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Abstract

This dissertation deals with three different mathematical subjects: mathe-
matical physics, acoustics and probability theory. The manuscript starts
with a brief description of the aforementioned fields, and introduces the
notation and terminology needed to understand the content of the pub-
lished/submitted papers.

Paper A deals with the theory of pseudodifferential operators with mag-
netic fields. Here a generalization of the magnetic Weyl quantization is pro-
posed and then shown that this choice makes it possible to represent a mag-
netic pseudodifferential operator as a generalized Hofstadter matrix. This
generalized matrix structure is then used to show spectral stability when
the generating symbol is real, i.e. the corresponding operator is self-adjoint.
Specifically, it is shown that the spectrum of the operator is locally Hölder
continuous in the strength of the magnetic field, with a Hölder exponent
1/2. Furthermore, if the magnetic field is constant, it is shown that the ex-
treme spectral values, as well as the gap edges (if such gaps exist and they
stay open when the strength of the magnetic field is varied) are Lipschitz
continuous.

Paper B is concerned with the bulk-boundary correspondence for un-
bounded Dirac operators. First, one shows essential self-adjointness of the
edge magnetic Dirac operator defined with infinite mass boundary condi-
tions, along with a detailed analysis of the integral kernel of its resolvent.
This is then used to formulate a relativistic bulk-boundary correspondence
and a gap labelling theorem, which extends some known results from the
Schrödinger setting.

Paper C investigates the possibility of constructing acoustic black holes
within the Timoshenko beam theory setting. More specifically, the paper
deals with determining an optimal height profile of a wedge at the end of
thin plate, which minimizes the reflection of waves at the boundary. This
is done by considering the partial differential equations describing the beam
motion and then derive the Timoshenko dispersion relation. A functional
depending on the height profile is then derived, and the associated Euler-
Lagrange equation is determined. By solving this equation numerically an
optimal profile is determined and compared with the corresponding profile
obtained by considering the waves using the Euler-Bernoulli beam theory
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instead.
Papers D and E deals with stochastic variables on the unit interval given

by a base-q expansion with digits coming from a stationary stochastic pro-
cess. In Paper D a functional equation for the CDF corresponding to the
stationary stochastic process is derived. By applying this functional equa-
tion, a characterization of stationarity of the stochastic process in terms of the
corresponding CDF is established. In Paper E specific stationery models are
characterized, hereunder stationary Markov chains and stationary renewal
processes.



Resumé

I denne afhandling behandles tre forskellige matematiske områder: matema-
tisk fysik, akustik og sandsynlighedsregning. Afhandlingen er delt i to dele,
hvor formålet med den første er at introducere de tre områder samt at for-
berede læseren på notationen of terminologien anvendt i artiklerne i den
anden del af afhandlingen.

Artikel A omhandler teorien om pseudodifferentiale operatorer i mag-
netiske felter. Der præsenteres en generalisering af den magnetiske Weyl
kvantisering og det vises så hvordan denne kvantisering gør det muligt at
betragte pseudodifferential operatoren som en generaliseret matrix. Denne
generaliseret matrix struktur bliver dernæst anvendt til at vise stabilitets re-
sultater af spektrumet, når det betragtede symbol er reelt (hvilket medfører
at den betragtede operator er selvadjungeret). Mere præcist, bliver det vist at
spektrummet er Hölder kontinuert, i styrken af det magnetiske felt, med ek-
sponent 1/2. Endvidere, vises det at hvis det magnetiske felt er konstant, så
er den maksimale og den minimale værdi af spektrummet samt endepunk-
terne i et hul i spektrummet (hvis et sådan eksisterer og hulet forbliver åbent
når styrken af det magnetisk felt varierer) Lipschitz kontinuerte.

Artikel B omhandler bulk-boundary korrespondancen for ubegrænsede
Dirac operatorer. Først bestemmes integral kernen af den frie bulk Dirac
operator og så anvendes den til at vise essentielt selvadjungerethed af den
magnetiske edge Dirac operator samt til at bestemme et eksplicit udtryk for
integral kernen af resolventen til den magnetiske edge operator. Dette bliver
så brugt til at formulerer en relativistisk bulk-boundary korrespondance og
en gap labeling sætning, som udvider nogle velkendte resultater fra Schrö-
dinger setuppet.

Artikel C omhandler teorien om akustiske sorte huller i et Timoshenko
setup. Mere præcist, bestemmes der i artiklen en optimal højdeprofil af
en kile for enden af en tynd plade, som minimere reflektionen af bølger
der rammer enden af pladen. Dette bliver gjort ved at betragte differen-
tial ligningerne der beskriver bevægelsen af en bjælke i Timoshenkos teori og
så ved hjælp af disse udlede Timoshenkos spredningsligning, der beskriver
bølgenumrene. Dernæst udledes et funktionalle der er afhængig af højde-
profilen og den tilhørende Euler-Lagrange ligning bestemmes. Denne lign-
ing løses dernæst numerisk for at bestemme den optimale højdeprofil, som
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sammenlignes med højdeprofilen fundet ved at betragte bølger med Euler-
Bernoullis bjælke teori.

Artikel D og E omhandler stokastiske variable på enhedsintervallet der er
givet ved en base-q udvikling hvor cifrene kommer fra en stationær stochastisk
proces. I Artikel D udledes en funktional ligning for CDFen der hører til den
den stationære stokastiske process. Ved at benytte denne funktional lign-
ing karakteriseres stationaritet af den stochastiske proces med hensyn til den
tilhørende CDF. I Artikel E bliver specifikke stationære modeller karakteris-
eret, herunder stationære Markov kæder og stationære fornyelsesprocesser.
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Background

1 Introduction

The scope of my PhD-studies ended up being threefold. The Papers A and B
belongs in the subject of mathematical physics, the Paper C in acoustics and
the Papers D and E in probability theory. Therefore, this chapter will also be
split into three, more or less, independent sections. Each section will contain
some preliminary material, intended to prepare the reader to dive into the
papers, a summary of the main results of each paper and some references to
other similar works, for the interested reader. This introduction will be quite
brief and superficial. This means that proofs will be omitted and we are not
always strict about domains of operators and such. We instead give several
references which covers the material in great depth.

2 Quantum mechanics

We begin with a very short historical overview. It was believed in the 19th
century, that the deterministic theory classical mechanics was the correct the-
ory to predict the motion of bodies [20]. In classical mechanics one is inter-
ested in classical observables, which are real functions a(q, p) defined on the
phase space R6N = R3N × R3N , where N is the number of particles, q ∈ R3N

is the position of the particles and p ∈ R3N is the momentum of the par-
ticles. This theory is deterministic in the following sense: if you know the
exact state of the system at some type (i.e. the position and momentum of
a system at some time), then by solving the laws of motion, you can predict
the future states of that system at any time. In physics one is interested in
considering the total energy of a system. In classical mechanics, this is done
using the Hamiltonian

HCL(q, p) =
p2

2m
+ V(q),

where m is the mass, p2/2m describes kinetic energy and V describes poten-
tial energy. Classical mechanics is still considered to be quite accurate when
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considering “large” objects not moving with a speed comparable to the speed
of light.

In the beginning of the 20th century experiments starting showing that
this classical theory did not approximate the behaviour at an atomic level
very well. The outcome of these observation led to a new theory, namely
quantum mechanics. In quantum mechanics one is interested in quantum
observables which are given by self-adjoint operators in the Hilbert space
L2(Rn). Unlike the classical observables, these can not be simultaneously
measured exactly, due to the uncertainty principle. In quantum mechanics
the state of the system is given by the wave function, which does not give the
exact state but instead describes the probability of finding the system in some
state. This means that quantum mechanics is not a deterministic theory.

If we consider one particle in R, described by the wave function ψ ∈
L2(Rn) then the future states of this particle are determined by the time-
dependent Schrödinger equation

i
∂ψ

∂t
(t) = Hψ(t), (2.1)

with H = −∆ + V where ∆ is the Laplace operator, V is a multiplication op-
erator and we have applied suitable units, such that Planck’s constant h̄ = 1
and the mass m = 1. The operator H is called the quantum mechanical
Hamiltonian and as in classical mechanics it describes the total energy of
a system (the kinetic energy is here given by −∆ and the potential energy
by V). The Hamiltonian is an example of an unbounded operator and thus
the theory of unbounded operators on Hilbert spaces is fundamental for the
mathematical study of quantum mechanics. We refer the reader to the mono-
graphs [66], [64] and [76] for the basic mathematics needed to study Hamil-
tonians.

When H is self-adjoint, the solution of (2.1) is given by ψ(t) = e−itHψ0,
where ψ0 is the initial condition. Hence, the time evolution of a quantum
system is generated by a self-adjoint operator [76]. One interesting question
in this regard, is whether the spectrum is stable under perturbations of the
Hamiltonian. A common example regarding this is if Hk = H0 + kV is a fam-
ily of Hamiltonians where V is relatively bounded by H0, then the Hausdorff
distance between the spectrum of Hk and H0 varies proportional to |k| [19].
The interested reader can consider [47], [65] or [36] for the general theory of
perturbation theory.

2.1 Magnetic Schrödinger operators

When considering quantum particle as above, another interesting question
arises: What happens if one impose a magnetic field on the system? A mag-
netic field is a closed 2-form B given as B = dA, where A is a 1-form, called
the magnetic potential [28]. An important thing to note here, is that the
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2. Quantum mechanics

magnetic potential A is not unique. Due to this, we are interested in a the-
ory that is gauge covariant, i.e. if we choose another magnetic potential,
say Ã, then the operators corresponding to A and those corresponding to
Ã should be unitarily equivalent. To go from the free Schrödinger operator
(i.e. no magnetic field) to the magnetic Schrödinger operator, one replaces
the momentum operator p = −i∇ with the magnetic momentum opera-
tor ΠA = −i∇ + bA, where b is the strength of the magnetic potential A.
Note that this operator is gauge covariant, since d(bA − bÃ) = 0, implies
by Poincaré’s lemma [50] that bA − bÃ = dφ, for some sufficiently regular
φ, and thus eiφΠAe−iφ = ΠÃ. This leads to the the magnetic Schrödinger
operator

Hb := (−i∇− bA)2 + V,

which clearly also is gauge covariant. As with the free Schrödinger operator,
we are interested in properties of the spectrum. Before we can start consid-
ering the spectrum, we need to consider the question of self-adjointness (or
essentially self-adjointness) of such operators. This is a more difficult prob-
lem then in the free case, since the behavior at infinity of some of the most
interesting magnetic fields, is not necessarily decaying (eg. the constant mag-
netic field) [3]. General results in this direction can be found in [44] and [51].
After the problem of self-adjointness has been considered, one would be in-
terested in the same questions as for the free Schrödinger operator, eg. the
stability of the spectrum. We will return to questions of this kind later, in Pa-
per A. Here we refer the reader to [2], [9], [14] and [19] for a small selection
of results in this direction.

2.2 Quantization

As stated in the previous section, classical mechanics give quite well predic-
tions for certain systems. This lead Niels Bohr to formulate the correspon-
dence principle, which says that when systems become ”large“ enough to be
described using classical mechanics, then the description should agree with
the one by quantum mechanics [60]. Thus we are interested in finding a cor-
respondence between the observables a(q, p) from classical mechanics and
the self-adjoint operators which acts as observables in quantum mechanics.
There has not yet been found a final answer to this question which it known
as the the quantization problem [27] (if it is even possible to find a final an-
swer). A simple suggestion is to just replace the position and momentum
functions a(q, p) = q and a(q, p) = p from classical mechanics with the self-
adjoint operators X and P given by Xψ(x) = xψ(x) and Pψ(x) = −i∇ψ(x),
which represents position and momentum in quantum mechanics. If we use
this naive quantization then we arrive at a problem regarding the quanti-
zation of products. In classical mechanics qp and pq are equal since they
commute. This is not the case for the quantum analogs, due to the canonical
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commutator relation

[X, P] = iδjk,

where δjk is Kronecker’s delta [32]. One often used quantization is the Weyl
quantization, which associates to a self-adjoint operator its classical coun-
terpart, using the theory of pseudodifferential operators. For a general in-
troduction of pseudodifferential operators we refer the reader to [37], [38]
and [31]. If ã ∈ S0

0,0(R
2n) is a Hörmander symbol on the phase space, then

the corresponding operator OpW(ã) on the Hilbert space L2(Rn) (using the
Weyl quantization) is given by (in weak sense)

⟨OpW(ã) f , g⟩ :=
1

(2π)n

∫
R3n

ei(x−x′)·ξ ã
( x + x′

2
, ξ
)

f (x′)g(x) dx dx′ dξ,

where f , g ∈ S (Rn) are Schwartz functions [57]. By a straight forward cal-
culation, it then follows that for the classical position ã1(q, p) = q and mo-
mentum ã2(q, p) = p we get

(OpW(ã1) f )(x) = x f (x),

(OpW(ã2)g)(x) = (−i∇ f )(x),

which are the quantum position and momentum operators.
In classical mechanics, the corresponding notation of the commutator

relation in quantum mechanics, is the Poisson bracket. It can be shown
(see [32]) that there is a correspondence between these two notations, us-
ing Weyl quantization, of polynomials in position and momentum of degree
at most two. Since this relation is not generally satisfied, one could think
that maybe there exists another quantization for which this is satisfied gener-
ally. This it not the case, as follows from Groenewold’s ”no go“ theorem [32],
which states that there does not exist a correspondence between the commu-
tator and the Poisson bracket for polynomials of degree at most four.

Another interesting question is the quantization when a magnetic field is
present, since this adds the extra condition of gauge covariance. This problem
has been considered in [40], [41], [42], [43] and [45], where they suggested
that for a symbol ã ∈ S0

0,0(R
2n), the Weyl quantization in the presence of a

magnetic field should be given as (in weak sense)

⟨OpW
b (ã) f , g⟩ :=

1
(2π)n

∫
R3n

ei(x−x′)·ξeibφ(x,x′) ã
( x + x′

2
, ξ
)

f (x′)g(x) dx dx′ dξ,

where φ describes the magnetic flux through the oriented triangle with 0, x, x′

as vertices. In Paper A we give another quantization, which are closely re-
lated to the magnetic Weyl quantization. Using this quantization we then
prove two results regarding the stability of the spectrum.
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2. Quantum mechanics

2.3 Overview of Paper A

Paper A is concerned with the study of a pseudo-differential operator quan-
tization which is closely related to the magnetic Weyl quantization presented
in Section 2.2. We consider a magnetic field which is smooth, with all deriva-
tives bounded and is given by a 2-form B = dA, for some 1-form A, which
is not unique. We choose to work with the transverse gauge. If we denote
by Γx,x′ , the oriented line from x′ to x, we can define the anti symmetric
function φ, which describes the magnetic flux in the oriented triangle with
vertices 0, x, x′, by

φ(x, x′) =
∫

Γx,x′
A(·, 0),

which satisfies ∂xj φ(x, x′) = Aj(x, 0)− Aj(x, x′). An important property of φ

is the following estimate

|∂α
x∂α′

x′ φ(x, x′)| ≤ Cα,α′ |x||x′|,

for every x, x′ ∈ Rn and α ∈ Nn
0 . Using this magnetic flux, we introduce

a new class of symbols which we call magnetic symbols. These magnetic
symbols are given by

ab(x, x′, ξ) = eibφ(x,x′)a(x, x′, ξ),

for b ∈ R, the strength of the magnetic field, and a ∈ C∞(Rn), satisfying that
for some M ≥ 0 we have

|∂α
x∂α′

x′∂
β
ξ a(x, x′, ξ)| ≤ Cα,α′ ,β⟨x − x′⟩M,

for α, α′β ∈ Nn
0 . Given a magnetic symbol we define the magnetic pseudod-

ifferential operator Op(ab) : S (Rn) → S ′(Rn), given by (in weak sense)

⟨Op(ab) f , g⟩ :=
1

(2π)n

∫
R3n

ei(x−x′)·ξ eibφ(x,x′)ab

(
x, x′, ξ

)
f (x′)g(x) dx dx′ dξ,

where f , g ∈ S (Rn). At a first glance, this seems to be a larger operator
class than the magnetic Weyl operators introduced in Section 2.2, but by
applying the magnetic Beals criterion [15] it follows that the two operator
classes actually are identical.

We then show that the magnetic pseudodifferential operator is unitar-
ily equivalent to, what we call a generalized matrix on the Hilbert space⊕

γ∈Zn L2((−1/2, 1/2)n). More precisely

UbOp(ab)U∗
b = {eibφ(x,x′)Aγγ′ ,b}γ,γ′∈Zn ,

where Ub is a unitary operator and Aγγ′ is a bounded operator on the Hilbert
space L2((−1/2, 1/2)n). We then proceed with showing that the norm of the
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matrix elements ∥Aγγ′ ,b∥ decay as ⟨γ − γ′⟩−N , for arbitrarily N and use this
together with a Schur-Holmgren type result to show that the magnetic pseu-
dodifferential operator Op(ab) is bounded in L2(Rn). By applying the gen-
eralized matrix structure we then prove two results regarding the stability of
the spectrum when the symbol ab is real and thus Op(ab) is self-adjoint. First
we show that for b in some small compact interval, the Hausdorff distance of
the spectrum varies Hölder continuously in b with exponent 1/2 . Secondly,
we prove that if B is a constant magnetic field, then the extreme spectral val-
ues, along with gap edges (if there exists a gap that does not close when b
varies) varies Lipschitz continuously in b on some small compact interval.

3 Condensed matter physics

We now turn our attention to the field of condensed matter physics, more par-
ticularly the bulk-boundary correspondence of topological insulators, which
establishes a relation between a properties in the bulk of the insulator with
properties at the boundary. The most classical example, and the most stud-
ied one is the two-dimensional quantum Hall system, see etc. [78]. The
interest in the bulk-boundary correspondence originates from the seminal
paper [33] and a little later [35] and [29]. This has lead to a large math-
ematical literature on bulk-boundary correspondence, here we mention the
papers [23], [24], [48], [69] on zero-temperature, [17] at positive temperatures
and the monograph [63].

3.1 Bulk-boundary correspondence

Since the bulk-boundary correspondence is about a relation between proper-
ties in the bulk and at the boundary, we begin by introducing two different
operators: one to describe the bulk properties and one to describe the bound-
ary properties. The bulk dynamics in L2(R2) is described by

Hb = (−i∇− bA)2 + V,

where A is the magnetic potential given by A(x) = (−x2, 0), b is the strength
of the magnetic field and V is the potential. By defining E := {(x1, x2) ∈ R2 |
x2 ≥ 0}, the edge dynamics in L2(E) is described by

HE
b := Hb|C∞

c (Ē),

where Hb
∣∣
C∞

c (Ē) is considered with a Dirichlet boundary condition at x2 =

0. Under suitable conditions on the potential, it can be shown that Hb is
essentially self-adjoint on C∞

c (R2) [28] and HE
b is essentially self-adjoint on

C∞
c (Ē) [56]. For some results regarding the bulk operator we refer the reader

to [1], [4], [7] and [8]. For the edge operator, see [25] and [30].
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3. Condensed matter physics

Denote by χΩ the indicator function on Ω := [0, 1] × [0, 1] and χL the
indicator function on the finite strip SL := [0, 1]× [0, L] for L ≥ 1. In [17] it is
shown that if F is a real-valued Schwartz function on R, then χΩF(Hb) and
χLF(HE

b ) are both trace-class and one can define the physical quantities

ρL(b) :=
1
L

Tr(χLF(HE
b )), BF(b) := Tr(χΩF(Hb)),

where BF is a generalization of the integrated density of states of the bulk
operator (i.e. it measures the number of energy levels pr. unit volume below
some energy) and ρL is a generalization of the integrated density of states of
the edge operator on the strip SL. The bulk-boundary correspondence is then

lim
L→∞

ρL(b) = BF(b), lim
L→∞

dρL
db

(b) =
dBF
db

(b),

i.e. the number of energy levels pr. unit volume below some energy for
the edge operator restricted to the strip SL convergences to the number of
energy level pr. unit volume below some energy for the bulk operator. The
setting in [17] is more general than presented here, since they prove a bulk-
boundary correspondence for positive temperatures. If g ∈ C1([0, 1]) is a
function which satisfies g(0) = 1 and g(1) = 0, then one can prove the
following explicit formula for B′

F [17]

dBF
db

(b) = − lim
L→∞

Tr(χ̃Li[HE
b , X1]F′(HE

b )),

where χ̃L = χL(x)g(x2/L).
If the bulk operator Hb has an isolated spectral island (i.e. a part of the

spectrum isolated from the rest of the spectrum by two gaps), then by [58]
the gap varies continuously in b and we can define the Riesz projection by

Πb =
i

2π

∮
C
(Hb − z)−1 dz,

where C is a positively oriented simple contour which does not close for
b ∈ [b1, b2], for some b1, b2 ∈ R. It is shown in [16] that if we define the
integrated density of states of Πb by

I(Πb) := lim
L→∞

1
L

Tr(χLΠb),

then

dI(Πb)

db
=

1
2π

Ch(Πb), (3.1)

where

Ch(Πb) := 2π
∫

Ω
(iΠb[[X1, Πb], [X2, Πb]])(x, x) dx ∈ Z

9



is a constant. The equality (3.1) is known as the Strěda formula. If one
chooses a function F0 ∈ C∞(R) which satisfies that 0 ≤ F0 ≤ 1, F0 = 1 on the
isolated spectral island, F0 = 0 on the rest of the spectrum and that F′

0 has
support only in the two gaps surrounding the isolated spectral island, then it
can be shown [17] that BF0(b) = I(Πb).

The proofs of all these statements relies heavily on the geometric pertur-
bation theory introduced in [59] and [18]. We give here a short introduction
to this theory, based on [17]. Define four functions, 0 ≤ η0, ηL ≤ 1 and
0 ≤ η̃0, η̃L ≤ 1 which should all be smooth, only depend on x2 and η0 and
ηL should satisfy that η0(x) + ηL(x) = 1. All four functions should also sat-
isfy some further conditions regarding their support and derivatives. These
conditions can be found explicitly in [17]. We omit the details here to keep
the presentation more simple and just mention that η̃0 and η̃L can be thought
of as strecthed out versions of η0 and ηL. One can then show the following
identity

(HE
b − z)η̃L = (Hb − z)η̃L,

which shows that away from the boundary, the bulk and the edge operator
behaves similarly. By defining the operator

UL(z) := η̃L(Hb − z)−1ηL + η̃0(HE
b − z)−1η0

which is bounded in L2(E), we get that

(HE
b − z)UL(z) = 1 + WL(z),

where WL is a bounded operator, which one can get an explicit expression
for. We say that UL is an almost resolvent of (HE

b − z), in the sense that it
satisfies the following resolvent-like identity, which will play a central role in
the proofs

(HE
b − z)−1 = UL(z)− (HE

b − z)−1WL(z).

3.2 Dirac operators

Historically in mathematical physics, the Schrödinger operator has been, by
far, the most considered operator in the study of quantum mechanics. In
the recent years, especially in the study of graphene related areas, people
has begun considering the Dirac operators more thoroughly, see etc. [5], [6],
[10], [11] and [73]. For a general introduction the Dirac operator, we refer the
interested reader to the monograph [77].

We denote by {σ1, σ2, σ3} the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

10



3. Condensed matter physics

and by σ := (σ1, σ2). By a straight forward calculation, it follows that the
Pauli matrices satisfies the following commutation ([A, B] = AB − BA) and
anticommutation ({A, B} = AB + BA) relations

[σi, σj] = 2iεijkσk, {σi, σj} = 2δij,

for i, j, k ∈ {1, 2, 3}, where εijk is the Levi-Civita symbol and δij is the Kro-
necker delta. The free massless Dirac operator is considered on L2(R2, C2) ≡
L2(R2)⊗ C2 and is given by

H0 = −i∇ · σ = p · σ = −i
∂

∂x1
σ1 − i

∂

∂x2
σ2 =

(
0 −i∂x1 − ∂x2

−i∂x1 + ∂x2 0

)
.

It can be shown that H0 is an elliptic operator, which is essentially self-adjoint
on C∞

c (R2) × C∞
c (R2), self-adjoint on the Sobolev space H1(R2) × H1(R2)

and has purely absolutely continous spectrum σ(H) = (−∞, ∞) [77]. It is
often also of interest, to consider the Dirac operator with mass. For m > 0,
the free Dirac operator with mass, also considered on L2(R2, C2), is given by

H0,m := H0 + mσ3.

A well-known fact is that the addition of mass creates a symmetric gap
around 0 in the spectrum of the Dirac operator, i.e. σ(H0,m) = (−∞,−m) ∪
(m, ∞) [77]. Finally, as in the Schrödinger case, we are interested in consid-
ering systems, described by the Dirac operator, which are imposed with a
magnetic field. The magnetic massless Dirac operator is given by

Hb := (−i∇− bA(x)) · σ,

where A is the magnetic potential and b is the strength of the magnetic field.
As in the Schrödinger case, we are also interested in the Dirac operator de-
fined on the half-space E. Unlike the Schrödinger case, where we considered
the Dirichlet boundary condition, we here consider the infinite mass bound-
ary condition, i.e. if ψ is the restriction of a Schwartz function on R2 to E,
then it must satisfy ψ1(x1, 0) = ψ2(x1, 0), for every x1 ∈ R. The bulk and
edge magnetic Dirac operators are the main focus of Paper B, where a Bulk-
boundary correspondence is proved for the magnetic Dirac operator.

3.3 Overview of Paper B

Paper B is concerned with proving a bulk-boundary correspondence (as de-
scribed in Section 3.1) for magnetic Dirac operators. We consider the bulk,
purely magnetic and massless Dirac-Landau operator defined on the Hilbert
space L2(R2, C2), given by

Hb := (−i∇− bÃ(x)) · σ,

11



where σ is given as in Section 3.2 and Ã = (−x2, 0) is the magnetic potential.
It is well-known that this function is essentially self-adjoint on C∞

c (R2) ×
C∞

c (R2).
In order to introduce the magnetic edge operator, we denote the set con-

sisting of the restriction of Schwartz functions on R2 to E by S+ and define
the two spaces

E := {ψ = (ψ1, ψ2) ∈ S+ ⊕S+ | ψ1(x1, 0) = ψ2(x1, 0), ∀ x1 ∈ R},

M := {ψ ∈ E | ∀α ∈ N2
0, ∃c, C > 0 such that |∂αψ| ≤ Ce−c|x|}.

Then the edge magnetic Dirac operator is given by

HE
b := H̃b|M

and we prove that the restriction of this operator to M is essentially self-
adjoint.

By en explicit calculation, we then determine an expression for the inte-
gral kernel of the free edge Dirac operator

KE
0 (x, x′,

√
λ) := K0(x; x′1,−x′2,

√
λ)σ1 +K0(x, x′,

√
λ),

where K0 is given by

K0(x, x′,
√

λ) = (2π)−1i
√

λK0(
√

λ|x − x′|)I2

− i
√

λ(2π)−1σ · x − x′

|x − x′|K
′
0(
√

λ|x − x′|),

and K0 is the Macdonald function (see [61] for details of the Macdonald func-
tion).

Using this integral kernel of the free edge Dirac operator, we can define
two operators Sb(i

√
λ) and Tb(i

√
λ) on L2(E, C2) which have integral kernels

Sb(x, x′,
√

λ) := eibφ2(x,x′)KE
0 (x, x′,

√
λ)

Tb(x, x′,
√

λ) := eibφ2(x,x′)(−bÃ(x − x′) · σ)KE
0 (x, x′;

√
λ).

These two operators play a central role in our analysis and we show sev-
eral properties of them, eg. that both Sb(i

√
λ) and Tb(i

√
λ) are bounded on

L2(E, C2) and that ∥Tb(i
√

λ)∥ ≤ Cbλ−1. This last property is particularly
important, since it gives that for λ large enough, then (1 + Tb(i

√
λ))−1 exists

as a Neumann series.
If we consider the magnetic phase φ2(x, x′) := (x′1 − x1)x′2, then the resol-

vent (HE
b − i

√
λ)−1, which we show can be written in terms of Sb(i

√
λ) and

Tb(i
√

λ), has an integral kernel given by

(HE
b − i

√
λ)−1(x, x′) = eibφ(x,x′)Kb(i

√
λ)(x, x′),

12



4. Acoustic black holes

where Kb(i
√

λ)(x, x′) is smooth in the operator norm topology, for b in some
small compact interval. This shows the only obstruction for the resolvent to
be smooth in the norm topology comes from the phase.

We then show that the geometric perturbation theory introduced in [59]
and [18] can be extended to the Dirac setting. Using this geometric pertur-
bation theory then leads, with proofs very similar to those given in [17], us
to extend both the bulk-boundary correspondence and the Strěda formula
considered in Section 3.1 to the Dirac setting.

4 Acoustic black holes

We now move away from quantum mechanics, which constituted the first
part of this dissertation and move into the second part which is concerned
with acoustics.

In acoustics one is interested in the behaviour of waves in a medium, say
a solid. The most simple geometry of a solid is the thin plate, which can be
considered one dimensional. Here we consider a semi-infinite, thin plate of
height h(x), i.e. it has a boundary at the one end, but not the other. Further-
more, we suppose that the plate has constant height except near the end with
boundary, where the height can vary. We are then interested in the reflection
of waves at this boundary. Historically, the Euler-Bernoulli beam theory has
been widely used in mechanical engineering, since it is a very simple ap-
proximation of the linear theory of elasticity, which still provides quite good
results. In Euler-Bernoulli beam theory, the wave in a one dimensional thin
plate of thickness h(x) is described using the differential equation [46]

d2

dx2

(
Eh3(x)

12(1 − ν2)

d2w
dx2 (x, ω)

)
− ω2ρh(x)w(x, ω) = 0, (4.1)

where w(x, ω) is the transverse displacement of the midsurface, E = E0(1 −
iη) is Young’s modulus with loss, ν is Poisson’s ratio, ω is the angular fre-
quency and ρ is the material density of the plate.

In order to determine a solution (or more precisely to approximate a so-
lution) to (4.1), it is customary in acoustics to use the WKB approximation,
which was developed as a method to approximate solutions to differential
equations in quantum mechanics (see [46] for details of the use of the WKB
method in acoustics). By applying a first order WKB approximation it is pos-
sible to derive a measure of how much of a wave is reflected at the end of the
plate, called the reflection coefficient. This reflection coefficient is given by

R = exp
( ∫ x1

x0

Im(k(x)) dx
)

,

where x0 is where the boundary of the semi-infinite plate is located and k is
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the wave number, which in Euler-Bernouli theory is given by

k(x) = 4

√
12ω2

c2h(x)2 ≈
4
√

12√
h(x)

√
Ω,

where c2 = E
ρ and Ω = ωh1

c , where h1 is the height of the constant part of
the plate. The application of the WKB approximation used here is only valid
under the condition ∣∣∣∣ 1

k2
dk
dx

∣∣∣∣ ≪ 1.

In applications this is generally considered to be satisfied when it is less than
0.3, see eg. [26].

The aim with the study of acoustic black holes is to minimize the reflec-
tion coefficient, so as much as possible of the wave is being absorbed at the
boundary of plate. The field of acoustic black holes originates from the semi-
nal work of Mironov in [55], where he showed that theoretically it is possible
to get a reflection coefficient equal to zero. Indeed, by letting the height of the
plate go to zero when approaching x0, the speed of the wave will go to zero
and thus never reach the end. In practice it is not possible to make the height
go to zero and thus one needs other ideas to minimize the reflection coeffi-
cient. Two often considered methods are to make an optimal height profile
h(x) of the plate near the boundary or by attaching a dampening layer to the
height profile which can absorb a part of the wave. These methods has been
thoroughly studied in the Euler-Bernoulli setting, where we refer the reader
to [26], [49], [74] and the review paper [62] and the references therein.

It is well known, that the Euler-Bernoulli beam theory is only valid for
low frequencies, up to around Ω ≈ 0.3. Other beam theories are expected to
hold for much higher frequencies. One of these is the Timoshenko beam the-
ory (see [53] for an introduction to Timoshenko theory) which agrees with
the Euler-Bernoulli theory for low frequencies [71], but unlike the Euler-
Bernoulli, it is expected to be accurate up to Ω ≈ 3.5 [72]. A reason for
this is that the Timoshenko theory relies on the shear deformation and ro-
tational bending, while these are neglected in the Euler-Bernoulli theory. To
the best of our knowledge, the research of acoustic black holes has only (up
until now) been done in the Euler-Bernoulli framework.

4.1 Overview of Paper C

In Paper C we minimize the reflection coefficient of an acoustic black hole in a
one-dimensional, semi-infinite, thin plate, where we consider the waves using
the Timoshenko beam theory. To do so we apply the calculus of variations to
determine the optimal height profile which is covered by a dampening layer.
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4. Acoustic black holes

The motion of a Timoshenko beam is described using the differential
equations

−ρA
∂2w
∂τ2 (x, τ) + κGA

(∂2w
∂x2 (x, τ)− ∂ψ

∂x
(x, τ)

)
+ q(x, τ) = 0,

−ρI
∂2ψ

∂τ2 (x, τ) + EI
∂2ψ

∂x2 (x, τ) + κGA
(∂w

∂x
(x, τ)− ψ(x, τ)

)
= 0,

where ρ is the density of the material, A = Bhd(x) is the cross section area
where B is the constant width, while hd(x) is the height, E = E0(1 − iη) is
the complex elastic modulus with loss η > 0, G = E(1 + ν)−1/2 is the shear
modulus with ν its Poisson ratio, I = B(hd(x))3/12 is the second moment
area, κ is the Timoshenko shear coefficient and q is the distributed load.

By introducing dimensionless variables and making an WKB-like approx-
imation of this system of differential equations we derive the Timoshenko
dispersion equation which we solve to get an expression for the wave num-
bers. From this expression, we then derive the well-known fact that for low
frequencies the Timoshenko theory reduces to the Euler-Bernoulli theory.
Furthermore, we derive that for higher frequencies the Timoshenko theory
predicts the appearence of two waves instead of just the one predicted by the
Euler-Bernoulli theory. The first wave, which exists for all frequencies ends
up becoming a Rayleigh wave and thus independent of the profile of the plate
for the high frequencies. Then we show, as expected, that the second wave
only appears for very high frequencies.

In order to optimize the reflection coefficient under the constraint ex-
plained in Section 4, we then introduce a Lagrange multiplier inspired func-
tional, where we consider the constraint as an integral condition which puts a
penalty on the functional when we violate the constraint. We then derive the
Euler-Lagrange equation associated to this function analytically. This gives
a first order, separable, autonomous differential equation which we have not
been able to solve analytically. We therefore instead consider the differential
equation numerically.

In the numerical analysis we then show that only in a part the frequency
range where the Euler-Bernoulli and Timoshenko theory agrees, their op-
timal profile also agrees. For higher frequencies the optimal profile found
using Euler-Bernoulli then stops being ”smooth“ and instead only continu-
ous, while the optimal profile using Timoshenko theory stays ”smooth“ for
much higher frequencies, before it shows the same phenomenon as in the
Euler-Bernoulli setting and becomes only continuous.

The numerical investigations of the second wave predicted by Timoshenko
theory turned up to be much more involved and is not considered in this pa-
per. An interesting future project is to study this second wave in more details
and make a comparison between the optimal profile coming from the first
and the second wave in Timoshenko theory.
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5 Stochastic variables in base-q expansion

We move on to the last of the topics which has been studied in this disser-
tation, concerning stochastic variables. We are here interested in a stochastic
variable X ∈ [0, 1], which is represented as

X =
∞

∑
n=1

Xnq−1,

where q ∈ N = {1, 2, . . .} and {Xn}n≥1 is a stochastic process taking values
in {0, . . . , q − 1}. An interesting question is then, what one can say about the
cumulative distribution function (CDF)

F(x) := P(X ≤ x),

when you imposes some specific conditions on {Xn}n≥1.
One of the simplest cases is when Xn is independent identically dis-

tributed (IID), this case is also known as the Bernoulli scheme. If we consider
the dyadic case q = 2, with P(Xn = 0) = p0 and P(xn = 1) = 1 − p0 it is well
known, see [12], that the CDF F is then continuous and strictly increasing
on [0, 1]. Furthermore, if 0 ≤ k < 2n, is an integer, then there exists some
(µ1, . . . , µn), with ui ∈ {0, 1} such that ∑n

i=1 = µi2−i and hence

F
(

k + 1
2n

)
− F

(
k

2n

)
= P

(
k

2n < X <
k + 1

2n

)
= P(Xi = µi, i ≤ n). (5.1)

If p0 = p1 = 1
2 , then it follows from (5.1) that the CDF F(x) = x on [0, 1] and

if p0 ̸= p1 then one can show that F′(x) = 0 for almost all x ∈ [0, 1] [12]. Thus
for p0 ̸= p1 we end up with a function that is continuous, strictly increasing
and whose derivative is equal to zero almost everywhere. Such a function is
called a singular function, since the associated measure (which exists since F
is nondecreasing and right-continuous on R [12])

dF(a, b] = F(b)− F(a)

is singular with respect to the Lebesgue measure. This gives a complete
characterization of the CDF in the dyadic case when the Xn’s are IID. This
characterization can be generalized to general Bernoulli schemes, in the sense
that for q ≥ 2, the measure dF is singular, unless the probabilities P(Xn =

j) = pj are given by p0 = p1 = · · · = pn = 1
n , for which the measure is

absolutely continuous with respect to the Lebesgue measure.
In [34] a characterization of the CDF is made, under the assumptions that

the Xn’s are assumed to be stationary and of a mixing type. This characteri-
zation states that either

1. F(x) = x on [0, 1],

16
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2. F is a discrete CDF,

3. F is singular.

In [22] a similar characterisation is made if the Xn’s are stationary and er-
godic.

With these characterizations, it would seem that singular functions occurs
quite frequently. This is also the case, eg. in [79] it is shown that ”most
monotone functions are singular“ and in [70] it is shown that such functions
also often occur in mathematical physics. Some specific examples of a singu-
lar function, is the Cantor function [13], [21], the Minkowski question-mark
function [54] and the Riesz-Nagy functions [67], [68], [75]. In [68] and [67]
one can even find a method to construct Riesz-Nagy functions (see Paper E
for some plots of singular functions).

We end this section by an interesting observation regarding the measure
dF, when F is the CDF of some stochatic process {Xn}n≥1. A finite measure
whose characteristic function

E(eitX) → 0 as t → ±∞

is called a Rajchman measure [52]. If the X′
ns are IID, then it is well-known

that the CDF F is the uniform CDF if and only if the corresponding measure
dF is a Rajchman measure [39].

5.1 Overview of Paper D and E

In Paper D we make a characterization of stationarity of {Xn}n≥1 by consid-
ering the corresponding CDF F. We first show that stationarity of {Xn}n≥1 is
equivalent to F solving

F(x) = F(0) +
q−1

∑
j=0

(
F
(

x + j
q

)
− F

(
j
q

)
, (5.2)

for every base-q fractions in (0, 1). We then show that if we assume station-
arity of {Xn}n≥1, then the Xn’s being IID is equivalent to F satisfying

F(x) =
q−1

∑
j=0

P(X1 = j)F(qx − j),

for all x ∈ [0, 1].
Since a CDF is almost everywhere differentiable, then (5.2) also gives a

functional equation for the derivative of F under the assumption of station-
arity. By using this functional equation, we then show that dF is purely ab-
solutely continuous if and only if dF is the Lebesgue measure. Furthermore,
we show that, under stationarity, dF is a Rajchman measure (see Section 5
for a definition) if and only F is the uniform CDF on [0, 1].
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We then shows that F satisfying (5.2) is equivalent to F being a mixture,
i.e.

F = θ1F1 + θ2F2 + θ3F3,

where θi ≥ 0 for i ∈ {1, 2, 3}, θ1 + θ2 + θ3 = 1 and F1, F2, F3 are CDF’s satisfy-
ing that

1. F1(x) = x, for all x ∈ [0, 1],

2. F2 is a mixture of specific step functions,

3. F3 is singular,

and all three satisfies (5.2).
In Paper E we then give a characterization of some well-known stationary

stochastic processes {Xn}n≥1. We first show that if {Xn}n≥1 is a stationary
Markov chain, then either F(x) = x for all x ∈ [0, 1] or F has derivative equal
to zero almost everywhere and if F satisfies (5.2), then it can be approxi-
mated in the uniform norm by stationary Markov chains. We then proceed
to show similar characterizations when the CDF comes from a stationary re-
newal process, a mixture of Markov chains of fixed order and mixtures of
renewal processes.
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