rd party DNS resolvers
residing outside the Telenor network, and therefore it is relevant to assess the
prevalence of that type of traffic. NetFlow data contains NDNS = 5, 92 · 106

records for traffic from users towards port 53 (DNS) and 853 (DNS-over-
TLS) (5, 78 · 106 and 1, 3 · 105 records respectively). It is not legally possible to
inspect this traffic further to quantify how many and which queries this traffic
represents. Assuming that one NetFlow record represents one DNS query
(yielding the worst-case flow sample likelihood of 1:Q), the 3rd party DNS
traffic represents only QNDNS

(QNDNS+D)
= 10, 8% of all queries. The traffic towards

the Telenor DNS resolvers is therefore considered sufficiently representative
of the total DNS traffic, and given the lack of legal basis for inspecting the
3rd party DNS resolver traffic, the 3rd party DNS traffic is disregarded for
the purpose of this paper. Some anonymity services like TOR use private top
level domains like ‘.onion’. These top level domains are not registered in the
public DNS hierarchy. Therefore, such services are not considered relevant
to this paper.

Only 0,1% of the DNS records, R, have an rdata field referring to a non-
CDN IP address within the Telenor Denmark network. This supports the
statement made in the NetFlow section that internal network traffic (both
user-to-user and user-to-CDN) can be considered negligible to this paper.

DNS data is anonymized for legal reasons by truncating the client (user)
IP address to a /24 prefix for non-NAT’ed users (or truncating the port for
NAT’ed users), reverse truncating the timestamp, removing the domain name
for the 15 most popular domains, and a number of other measures less rele-
vant to this paper. The anonymization policy applied follows the guidelines
of [90]. Discounting the anonymized records, R = 185 · 108 records are there-
fore available for comparison with blacklists. Table 5.4 on the facing page
contains a number of example records.
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clientip qname/rname rtype rdata ttl
85.83.74.0 a.config.skype.com. A 13.107.42.23 100-299

l-0014.l-msedge.net.
85.83.65.0 log.tiktokv.com. A 77.214.51.34 1-99

a2047.r.akamai.net.
85.83.65.0 log.tiktokv.com. A 77.214.51.27 1-99

a2047.r.akamai.net.

Table 5.4: Example DNS records. The timestamp is omitted for brevity.

5.4.3 Blacklists

Blacklists that are available for a fee generally outperform free lists [81].
Therefore, blacklists provided by two well-known, commercial DNS black-
list vendors are used for this paper. After a review of the paper, the vendors
opted to stay anonymous. The vendors will therefore be referenced as A
and B, and the individual lists provided by each vendor as A1, A2, etc. The
lists contain both IP addresses, IP prefixes and domains. Some of the lists
are updated every minute, and the most realistic result would therefore be
produced by doing a real-time correlation of DNS data and blacklists. How-
ever, as the DNS data is collected independently of the blacklists for oper-
ational and privacy reasons, this has not been possible in practice. Instead,
the lists are collected at 23:00 CEST each day and the aggregated list is used
for comparison for the whole period. In week 1, the aggregated lists contain
11878657 unique IP addresses, 3389 unique prefixes and 989490 unique do-
mains. In week 2, the aggregated lists contain 16286208 unique IP addresses,
3320 unique prefixes and 1002913 unique domains.

For this paper, the impact of a blacklist describes the effect derived from a
specific blacklist deployment. The impact of a blacklist with perfect accuracy
and perfect completeness will be zero if a user never visits a malicious web-
site. Conversely, if the completeness of a list is low, but deploying the list in
practice would block the majority of traffic anyways, the impact will be high.

5.4.4 Blacklisted DNS data

The result of the operation described in Section 5.3.1 is that Dblack = 6, 81 · 106

blacklisted DNS responses are identified. This represents Dblack
D =0,000317 of

the total number of DNS responses. The impact of applying DNS based
blacklisting is often measured by the magnitude of this number, with the
interpretation that user were protected by 6, 81 · 106 threats.
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qname list srcip/dstip dport proto time
diff

www-pf-dk.filesusr.com. A2 94.145.224.0 443 TCP 0
34.102.0.0

collection.decibelinsight.net. A2 94.145.230.0 1789 UDP 434
35.180.0.0

collection.decibelinsight.net. A2 94.145.230.0 0 ICMP 768
35.180.0.0

wahoofitness.com. A2 2.130.11.0 443 TCP 93
151.101.0.0

Table 5.5: Example of the most relevant columns from blacklisted communication records.

5.4.5 Blacklisted flows

The result of the operation described in Section 5.3.2 is that Fblack=185460
blacklisted flows are identified. After performing aggregation, a total of
Cblack=90796 blacklisted, aggregated flows are identified. Table 5.5 contains
a number of examples of blacklisted, aggregated flows. Cblack represents
the number of flows found in the sampled NetFlows that would have been
blocked in the sample week, if DNS based blacklists had been activated for
all users.

5.4.6 Discussion

The Cblack=90796 blacklisted, aggregated flows contain Cblack,DNS=78312 uni-
que DNS responses (defined by DNS timestamp, clientip, qname and ipproto-
col). This represents Cblack,DNS

Dblack
= 1, 1% of all blacklisted DNS responses. How-

ever, as packet sampling is employed, this only accounts for the number of
observed flows, not the actual number of flows. Techniques exist for estimat-
ing the actual number of flows based on the observed number of flows [91].
However, this does not imply that Cblack,DNS

Dblack
can be scaled by the same tech-

niques, as the non-observed flows could in theory all be related to the DNS
responses already found in Cblack,DNS. Therefore, the data available in this

study does not allow any further conclusions on the magnitude of Cblack,DNS
Dblack

.
The data sets from week 1 and 2 show that the amount of blacklisted

DNS responses in each week differ significantly from Dblack = 6, 81 · 106 to
4, 56 · 106, a drop of 33%. The collected data cannot offer an explanation
for this difference, which may simply be attributed to varying activity levels
of the malicious actors. As a consequence of this, the fraction Dblack

D differ
proportionately.

It is, however, interesting to note that although Dblack differ by 33%, the
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amount of observed flows blocked, Cblack, only show a drop of 4%, from
90796 to 86854. The estimated ratio of blacklisted DNS requests that result
in a TCP flow, Cblack,DNS

Dblack
, does not vary much between the weeks either. This

could indicate that the amount of blacklisted flows may be a temporally less
variable metric than the amount of blacklisted DNS responses.

For readability, this paper will refer to the set of aggregated flows that
are considered blacklisted because of an IP address entry on the blacklist as
Cip (68045 entries), the set of aggregated flows that are considered blacklisted
because of a domain name entry on the blacklist as Cdom (22842 entries), and
the set of aggregated flows that are considered blacklisted because of both
a domain name and IP address entry on the blacklist as Cboth (91 entries),
where Cip ∪ Cdom = Cblack and Cip ∩ Cdom = Cboth. As Cboth contains an
insignificant number of entries, this category will not be analysed separately
in this paper.

5.5 Type of maliciousness

Two sets of blacklisted flows, Cip and Cdomain, were identified in the previous
section. These are the flows that would have been blocked if DNS based
blacklists had been deployed, thus representing a network-level impact of
blacklist deployment (subject to scaling due to NetFlow sampling). However,
as outlined in the introduction, some blocked flows do not represent a threat
to the user due to different types of maliciousness, and these may be seen as a
nuisance instead. To quantify this user-level impact of blacklist deployment,
this section will categorize the flows by the type of maliciousness.

Different types of malicious behaviour can cause a domain name or IP
address to be blacklisted, but only some of the types should be considered
a threat to the user connecting to the blacklist entry. The observations turn
out to be different for Cip and Cdomain, therefore the observations will be
described separately.

5.5.1 Flows blacklisted by domain name

Both the A and B lists provide categories for phishing/malware/botnet re-
lated domains, as well as a more general spam category. The latter category
includes for example domains in unsolicited mails promoting pills, coun-
terfeits, dating sites etc., and is therefore in terms of badness distinct from
malware/phishing domains. Although the sites and goods promoted in the
spam category may not be desired to most users, they do not represent a
cyber security threat. On the other hand, the phishing and malware related
domains in what we will define as the malicious category clearly represent a
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cyber security threat to the user. In Cdom, 3% of the flows are in the malicious
category, and the remaining 97% of the flows are in the spam category.

5.5.2 Flows blacklisted by IP address

Determining the type of maliciousness for entries in Cip, requires different
approaches for each list used.

The B lists provide a cause for an IP address to be blacklisted, and 99%
of all IP address entries in the B lists are in the malicious category. However,
only 5 entries in Cip are blacklisted by B list entries (109 entries in the week 2
data set). As this is an insignificant amount compared to the total amount of
entries in Cip, no further analysis of the type of maliciousness of these entries
is made.

Two A lists contain IP addresses: The A1 and A2 lists. The A1 registers
only spam emitters, and the 18292 flows blacklisted only by the A1 list (and
not also the A2 list) are therefore considered in the spam category.

The type of maliciousness is not immediately available for the A2 list. Two
distinct groups of A2 related flows (including flows that relate to both A2 and
A1) are therefore categorized by other means:

• A subset of A2, called A3 is available as a separate list. 3179 entries
in Cip are marked by the A3 (5%) and are therefore in the malicious
category.

• A substantial amount of entries (13634, 20% of Cip) relate to a single IP
address owned by a laundry company. A manual lookup reveals that
this IP address is in the spam category [89].

An informal conversation with list A representatives concluded that the vast
majority of A2 related flows not accounted for above are likely to be in the
spam category as well. However, as we cannot quantify this, we will catego-
rize the remaining flows as having unknown type of maliciousness.

5.5.3 Discussion

The type of maliciousness for the Cip and Cdomain flow sets are listed in Ta-
ble 5.6. An important note is that if Telenor Denmark had only deployed
domain name based blacklists, and only blocked the flows that are consid-
ered malicious to the user, a total of 1360 observed flows would have been
blocked during week 2. The unknown Cip entries are expected to mostly be
in the spam category, with an informed guess setting the fraction of malicious
flows in Cip to less than 10%.

Some DNS based blocking implementations redirect the user to a web
page warning the user that he has been blocked for security reasons. Web
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Type Cip Cdom
Week 1 Week 2 Week 1 Week 2

Spam 31926 (47%) 46918 (75%) 22061 (97%) 23126 (94%)
Malicious 3184 (5%) 1151 (2%) 781 (3%) 1360 (6%)
Unknown 32935 (48%) 14614 (23%) 0 0

Table 5.6: Type of maliciousness for blacklisted flow sets.

Type Cip Cdom
Week 1 Week 2 Week 1 Week 2

Spam 20% 13% 40% 37%
Malicious 11% 47% 72% 61%
Entire data group 39% 18% 40% 38%

Table 5.7: Port 80/443 (HTTP/HTTPS) fraction of flows. In the group of flows that are blacklisted by IP
address (is in Cip) in the week 2 data set, 13% of the spam-related flows in the group use port 80/443, and
18% of all flows in the group use port 80/443.

traffic, defined as traffic towards port 80 and 443, accounts for 40% of the en-
tries in Cdom, and 72% of malware/phishing entries in Cdom. Further numbers
are available in Table 5.7. Measuring the impact of the DNS based blocking
by the number of visits to the warning web site will therefore underestimate
the efficiency.

5.6 Misaligned endpoints

In some scenarios where a user connects to a blacklisted IP address, there is
a chance that the user does not in fact connect to the entity that caused the
IP address to be blacklisted. A popular example is when a user connects to a
web site hosted in a shared web hosting environment. The IP address of the
shared hosting environment may be on the blacklist, but it may be included
on the blacklist even though only one of the hosted sites serves malicious
content. In this case, it is not possible to determine from either NetFlow or
DNS data if the web site actually accessed by the user is benign or malicious.
From a user perspective, this will likely be perceived as a nuisance, as the
blacklist will then prevent access to benign sites not representing any risk. To
assess the user-level impact of deploying DNS based blacklisting, it is there-
fore relevant to quantify the fraction of flows in Cip where the endpoint of
the flow and the endpoint causing the IP address to be blacklisted can differ.
We shall refer to these flows as potentially having misaligned endpoints.

An analysis of each individual endpoint IP prefix would be impractical.
In order to identify the most prominent groups of Cip flows, we choose to
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focus the analysis on the groups of flows where:

• Many domain names are associated with a single destination IP prefix
(high qname/dstip ratio)

• Many destination IP prefixes are associated with a single domain name
(high dstip/qname ratio).

• A popular destination IP prefix is used (high dstip count)

• A popular domain name is used (high qname count)

Based on this analysis, three different scenarios that can cause misaligned
endpoints has been identified in the Cip data set, and these three scenarios
are elaborated in the following three subsections.

5.6.1 Shared content providers

The entries in Cip with a high qname/dstip ratio all have a dstip owned by
a CDN, shared web hosting or similar cloud content provider like Amazon,
Microsoft Azure, Google Cloud, DigitalOcean or Tencent. A total of 29556
entries ( 43% of Cip) are related to such servers and we consider these flows
to potentially having misaligned endpoints.

An number of dstips are owned by Virtual Private Server (VPS) service
providers and regular ISP customers. 516 entries are considered ISP cus-
tomers as well, as they relate to a server with a dynamic IP address, identified
by the use of a .duckdns.org domain name, a service used for assigning a per-
manent domain name to a dynamic IP address. These will not be considered
as potentially misaligned endpoints.

It could be argued that all destination IP addresses could easily be enu-
merated by the use of BGP AS numbers. In practice, however, this turns out
not to be viable for a number of reasons. First, only the /16 prefix address is
available due to anonymization, and such a prefix may cover several AS num-
bers. Second, some providers share the AS number between the ISP and host-
ing part of the company (like OVH). Third, some providers reserve smaller
prefixes for specific customers (like Amazon). Fourth, some providers use IP
space assigned to other entities (like Tencent using ChinaUnicom owned IP
prefixes).

5.6.2 VPN service providers

VPN service provider (PrivateInternetAccess, Hula, NorthGhost etc.) traffic
identified by the qname accounts for 12469 ( 18%) of all entries in Cip. The
specific implementations by the different providers is not known. However, it
seems unlikely that a user creating a connection towards such an IP address
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Cause Week 1 Week 2
Shared content providers 29556 (43%) 19370 (31%)
VPN service providers 12469 (18%) 13710 (22%)
NTP pool 4006 (6%) 3505 (6%)
Total 45698 (67%) 36336 (58%)

Table 5.8: Amount of entries in Cip with different causes for potential endpoint misalignment. Note that
the total is less than the sum, as for example an NTP pool entry may also be a shared content provider
entry, and this only counts as 1 in the total.
will be relayed to a host residing behind the VPN service. A connection
towards such a server seems more likely to be an attempt to use the service.
The VPN provider IP addresses are likely to have been blacklisted because
hosts using the service generated traffic that triggered a blacklisting. We
shall therefore consider the VPN provider IP addresses as potentially having
misaligned endpoints.

5.6.3 NTP Pool

Traffic towards hosts registered in the ntppool project2 is identified by the
qname containing .pool.ntp.org. This traffic accounts for 4006 ( 6%) of all en-
tries in Cip. A DNS request for a .pool.ntp.org domain will return a number
of IP addresses, where each IP address belongs to a pool member. If the
IP address of one of the pool members in the DNS response is blacklisted,
the entire DNS response is considered blacklisted. Therefore, a connection to-
wards a different pool member will be considered part of Cip. This is not con-
sidered a flaw in the data analysis, as it reflects how DNS based blacklisting
is implemented in practice. Blacklisting relates to the entire DNS request/re-
sponse pair, not just to single response resource records. It is therefore likely
that these flows have misaligned endpoints.

5.6.4 Discussion

Table 5.8 summarizes the amount of flows that may have misaligned end-
points and lists the 3 identified scenarios causing the potential misalignment.
As seen in the table, we consider at least 45698 of 68045 Cip entries (67%) as
potentially having misaligned endpoints. Blocking these flows involves a risk
of blocking benign sites. Although the specific IP address on the blacklist may
be correct by reflecting a malicious endpoint using that IP address (a true pos-
itive), the user may perceive it as a false positive. When a provider considers
deploying DNS based blacklists that includes IP addresses, the willingness
of both operators and users to accept this risk should therefore be carefully
considered up front.

2https://www.ntppool.org/
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Of the 45698 entries, only 5 are tagged by the B lists, while the rest is
tagged by A lists. This highlights that the choice of blacklists represent an
important limitation to the results presented in this section. The numbers pre-
sented are unlikely to be representative of other blacklists. However, looking
outside the scope of this paper, this also suggests that when considering de-
ploying DNS based blacklisting, the concept of IP address blacklists should
not necessarily be deselected upfront. The risk of blocking benign sites due to
endpoint misalignment can be decreased significantly by the careful selection
of IP address blacklists.

As outlined in Section 5.2, we are only aware of one other paper that
evaluates the risk of misaligned endpoints for the individual blacklist entries
[88]. However, it is important to notice that the results presented in this
section would not be directly comparable, as they relate to the blacklisted
flows (Cblack), not the blacklisted DNS responses (Dblack ) or the individual
entries on a blacklist (the latter being the focus of [88]). The primary purpose
of our work is to present the method of using NetFlow to measure the impact
of deploying blacklists using a specific set of blacklists as examples, and not
to compare blacklists. Hence, we consider evaluating a larger number of
blacklists as an extension to this paper.

5.7 Impact

Sections 5.3-5.6 identify blacklisted flows, identify the type of maliciousness
and assess the risk of endpoint misalignment. This section combines the
result of the previous sections to quantify impact of deploying DNS-based
blacklists seen from the network perspective and from the user perspective.
Furthermore, this section describes interesting future works.

5.7.1 Network-level impact

The network-level impact of DNS based blocking is usually practically mea-
sured by counting the number of blocked DNS requests or by counting the
number of visits to a warning page to which a user has been redirected. In
this paper, the impact is instead measured using the number of blocked flows
instead, and this reveals the fraction of web related flows.

• Approximately 0,02-0,03% of all DNS responses match a blacklist entry,
and 1,1-1,5% of these blacklisted DNS responses can be associated with
an observed flow, denoted a blacklisted flow. The use of sampled flow
data was found to hinder the estimation of the actual fraction of black-
listed DNS responses that can be associated with a flow. Researchers or
ISPs with access to non-sampled NetFlow and DNS data should assess
the fraction of blacklisted DNS responses that can be associated with a
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flow. Given a known amount of blacklisted DNS responses, this would
make it possible to more accurately assess impact of doing DNS based
blocking.

• Some DNS based blocking implementations redirect the user to a web-
site containing a message warning the user that he has been blocked
for security reasons. Therefore, such implementations measure only
the part of the traffic that is web traffic. Of the flows blacklisted by do-
main name, 38-40% are web traffic. Of the flows blacklisted by domain
name and considered having a high threat level, 61-72% are web traffic.
Therefore, this paper shows that measuring the impact of blacklisting
by the number of visits to the warning web site underestimates the
impact. ISPs and company system administrators should implement
measures to also count non-web related connections, in order to get a
more correct assessment of the blacklist impact.

These results are specific to a particular week, use particular blacklist ven-
dors, and a particular ISP. Despite the listed limitations, we find the results
significant enough to suggest that the method of using NetFlow to measure
the impact of applying DNS based blacklists represents an improvement to
existing methods.

5.7.2 User-level impact

Approximately 25% of the blacklisted flows relate to a blacklisted domain
name, whereas the remaining 75% of the blacklisted flows relate to a black-
listed IP address.

• The flows blacklisted by domain name are, using the threat type cate-
gories provided by the blacklist vendors, divided into two groups. First,
a group relating to general spam, considered a nuisance rather than a
cyber security threat, accounts for 94-97% of the flows. Second, a group
relating to phishing, malware and botnet accounts for the remaining
3-6%. When deploying DNS based blacklisting, it is therefore impor-
tant to consider if both or only one of these types of traffic should be
blocked, as this will have a significant impact on the amount of blocked
connections experienced by the user.

• Of the flows blacklisted by IP address, this paper shows that 58-67%
may be flows towards benign sites, primarily due to the prevalence of
shared web hosting, whereby multiple web sites / domain share the
same IP address. From a user and operator perspective, the willingness
to risk blocking benign sites must be considered before deploying IP ad-
dress based blacklists. This study shows that carefully selecting the IP
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address blacklist vendor can be a significant contribution to minimizing
this risk.

These results are also specific to particular blacklist vendors and a particular
ISP. Here, however, we show that the specific measurements depend a lot on
the particular blacklist used, and therefore it is a clear limitation that these
results cannot be generalized to different blacklists.

5.8 Conclusion

In this paper, we propose a method to measure the impact of deploying black-
lists by combining NetFlow and DNS data. We evaluate the method on real
data, containing anonymised NetFlow and DNS records collected by Telenor
Denmark for two weeks, and combine these with blacklists containing IP
addresses and domain names provided by two commercial vendors.

The measurements show that 0,02-0,03% of all DNS responses match a
blacklist entry, however only 1,1-1,5% of these blacklisted DNS responses
can be associated with an observed flow. Furthermore, only 38-40% of the
blacklisted flows are web traffic. These observations suggest that the use
of flow data can be used to make a more precise impact assessment than
counting the amount of DNS responses matching a blacklist entry or counting
the amount of visits to a warning web page.

For flows blacklisted by domain name, 3-6% of the flows related to phish-
ing, malware and botnet domains, while the remaining flows relate to spam
domains. For the flows blacklisted by IP address, 58-67% may be flows to-
wards benign sites. These observations show that the careful consideration of
the choice of blacklist type (domain name or IP address) and category (spam,
malware etc.) before deployment is essential to avoid undesired impact seen
from a user perspective when deploying DNS-based blacklists.

62



CHAPTER 6
Paper C

An uneven game of hide and seek:
Hiding botnet CnC by encrypting

IPs in DNS records

Main author:
Martin Fejrskov

Technology, IP Network and Core
Telenor A/S

Aalborg, Denmark
mfea@telenor.dk

Co-authors:
Jens Myrup Pedersen Leon Böck
Cyber Security Network Telecooperation Lab

Aalborg University Technische Universität Darmstadt
Aalborg, Denmark Darmstadt, Germany

jens@es.aau.dk boeck@tk.tu-darmstadt.de

Emmanouil Vasilomanolakis
Cyber Security Network

Aalborg University
Copenhagen, Denmark

emv@es.aau.dk

Presented at:
IEEE Conference on Communications and Network Security (CNS) 2021

© 2021 IEEE. Published in conference proceedings by the IEEE, and available
at https://doi.org/10.1109/CNS53000.2021.9705029. Reprinted with permis-
sion. The layout has been revised. Funded by Telenor A/S and Innovation
Fund Denmark.

63



Abstract

Botnets frequently use DGA and fast-flux techniques to ensure the availability of
their command and control (CnC) infrastructure. However, the CnC IP addresses are
still exposed in plain-text in publicly available DNS A records, which can be exploited
by defenders to disrupt botnet operations. This paper presents the concept of the IP
Generation Algorithm (IGA) as a novel method, usable by botmasters, to encrypt
the CnC IP address in DNS records to avoid plain-text IP address exposure. This
raises the bar for blacklisting malicious IP addresses, and can also be combined with
existing techniques to further harden the CnC. For use by defenders, an IGA botnet
detection method based on the combination of DNS and NetFlow data is presented
and validated using an emulated botnet and an ISP data set.

Keywords: Botnet · NetFlow · DNS · encryption · detection

6.1 Introduction

Many botnets use the DNS protocol and infrastructure to establish command
and control (CnC) connections between a bot and the botmaster. Defenders
can identify the botnet related domain names and block them in the DNS
infrastructure. This is typically made significantly harder by the botmasters
by using Domain Generation Algorithms (DGAs) to frequently create and
register new domain names [92]. As the DNS responses to the DGA domains
still reveal the IP address of the CnC host, defenders can choose to block DNS
requests relating to that IP address, or block IP connections towards the CnC
host IP address. This is made more difficult by the botnets by using fast-flux
(FF) to frequently change the IP address registered with the DGA generated
domain name.

The scarce resource in this game of hide-and-seek is the IP address. A us-
able IP address must represent an infected host, whereas the domain names
can be freely chosen. For the botmaster, it would therefore be attractive not
to expose the plain-text IP addresses of the CnC host in DNS records.

In this paper, we propose the IP Generation Algorithm (IGA) as a novel
technique to encode the CnC host IP address. The botmaster would use the
IGA to encode the plain-text CnC host IP address using a time-variable key,
and register the domain with the encoded version. The bot would use the
IGA to decode the retrieved address to reveal the plain-text IP address of the
CnC host. Similar to a DGA, the purpose of the IGA is to generate random,
legitimate looking IPs. However, as opposed to a DGA, the IGA is a two-way
function.

A botmaster using the DGA and IGA techniques in combination could
choose not to flux the IP address at all, effectively bypassing any FF detection

64



techniques. Alternatively, the botmaster could use FF with a much higher
frequency with IGA encoded IP addresses, as the amount of IP addresses
available is not longer a limiting factor. In both cases, the botmaster does not
reveal the plain-text IP addresses in the DNS messages.

The defender, however, faces potentially severe consequences. First, FF
detection methods can be irrelevant when identifying malicious domains and
IP addresses. Second, it would become impossible to generate IP address
blacklists by only studying DNS data, as it does not reveal the plain-text IP
address. Third, a defender unwittingly blocking an encoded IP address could
result in the blocking of a benign host that matches the encoded address.

The primary contributions of this paper are:

• The IGA concept and a Python based implementation for encoding and
decoding the CnC IP address.

• A DNS and NetFlow based IGA detection algorithm validated using
Internet Service Provider (ISP) data and an emulated IGA botnet.

Section 6.2 of this paper introduces the threat model. Section 6.3 describes
the IP Generation Algorithm, Section 6.4 describes an IGA detection method
that is validated in Section 6.5. Section 6.6 summarizes related work and 6.7
concludes the paper.

6.2 Threat model

The goal of the botmaster is to use the DNS infrastructure to find one or more
IP addresses AND subsequently create a connection towards the discovered
IP address for CnC purposes. The botmaster is assumed:

• not to have control of any type of DNS servers.

• not to be able to actively obfuscate, spoof or modify the addresses and
ports in the TCP/UDP/IP layers.

• to only use A-type DNS records (although the method presented in this
paper could be extended to other types).

• to be able to create decoy connections towards any IP addresses present
in clear-text in A-type DNS responses.

The defender is assumed to be able to inspect/modify/block DNS traffic
at the application layer and CnC connections at the transport and network
layer. Also, the defender is assumed not be obstructed by the use of DNS-
over-TLS or DNSCrypt, such as the case where the defender controls the
resolvers. Thus, a typical ISP can assume the role of defender.
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The botmaster could choose to combine IGA with DGA/FF techniques
and thereby be subject to existing detection methods for these techniques.
This paper will assume that such techniques are not used, and will not de-
pend on them for detection.

6.3 The IP Generation Algorithm

This section describes the proposed implementation of the IGA. The objective
of the IGA is to encode a globally routed, plain-text IP address into an en-
crypted version, that can also be represented in the form of a globally routed
IP address.

The proposed IGA encoding implementation contains three steps: rank-
ing, encryption and mapping. The description in this section will, for brevity,
focus on the encoding only. The decoding process is simply the reverse of the
encryption process. These three steps are depicted in Figure 6.1 and elabo-
rated in the following paragraphs. The four coloured dots in Figure 6.1 each
represent a CnC IP address and visualize how the encryption process changes
their position in the respective value ranges.

Fig. 6.1: Conceptual illustration of the IGA encoding procedure containing three steps: ranking, encryp-
tion and mapping.

6.3.1 Ranking

The purpose of ranking is to create a consecutive ordering of all globally
reachable IP addresses in order to minimize the probability that the encryp-
tion and mapping steps will output an address that is not globally reachable.
This excludes for example private, link-local, loopback nets etc. [93] [94]. An
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IPv4 address is represented by a 32 bit integer in the range [0..intmax] where
intmax = 232 − 1. A total of R = 592708608 IP addresses are not globally
reachable, these are represented by red colour in Figure 6.1 on the preceding
page. The pool of reachable IPs can be ranked by representing them in the in-
terval [0..rankmax] where rankmax = intmax− R. The values never provided
as output by the ranking function are represented by blue colour in Figure
6.1 on the facing page, and the size of the blue area is the sum of sizes of the
red areas.

6.3.2 Encryption

The input and output for the format-preserving encryption is not an integer,
but two or more characters, each character consisting of a symbol from an
alphabet. The number of different symbols in the alphabet is called the radix,
radix ∈ [2..216] [95]. Using this terminology, an IP address can be represented
by four characters (bytes) and a radix of 256, as each byte can have a value in
the range [0..255]. The integer representation of the input and output values
is therefore the range [0..cryptmax], where cryptmax = radixcharacters − 1.

The number of characters and the radix should therefore be chosen such
that rankmax = cryptmax, as this would ensure that a globally reachable IP
address could be mapped one-to-one to another reachable IP address, but
unfortunately this does not have an integral solution. Choosing rankmax >
cryptmax would make it impossible to encode a part of the reachable address
space. This is very undesirable to a botmaster, as this would make it impos-
sible to use those addresses for CnC. Choosing rankmax < cryptmax is also
undesirable, as the output of the encryption would then need to be mapped
to a part of the IP space that is not reachable, indicating that the IP may be en-
crypted. For this paper, we will assume that botmasters prefer to create DNS
A records with unreachable IP addresses rather than being unable to use cer-
tain IP addresses for CnC, and therefore opt for the rankmax < cryptmax
approach.

Solving min(cryptmax− rankmax) � R for integral characters and radix
reveal four options listed in Table 6.1 on the next page as well as the cryptmax−
rankmax difference. Two Python-based encryption/decryption libraries have
been found. One supports only radix < 37 [96], which is not compatible
with the options listed in Table 6.1 on the following page. Another supports
only an even length and a radix ≤ 256 [97], which matches only one pos-
sible option in Table 6.1, namely a length of 4 and a radix of 247 yielding
cryptmax = 2474 − 1. Note that a botmaster could choose to use a differ-
ent library with different limitations, and therefore be able to choose a better
length and radix combination.
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Characters Radix cryptmax-rankmax
2 60847 98722
3 1547 35636
4 247 19839394
5 82 5139745

Table 6.1: Options for the selection of radix and input/output length

6.3.3 Mapping

The purpose of this step is to map the encrypted IP addresses ([0..cryptmax])
to a reachable IP addresses ([0..intmax]).

The green areas in Figure 6.1 on page 66 represent the output values of
encrypting the values in the blue area between rankmax and cryptmax. This
is illustrated by the summed size of the green areas being the same size as
the blue area between rankmax and cryptmax. As values between rankmax
and cryptmax are never output by the ranking step, the values in the green
areas are never output by the encryption step (for a given key). However, as
the specific, unused output values of the encryption depend on the key in
use, the mapping function is unable to exclude these unused values before
performing the mapping. Therefore, the mapping takes as input the range
[0..cryptmax] rather than [0..rankmax].

If it was possible to set rankmax = cryptmax, the mapping operation
would be the reverse of the operation performed by the ranking step. Instead,
the mapping function is split into two functions. First, a function operating
on encrypted IP values ≤ rankmax that performs the reverse operation of
the ranking function, marked with an "R" in Figure 6.1 on page 66. Second,
a function that operates on encrypted IP values > rankmax, marked with
an "X" in the figure. The latter values are mapped to a segment of the IP
address space that is not reachable, and for the implementation provided by
this paper, the 224.0.0.0/4 subnet reserved for Multicast is used.

6.3.4 General notes

A note on the use of a tweak is important. A tweak can be considered as
a non-secret key, that should vary with each instance of the encryption [95].
In an IGA context, an obvious choice for the tweak is the DGA generated
domain name: This will ensure that a single (plain-text) IP address would be
encoded into several different IP addresses, one for each domain name, even
though the key is held constant. As the DGA algorithm already includes time
variability, using the domain name as tweak also eliminates the need for time
variability in the encoding/decoding step of the IGA.
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Plain-text Encoded
193.0.2.255 192.238.197.236
8.8.8.8 154.141.220.55
152.13.43.124 32.72.64.180
212.220.255.3 199.22.251.26

Table 6.2: Examples of plain-text IPs and their associated encoded version.

Without the ranking and mapping steps, the probability that the en-
cryption would output a non-reachable IP address is R

intmax = 0.138. By
including the ranking and mapping steps, this probability is reduced to
cryptmax−rankmax

intmax = (radixcharacters−1)−(intmax−R)
intmax = 0.005. With a crypto imple-

mentation supporting an odd number of characters (3) and a higher radix
(1547) (as seen in Table 6.1 on the preceding page), this probability could be
reduced even further to 8, 3 · 10−6.

Python code implementing the IGA algorithm described above is available
in [98]. The implementation uses the FF1 encryption and decryption scheme
provided by [97], which unfortunately does not support the use of tweaks.
Table 6.2 contains examples of encoding using the key "someGoodKey".

Although the rank-and-encipher approach is proposed by [93] as a method
for semantic-preserving encryption, our paper significantly extends it by con-
sidering multiple IP scopes and the associated ranking method, by introduc-
ing and solving the problems of differing set sizes for the ranking output and
the encryption input, and by providing an implementation.

6.3.5 Summary

This section describes the IP Generation Algorithm and the three steps used
to encode a globally routed, plain-text IP address into an encrypted version,
that can in most cases also be represented in the form of a globally routed IP
address. The encryption step maps a plain-text IP address into an encrypted
IP address, and using the DGA generated domain name as tweak ensures
time variability in the encrypted IP address. The ranking and mapping steps
reduce the probability of the encoded IP being outside the globally reachable
address space, thus decreasing the suspiciousness of the encoded IP.

6.4 Detecting IGA botnets

The purpose of this section is to outline a method to detect the presence
of an IGA-based botnet by using DNS and NetFlow data. The key idea of
the method is to identify sets of source IPs that exhibit the group behavior
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expected by IGA bots: They resolve the same set of domain names and then
create unnamed flows towards the same set of destination IP addresses. Each
of the steps are described in more detail in the following subsections. The
results of applying the method to a real dataset will be the topic of Section
6.5 on page 76.

Throughout this section, it is assumed that the DGA used by the botnet
will generate a domain per day, as this is a common domain validity period
for time-dependent DGAs [92]. Adapting the proposed method to a different
frequency should be trivial.

A flow is defined as the daily aggregation of all packets sharing the same
5-tuple (protocol and source/destination IP address/ports), timestamped us-
ing the first-seen timestamp observed in NetFlow records for that 5-tuple.

As the algorithm is based on identifying source IPs that exhibit the same
behaviour over k days, it is a requirement that DNS and NetFlow data is
observed ≥ k days. From an adversary perspective, it is likely undesirable
not to allow the majority of bots to establish CnC communication at least
once a day. Therefore, the choice of k can be based on data availability. It is
demonstrated in Section 6.5 that k ≥ 3 is a necessity to avoid a high number
of false positives in the detection.

6.4.1 Dataset reduction

The first step in the detection algorithm is to apply systematic white-listing
so that irrelevant data is disregarded (such as flows or DNS request related
to popular domains or CDN IPs). The main purpose of this is to reduce the
processing requirements for the following steps. Therefore, not all reduction
operations may be relevant to apply for all datasets. The remaining parts
of this paper will refer to the result of applying all the desired reduction
operations as two sets, a set of DNS Resource Records (RRs), Dreduced, and a
set of flows, Freduced.

The detection method proposed in this paper is considered complemen-
tary to existing DNS-only or NetFlow-only methods, therefore a black-listing
approach based on such methods is intentionally not used. The following
notation is used:

• Dall : All collected A type DNS RRs.

• DrdataIP
all : The unique rdata IPs in Dall

• DFQDN
all : The unique qname FQDNs in Dall

• D2ndlevel
all : The unique second level domains found by extracting these

from all entries in DFQDN
all

• Fall : The flows in all collected NetFlow packets.
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6.4.1.1 Outside originated flows

All flows originating from outside the network under observation should be
white-listed, as the DNS requests related to these flows will not be observ-
able. Notice that when using sampled NetFlow, it is often not possible to
identify the flow origin.

6.4.1.2 Frequent second level domains

Two techniques can be used to white-list both DNS RRs and flows based on
frequently seen second level domains:

A popular white-listing technique is to disregard any domain names found
in lists of popular second level domains (such as the Alexa Top list), which
will be denoted W2ndlevel . The rationale of this is that is unlikely that a bot-
master can retain long-term, unnoticed control of either domains or servers
used by such high-volume organisations. The list is used to find the white-
listable RRs, Dwhitelisted = Dall nW2ndlevel , which can then be used to find two
reduced sets, Dreduced = Dall \ Dwhitelisted = Dall . W2ndlevel = Dall . D2ndlevel

whitelisted
and Freduced = Fall . DrdataIP

whitelisted, that do not include RRs or flows relating to the
white-listed second level domain names. The threshold Tsecondlevel =

Dreduced
Dall

is defined to indicate how large a fraction of DNS RRs is retained.
Another technique is to white-list any DNS RRs with qnames or rnames

containing FQDNs or second level domains, that are requested by more than
Tmaxbots source IPs, the set of white-listed DNS RRs denoted W2ndlevel(Tmaxbots).
The rationale of this is that a specific DGA FQDN will never be requested by
a benign client, therefore FQDNs requested by more than Tmaxbots source IPs
will be benign, if the number of bots in the observed network is ≤ Tmaxbots.
This can be used to construct Dreduced and Freduced in a similar way as de-
scribed above. This technique should only be used to white-list flows if the
botnet is not assumed to deploy CnC hosts on servers also serving benign
content.

Although these two techniques overlap, practical experiments show that
both provide distinct dataset reductions.

6.4.1.3 Frequent rdata IPs

It seems tempting to also white-list DNS RRs and flows based on frequently
observed rdata IP addresses. This is, however, not a feasible strategy, as the
botmaster has unlimited control over the contents of the rdata IP address,
and could therefore choose to implement an IGA, that only uses frequently
seen IP addresses (CDN IPs etc.) as output space for the IGA algorithm.
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6.4.1.4 Frequent destinations

Two techniques can be used to white-list flows based on frequently seen flow
destinations:

For NetFlow data, a popular technique is to disregard Content Delivery
Network (CDN) IPs, denoted WCDN , solely serving static/benign content,
such as Youtube, Facebook and Akamai CDNs (but not for example Amazon
or Azure CDNs, as these can host private virtual servers). The rationale of
this is that it is unlikely that a botmaster can retain long-term, unnoticed
control of such servers. Notice that as ISPs deploy CDNs locally in their
networks, the CDN IPs will likely differ between ISPs. This can be used to
construct a reduced set of flows, Freduced = Fall . WCDN .

Another technique is to construct a set of white-listed flow destination
endpoints (defined by a destination IP, protocol and port combination), de-
noted Wdestination(Tmaxbots), such that a flow is in this set if more than Tmaxbots
source IPs contact a specific endpoint. The rationale of this is that a specific
botnet CnC endpoint will never be requested by a benign client (assuming
that the CnC software does not share the destination port with benign soft-
ware, such as Apache). This can be used to construct a reduced set of flows,
Freduced = Fall . Wdestination(Tmaxbots).

Although these two techniques also overlap, practical experiments show
that both provide distinct dataset reductions.

6.4.1.5 Domains seen yesterday

FQDNs and second level domain names seen in DNS requests the day before
the day under analysis form a large white-list, Wyesterday. The rationale of
this is that the purpose of a DGA algorithm is to create a new and unique
FQDNs each day, so that a listing of the domain name on a free or commercial
domain name blacklists becomes irrelevant. This can reduce the set of DNS
RRs to Dreduced = Dall . W2ndlevel

yesterday . WFQDN
yesterday.

6.4.2 Unnamed flows

It is an inherent property of using an IGA that the DNS RRs and flows will
only be explicitly related by the source IP address. The A record IP in the
DNS response is encoded, and therefore not identical to the destination IP in
the flow.

Any flows for which a matching DNS record can be found is called
a named flow, Fnamed = Freduced n Dall . These flows are not relevant for
IGA detection and can be white-listed, leaving only the unnamed flows,
Funnamed = Freduced \ Fnamed = Freduced . Dall . The matching criteria are source
IPs, timestamps, rdata record and destination IP.
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When identifying named flows, the aspect of time is relevant. A flow
could be named by the first preceding DNS record, or by all preceding DNS
records within a certain time window, for example the window set by the
TTL or the window of the current day. In order to make Funnamed as small as
possible by making the white-list Fnamed as large as possible, a time window
of the current day seems to be a reasonable approach.

Notice that DNS requests for which a related NetFlow record can be found
should not be white-listed, as the botmaster could choose to initiate traffic
towards the encoded IP address in the DNS request as a decoy to avoid de-
tection.

6.4.3 Re-named flows

Given a set of flows, Funnamed, that have no related DNS response, and given
a set of DNS responses, Dreduced, the purpose of the remaining steps of the
detection algorithm is to identify the specific entries from each set that are
actually created by the IGA botnet. To facilitate this, this section introduces
the concept of a re-named flow.

A re-named flow is a flow from Funnamed augmented with a relevant DNS
RR from Dreduced. A DNS RR is considered relevant, if the flow and the DNS
request originate from the same source IP address, and if the start time of the
flow is within a certain time window, Tdelaymax, of the DNS response. The set
of re-named flows, R, is therefore given by the theta-join, or selected cartesian
product, R = Funnamed onθ Dreduced = σθ(Funnamed × Dreduced), the θ condition
being the source IP and time window constraints.

The choice of Tdelaymax requires further consideration, as a DNS request
should not be expected to be immediately followed within few seconds by
an observed NetFlow record. There are multiple reasons for this: A bot-
master could deliberately introduce a variable time delay between the DNS
lookup and the CnC connection in order to evade detection, including a de-
lay exceeding the TTL of the DNS RR. Also, the NetFlow data used can be
sampled, and therefore the observed flow start timestamp is not necessarily
equal to the actual flow start time.

Note that DGA domains are typically registered with a low TTL in order
to enable fast-flux. However, as the IGA eliminates the need for fast-flux in
the CnC phase, such low TTLs cannot be assumed to be used for IGA based
botnets.

R contains a number of entries that are irrelevant for the following IGA
detection steps. Only the qname, source IPs and the destination IP are rele-
vant, and Rreduced is constructed from R by removing any other information
and removing duplicates.

Following the assumption that DGA algorithms generate a new domain
name on a daily basis, the processes of reducing the dataset, and identifying
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unnamed and re-named flows can be performed on a daily basis as well.
Therefore, given that DNS and NetFlow data is available for k days, k sets of
re-named flows, R1..k

reduced, can be constructed on an individual basis to form
U = ∪k

i=1Ri
reduced.

6.4.4 Vertices and edges

The next step of the IGA detection algorithm is to build a graph based on
all of the re-named flows, U. The purpose of the graph is to identify sets
of source IPs that exhibit the same behaviour by resolving the same domain
names and connecting to the same destination IPs.

6.4.4.1 Vertices

Subsets of U are created, where a subset consists of the entries of U that
share a specific combination of qname, destination IP and day. The size
of a subset is equal to the number of unique source IP addresses with this
combination. Subsets containing < Tminbots source IPs are discarded. Subsets
containing ≥ Tminbots entries form the set V, after removing the destination
IP information and duplicates. V is therefore a set of source IP, qname and
day triplets.

Subsets v1...n of V are created, where a subset vi consists of all the source
IPs that share a specific combination of qname and day. In other words, vi
represents the source IPs that resolve the same domain name on a specific
day. Each of the subsets of V are represented by vertices in a graph.

6.4.4.2 Edges

A bidirectional edge connects two vertices if the Jaccard similarity, J(), of
the two sets of source IPs, vi and vj, is larger than a given threshold, Tjaccard

determined as Tjaccard > J(vi, vj) =
vi∩vj
vi∪vj

. Calculating this only for vertices
representing different days represents the expected behaviour of a set of IGA
bots (represented by their source IPs) resolving a different domain each day.

The similarity threshold Tjaccard, 0 ≥ Tjaccard ≥ 1 should be chosen suf-
ficiently high to eliminate false positives and sufficiently low to make it
unattractive for the botmaster to try to avoid detection by generating many
DGA domains each day, or by instructing too high a fraction of bots to not
create CnC connections each day.

6.4.5 Cliques and communities

Having constructed a graph where two vertices are connected if they share
a certain fraction of their associated source IPs enables the final steps of the
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detection algorithm: Clique and community detection.
A k-clique is a set of vertices that are fully connected to at least k − 1

other vertices, representing sets of source IP addresses that resolve the same
set of domain names and then create unnamed flows towards the same set of
destination IP addresses across all k days.

As several DGA domains could be created each day by a botnet, a botnet
may be represented by several k-cliques. Therefore, the graph is used to
identify k-communities: A k-community is the union of all cliques of size k
that can be reached through adjacent (sharing k-1 nodes) k-cliques [99].

A k-community could represent an IGA botnet, where the source IPs re-
lated to the community represents the bots. However, a community could
also represent other structures than IGA botnets, such as regular botnets gen-
erating traffic to some other, common destination (e.g. for attack purposes)
based on information obtained through the CnC channel (thereby creating an
unnamed attack flow).

6.4.6 Summary

This section describes the steps of the IGA detection algorithm, which in-
cludes a number of possible data reduction techniques. Based on DNS re-
sponses and NetFlow records collected over k days, a number of k-cliques
are found that may represent an IGA botnet. Several properties are worth
noting:

• No assumptions are made about the similarity of two different qnames
when identifying cliques, as is the case for example in semantic based
DGA detection methods.

• The rdata IP value is only used for data minimization and to identify
unnamed flows, but is not used in the re-naming of flows or the clique
identification. The rdata IP value is often key in DGA detection meth-
ods for example when identifying IP addresses with many associated
qnames.

• No assumptions are made about the distribution or similarity of source
or destination port numbers (except for when performing white-listing),
which is often the case for NetFlow-based detection methods.

• The flow sizes (packets, bytes or time) are not used, which is often the
case for NetFlow-based detection methods.

As the botmaster has almost full control of all of the aforementioned features,
these properties should be considered important to any detection algorithm.
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6.5 Validation of detection method

In this section, IGA botnet traffic will be injected into DNS and NetFlow data
from an ISP to validate the IGA botnet detection method described in the
previous section. The following subsections describe in further detail the ISP
data available, how emulated IGA traffic is injected into the ISP data, and the
specific values chosen for the various thresholds used in the detection algo-
rithm. Finally, the results of running the detection algorithm are presented
and discussed.

6.5.1 ISP DNS and NetFlow data

DNS and NetFlow data for the 1,5M mobile and 100k broadband subscribers
of Telenor Denmark is used for validation. NetFlow data is collected at the
Border Gateway Protocol (BGP) Autonomous System (AS) border routers us-
ing a sample rate of 1:512. This traffic therefore represents all Internet traffic
entering and exiting Telenor Denmark’s network. DNS data is collected at
DNS resolvers by collecting all DNS response packets. The resolvers are only
accessible to Telenor Denmark subscribers, and they are the default choice
for all subscribers.

NetFlow and DNS data are anonymized for legal reasons by truncating
the internal (subscriber) IP to a /24 prefix for non-NAT’ed subscribers (or
truncating the port for NAT’ed subscribers) as well as a number of other
measures less relevant to this paper. The anonymization policy applied fol-
lows the guidelines of [90] except that varying levels of anonymization is
applied to the NetFlow destination IPs and the DNS rdata IPs in order to
evaluate the effect of anonymization on the results. Due to anonymization
of source IPs, all traffic will originate from only approximately 15k prefixes,
each representing somewhere between 0 and 256 customers.

6.5.2 Proof-of-concept IGA botnet data

To emulate the behaviour of an IGA botnet, the Bash script available in List-
ing 6.1 on the facing page is used. The script is run once every day to emulate
the behaviour of an IGA botnet consisting of 30 bots among the Telenor cus-
tomers, each of which contact the botnet CnC infrastructure once a day by
means of a single DNS lookup and a TCP flow.

The fixed set of 30 IP addresses used as faked source IP addresses are
selected from the various prefixes used by Telenor for customers. For each
source IP, a single DNS request is created of type A for the domain bot-
test.testlab.telenor.dk, giving the response value 192.0.2.3. For each source
IP, 512 TCP packets are then created with a random source port, and desti-
nation 12.34.56.78:23. This emulates the IGA bot behaviour of decoding the
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Listing 6.1: IGA traffic emulation script.

1 for sourceip in $ s o u r c e i p l i s t ; do
2 dnsflood −n 1 −s $sourceip $botdomain $ r e s o l v e r
3 s leep 1 s
4 done
5 s leep 10 s
6 l e t sourceport=$RANDOM
7 for sourceip in $ s o u r c e i p l i s t ; do
8 for ( ( i =1 ; i <=512; i ++) ) ; do
9 sendip −p ipv4 − i s $sourceip −p tcp − t s $sourceport −td 23 − t f s 0

1 2 . 3 4 . 5 6 . 7 8
10 done
11 l e t sourceport++
12 s leep 1 s
13 done

IP address 192.0.2.3 to the plain-text IP address 12.34.56.78, and knowing the
destination port number by some other means. The choice 512 packets is
made in order to increase the probability that at least one of the packets from
each bot is represented in the collected NetFlow records that use a sample
rate of 1:512.

As the domain registration process is not scripted, the emulated botnet
will always resolve the name bot-test.testlab.telenor.dk. This specific domain
is therefore made exempt to the minimization step that removes domains
seen the day before. This is implemented in practice by prefixing the do-
main name with the number of the day of the observation, such as 1.bot-
test.testlab.telenor.dk.

6.5.3 Detection algorithm parameters

All of the recommended methods for reducing the datasets described in Sec-
tion 6.4.1 on page 70 are applied. The choices of the detection threshold
parameters used for validation are summarized in Table 6.3 on the following
page, and where relevant, the choice of each parameter is elaborated in the
following paragraphs.

6.5.3.1 k

Data is collected in two periods, p1 from 20210318 to 20210321 (4 full days)
and p2 from 20210418 to 20210418 (5 full days). Values of k from 3 to 5 are
used, always starting at the first day of the period.
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Metric Symbol Value
Number of days observed k 3-5
Ratio of retained DNS RRs Tsecondlevel 0,05
Number of whitelisted IPs |Wcdnip| 1,3·106

Maximum number of bots expected Tmaxbots 500
Maximum delay from DNS request to flow Tdelaymax 10 min
Jaccard similarity threshold Tjaccard 0,24
Minimum number of bots expected Tminbots 4

Table 6.3: Thresholds used for validation.

6.5.3.2 Tsecondlevel

To white-list frequent second level domain names, the 1500 most popular
second-level qnames and the 200 most popular second-level rnames (where
rnames and qnames differ) were white-listed. The qname approach causes
approximately 95% of all responses to be white-listed. This is approximately
equal to removing second-level domains for which there is more than 100k
queries per day. The rname approach causes approximately 95% of all RRs
to be white-listed, yielding Tsecondlevel = 0, 05. This is approximately equal to
removing RRs where more than 170k RRs per day contain a particular second
level domain.

6.5.3.3 Tjaccard

For the Jaccard similarity threshold, a value of Tjaccard = 0, 24 is chosen,
meaning that at least a fourth of the source IP addresses in two vertices must
be common to the two vertices, for the vertices to be considered connected.

6.5.4 Results

Seven different result sets are collected and summarized in Table 6.5 on the
next page. The different result sets vary in which of the two time periods
are used, how many days of data is used. Also, two result sets are using
a truncated version of the destination IP addresses (using the /24 and /16
version of the IP address), in order to evaluate the effect of anonymizing the
destination IP address. Example reference metrics can be found in Table 6.4
on the facing page.

The full graph for result set 2 is found in Figure 6.2 on page 80. The graph
for result set 1 (k=3) is structurally similar. The IGA detection algorithm
detects two communities. The community in cluster 1 contains the vertexes
representing the 4 domains and 26 of the 30 source IPs used in the emulated
IGA botnet. The community in cluster 2 contains the vertices representing
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Metric Symbol Count
Total DNS responses |Dall | 3, 64 · 109

Total flows |Fall | 150 · 106

Minimized DNS responses |Dreduced| 631 · 103

Minimized flows |Freduced| 17, 9 · 106

Unnamed flows |Funnamed| 13, 3 · 106

Relevant re-named flows |Rreduced| 33, 0 · 106

Table 6.4: Example validation data metrics from the first day of the first time period.

Result set 1 2 3 4 5 6 7
Period 1 1 2 2 2 2 2
k 3 4 3 4 5 4 4
Destination IP /32 /32 /32 /32 /32 /24 /16
Vertices 333 395 530 691 853 1037 598
k-cliques 4k 24k 16k 49k 111k 60k 22k
k-communities 6 2 9 5 18 22 8

Table 6.5: Validation data detection results.

124 domains (for example ecy.eu, rfn.de, rae.biz, pms.mx, egln.vg, pbp.ru)
and 7 source IPs. Although other clusters exist, they are not 4-communities.

The graphs for result set 3-7, which are all from the same time period,
are structurally similar to each other. They all depict the IGA botnet as a
separate cluster, less than 10 smaller, non-community clusters, and finally
one very large cluster containing the remaining vertices and communities.

6.5.5 Discussion

For all result sets, the IGA detection algorithm successfully detects the k-
community (containing a single k-clique) with the bot-test.testlab.telenor.dk
domains that represent the emulated botnet (cluster 1 in Figure 6.2). How-
ever, additional communities are also detected in all result sets, showing that
further data processing is needed. Although this does indicate a high false
positive rate for the detection algorithm, we still consider the detection algo-
rithm successful, as it reduces a nationwide traffic data set to a manageable
number of 6-22 positives.

As can be deduced from Figure 6.2 that depicts k=4, using k=2 would
provide many false positives. Using k=3 results in six 3-communities and us-
ing k=4 results in two 4-communities, which we consider a quite low number
given the size of the observed network. As expected, the number of vertices
and cliques seem to grow when data from additional days is used. Interest-
ingly, the number of communities detected is lower for k = 4 than for k = 3
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Fig. 6.2: A graph depicting the results of the IGA detection algorithm for result set 2, using p1, k = 4
and no destination IP address truncation. Green numbers identify clusters for reference.
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or k = 5. This could indicate a sweet spot in the balance of too little or too
much data.

Anonymizing the destination IP address by removing the last octet yields
result set 6 and removing the two last octets as recommended by [90] yields
result set 7. In both cases, the emulated botnet is identified as a k-community
and as a distinct cluster. This, combined with the total number of k-communi-
ties still being relatively low, could indicate that the IGA algorithm may be
feasible to run on anonymized data.

Cluster 2 in Figure 6.2 could be an IGA botnet, however further investi-
gations in this area were inconclusive. A cluster with similar domain names
could not be found in period 2.

Some of the non-community clusters, such as cluster 3, include domain
names that look like they could be created by a DGA, and these are probably
regular (non-IGA) botnets. Although regular bots do not produce unnamed
flows, they produce a lot of DNS requests, and these may by random chance
be attributed to non-white-listed, unnamed flows towards common destina-
tions. This indicates that the IGA detection could be an novel method for
identifying non-IGA botnets as well.

Cluster 4 contains a lot of mailserver-related names. Although this is not
a 4-community, it is surprisingly densely connected. By eliminating day 1
and only looking at at dataset for days 2 to 4, this cluster is reduced to a
much smaller cluster of 6 vertices. The cluster is not found in the dataset
for period 2. Although this cluster could be non-IGA botnet related as well,
it could also belong to SMTP mail servers lookup up the IP address of the
sending domain in order to verify the sender, verify SPF/DMARC records or
similar. As for the non-IGA botnets, this would create a lot of DNS requests
that are by random chance attributed to non-white-listed, unnamed flows.

6.6 Related work

The related work falls into current and proposed IGA implementations and
IGA detection techniques. Both categories have related work focusing on
DNS tunnelling techniques, however, these presuppose that the botmaster
has control of the DNS server infrastructure, and are therefore incompatible
with the threat model of this paper.Similarly, work focusing on DNS-over-
TLS or DNSCrypt techniques is not considered relevant. These techniques
describe application-layer encryption between the client and the resolver,
whereas the IGA technique describes record-level encryption between the
client and the botmaster.
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6.6.1 IGA implementations and encoding schemes

The Sage 2.0 botnet uses a conceptually different, but similarly named IP
Generation Algorithm (using the IPGA acronym) to randomly contact CnC
servers among 7702 addresses within four predefined /16 subnets [100].
Most of these addresses are expected to be benign, and the actual CnC IP
addresses are not conveyed through the DNS system as suggested in this pa-
per. Therefore, the IPGA and suggested IGA techniques differ significantly.

The purpose of Cryptographically Generated Addresses (CGAs) is to gen-
erate an IPv6 address with an embedded public key [101]. This scheme trans-
forms the IPv6 address, but does not hide the real IP address. This technique
is therefore also of less relevance to our paper.

Much work is available various techniques to anonymize IP addresses
[14] [12]. The focus in these papers is typically privacy preservation using
one-way mapping functions, such as truncation or hashing. However, the
IGA technique requires a two-way mapping as well as an encryption/de-
cryption key, as bots need to be able to obtain the plain-text version of the IP
address. This can be achieved using semantic- and format-preserving encryp-
tion as described in [93] using cryptographic algorithms as described in [102]
and [95]. Preserving semantics is important, as not all possible IP addresses
should appear in DNS records. Preserving the format is important, as an
encoded IP address must consist of exactly 4 bytes, the length used for IPv4
addresses. If an encoded IP address does not adhere to normal semantics and
formats, it will be easy to detect. A different encryption scheme focusing on
prefix-preservation is introduced in Crypto-PAN [103], however, the prefix-
preservation is an undesired property in our use case, and furthermore the
scheme is not semantics-preserving.

A technique for using DNS resolvers as bridge in a two-way communica-
tion between two hosts without control of the DNS infrastructure is presented
in [104]. However, only clients sharing the same DNS resolver can communi-
cate.

6.6.2 IGA detection

To show that a DNS record is implicitly, but not explicitly related to a CnC
flow, it is necessary to analyse both DNS and flow data. For this paper, Net-
Flow/IPFIX data will be used to represent flow data, as this is the simplest,
standardized method.

Although commercially available products are difficult to survey due to
lack of detailed information, it is appropriate to include for completeness.
For NetFlow based detection, Cisco Stealthwatch provides by far the most
in-depth documentation of detection capabilities and methods [41]. For DNS
based detection, the deepest documentation seems to be provided by Cisco

82



Umbrella (formerly OpenDNS) [50], Infoblox Advanced DNS protection [52]
and HP Arcsight DNS Malware Analytics (formerly Damballa) [54]. None
of the surveyed products document the ability to perform behavioural anal-
ysis on the combination of DNS and NetFlow features, which suggests that
commerciall products will not be able to detect IGAs.

Based on academic survey papers, it seems that combining the DNS and
NetFlow feature sets may not be a widespread approach. Some papers use
NetFlow analysis on DNS packets only, by simply detecting an abnormal
amount of DNS traffic within a specific time period for specific hosts [64]
[63]. This is still considered a NetFlow-only based approach not applicable
to IGA detection, as no layer 7 information is used from the DNS packets,
only general knowledge about the DNS protocol.

IP source address entropy derived from NetFlow logs and the ratio of
nxdomain responses derived from DNS logs are used by [65] as detection
and validation methods. It is, however, not clear if the two methods are
used in combination or independently, thus effectively being a NetFlow based
method combined with an DNS based method, rather than a method that
combines DNS and NetFlow data before applying the method.

Fuzzy pattern recognition is applied by [67] to both DNS and network
flows in a two-stage approach. The DNS related features used are based on
the inter-arrival time of requests, and total and failed number of responses.
The NetFlow related features used for each destination address are based on
the request-response time interval, the number of requests and the payload
size. The pattern recognition is then applied in each of these phases, thus
analyzing DNS and flow data separately.

IP flows that can not be related to a previous DNS lookup (denoted un-
named flows or non-DNS connections) is one of the topics of [68] and [105].
Such flows account for 5-10% of all internally originated flows in one of the
available datasets [68]. As IGA flows will appear unnamed, this property is
clearly relevant to exploit in IGA detection.

The topic of [106] is to use traffic analysis on encrypted DNS traffic (DNS-
over-TLS etc.) to identify nxdomain response patterns from DGA based bot-
nets. The paper shows that time series analysis and packet size diversity
can be used to create IoCs for several specific botnet families. The presented
techniques could make it possible to extend the threat model of our paper to
allow encrypted DNS traffic as well.

6.7 Conclusion

This paper presents the novel concept of the IP Generation Algorithm (IGA)
as a method usable by botmasters to avoid exposing the CnC IP address in
plain text in DNS A records. An implementation of the concept is provided,
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and a detection method is presented and validated using an emulated botnet
and data from Telenor Denmark’s network. Although the results do not
indicate that any botnets currently use the IGA method, the method could
in the future potentially supplement or replace existing DGA and fast-flux
methods.

Modifications to the detection algorithm, or entirely different detection
algorithms, suitable for real-time threat prevention by firewalls should be
developed, as the method outlined in this paper is very reactive, as it requires
several days of retained data for detection.

Looking further into the detecting and eliminating potential decoy flows
or applying existing DGA detection methods on top of the detection method
described in this paper could potentially reduce the number of false positives,
and could therefore also be interesting topics to address in future work.
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Abstract

DNS resolvers perform the essential role of translating domain names into IP ad-
dresses. The default DNS resolver offered by an Internet Service Provider (ISP) can
be undesirable for a number of reasons such as censorship, lack of malware filtering
options and low service quality. In this paper, we propose a novel method for esti-
mating the amount of DNS traffic directed at non-ISP resolvers by using DNS and
NetFlow data from an ISP. This method is extended to also estimate the amount of
DNS traffic towards resolvers that offer malware filtering or parental control func-
tionality. Finally, we propose a novel method for estimating the amount of DNS
traffic at non-ISP resolvers that would have been censored by ISP resolvers. The
results of applying these methods on an ISP dataset shows to which extent 3rd party
resolvers are chosen by users for either malware filtering or censorship circumvention
purposes.

Keywords: DNS · NetFlow · resolver · ISP · filtering · censorship

7.1 Introduction

The DNS resolver service has traditionally been provided to customers by
Internet Service Providers (ISPs). Recently, providers of public DNS resolver
services, such as Google and Cloudflare, have gained popularity, and are
estimated by Radu et al. to handle more than 50% of all DNS resolutions
globally [107]. Although Radu et al. discuss the possible reasons users can
have for choosing public DNS services, the authors remain at speculations on
this topic.

Some equipment vendors (e.g. webcams) use 3rd party DNS resolvers as
a default setting in products. Three main reasons for a user to actively choose
a 3rd party DNS resolver are presented by web pages containing security
advice:

• Service quality: Speed, reliability, and basic security features such as
DNS-over-TLS (DoT), DNS-over-HTTPs (DoH) and DNSSEC validation.

• Privacy: Adherence to more strict privacy principles and no modifi-
cation of the responses, for example to inject ads in NXDOMAIN re-
sponses [108].

• Filtering/censoring: The 3rd party provider does not follow govern-
ment orders to censor responses. Conversely, the 3rd party provider
may offer filtering of domains related to malware, porn, drugs, etc. as
an add-on service.
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As ISPs can deploy resolvers topologically closer to the end users than
any 3rd party resolver, an ISP will always be able to offer a faster resolver
service than any 3rd party resolver. As a fast DNS resolution can make an
Internet connection appear faster, this represents a competitive advantage to
an ISP. A competitive ISP can therefore be assumed to offer DNS resolvers
with good service quality (although examples of ISPs not having this focus do
exist [109]). European Union legislation forbids ISPs to collect personal infor-
mation, and forbids ISPs to modify DNS responses for ad injection. Therefore
a rational customer at a competitive, European ISP should not be inclined to
use service quality or privacy as the main reason for choosing a 3rd party
DNS resolver.

Following the arguments presented above, and assuming a rational cus-
tomer and a competitive, European ISP, only the third category, filtering/-
censoring, is relevant, which will therefore be the focus of this paper. We
recognize that there can be a difference between perceived privacy and actual
privacy, as well as a difference between perceived and actual service quality,
however we consider this topic out of scope of our paper. The contribution of
the paper is the methods and measurements needed to answer the following
research questions:

• RQ1: To which extent are 3rd party resolvers used compared to the
default ISP resolvers?

• RQ2: To which extent are 3rd party resolvers that offer malware filtering
or parental control used?

• RQ3: To which extent are 3rd party resolvers used to circumvent cen-
sorship?

These methods and associated results can be relevant for ISPs to assess the
business case for offering DNS based filtering services. The results can also
be relevant to regulatory bodies to assess the effect of DNS based censorship.

Section 7.2 introduces related work and other background information.
The three following sections (7.3, 7.4 and 7.5) each answer one of the research
questions outlined above. Section 7.6 summarizes the answers and concludes
the paper.

7.2 Background and related work

7.2.1 Data availability

The simplest way to examine how much and which DNS traffic is directed
at 3rd party resolvers is to ask the operators of those services. The privacy
policies of the five major public DNS resolver providers (according to Radu
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et al.) reveal that the providers store data that could answer the question in
either anonymized or non-anonymized form, however, they are generally not
willing to share the data [110–114]. Another approach is to collect data by
interacting with user equipment. One example is the use of apps as probes
by the Open Observatory of Network Interference (OONI) project. A sec-
ond example is the use of advertisement campaigns (or similar mechanisms)
that trigger a resolver to query observer-controlled authoritative servers [115].
These approaches can measure which resolvers are used relative to other re-
solvers, but do not quantify the amount of traffic from each client towards
each resolver, which is the purpose of our paper.

Although ISPs are not legally allowed to inspect the DNS traffic to 3rd
party resolvers, Fejrskov et al. describe that DNS data from the ISPs own
resolvers as well as sampled NetFlow data (that includes 3rd party resolver
traffic) can be used in anonymized form even when considering European
Union legislation [90]. In our paper the ISP approach is adopted, and data
from Telenor Denmark, a national ISP in Europe with 1,5M mobile and 100k
broadband subscriptions, is used. Their DNS resolvers adhere to the service
quality and privacy criteria mentioned in the introduction, and provide no
add-on block offerings.

7.2.2 Estimating DNS traffic based on NetFlow data

Konopa et al. suggest a method to detect DoH traffic based on NetFlow
records [116]. However, the method relies on access to unsampled NetFlow
records which is not available in our paper. Although some papers discuss
using NetFlow to identify specific applications, we are not aware of any other
papers that directly focus on estimating the amount of DNS traffic. An in-
termediate step is to use the NetFlow records to estimate the actual number
of UDP or TCP flows, a technique often referred to as flow inversion. Sev-
eral papers, most recently [117], estimate the flow size distribution using
various sampling methods, different traffic models, and uses different infor-
mation from the sampled packets, such as the presence of TCP SYN packets
and sequence numbers. Duffield et al. describe and validate a simpler tech-
nique that estimates the actual amount of TCP flows as the multiplication
of the sample rate and the observed number of flows for which the initial
SYN packet was observed [91]. Neither paper present any methods that are
applicable to this paper for estimating the amount of UDP flows.

7.2.3 DNS Response manipulation

Several studies characterize the use of response manipulation in resolvers
[118–120], including both filtering, censoring, injection, etc. Most papers con-
sider response manipulation as an undesired feature as opposed to some-
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thing positive that the user has actively chosen to gain features such as mal-
ware protection. In all papers, the characterization of servers is based on
whether or not the server actually performs response manipulation, inde-
pendently of whether it is advertised or not. In our paper, we therefore
find it interesting to characterize resolvers based on whether they advertise
themselves as filtering or not, in order to investigate to which extent such
functionality is desirable by users.

7.2.4 Censorship and circumvention detection

The legislation in Denmark requires ISPs to perform DNS based blocking of
certain domains in 7 different categories [121]. In our paper, all categories are
included with no distinction between them, giving a total of approximately
800 domains that have a DNS A record. The legislation (and following public
discussion) is about blocking web pages, and DNS is seen as the tool that can
implement this [122].

Related work on censorship fall in four categories: Techniques for im-
plementing censorship, detecting censorship, circumventing censorship, and
measure circumvention attempts. Only the last category is relevant to this pa-
per, and this seems to be the topic of only a few papers. Three of these focus
on the use of specific tools or apps like TOR [123], an app for changing DNS
resolver [124], and on the use of DNS servers owned by VPN providers [125].
Our focus is only on circumvention that involves the use of 3rd party re-
solvers, not on specific tools.

The Danish Rights Alliance, an organisation focusing on copyright and
other conditions for content creators, measures the effect of DNS based block-
ing by analysing web site visits [126]. They concluded that the effect of block-
ing a specific site through DNS blocking reduces the number of visits to the
specific site by up to 75% after 4-5 months. In our paper, it is not a require-
ment that the censored sites consent to embedding code in their web page
that measure usage statistics, and the focus is not limited to copyright.

Callejo et al. conclude that 13% of the global DNS queries are resolved by
3rd party rather than by ISP-provided DNS resolvers [115]. They also con-
clude that the use of 3rd party providers is more frequent in countries with
a high level of censorship (a poor rating by the Reporters Without Borders’
(RWB) World Press Freedom Index). Their approach relies on serving ads
through browsers, and for the reasons mentioned initially in this section, the
approach is not applicable for our paper. However, they conclude that the use
of 3rd party resolvers in countries rated as Good by RWB is around 7-11% of
the total traffic, which is an interesting figure to compare to our results.
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7.3 Prevalence of 3rd party resolvers

This section presents a method for estimating the number of DNS responses
represented by a set of sampled NetFlow records towards 3rd party DNS
resolvers. The method consists of three steps that are described in more detail
in the following three subsections. The number of 3rd party DNS responses
is compared to the number of responses served by Telenor Denmark’s DNS
resolvers to answer the first question (RQ1) posed in the introduction.

Four different DNS traffic types are considered in this section: DNS over
UDP and TCP, DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). As DNS
requests can potentially be malformed, and as only requests that result in a
response are relevant from a user perspective, this study will focus on the
number of responses rather than the number of requests.

7.3.1 Identifying relevant Netflow records

The first step is to identify the NetFlow records that represent 3rd party
DNS resolver traffic. In this paper, it is a precondition that the available
NetFlow records represent a view of all flows crossing a well-defined network
boundary. Users and the default DNS resolvers are defined to be on the
internal of the network boundary, 3rd party resolvers and other servers are
defined to be on the external side. The NetFlows are considered sampled
with a rate of 1:Q.

For an external IP address to be considered a potential 3rd party DNS
resolver, and to filter away irregular and irrelevant traffic such as that origi-
nating from DDoS attacks and port scanning, some TCP or UDP traffic must
be observed on port 53 or 853 in both directions, that is both to and from
the server. However, due to the use of sampled NetFlow, observing records
that form a bidirectional flow is not required, as both directions of the same
flow will rarely be sampled given a high sample rate. TCP and DoT records
originating from the potential resolver IP must report a packet size of at least
54 bytes to ensure that the response is at least large enough to contain a valid
IP, TCP and DNS header. Therefore, packets only containing, for example,
a TCP Reset flag indicating that no service is available do not qualify. This
packet size criterion is not necessary for UDP based flows, as a server with
no UDP service will respond with an ICMP packet instead of a UDP packet.

TCP port 443 traffic towards the resolvers outlined above is considered
DoH traffic. We recognize that operators could run both DoH and Web ser-
vices on the same IP address, and therefore the amount of DoH traffic es-
timated using this method should be considered as an upper bound rather
than an exact number.

Traffic towards authoritative servers also satisfies the aforementioned cri-
teria for a potential resolver, and these flows must be disregarded. Any of
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the following criteria are used to identify authoritative server IPs:

• The server returns an error code when resolving a well-known domain
name, but answers succesfully when resolving the domain name found
in the server’s reverse/pointer (PTR) record.

• The IP address of the server is identical to any IP address with which
the default resolvers communicate.

• The PTR record of the server IP reveals that the server is a well-known
authoritative server, such as the DNS root servers or the authoritative
servers of major commercial DNS providers.

As a result of the selection process described above, N NetFlow records are
considered to represent user-initiated traffic to/from 3rd party resolvers, and
only these records are considered for further analysis.

7.3.2 Average number of flows per Netflow record

Having identified a number of NetFlow records that represent a number of
observed flows towards 3rd party resolvers, the next step is to estimate the
number of actual flows. This requires different approaches for TCP and UDP
traffic.

As outlined in Section 7.2, the estimated number of actual TCP flows,
F̂TCP, can be found by multiplying the NetFlow sample rate with the number
of flows in which a SYN packet is observed, F̂TCP = Q · FSYN . The number
of observed SYN flows, FSYN , is determined by aggregating the observed re-
sponse SYN records, NSYN , by the 6-tuple of observed flow start time, source
and destination IP address, source and destination port number and proto-
col. For a Q much larger than the expected number of packets in a TCP
flow, it is only expected that each TCP flow is sampled once, and in that case
F̂SYN = NSYN , which is demonstrated as a valid practice in Section 7.3.5.

To estimate the number of actual UDP flows, we use the property that a
DNS request or response is always contained within a single UDP packet, and
the property that a new UDP flow is made for each request due to the preva-
lence of source port randomization [127]. In other words, one UDP NetFlow
record represents one flow and one DNS response. Therefore, the estimated
number of UDP flows, F̂UDP, is given by the number of observed UDP re-
sponse records multiplied by the NetFlow sample rate, F̂UDP = Q · NUDP.
Note that although a response is always contained within a single UDP
packet, this packet may be split into several IP packets due to fragmentation.
In this case, only the first IP packet will contain UDP headers, and therefore
only the first packet will be considered a UDP packet by the NetFlow emit-
ting router. Therefore, the assumption of a one-to-one relation between DNS
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responses and UDP packets should be considered valid when using NetFlow
as measurement method.

7.3.3 Average number of DNS responses per flow

Having estimated the number of actual TCP/UDP flows represented by Net-
Flow records, the next step is to identify the number of DNS responses per
flow. For this purpose, it is assumed that the average number of responses
per TCP flow for 3rd party resolvers and for the default resolvers are similar,
that the average number of responses per DoT flow for 3rd party resolvers
and for the default resolvers are similar, and that these numbers can be calcu-
lated from the collected data from the default resolvers. Different collection
methods will allow for different methods for calculating the numbers, and
the method described below reflects an approach applicable to our data set.

To estimate the average number of responses per TCP/DoT/DoH session,
DNS response data from the default resolvers that include the ports of the
response is used. The minimum time between flow closure and the allowed
reuse of the related source port from the same request source IP address is
denoted tgraceperiod. The longest allowed time for a TCP session to be open
is denoted tmaxsessionlength, and therefore should be true that tmaxsessionlength >
tgraceperiod. A response, c is considered belonging to the same flow as an-
other response b, if the two responses are less than tgraceperiod apart (tb +
tgraceperiod > tc), and if the response c and the first response in the flow, a, are
less than tmaxsessionlength apart (ta + tmaxsessionlength > tc).

It should be noted that the specific values of both tmaxsessionlength and
tgraceperiod can differ among clients and servers, as such settings can be either
operating system, application or deployment specific. The choice of values
for these will therefore depend on the specific DNS server software settings.

Using this method to estimate which DNS responses belong to the same
flow makes it possible to calculate an estimated, average number of responses
per TCP flow, R̂TCP, and an estimated, average number of responses per DoT
flow, R̂DoT . Notice that the similar number for UDP flows, R̂UDP, is always 1
for the reasons outlined in Section 7.3.2.

7.3.4 Method summary

The number of DNS responses from 3rd party DNS resolvers, D̂, is estimated
using NetFlow records as

D̂ =D̂UDP + D̂TCP + D̂DoT + D̂DoH

=F̂UDP · R̂UDP + F̂TCP · R̂TCP + F̂DoT · R̂DoT + F̂DoH · R̂DoH

=Q(NUDP + NTCP,SYN · R̂TCP + NDoT,SYN · R̂DoT + NDoH,SYN · R̂DoH)
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Metric Symbol Count
Total NetFlow records n 2, 75 · 109

Relevant NetFlow records N 3, 32 · 106

NetFlow UDP records NUDP 2, 85 · 106

NetFlow TCP SYN records NTCP,SYN 98, 9 · 103

NetFlow TCP SYN flow F̂TCP,SYN 98, 5 · 103

NetFlow DoT SYN records NDoT,SYN 12, 6 · 103

NetFlow DoT SYN flow F̂DoT,SYN 12, 6 · 103

NetFlow DoH SYN records NDoH,SYN 15, 9 · 103

NetFlow DoH SYN flow F̂DoH,SYN 15, 9 · 103

Max TCP session length tmaxsessionlength 100 s
TCP source port grace period tgraceperiod 30 s
DNS responses per TCP flow R̂TCP 1,19
DNS responses per DoT flow R̂DoT 11,3

Table 7.1: Metrics for 3rd party DNS resolver traffic estimation.

for a large NetFlow sample rate Q, the number of relevant UDP NetFlow
records, NUDP, the number of relevant NetFlow records observing a SYN
packet, NTCP,SYN , NDoT,SYN and NDoH,SYN , and the estimated, average num-
ber of DNS responses per TCP/DoT/DoH flow, R̂TCP, R̂DoT and R̂DoH .

7.3.5 Measurements and discussion

Anonymized DNS and NetFlow data collected over a period of 4 days (cov-
ering both weekdays and weekend) from 2021-08-08 to 2021-08-11 from Te-
lenor Denmark’s network is used to demonstrate the use of the estimation
method elaborated in the previous section. The DNS data is derived from
the response packets for all DNS queries towards the default DNS resolvers.
The NetFlow data is derived from traffic passing the BGP AS border with
sample rate Q = 512. Metrics are summarized in Table 7.1. Although the
data set only contains 4 days of data, we consider it to be representative, as
DNS services are used on a daily basis, and as the amount of users is large
( 1,6M). The internal IP addresses in the data are anonymized by truncation
to a /24 prefix, and the AM/PM information of the timestamps is truncated
as suggested by Fejrskov et al. [90].

The NetFlow sample rate, Q=512, is higher than the expected number
of packets in a DNS TCP flow. Therefore the number of observed flows is
almost identical to the number of NetFlow records (F̂TCP,SYN ≈ NTCP,SYN
and F̂DoT,SYN ≈ NDoT,SYN) as anticipated in Section 7.3.2.

232 NetFlow records relating to UDP traffic on port 853 were observed.
This could represent DNS-over-DTLS (DNSoD) traffic [128]. Due to the small
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UDP TCP DoT DoH Sum
Default 15, 2 · 109 10, 9 · 106 446 · 106 0

87,67% 0,06% 2,57% 0% 90,31%
3rd party 1, 46 · 109 60, 3 · 106 73, 2 · 106 92, 3 · 106

8,39% 0,35% 0,42% 0,53% 9,69%

Table 7.2: Number of responses observed on the default resolvers and estimated from 3rd party resolvers.
Notice that the DoH number should be considered an upper bound.

amount and the experimental status of the DNSoD standard, we disregard
these records.

Moreover, 43, 2 · 103 NetFlow records relating to UDP traffic (from port
53) report more than one packet per flow, which seems to contradict the as-
sumption of one UDP packet per flow made in Section 7.3.2. Although an
experimental IETF RFC from 2016 [129] describes the use of multiple UDP
packets for responses, it seems unlikely that this should be implemented in
several 3rd party resolvers. We therefore believe that a more plausible expla-
nation is that this is caused by re-transmission of requests and responses. As
re-transmissions are of no interest to this paper, a UDP NetFlow record (from
port 53) reporting more than one packet will only be counted as one packet,
and therefore as one request or response.

The value of tgraceperiod=30 seconds is chosen to match the default tcp-
idle-timeout value of the Bind software running on the default DNS resolvers.
The value of tmaxsessionlength=100 seconds is chosen arbitrarily to a value larger
than tgraceperiod. Experiments show that choosing a significantly higher value,
tmaxsessionlength=1000 seconds, does not change the estimated average number
of requests per flow significantly.

The estimated 3rd party DNS resolver traffic is summarized in Table 7.2
in comparison to the amount of traffic at Telenor Denmark’s default DNS
resolvers. As Telenor Denmark’s default DNS resolvers do not offer DoH
service, the 3rd party DoH number is calculated by assuming that R̂DoH =
R̂DoT .

Note that the estimated number of DNS responses from 3rd party re-
solvers listed in Table 7.2 also include responses for servers that could not be
explicitly identified as either authoritative or resolving. This is applicable to
approximately 0,79% of the listed responses from 3rd party resolvers.

Some customers use VPN services for connecting to their employer’s VPN
gateway or for keeping the traffic private. We consider it most likely that
such traffic will use the 3rd party resolvers operated by the VPN gateway
operator, that this operator is located outside Telenor Denmark’s network,
and that the DNS traffic is therefore not visible in the data set used for this
study. Although a study of how widespread the use of VPN services is could
be interesting, we consider it complementary to the scope of this paper.
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The first question posed in the introduction (RQ1) asks to which extent
the DNS traffic is directed at 3rd party resolvers. In Table 7.2 it can be seen
that the fraction of the total DNS traffic that is directed at 3rd party resolvers
is estimated to be between 9,69-0,79=8,90% and 9,69%. These results are in
line with the 7-11% measured by Callejo et al. [115].

7.4 Prevalence of filtering 3rd party resolvers

The second research question (RQ2) asks to which extent 3rd party resolvers
that offer desirable filtering services (such as malware filtering or parental
control features) are used. In this section, the data presented in Section 7.3.5
is further enriched by adding information about which organisation runs the
resolver, whether the resolver is public or private, and whether or not the
resolvers are advertised by the owners as filtering.

7.4.1 Method

To identify if a 3rd party resolver is private or public, two methods are used:

• The resolver is queried with a popular domain name. If this query re-
turns the correct result, the resolver is considered public. If no response
is received, the server is considered private.

• If the owner of the resolver is known to only run private resolvers, the
resolver is marked as private. These include the resolvers of other ISPs,
some VPN services, as well as commercial DNS resolver companies
known for only providing private services.

To identify the owner of a resolver, simple methods such as resolving the
PTR record of the server, performing a Google or Whois search, are used.The
owner’s web page is then used to determine if the resolver offers filtering
functionality.

Some DNS resolvers exist with the purpose of enabling the user to cir-
cumvent some restrictions put in place by web site owners, such as enabling
the user to view TV shows that are only broadcasted in some countries due
to copyright restrictions. Some, but not all, of these resolvers are associated
with VPN services. For the purpose of this paper, we consider these as non-
filtering resolvers, as actively choosing these resolvers is conceptually more
similar to trying to avoid censorship, than to desire additional filtering.

Another category of resolvers are those that are associated with DNS hi-
jacking malware that changes the DNS resolver settings on a device to point
to a resolver under control of a malicious party. This resolver will then most
likely manipulate the DNS response to achieve the purpose of the malicious
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Public Private Unknown Sum
Filtering 202 · 106 6, 41 · 106 101 · 103

12,02% 0,38% 0,01% 12,41%
Non-filtering 1,37·109 53, 5 · 106 204 · 103

81,11% 3,18% 0,01% 84,30%
Unknown 16, 0 · 106 26, 4 · 106 12, 9 · 106

0,95% 1,57% 0,77% 3,29%

Table 7.3: Categorization of 3rd party DNS responses.

actor. For the purpose of this paper, we consider these resolvers non-filtering,
as they are unlikely to perform any kind of filtering that is considered desir-
able by the user.

7.4.2 Measurements and discussion

The result of identifying server owner, advertised filtering features and pri-
vate/public category is summarized in Table 7.3. Unknown filtering sta-
tus represents that we were not able to identify the owner/operator of the
resolver. Unknown public/private status is typically caused by the server
sending back a wrong answer or an error, such as REFUSED, NXDOMAIN
or SERVFAIL.

A key finding is that between 12,41% and 12,41+3,29 =15,70% of traffic
for 3rd party resolvers is for filtering resolvers. This suggests that malware
filtering, etc., is not likely to be the primary motivation for using 3rd party
resolvers.

In Section 7.3.5 on page 93, it was concluded that the amount of 3rd
party resolver responses is between 8,90% and 9,69% of all responses. In
other words, the total fraction of responses that originate from filtering DNS
resolvers is between 8, 90% · 12, 41% = 1, 10% and 9, 69% · 15, 70% = 1, 52%,
which answers the second research question. This shows that the use of
filtering resolvers is not prevalent among Telenor Denmark’s customers.

7.5 Censorship avoidance detection

The third question posed in the introduction (RQ3) asks if 3rd party resolvers
are used to circumvent censorship. It is a prerequisite that the ISP’s default
DNS servers censor some domains based on national legal requirements, and
that these are not censored by 3rd party resolvers. This section presents a
method that uses ISP data to estimate how many DNS responses for censored
domains are sent by 3rd party resolvers, and the results obtained by applying
the method.
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Default 3rd p. None

W
Tainted

Shared
Cens. dom. W1 = ∅ W5 W9 = ∅
Non-cens. dom. W2 W6 W10

Non-Shared Cens. dom. W3 = ∅ W7 W11 = ∅
Non-Tainted (Non-cens. dom.) W4 W8 W12

Table 7.4: Categorization of the set of all web flows, W.

7.5.1 Method

As elaborated in Section 7.2 on page 87, the censorship focuses on web do-
main names, and in contrast to the two previous sections that considered
flows related to DNS servers, this section focuses on flows related to web
servers only.

The core idea of the estimation method is to categorize the web flows seen
in NetFlow records, use this categorization to estimate the fraction of the web
flows that are towards censored sites, and then use this number of web flows
to estimate the number of related DNS queries at 3rd party resolvers for
censored domains. The categorization of flows is illustrated in Table 7.4 and
elaborated in the following paragraphs. The lowercase w1 to w12 represent
the count of the flows within each category, and the uppercase W1 to W12
represents the sets of flows within each category.

The (uncensored) A records of all the censored domains contain a number
of IP addresses, which will be referred to as tainted IP addresses. Some of
the tainted IP addresses are assigned to servers that serve both censored and
non-censored domains, and these addresses will be referred to as shared IP
addresses. Flows relating to these servers are in categories W1,W2,W5,W6,W9
and W10). Conversely, some servers with tainted IP addresses only serve
censored domains (no non-censored domains), and the IP addresses of these
servers are referred to as non-shared IPs. Flows relating to these servers are
in categories W3,W7 and W11. Finally, the web flows that do not relate to
any server IP found in the A record of any censored domain are referred
to as non-tainted (categories W4,W8 and W18). Some web flows are created
following a DNS lookup at the default resolver (categories W1 to W4 in Table
7.4), some web flows are created following a DNS lookup at a 3rd party
resolver (W5 to W8), and some web flows are created without any preceding
DNS lookup (W9 to W12).

As queries for censored domains towards the default DNS server result
in a censored response, such queries will not cause a subsequent flow to
be created to the web server, therefore by definition W1 = ∅ and W3 = ∅.
As the censoring is based on domain names only, we find it reasonable to
assume that flows towards censored sites must be preceded by a DNS lookup,
therefore in addition W9 = ∅ and W11 = ∅. The number of flows towards
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censored sites created after a DNS lookup to a 3rd party resolver would be
w5 + w7, and this is the interesting number to estimate.

By definition all web servers are located on the outside of the NetFlow
boundary, and all clients on the inside of the NetFlow boundary. The set
of relevant flows, W, is found using two criteria: First, only records relating
to server TCP/UDP port 80 or 443 are considered. Second, only servers
for which traffic both from and to the server is observed are considered,
although the to/from traffic can relate to different flows to mitigate the effects
of NetFlow sampling, following the same arguments as for DNS flows in
Section 7.3.1. Flows are thereafter defined by aggregating NetFlow records
by 5-tuple on a daily basis, and timestamped with the earliest timestamp on
that day.

To estimate w5 + w7, the following steps are needed. Please refer to Table
7.4 for an overview of the different flow categories. An initial step is to
identify the set of tainted and the set of shared IP addresses:

• Tip: Let Tip, the set of tainted IPs, be the set of DNS A record IPs
returned by doing a DNS lookup towards a non-censoring DNS resolver
of all the censored domains.

• Sip: Let Rip denote the set of IP addresses found in the Rdata field of
A records of all responses from the default resolvers. As this because
of the censoring will not include any non-shared IPs, Rip thus contains
all the non-tainted and all the shared IP addresses. The set of shared IP
addresses, Sip, can then be found as the subset of the tainted addresses,
Tip, that are also found in Rip, Sip = Tip n Rip.

These two IP address sets are then used split the full set of web flows W into
sets of tainted, non-tainted, shared and non-shared flows corresponding to
the four main categories (T, NT, S, NS) in Table 7.4 on the previous page:

• T and NT: Split the full set of flows, W, into the set of tainted flows
T = W1 ∪W2 ∪W3 ∪W5 ∪W6 ∪W7 ∪W9 ∪W10 ∪W11 and the set of non-
tainted flows NT = W4 ∪W8 ∪W12. These can be determined based on
whether or not one of the flow IP addresses can be found in Tip such
that T = W n Tip, NT = W . Tip.

• S: Find the set of shared flows, S = w1 ∪ w2 ∪ w5 ∪ w6 ∪ w9 ∪ w10. This
can be found using T as a tainted flow address is shared, if the server
IP can be found in the default DNS responses, S = T n Sip.

• NS = W7: Find the number of non-shared (and by definition, censored)
flows preceded by a 3rd party DNS lookup, W7, by finding the total
number of non-shared flows, NS, and exploiting that that W3 = ∅ and
W11 = ∅. NS = W7 can be found using T as a tainted flow address
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is non-shared, if the server IP can not be found in the default DNS
responses, W7 = NS = T . Sip = T − S.

The set of shared flows, S, consists of two subsets of flows, related to censored
domains, W5, and non-censored domains, W2 ∪W6 ∪W10. The next steps of
the method focus on identifying which flows belong to which of these two
subsets by various means. For this purpose, the concept of flow renaming
will be used several times to determine which web flows are associated with
which DNS responses. In our paper, flows and DNS responses are considered
associated, if a flow is created no longer than θ minutes after the DNS lookup,
if the client IP addresses match, and if the server IP of the flow is the IP found
in the Rdata record of the DNS response. The effect of DNS caching at the
user is assumed to be mitigated by the aggregation of flow records to the
earliest timestamp during a specific day as mentioned above.

• W2: Find the set of tainted, shared, non-censored flows preceded by a
DNS lookup at the default servers, W2. As W1 = ∅ and W3 = ∅ this
can be found by renaming the flows of S by using all entries in the
DNS response log, D, such that W2 = S nθ D. The same method can
in theory be applied to the set of non-tainted flows, NT, to find the
untainted set W4. However, the amount of data can be large, and the
following steps therefore do not depend on the feasibility in practice of
using renaming to distinguish between W4 and W8 ∪W12.

• w6 +w10: The fraction of re-nameable flows within the non-tainted flow
set and within the non-censored flow set is assumed to be the same, as
none of these flows are censored. Therefore, w6+w10

w2
= w8+w12

w4
, where

w6 + w10 is then easily found as w2 is already known. Although W4, W8
and W12 cannot be identified (as elaborated above), the ratio w8+w12

w4
can

be found by renaming a sampled set of non-tainted flows, w8+w12
w4

=
w8s+w12s

w4s
=

nts−w4s
w4s

where sample(NT) = NTs = W4s ∪W8s ∪W12s ,
W4S = NTs nθ D.

• w5: Find the number of shared, censored flows preceded by a 3rd party
DNS lookup, w5, by subtraction: w5 = s− (w2 + w6 + w10)

These steps provide the necessary values to calculate w5 + w7 which is the
estimated number of flows towards censored sites that are associated with a
DNS lookup to a 3rd party resolver.

Flow renaming is performed in the steps for finding W2 and w6 + w10,
and we consider this mechanism to be the largest cause of uncertainty to
the result. The method as used in this paper is greedy in the sense that too
many flows will be considered re-nameable and therefore as non-censored,
both because flows and DNS responses are considered related based on a
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time interval (larger time interval is more greedy), but also because user IP
addresses are anonymized by truncation. Therefore, the estimated value of
w5 + w7 should be considered as the lower boundary of the real value. As
shown in a later subsection, the estimation of the lower boundary instead of
the actual value turns out to be a sufficient metric to support our conclusions.

The next step is to calculate the number of estimated, actual DNS re-
sponses, p̂, that relate to the estimated, observed, flows w5 + w7. The tech-
niques described in Section 7.2 on page 87 for estimating the actual number
of flows based on the observed number of flows are not applicable in this
case, as they depend on the availability of NetFlow records and not just the
availability of an estimated flow count. Instead, we propose to identify all
servers for which only port 80/443 flows are observed, let wweb denote the
number of flows towards these servers and let pweb denote the count of DNS
responses with an A record containing the IP addresses of these servers.
Then we will estimate the number of DNS responses related to the censored
flows as p̂ = pweb

wweb
(w5 + w7). As the value of w5 + w7 is considered a lower

boundary, the value of p̂ should also be considered a lower boundary.

7.5.2 Measurements and discussion

The estimation method detailed above is applied to DNS and NetFlow data
from Telenor Denmark’s network collected over a period of 4 days from 2021-
09-23 to 2021-09-26. The most interesting metrics are summarized in Table
7.5. 1:1000 of the non-tainted flows are used to estimate w6 + w10. Results for
two different values, θ = 1min and θ = 60min, of the time interval allowed
in the renaming process are presented in order to illustrate the importance of
this parameter as discussed above. A θ > 60min does not give significantly
different results.

In summary, we estimate that at least p̂ = 477 · 103 DNS responses for
censored domains have been answered by 3rd party DNS resolvers. This
number can be compared to the number of censored DNS responses served
by the default resolvers, 44, 6 · 103, and the ratio between these numbers is
r = 10, 7.

Section 7.3.5 on page 93 concluded that approximately 9% of the total
DNS traffic was from 3rd party resolvers. If 3rd party resolvers were not
used to circumvent censorship, it would be expected that r ≈ 0, 09. Censored
3rd party resolver responses are therefore at least two orders of magnitude
more prevalent than expected, which suggests that 3rd party DNS resolvers
are chosen to circumvent censorship. It is more challenging to consider if
censorship circumvention is the primary reason for a user to choose a 3rd
party resolver. Hypothetically, even if this was the only reason for choosing
3rd party resolvers, the number of censored domains would still only be a
small fraction of the total responses, as individual users will then also use
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Metric Symbol Count
Relevant flows w 1, 03 · 109

Shared flows s 196 · 103

Non-shared flows ns = w7 7, 40 · 103

Ratio of responses and flows pweb
wweb

18, 1
Censored responses at default DNS
resolvers

dcensored 44, 6 · 103

Renaming interval θ 1 min. 60 min.
Shared, non-censored flows preceded
by default lookup

w2 103 · 103 166 · 103

Shared, non-cens. flows not preceded
by def. lookup

w6 + w10 28, 0 · 103 11, 1 · 103

Shared, censored flows preceded by
3rd party lookup

w5 65, 5 · 103 19, 0 · 103

Estimated DNS responses related to
censored flows

p̂ 1, 32 · 106 477 · 103

Ratio of censored responses at default
and 3rd party

r 29, 6 10, 7

Table 7.5: Metrics for censorship evasion estimation.

the 3rd party resolver for non-censored domains.
As the number of censored responses from 3rd party servers is only an

estimated number, it is not possible to assess how many users resolve cen-
sored domains using this method either. Even if this was possible, it would
not be meaningful to compare this number of users to the number of users
receiving censored responses from the default resolvers, without knowing
more about the intentions of these users. One may argue that all of the re-
sponses from the default servers are caused by unintentional web page visits
that will not be repeated by a user, whereas all the responses from the 3rd
party servers could be caused by deliberate web page visits that will most
likely be repeated by the user.

Although the results in this paper are based on only a single dataset, we
find that the methods are independent of the dataset, and that the temporal
length of the dataset is sufficient to present valid results for Telenor Denmark.
We fully recognize that using the dataset of another ISP in another country
could yield different results, both for technical reasons (such as differences
in default DNS resolver setup) and cultural reasons (desire to circumvent
censorship etc.).
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7.6 Conclusion

In this paper we propose a method for estimating the amount of TCP/UD-
P/DoT/DoH DNS responses by using information from NetFlow records.
This method is applied to estimate how much of the DNS traffic in an ISP
is from 3rd party resolvers instead of the ISP’s default resolvers. Using data
from Telenor Denmark it is concluded that 8,9-9,7% of the total DNS traffic
is from 3rd party resolvers (RQ1). This result supports and is supported by
the most recent related work that uses a completely different method for ob-
taining the results [115]. Also, it is concluded that 1,1-1,5% of the total DNS
traffic is from filtering resolvers (RQ2). Although it is expected that some
traffic is from filtering resolvers, the specific number is not quantified by any
existing research that we are aware of. The low number suggests that filter-
ing resolvers are not commonly used by Telenor’s customers, and this could
represent an unexploited business opportunity to promote the use of such
services.

Furthermore, we propose a NetFlow based method for estimating the
amount of DNS responses from 3rd party resolvers that would have been
censored by the ISP’s default DNS resolvers. Using data from Telenor Den-
mark, it is concluded that DNS responses for censored domains are at least
two orders of magnitude more prevalent at 3rd party resolvers than at the
ISP’s default resolvers (RQ3). We are not aware of any related work quanti-
fying this number on an ISP scale. The high number suggests that 3rd party
resolvers are actively chosen in order to circumvent censorship, which should
be considered when the censorship legislation is up for evaluation.

It is correct that we only rely on a single dataset, however, we believe that
the methods are independent of the dataset, and that the single dataset used
is sufficiently large to present valid results for the specific ISP. We fully rec-
ognize that using the dataset of another ISP in another country could yield
different results. This is, however, more likely attributed to cultural differ-
ences (knowledge about cyber security in the population, the desire/need to
circumvent censorship in a particular country, etc.) rather than the merits of
the presented method.

The focus of this paper is purely technical, however for future work it
could be interesting to compare the obtained results with a user question-
naire asking for the user’s primary motivation for actively choosing 3rd party
servers.

Although the specific results presented in this paper applies only to Te-
lenor Denmark’s customers, the methods are general, and it is our hope that
they will be used by other ISPs and organisations to identify both business
opportunities and regulatory challenges.
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Abstract

DNS hijacking represents a security threat to users because it enables bypassing ex-
isting DNS security measures. Several malware families exploit this by changing
the client DNS configuration to point to a malicious DNS resolver. Following the
assumption that users will never actively choose to use a resolver that is not well-
known, our paper introduces the idea of detecting client-based DNS hijacking by
classifying public resolvers based on whether they are well-known or not. Further-
more, we propose to use NetFlow-based features to classify a resolver as well-known
or malicious. By characterizing and manually labelling the 405 resolvers seen in
four weeks of NetFlow data from a national ISP, we show that classification of both
well-known and malicious servers can be made with with an AUROC of 0.85.

Keywords: NetFlow · IPFix · DNS · hijacking · malware

8.1 Introduction

The integrity protection offered by Domain Name System (DNS) security
measures, such as DNS-over-TLS and DNSSec, can be completely circum-
vented by changing the configuration of DNS clients to use malicious DNS
resolvers instead of trustworthy resolvers. This approach has therefore histor-
ically been used by several malware families such as DNSChanger, DNSUn-
locker, Koobface and others for diverse purposes such as pushing adware,
redirecting to phishing or malware web pages, etc. [130] [131] [132]. Al-
though these malware families target Windows machines, taking control of
home routers in order to use DHCP to extend the malicious DNS configura-
tion to all devices in a household is also an approach used in practise for ex-
ample by the GhostDNS malware or in on-premises attacks [133] [134] [135].

The DHCP based approach limits the malware detection options, as typi-
cal IoT devices and home routers do not support host-based detection mech-
anisms such as anti-virus software available for mainstream operating sys-
tems. As an alternative to host-based detection, network-based detection
mechanisms that work by passively inspecting the payload of the DNS traffic
between the home router and 3rd party resolvers could be deployed by an
Internet Service Provider (ISP) [120]. This is, however, not legal to implement
in the European Union for privacy reasons [8]. For purposes of malware de-
tection, ISPs are only allowed to process data found in customer traffic, if the
data is already processed for transmission purposes (such as the information
found in NetFlow records), and only if the data is anonymized before pro-
cessing [90]. NetFlow records are emitted by routers, and typically contain
information about the flows observed on a particular router interface, such
as timestamp, source/destination IP address, TCP/UDP source/destination
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ports and similar flow-level information. An anonymized NetFlow based ap-
proach is therefore a legally viable option, and this detection approach will
therefore be pursued in our paper.

Although many papers analyse the maliciousness of the DNS traffic itself
(such as DNS traffic used in DDoS attacks), including some that are based on
NetFlow level information [63] [64] [65], we are not aware of any work that
only use NetFlow level features to assess whether a resolver performs record
manipulation with either benign or malicious intent. Determining malicious-
ness solely based on NetFlow features makes could present a simpler (and
therefore more desirable) option to an ISP, as the ISP would then not need
to rely on procuring additional threat intelligence for resolver labelling. This
observation provides the base for the first research question (RQ) examined
in this paper:

RQ1: Can public resolvers be correctly classified as either malicious or non-
malicious using ISP-level NetFlow data?

Most users do not know or care about which resolver they use, and as
a result, they use the default resolver assigned by equipment manufacturers
or ISPs. For this paper it is assumed that if a user (or equipment manufac-
turer) should actively choose which resolver to use, the user will choose a
well-known resolver operator. Well-known resolvers are defined as all public
DNS resolvers that are known (through an associated web page or similar)
to be run by a publicly known organisation, no matter the amount of fil-
tering or censoring applied for benign/desirable/regulatory purposes. This
assumption and definition provides the base for the second research question
examined in this paper:

RQ2: Can public resolvers be correctly classified as either well-known or not
using ISP-level NetFlow data?

RQ1 and RQ2 classify resolvers in one of four classes, depending on
whether they are considered well-known or not, and if they are considered
malicious or not. This resolver categorization can potentially be used in fire-
walls by ISPs to black/white-list resolver IPs on behalf of a group of consent-
ing users, or the categorization can be combined with user-specific NetFlow
records to discover and notify consenting users of a potential malware infec-
tion.

The contributions of the paper are therefore twofold: First, we introduce
the concept of using whether a resolver is well-known or not for classification.
Second, we show how accurately NetFlow data can be used to identify well-
known and/or malicious resolvers.

This remaining part of the paper is organized as follows: Section 8.2 de-
scribes the method used to answer the research questions. Section 8.3 shows
the result of applying the method, and the results are discussed in Section
8.4. Section 8.5 describes related work and Section 8.6 concludes the paper.
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8.2 Method

To answer the research questions posed in the introduction, we apply the
following four steps, which are described in further details in this section.
First, the IP addresses of the DNS servers that are considered public resolvers
are identified, and the NetFlow records related to any other IP addresses are
discarded. Second, a number of features are extracted from the remaining
NetFlow records and auxiliary features such as the DNS PTR records of the
resolver IP addresses are added. The third step is to establish a set of labels
that are used as ground truth for supervised machine learning. The fourth
step is to apply machine learning to show if the classification is feasible,
thereby answering the research questions posed in the introduction.

8.2.1 Identifying public resolvers

Some DNS servers assume the role of both public resolver and authoritative
servers, and for the purpose of this paper, these are considered public re-
solvers and their authoritative role is ignored. An IP address is considered to
host a public resolver if all of the following three criteria are satisfied.

First, NetFlow data relating to port 53 or 853 must show unidirectional
TCP or UDP traffic flows both to and from the IP address. Due to sampling it
is not a requirement that the unidirectional flows are related. TCP traffic must
contain more than 54 bytes. The purpose of these criteria is to eliminate traffic
related to port scans, TCP connections/handshakes with no DNS payload,
DDoS amplification attacks and other irregular or irrelevant use cases.

Second, a DNS A-type query is issued towards the IP address using
both DNS and DNS-over-TLS for a domain name under our control, where
the valid response and authoritative servers are therefore known. The re-
sponse must contain a syntactically valid no-error response record that con-
tains an IP address. The purpose of this is to eliminate private resolvers and
authoritative-only servers.

Third, the Recursion Available flag is considered. If the Recursion Avail-
able flag is set to False, the IP address in the response must be correct for the
server to be considered a resolver. This is done in order to eliminate a number
of authoritative-only servers that respond non-authoritatively to queries (for
example with an IP address hosting a web page with a "This page does not
exist" banner instead of providing an NXDOMAIN response) and to avoid
eliminating resolvers that answer with the correct response record, but try to
evade detection by setting the RA flag to false.
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8.2.2 Features used to characterize public resolvers

The features chosen to characterize the public resolvers are listed in Table 8.1
on the following page. Two features warrant further elaboration in the follow
paragraphs.

ResolverPrefix: During a preliminary data analysis, we found several
servers (both benign and malicious) within the same prefix. To exploit this
as a feature, we choose to use a /24 prefix as a more narrow feature than the
more traditional measures such as geographical location or BGP AS number.

PtrCategory: Many benign DNS resolvers have a valid PTR record in-
dicating the role as DNS server. Similarly, many ISPs create a default PTR
record for all their customers, that contains the IP address itself. To exploit
the PTR record as a feature, the PtrCategory of a server is set to "DNS" if the
PTR record contains the words "dns", "ns[1-4]", "ns0[1-2]", "resolver" or starts
with "ns.". The PtrCategory is set to "IP" if the record contains four numbers
separated by ".". The PtrCategory is "NoPTR" when no PTR record exists,
and "Uncategorized" if none of the above applies.

Some features are for various reasons intentionally not used to describe
DNS resolvers, such as

• features directly or indirectly controllable by the malicious actor. This
includes many NetFlow features such as packet/byte counts, query
source port number and TCP vs. UDP. It also includes features found
by actively probing the DNS resolver, whether the resolver is also an au-
thoritative server, or whether there are any services available on other
TCP/UDP ports on the resolver server.

• features unavailable due to anonymization requirements, such as an
mxtoolbox.com lookup of the client IP address. Mxtoolbox.com pro-
vides information about whether a particular IP address is listed in
popular public/commercial threat intelligence databases.

• features unavailable due to the use of a high sampling rate when cre-
ating NetFlow records. This includes features that require that several
related flows are all observed in NetFlow records, such as if a flow
towards a resolver is preceded by a DNS query towards the ISP’s de-
fault DNS resolvers, or if a certain sequence of flows is always observed
towards certain resolvers.

8.2.3 Features used to label public resolvers

Table 8.2 on page 109 lists the labels used as ground truth. Three features
warrant further elaboration below.

AdResponse: The purpose of some benign DNS resolvers is to remove
advertisements. To identify these, the AdResponse feature denotes if an
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Source Name Description Value type

NetFlow

ResolverPrefix The /24 prefix of the
resolver

Integral

ClientCount Number of unique
client /24 IP prefixes
seen in NetFlow
records related to the
resolver.

Integral

DayCount Number of days in
which traffic from/to
the resolver is
observed

Integral

RecordCount The log10 count of
NetFlow records
related to the resolver

Integral

RecordCountPerClient The log10 count of
NetFlow records
related to the resolver
divided by the
number of clients

Integral

Auxillary
PtrCategory The category of the

resolver’s PTR
record. Feature
values: DNS/ IP/
NoPTR/
Uncategorized

Categorical

Qname True if an A record
with the resolver’s IP
observed by the ISPs
own DNS resolvers

Boolean

Table 8.1: Feature overview. The following features are used to describe each public resolver. The IP
address of the resolver identifies the resolver, but is not used as a feature, and is therefore omitted from this
list.

108



Source Name Description Value type

Probing

AdResponse Indicates if the resolver
answered with the correct
IP address for a number of
advertisement hosts.
Feature values:
Correct/Incorrect/Incon-
sistent/Malicious

Categorical

UpdateResponse Indicates if the resolver
answered with the correct
IP address for domains
hosting software updates.
Feature values:
Correct/Incorrect/Incon-
sistent/Malicious

Categorical

Auxillary
Blacklisted Indicates if the resolver IP

is listed on a blacklist
according to a lookup on
mxtoolbox.com (excluding
the SpamHaus PBL that
simply lists IPs assigned
to broadband customers)

Boolean

Webreference Indicates if the resolver is
referenced on a website.
Feature values: Be-
nign/Unknown/Malicious

Categorical

Inferred
Wellknown Indicates if Webreference

is Benign or not. Label for
RQ2.

Boolean

Malicious Indicates if either
Blacklisted has value True
(and Webreference is not
Benign), Webreference has
value Malicious, or
AdResponse or
UpdateResponse has value
Malicious. Label for RQ1.

Boolean

Table 8.2: Label overview. Input from four different features are combined to form the labels used as
ground truth for each research question.
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A record query for 6 popular ad hosts1 return IPs owned by Doubleclick-
/Google, as identified by a PTR record ending in "1e100.net.". If the IP
contained in any A record is listed on any blacklist on mxtoolbox.com, the
AdResponse feature is set to "malicious". If some A records are correct, and
some are incorrect (but not blacklisted), the AdResponse feature is set to "in-
consistent".

UpdateResponse: Malicious DNS resolvers could block access to the up-
date servers of anti-virus products, operating systems or similar, in order to
avoid that any updates to these products would trigger a malware detection
or detection of a choice of malicious resolver. To identify such resolvers, the
same approach as for the AdResponse is used for 8 domains2.

Webreference: This feature indicates the result of a manually performed
search for all of the IPs identified as resolvers IP and their associated PTR
record using Google, the Whois database and various publicly available lists
of resolvers IPs. A resolver is classified as Benign if it satisfies the criteria
for a well-known resolver as defined in Section 8.1, as Malicious if the search
indicates that the IP belongs to a malicious resolver, and as Unknown if the
search did not provide any further insight.

The approach for the AdResponse and UpdateResponse features are in-
spired by Kührer et al. [136]. Although they include more feature categories
(without disclosing the exact domains used), we consider AdResponse and
UpdateResponse the most relevant to our paper. The specific choice of do-
main names are based on the market prevalence of the related companies, the
company’s documentation about which domains are used for the purposes,
and the prevalence of the domains as observed in Telenor Denmark’s DNS
resolvers.

The features AdResponse, UpdateResponse, Blacklisted and Webrefer-
ence are combined into two binary labels, called Wellknown and Malicious,
as elaborated in Table 8.2. The use of the combination of the Blacklisted
and Webreference features to construct the Malicous feature is necessary as
known resolvers such as CloudFlare’s 1.1.1.1 and several DNS resolvers re-
lated to VPN services can be found on multiple blacklists. This could be
caused by the VPN DNS service being located on the same IP/prefix as the
VPN outlet, if any VPN customers are exhibiting malicious behaviour.

1ad.doubleclick.net, www.google-analytics.com, googlesyndication.com,
googleads.g.doubleclick.net, tpc.googlesyndication.com and pagead2.googlesyndication.com

2sadownload.mcafee.com, ncc.avast.com, ds.kaspersky.com, dc1.ksn.kaspersky-labs.com,
dci.sophosupd.com, liveupdate.symantec.com, ctldl.windowsupdate.com and down-
load.windowsupdate.com.
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8.2.4 Algorithm

The features outlined above are both categorical and numerical in nature, and
data is labelled and binary, which suggest that a supervised classification al-
gorithm within the class of decision trees such as Random Forest (RF) or
Gradient Boosted Trees (GBT) should be the most appropriate. The Area Un-
der Receiver Operating Characteristic (AUROC) is used as hyper-parameter
optimization metric through a 5-fold cross-validation using all combinations
of three hyper-parameters: Tree depth (5, 10, 15, 20, 30), maximum num-
ber of bins (discretize continuous features) (10, 50, 100, 150) and number of
trees (10, 20, 30, 40). 80% of the resolvers are used for model training and
cross-validation, 20% of are used for test/prediction/evaluation.

The number of indices for the categorical ResolverPrefix feature will prob-
ably be close to the number of observed resolvers. To avoid such a large
number of indices, and to avoid the large number of feature columns created
by a one-hot-encoding, the prefix is converted to its integral representation
and considered as a continuous feature instead. As a continuous feature, the
ResolverPrefix feature will be binned, making it more likely that numerically
close prefixes will be classified similarly by the model. This seems like a
reasonable approach given that organisations are typically allocated larger IP
prefixes than individual /24 prefixes.

8.3 Results

This section describes the results of applying the method described in Sec-
tion 8.2. In subsection 8.3.1, a description is provided of the data used, as
well as how the data is characterized in terms of the features and labels in-
troduced in Section 8.2. In subsection 8.3.2, the results of applying machine
learning algorithms to predict labels are presented. The results are discussed
in Section 8.4.

8.3.1 Data characteristics

The primary data source used in this paper is four weeks of NetFlow data
collected from 2021-11-25 to 2021-12-22 with a sample rate of 1:1024 at the
Border Gateway Protocol (BGP) Autonomous System (AS) border routers of
Telenor Denmark. Telenor Denmark is a national ISP in Europe with 1,5M
mobile and 100k broadband subscriptions.

For legal end ethical reasons, the client (Telenor customer) IP is anonymized
to a /24 prefix in each NetFlow record before any further processing. Fea-
tures are extracted at least every 5 days during the collection period, after
which all NetFlow records (including the anonymized client IP) are dis-
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Label Algo Best model
AUROC MaxDepth MaxBins NumTrees

Wellknown
RF 0,85 5 50 10
GBT 0,77 5 100 N/A

Malicious
RF 0,83 5 100 30
GBT 0,85 5 100 N/A

Table 8.3: Hyperparameters yielding the best AUROC for each label and algorithm.

carded. Therefore, the resulting dataset used for analysis in this paper does
not depend on storing any Personal Identifiable Information (PII) relating to
the clients.

The criteria listed in Section 8.2.1 for identifying public resolvers in actual
use by Telenor customers are satisfied by 405 IP addresses during the data
collection period. Of the 405 resolvers, 62 have the label Malicious set to
True, and 259 have the label Wellknown set to True. None of the resolvers
have both labels set to True, and we will therefore for the ease of reference
refer to the resolvers as being either malicious, wellknown or unknown. Of
the 62 malicious resolvers, 5, 2 and 25 are categorized as Malicious in the
AdResponse, UpdateResponse or Webreference features, respectively. 35 of
the 62 are categorized as True in the Blacklist feature.

Figure 8.3-8.7 in the Appendix illustrate the number of resolvers that are
tagged with which label for each of the features used to describe the resolvers
(as described in Table 8.1).

8.3.2 Label prediction

As outlined in Section 8.2, both the Malicious and Wellknown labels are pre-
dicted by either a Random Forest or Gradient Boosted Tree algorithm. The
results in this paper are found using the implementation provided by PyS-
park.

The set of hyperparameters with the highest AUROC for each label and
each algorithm are listed in in Table 8.3. Unless noted otherwise, the rest
of this paper only presents details relating to the best model found for each
label, which is an RF based model for the Wellknown label and a GBT based
model for the Malicious label.

The ROC curves can be found in Figure 8.1 and 8.2. These show the True
Positive Rate and False Positive Rate at various probability threshold settings.

A confusion matrix for each of the models can be found in Table 8.4 and
8.5. The confusion matrix for the Wellknown label shows how many of the
resolvers in the test set were predicted to have label Wellknown set true or
false, as compared to the curated label. Both matrices are created using a
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Fig. 8.1: ROC curve for the prediction of the label Wellknown.

Fig. 8.2: ROC curve for the prediction of the label Malicious.
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Predicted True Predicted False
Labelled False 15 16
Labelled True 51 8

Table 8.4: Confusion matrix for the prediction of the label Wellknown.

Predicted True Predicted False
Labelled False 4 58
Labelled True 6 5

Table 8.5: Confusion matrix for the prediction of the label Malicious.

probability threshold of 0,5, as this threshold is among the set of threshold
values that provide a high F-score. The accuracy ( TP+TN

P+N ) represented by the
two matrices is 0,74 and 0,87.

The feature importances for each of the models can be found in Table 8.6.
This quantifies the importance of a particular feature as an average across all
trees in the model [137].

8.4 Discussion

The exclusion of authoritative-only servers based on the Recursion Available
flag did not increase the accuracy of the model as much as expected. Running
the model training without considering the RA flag yields an AUROC of 0,84
and 0,82 (instead of 0,85) based on 455 servers instead of 405 servers. As the
RA value returned by a malicious resolver can be controlled by the malicious
actor, it might be a better option not to consider this flag at all.

The AUROC values and the confusion matrices indicate that labels can
indeed be predicted based on NetFlow data, although we do not consider
the AUROC values high enough for operational/production use. During the

Feature Wellknown label Malicious label
ResolverPrefix 0,18 0,47
ClientCount 0,07 0,06
DayCount 0,17 0,09
RecordCount 0,24 0,10
RecordCountPerClient 0,15 0,13
PtrCategory 0,19 0,13
Qname 0,01 0,02

Table 8.6: Feature importances.
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data analysis we observed that the AUROC values of 0,85 can vary depending
on the specific sampling in the training/test data split. This variance is not
systematically analyzed, however, the reported value of approximately 0,85
seems to appear often, but values as low as 0,80 and as high as 0,87 have also
been observed.

Neither label is well balanced (259 well-known resolvers and 62 malicious
resolvers from a total of 405 resolvers) and therefore the class imbalance prob-
lem needs to be considered. For this purpose we repeated the model training
with undersampling, and results indicated that this yielded slightly lower
AUROC values (in the range of 0,78 to 0,82) for both labels and both algo-
rithms. It seems reasonable to assume that this is caused by the relatively
small dataset available for training. It could therefore be interesting to repeat
the experiment on an even larger dataset, preferably with a larger fraction of
of malicious resolvers.

The feature importances listed in Table 8.6 show that most features con-
tribute to the model. The Qname feature, indicating if the ISP’s resolvers
have seen the public resolvers IP address in a DNS response record, is the
least significant feature, also when training with undersampling. This is sur-
prising given that Figure 8.6 indicates that most well-known resolvers have
Qname=True, and most malicious resolvers have Qname=False. We have no
credible explanation for this discrepancy.

8.5 Related work

The general topic of DNS hijacking can be be split into 4 different subtopics,
where the hijacking is implemented by manipulating response records in (1)
resolvers and forwarders, (2) middleboxes such as firewalls, (3) authoritative
name servers, or (4) by manipulating the DNS resolver IP address configu-
ration on client devices to direct DNS traffic to malicious resolvers [138]. As
outlined in the introduction, the focus of our paper is restricted to malicious
resolvers in the client hijacking use case and the passive collection of NetFlow
data. The related work is described in this section and the properties high-
lighted above are summarized in Table 8.7.

Some papers measure which resolvers are used by introducing observer-
controlled authoritative servers and zones. These are combined with advertise-
ment campaigns [115], visits to self-owned websites [141] or a large number
of remotely controlled clients in various world regions that send DNS re-
quests [142]. Approaches relying on data from browsers or the installation
of specific apps will not capture any traffic from unsupported device types,
such as IoT devices, home routers etc., which is central to our paper.

Other papers focus on inspecting DNS data obtained by passively mirror-
ing DNS traffic at the application layer at a non-authoritative point in the DNS
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Related Work
Aspect 120,139 136,140 107,115,141,142 143 138,144
Client hijack X
Passive approach X X X X
NetFlow data X
Maliciousness X X X

Table 8.7: Notable related work and aspects in focus

chain. This includes dump of DNS flows at application layer at an ISP [120],
at a LAN gateway [144], at a campus gateway [139] and using DNS data from
the Farsight database [138]. It should be noted that the Farsight database is
built upon voluntary participation by resolver owners, and so it is unlikely
that queries towards intentionally malicious resolvers would be represented
in this database.

Finally, use of data from clients collected in the Open Observatory of Net-
work Interference (OONI) database is used by Radu et al. [107], and passively
mirroring DNS traffic at the network/transport layer through NetFlow at a na-
tional ISP is used by Fejrskov et al. [143]. Their focus is, however, on the
use of major/well-known 3rd party resolvers, not on the more rarely used,
potentially malicious resolvers.

The maliciousness of DNS responses are evaluated using various tech-
niques, such as by use of open threat intelligence [140] [139], by probing
HTTP/POP3/ IMAP/SMTP services on the resolved IPs [136] [144], by de-
tecting differences in responses for similar queries [120] and by detecting NS
record changes [138].

Of the papers mentioned above, only Dagon et al. and Trevisan et al. fo-
cus on the use case of changing the DNS resolver IP [139] [120]. Interestingly,
the techniques used by the two papers can be used for detecting all the DNS
hijacking use cases mentioned initially in this section, not only for detect-
ing malicious DNS resolver IP changes. As mentioned above, these papers
inspect DNS data to achieve their results and are therefore fundamentally
different from our paper.

8.6 Conclusion

This paper investigates if it is possible to classify public resolvers as ma-
licious and/or well-known using features derived from NetFlow data. Our
suggested NetFlow based approach comes with a number of advantages com-
pared to existing methods: i) it is legal to be deployed by ISPs in the EU, ii)
it does not rely on excessive Internet-wide scanning, iii) it does not rely on
features that are controllable by a malicious actor.
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Using Random Forest and Gradient-Boosted Trees on 7 different NetFlow-
related features we show that it is indeed possible to classify a resolver as
well-known or malicious with an AUROC of 0,85 (around 0.80 using under-
sampling). This shows that NetFlow features can indeed contribute to the
classification, although the value is not high enough for a NetFlow-only ap-
proach to be considered for operational use. It may be possible to create a
better model if a larger data set is used, especially if the dataset has a better
balance between malicious and benign resolvers.

In our paper, active probing of resolvers is intentionally only used for
labelling / model training purposes, not as features, as the purpose is to
investigate the value of a NetFlow-only approach. To increase the accuracy
of the classification, we consider a hybrid approach adding such features as
the most interesting approach for future work.

8.7 Appendix

Fig. 8.3: Histogram showing the count of DNS resolver IP addresses for which a certain number of
NetFlow records are reported. As an example, between 10 and 100 NetFlow records are observed from
approximately 125 different DNS resolvers IPs.
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Fig. 8.4: Histogram showing the count of DNS resolver IP addresses that are observed to be used by a
certain number of client /24 prefixes. As an example, approximately 30 DNS resolvers IPs are used by
between 100 and 1000 client prefixes.

Fig. 8.5: Histogram showing the count of DNS resolver IP addresses that have a PTR record in a certain
category. As an example, approximately 75 IP addresses have a PTR record whose name hints that this
could be a DNS server.
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Fig. 8.6: Histogram showing the count of DNS resolver IP addresses that are also observed in response
records in Telenor’s default DNS resolvers. As an example, 130 resolver IPs were not observed in Telenor’s
DNS resolver response records.

Fig. 8.7: Histogram showing the count of DNS resolver IP addresses that are observed in a certain number
of days. As an example, approximately 20 different DNS resolvers IPs are observed for a total of exactly 3
days during the data collection period.
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CHAPTER 9
Discussion

The papers presented in the previous chapters are part of the same subject
area and are based on the same dataset. Therefore they share a number of
common properties that warrant an extended discussion and comparison,
which is the topic of the following sections in this chapter.

9.1 Feasibility of proposed anonymization policy

An anonymization policy is proposed in Paper A, and this policy has been
applied on the data in the remaining papers, with some exceptions, as listed
in Table 9.1.

The client IP addresses (or ports for CGNAT’ed clients) are anonymized
by truncation in all papers. In practice, this means that the traffic of up to
256 subscribers is considered to originate from a single prefix. From the per-
spective of attributing traffic (malicious or not) to a specific subscriber, this
privacy-yielding anonymization is obviously an obstacle. However, as shown
by the papers in this thesis, the client IP anonymization does not make it
impossible to draw conclusions from the data. Indeed, any network traffic
analysis methods that operate on data in which multiple users/clients share
the same IP address (such as the NAT employed by most broadband deploy-
ments and the CGNAT employed by many mobile deployments) are subject
to a similar type of limitation, due to the implicit anonymization provided
by the NAT functionality. However, from an ISP business and ISP customer

Feature Data type Paper B Paper C Paper D Paper E
Client
IP/port

DNS and
NetFlow

X X X X

Sample rate NetFlow 1:512 1:512 1:512 1:1024
External IP NetFlow X X/ - - -

Table 9.1: Comparison of which of the most relevant features are anonymized according to the anonymiza-
tion policy proposed in Paper A. Paper B follows the proposed anonymization policy completely, whereas
the remaining papers omit some features from being anonymized.
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perspective, the detection result therefore has significantly less value, as the
derived intelligence is then not actionable, as customers cannot be warned,
and an attack cannot be mitigated.

Both Paper B, D and E involve comparing either the external IP address of
a NetFlow record or the IP address found in the A record of a DNS response
to an external list of ground truth, such as a blacklist or a list of known, public
resolvers. There is, however, at crucial difference between Paper B on one
side, and Paper D and E on the other side. In Paper B, the blacklist is available
as a list of IP addresses that can also be truncated, and then compared to the
anonymized IP addresses in the NetFlow data. In Paper D and Paper E the
method is based on using the external IP from the NetFlow data to perform
a search in an external database, and this naturally requires the IP address to
be available in a non-anonymized version. This difference is the reason for
the anonymization policy to be different for the two groups of papers. A key
takeaway is therefore that the availability of curated lists of ground truth can
potentially make it possible to apply a stricter anonymization policy on the
external IP address in NetFlow records.

The correlation of DNS and NetFlow traffic is a key step in the methods
described in Paper B, C and D. Of these papers, only Paper C does not rely on
the comparison with any lists of ground truth as described above. Although
the IP address available in the A record of a DNS response is not anonymized
(as it is public information), the anonymization of the external IP address in
the NetFlow records requires the correlation of DNS and NetFlow records to
be performed on the anonymized version of the IP address found in the A
record. For this reason, experiments with different levels of anonymization
of the external IP address was performed in Paper C to show the effect on the
results of anonymization on the renaming process. Specifically in Paper C,
the effect of applying anonymization was an increase in false positive results.
Further studies are needed to provide a more general conclusion on the effect
of anonymization on the renaming accuracy, and ideally the contribution
made by anonymizing the client IP addresses should be considered in such a
study as well.

The NetFlow sample rate was changed during the project to address ca-
pacity limitations in other NetFlow reception systems at Telenor. From a data
visibility perspective, it is obvious that a coarse sample rate can cause inaccu-
racies in results, that can only in some cases be compensated for by collecting
data from more clients or for a longer time period. From an anonymization
perspective, however, the sample rate is primarily relevant in order to de-
grade the precision of byte and packet counts. As these counts can to some
extent be controlled by a malicious actor, they are not given a prominent role
in this thesis.

In summary, the feasibility of the anonymization policy suggested in Pa-
per A should, as expected, be evaluated on a case-by-case basis. Unsurpris-
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ingly, the use of NAT in a network presents some of the same challenges as
the anonymization of the client IP address, so methods designed to handle
NAT’ed traffic could also work well with anonymized traffic, and vice versa.
The anonymization of the server IP address can be a limiting factor, however,
this can to some extent be mitigated by the availability of a non-anonymized
ground truth base.

9.2 Large scale data versus ISP data

Although this thesis is focused on ISP data, it is interesting to briefly consider
which of the methods and results described in the thesis papers are relevant
outside of an ISP context, and if so, whether an ISP would still be the best
choice of data source, even despite regulatory restrictions.

The anonymization policy presented in Paper A is designed to comply
with the ePrivacy Directive, which only applies to ISPs. Although the policy
could in principle also be applied by non-ISPs to comply with the GDPR,
it seems more likely that such organisations would not limit themselves to
only collect NetFlow and DNS data, and therefore the practical application
outside of the ISP domain is probably limited.

The method presented in Paper B to estimate the impact of DNS-based
blacklists can in principle be applied to traffic from a single user, and could
also be applied on data in which all ISO layers are available (instead of solely
DNS and NetFlow data), for example PCAP dumps.

Detecting IGA botnets using the method presented in Paper C requires a
certain number of bots within a network, as the method is based on iden-
tifying the group behaviour of the bots. Therefore, the method is likely
only applicable in networks with a large number of users that at the same
time have a sufficiently large diversity in security posture. As an example, a
well-controlled, large corporate network with enforced anti-virus application
policies and DNS traffic inspection/blocking is probably less likely to con-
tain a large number of infected clients than an ISP with the same number of
users. Therefore, due to the diversity of the security posture of the users, the
method is probably more interesting in practice to apply on an ISP network
than to a large corporate network, although the use case itself is valid outside
of an ISP context.

Measuring the use of 3rd party resolvers for either malware filtering or
censorship circumvention purposes as performed in Paper D is topic-wise
probably only interesting to ISPs. If this should be interesting to for example
corporate networks, it seems reasonable to assume that this can be performed
in a more simple manner by using statistics from firewalls or other traffic
inspection devices already in place.

The method to characterize resolvers described in Paper E only provides
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Paper A B C D E
Use case is relevant outside ISP context No Yes Yes No Yes
ISP data could still be preferable - No Yes - Yes

Table 9.2: Relevance of use cases and ISP data outside of an ISP context.

value in environments where traffic towards 3rd party resolvers is not blocked.
Furthermore, as the method is based on machine learning, a data set where
many resolvers are represented is needed. In practice, although relevant out-
side of an ISP context, these properties are probably mostly found in ISP
networks.

As summarized in Table 9.2, some methods presented in this thesis are
indeed relevant outside of an ISP context. Some of the methods that are rel-
evant outside of an ISP context could potentially benefit from using a larger
ISP data set anyway, despite the anonymization applied. For other uses cases
that are relevant outside of an ISP context, a different type of data set may be
available and/or simpler methods of obtaining similar results may be appli-
cable.

9.3 Project success criteria and business value

Five success criteria were defined prior to the initiation of the Ph.D. project
(quoted here in italics), and a small discussion of these criteria is appropriate.
The project is perceived as a success if it succeeds in:

• Using the developed methods/tools to find and confirm attacks against at least
10 identifiable customers who had otherwise not discovered the attack. Due
to the anonymization requirements, it has not been legally possible to
identify individual customers and therefore not possible to confirm the
attacks, and ascertain whether the attacks were successful or not. How-
ever, based on Paper B and Paper E, it is still possible to find potential
attack attempts. The anonymization causes traffic to appear to origi-
nate from approximately 6400 source prefixes. Data used for week 2 in
Paper B reveal that 680 unique prefixes create flows towards malicious
domains, and these flows would have been blocked if a network-wide
DNS resolver based blacklisting had been in place. Similarly, data used
for Paper E show that 207 unique prefixes receive DNS responses from
DNS resolvers known to be malicious. It seems likely that these prefixes
represent at least 10 customers, and therefore this success criterion is
considered fulfilled to the extent permitted by law.

• Contribute to the development of at least one new product at Telenor. The
process of working on Paper A has contributed with general knowl-
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edge about the legal conditions under which various data types can be
used. This is useful as basic knowledge for all product development
(not just malware and security related) that intends to use customer
related data. More specifically, three papers have contributed to assess-
ing the business case of deploying blacklists in DNS resolvers. Paper
B demonstrates the possible impact of DNS blacklisting with massive
adoption, such as in a free-for-all business model, and highlights the
steps that can be taken to avoid undesired impact. Paper D maps the
current market adoption of competing 3rd party resolvers that offer fil-
tering of malicious domains and/or parental control functionality. An
ISP could offer an option to block a customer’s DNS traffic towards
all 3rd party resolvers, so that malware is not able use a non-filtering
or even malicious 3rd party resolver. This could be offered both in
combination with a DNS resolver based filtering mechanism and as a
stand-alone option. As mentioned above, Paper E contributes by show-
ing that such an option could provide immediate value to customers in
207 prefixes. This success criterion is considered fulfilled to the extent
made possible within Telenor’s current commercial security product
landscape.

• Demonstrate that the developed methods can significantly improve detection
compared to existing statistical methods. Although Paper B does not pro-
vide an improved detection method, it does provide an improved method
for estimating the impact of deploying DNS-based blacklists. A detec-
tion method for a proposed new type of botnet is described in Paper
C. However, as no existing methods exist for detecting specifically this
type of botnet, the described method can strictly speaking not be con-
sidered an improvement to existing methods. Detecting malicious DNS
resolvers and the use thereof is performed by existing method through
the use of DNS data. However, the method proposed in Paper D uses
NetFlow data, and should therefore be considered complimentary to
existing methods, rather than an improvement. Although none of the
papers in the thesis address all of the elements in the specific formu-
lation of the criterion, the thesis as a whole is considered to fullfill the
criterion.

• Result in at least 2 publications in top-tier conferences/journals. The co-
authored Paper F titled "Processing of Botnet Tracking Data under the
GDPR" is published in Journal of Computer Law & Security Review,
and this journal is considered the top ranking journal in the category
"Technology Law" by Google Scholar [145]. Paper D and E are accepted
in / submitted to conferences (IFIP SEC and IWSEC) that are consid-
ered B rank by the Core2021 ranking [146]. A Core2021 B rank con-
ference is not considered top tier, but is considered a good and well
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regarded conference. Paper B is published in the SecureComm confer-
ence, which is currently a C rank conference, but was considered a B
rank conference by Core2020. The conferences in which Paper A and
C are published (Cyber Security and CNS) are not ranked by the Core
ranking association, however the CNS conference is by some consid-
ered on par with the other B rank conferences mentioned above [147].
This success criterion is therefore considered partially fulfilled.

• Develop a dashboard that can continuously display analytical results and pro-
vide ongoing overview of cyberattacks and malware infections among Telenor’s
customers. A dashboard as depicted in Figure 9.1 on the facing page
was created when working on Paper B. The original intention of the
dashboard was for Telenor to be able to provide a warning to infected
and/or attacked customers, and to gain a network-level overview of the
number of attacked/infected customers in different customer segments.
As the anonymization does not allow precise customer identification
and therefore not an accurate count or customer segment attribution,
the value of the dashboard is limited in practice. Therefore, the dash-
board idea was not pursued further in the remaining part of the project.
This success criterion is, however, considered fulfilled to the extent that
it provided project value.

In summary, all criteria are considered fulfilled or partially fulfilled.
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Fig. 9.1: Dashboard showing some of the results of the continuous data analysis using the methods
described in Paper B.

127



128



CHAPTER 10
Conclusion

The starting point of this thesis is the unique value proposition that ISPs
have in terms of access to the customers’ internet traffic. As outlined in the
introduction, this lead to the following thesis statement: "Compared to only
using IP traffic data, it is advantageous to use data from ISPs to identify cyber
attacks against customers and to identify customers infected with malware."

To explore this thesis statement, the technical and legal availability of ISP
data is explored, and various use cases for the data are presented in separate
papers with individual conclusions in chapter 2-8.

10.1 Contribution summary

Apart from the overall conclusion described in the next section, the specific
scientific contributions from this thesis can be briefly summarized as follows:

• An analysis of which ISP data are relevant to cyber security research, an
overview of the legal aspects of using such data, and an anonymization
policy for DNS and NetFlow data.

• A method to estimate the impact of applying blacklists in DNS resolvers
that represents an improvement to existing methods.

• A new type of botnet (and associated detection method) that does not
reveal the CnC IP address in clear text in DNS records.

• Methods that show the prevalence of the use of 3rd party resolvers in
an ISP network, and whether these resolvers are chosen for malware
filtering or censorship evasion purposes.

• A method for classifying a resolver as either well known or malicious
based on applying machine learning to NetFlow data.

As discussed in Section 9.3, these scientific contributions have throughout the
project been used to provide business value to Telenor Denmark as well.
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10.2 Overall conclusion

A key aspect is that data from European ISPs are by law subject to strict
anonymization requirements. In practice this makes it hard, if not impossi-
ble, to use and/or correlate several otherwise interesting data sources, even
when considering different levels of anonymization as discussin in Section
9.1. Therefore, the only data sources actually available (and relevant to mal-
ware detection) are DNS logs and NetFlow records, which can be considered
a subset of the IP traffic data. This aspect seems at first glance to negate the
thesis statement, at least within the jurisdiction of the European Union.

As discussed in Section 9.2, use cases that are only relevant in an ISP
context do exist, such as the use case presented in Paper D. For such use
cases, the only way forward is to use ISP data, and tolerate the consequences
of anonymization required by current legislation. Other use cases, such as
the use cases presented in Paper C and E, rely on datasets with the large-
scale user and diversity properties that are primarily found in ISP data sets,
making it likely that ISP data is the preferable data set to use, even in the
presence of anonymization. This supports the thesis, albeit under specific
circumstances only.

The overall recommendation from the work of this thesis is that within
the current EU jurisdiction, ISP data should only be used as a last resort
for malware and cyber attack detection. Other data sources, like data from
a university campus, a large company, or non-EU ISPs, should be consid-
ered preferred choices. From a broader scientific perspective, this conclusion
makes it seem likely that ISP-scale cyber security research will decrease in
the EU region in the future. Not exploiting the vast academic and financial
resources of the European Union for cyber security research purposes could
be detrimental to the global security posture, as the field of cyber security is
a constantly evolving arms race against malicious actors.

10.3 Future directions

The papers of the thesis suggest the direction of future work within the scope
of the individual papers. From a larger perspective, I consider the following
directions within the regulatory, commercial and academic domains as the
most interesting to pursue:

Regulatory A revised ePrivacy Regulation is being proposed [148], that will
among other extend the scope of the ePrivacy Directive [8] to not only
apply to ISPs, but to also apply to Over-The-Top service providers
of electronic communication like Skype, Messenger and even in-game
messaging systems. Many definitions and paragraphs have been refor-
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mulated to support the understanding of the legislation, for example
the definitions in Article 4 on the definition of data, content and meta-
data. More interestingly, Article 6 states that data can be processed
if it is necessary to maintain or restore the security of electronic com-
munications networks and services for the duration necessary for that
purpose. Although this is a rather general and unspecific statement, it
may open up for more flexible interpretations in the future than what
the Directive allows for.

Commercial As outlined in Chapter 3.1 on page 25, none of the commer-
cially available malware detection products seem to be able to operate
on anonymized data. Although the focus of this thesis is data from ISPs
and the related ePrivacy directive, other business types in the EU are
still subject to the rules of the GDPR, where anonymization can in some
cases also be used as a tool to enable compliance. Enabling products to
be able to work on anonymized data could therefore become a compet-
itive advantage to a vendor in several different business segments. An
obvious example is to make data analysis products aware that certain
ingested data types, for example IP addresses, are anonymized in a spe-
cific way. A side effect of this is that methods designed for non-NAT’ed
data may be simpler to extend to also apply to NAT’ed data, thus ex-
panding the applicability of the product. Another example could be
to enable routers to apply a anonymization policy to NetFlow records
before emission, so that non-anonymized NetFlow records are never
emitted.

Academic The argument of competitive advantage presented for commercial
contributions can also to some extent be applied to academic contribu-
tions. First of all, a contribution that allows for the use of anonymized
data could be more likely to be applicable in practice. Second, applying
anonymization in a contribution even though non-anonymized data is
available could represent an opportunity instead of a challenge, as this
could be an unexplored niche in some fields. As a specific example,
many of the papers presented in this thesis use DNS data to rename
flows found in NetFlow data, as described in chapter 4 on page 35.
Although papers by other authors apply the renaming process on non-
anonymized data, the quantification of the consequences of applying
renaming on anonymized data seems unexplored. As another exam-
ple, it could be interesting to assess the extent to which the accuracy
of existing malware detection methods proposed in the academic liter-
ature would be decreased when applying anonymization on the input
data. Such studies will naturally require access to a non-anonymized
data set, but could potentially also require access to individual hosts in
order to pin individual DNS requests and the following data flows to
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individual applications rather than to individual hosts.

Although the conclusion that other data sources should currently be pre-
ferred over ISP data may seem a rather disappointing conclusion from a
security point of view, it could also be considered positive from a privacy
point of view. How to set the right balance between privacy and security
is not merely a technical discussion, but rather a political and philosophical
question. Current legislation within this area is almost exclusively favouring
privacy, however as a subjective opinion, I find that society as a whole would
gain by leaning the balance a bit more towards the side focusing on security.
Although this thesis provides a tiny piece in this puzzle, the debate on pri-
vacy versus security will probably still be a topic of political debate for many
years to come.
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